zpbtrs - solve a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF
SUBROUTINE ZPBTRS( UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO) CHARACTER * 1 UPLO DOUBLE COMPLEX A(LDA,*), B(LDB,*) INTEGER N, NDIAG, NRHS, LDA, LDB, INFO
SUBROUTINE ZPBTRS_64( UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO) CHARACTER * 1 UPLO DOUBLE COMPLEX A(LDA,*), B(LDB,*) INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO
SUBROUTINE PBTRS( UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], * [INFO]) CHARACTER(LEN=1) :: UPLO COMPLEX(8), DIMENSION(:,:) :: A, B INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO
SUBROUTINE PBTRS_64( UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], * [INFO]) CHARACTER(LEN=1) :: UPLO COMPLEX(8), DIMENSION(:,:) :: A, B INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO
#include <sunperf.h>
void zpbtrs(char uplo, int n, int ndiag, int nrhs, doublecomplex *a, int lda, doublecomplex *b, int ldb, int *info);
void zpbtrs_64(char uplo, long n, long ndiag, long nrhs, doublecomplex *a, long lda, doublecomplex *b, long ldb, long *info);
zpbtrs solves a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF.
= 'U': Upper triangular factor stored in A;
= 'L': Lower triangular factor stored in A.
A(kd+1+i-j,j)
= U(i,j)
for max(1,j-kd)
< =i < =j;
if UPLO ='L', A(1+i-j,j)
= L(i,j)
for j < =i < =min(n,j+kd).
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value