Writing Web
Applications with WAI

Netscape Enterprise Server/FastTrack Server

Version 3.0/3.01

NetscapeCommunicationsCorporation("Netscape"anditslicensorsretainallownershiprightstothesoftwareprogramsoffered
byNetscape(referredtohereinas"NetscapeSoftware"andrelateddocumentation. UseoftheNetscapeSoftwareisgovernedby
thelicenseagreementaccompanyingsuchNetscapeSoftware. TheNetscapeSoftwaresourcecodeisaconfidentialtradesecretof
NetscapeandyoumaynotattempttodecipherordecompileNetscapeSoftwareorknowinglyallowotherstodoso.Information
necessary to achieve the interoperability of the Netscape Software with other programs may be obtained from Netscape upon
request. Netscape Softwareanditsdocumentationmaynotbe sublicensedand maynotbe transferred withoutthe priorwritten
consent of Netscape.

YourrighttocopyNetscapeSoftwareandthisdocumentationislimitedbycopyrightlaw Makingunauthorizedcopies,adaptations,
orcompilation works (exceptforarchival purposesorasan essential step in the utilization of the program in conjunction with
certain equipment) is prohibited and constitutes a punishable violation of the law.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA,
INTERRUPTION OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
OF ANY KIND, ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

Netscape may revise this documentation from time to time without notice.
Copyright © 1997 Netscape Communications Corporation. All rights reserved.

NetscapeCommunications,theNetscapeCommunicationslogo,Netscape,andNetscapeNewsServeraretrademarksofNetscape
CommunicationsCorporation. TheNetscapeSoftwareincludessoftwaredevelopedbyRichSalz,andsecuritysoftwarefromRSA
Data Security, Inc. Copyright © 1994, 1995 RSA Data Security, Inc. All rights reserved. Other product or brand names are
trademarks or registered trademarks of their respective companies.

AnyprovisionofNetscapeSoftwaretotheU.S.Governmentiswith"Restrictedrights"asfollows: Use,duplicationordisclosureby
theGovernmentissubjecttorestrictionssetforthinsubparagraphs(a)through(d)oftheCommercial ComputerRestrictedRights
clauseatFAR52.227-19whenapplicable, orinsubparagraph(c) (1) (i) of the Rights in Technical Dataand Computer Software
clause at DFARS 252.227-7013, and in similar clauses in the NASA FAR Supplement. Contractor/manufacturer is Netscape
Communications Corporation, 501 East Middlefield Road, Mountain View, California 94043.

YoumaynotexporttheSoftwareexceptincompliancewithapplicableexportcontrols.Inparticular,iftheSoftwareisidentifiedas
notforexport, thenyoumaynotexportthe Software outsidethe United States exceptin very limited circumstances. See theend
user license agreement accompanying the Software for more details.

:.l Recycled and Recyclable Paper

The Team:

Engineering:Chris Apple, Mike Barbarino, Mike Belshe, Jim Black, Fred Cox, George Dong, Alex Feygin, Alan Freier, Andy
Hakim, Warren Harris, John K. Ho, Ari Luotonen, Mike McCool, Rob McCool, Chuck Neerdaels, Howard Palmer, Ben Polk,
Aruna Victor

Marketing: Mike Blakely, Atri Chatterjee, Ben Horowitz, David Pann

Publications: Guy K. Haas

Quality Assurance: Saleem Baber, Roopa Cheluvaiah, Shvetal Desai, Noriko Hosoi, Teresa Hsiao, Pramod Khincha, Joy Lenz,
Rajesh Menon, Jun Tong, Cathleen Wang, Carol Widra, Ayyaz Yousaf

Technical Support: John Benninghoff, Brian Kendig, Anthony Lee-Masis, Trevor Placker, Bill Reviea, Dan Yang

Netscape Enterprise Server/Netscape FastTrack Server Version 3.0/3.0.1

©Netscape Communications Corporation 1997
All Rights Reserved

Printed in USA
97 96 10987 654321

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

Who Should Read This GUIAE?oooiiiiiiiiiii e 1

What's in This GUIAE?cccooiiiiiiiiiiiii e 1
Conventions in This BOOKcccciiiiiiiiiiiii e 2
Chapter 1 Understanding WAT ..., 5

Understanding Version Differencescccooccoiiiiiiiiiiiiiiiec 5
Understanding CORBAooiiiiiiiiiiiii ettt 6
Understanding TDLooiiiiiiie ittt 7
WAL WIAPPET CIASSES ..veiviiiiiiiiieiie ettt 7
How Web Application Services WOrkccoociiiiiiiiiiiiiiie e 8
Chapter 2 Quick Start: Running the Examples 11
Running the Sample C Application (CIIOP)ccccccooiiiiiiiiiiiiiiiiciceceeee, 12
Running the Sample C++ Application (WASP)ccccooiiiiiiiiiiiiiiieicec e 15
Running the Sample Java Application (WASP.Java)ccccoceviiiiiiiniiiiiiiiains 18
Running the FormHandler Samplecocviiiiiiiiiiiiii 21

About the FormHandler Class EXamplecccoociiiiiiiiiiiiiiie e 22

Running the C++ FormHandler Sampleccccooviiiiiiiiiiiicc e, 22

Running the Java FormHandler Samplecoccooiiiiiiiiiiiiiicee 24

Writing Web Applications with WAI 3

Chapter 3 USing WAL ... 27

System REQUITEMENTScccuiiiiiiiiiiiiiiiiiic e 27
OVEIVIEW ..ottt 28
Before YOu Use WAL ...iiiiiiiiiii e 29
Understanding SECUTitY ISSUESoovuiiiiiiiiiiiiiiieeiie et 29
Understanding Version Differencescccovvviiiiiiiiiiiiiiiiiieeeeeee 29
Converting CGI Applications tO0 WALccooiiiiiiiiiiieee e 30
Setting Up the Web SEIVETr ...ttt 32
Starting osagent (3.0 Servers ONly)cccoooiiiiiiiiiiiiiie e 33
Setting the Option to Enable WATcoccooiiiiiiiiiiiic 34
Configuring the SEIVETocciiiiiiiiiiiii it 34
What Happens When You Enable WATccccocciiiiiiiiiiiicce, 35
Configuring the Web Server’s ORBcoocoiiiiiiiiiie e 35
Changing the ORB Configuration Informationcccccoccvvieinniinnnn 36
Listing of Configurable Parametersccoocioiiiiiiiiiiaiienie e 36
Example of Configuring the ORBccccooiiiiiiiiiii e 37
Logging Status MESSAZEScccoviiiiiiiiiiiiiieeiii it 38
Compiling Applications and Server PIUG-INScocoviiiiiiiiiniiiiie 38
Compiling C/CH+ APPLICALONS ..ovviviiiiiiiiiiiiiieiec e 39
INClude DIFECIOTIES ...viiviiiiiiiiiiii ettt 39
LIDIALIES oottt e 39
ComPILe FIAZS .iiiiiiiiiiiie i 40
Compiling C/C++ Server PIUG-INS ...o.coviiiiiiiiiiiiiiicieecee e 41
Compiling Java APPLCAtIONSc..eeviiiiiiiiiiiiie e 41
RUNNING APPLICATIONS ooviiiiiiiiiiiiii et 41
Setting Up Your Application with OADccoociiiiiiiiiiiiie e, 42
Using osagent with Java (3.0 Only)cccooiiiiiiiiiiiiiie e, 43
Running Applications on Remote Machinesccccccccevviiiiiiiiiniiinnnee, 44
Chapter 4 Writing a WAI Application in C ..., 45
Defining a Function to Process REQUESESccociriiiiiiiiiiiiiiiciiieiecsie e 46
Getting Data from the REQUESEcocviiiiiiiiiiiiiiiciceee e 46
Getting Headers from the HTTP ReqUEStccccevviiriiiiiiiiiiiiieiiieeiee 47
Getting Information about the Server ... 48

4 Writing Web Applications with WAI

Getting and Setting Cookies in the Clientcccocciviiviiiniiiiiiiece, 49

Sending the Response Back to the Clientcccooccoiiiiiiiiiiiiinine, 49
Setting Headers in the RESPONSEcceoiiiiiiiiiiiiiiieete e 50
Setting the Status of the RESPONSEcccooiviiiiiiiiiiiiiicieee e 50
Sending the RESPONSEocuiiiiiiiiiiii ittt 50
Redirecting Users to Another Pageccccooeviiviiiiiiiiiiieeeeee e 51

Registering Your Web Application Serviceccccocvviiiiiiiiiiiiiiiiiiiceeee 52
Registering With a Web SeIVErcccoiiiiiiiiiiiiiiiiic 53
Registering With an SSL-Enabled Server ..o, 54

Running Your Web SEIviCecoccoiiiiiiiiiiiiiiiiiiiiiee e 55

SUMMATY Of C FUNCHONS ...oiiiiiiiiii ettt 55

Chapter 5 Writing a WAI Application in C++ ... 59

Setting up Microsoft Visual C++ for use

with WAT (Windows NT ONLY) ..ooioiiiiiiiiiiiiiiit et 60
Declaring a Class for Your Web ServiCeccocoiiiiiiiiiiiiiiiiie e 63
Defining a Method to Process REqUESEScccoiviiviiiiiiiiiiiiiiiieceeec, 64
Getting Data from the REQUESEcociiiiiiiiiiiiiiiiie e 65
Getting Headers from the HTTP ReqUEStcccevviiiiiiiiiiiiiieiiiccciee, 65
Getting Information about the SErverccoceiiviviiiiiiieeeeeeeen 66
Getting and Setting Cookies in the Clientccccocevvviviiiiniiiiiiieie, 68
Sending the Response Back to the Clientcccccooiiiiiiiiiiiiiieie, 69
Setting Headers in the RESPONSEcccooiiiiiiiiiiiiiiiiiccicccc e 69
Setting the Status of the RESPONSEcciviiiiiiiiiiiiiecee e 70
Sending the RESPONSEccuiiiiiiiiiiiieiiie et 70
Redirecting Users to Another Pageccccoooiiviiiiiiiiiiiieee e 71
Providing Information About the Servicecccoocciviiiiiiiiiiiiiiiieieee 72
Registering Your Web Application ServiCeccccoooviviiiiiiiiniiiiiiiiceeeee 73
Registering With a Web SEIVErccccoiiiiiiiiiiiiiiiii e 73

Registering With an SSL-Enabled Server ..o 74

Writing Web Applications with WAI 5

Running Your Web ServiCeccoociiiiiiiiiiiiiii e 75

Chapter 6 Writing a WAI Application in Java ... 77
Declaring a Class for Your Web ServiCeccccoioiiiiiiiiiiiiiie e 78
Defining a Method to Process REQUESESccvviiiiiiiiiiiiiiiiiiceiiceeee 80
Getting Data from the REQUESEcooviiiiiiiiiiiiiie it 80
Getting Headers from the HTTP Requestccccciiiviiiiciiiiiiiiieics, 80
Getting Information about the Servercccccoiiiiiiiiinie i 82
Getting and Setting Cookies in the Clientccccoceviiiiiiniiniiieins 84
Sending the Response Back to the Clentccccooeiiiiiiiiiiiiie 84
Setting Headers in the RESPONSEcovveiiiiiiiiiiiiiieiiie e 85
Setting the Status of the RESPONSEocoeiiiiiiiiiiiiiiie e 85
Sending the RESPONSEiiviiiiiiiiiiiieiieiieit ettt 86
Redirecting Users to Another Pagec.ccccoviiiiiiiiiiiiiiice 87
Providing Information About the Servicecccccoiiiiiiiiniiiiiic, 88
Registering Your Web Application ServiCecocccovioiiiiiiiiiiiiiiinieeeeee, 89
Registering With a Web SEIVETrccociviiiiiiiiiiiiiiii 89
Registering With a Web SeIver ..o 90
Registering With an SSL Enabled Servercccccoiiiiiiniiiiii 91
Running Your Web ServiCecccooiiiiiiiiiiiiiiiieie e 92
Chapter 7 Writing a WAI Server Plug-In ..., 93
Writing an Initialization FUNCHONoociiiiiiiiiice e 94
INItIAliZAtiON 1N C 1oviiiiiiiiie e 94
Configuring YOur Web SEIVETcoccioiiiiiiiiiiiiiiie it 96
Chapter 8 Security Guidelines for Using WAI ... 97
How the Server Finds Your AppliCationcccocoeiiiiiiiiiiiieiiiee e 97
Potential SECUTity CONCEINScuiiiiiiiiiiiiiiiaie et 98
Recommended GUIAElINEScccooiiiiiiiiiiiiiiii e 99
Enabling IIOP Connections from Other Machinesccccccooeiiiiiiiiniinne 101
Configuring Your Web SErver ... 101
(3.0 only) RUNNING OSAZENT ...eiuiiiiiiiiiiiiiiiicie et 102

6 Writing Web Applications with WAI

Chapter 9 WAL ReferencCecccooiiiiiiiiiiiiieeeee e 103

How to Use This ReferencCecccociiiiiiiiiiiiiiiieiiiiee e 108
INEEITACES ettt 109
netscape:: WAIL:HtpServerRequest ..o 110
addResponSEHEAdErcciiiiiiiiiiiiiiii 111
BUIIAURL L.ooiiiiiiccee e 113
delResponsSEHEAdrccoiiiiiiiiiiiiiiiii e 115
GEtCONFIGPATAMELETvivviiiiiiiiiiii ettt 116
GEUCOMTEXE ..ttt e e ettt e e e e e ettt e e e es 118
GELCOOKIC .ttt ettt 119
EtREQUESTHEACT ..ottt 121
GELREQUESIINFO ..iiiiiiiii it 122
getResponseContentLengthccoiiiviiiiiiiii e 125
EtRESPONSEHEAACTviiiiiiiiiiiciie 126
LOGEITOT e 128
REAACHENT ..ottt 130
RESPONAREAITECE ...t 134
SELCOOKIC ..ttt 135
SEREQUESTINFO ...t 138
setResponseContentLengthcccooiiiiiiiiiiii 138
SetResSpONseCONLENITYPE ...ooiiiiiiiiiiiiiiiiiicce e 139
SCLRESPONSESLALUS ..eiuiiiiiiiiiiie ittt 140
SEATTRESPOINISE ...ttt ettt 141
WIEECHEIL ...ttt 142
netscape: WAL HUPSEIVETCONIEXE ..o..viiiiiiiiiieiiieie et 144
getHost 145
getinfo 146
getName ... 147
EIPOTT ittt 148
2etServerSOftwareocevvveiiiiiiiie e 148
ISSECUIE ..ot 149
netscape:: WAIL:WebApplicationServicecc........ 150
netscape:: WAIL:WebApplicationBasicService 150
WAIWeDAPPlICAHONSEIVICE ...oovvviiiiiiiiiiiiiiic e 151
ACHVATEWAS .o 152
etSErvICEINFO ..oiiiiiii i 152
REGISTEISEIVICE ..iiiiiiiiiiiiiiiiiiic e 153
RUN Lo 153
SEHNGAILOC i 154
SEHNGDCLETE ...t 154
SEANGDUD 1ot 155

Writing Web Applications with WAI 7

netscape: WAIL:FormHandler ..o 155

FOrmMHANAIETiiiiiiiiic e 156
ISVALIA o 157
GEIQUETYSIIING -.vvteeiiiiiiitee ettt e 157
Pars@QUETYSIIING ...vvieiiiiiiiiiiiiiiii et 158

< PSP PRR SRS 159

A e 159
DIEIELE .ot 160
TNHEILETALOT ©..vivivite ettt 160

INEXE oottt ettt ettt 161
GetHASNTADIEc.ooviiiiiiis e 161
Chapter 10 Naming SErviCes ..., 163
C++ Classes for Naming Services (3.01 only)ccccovviiiiiiiiiiiiiiiiiin 163
FEZISLETWAS ..ottt 164
TESOIVEWAS ..ottt 165
FESOIVEURL ..ottt ettt 165
FEZISLETODIECT ..vviiviieiiieieieiee ettt 166
PULODJECT ottt 167
PULCONTEXT 1.ttt eteet ettt ettt ettt ettt ettt ese et e et e ebe s e e e 167

Java Classes for Naming SEIrviCEScocouiiiiaiiiiiiiiiiae et 168
TEGISTET .oiiviiiii ittt ettt ettt ettt ettt 169
TESOLVE Lottt 169
netscape. WALNAMEUHLooooiiiiiiiiiiii e 170
GEtROOINAMING ..ooiiiiiiiiiiiiii e 171
NaAMEFTOMSIIING ittt 171
LEGISLEIODIECT ...ttt 171
TEGISTEIWAS e 173
FESOIVEURL ...ttt 174
Chapter 11 Troubleshooting Problemscccooviinnnn, 175
Error: WAI Application NOt FOUNdoociiiiiiiiiiiiiiiie e 175
Error: Server ErTOr ... 177
Error: Invalid Stringified Object Reference “ccccooeiiiiiiiiiiiiiie 178
Web Service REeISIAtiONc.cooiiiiiiiiiiiiit et 178
LISEIMIPL et 178
DESCIIPUON .iiiiiiiiiiiiii et 179
UNTEZOD] ittt 179
IOAEX s 181

8 Writing Web Applications with WAI

About This Guide

he manual Writing Web Applications with WAI documents the
web application interface (WAI). You can use this interface to
write your own web application services for the Netscape web
servers. (For an explanation of web application services, see
Chapter 1, “Understanding WAI”.)

Who Should Read This Guide?

ThisguideisintendedforusebyC,C++,andJavaprogrammerswhowanttowritetheir
own web application services in Netscape web servers.

This document assumes you are familiar with the use of the HyperText Transfer
Protocol(HTTP) theCommonGatewaylnterface(CGI),andclient-serverarchitecture,
aswellasthetoolsinvolvedincompiling, linking, andlaunching programs writtenin
languagessuchasC,C++ andJava.Thisdocumentbuildsonthatknowledgetoenable
youtointerface yourapplicationtothe webservertoenable clientprogramstoaccess
that application.

What’s in This Guide?

This guide explains how to use the web application interface (WAD in the
Netscape web servers. The guide documents the C, C++, and Java interfaces in
the WAL

Table 1 describes each chapter in more detail.

Conventions in This Book

Table P.1 Finding information In this manual

To do this: See this chapter:

LearnmoreaboutWAIand Chapter 1, “Understanding WAI”
the Netscape web
servers

Learn how the sample Chapter 2, “Quick Start: Running the Examples”
applications work

Learn how to use WAIto Chapter 3, “Using WAI”
writeyourownapplication

Find out how to write a Chapter 4, “Writing a WAI Application in C”
WAI application in C

Find out how to write a Chapter 5, “Writing a WAI Application in C++”
WAI application in C++

Find out how to write a Chapter 6, “Writing a WAI Application in Java”
WAI application in Java

Findouthowtowriteanin- ~ Chapter 7, “Writing a WAI Server Plug-In”
process server plug-in

Understandsecurityissues ~ Chapter 8, “Security Guidelines for Using WAI”
with WAI

Lookupthedescriptionof — Chapter 9, “WAI Reference”
an interface

Learn about C++andJava Chapter 10, “Naming Services”
naming services

Troubleshoot problems Chapter 11, “Troubleshooting Problems”
with WAI applications

Conventions in This Book

Monospaced font Thistypefaceisusedforsamplecodeandcodelistings,APTandlanguageelements(such
asfunctionnamesandclassnames) filenames,pathnames,directorynames, HTMLtags,
and any text that must be typed on the screen. (Monospaced italic font is used for
placeholders embedded in code.)

ltalics Ttalicstypeisusedforbooktitles,emphasis,variablesandplaceholders,andwordsused
in the literal sense.

2 Writing Web Applications with WAI

Boldface

Sidebar text

Conventions in This Book

Boldface type is used for glossary terms and tutorial steps.

Notes and warnings in the sidebar mark important information. Make sure you
read the information before continuing with a task. In the reference section of
this manual, sidebar text is also used to label different sections of the
documentation for a language component (such as a function or class).

The vertical bar is used as a separator for user interface elements. For example,
File | New means you should click the File menu and select New;

Server Status | Log Preferences means you should click the Server Status button
in the Server Manager and click the Log Preferences link.

Conventions in This Book

4 Writing Web Applications with WAI

Chapter

Understanding WAI

The Web Application Interface (WAD is one of the programming interfaces that
allow you to extend the functionality of Netscape web servers.

WALI is a CORBA-based programming interface that defines object interfaces to
the HTTP request/response data and server information. Using WAI, you can
write a web application in C, C++, or Java that accepts an HTTP request from a
client, processes it, and returns a response to the client. You can also write
your own server plug-ins for processing HTTP requests.

Understanding Version Differences

The process for setting up and running WAI applications differs between
versions 3.0 and 3.01 of the Netscape web servers:

e In the 3.0 release of Netscape web servers, the web server depends on the
osagent utility. This utility is used to help operate the object request broker
(ORB).

In order to run a 3.0 version of a web server, you need to run the osagent
utility first. You can also use the osfind utility (provided with 3.0 servers) to
troubleshoot problems.

You can install a patch that fixes and improves the WAI programming
interface to the Enterprise Server in the following ways:

Chapter |, Understanding WAI 5

Understanding CORBA

— osagent is no longer required to be running.
— WAI server plug-ins are officially supported.

— You can use OAD to activate your WAI applications.
(Notethat OAD will start only out-of-process WAl applicationsin C/C++only
and is not supported on Windows NT.)

Formore information on this patch and instructions on how to getitand install it,
go to http://help.netscape.com/filelib.html#wai.

¢ Inthe3.01release of Netscape webservers, thewebservernolongerrequiresthe
osagentutility. Youdonotneedtorunthisutilitybeforestartinga3.01 version of the
web server.

The osagent and osfind utilities are no longer included with the 3.01 release of the
web server, since the web server no longer requires these utilities to run.

In general, features or instructions specific to a release are noted in the manual.

Understanding CORBA

The Common Object Request Broker Architecture (CORBA) provides a distributed
objectinfrastructure that supports interoperability across networks, languages, and
operating systems.

A CORBA Object Request Broker (ORB) is a mechanism that allows client objects to
make requests and receive responses transparently, regardless of the server object's
location,operatingsystem,orimplementationlanguage.(WithanORB,youcandesign
yourobjectinterfacesinaneutrallanguagecalledthelnterface DefinitionLanguage,or
IDL).

Netscape includes a CORBA ORB with the Netscape web servers. WAI was
designed in IDL and includes Java, C++, or C “wrappers”. You can call
functions in these wrappers when writing your own CORBA-compliant
applications that interact with the server via this ORB. (For more details, see the
next sections, “Understanding IDL” on page 7 and “WAI Wrapper Classes” on
page 7.)

6 Writing Web Applications with WAI

Understanding IDL

The CORBA architecture is a standard developed by the Object Management
Group, Inc. (OMG), an international consortium of more than 500 computer
industry companies. For more information about CORBA, IDL, or OMG, see the
OMG publication entitled The Common Object Request Broker: Architecture
and Specification at http://www.omg.org.

Understanding IDL

Interface Definition Language (IDL) is a generic, descriptive language used to
define interfaces between client objects and object implementations. An
interface described in IDL can be implemented in any language.

WAL describes a set of objects and methods that let you access HTTP requests
and server information as well as return results to a browser. The description of
WAL is detailed in an Interface Description Language (IDL) specification. IDL is
a language that allows you to describe an interface in a generic way and then
allows you to compile that specification to a target language such as Java or
C++.

Each interface definition specifies the operations that can be performed and the
input and output parameters required. For example, the interface definition for
an HTTP request describes how clients can access request headers and set
response headers.

(The interfaces are defined in *.idl files, which are located in the server_root/wai/
idl directory on UNIX and the server_root\wai\idl directory on Windows NT.)

Because the interfaces are described in a generic language rather than in a
specific programming language, you can use the description of an interface to
implement client/server applications in a variety of languages.

WAI Wrapper Classes

WALI includes wrapper classes (classes that implement the interfaces) for C++
and Java and a C interface. You can use C, C++, or Java to write your own
applications that access HTTP request objects through the defined interface.

You can also write server plug-ins in C or C++ that use the functions and
classes defined in WAL

Chapter |, Understanding WAI 7

How Web Application Services Work

For example, one of the methods of the HTTP request interface describes how
clients can add a header to the response sent to the client. This method is
described in IDL:

Interface described in IDL:
HttpServerReturnType addResponseHeader(in string header,
in string value);

WALI provides wrapper classes in Java and C++ (and a C interface) that
implement this interface:

Function call in C:
NSAPI_PUBLIC WAIReturnType_t WA laddResponseHeader(ServerSession_t p,
const char *header, const char *value);

Method in C++:
WAIReturnType addResponseHeader(const char * header,
const char * value);

Method in Java:
public abstract netscape. WA .HttpServerReturnType addResponseHeader(java.lang.String
header java.lang.String value);

Inyourapplicationorplug-in,youcan callthese methodstoaddtheresponseheader.
The methods (in Java and C++) and C function implement the interface specified in
IDL; they share the same parameters (except the C function, which hasan additional
argument for the server session object) and return the same type of value.

How Web Application Services Work

UsingWAIyoucanwriteaserverplug-inorawebapplicationservice. Forexample,you
canwriteawebapplicationservicethatprocesses posteddatafromforms. These web
application services work in the following way:

I. You write a web application service with WAL

In your application or server plug-in, you define a class derived from the
WAIWebApplicationService base class provided with WAL

2. Onstartup, your application/server plug-in registers with aweb server.

8 Writing Web Applications with WAI

How Web Application Services Work

When writing your application or server plug-in, you register it by calling
the RegisterService method of the WAIWebApplicationService base class.

You register your application/server plug-in under a unique instance name.
Netscape web servers include a built-in name service that keeps track of
these instance names.

3. End users access your web application service.

Toaccessawebapplication service, end users visit URLs in the following format:
http://server_name:port_number/iiop/service_name
For example, if your server is named mooncheesg, it is on port 80, and your

application/server plug-inregistersunderthe name MyWebApp, users canaccess
your web application service by visiting the following URL:

http://mooncheese: 80/iiop/MyWebA pp

4. Thewebserverrunstheappropriatemethodinyourwebapplicationservice
class.

The web server invokes the Run method of your web application service
class. You write this method to process the incoming HTTP request, retrieve
data from the request, and send a response back to the client.

The rest of this manual describes this process in more detail.

Chapter |, Understanding WAI 9

How Web Application Services Work

10 Writing Web Applications with WAI

Chapter

Quick Start: Running the Examples

Note

This chapter explains how to compile and run some of the sample WAI
applications provided with your server.

Running the Sample C Application (CIIOP)
Running the Sample C++ Application (WASP)
Running the Sample Java Application (WASP.Java)

Running the FormHandler Sample

You can find these sample applications in the server_root/wai/examples directory
on UNIX and in the server_root\wai\examples directory on Windows NT.

These examples assume that your server is running in non-secure mode.

Formoredetailedinformationonsettingup,writing,andrunningWAlIapplications,see
the rest of the chapters in this manual:

To set up your server to run WAI applications, see Chapter 3, “Using WAI”.

To write a WAI application in C, C++, or Java, see Chapter 4, “Writing a WAI
Application in C”, Chapter 5, “Writing a WAI Application in C++”,

Chapter 6, “Writing a WAI Application in Java”, and Chapter 7, “Writing a
WAI Server Plug-In”.

Chapter 2, Quick Start: Running the Examples 11

Running the Sample C Application (CIIOP)

e For tips on troubleshooting problems with WAI applications, Chapter 11,
“Troubleshooting Problems”.

Running the Sample C Application (CIIOP)

The sample C application provided with the web server is in the server_root/wai/
examples/CIIOP directory. The source file for the example is CAPIIIOP.c.

ThisexamplesendsapagecontainingthetextHelloWorldbacktotheclient,asshown
in the following figure:

File EdAe Yiew Gn

ni.-'a'f:}nq.:_'s.r;i'
Bk Palosl Hows Seexh Disle Pl oy

b “Bockmata Ky b [ror b ATy B[]
1 mats Mea? 1 wtals Caal? L iedageiciase

Communicalnr - Help

EHello Wl

o' Coemvmrwet: [ior e
=

Therestofthissectionexplainshowtosetupandusethisexample. Youcanusethisas
a guideline for setting up and running your own C examples.

To run the sample C application, follow these steps:
I. (For 3.0 servers only)Start up osagent.

osagent is located under server_root/wai/bin in UNIX and server_root\wai\bin in
Windows NT.

Specify the -aflag to restrict osagent to the localhost IP address. For example:
osagent -a127.0.0.1

For more information, see “Starting osagent (3.0 Servers Only)” on page 33.

2. Enable WAI applications on the web server.

12 Writing Web Applications with WAI

Running the Sample C Application (CIIOP)

Fromthe Server Administration page intheadministrationserver, click thebutton
labelled with yourserver name. This displaysthe Server Manager foryourserver.

ClickPrograms | WAIManagementtodisplaytheformforadministeringWAlIon
your server.

Under Enable WAI Services, select the Yes radio button and click OK. Save and
apply your changes.

For more information, see “Setting the Option to Enable WAI” on page 34.

In the wai/examples/Cl1 OP (in UNIX) orwai\examples\Cl | OP (on Windows NT)
directory, review the sample source file CAPIIIOP.c.

Basically, the code in this source file does the following (for a more complete
explanation of these steps, see Chapter 4, “Writing a WAI Application in
C”):

e Acceptsanargumentthatspecifies the host and port where the web serveris
running.Forexample,youcanusethefollowingcommandargumenttospecify
that your web server is running on port 80 of the server named mooncheese:

CAPII1OP mooncheese:80

e Callsthe WAIcreateWebAppService() function to create a new web application
servicenamed CAPIIIOP Users will be able toaccessthiswebservice through
thefollowing URL(f, forexample, yourwebserverisrunningon port80ofthe
server named mooncheese):

http://mooncheese.mydomain.com:80/iiop/CAPIIOP

e Callsthe WAIregisterService() functionto register the web application with the
webserverrunningonthehostandportnumberspecifiedonthecommand-line.

e Callsthe WAlimplIsReady() functiontoindicatetothe webserverthatitisready
to receive requests.

When the application receives a request, it does the following:

e Callsthe WAIsetResponseContentL ength() function to specify the contentlength
of the page returned to the client.

e CallstheWAlStartResponse() functiontostartsendingtheresponsetotheclient.

Chapter 2, Quick Start: Running the Examples 13

Running the Sample C Application (CIIOP)

e Callsthe WAIWriteClient() function to send the text "Hello World" to the client.

4. Compile and link the sample application.

The sample application includes a Makefile (for example, Makefile. SOLARIS or
Makefile WINNT) that you can use to compile and link the application.

For more information on compiling and linking your application, see
“Compiling C/C++ Applications” on page 39.

5. Aftercompilingandlinkingtheapplication,runtheapplicationbyentering
the following command:

CAPII10OP hostname:port

where hostnameand portidentify the name of the machine thatthe web serverruns
on and the port number that the server listens to. For example:

CAPIOP myserver:80

Thisregisterstheapplicationwiththewebserver. Thewebservershouldbeableto
find the CAIIIOP WALI application.

6. In a web browser, go to the following URL:
http://hostname:port/iiop/CAPI11OP

where hostnameand portidentify the name of the machine thatthe web serverruns
on and the port number that the server listens to. For example:
http://myserver:80/iiop/CAPIIOP
Thewebserverprocessestherequest.Whileprocessingtherequest,theserverparses

the URL, retrieves the name of the service you want to access (CAPIIIOP), and
contacts your application.

Yourapplicationreceivestherequestandreturnsthe HelloWorldstring. The web
server returns this to the web browser.

Effectively, the web browser has requested a service, and your WAI application has
delivered back results through the web server.

14 Writing Web Applications with WAI

Running the Sample C++ Application (WASP)

Running the Sample C++ Application (WASP)

The sample C++ application provided with the web server is in the server_root/
wai/examples’'WASP directory. The source file for the example is WASP.cpp.

This example does the following:

Sends a cookie to the browser, if the browser does not already have a
cookie set

Gets information about the web server, including the host name and server
ID of the web server

Gets information from the request headers in the request sent by the
browser

Gets information about the request, including the types of information
accessible through CGI 1.1 environment variables

Sends this information back to the client in an HTML page

The following screenshot illustrates the results of this service.

| B

-

The easy WAI to powerful Web Applications.

Caabbe: MNETAHCE="WAEF
Web Berver hast; werpameom com

Web Berver name; beps-vespa

WiLF sample satpul - Metscapa
File Edid ¥iew §o Commanicsior Help

4 # 3 % a & o4 o 1l LW
Hack Faosi Howe Sawch Gude Pod Sscwip
J " Bockwarks l-l-eim.|'|':--#r-ﬂ~'ﬂ'.-':-n¢--:tnl::ﬁ.'h'*5=-'. ':Iﬁ

A gt ben?] whesrs Coa B Kapefdess

'

e TR

Note that this example can be compiled and linked as a standalone application
that runs outside the web server’s process and as a server plug-in that runs
within the web server’s process.

Chapter 2, Quick Start: Running the Examples 15

Running the Sample C++ Application (WASP)

The rest of this section explains how to set up and use the standalone
application in this example. (For an example of writing a server plug-in, see
Chapter 7, “Writing a WAI Server Plug-In”.)

You can use this example as a guideline for setting up and running your own
C++ examples.

To run the sample C++ application, follow these steps:

(For 3.0 servers only) Start up osagent.

osagent is located under server_root/wai/bin in UNIX and server_root\wai\bin in
Windows NT.

Specify the -aflag to restrict osagent to the localhost IP address. For example:

osagent -a 127.0.0.1

For more information, see “Starting osagent (3.0 Servers Only)” on page 33.

Enable WAI applications on the web server.

Fromthe Server Administration page intheadministrationserver, click thebutton
labelled with yourserver name. Thisdisplaysthe Server Manager foryourserver.

ClickPrograms | WAIManagementtodisplaytheformforadministeringWAlon
your server.

Under Enable WAI Services, select the Yes radio button and click OK. Save and
apply your changes.

For more information, see “Setting the Option to Enable WAI” on page 34.

In the wai/examples’WASP (in UNIX) or wai\examples\WA SP (on Windows NT)
directory, review the sample source file WASP.cpp.

Basically, the code in this source file does the following (for a more complete
explanation of these steps, see Chapter 5, “Writing a WAI Application in
C++"):

e Acceptsanargumentthatspecifies the host and port where the web server is
running.Forexample,youcanusethefollowingcommandargumenttospecify
that your web server is running on port 80 of the server named mooncheese:

WA SP mooncheese: 80

16 Writing Web Applications with WAI

Running the Sample C++ Application (WASP)

e CreatesanewwebapplicationservicenamedWASP. Userswillbeabletoaccess
thiswebservicethroughthefollowing URL(f, forexample, yourwebserveris
running on port 80 of the server named mooncheese):

http://mooncheese.mydomain.com:80/iiop/WASP

e (Calls the RegisterService method to register the web application with the
web server running on the host and port number specified on the
command-line.

When the application receives a request, it does the following:

e (Calls the getCookie and setCookie methods to demostrate how to get and
set cookies in the client.

e Callsseveraldifferentmethodstoillustrate the kinds of data you can get from
the session’s contextandthe client’srequest. Forexample, to getinformation
from the request, the sample application calls the getRequestinfo method.

e (Calls the setResponseContentLength method to specify the length of the
content to be delivered to the client.

e (Calls the StartResponse method to start sending the HTTP response back
to the client.

e (Calls the WriteClient method to send data back to the client.

Compile and link the sample application.

ThesampleapplicationincludesasampleMakefile(forexample Makefile. SOLARIS
or Makefile. WINNT) that you can use to compile and link the application.

For more information on compiling and linking your application, see
“Compiling C/C++ Applications” on page 39.

Aftercompilingandlinkingtheapplication,runtheapplicationbyentering
the following command:

WA SP hostname:port

where hostnameand portidentify the name of the machine thatthe web serverruns
on and the port number that the server listens to. For example:

WA SP myserver:80

Chapter 2, Quick Start: Running the Examples 17

Running the Sample Java Application (WASP.Java)

Thisregisterstheapplicationwiththewebserver. Thewebservershouldbeableto
find the WASP WAI application.

In a web browser, go to the following URL:

http://hostname: port/iiop/WASP

where hostnameand portidentify the name of the machine thatthe web serverruns
on and the port number that the server listens to. For example:
http://myserver:80/iiop/WASP
Thewebserverprocessestherequest.Whileprocessingtherequest theserverparses

the URL, retrievesthenameoftheserviceyouwanttoaccess(WASP), and contacts
your application.

Yourapplicationreceivestherequestandretrievinginformationfromtherequest
andthewebserver. Thewebserverreturnsthisinformationtothewebbrowserin
an HTML page.

Effectively, the web browser has requested a service, and your WAI application has
delivered back results through the web server.

Running the Sample Java Application
(WASP.Java)

The sample Java application provided with the web server is in the server_root/wai/
examples'WASP directory. The source file for the example is WASP.java.

This example does the following:

Sends a cookie to the browser, if the browser does not already have a cookie set

Getsinformationaboutthewebserver,includingthehostnameandserverIDofthe
web server

Gets information from the request headers in the request sent by the browser

Getsinformationabouttherequest, includingthetypesofinformationaccessible
through CGI 1.1 environment variables

Sends this information back to the client in an HTML page

18 Writing Web Applications with WAI

Running the Sample Java Application (WASP Java)

The following screenshot illustrates the results of this service.

WiESF samiple

pitpi - Metacapa u

-

| B

A ¢ 3 A a & < o i N
Back Fiad foww Sesch Guce P Secuy
b "Bockmabs b Mok rprwesscnpinaps comisapolay s TF 112

A gt ben?] whesrs Coa B Kapefdess

The easy WAI to powerful Web Applications.

Caakie: INSTANCE=JavaMAsp
Web Berver hast; werpameom com

Web Berver name; beps-vespa

- Euuonamesn [igee: 'Ii o Iﬁ i

Therestofthissectionexplainshowtosetupandusethisexample. Youcanusethisas
a guideline for setting up and running your own Java examples.

To run the sample Java application, follow these steps:

(For 3.0 servers only) Start up osagent.

osagent is located under server_root/wai/bin in UNIX and server_root\wai\bin in
Windows NT.

Specify the -aflag to restrict osagent to the localhost IP address. For example:
osagent -a127.0.0.1

For more information, see “Starting osagent (3.0 Servers Only)” on page 33.

Enable WAI applications on the web server.

Fromthe Server Administration page intheadministrationserver, click thebutton
labelled with yourserver name. This displaysthe Server Managerforyourserver.

ClickPrograms | WAIManagementtodisplaytheformforadministeringWAlon
your server.

Under Enable WAI Services, select the Yes radio button and click OK. Save and
apply your changes.

For more information, see “Setting the Option to Enable WAI” on page 34.

Chapter 2, Quick Start: Running the Examples 19

Running the Sample Java Application (WASP.Java)

3. Inthe wai/examples’WASP (in UNIX) or wai\examplesWASP (on Windows NT)
directory, compile the sample application.

MakesuretoincludethefollowingfilesinyourCLASSPATHenvironmentvariable:
e server_root/wail/javalnish.zip

e server_root/wai/javalWAL.zip

4. After compiling the application, run the application.

If you are running a 3.0 version of a Netscape web server, run the following
command:

java-DDISABLE_ORB_LOCATOR WA SP hostname:port
The-DDISABLE_ORB_LOCATORoption specifies that osagent should notbe used
to find the ORB in the Netscape web server.

If you are running a 3.0.1 version of a Netscape web server, run the following
command:

java WA SP hostname:port

Thisregisterstheapplicationwiththewebserver. Thewebservershouldbeableto
find the JavaWASP WAI application.

5. In a web browser, go to the following URL:
http://hostname: port/iiop/JavawWA SP
where hostnameand portidentify the name of the machine thatthe web serverruns
on and the port number that the server listens to. For example:
http://myserver:80/iiop/JavaWA SP
Thewebserverprocessestherequest.Whileprocessingtherequest theserverparses

the URL, retrieves the name of the service you want to access (JavaWASP), and
contacts your application.

(Notethatthenameusedtoregisterthe server--JavaWASP --does not necessarily
need to be the same as the name of the class -- WASP.)

Yourapplicationreceivestherequestandretrievinginformationfromthe request
andthewebserver. Thewebserverreturnsthisinformationtothewebbrowserin
an HTML page.

20 Writing Web Applications with WAI

Running the FormHandler Sample

Effectively, the web browser has requested a service, and your WAI application has
delivered back results through the web server.

Running the FormHandler Sample

TheclassesusedforwritingWAIapplicationsincludeaclassforhandlingsubmissions
through HTML forms. Using the FormHandler class, you can write a WAI
application that receives and interprets data submitted through an HTML form.

Toreadinandparse postedformdata(wheretheclientusedthe HTTP POST methodto
submit the form), create an instance of the FormHandler class. The constructor
for this class reads in the data and parses it.

To read in and parse form data submitted through the HTTP GET method, create an
instance of the FormHandler class and call the ParseQueryString method.

Dependingonthelanguage youareusing, youcanaccessthe parsed data in different
ways:

In C++, you can call the Get method to get the value of a specific name-
value pair, or you can call the Initlterator method and the Next method to
iterate through all name-value pairs in the parsed data.

You can also call the Add method to add a new name-value pair to the
parsed form data and the Delete method to remove a name-value pair from
the parsed form data.

In Java, you can call the GetHashTable method to get a Java hash table
containing the parsed data. Then, you can call methods of the
java.util.Hashtable class to access the data.

Thenamesserveaskeysinthehashtable. ThevaluesarestoredasJavavectors(for
details, see your Java documentation on java.util.Vector).

ThevaluesareimplementedasJavavectorsbecauseagivennamemaybeassociated
withmultiplevalues.Forexample,iftheformcontainsmultiple-selectioninput,the
submittedformdatacancontainseveralname-value pairswiththesamenamebut
different values.

Chapter 2, Quick Start: Running the Examples 21

Running the FormHandler Sample

About the FormHandler Class Example

The FormHandler samples provided with the web server are in the server_root/wai/
examples/formsdirectory. This directory contains C++ and Java examples of using the
WAI FormHandler class. You can use this class to process data submitted through
an HTML form.

This directory contains the following files:
e TestDriver.java (Java example)
e form.cpp (C++ example)

e Makefile. SOLARIS (makefile for C++ example on Solaris) or
Makefile WINNT (makefile for C++ example on Windows NT)

e form.html (HTML form for testing the example)

TheC++exampleiswrittenasanin-processserverplug-in. TheJavaexampleiswritten
asastand-aloneapplication(runningoutofprocess) . Bothexamplesprocessanddisplay
data submitted through the form.html form.

Running the C++ FormHandler Sample

The FormHandler sample provided with the web server is in the server_root/wai/
examples/forms directory. The source file for the example is formHandler.cpp.

Thisexampleiswrittenasanin-processserverplug-inthatperformsthefollowingtasks:
e It forms pairs of names and values using the NVPair class.

e ItgetsandparsesformdatasubmittedthroughanHTTP GET methodby callingthe
Addmethodtoaddanewname-value pairtothe parsedformdata. Thenitcallsthe
Delete method to remove a name-value pair from the parsed form data.

e It calls the Initlterator method and the Next method to iterate through all
name-value pairs in the parsed data.

e It checks whether the name-value pair is valid.

e It puts valid information into a hash table.

22 Writing Web Applications with WAI

Running the FormHandler Sample

Thisexamplecanbecompiledandlinkedasastand-aloneapplicationthatrunsoutside
thewebserver’sprocessandasaserverplug-inthatrunswithinthewebserver’sprocess.

Therestofthissectionexplainshowtosetupandusetheserverplug-inthatrunswithin
the web server’s process. (For an example of writing a server plug-in, see
Chapter 7, “Writing a WAI Server Plug-In”.)

YoucanusethisexampleasaguidelineforsettingupandrunningyourownC++forms.

Compile the example using the makefile provided.

For example:

nmake -f Makefile WINNT

or

make -f Makefile. SOLARIS

Open the obj.conf file (located in the server-root/server-id/configdirectory) ina
text editor.

Addanlnitdirectivetospecifytheintialization function(Formlinit) forthis
server plug-in (form.dll or form.so).

For example:

Init funcs="Forminit" shlib="server-root/wai/examples/forms/form.dll" fm="load-modules’
Init Latel nit="yes" fn="Formlnit"

or

Init funcs="Forminit" shlib="server_root/wai/examples/forms/form.so" fn="Ioad-modules"
Init Latel nit="yes" fn="Formlnit"

When you specify the Init directive make sure to set Latelnit to "yes".

Save your changes and exit from the text editor.

IntheAdministrationServer,clicktheA pplyChangesbuttoninthetopframe
and restart the Enterprise Server.

Copyform.htmkathedocumentationroodirectoryofyouEnterpriseServer
(for example, server-root/docs).

Opentheform.htmifileinatexteditorandverifythattheactionoftheformis
set to "/iiop/FORMip".

Chapter 2, Quick Start: Running the Examples 23

Running the FormHandler Sample

For example:

<FORM name="submitform" method="POST" ACTION="/iiop/FORMip">
FORMip is the name with which this WAI server plug-in registers.

Go to the following URL:

http://server-name:port-number/form.html

Fill in the fields and click Send to submit the form.

TheWAIserverplug-inshouldsendagenerated HTMLpagebacktoyourbrowser.
The page should display some of the data you have submitted.

Running the Java FormHandler Sample

The Java example is written as a stand-alone application, running out of process. It
processes and displays data submitted through the form.html form in the /wai/examples/
forms directory.

Compile the TestDriver java example.

javac TestDriver.java
Run the TestDriver Java application.

Specify the server name and port number of your Enterprise Server as follows:

java TestDriver server-name:port-number

Copyform.htmltothedocumentationrootdirectoryforyourEnterprise
Server (for example, server-root/docs).

Opentheform.htmlfileinatexteditorandchangetheactionoftheformto"/
iiop/JavaForm".

For example:

<FORM name="submitform" method="POST" ACTION="/iiop/JavaForm">
JavaForm is the name with which this WAI application registers.

Go to the following URL:

24 Writing Web Applications with WAI

Running the FormHandler Sample

http://server-name:port-number/form.html

Fill in the fields and click Send to submit the form.

The WAIapplication should senda generated HTML page back to yourbrowser.
The page should display some of the data you have submitted.

Chapter 2, Quick Start: Running the Examples 25

Running the FormHandler Sample

26 Writing Web Applications with WAI

Chapter

Using WAI

This chapter provides an overview for writing WAI applications. Read this

chapter for general information on using WAI, including:

System Requirements

Overview

Before You Use WAI

Converting CGI Applications to WAI

Setting Up the Web Server

Compiling Applications and Server Plug-Ins

Running Applications

To see working examples of WAI applications and to get a better
understanding of how the material in this chapter applies to WAI, read
Chapter 2, “Quick Start: Running the Examples”.

System Requirements

C++Requirements: If you are writing a C++ application in WAI, you must use the
following:

Chapter 3, Using WAI 27

Overview

e For Windows NT, Microsoft Visual C++ version 4.2
e For Solaris 2.5.x, the SparcWorks C++ compiler version 3.0.1
e For IRIX 6.2, the C++ compiler version 7.1

JavaRequirements: If you are writing a Java application in WAI, you must use the
following:

e The Javasoft Java Development Kit 1.1.x.

You can also use Java development tools that are compliant with the JDK 1.1.x.

Overview

You can use WAI to write a web application service in C, C++, or Java that receives a
requestfromaclient, processestherequest,andreturnsdatabacktotheclient. Youcan:

e Access data from the headers in the HTTP request
e Access information about the web server

e Readdata from the client (such as data in an HTML form sent through the HTTP
POST method)

e Set the headers in the response that will be sent to the client
e Set the status of the response that will be sent to the client

e Redirect the client to another location

e Write data back to the client (such as an HTML page)

You can use WAI to write, compile, and run the following:

e Anapplicationthatrunsoutside the web server’s process. You can write thisin C,
C++, or Java. For details, see the following chapters:

e Chapter 4, “Writing a WAI Application in C”
e Chapter 5, “Writing a WAI Application in C++”

e Chapter 6, “Writing a WAI Application in Java”

28 Writing Web Applications with WAI

Before You Use WAI

Notethatbydefault, the webserver configuration assumesthatyou will runthese
applicationsonthesamemachineasthewebserver. Youcanreconfiguretheweb
servertointeractwithapplicationsrunningonremotemachines, butyouneedtobe
aware of the security issues involved with this configuration. For details, see
Chapter 8, “Security Guidelines for Using WAI”.

e Aserver plug-in that runs within the web server’s process. A server plug-in is a
sharedlibraryordynamiclinklibrarythatthewebserverloadsandinitializesduring
startup. You can write this in C or C++. For details, see the following chapter:

e Chapter 7, “Writing a WAI Server Plug-In”

Before You Use WAI

Before you begin to set up your server to use WAI, you should read through the
following sections.

Understanding Security Issues

Before you begin implementing WAI applications at your site, you should read the
discussion on security-related issues in Chapter 8, “Security Guidelines for
Using WAI”.

Ingeneral, Netscaperecommendsthatyourestrict WAIapplicationstorunonlyonthe
localhostmachine(wherethewebserverruns). Youshouldalsorestrictloginaccessto
this machine to prevent unauthorized users from executing WAI applications.

Read the material in Chapter 8, “Security Guidelines for Using WAI” for a
complete explanation of these recommendations.

Understanding Version Differences

The processforsettingupand running WATIapplicationsdiffersbetween versions 3.0
and 3.01 of the Netscape web servers:

e Inthe3.0release of Netscape web servers, the web server depends on the osagent
utility. This utility is used to help operate the object request broker (ORB).

Chapter 3, Using WAI 29

Converting CGI Applications to WAI

Inordertoruna 3.0 version ofa webserver, you need to run the osagent utility first.
You can also use the osfind utility (provided with 3.0 servers) to troubleshoot
problems.

You caninstalla patch thatfixes and improves the WAI programming interface to
the Enterprise Server in the following ways:

— osagent is no longer required to be running.
— WAI server plug-ins are officially supported.

— You can use OAD to activate your WAI applications.
(Notethat OAD will start only out-of-process WAl applicationsin C/C++only
and is not supported on Windows NT.)

Formore information on this patch and instructions on how to getitand install it,
go to http://help.netscape.com/filelib.html#wai.

¢ Inthe3.01release of Netscape webservers, thewebservernolongerrequiresthe
osagentutility. Youdonotneedtorunthisutility beforestartinga3.01 version of the
web server.

The osagent and osfind utilities are no longer included with the 3.01 release of the
web server, since the web server no longer requires these utilities to run.

In general, features or instructions specific to a release are noted in the manual.

Converting CGIl Applications to WAI

If you have existing programs or modules in CGI, convert them to WAI modules or
services to improve performance. CGI starts a new session every time you access it,
increasingperformancetimes.Because WAImodules(orWAlIservices)arepersistent,
theyreduceperformancetimes.Youhavetheoptionofrunningapplicationsexternally
or calling functions from an internal library.

A fundamental difference between CGI and WAT is that CGI programs are written to
exist while WAI modules persist. Additionally, WAT modules are inherently multi-
threaded so creating additional processes is unnecessary.

30 Writing Web Applications with WAI

Converting CGI Applications to WAI

Table 3.1 describes the structure of a CGI program alongside the structure of a

WALI service:

Table 3.1 Comparison of CGI program structure to WAI program structure

CGI Structure

WAI Structure

Read data from POST data input stream. Collect data using the methods of the

netscape::WAI::HttpServerRequest and
netscape::WAI::HttpServerContext objects.

Process, using CGI variables as necessary. Process using the methods in the

WAIWebA pplicationService class.

Writes HTML output to the browser. Sends response back to the client using the

methods in the
netscape::WAI::HttpServerRequest object.

Table 3.2 lists the getRequestinfo variables with CGI equivalents.

Table 3.2 WAI getRequestinfo variables with corresponding CGI functions

WA\ variable name

Description

CLIENT_CERT

HOST
HTTPS
HTTPS _KEYSIZE

HTTPS_SECRETKEYSIZE

URI
URL

Authenticationschemefortherequest(foundfromtheauth-
scheme token in the request).

Name of the client’s host machine
Specifies whether or not SSL is "ON" or "OFF".

Numberofbitsinthesesionkeyusedtoencryptthe session
(if SSL is enabled).

Number of bits used to generate the server;s private key (if
SSL is enabled).

URI requested by the client
Complete URL requested by the client.

Chapter 3, Using WAI 31

Setting Up the Web Server

Most of the CGI variables are the same as the getRequestinfo variables in WAL
The other CGI variables are retrieved out of the netscape::WAI::HttpServerContext
object. Table 3.3 lists the CGI variables that correspond to the

netscape:: WA ::HttpServerContext variables:

Table 3.3 WAIServerContext methods with corresponding CGI functions

HttpServerContext method

Description

getName

getPort

getServerSoftware

SERVER_NAME. The name for the server, as used in the
bost part of the script URL. Either a fully qualified domain
name or an IP address.

SERVER_PORT. The port on which this request was
received, as used in the port part of the script URIL

SERVER_SOFTWARE. The name and version of the
information server software answereing the request and
running the gateway.

The CGI functions in Table 3.4 lists the CGI functions that have no equivalent

in WAI

Table 3.4 CGl variables that do not correspond to getRequestinfo or WAI ServerContext

variables

CGl variable name

Description

GATEWAY _INTERFACE

REMOTE_IDENT

The version of the CGI specification to which the server
complies.

Theidentityinformationreportedaboutthe connectionby
an RFC 931[10] request to the remote agent, if available.

Setting Up the Web Server

Inordertoenablethewebservertouseapplicationswrittenin WAI youneedtodothe

following:

I. (For 3.0 servers only) Start osagent.

osagent is used to help operate the object request broker (ORB). See
“Starting osagent (3.0 Servers Only)” on page 33 for details. If you are
running a 3.01 version of a web server, you can ignore this step.

32 Writing Web Applications with WAI

Setting Up the Web Server

(For3.0serversonly)Installthepatchthatallowsyoutorunthe3.01version
of WAI.

This patch release fixes and improves the WAI programming interface to the
Enterprise Server in the following ways:

e osagent is no longer required to be running.
e WAI server plug-ins are officially supported.

* You can use OAD to activate your WAI applications.
(Notethat OAD will start only out-of-process WAIapplicationsin C/C++only
and is not supported on Windows NT.)

Formore information on this patch and instructions on how to getitand install it,
go to http://help.netscape.com/filelib.html#wai.

Fromtheadministrationserver,settheoptiontoenableWAIapplicationsto
run on your server.

See “Setting the Option to Enable WAI” on page 34 for details.

Optionally,youcanchangeanyofthedefaultsettingsforthewebserver’s
ORB.

Optionally, youcan configure the webservertolog WAI status messages.

Someofthe WAImessages,suchasthestartupmessage,areonlyloggediftheserver
is configured to log messages at the "verbose" level.

For more information about logging WAI status messages, read "Logging
Status Messages".

Ifyouarerunninganin-processserverplug-inedittheserver’sconfiguration
filestospecifyyoursharedlibraryorsharedobjectandthefunctionthatyou
want to invoke.

Starting osagent (3.0 Servers Only)

osagent, which is provided with 3.0 versions of Netscape web servers, is used to help
operate the object request broker (ORB).

Chapter 3, Using WAI 33

Setting Up the Web Server

Note osagent is not required for 3.01 versions of Netscape web servers and is no longer
packaged with those versions of the server.

osagent is located in the server_root/wai/bin directory on UNIX and in the
server_root\wai\bin directory on Windows NT. To run osagent, enter the following
command:

osagent -a127.0.0.1

The-aflag specifiesthe address thatosagentbindsto. Youshould specify thelocalhost
address (127.0.0.1) for security reasons. For details on these reasons, see
Chapter 8, “Security Guidelines for Using WAI”.

OnWindowsNT,youcancreateashortcutor programitemthatrunsthiscommand. If
you have the Windows NT Resource Kit, you can use the SrvAny commandto create a
serviceforosagent. Youcansetupthisservicetoautomaticallywhenyourmachinestarts
up. For details, consult the documentation in the Windows NT Resource Kit.

Setting the Option to Enable WAI

You need to configure the web server to interact with WAI applications and server

plug-ins.

Configuring the Server

I. In your web browser, go to the URL for the administration server.
When prompted, enter the username and password of the server administrator.

2. OntheServerSelectorpage,clickthebuttonlabelledwithyourservername.
This brings you to the Server Manager page for your server.

3. In the menu of categories in the top frame, click Programs.

4. Under Programs in the left frame, click the WAI Management link.

5. Under Enable WAI Services, select Yes, then click OK.

6. Click Save and Apply to save your changes.

34 Writing Web Applications with WAI

Setting Up the Web Server

What Happens When You Enable WAI

When you enable WAI the following changes are made to your obj.conf file:

Adds an Init directive that loads the functions I1OPinit, 110Pexec, and
I1OPNameServicefromthe sharedlibrary libONEiiop.s0.10(filename extension may
differ,dependingonyour UNIX platform)orthedynamiclinklibrary ONEiiop10.dll
(on Windows NT).

Adds an Init directive that executes the function [IOPinit on server startup. This
functioninitializestheobjectrequestbroker(ORB),thebasicobjectadapter(BOA),
and the built-in name service.

Adds a NameTrans directive to associate requests for any resources matching /
NameService* with the IlOPnameserviceobject. The stop parameter in this directive
causestheservertoskipovertheotherNameTransdirectives(effectively,itreturnsa
REQ_PROCEED to indicate that the server should proceed with the next step in
processing the request).

Adds an llOPnameservice object, which represents the name service. The
I1OPNameServiceservicefunctionassociatedwiththisobjectprovidesaccesstothe
built-in name service for WAI applications.

AddsaNameTransdirective to translate requests for resources beginning with the/
iiop prefix to the iiopexec object. URIs in this form typically use the format /iiop/
instance_name, where instance_nameis the name of the web service that the client
wantstoaccess. Thedir parameterisusedtohelp parsethefiiopprefix outof URIto
get the instance name of the web service that needs to be accessed.

Adds an object named iiopexec, which interprets a URI into a request for a web
service. The llOPexecfunction associated with this object passes the request onto
the appropriate WAI application.

Configuring the Web Server’s ORB

In most cases, you can run the web server without specifying any additional
configuration parameters for the server’s object request broker (ORB). In certain
situations, however, you might need to override the default configuration.

Chapter 3, Using WAI 35

Setting Up the Web Server

Changing the ORB Configuration Information

Tochangethewebserver'sORBconfigurationinformation,youneedtoedittheobj.conf
file foryourserver(whichislocatedinthe server_root/server_id/configdirectory of your

server).

InthelnitdirectivethatexecutesthellOPinitfunction,addconfiguration parametersto
specify changes to the ORB configuration.

Aftereditingtheobj.conffile, youneedtostopandstartyourserversothattheservercan

read in the updated file.

Note Beforechangingtheconfiguration,youshouldbeawareofthesecurityissuesinvolved
with running WAI applications on other machines. See Chapter 8, “Security
Guidelines for Using WAI” for details.

Listing of Configurable Parameters

You can add any of the parameters listed in Table 3.5 to the Init directive for

the I1OPinit function.

Thefollowingtable liststhe parametersthatyou can specify inthe Initdirective forthe

I1OPinit function

Table 3.5 IIOPInit Parameters

Parameter Name

Description

ORBagentaddr

ORBagentport

ORBsendbufsize

(For3.0serversonly)SpecifiestheIPaddresswhereosagent
is running. The ORB uses this setting to find osagent.

If this parameter is not set, the ORB uses the localhost IP
address (127.0.0.1) by default.

If you have configured osagent to use a different IP address
thanlocalhost, you need to include this parameter in the Init
directive.

(For 3.0 servers only) Specifies the port number used by
osagent. The ORB uses this setting to find osagent.
Ifyouhave configuredosagenttouseaportnumberotherthan
the defaultport, youneedtoinclude this parameterinthe Init
directive.

Specifiesthe size of the send buffertobe used by the network
transportmechanism.Ifnotspecified, anappropriate default
size will be used.

36 Writing Web Applications with WAI

Table 3.5 IIOPInit Parameters

Setting Up the Web Server

Parameter Name

Description

ORBrevbufsize

ORBmbufsize

ORBshmsize

OAipaddr

OAport

OAshm
OAnoshm

OAsendbufsize

OArcvbufsize

Specifies the size of the receive buffer to be used by the
networktransportmechanism.Ifnotspecified,anappropriate
default size will be used.

Specifiesthesize of the intermediate bufferused by the ORB.
If not specified, the ORB will maintain a pointer to the
argumentandwillnotmakean intermediate copy. Usingthis
parameter incorrectly can seriously affect performance.

Specifies the size of the shared memory buffer used by the
ORB. Ifthisis notspecified, an appropriate size will be used.

Specifies the IP address to be used for this BOA.
If this parameter is not set, the ORB uses the localhost IP
address (127.0.0.1) by default.

Specifiesthe portnumbertouseforthisBOA.If notspecified,
an unused port number is used.

Enables the use of shared memory.

Disablestheuse of shared memoryforsendingandreceiving
messageswhentheclientandobjectimplementationarelocated
on the same host.

Specifies the size in bytes of the network transport’s send
buffer.Ifthisoptionisnotspecified,anappropriatebuffersize
is used.

Specifies the size in bytes of the network transport’s receive
buffer.Ifthisoptionisnotspecified,anappropriatebuffersize
is used.

Example of Configuring the ORB

Forexample,ina3.0versionofawebserver,supposeyouarerunningthe osagentfrom
[Paddress205.217.229.39onport 15001. By default,thewebserverexpectsthe osagent
utility to run on the localhost IP address (127.0.0.1) under the default port.

In the obj.conf file, change the Init directive for the I1OPinit function from:

Init Latelnit="yes" fn="110Pinit"

to:

Chapter 3, Using WAI 37

Compiling Applications and Server Plug-Ins

Init Latelnit="yes" fn="110Pinit" ORBagentaddr="205.217.229.39" ORBagentport="15001"
Inyour WAIapplication, you also need to specify thisargument wheninitializing the
ORB and BOA. For example:

int bargc = 0;

char **bargv = new char *[3];

bargv[bargc++] = "-OAipaddr";

bargv[bargc++] = "204.200.215.98";

bargv[bargc] = 0;

/I Initialize the ORB.

ORB orb = org.omg.CORBA.ORB.init(bargc, bargv);

/I Initialize the BOA.

BOA boa = orb.BOA_init(bargc, bargv);

Logging Status Messages

Someofthestatusmessages(suchasthe WAlinitializationmessages)areloggedtothe
server’s error log only if the server is running with the LogVerbose option turned on.
These are messages that are logged with the severity level LOG_VERBOSE.

If you want these types of messages logged, edit the magnus.conf file and add the
following directive:

LogVerbose on

The verbose log information is stored in server-root/https-server D/l ogs/errorsand server -
root/https-server| D/logs/access.

After editing the magnus.conf file, you need to stop and start your server so that the
server canread inthe updatedfile. You can find the mangus.conf file in server-root/https-
server|D/logs/config.

Compiling Applications and Server Plug-Ins

When compilingandlinking yourapplication orserver plug-in, follow the tips in this
section. (You can also look at the makefiles provided with the sample applications.)

38 Writing Web Applications with WAI

Compiling Applications and Server Plug-Ins

Compiling C/C++ Applications

Follow these guidelines for compiling and linking C/C++ applications.

Include Directories
Add the following include directories to your makefile:
e server_root/include (UNIX) or server_rootlinclude (Windows NT)

e server_root/wai/include (UNIX) or server_root\wailinclude (Windows NT)

Libraries

OnUNIX,youcanaddthefollowinglibrarydirectoriestoyourlinkercommand.Specify
thatlibrariesshouldbesearchedforsharedobjectduringruntimetoresolvesymbols(on
Solaris, use the -R flag; on IRIX, use the -rpath flag):

e server_root/lib
e server_root/wai/lib
e server_root/bin/https

The following table lists the additional libraries that you need to link to:

Table 3.6 Libraries That You Need to Link to

Platform Libraries

Solaris lib/libldap10.s0
lib/liblcache10.s0
wai/lib/libONEiiop.so
wai/lib/liborb_r.so
bin/https/ns-httpd.so
libthread.so
libposix4.so
libresolv.so
libnsl.so
lib/libnspr.so
wai/lib/libl1OPsec.a

Windows NT (in addition to the standard ~ wai\lib\ONEiiop10.lib
Windows libraries) WSOCK32.lib

Chapter 3, Using WAI 39

Compiling Applications and Server Plug-Ins

Table 3.6 Libraries That You Need to Link to

Platform Libraries

IRIX lib/libldap10.s0
lib/liblcache10.so
wai/lib/libONEiiop.so
wai/lib/liborb_r.so
bin/https/ns-httpd.so
wai/lib/libl1OPsec.a

HP-UX dces
wai/lib/orb_r.d
wai/lib/ONEiiop.sl
bin/https/nshttpd.sl
wai/lib/Il OPsec.dl

AIX wai/lib/ONEiiop_shr
wai/lib/llOPsec
bin/https/nshttpd_shr
lib/nspr_shr
wal/lib/orb_r
dcepthreads
Cr

Digital UNIX lib/ldap10.s0
lib/lcachel0.so
wai/lib/ONEiiop.so
wal/lib/orb_r.so
bin/https/ns-httpd.so
wai/lib/l OPsec.so

Compile Flags

The following table lists the flags and defines that you need to use:

Table 3.7 Compile Flags

Platform Flags/Defines

Solaris -DXP_UNIX -D_REENTRANT -KPIC
Windows NT -DXP_WIN32 -DWIN32 /MD

IRIX -032 -exceptions-DXP_UNIX -KPIC
HP-UX -DXP_UNIX -D_REENTRANT -DHPUX

40 Writing Web Applications with WAI

Running Applications

Table 3.7 Compile Flags

Platform Flags/Defines
AIX -DXP_UNIX -D_REENTRANT -DAIX $(DEBUG)
Digital UNIX -DXP_UNIX -KPIC

Compiling C/C++ Server Plug-Ins

Inadditiontothetipsabove, followthesetipswhencompilingserverplug-ins(whichare
shared libraries or dynamic link libraries):

e Specify the appropriate compile options for building shared objects or shared
libraries.

e OnUNIX,ifyouarespecifyingarelative pathtothe otherlibraries (usingthe-Rflag
on Solaris or the -rpath flag on IRTX), make sure to specify the paths relative to the
ns-httpd executable (which is in the server_root/bin/https/ directory).

Compiling Java Applications

IfyouarecompilingaJavaapplication,makesuretoincludeserver_root/wai/javalnisb.zip
and server_root/wai/javalWAI .zip in your CLASSPATH environment variable.

Running Applications

Startyourapplicationonthehostmachinethatrunsthewebserver. Makesurethatwhen
your application registers, you specify the host name and port of the web server.

Note that it is possible (but not recommended) to run WAI applications on other
machinesinthelocalnetwork.Foracompleteexplanationofthesecurityconcernsand
instructionsforconfiguringtheservertorecognizeWAlapplicationsonothermachines,
see Chapter 8, “Security Guidelines for Using WATI”.

Chapter 3, Using WAI 41

Running Applications

Setting Up Your Application with OAD

YoucansetupyourWAlapplicationwiththeNetscapelInternetService Broker’sobject
activationdaemon(OAD),aprocesswhichautomaticallystartsupyourapplicationifitis
not running.

Forexample, youmaywanttoensurethatyourapplicationisalwaysrunninganddoes
not need to be started manually.

To set up your application with the OAD, follow these steps:

Make sure to specify a name for your object in the
WAIWebApplicationService constructor.

Set the second argument (activateObject) to WAI_FAL SE.

Ata pointinyourapplication where you are ready to launch your object, call the
ActivateWAS method of WAIWebApplicationService.

Compileandrunyourapplicationatleastonce,inordertoregisteryourapplication
with the web server's naming service.

Youneedtoregisteryourapplicationbefore settingitup with OAD. OAD expects
your application to be registered with the web server.

Setthefollowingenvironmentvariablesintheshellswherethewebserverand
OAD run:

e NS SERVER_ROOT - set this to the location of your server root directory (for
example, /usr/netscape/suitespot or C:\Netscape\SuiteSpot)

e NS SERVER_ID - set this to your server identifier (for example, https-myhost)

e ORBELINE_IMPL_NAME- set this to name of the file created by the OAD; the
OAD createsthisfiletokeeptrack of objectimplementations. Forexample, if
you want this file to be named myfile, set ORBELINE_IMPL_NAME to myfile.

e ORBELINE_IMPL_PATH-setthistothe pathtoanexistingdirectory whereyou
want the OAD to generate the file specified by the ORBELINE_IMPL_NAME
environmentvariable. Forexample, if you want the file created underthe /usr/
tmp directory, set ORBELINE_IMPL_PATH to /usr/tmp.

You also need to set the LD_LIBRARY_PATH (or SHLIB_PATH on HP-UX)
environmentvariabletothe pathsthatincludeallsharedlibrarieslinkedtobyyour
object server.

42 Writing Web Applications with WAI

Running Applications

Forexample, in Cshell, youmight enterthe following commandsbefore starting
OAD and your webserver:

setenv NS_SERVER_ID https-gromit
setenv NS_SERVER_ROQT /usr/netscape/suitespot

setenv LD_LIBRARY_PATH /usr/netscape/suitespot/wai/lib:
Jusr/netscape/suitespot/bin/https:
Jusr/netscape/suitespot/lib:
Jusr/local/javallib

setenv ORBELINE_IMPL_NAME myfile
setenv ORBELINE_IMPL_PATH /usr/tmp

If you start OAD after setting these variables, the OAD will generate the file fust/
tmp/myfile to keep track of the object implementations.

After starting your web server, start the OAD manually.

For instructions on starting OAD, see the Netscape Internet Service Broker
Reference GuideforC++ortheNetscapelnternetService BrokerReference Guide
for Java.

Run regobj to register your service with the OAD.

regobj islocatedinthe server_root/wai/bindirectory. Fordetailsonthe syntaxforthis
command,seetheNetscapelnternetServiceBrokerReference GuideforC++.You
need to specify "*" as the interface name. You can pass arguments to the object
server using the -a option.

For example, to start up the object named WASP implemented by the WAI
application /usr/local/ns-home/wai/bin/lWASP, use the following command:

regobj -0 "* WASP" -f /usr/local/ns-home/wai/bin/WASP
-a httpServerName=bar:80

The example above assumes that the web server is running on port 80 of the
machine named bar.

Using osagent with Java (3.0 Only)

Inthe 3.0version of the web server, if you are running a Java application written with
WAL you should specify the -DDISABLE_ORB_LOCATOR flag. This minimizes
potential problems with the osagent utility.

Chapter 3, Using WAI 43

Running Applications

Forexample,ifyouhavewrittenthe Java classWASP.classwith WAT, usethe following
command to run your Java application:

java-DDISABLE_ORB_LOCATOR WASP

Note that if you are specifying the DISABLE_ORB_LOCATOR option for osagent, you
mustforcethewebserver’'sbasicobjectadapter(BOA)tolistenona particularport. To
do this, follow the instructions below.

Edit the obj.conf file (located in the server_root/server_id/config directory on
UNIX and the server_root\server_id\config directory on Windows NT), and
change the following line:

Init Latelnit="yes" fn="110Pinit"
to:

Init Latelnit="yes" fn="110Pinit" OAport="21000"

The OAportoptionspecifiesthe portselected where the webserver’'s BOA listens.
The example above sets up the BOA to listen to port 21000.

Delete the files server_root/wai/NameService/server_id.* on UNIX or
server_root\wai\NameService\server_id.* on Windows NT.

Forexample, delete https-myhost.IOR, https-myhost.sav, and https-myhost.bak. These
files are name service files for your currently registered objects.

Register your objects with the web server again.

Forexample, startany WAS objectservers. Youmustcomplete thisstep. If youdo
not, you might not be able to register objects with the web server.

Running Applications on Remote
Machines

You canconfigure your WAIapplicationsto runonseparate machines otherthanthe
machine hosting the web server. Read through the information about security
issues in Chapter 8, “Security Guidelines for Using WAI”, for more information.

44 Writing Web Applications with WAI

Chapter

Writing a WAI Application in C

WALI provides a set of C API functions that you can use to write a WAI
application. Your C application should:

¢ Define a function for processing the incoming HTTP request. (For details,
see “Defining a Function to Process Requests” on page 46.)

e Create and register a new web service to the web server. This step includes
assigning an instance name to the service, and associating the service with
the function you defined in the previous step. (For information, see
“Registering Your Web Application Service” on page 52.)

After you write and compile your application, see the section “Running Your
Web Service” on page 55 for instructions on setting up and running your web
service.

For a summary of the C functions available in WAI, see the section “Summary
of C Functions” on page 55

Before continuing on, note the following points:

¢ You must include the ONEiiop.h header file when writing a WAI application
in C:

#include "ONEiiop.h"

This header file declares the C functions available in WAI

Chapter 4, Writing a WAI Application in C 45

Defining a Function to Process Requests

e ThewebserverincludesasampleCapplicationthatdemonstrateshowyoucanuse
WAI to write a web application service. The example is located in the server_root/
wai/examples/CI1OP directory on UNIX and the server_root\wai\examples\ClIOP
directory on Windows NT.

You can follow this example as a guideline for writing and compiling your
application.

The rest of this chapter explains how to write a WAI application in C.

Defining a Function to Process Requests

ThefunctionthatprocessesincomingHTTPrequests(notallrequests,justtherequests
directed specifically at yourservice) must comply with the following type definition:

typedef long (* WAIRunFunction)(ServerSession_t obj);

obj representsthe HTTPrequesttobe processed. You passthisargumenttoother WAI
functionsinordertogetdatafromtheclientrequest,setdataintheresponse,andsend
the response to the client.

Therestofthissectionexplainshowyoucancall WATfunctionsto processtherequest.
WALI functions enable you to do the following tasks:

e Getting Data from the Request

¢ Sending the Response Back to the Client

Getting Data from the Request

WAI provides functions for getting data from the client’s HTTP request. You can call
functions to accomplish the following tasks:

e Getting Headers from the HTTP Request

e Getting Information about the Server

46 Writing Web Applications with WAI

Defining a Function to Process Requests

Getting Headers from the HTTP Request

To get headers from the HTTP request, call the WAIgetRequestHeader() function. For
example, the following section of code gets and prints the user-agent header from the
incoming request:

long MyRunFunction(ServerSession_t obj)

{
char *var = 0;
if (WAIgetRequestHeader(obj, "user-agent", var) == WA SPI Success){
printf("User agent: %s\n", var);
}
}

Inaddition to HTTP headers, you can get other types of information (such as CGI 1.1
environment variables) from the HTTP request by calling the WAIgetRequestinfo()
function.

The section “getRequestInfo” on page 122 lists the types of information you can
retrieve from the request. Note that the CGI 1.1 environment variables that
describe the server are accessible through the WAIgetinfo() function. See
“Getting Information about the Server” on page 48 for details.

Thefollowingsection of code getsand printsthe value of the REMOTE_ADDRCGI 1.1
environment variable for the incoming request:

long MyRunFunction(ServerSession_t obj)

{
char *var = 0;
if (WAIgetReguestinfo(obj, "REMOTE_ADDR", var) == WAISPI Successy{
printf("Client IP Address: %s\n", var);
}
}

Chapter 4, Writing a WAI Application in C 47

Defining a Function to Process Requests

Getting Information about the Server

WATI also provides C functions for getting information about the server, such as the
serveridentifierorCGI1.1environmentvariablesthatdescribetheserver(forexample,
SERVER_NAME or SERVER_PORT).

Togetthesetypesofinformation, youcancallthe WAIgetinfo() functionandspecifythe
typeofinformationthatyouwanttoretrieve. Forexample,thefollowingsectionofcode
gets the value of the SERVER_PORT CGI 1.1 environment variable:

long MyRunFunction(ServerSession_t obj)

{
int port_num;
if (WAIgetinfo(obj, "SERVER_PORT", port_num) == WAISPI Successy{
printf("Server Port: %d\n", port_num);
}
}

For a list of the types of information you can retrieve from this method, see the
section “getInfo” on page 146.

Youcanalso call functions thatspecifically retrieve a certain type of information. For
example, to getthe portnumberthatthe serverlistensto, you can call the WA getPort()
function:

long MyRunFunction(ServerSession_t obj)

{
int port_num = 0;
if ((port_num = WAIgetPort(obj)) != 0){
printf("Server Port: %d\n", port_num);
}
}

For details on getting server information, see the section
“netscape:: WAL:HttpServerContext” on page 144.

48 Writing Web Applications with WAI

Defining a Function to Process Requests

Getting and Setting Cookies in the Client

Beforeaclientaccessesa URL,theclientchecksthedomainnameinthe URLagainstthe
cookies that it has. If any cookies are from the same domain as the URL, the client
includes a header in the HTTP request that contains the name/value pairs from the
matching cookies.

The Cookie header has the following format:

Cookie: name=value; [namel=valuel; name2=value? ...]

Togetthesename/valuepairsfromtheHTTPrequest, callthe WAl getCookie() function.
To set your own name/value pairs in a client, call the WAIlsetCookie() function.

Thefollowingexampleillustrateshowyoucanusethesefunctionstogetandsetcookies
in the client.

long MyRunFunction(ServerSession_t obj)
{

char *cookiebuff = NULL;
* 1f no cookie has been set in the client, set a cookie. */
if (WA IgetCookie(obj, cookiebuff)== WAISPIFailure)
WA IsetCookie(obj, "A_NAME", "A Vauge"', ", ", "I", WAI_FALSE);

Sending the Response Back to the Client

WAIfunctionsalsoallow you to control the response sent back to the client. You can
call these functions to accomplish the following tasks:

e Setting Headers in the Response
e Setting the Status of the Response
¢ Sending the Response

e Redirecting Users to Another Page

Chapter 4, Writing a WAI Application in C 49

Defining a Function to Process Requests

Setting Headers in the Response

WATincludes functions that you can use to set headers in the response that you want
sent back to the client. You can call the WAladdResponseHeader() function to set any
header in the response. For example, the following section of code adds the Pragma
header to the response:

WA | addResponseHeader(obj, "Pragma", “no-cache");

Youcanalsocallfunctionsthatsetspecifictypesofheaders. Forexample,youcancall:

e WAIsetResponseContentType() to specify the content type of the response (the
Content-type header)

e WAIsetResponseContentLength() to specify the length of the response in bytes (the
Content-length header)
Setting the Status of the Response

Tosetthe status of the response sentback to the client, call the WA setResponseStatus()
function. For example, the following section of code sets the response status toa 404
status code ("File Not Found"):

WA setResponseStatus(obj, 404, "");

Sending the Response

Afteryouhavesetuptheresponseyouwantsentbacktotheclient,youcanstartsending
the response to the client. Call the WAIStartResponse() function to start sending the
response.

To send the rest of the data to the client, call the WAIWriteData() function.

The following example sends the string Hello World back to the client:
long MyRunFunction(ServerSession_t obj)

{
/* Specify the string that you want to send back to the client. */

50 Writing Web Applications with WAI

Defining a Function to Process Requests

char *buffer = "Hello World\n";

size t bufflen = strlen(buffer);

/* Specify the length of the data that you are about to send back. */
WA I setResponseContentL ength(obj, bufflen);

/* Start sending the response back to the client. */
WA StartResponse(ohyj);

/* Write the string to the client. */
WAIWriteClient(obj, (const unsigned char *)buffer, bufflen);

return O;

Redirecting Users to Another Page

In your WAI application, you can also redirect users to a different page than the
requestedpage. Youcaneitherautomaticallyredirecttheusertoanewpage,oryoucan
present the user with a link to click manually.

To automatically redirect the user to a different page, you can do the following:

3.

Call the WAIladdResponseHeader () function to add a Location header.
The Location header points to the new location.
Call the WAIsetResponseStatus() function to set the response status.

Settheresponsestatusto 301 ifthe page has permanently movedor302ifthe page
has temporarily moved.

CalltheWAI StartResponse() functiontosendtheresponsebacktotheclient.

For example:

long

MyRunFunction(ServerSession_t obyj)

{

Chapter 4, Writing a WAI Application in C 51

Registering Your Web Application Service

WAl addResponseHeader(obj, "Location", "http://www.newsite.com/");
WA | setResponseStatus(obj, 302, "M oved temporarily to newsite.com");
WA StartResponse(ohyj);
return O;
}
To give the user the choice of going to the new location (rather than automatically
redirecting the URL), you can call the WAIRespondRedirect() function:
long

MyRunFunction(ServerSession_t obj)

{
WAIRespondRedirect(obj, "http://www.newsite.com/");
WA StartResponse(ohyj);
return O;

}

Calling this method will send the following page back to the client:
Moved Temporarily

This document has moved to a new location. Please update your documents and hotlists accordingly.

The word "location" on this page is a link pointing to the new location of the page.

Registering Your Web Application Service

Afteryou define the function for processing HTTP reequests, you need to create and
registeryourwebservice. Youneedtoregisteryourwebservicetothewebserverunder
an instance name. The instance name that you select for your web service can be an
arbitraryname;itdoesnotneedtobethesamenameasyourapplication.(Forexample,
if your application is named MyApp or MyApp.exe, your instance name can be
MyWebService. They do not need to have the same name.)

Note, however, that your instance name must be unique. No other registered WAI
application can have the same name.

52 Writing Web Applications with WAI

Registering Your Web Application Service

Registering With a Web Server

To create and register your web application service, follow these steps:
I. Call the WAIcreateWebAppService() function to create the web service.

Specify the name of the service and the name of your function (that you
defined in “Defining a Function to Process Requests” on page 46) as
arguments.

Theinstancenamethatyouselectforyourwebservicecanbeanarbitraryname. It
does not need to be the same name as your application.

WA I createWebAppService() returns a pointer to an [|OPWebAppService structure,
which represents the newly created web service.

2. Call the WAIregister Service() function to register the service.

Passthe pointertothe [lOPWebAppServicestructuretothis function. Youalsoneed
to specify the hostname and port number of the web server in the form
hostname: portnumber.

Note that if your web server is running with SSL enabled, you need to specify a
different value for this argument. For details, see “Registering With an SSL-
Enabled Server” on page 54.

3. CalltheWAlimpllsReady()functiontoindicatethatyourserviceispreparedto
receive incoming requests.

Notethatthe WAIlimplIsReady() function putstheapplicationintoanendlessloop. Any
statements that you insert after this function are notexecuted. So, forexample, if you
wanttoaddaprintf statementtoindicate whetherornotthe applicationhasregistered
successfully, add the statement before calling the WAIlimplIsReady() function.

Forexample,thefollowingsectionofcodecreatesandregistersanewwebservicewith
the instance name CAPIIIOP. Whenever this web service isaccessed, the web server
sends the HTTP request to the function named MyRunFunction.

I1OPWebA ppService_t obj;
WAIReturnType_t rv;

/* Create the web service. */

Chapter 4, Writing a WAI Application in C 53

Registering Your Web Application Service

obj = WAIcreateWebAppService("CAPIIOP', MyRunFunction);

/* Register the web service. */
rv = WA registerService(obj, "myhost.netscape.com:81");
if (rv == WAI_FALSE) {
printf("Failed to Register with %s\n", host);
return 1;
} else{
printf("Registered successfully with %s\n", host);

/* Indicate that the serviceis ready to receive requests. */
WAIlimpllsReady();

return O;

Registering With an SSL-Enabled Server

Typically,whenyoucalltheWAlregisterServicefunctiontoregisteryourwebservice,you
pass the host name and port number of your web server as an argument.

The function constructsa URLto the web server’sbuilt-in naming service and getsthe
objectreference forthis namingservice. This objectreference isused to register your
application.

If your web server has SSL enabled, the WAIregisterService function cannot get the
namingserviceobjectreferenceinthemannerdescribedabove.Instead,itneedstouse
theInteroperable ObjectReference(IOR)filetogettheobjectreferenceforthenaming
service.

To find the IOR file, the WAIregisterServicefunction assembles a path to the file using
the following information:

e The server root (for example, the default server root is /usr/netscape/suitespot or
C:\netscape\suitespot)

e The server identifier (for example, the default server identifier is https-hostname)

54 Writing Web Applications with WAI

Running Your Web Service

If your web server does not use the default values for either of these, you must set
environment variables to identify the correct values before running your WAI
application:

e Ifyourserverisinstalledunderadifferentdirectorythanthedefaultserverroot,you
mustsettheNS_SERVER_ROOTenvironmentvariabletothelocationofyourserver
root.

Forexample,supposethatyourserverisinstalledunder/export/netscape/suitespot.In
aCshell, youneedtosetthe followingenvironmentvariable before runningyour
WALI application:

setenv NS_SERVER_ROQOT /export/netscape/suitespot

e Ifyouarenotusingthe defaultserveridentifier, you mustsetthe NS_SERVER_ID
environment variable to the server identifier that you are using.

Forexample,supposethatyourserverisrunning onthe machine prestonand your
serveridentifieris https-webserver instead of https-preston. In C shell, you need to set
the following environment variable before running your WAI application:

setenv NS_SERVER_ID https-webserver

Running Your Web Service

Afteryouwriteandcompileyourapplication,youcanrunyourapplicationtomakeyour
web service available. The web server should recognize your application, if you've
registered it (see “Registering Your Web Application Service” on page 52).

End users can access your service by going to the URL:

http://server_name:port_number/iiop/instance_name

For example, you can access the CAPIIIOP example by going to the URL:

http://server_name:port_number/iiop/CAPI11OP

Summary of C Functions

The following table summarizes the C functions available in WAL

Chapter 4, Writing a WAI Application in C 55

Summary of C Functions

Table 4.1 C Functions in WAI

Function Name

Description

For More Information, See...

WA |addResponseHeader()

WA IBUildURL ()

WA I createWebA ppService()

WA |del eteService()
WA |del ResponseHeader ()

WA I getConfigParameter()

WA IgetCookieg()

WA I getHost()

WAIgetInfo()

WA IgetName()

WA I getPort()

WA | getRequestHeader()

WA I getRequestinfo()

WA | getResponseContentL ength()

AddsaheadertotheHTTPresponse
to be sent back to the client.

Builds an absolute URL from the
URI prefix and the URI suffix.

Creates a new web application
service, assignsitaninstance name,
and associates it with a function for
processing HTTP requests.

Deletes a web application service.

Removes a header from the HTTP
responsetobesentbacktotheclient.

Getsthe value of a parameter of the
iiopexec function in the Service
directive of the obj.conf file.

Retrieves any cookies sent by the
client.

Gets the hostname of the machine
where the web server is running.

Retrievesinformationabouttheweb
server (such as the value of CGI 1.1
environmentvariablesthatdescribe
the server).

Gets the server ID (for example,
https-myhost) of the web server.

Gets the port number that the web
server listens to.

Gets a header from the HTTP
request sent by the client.

Gets information about the client
request (such as the value of a CGI
1.1 environment variable).

Getsthe contentlength (the value of
the Content-length header) of the
response.

“addResponseHeader” on
page 111
“BuildURL” on page 113

“WAIWebApplicationService”
on page 151

“delResponseHeader” on
page 115

“getConfigParameter” on
page 116
“getCookie” on page 119

“getHost” on page 145

“getInfo” on page 146

“getName” on page 147
“getPort” on page 148
“getRequestHeader” on

page 121

“getRequestInfo” on page 122

“getResponseContentLength”
on page 125

56 Writing Web Applications with WAI

Table 4.1 C Functions in WAI

Summary of C Functions

Function Name

Description

For More Information, See...

WA | getResponseHeader ()

WA | getServerSoftware()

WAIimplIsReady()

WA lisSecure()

WAILogError()

WAIReadClient()

WA IregisterService()

WA | RespondRedirect()

(*WAIRunFunction)()

WA IsetCookie()

WA | setRequestinfo()

WA I setResponseContentL ength()

WA | setResponseContent Type()

Gets a header from the HTTP
response you plan to send to the
client.

Gets the type and version of the
server software.

Prepares your WAI application to
receive requests.

Specifieswhetherornottheserveris
run with SSL enabled.

Logsanentrytotheserver’'serrorlog
file (server_root/server_id/logs/errors on
UNIX and
server_root\server_id\logs\errors On
Windows NT).

Reads data from the client (for
example, for data sent through the
HTTP POST method).

Registers the WAT application with
the web server.

Redirects the client to a different
URL.

Type definition forthe functionthat
processes HTTP requests.

Setsacookieintheresponseheader
to be sent to the client.

(Thismethodhasnofunctionaluseat
this time.)

Setsthe contentlength (the value of
the Content-length header) of the
response to be sent to the client.

Setsthecontenttype(thevalueofthe
Content-typeheader)oftheresponse
to be sent to the client.

“getResponseHeader” on
page 126

“getServerSoftware” on

page 148

“Registering Your Web
Application Service” on
page 52

“isSecure” on page 149

“LogError” on page 128

“ReadClient” on page 130

“RegisterService” on page 153

“RespondRedirect” on page 134

“Run” on page 153

“setCookie” on page 135

“setRequestInfo” on page 138

“setResponseContentLength”
on page 138

“setResponseContentType” on
page 139

Chapter 4, Writing a WAI Application in C 57

Summary of C Functions

Table 4.1 C Functions in WAI

Function Name

Description

For More Information, See...

WA | setResponseStatus()

WA StartResponse()

WA I stringFree()
WA I WriteClient()

Sets the HTTP response code (for
example, 404 for "File Not Found")
of the response to be sent to the
client.

Starts sending the response back to
the client.

Frees a string from memory.

Writes data to the client.

“setResponseStatus” on
page 140

“StartResponse” on page 141

“StringDelete” on page 154

“WriteClient” on page 142

58 Writing Web Applications with WAI

Chapter

Writing a WAI Application in C++

WALI provides a set C++ classes and methods that you can use to write a WAI
application. Your C++ application should:

e Declare a class that derives from the Netscape WAIWebA pplicationService
base class. See “Declaring a Class for Your Web Service” on page 63

¢ Define a Run method for processing the incoming HTTP request. See
“Defining a Method to Process Requests” on page 64.

e Define a getServicelnfo method for returning information about the service
and its version.

e Create an instance of your class and register your service to the web
server’s host machine. (For instructions, see “Registering Your Web
Application Service” on page 73.)

After you write and compile your application, see the section “Running Your
Web Service” on page 75 for instructions on setting up and running your web
service.

Before continuing on, note the following points:

¢ You must include the ONESvPI.hpp header file when writing a WAI
application in C++:

#include "ONESrvPI.hpp"

Chapter 5, Writing a WAI Application in C++ 59

Setting up Microsoft Visual C++ for use with WAI (Windows NT only)

This header file declares the C++ classes available in WAI.

Thewebserverincludesasample C++applicationthatdemonstrateshowyoucan
useWAItowriteawebapplicationservice. Theexampleislocatedintheserver_root/
wai/examples’WASP directory on UNIX and the server_root\wai\examples\WASP
directory on Windows NT.

You can follow this example as a guideline for writing and compiling your
application.

If you are using Visual C++ you need follow the instructions in Setting up
Microsoft Visual C++ for use with WAI (Windows NT only) to set up your
Visual C++ environment specifically for WAI.

The rest of this chapter explains how to write a WAI application in C++.

Setting up Microsoft Visual C++ for use
with WAI (Windows NT only)

Follow these steps when setting up your C++ project in Microsoft Visual C++. These
steps are specific to Microsoft Visual C++ version 5.0.

Specify the type of application you want to write.

Choose New from the File menu. Click the Projects tab and select the type of
application you want to write from this list:

e Console application
e Windows application

e DLL application

Fill in the Project Name field.

Type the name of the project in the Project Name field and click OK.

Add the project files.

60 Writing Web Applications with WAI

Setting up Microsoft Visual C++ for use with WAI

From the Project menu, choose Add to Projectand then choose Files. Use the file
browser to add the files you want to include in your project.

4. Specify that the code be generated using the multi-threaded dll run-time
library.

From the Project menu, select Settings. Click the C/C++ tab and choose Code
Generation from the pull-down menu next to the Category option (see
Figure 5.1).

Choose Multithreaded DLL from pull-down menu next to the “Use run-time
library” option.

ogd MWD AN JOm ST 0d D SWIRIEE ST
_DEBUG" D "_WIN " O P ATzt
P Debugiesiclipos® 3 P Debugy® [Fd=Debugr™

Figure 5.1 Project Settings, C/C++ Code Generation

5. Specify XP_WIN32 as the macro definition.

Chapter 5, Writing a WAI Application in C++ 61

Setting up Microsoft Visual C++ for use with WAI (Windows NT only)

Click Settings from the Project menu. Click the C/C++ tab and choose
Preprocessor from the Category option menu (see Figure 5.2).

ngn.uTuﬁnm.lm.lamm NI D
" DESUG" D " WINDOWS" JO P W2t
p Dsbasgrtwsicl et i | Fo' Twbug® Fd Dsbug™

Figure 5.2 Project Settings, C/C++ Preprocessor
Add XP_WIN32 to the Preprocessor Definitions field.

6. Inthefieldlabeled“Additionalincludedirectories,” typethenamesofany
additional include directories.

Add the include file directories (../../include,..\.\include)

Alternatively, youcanaddtheincludefiledirectoriesbychoosingOptionsfrom the
ToolsmenuandclickingtheDirectoriestab. Choose“Includefiles”fromthe“Show
directories for” field, then add the include directories to the list.

7. Add any additional libraries to list of libraries.

62 Writing Web Applications with WAI

Declaring a Class for Your Web Service

Choose Settings from the Project menu. Click the Link tab in the Project Settings
dialogbox.ChooseGeneralfromthepull-downmenunexttothe Categoryoption.
In the “Object/library modules” field, type the names of additional libraries.
See Figure 5.3.

Cha by Mz d
w171 ola3T kb oke2is?2 kb vaid §0 odec 32 b odeoopa? Ho

=
=
L

W32 bl uwar32 b g3l lswnipoollis camdigdl s

Figure 5.3 Project Settings Dialog, Link Options

If you are using the Visual C++ Debug, donotuse the ALLOC and FREE executables.
They conflict with the WAI API functions and can cause unpredictable results.

Declaring a Class for Your Web Service

Thefirststep in developinga WAIapplication in C++isto declare a class that derives
from the Netscape WAIWebApplicationService base class. (This class represents a
web application service.)

For example, the WASP example provided with the web server declares a
WebA pplicationServicePrototype class, which is derived from the
WA IWebApplicationService base class:

1
/] Declare aWAS class deriving from Netscape base class

Chapter 5, Writing a WAI Application in C++ 63

Defining a Method to Process Requests

1
class WebA pplicationServicePrototype: public WAIWebA pplicationService

{

public:
WebA pplicationServicePrototype(const char * object_name = (const char *)NULL)
long Run(WAI ServerRequest_ptr session);
char *getServicelnfo();

}

WebA pplicationServicePrototype::WebA ppli cationServicePrototy pe(const char
* object_name): WA | WebA pplicationService(object_name)

{
}

Theclassthatyoudefinerepresentsyourwebservice. Youneedtodefinethefollowing
methods for your class; these methods are virtual methods in the
WAIWebA pplicationService base class:

e Run

Thismethodis called by the web serverto process HTTP requests for this service.
For details on defining this method, see “Defining a Method to Process
Requests” on page 64.

e getServicelnfo

This method returns information about your web service (such as version
information). For details on defining this method, see “Providing
Information About the Service” on page 72.

Defining a Method to Process Requests

ThemethodthatprocessesincomingHTTPrequests(notallrequests,justtherequests
directed specifically at your service) should use the following syntax:

long Run(WAI ServerRequest_ptr session);

64 Writing Web Applications with WAI

Defining a Method to Process Requests

sessionrepresents the HTTP request to be processed. You can call the methods of this
object to get data from the request, set data in the response headers, and send the
response back to the client.

Therestofthissectionexplainshowyou canusethesemethodsandobjectsto process
the request. WAI functions enable you to do the following tasks:

e Getting Data from the Request

e Sending the Response Back to the Client

Getting Data from the Request

Using an object of the WAIServerRequest class (see the section

“netscape:: WAL:HttpServerRequest” on page 110 for details), you can get data
from the client’s HTTP request. You can call functions accomplish the following
tasks:

e Getting Headers from the HTTP Request

e Getting Information about the Server

Getting Headers from the HTTP Request

Given an object of the WAIServerRequest class, you can get headers from the
corresponding HTTP request by calling the getRequestHeader method. For
example, the following section of code gets the user-agent HTTP request header
from the incoming request:

long
WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)
{

char *var =0;

ostrstream outstr;
if (session->getRequestHeader("user-agent”, var) == WAISPI Success){

outstr << "User Agent: " << var;

StringDel ete(var);

Chapter 5, Writing a WAI Application in C++ 65

Defining a Method to Process Requests

outstr << endl;

}

Inaddition to HTTP headers, you can get other types of information (such as CGI 1.1
environment variables) from the HTTP request by calling the getRequestinfo
method of the WAIServerRequest class.

The section “getRequestIinfo” on page 122 lists the types of information you can
retrieve from the request. Note that the CGI 1.1 environment variables that
describe the server are accessible through the getinfo method. See “Getting
Information about the Server” on page 66 for details.

Thefollowingsection of code getsand printsthe value of the REMOTE_ADDRCGI 1.1
environment variable for the incoming request:

long

WebA pplicationServicePrototype:: Run(WAI ServerRequest_ptr session)

{

char *var =0;

ostrstream outstr;

if (session->getRequestinfo("REMOTE_ADDR", var) == WAISPI Success){
outstr << "Client IP Address. " << var;
StringDel ete(var);

}

outstr << endl;

Getting Information about the Server

WATlalsoprovidesmethodsforgettinginformationabouttheserver, suchastheserver
identifier or CGI 1.1 environment variables that describe the server (for example,
SERVER_NAME or SERVER_PORT).

66 Writing Web Applications with WAI

Defining a Method to Process Requests

ThesemethodsareavailableaspartoftheWAIServerContextclass(formoreinformation,
see the section “netscape::WAI:HttpServerContext” on page 144). You can get
an object of this class by using the getContext method of the WAIServerRequest
class.

For example, the following section of code gets an WAIServerContext object:

long

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)
{

WA ServerContext_ptr context = session->getContext();

}

To get information about the server, you can call the getinfo method of the
WA ServerContext objectand specify the type of information that you wantto retrieve.
Forexample,thefollowingsectionofcodegetsthevalueofthe SERVER_PORTCGI1.1
environment variable:

long
WebA pplicationServicePrototype:: Run(WAI ServerRequest_ptr session)
{

int port_num;

ostrstream outstr;

WA ServerContext_ptr context = session->getContext();

if (context->getInfo(*SERVER_PORT", port_num) == WA SPI Success){
outstr << "Port Number: " << var;
StringDel ete(var);

}

outstr << endl;

}

Chapter 5, Writing a WAI Application in C++ 67

Defining a Method to Process Requests

For a list of the types of information you can retrieve from this method, see the
section “getInfo” on page 146.

You canalso use methods that specifically retrieve a certain type of information. For
example, to get the port number that the server listens to, you can call the
getPort method:

long

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)
{

int port_num =0;
ostrstream outstr;

WA ServerContext_ptr context = session->getContext();

if ((port_num = context->getPort()) != 0){
outstr << "Port Number: " << var;
StringDelete(var);

}

outstr << endl;

}

}

For details on getting server information, see the section
“netscape:: WAL:HttpServerContext” on page 144.

Getting and Setting Cookies in the Client

BeforeaclientaccessesaURL,theclientchecksthedomainnameinthe URLagainstthe
cookies that it has. If any cookies are from the same domain as the URL, the client
includes a header in the HTTP request that contains the name/value pairs from the
matching cookies.

The Cookie header has the following format:

Cookie: name=value; [namel=valuel; name2=value? ...]

68 Writing Web Applications with WAI

Defining a Method to Process Requests

To get these name/value pairs from the HTTP request, call the getCookie
method. To set your own name/value pairs in a client, call the setCookie
method.

Thefollowingexampleillustrateshowyoucanusethesemethodstogetandsetcookies
in the client.
long

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)

{
char *cookiebuff = NULL;
/* If no cookie has been set in the client, set a cookie. */
if (session->getCookie(cookiebuff)== WAISPIFailure)
session->setCookie("MY_NAME", "My Value", "*,"", "I", WAI_FALSE);
}

Sending the Response Back to the Client

Methodsofthe HttpServerRequestclass alsoallow youto control the response sentback
to the client. You can call these functions to accomplish the following tasks:

e Setting Headers in the Response
e Setting the Status of the Response
¢ Sending the Response

e Redirecting Users to Another Page

Setting Headers in the Response

WAIincludes functions that you can use to set headers in the response that you want
sent back to the client. You can call the addResponseHeader method to set any
header in the response. For example, the following section of code adds the
Pragma header to the response:

long

Chapter 5, Writing a WAI Application in C++ 69

Defining a Method to Process Requests

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)
{

session->addResponseHeader("Pragma’, "no-cache'");

}

Youcanalsocallfunctionsthatsetspecifictypesofheaders. Forexample,youcancall:

e setResponseContentType to specify the content type of the response (the
Content-type header)

e setResponseContentLength to specify the length of the response in bytes (the
Content-length header)

Setting the Status of the Response

To set the status of the response sent back to the client, call the setResponseStatus
method. For example, the following section of code sets the response code to a 404
status code ("File Not Found"):

long

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)
{

session->setResponseStatus(404, "");

Sending the Response

Afteryouhavespecified thelength ofthe contentyouwantsentbacktotheclient, you
can start sending the response to the client. Call the StartResponse method to
start sending the response.

To send the rest of the data to the client, call the WriteClient method.

The following example sends the string Hello World back to the client:

long

70 Writing Web Applications with WAI

Defining a Method to Process Requests

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)

{

[* Specify the string that you want to send back to the client. */
char *buffer = "Hello World\n";

size t bufflen = strlen(buffer);

/* Specify the length of the data that you are about to send back. */
session->setResponseContentL ength(bufflen);

/* Start sending the response back to the client. */
session->StartResponse();

[* Write the string to the client. */

session->WriteClient((const unsigned char *)buffer, bufflen);

Redirecting Users to Another Page

In your WAI application, you can also redirect users to a different page than the
requestedpage. Youcaneitherautomaticallyredirecttheusertoanewpage,oryoucan
present the user with a link to click on manually.

To automatically redirect the user to a different page, you can do the following:

3.

Call the addResponseHeader method to add a Location header, which
points to the new location.

Call the setResponseStatus method to set the response status to 301 (if
the page has permanently moved) or 302 (if the page has
temporarily moved).

Call the StartResponse method to send the response back to the client.

For example:

long

Chapter 5, Writing a WAI Application in C++ 71

Providing Information About the Service

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)

{
session->addResponseHeader ("L ocation", " http://www.newsite.com/");
session->setResponseStatus(301, "M oved permanently to newsite!");
session->StartResponse();
return O;

}

To give the user the choice of going to the new location (rather than automatically
redirecting the URL), you can call the RespondRedirect method:

long

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)

{
session->RespondRedirect(" http://www.newsite.com/");
session->StartResponse();
return O;

}

Calling this method will send the following page back to the client:
Moved Temporarily

This document has moved to a new location. Please update your documents and hotlists accordingly.

The word "location" on this page is a link pointing to the new location of the page.

Providing Information About the Service

Part of the WAIWebApplicationService base class is the virtual getServicelnfo
method. When you write your web application class (which is derived from the
base class), you need to include a definition of this method.

The getServicelnfo method should provide information about the web service,
such as the name of the author, the version of the service, and so on.

The following section of code defines the getServicelnfo method for a web
service class WebApplicationServicePrototype. The example uses the StringDup
method to allocate memory for the returned string.

72 Writing Web Applications with WAI

Registering Your Web Application Service

char *

WebA pplicationServicePrototype::getServicel nfo(void)

{

return StringDup("My Test Web Service. Version 1.0\nCopyright Netscape Communications
Corporation\nAuthor: Mozilla\n");

}

Registering Your Web Application Service

Next, you needto create an instance of your class and assign an instance name to the
object.Youneedtoregisteryourwebservicetothewebserverunderthisinstancename.
Theinstancenamethatyouselectforyourwebservicecanbeanarbitraryname;itdoes
notneedtobethesamenameasyourapplication. (Forexample, ifyourapplicationis
named MyApp or MyApp.exe, your instance name can be MyWebService. They do not
need to have the same name.)

Note, however, that your instance name must be unique. No other registered WAI
application can have the same name.

Registering With a Web Server

To register your application with the web server’s built-in name service, call the
RegisterService method. Pass the name of the web server’s hostname and port
number as an argument (in the form hostname:portnumber) to this method.

NotethatifyourwebserverisrunningwithSSLenabled, youneedtospecifyadifferent
value for this argument. For details, see “Registering With a Web Server” on
page 73.

Thefollowingsectionofcodecreatesthewebservice ExeFoofromthewebserviceclass
WebA pplicationServicePrototype. The example registers this object to the web server
under the instance name MyService.

WAIBool rv;

Chapter 5, Writing a WAI Application in C++ 73

Registering Your Web Application Service

char *host = "myhost.mydomain.com:81";

char *instanceName = "MyService";

/* Create the web service. */

WebA pplicationServicePrototype ExeFoo(instanceName);

/* Register the web service. */

rv = ExeFoo.RegisterService(host);

/* Provide feedback on the result of the registration attempt. */
if (rv == WAI_FALSE) {

printf("Failed to register with %s\n", host);
} else{

printf(" Successfully registered with %s\n", host);

}

Registering With an SSL-Enabled Server

Typically, when you call the RegisterService or the WAIregisterService function to
register your web service, you pass the host name and port number of your
web server as an argument.

The function constructsa URLtothe web server’sbuilt-in naming service and getsthe
objectreference forthisnaming service. This object reference isused to register your
application.

If your web server has SSL enabled, the RegisterService or WAIregisterService
function cannot get the naming service object reference in the manner
described above. Instead, it needs to use the Interoperable Object Reference
(IOR) file to get the object reference for the naming service.

To find the IOR file, the RegisterService function assembles a path to the file
using the following information:

74 Writing Web Applications with WAI

Running Your Web Service

e The server root (for example, the default server root is /usr/netscape/suitespot or
C:\netscape\suitespot)

e The server identifier (for example, the default server identifier is https-hostname)

If your web server does not use the default values for either of these, you must set
environment variables to identify the correct values before running your WAI
application:

e Ifyourserverisinstalledunderadifferentdirectorythanthedefaultserverroot,you
mustsettheNS_SERVER_ROOTenvironmentvariabletothelocationofyourserver
root.

Forexample,supposethatyourserverisinstalledunder/export/netscape/suitespot.In
aCshell, youneedtosetthe followingenvironmentvariable before runningyour
WALI application:

setenv NS_SERVER_ROQT /export/netscape/suitespot

e Ifyouarenotusingthe defaultserveridentifier, you mustsetthe NS_SERVER_ID
environment variable to the server identifier that you are using.

Forexample,supposethatyourserverisrunning onthe machine prestonand your
serveridentifieris https-webserver instead of https-preston. In C shell, you need to set
the following environment variable before running your WAI application:

setenv NS_SERVER_ID https-webserver

Running Your Web Service

Afteryouwriteandcompileyourapplication,youcanrunyourapplicationtomakeyour
web service available. The web server should recognize your application, if you've
registered it (see “Registering Your Web Application Service” on page 73).

End users can access your service by going to the URL:

http://server_name:port_number/iiop/instance_name

For example, you can access the C++ WASP example by going to the URL:

http://server_name:port_number/iiop/WASP

Chapter 5, Writing a WAI Application in C++ 75

Running Your Web Service

76 Writing Web Applications with WAI

Chapter

Writing a WAI Application in Java

WALI provides a set of Java classes and methods that you can use to write a
WALI application. Your Java application should:

e Declare a class that derives from the Netscape WAIWebA pplicationService
base class.

¢ Define a Run method for processing the incoming HTTP request. (For
details, see “Defining a Method to Process Requests” on page 80.)

e Define a getServicelnfo method for returning information about the service
and its version.

e Create an instance of your class and register your service to the web
server’s host machine. (For instructions, see “Registering Your Web
Application Service” on page 89.)

After you write and compile your application, see the section “Running Your
Web Service” on page 92 for instructions on setting up and running your web
service.

Before continuing on, note the following points:

e You must import the class files under netscape.WAI.*, org.omg.CORBA *, and
org.omg.CosNaming.*:

import org.omg.CORBA .*;

import org.omg.CosNaming.*;

Chapter 6, Writing a WAI Application in Java 77

Declaring a Class for Your Web Service

import netscape.WAI .*;

¢ Youmustinclude the files nish.zipand WAI.zipin your CLASSPATH environment
variable. These filesarelocated inthe server_root/wai/javadirectory in UNIXandin
the server_root\wai\java directory on Windows NT.

Forexample, in C shell on UNIX, enter the following command (if your server is
installed under /usr/netscape/suitespot):

setenv CLASSPATH “$CLASSPATH":/usr/netscape/suitespot/wai/java/nisb.zip:/usr/netscape/suitespot/
wai/java/WAL.zip

On Windows NT, open the System Control Panel, and add these zip files to your
CLASSPATH environment variable listed there.

e ThewebserverincludesasampleJavaapplicationthatdemonstrateshowyoucan
useWAItowriteawebapplicationservice. Theexampleislocatedintheserver_root/
wai/examples’'WASP directory on UNIX and the server_root\wai\examples\ WA SP
directory on Windows NT.

You can follow this example as a guideline for writing and compiling your
application.

The rest of this chapter explains how to write a WAI application in Java.

Declaring a Class for Your Web Service

The firststep in developing a WAIapplication in Java is to declare a class that derives
from the Netscape WAIWebApplicationService base class. (This class represents a
web application service.)

For example, the WASP example provided with the web server declares a
MyWebApplicationService class, which is derived from the
WAIWebA pplicationService base class:

import java.applet.*;
import javaio.*;
import java.awt.*;
import java.net.*;
import java.util.*;

import javalang.*;

78 Writing Web Applications with WAI

Declaring a Class for Your Web Service

/* Make sure to import these classes. */

import org.omg.CORBA .*;

import org.omg.CosNaming.*;

import netscape. WA .*;

/*

* |mplementation classfor A WAS.

* Extends wrapper class for WAl CORBA object

*/

class MyWebA pplicationService extends WA IWebA pplicationService {

String instanceName;
MyWebA pplicationService(java.lang.String name) throws
org.omg.CosNaming.NamingContextPackage.CannotProceed,
org.omg.CosNaming.NamingContextPackage.InvalidName,
org.omg.CosNaming.NamingContextPackage.AlreadyBound,
org.omg.CORBA..SystemException{

super(name);

instanceName = name;

Theclassthatyoudefinerepresentsyourwebservice. Youneedtodefinethefollowing
methods for your class; these methods are virtual methods in the
WAIWebApplicationService base class:

Run

Thismethodis called by the web serverto process HTTP requests for this service.
For details on defining this method, see “Defining a Method to Process
Requests” on page 80.

getServicelnfo

This method returns information about your web service (such as version
information). For details on defining this method, see “Providing
Information About the Service” on page 88.

Chapter 6, Writing a WAI Application in Java 79

Defining a Method to Process Requests

Defining a Method to Process Requests

Themethodthatprocessesincoming HTTPrequests(notallrequests,justtherequests
directed specifically at your service) should use the following syntax:

public int Run(netscape.WA | .HttpServerRequest request);

requestrepresents the HTTP requestto be processed. You can call the methods of this
object to get data from the request, set data in the response headers, and send the
response back to the client.

Therestofthissectionexplainshowyoucanusethese methodsandobjectsto process
the request. WAI functions enable you to do the following tasks:

e Getting Data from the Request

¢ Sending the Response Back to the Client

Getting Data from the Request

Using an object of the netscape WAI.HttpServerRequest class (see the section
“netscape:: WAL:HttpServerRequest” on page 110 for details), you can get data
from the client’s HTTP request. You can call functions accomplish the following
tasks:

e Getting Headers from the HTTP Request

e Getting Information about the Server

Getting Headers from the HTTP Request

Given an object of the netscape. WAI.HttpServerRequest class, you can get headers from
the corresponding HTTP request by calling the getRequestHeader method. For
example, the following section of code gets the user-agent HTTP request header
from the incoming request:

public int Run(netscape.WA.HttpServerRequest request) {
/* Prepare an output stream to send data back to the client. */

ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);

80 Writing Web Applications with WAI

Defining a Method to Process Requests

/* Get the value of the user-agent header. */
org.omg.CORBA..StringHol der value = new org.omg.CORBA..StringHol der();
if (request.getRequestHeader("user-agent", value) == HttpServerReturnType.Success){

content.print("User agent: " + value.value);

}

Inaddition to HTTP headers, you can get other types of information (such as CGI 1.1
environment variables) from the HTTP request by calling the getRequestinfo
method of the netscape WAI.HttpServerRequest class.

The section “getRequestIinfo” on page 122 lists the types of information you can
retrieve from the request. Note that the CGI 1.1 environment variables that
describe the server are accessible through the getinfo method. See “Getting
Information about the Server” on page 82 for details.

Thefollowingsection of code getsand printsthe value of the REMOTE_ADDRCGI 1.1
environment variable from the incoming request:

public int Run(netscape.WA | .HttpServerRequest request) {

[* Prepare an output stream to send data back to the client. */
ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);

[* Get the client’s IP address. */
org.omg.CORBA.StringHolder value = new org.omg.CORBA.StringHolder();
if (request.getRequestinfo("REMOTE_ADDR", value) == HttpServerReturnType.Success){

content.print("Client addr: " + value.value);

Chapter 6, Writing a WAI Application in Java 81

Defining a Method to Process Requests

Getting Information about the Server

WATlalsoprovidesmethodsforgettinginformationabouttheserver, suchastheserver
identifier or CGI 1.1 environment variables that describe the server (for example,
SERVER_NAME or SERVER_PORT).

These methods are available as part of the netscape. WAI.HttpServerContext class (for
more information, see the section “netscape::WAL:HttpServerContext” on

page 144). You can get an object of this class by using the getContext method of
the netscape.WAI.HttpServerRequest class.

For example, the following section of code gets an netscape WAI.HttpServerContext
object:

public int Run(netscape.WA.HttpServerRequest request) {

/* Get the HttpServerContext object describing this web server. */

HttpServerContext context = request.getContext();

}

To get information about the server, you can call the getInfo method of the
netscape WA .HttpServerContextobjectandspecifythetype ofinformationthatyouwant
to retrieve. For example, the following section of code gets the value of the
SERVER_PORT CGI 1.1 environment variable:

public int Run(netscape.WA | .HttpServerRequest request) {

[* Prepare an output stream to send data back to the client. */
ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);

/* Get the HttpServerContext object for this web server. */

HttpServerContext context = request.getContext();
/* Get the port number that the web server listensto. */

org.omg.CORBA.StringHol der svar;
if (context.getinfo(“"SERVER_PORT”, svar) == HttpReturnType.Success){

82 Writing Web Applications with WAI

Defining a Method to Process Requests

content.print("Web Server port number: " + svar);

}

For a list of the types of information you can retrieve from this method, see the
section “getInfo” on page 146.

You canalso use methods that specifically retrieve a certain type of information. For
example, to get the port number that the server listens to, you can call the
getPort method:

public int Run(netscape.WA | .HttpServerRequest request) {

[* Prepare an output stream to send data back to the client. */
ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);

/* Get the HttpServerContext object for this web server. */

HttpServerContext context = request.getContext();

* Get the port number that the web server listensto. */
int portNum = 0;
if ((portNum = context.getPort()) != 0){

content.print("Web Server port number: " + portNum);

}

For details on getting server information, see the section
“netscape:: WAL:HttpServerContext” on page 144.

Chapter 6, Writing a WAI Application in Java 83

Defining a Method to Process Requests

Getting and Setting Cookies in the Client

BeforeaclientaccessesaURL,theclientchecksthedomainnameinthe URLagainstthe
cookies that it has. If any cookies are from the same domain as the URL, the client
includes a header in the HTTP request that contains the name/value pairs from the
matching cookies.

The Cookie header has the following format:
Cookie: name=value; [namel=valuel; name2=value? ...]
To get these name/value pairs from the HTTP request, call the getCookie

method. To set your own name/value pairs in a client, call the setCookie
method.

Thefollowingexampleillustrateshowyoucanusethesemethodstogetandsetcookies
in the client.

public int Run(netscape.WA | .HttpServerRequest request)

{
org.omg.CORBA.StringHolder
cookiebuff = new org.omg.CORBA.StringHol der();
/* 1f no cookie has been set in the client, set a cookie. */
if (request.getCookie(cookiebuff)== HttpServerReturnType.Failure)
request.setCookie("MY_NAME", “My Value”, ™, "™, "/", false);
}

Sending the Response Back to the Client

Methods ofthe HttpServerRequestclassalsoallow youto control the response sentback
to the client. You can call these functions to accomplish the following tasks:

e Setting Headers in the Response
e Setting the Status of the Response

e Sending the Response

84 Writing Web Applications with WAI

Defining a Method to Process Requests

e Redirecting Users to Another Page

Setting Headers in the Response

WATincludes functions that you can use to set headers in the response that you want
sent back to the client. You can call the addResponseHeader method to set any
header in the response. For example, the following section of code adds the
Pragma header to the response:

public int Run(netscape.WA | .HttpServerRequest request)
{

request.addResponseHeader (" Pragma, "no-cache");

}

Youcanalsocallfunctionsthatsetspecifictypesofheaders. Forexample, youcancall:

e setResponseContentType to specify the content type of the response (the
Content-type header)

e setResponseContentLength to specify the length of the response in bytes (the
Content-length header)
Setting the Status of the Response

To set the status of the response sent back to the client, call the setResponseStatus
method. Forexample, the following section of code sets the response code to a 404
status code (“File Not Found”):

public int Run(netscape.WA |.HttpServerRequest request)
{

request.setResponseStatus(404, “);

Chapter 6, Writing a WAI Application in Java 85

Defining a Method to Process Requests

Sending the Response

Afteryouhavespecified thelength ofthe contentyouwantsentbacktotheclient, you
can start sending the response to the client. Call the StartResponse method to
start sending the response.

To send the rest of the data to the client, call the WriteClient method.

The following example sends the string Hello World back to the client:
public int Run(netscape.WA |.HttpServerRequest request)
{

[* Prepare an output stream to send data back to the client. */
ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);

/* Send “Hello World” to the print stream. */
String buffer = "Hello World\n";

content.print(buffer);

/* Convert the string to a byte array for WriteClient(). */
HttpServerReturnType rc;

byte[] outbuff = streamBuf.toByteArray();

try {

/* Specify the length of the data you will send. */

rc = request.setResponseContentLength(outbuff.length);

/* Start sending your response. */
request.StartResponse();

}
catch(org.omg.CORBA.SystemException e){

}

86 Writing Web Applications with WAI

Defining a Method to Process Requests

/* Write data back to the client. */

int write_cnt = request. WriteClient(outbuff);

Redirecting Users to Another Page

In your WAI application, you can also redirect users to a different page than the
requestedpage. Youcaneitherautomaticallyredirecttheusertoanewpage,oryoucan
present the user with a link to click on manually.

To automatically redirect the user to a different page, do the following:

1. Call the addResponseHeader method to add a Location header, which
points to the new location.

2. Call the setResponseStatus method to set the response status to 301 (if
the page has permanently moved) or 302 (if the page has
temporarily moved).

3. Call the StartResponse method to send the response back to the client.

For example:
public int Run(HttpServerRequest request){

try {
request.addResponseHeader("Location", "http://www.newsite.com/");

request.setResponseStatus(301, "M oved permanently to newsite.com!");

request. StartResponse();
}
catch(org.omg.CORBA.SystemException €){
}

catch(java.lang.Exception €) {
System.err.printin(e);

}
return O;

}

Chapter 6, Writing a WAI Application in Java 87

Providing Information About the Service

To give the user the choice of going to the new location (rather than automatically
redirecting the URL), you can call the RespondRedirect method:

public int Run(HttpServerRequest request){
request.RespondRedirect(" http://www.newsite.com/");

try {
request. StartResponse();

}
catch(org.omg.CORBA.SystemException €){

}
catch(javalang.Exception €) {

System.err.printin(e);

}
return O;

}

Calling this method will send the following page back to the client:
Moved Temporarily

This document has moved to a new location. Please update your documents and hotlists accordingly.

The word "location" on this page is a link pointing to the new location of the page.

Providing Information About the Service

Part of the WAIWebApplicationService base class is the virtual getServicelnfo
method. When you write your web application class (which is derived from the
base class), you need to include a definition of this method.

The getServicelnfo method should provide information about the web service,
such as the name of the author, the version of the service, and so on.

The following sections of code defines the getServicelnfo method for a web
service class WebApplicationServicePrototype.

public java.lang.String getServicelnfo(){

return "Java Test Web Application Service V1.0\nCopyright Netscape Communications

88 Writing Web Applications with WAI

Registering Your Web Application Service

Corporation\nAuthor: Mozilla\n";

}

Registering Your Web Application Service

Initialize the object request broker (ORB) and the basic object adaptor
(BOA):

e Callthe org.omg.CORBA.ORB.init() method to initialize the ORB. This method
returns an ORB object.

e Call that ORB object’s BOA_init() method to initialize the BOA. This method
returns a BOA object.

For example:

[* Initialize the object request broker (ORB). */

ORB orb = org.omg.CORBA.ORB.init();

/* Initialize the basic object adapter (BOA). */

BOA boa = orb.BOA_init();

Formoreinformationontheseobjectsandmethods,seetheNetscapelnternetService
Broker for Java Reference Guide.

Createaninstanceofyourclassandassignaninstance nametotheobject.

Youneedtoregisteryourwebservicetothe webserverunderthisinstance name.
Theinstancenamethatyouselectforyourwebservice canbeanarbitraryname; it
does not need to be the same name as your application. (For example, if your
applicationisnamed MyApp.class, yourinstance name canbe MyWebService. They
do not need to have the same name.)

Note,however, thatyourinstance name mustbeunique. Nootherregistered WAI
application can have the same name.

Registering With a Web Server

To register your application with the web server’s built-in name service:

Chapter 6, Writing a WAI Application in Java 89

Registering Your Web Application Service

1. Call the RegisterService method.

Passthenameofthewebserver'shostnameandportnumberasanargument(inthe
form hostname:portnumber) to this method.

Note that if your web server is running with SSL enabled, you need to specify a
different value for this argument. For details, see “Registering With an SSL
Enabled Server” on page 91.

2. After you register the service, call the impl_is_ready() method of the BOA
objecttoindicatethatyourservicepreparedtoreceiveincomingrequests.

Registering With a Web Server

The following section of code creates the web service mpi from the web service class
MyWebA pplicationService. Theexampleregistersthisobjecttothewebserverunderthe
instance name MyJavaService.

String host = “myhost.mydomain.com:81”";

String instanceName = “MyJavaService”;

try {
/* Initialize the object request broker (ORB). */

ORB orb = org.omg.CORBA.ORB.init();

/* Initialize the basic object adapter (BOA). */

BOA boa = orb.BOA_init();

/* Create the web service. */

try {

MyWebApplicationService
mpi = new MyWebApplicationService(instanceName);

System.out.printin(mpi + " is ready.");

/* Register the web service. */

mpi.RegisterService(host);

90 Writing Web Applications with WAI

Registering Your Web Application Service

/* Wait for incoming requests */
boa.impl_is ready();
}
catch(java.lang.Exception e){
System.out.printin("WAS failed to initialize.");

System.err.printin(e);

Registering With an SSL Enabled Server

IfyourwebserverhasSSLenabled, youneedtousethefollowingformatspecifyingthe
argument to RegisterService. (In the case of an SSL-enabled server, the method
gets the object reference from the Interoperable Object Reference (IOR) file.)

filepath_to_IOR file
Thisfileislocatedinthewai/NameServicedirectoryunderyourserverrootdirectory. The
file uses the following naming convention:

server_id.IOR
Forexample,onthe machine named preston, the IOR mightbe namedhttps-preston.|OR.

Supposeyourwebserverisrunningonthehostmachinenamedfeathersonportnumber
8080. Suppose that the serveris installed under the server root directory /usr/netscape/
suitespotwith the serveridentifier https-feathers. If SSLis enabled, you register your WAI
application in Java by calling:

Regi sterService("file:/usr/netscape/suitespot/wai/NameService/https-feathers.IOR");

The RegisterService method uses the Interoperable Object Reference (IOR) file to
get the object reference for the naming service. This object reference is used to
register your application.

Chapter 6, Writing a WAI Application in Java 91

Running Your Web Service

Running Your Web Service

After you write and compile your application, you can run your application to
make your web service available. The web server should recognize your
application, if you've registered it (see “Registering Your Web Application
Service” on page 89).

End users can access your service by going to the URL:

http://server_name:port_number/iiop/instance_name

For example, you can access the JavaWASP example by going to the URL:
http://server_name:port_number/iiop/JavaWASP

92 Writing Web Applications with WAI

Chapter

Writing a WAI Server Plug-In

Using WAI, you can write server plug-ins that run within the web server’s
process (as opposed to standalone applications that run in their own
processes). A server plug-in is a shared library or dynamic link library that is
loaded and initialized when the server starts up.

Most of the instructions in the previous chapters apply to writing server plug-
ins as well as applications. (For details on writing applications with WAI, see
Chapter 4, “Writing a WAI Application in C” and Chapter 5, “Writing a WAI
Application in C++”.)

Typically, when you are writing a standalone application, you register your
web application service when your application starts up. If you are writing a
server plug-in instead of an application, you need to register your web
application service when the server starts up. To do this, you need to:

e Write an initialization function to register your service (see “Writing an
Initialization Function” on page 94 for details)

e Configure the web server to run your function during startup (see
“Configuring Your Web Server” on page 96 for details)

Chapter 7, Writing a WAI Server Plug-In 93

Writing an Initialization Function

Writing an Initialization Function

If you are writing a server plug-in, you need to write an initialization function
to register your web application service. You can set up this initialization
function to get invoked when the web server starts up.

In general, you call the same functions and methods to register a web
application service in a server plug-in as you do to register the service in an
application. The difference is that you call these functions and methods within
an initialization function.

The next section, “Initialization in C” on page 94, explains how to write your
initialization functions.

Initialization in C

The initialization function must have the following prototype:

myfunc(pblock *pb, Session * sn, Request *rq)

In the initialization function, you create a new web application service and
register the service. As is the case with standalone applications, you call the

WA | createWebAppService() function to create the service and WAIregisterService() to
register the service. For example:

/I Declare the global variable obj as the web service

11OPWebA ppService_t obj;

/I Create a new web application service

obj = WA createWebA ppService("MyServiceName", MyRunFunction, O, 0);

/I Register the web application service
WA IregisterService(obj, "");

94 Writing Web Applications with WAI

Writing an Initialization Function

Unlike standalone applications, you do not need to specify host and port
information as arguments to the WAIcreateWebAppService() function. Because
your service runs within the web server process, the host and port information
iS not necessary.

The following example registers a web application service under the instance name
ClIOPip. The service is defined in a server plug-in, which provides the initialization
function CIIOPinit() for registering the service.

/I Define your Run function

long
MyRunFunction(ServerSession_t obj)
{

/I Declare the global variable anObject as a web service instance

11OPWebA ppService_t obj;

11 Specify the right type for compiling on Windows NT
#if defined(WIN32)

#define DLLEXPORT __decl spec(dllexport)

else

#define DLLEXPORT

#endif
/I Make the initialization function available

extern "C" {

DLLEXPORT int ClI1OPinit(pblock *pb, Session *sn, Request *rq);

/I 'Your initialization function (called at server startup)

int

Chapter 7, Writing a WAI Server Plug-In 95

Configuring Your Web Server

ClIOPinit(pblock * pb, Session *sn, Request *rq)
{
/I Create a new web application service

obj = WAIcreateWebAppService("CII1OPip", MyRunFunction, O, 0);

/I Register the web application service
WA IregisterService(obj, "");

return O;

Configuring Your Web Server

Next, youneedtoconfigurethewebservertorunyourinitializationfunctionwhenthe
server starts up.

Addthefollowinglnitdirectivestoyourobj.conf file (Whichislocatedunderserver_root/
server_id/config in UNIX and server_root\server_id\config in Windows NT.

Init funcs="init_function" fn="load-modules" shlib="shared _lib"

Init fn="init_function"
Forexample,supposeyoudefineaninitializationfunctionmyinit()inashared/dynamic

library/usr/netscape/suitespot/wai/lib/mylib.so. Youneedtoaddthefollowingdirectivesto
your obj.conf file:

Init funcs="myinit" fn="load-modules" shlib="/usr/netscape/suitespot/wai/lib/mylib.so"
Init fn="myinit"
WhenaWAIpluginneedstoberunin-processtothehttpserver, theload-modulesand

Initdirectivesforthisshouldoccurafterthose correspondingtotheload-modulesand
Init directives libONEiiop.so (or .dll).

96 Writing Web Applications with WAI

Chapter

Security Guidelines for Using WAI

Using WAI, you can write and compile an application that runs as its own
process (outside the web server’s process). When a client accesses your web
service, the web server uses a built-in name service to find your application
process and execute the Run method (or, in C programs, the corresponding C
function of the type WAIRunFunction) in your web service application class.

This section discusses some of the potential security concerns that may arise
from the way in which the web server finds your application process. Before
you enable WAI on your server, make sure to read this chapter thoroughly.

How the Server Finds Your Application

When you start up your WAI application for the first time, your application registers
withthewebserver’sbuilt-innameservice. Thewebserversavestheinformationwith
the name service.

Inordertoaccessyourservice, end users entera URL (or click onalink) that contains
the name of yourservice. When this URLis requested, the web server usesits built-in
name service to find the registered WAT application with the same name. The server
then invokes the Run method in your web application service class.

Chapter 8, Security Guidelines for Using WAI 97

Potential Security Concerns

Forexample,whenyoustarttheWASPexample(whichisprovidedwiththewebserver)
forthefirsttime, theexampleregistersitselftothe webserverwiththe nameWASP(for
the C++example)orJavaWASP(fortheJavaexample). Enduserscanaccesstheservice
through the URL http://hostname:port/iiop/WASP (or JavaWASP).

By default, the basic objectadapter (BOA) in the web serveris settolisten only to the
local host (the loopback address, 127.0.0.1), not to a network IP address. This
configurationassumesthatyou plantorunyourwebapplicationservicesonthesame
machine as your web server.

Althoughitis possibletoenablethe webserver'sBOAtoacceptrequestsfromremote
machines, you should be aware of the potential security issues surrounding this
configuration before choosing to set up your web server in this way. The rest of this
chapter explains these potential security concerns.

Potential Security Concerns

Whenrunning WAIapplicationswith yourwebserver, thefollowingscenarios could
occur:

¢ Someone could replace aweb service by running another program that
registers underthesame name. Potentially, a user could write a program that
registers itself under the same name as an existing web service. If the original
application that provides the service stops running (for example, if it crashes),
another application registered under the same name can take its place.

Forexample,supposeyouarerunningtheWASPexample Someoneelsecouldwrite
aprogramthatregistereditselfunderthesamename (WASP)andrunthe program
onthewebserver'shostmachine. Iftheoriginal WASP applicationterminates, the
web server’s name service will find the other service registered as WASP, and the
web server will use that service.

¢ Someonecouldreplaceawebserviceoraddanewservicebyuploadingafile
totheserver. A userwith permissiontothedirectory containing yourplug-insor
programscouldconceivablyoverwritethosefiles. Forexample, ifyouarerunning
the WASP example, someone else could write a program with the same filename
(WASP) and copy that file over your original file.

98 Writing Web Applications with WAI

Recommended Guidelines

e Someone could run a program on a separate machine and register the
programwithyourwebserver.Ifyouconfigure yourwebservertoallow ITOP
connectionsfromothermachines,programsrunningonothermachinescanregister
with your web server.

(Notethatbydefault, yourwebserveris configuredtolisten for[IOP connections
from only the local host address 127.0.0.1.)

Thefollowingfigureillustratesthe potential security concerns with enablingthe web
server to run WAI applications.

Enterprise Senrer Unauth-:-_rize_d
Al Name Senvice | Al Application
[Mame: MASF)

. o If Original Appl. If Original Appl.
Original Application Is Down, Other Is Down, Other
Registers By Name Appl. Registers Appl. Registers
uithiNamEels eniice In lts Flace In lts Flace
Orriginal Al Unauthorzed
Application Al Application

[Mame: MASF) [Mame: MASF)
Host Machine Running Any Other Server
the Enterprise Server on Your Local Network

Recommended Guidelines

In order to reduce the possibility that security problems might occur, Netscape
recommends that you follow these guidelines:

¢ Restrictloginaccesstothewebserver’shostmachine.Ifpossible,donotallow
guestloginstothe machine. Anyone with the ability to execute a program hasthe
potential to register it as a WAI service to your web server.

Chapter 8, Security Guidelines for Using WAI 99

Recommended Guidelines

¢ Makesurethatwrite permissionsareadequatelysetonwebserver’shost
machine. Verifythatwrite permissionsarerestrictedtodirectoriesandfilesonthe
web server. In particular, make sure that server plug-ins loaded by the server or
programs started automatically by your machine are write-protected.

e RunWAlapplicationsonthelocalmachineonly(themachineonwhichthe
web server runs). Although you can set up the web server to access WAI
applicationsrunningonothemmachines,configuringtheserverthiswayincreasesthe
riskofpotentialsecurity problems. Anyonewiththeabilitytorunaprogramonany
machine will have the potential to register the program as a WAI service.

e (For3.0serversonly)Restrictosagentsothatitonlyacceptsconnectionsfrom
thelocalhost. Althoughthewebserver primarily usesitsbuilt-inname serviceto
register WAT applications, osagent can also register WAI applications if the name
service is down.

Toconfigureosagenttoacceptconnectionsonlyfromthelocalhostmachine,specify
the -a option with the argument 127.0.0.1 (localhost):

osagent -a127.0.0.1

100 Writing Web Applications with WAI

Enabling IIOP Connections from Other Machines

Thefollowingfigureillustratestherecommendedguidelinesfordealingpotentialsecurity

concerms.
Restrict Access
to the Local Machine
Enterprise Sener | Unauth-:-_rize_d
Al Name Senrice Al Application
- [Mame: MASF)
I

. o If Original Appl. If Original Appl.
Original Application Is Doowun, Other Is Doowun, Other

Registars By Mame

; . Appl. Registers
with Name Sen.rlcef), In [z Place

Appl. Registers
In Itz Place

Orriginal Al
Application
[Mame: MASF)

Host Machine RUnning | rectrict Lo gin Access Any Other Server
the Enterprise Server and File Permisions on Your Local Network

Enabling IOP Connections from Other
Machines

Although Netscape recommends running WAIapplicationsonly onthe webserver’s
host machine, it is possible to run WAI applications on other machines and have
CORBA object implementations on other machines interact with the web servers.

Configuring Your Web Server

To enable the web server to register and find WAI applications running on other
machines, youneedtoconfigurethewebservertouseitsnetworkIPaddressinsteadof
the localhost IP address (127.0.0.1).

Chapter 8, Security Guidelines for Using WAI 101

Enabling IIOP Connections from Other Machines

In the obj.conf file for your server, find the Init directive that calls the l1OPinit function.
Usethe OAipaddr parametertospecifytheIPaddressthatthe BOAuses. Forexample, if
youwantthe BOAsetuptousetheIPaddress 204.200.215.98instead of thelocalhosr,
use the following syntax:

Init Latelnit="yes” fn="I1OPinit” OAipaddr="204.200.215.98"

For more information, see “Configuring the Web Server’'s ORB” on page 35.

(3.0 only) Running osagent

If you are not restricting the ORB to the local host machine only, you do not need to
specify the -a flag when running the osagent utility.

This flag restricts osagent to finding WAT applications on the local host machine only.
Without this flag specified, osagent will be able to find applications running on any
machine in your local network.

102 Writing Web Applications with WAI

Chapter

WAI Reference

This section discusses the signatures of the methods of the three WAI
interfaces. According to the CORBA specification, a signature describes the
legitimate values of request parameters and returned results.

The following table summarizes the signatures, classes, and methods available.

Methods of the HTTPServerRequest Interface

addResponseHeader
BuildURL

del ResponseHeader
getConfigParameter

getContext
getCookie
getRequestHeader
getRequestinfo

getResponseContentL ength

getResponseHeader

Addsaheadertotheresponsetobesentbacktothe client.

Builds a URL from the prefix of a URI and the suffix of a
URI.

Deletesaheaderfromtheresponsetobesenttotheclient.

Gets the value of a parameter of the iiopexec function in
the Service directive of the obj.conf file.

Gets the HTTPServerContext object for the server.
Getsa cookie fromthe requestheaders sent by the client.
Gets a specified header from the client’s request.

Getsinformationabouttheclientrequest(suchasthevalue
of a CGI 1.1 environment variable).

Gets the value of the Content-length header from the
response to be sent to the client.

Getsthe specified header from the response to be sent to
the client.

Chapter 9, WAI Reference 103

LogError

ReadClient

RespondRedirect
setCookie

setRequestinfo
setResponseContentL ength

setResponseContentType

setResponseStatus

StartResponse
WriteClient

Logs an entry to the server’s error log file (server_root/
server_id/logg/errors on UNIX and
server_root\server_id\logs\errors on Windows NT).

Reads data from the client (for example, for data sent
through the HTTP POST method).

Redirects the client to a specified URL.
Setsacookieintheresponseheadertobesenttotheclient.
(This method has no functional use at this time.)

Sets the content length (the value of the Content-length
header) of the response to be sent to the client.

Setsthecontenttype(thevalueofthe Content-typeheader)
of the response to be sent to the client.

Sets the HTTP response code (for example, 404 for “File
NotFound”) of the response to be sent back to the client.

Starts to send the response to the client.

Writes data to the client.

Methods of the HTTPServerContext Interface

getHost

getinfo

getName

getPort
getServerSoftware

isSecure

104 Writing Web Applications with WAI

Retrieves the host name of the machine running the web
server.

Retrieves information about the web server (such as the
value of CGI 1.1 environment variables that describe the
server).

Retrieves the server ID (for example, https-myhost).
Retrieves the port number that the server listens to.

Retrievesthe productnameandversionofthewebserver
(for example, Netscape Enterprise/3.0).

Specifies whether or not SSL is enabled on the server.

Constructor of the WAIWebApplicationService Base Class

WAIWebApplicationService Creates an instance of this class.
Methods of the WAIWebApplicationService Base Class
Activate WAS Activates the object (if the object has not already been

activated by the constructor).

getServicelnfo (This isa method that you need to implement.) Provides
informationabouttheauthor,version,andcopyrightofthe
web application service that you are writing.

RegisterService RegistersyourWAlapplicationwiththewebserverrunning
on the specified host.

Run (This isa method that you need to implement.) Executes
yourwebapplication service (thisis called wheneverthe
server receives an HTTP request for your service).

StringAlloc Allocates memory for a string.
StringDelete Frees a string from memory.
StringDup Copies a string into a newly allocated buffer in memory.

Constructor of the FormHandler Class
FormHandler Creates an instance of this class.
Methods of the FormHandler Base Class

Isvalid Specifieswhetheromotthesubmitteddatawassuccessfully
parsed by the FormHandler class.

GetQueryString Getsthe query partof the URI(the name-value pairs after
the question mark) from the request.

ParseQueryString Parsesthequerypartofthe URI(thename-valuepairsafter
the question mark) from the request.

Get (C++ only) Gets the value of a specified name-value pair from the
parsed form data.

Add (C++ only) Adds a name-value pair to the parsed form data.

Chapter 9, WAI Reference 105

Delete (C++ only)

Removes a name-value pair from the parsed form data.

Initlterator (C++ only) Setsupa pointertothebeginning ofthelistof name-value

Next (C++ only)

pairsinthe parsed formdata so thatthe Next method gets
the first name-value pair in the list.

Getstthe nextname-value pairfromthe parsedformdata.

GetHashTable (Javaonly) Returns a hashtable containing the parsed form data.

The following table summarizes the C functions available in WAI.

Table 9.1 C Functions in WAI

Function Name

Description For More Information, See...

WA |addResponseHeader()

WAIBUIldURL ()

WA I createWebA ppService()

WA |deleteService()
WA |del ResponseHeader ()

WA I getConfigParameter()

WA IgetCookieg()

WA getHost()

WA IgetInfo()

WA IgetName()

AddsaheadertotheHTTPresponse “addResponseHeader” on
to be sent back to the client. page 111

Builds an absolute URL from the “BuildURL” on page 113

Creates a new web application “WAIWebApplicationService”
service,assignsitaninstancename, on page 151

and associates it with a function for

processing HTTP requests.

Deletes a web application service.

Removes a header from the HTTP “delResponseHeader” on
responsetobesentbacktotheclient. page 115

Getsthe value of a parameterofthe “getConfigParameter” on
iiopexec function in the Service page 116
directive of the obj.conf file.

Retrieves any cookies sent by the “getCookie” on page 119
client.

Gets the hostname of the machine “getHost” on page 145
where the web server is running.

Retrievesinformationabouttheweb “getInfo” on page 146
server (such as the value of CGI 1.1
environmentvariablesthatdescribe

the server).

Gets the server ID (for example, “getName” on page 147
https-myhost) of the web server.

106 Writing Web Applications with WAI

Table 9.1 C Functions in WAI

Function Name

Description

For More Information, See...

WA IgetPort()

WA | getRequestHeader()

WA I getRequestinfo()

WA | getResponseContentL ength()

WA IgetResponseHeader()

WA | getServerSoftware()

WA limplIsReady()

WA lisSecure()

WAILogError()

WAIReadClient()

WA IregisterService()

WA RespondRedirect()

(*WAIRunFunction)()

Gets the port number that the web
server listens to.

Gets a header from the HTTP
request sent by the client.

Gets information about the client
request (such as the value of a CGI
1.1 environment variable).

Getsthe contentlength (the value of
the Content-length header) of the
response.

Gets a header from the HTTP
response you plan to send to the
client.

Gets the type and version of the
server software.

Prepares your WAI application to
receive requests.

Specifieswhetherornottheserveris
run with SSL enabled.

Logsanentrytotheserver’'serrorlog
file (server_root/server_id/logs/errors on
UNIX and
server_root\server_id\logs\errors on
Windows NT).

Reads data from the client (for
example, for data sent through the
HTTP POST method).

Registers the WAI application with
the web server.

Redirects the client to a different
URL.

Type definition forthe functionthat
processes HTTP requests.

“getPort” on page 148

“getRequestHeader” on
page 121

“getRequestInfo” on page 122

“getResponseContentLength”
on page 125

“getResponseHeader” on
page 126

“getServerSoftware” on
page 148

“Registering Your Web
Application Service” on
page 52

“isSecure” on page 149

“LogError” on page 128

“ReadClient” on page 130

“RegisterService” on page 153

“RespondRedirect” on page 134

“Run” on page 153

Chapter 9, WAI Reference

107

How to Use This Reference

Table 9.1 C Functions in WAI

Function Name

Description

For More Information, See...

WA I setCookie()

WA | setRequestinfo()

WA I setResponseContentL ength()

WA | setResponseContent Type()

WA | setResponseStatus()

WA | StartResponse()

WA stringFree()

WAIWriteClient()

Setsacookieintheresponseheader
to be sent to the client.

(Thismethodhasnofunctionaluseat
this time.)

Setsthe contentlength (the value of
the Content-length header) of the
response to be sent to the client.

Setsthecontenttype(thevalueofthe
Content-typeheader) oftheresponseto
be sent to the client.

Sets the HTTP response code (for
example, 404 for “File Not Found”)
of the response to be sent to the
client.

Starts sending the response back to
the client.

Frees a string from memory.

Writes data to the client.

“setCookie” on page 135

“setRequestInfo” on page 138

“setResponseContentLength”
on page 138

“setResponseContentType” on
page 139

“setResponseStatus” on
page 140

“StartResponse” on page 141

“StringDelete” on page 154
“WriteClient” on page 142

How to Use This Reference

Themethodsinthissectionare documentedinInterface Definition Language, orIDL.
The C, C++, and Java syntax for each method is listed under the IDL syntax for the
method.

The following section is an example of the documentation for a WAI method. The
syntax for the interface is described first. Next, the prototypes for the methods that

implement this operation are documented.

Syntax

in string value);

108 Writing Web Applications with WAI

HttpServerReturnType addResponseHeader(in string header,

Interfaces

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAl addResponseHeader(ServerSession_t p, const char
*header,

const char *value);

C++ Prototype:
WAIReturnType addResponseHeader(const char * header,
const char *value);

Java Prototype:
public netscape.WAI HttpServerReturnType addResponseHeader(java.lang.String header,
javalang.String value);

Usetheprototypeforthelanguagethatyouareusingtowriteyourapplication.Notethat
theparametersmaydifferbetweenlanguages.Forexample theCfunctionshaveanextra
parameter (of the type ServerSession_t) that represents the HITP request object.

Interfaces

Themethodsfortheinterfacesinthissectionaredescribedintermsoftheirsignatures.
The interfaces described in WAI are:

e netscape:;:WAI::HttpServerRequest
Providesaccesstothe datainan HTTP request sent fromthe clientto yourserver.
e netscape::WAI::HttpServerContext

Providesaccesstodataaboutthewebserver,suchastheserver’shostnameandport
number.

e netscape::WAI::WebApplicationService and
netscape::WAI::WebApplicationBasicService

Representthewebservicethatyouwanttowrite. Typically,youdonotneedtodeal
with these two interfaces; instead, you work directly from the
WAIWebApplicationService base class, which implements these interfaces.

WAL also includes the following base class:

e WAIWebApplicationService

Chapter 9, WAI Reference 109

Interfaces

Base classfromwhichyouderive yourwebservicethat processes HT TP requests.

Therestofthischapterdocumentstheseinterfacesandclasses. NotethatalthoughinC,
there is no concept of classes, the C API functions are documented here among the
interfaces and classes for convenience.

netscape:WAIl::HttpServerRequest

Member
Summary

The HttpServerRequest interface declares methods for processing HTTP requests. It
provides access to the data in an HTTP request sent from the client to your server.

This interface is implemented by the following classes:
e WAIServerRequest (in C++)
e netscape.WAI.HttpServerRequest (in Java)

WhenyouwriteyourownWAlIclass(whichshouldderivefromtheNetscapebaseclass
WAIWebApplicationService; for details, see “WAIWebApplicationService” on

page 150), you pass in a reference to an WAIServerRequest object (in C++) or an
HTTPServerRequest object (in Java) as an argument to the Run method.

Using methods in these classes, you can get HTTP headers from a client request, set
HTTPheadersinaresponsetotherequest,getandsetcookiesintheclient, writeentries
to the server’s error log, and read and write data to the client.

The netscape::WAI::HttpServerRequest interface describes the following members:

Methods

addResponseHeader Addsaheadertotheresponsetobe sentbacktothe client.

BuildURL Builds a URL from the prefix of a URI and the suffix of a
URI.

delResponseHeader Deletesaheaderfromtheresponsetobesenttotheclient.

getConfigParameter Gets the value of a parameter of the iiopexec function in
the Service directive of the obj.conf file.

getContext Gets the HTTPServerContext object for the server.

getCookie Getsa cookie fromthe requestheaders sentby the client.

getRequestHeader Gets a specified header from the client’s request.

getRequestinfo Getsinformationabouttheclientrequest(suchasthevalue

of a CGI 1.1 environment variable).

110 Writing Web Applications with WAI

Syntax

getResponseContentLength
getResponseHeader

LogError

ReadClient

RespondRedirect
setCookie

setRequestinfo
setResponseContentL ength

setResponseContentType
setResponseStatus

StartResponse
WriteClient

Methods

Interfaces

Gets the value of the Content-length header from the
response to be sent to the client.

Getsthe specified header fromthe response to be sentto
the client.

Logs an entry to the server’s error log file

(server_root/server_id/loggerrors
on UNIX and

server_root\server_id\logs\errors
on Windows NT).

Reads data from the client (for example, for data sent
through the HTTP POST method).

Redirects the client to a specified URL.
Setsacookieintheresponseheadertobesenttotheclient.
(This method has no functional use at this time.)

Sets the content length (the value of the Content-length
header) of the response to be sent to the client.

Setsthecontenttype(thevalueofthe Content-typeheader)
of the response to be sent to the client.

Sets the HTTP response code (for example, 404 for “File
NotFound”) of the response to be sent back to the client.

Starts to send the response to the client.

Writes data to the client.

addResponseHeader

Adds a specified header to the response to be sent to the client.

HttpServerReturnType addResponseHeader(in string header,

in string value);

C Prototype:

NSAPI_PUBLIC WAIReturnType_t WA laddResponseHeader(ServerSession_t p, const char

*header,
const char *value);

Chapter 9, WAI Reference 111

Interfaces

Parameters

Returns

Example

C++ Prototype:
WAIReturnType addResponseHeader(const char * header,
const char *value);

Java Prototype:
public netscape.WAI .HttpServerReturnType addResponseHeader(java.lang.String header,
javalang.String value);

This method has the following parameters:

p (Conly)Handleto the server session object, which is passed asan
argument to your callback function.

header Name of the header to add.

vaue Content of the header.

HttpServerReturnType::Successif the header was successfully added. The actual return
value differs, depending on the language you are using:

e WAISPISuccess in C/C++
e netscape WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureif the header could notbe added. The actual return value
differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Failure in Java

ThefollowingexampleinJavaaddsaPragma:no-cacheheadertotheresponsesenttothe
client.

/* Define aclass for your service. */

class MyWebA pplicationService extends WA IWebA pplicationService {

/* Define the Run method, which is called whenever the client requests your service. */

public int Run(HttpServerRequest request){

/* Create an output stream for the content that you are delivering to the client. */

ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

112 Writing Web Applications with WAI

Interfaces

PrintStream content = new PrintStream(streamBuf);

HttpServerReturnType rc;
/* Insert code to write the content to the stream. */
/* Prepare to send the content back to the client.*/
byte[] outbuff = streamBuf.toByteArray();

try {

/* Add the Pragma: no-cache header to the response. */
rc = request.addResponseHeader("Pragma’, "no-cache");

[* Specify the length of the data to be sent.*/
rc = request.setResponseContentL ength(outbuff.length);

[* Start sending the response. */
request. StartResponse();

catch(org.omg.CORBA..SystemException e){

See Also delResponseHeader, getResponseHeader.

BuildURL

Using a specified URI prefix and URI suffix, creates a full URL of the form http:/
server:port prefix suffix.

Chapter 9, WAI Reference 113

Interfaces

Syntax

Parameters

Returns

Example

If you do not want to specify a prefix or a suffix, use the empty string ("") instead of a
NULL pointer.

string BuildURL (in string prefix, in string suffix);

C Prototype:
NSAPI_PUBLIC char *WAIBuUildURL (ServerSession_t p,
const char *prefix, const char * suffix);

C++ Prototype:
char *BuildURL (const char * prefix, const char * suffix);

Java Prototype:
public javalang.String
BuildURL (java.lang.String prefix, java.lang.String suffix);

This method has the following parameters:

p (Conly)Handle tothe server session object, which is passed asan
argument to your callback function.

prefix URI prefix that you want to use in the URL.

suffix URI suffix that you want to use in the URL.

The full URL containing the prefix and suffix.

The following example in C++ uses the suffix /index.html to build the URL http:/
server_name:port_number/index.html.

/* Define aclassfor your service. */
long

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)
{

char *url;

/* Build the complete URL from the specified suffix. */

url = session-BuildURL (", "/index.html");

114 Writing Web Applications with WAI

Syntax

Parameters

Returns

Example

Interfaces

delResponseHeader

Deletes a specified header from the response to be sent to the client. You use this
method to remove a header that added when calling the addResponseHeader
method.

HttpServerReturnType del ResponseHeader(in string header);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WA delResponseHeader(ServerSession_t p, const char
* header);

C++ Prototype:
WAIReturnType del ResponseHeader(const char * header);

Java Prototype:
public netscape. WA .HttpServerReturnType del ResponseHeader (java.lang. String header);

This method has the following parameters:

p (Conly)Handleto the server session object, which is passed asan
argument to your callback function.

header Name of the header that you want to delete.

HttpServerReturnType::Successiftheaderwassuccessfullydeleted. Theactualreturnvalue
differs, depending on the language you are using:

e WAISPISuccess in C/C++
e netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if header could not be deleted. The actual return value
differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Failure in Java

The following example in Java removes a header added through the
addResponseHeader method.

Chapter 9, WAI Reference 115

Interfaces

See Also

Syntax

/* Add the Pragma: no-cache header to the response. */
rc = request.addResponseHeader("Pragma’, "no-cache");

/* Remove the Pragma: no-cache header.*/

rc = request.del eteResponseHeader("Pragma'’);

[* Start sending the response. */

request. StartResponse();

addResponseHeader, getResponseHeader.

getConfigParameter

Obtainsthe currentvalue of a parameter inthe web service’s object in the obj.conffile.

Forexample,ifyouspecifythename-valuepairFavor=Peachinthewebservice’sobject:
<Object name="iiopexec">
Service fn="IlOPexec" Flavor="Peach”

</Object>
youcangetthevaluePeachbyspecifyingthename Flavorasanargumenttothismethod.

HttpServerReturnType getConfigParameter(in string name,
out string value);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAlgetConfigParameter(ServerSession _t p, const char
*name,

char ** value);

C++ Prototype:
WAIReturnType getConfigParameter(const char * name,
char *& value);

Java Prototype:
public netscape.WAI .HttpServerReturnType getConfigParameter(java.lang.String name,
org.omg.CORBA.StringHolder value);

116 Writing Web Applications with WAI

Parameters

Returns

Example

Interfaces

This method has the following parameters:

p (Conly)Handleto the server session object, which is passed asan
argument to your callback function.

name Name of the parameter to retrieve.

value Value retrieved by this method.

Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package.Holderclassessupportthepassingofout
andinoutparametersassociatedwithoperationrequests.Fordetails
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.

HttpServerReturnType::Successif the variable exists and is accessible. The actual return
value differs, depending on the language you are using:

e WAISPISuccess in C/C++

e netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureif the variable cannot be found or is not accessible. The
actual return value differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Failure in Java

The following example in Java gets the value of the Flavor parameter in the iiopexec
object in the obj.conf file.

/* Define aclass for your service. */

class MyWebA pplicationService extends WA IWebA pplicationService {

/* Define the Run method, which is called whenever the client requests your service. */

public int Run(HttpServerRequest request){

/* Get the Flavor parameter from the iiopexec object. */

if (request.getConfigParameter("Flavor", value) ==
HttpServerReturnType.Success) {

System.out.printin("Flavor: * + value.value + "\n");

Chapter 9, WAI Reference 117

Interfaces

Syntax

Returns

Example

getContext

Retrieves the WAIServerContext object (in C++) or the HTTPServerContext object (in
Java) for the server. (For details on this object, see

“netscape: WAIL:HttpServerContext” on page 144.) This object holds server
information, such as the server’s hostname and port number.

Callthis function if you wantto get information about the server (for example, if you
wantto getthe name and version of the server software, orifyou wantto determine if
the server is running SSL).

HttpServerContext getContext();

C Prototype:
N/A(youdon’tneedtogettheobjecttocallthefunctions/methodsassociatedwiththe
object)

C++ Prototype:
WAI ServerContext_ptr getContext();

Java Prototype:
public netscape.WAI .HttpServerContext getContext();

The HttpServerContext object for the server.

Thefollowingexamplein C++ getsthe WAIServerContextobjectforthe webserverand
uses that object to get the server’s version information.
long

WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)
{

/* Get the WAI ServerContext object for the web server. */

WA ServerContext_ptr context = session->getContext();

118 Writing Web Applications with WAI

See Also

Syntax

Parameters

Interfaces

/* Use WAI ServerContext to get info on the web server version. */
char *var;
if ((var = context->getServerSoftware()) & & *var){

printf("Web Server software: %s", var);
* Free the string from memory when done. */

StringDel ete(var);

}
netscape::WAI::HttpServerContext.

getCookie

Retrieves the cookie from the request headers sent by the client.
HttpServerReturnType getCookie(out string cookie);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t
WAIgetCookie(ServerSession _t p, char ** cookie);

C++ Prototype:
WAIReturnType getCookie(char *& cookie);

Java Prototype:
public netscape.WAI .HttpServerReturnType getCookie(org.omg.CORBA.StringHol der
cookie);

This method has the following parameters:

p (Conly)Handle tothe server session object, which is passed asan
argument to your callback function.

cookie Value of the cookie.
Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package.Holderclassessupportthepassingofout
andinoutparametersassociatedwithoperationrequests.Fordetails
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide..

Chapter 9, WAI Reference 119

Interfaces

Returns

Description

Example

HttpServerReturnType::Successifthe cookiewasretrievedsuccessfully. Theactualreturn
value differs, depending on the language you are using:

e WAISPISuccess in C/C++
e netscape WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureifthecookiecouldnotberetrieved. Theactualreturnvalue
differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Fallure in Java

When requesting a URL from an HTTP server, the client matches the URL against all
cookies it has. If the client has cookies from the same domain as the URL, the client
includesaline containing the name/value pairs of all matching cookies in the HTTP
request headers. The format of that line is as follows:

Cookie: namel=stringl; name2=string2...

For more information on cookies, see “setCookie” on page 135, the preliminary
Netscape cookie specification at http://home.netscape.com/newsref/std/
cookie_spec.html, and RFC 2109 (“HTTP State Management Mechanism”) at
http://www.internic.net/rfc/rfc2109.txt.

ThefollowingexampleinJavacheckstoseeifa cookieisalreadysetona clientbefore
setting a new cookie on the client.

public int Run(HttpServerRequest request){

org.omg.CORBA.StringHol der
cookiebuff = new org.omg.CORBA.StringHol der();

[* Check to seeif the client is returning any cookies. */

if (request.getCookie(cookiebuff)== HttpServerReturnType.Failure)

/* If no cookies have been returned, set a new cookie. */

request.setCookie("MY_NAME", "MY_VALUE", ", "", “fiiop", false);

120 Writing Web Applications with WAI

See Also

Syntax

Parameters

Returns

Interfaces

setCookie.

getRequestHeader

Retrieves a specified header from the client request.

HttpServerReturnType getRequestHeader(in string header,
out string value);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIgetRequestHeader(ServerSession_t p, const char
*name,

char ** value);

C++ Prototype:
WAIReturnType getRequestHeader(const char * header,
char *& value);

Java Prototype:
public netscape.WAI .HttpServerReturnType getResponseHeader(javalang.String header,
org.omg.CORBA.StringHolder value);

This method has the following parameters:

p (Conly)Handleto the server session object, which is passed asan
argument to your callback function.

header Name of the header to retrieve.

value The current content of the header retrieved by this method.

HttpServerReturnType::Successiftheheaderwassuccessfullyretrieved. Theactualreturn
value differs, depending on the language you are using:

e WAISPISuccess in C/C++
e netscape WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureiftheheadercouldnotberetrieved. Theactualreturnvalue
differs, depending on the language you are using:

e WAISPIFdilure in C/C++

e netscape. WAI.HTTPServerReturnType.Fallure in Java

Chapter 9, WAI Reference 121

Interfaces

Example The following example in C++ gets the value of the user-agent header in a client’s
request.

long
WebA pplicationServicePrototype::Run(WAI ServerRequest_ptr session)
{

char *var;

/* Get the value of the user-agent header. */

if (session->getRequestHeader("user-agent”, var) == WAISPI Success){
printf(“User agent: %s", var);
/* Free the string from memory when done. */

StringDelete(var);

getRequestinfo

Accesses information about the server and a specific HTTP request.

Syntax HttpServerReturnType getRequestinfo(in string name,
out string value);

C Prototype:

NSAPI_PUBLIC WAIReturnType t

WAIgetRequestinfo(ServerSession_t p, const char * name,
char ** value);

C++ Prototype:
WAIReturnType getRequestinfo(const char * name,
char *& value);

Java Prototype:
public netscape. WA .HttpServerReturnType getRequesti nfo(javalang.String name,
org.omg.CORBA .StringHolder value);

122 Writing Web Applications with WAI

Parameters

Interfaces

This method has the following parameters:

p

name

value

(Conly)Handleto the server session object, which is passed asan
argument to your callback function.

Name of the variable to retrieve.

The current value of the variable.

Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package.Holderclassessupportthepassingofout
andinoutparametersassociatedwithoperationrequests.Fordetails
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.

The following table lists the names of the variables that you can specify for the

name argument.

Table 9.2 getRequestlnfo variables and the types of information they represent

Variable Name

Description

AUTH_TYPE

CLIENT_CERT

CONTENT_LENGTH

CONTENT_TYPE

HOST

HTTPS

HTTPS KEYSIZE

HTTPS_SECRETKEYSIZE

HTTP_*

PATH_INFO

PATH_TRANSLATED

QUERY_STRING,
QUERY

Authentication scheme forthe request (found from the auth-
scheme token in the request).

Base-64DER-encodedcertificatereceivedfromtheclientifthe
PathCheck built-in function get-client-cert is called. (See the
NSAPI Programmer’s Guide for details on this function.)

Length of the content of the client request.
MIME type of the content of the client request.
Name of the client’s host machine.

Specifies whether or not SSL is “ON” or “OFF”.

Numberofbitsinthesessionkeyusedtoencryptthesession(if
SSL is enabled).

Numberofbitsusedtogeneratetheserver's private key (if SSL
is enabled).

Value of the specified HTTP_* header (headers with names
that begin with the prefix HTTP.).

Trailing part of the URI that follows the SCRIPT_NAME part
of the path.

The filesystem path to the file requested by the URI.

Thequery partofthe URI(the name-value pairsfollowingthe
question mark).

Chapter 9, WAI Reference 123

Interfaces

Returns

Example

Table 9.2 getRequestinfo variables and the types of information they represent

Variable Name Description

REMOTE_ADDR IP address of the client sending the request.
REMOTE_HOST Fullyqualifieddomainnameoftheclientsendingtherequest.
REMOTE_USER Ifthe clientisusing the basicauthenticationscheme, the user

ID sent by the client for authentication.

REQUEST_METHOD Method inwhich the requestwas made (forexample, GET or
POST or HEAD).

SCRIPT_NAME Part of the URI that identifies the script being executed.

SERVER_PROTOCOL Nameandrevisionnumberofthe information protocol ofthe

incoming request.

URI URI requested by the client.

HttpServerReturnType::Success if the information exists and is accessible. The actual
return value differs, depending on the language you are using:

e WAISPISuccess in C/C++
e netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureif the information does not exist or is notaccessible. The
actual return value differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Failure in Java

The following example in Java gets the IP address of the client that sent the request.

public int Run(HttpServerRequest request){

org.omg.CORBA . StringHol der value = new org.omg.CORBA..StringHol der();
/* Get the value of the client’s IP address. */

if (request.getRequestinfo("REMOTE_ADDR", value) ==
HttpServerReturnType.Success){

System.out.printin("Client addr: %s", value.value + "\n");

124 Writing Web Applications with WAI

Note

See Also

Syntax

Parameters

Returns

Interfaces

}

TheCfunction, WAlgetRequestInfo,internallyallocatesmemoryforthevaluestring. To
free the memory, call WAIstringFree (see StringDelete).

setRequestinfo

getResponseContentlLength

Retrievesthecontentlengthoftheresponsetobesenttotheclient. Youusethismethod
to get the value that you set when calling the setResponseContentLength method.

HttpServerReturnType getResponseContentL ength(
out unsigned long Length);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIgetResponseContentL ength(ServerSession_t p,
unsigned long *Length);

C++ Prototype:
WAIReturnType
getResponseContentL ength(unsigned long& L ength);

Java Prototype:
public netscape.WAI .HttpServerReturnType
getResponseContentL ength(org.omg.CORBA .IntHolder Length);

This method has the following parameters:

p (Conly)Handle tothe server session object, which is passed asan
argument to your callback function.

Length Content length of the response.
Note to Java Programmers: IntHolder is a class in the
org.omg.CORBA package.Holderclassessupportthepassingofout
andinoutparametersassociatedwithoperationrequests. Fordetails
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.

HttpServerReturnType::Successifthe contentlength wassuccessfullyfetched. Theactual
return value differs, depending on the language you are using:

e WAISPISuccess in C/C++

Chapter 9, WAI Reference 125

Interfaces

e netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureif the contentlength could notbe determined. The actual
return value differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Failure in Java

Example The following example in C gets the value of the content length set through the
setResponseContentL ength method.

long

MyRunFunction(ServerSession_t obj)

{
long *length;

/* Specify the content to send back to the client. */
char *buffer = "Hello World\n";

size t bufflen = strlen(buffer);

/* Set the length of this content in the content-length header. */
WA I setResponseContentL ength(obj, bufflen);

/* Get the content-length. */
WA I getResponseContentL ength(obj, & length);

}
See Also setResponseContentLength.

getResponseHeader

Getsaspecificheaderfromtheresponsetobesenttotheclient. Youuse thismethodto
get the value of a header that added when calling the addResponseHeader
method.

Syntax HttpServerReturnType getResponseHeader(in string header,

126 Writing Web Applications with WAI

Parameters

Returns

Example

Interfaces

out string value);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIgetResponseHeader(ServerSession_t p, const char
* header,

char ** value);

C++ Prototype:
WAIReturnType getResponseHeader(const char * header,
char *& value);

Java Prototype:
public netscape.WAI .HttpServerReturnType getResponseHeader(javalang.String header,
org.omg.CORBA.StringHolder value);

This method has the following parameters:

p (Conly)Handleto the server session object, which is passed asan
argument to your callback function.

header Name of the header that you want to retrieve.

vaue The current value of the header.

Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package.Holderclassessupportthepassingofout
andinoutparametersassociatedwithoperationrequests.Fordetails
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.

HttpServerReturnType::Successiftheheaderwassuccessfullyretrieved. Theactualreturn
value differs, depending on the language you are using:

e WAISPISuccess in C/C++

e netscape. WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureiftheheadercouldnotberetrieved. Theactualreturnvalue
differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Failure in Java

The following example in Java gets the value of a header added through the
addResponseHeader method.

Chapter 9, WAI Reference 127

Interfaces

/* Add the Pragma: no-cache header to the response. */
rc = request.addResponseHeader("Pragma’, "no-cache");

/* Get the value of the Pragma header.*/
org.omg.CORBA..StringHol der value = new org.omg.CORBA..StringHol der();

rc = request.getResponseHeader (" Pragma’’, value);

[* Start sending the response. */
request. StartResponse();

See Also addResponseHeader, del ResponseHeader.

LogError

Logs messages to the server error log (server_root/https-server_id/logg/errors).

Syntax HttpServerReturnType LogError(in long degree, in string func,
in string msg, in boolean clientinfo);

C Prototype:

NSAPI_PUBLIC WAIReturnType_t WAILogError(ServerSession_t p,
long degree, const char *func, const char * msg,
WAIBooal clientinfo);

C++ Prototype:
WAIReturnType LogError(long degree, const char *func,
const char *msg, WAIBool clientinfo);

Java Prototype:

public

netscape. WAI . HttpServerReturnType LogError(int degree,
javalang.String func, java.lang.String msg,
boolean clientinfo);

128 Writing Web Applications with WAI

Parameters

Returns

Interfaces

This method has the following parameters:

p

degree

func

msg
clientinfo

(Conly)Handleto the server session object, which is passed asan
argument to your callback function.

Degree of severity of the error. (This is included in the log entry.)
The degree of severity can be one of the following values:

e 0 (warning message)

e 1(misconfigurationerror;forexample,ifthereisasyntaxerroror
permission violation in a configuration file)

e 2(securityerror;forexample,ifauthenticationfailsoriftheclient

is forbidden to access the resource)

e 3(failure;forexample,ifaninternalproblempreventstherequest
from being fulfilled)

e 4(catastrophe;forexample,afatalservererrorsuchasrunning
out of memory)

e 5 (informational message)

e O(internalmessage;messageswillonlyappearifthemagnus.conf
file contains the LogVerbose On setting)

If you are writing a C/C++ application, you can include the nsapi.h

header file and use the defined values for the degree of severity.

Name of the function reporting the error. (This function name is
included in the log entry. You can use this to help identify which
function caused the log entry to be written.)

Message that you want logged.

If true, information about the session (such as the IP address of the
client)andrequest(suchastherequestedURDareincludedinthelog
entry.

HttpServerReturnType::Successif the message wassuccessfullylogged. Theactualreturn
value differs, depending on the language you are using:

e WAISPISuccess in C/C++

e netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureifthemessagecouldnotbelogged. Theactualreturnvalue
differs, depending on the language you are using:

e WAISPIFailure in C/C++

e netscape. WAI.HTTPServerReturnType.Failure in Java

Chapter 9, WAI Reference 129

Interfaces

Example

Syntax

The following lines of code log informational and warning messages.

public int myMethod(HttpServerRequest request){

request.LogError(5, "myMethod()", "An informational message.\n", true);
request.L ogError(0, "myMethod()", "A warning message.\n", false);

These lines of code generate the following messages in the server’s error log:

[15/May/1997:07:53:49] info: for host 198.95.249.43 trying to GET /iiop/JavaWA SP, myMethod() reports:
An informational message.

[15/May/1997:07:53:49] warning: myMethod() reports: A warning message.
Note that in the first entry, the IP address of the client, the method used to access the

resource,andthe URIoftheresourceareloggedtothe entrybecause LogErroris called
with the clientinfo argument set to true.

ReadClient

Reads data from the client.
long ReadClient(inout HttpServerBuffer buffer);

C Prototype:
NSAPI_PUBLIC long WAIReadClient(ServerSession_t p,
unsigned char *buffer, unsigned buffsize);

C++ Prototype:
long ReadClient(unsigned char * buffer,
unsigned buffsize);

Java Prototype:
public int
ReadClient(netscape. WAI.HttpServerBufferHolder buffer);

130 Writing Web Applications with WAI

Parameters

Returns

Example

Interfaces

This method has the following parameters:

p (Conly)Handleto the server session object, which is passed asan
argument to your callback function.

buffer Buffer to receive data from the client.
Note forJavaProgrammers: HttpServerBufferHolder isa classin
the netscape. WAI package. When you construct an object of this
class,youneedtopassabytearraytotheconstructor(seetheexample
below).

buffsize (C/C++ only) Size of the buffer of data.

Number of bytes read.

The following example in C++ gets data posted from the client (through the HTTP
POST method and displays the posted data back to the clientinits raw form (in other
words, as an unparsed string of name/value pairs).

long
WebA pplicationServicePrototype:: Run(WAI ServerRequest_ptr session)
{

ostrstream outstr;

char *var = NULL;

unsigned contentL ength;

long status;

char *myBuffer = NULL;

outstr << "<P>Resulting Posted Data</P>";

/* Get the value of the content-length header.*/

if (session->getRequestHeader (" content-length”, var) ==
WAISPIFailure){

return 1;

/* Use the content length to allocate memory for the data. */
contentLength = atoi(var);

StringDelete(var);

Chapter 9, WAI Reference 131

Interfaces

/* Allocate memory for the content plus one byte for the trailing 0. */
myBuffer = StringAlloc(contentL ength+1);
if (myBuffer==NULL) {

return 1;

}
myBuffer[contentLength] = \0’;

/* Read the posted data from the client.*/

status = session->ReadClient((unsigned char*)myBuffer, contentLength);

/* Print the raw posted data back to the client. */

outstr << "\n<PRE>\nOutput of the Form:\n\n" << (const char*)myBuffer << "\n</
PRE>\n<P>";

StringDelete(myBuffer);

outstr << endl;

session->setResponseContentL ength(outstr.pcount());
session->StartResponse();

session->WriteClient((const unsigned char *)outstr.str(), outstr.pcount());
outstr.rdbuf ()->freeze(0);

return O;

}

The following example in Java gets data posted from the client (through the HTTP
POST method and displays the posted data back to the clientin its raw form (in other
words, as an unparsed string of name/value pairs).

public int Run(HttpServerRequest request){
/* Set up an output stream to send data back to the client. */
org.omg.CORBA . StringHol der value = new org.omg.CORBA..StringHol der();
request.getRequestHeader (" content-length”, value);
ByteArrayOutputStream contentStream = new ByteArrayOutputStream();
* Create the buffer holder and initialize it the number of bytes to receive.*/

netscape.WA|.HttpServerBufferHol der inbuff = new netscape. WA I.HttpServerBufferHol der(new

132 Writing Web Applications with WAI

See Also

byte[1024]);

Integer content_length = new Integer(value.vaue);
int cnt;

int data_left;

/* Read the posted data into the buffer holder. */

for (data_left = content_length.intValue(); data left > 0;
data_left -= cnt){

cnt = request.ReadClient(inbuff);
if (cnt==0)
data left=0;
else
contentStream.write(inbuff.value, 0, cnt);
}
HttpServerReturnTyperc;
byte[] outbuff = contentStream.toByteArray();
try {
rc = request.setResponseContentL ength(outbuff.length);
request.StartResponse();

}
catch(org.omg.CORBA.SystemException €){

}
catch(java.lang.Exception €) {

System.err.printin(e);

}
int write_cnt = request. WriteClient(outbuff);
return O;

}

WriteClient.

Interfaces

Chapter 9, WAI Reference

133

Interfaces

Syntax

Parameters

Returns

Description

RespondRedirect

Sends a page back to the client to notify the client that the page has moved.
HttpServerReturnType RespondRedirect (in string url);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIRespondRedirect(ServerSession_t p, const char
*url);

C++ Prototype:
WAIReturnType RespondRedirect(const char *url);

Java Prototype:
public netscape.WAI .HttpServerReturnType RespondRedirect(java.lang.String url);

This method has the following parameters:

p (Conly)Handletothe server session object, which is passed asan
argument to your callback function.

url URL to redirect the client to.

HttpServerReturnType::Successif redirectwassuccessful. Theactualreturnvalue differs,
depending on the language you are using:

e WAISPISuccess in C/C++

e netscape WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the response failed to redirect the client. The actual
return value differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Failure in Java

When you call this method (followed by StartResponse), the server returns the
following page to the client:

Moved Temporarily

This document has moved to a new location. Please update your documents and hotlists accordingly.

Theword"location" onthis pageisalink pointingtothe newlocationof the page. The
user can choose to click on this link to go to the new location.

134 Writing Web Applications with WAI

Syntax

Interfaces

If instead you want the client to be automatically redirected to the new

location, call addResponseHeader to add the Location header, call setResponseStatus
to set a response code of 301 or 302, then call StartResponse to send the response
back to the client. For an example of this scenario, see the following sections:

e “Redirecting Users to Another Page” on page 51 in “Writing a WAI
Application in C” on page 45

e “Redirecting Users to Another Page” on page 71 in “Writing a WAI
Application in C++” on page 59

e “Redirecting Users to Another Page” on page 87 in “Writing a WAI
Application in Java” on page 77

setCookie

Creates a cookie and sends it to the client.

HttpServerReturnType setCookie(in string name, in string value,
in string expires, in string domain, in string path,
in boolean secure);

C Prototype:

NSAPI_PUBLIC WAIReturnType_t WA IsetCookie(ServerSession_t p,
const char * name, const char *value, const char * expires,
const char *domain, const char *path, WAIBool secure);

C++ Prototype:

WAIReturnType setCookie(const char * name, const char *value,
const char *expires, const char *domain, const char * path,
WAIBool secure);

Java Prototype:
public netscape. WA .HttpServerReturnType setCookie(java.lang.String name, java.lang.String
value,

javalang.String expires, java.lang.String domain,

javalang.String path, boolean secure);

Chapter 9, WAI Reference 135

Interfaces

Parameters This method has the following parameters:

p

name

value

136 Writing Web Applications with WAI

(Conly)Handleto the server session object, which is passed asan
argument to your callback function.

Asequence of characters excluding semicolon, comma, and white
space.Ifthereisaneedtoplacesuchdatainthename,someencoding
method suchas URL-style %XX encodingis recommended, though
no encoding is defined or required.

Assequence of characters excluding semicolon, comma, and white
space.Ifthereisaneedtoplacesuchdatainthevalue,someencoding
method suchas URL-style %XX encodingisrecommended, though
noencodingisdefinedorrequired. Thisistheonlyrequiredattribute
of the Set-Cookie header.

Returns

expires

domain

path

secure

Interfaces

Specifies a date string that defines the valid life time of the cookie.
Oncetheexpirationdatehasbeenreached, thecookiewillnolonger
be stored or given out.

The date string is formatted as: Wdy, DD-Mon-YYYY HH:MM:SS
GMT. This is based on RFC 822, RFC 850, RFC 1036, and RFC 1123,
with the variations that the only legal time zone is GMT and the
separatorsbetweentheelementsofthedatemustbedashes.expiresis
anoptional attribute. If expires is not specified, the cookie expires
when the user’s session ends.

Specifiesadomainfromwhichcookiescanbeset.Whensearchingthe
cookielistforvalidcookies,acomparisonofthedomainattributesof
the cookie is made with the Internet domain name of the host from
which the URL will be fetched.

Ifthereisatailmatch, thenthe cookie willgothrough pathmatching
toseeifitshouldbesent. Tailmatchingmeansthatdomainattributeis
matchedagainstthetailofthefullyqualifieddomainnameofthehost.
A domain attribute of acme.com would match host names
anvil.acme.com as well as shipping.crate.acme.com.
Onlyhostswithinthespecifieddomaincansetacookieforadomain,
and domains must have at least two or three periods in them to
preventdomainsoftheform:.com,.edu,andva.us. Anydomainthat
failswithinoneofsevenspecialtopleveldomainsonlyrequirestwo
periods. Anyotherdomainrequiresatleastthree. The sevenspecial
top level domains are: com, edu, net, org, gov, mil, and int.
The default value of domain is the host name of the server that
generated the cookie response.

Specifiesthesubsetof URLsinadomainforwhichthe cookieisvalid.
Ifacookiehasalready passeddomainmatching, thenthe pathname
component of the URL is compared with the path attribute, and if
thereisamatch, the cookieisconsideredvalidandissentalongwith
the URLrequest. The path/saleswouldmatch/saleswestand/sales/
west.html. The path "/" is the most general path.
Ifyoudon’tspecifyavalueforpath,setCookieusesthepathdescribed
by the header that contains the cookie.

If secure is set to True, the cookie is transmitted only if the
communicationschannelwiththehostisasecureone.Currently, this
meansthat secure cookies are sentonly to HTTPS (HTTP over SSL)
servers. If secure is False, a cookie is considered safe to send in the
clear over unsecured channels.

HttpServerReturnType::Success if cookie was set successfully. The actual return value
differs, depending on the language you are using:

e WAISPISuccess in C/C++

Chapter 9, WAI Reference 137

Interfaces

e netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the cookie could not be set. The actual return value
differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Failure in Java
Examples See .

See Also getCookie.

setRequestinfo

This method has no functional use at this time.

setResponseContentLength

Sets the length of the response content.

Syntax HttpServerReturnType setResponseContentL ength(
in unsigned long Length);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WA IsetResponseContentL ength(ServerSession _t p,
unsigned long Length);

C++ Prototype:
WAIReturnType setResponseContentL ength(unsigned long Length);

Java Prototype:
public netscape. WA .HttpServerReturnType setResponseContentL ength(int Length);

Parameters This method has the following parameters:

p (Conly)Handle tothe server session object, which is passed asan
argument to your callback function.

Length Content length that you want to set for the response.

Returns HttpServerReturnType::Success if the content length was successfully set. The actual
return value differs, depending on the language you are using:

138 Writing Web Applications with WAI

Example

See Also

Syntax

Interfaces

e WAISPISuccess in C/C++
e netscape WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureif the content length could not be set. The actual return
value differs, depending on the language you are using:

e WAISPIFailure in C/C++
e netscape. WAI.HTTPServerReturnType.Failure in Java

ThefollowingexampleinCsetsthecontent-lengthheaderforaresponsebeforesending
the response back to the client.

long

MyRunFunction(ServerSession_t obj)
{

/* Specify the content to send back to the client. */
char *buffer = "Hello World\n";

size t bufflen = strlen(buffer);

/* Set the length of this content in the content-length header. */

WA I setResponseContentL ength(obj, bufflen);

}
getResponseContentL ength.

setResponseContentType

Addsaheaderforthecontenttypefortheresponse. Thedefaultcontenttypeistext/html.

HttpServerReturnType setResponseContent Ty pe(
in string ContentType);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WA IsetResponseContentType(ServerSession _t p,
const char * ContentType);

Chapter 9, WAI Reference 139

Interfaces

Parameters

Returns

Syntax

C++ Prototype:
WAIReturnType setResponseContentType(const char * ContentType);

Java Prototype:
public netscape.WAI .HttpServerReturnType setResponseContent Type(java.lang.String
ContentType);

This method has the following parameters:

p (Conly)Handleto the server session object, which is passed asan
argument to your callback function.

Length Content type that you want to assign to the response.

HttpServerReturnType::Successifthe contenttype wassuccessfully set. Theactualreturn
value differs, depending on the language you are using:

e WAISPISuccess in C/C++
e netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureifthe contenttype couldnotbeset. Theactualreturnvalue
differs, depending on the language you are using:

e WAISPIFailure in C/C++

e netscape. WAI.HTTPServerReturnType.Failure in Java

setResponseStatus

Sets status to the request status code.

HttpServerReturnType setResponseStatus(in long status,
in string reason);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WA IsetResponseStatus(ServerSession _t p, long status,
const char *reason);

C++ Prototype:
WAIReturnType setResponseStatus(long status,
const char * reason);

140 Writing Web Applications with WAI

Parameters

Returns

Syntax

Interfaces

Java Prototype:
public netscape.WAI .HttpServerReturnType
setResponseStatus(int status, java.lang.String reason);

This method has the following parameters:

p (Conly)Handle tothe server session object, which is passed asan
argument to your callback function.

status Status that you want to assign to the response.

reason Message that you want associated with the status that you've set. If
this argument is NULL, the server attempts to find the standard
message for the status code (for example, “File Not Found” for the
status code 404).
If nomessage is found for the status code, the message “Unknown
Reason” is used.

HttpServerReturnType::Successif the status was successfully set. The actual returnvalue
differs, depending on the language you are using:

e WAISPISuccess in C/C++
e netscape WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the status could not be set. The actual return value
differs, depending on the language you are using:

e WAISPIFdilure in C/C++

e netscape. WAI.HTTPServerReturnType.Failure in Java

StartResponse

Starts the HTTP response.

Iftheincomingrequestspecifiesthatitfollowsthe HTTP0.9standard (whichdoesnot
specify that headers can be included in requests and responses), StartResponse does
nothing.

If the request specifies that it follows the HTTP 1.0 (or later) standard (which allows
headers in requests and responses), StartResponse sends a header.

long StartResponseQ;

Chapter 9, WAI Reference 141

Interfaces

Parameters

Returns

Example

Syntax

C Prototype:
NSAPI_PUBLIC long WA StartResponse(ServerSession_t p);

C++ Prototype:
long StartResponse();

Java Prototype:
public int StartResponse();

This method has the following parameters:

p (Conly)Handle tothe server session object, which is passed asan
argument to your callback function.

REQ_NOACTION ifthe request used the HEAD method (meaning that the body of the
resource should not be sent).

REQ PROCEED otherwise.

ThefollowingexampleinCstartssendingaresponsebacktotheclientaftersettingthe
content-length header in the response.

long

MyRunFunction(ServerSession_t obj)

{
[* Specify the length of the content you want to send. */
WA I setResponseContentL ength(obj, contentL ength);
[* Start sending the response. */
WA StartResponse(ohyj);
}
WriteClient

Writes data to the client.

long WriteClient(in HttpServerBuffer buffer);

142 Writing Web Applications with WAI

Parameters

Returns

Example

Interfaces

C Prototype:
NSAPI_PUBLIC long WAIWriteClient(ServerSession_t p,
const unsigned char * buffer, unsigned buffsize);

C++ Prototype:
long WriteClient(const unsigned char *buffer,
unsigned buffsize);

Java Prototype:
public int WriteClient(byte [] buffer);

This method has the following parameters:

p (Conly)Handle tothe server session object, which is passed asan
argument to your callback function.

buffer Buffer of data to write to the client.

buffsize (C/C++ only) Size of the buffer of data.

1 if successful or -1 if an error occurs.

Thefollowingexamplein Cwritesan HTMLpage containingthe words “Hello World”
back to the client.

long

MyRunFunction(ServerSession_t obj)

{

/* Specify the content to be written. */
char *buffer = "Hello World\n";

size t bufflen = strlen(buffer);

/* Set the content-length header in the response to be sent to the client.*/
WA I setResponseContentL ength(obj, bufflen);

[* Start sending the response. */
WA StartResponse(oby);

/* Write the data to the client. */

WAIWriteClient(obj, (const unsigned char *)buffer, bufflen);

Chapter 9, WAI Reference 143

Interfaces

return O;

}
See Also ReadClient.

netscape:WAIl::HttpServerContext

The HttpServerContext interface provides access to information about the web server.
This interface is implemented as the following classes:

e WAIServerContext (in C++)

e netscape WAI.HttpServerContext (in Java)

In C++, you can get access to an WAIServerContext object by calling the
getContext method of a WAIServerRequest object. In Java, you can get access to an
HTTPServerContext object by calling the getContext method of a HTTPServerRequest
object. (See the section “netscape::WAI:HttpServerRequest” on page 110 for
details on these objects.)

You canusethe methods ofthese classesto get the following information on the web
server:

e The hostname of the machine where the server is running

e The port number that the server listens to

e The server identifier (for example, https-myhost)

e The product name and version of the server software

e The version of CGI supported by the server (for example, CGI 1.1)

e Whether or not the server is running with SSL enabled

144 Writing Web Applications with WAI

Member
Summary

Syntax

Parameters

Returns

Interfaces

The netscape::WAI::HttpServerContext interface describes the following members:

Methods
getHost

getinfo
getName

getPort
getServerSoftware

isSecure

Methods

Retrieves the host name of the machine running the web
server.

Retrieves information about the web server (such as the
value of CGI 1.1 environment variables that describe the
server).

Retrieves the server ID (for example, https-myhost).
Retrieves the port number that the server listens to.

Retrievesthe productnameandversionofthewebserver
(for example, Netscape Enterprise/3.0).

Specifies whether or not SSL is enabled on the server.

getHost

Retrieves the hostname of the machine where the web server is running.

string getHost();

C Prototype:

NSAPI_PUBLIC char *WAIgetHost(ServerSession_t p);

C++ Prototype:
char *getHost();

Java Prototype:

public java.lang.String getHost();

This method has the following parameters:

p

(Conly)Handleto the server session object, which is passed asan
argument to your callback function.

The name of the machine where the web server is running.

Chapter 9, WAI Reference 145

Interfaces

Syntax

Parameters

getinfo

Retrieves information aboutthe server, such asthe server’sID orthe value of CGI 1.1
environment variables that describe the server (for example, SERVER_NAME and
SERVER_PORT).

HttpServerReturnType getlnfo(in string name, out string value);

C Prototype:
WAIBool WAIgetInfo(ServerSession_t p, const char * name,
char **value);

C++ Prototype:
WAIReturnType getlnfo(const char * name, char * & value);

Java Prototype:
public netscape.WAI .HttpServerReturnType getlnfo(java.lang.String name,
org.omg.CORBA.StringHolder value);

This method has the following parameters:

p (Conly)Handletothe server session object, which is passed asan
argument to your callback function.

name Name of the variable to retrieve.

value The current value of the variable.
Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package.Holderclassessupportthe passingofout
andinoutparametersassociatedwithoperationrequests. Fordetails
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.

146 Writing Web Applications with WAI

Returns

Syntax

Interfaces

The following table lists the names of the variables that you can specify for the name
argument.

Table 9.3 getinfo variables and the types of information they represent

Variable Name Description

GATEWAY _INTERFACE CGlversionsupported by the web server (for example, CGI/
1D.

HTTPS Specifies whether or not SSL is enabled on the server.

e If SSL is enabled, the value of this variable is “ON".
e If SSL is disabled, the value of this variable is “OFF”.

SERVER_ID Serveridentifier (for example, https-myhost Currently, this
only works on Windows NT.

SERVER_NAME Name of the machine running the web server.

SERVER_PORT Port number that the server listens to.

SERVER_SOFTWARE Type and version of web server software (for example,

Netscape-Enterprise/3.0

HttpServerReturnType::Success if the information exists and is accessible. The actual
return value differs, depending on the language you are using:

e WAISPISuccess in C/C++
e netscape WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failureif the information does not exist or is notaccessible. The
actual return value differs, depending on the language you are using:

e WAISPIFailure in C/C++

e netscape. WAI.HTTPServerReturnType.Failure in Java

getName

Retrieves the server ID (for example, https-myhost).

string getName();

Chapter 9, WAI Reference 147

Interfaces

Parameters

Returns

Syntax

Parameters

Returns

C Prototype:
NSAPI_PUBLIC char *WAIgetName(ServerSession _t p);

C++ Prototype:
char *getName();

Java Prototype:
public java.lang.String getName();

This method has the following parameters:

p (Conly)Handle tothe server session object, which is passed asan
argument to your callback function.

The server ID, or an empty string if the information is not accessible.

getPort

Retrieves the number of the port the server listens to.
long getPort();

C Prototype:
NSAPI_PUBLIC long WAIgetPort(ServerSession_t p);

C++ Prototype:
long getPort();

Java Prototype:
public int getPort();

This method has the following parameters:

p (Conly)Handleto the server session object, which is passed asan
argument to your callback function.

Port number that the web server listens to.

getServerSoftware

Retrieves the server type and version number (for example, Netscape-Enterprise/3.0).

148 Writing Web Applications with WAI

Syntax

Parameters

Returns

Syntax

Parameters

Returns

Interfaces

string getServerSoftware();

C Prototype:
NSAPI_PUBLIC char *WAIgetServerSoftware(ServerSession _t p);

C++ Prototype:
char *getServerSoftware();

Java Prototype:
public java.lang.String getServerSoftware();

This method has the following parameters:

p (Conly)Handleto the server session object, which is passed asan
argument to your callback function.

A string containing the server type and version number.

isSecure

Specifies whether or not SSL is enabled on the server.
boolean isSecure();

C Prototype:
NSAPI_PUBLIC WAIBool WAIlisSecure(ServerSession_t p);

C++ Prototype:
int isSecure();

Java Prototype:
public boolean isSecure();

This method has the following parameters:

p (Conly)Handle tothe server session object, which is passed asan
argument to your callback function.

True if this server has SSL enabled.

Chapter 9, WAI Reference 149

Interfaces

netscape:WAI::WebApplicationService

WebApplicationService is one of the interfaces that represent web services.

Typically, you do not need to use this interface; instead, you work directly with
the WAIWebApplicationService base class, which implements
netscape::WAI::WebApplicationBasicService interface.

netscape::WAI::WebApplicationBasicService

WebApplicationBasicService is one of the interfaces that represent web services.

Typically, you do not need to use this interface; instead, you work directly with
the WAIWebApplicationService base class, which implements this interface.

WebApplicationBasicService is derived from the netscape::WAI::WebA pplicationService
interface.

WAIWebApplicationService

TheWAIWebA pplicationServicebaseclassrepresentsawebservice. Youderiveyourown
web service class from this base class.

Member The WAIWebApplicationService base class contains the following members:

Summary

Constructor

WAIWebA pplicationService Creates an instance of this class.

Methods

ActivateWAS Activates the object (if the object has not already been
activated by the constructor).

getServicelnfo (This isa method that you need to implement.) Provides
informationabouttheauthor,version,andcopyrightofthe
web application service that you are writing.

RegisterService RegistersyourWAlIapplicationwiththewebserverrunning

on the specified host.

150 Writing Web Applications with WAI

Syntax

Interfaces

Run (This isa method that you need to implement.) Executes
yourwebapplicationservice (thisis called wheneverthe

server receives an HTTP request for your service).

StringAlloc Allocates memory for a string.

StringDelete Frees a string from memory.

StringDup Copies a string into a newly allocated buffer in memory.
Constructor

WAIWebApplicationService

Creates an instance of the WAIWebApplicationService class. Note that in the 3.01
version of the server, the C++ constructor has an additional parameter to allow

you to specify whether or not the object is activated when constructed.

If you want to activate the object at a later time, you can call the ActivateWAS

method.

C Prototype:
WA I createWebAppService(const char * name, WAIRunFunction func,
int argc, char **argv);

C++ Prototype (3.0 version of the server):

WAIWebA pplicationService(const char * name);

WAIWebA pplicationService(const char * name, int argc,
char **argv);

C++ Prototype (3.01 version of the server):
WAIWebApplicationService(const char * name);
WAIWebA pplicationService(const char * name, WAIBool activateObj);
WAIWebApplicationService(const char * name, int argc,

char **argv);
WAIWebApplicationService(const char * name, int argc,

char **argv, WAIBool activateObj);

Java Prototype:
public WAIWebA pplicationService(java.lang.String name);

Chapter 9, WAI Reference

151

Interfaces

Parameters

Syntax

This constructor has the following parameters:

name Name of the instance of the service that you want to create.

WAIRunFunction (Conly)CallbackfunctioninvokedwhenanHTTPrequestforyour
serviceisreceived. Thisisthefunctionthatyoudefineforprocessing
the HTTP request.

For details, see “Run” on page 153.

argc, argv (C/C++ only) Allows you to pass command-line arguments into
yourapplication.argcisthenumberofcommand-lineargumentsand
argv is an array of the arguments.

activateObj (C++ only) If WAI_TRUE, specifies that the object should be
immediately activated upon creation. f WAI_FALSE, you need to
activate the object by calling the ActivateWAS method.

Methods

ActivateWAS

(3.01 servers only) Allows you to activate the web application service object
at some later point in time after the object is constructed. In your application,
you can call this method when you are ready to activate the object.

C Prototype:
No equivalent function.

C++ Prototype:
void ActivateWAS();

Java Prototype:
No equivalent method.

getServicelnfo

Providesinformationabouttheauthor, version,and copyrightofthewebapplication
service that you are writing.

Thisisavirtual/abstractmethod. Youneedto define thismethod whenderiving your
own class from the WAIWebApplicationService base class.

152 Writing Web Applications with WAI

Syntax

Returns

Syntax

Parameters

Returns

Interfaces

C Prototype:
No equivalent function.

C++ Prototype:
virtual char *getServicelnfo();

Java Prototype:
public abstract javalang.String getServicelnfo();

A string containing author, version, and copyright. For example, you might
define this function to return the string My Web Application Service v1.0.

RegisterService

Registers your WAI application with the web server running on the specified
host.

C Prototype:
NSAPI_PUBLIC WAIBool WAIregisterService(llOPWebAppService t p,
const char * host);

C++ Prototype:
WAIBool RegisterService(const char * host);

Java Prototype:
public boolean RegisterService(javalang.String host);

This method has the following parameters:

p (C only) Handle to the IIOP web application service structure.

host Name of the host machine where the web server is running. Your
WAI application will be registered as a web service on this server.

WAI_Trueif your application was successfully registered to the web server.

WAI_Faseif your application could not be registered to the web server.

Run

Executes the web application service. This method is called by the server when
an HTTP request for your service is received.

Chapter 9, WAI Reference 153

Interfaces

Syntax

Parameters

Returns:

Syntax

Parameters

Returns

This is a virtual/abstract method. You need to define this method when
deriving your own class from the WAIWebApplicationService base class.

C Prototype:
typedef long (*WAIRunFunction)(ServerSession_t session);

C++ Prototype:
virtual long Run(WAI ServerRequest_ptr session);

Java Prototype:
public abstract int Run(netscape. WA .HttpServerRequest session);

This method has the following parameters:
session ReferencetotheHT TPServerReguestobjectrepresentingtheclient’s

HTTP request (see “netscape::WAIL:HttpServerRequest” on
page 110).

Status code representing the result of processing the HTTP request.

StringAlloc

Allocates memory for a string.

C Prototype:
N/A

C++ Prototype:
char * StringAlloc(size_t size);

Java Prototype:
N/A

This method has the following parameters:

size Size of the string that you want to allocate memory for.

A buffer for the specified size of string.

154 Writing Web Applications with WAI

Syntax

Parameters

Syntax

Parameters

Returns

Interfaces

StringDelete

Frees a string from memory.

C Prototype:
NSAPI_PUBLIC void WAIstringFree(char *s);

C++ Prototype:
void * StringDelete(char * s);

Java Prototype:
N/A

This method has the following parameters:

s String that you want to free from memory.
StringDup

Copies a string into a newly allocated buffer in memory.

C Prototype:

N/A

C++ Prototype:
char * StringDup(const char *s);

Java Prototype:
N/A

This method has the following parameters:

S String that you want to copy.

Copy of the specified string.

Chapter 9, WAI Reference 155

Interfaces

netscape::WAIl::FormHandler

The FormHandler class handles WAI application submissions through HTML
forms. Using the FormHandler class you can write a WAI applications that
receives and interprets data submitted through an HTML form.

FormHandler

Member
Summary

The FormHandler class defines methods for processing data submitted through
HTML forms sent from clients to your server. This class in new in the 3.01
releases of Netscape web servers.

The FormHandler class contains the following members:

Constructor
FormHandler
Methods
Isvalid

GetQueryString

ParseQueryString

Get (C++ only)

Add (C++ only)
Delete (C++ only)
Initlterator (C++ only)

Next (C++ only)
GetHashTable (Javaonly)

156 Writing Web Applications with WAI

Creates an instance of this class.

Specifieswhetheromotthesubmitteddatawassuccessfully
parsed by the FormHandler class.

Getsthe query part of the URI(the name-value pairs after
the question mark) from the request.

Parsesthequerypartofthe URI(thename-value pairsafter
the question mark) from the request.

Gets the value of a specified name-value pair from the
parsed form data.

Adds a name-value pair to the parsed form data.
Removes a name-value pair from the parsed form data.

Setsupa pointertothebeginningofthelistof name-value
pairs in the parsed form data so that the Next method
gets the first name-value pair in the list.

Getsthe next name-value pairfromthe parsed formdata.

Returns a hashtable containing the parsed form data.

Syntax

Parameters

Syntax

Returns

Interfaces

FormHandler

Creates an instance of the FormHandler class. This constructor reads in and
parses the posted form data from the specified request.

C++ Prototype:
FormHandler::FormHandler(WAI ServerRequest_ptr request);

Java Prototype:
public FormHandler(HttpServerRequest request);

This constructor has the following parameters:

request ReferencetotheHT TPServerReguestobjectrepresentingtheclient’s
HTTP request.

IsValid

Specifies whether or not the posted data is in a valid format that the server can
parse.

You can call this method after creating an instance of the FormHandler class to
determine if the constructor sucessfully read and parsed the posted form data.

C++ Prototype:
WAIBooal IsValid();

Java Prototype:
public boolean IsValid();

The actual return value differs, depending on the language you are using:

e C++: WAI_True if the submitted data is in a valid format, or WAI_Fase if it is
not in a valid format.

e Java: true if the submitted data is in a valid format, or false if it is not in a
valid format.

Chapter 9, WAI Reference 157

Interfaces

Syntax

Returns

GetQueryString

Gets the query part of the URI (the name-value pairs following the question
mark) from an HTTP GET request.

C++ Prototype:
char* GetQueryString();

Java Prototype:
public String GetQueryString();

The query part of the URI (the name-value pairs following the question mark in
the URD).

ParseQueryString

Parses the query part of the URI (the name-value pairs following the question
mark) from an HTTP GET request. Note that this method does not directly
return the parsed data. Depending on the language you are using, you can
access the parsed data in different ways:

e In C++, you can call the Get method to get the value of a specific name-
value pair, or you can call the Inititerator method and the Next method to
iterate through all name-value pairs in the parsed data.

You can also call the Add method to add a new name-value pair to the
parsed form data and the Delete method to remove a name-value pair from
the parsed form data.

e In Java, you can call the GetHashTable method to get a Java hash table
containing the parsed data. Then, you can call methods of the
javautil.Hashtable class to access the data.

The names serve as keys in the hashtable. The values are stored as Java
vectors (for details, see your Java documentation on java.util.Vector).

The values are implemented as Java vectors because a given name may be
associated with multiple values. For example, if the form contains multiple-
selection input, the submitted form data can contain several name-value
pairs with the same name but different values.

158 Writing Web Applications with WAI

Syntax

Returns

Syntax

Parameters

Returns

Syntax

Interfaces

C++ Prototype:
WAIBool ParseQueryString();

Java Prototype:
public boolean ParseQueryString();

The actual return value differs, depending on the language you are using:

e C++: WAI_Trueif the server successfully parsed the query part of the URI, or
WAI_Fase if an error occurred.

e Java: true if the server successfully parsed the query part of the URI, or false
if an error occurred.

Get

Gets the value associated with the specified name in the submitted form data. If
a name is associated with multiple values, you can call this method in iterations
until the method returns NULL.

C++ Prototype:
const char* Get(const char* name);

Java Prototype:
N/A

This method has the following parameters:

name Name of the form input that you want to get the value of.

The value of the specified form input, or NULL if no other values are associated
with that input.

Add

Adds a new name-value pair to the parsed form data.

C++ Prototype:
WAIBool Add(const char* name, const char* value);

Chapter 9, WAI Reference 159

Interfaces

Parameters

Returns

Syntax

Parameters

Returns

Java Prototype:
N/A

This method has the following parameters:

name Nameofthenname-value pairthatyouwanttoaddtothe parsedform
data.

value Valueofthe name-value pairthatyouwanttoaddtothe parsedform
data.

WAI_True if the name-value pair was successfully added, or WAI_Fase if an error
occurred.

Delete

Removes a name-value pair from the parsed form data.

C++ Prototype:
WAIBool Delete(const char* name);

Java Prototype:
N/A

This method has the following parameters:

name Name of the name-value pair that you want to remove from the
parsed form data.

WAI_True if the name-value pair was successfully removed, or WAI_False if an
error occurred.

Initlterator

Sets up a pointer to the beginning of the list of name-value pairs in the parsed
form data so that the Next method gets the first name-value pair in the list.

160 Writing Web Applications with WAI

Syntax

Returns

Syntax

Parameters

Returns

Interfaces

If you want to iterate through each name-value pair in the parsed form data,
call this method before iteratively calling the Next method.

C++ Prototype:
WAIBool Initlterator();

Java Prototype:
N/A

WAI_True if the pointer to the list is successfully set to the beginning of the list,
or WAI_False if an error occurred.

Next

Returns the name and value of the next name-value pair in the parsed form
data.

To start at the beginning of the list of name-value pairs, call the Initlterator
method. To iterate through the entire list, call this method iteratively until it
returns the value WAI_Fase.

C++ Prototype:
WAIBool Next(const char* & name, const char* &value);

Java Prototype:
N/A

This method has the following parameters:
name Name of the next name-value pair in the parsed form data.

value Value of the next name-value pair in the parsed form data.

WAI_True if the next name-value pair is successfully retrieved, or WAI_Fase if
there are no more name-value pairs or if an error occurred.

Chapter 9, WAI Reference 161

Interfaces

GetHashTable

Returns the hashtable containing the parsed form data.

You can call the methods of the javautil.Hashtable class to get data from this
hashtable.

Syntax C++ Prototype:
N/A

Java Prototype:
public Hashtable GetHashTabl&();

Returns The hashtable containing the parsed form data.

162 Writing Web Applications with WAI

Chapter

Naming Services

This chapter covers the functions, classes, and methods available for the
naming services built into the web server.

e C++ Classes for Naming Services (3.01 only)

e Java Classes for Naming Services

C++ Classes for Naming Services (3.01 only)

Version 3.01 of Netscape web servers contain functions that allow you to access the
namingservicesbuiltintothewebserver. Thesenamingservicesallowyoutoassociatea
URL with an object. Once the URL is associated with the object, clients of the web
server can access the object reference through the URL.

The NameUtil.hpp header file (located in the server_root/wai/include directory on UNIX
and the server_root\wai\include directory on Windows NT) declares functions for
registering an object implementation (associating the object with a URL) and for
resolving a URL into an object reference.

Chapter 10, Naming Services 163

C++ Classes for Naming Services (3.01 only)

This header file declares the following functions:

Methods
registerWAS

resolveWAS
resolveURI

registerObject

putObject

putContext

Registers an object implementation with a URL that has the following
format:

http://host: port/NameService/WA S/object_name
Resolvesanobjectnameandreturnsthecorrespondingobjectreference.

Resolves a URL that has the following format:

http://host: port/NameService/WA S/object_name

and returns the corresponding object reference.

Registers an object implementation with a URL of the form:
http://hostname:portnumber/NameService/object_name.

Associates an object with aURL, effectively registering the object with the
name service.

AssociatesanamingcontextwithaURL. Youcanregisteranobjectunder
this naming context.

registerWAS

Registers an object implementation with a URL of the form http://hostname:por tnumber/
NameService/ WA S/object_name.

Syntax WAIBool DLLEXPORT
registerWA S(const char * host, const char *object_name,
CORBA::Object_ptr obj);

Parameters This method has the following parameters:

host

object_name

obj

164 Writing Web Applications with WAI

Hostnameand portnumberofthewebserver'shostmachinewhere
youwanttoregisteryourobjectimplementation. Use the following
format:

hostname: portnumber

Ifthe server has SSLenabled, do not specify the hostname and port
number. Instead, specify the location of the Interoperable Object
Reference (IOR) file:

IOR_filename

Instance name with which you want to register your object.

The object implementation that you want to register

Returns

Description

Syntax

Parameters

Returns

Description

Syntax

C++ Classes for Naming Services (3.01 only)

WAI_TRUE if the object implemented was registered with the URL successfully.
WAI_FALSE if registration did not complete.

Whenyouregisteryourobject,a URLofthefollowingformatis constructed (basedon
theargumentsyou passtotheregisterWASmethod) andisassociated with yourobject:

http://hostname: portnumber/NameService/WA S/object_name
where object_name is a unique name that you want to assign to the object instance.

After you register an object implementation with a URL, you can retrieve the object
reference by resolving the URL (call the resolveURI method).

Toregisteran objectthatis notunder the web application services section of the URL
(NameService/WAS), call the registerObject function instead.

resolve WAS

Resolvesanobjectname(astringvalue)andreturnsthecorrespondingobjectreference.

CORBA::Object_ptr DLLEXPORT
resolveWA S(const char * object_name);

This method has the following parameters:

object_name Name of the object (a string value)

An object reference to the object associated with the name.

To register an object with a URL, call the registerWAS method.

resolveURI

Resolves a URL and returns the corresponding object reference.

WAIReturnType_t DLLEXPORT resolveURI(const char *host, int port,
const char *uri, CORBA::Object_ptr& obj);

Chapter 10, Naming Services 165

C++ Classes for Naming Services (3.01 only)

Parameters

Returns

Description

Syntax

This method has the following parameters:

host Name of host machine.

e Ifprotocal is http, name of the host on which the web server is
running.

e If protocal is file, this can be an empty string ("").
port Port number on which the server listens.

e Ifprotocol is http, the port number on which the web server is
listening.

e If protocal is file, this can be O.
url The URL that you want to resolve to an object reference.

obj Object reference to the object associated with the URL
WAISPISucess if the object reference was retrieved successfully. WAISPIFailure if no
object reference could be determined.

The URI is typically in the following format:

http://hostname: portnumber/NameService/WA S/object_name
where object_name is a name under which the object instance is registered.

To register an object with a URL, call the registerWAS method.

registerObject

Registers an object implementation with a URL of the form http://
hostname: portnumber/NameService/object_name.

WAIReturnType_t DLLEXPORT registerObject(const char * host,
const char *url, CORBA::Object_ptr obj);

166 Writing Web Applications with WAI

Parameters

Returns

Description

Syntax

Syntax

C++ Classes for Naming Services (3.01 only)

This method has the following parameters:

host Hostnameand portnumberofthewebserver'shostmachinewhere
youwanttoregisteryourobjectimplementation. Use the following
format:
hostname: portnumber
Ifthe serverhas SSLenabled, do not specify the hostname and port
number. Instead, specify the location of the Interoperable Object
Reference (IOR) file:

IOR_filename
object_name Instance name with which you want to register your object.
obj The object implementation that you want to register

WAI_TRUE if the object implemented was registered with the URL successfully.
WAI_FALSE if registration did not complete.

Whenyouregisteryourobject,a URLof the followingformatis constructed (based on
theargumentsyou passtotheregisterWASmethod) andisassociated with yourobject:

http://hostname: portnumber/NameService/object_name
where object_name is a unique name that you want to assign to the object instance.

After you register an object implementation with a URL, you can retrieve the object
reference by resolving the URL (call the resolveURI method).

To register an object under the web application services section of the URL
(NameService/WAS), call the registerWAS function instead.

putObject

For internal use only.

WAIReturnType_t DLLEXPORT putObject(const char *url,
CORBA::Object_ptr obj,
WAIBoodl create_intermediate_nodes=WAI_FALSE);

putContext

For internal use only.

WAIReturnType t DLLEXPORT

Chapter 10, Naming Services 167

Java Classes for Naming Services

putContext(const char *url,
WAIBool create_intermediate_nodes=WAI_FALSE);

Java Classes for Naming Services

Netscape Communicator 4.0 and version 3.0/3.01 of Netscape web servers
contain naming services that allow you to associate a URL with an object. Once
the URL is associated with the object, clients of the web server can access the
object reference through the URL.

Netscape provides two Java classes for associating URLs with objects:

e netscape WAI.Naming (available in Netscape Communicator and in Netscape
web servers)

e netscape. WAI.NameUtil (available in Netscape web servers)

These classes are described in more detail in this chapter.

netscape.WAIL.Naming

Member
Summary

The netscape WAI.Naming class provides methods for registering an object
implementation (associating the object with a URL) and for resolving a URL into an
object reference.

The netscape. WAI.Naming class is part of the iiop10,jar file in Netscape Communicator
and is part of the nisb.zip file in Netscape web servers.

The Naming class defines the following members:

Constructors

168 Writing Web Applications with WAI

Java Classes for Naming Services

Naming Creates a new Naming object.

Methods

register Registers an objectimplementation with a URL that has the following
format:

http://hostname: portnumber/path/object_name
resolve Resolves a URL that has the following format:

http://hostname: portnumber/path/object_name
and returns the corresponding object reference.

Methods

register

Registers an object implementation with a URL.

Chapter 10, Naming Services 169

Java Classes for Naming Services

Syntax public static
void register(String url, org.omg.CORBA.Object obj);

Throws SystemException.
Parameters This method has the following parameters:

url The URL that you want to register your object with

obj The object implementation that you want to register

Description The URL must have the following format:

http://hostname: portnumber/path/object_name

where object_name is a unique name that you want to assign to the object
instance.

After you register an object with a URL, you can retrieve the object reference by
resolving the URL (call the resolve method).

resolve

Resolves a URL and returns the corresponding object reference.
Syntax public static org.omg.CORBA.Object resolve(String url);
Throws SystemException.
Parameters This method has the following parameters:

url The URL that you want to resolve to an object reference.

Returns An object reference to the object associated with the URL.

Description The URL must have the following format:

http://hostname: portnumber/path/object_name
where object_name is a name under which the object instance is registered.

To register an object with a URL, call the register method.

170 Writing Web Applications with WAI

Java Classes for Naming Services

netscape.WAIL.NameUtil

Member
Summary

Syntax

Throws

The netscape WAI.NameUtil class provides methods for registering an object
implementation (associating the object with a URL) and for resolving a URL into
an object reference.

The netscape WAI.NameUtil class is part of the WAI.zip file in Netscape web
servers.

The NameUtil class defines the following members:

Methods

getRootNaming Getsthe objectreference of the NamingContextobjectforaweb server.

NameFromString Gets a list of name components for a given string.

registerObject Registers an object implementation with a URL of the form:
http://hostname:portnumber/NameService/object_name.

registerWAS Registers an object implementation with a URL that has the following
format:
http://host: port/NameService/WA S/object_name

resolveURI Resolves a URL that has the following format:

http://host: port/NameService/WA S/object_name
and returns the corresponding object reference.

Methods

getRootNaming

Gets the object reference of the NamingContext object for a web server, given the
server’s hostname and port number.

public static
CosNaming.NamingContext getRootNaming(String host, int port);

SystemException.

Chapter 10, Naming Services 171

Java Classes for Naming Services

Parameters

Syntax

Throws

Parameters

Syntax

Throws

This method has the following parameters:

host Hostname of the machine running the web server.
port Port number that the web server listens to.
NameFromString

Gets a list of name components from a given string.

public static
CosNaming.NameHolder NameFromString(String s, String sepchar);

SystemException.
This method has the following parameters:

s String that you want parsed into name component

sepchar Characterrepresentingtheseparatorbetweennamecomponents(for
example, “/”)

registerObject

Registers an object implementation with a URL of the form http://
hostname: portnumber/NameService/object_name.

public static
boolean registerObject(String host, String object_name, org.omg.CORBA.Object obj);

CosNaming.NamingContextPackage.NotFound
CosNaming.NamingContextPackage.CannotProceed
CosNaming.NamingContextPackage.InvalidName, org.omg.CORBA.SystemException,
javalang.Exception

172 Writing Web Applications with WAI

Java Classes for Naming Services

Parameters This method has the following parameters:

host

object_name

obj

Example try{

Hostnameand portnumberofthewebserver'shostmachinewhere

youwanttoregisteryourobjectimplementation. Use the following

format:
hostname: portnumber

Ifthe serverhas SSLenabled, do not specify the hostname and port
number. Instead, specify the location of the Interoperable Object

Reference (IOR) file:
IOR_filename
Note: hostname should not be null or *“.

The object implementation that you want to register

/I Initialize the ORB.
org.omg.CORBA.ORB orb = org.ombh.CORBA.ORM.init();

/I Initialize the BOA.
org.omg.CORBA .BOA boa = orb.BOA _init();

/I Create the account manager object.
AccountManager manager =
new AccountManager(“Netscape Bank”);

/I Export the newly created object.
boa.obj_is_ready(manager);

/I Register the object with a name service.

netscape.WAI.NameUtil.registerObject (InetAddress.getLocalHost().getHostName(),
“/NameService/NetscapeBank”, manager);

System.out.printin(manager + “ is ready.”);

/I Wait for incoming requests.
boa.impl_is_ready();

catch(CosNaming.NamingContextPackage.InvalidName e) {
System.err.printin(e);

}

catch(CosNaming.NamingContextPackage.NotFound e) {
System.err.printin(e);

}

catch(CosNaming.NamingContextPackage.CannotProceed e) {
System.err.printin(e);

}

catch(org.omg.CORBA.SystemException e) {
System.err.printin(e);

Chapter 10, Naming Services

Instance name with which you want to register your object.
Note: object_name should include the /NameService prefix.

173

Java Classes for Naming Services

}
catch(java.lang.Exception €) {

System.err.printin(e);
}

registerWAS

Registers an object implementation with a URL.

Syntax public static
boolean registerWAS(String host, String object_name,
org.omg.CORBA.Object obj);

Throws CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed,
CosNaming.NamingContextPackage.InvalidName, org.omg.CORBA .SystemException.

Parameters This method has the following parameters:

host Hostnameand portnumberofthewebserver'shostmachinewhere
youwanttoregisteryourobjectimplementation. Use the following
format:

hostname: portnumber

Ifthe serverhas SSLenabled, do not specify the hostname and port
number. Instead, specify the location of the Interoperable Object
Reference (IOR) file in the following format:

filelOR_filename
object_name Instance name that you want to register your object as.

obj The object implementation that you want to register

Returns trueif the object implemented was registered with the URL successfully. false if
registration did not complete.

Description When you register your object, a URL of the following format is constructed
(based on the arguments you pass to the registerWAS method) and is
associated with your object:

http://hostname: portnumber/NameService/WA S/object_name

where object_name is a unique name that you want to assign to the object
instance.

174 Writing Web Applications with WAI

Syntax

Throws

Parameters

Returns

Description

Java Classes for Naming Services

After you register an object implementation with a URL, you can retrieve the
object reference by resolving the URL (call the resolveURI method).

resolveURI

Resolves a URL and returns the corresponding object reference.

public static

org.omg.CORBA .Object resolveURI(String protocol, String host,

int port, String uri);

SystemException.

This method has the following parameters:

protocol

host

port

url

Protocol used to find the naming service:
e If SSL is not enabled, specify http.

e If SSL is enabled, specify file.

Name of host machine.

e Ifprotocol is http, name of the host on which the web server is
running.

e If protocal is file, this can be an empty string ("").

Port number on which the server listens.

e Ifprotocol is http, the port number on which the web server is
listening.

e If protocoal is file, this can be 0.

The URL that you want to resolve to an object reference.

An object reference to the object associated with the URL.

The URI is typically in the following format:

http://host:port/NameService/WA S/object_name

where object_name is a name under which the object instance is registered.

To register an object with a URL, call the registerWAS method.

Chapter 10, Naming Services 175

Java Classes for Naming Services

176 Writing Web Applications with WAI

Chapter

Troubleshooting Problems

If you experience problems running WAI applications, consult this chapter for
troubleshooting tips.

e “Error: WAI Application Not Found” on page 175
e “Error: Server Error” on page 177
e “Error: Invalid Stringified Object Reference “” on page 178

e “Web Service Registration” on page 178

Error: WAI Application Not Found

Symptom: The web server cannot find your WAI application (for example, if it
responds to an fiiop URI with a “Not Found” page).

PossibleExplanation:YourWAlIapplicationisnotproperlyregisteredwiththeweb
server. Try the following troubleshooting tips:

e Verify thattheapplication successfully registered with the web server. Check the
return value of the function or method thatregisters the service. (In C, check the

WA IregisterService() function. In C++ and Java, check the RegisterService
method.)

Chapter | |, Troubleshooting Problems 175

Error: WAI Application Not Found

Verify that you have passed the hostname and port of the web server to the
WAIregisterService() function or the RegisterService method. The argument
containingthehostnameand portshouldspecifythisinformationinthefollowing
format:

hostname:port_number
Forexample, the sample WASP and CAIIIOP examples retrieve the web server’s

hostnameandportnumberfromthecommandline(theseexamplesexpectyouto
enter this information as an argument).

Supposeyouarerunningthe webserveronthe machine named myhostonthe port
80. To execute these applications, you enter the following commands:
WASP myhost:80

java-DDISABLE_ORB_LOCATOR WA SP myhost:80

CAIIIOP myhost:80

Verify thatthe web serverisactually running on the specified host name and port.

Ifyouareusingaversion3.0webserver, runthe osfindutility (underthe server_root/
wal/bindirectory on UNIXand server_root\wai\bindirectory on WindowsNT) tosee
a list of the implementations running on your machine.

If you have set up the osagent utility to run on a specific IP address (or localhost,
127.0.0.1), you need to specify this address as a command-line parameter to the
osfind utility. Use the -ORBagentaddr flag to specify this address.

Forexample,iftheosagentutilityisrunningonlocalhost(IPaddress127.0.0.1),use
this command to start osfind:

osfind -ORBagentaddr 127.0.0.1

osfind returns information about any instances of osagent, OAD (the object
activation daemon), and WAI applications running.

osfind: Found one agent at port 14000

HOST: localhost

osfind: There are no OADs running on in your domain.

osfind: There are no Object Implementations registered with OADs.

osfind: Following are thelist of Implementations started manually.

HOST: 204.222.222.22
INTERFACE NAME: netscape::WAI::WebA pplicationBasicService
OBJECT NAME: JavaWASP

176 Writing Web Applications with WAI

Error: Server Error

INTERFACE NAME: netscape::WAI::WebA pplicationService
OBJECT NAME: JavaWASP
INTERFACE NAME: IDL :netscape/WA I/WebA pplicationBasicService:1.0
OBJECT NAME: JavaWASP
INTERFACE NAME: | DL :netscape/WAI/WebA pplicationService:1.0
OBJECT NAME: JavaWA SP
Verify thatyourobjectimplementationappearsinthislistunderthe correctobject
name.
¢ GotothefollowingURLtoverifythatyourwebserviceisregisteredunderthebuilt-
in name service:
http://hostname:port_number/NameService/WA S/service_name

IftheserverreturnsapagedisplayingthewordlORfollowedbysomenumbers,your
service is registered.

Forexample,the WASPexample provided withthewebserverregistersunderthe
service name WASP (for the C++ version) or JavaWASP (for the Java version). To
verify thatthese applications register correctly, runtheapplicationsand gotothe
following URL:

http://server:port/NameServicel WAS/WASP (for C++)
http://server:port/NameService/ WA S/JavaWA SP (for Java)

If the server returns a page containing the word IOR followed by a long string of
numbers, your application has registered successfully to the web server.

Ifinstead the serverreturnsa “File Not Found” error, yourservice isnotregistered
correctly.

Error: Server Error

Symptom: When you run your WAI application, you get a server error.

Possible Explanation: Servererrorscanoccurforanumberofdifferentreasons. See
the list of possible explanations below.

Chapter |1, Troubleshooting Problems 177

Error: Invalid Stringified Object Reference

e Thistype of problem may occur if you are running the object activation daemon
(oad) while the web server’s ORB is configured for localhost use only. (See the
section “Configuring the Web Server’s ORB” on page 35 and Chapter 8,
“Security Guidelines for Using WAI” for details.) You cannot run oad if the
web server’'s ORB is configured this way.

e Check the error log for messages. If a message similar to the following appears:

[10/Aug/1997:22:52:51] failure: 110Pexec CORBA exception
CORBA::NO_IMPLEMENT. Minor code: 0 Completed: NO

make sure that your WAI application is running.

The error log is stored in server-root/https-server|D/loggerrors.

Error: Invalid Stringified Object Reference ¢

Symptom:WhenyouattempttorunyourWAlIapplication,yourapplicationexitswith
the following error message:

Invalid Stringified Object Reference ”

Failed to Register with hostname

Possible Explanation: This error message can appear for a number of different
reasons. See the list of possible explanations below.

e Ifyouarerunningone ofthe sample applications, make sure that you specify the
hostname and port number as a command-line argument. For example:

WA SP myhost:80

Web Service Registration

The following two commands, unregobj and listimpl in the wai/bin directory are
useful for troubleshooting whether you registered your web service properly.

listimpl

Thiscommandletsyoulistall ORB objectimplementationsregistered with the Object
Activation Daemon (OAD).

178 Writing Web Applications with WAI

Web Service Registration

Description

This command lists information in the OAD’s implementation repository. The
information for each object includes:

e Interface names of the ORB objects.

e Instance names of the object or objects offered by that implementation.

e Full pathname of the server implementation's executable.

e Activation policy of the ORB object (shared, unshared, or per-method).

e Referencedataspecifiedwhentheimplementationwasregisteredwiththe OAD.
e List of arguments to be passed to the server at activation time.

e List of environment variables to be passed to the server at activation time.

For UNIX, if interface_name is specified, only information for that ORB object is
displayed,otherwiseallORBobjectsregisteredwiththeOADandtheirinformationwill
be shown.

Theimplementationrepositoryfilesareassumedtoresideintheimpl_dirsubdirectory
whose path is defined by the ORBELINE environment variable. A different directory
name canbesetusingthe ORBELINE_IMPL_NAMEenvironmentvariable. The pathto
thisdirectorycanbechangedusingtheORBELINE_IMPL_PATHenvironmentvariable.

Example:

listimpl -i Library

unregobj

ThiscommandunregistersORBobjectsregisteredwiththe ObjectActivationDaemon
(OAD).

Description

This command unregisters one or more ORB objects with the Object Activation
Daemon.Onceanobjectisunregistered,itcannolongerbeactivatedautomatically by
the OAD when a client requests the object.

Chapter |1, Troubleshooting Problems 179

Web Service Registration

ORBobjectsbeingunregisteredmusthavebeen previously registered usingtheregobj
command.

If you specify only an interface name, all ORB object with that interface that are
registeredwiththeOADwillbeunregistered.Alternatively, youmayspecificiallyidentify
an ORB object by its interface name and object name.

Ifanobjectimplementationisstartedmanuallyasapersistentserver,itdoesnotneedto
be registered with the OAD.

Example:

unregobj -o Library,Harvard

Example:
unregobj -i Library

180 Writing Web Applications with WAI

Numerics

301 status code 87
302 status code 87
404 status code 85

A

ActivateWAS method of
WAIWebApplicationService 152

Add method of FormHandler class 159

addResponseHeader 87

addResponseHeader method of
ServerRequest 111

AIX, C++ libraries 40

applications
compiling 38
running 41

AUTH_TYPE
getting value of 123

B

base classes
WAIWebApplicationService 109

before you begin 29

bold fonts
used in this book 3

BuildURL method of ServerRequest 113

C

C
initialization 94
WAI interface 8
C applications

defining functions to process requests 46

getting and setting cookies 49

getting data 46

getting headers 47

getting server information 48

redirecting users to another page 51

registering with a web server 53

registering with an SSL-enabled web
service 54

running your web service 55

sending response 50

sending responses back to client 49

setting headers in a response 50

setting status of the response 50

C functions in WAI 106

summary of 55
WAIaddResponseHeader 106
WAIBuildURL 106
WAIcreateWebAppService 106
WAIdeleteService 106
WAIdelResponseHeader 106
WAIgetConfigParameter 106
WAIgetCookie 106
WAIgetHost 106

WAIgetInfo 106

WAIgetPort 107
WAIgetRequestHeader 107
WAIgetRequestinfo 107
WAIgetResponseContentLength 107
WAIgetResponseHeader 107
WAIgetServerSoftware 107
WAIimplIsReady 107
WAIisSecure 107
WAILogError 107
WAIReadClient 107
WAIregisterService 107
WAIRespondRedirect 107
WAIsetCookie 107
WAIsetRequestinfo 108

Index 181

WAIsetResponseContentLength 108 getting value of 123
WAlsetResponseContentType 108 Common Object Request Broker Architecture
WAIsetResponseStatus 108 (see CORBA) 6

WAIStartResponse 108

WAIstringFree 108 compile flags

WAIWriteClient 108 C++ 40
C++ compiling 38

classes for naming services 163 3P(F:)iliaglgﬂs

compile flags 40 oo

compiling applications 39 compile flags 40
g

exg(r)r;g;lbandler 22 C/C++ server plug-ins 41
WASP 15 include directories
include directories 39 CHet 39.)
libraries 39 nga gpphcaﬂons 41
AIX 40 libraries
Digital UNIX 40 CH+ 39
HP-UX 40 configuring
IRIX 40 [IOPinit parameters 36
Solaris 39 ORB
Windows NT 39 example 37
requirements 27 WAI server 34
IRIX 28 web server 96
Solaris 28 web server for IIOP 101
Windows NT 28 web server’'s ORB 35
running web service 75 constructors
WAL interface 8 FormHandler 156
C_r 40 content type
CGI setting 138, 139
converting to WAI 30 CONTENT_LENGTH
changes getting value of 123
to obj.conf file 35 CONTENT _TYPE
changing getting value of 123
ORB configuration 36 Content-length 85
CIIOP application 12 converting CGI to WAI 30
classes cookie
FormHandler example 22 constructing and sending to client 135
CLASSPATH cookies
Java 41,78 getting
client C applications 49
reading data from 130 C++ 68
writing data to 142 Jaya 84
setting

CLIENT_CERT

182 Writing Web Applications with WAI

C applications 49
C++ 68
Java 84
CORBA
understanding 6

D

data
from a request 46
getting regest 65
getting requst 80
headers 47
server information 48
dce.sl 40
dcepthreads 40
declaring
a web service class 63
defining
method to process requests 64, 80
defining functions
C applications 46
Delete method of FormHandler class 160
delResponseHeader method of
ServerRequest 115
Digital UNIX
C++ libraries 40

DISABLE_ORB_LOCATOR 44

E
editing
obj.conf 44

enabling
IIOP connections 101
WAI 34
enabling WAI
changes to obj.conf 35
environment variables
Java
CLASSPATH 41, 78

€rrors

Invalid Stringified Object Reference 178
logging 128
Server Error 177
WAI Application Not Found 175
example applications
running the Java sample 18
Examples 11
examples
C++
WASP 15
configuring the ORB 37
FormHandler
C++ 22
Java 24
FormHandler class 22
running a C application 12
running sample applications 11
running the sample C++ application 15
running the sample Java application 18

F

finding
application 97
IOR file 54, 74
flags
UNIX
-R on Solaris 41
-rpath on IRIX 41
fonts
bold, used in this book 3
italics, used in this book 2
monospaced, used in this book 2
FormHandler 155
examples
C++ 22
compiling C++ 23
Java 24
FormHandler base class methods 105
FormHandler constructor 156
FormHandler example 22

FormHandler member summary 156

Index 183

FormHandler methods
Add 159
Delete 160
Get 159
GetHashTable 161
GetQueryString 157
Initlterator 160
Isvalid 157
ParseQueryString 158
forms
handling data 21
function
writing an initialization 94

G

GATEWAY_INTERFACE
getting value of 147

Get method of FormHandler 159

getConfigParameter method of
ServerRequest 116

getContext method of ServerRequest 118
getCookie method of ServerRequest 119

GetHashTable method of FormHandler
class 161

getHost method of ServerContext 145
getInfo 82
getInfo method of ServerContext 146

getInfo variables
GATEWAY_INTERFACE 147
HTTPS 147
SERVER_ID 147
SERVER_NAME 147
SERVER_PORT 147
SERVER_SOFTWARE 147

getName method of ServerContext 147
getPort 83

getPort method of ServerContext 148
GetQueryString method of FormHandler 157
getRequestHeader 80

getRequestHeader method of

184 Writing Web Applications with WAI

ServerRequest 121
getRequestInfo 81
getRequestInfo method of ServerRequest 122

getRequestInfo variables
AUTH_TYPE 123
CLIENT_CERT 123
CONTENT_LENGTH 123
CONTENT_TYPE 123
HOST 123
HTTP_* header 123
HTTPS 123
HTTPS_KEYSIZE 123
HTTPS_SECRETKEYSIZE 123
PATH_INFO 123
PATH_TRANSLATED 123
QUERY 123
QUERY_STRING 123
REMOTE_ADDR 124
REMOTE_HOST 124
REMOTE_USER 124
REQUEST_METHOD 124
SCRIPT_NAME 124
SERVER_PROTOCOL 124
URI 124

getResponseContentLength method of
ServerRequest 125
getResponseHeader method of
ServerRequest 126
getRootNaming 170
getRootNaming, method of NameUtil 170, 171
getServerSoftware method of ServerContext 148
getServicelnfo 72, 79, 88
getServicelnfo method in

WAIWebApplicationService base
class 64

getServiceInfo method of
WAIWebApplicationService 152
getting
cookies
C++ 68
Java 84
request data 65, 80

request headers 65, 80

server information 66, 82
getting data

C applications 46

getting headers
C applications 47

getting server information
C applications 48
guidelines
security 97, 99

H

header

adding to a response 111

deleting from a response 115

getting from request 121

obtaining from response 126
headers

getting request 65, 80

setting 69

setting in a response 50
Hello World 86
HOST

getting value of 123
hostname

getting 145
HP-UX

C++

libraries 40

HTTP_* header

getting value of 123
HTTPS

getting value of 123, 147
HTTPS_KEYSIZE

getting value of 123

HTTPS_SECRETKEYSIZE
getting value of 123

HttpServerContext 109
HttpServerContext interface 144

HTTPServerContext interface methods 104

HttpServerRequest 109, 110

HttpServerRequest interface member
summary 110

HTTPServerRequest interface methods 103

IDL 6
understanding 7
WAL interface 8

OP, enabling 101

ITIOPinit
parameters 36

IIOPsec 40
IIOPsec.sl 40
IIOPsec.so 40
include files
Java 41
information
providing service 72, 88
initialization
C 94
Initlterator 22
Initlterator method of FormHandler class 160
Interface Definition Language (see IDL) 6, 7

interfaces
HttpServerContext 109
HttpServerRequest 109
WAIWebApplicationService base class 109
WebApplicationBasicService 109
WebApplicationService 109
intialization function, writing 94
IOR file
finding 54, 74
IRIX
C++
libraries 40
-rpath flag 41
isSecure method of ServerContext 149
IsValid method of FormHandler 157

Index 185

italics font
used in this book 2

J

Java
classes for naming services 168
examples
FormHandler 24
obj.conf 44
registering with a web server 90
requirements 28
JDK 28
Visual Café 28
using osagent 43
WALI interface 8
JavaWASP application 18

L

Icachel0.so 40
ldap10.so 40
libIIOPsec.a 39, 40
liblcache10.so 39, 40
libldap10.so 39, 40
libnsl.so 39
libnspr.so 39
libONEiiop.so 39, 40
liborb_r.so 39, 40
libposix4.so 39
libraries
C++

Digital UNIX 40

HP-UX 40

IRIX 40

Solaris 39

Windows NT 39
C++ AIX 40

libresolv.so 39
libthread.so 39
listimpl 178

186 Writing Web Applications with WAI

listing

configurable IIOPinit parameters 36
LogError method of ServerRequest 128
logging

status messages 38
logging errors 128

M

method
defining 64
definint 80

methods
FormHandler base class 105
HTTPServerContext interface 104
HttpServerRequest 110
HTTPServerRequest interface 103
WAIWebApplicationService base class 105

monospaced fonts
used in this book 2

N

NameFromString, method of NameUtil 170, 171
NameUtil 170

NameUtil.hpp 163

Naming 168

naming services 163
C++ classes 163
java classes 168

netscape. WAL HttpServerRequest 80, 81
netscape. WAL NameUtil 170
netscape.WAI.Naming 168

Next 22

Next method of FormHandler class
FormHandler methods
Next 161

nisb.zip 78
NS_SERVER_ROOT 55, 75
nshttpd.sl 40

ns-httpd.so 39, 40

nshttpd_shr 40
nspr_shr 40
NVPair 22

O

OAD 42
LD_LIBRARY_PATH 42
NS_SERVER_ID 42
NS_SERVER_ROOT 42
ORBELINE_IMPL_NAME 42
ORBELINE_IMPL_PATH 42
setting up your application 42
OAport 44
obj.conf
changes 35
editing 44
object activation daemon (see OAD) 42
Object Management Group (see OMG) 7
Object Request Broker (see ORB) 6
OMG 7
ONFEiiop.sl 40
ONEiiop.so 40
ONEiiop_shr 40
ONEiiop10.lib 39
options
enabling WAI 34
ORB 6
changing configuration 36
configuring 35
example 37
orb_r 40
orb_r.sl 40
orb_r.so 40
osagent
running 102
starting 33
troubleshooting 178
listimpl 178
unregobj 179
with Java 43

overview
of WAI 28

overview of this manual 1

P

parameters
configurable IIOPinit 36
IIOPinit 36

ParseQueryString method of FormHandler 158

PATH_INFO
getting value of 123

PATH_TRANSLATED
getting value of 123

permissions
write 100

plug-in

writing WAI server 93
plug-ins

compiling 38
port number

getting 148
preprocessor definitions 62

processing requests 64, 80
C applications 46

project settings 62

prototype

C 108

C++ 109

Java 109
providing

service information 72, 88
putContext 167

putObject 167

Q

QUERY
getting value of 123

QUERY_STRING
getting value of 123

Index 187

R getting length of response content 125

ReadClient method of ServerRequest 130 request data

dine data f y 130 getting 80
o dat:
rea. 1nc,. ata from client 13 REQUEST METHOD
redirecting getting value of 124
users to another page 71 .
o requirements
redirecting users to another page 87 Ct++ 27
C applications 51 IRIX 28
reference, how to use 108 Solaris 28
register, method of Naming 169 Windows NT 28
isteri Java 28
regis srmg fea . DK 28
web application service Visual Café 28
C applications 52
. system 27
with a web server
C applications resolve, method of Naming 169
web server resolveURI 164, 165
registering with 53 resolveURI, method of NameUtil 170, 174
web server resolveWAS 164, 165
registering with 89 RespondRedirect method of ServerRequest 134
with an S.SL—.enabled web service response
C applications 54 sending 50, 141
registering with a web server sending back 84
Java 90 sending one back to the client 49
registerObject 166 sending to Clierit 69h
. . . setting content length 138
regl..%terOb]e.ct, method of NameUtil 170, 171 setting content type 139
RegisterService 74 setting headers 50
RegisterService method of setting status 50, 70
WAIWebApplicationService 153 setting status code 140
registerWAS 164 restricting login access 99
registerWAS, method of NameUtil 170, 173 Run 79
remote machines Run method in WAIWebApplicationService base
running on 44 class 64
REMOTE_ADDR Run method of
getting value of 124 WebApplicationBasicService 153
REMOTE_HOST running
getting value of 124 applications 41
REMOTE USER C++ web service 75

on remote machines 44
web service
C applications 55
java 92

getting value of 124

request
getting information about 122

188 Writing Web Applications with WAI

S

sample applications

C++ 15

running 11

running the C sample 12
samples

running the Java application 18
SCRIPT_NAME

getting value of 124

security
osagent 100
potential concerns 98
recommended guidelines 99
replace web service 98
security guidelines 97
security issue
understanding 29

sending

a response 69

response 84

Java
response
sending
Java 86

sending response

C applications 50

to client 49

server
finding application 97
getting information 66
getting name and version of software 148
getting value associated with name in 146
server id
retrieving 147
server information
getting 82
server plug-in
writing 93
server plug-ins
compiling
C/C++ 41

server software
getting name and version of 148

SERVER_ID
getting value of 147

SERVER_NAME
getting value of 147

SERVER_PORT 82
getting value of 147

SERVER_PROTOCOL
getting value of 124

SERVER_SOFTWARE
getting value of 147

ServerContext methods
getHost 145
getInfo 146
getName 147
getPort 148
getServerSoftware 148
isSecure 149

ServerRequest methods
addResponseHeader 111
BuildURL 113
delResponseHeader 115
getConfigParameter 116
getContext 118
getCookie 119
getRequestHeader 121
getRequestinfo 122
getResponseContentLength 125
getResponseHeader 126
LogError 128
ReadClient 130
RespondRedirect 134
setCookie 135
setRequestinfo 138
setResponseContentLength 138
setResponseContentType 139
SetResponseStatus 140
StartResponse 141
WriteClient 142

services
naming 163

setCookie method of ServerRequest 135

Index 189

setRequestIinfo method of ServerRequest 138
setResponseContentLength 70, 85

setResponseContentLength method of
ServerRequest 138

setResponseContentType 70, 85

setResponseContentType method of
ServerRequest 139

setResponseStatus 87

setResponseStatus method of
ServerRequest 140

setting
cookies 68
Java 84
headers 69
headers in a response 50
option to enable WAI 34
response status 70
up the web server 32

setting status of response 50

setting up
Visual C++ 60

signatures, of WAI methods 103

Solaris

C++

libraries 39

-R flag 41
SSL

determining if enabled 149
starting

osagent 33

StartResponse 87
StartResponse method of ServerRequest 141

status
setting response 70

status codes
301 87
302 87
404 85
status messages
logging 38

190 Writing Web Applications with WAI

StringAlloc method of

WAIWebApplicationService 154

StringDelete method of

WAIWebApplicationService 154

StringDup 72
StringDup method of

syntax

WAIWebApplicationService 155

WAI methods 108
system requirements 27

T

troubleshootin 175

troubleshooting
osagent
listimpl 178
unregobj 179

U

understanding
security issues 29
version differences 5, 29

unregobj 179

URI

getting value of 124

URL

creating from prefix and suffix 113

using

osagent

with Java 43
the reference section 108
WAI 27

Vv

version differences
understanding 5, 29

vertical bar
used in this book 3

Visual C++

preprocessor definitions 62

setting up 60

w

WAI 5

C functions 106
configuring the server 34
converting CGI 30
enabling 34
methods

syntax 108
overview 28
security guidelines 97
using 27
wrapper classes 7

writing C++ application 59

WAI interface
C 8
C++ 8
IDL 8
Java 8
WAILzip 78

WAIaddResponseHeader 106

WAIBuUildURL 106

WAIcreateWebAppService 106

WAIdeleteService 106
WAIdelResponseHeader 106
WAIgetConfigParameter 106
WAIgetCookie 106
WAIgetHost 106
WAIgetInfo 106

WAIgetName
C functions in WAI
WAIgetName 106

WAIgetPort 107
WAIgetRequestHeader 107
WAIgetRequestinfo 107

WAIgetResponseContentLength 107

WAIgetResponseHeader 107
WAIgetServerSoftware 107

WATlimplIsReady 107
WAIisSecure 107
WAILogError 107
WAIReadClient 107

WAIregisterService 107
registering with an SSL-enabled server 54

WAIRespondRedirect 107

WAIRunFunction
C functions in WAI
*WAIRunFunction 107

WAIsetCookie 107
WAIsetRequestInfo 108
WAIsetResponseContentLength 108
WAIsetResponseContentType 108
WAIsetResponseStatus 108
WAIStartResponse 108
WAIstringFree 108

WAIWebApplication methods
getServicelnfo 64
WAIWebApplicationService 72, 78, 88, 109
declaring a class 78
virtual methods 64
WAIWebApplicationService base class 150

WATIWebApplicationService base class
methods 105
WAIWebApplicationService methods
ActivateWAS 152
getServicelnfo 152
RegisterService 153
Run 64, 153
StringAlloc 154
StringDelete 154
StringDup 155
WAIWriteClient 108
WASP sample application 15
Web Application Interface (see WAD 5
web application services 8

web applicaton service
registering

Index 191

C applications 52

web server
configuring 96
configuring ORB 35
setting it up 32
web service
declaring a class 63
running
java 92

WebApplicationBasicService 109
WebApplicationService 109
WebApplicationServicePrototype 72, 73, 88

Windows NT
C++

libraries 39

wrapper classes 7
write permissions 100
WriteClient 86
WriteClient method of ServerRequest 142
writing

in C++ 59

initialization function 94

WAI server plug-in 93

WSOCK32.1ib 39

X
XP_WIN32 62

192 Writing Web Applications with WAI

	Who Should Read This Guide?
	What’s in This Guide?
	Conventions in This Book
	Understanding WAI
	Understanding Version Differences
	Understanding CORBA
	Understanding IDL
	WAI Wrapper Classes
	How Web Application Services Work

	Quick Start: Running the Examples
	Running the Sample C Application (CIIOP)
	Running the Sample C++ Application (WASP)
	Running the Sample Java Application (WASP.Java)
	Running the FormHandler Sample
	About the FormHandler Class Example
	Running the C++ FormHandler Sample
	Running the Java FormHandler Sample

	Using WAI
	System Requirements
	Overview
	Before You Use WAI
	Understanding Security Issues
	Understanding Version Differences

	Converting CGI Applications to WAI
	Setting Up the Web Server
	Starting osagent (3.0 Servers Only)
	Setting the Option to Enable WAI
	Configuring the Server
	What Happens When You Enable WAI

	Configuring the Web Server’s ORB
	Changing the ORB Configuration Information
	Listing of Configurable Parameters
	Example of Configuring the ORB

	Logging Status Messages

	Compiling Applications and Server Plug-Ins
	Compiling C/C++ Applications
	Include Directories
	Libraries
	Compile Flags

	Compiling C/C++ Server Plug-Ins
	Compiling Java Applications

	Running Applications
	Setting Up Your Application with OAD
	Using osagent with Java (3.0 Only)
	Running Applications on Remote Machines

	Writing a WAI Application in C
	Defining a Function to Process Requests
	Getting Data from the Request
	Getting Headers from the HTTP Request
	Getting Information about the Server
	Getting and Setting Cookies in the Client

	Sending the Response Back to the Client
	Setting Headers in the Response
	Setting the Status of the Response
	Sending the Response
	Redirecting Users to Another Page

	Registering Your Web Application Service
	Registering With a Web Server
	Registering With an SSL-Enabled Server

	Running Your Web Service
	Summary of C Functions

	Writing a WAI Application in C++
	Setting up Microsoft Visual C++ for use with WAI (...
	Declaring a Class for Your Web Service
	Defining a Method to Process Requests
	Getting Data from the Request
	Getting Headers from the HTTP Request
	Getting Information about the Server
	Getting and Setting Cookies in the Client

	Sending the Response Back to the Client
	Setting Headers in the Response
	Setting the Status of the Response
	Sending the Response
	Redirecting Users to Another Page

	Providing Information About the Service
	Registering Your Web Application Service
	Registering With a Web Server
	Registering With an SSL-Enabled Server

	Running Your Web Service

	Writing a WAI Application in Java
	Declaring a Class for Your Web Service
	Defining a Method to Process Requests
	Getting Data from the Request
	Getting Headers from the HTTP Request
	Getting Information about the Server
	Getting and Setting Cookies in the Client

	Sending the Response Back to the Client
	Setting Headers in the Response
	Setting the Status of the Response
	Sending the Response
	Redirecting Users to Another Page

	Providing Information About the Service
	Registering Your Web Application Service
	Registering With a Web Server
	Registering With a Web Server
	Registering With an SSL Enabled Server

	Running Your Web Service

	Writing a WAI Server Plug-In
	Writing an Initialization Function
	Initialization in C

	Configuring Your Web Server

	Security Guidelines for Using WAI
	How the Server Finds Your Application
	Potential Security Concerns
	Recommended Guidelines
	Enabling IIOP Connections from Other Machines
	Configuring Your Web Server
	(3.0 only) Running osagent

	WAI Reference
	How to Use This Reference
	Interfaces
	netscape::WAI::HttpServerRequest
	Methods
	addResponseHeader
	BuildURL
	delResponseHeader
	getConfigParameter
	getContext
	getCookie
	getRequestHeader
	getRequestInfo
	getResponseContentLength
	getResponseHeader
	LogError
	ReadClient
	RespondRedirect
	setCookie
	setRequestInfo
	setResponseContentLength
	setResponseContentType
	setResponseStatus
	StartResponse
	WriteClient

	netscape::WAI::HttpServerContext
	Methods
	getHost
	getInfo
	getName
	getPort
	getServerSoftware
	isSecure

	netscape::WAI::WebApplicationService
	netscape::WAI::WebApplicationBasicService
	WAIWebApplicationService
	Constructor
	WAIWebApplicationService
	Methods
	ActivateWAS
	getServiceInfo
	RegisterService
	Run
	StringAlloc
	StringDelete
	StringDup

	netscape::WAI::FormHandler
	FormHandler
	FormHandler
	IsValid
	GetQueryString
	ParseQueryString
	Get
	Add
	Delete
	InitIterator
	Next
	GetHashTable

	Naming Services
	C++ Classes for Naming Services (3.01 only)
	registerWAS
	resolveWAS
	resolveURI
	registerObject
	putObject
	putContext

	Java Classes for Naming Services
	netscape.WAI.Naming
	Methods
	register
	resolve

	netscape.WAI.NameUtil
	Methods
	getRootNaming
	NameFromString
	registerObject
	registerWAS
	resolveURI

	Troubleshooting Problems
	Error: WAI Application Not Found
	Error: Server Error
	Error: Invalid Stringified Object Reference ‘’
	Web Service Registration
	listimpl
	Description

	unregobj

