zgetri - compute the inverse of a matrix using the LU factorization computed by CGETRF
SUBROUTINE ZGETRI( N, A, LDA, IPIVOT, WORK, LDWORK, INFO) DOUBLE COMPLEX A(LDA,*), WORK(*) INTEGER N, LDA, LDWORK, INFO INTEGER IPIVOT(*)
SUBROUTINE ZGETRI_64( N, A, LDA, IPIVOT, WORK, LDWORK, INFO) DOUBLE COMPLEX A(LDA,*), WORK(*) INTEGER*8 N, LDA, LDWORK, INFO INTEGER*8 IPIVOT(*)
SUBROUTINE GETRI( [N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO]) COMPLEX(8), DIMENSION(:) :: WORK COMPLEX(8), DIMENSION(:,:) :: A INTEGER :: N, LDA, LDWORK, INFO INTEGER, DIMENSION(:) :: IPIVOT
SUBROUTINE GETRI_64( [N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO]) COMPLEX(8), DIMENSION(:) :: WORK COMPLEX(8), DIMENSION(:,:) :: A INTEGER(8) :: N, LDA, LDWORK, INFO INTEGER(8), DIMENSION(:) :: IPIVOT
#include <sunperf.h>
void zgetri(int n, doublecomplex *a, int lda, int *ipivot, int *info);
void zgetri_64(long n, doublecomplex *a, long lda, long *ipivot, long *info);
zgetri computes the inverse of a matrix using the LU factorization computed by CGETRF.
This method inverts U and then computes inv(A)
by solving the system
inv(A)*L = inv(U)
for inv(A).
WORK(1)
returns the optimal LDWORK.
If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LDWORK is issued by XERBLA.
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero; the matrix is singular and its inverse could not be computed.