NAME

zunmbr - VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'


SYNOPSIS

  SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, 
 *      WORK, LWORK, INFO)
  CHARACTER * 1 VECT, SIDE, TRANS
  DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
  INTEGER M, N, K, LDA, LDC, LWORK, INFO
  SUBROUTINE ZUNMBR_64( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, 
 *      LDC, WORK, LWORK, INFO)
  CHARACTER * 1 VECT, SIDE, TRANS
  DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
  INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

F95 INTERFACE

  SUBROUTINE UNMBR( VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU, 
 *       C, [LDC], [WORK], [LWORK], [INFO])
  CHARACTER(LEN=1) :: VECT, SIDE, TRANS
  COMPLEX(8), DIMENSION(:) :: TAU, WORK
  COMPLEX(8), DIMENSION(:,:) :: A, C
  INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
  SUBROUTINE UNMBR_64( VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], 
 *       TAU, C, [LDC], [WORK], [LWORK], [INFO])
  CHARACTER(LEN=1) :: VECT, SIDE, TRANS
  COMPLEX(8), DIMENSION(:) :: TAU, WORK
  COMPLEX(8), DIMENSION(:,:) :: A, C
  INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

C INTERFACE

#include <sunperf.h>

void zunmbr(char vect, char side, char trans, int m, int n, int k, doublecomplex *a, int lda, doublecomplex *tau, doublecomplex *c, int ldc, int *info);

void zunmbr_64(char vect, char side, char trans, long m, long n, long k, doublecomplex *a, long lda, doublecomplex *tau, doublecomplex *c, long ldc, long *info);


PURPOSE

zunmbr VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H

If VECT = 'P', CUNMBR overwrites the general complex M-by-N matrix C with

                SIDE = 'L'     SIDE = 'R'

TRANS = 'N': P * C C * P

TRANS = 'C': P**H * C C * P**H

Here Q and P**H are the unitary matrices determined by CGEBRD when reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q and P**H are defined as products of elementary reflectors H(i) and G(i) respectively.

Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order of the unitary matrix Q or P**H that is applied.

If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k, Q = H(1) H(2) . . . H(k);

if nq < k, Q = H(1) H(2) . . . H(nq-1).

If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P = G(1) G(2) . . . G(k);

if k >= nq, P = G(1) G(2) . . . G(nq-1).


ARGUMENTS