
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Writing Web
Applications with WAI

Netscape Enterprise Server/FastTrack Server
Version 3.0/3.01
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs offered
by Netscape (referred to herein as "Netscape Software") and related documentation. Use of the Netscape Software is governed by
the license agreement accompanying such Netscape Software. The Netscape Software source code is a confidential trade secret of
Netscape and you may not attempt to decipher or decompile Netscape Software or knowingly allow others to do so. Information
necessary to achieve the interoperability of the Netscape Software with other programs may be obtained from Netscape upon
request. Netscape Software and its documentation may not be sublicensed and may not be transferred without the prior written
consent of Netscape.

Your right to copy Netscape Software and this documentation is limited by copyright law. Making unauthorized copies, adaptations,
or compilation works (except for archival purposes or as an essential step in the utilization of the program in conjunction with
certain equipment) is prohibited and constitutes a punishable violation of the law.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA,
INTERRUPTION OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
OF ANY KIND, ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

Netscape may revise this documentation from time to time without notice.

Copyright © 1997 Netscape Communications Corporation. All rights reserved.

Netscape Communications, the Netscape Communications logo, Netscape, and Netscape News Server are trademarks of Netscape
Communications Corporation. The Netscape Software includes software developed by Rich Salz, and security software from RSA
Data Security, Inc. Copyright © 1994, 1995 RSA Data Security, Inc. All rights reserved. Other product or brand names are
trademarks or registered trademarks of their respective companies.

Any provision of Netscape Software to the U.S. Government is with "Restricted rights" as follows: Use, duplication or disclosure by
the Government is subject to restrictions set forth in subparagraphs (a) through (d) of the Commercial Computer Restricted Rights
clause at FAR 52.227-19 when applicable, or in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, and in similar clauses in the NASA FAR Supplement. Contractor/manufacturer is Netscape
Communications Corporation, 501 East Middlefield Road, Mountain View, California 94043.

You may not export the Software except in compliance with applicable export controls. In particular, if the Software is identified as
not for export, then you may not export the Software outside the United States except in very limited circumstances. See the end
user license agreement accompanying the Software for more details.

 .

The Team:
Engineering:Chris Apple, Mike Barbarino, Mike Belshe, Jim Black, Fred Cox, George Dong, Alex Feygin, Alan Freier, Andy
Hakim, Warren Harris, John K. Ho, Ari Luotonen, Mike McCool, Rob McCool, Chuck Neerdaels, Howard Palmer, Ben Polk,
Aruna Victor
Marketing: Mike Blakely, Atri Chatterjee, Ben Horowitz, David Pann
Publications: Guy K. Haas
Quality Assurance: Saleem Baber, Roopa Cheluvaiah, Shvetal Desai, Noriko Hosoi, Teresa Hsiao, Pramod Khincha, Joy Lenz,
Rajesh Menon, Jun Tong, Cathleen Wang, Carol Widra, Ayyaz Yousaf
Technical Support: John Benninghoff, Brian Kendig, Anthony Lee-Masis, Trevor Placker, Bill Reviea, Dan Yang

Netscape Enterprise Server/Netscape FastTrack Server Version 3.0/3.0.1

©Netscape Communications Corporation 1997
All Rights Reserved

Printed in USA
97 96 10 9 8 7 6 5 4 3 2 1

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

Contents
Who Should Read This Guide? ...1

What’s in This Guide? ..1

Conventions in This Book ...2

Chapter 1 Understanding WAI ...5

Understanding Version Differences ...5

Understanding CORBA ..6

Understanding IDL ..7

WAI Wrapper Classes ..7

How Web Application Services Work ..8

Chapter 2 Quick Start: Running the Examples11

Running the Sample C Application (CIIOP) ...12

Running the Sample C++ Application (WASP) ..15

Running the Sample Java Application (WASP.Java) ..18

Running the FormHandler Sample ...21

About the FormHandler Class Example ...22

Running the C++ FormHandler Sample ...22

Running the Java FormHandler Sample ...24
Writing Web Applications with WAI 3

Chapter 3 Using WAI ... 27

System Requirements .. 27

Overview ... 28

Before You Use WAI .. 29

Understanding Security Issues ... 29

Understanding Version Differences ... 29

Converting CGI Applications to WAI ... 30

Setting Up the Web Server ... 32

Starting osagent (3.0 Servers Only) ... 33

Setting the Option to Enable WAI ... 34

Configuring the Server ... 34

What Happens When You Enable WAI ... 35

Configuring the Web Server’s ORB ... 35

Changing the ORB Configuration Information ... 36

Listing of Configurable Parameters ... 36

Example of Configuring the ORB ... 37

Logging Status Messages .. 38

Compiling Applications and Server Plug-Ins ... 38

Compiling C/C++ Applications .. 39

Include Directories .. 39

Libraries .. 39

Compile Flags .. 40

Compiling C/C++ Server Plug-Ins ... 41

Compiling Java Applications .. 41

Running Applications .. 41

Setting Up Your Application with OAD .. 42

Using osagent with Java (3.0 Only) ... 43

Running Applications on Remote Machines ... 44

Chapter 4 Writing a WAI Application in C .. 45

Defining a Function to Process Requests .. 46

Getting Data from the Request .. 46

Getting Headers from the HTTP Request ... 47

Getting Information about the Server ... 48
4 Writing Web Applications with WAI

Getting and Setting Cookies in the Client .. 49

Sending the Response Back to the Client ... 49

Setting Headers in the Response ... 50

Setting the Status of the Response .. 50

Sending the Response .. 50

Redirecting Users to Another Page ... 51

Registering Your Web Application Service .. 52

Registering With a Web Server .. 53

Registering With an SSL-Enabled Server ... 54

Running Your Web Service .. 55

Summary of C Functions ... 55

Chapter 5 Writing a WAI Application in C++ 59

Setting up Microsoft Visual C++ for use

with WAI (Windows NT only) ... 60

Declaring a Class for Your Web Service .. 63

Defining a Method to Process Requests .. 64

Getting Data from the Request .. 65

Getting Headers from the HTTP Request ... 65

Getting Information about the Server ... 66

Getting and Setting Cookies in the Client .. 68

Sending the Response Back to the Client ... 69

Setting Headers in the Response ... 69

Setting the Status of the Response .. 70

Sending the Response .. 70

Redirecting Users to Another Page ... 71

Providing Information About the Service .. 72

Registering Your Web Application Service .. 73

Registering With a Web Server .. 73

Registering With an SSL-Enabled Server ... 74
Writing Web Applications with WAI 5

Running Your Web Service .. 75

Chapter 6 Writing a WAI Application in Java 77

Declaring a Class for Your Web Service .. 78

Defining a Method to Process Requests .. 80

Getting Data from the Request .. 80

Getting Headers from the HTTP Request ... 80

Getting Information about the Server ... 82

Getting and Setting Cookies in the Client .. 84

Sending the Response Back to the Client ... 84

Setting Headers in the Response .. 85

Setting the Status of the Response .. 85

Sending the Response ... 86

Redirecting Users to Another Page ... 87

Providing Information About the Service .. 88

Registering Your Web Application Service .. 89

Registering With a Web Server .. 89

Registering With a Web Server ... 90

Registering With an SSL Enabled Server ... 91

Running Your Web Service .. 92

Chapter 7 Writing a WAI Server Plug-In .. 93

Writing an Initialization Function ... 94

Initialization in C .. 94

Configuring Your Web Server .. 96

Chapter 8 Security Guidelines for Using WAI 97

How the Server Finds Your Application .. 97

Potential Security Concerns .. 98

Recommended Guidelines .. 99

Enabling IIOP Connections from Other Machines .. 101

Configuring Your Web Server ... 101

(3.0 only) Running osagent ... 102
6 Writing Web Applications with WAI

Chapter 9 WAI Reference .. 103

How to Use This Reference .. 108

Interfaces ... 109

netscape::WAI::HttpServerRequest ... 110
addResponseHeader .. 111
BuildURL ... 113
delResponseHeader ... 115
getConfigParameter .. 116
getContext .. 118
getCookie ... 119
getRequestHeader .. 121
getRequestInfo ... 122
getResponseContentLength ... 125
getResponseHeader ... 126
LogError .. 128
ReadClient .. 130
RespondRedirect .. 134
setCookie .. 135
setRequestInfo .. 138
setResponseContentLength .. 138
setResponseContentType ... 139
setResponseStatus .. 140
StartResponse ... 141
WriteClient .. 142

netscape::WAI::HttpServerContext ... 144
getHost ... 145
getInfo .. 146
getName ... 147
getPort .. 148
getServerSoftware ... 148
isSecure ... 149

netscape::WAI::WebApplicationService ... 150
netscape::WAI::WebApplicationBasicService ... 150

WAIWebApplicationService ... 151
ActivateWAS ... 152
getServiceInfo ... 152
RegisterService ... 153
Run .. 153
StringAlloc .. 154
StringDelete .. 154
StringDup ... 155
Writing Web Applications with WAI 7

netscape::WAI::FormHandler .. 155
FormHandler .. 156
IsValid ... 157
GetQueryString .. 157
ParseQueryString ... 158
Get .. 159
Add ... 159
Delete ... 160
InitIterator ... 160
Next .. 161
GetHashTable ... 161

Chapter 10 Naming Services .. 163

C++ Classes for Naming Services (3.01 only) .. 163

registerWAS .. 164
resolveWAS .. 165
resolveURI .. 165
registerObject ... 166
putObject .. 167
putContext .. 167

Java Classes for Naming Services ... 168

register .. 169
resolve .. 169

netscape.WAI.NameUtil .. 170
getRootNaming .. 171
NameFromString .. 171
registerObject ... 171
registerWAS .. 173
resolveURI .. 174

Chapter 11 Troubleshooting Problems .. 175

Error: WAI Application Not Found .. 175

Error: Server Error ... 177

Error: Invalid Stringified Object Reference ‘’ ... 178

Web Service Registration .. 178

listimpl ... 178

Description ... 179

unregobj .. 179

Index ... 181
8 Writing Web Applications with WAI

About This Guide
he manual Writing Web Applications with WAI documents the
web application interface (WAI). You can use this interface to
write your own web application services for the Netscape web
servers. (For an explanation of web application services, see
Chapter 1, “Understanding WAI”.)

Who Should Read This Guide?
This guide is intended for use by C, C++, and Java programmers who want to write their
own web application services in Netscape web servers.

This document assumes you are familiar with the use of the HyperText Transfer
Protocol (HTTP), the Common Gateway Interface (CGI), and client-server architecture,
as well as the tools involved in compiling, linking, and launching programs written in
languages such as C, C++, and Java. This document builds on that knowledge to enable
you to interface your application to the web server to enable client programs to access
that application.

What’s in This Guide?
This guide explains how to use the web application interface (WAI) in the
Netscape web servers. The guide documents the C, C++, and Java interfaces in
the WAI.

Table 1 describes each chapter in more detail.

T

1

Conventions in This Book
Conventions in This Book
Monospaced font This typeface is used for sample code and code listings, API and language elements (such

as function names and class names), filenames, pathnames, directory names, HTML tags,
and any text that must be typed on the screen. (Monospaced italic font is used for
placeholders embedded in code.)

Italics Italics type is used for book titles, emphasis, variables and placeholders, and words used
in the literal sense.

Table P.1 Finding information In this manual

To do this: See this chapter:

Learn more about WAI and
the Netscape web
servers

Chapter 1, “Understanding WAI”

Learn how the sample
applications work

Chapter 2, “Quick Start: Running the Examples”

Learn how to use WAI to
write your own application

Chapter 3, “Using WAI”

Find out how to write a
WAI application in C

Chapter 4, “Writing a WAI Application in C”

Find out how to write a
WAI application in C++

Chapter 5, “Writing a WAI Application in C++”

Find out how to write a
WAI application in Java

Chapter 6, “Writing a WAI Application in Java”

Find out how to write an in-
process server plug-in

Chapter 7, “Writing a WAI Server Plug-In”

Understand security issues
with WAI

Chapter 8, “Security Guidelines for Using WAI”

Look up the description of
an interface

Chapter 9, “WAI Reference”

Learn about C++ and Java
naming services

Chapter 10, “Naming Services”

Troubleshoot problems
with WAI applications

Chapter 11, “Troubleshooting Problems”
2 Writing Web Applications with WAI

Conventions in This Book
Boldface Boldface type is used for glossary terms and tutorial steps.

Sidebar text Notes and warnings in the sidebar mark important information. Make sure you
read the information before continuing with a task. In the reference section of
this manual, sidebar text is also used to label different sections of the
documentation for a language component (such as a function or class).

| The vertical bar is used as a separator for user interface elements. For example,
File | New means you should click the File menu and select New;
Server Status | Log Preferences means you should click the Server Status button
in the Server Manager and click the Log Preferences link.
3

Conventions in This Book
4 Writing Web Applications with WAI

C h a p t e r

1
Understanding WAI
The Web Application Interface (WAI) is one of the programming interfaces that
allow you to extend the functionality of Netscape web servers.

WAI is a CORBA-based programming interface that defines object interfaces to
the HTTP request/response data and server information. Using WAI, you can
write a web application in C, C++, or Java that accepts an HTTP request from a
client, processes it, and returns a response to the client. You can also write
your own server plug-ins for processing HTTP requests.

Understanding Version Differences

The process for setting up and running WAI applications differs between
versions 3.0 and 3.01 of the Netscape web servers:

• In the 3.0 release of Netscape web servers, the web server depends on the
osagent utility. This utility is used to help operate the object request broker
(ORB).

In order to run a 3.0 version of a web server, you need to run the osagent
utility first. You can also use the osfind utility (provided with 3.0 servers) to
troubleshoot problems.

You can install a patch that fixes and improves the WAI programming
interface to the Enterprise Server in the following ways:
Chapter 1, Understanding WAI 5

Understanding CORBA
— osagent is no longer required to be running.

— WAI server plug-ins are officially supported.

— You can use OAD to activate your WAI applications.
(Note that OAD will start only out-of-process WAI applications in C/C++ only
and is not supported on Windows NT.)

For more information on this patch and instructions on how to get it and install it,
go to http://help.netscape.com/filelib.html#wai.

• In the 3.01 release of Netscape web servers, the web server no longer requires the
osagent utility. You do not need to run this utility before starting a 3.01 version of the
web server.

The osagent and osfind utilities are no longer included with the 3.01 release of the
web server, since the web server no longer requires these utilities to run.

In general, features or instructions specific to a release are noted in the manual.

Understanding CORBA
The Common Object Request Broker Architecture (CORBA) provides a distributed
object infrastructure that supports interoperability across networks, languages, and
operating systems.

A CORBA Object Request Broker (ORB) is a mechanism that allows client objects to
make requests and receive responses transparently, regardless of the server object's
location, operating system, or implementation language. (With an ORB, you can design
your object interfaces in a neutral language called the Interface Definition Language, or
IDL).

Netscape includes a CORBA ORB with the Netscape web servers. WAI was
designed in IDL and includes Java, C++, or C “wrappers”. You can call
functions in these wrappers when writing your own CORBA-compliant
applications that interact with the server via this ORB. (For more details, see the
next sections, “Understanding IDL” on page 7 and “WAI Wrapper Classes” on
page 7.)
6 Writing Web Applications with WAI

Understanding IDL
The CORBA architecture is a standard developed by the Object Management
Group, Inc. (OMG), an international consortium of more than 500 computer
industry companies. For more information about CORBA, IDL, or OMG, see the
OMG publication entitled The Common Object Request Broker: Architecture
and Specification at http://www.omg.org.

Understanding IDL
Interface Definition Language (IDL) is a generic, descriptive language used to
define interfaces between client objects and object implementations. An
interface described in IDL can be implemented in any language.

WAI describes a set of objects and methods that let you access HTTP requests
and server information as well as return results to a browser. The description of
WAI is detailed in an Interface Description Language (IDL) specification. IDL is
a language that allows you to describe an interface in a generic way and then
allows you to compile that specification to a target language such as Java or
C++.

Each interface definition specifies the operations that can be performed and the
input and output parameters required. For example, the interface definition for
an HTTP request describes how clients can access request headers and set
response headers.

(The interfaces are defined in *.idl files, which are located in the server_root/wai/
idl directory on UNIX and the server_root\wai\idl directory on Windows NT.)

Because the interfaces are described in a generic language rather than in a
specific programming language, you can use the description of an interface to
implement client/server applications in a variety of languages.

WAI Wrapper Classes
WAI includes wrapper classes (classes that implement the interfaces) for C++
and Java and a C interface. You can use C, C++, or Java to write your own
applications that access HTTP request objects through the defined interface.

You can also write server plug-ins in C or C++ that use the functions and
classes defined in WAI.
Chapter 1, Understanding WAI 7

How Web Application Services Work
For example, one of the methods of the HTTP request interface describes how
clients can add a header to the response sent to the client. This method is
described in IDL:

Interface described in IDL:
HttpServerReturnType addResponseHeader(in string header,

in string value);

WAI provides wrapper classes in Java and C++ (and a C interface) that
implement this interface:

Function call in C:
NSAPI_PUBLIC WAIReturnType_t WAIaddResponseHeader(ServerSession_t p,

const char *header, const char *value);

Method in C++:
WAIReturnType addResponseHeader(const char * header,

const char * value);

Method in Java:
public abstract netscape.WAI.HttpServerReturnType addResponseHeader(java.lang.String

header,java.lang.String value);

In your application or plug-in, you can call these methods to add the response header.
The methods (in Java and C++) and C function implement the interface specified in
IDL; they share the same parameters (except the C function, which has an additional
argument for the server session object) and return the same type of value.

How Web Application Services Work
Using WAI, you can write a server plug-in or a web application service. For example, you
can write a web application service that processes posted data from forms. These web
application services work in the following way:

1. You write a web application service with WAI.

In your application or server plug-in, you define a class derived from the
WAIWebApplicationService base class provided with WAI.

2. On startup, your application/server plug-in registers with a web server.
8 Writing Web Applications with WAI

How Web Application Services Work
When writing your application or server plug-in, you register it by calling
the RegisterService method of the WAIWebApplicationService base class.

You register your application/server plug-in under a unique instance name.
Netscape web servers include a built-in name service that keeps track of
these instance names.

3. End users access your web application service.

To access a web application service, end users visit URLs in the following format:

http://server_name:port_number/iiop/service_name

For example, if your server is named mooncheese, it is on port 80, and your
application/server plug-in registers under the name MyWebApp, users can access
your web application service by visiting the following URL:

http://mooncheese:80/iiop/MyWebApp

4. The web server runs the appropriate method in your web application service
class.

The web server invokes the Run method of your web application service
class. You write this method to process the incoming HTTP request, retrieve
data from the request, and send a response back to the client.

The rest of this manual describes this process in more detail.
Chapter 1, Understanding WAI 9

How Web Application Services Work
10 Writing Web Applications with WAI

C h a p t e r

2
Quick Start: Running the Examples
This chapter explains how to compile and run some of the sample WAI
applications provided with your server.

• Running the Sample C Application (CIIOP)

• Running the Sample C++ Application (WASP)

• Running the Sample Java Application (WASP.Java)

• Running the FormHandler Sample

You can find these sample applications in the server_root/wai/examples directory
on UNIX and in the server_root\wai\examples directory on Windows NT.

Note These examples assume that your server is running in non-secure mode.

For more detailed information on setting up, writing, and running WAI applications, see
the rest of the chapters in this manual:

• To set up your server to run WAI applications, see Chapter 3, “Using WAI”.

• To write a WAI application in C, C++, or Java, see Chapter 4, “Writing a WAI
Application in C”, Chapter 5, “Writing a WAI Application in C++”,
Chapter 6, “Writing a WAI Application in Java”, and Chapter 7, “Writing a
WAI Server Plug-In”.
Chapter 2, Quick Start: Running the Examples 11

Running the Sample C Application (CIIOP)
• For tips on troubleshooting problems with WAI applications, Chapter 11,
“Troubleshooting Problems”.

Running the Sample C Application (CIIOP)
The sample C application provided with the web server is in the server_root/wai/
examples/CIIOP directory. The source file for the example is CAPIIIOP.c.

This example sends a page containing the text Hello World back to the client, as shown
in the following figure:

The rest of this section explains how to set up and use this example. You can use this as
a guideline for setting up and running your own C examples.

To run the sample C application, follow these steps:

1. (For 3.0 servers only)Start up osagent.

osagent is located under server_root/wai/bin in UNIX and server_root\wai\bin in
Windows NT.

Specify the -a flag to restrict osagent to the localhost IP address. For example:

osagent -a 127.0.0.1

For more information, see “Starting osagent (3.0 Servers Only)” on page 33.

2. Enable WAI applications on the web server.
12 Writing Web Applications with WAI

Running the Sample C Application (CIIOP)
From the Server Administration page in the administration server, click the button
labelled with your server name. This displays the Server Manager for your server.

Click Programs | WAI Management to display the form for administering WAI on
your server.

Under Enable WAI Services, select the Yes radio button and click OK. Save and
apply your changes.

For more information, see “Setting the Option to Enable WAI” on page 34.

3. In the wai/examples/CIIOP (in UNIX) or wai\examples\CIIOP (on Windows NT)
directory, review the sample source file CAPIIIOP.c.

Basically, the code in this source file does the following (for a more complete
explanation of these steps, see Chapter 4, “Writing a WAI Application in
C”):

• Accepts an argument that specifies the host and port where the web server is
running. For example, you can use the following command argument to specify
that your web server is running on port 80 of the server named mooncheese:

CAPIIIOP mooncheese:80

• Calls the WAIcreateWebAppService() function to create a new web application
service named CAPIIIOP. Users will be able to access this web service through
the following URL (if, for example, your web server is running on port 80 of the
server named mooncheese):

http://mooncheese.mydomain.com:80/iiop/CAPIIIOP

• Calls the WAIregisterService() function to register the web application with the
web server running on the host and port number specified on the command-line.

• Calls the WAIimplIsReady() function to indicate to the web server that it is ready
to receive requests.

When the application receives a request, it does the following:

• Calls the WAIsetResponseContentLength() function to specify the content length
of the page returned to the client.

• Calls the WAIStartResponse() function to start sending the response to the client.
Chapter 2, Quick Start: Running the Examples 13

Running the Sample C Application (CIIOP)
• Calls the WAIWriteClient() function to send the text "Hello World" to the client.

4. Compile and link the sample application.

The sample application includes a Makefile (for example, Makefile.SOLARIS or
Makefile.WINNT) that you can use to compile and link the application.

For more information on compiling and linking your application, see
“Compiling C/C++ Applications” on page 39.

5. After compiling and linking the application, run the application by entering
the following command:

CAPIIIOP hostname:port

where hostname and port identify the name of the machine that the web server runs
on and the port number that the server listens to. For example:

CAPIIIOP myserver:80

This registers the application with the web server. The web server should be able to
find the CAIIIOP WAI application.

6. In a web browser, go to the following URL:

http://hostname:port/iiop/CAPIIIOP

where hostname and port identify the name of the machine that the web server runs
on and the port number that the server listens to. For example:

http://myserver:80/iiop/CAPIIIOP

The web server processes the request. While processing the request, the server parses
the URL, retrieves the name of the service you want to access (CAPIIIOP), and
contacts your application.

Your application receives the request and returns the Hello World string. The web
server returns this to the web browser.

Effectively, the web browser has requested a service, and your WAI application has
delivered back results through the web server.
14 Writing Web Applications with WAI

Running the Sample C++ Application (WASP)
Running the Sample C++ Application (WASP)
The sample C++ application provided with the web server is in the server_root/
wai/examples/WASP directory. The source file for the example is WASP.cpp.

This example does the following:

• Sends a cookie to the browser, if the browser does not already have a
cookie set

• Gets information about the web server, including the host name and server
ID of the web server

• Gets information from the request headers in the request sent by the
browser

• Gets information about the request, including the types of information
accessible through CGI 1.1 environment variables

• Sends this information back to the client in an HTML page

The following screenshot illustrates the results of this service.

Note that this example can be compiled and linked as a standalone application
that runs outside the web server’s process and as a server plug-in that runs
within the web server’s process.
Chapter 2, Quick Start: Running the Examples 15

Running the Sample C++ Application (WASP)
The rest of this section explains how to set up and use the standalone
application in this example. (For an example of writing a server plug-in, see
Chapter 7, “Writing a WAI Server Plug-In”.)

You can use this example as a guideline for setting up and running your own
C++ examples.

To run the sample C++ application, follow these steps:

1. (For 3.0 servers only) Start up osagent.

osagent is located under server_root/wai/bin in UNIX and server_root\wai\bin in
Windows NT.

Specify the -a flag to restrict osagent to the localhost IP address. For example:

osagent -a 127.0.0.1

For more information, see “Starting osagent (3.0 Servers Only)” on page 33.

2. Enable WAI applications on the web server.

From the Server Administration page in the administration server, click the button
labelled with your server name. This displays the Server Manager for your server.

Click Programs | WAI Management to display the form for administering WAI on
your server.

Under Enable WAI Services, select the Yes radio button and click OK. Save and
apply your changes.

For more information, see “Setting the Option to Enable WAI” on page 34.

3. In the wai/examples/WASP (in UNIX) or wai\examples\WASP (on Windows NT)
directory, review the sample source file WASP.cpp.

Basically, the code in this source file does the following (for a more complete
explanation of these steps, see Chapter 5, “Writing a WAI Application in
C++”):

• Accepts an argument that specifies the host and port where the web server is
running. For example, you can use the following command argument to specify
that your web server is running on port 80 of the server named mooncheese:

WASP mooncheese:80
16 Writing Web Applications with WAI

Running the Sample C++ Application (WASP)
• Creates a new web application service named WASP. Users will be able to access
this web service through the following URL (if, for example, your web server is
running on port 80 of the server named mooncheese):

http://mooncheese.mydomain.com:80/iiop/WASP

• Calls the RegisterService method to register the web application with the
web server running on the host and port number specified on the
command-line.

When the application receives a request, it does the following:

• Calls the getCookie and setCookie methods to demostrate how to get and
set cookies in the client.

• Calls several different methods to illustrate the kinds of data you can get from
the session’s context and the client’s request. For example, to get information
from the request, the sample application calls the getRequestInfo method.

• Calls the setResponseContentLength method to specify the length of the
content to be delivered to the client.

• Calls the StartResponse method to start sending the HTTP response back
to the client.

• Calls the WriteClient method to send data back to the client.

4. Compile and link the sample application.

The sample application includes a sample Makefile (for example, Makefile.SOLARIS
or Makefile.WINNT) that you can use to compile and link the application.

For more information on compiling and linking your application, see
“Compiling C/C++ Applications” on page 39.

5. After compiling and linking the application, run the application by entering
the following command:

WASP hostname:port

where hostname and port identify the name of the machine that the web server runs
on and the port number that the server listens to. For example:

WASP myserver:80
Chapter 2, Quick Start: Running the Examples 17

Running the Sample Java Application (WASP.Java)
This registers the application with the web server. The web server should be able to
find the WASP WAI application.

6. In a web browser, go to the following URL:

http://hostname:port/iiop/WASP

where hostname and port identify the name of the machine that the web server runs
on and the port number that the server listens to. For example:

http://myserver:80/iiop/WASP

The web server processes the request. While processing the request, the server parses
the URL, retrieves the name of the service you want to access (WASP), and contacts
your application.

Your application receives the request and retrieving information from the request
and the web server. The web server returns this information to the web browser in
an HTML page.

Effectively, the web browser has requested a service, and your WAI application has
delivered back results through the web server.

Running the Sample Java Application
(WASP.Java)

The sample Java application provided with the web server is in the server_root/wai/
examples/WASP directory. The source file for the example is WASP.java.

This example does the following:

• Sends a cookie to the browser, if the browser does not already have a cookie set

• Gets information about the web server, including the host name and server ID of the
web server

• Gets information from the request headers in the request sent by the browser

• Gets information about the request, including the types of information accessible
through CGI 1.1 environment variables

• Sends this information back to the client in an HTML page
18 Writing Web Applications with WAI

Running the Sample Java Application (WASP.Java)
The following screenshot illustrates the results of this service.

The rest of this section explains how to set up and use this example. You can use this as
a guideline for setting up and running your own Java examples.

To run the sample Java application, follow these steps:

1. (For 3.0 servers only) Start up osagent.

osagent is located under server_root/wai/bin in UNIX and server_root\wai\bin in
Windows NT.

Specify the -a flag to restrict osagent to the localhost IP address. For example:

osagent -a 127.0.0.1

For more information, see “Starting osagent (3.0 Servers Only)” on page 33.

2. Enable WAI applications on the web server.

From the Server Administration page in the administration server, click the button
labelled with your server name. This displays the Server Manager for your server.

Click Programs | WAI Management to display the form for administering WAI on
your server.

Under Enable WAI Services, select the Yes radio button and click OK. Save and
apply your changes.

For more information, see “Setting the Option to Enable WAI” on page 34.
Chapter 2, Quick Start: Running the Examples 19

Running the Sample Java Application (WASP.Java)
3. In the wai/examples/WASP (in UNIX) or wai\examples\WASP (on Windows NT)
directory, compile the sample application.

Make sure to include the following files in your CLASSPATH environment variable:

• server_root/wai/java/nisb.zip

• server_root/wai/java/WAI.zip

4. After compiling the application, run the application.

If you are running a 3.0 version of a Netscape web server, run the following
command:

java -DDISABLE_ORB_LOCATOR WASP hostname:port

The -DDISABLE_ORB_LOCATOR option specifies that osagent should not be used
to find the ORB in the Netscape web server.

If you are running a 3.0.1 version of a Netscape web server, run the following
command:

java WASP hostname:port

This registers the application with the web server. The web server should be able to
find the JavaWASP WAI application.

5. In a web browser, go to the following URL:

http://hostname:port/iiop/JavaWASP

where hostname and port identify the name of the machine that the web server runs
on and the port number that the server listens to. For example:

http://myserver:80/iiop/JavaWASP

The web server processes the request. While processing the request, the server parses
the URL, retrieves the name of the service you want to access (JavaWASP), and
contacts your application.

(Note that the name used to register the server -- JavaWASP -- does not necessarily
need to be the same as the name of the class -- WASP.)

Your application receives the request and retrieving information from the request
and the web server. The web server returns this information to the web browser in
an HTML page.
20 Writing Web Applications with WAI

Running the FormHandler Sample
Effectively, the web browser has requested a service, and your WAI application has
delivered back results through the web server.

Running the FormHandler Sample
The classes used for writing WAI applications include a class for handling submissions
through HTML forms. Using the FormHandler class, you can write a WAI
application that receives and interprets data submitted through an HTML form.

To read in and parse posted form data (where the client used the HTTP POST method to
submit the form), create an instance of the FormHandler class. The constructor
for this class reads in the data and parses it.

To read in and parse form data submitted through the HTTP GET method, create an
instance of the FormHandler class and call the ParseQueryString method.

Depending on the language you are using, you can access the parsed data in different
ways:

• In C++, you can call the Get method to get the value of a specific name-
value pair, or you can call the InitIterator method and the Next method to
iterate through all name-value pairs in the parsed data.

You can also call the Add method to add a new name-value pair to the
parsed form data and the Delete method to remove a name-value pair from
the parsed form data.

• In Java, you can call the GetHashTable method to get a Java hash table
containing the parsed data. Then, you can call methods of the
java.util.Hashtable class to access the data.

The names serve as keys in the hashtable. The values are stored as Java vectors (for
details, see your Java documentation on java.util.Vector).

The values are implemented as Java vectors because a given name may be associated
with multiple values. For example, if the form contains multiple-selection input, the
submitted form data can contain several name-value pairs with the same name but
different values.
Chapter 2, Quick Start: Running the Examples 21

Running the FormHandler Sample
About the FormHandler Class Example

The FormHandler samples provided with the web server are in the server_root/wai/
examples/forms directory. This directory contains C++ and Java examples of using the
WAI FormHandler class. You can use this class to process data submitted through
an HTML form.

This directory contains the following files:

• TestDriver.java (Java example)

• form.cpp (C++ example)

• Makefile.SOLARIS (makefile for C++ example on Solaris) or
Makefile.WINNT (makefile for C++ example on WIndows NT)

• form.html (HTML form for testing the example)

The C++ example is written as an in-process server plug-in. The Java example is written
as a stand-alone application (running out of process). Both examples process and display
data submitted through the form.html form.

Running the C++ FormHandler Sample

The FormHandler sample provided with the web server is in the server_root/wai/
examples/forms directory. The source file for the example is formHandler.cpp.

This example is written as an in-process server plug-in that performs the following tasks:

• It forms pairs of names and values using the NVPair class.

• It gets and parses form data submitted through an HTTP GET method by calling the
Add method to add a new name-value pair to the parsed form data. Then it calls the
Delete method to remove a name-value pair from the parsed form data.

• It calls the InitIterator method and the Next method to iterate through all
name-value pairs in the parsed data.

• It checks whether the name-value pair is valid.

• It puts valid information into a hash table.
22 Writing Web Applications with WAI

Running the FormHandler Sample
This example can be compiled and linked as a stand-alone application that runs outside
the web server’s process and as a server plug-in that runs within the web server’s process.

The rest of this section explains how to set up and use the server plug-in that runs within
the web server’s process. (For an example of writing a server plug-in, see
Chapter 7, “Writing a WAI Server Plug-In”.)

You can use this example as a guideline for setting up and running your own C++ forms.

1. Compile the example using the makefile provided.

For example:

nmake -f Makefile.WINNT

or

make -f Makefile.SOLARIS

2. Open the obj.conf file (located in the server-root/server-id/config directory) in a
text editor.

3. Add an Init directive to specify the intialization function (FormInit) for this
server plug-in (form.dll or form.so).

For example:

Init funcs="FormInit" shlib="server-root/wai/examples/forms/form.dll" fm="load-modules"
Init LateInit="yes" fn="FormInit"

or

Init funcs="FormInit" shlib="server_root/wai/examples/forms/form.so" fn="load-modules"
Init LateInit="yes" fn="FormInit"

When you specify the Init directive make sure to set LateInit to "yes".

4. Save your changes and exit from the text editor.

5. In the Administration Server, click the Apply Changes button in the top frame
and restart the Enterprise Server.

6. Copy form.html to the documentation root directory of your Enterprise Server
(for example, server-root/docs).

7. Open the form.html file in a text editor and verify that the action of the form is
set to "/iiop/FORMip".
Chapter 2, Quick Start: Running the Examples 23

Running the FormHandler Sample
For example:

<FORM name="submitform" method="POST" ACTION="/iiop/FORMip">

FORMip is the name with which this WAI server plug-in registers.

8. Go to the following URL:

http://server-name:port-number/form.html

9. Fill in the fields and click Send to submit the form.

The WAI server plug-in should send a generated HTML page back to your browser.
The page should display some of the data you have submitted.

Running the Java FormHandler Sample

The Java example is written as a stand-alone application, running out of process. It
processes and displays data submitted through the form.html form in the /wai/examples/
forms directory.

1. Compile the TestDriver.java example.

javac TestDriver.java

2. Run the TestDriver Java application.

Specify the server name and port number of your Enterprise Server as follows:

java TestDriver server-name:port-number

3. Copy form.html to the documentation root directory for your Enterprise
Server (for example, server-root/docs).

4. Open the form.html file in a text editor and change the action of the form to "/
iiop/JavaForm".

For example:

<FORM name="submitform" method="POST" ACTION="/iiop/JavaForm">

JavaForm is the name with which this WAI application registers.

5. Go to the following URL:
24 Writing Web Applications with WAI

Running the FormHandler Sample
http://server-name:port-number/form.html

6. Fill in the fields and click Send to submit the form.

The WAI application should send a generated HTML page back to your browser.
The page should display some of the data you have submitted.
Chapter 2, Quick Start: Running the Examples 25

Running the FormHandler Sample
26 Writing Web Applications with WAI

C h a p t e r

3
Using WAI
This chapter provides an overview for writing WAI applications. Read this
chapter for general information on using WAI, including:

• System Requirements

• Overview

• Before You Use WAI

• Converting CGI Applications to WAI

• Setting Up the Web Server

• Compiling Applications and Server Plug-Ins

• Running Applications

To see working examples of WAI applications and to get a better
understanding of how the material in this chapter applies to WAI, read
Chapter 2, “Quick Start: Running the Examples”.

System Requirements
C++ Requirements: If you are writing a C++ application in WAI, you must use the
following:
Chapter 3, Using WAI 27

Overview
• For Windows NT, Microsoft Visual C++ version 4.2

• For Solaris 2.5.x, the SparcWorks C++ compiler version 3.0.1

• For IRIX 6.2, the C++ compiler version 7.1

Java Requirements: If you are writing a Java application in WAI, you must use the
following:

• The Javasoft Java Development Kit 1.1.x.

You can also use Java development tools that are compliant with the JDK 1.1.x.

Overview
You can use WAI to write a web application service in C, C++, or Java that receives a
request from a client, processes the request, and returns data back to the client. You can:

• Access data from the headers in the HTTP request

• Access information about the web server

• Read data from the client (such as data in an HTML form sent through the HTTP
POST method)

• Set the headers in the response that will be sent to the client

• Set the status of the response that will be sent to the client

• Redirect the client to another location

• Write data back to the client (such as an HTML page)

You can use WAI to write, compile, and run the following:

• An application that runs outside the web server’s process. You can write this in C,
C++, or Java. For details, see the following chapters:

• Chapter 4, “Writing a WAI Application in C”

• Chapter 5, “Writing a WAI Application in C++”

• Chapter 6, “Writing a WAI Application in Java”
28 Writing Web Applications with WAI

Before You Use WAI
Note that by default, the web server configuration assumes that you will run these
applications on the same machine as the web server. You can reconfigure the web
server to interact with applications running on remote machines, but you need to be
aware of the security issues involved with this configuration. For details, see
Chapter 8, “Security Guidelines for Using WAI”.

• A server plug-in that runs within the web server’s process. A server plug-in is a
shared library or dynamic link library that the web server loads and initializes during
startup. You can write this in C or C++. For details, see the following chapter:

• Chapter 7, “Writing a WAI Server Plug-In”

Before You Use WAI
Before you begin to set up your server to use WAI, you should read through the
following sections.

Understanding Security Issues

Before you begin implementing WAI applications at your site, you should read the
discussion on security-related issues in Chapter 8, “Security Guidelines for
Using WAI”.

In general, Netscape recommends that you restrict WAI applications to run only on the
local host machine (where the web server runs). You should also restrict login access to
this machine to prevent unauthorized users from executing WAI applications.

Read the material in Chapter 8, “Security Guidelines for Using WAI” for a
complete explanation of these recommendations.

Understanding Version Differences

The process for setting up and running WAI applications differs between versions 3.0
and 3.01 of the Netscape web servers:

• In the 3.0 release of Netscape web servers, the web server depends on the osagent
utility. This utility is used to help operate the object request broker (ORB).
Chapter 3, Using WAI 29

Converting CGI Applications to WAI
In order to run a 3.0 version of a web server, you need to run the osagent utility first.
You can also use the osfind utility (provided with 3.0 servers) to troubleshoot
problems.

You can install a patch that fixes and improves the WAI programming interface to
the Enterprise Server in the following ways:

— osagent is no longer required to be running.

— WAI server plug-ins are officially supported.

— You can use OAD to activate your WAI applications.
(Note that OAD will start only out-of-process WAI applications in C/C++ only
and is not supported on Windows NT.)

For more information on this patch and instructions on how to get it and install it,
go to http://help.netscape.com/filelib.html#wai.

• In the 3.01 release of Netscape web servers, the web server no longer requires the
osagent utility. You do not need to run this utility before starting a 3.01 version of the
web server.

The osagent and osfind utilities are no longer included with the 3.01 release of the
web server, since the web server no longer requires these utilities to run.

In general, features or instructions specific to a release are noted in the manual.

Converting CGI Applications to WAI
If you have existing programs or modules in CGI, convert them to WAI modules or
services to improve performance. CGI starts a new session every time you access it,
increasing performance times. Because WAI modules (or WAI services) are persistent,
they reduce performance times. You have the option of running applications externally
or calling functions from an internal library.

A fundamental difference between CGI and WAI is that CGI programs are written to
exist while WAI modules persist. Additionally, WAI modules are inherently multi-
threaded so creating additional processes is unnecessary.
30 Writing Web Applications with WAI

Converting CGI Applications to WAI
Table 3.1 describes the structure of a CGI program alongside the structure of a
WAI service:

Table 3.2 lists the getRequestInfo variables with CGI equivalents.

Table 3.1 Comparison of CGI program structure to WAI program structure

CGI Structure WAI Structure

Read data from POST data input stream. Collect data using the methods of the
netscape::WAI::HttpServerRequest and
netscape::WAI::HttpServerContext objects.

Process, using CGI variables as necessary. Process using the methods in the
WAIWebApplicationService class.

Writes HTML output to the browser. Sends response back to the client using the
methods in the
netscape::WAI::HttpServerRequest object.

Table 3.2 WAI getRequestInfo variables with corresponding CGI functions

WAI variable name Description

CLIENT_CERT Authentication scheme for the request (found from the auth-
scheme token in the request).

HOST Name of the client’s host machine

HTTPS Specifies whether or not SSL is "ON" or "OFF".

HTTPS_KEYSIZE Number of bits in the sesion key used to encrypt the session
(if SSL is enabled).

HTTPS_SECRETKEYSIZE Number of bits used to generate the server;s private key (if
SSL is enabled).

URI URI requested by the client

URL Complete URL requested by the client.
Chapter 3, Using WAI 31

Setting Up the Web Server
Most of the CGI variables are the same as the getRequestInfo variables in WAI.
The other CGI variables are retrieved out of the netscape::WAI::HttpServerContext
object. Table 3.3 lists the CGI variables that correspond to the
netscape::WAI::HttpServerContext variables:

The CGI functions in Table 3.4 lists the CGI functions that have no equivalent
in WAI.

Setting Up the Web Server
In order to enable the web server to use applications written in WAI, you need to do the
following:

1. (For 3.0 servers only) Start osagent.

osagent is used to help operate the object request broker (ORB). See
“Starting osagent (3.0 Servers Only)” on page 33 for details. If you are
running a 3.01 version of a web server, you can ignore this step.

Table 3.3 WAIServerContext methods with corresponding CGI functions

HttpServerContext method Description

getName SERVER_NAME. The name for the server, as used in the
host part of the script URI. Either a fully qualified domain
name or an IP address.

getPort SERVER_PORT. The port on which this request was
received, as used in the port part of the script URI.

getServerSoftware SERVER_SOFTWARE. The name and version of the
information server software answereing the request and
running the gateway.

Table 3.4 CGI variables that do not correspond to getRequestInfo or WAIServerContext
variables

CGI variable name Description

GATEWAY_INTERFACE The version of the CGI specification to which the server
complies.

REMOTE_IDENT The identity information reported about the connection by
an RFC 931[10] request to the remote agent, if available.
32 Writing Web Applications with WAI

Setting Up the Web Server
2. (For 3.0 servers only) Install the patch that allows you to run the 3.01 version
of WAI.

This patch release fixes and improves the WAI programming interface to the
Enterprise Server in the following ways:

• osagent is no longer required to be running.

• WAI server plug-ins are officially supported.

• You can use OAD to activate your WAI applications.
(Note that OAD will start only out-of-process WAI applications in C/C++ only
and is not supported on Windows NT.)

For more information on this patch and instructions on how to get it and install it,
go to http://help.netscape.com/filelib.html#wai.

3. From the administration server, set the option to enable WAI applications to
run on your server.

See “Setting the Option to Enable WAI” on page 34 for details.

4. Optionally, you can change any of the default settings for the web server’s
ORB.

5. Optionally, you can configure the web server to log WAI status messages.

Some of the WAI messages, such as the startup message, are only logged if the server
is configured to log messages at the "verbose" level.

For more information about logging WAI status messages, read "Logging
Status Messages".

6. If you are running an in-process server plug-in, edit the server’s configuration
files to specify your shared library or shared object and the function that you
want to invoke.

Starting osagent (3.0 Servers Only)

osagent, which is provided with 3.0 versions of Netscape web servers, is used to help
operate the object request broker (ORB).
Chapter 3, Using WAI 33

Setting Up the Web Server

r
Note osagent is not required for 3.01 versions of Netscape web servers and is no longer
packaged with those versions of the server.

osagent is located in the server_root/wai/bin directory on UNIX and in the
server_root\wai\bin directory on Windows NT. To run osagent, enter the following
command:

osagent -a 127.0.0.1

The -a flag specifies the address that osagent binds to. You should specify the localhost
address (127.0.0.1) for security reasons. For details on these reasons, see
Chapter 8, “Security Guidelines for Using WAI”.

On Windows NT, you can create a shortcut or program item that runs this command. If
you have the Windows NT Resource Kit, you can use the SrvAny command to create a
service for osagent. You can set up this service to automatically when your machine starts
up. For details, consult the documentation in the Windows NT Resource Kit.

Setting the Option to Enable WAI

You need to configure the web server to interact with WAI applications and serve
plug-ins.

Configuring the Server

1. In your web browser, go to the URL for the administration server.

When prompted, enter the username and password of the server administrator.

2. On the Server Selector page, click the button labelled with your server name.

This brings you to the Server Manager page for your server.

3. In the menu of categories in the top frame, click Programs.

4. Under Programs in the left frame, click the WAI Management link.

5. Under Enable WAI Services, select Yes, then click OK.

6. Click Save and Apply to save your changes.
34 Writing Web Applications with WAI

Setting Up the Web Server
What Happens When You Enable WAI

When you enable WAI, the following changes are made to your obj.conf file:

• Adds an Init directive that loads the functions IIOPinit, IIOPexec, and
IIOPNameService from the shared library libONEiiop.so.10 (filename extension may
differ, depending on your UNIX platform) or the dynamic link library ONEiiop10.dll
(on Windows NT).

• Adds an Init directive that executes the function IIOPinit on server startup. This
function initializes the object request broker (ORB), the basic object adapter (BOA),
and the built-in name service.

• Adds a NameTrans directive to associate requests for any resources matching /
NameService* with the IIOPnameservice object. The stop parameter in this directive
causes the server to skip over the other NameTrans directives (effectively, it returns a
REQ_PROCEED to indicate that the server should proceed with the next step in
processing the request).

• Adds an IIOPnameservice object, which represents the name service. The
IIOPNameService service function associated with this object provides access to the
built-in name service for WAI applications.

• Adds a NameTrans directive to translate requests for resources beginning with the /
iiop prefix to the iiopexec object. URIs in this form typically use the format /iiop/
instance_name, where instance_name is the name of the web service that the client
wants to access. The dir parameter is used to help parse the /iiop prefix out of URI to
get the instance name of the web service that needs to be accessed.

• Adds an object named iiopexec, which interprets a URI into a request for a web
service. The IIOPexec function associated with this object passes the request on to
the appropriate WAI application.

Configuring the Web Server’s ORB

In most cases, you can run the web server without specifying any additional
configuration parameters for the server’s object request broker (ORB). In certain
situations, however, you might need to override the default configuration.
Chapter 3, Using WAI 35

Setting Up the Web Server
Changing the ORB Configuration Information

To change the web server’s ORB configuration information, you need to edit the obj.conf
file for your server (which is located in the server_root/server_id/config directory of your
server).

In the Init directive that executes the IIOPinit function, add configuration parameters to
specify changes to the ORB configuration.

After editing the obj.conf file, you need to stop and start your server so that the server can
read in the updated file.

Note Before changing the configuration, you should be aware of the security issues involved
with running WAI applications on other machines. See Chapter 8, “Security
Guidelines for Using WAI” for details.

Listing of Configurable Parameters

You can add any of the parameters listed in Table 3.5 to the Init directive for
the IIOPinit function.

The following table lists the parameters that you can specify in the Init directive for the
IIOPinit function

Table 3.5 IIOPInit Parameters

Parameter Name Description

ORBagentaddr (For 3.0 servers only) Specifies the IP address where osagent
is running. The ORB uses this setting to find osagent.
If this parameter is not set, the ORB uses the localhost IP
address (127.0.0.1) by default.
If you have configured osagent to use a different IP address
than localhost, you need to include this parameter in the Init
directive.

ORBagentport (For 3.0 servers only) Specifies the port number used by
osagent. The ORB uses this setting to find osagent.
If you have configured osagent to use a port number other than
the default port, you need to include this parameter in the Init
directive.

ORBsendbufsize Specifies the size of the send buffer to be used by the network
transport mechanism. If not specified, an appropriate default
size will be used.
36 Writing Web Applications with WAI

Setting Up the Web Server
Example of Configuring the ORB

For example, in a 3.0 version of a web server, suppose you are running the osagent from
IP address 205.217.229.39 on port 15001. By default, the web server expects the osagent
utility to run on the localhost IP address (127.0.0.1) under the default port.

In the obj.conf file, change the Init directive for the IIOPinit function from:

Init LateInit="yes" fn="IIOPinit"

to:

ORBrcvbufsize Specifies the size of the receive buffer to be used by the
network transport mechanism. If not specified, an appropriate
default size will be used.

ORBmbufsize Specifies the size of the intermediate buffer used by the ORB.
If not specified, the ORB will maintain a pointer to the
argument and will not make an intermediate copy. Using this
parameter incorrectly can seriously affect performance.

ORBshmsize Specifies the size of the shared memory buffer used by the
ORB. If this is not specified, an appropriate size will be used.

OAipaddr Specifies the IP address to be used for this BOA.
If this parameter is not set, the ORB uses the localhost IP
address (127.0.0.1) by default.

OAport Specifies the port number to use for this BOA. If not specified,
an unused port number is used.

OAshm Enables the use of shared memory.

OAnoshm Disables the use of shared memory for sending and receiving
messages when the client and object implementation are located
on the same host.

OAsendbufsize Specifies the size in bytes of the network transport’s send
buffer. If this option is not specified, an appropriate buffer size
is used.

OArcvbufsize Specifies the size in bytes of the network transport’s receive
buffer. If this option is not specified, an appropriate buffer size
is used.

Table 3.5 IIOPInit Parameters

Parameter Name Description
Chapter 3, Using WAI 37

Compiling Applications and Server Plug-Ins
Init LateInit="yes" fn="IIOPinit" ORBagentaddr="205.217.229.39" ORBagentport="15001"

In your WAI application, you also need to specify this argument when initializing the
ORB and BOA. For example:

int bargc = 0;

char **bargv = new char *[3];

bargv[bargc++] = "-OAipaddr";

bargv[bargc++] = "204.200.215.98";

bargv[bargc] = 0;

// Initialize the ORB.

ORB orb = org.omg.CORBA.ORB.init(bargc, bargv);

// Initialize the BOA.

BOA boa = orb.BOA_init(bargc, bargv);

Logging Status Messages

Some of the status messages (such as the WAI initialization messages) are logged to the
server’s error log only if the server is running with the LogVerbose option turned on.
These are messages that are logged with the severity level LOG_VERBOSE.

If you want these types of messages logged, edit the magnus.conf file and add the
following directive:

LogVerbose on

The verbose log information is stored in server-root/https-serverID/logs/errors and server-
root/https-serverID/logs/access.

After editing the magnus.conf file, you need to stop and start your server so that the
server can read in the updated file. You can find the mangus.conf file in server-root/https-
serverID/logs/config.

Compiling Applications and Server Plug-Ins
When compiling and linking your application or server plug-in, follow the tips in this
section. (You can also look at the makefiles provided with the sample applications.)
38 Writing Web Applications with WAI

Compiling Applications and Server Plug-Ins
Compiling C/C++ Applications

Follow these guidelines for compiling and linking C/C++ applications.

Include Directories

Add the following include directories to your makefile:

• server_root/include (UNIX) or server_root\include (Windows NT)

• server_root/wai/include (UNIX) or server_root\wai\include (Windows NT)

Libraries

On UNIX, you can add the following library directories to your linker command. Specify
that libraries should be searched for shared object during runtime to resolve symbols (on
Solaris, use the -R flag; on IRIX, use the -rpath flag):

• server_root/lib

• server_root/wai/lib

• server_root/bin/https

The following table lists the additional libraries that you need to link to:

Table 3.6 Libraries That You Need to Link to

Platform Libraries

Solaris lib/libldap10.so
lib/liblcache10.so
wai/lib/libONEiiop.so
wai/lib/liborb_r.so
bin/https/ns-httpd.so
libthread.so
libposix4.so
libresolv.so
libnsl.so
lib/libnspr.so
wai/lib/libIIOPsec.a

Windows NT (in addition to the standard
Windows libraries)

wai\lib\ONEiiop10.lib
WSOCK32.lib
Chapter 3, Using WAI 39

Compiling Applications and Server Plug-Ins
Compile Flags

The following table lists the flags and defines that you need to use:

IRIX lib/libldap10.so
lib/liblcache10.so
wai/lib/libONEiiop.so
wai/lib/liborb_r.so
bin/https/ns-httpd.so
wai/lib/libIIOPsec.a

HP-UX dce.sl
wai/lib/orb_r.sl
wai/lib/ONEiiop.sl
bin/https/nshttpd.sl
wai/lib/IIOPsec.sl

AIX wai/lib/ONEiiop_shr
wai/lib/IIOPsec
bin/https/nshttpd_shr
lib/nspr_shr
wai/lib/orb_r
dcepthreads
C_r

Digital UNIX lib/ldap10.so
lib/lcache10.so
wai/lib/ONEiiop.so
wai/lib/orb_r.so
bin/https/ns-httpd.so
wai/lib/IIOPsec.so

Table 3.7 Compile Flags

Platform Flags/Defines

Solaris -DXP_UNIX -D_REENTRANT -KPIC

Windows NT -DXP_WIN32 -DWIN32 /MD

IRIX -o32 -exceptions -DXP_UNIX -KPIC

HP-UX -DXP_UNIX -D_REENTRANT -DHPUX

Table 3.6 Libraries That You Need to Link to

Platform Libraries
40 Writing Web Applications with WAI

Running Applications
Compiling C/C++ Server Plug-Ins

In addition to the tips above, follow these tips when compiling server plug-ins (which are
shared libraries or dynamic link libraries):

• Specify the appropriate compile options for building shared objects or shared
libraries.

• On UNIX, if you are specifying a relative path to the other libraries (using the -R flag
on Solaris or the -rpath flag on IRIX), make sure to specify the paths relative to the
ns-httpd executable (which is in the server_root/bin/https/ directory).

Compiling Java Applications

If you are compiling a Java application, make sure to include server_root/wai/java/nisb.zip
and server_root/wai/java/WAI.zip in your CLASSPATH environment variable.

Running Applications
Start your application on the host machine that runs the web server. Make sure that when
your application registers, you specify the host name and port of the web server.

Note that it is possible (but not recommended) to run WAI applications on other
machines in the local network. For a complete explanation of the security concerns and
instructions for configuring the server to recognize WAI applications on other machines,
see Chapter 8, “Security Guidelines for Using WAI”.

AIX -DXP_UNIX -D_REENTRANT -DAIX $(DEBUG)

Digital UNIX -DXP_UNIX -KPIC

Table 3.7 Compile Flags

Platform Flags/Defines
Chapter 3, Using WAI 41

Running Applications
Setting Up Your Application with OAD

You can set up your WAI application with the Netscape Internet Service Broker’s object
activation daemon (OAD), a process which automatically starts up your application if it is
not running.

For example, you may want to ensure that your application is always running and does
not need to be started manually.

To set up your application with the OAD, follow these steps:

1. Make sure to specify a name for your object in the
WAIWebApplicationService constructor.

2. Set the second argument (activateObject) to WAI_FALSE.

At a point in your application where you are ready to launch your object, call the
ActivateWAS method of WAIWebApplicationService.

Compile and run your application at least once, in order to register your application
with the web server's naming service.

You need to register your application before setting it up with OAD. OAD expects
your application to be registered with the web server.

3. Set the following environment variables in the shells where the web server and
OAD run:

• NS_SERVER_ROOT - set this to the location of your server root directory (for
example, /usr/netscape/suitespot or C:\Netscape\SuiteSpot)

• NS_SERVER_ID - set this to your server identifier (for example, https-myhost)

• ORBELINE_IMPL_NAME - set this to name of the file created by the OAD; the
OAD creates this file to keep track of object implementations. For example, if
you want this file to be named myfile, set ORBELINE_IMPL_NAME to myfile.

• ORBELINE_IMPL_PATH - set this to the path to an existing directory where you
want the OAD to generate the file specified by the ORBELINE_IMPL_NAME
environment variable. For example, if you want the file created under the /usr/

tmp directory, set ORBELINE_IMPL_PATH to /usr/tmp.

You also need to set the LD_LIBRARY_PATH (or SHLIB_PATH on HP-UX)
environment variable to the paths that include all shared libraries linked to by your
object server.
42 Writing Web Applications with WAI

Running Applications
For example, in C shell, you might enter the following commands before starting
OAD and your webserver:

setenv NS_SERVER_ID https-gromit

setenv NS_SERVER_ROOT /usr/netscape/suitespot

setenv LD_LIBRARY_PATH /usr/netscape/suitespot/wai/lib:
/usr/netscape/suitespot/bin/https:
/usr/netscape/suitespot/lib:
/usr/local/java/lib

setenv ORBELINE_IMPL_NAME myfile

setenv ORBELINE_IMPL_PATH /usr/tmp

If you start OAD after setting these variables, the OAD will generate the file /usr/
tmp/myfile to keep track of the object implementations.

4. After starting your web server, start the OAD manually.

For instructions on starting OAD, see the Netscape Internet Service Broker
Reference Guide for C++ or the Netscape Internet Service Broker Reference Guide
for Java.

5. Run regobj to register your service with the OAD.

regobj is located in the server_root/wai/bin directory. For details on the syntax for this
command, see the Netscape Internet Service Broker Reference Guide for C++. You
need to specify "*" as the interface name. You can pass arguments to the object
server using the -a option.

For example, to start up the object named WASP implemented by the WAI
application /usr/local/ns-home/wai/bin/WASP, use the following command:

regobj -o "*,WASP" -f /usr/local/ns-home/wai/bin/WASP
-a httpServerName=bar:80

The example above assumes that the web server is running on port 80 of the
machine named bar.

Using osagent with Java (3.0 Only)

In the 3.0 version of the web server, if you are running a Java application written with
WAI, you should specify the -DDISABLE_ORB_LOCATOR flag. This minimizes
potential problems with the osagent utility.
Chapter 3, Using WAI 43

Running Applications
For example, if you have written the Java class WASP.class with WAI, use the following
command to run your Java application:

java -DDISABLE_ORB_LOCATOR WASP

Note that if you are specifying the DISABLE_ORB_LOCATOR option for osagent, you
must force the web server’s basic object adapter (BOA) to listen on a particular port. To
do this, follow the instructions below.

1. Edit the obj.conf file (located in the server_root/server_id/config directory on
UNIX and the server_root\server_id\config directory on Windows NT), and
change the following line:

Init LateInit="yes" fn="IIOPinit"

to:

Init LateInit="yes" fn="IIOPinit" OAport="21000"

The OAport option specifies the port selected where the web server’s BOA listens.
The example above sets up the BOA to listen to port 21000.

2. Delete the files server_root/wai/NameService/server_id.* on UNIX or
server_root\wai\NameService\server_id.* on Windows NT.

For example, delete https-myhost.IOR, https-myhost.sav, and https-myhost.bak. These
files are name service files for your currently registered objects.

3. Register your objects with the web server again.

For example, start any WAS object servers. You must complete this step. If you do
not, you might not be able to register objects with the web server.

Running Applications on Remote
Machines

You can configure your WAI applications to run on separate machines other than the
machine hosting the web server. Read through the information about security
issues in Chapter 8, “Security Guidelines for Using WAI”, for more information.
44 Writing Web Applications with WAI

C h a p t e r

4
Writing a WAI Application in C
WAI provides a set of C API functions that you can use to write a WAI
application. Your C application should:

• Define a function for processing the incoming HTTP request. (For details,
see “Defining a Function to Process Requests” on page 46.)

• Create and register a new web service to the web server. This step includes
assigning an instance name to the service, and associating the service with
the function you defined in the previous step. (For information, see
“Registering Your Web Application Service” on page 52.)

After you write and compile your application, see the section “Running Your
Web Service” on page 55 for instructions on setting up and running your web
service.

For a summary of the C functions available in WAI, see the section “Summary
of C Functions” on page 55

Before continuing on, note the following points:

• You must include the ONEiiop.h header file when writing a WAI application
in C:

#include "ONEiiop.h"

This header file declares the C functions available in WAI.
Chapter 4, Writing a WAI Application in C 45

Defining a Function to Process Requests
• The web server includes a sample C application that demonstrates how you can use
WAI to write a web application service. The example is located in the server_root/
wai/examples/CIIOP directory on UNIX and the server_root\wai\examples\CIIOP
directory on Windows NT.

You can follow this example as a guideline for writing and compiling your
application.

The rest of this chapter explains how to write a WAI application in C.

Defining a Function to Process Requests
The function that processes incoming HTTP requests (not all requests, just the requests
directed specifically at your service) must comply with the following type definition:

typedef long (*WAIRunFunction)(ServerSession_t obj);

obj represents the HTTP request to be processed. You pass this argument to other WAI
functions in order to get data from the client request, set data in the response, and send
the response to the client.

The rest of this section explains how you can call WAI functions to process the request.
WAI functions enable you to do the following tasks:

• Getting Data from the Request

• Sending the Response Back to the Client

Getting Data from the Request

WAI provides functions for getting data from the client’s HTTP request. You can call
functions to accomplish the following tasks:

• Getting Headers from the HTTP Request

• Getting Information about the Server
46 Writing Web Applications with WAI

Defining a Function to Process Requests
Getting Headers from the HTTP Request

To get headers from the HTTP request, call the WAIgetRequestHeader() function. For
example, the following section of code gets and prints the user-agent header from the
incoming request:

long MyRunFunction(ServerSession_t obj)

{

char *var = 0;

...

if (WAIgetRequestHeader(obj, "user-agent", var) == WAISPISuccess){

printf("User agent: %s\n", var);

}

...

}

In addition to HTTP headers, you can get other types of information (such as CGI 1.1
environment variables) from the HTTP request by calling the WAIgetRequestInfo()
function.

The section “getRequestInfo” on page 122 lists the types of information you can
retrieve from the request. Note that the CGI 1.1 environment variables that
describe the server are accessible through the WAIgetInfo() function. See
“Getting Information about the Server” on page 48 for details.

The following section of code gets and prints the value of the REMOTE_ADDR CGI 1.1
environment variable for the incoming request:

long MyRunFunction(ServerSession_t obj)

{

char *var = 0;

...

if (WAIgetRequestInfo(obj, "REMOTE_ADDR", var) == WAISPISuccess){

printf("Client IP Address: %s\n", var);

}

...

}

Chapter 4, Writing a WAI Application in C 47

Defining a Function to Process Requests
Getting Information about the Server

WAI also provides C functions for getting information about the server, such as the
server identifier or CGI 1.1 environment variables that describe the server (for example,
SERVER_NAME or SERVER_PORT).

To get these types of information, you can call the WAIgetInfo() function and specify the
type of information that you want to retrieve. For example, the following section of code
gets the value of the SERVER_PORT CGI 1.1 environment variable:

long MyRunFunction(ServerSession_t obj)

{

int port_num;

...

if (WAIgetInfo(obj, "SERVER_PORT", port_num) == WAISPISuccess){

printf("Server Port: %d\n", port_num);

}

...

}

For a list of the types of information you can retrieve from this method, see the
section “getInfo” on page 146.

You can also call functions that specifically retrieve a certain type of information. For
example, to get the port number that the server listens to, you can call the WAIgetPort()
function:

long MyRunFunction(ServerSession_t obj)

{

int port_num = 0;

...

if ((port_num = WAIgetPort(obj)) != 0){

printf("Server Port: %d\n", port_num);

}

...

}

For details on getting server information, see the section
“netscape::WAI::HttpServerContext” on page 144.
48 Writing Web Applications with WAI

Defining a Function to Process Requests
Getting and Setting Cookies in the Client

Before a client accesses a URL, the client checks the domain name in the URL against the
cookies that it has. If any cookies are from the same domain as the URL, the client
includes a header in the HTTP request that contains the name/value pairs from the
matching cookies.

The Cookie header has the following format:

Cookie: name=value; [name1=value1; name2=value2 ...]

To get these name/value pairs from the HTTP request, call the WAIgetCookie() function.
To set your own name/value pairs in a client, call the WAIsetCookie() function.

The following example illustrates how you can use these functions to get and set cookies
in the client.

long MyRunFunction(ServerSession_t obj)

{

...

char *cookiebuff = NULL;

/* If no cookie has been set in the client, set a cookie. */

if (WAIgetCookie(obj, cookiebuff)== WAISPIFailure)

WAIsetCookie(obj, "A_NAME", "A Value", "", "", "/", WAI_FALSE);

...

}

Sending the Response Back to the Client

WAI functions also allow you to control the response sent back to the client. You can
call these functions to accomplish the following tasks:

• Setting Headers in the Response

• Setting the Status of the Response

• Sending the Response

• Redirecting Users to Another Page
Chapter 4, Writing a WAI Application in C 49

Defining a Function to Process Requests
Setting Headers in the Response

WAI includes functions that you can use to set headers in the response that you want
sent back to the client. You can call the WAIaddResponseHeader() function to set any
header in the response. For example, the following section of code adds the Pragma
header to the response:

...

WAIaddResponseHeader(obj, "Pragma", "no-cache");

...

You can also call functions that set specific types of headers. For example, you can call:

• WAIsetResponseContentType() to specify the content type of the response (the
Content-type header)

• WAIsetResponseContentLength() to specify the length of the response in bytes (the
Content-length header)

Setting the Status of the Response

To set the status of the response sent back to the client, call the WAIsetResponseStatus()
function. For example, the following section of code sets the response status to a 404
status code ("File Not Found"):

...

WAIsetResponseStatus(obj, 404, "");

...

Sending the Response

After you have set up the response you want sent back to the client, you can start sending
the response to the client. Call the WAIStartResponse() function to start sending the
response.

To send the rest of the data to the client, call the WAIWriteData() function.

The following example sends the string Hello World back to the client:

long MyRunFunction(ServerSession_t obj)

{

/* Specify the string that you want to send back to the client. */
50 Writing Web Applications with WAI

Defining a Function to Process Requests
char *buffer = "Hello World\n";

size_t bufflen = strlen(buffer);

/* Specify the length of the data that you are about to send back. */

WAIsetResponseContentLength(obj, bufflen);

/* Start sending the response back to the client. */

WAIStartResponse(obj);

/* Write the string to the client. */

WAIWriteClient(obj, (const unsigned char *)buffer, bufflen);

return 0;

}

Redirecting Users to Another Page

In your WAI application, you can also redirect users to a different page than the
requested page. You can either automatically redirect the user to a new page, or you can
present the user with a link to click manually.

To automatically redirect the user to a different page, you can do the following:

1. Call the WAIaddResponseHeader() function to add a Location header.

The Location header points to the new location.

2. Call the WAIsetResponseStatus() function to set the response status.

Set the response status to 301 if the page has permanently moved or 302 if the page
has temporarily moved.

3. Call the WAIStartResponse() function to send the response back to the client.

For example:

long

MyRunFunction(ServerSession_t obj)

{

Chapter 4, Writing a WAI Application in C 51

Registering Your Web Application Service
WAIaddResponseHeader(obj, "Location", "http://www.newsite.com/");

WAIsetResponseStatus(obj, 302, "Moved temporarily to newsite.com");

WAIStartResponse(obj);

return 0;

}

To give the user the choice of going to the new location (rather than automatically
redirecting the URL), you can call the WAIRespondRedirect() function:

long

MyRunFunction(ServerSession_t obj)

{

WAIRespondRedirect(obj, "http://www.newsite.com/");

WAIStartResponse(obj);

return 0;

}

Calling this method will send the following page back to the client:

Moved Temporarily

This document has moved to a new location. Please update your documents and hotlists accordingly.

The word "location" on this page is a link pointing to the new location of the page.

Registering Your Web Application Service
After you define the function for processing HTTP reequests, you need to create and
register your web service. You need to register your web service to the web server under
an instance name. The instance name that you select for your web service can be an
arbitrary name; it does not need to be the same name as your application. (For example,
if your application is named MyApp or MyApp.exe, your instance name can be
MyWebService. They do not need to have the same name.)

Note, however, that your instance name must be unique. No other registered WAI
application can have the same name.
52 Writing Web Applications with WAI

Registering Your Web Application Service
Registering With a Web Server

To create and register your web application service, follow these steps:

1. Call the WAIcreateWebAppService() function to create the web service.

Specify the name of the service and the name of your function (that you
defined in “Defining a Function to Process Requests” on page 46) as
arguments.

The instance name that you select for your web service can be an arbitrary name. It
does not need to be the same name as your application.

WAIcreateWebAppService() returns a pointer to an IIOPWebAppService structure,
which represents the newly created web service.

2. Call the WAIregisterService() function to register the service.

Pass the pointer to the IIOPWebAppService structure to this function. You also need
to specify the hostname and port number of the web server in the form
hostname:portnumber.

Note that if your web server is running with SSL enabled, you need to specify a
different value for this argument. For details, see “Registering With an SSL-
Enabled Server” on page 54.

3. Call the WAIimplIsReady() function to indicate that your service is prepared to
receive incoming requests.

Note that the WAIimplIsReady() function puts the application into an endless loop. Any
statements that you insert after this function are not executed. So, for example, if you
want to add a printf statement to indicate whether or not the application has registered
successfully, add the statement before calling the WAIimplIsReady() function.

For example, the following section of code creates and registers a new web service with
the instance name CAPIIIOP. Whenever this web service is accessed, the web server
sends the HTTP request to the function named MyRunFunction.

...

IIOPWebAppService_t obj;

WAIReturnType_t rv;

...

/* Create the web service. */
Chapter 4, Writing a WAI Application in C 53

Registering Your Web Application Service
obj = WAIcreateWebAppService("CAPIIIOP", MyRunFunction);

/* Register the web service. */

rv = WAIregisterService(obj, "myhost.netscape.com:81");

if (rv == WAI_FALSE) {

printf("Failed to Register with %s\n", host);

return 1;

} else {

printf("Registered successfully with %s\n", host);

}

/* Indicate that the service is ready to receive requests. */

WAIimplIsReady();

return 0;

...

Registering With an SSL-Enabled Server

Typically, when you call the WAIregisterService function to register your web service, you
pass the host name and port number of your web server as an argument.

The function constructs a URL to the web server’s built-in naming service and gets the
object reference for this naming service. This object reference is used to register your
application.

If your web server has SSL enabled, the WAIregisterService function cannot get the
naming service object reference in the manner described above. Instead, it needs to use
the Interoperable Object Reference (IOR) file to get the object reference for the naming
service.

To find the IOR file, the WAIregisterService function assembles a path to the file using
the following information:

• The server root (for example, the default server root is /usr/netscape/suitespot or
C:\netscape\suitespot)

• The server identifier (for example, the default server identifier is https-hostname)
54 Writing Web Applications with WAI

Running Your Web Service
If your web server does not use the default values for either of these, you must set
environment variables to identify the correct values before running your WAI
application:

• If your server is installed under a different directory than the default server root, you
must set the NS_SERVER_ROOT environment variable to the location of your server
root.

For example, suppose that your server is installed under /export/netscape/suitespot. In
a C shell, you need to set the following environment variable before running your
WAI application:

setenv NS_SERVER_ROOT /export/netscape/suitespot

• If you are not using the default server identifier, you must set the NS_SERVER_ID
environment variable to the server identifier that you are using.

For example, suppose that your server is running on the machine preston and your
server identifier is https-webserver instead of https-preston. In C shell, you need to set
the following environment variable before running your WAI application:

setenv NS_SERVER_ID https-webserver

Running Your Web Service
After you write and compile your application, you can run your application to make your
web service available. The web server should recognize your application, if you’ve
registered it (see “Registering Your Web Application Service” on page 52).

End users can access your service by going to the URL:

http://server_name:port_number/iiop/instance_name

For example, you can access the CAPIIIOP example by going to the URL:

http://server_name:port_number/iiop/CAPIIIOP

Summary of C Functions
The following table summarizes the C functions available in WAI.
Chapter 4, Writing a WAI Application in C 55

Summary of C Functions
Table 4.1 C Functions in WAI

Function Name Description For More Information, See...

WAIaddResponseHeader() Adds a header to the HTTP response
to be sent back to the client.

“addResponseHeader” on
page 111

WAIBuildURL() Builds an absolute URL from the
URI prefix and the URI suffix.

“BuildURL” on page 113

WAIcreateWebAppService() Creates a new web application
service, assigns it an instance name,
and associates it with a function for
processing HTTP requests.

“WAIWebApplicationService”
on page 151

WAIdeleteService() Deletes a web application service.

WAIdelResponseHeader() Removes a header from the HTTP
response to be sent back to the client.

“delResponseHeader” on
page 115

WAIgetConfigParameter() Gets the value of a parameter of the
iiopexec function in the Service
directive of the obj.conf file.

“getConfigParameter” on
page 116

WAIgetCookie() Retrieves any cookies sent by the
client.

“getCookie” on page 119

WAIgetHost() Gets the hostname of the machine
where the web server is running.

“getHost” on page 145

WAIgetInfo() Retrieves information about the web
server (such as the value of CGI 1.1
environment variables that describe
the server).

“getInfo” on page 146

WAIgetName() Gets the server ID (for example,
https-myhost) of the web server.

“getName” on page 147

WAIgetPort() Gets the port number that the web
server listens to.

“getPort” on page 148

WAIgetRequestHeader() Gets a header from the HTTP
request sent by the client.

“getRequestHeader” on
page 121

WAIgetRequestInfo() Gets information about the client
request (such as the value of a CGI
1.1 environment variable).

“getRequestInfo” on page 122

WAIgetResponseContentLength() Gets the content length (the value of
the Content-length header) of the
response.

“getResponseContentLength”
on page 125
56 Writing Web Applications with WAI

Summary of C Functions
WAIgetResponseHeader() Gets a header from the HTTP
response you plan to send to the
client.

“getResponseHeader” on
page 126

WAIgetServerSoftware() Gets the type and version of the
server software.

“getServerSoftware” on
page 148

WAIimplIsReady() Prepares your WAI application to
receive requests.

“Registering Your Web
Application Service” on
page 52

WAIisSecure() Specifies whether or not the server is
run with SSL enabled.

“isSecure” on page 149

WAILogError() Logs an entry to the server’s error log
file (server_root/server_id/logs/errors on
UNIX and
server_root\server_id\logs\errors on
Windows NT).

“LogError” on page 128

WAIReadClient() Reads data from the client (for
example, for data sent through the
HTTP POST method).

“ReadClient” on page 130

WAIregisterService() Registers the WAI application with
the web server.

“RegisterService” on page 153

WAIRespondRedirect() Redirects the client to a different
URL.

“RespondRedirect” on page 134

(*WAIRunFunction)() Type definition for the function that
processes HTTP requests.

“Run” on page 153

WAIsetCookie() Sets a cookie in the response header
to be sent to the client.

“setCookie” on page 135

WAIsetRequestInfo() (This method has no functional use at
this time.)

“setRequestInfo” on page 138

WAIsetResponseContentLength() Sets the content length (the value of
the Content-length header) of the
response to be sent to the client.

“setResponseContentLength”
on page 138

WAIsetResponseContentType() Sets the content type (the value of the
Content-type header) of the response
to be sent to the client.

“setResponseContentType” on
page 139

Table 4.1 C Functions in WAI

Function Name Description For More Information, See...
Chapter 4, Writing a WAI Application in C 57

Summary of C Functions
WAIsetResponseStatus() Sets the HTTP response code (for
example, 404 for "File Not Found")
of the response to be sent to the
client.

“setResponseStatus” on
page 140

WAIStartResponse() Starts sending the response back to
the client.

“StartResponse” on page 141

WAIstringFree() Frees a string from memory. “StringDelete” on page 154

WAIWriteClient() Writes data to the client. “WriteClient” on page 142

Table 4.1 C Functions in WAI

Function Name Description For More Information, See...
58 Writing Web Applications with WAI

C h a p t e r

5
Writing a WAI Application in C++
WAI provides a set C++ classes and methods that you can use to write a WAI
application. Your C++ application should:

• Declare a class that derives from the Netscape WAIWebApplicationService
base class. See “Declaring a Class for Your Web Service” on page 63

• Define a Run method for processing the incoming HTTP request. See
“Defining a Method to Process Requests” on page 64.

• Define a getServiceInfo method for returning information about the service
and its version.

• Create an instance of your class and register your service to the web
server’s host machine. (For instructions, see “Registering Your Web
Application Service” on page 73.)

After you write and compile your application, see the section “Running Your
Web Service” on page 75 for instructions on setting up and running your web
service.

Before continuing on, note the following points:

• You must include the ONESrvPI.hpp header file when writing a WAI
application in C++:

#include "ONESrvPI.hpp"
Chapter 5, Writing a WAI Application in C++ 59

Setting up Microsoft Visual C++ for use with WAI (Windows NT only)
This header file declares the C++ classes available in WAI.

• The web server includes a sample C++ application that demonstrates how you can
use WAI to write a web application service. The example is located in the server_root/
wai/examples/WASP directory on UNIX and the server_root\wai\examples\WASP
directory on Windows NT.

You can follow this example as a guideline for writing and compiling your
application.

• If you are using Visual C++ you need follow the instructions in Setting up
Microsoft Visual C++ for use with WAI (Windows NT only) to set up your
Visual C++ environment specifically for WAI.

The rest of this chapter explains how to write a WAI application in C++.

Setting up Microsoft Visual C++ for use
with WAI (Windows NT only)

Follow these steps when setting up your C++ project in Microsoft Visual C++. These
steps are specific to Microsoft Visual C++ version 5.0.

1. Specify the type of application you want to write.

Choose New from the File menu. Click the Projects tab and select the type of
application you want to write from this list:

• Console application

• Windows application

• DLL application

2. Fill in the Project Name field.

Type the name of the project in the Project Name field and click OK.

3. Add the project files.
60 Writing Web Applications with WAI

Setting up Microsoft Visual C++ for use with WAI
From the Project menu, choose Add to Project and then choose Files. Use the file
browser to add the files you want to include in your project.

4. Specify that the code be generated using the multi-threaded dll run-time
library.

From the Project menu, select Settings. Click the C/C++ tab and choose Code
Generation from the pull-down menu next to the Category option (see
Figure 5.1).

Choose Multithreaded DLL from pull-down menu next to the “Use run-time
library” option.

Figure 5.1 Project Settings, C/C++ Code Generation

5. Specify XP_WIN32 as the macro definition.
Chapter 5, Writing a WAI Application in C++ 61

Setting up Microsoft Visual C++ for use with WAI (Windows NT only)
Click Settings from the Project menu. Click the C/C++ tab and choose
Preprocessor from the Category option menu (see Figure 5.2).

Figure 5.2 Project Settings, C/C++ Preprocessor

Add XP_WIN32 to the Preprocessor Definitions field.

6. In the field labeled “Additional include directories,” type the names of any
additional include directories.

Add the include file directories (../../include,..\..\include)

Alternatively, you can add the include file directories by choosing Options from the
Tools menu and clicking the Directories tab. Choose “Include files” from the “Show
directories for” field, then add the include directories to the list.

7. Add any additional libraries to list of libraries.
62 Writing Web Applications with WAI

Declaring a Class for Your Web Service
Choose Settings from the Project menu. Click the Link tab in the Project Settings
dialog box. Choose General from the pull-down menu next to the Category option.
In the “Object/library modules” field, type the names of additional libraries.
See Figure 5.3.

Figure 5.3 Project Settings Dialog, Link Options

If you are using the Visual C++ Debug, do not use the ALLOC and FREE executables.
They conflict with the WAI API functions and can cause unpredictable results.

Declaring a Class for Your Web Service
The first step in developing a WAI application in C++ is to declare a class that derives
from the Netscape WAIWebApplicationService base class. (This class represents a
web application service.)

For example, the WASP example provided with the web server declares a
WebApplicationServicePrototype class, which is derived from the
WAIWebApplicationService base class:

//

// Declare a WAS class deriving from Netscape base class
Chapter 5, Writing a WAI Application in C++ 63

Defining a Method to Process Requests
//

class WebApplicationServicePrototype: public WAIWebApplicationService

{

public:

WebApplicationServicePrototype(const char *object_name = (const char *)NULL)

;

long Run(WAIServerRequest_ptr session);

char *getServiceInfo();

};

WebApplicationServicePrototype::WebApplicationServicePrototype(const char
*object_name):WAIWebApplicationService(object_name)

{

}

...

The class that you define represents your web service. You need to define the following
methods for your class; these methods are virtual methods in the
WAIWebApplicationService base class:

• Run

This method is called by the web server to process HTTP requests for this service.
For details on defining this method, see “Defining a Method to Process
Requests” on page 64.

• getServiceInfo

This method returns information about your web service (such as version
information). For details on defining this method, see “Providing
Information About the Service” on page 72.

Defining a Method to Process Requests
The method that processes incoming HTTP requests (not all requests, just the requests
directed specifically at your service) should use the following syntax:

long Run(WAIServerRequest_ptr session);
64 Writing Web Applications with WAI

Defining a Method to Process Requests
session represents the HTTP request to be processed. You can call the methods of this
object to get data from the request, set data in the response headers, and send the
response back to the client.

The rest of this section explains how you can use these methods and objects to process
the request. WAI functions enable you to do the following tasks:

• Getting Data from the Request

• Sending the Response Back to the Client

Getting Data from the Request

Using an object of the WAIServerRequest class (see the section
“netscape::WAI::HttpServerRequest” on page 110 for details), you can get data
from the client’s HTTP request. You can call functions accomplish the following
tasks:

• Getting Headers from the HTTP Request

• Getting Information about the Server

Getting Headers from the HTTP Request

Given an object of the WAIServerRequest class, you can get headers from the
corresponding HTTP request by calling the getRequestHeader method. For
example, the following section of code gets the user-agent HTTP request header
from the incoming request:

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

char *var = 0;

ostrstream outstr;

...

if (session->getRequestHeader("user-agent", var) == WAISPISuccess){

outstr << "User Agent: " << var;

StringDelete(var);

}
Chapter 5, Writing a WAI Application in C++ 65

Defining a Method to Process Requests
outstr << endl;

...

}

In addition to HTTP headers, you can get other types of information (such as CGI 1.1
environment variables) from the HTTP request by calling the getRequestInfo
method of the WAIServerRequest class.

The section “getRequestInfo” on page 122 lists the types of information you can
retrieve from the request. Note that the CGI 1.1 environment variables that
describe the server are accessible through the getInfo method. See “Getting
Information about the Server” on page 66 for details.

The following section of code gets and prints the value of the REMOTE_ADDR CGI 1.1
environment variable for the incoming request:

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

char *var = 0;

ostrstream outstr;

...

if (session->getRequestInfo("REMOTE_ADDR", var) == WAISPISuccess){

outstr << "Client IP Address: " << var;

StringDelete(var);

}

outstr << endl;

...

}

Getting Information about the Server

WAI also provides methods for getting information about the server, such as the server
identifier or CGI 1.1 environment variables that describe the server (for example,
SERVER_NAME or SERVER_PORT).
66 Writing Web Applications with WAI

Defining a Method to Process Requests
These methods are available as part of the WAIServerContext class (for more information,
see the section “netscape::WAI::HttpServerContext” on page 144). You can get
an object of this class by using the getContext method of the WAIServerRequest
class.

For example, the following section of code gets an WAIServerContext object:

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

...

WAIServerContext_ptr context = session->getContext();

...

}

To get information about the server, you can call the getInfo method of the
WAIServerContext object and specify the type of information that you want to retrieve.
For example, the following section of code gets the value of the SERVER_PORT CGI 1.1
environment variable:

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

int port_num;

ostrstream outstr;

WAIServerContext_ptr context = session->getContext();

...

if (context->getInfo("SERVER_PORT", port_num) == WAISPISuccess){

outstr << "Port Number: " << var;

StringDelete(var);

}

outstr << endl;

}

...

}

Chapter 5, Writing a WAI Application in C++ 67

Defining a Method to Process Requests
For a list of the types of information you can retrieve from this method, see the
section “getInfo” on page 146.

You can also use methods that specifically retrieve a certain type of information. For
example, to get the port number that the server listens to, you can call the
getPort method:

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

int port_num = 0;

ostrstream outstr;

WAIServerContext_ptr context = session->getContext();

...

if ((port_num = context->getPort()) != 0){

outstr << "Port Number: " << var;

StringDelete(var);

}

outstr << endl;

}

...

}

For details on getting server information, see the section
“netscape::WAI::HttpServerContext” on page 144.

Getting and Setting Cookies in the Client

Before a client accesses a URL, the client checks the domain name in the URL against the
cookies that it has. If any cookies are from the same domain as the URL, the client
includes a header in the HTTP request that contains the name/value pairs from the
matching cookies.

The Cookie header has the following format:

Cookie: name=value; [name1=value1; name2=value2 ...]
68 Writing Web Applications with WAI

Defining a Method to Process Requests
To get these name/value pairs from the HTTP request, call the getCookie
method. To set your own name/value pairs in a client, call the setCookie
method.

The following example illustrates how you can use these methods to get and set cookies
in the client.

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

...

char *cookiebuff = NULL;

/* If no cookie has been set in the client, set a cookie. */

if (session->getCookie(cookiebuff)== WAISPIFailure)

session->setCookie("MY_NAME", "My Value", "", "", "/", WAI_FALSE);

...

}

Sending the Response Back to the Client

Methods of the HttpServerRequest class also allow you to control the response sent back
to the client. You can call these functions to accomplish the following tasks:

• Setting Headers in the Response

• Setting the Status of the Response

• Sending the Response

• Redirecting Users to Another Page

Setting Headers in the Response

WAI includes functions that you can use to set headers in the response that you want
sent back to the client. You can call the addResponseHeader method to set any
header in the response. For example, the following section of code adds the
Pragma header to the response:

long
Chapter 5, Writing a WAI Application in C++ 69

Defining a Method to Process Requests
WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

...

session->addResponseHeader("Pragma", "no-cache");

...

}

You can also call functions that set specific types of headers. For example, you can call:

• setResponseContentType to specify the content type of the response (the
Content-type header)

• setResponseContentLength to specify the length of the response in bytes (the
Content-length header)

Setting the Status of the Response

To set the status of the response sent back to the client, call the setResponseStatus
method. For example, the following section of code sets the response code to a 404
status code ("File Not Found"):

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

...

session->setResponseStatus(404, "");

...

}

Sending the Response

After you have specified the length of the content you want sent back to the client, you
can start sending the response to the client. Call the StartResponse method to
start sending the response.

To send the rest of the data to the client, call the WriteClient method.

The following example sends the string Hello World back to the client:

long
70 Writing Web Applications with WAI

Defining a Method to Process Requests
WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

...

/* Specify the string that you want to send back to the client. */

char *buffer = "Hello World\n";

size_t bufflen = strlen(buffer);

/* Specify the length of the data that you are about to send back. */

session->setResponseContentLength(bufflen);

/* Start sending the response back to the client. */

session->StartResponse();

/* Write the string to the client. */

session->WriteClient((const unsigned char *)buffer, bufflen);

...

}

Redirecting Users to Another Page

In your WAI application, you can also redirect users to a different page than the
requested page. You can either automatically redirect the user to a new page, or you can
present the user with a link to click on manually.

To automatically redirect the user to a different page, you can do the following:

1. Call the addResponseHeader method to add a Location header, which
points to the new location.

2. Call the setResponseStatus method to set the response status to 301 (if
the page has permanently moved) or 302 (if the page has
temporarily moved).

3. Call the StartResponse method to send the response back to the client.

For example:

long
Chapter 5, Writing a WAI Application in C++ 71

Providing Information About the Service
WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

session->addResponseHeader("Location", "http://www.newsite.com/");

session->setResponseStatus(301, "Moved permanently to newsite!");

session->StartResponse();

return 0;

}

To give the user the choice of going to the new location (rather than automatically
redirecting the URL), you can call the RespondRedirect method:

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

session->RespondRedirect("http://www.newsite.com/");

session->StartResponse();

return 0;

}

Calling this method will send the following page back to the client:

Moved Temporarily

This document has moved to a new location. Please update your documents and hotlists accordingly.

The word "location" on this page is a link pointing to the new location of the page.

Providing Information About the Service
Part of the WAIWebApplicationService base class is the virtual getServiceInfo
method. When you write your web application class (which is derived from the
base class), you need to include a definition of this method.

The getServiceInfo method should provide information about the web service,
such as the name of the author, the version of the service, and so on.

The following section of code defines the getServiceInfo method for a web
service class WebApplicationServicePrototype. The example uses the StringDup
method to allocate memory for the returned string.
72 Writing Web Applications with WAI

Registering Your Web Application Service
...

char *

WebApplicationServicePrototype::getServiceInfo(void)

{

return StringDup("My Test Web Service. Version 1.0\nCopyright Netscape Communications
Corporation\nAuthor: Mozilla\n");

}

...

Registering Your Web Application Service
Next, you need to create an instance of your class and assign an instance name to the
object. You need to register your web service to the web server under this instance name.
The instance name that you select for your web service can be an arbitrary name; it does
not need to be the same name as your application. (For example, if your application is
named MyApp or MyApp.exe, your instance name can be MyWebService. They do not
need to have the same name.)

Note, however, that your instance name must be unique. No other registered WAI
application can have the same name.

Registering With a Web Server

To register your application with the web server’s built-in name service, call the
RegisterService method. Pass the name of the web server’s hostname and port
number as an argument (in the form hostname:portnumber) to this method.

Note that if your web server is running with SSL enabled, you need to specify a different
value for this argument. For details, see “Registering With a Web Server” on
page 73.

The following section of code creates the web service ExeFoo from the web service class
WebApplicationServicePrototype. The example registers this object to the web server
under the instance name MyService.

...

WAIBool rv;
Chapter 5, Writing a WAI Application in C++ 73

Registering Your Web Application Service
char *host = "myhost.mydomain.com:81";

char *instanceName = "MyService";

...

/* Create the web service. */

WebApplicationServicePrototype ExeFoo(instanceName);

/* Register the web service. */

rv = ExeFoo.RegisterService(host);

/* Provide feedback on the result of the registration attempt. */

if (rv == WAI_FALSE) {

printf("Failed to register with %s\n", host);

} else {

printf("Successfully registered with %s\n", host);

}

...

Registering With an SSL-Enabled Server

Typically, when you call the RegisterService or the WAIregisterService function to
register your web service, you pass the host name and port number of your
web server as an argument.

The function constructs a URL to the web server’s built-in naming service and gets the
object reference for this naming service. This object reference is used to register your
application.

If your web server has SSL enabled, the RegisterService or WAIregisterService
function cannot get the naming service object reference in the manner
described above. Instead, it needs to use the Interoperable Object Reference
(IOR) file to get the object reference for the naming service.

To find the IOR file, the RegisterService function assembles a path to the file
using the following information:
74 Writing Web Applications with WAI

Running Your Web Service
• The server root (for example, the default server root is /usr/netscape/suitespot or
C:\netscape\suitespot)

• The server identifier (for example, the default server identifier is https-hostname)

If your web server does not use the default values for either of these, you must set
environment variables to identify the correct values before running your WAI
application:

• If your server is installed under a different directory than the default server root, you
must set the NS_SERVER_ROOT environment variable to the location of your server
root.

For example, suppose that your server is installed under /export/netscape/suitespot. In
a C shell, you need to set the following environment variable before running your
WAI application:

setenv NS_SERVER_ROOT /export/netscape/suitespot

• If you are not using the default server identifier, you must set the NS_SERVER_ID
environment variable to the server identifier that you are using.

For example, suppose that your server is running on the machine preston and your
server identifier is https-webserver instead of https-preston. In C shell, you need to set
the following environment variable before running your WAI application:

setenv NS_SERVER_ID https-webserver

Running Your Web Service
After you write and compile your application, you can run your application to make your
web service available. The web server should recognize your application, if you’ve
registered it (see “Registering Your Web Application Service” on page 73).

End users can access your service by going to the URL:

http://server_name:port_number/iiop/instance_name

For example, you can access the C++ WASP example by going to the URL:

http://server_name:port_number/iiop/WASP
Chapter 5, Writing a WAI Application in C++ 75

Running Your Web Service
76 Writing Web Applications with WAI

C h a p t e r

6
Writing a WAI Application in Java
WAI provides a set of Java classes and methods that you can use to write a
WAI application. Your Java application should:

• Declare a class that derives from the Netscape WAIWebApplicationService
base class.

• Define a Run method for processing the incoming HTTP request. (For
details, see “Defining a Method to Process Requests” on page 80.)

• Define a getServiceInfo method for returning information about the service
and its version.

• Create an instance of your class and register your service to the web
server’s host machine. (For instructions, see “Registering Your Web
Application Service” on page 89.)

After you write and compile your application, see the section “Running Your
Web Service” on page 92 for instructions on setting up and running your web
service.

Before continuing on, note the following points:

• You must import the class files under netscape.WAI.*, org.omg.CORBA.*, and
org.omg.CosNaming.*:

import org.omg.CORBA.*;

import org.omg.CosNaming.*;
Chapter 6, Writing a WAI Application in Java 77

Declaring a Class for Your Web Service

ot/
import netscape.WAI.*;

• You must include the files nisb.zip and WAI.zip in your CLASSPATH environment
variable. These files are located in the server_root/wai/java directory in UNIX and in
the server_root\wai\java directory on Windows NT.

For example, in C shell on UNIX, enter the following command (if your server is
installed under /usr/netscape/suitespot):

setenv CLASSPATH “$CLASSPATH”:/usr/netscape/suitespot/wai/java/nisb.zip:/usr/netscape/suitesp
wai/java/WAI.zip

On Windows NT, open the System Control Panel, and add these zip files to your
CLASSPATH environment variable listed there.

• The web server includes a sample Java application that demonstrates how you can
use WAI to write a web application service. The example is located in the server_root/
wai/examples/WASP directory on UNIX and the server_root\wai\examples\WASP
directory on Windows NT.

You can follow this example as a guideline for writing and compiling your
application.

The rest of this chapter explains how to write a WAI application in Java.

Declaring a Class for Your Web Service
The first step in developing a WAI application in Java is to declare a class that derives
from the Netscape WAIWebApplicationService base class. (This class represents a
web application service.)

For example, the WASP example provided with the web server declares a
MyWebApplicationService class, which is derived from the
WAIWebApplicationService base class:

import java.applet.*;

import java.io.*;

import java.awt.*;

import java.net.*;

import java.util.*;

import java.lang.*;
78 Writing Web Applications with WAI

Declaring a Class for Your Web Service
/* Make sure to import these classes. */

import org.omg.CORBA.*;

import org.omg.CosNaming.*;

import netscape.WAI.*;

...

/*

* Implementation class for A WAS.

* Extends wrapper class for WAI CORBA object

*/

class MyWebApplicationService extends WAIWebApplicationService {

String instanceName;

MyWebApplicationService(java.lang.String name) throws

org.omg.CosNaming.NamingContextPackage.CannotProceed,

org.omg.CosNaming.NamingContextPackage.InvalidName,

org.omg.CosNaming.NamingContextPackage.AlreadyBound,

org.omg.CORBA.SystemException{

super(name);

instanceName = name;

}

...

The class that you define represents your web service. You need to define the following
methods for your class; these methods are virtual methods in the
WAIWebApplicationService base class:

• Run

This method is called by the web server to process HTTP requests for this service.
For details on defining this method, see “Defining a Method to Process
Requests” on page 80.

• getServiceInfo

This method returns information about your web service (such as version
information). For details on defining this method, see “Providing
Information About the Service” on page 88.
Chapter 6, Writing a WAI Application in Java 79

Defining a Method to Process Requests
Defining a Method to Process Requests
The method that processes incoming HTTP requests (not all requests, just the requests
directed specifically at your service) should use the following syntax:

public int Run(netscape.WAI.HttpServerRequest request);

request represents the HTTP request to be processed. You can call the methods of this
object to get data from the request, set data in the response headers, and send the
response back to the client.

The rest of this section explains how you can use these methods and objects to process
the request. WAI functions enable you to do the following tasks:

• Getting Data from the Request

• Sending the Response Back to the Client

Getting Data from the Request

Using an object of the netscape.WAI.HttpServerRequest class (see the section
“netscape::WAI::HttpServerRequest” on page 110 for details), you can get data
from the client’s HTTP request. You can call functions accomplish the following
tasks:

• Getting Headers from the HTTP Request

• Getting Information about the Server

Getting Headers from the HTTP Request

Given an object of the netscape.WAI.HttpServerRequest class, you can get headers from
the corresponding HTTP request by calling the getRequestHeader method. For
example, the following section of code gets the user-agent HTTP request header
from the incoming request:

public int Run(netscape.WAI.HttpServerRequest request) {

...

/* Prepare an output stream to send data back to the client. */

ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);
80 Writing Web Applications with WAI

Defining a Method to Process Requests
...

/* Get the value of the user-agent header. */

org.omg.CORBA.StringHolder value = new org.omg.CORBA.StringHolder();

if (request.getRequestHeader("user-agent", value) == HttpServerReturnType.Success){

content.print("User agent: " + value.value);

}

...

}

In addition to HTTP headers, you can get other types of information (such as CGI 1.1
environment variables) from the HTTP request by calling the getRequestInfo
method of the netscape.WAI.HttpServerRequest class.

The section “getRequestInfo” on page 122 lists the types of information you can
retrieve from the request. Note that the CGI 1.1 environment variables that
describe the server are accessible through the getInfo method. See “Getting
Information about the Server” on page 82 for details.

The following section of code gets and prints the value of the REMOTE_ADDR CGI 1.1
environment variable from the incoming request:

public int Run(netscape.WAI.HttpServerRequest request) {

...

/* Prepare an output stream to send data back to the client. */

ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);

...

/* Get the client’s IP address. */

org.omg.CORBA.StringHolder value = new org.omg.CORBA.StringHolder();

if (request.getRequestInfo("REMOTE_ADDR", value) == HttpServerReturnType.Success){

content.print("Client addr: " + value.value);

}

...

}

Chapter 6, Writing a WAI Application in Java 81

Defining a Method to Process Requests
Getting Information about the Server

WAI also provides methods for getting information about the server, such as the server
identifier or CGI 1.1 environment variables that describe the server (for example,
SERVER_NAME or SERVER_PORT).

These methods are available as part of the netscape.WAI.HttpServerContext class (for
more information, see the section “netscape::WAI::HttpServerContext” on
page 144). You can get an object of this class by using the getContext method of
the netscape.WAI.HttpServerRequest class.

For example, the following section of code gets an netscape.WAI.HttpServerContext
object:

public int Run(netscape.WAI.HttpServerRequest request) {

...

/* Get the HttpServerContext object describing this web server. */

HttpServerContext context = request.getContext();

...

}

To get information about the server, you can call the getInfo method of the
netscape.WAI.HttpServerContext object and specify the type of information that you want
to retrieve. For example, the following section of code gets the value of the
SERVER_PORT CGI 1.1 environment variable:

public int Run(netscape.WAI.HttpServerRequest request) {

...

/* Prepare an output stream to send data back to the client. */

ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);

/* Get the HttpServerContext object for this web server. */

HttpServerContext context = request.getContext();

...

/* Get the port number that the web server listens to. */

org.omg.CORBA.StringHolder svar;

if (context.getInfo(“SERVER_PORT”, svar) == HttpReturnType.Success){
82 Writing Web Applications with WAI

Defining a Method to Process Requests
content.print("Web Server port number: " + svar);

}

...

}

For a list of the types of information you can retrieve from this method, see the
section “getInfo” on page 146.

You can also use methods that specifically retrieve a certain type of information. For
example, to get the port number that the server listens to, you can call the
getPort method:

public int Run(netscape.WAI.HttpServerRequest request) {

...

/* Prepare an output stream to send data back to the client. */

ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);

/* Get the HttpServerContext object for this web server. */

HttpServerContext context = request.getContext();

...

/* Get the port number that the web server listens to. */

int portNum = 0;

if ((portNum = context.getPort()) != 0){

content.print("Web Server port number: " + portNum);

}

...

}

For details on getting server information, see the section
“netscape::WAI::HttpServerContext” on page 144.
Chapter 6, Writing a WAI Application in Java 83

Defining a Method to Process Requests
Getting and Setting Cookies in the Client

Before a client accesses a URL, the client checks the domain name in the URL against the
cookies that it has. If any cookies are from the same domain as the URL, the client
includes a header in the HTTP request that contains the name/value pairs from the
matching cookies.

The Cookie header has the following format:

Cookie: name=value; [name1=value1; name2=value2 ...]

To get these name/value pairs from the HTTP request, call the getCookie
method. To set your own name/value pairs in a client, call the setCookie
method.

The following example illustrates how you can use these methods to get and set cookies
in the client.

public int Run(netscape.WAI.HttpServerRequest request)

{

...

org.omg.CORBA.StringHolder
cookiebuff = new org.omg.CORBA.StringHolder();

/* If no cookie has been set in the client, set a cookie. */

if (request.getCookie(cookiebuff)== HttpServerReturnType.Failure)

request.setCookie("MY_NAME", “My Value”, "", "", "/", false);

...

}

Sending the Response Back to the Client

Methods of the HttpServerRequest class also allow you to control the response sent back
to the client. You can call these functions to accomplish the following tasks:

• Setting Headers in the Response

• Setting the Status of the Response

• Sending the Response
84 Writing Web Applications with WAI

Defining a Method to Process Requests
• Redirecting Users to Another Page

Setting Headers in the Response

WAI includes functions that you can use to set headers in the response that you want
sent back to the client. You can call the addResponseHeader method to set any
header in the response. For example, the following section of code adds the
Pragma header to the response:

public int Run(netscape.WAI.HttpServerRequest request)

{

...

request.addResponseHeader("Pragma", "no-cache");

...

}

You can also call functions that set specific types of headers. For example, you can call:

• setResponseContentType to specify the content type of the response (the
Content-type header)

• setResponseContentLength to specify the length of the response in bytes (the
Content-length header)

Setting the Status of the Response

To set the status of the response sent back to the client, call the setResponseStatus
method. For example, the following section of code sets the response code to a 404
status code (“File Not Found”):

public int Run(netscape.WAI.HttpServerRequest request)

{

...

request.setResponseStatus(404, ““);

...

}

Chapter 6, Writing a WAI Application in Java 85

Defining a Method to Process Requests
Sending the Response

After you have specified the length of the content you want sent back to the client, you
can start sending the response to the client. Call the StartResponse method to
start sending the response.

To send the rest of the data to the client, call the WriteClient method.

The following example sends the string Hello World back to the client:

public int Run(netscape.WAI.HttpServerRequest request)

{

...

/* Prepare an output stream to send data back to the client. */

ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

PrintStream content = new PrintStream(streamBuf);

...

/* Send “Hello World” to the print stream. */

String buffer = "Hello World\n";

content.print(buffer);

/* Convert the string to a byte array for WriteClient(). */

HttpServerReturnType rc;

byte[] outbuff = streamBuf.toByteArray();

try {

/* Specify the length of the data you will send. */

rc = request.setResponseContentLength(outbuff.length);

/* Start sending your response. */

request.StartResponse();

}

catch(org.omg.CORBA.SystemException e){

}
86 Writing Web Applications with WAI

Defining a Method to Process Requests
/* Write data back to the client. */

int write_cnt = request.WriteClient(outbuff);

...

}

Redirecting Users to Another Page

In your WAI application, you can also redirect users to a different page than the
requested page. You can either automatically redirect the user to a new page, or you can
present the user with a link to click on manually.

To automatically redirect the user to a different page, do the following:

1. Call the addResponseHeader method to add a Location header, which
points to the new location.

2. Call the setResponseStatus method to set the response status to 301 (if
the page has permanently moved) or 302 (if the page has
temporarily moved).

3. Call the StartResponse method to send the response back to the client.

For example:

public int Run(HttpServerRequest request){

try {

request.addResponseHeader("Location", "http://www.newsite.com/");

request.setResponseStatus(301, "Moved permanently to newsite.com!");

request.StartResponse();

}

catch(org.omg.CORBA.SystemException e){

}

catch(java.lang.Exception e) {

System.err.println(e);

}

return 0;

}

Chapter 6, Writing a WAI Application in Java 87

Providing Information About the Service
To give the user the choice of going to the new location (rather than automatically
redirecting the URL), you can call the RespondRedirect method:

public int Run(HttpServerRequest request){

request.RespondRedirect("http://www.newsite.com/");

try {

request.StartResponse();

}

catch(org.omg.CORBA.SystemException e){

}

catch(java.lang.Exception e) {

System.err.println(e);

}

return 0;

}

Calling this method will send the following page back to the client:

Moved Temporarily

This document has moved to a new location. Please update your documents and hotlists accordingly.

The word "location" on this page is a link pointing to the new location of the page.

Providing Information About the Service
Part of the WAIWebApplicationService base class is the virtual getServiceInfo
method. When you write your web application class (which is derived from the
base class), you need to include a definition of this method.

The getServiceInfo method should provide information about the web service,
such as the name of the author, the version of the service, and so on.

The following sections of code defines the getServiceInfo method for a web
service class WebApplicationServicePrototype.

...

public java.lang.String getServiceInfo(){

return "Java Test Web Application Service V1.0\nCopyright Netscape Communications
88 Writing Web Applications with WAI

Registering Your Web Application Service
Corporation\nAuthor: Mozilla\n";

}

...

Registering Your Web Application Service
1. Initialize the object request broker (ORB) and the basic object adaptor

(BOA):

• Call the org.omg.CORBA.ORB.init() method to initialize the ORB. This method
returns an ORB object.

• Call that ORB object’s BOA_init() method to initialize the BOA. This method
returns a BOA object.

For example:

/* Initialize the object request broker (ORB). */

ORB orb = org.omg.CORBA.ORB.init();

/* Initialize the basic object adapter (BOA). */

BOA boa = orb.BOA_init();

For more information on these objects and methods, see the Netscape Internet Service
Broker for Java Reference Guide.

2. Create an instance of your class and assign an instance name to the object.

You need to register your web service to the web server under this instance name.
The instance name that you select for your web service can be an arbitrary name; it
does not need to be the same name as your application. (For example, if your
application is named MyApp.class, your instance name can be MyWebService. They
do not need to have the same name.)

Note, however, that your instance name must be unique. No other registered WAI
application can have the same name.

Registering With a Web Server

To register your application with the web server’s built-in name service:
Chapter 6, Writing a WAI Application in Java 89

Registering Your Web Application Service
1. Call the RegisterService method.

Pass the name of the web server’s hostname and port number as an argument (in the
form hostname:portnumber) to this method.

Note that if your web server is running with SSL enabled, you need to specify a
different value for this argument. For details, see “Registering With an SSL
Enabled Server” on page 91.

2. After you register the service, call the impl_is_ready() method of the BOA
object to indicate that your service prepared to receive incoming requests.

Registering With a Web Server

The following section of code creates the web service mpi from the web service class
MyWebApplicationService. The example registers this object to the web server under the
instance name MyJavaService.

...

String host = “myhost.mydomain.com:81”;

String instanceName = “MyJavaService”;

try {

/* Initialize the object request broker (ORB). */

ORB orb = org.omg.CORBA.ORB.init();

/* Initialize the basic object adapter (BOA). */

BOA boa = orb.BOA_init();

/* Create the web service. */

try {

MyWebApplicationService
mpi = new MyWebApplicationService(instanceName);

System.out.println(mpi + " is ready.");

/* Register the web service. */

mpi.RegisterService(host);
90 Writing Web Applications with WAI

Registering Your Web Application Service
/* Wait for incoming requests */

boa.impl_is_ready();

}

catch(java.lang.Exception e){

System.out.println("WAS failed to initialize.");

System.err.println(e);

}

...

Registering With an SSL Enabled Server

If your web server has SSL enabled, you need to use the following format specifying the
argument to RegisterService. (In the case of an SSL-enabled server, the method
gets the object reference from the Interoperable Object Reference (IOR) file.)

file:path_to_IOR_file

This file is located in the wai/NameService directory under your server root directory. The
file uses the following naming convention:

server_id.IOR

For example, on the machine named preston, the IOR might be named https-preston.IOR.

Suppose your web server is running on the host machine named feathers on port number
8080. Suppose that the server is installed under the server root directory /usr/netscape/
suitespot with the server identifier https-feathers. If SSL is enabled, you register your WAI
application in Java by calling:

RegisterService("file:/usr/netscape/suitespot/wai/NameService/https-feathers.IOR");

The RegisterService method uses the Interoperable Object Reference (IOR) file to
get the object reference for the naming service. This object reference is used to
register your application.
Chapter 6, Writing a WAI Application in Java 91

Running Your Web Service
Running Your Web Service
After you write and compile your application, you can run your application to
make your web service available. The web server should recognize your
application, if you’ve registered it (see “Registering Your Web Application
Service” on page 89).

End users can access your service by going to the URL:

http://server_name:port_number/iiop/instance_name

For example, you can access the JavaWASP example by going to the URL:

http://server_name:port_number/iiop/JavaWASP
92 Writing Web Applications with WAI

C h a p t e r

7
Writing a WAI Server Plug-In
Using WAI, you can write server plug-ins that run within the web server’s
process (as opposed to standalone applications that run in their own
processes). A server plug-in is a shared library or dynamic link library that is
loaded and initialized when the server starts up.

Most of the instructions in the previous chapters apply to writing server plug-
ins as well as applications. (For details on writing applications with WAI, see
Chapter 4, “Writing a WAI Application in C” and Chapter 5, “Writing a WAI
Application in C++”.)

Typically, when you are writing a standalone application, you register your
web application service when your application starts up. If you are writing a
server plug-in instead of an application, you need to register your web
application service when the server starts up. To do this, you need to:

• Write an initialization function to register your service (see “Writing an
Initialization Function” on page 94 for details)

• Configure the web server to run your function during startup (see
“Configuring Your Web Server” on page 96 for details)
Chapter 7, Writing a WAI Server Plug-In 93

Writing an Initialization Function
Writing an Initialization Function
If you are writing a server plug-in, you need to write an initialization function
to register your web application service. You can set up this initialization
function to get invoked when the web server starts up.

In general, you call the same functions and methods to register a web
application service in a server plug-in as you do to register the service in an
application. The difference is that you call these functions and methods within
an initialization function.

The next section, “Initialization in C” on page 94, explains how to write your
initialization functions.

Initialization in C

The initialization function must have the following prototype:

myfunc(pblock *pb, Session *sn, Request *rq)

In the initialization function, you create a new web application service and
register the service. As is the case with standalone applications, you call the
WAIcreateWebAppService() function to create the service and WAIregisterService() to
register the service. For example:

...

// Declare the global variable obj as the web service

IIOPWebAppService_t obj;

...

// Create a new web application service

obj = WAIcreateWebAppService("MyServiceName", MyRunFunction, 0, 0);

// Register the web application service

WAIregisterService(obj, "");

...
94 Writing Web Applications with WAI

Writing an Initialization Function
Unlike standalone applications, you do not need to specify host and port
information as arguments to the WAIcreateWebAppService() function. Because
your service runs within the web server process, the host and port information
is not necessary.

The following example registers a web application service under the instance name
CIIOPip. The service is defined in a server plug-in, which provides the initialization
function CIIOPinit() for registering the service.

...

// Define your Run function

long

MyRunFunction(ServerSession_t obj)

{

...

}

...

// Declare the global variable anObject as a web service instance

IIOPWebAppService_t obj;

...

// Specify the right type for compiling on Windows NT

#if defined(WIN32)

#define DLLEXPORT __declspec(dllexport)

#else

#define DLLEXPORT

#endif

...

// Make the initialization function available

extern "C" {

DLLEXPORT int CIIOPinit(pblock *pb, Session *sn, Request *rq);

}

...

// Your initialization function (called at server startup)

int
Chapter 7, Writing a WAI Server Plug-In 95

Configuring Your Web Server
CIIOPinit(pblock *pb, Session *sn, Request *rq)

{

// Create a new web application service

obj = WAIcreateWebAppService("CIIOPip", MyRunFunction, 0, 0);

// Register the web application service

WAIregisterService(obj, "");

return 0;

}

...

Configuring Your Web Server
Next, you need to configure the web server to run your initialization function when the
server starts up.

Add the following Init directives to your obj.conf file (which is located under server_root/
server_id/config in UNIX and server_root\server_id\config in Windows NT.

Init funcs="init_function" fn="load-modules" shlib="shared_lib"

Init fn="init_function"

For example, suppose you define an initialization function myinit() in a shared/dynamic
library /usr/netscape/suitespot/wai/lib/mylib.so. You need to add the following directives to
your obj.conf file:

Init funcs="myinit" fn="load-modules" shlib="/usr/netscape/suitespot/wai/lib/mylib.so"

Init fn="myinit"

When a WAI plugin needs to be run in-process to the http server, the load-modules and
Init directives for this should occur after those corresponding to the load-modules and
Init directives libONEiiop.so (or .dll).
96 Writing Web Applications with WAI

C h a p t e r

8
Security Guidelines for Using WAI
Using WAI, you can write and compile an application that runs as its own
process (outside the web server’s process). When a client accesses your web
service, the web server uses a built-in name service to find your application
process and execute the Run method (or, in C programs, the corresponding C
function of the type WAIRunFunction) in your web service application class.

This section discusses some of the potential security concerns that may arise
from the way in which the web server finds your application process. Before
you enable WAI on your server, make sure to read this chapter thoroughly.

How the Server Finds Your Application
When you start up your WAI application for the first time, your application registers
with the web server’s built-in name service. The web server saves the information with
the name service.

In order to access your service, end users enter a URL (or click on a link) that contains
the name of your service. When this URL is requested, the web server uses its built-in
name service to find the registered WAI application with the same name. The server
then invokes the Run method in your web application service class.
Chapter 8, Security Guidelines for Using WAI 97

Potential Security Concerns
For example, when you start the WASP example (which is provided with the web server)
for the first time, the example registers itself to the web server with the name WASP (for
the C++ example) or JavaWASP (for the Java example). End users can access the service
through the URL http://hostname:port/iiop/WASP (or JavaWASP).

By default, the basic object adapter (BOA) in the web server is set to listen only to the
local host (the loopback address, 127.0.0.1), not to a network IP address. This
configuration assumes that you plan to run your web application services on the same
machine as your web server.

Although it is possible to enable the web server’s BOA to accept requests from remote
machines, you should be aware of the potential security issues surrounding this
configuration before choosing to set up your web server in this way. The rest of this
chapter explains these potential security concerns.

Potential Security Concerns
When running WAI applications with your web server, the following scenarios could
occur:

• Someone could replace a web service by running another program that
registers under the same name. Potentially, a user could write a program that
registers itself under the same name as an existing web service. If the original
application that provides the service stops running (for example, if it crashes),
another application registered under the same name can take its place.

For example, suppose you are running the WASP example. Someone else could write
a program that registered itself under the same name (WASP) and run the program
on the web server’s host machine. If the original WASP application terminates, the
web server’s name service will find the other service registered as WASP, and the
web server will use that service.

• Someone could replace a web service or add a new service by uploading a file
to the server. A user with permission to the directory containing your plug-ins or
programs could conceivably overwrite those files. For example, if you are running
the WASP example, someone else could write a program with the same filename
(WASP) and copy that file over your original file.
98 Writing Web Applications with WAI

Recommended Guidelines
• Someone could run a program on a separate machine and register the
program with your web server. If you configure your web server to allow IIOP
connections from other machines, programs running on other machines can register
with your web server.

(Note that by default, your web server is configured to listen for IIOP connections
from only the local host address 127.0.0.1.)

The following figure illustrates the potential security concerns with enabling the web
server to run WAI applications.

Recommended Guidelines
In order to reduce the possibility that security problems might occur, Netscape
recommends that you follow these guidelines:

• Restrict login access to the web server’s host machine. If possible, do not allow
guest logins to the machine. Anyone with the ability to execute a program has the
potential to register it as a WAI service to your web server.
Chapter 8, Security Guidelines for Using WAI 99

Recommended Guidelines
• Make sure that write permissions are adequately set on web server’s host
machine. Verify that write permissions are restricted to directories and files on the
web server. In particular, make sure that server plug-ins loaded by the server or
programs started automatically by your machine are write-protected.

• Run WAI applications on the local machine only (the machine on which the
web server runs). Although you can set up the web server to access WAI
applications running on other machines, configuring the server this way increases the
risk of potential security problems. Anyone with the ability to run a program on any
machine will have the potential to register the program as a WAI service.

• (For 3.0 servers only) Restrict osagent so that it only accepts connections from
the local host. Although the web server primarily uses its built-in name service to
register WAI applications, osagent can also register WAI applications if the name
service is down.

To configure osagent to accept connections only from the local host machine, specify
the -a option with the argument 127.0.0.1 (localhost):

osagent -a 127.0.0.1
100 Writing Web Applications with WAI

Enabling IIOP Connections from Other Machines
The following figure illustrates the recommended guidelines for dealing potential security
concerns.

Enabling IIOP Connections from Other
Machines

Although Netscape recommends running WAI applications only on the web server’s
host machine, it is possible to run WAI applications on other machines and have
CORBA object implementations on other machines interact with the web servers.

Configuring Your Web Server

To enable the web server to register and find WAI applications running on other
machines, you need to configure the web server to use its network IP address instead of
the localhost IP address (127.0.0.1).
Chapter 8, Security Guidelines for Using WAI 101

Enabling IIOP Connections from Other Machines
In the obj.conf file for your server, find the Init directive that calls the IIOPinit function.
Use the OAipaddr parameter to specify the IP address that the BOA uses. For example, if
you want the BOA set up to use the IP address 204.200.215.98 instead of the local hosr,
use the following syntax:

Init LateInit=”yes” fn=”IIOPinit” OAipaddr=”204.200.215.98”

For more information, see “Configuring the Web Server’s ORB” on page 35.

(3.0 only) Running osagent

If you are not restricting the ORB to the local host machine only, you do not need to
specify the -a flag when running the osagent utility.

This flag restricts osagent to finding WAI applications on the local host machine only.
Without this flag specified, osagent will be able to find applications running on any
machine in your local network.
102 Writing Web Applications with WAI

C h a p t e r

9
WAI Reference
This section discusses the signatures of the methods of the three WAI
interfaces. According to the CORBA specification, a signature describes the
legitimate values of request parameters and returned results.

The following table summarizes the signatures, classes, and methods available.

Methods of the HTTPServerRequest Interface

addResponseHeader Adds a header to the response to be sent back to the client.

BuildURL Builds a URL from the prefix of a URI and the suffix of a
URI.

delResponseHeader Deletes a header from the response to be sent to the client.

getConfigParameter Gets the value of a parameter of the iiopexec function in
the Service directive of the obj.conf file.

getContext Gets the HTTPServerContext object for the server.

getCookie Gets a cookie from the request headers sent by the client.

getRequestHeader Gets a specified header from the client’s request.

getRequestInfo Gets information about the client request (such as the value
of a CGI 1.1 environment variable).

getResponseContentLength Gets the value of the Content-length header from the
response to be sent to the client.

getResponseHeader Gets the specified header from the response to be sent to
the client.
Chapter 9, WAI Reference 103

LogError Logs an entry to the server’s error log file (server_root/
server_id/logs/errors on UNIX and
server_root\server_id\logs\errors on Windows NT).

ReadClient Reads data from the client (for example, for data sent
through the HTTP POST method).

RespondRedirect Redirects the client to a specified URL.

setCookie Sets a cookie in the response header to be sent to the client.

setRequestInfo (This method has no functional use at this time.)

setResponseContentLength Sets the content length (the value of the Content-length
header) of the response to be sent to the client.

setResponseContentType Sets the content type (the value of the Content-type header)
of the response to be sent to the client.

setResponseStatus Sets the HTTP response code (for example, 404 for “File
Not Found”) of the response to be sent back to the client.

StartResponse Starts to send the response to the client.

WriteClient Writes data to the client.

Methods of the HTTPServerContext Interface

getHost Retrieves the host name of the machine running the web
server.

getInfo Retrieves information about the web server (such as the
value of CGI 1.1 environment variables that describe the
server).

getName Retrieves the server ID (for example, https-myhost).

getPort Retrieves the port number that the server listens to.

getServerSoftware Retrieves the product name and version of the web server
(for example, Netscape Enterprise/3.0).

isSecure Specifies whether or not SSL is enabled on the server.
104 Writing Web Applications with WAI

Constructor of the WAIWebApplicationService Base Class

WAIWebApplicationService Creates an instance of this class.

Methods of the WAIWebApplicationService Base Class

ActivateWAS Activates the object (if the object has not already been
activated by the constructor).

getServiceInfo (This is a method that you need to implement.) Provides
information about the author, version, and copyright of the
web application service that you are writing.

RegisterService Registers your WAI application with the web server running
on the specified host.

Run (This is a method that you need to implement.) Executes
your web application service (this is called whenever the
server receives an HTTP request for your service).

StringAlloc Allocates memory for a string.

StringDelete Frees a string from memory.

StringDup Copies a string into a newly allocated buffer in memory.

Constructor of the FormHandler Class

FormHandler Creates an instance of this class.

Methods of the FormHandler Base Class

IsValid Specifies whether or not the submitted data was successfully
parsed by the FormHandler class.

GetQueryString Gets the query part of the URI (the name-value pairs after
the question mark) from the request.

ParseQueryString Parses the query part of the URI (the name-value pairs after
the question mark) from the request.

Get (C++ only) Gets the value of a specified name-value pair from the
parsed form data.

Add (C++ only) Adds a name-value pair to the parsed form data.
Chapter 9, WAI Reference 105

The following table summarizes the C functions available in WAI.

Delete (C++ only) Removes a name-value pair from the parsed form data.

InitIterator (C++ only) Sets up a pointer to the beginning of the list of name-value
pairs in the parsed form data so that the Next method gets
the first name-value pair in the list.

Next (C++ only) Getst the next name-value pair from the parsed form data.

GetHashTable (Java only) Returns a hashtable containing the parsed form data.

Table 9.1 C Functions in WAI

Function Name Description For More Information, See...

WAIaddResponseHeader() Adds a header to the HTTP response
to be sent back to the client.

“addResponseHeader” on
page 111

WAIBuildURL() Builds an absolute URL from the “BuildURL” on page 113

WAIcreateWebAppService() Creates a new web application
service, assigns it an instance name,
and associates it with a function for
processing HTTP requests.

“WAIWebApplicationService”
on page 151

WAIdeleteService() Deletes a web application service.

WAIdelResponseHeader() Removes a header from the HTTP
response to be sent back to the client.

“delResponseHeader” on
page 115

WAIgetConfigParameter() Gets the value of a parameter of the
iiopexec function in the Service
directive of the obj.conf file.

“getConfigParameter” on
page 116

WAIgetCookie() Retrieves any cookies sent by the
client.

“getCookie” on page 119

WAIgetHost() Gets the hostname of the machine
where the web server is running.

“getHost” on page 145

WAIgetInfo() Retrieves information about the web
server (such as the value of CGI 1.1
environment variables that describe
the server).

“getInfo” on page 146

WAIgetName() Gets the server ID (for example,
https-myhost) of the web server.

“getName” on page 147
106 Writing Web Applications with WAI

WAIgetPort() Gets the port number that the web
server listens to.

“getPort” on page 148

WAIgetRequestHeader() Gets a header from the HTTP
request sent by the client.

“getRequestHeader” on
page 121

WAIgetRequestInfo() Gets information about the client
request (such as the value of a CGI
1.1 environment variable).

“getRequestInfo” on page 122

WAIgetResponseContentLength() Gets the content length (the value of
the Content-length header) of the
response.

“getResponseContentLength”
on page 125

WAIgetResponseHeader() Gets a header from the HTTP
response you plan to send to the
client.

“getResponseHeader” on
page 126

WAIgetServerSoftware() Gets the type and version of the
server software.

“getServerSoftware” on
page 148

WAIimplIsReady() Prepares your WAI application to
receive requests.

“Registering Your Web
Application Service” on
page 52

WAIisSecure() Specifies whether or not the server is
run with SSL enabled.

“isSecure” on page 149

WAILogError() Logs an entry to the server’s error log
file (server_root/server_id/logs/errors on
UNIX and
server_root\server_id\logs\errors on
Windows NT).

“LogError” on page 128

WAIReadClient() Reads data from the client (for
example, for data sent through the
HTTP POST method).

“ReadClient” on page 130

WAIregisterService() Registers the WAI application with
the web server.

“RegisterService” on page 153

WAIRespondRedirect() Redirects the client to a different
URL.

“RespondRedirect” on page 134

(*WAIRunFunction)() Type definition for the function that
processes HTTP requests.

“Run” on page 153

Table 9.1 C Functions in WAI

Function Name Description For More Information, See...
Chapter 9, WAI Reference 107

How to Use This Reference
How to Use This Reference
The methods in this section are documented in Interface Definition Language, or IDL.
The C, C++, and Java syntax for each method is listed under the IDL syntax for the
method.

The following section is an example of the documentation for a WAI method. The
syntax for the interface is described first. Next, the prototypes for the methods that
implement this operation are documented.

...

Syntax HttpServerReturnType addResponseHeader(in string header,
in string value);

WAIsetCookie() Sets a cookie in the response header
to be sent to the client.

“setCookie” on page 135

WAIsetRequestInfo() (This method has no functional use at
this time.)

“setRequestInfo” on page 138

WAIsetResponseContentLength() Sets the content length (the value of
the Content-length header) of the
response to be sent to the client.

“setResponseContentLength”
on page 138

WAIsetResponseContentType() Sets the content type (the value of the
Content-type header) of the response to
be sent to the client.

“setResponseContentType” on
page 139

WAIsetResponseStatus() Sets the HTTP response code (for
example, 404 for “File Not Found”)
of the response to be sent to the
client.

“setResponseStatus” on
page 140

WAIStartResponse() Starts sending the response back to
the client.

“StartResponse” on page 141

WAIstringFree() Frees a string from memory. “StringDelete” on page 154

WAIWriteClient() Writes data to the client. “WriteClient” on page 142

Table 9.1 C Functions in WAI

Function Name Description For More Information, See...
108 Writing Web Applications with WAI

Interfaces
C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIaddResponseHeader(ServerSession_t p, const char
*header,

const char *value);

C++ Prototype:
WAIReturnType addResponseHeader(const char *header,

const char *value);

Java Prototype:
public netscape.WAI.HttpServerReturnType addResponseHeader(java.lang.String header,

java.lang.String value);

...

Use the prototype for the language that you are using to write your application. Note that
the parameters may differ between languages. For example, the C functions have an extra
parameter (of the type ServerSession_t) that represents the HTTP request object.

Interfaces
The methods for the interfaces in this section are described in terms of their signatures.
The interfaces described in WAI are:

• netscape::WAI::HttpServerRequest

Provides access to the data in an HTTP request sent from the client to your server.

• netscape::WAI::HttpServerContext

Provides access to data about the web server, such as the server’s host name and port
number.

• netscape::WAI::WebApplicationService and
netscape::WAI::WebApplicationBasicService

Represent the web service that you want to write. Typically, you do not need to deal
with these two interfaces; instead, you work directly from the
WAIWebApplicationService base class, which implements these interfaces.

WAI also includes the following base class:

• WAIWebApplicationService
Chapter 9, WAI Reference 109

Interfaces
Base class from which you derive your web service that processes HTTP requests.

The rest of this chapter documents these interfaces and classes. Note that although in C,
there is no concept of classes, the C API functions are documented here among the
interfaces and classes for convenience.

netscape::WAI::HttpServerRequest
The HttpServerRequest interface declares methods for processing HTTP requests. It
provides access to the data in an HTTP request sent from the client to your server.

This interface is implemented by the following classes:

• WAIServerRequest (in C++)

• netscape.WAI.HttpServerRequest (in Java)

When you write your own WAI class (which should derive from the Netscape base class
WAIWebApplicationService; for details, see “WAIWebApplicationService” on
page 150), you pass in a reference to an WAIServerRequest object (in C++) or an
HTTPServerRequest object (in Java) as an argument to the Run method.

Using methods in these classes, you can get HTTP headers from a client request, set
HTTP headers in a response to the request, get and set cookies in the client, write entries
to the server’s error log, and read and write data to the client.

Member
Summary

The netscape::WAI::HttpServerRequest interface describes the following members:

Methods

addResponseHeader Adds a header to the response to be sent back to the client.

BuildURL Builds a URL from the prefix of a URI and the suffix of a
URI.

delResponseHeader Deletes a header from the response to be sent to the client.

getConfigParameter Gets the value of a parameter of the iiopexec function in
the Service directive of the obj.conf file.

getContext Gets the HTTPServerContext object for the server.

getCookie Gets a cookie from the request headers sent by the client.

getRequestHeader Gets a specified header from the client’s request.

getRequestInfo Gets information about the client request (such as the value
of a CGI 1.1 environment variable).
110 Writing Web Applications with WAI

Interfaces
Methods

addResponseHeader

Adds a specified header to the response to be sent to the client.

Syntax HttpServerReturnType addResponseHeader(in string header,
in string value);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIaddResponseHeader(ServerSession_t p, const char
*header,

const char *value);

getResponseContentLength Gets the value of the Content-length header from the
response to be sent to the client.

getResponseHeader Gets the specified header from the response to be sent to
the client.

LogError Logs an entry to the server’s error log file

(server_root/server_id/logs/errors
on UNIX and
server_root\server_id\logs\errors
on Windows NT).

ReadClient Reads data from the client (for example, for data sent
through the HTTP POST method).

RespondRedirect Redirects the client to a specified URL.

setCookie Sets a cookie in the response header to be sent to the client.

setRequestInfo (This method has no functional use at this time.)

setResponseContentLength Sets the content length (the value of the Content-length
header) of the response to be sent to the client.

setResponseContentType Sets the content type (the value of the Content-type header)
of the response to be sent to the client.

setResponseStatus Sets the HTTP response code (for example, 404 for “File
Not Found”) of the response to be sent back to the client.

StartResponse Starts to send the response to the client.

WriteClient Writes data to the client.
Chapter 9, WAI Reference 111

Interfaces
C++ Prototype:
WAIReturnType addResponseHeader(const char *header,

const char *value);

Java Prototype:
public netscape.WAI.HttpServerReturnType addResponseHeader(java.lang.String header,

java.lang.String value);

Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if the header was successfully added. The actual return
value differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the header could not be added. The actual return value
differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Example The following example in Java adds a Pragma: no-cache header to the response sent to the
client.

...

/* Define a class for your service. */

class MyWebApplicationService extends WAIWebApplicationService {

...

/* Define the Run method, which is called whenever the client requests your service. */

public int Run(HttpServerRequest request){

/* Create an output stream for the content that you are delivering to the client. */

ByteArrayOutputStream streamBuf = new ByteArrayOutputStream();

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

header Name of the header to add.

value Content of the header.
112 Writing Web Applications with WAI

Interfaces
PrintStream content = new PrintStream(streamBuf);

HttpServerReturnType rc;

...

/* Insert code to write the content to the stream. */

...

/* Prepare to send the content back to the client.*/

byte[] outbuff = streamBuf.toByteArray();

try {

/* Add the Pragma: no-cache header to the response. */

rc = request.addResponseHeader("Pragma", "no-cache");

/* Specify the length of the data to be sent.*/

rc = request.setResponseContentLength(outbuff.length);

/* Start sending the response. */

request.StartResponse();

}

catch(org.omg.CORBA.SystemException e){

}

...

}

...

}

...

See Also delResponseHeader, getResponseHeader.

BuildURL

Using a specified URI prefix and URI suffix, creates a full URL of the form http://
server:port prefix suffix.
Chapter 9, WAI Reference 113

Interfaces
If you do not want to specify a prefix or a suffix, use the empty string ("") instead of a
NULL pointer.

Syntax string BuildURL(in string prefix, in string suffix);

C Prototype:
NSAPI_PUBLIC char *WAIBuildURL(ServerSession_t p,

const char *prefix, const char *suffix);

C++ Prototype:
char *BuildURL(const char *prefix, const char *suffix);

Java Prototype:
public java.lang.String
BuildURL(java.lang.String prefix, java.lang.String suffix);

Parameters This method has the following parameters:

Returns The full URL containing the prefix and suffix.

Example The following example in C++ uses the suffix /index.html to build the URL http://
server_name:port_number/index.html.

...

/* Define a class for your service. */

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

...

char *url;

/* Build the complete URL from the specified suffix. */

url = session-BuildURL("", "/index.html");

...

}

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

prefix URI prefix that you want to use in the URL.

suffix URI suffix that you want to use in the URL.
114 Writing Web Applications with WAI

Interfaces
...

delResponseHeader

Deletes a specified header from the response to be sent to the client. You use this
method to remove a header that added when calling the addResponseHeader
method.

Syntax HttpServerReturnType delResponseHeader(in string header);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIdelResponseHeader(ServerSession_t p, const char
*header);

C++ Prototype:
WAIReturnType delResponseHeader(const char *header);

Java Prototype:
public netscape.WAI.HttpServerReturnType delResponseHeader(java.lang.String header);

Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if header was successfully deleted. The actual return value
differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if header could not be deleted. The actual return value
differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Example The following example in Java removes a header added through the
addResponseHeader method.

...

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

header Name of the header that you want to delete.
Chapter 9, WAI Reference 115

Interfaces
/* Add the Pragma: no-cache header to the response. */

rc = request.addResponseHeader("Pragma", "no-cache");

...

/* Remove the Pragma: no-cache header.*/

rc = request.deleteResponseHeader("Pragma");

...

/* Start sending the response. */

request.StartResponse();

...

See Also addResponseHeader, getResponseHeader.

getConfigParameter

Obtains the current value of a parameter in the web service’s object in the obj.conf file.

For example, if you specify the name-value pair Flavor=Peach in the web service’s object:

<Object name="iiopexec">

Service fn="IIOPexec" Flavor=”Peach”

</Object>

you can get the value Peach by specifying the name Flavor as an argument to this method.

Syntax HttpServerReturnType getConfigParameter(in string name,
out string value);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIgetConfigParameter(ServerSession_t p, const char
*name,

char ** value);

C++ Prototype:
WAIReturnType getConfigParameter(const char *name,

char *& value);

Java Prototype:
public netscape.WAI.HttpServerReturnType getConfigParameter(java.lang.String name,

org.omg.CORBA.StringHolder value);
116 Writing Web Applications with WAI

Interfaces
Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if the variable exists and is accessible. The actual return
value differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the variable cannot be found or is not accessible. The
actual return value differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Example The following example in Java gets the value of the Flavor parameter in the iiopexec
object in the obj.conf file.

...

/* Define a class for your service. */

class MyWebApplicationService extends WAIWebApplicationService {

...

/* Define the Run method, which is called whenever the client requests your service. */

public int Run(HttpServerRequest request){

...

/* Get the Flavor parameter from the iiopexec object. */

if (request.getConfigParameter("Flavor", value) ==
HttpServerReturnType.Success) {

System.out.println("Flavor: " + value.value + "\n");

}

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

name Name of the parameter to retrieve.

value Value retrieved by this method.
Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package. Holder classes support the passing of out
and inout parameters associated with operation requests. For details
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.
Chapter 9, WAI Reference 117

Interfaces
...

}

...

}

getContext

Retrieves the WAIServerContext object (in C++) or the HTTPServerContext object (in
Java) for the server. (For details on this object, see
“netscape::WAI::HttpServerContext” on page 144.) This object holds server
information, such as the server’s hostname and port number.

Call this function if you want to get information about the server (for example, if you
want to get the name and version of the server software, or if you want to determine if
the server is running SSL).

Syntax HttpServerContext getContext();

C Prototype:
N/A (you don’t need to get the object to call the functions/methods associated with the
object)

C++ Prototype:
WAIServerContext_ptr getContext();

Java Prototype:
public netscape.WAI.HttpServerContext getContext();

Returns The HttpServerContext object for the server.

Example The following example in C++ gets the WAIServerContext object for the web server and
uses that object to get the server’s version information.

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

...

/* Get the WAIServerContext object for the web server. */

WAIServerContext_ptr context = session->getContext();

...
118 Writing Web Applications with WAI

Interfaces
/* Use WAIServerContext to get info on the web server version. */

char *var;

if ((var = context->getServerSoftware()) && *var){

printf("Web Server software: %s", var);

/* Free the string from memory when done. */

StringDelete(var);

}

...

}

See Also netscape::WAI::HttpServerContext.

getCookie

Retrieves the cookie from the request headers sent by the client.

Syntax HttpServerReturnType getCookie(out string cookie);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t
WAIgetCookie(ServerSession_t p, char ** cookie);

C++ Prototype:
WAIReturnType getCookie(char *& cookie);

Java Prototype:
public netscape.WAI.HttpServerReturnType getCookie(org.omg.CORBA.StringHolder
cookie);

Parameters This method has the following parameters:

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

cookie Value of the cookie.
Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package. Holder classes support the passing of out
and inout parameters associated with operation requests. For details
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide..
Chapter 9, WAI Reference 119

Interfaces
Returns HttpServerReturnType::Success if the cookie was retrieved successfully. The actual return
value differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the cookie could not be retrieved. The actual return value
differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Description When requesting a URL from an HTTP server, the client matches the URL against all
cookies it has. If the client has cookies from the same domain as the URL, the client
includes a line containing the name/value pairs of all matching cookies in the HTTP
request headers. The format of that line is as follows:

Cookie: name1=string1; name2=string2...

For more information on cookies, see “setCookie” on page 135, the preliminary
Netscape cookie specification at http://home.netscape.com/newsref/std/
cookie_spec.html, and RFC 2109 (“HTTP State Management Mechanism”) at
http://www.internic.net/rfc/rfc2109.txt.

Example The following example in Java checks to see if a cookie is already set on a client before
setting a new cookie on the client.

public int Run(HttpServerRequest request){

...

org.omg.CORBA.StringHolder
cookiebuff = new org.omg.CORBA.StringHolder();

/* Check to see if the client is returning any cookies. */

if (request.getCookie(cookiebuff)== HttpServerReturnType.Failure)

/* If no cookies have been returned, set a new cookie. */

request.setCookie("MY_NAME", "MY_VALUE", "", "", "/iiop", false);

...

}

120 Writing Web Applications with WAI

Interfaces
See Also setCookie.

getRequestHeader

Retrieves a specified header from the client request.

Syntax HttpServerReturnType getRequestHeader(in string header,
out string value);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIgetRequestHeader(ServerSession_t p, const char
*name,

char ** value);

C++ Prototype:
WAIReturnType getRequestHeader(const char *header,

char *& value);

Java Prototype:
public netscape.WAI.HttpServerReturnType getResponseHeader(java.lang.String header,

org.omg.CORBA.StringHolder value);

Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if the header was successfully retrieved. The actual return
value differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the header could not be retrieved. The actual return value
differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

header Name of the header to retrieve.

value The current content of the header retrieved by this method.
Chapter 9, WAI Reference 121

Interfaces
Example The following example in C++ gets the value of the user-agent header in a client’s
request.

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

...

char *var;

/* Get the value of the user-agent header. */

if (session->getRequestHeader("user-agent", var) == WAISPISuccess){

printf(“User agent: %s", var);

/* Free the string from memory when done. */

StringDelete(var);

}

...

}

getRequestInfo

Accesses information about the server and a specific HTTP request.

Syntax HttpServerReturnType getRequestInfo(in string name,
out string value);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t
WAIgetRequestInfo(ServerSession_t p, const char *name,

char ** value);

C++ Prototype:
WAIReturnType getRequestInfo(const char *name,

char *& value);

Java Prototype:
public netscape.WAI.HttpServerReturnType getRequestInfo(java.lang.String name,

org.omg.CORBA.StringHolder value);
122 Writing Web Applications with WAI

Interfaces
Parameters This method has the following parameters:

The following table lists the names of the variables that you can specify for the
name argument.

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

name Name of the variable to retrieve.

value The current value of the variable.
Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package. Holder classes support the passing of out
and inout parameters associated with operation requests. For details
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.

Table 9.2 getRequestInfo variables and the types of information they represent

Variable Name Description

AUTH_TYPE Authentication scheme for the request (found from the auth-
scheme token in the request).

CLIENT_CERT Base-64 DER-encoded certificate received from the client if the
PathCheck built-in function get-client-cert is called. (See the
NSAPI Programmer’s Guide for details on this function.)

CONTENT_LENGTH Length of the content of the client request.

CONTENT_TYPE MIME type of the content of the client request.

HOST Name of the client’s host machine.

HTTPS Specifies whether or not SSL is “ON” or “OFF”.

HTTPS_KEYSIZE Number of bits in the session key used to encrypt the session (if
SSL is enabled).

HTTPS_SECRETKEYSIZE Number of bits used to generate the server's private key (if SSL
is enabled).

HTTP_* Value of the specified HTTP_* header (headers with names
that begin with the prefix HTTP_).

PATH_INFO Trailing part of the URI that follows the SCRIPT_NAME part
of the path.

PATH_TRANSLATED The filesystem path to the file requested by the URI.

QUERY_STRING,
QUERY

The query part of the URI (the name-value pairs following the
question mark).
Chapter 9, WAI Reference 123

Interfaces
Returns HttpServerReturnType::Success if the information exists and is accessible. The actual
return value differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the information does not exist or is not accessible. The
actual return value differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Example The following example in Java gets the IP address of the client that sent the request.

public int Run(HttpServerRequest request){

...

org.omg.CORBA.StringHolder value = new org.omg.CORBA.StringHolder();

/* Get the value of the client’s IP address. */

if (request.getRequestInfo("REMOTE_ADDR", value) ==
HttpServerReturnType.Success){

System.out.println("Client addr: %s", value.value + "\n");

}

REMOTE_ADDR IP address of the client sending the request.

REMOTE_HOST Fully qualified domain name of the client sending the request.

REMOTE_USER If the client is using the basic authentication scheme, the user
ID sent by the client for authentication.

REQUEST_METHOD Method in which the request was made (for example, GET or
POST or HEAD).

SCRIPT_NAME Part of the URI that identifies the script being executed.

SERVER_PROTOCOL Name and revision number of the information protocol of the
incoming request.

URI URI requested by the client.

Table 9.2 getRequestInfo variables and the types of information they represent

Variable Name Description
124 Writing Web Applications with WAI

Interfaces
...

}

Note The C function, WAIgetRequestInfo, internally allocates memory for the value string. To
free the memory, call WAIstringFree (see StringDelete).

See Also setRequestInfo

getResponseContentLength

Retrieves the content length of the response to be sent to the client. You use this method
to get the value that you set when calling the setResponseContentLength method.

Syntax HttpServerReturnType getResponseContentLength(
out unsigned long Length);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIgetResponseContentLength(ServerSession_t p,

unsigned long *Length);

C++ Prototype:
WAIReturnType
getResponseContentLength(unsigned long& Length);

Java Prototype:
public netscape.WAI.HttpServerReturnType
getResponseContentLength(org.omg.CORBA.IntHolder Length);

Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if the content length was successfully fetched. The actual
return value differs, depending on the language you are using:

• WAISPISuccess in C/C++

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

Length Content length of the response.
Note to Java Programmers: IntHolder is a class in the
org.omg.CORBA package. Holder classes support the passing of out
and inout parameters associated with operation requests. For details
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.
Chapter 9, WAI Reference 125

Interfaces
• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the content length could not be determined. The actual
return value differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Example The following example in C gets the value of the content length set through the
setResponseContentLength method.

long

MyRunFunction(ServerSession_t obj)

{

long *length;

...

/* Specify the content to send back to the client. */

char *buffer = "Hello World\n";

size_t bufflen = strlen(buffer);

/* Set the length of this content in the content-length header. */

WAIsetResponseContentLength(obj, bufflen);

...

/* Get the content-length. */

WAIgetResponseContentLength(obj, &length);

...

}

See Also setResponseContentLength.

getResponseHeader

Gets a specific header from the response to be sent to the client. You use this method to
get the value of a header that added when calling the addResponseHeader
method.

Syntax HttpServerReturnType getResponseHeader(in string header,
126 Writing Web Applications with WAI

Interfaces
out string value);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIgetResponseHeader(ServerSession_t p, const char
*header,

char ** value);

C++ Prototype:
WAIReturnType getResponseHeader(const char *header,

char *& value);

Java Prototype:
public netscape.WAI.HttpServerReturnType getResponseHeader(java.lang.String header,

org.omg.CORBA.StringHolder value);

Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if the header was successfully retrieved. The actual return
value differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the header could not be retrieved. The actual return value
differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Example The following example in Java gets the value of a header added through the
addResponseHeader method.

...

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

header Name of the header that you want to retrieve.

value The current value of the header.
Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package. Holder classes support the passing of out
and inout parameters associated with operation requests. For details
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.
Chapter 9, WAI Reference 127

Interfaces
/* Add the Pragma: no-cache header to the response. */

rc = request.addResponseHeader("Pragma", "no-cache");

...

/* Get the value of the Pragma header.*/

org.omg.CORBA.StringHolder value = new org.omg.CORBA.StringHolder();

rc = request.getResponseHeader("Pragma", value);

...

/* Start sending the response. */

request.StartResponse();

...

See Also addResponseHeader, delResponseHeader.

LogError

Logs messages to the server error log (server_root/https-server_id/logs/errors).

Syntax HttpServerReturnType LogError(in long degree, in string func,
in string msg, in boolean clientinfo);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAILogError(ServerSession_t p,

long degree, const char *func, const char *msg,
WAIBool clientinfo);

C++ Prototype:
WAIReturnType LogError(long degree, const char *func,

const char *msg, WAIBool clientinfo);

Java Prototype:
public
netscape.WAI.HttpServerReturnType LogError(int degree,

java.lang.String func, java.lang.String msg,
boolean clientinfo);
128 Writing Web Applications with WAI

Interfaces
Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if the message was successfully logged. The actual return
value differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the message could not be logged. The actual return value
differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

degree Degree of severity of the error. (This is included in the log entry.)
The degree of severity can be one of the following values:

• 0 (warning message)

• 1 (misconfiguration error; for example, if there is a syntax error or
permission violation in a configuration file)

• 2 (security error; for example, if authentication fails or if the client
is forbidden to access the resource)

• 3 (failure; for example, if an internal problem prevents the request
from being fulfilled)

• 4 (catastrophe; for example, a fatal server error such as running
out of memory)

• 5 (informational message)

• 6 (internal message; messages will only appear if the magnus.conf
file contains the LogVerbose On setting)

If you are writing a C/C++ application, you can include the nsapi.h
header file and use the defined values for the degree of severity.

func Name of the function reporting the error. (This function name is
included in the log entry. You can use this to help identify which
function caused the log entry to be written.)

msg Message that you want logged.

clientinfo If true, information about the session (such as the IP address of the
client) and request (such as the requested URI) are included in the log
entry.
Chapter 9, WAI Reference 129

Interfaces
Example The following lines of code log informational and warning messages.

public int myMethod(HttpServerRequest request){

...

request.LogError(5, "myMethod()", "An informational message.\n", true);

request.LogError(0, "myMethod()", "A warning message.\n", false);

...

These lines of code generate the following messages in the server’s error log:

[15/May/1997:07:53:49] info: for host 198.95.249.43 trying to GET /iiop/JavaWASP, myMethod() reports:
An informational message.

[15/May/1997:07:53:49] warning: myMethod() reports: A warning message.

Note that in the first entry, the IP address of the client, the method used to access the
resource, and the URI of the resource are logged to the entry because LogError is called
with the clientinfo argument set to true.

ReadClient

Reads data from the client.

Syntax long ReadClient(inout HttpServerBuffer buffer);

C Prototype:
NSAPI_PUBLIC long WAIReadClient(ServerSession_t p,

unsigned char *buffer, unsigned buffsize);

C++ Prototype:
long ReadClient(unsigned char *buffer,

unsigned buffsize);

Java Prototype:
public int
ReadClient(netscape.WAI.HttpServerBufferHolder buffer);
130 Writing Web Applications with WAI

Interfaces
Parameters This method has the following parameters:

Returns Number of bytes read.

Example The following example in C++ gets data posted from the client (through the HTTP
POST method and displays the posted data back to the client in its raw form (in other
words, as an unparsed string of name/value pairs).

long

WebApplicationServicePrototype::Run(WAIServerRequest_ptr session)

{

ostrstream outstr;

char *var = NULL;

unsigned contentLength;

long status;

char *myBuffer = NULL;

outstr << "<P>Resulting Posted Data</P>";

/* Get the value of the content-length header.*/

if (session->getRequestHeader("content-length", var) ==
WAISPIFailure){

return 1;

}

/* Use the content length to allocate memory for the data. */

contentLength = atoi(var);

StringDelete(var);

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

buffer Buffer to receive data from the client.
Note for Java Programmers: HttpServerBufferHolder is a class in
the netscape.WAI package. When you construct an object of this
class, you need to pass a byte array to the constructor (see the example
below).

buffsize (C/C++ only) Size of the buffer of data.
Chapter 9, WAI Reference 131

Interfaces
/* Allocate memory for the content plus one byte for the trailing 0. */

myBuffer = StringAlloc(contentLength+1);

if (myBuffer==NULL) {

return 1;

}

myBuffer[contentLength] = ’\0’;

/* Read the posted data from the client.*/

status = session->ReadClient((unsigned char*)myBuffer, contentLength);

/* Print the raw posted data back to the client. */

outstr << "\n<PRE>\nOutput of the Form:\n\n" << (const char*)myBuffer << "\n</
PRE>\n<P>";

StringDelete(myBuffer);

outstr << endl;

session->setResponseContentLength(outstr.pcount());

session->StartResponse();

session->WriteClient((const unsigned char *)outstr.str(), outstr.pcount());

outstr.rdbuf()->freeze(0);

return 0;

}

The following example in Java gets data posted from the client (through the HTTP
POST method and displays the posted data back to the client in its raw form (in other
words, as an unparsed string of name/value pairs).

public int Run(HttpServerRequest request){

/* Set up an output stream to send data back to the client. */

org.omg.CORBA.StringHolder value = new org.omg.CORBA.StringHolder();

request.getRequestHeader("content-length", value);

ByteArrayOutputStream contentStream = new ByteArrayOutputStream();

/* Create the buffer holder and initialize it the number of bytes to receive.*/

netscape.WAI.HttpServerBufferHolder inbuff = new netscape.WAI.HttpServerBufferHolder(new
132 Writing Web Applications with WAI

Interfaces
byte[1024]);

Integer content_length = new Integer(value.value);

int cnt;

int data_left;

/* Read the posted data into the buffer holder. */

for (data_left = content_length.intValue(); data_left > 0;
data_left -= cnt){

cnt = request.ReadClient(inbuff);

if (cnt == 0)

data_left = 0;

else

contentStream.write(inbuff.value, 0, cnt);

}

HttpServerReturnType rc;

byte[] outbuff = contentStream.toByteArray();

try {

rc = request.setResponseContentLength(outbuff.length);

request.StartResponse();

}

catch(org.omg.CORBA.SystemException e){

}

catch(java.lang.Exception e) {

System.err.println(e);

}

int write_cnt = request.WriteClient(outbuff);

return 0;

}

See Also WriteClient.
Chapter 9, WAI Reference 133

Interfaces
RespondRedirect

Sends a page back to the client to notify the client that the page has moved.

Syntax HttpServerReturnType RespondRedirect (in string url);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIRespondRedirect(ServerSession_t p, const char
*url);

C++ Prototype:
WAIReturnType RespondRedirect(const char *url);

Java Prototype:
public netscape.WAI.HttpServerReturnType RespondRedirect(java.lang.String url);

Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if redirect was successful. The actual return value differs,
depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the response failed to redirect the client. The actual
return value differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Description When you call this method (followed by StartResponse), the server returns the
following page to the client:

Moved Temporarily

This document has moved to a new location. Please update your documents and hotlists accordingly.

The word "location" on this page is a link pointing to the new location of the page. The
user can choose to click on this link to go to the new location.

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

url URL to redirect the client to.
134 Writing Web Applications with WAI

Interfaces
If instead you want the client to be automatically redirected to the new
location, call addResponseHeader to add the Location header, call setResponseStatus
to set a response code of 301 or 302, then call StartResponse to send the response
back to the client. For an example of this scenario, see the following sections:

• “Redirecting Users to Another Page” on page 51 in “Writing a WAI
Application in C” on page 45

• “Redirecting Users to Another Page” on page 71 in “Writing a WAI
Application in C++” on page 59

• “Redirecting Users to Another Page” on page 87 in “Writing a WAI
Application in Java” on page 77

setCookie

Creates a cookie and sends it to the client.

Syntax HttpServerReturnType setCookie(in string name, in string value,
in string expires, in string domain, in string path,
in boolean secure);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIsetCookie(ServerSession_t p,

const char *name, const char *value, const char *expires,
const char *domain, const char *path, WAIBool secure);

C++ Prototype:
WAIReturnType setCookie(const char *name, const char *value,

const char *expires, const char *domain, const char *path,
WAIBool secure);

Java Prototype:
public netscape.WAI.HttpServerReturnType setCookie(java.lang.String name, java.lang.String
value,

java.lang.String expires, java.lang.String domain,
java.lang.String path, boolean secure);
Chapter 9, WAI Reference 135

Interfaces
Parameters This method has the following parameters:

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

name A sequence of characters excluding semicolon, comma, and white
space. If there is a need to place such data in the name, some encoding
method such as URL-style %XX encoding is recommended, though
no encoding is defined or required.

value A sequence of characters excluding semicolon, comma, and white
space. If there is a need to place such data in the value, some encoding
method such as URL-style %XX encoding is recommended, though
no encoding is defined or required. This is the only required attribute
of the Set-Cookie header.
136 Writing Web Applications with WAI

Interfaces
Returns HttpServerReturnType::Success if cookie was set successfully. The actual return value
differs, depending on the language you are using:

• WAISPISuccess in C/C++

expires Specifies a date string that defines the valid life time of the cookie.
Once the expiration date has been reached, the cookie will no longer
be stored or given out.
The date string is formatted as: Wdy, DD-Mon-YYYY HH:MM:SS
GMT. This is based on RFC 822, RFC 850, RFC 1036, and RFC 1123,
with the variations that the only legal time zone is GMT and the
separators between the elements of the date must be dashes. expires is
an optional attribute. If expires is not specified, the cookie expires
when the user’s session ends.

domain Specifies a domain from which cookies can be set. When searching the
cookie list for valid cookies, a comparison of the domain attributes of
the cookie is made with the Internet domain name of the host from
which the URL will be fetched.
If there is a tail match, then the cookie will go through path matching
to see if it should be sent. Tail matching means that domain attribute is
matched against the tail of the fully qualified domain name of the host.
A domain attribute of acme.com would match host names
anvil.acme.com as well as shipping.crate.acme.com.
Only hosts within the specified domain can set a cookie for a domain,
and domains must have at least two or three periods in them to
prevent domains of the form: .com , .edu , and va.us. Any domain that
fails within one of seven special top level domains only requires two
periods. Any other domain requires at least three. The seven special
top level domains are: com, edu, net, org, gov, mil, and int.
The default value of domain is the host name of the server that
generated the cookie response.

path Specifies the subset of URLs in a domain for which the cookie is valid.
If a cookie has already passed domain matching, then the pathname
component of the URL is compared with the path attribute, and if
there is a match, the cookie is considered valid and is sent along with
the URL request. The path /sales would match /saleswest and /sales/
west.html. The path "/" is the most general path.
If you don’t specify a value for path, setCookie uses the path described
by the header that contains the cookie.

secure If secure is set to True, the cookie is transmitted only if the
communications channel with the host is a secure one. Currently, this
means that secure cookies are sent only to HTTPS (HTTP over SSL)
servers. If secure is False, a cookie is considered safe to send in the
clear over unsecured channels.
Chapter 9, WAI Reference 137

Interfaces
• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the cookie could not be set. The actual return value
differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Examples See .

See Also getCookie.

setRequestInfo

This method has no functional use at this time.

setResponseContentLength

Sets the length of the response content.

Syntax HttpServerReturnType setResponseContentLength(
in unsigned long Length);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIsetResponseContentLength(ServerSession_t p,

unsigned long Length);

C++ Prototype:
WAIReturnType setResponseContentLength(unsigned long Length);

Java Prototype:
public netscape.WAI.HttpServerReturnType setResponseContentLength(int Length);

Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if the content length was successfully set. The actual
return value differs, depending on the language you are using:

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

Length Content length that you want to set for the response.
138 Writing Web Applications with WAI

Interfaces
• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the content length could not be set. The actual return
value differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

Example The following example in C sets the content-length header for a response before sending
the response back to the client.

long

MyRunFunction(ServerSession_t obj)

{

...

/* Specify the content to send back to the client. */

char *buffer = "Hello World\n";

size_t bufflen = strlen(buffer);

/* Set the length of this content in the content-length header. */

WAIsetResponseContentLength(obj, bufflen);

...

}

See Also getResponseContentLength.

setResponseContentType

Adds a header for the content type for the response. The default content type is text/html.

Syntax HttpServerReturnType setResponseContentType(
in string ContentType);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIsetResponseContentType(ServerSession_t p,

const char *ContentType);
Chapter 9, WAI Reference 139

Interfaces
C++ Prototype:
WAIReturnType setResponseContentType(const char *ContentType);

Java Prototype:
public netscape.WAI.HttpServerReturnType setResponseContentType(java.lang.String
ContentType);

Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if the content type was successfully set. The actual return
value differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the content type could not be set. The actual return value
differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

setResponseStatus

Sets status to the request status code.

Syntax HttpServerReturnType setResponseStatus(in long status,
in string reason);

C Prototype:
NSAPI_PUBLIC WAIReturnType_t WAIsetResponseStatus(ServerSession_t p, long status,

const char *reason);

C++ Prototype:
WAIReturnType setResponseStatus(long status,

const char * reason);

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

Length Content type that you want to assign to the response.
140 Writing Web Applications with WAI

Interfaces
Java Prototype:
public netscape.WAI.HttpServerReturnType
setResponseStatus(int status, java.lang.String reason);

Parameters This method has the following parameters:

Returns HttpServerReturnType::Success if the status was successfully set. The actual return value
differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the status could not be set. The actual return value
differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

StartResponse

Starts the HTTP response.

If the incoming request specifies that it follows the HTTP 0.9 standard (which does not
specify that headers can be included in requests and responses), StartResponse does
nothing.

If the request specifies that it follows the HTTP 1.0 (or later) standard (which allows
headers in requests and responses), StartResponse sends a header.

Syntax long StartResponse();

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

status Status that you want to assign to the response.

reason Message that you want associated with the status that you’ve set. If
this argument is NULL, the server attempts to find the standard
message for the status code (for example, “File Not Found” for the
status code 404).
If no message is found for the status code, the message “Unknown
Reason” is used.
Chapter 9, WAI Reference 141

Interfaces
C Prototype:
NSAPI_PUBLIC long WAIStartResponse(ServerSession_t p);

C++ Prototype:
long StartResponse();

Java Prototype:
public int StartResponse();

Parameters This method has the following parameters:

Returns REQ_NOACTION if the request used the HEAD method (meaning that the body of the
resource should not be sent).

REQ_PROCEED otherwise.

Example The following example in C starts sending a response back to the client after setting the
content-length header in the response.

long

MyRunFunction(ServerSession_t obj)

{

...

/* Specify the length of the content you want to send. */

WAIsetResponseContentLength(obj, contentLength);

/* Start sending the response. */

WAIStartResponse(obj);

...

}

WriteClient

Writes data to the client.

Syntax long WriteClient(in HttpServerBuffer buffer);

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.
142 Writing Web Applications with WAI

Interfaces
C Prototype:
NSAPI_PUBLIC long WAIWriteClient(ServerSession_t p,

const unsigned char *buffer, unsigned buffsize);

C++ Prototype:
long WriteClient(const unsigned char *buffer,

unsigned buffsize);

Java Prototype:
public int WriteClient(byte [] buffer);

Parameters This method has the following parameters:

Returns 1 if successful or -1 if an error occurs.

Example The following example in C writes an HTML page containing the words “Hello World”
back to the client.

long

MyRunFunction(ServerSession_t obj)

{

/* Specify the content to be written. */

char *buffer = "Hello World\n";

size_t bufflen = strlen(buffer);

/* Set the content-length header in the response to be sent to the client.*/

WAIsetResponseContentLength(obj, bufflen);

/* Start sending the response. */

WAIStartResponse(obj);

/* Write the data to the client. */

WAIWriteClient(obj, (const unsigned char *)buffer, bufflen);

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

buffer Buffer of data to write to the client.

buffsize (C/C++ only) Size of the buffer of data.
Chapter 9, WAI Reference 143

Interfaces
return 0;

}

See Also ReadClient.

netscape::WAI::HttpServerContext
The HttpServerContext interface provides access to information about the web server.

This interface is implemented as the following classes:

• WAIServerContext (in C++)

• netscape.WAI.HttpServerContext (in Java)

In C++, you can get access to an WAIServerContext object by calling the
getContext method of a WAIServerRequest object. In Java, you can get access to an
HTTPServerContext object by calling the getContext method of a HTTPServerRequest
object. (See the section “netscape::WAI::HttpServerRequest” on page 110 for
details on these objects.)

You can use the methods of these classes to get the following information on the web
server:

• The hostname of the machine where the server is running

• The port number that the server listens to

• The server identifier (for example, https-myhost)

• The product name and version of the server software

• The version of CGI supported by the server (for example, CGI 1.1)

• Whether or not the server is running with SSL enabled
144 Writing Web Applications with WAI

Interfaces
Member
Summary

The netscape::WAI::HttpServerContext interface describes the following members:

Methods

getHost

Retrieves the hostname of the machine where the web server is running.

Syntax string getHost();

C Prototype:
NSAPI_PUBLIC char *WAIgetHost(ServerSession_t p);

C++ Prototype:
char *getHost();

Java Prototype:
public java.lang.String getHost();

Parameters This method has the following parameters:

Returns The name of the machine where the web server is running.

Methods

getHost Retrieves the host name of the machine running the web
server.

getInfo Retrieves information about the web server (such as the
value of CGI 1.1 environment variables that describe the
server).

getName Retrieves the server ID (for example, https-myhost).

getPort Retrieves the port number that the server listens to.

getServerSoftware Retrieves the product name and version of the web server
(for example, Netscape Enterprise/3.0).

isSecure Specifies whether or not SSL is enabled on the server.

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.
Chapter 9, WAI Reference 145

Interfaces
getInfo

Retrieves information about the server, such as the server’s ID or the value of CGI 1.1
environment variables that describe the server (for example, SERVER_NAME and
SERVER_PORT).

Syntax HttpServerReturnType getInfo(in string name, out string value);

C Prototype:
WAIBool WAIgetInfo(ServerSession_t p, const char *name,

char **value);

C++ Prototype:
WAIReturnType getInfo(const char *name, char *&value);

Java Prototype:
public netscape.WAI.HttpServerReturnType getInfo(java.lang.String name,

org.omg.CORBA.StringHolder value);

Parameters This method has the following parameters:

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

name Name of the variable to retrieve.

value The current value of the variable.
Note for Java Programmers: StringHolder is a class in the
org.omg.CORBA package. Holder classes support the passing of out
and inout parameters associated with operation requests. For details
on this and other Holder classes, see the Netscape ISB for Java
Reference Guide.
146 Writing Web Applications with WAI

Interfaces
The following table lists the names of the variables that you can specify for the name
argument.

Returns HttpServerReturnType::Success if the information exists and is accessible. The actual
return value differs, depending on the language you are using:

• WAISPISuccess in C/C++

• netscape.WAI.HTTPServerReturnType.Success in Java

HttpServerReturnType::Failure if the information does not exist or is not accessible. The
actual return value differs, depending on the language you are using:

• WAISPIFailure in C/C++

• netscape.WAI.HTTPServerReturnType.Failure in Java

getName

Retrieves the server ID (for example, https-myhost).

Syntax string getName();

Table 9.3 getInfo variables and the types of information they represent

Variable Name Description

GATEWAY_INTERFACE CGI version supported by the web server (for example, CGI/
1.1).

HTTPS Specifies whether or not SSL is enabled on the server.

• If SSL is enabled, the value of this variable is “ON” .

• If SSL is disabled, the value of this variable is “OFF”.

SERVER_ID Server identifier (for example, https-myhost). Currently, this
only works on Windows NT.

SERVER_NAME Name of the machine running the web server.

SERVER_PORT Port number that the server listens to.

SERVER_SOFTWARE Type and version of web server software (for example,
Netscape-Enterprise/3.0).
Chapter 9, WAI Reference 147

Interfaces
C Prototype:
NSAPI_PUBLIC char *WAIgetName(ServerSession_t p);

C++ Prototype:
char *getName();

Java Prototype:
public java.lang.String getName();

Parameters This method has the following parameters:

Returns The server ID, or an empty string if the information is not accessible.

getPort

Retrieves the number of the port the server listens to.

Syntax long getPort();

C Prototype:
NSAPI_PUBLIC long WAIgetPort(ServerSession_t p);

C++ Prototype:
long getPort();

Java Prototype:
public int getPort();

Parameters This method has the following parameters:

Returns Port number that the web server listens to.

getServerSoftware

Retrieves the server type and version number (for example, Netscape-Enterprise/3.0).

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.
148 Writing Web Applications with WAI

Interfaces
Syntax string getServerSoftware();

C Prototype:
NSAPI_PUBLIC char *WAIgetServerSoftware(ServerSession_t p);

C++ Prototype:
char *getServerSoftware();

Java Prototype:
public java.lang.String getServerSoftware();

Parameters This method has the following parameters:

Returns A string containing the server type and version number.

isSecure

Specifies whether or not SSL is enabled on the server.

Syntax boolean isSecure();

C Prototype:
NSAPI_PUBLIC WAIBool WAIisSecure(ServerSession_t p);

C++ Prototype:
int isSecure();

Java Prototype:
public boolean isSecure();

Parameters This method has the following parameters:

Returns True if this server has SSL enabled.

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.

p (C only) Handle to the server session object, which is passed as an
argument to your callback function.
Chapter 9, WAI Reference 149

Interfaces
netscape::WAI::WebApplicationService
WebApplicationService is one of the interfaces that represent web services.

Typically, you do not need to use this interface; instead, you work directly with
the WAIWebApplicationService base class, which implements
netscape::WAI::WebApplicationBasicService interface.

netscape::WAI::WebApplicationBasicService
WebApplicationBasicService is one of the interfaces that represent web services.

Typically, you do not need to use this interface; instead, you work directly with
the WAIWebApplicationService base class, which implements this interface.

WebApplicationBasicService is derived from the netscape::WAI::WebApplicationService
interface.

WAIWebApplicationService
The WAIWebApplicationService base class represents a web service. You derive your own
web service class from this base class.

Member
Summary

The WAIWebApplicationService base class contains the following members:

Constructor

WAIWebApplicationService Creates an instance of this class.

Methods

ActivateWAS Activates the object (if the object has not already been
activated by the constructor).

getServiceInfo (This is a method that you need to implement.) Provides
information about the author, version, and copyright of the
web application service that you are writing.

RegisterService Registers your WAI application with the web server running
on the specified host.
150 Writing Web Applications with WAI

Interfaces
Constructor

WAIWebApplicationService

Creates an instance of the WAIWebApplicationService class. Note that in the 3.01
version of the server, the C++ constructor has an additional parameter to allow
you to specify whether or not the object is activated when constructed.

If you want to activate the object at a later time, you can call the ActivateWAS
method.

Syntax C Prototype:
WAIcreateWebAppService(const char *name, WAIRunFunction func,

int argc, char **argv);

C++ Prototype (3.0 version of the server):
WAIWebApplicationService(const char *name);
WAIWebApplicationService(const char *name, int argc,

char **argv);

C++ Prototype (3.01 version of the server):
WAIWebApplicationService(const char *name);
WAIWebApplicationService(const char *name, WAIBool activateObj);
WAIWebApplicationService(const char *name, int argc,

char **argv);
WAIWebApplicationService(const char *name, int argc,

char **argv, WAIBool activateObj);

Java Prototype:
public WAIWebApplicationService(java.lang.String name);

Run (This is a method that you need to implement.) Executes
your web application service (this is called whenever the
server receives an HTTP request for your service).

StringAlloc Allocates memory for a string.

StringDelete Frees a string from memory.

StringDup Copies a string into a newly allocated buffer in memory.
Chapter 9, WAI Reference 151

Interfaces
Parameters This constructor has the following parameters:

Methods

ActivateWAS

(3.01 servers only) Allows you to activate the web application service object
at some later point in time after the object is constructed. In your application,
you can call this method when you are ready to activate the object.

Syntax C Prototype:
No equivalent function.

C++ Prototype:
void ActivateWAS();

Java Prototype:
No equivalent method.

getServiceInfo

Provides information about the author, version, and copyright of the web application
service that you are writing.

This is a virtual/abstract method. You need to define this method when deriving your
own class from the WAIWebApplicationService base class.

name Name of the instance of the service that you want to create.

WAIRunFunction (C only) Callback function invoked when an HTTP request for your
service is received. This is the function that you define for processing
the HTTP request.
For details, see “Run” on page 153.

argc, argv (C/C++ only) Allows you to pass command-line arguments into
your application. argc is the number of command-line arguments and
argv is an array of the arguments.

activateObj (C++ only) If WAI_TRUE, specifies that the object should be
immediately activated upon creation. If WAI_FALSE, you need to
activate the object by calling the ActivateWAS method.
152 Writing Web Applications with WAI

Interfaces
Syntax C Prototype:
No equivalent function.

C++ Prototype:
virtual char *getServiceInfo();

Java Prototype:
public abstract java.lang.String getServiceInfo();

Returns A string containing author, version, and copyright. For example, you might
define this function to return the string My Web Application Service v1.0.

RegisterService

Registers your WAI application with the web server running on the specified
host.

Syntax C Prototype:
NSAPI_PUBLIC WAIBool WAIregisterService(IIOPWebAppService_t p,

const char *host);

C++ Prototype:
WAIBool RegisterService(const char *host);

Java Prototype:
public boolean RegisterService(java.lang.String host);

Parameters This method has the following parameters:

Returns WAI_True if your application was successfully registered to the web server.

WAI_False if your application could not be registered to the web server.

Run

Executes the web application service. This method is called by the server when
an HTTP request for your service is received.

p (C only) Handle to the IIOP web application service structure.

host Name of the host machine where the web server is running. Your
WAI application will be registered as a web service on this server.
Chapter 9, WAI Reference 153

Interfaces
This is a virtual/abstract method. You need to define this method when
deriving your own class from the WAIWebApplicationService base class.

Syntax C Prototype:
typedef long (*WAIRunFunction)(ServerSession_t session);

C++ Prototype:
virtual long Run(WAIServerRequest_ptr session);

Java Prototype:
public abstract int Run(netscape.WAI.HttpServerRequest session);

Parameters This method has the following parameters:

Returns: Status code representing the result of processing the HTTP request.

StringAlloc

Allocates memory for a string.

Syntax C Prototype:
N/A

C++ Prototype:
char *StringAlloc(size_t size);

Java Prototype:
N/A

Parameters This method has the following parameters:

Returns A buffer for the specified size of string.

session Reference to the HTTPServerRequest object representing the client’s
HTTP request (see “netscape::WAI::HttpServerRequest” on
page 110).

size Size of the string that you want to allocate memory for.
154 Writing Web Applications with WAI

Interfaces
StringDelete

Frees a string from memory.

Syntax C Prototype:
NSAPI_PUBLIC void WAIstringFree(char *s);

C++ Prototype:
void *StringDelete(char *s);

Java Prototype:
N/A

Parameters This method has the following parameters:

StringDup

Copies a string into a newly allocated buffer in memory.

Syntax C Prototype:
N/A

C++ Prototype:
char *StringDup(const char *s);

Java Prototype:
N/A

Parameters This method has the following parameters:

Returns Copy of the specified string.

s String that you want to free from memory.

s String that you want to copy.
Chapter 9, WAI Reference 155

Interfaces
netscape::WAI::FormHandler
The FormHandler class handles WAI application submissions through HTML
forms. Using the FormHandler class you can write a WAI applications that
receives and interprets data submitted through an HTML form.

FormHandler
The FormHandler class defines methods for processing data submitted through
HTML forms sent from clients to your server. This class in new in the 3.01
releases of Netscape web servers.

Member
Summary

The FormHandler class contains the following members:

Constructor

FormHandler Creates an instance of this class.

Methods

IsValid Specifies whether or not the submitted data was successfully
parsed by the FormHandler class.

GetQueryString Gets the query part of the URI (the name-value pairs after
the question mark) from the request.

ParseQueryString Parses the query part of the URI (the name-value pairs after
the question mark) from the request.

Get (C++ only) Gets the value of a specified name-value pair from the
parsed form data.

Add (C++ only) Adds a name-value pair to the parsed form data.

Delete (C++ only) Removes a name-value pair from the parsed form data.

InitIterator (C++ only) Sets up a pointer to the beginning of the list of name-value
pairs in the parsed form data so that the Next method
gets the first name-value pair in the list.

Next (C++ only) Gets the next name-value pair from the parsed form data.

GetHashTable (Java only) Returns a hashtable containing the parsed form data.
156 Writing Web Applications with WAI

Interfaces
FormHandler
Creates an instance of the FormHandler class. This constructor reads in and
parses the posted form data from the specified request.

Syntax C++ Prototype:
FormHandler::FormHandler(WAIServerRequest_ptr request);

Java Prototype:
public FormHandler(HttpServerRequest request);

Parameters This constructor has the following parameters:

IsValid

Specifies whether or not the posted data is in a valid format that the server can
parse.

You can call this method after creating an instance of the FormHandler class to
determine if the constructor sucessfully read and parsed the posted form data.

Syntax C++ Prototype:
WAIBool IsValid();

Java Prototype:
public boolean IsValid();

Returns The actual return value differs, depending on the language you are using:

• C++: WAI_True if the submitted data is in a valid format, or WAI_False if it is
not in a valid format.

• Java: true if the submitted data is in a valid format, or false if it is not in a
valid format.

request Reference to the HTTPServerRequest object representing the client’s
HTTP request.
Chapter 9, WAI Reference 157

Interfaces
GetQueryString

Gets the query part of the URI (the name-value pairs following the question
mark) from an HTTP GET request.

Syntax C++ Prototype:
char* GetQueryString();

Java Prototype:
public String GetQueryString();

Returns The query part of the URI (the name-value pairs following the question mark in
the URI).

ParseQueryString

Parses the query part of the URI (the name-value pairs following the question
mark) from an HTTP GET request. Note that this method does not directly
return the parsed data. Depending on the language you are using, you can
access the parsed data in different ways:

• In C++, you can call the Get method to get the value of a specific name-
value pair, or you can call the InitIterator method and the Next method to
iterate through all name-value pairs in the parsed data.

You can also call the Add method to add a new name-value pair to the
parsed form data and the Delete method to remove a name-value pair from
the parsed form data.

• In Java, you can call the GetHashTable method to get a Java hash table
containing the parsed data. Then, you can call methods of the
java.util.Hashtable class to access the data.

The names serve as keys in the hashtable. The values are stored as Java
vectors (for details, see your Java documentation on java.util.Vector).

The values are implemented as Java vectors because a given name may be
associated with multiple values. For example, if the form contains multiple-
selection input, the submitted form data can contain several name-value
pairs with the same name but different values.
158 Writing Web Applications with WAI

Interfaces
Syntax C++ Prototype:
WAIBool ParseQueryString();

Java Prototype:
public boolean ParseQueryString();

Returns The actual return value differs, depending on the language you are using:

• C++: WAI_True if the server successfully parsed the query part of the URI, or
WAI_False if an error occurred.

• Java: true if the server successfully parsed the query part of the URI, or false
if an error occurred.

Get

Gets the value associated with the specified name in the submitted form data. If
a name is associated with multiple values, you can call this method in iterations
until the method returns NULL.

Syntax C++ Prototype:
const char* Get(const char* name);

Java Prototype:
N/A

Parameters This method has the following parameters:

Returns The value of the specified form input, or NULL if no other values are associated
with that input.

Add

Adds a new name-value pair to the parsed form data.

Syntax C++ Prototype:
WAIBool Add(const char* name, const char* value);

name Name of the form input that you want to get the value of.
Chapter 9, WAI Reference 159

Interfaces
Java Prototype:
N/A

Parameters This method has the following parameters:

Returns WAI_True if the name-value pair was successfully added, or WAI_False if an error
occurred.

Delete

Removes a name-value pair from the parsed form data.

Syntax C++ Prototype:
WAIBool Delete(const char* name);

Java Prototype:
N/A

Parameters This method has the following parameters:

Returns WAI_True if the name-value pair was successfully removed, or WAI_False if an
error occurred.

InitIterator

Sets up a pointer to the beginning of the list of name-value pairs in the parsed
form data so that the Next method gets the first name-value pair in the list.

name Name of the name-value pair that you want to add to the parsed form
data.

value Value of the name-value pair that you want to add to the parsed form
data.

name Name of the name-value pair that you want to remove from the
parsed form data.
160 Writing Web Applications with WAI

Interfaces
If you want to iterate through each name-value pair in the parsed form data,
call this method before iteratively calling the Next method.

Syntax C++ Prototype:
WAIBool InitIterator();

Java Prototype:
N/A

Returns WAI_True if the pointer to the list is successfully set to the beginning of the list,
or WAI_False if an error occurred.

Next

Returns the name and value of the next name-value pair in the parsed form
data.

To start at the beginning of the list of name-value pairs, call the InitIterator
method. To iterate through the entire list, call this method iteratively until it
returns the value WAI_False.

Syntax C++ Prototype:
WAIBool Next(const char* &name, const char* &value);

Java Prototype:
N/A

Parameters This method has the following parameters:

Returns WAI_True if the next name-value pair is successfully retrieved, or WAI_False if
there are no more name-value pairs or if an error occurred.

name Name of the next name-value pair in the parsed form data.

value Value of the next name-value pair in the parsed form data.
Chapter 9, WAI Reference 161

Interfaces
GetHashTable

Returns the hashtable containing the parsed form data.

You can call the methods of the java.util.Hashtable class to get data from this
hashtable.

Syntax C++ Prototype:
N/A

Java Prototype:
public Hashtable GetHashTable();

Returns The hashtable containing the parsed form data.
162 Writing Web Applications with WAI

C h a p t e r

10
Naming Services
This chapter covers the functions, classes, and methods available for the
naming services built into the web server.

• C++ Classes for Naming Services (3.01 only)

• Java Classes for Naming Services

C++ Classes for Naming Services (3.01 only)
Version 3.01 of Netscape web servers contain functions that allow you to access the
naming services built into the web server. These naming services allow you to associate a
URL with an object. Once the URL is associated with the object, clients of the web
server can access the object reference through the URL.

The NameUtil.hpp header file (located in the server_root/wai/include directory on UNIX
and the server_root\wai\include directory on Windows NT) declares functions for
registering an object implementation (associating the object with a URL) and for
resolving a URL into an object reference.
Chapter 10, Naming Services 163

C++ Classes for Naming Services (3.01 only)
This header file declares the following functions:

registerWAS

Registers an object implementation with a URL of the form http://hostname:portnumber/
NameService/WAS/object_name.

Syntax WAIBool DLLEXPORT
registerWAS(const char *host, const char *object_name,
CORBA::Object_ptr obj);

Parameters This method has the following parameters:

Methods

registerWAS Registers an object implementation with a URL that has the following
format:

http://host:port/NameService/WAS/object_name

resolveWAS Resolves an object name and returns the corresponding object reference.

resolveURI Resolves a URL that has the following format:

http://host:port/NameService/WAS/object_name
and returns the corresponding object reference.

registerObject Registers an object implementation with a URL of the form:
http://hostname:portnumber/NameService/object_name.

putObject Associates an object with a URL, effectively registering the object with the
name service.

putContext Associates a naming context with a URL. You can register an object under
this naming context.

host Hostname and port number of the web server’s host machine where
you want to register your object implementation. Use the following
format:

hostname:portnumber
If the server has SSL enabled, do not specify the hostname and port
number. Instead, specify the location of the Interoperable Object
Reference (IOR) file:

IOR_filename

object_name Instance name with which you want to register your object.

obj The object implementation that you want to register
164 Writing Web Applications with WAI

C++ Classes for Naming Services (3.01 only)
Returns WAI_TRUE if the object implemented was registered with the URL successfully.
WAI_FALSE if registration did not complete.

Description When you register your object, a URL of the following format is constructed (based on
the arguments you pass to the registerWAS method) and is associated with your object:

http://hostname:portnumber/NameService/WAS/object_name

where object_name is a unique name that you want to assign to the object instance.

After you register an object implementation with a URL, you can retrieve the object
reference by resolving the URL (call the resolveURI method).

To register an object that is not under the web application services section of the URL
(NameService/WAS), call the registerObject function instead.

resolveWAS

Resolves an object name (a string value) and returns the corresponding object reference.

Syntax CORBA::Object_ptr DLLEXPORT
resolveWAS(const char *object_name);

Parameters This method has the following parameters:

Returns An object reference to the object associated with the name.

Description To register an object with a URL, call the registerWAS method.

resolveURI

Resolves a URL and returns the corresponding object reference.

Syntax WAIReturnType_t DLLEXPORT resolveURI(const char *host, int port,
const char *uri, CORBA::Object_ptr& obj);

object_name Name of the object (a string value)
Chapter 10, Naming Services 165

C++ Classes for Naming Services (3.01 only)
Parameters This method has the following parameters:

Returns WAISPISucess if the object reference was retrieved successfully. WAISPIFailure if no
object reference could be determined.

Description The URI is typically in the following format:

http://hostname:portnumber/NameService/WAS/object_name

where object_name is a name under which the object instance is registered.

To register an object with a URL, call the registerWAS method.

registerObject

Registers an object implementation with a URL of the form http://
hostname:portnumber/NameService/object_name.

Syntax WAIReturnType_t DLLEXPORT registerObject(const char *host,
const char *url, CORBA::Object_ptr obj);

host Name of host machine.

• If protocol is http, name of the host on which the web server is
running.

• If protocol is file, this can be an empty string ("").

port Port number on which the server listens.

• If protocol is http, the port number on which the web server is
listening.

• If protocol is file, this can be 0.

url The URL that you want to resolve to an object reference.

obj Object reference to the object associated with the URI.
166 Writing Web Applications with WAI

C++ Classes for Naming Services (3.01 only)
Parameters This method has the following parameters:

Returns WAI_TRUE if the object implemented was registered with the URL successfully.
WAI_FALSE if registration did not complete.

Description When you register your object, a URL of the following format is constructed (based on
the arguments you pass to the registerWAS method) and is associated with your object:

http://hostname:portnumber/NameService/object_name

where object_name is a unique name that you want to assign to the object instance.

After you register an object implementation with a URL, you can retrieve the object
reference by resolving the URL (call the resolveURI method).

To register an object under the web application services section of the URL
(NameService/WAS), call the registerWAS function instead.

putObject

For internal use only.

Syntax WAIReturnType_t DLLEXPORT putObject(const char *url,
CORBA::Object_ptr obj,
WAIBool create_intermediate_nodes=WAI_FALSE);

putContext

For internal use only.

Syntax WAIReturnType_t DLLEXPORT

host Hostname and port number of the web server’s host machine where
you want to register your object implementation. Use the following
format:

hostname:portnumber
If the server has SSL enabled, do not specify the hostname and port
number. Instead, specify the location of the Interoperable Object
Reference (IOR) file:

IOR_filename

object_name Instance name with which you want to register your object.

obj The object implementation that you want to register
Chapter 10, Naming Services 167

Java Classes for Naming Services
putContext(const char *url,
WAIBool create_intermediate_nodes=WAI_FALSE);

Java Classes for Naming Services
Netscape Communicator 4.0 and version 3.0/3.01 of Netscape web servers
contain naming services that allow you to associate a URL with an object. Once
the URL is associated with the object, clients of the web server can access the
object reference through the URL.

Netscape provides two Java classes for associating URLs with objects:

• netscape.WAI.Naming (available in Netscape Communicator and in Netscape
web servers)

• netscape.WAI.NameUtil (available in Netscape web servers)

These classes are described in more detail in this chapter.

netscape.WAI.Naming
The netscape.WAI.Naming class provides methods for registering an object
implementation (associating the object with a URL) and for resolving a URL into an
object reference.

The netscape.WAI.Naming class is part of the iiop10.jar file in Netscape Communicator
and is part of the nisb.zip file in Netscape web servers.

Member
Summary

The Naming class defines the following members:

Constructors
168 Writing Web Applications with WAI

Java Classes for Naming Services
Methods

register

Registers an object implementation with a URL.

Naming Creates a new Naming object.

Methods

register Registers an object implementation with a URL that has the following
format:

http://hostname:portnumber/path/object_name

resolve Resolves a URL that has the following format:

http://hostname:portnumber/path/object_name
and returns the corresponding object reference.
Chapter 10, Naming Services 169

Java Classes for Naming Services
Syntax public static
void register(String url, org.omg.CORBA.Object obj);

Throws SystemException.

Parameters This method has the following parameters:

Description The URL must have the following format:

http://hostname:portnumber/path/object_name

where object_name is a unique name that you want to assign to the object
instance.

After you register an object with a URL, you can retrieve the object reference by
resolving the URL (call the resolve method).

resolve

Resolves a URL and returns the corresponding object reference.

Syntax public static org.omg.CORBA.Object resolve(String url);

Throws SystemException.

Parameters This method has the following parameters:

Returns An object reference to the object associated with the URL.

Description The URL must have the following format:

http://hostname:portnumber/path/object_name

where object_name is a name under which the object instance is registered.

To register an object with a URL, call the register method.

url The URL that you want to register your object with

obj The object implementation that you want to register

url The URL that you want to resolve to an object reference.
170 Writing Web Applications with WAI

Java Classes for Naming Services
netscape.WAI.NameUtil
The netscape.WAI.NameUtil class provides methods for registering an object
implementation (associating the object with a URL) and for resolving a URL into
an object reference.

The netscape.WAI.NameUtil class is part of the WAI.zip file in Netscape web
servers.

Member
Summary

The NameUtil class defines the following members:

Methods

getRootNaming

Gets the object reference of the NamingContext object for a web server, given the
server’s hostname and port number.

Syntax public static
CosNaming.NamingContext getRootNaming(String host, int port);

Throws SystemException.

Methods

getRootNaming Gets the object reference of the NamingContext object for a web server.

NameFromString Gets a list of name components for a given string.

registerObject Registers an object implementation with a URL of the form:

http://hostname:portnumber/NameService/object_name.

registerWAS Registers an object implementation with a URL that has the following
format:

http://host:port/NameService/WAS/object_name

resolveURI Resolves a URL that has the following format:

http://host:port/NameService/WAS/object_name
and returns the corresponding object reference.
Chapter 10, Naming Services 171

Java Classes for Naming Services
Parameters This method has the following parameters:

NameFromString

Gets a list of name components from a given string.

Syntax public static
CosNaming.NameHolder NameFromString(String s, String sepchar);

Throws SystemException.

Parameters This method has the following parameters:

registerObject

Registers an object implementation with a URL of the form http://
hostname:portnumber/NameService/object_name.

Syntax public static
boolean registerObject(String host, String object_name, org.omg.CORBA.Object obj);

Throws CosNaming.NamingContextPackage.NotFound
CosNaming.NamingContextPackage.CannotProceed
CosNaming.NamingContextPackage.InvalidName, org.omg.CORBA.SystemException,
java.lang.Exception

host Hostname of the machine running the web server.

port Port number that the web server listens to.

s String that you want parsed into name component

sepchar Character representing the separator between name components (for
example, “/”)
172 Writing Web Applications with WAI

Java Classes for Naming Services
Parameters This method has the following parameters:

Example try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omb.CORBA.ORM.init();

// Initialize the BOA.
org.omg.CORBA.BOA boa = orb.BOA_init();

// Create the account manager object.
AccountManager manager =

new AccountManager(“Netscape Bank”);

// Export the newly created object.
boa.obj_is_ready(manager);

// Register the object with a name service.
netscape.WAI.NameUtil.registerObject (InetAddress.getLocalHost().getHostName(),

“/NameService/NetscapeBank”, manager);
System.out.println(manager + “ is ready.”);

// Wait for incoming requests.
boa.impl_is_ready();
}
catch(CosNaming.NamingContextPackage.InvalidName e) {

System.err.println(e);
}
catch(CosNaming.NamingContextPackage.NotFound e) {

System.err.println(e);
}
catch(CosNaming.NamingContextPackage.CannotProceed e) {

System.err.println(e);
}
catch(org.omg.CORBA.SystemException e) {

System.err.println(e);

host Hostname and port number of the web server’s host machine where
you want to register your object implementation. Use the following
format:

hostname:portnumber
If the server has SSL enabled, do not specify the hostname and port
number. Instead, specify the location of the Interoperable Object
Reference (IOR) file:

IOR_filename

Note: hostname should not be null or ““.

object_name Instance name with which you want to register your object.
Note: object_name should include the /NameService prefix.

obj The object implementation that you want to register
Chapter 10, Naming Services 173

Java Classes for Naming Services
}
catch(java.lang.Exception e) {

System.err.println(e);
}

}

registerWAS

Registers an object implementation with a URL.

Syntax public static
boolean registerWAS(String host, String object_name,

org.omg.CORBA.Object obj);

Throws CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed,
CosNaming.NamingContextPackage.InvalidName, org.omg.CORBA.SystemException.

Parameters This method has the following parameters:

Returns true if the object implemented was registered with the URL successfully. false if
registration did not complete.

Description When you register your object, a URL of the following format is constructed
(based on the arguments you pass to the registerWAS method) and is
associated with your object:

http://hostname:portnumber/NameService/WAS/object_name

where object_name is a unique name that you want to assign to the object
instance.

host Hostname and port number of the web server’s host machine where
you want to register your object implementation. Use the following
format:

hostname:portnumber
If the server has SSL enabled, do not specify the hostname and port
number. Instead, specify the location of the Interoperable Object
Reference (IOR) file in the following format:

file:IOR_filename

object_name Instance name that you want to register your object as.

obj The object implementation that you want to register
174 Writing Web Applications with WAI

Java Classes for Naming Services
After you register an object implementation with a URL, you can retrieve the
object reference by resolving the URL (call the resolveURI method).

resolveURI

Resolves a URL and returns the corresponding object reference.

Syntax public static
org.omg.CORBA.Object resolveURI(String protocol, String host,

int port, String uri);

Throws SystemException.

Parameters This method has the following parameters:

Returns An object reference to the object associated with the URL.

Description The URI is typically in the following format:

http://host:port/NameService/WAS/object_name

where object_name is a name under which the object instance is registered.

To register an object with a URL, call the registerWAS method.

protocol Protocol used to find the naming service:

• If SSL is not enabled, specify http.

• If SSL is enabled, specify file.

host Name of host machine.

• If protocol is http, name of the host on which the web server is
running.

• If protocol is file, this can be an empty string ("").

port Port number on which the server listens.

• If protocol is http, the port number on which the web server is
listening.

• If protocol is file, this can be 0.

url The URL that you want to resolve to an object reference.
Chapter 10, Naming Services 175

Java Classes for Naming Services
176 Writing Web Applications with WAI

C h a p t e r

11
Troubleshooting Problems
If you experience problems running WAI applications, consult this chapter for
troubleshooting tips.

• “Error: WAI Application Not Found” on page 175

• “Error: Server Error” on page 177

• “Error: Invalid Stringified Object Reference ‘’” on page 178

• “Web Service Registration” on page 178

Error: WAI Application Not Found
Symptom: The web server cannot find your WAI application (for example, if it
responds to an /iiop URI with a “Not Found” page).

Possible Explanation: Your WAI application is not properly registered with the web
server. Try the following troubleshooting tips:

• Verify that the application successfully registered with the web server. Check the
return value of the function or method that registers the service. (In C, check the
WAIregisterService() function. In C++ and Java, check the RegisterService
method.)
Chapter 11, Troubleshooting Problems 175

Error: WAI Application Not Found
• Verify that you have passed the hostname and port of the web server to the
WAIregisterService() function or the RegisterService method. The argument
containing the hostname and port should specify this information in the following
format:

hostname:port_number

For example, the sample WASP and CAIIIOP examples retrieve the web server’s
hostname and port number from the command line (these examples expect you to
enter this information as an argument).

Suppose you are running the web server on the machine named myhost on the port
80. To execute these applications, you enter the following commands:

WASP myhost:80

java -DDISABLE_ORB_LOCATOR WASP myhost:80

CAIIIOP myhost:80

• Verify that the web server is actually running on the specified host name and port.

• If you are using a version 3.0 web server, run the osfind utility (under the server_root/
wai/bin directory on UNIX and server_root\wai\bin directory on Windows NT) to see
a list of the implementations running on your machine.

If you have set up the osagent utility to run on a specific IP address (or localhost,
127.0.0.1), you need to specify this address as a command-line parameter to the
osfind utility. Use the -ORBagentaddr flag to specify this address.

For example, if the osagent utility is running on localhost (IP address 127.0.0.1), use
this command to start osfind:

osfind -ORBagentaddr 127.0.0.1

osfind returns information about any instances of osagent, OAD (the object
activation daemon), and WAI applications running.

osfind: Found one agent at port 14000

HOST: localhost

osfind: There are no OADs running on in your domain.

osfind: There are no Object Implementations registered with OADs.

osfind: Following are the list of Implementations started manually.

HOST: 204.222.222.22

INTERFACE NAME: netscape::WAI::WebApplicationBasicService

OBJECT NAME: JavaWASP
176 Writing Web Applications with WAI

Error: Server Error
INTERFACE NAME: netscape::WAI::WebApplicationService

OBJECT NAME: JavaWASP

INTERFACE NAME: IDL:netscape/WAI/WebApplicationBasicService:1.0

OBJECT NAME: JavaWASP

INTERFACE NAME: IDL:netscape/WAI/WebApplicationService:1.0

OBJECT NAME: JavaWASP

Verify that your object implementation appears in this list under the correct object
name.

• Go to the following URL to verify that your web service is registered under the built-
in name service:

http://hostname:port_number/NameService/WAS/service_name

If the server returns a page displaying the word IOR followed by some numbers, your
service is registered.

For example, the WASP example provided with the web server registers under the
service name WASP (for the C++ version) or JavaWASP (for the Java version). To
verify that these applications register correctly, run the applications and go to the
following URL:

http://server:port/NameService/WAS/WASP (for C++)

http://server:port/NameService/WAS/JavaWASP (for Java)

If the server returns a page containing the word IOR followed by a long string of
numbers, your application has registered successfully to the web server.

If instead the server returns a “File Not Found” error, your service is not registered
correctly.

Error: Server Error
Symptom: When you run your WAI application, you get a server error.

Possible Explanation: Server errors can occur for a number of different reasons. See
the list of possible explanations below.
Chapter 11, Troubleshooting Problems 177

Error: Invalid Stringified Object Reference ‘’
• This type of problem may occur if you are running the object activation daemon
(oad) while the web server’s ORB is configured for localhost use only. (See the
section “Configuring the Web Server’s ORB” on page 35 and Chapter 8,
“Security Guidelines for Using WAI” for details.) You cannot run oad if the
web server’s ORB is configured this way.

• Check the error log for messages. If a message similar to the following appears:

[10/Aug/1997:22:52:51] failure: IIOPexec CORBA exception
CORBA::NO_IMPLEMENT. Minor code: 0 Completed: NO

make sure that your WAI application is running.

The error log is stored in server-root/https-serverID/logs/errors.

Error: Invalid Stringified Object Reference ‘’
Symptom: When you attempt to run your WAI application, your application exits with
the following error message:

Invalid Stringified Object Reference ’’

Failed to Register with hostname

Possible Explanation: This error message can appear for a number of different
reasons. See the list of possible explanations below.

• If you are running one of the sample applications, make sure that you specify the
hostname and port number as a command-line argument. For example:

WASP myhost:80

Web Service Registration
The following two commands, unregobj and listimpl in the wai/bin directory are
useful for troubleshooting whether you registered your web service properly.

listimpl

This command lets you list all ORB object implementations registered with the Object
Activation Daemon (OAD).
178 Writing Web Applications with WAI

Web Service Registration
Description

This command lists information in the OAD’s implementation repository. The
information for each object includes:

• Interface names of the ORB objects.

• Instance names of the object or objects offered by that implementation.

• Full pathname of the server implementation's executable.

• Activation policy of the ORB object (shared, unshared, or per-method).

• Reference data specified when the implementation was registered with the OAD.

• List of arguments to be passed to the server at activation time.

• List of environment variables to be passed to the server at activation time.

For UNIX, if interface_name is specified, only information for that ORB object is
displayed, otherwise all ORB objects registered with the OAD and their information will
be shown.

The implementation repository files are assumed to reside in the impl_dir subdirectory
whose path is defined by the ORBELINE environment variable. A different directory
name can be set using the ORBELINE_IMPL_NAME environment variable. The path to
this directory can be changed using the ORBELINE_IMPL_PATH environment variable.

Example:

listimpl -i Library

unregobj

This command unregisters ORB objects registered with the Object Activation Daemon
(OAD).

Description

This command unregisters one or more ORB objects with the Object Activation
Daemon. Once an object is unregistered, it can no longer be activated automatically by
the OAD when a client requests the object.
Chapter 11, Troubleshooting Problems 179

Web Service Registration
ORB objects being unregistered must have been previously registered using the regobj
command.

If you specify only an interface name, all ORB object with that interface that are
registered with the OAD will be unregistered. Alternatively, you may specificially identify
an ORB object by its interface name and object name.

If an object implementation is started manually as a persistent server, it does not need to
be registered with the OAD.

Example:

unregobj -o Library,Harvard

Example:
unregobj -i Library
180 Writing Web Applications with WAI

Index

Numerics
301 status code 87

302 status code 87

404 status code 85

A
ActivateWAS method of

WAIWebApplicationService 152

Add method of FormHandler class 159

addResponseHeader 87

addResponseHeader method of
ServerRequest 111

AIX, C++ libraries 40

applications
compiling 38
running 41

AUTH_TYPE
getting value of 123

B
base classes

WAIWebApplicationService 109

before you begin 29

bold fonts
used in this book 3

BuildURL method of ServerRequest 113

C
C

initialization 94
WAI interface 8

C applications

defining functions to process requests 46
getting and setting cookies 49
getting data 46
getting headers 47
getting server information 48
redirecting users to another page 51
registering with a web server 53
registering with an SSL-enabled web

service 54
running your web service 55
sending response 50
sending responses back to client 49
setting headers in a response 50
setting status of the response 50

C functions in WAI 106
summary of 55
WAIaddResponseHeader 106
WAIBuildURL 106
WAIcreateWebAppService 106
WAIdeleteService 106
WAIdelResponseHeader 106
WAIgetConfigParameter 106
WAIgetCookie 106
WAIgetHost 106
WAIgetInfo 106
WAIgetPort 107
WAIgetRequestHeader 107
WAIgetRequestInfo 107
WAIgetResponseContentLength 107
WAIgetResponseHeader 107
WAIgetServerSoftware 107
WAIimplIsReady 107
WAIisSecure 107
WAILogError 107
WAIReadClient 107
WAIregisterService 107
WAIRespondRedirect 107
WAIsetCookie 107
WAIsetRequestInfo 108
Index 181

WAIsetResponseContentLength 108
WAIsetResponseContentType 108
WAIsetResponseStatus 108
WAIStartResponse 108
WAIstringFree 108
WAIWriteClient 108

C++
classes for naming services 163
compile flags 40
compiling applications 39
examples

FormHandler 22
WASP 15

include directories 39
libraries 39

AIX 40
Digital UNIX 40
HP-UX 40
IRIX 40
Solaris 39
Windows NT 39

requirements 27
IRIX 28
Solaris 28
Windows NT 28

running web service 75
WAI interface 8

C_r 40

CGI
converting to WAI 30

changes
to obj.conf file 35

changing
ORB configuration 36

CIIOP application 12

classes
FormHandler example 22

CLASSPATH
Java 41, 78

client
reading data from 130
writing data to 142

CLIENT_CERT

getting value of 123

Common Object Request Broker Architecture
(see CORBA) 6

compile flags
C++ 40

compiling 38
applications

C++ 39
C++

compile flags 40
C/C++ server plug-ins 41
include directories

C++ 39
Java applications 41
libraries

C++ 39

configuring
IIOPinit parameters 36
ORB

example 37
WAI server 34
web server 96
web server for IIOP 101
web server’s ORB 35

constructors
FormHandler 156

content type
setting 138, 139

CONTENT_LENGTH
getting value of 123

CONTENT_TYPE
getting value of 123

Content-length 85

converting CGI to WAI 30

cookie
constructing and sending to client 135

cookies
getting

C applications 49
C++ 68
Java 84

setting
182 Writing Web Applications with WAI

C applications 49
C++ 68
Java 84

CORBA
understanding 6

D
data

from a request 46
getting reqest 65
getting requst 80
headers 47
server information 48

dce.sl 40

dcepthreads 40

declaring
a web service class 63

defining
method to process requests 64, 80

defining functions
C applications 46

Delete method of FormHandler class 160

delResponseHeader method of
ServerRequest 115

Digital UNIX
C++ libraries 40

DISABLE_ORB_LOCATOR 44

E
editing

obj.conf 44

enabling
IIOP connections 101
WAI 34

enabling WAI
changes to obj.conf 35

environment variables
Java

CLASSPATH 41, 78

errors

Invalid Stringified Object Reference 178
logging 128
Server Error 177
WAI Application Not Found 175

example applications
running the Java sample 18

Examples 11

examples
C++

WASP 15
configuring the ORB 37
FormHandler

C++ 22
Java 24

FormHandler class 22
running a C application 12
running sample applications 11
running the sample C++ application 15
running the sample Java application 18

F
finding

application 97
IOR file 54, 74

flags
UNIX

-R on Solaris 41
-rpath on IRIX 41

fonts
bold, used in this book 3
italics, used in this book 2
monospaced, used in this book 2

FormHandler 155
examples

C++ 22
compiling C++ 23
Java 24

FormHandler base class methods 105

FormHandler constructor 156

FormHandler example 22

FormHandler member summary 156
Index 183

FormHandler methods
Add 159
Delete 160
Get 159
GetHashTable 161
GetQueryString 157
InitIterator 160
IsValid 157
ParseQueryString 158

forms
handling data 21

function
writing an initialization 94

G
GATEWAY_INTERFACE

getting value of 147

Get method of FormHandler 159

getConfigParameter method of
ServerRequest 116

getContext method of ServerRequest 118

getCookie method of ServerRequest 119

GetHashTable method of FormHandler
class 161

getHost method of ServerContext 145

getInfo 82

getInfo method of ServerContext 146

getInfo variables
GATEWAY_INTERFACE 147
HTTPS 147
SERVER_ID 147
SERVER_NAME 147
SERVER_PORT 147
SERVER_SOFTWARE 147

getName method of ServerContext 147

getPort 83

getPort method of ServerContext 148

GetQueryString method of FormHandler 157

getRequestHeader 80

getRequestHeader method of

ServerRequest 121

getRequestInfo 81

getRequestInfo method of ServerRequest 122

getRequestInfo variables
AUTH_TYPE 123
CLIENT_CERT 123
CONTENT_LENGTH 123
CONTENT_TYPE 123
HOST 123
HTTP_* header 123
HTTPS 123
HTTPS_KEYSIZE 123
HTTPS_SECRETKEYSIZE 123
PATH_INFO 123
PATH_TRANSLATED 123
QUERY 123
QUERY_STRING 123
REMOTE_ADDR 124
REMOTE_HOST 124
REMOTE_USER 124
REQUEST_METHOD 124
SCRIPT_NAME 124
SERVER_PROTOCOL 124
URI 124

getResponseContentLength method of
ServerRequest 125

getResponseHeader method of
ServerRequest 126

getRootNaming 170

getRootNaming, method of NameUtil 170, 171

getServerSoftware method of ServerContext 148

getServiceInfo 72, 79, 88

getServiceInfo method in
WAIWebApplicationService base
class 64

getServiceInfo method of
WAIWebApplicationService 152

getting
cookies

C++ 68
Java 84

request data 65, 80
184 Writing Web Applications with WAI

request headers 65, 80
server information 66, 82

getting data
C applications 46

getting headers
C applications 47

getting server information
C applications 48

guidelines
security 97, 99

H
header

adding to a response 111
deleting from a response 115
getting from request 121
obtaining from response 126

headers
getting request 65, 80
setting 69
setting in a response 50

Hello World 86

HOST
getting value of 123

hostname
getting 145

HP-UX
C++

libraries 40

HTTP_* header
getting value of 123

HTTPS
getting value of 123, 147

HTTPS_KEYSIZE
getting value of 123

HTTPS_SECRETKEYSIZE
getting value of 123

HttpServerContext 109

HttpServerContext interface 144

HTTPServerContext interface methods 104

HttpServerRequest 109, 110

HttpServerRequest interface member
summary 110

HTTPServerRequest interface methods 103

I
IDL 6

understanding 7
WAI interface 8

IIOP, enabling 101

IIOPinit
parameters 36

IIOPsec 40

IIOPsec.sl 40

IIOPsec.so 40

include files
Java 41

information
providing service 72, 88

initialization
C 94

InitIterator 22

InitIterator method of FormHandler class 160

Interface Definition Language (see IDL) 6, 7

interfaces
HttpServerContext 109
HttpServerRequest 109
WAIWebApplicationService base class 109
WebApplicationBasicService 109
WebApplicationService 109

intialization function, writing 94

IOR file
finding 54, 74

IRIX
C++

libraries 40
-rpath flag 41

isSecure method of ServerContext 149

IsValid method of FormHandler 157
Index 185

italics font
used in this book 2

J
Java

classes for naming services 168
examples

FormHandler 24
obj.conf 44
registering with a web server 90
requirements 28

JDK 28
Visual Café 28

using osagent 43
WAI interface 8

JavaWASP application 18

L
lcache10.so 40

ldap10.so 40

libIIOPsec.a 39, 40

liblcache10.so 39, 40

libldap10.so 39, 40

libnsl.so 39

libnspr.so 39

libONEiiop.so 39, 40

liborb_r.so 39, 40

libposix4.so 39

libraries
C++

Digital UNIX 40
HP-UX 40
IRIX 40
Solaris 39
Windows NT 39

C++ AIX 40

libresolv.so 39

libthread.so 39

listimpl 178

listing
configurable IIOPinit parameters 36

LogError method of ServerRequest 128

logging
status messages 38

logging errors 128

M
method

defining 64
definint 80

methods
FormHandler base class 105
HTTPServerContext interface 104
HttpServerRequest 110
HTTPServerRequest interface 103
WAIWebApplicationService base class 105

monospaced fonts
used in this book 2

N
NameFromString, method of NameUtil 170, 171

NameUtil 170

NameUtil.hpp 163

Naming 168

naming services 163
C++ classes 163
java classes 168

netscape.WAI.HttpServerRequest 80, 81

netscape.WAI.NameUtil 170

netscape.WAI.Naming 168

Next 22

Next method of FormHandler class
FormHandler methods

Next 161

nisb.zip 78

NS_SERVER_ROOT 55, 75

nshttpd.sl 40

ns-httpd.so 39, 40
186 Writing Web Applications with WAI

nshttpd_shr 40

nspr_shr 40

NVPair 22

O
OAD 42

LD_LIBRARY_PATH 42
NS_SERVER_ID 42
NS_SERVER_ROOT 42
ORBELINE_IMPL_NAME 42
ORBELINE_IMPL_PATH 42
setting up your application 42

OAport 44

obj.conf
changes 35
editing 44

object activation daemon (see OAD) 42

Object Management Group (see OMG) 7

Object Request Broker (see ORB) 6

OMG 7

ONEiiop.sl 40

ONEiiop.so 40

ONEiiop_shr 40

ONEiiop10.lib 39

options
enabling WAI 34

ORB 6
changing configuration 36
configuring 35

example 37

orb_r 40

orb_r.sl 40

orb_r.so 40

osagent
running 102
starting 33
troubleshooting 178

listimpl 178
unregobj 179

with Java 43

overview
of WAI 28

overview of this manual 1

P
parameters

configurable IIOPinit 36
IIOPinit 36

ParseQueryString method of FormHandler 158

PATH_INFO
getting value of 123

PATH_TRANSLATED
getting value of 123

permissions
write 100

plug-in
writing WAI server 93

plug-ins
compiling 38

port number
getting 148

preprocessor definitions 62

processing requests 64, 80
C applications 46

project settings 62

prototype
C 108
C++ 109
Java 109

providing
service information 72, 88

putContext 167

putObject 167

Q
QUERY

getting value of 123

QUERY_STRING
getting value of 123
Index 187

R
ReadClient method of ServerRequest 130

reading data from client 130

redirecting
users to another page 71

redirecting users to another page 87
C applications 51

reference, how to use 108

register, method of Naming 169

registering
web application service

C applications 52
with a web server

C applications
web server

registering with 53
web server

registering with 89
with an SSL-enabled web service

C applications 54

registering with a web server
Java 90

registerObject 166

registerObject, method of NameUtil 170, 171

RegisterService 74

RegisterService method of
WAIWebApplicationService 153

registerWAS 164

registerWAS, method of NameUtil 170, 173

remote machines
running on 44

REMOTE_ADDR
getting value of 124

REMOTE_HOST
getting value of 124

REMOTE_USER
getting value of 124

request
getting information about 122

getting length of response content 125

request data
getting 80

REQUEST_METHOD
getting value of 124

requirements
C++ 27

IRIX 28
Solaris 28
Windows NT 28

Java 28
JDK 28
Visual Café 28

system 27

resolve, method of Naming 169

resolveURI 164, 165

resolveURI, method of NameUtil 170, 174

resolveWAS 164, 165

RespondRedirect method of ServerRequest 134

response
sending 50, 141
sending back 84
sending one back to the client 49
sending to client 69
setting content length 138
setting content type 139
setting headers 50
setting status 50, 70
setting status code 140

restricting login access 99

Run 79

Run method in WAIWebApplicationService base
class 64

Run method of
WebApplicationBasicService 153

running
applications 41
C++ web service 75
on remote machines 44
web service

C applications 55
java 92
188 Writing Web Applications with WAI

S
sample applications

C++ 15
running 11
running the C sample 12

samples
running the Java application 18

SCRIPT_NAME
getting value of 124

security
osagent 100
potential concerns 98
recommended guidelines 99
replace web service 98

security guidelines 97

security issue
understanding 29

sending
a response 69
response 84

Java
response

sending

Java 86

sending response
C applications 50
to client 49

server
finding application 97
getting information 66
getting name and version of software 148
getting value associated with name in 146

server id
retrieving 147

server information
getting 82

server plug-in
writing 93

server plug-ins
compiling

C/C++ 41

server software
getting name and version of 148

SERVER_ID
getting value of 147

SERVER_NAME
getting value of 147

SERVER_PORT 82
getting value of 147

SERVER_PROTOCOL
getting value of 124

SERVER_SOFTWARE
getting value of 147

ServerContext methods
getHost 145
getInfo 146
getName 147
getPort 148
getServerSoftware 148
isSecure 149

ServerRequest methods
addResponseHeader 111
BuildURL 113
delResponseHeader 115
getConfigParameter 116
getContext 118
getCookie 119
getRequestHeader 121
getRequestInfo 122
getResponseContentLength 125
getResponseHeader 126
LogError 128
ReadClient 130
RespondRedirect 134
setCookie 135
setRequestInfo 138
setResponseContentLength 138
setResponseContentType 139
SetResponseStatus 140
StartResponse 141
WriteClient 142

services
naming 163

setCookie method of ServerRequest 135
Index 189

setRequestInfo method of ServerRequest 138

setResponseContentLength 70, 85

setResponseContentLength method of
ServerRequest 138

setResponseContentType 70, 85

setResponseContentType method of
ServerRequest 139

setResponseStatus 87

setResponseStatus method of
ServerRequest 140

setting
cookies 68

Java 84
headers 69
headers in a response 50
option to enable WAI 34
response status 70
up the web server 32

setting status of response 50

setting up
Visual C++ 60

signatures, of WAI methods 103

Solaris
C++

libraries 39
-R flag 41

SSL
determining if enabled 149

starting
osagent 33

StartResponse 87

StartResponse method of ServerRequest 141

status
setting response 70

status codes
301 87
302 87
404 85

status messages
logging 38

StringAlloc method of
WAIWebApplicationService 154

StringDelete method of
WAIWebApplicationService 154

StringDup 72

StringDup method of
WAIWebApplicationService 155

syntax
WAI methods 108

system requirements 27

T
troubleshootin 175

troubleshooting
osagent

listimpl 178
unregobj 179

U
understanding

security issues 29
version differences 5, 29

unregobj 179

URI
getting value of 124

URL
creating from prefix and suffix 113

using
osagent

with Java 43
the reference section 108
WAI 27

V
version differences

understanding 5, 29

vertical bar
used in this book 3

Visual C++
190 Writing Web Applications with WAI

preprocessor definitions 62
setting up 60

W
WAI 5

C functions 106
configuring the server 34
converting CGI 30
enabling 34
methods

syntax 108
overview 28
security guidelines 97
using 27
wrapper classes 7
writing C++ application 59

WAI interface
C 8
C++ 8
IDL 8
Java 8

WAI.zip 78

WAIaddResponseHeader 106

WAIBuildURL 106

WAIcreateWebAppService 106

WAIdeleteService 106

WAIdelResponseHeader 106

WAIgetConfigParameter 106

WAIgetCookie 106

WAIgetHost 106

WAIgetInfo 106

WAIgetName
C functions in WAI

WAIgetName 106

WAIgetPort 107

WAIgetRequestHeader 107

WAIgetRequestInfo 107

WAIgetResponseContentLength 107

WAIgetResponseHeader 107

WAIgetServerSoftware 107

WAIimplIsReady 107

WAIisSecure 107

WAILogError 107

WAIReadClient 107

WAIregisterService 107
registering with an SSL-enabled server 54

WAIRespondRedirect 107

WAIRunFunction
C functions in WAI

*WAIRunFunction 107

WAIsetCookie 107

WAIsetRequestInfo 108

WAIsetResponseContentLength 108

WAIsetResponseContentType 108

WAIsetResponseStatus 108

WAIStartResponse 108

WAIstringFree 108

WAIWebApplication methods
getServiceInfo 64

WAIWebApplicationService 72, 78, 88, 109
declaring a class 78
virtual methods 64

WAIWebApplicationService base class 150

WAIWebApplicationService base class
methods 105

WAIWebApplicationService methods
ActivateWAS 152
getServiceInfo 152
RegisterService 153
Run 64, 153
StringAlloc 154
StringDelete 154
StringDup 155

WAIWriteClient 108

WASP sample application 15

Web Application Interface (see WAI) 5

web application services 8

web applicaton service
registering
Index 191

C applications 52

web server
configuring 96
configuring ORB 35
setting it up 32

web service
declaring a class 63
running

java 92

WebApplicationBasicService 109

WebApplicationService 109

WebApplicationServicePrototype 72, 73, 88

Windows NT
C++

libraries 39

wrapper classes 7

write permissions 100

WriteClient 86

WriteClient method of ServerRequest 142

writing
in C++ 59
initialization function 94
WAI server plug-in 93

WSOCK32.lib 39

X
XP_WIN32 62
192 Writing Web Applications with WAI

	Who Should Read This Guide?
	What’s in This Guide?
	Conventions in This Book
	Understanding WAI
	Understanding Version Differences
	Understanding CORBA
	Understanding IDL
	WAI Wrapper Classes
	How Web Application Services Work

	Quick Start: Running the Examples
	Running the Sample C Application (CIIOP)
	Running the Sample C++ Application (WASP)
	Running the Sample Java Application (WASP.Java)
	Running the FormHandler Sample
	About the FormHandler Class Example
	Running the C++ FormHandler Sample
	Running the Java FormHandler Sample

	Using WAI
	System Requirements
	Overview
	Before You Use WAI
	Understanding Security Issues
	Understanding Version Differences

	Converting CGI Applications to WAI
	Setting Up the Web Server
	Starting osagent (3.0 Servers Only)
	Setting the Option to Enable WAI
	Configuring the Server
	What Happens When You Enable WAI

	Configuring the Web Server’s ORB
	Changing the ORB Configuration Information
	Listing of Configurable Parameters
	Example of Configuring the ORB

	Logging Status Messages

	Compiling Applications and Server Plug-Ins
	Compiling C/C++ Applications
	Include Directories
	Libraries
	Compile Flags

	Compiling C/C++ Server Plug-Ins
	Compiling Java Applications

	Running Applications
	Setting Up Your Application with OAD
	Using osagent with Java (3.0 Only)
	Running Applications on Remote Machines

	Writing a WAI Application in C
	Defining a Function to Process Requests
	Getting Data from the Request
	Getting Headers from the HTTP Request
	Getting Information about the Server
	Getting and Setting Cookies in the Client

	Sending the Response Back to the Client
	Setting Headers in the Response
	Setting the Status of the Response
	Sending the Response
	Redirecting Users to Another Page

	Registering Your Web Application Service
	Registering With a Web Server
	Registering With an SSL-Enabled Server

	Running Your Web Service
	Summary of C Functions

	Writing a WAI Application in C++
	Setting up Microsoft Visual C++ for use with WAI (...
	Declaring a Class for Your Web Service
	Defining a Method to Process Requests
	Getting Data from the Request
	Getting Headers from the HTTP Request
	Getting Information about the Server
	Getting and Setting Cookies in the Client

	Sending the Response Back to the Client
	Setting Headers in the Response
	Setting the Status of the Response
	Sending the Response
	Redirecting Users to Another Page

	Providing Information About the Service
	Registering Your Web Application Service
	Registering With a Web Server
	Registering With an SSL-Enabled Server

	Running Your Web Service

	Writing a WAI Application in Java
	Declaring a Class for Your Web Service
	Defining a Method to Process Requests
	Getting Data from the Request
	Getting Headers from the HTTP Request
	Getting Information about the Server
	Getting and Setting Cookies in the Client

	Sending the Response Back to the Client
	Setting Headers in the Response
	Setting the Status of the Response
	Sending the Response
	Redirecting Users to Another Page

	Providing Information About the Service
	Registering Your Web Application Service
	Registering With a Web Server
	Registering With a Web Server
	Registering With an SSL Enabled Server

	Running Your Web Service

	Writing a WAI Server Plug-In
	Writing an Initialization Function
	Initialization in C

	Configuring Your Web Server

	Security Guidelines for Using WAI
	How the Server Finds Your Application
	Potential Security Concerns
	Recommended Guidelines
	Enabling IIOP Connections from Other Machines
	Configuring Your Web Server
	(3.0 only) Running osagent

	WAI Reference
	How to Use This Reference
	Interfaces
	netscape::WAI::HttpServerRequest
	Methods
	addResponseHeader
	BuildURL
	delResponseHeader
	getConfigParameter
	getContext
	getCookie
	getRequestHeader
	getRequestInfo
	getResponseContentLength
	getResponseHeader
	LogError
	ReadClient
	RespondRedirect
	setCookie
	setRequestInfo
	setResponseContentLength
	setResponseContentType
	setResponseStatus
	StartResponse
	WriteClient

	netscape::WAI::HttpServerContext
	Methods
	getHost
	getInfo
	getName
	getPort
	getServerSoftware
	isSecure

	netscape::WAI::WebApplicationService
	netscape::WAI::WebApplicationBasicService
	WAIWebApplicationService
	Constructor
	WAIWebApplicationService
	Methods
	ActivateWAS
	getServiceInfo
	RegisterService
	Run
	StringAlloc
	StringDelete
	StringDup

	netscape::WAI::FormHandler
	FormHandler
	FormHandler
	IsValid
	GetQueryString
	ParseQueryString
	Get
	Add
	Delete
	InitIterator
	Next
	GetHashTable

	Naming Services
	C++ Classes for Naming Services (3.01 only)
	registerWAS
	resolveWAS
	resolveURI
	registerObject
	putObject
	putContext

	Java Classes for Naming Services
	netscape.WAI.Naming
	Methods
	register
	resolve

	netscape.WAI.NameUtil
	Methods
	getRootNaming
	NameFromString
	registerObject
	registerWAS
	resolveURI

	Troubleshooting Problems
	Error: WAI Application Not Found
	Error: Server Error
	Error: Invalid Stringified Object Reference ‘’
	Web Service Registration
	listimpl
	Description

	unregobj

