NAME

zptts2 - solve a tridiagonal system of the form A * X = B using the factorization A = U'*D*U or A = L*D*L' computed by CPTTRF


SYNOPSIS

  SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB)
  DOUBLE COMPLEX E(*), B(LDB,*)
  INTEGER IUPLO, N, NRHS, LDB
  DOUBLE PRECISION D(*)
  SUBROUTINE ZPTTS2_64( IUPLO, N, NRHS, D, E, B, LDB)
  DOUBLE COMPLEX E(*), B(LDB,*)
  INTEGER*8 IUPLO, N, NRHS, LDB
  DOUBLE PRECISION D(*)

F95 INTERFACE

  SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB)
  COMPLEX(8), DIMENSION(:) :: E
  COMPLEX(8), DIMENSION(:,:) :: B
  INTEGER :: IUPLO, N, NRHS, LDB
  REAL(8), DIMENSION(:) :: D
  SUBROUTINE ZPTTS2_64( IUPLO, N, NRHS, D, E, B, LDB)
  COMPLEX(8), DIMENSION(:) :: E
  COMPLEX(8), DIMENSION(:,:) :: B
  INTEGER(8) :: IUPLO, N, NRHS, LDB
  REAL(8), DIMENSION(:) :: D

C INTERFACE

#include <sunperf.h>

void zptts2(int iuplo, int n, int nrhs, double *d, doublecomplex *e, doublecomplex *b, int ldb);

void zptts2_64(long iuplo, long n, long nrhs, double *d, doublecomplex *e, doublecomplex *b, long ldb);


PURPOSE

zptts2 solves a tridiagonal system of the form A * X = B using the factorization A = U'*D*U or A = L*D*L' computed by CPTTRF. D is a diagonal matrix specified in the vector D, U (or L) is a unit bidiagonal matrix whose superdiagonal (subdiagonal) is specified in the vector E, and X and B are N by NRHS matrices.


ARGUMENTS