IPlanet Web Server 4.1 Performance
Tuning, Sizing, and Scaling

This guide is intended for advanced administrators only. Be cautious when you tune your
server. Do not change any values except in exceptional circumstances. Read this guide
and other relevant server documentation before making any changes. Always backup
your configuration files first.

This guide includes the following sections:

* About Server Performance

* The petfdump Utility

* Using perfdump Statistics to Tune Your Server
* Performance Buckets

* File and Accelerator Caches

* Unix Platform-Specific Issues

e Miscellaneous magnus.conf Directives
* Tuning the ACL Cache

* Improving Servlet Performance

* Common Performance Problems

* Sizing Issues

e Scalability Studies

About Server Performance

Web servers have become increasingly important for both internal and external business
communications. As web servers become more and more business-critical, server
performance takes on added significance. The iPlanet Web Server, Enterprise Edition
continues to lead in this area, by setting a new standard for performance.

About Server Performance

2

iPlanet Web Server was designed to meet the needs of the most demanding, high traffic
sites in the world. It flexibly runs on both Unix and Windows N'T and can setve both
static and dynamically generated content. iPlanet Web Server can also run in SSL mode,
enabling the secure transfer of information.

Because iPlanet Web Server is such a flexible tool for publishing, customer needs vary
significantly. This document guides you through the process of defining your server
workload and sizing a system to meet your performance needs. This document addresses
miscellaneous configuration and Unix platform-specific issues. It also describes the

per f dunp petformance utility and tuning parameters that are built into the server. The
document concludes with sizing and scaling information and studies.

Performance Issues

The first step toward sizing your server is to determine your requirements. Performance
means different things to users and to webmasters. Users want fast response times
(typically less than 100 ms), high availability (no “connection refused” messages), and as
much interface control as possible. Webmasters and system administrators, on the other
hand, want to see high connection rates, high data throughput, and uptime approaching
100%. You need to define what performance means for your particular situation.

Here are some areas to considet:
¢ DPeak concurrent users
* Security requirements

Encrypting your iPlanet Web Server’s data streams with SSL. makes an enormous
difference to your site’s credibility for electronic commerce and other security-
conscious applications, but it also can seriously impact your CPU’s performance.
Note that SSL always has a significant impact on throughput, so minimize your use
of SSL for best performance. Also, multiple CPUs help SSL, so consider buying a
multi-CPU server if you need to use SSL.

* Size of document tree
* Dynamic vs. static content

The content you serve affects your server’s performance. An iPlanet Web Setver
delivering mostly static HITML can run much faster than a server that has to execute
CGIs for every query.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

The perfdump Utility

Monitoring Performance

To help you monitor the performance of your server, use the following tools:
* The perfdump Utility

* Performance Buckets

* File Cache Dynamic Control and Monitoring

These tools are explained in more detail in the following sections of this document.

The perfdump Utility

The per f dunp utility is a service function built into iPlanet Web Server. It collects
various pieces of performance data from the web server internal statistics and displays
them in ASCIT text.

To install per f dunp, you need to make the following modifications in 0bj . conf in
the net scape/ server 4/ htt ps- server_nane/ confi g directory:

1. Add the following object to your Obj . conf file (after the default object):

<Cbj ect ppat h="/usr/ net scape/ server 4/ docs/ . perf">
Servi ce fn="service-dunmp"
</ Qbj ect >

2. Edit the ppat h= line if your document root is different than the example above.
Make sure to put . per f after the path to the document root, as shown above.

3. Restart your server software, and access per f dunp by accessing this URL:
http://yourhost/. perf

You can request the per f dunp statistics and inform the browser to automatically
refresh the statistics every # seconds by using this URL, which sets the refresh to every 5
seconds:

http://yourhost/. perf?refresh=5

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 3

The perfdump Utility

Sample Output

ns-httpd pid: 133

Li st enSocket #O0:

Addr ess
ActiveThreads
Wi ti ngThr eads
BusyThr eads
Thread limts
Total Sessions

KeepAl i vel nf o:

KeepAl i veCount
KeepAliveHits
KeepAl i veFl ushes
KeepAl i veTi neout

Cachel nf o:

enabl ed
CacheEntries
CacheSi ze(byt es)
Ht Ratio

pol I I nterval

Native Thread Pool

I dl e/ Peak/ Li mt

Work queue length/Limt

htt ps:\\ 1 NADDR_ANY: 80
48
47
1
48/ 512
48/ 712

0/ 200
0
0

30 seconds

yes
2/ 8192
0/0
474254/ 474264 (100. 00)
7200
Dat a:
1/ 1/ 100
0/ 2147483647

Peak work queue |ength 1

Work queue rejections 0

Server

DNS cache di sabl ed

4 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Using perfdump Statistics to Tune Your Server

Using perfdump Statistics to Tune Your

Server

Warning

This section describes the information available through the per f dunp utility and
discusses how to tune some parameters to improve your server’s performance. The
default tuning parameters are appropriate for all sites except those with very high
volume. The only parameter that large sites may regulatly need to change is the
RqThr ot t | e parameter, which is tunable from the Server Manager.

The per f dunp utlity monitors these statistics:

* ListenSocket Information

¢ KeepAlive Information

* Cache Information

* Native Threads Pool

e Asynchronous DNS Lookup (Unix)

ListenSocket Information

'The Li st enSocket is the listen-queue size which is a socket-level parameter that
specifies the number of incoming connections the system will accept for that socket. The
default setting is 128 (for Unix) or 100 (for Windows N'T) incoming connections.

Make sure your system’s listen-queue size is large enough to accommodate the

Li st enSocket size set in iPlanet Web Server. The Li st enSocket size set from
iPlanet Web Server changes the listen-queue size requested by your system. If iPlanet
Web Server requests a Li St enSocket size larger than your system’s maximum listen-
queue size, the size defaults to the system’s maximum.

Setting Li st enSocket too high can degrade server performance. Li St enSocket
was designed to prevent the server from becoming ovetloaded with connections it
cannot handle. If your server is overloaded and you increase Li St enSocket , the
server will only fall further behind.

The first set of per f dunp statistics is the Li St enSocket information. For each
hardware virtual server you have enabled in your setver, there is one Li St enSocket
structure. For most sites, only one is listed.

Li st enSocket #0:

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 5

Using perfdump Statistics to Tune Your Server

6

Note

Addr ess https:\\1 NADDR_ANY: 80

Acti veThr eads 48

Wi ti ngThr eads 47

BusyThr eads 1

Thread limts 48/ 512

The “thread” fields specify the current thread use counts and limits for this listen socket.
Keep in mind that the idea of a “thread” does not necessarily reflect the use of a thread
known to the operating system. “Thread” in these fields really means an HTTP session.

If you check the operating system to see how many threads are running in the process, it
is not going to be the same as the numbers reported in these fields.

Tuning

There are two ways to create virtual servers: Using the Vi rt ual . conf file and using
the obj . conf file. If you use the Vi rt ual . conf method, the 512 default
maximum threads are available to all virtual servers on an as-needed basis. If you use the
obj . conf method, the 512 threads are allocated equally to each of the defined virtual
servers. For example, if you had two servers, each would have 256 threads available. This
is less efficient. To maximize performance in this area, use the Vi r t ual . conf
method. You can also configure the listen-queue size in the Performance Tuning page of
the Server Manager.

Address

This field contains the base address that this listen socket is listening to. For most sites
that are not using hardware virtual servers, the URL is:

http://1 NADDR_ANY: 80~

The constant value “INADDR_ANY” is known internally to the server that specifies
that this listen socket is listening on all IP addresses for this machine.

Tuning

This setting is not tunable except as described above.

ActiveThreads

The total number of “threads” (HT'TP sessions) that are in any state for this listen socket.
This is equal to W&i t i ngThr eads + BusyThr eads. This setting is not tunable.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Using perfdump Statistics to Tune Your Server

WaitingThreads

The number of “threads” (HT'TP sessions) waiting for a new TCP connection for this
listen socket.

Tuning

This is not directly tunable, but it is loosely equivalent to the
RgThr ot t | eM nPer Socket . See Thread limits <min/max>.

BusyThreads

The number of “threads” (HT'TP sessions) actively processing requests which arrived on
this listen socket.

This setting is not tunable.

Thread limits <min/max>

The minimum thread limit is a goal for how many threads the server attempts to keep in
the WaitingThreads state. This number is just a goal. The number of actual threads in this
state may go slightly above or below this value.

The maximum threads represents a hard limit for the maximum number of active threads
that can run simultaneously, which can become a bottleneck for performance. iPlanet
Web Setver, Enterprise Edition 4.1 has default limits of 48/512. For mote information,
see About RqThrottle.

Tuning

See About RqThrottle.

KeepAlive Information

This section reports statistics about the server’s HI'TP-level KeepAlive system.

KeepAl i vel nf o:

KeepAl i veCount 0/ 200
KeepAliveHits 0

KeepAl i veFl ushes 0

KeepAl i veTi neout 30 seconds

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 7

Using perfdump Statistics to Tune Your Server

8

Note

The name “KeepAlive” should not be confused with TCP “KeepAlives.” Also, note that
the name “KeepAlive” was changed to “Persistent Connections” in HTTP/1.1, but for
clarity this document continues to refer to them as “KeepAlive” connections.

Both HTTP/1.0 and HTTP/1.1 support the ability to send multiple requests across a
single HT'TP session. A web server can receive hundreds of new HT'TP requests per
second. If every request was allowed to keep the connection open indefinitely, the server
could become overloaded with connections. On Unix systems, this could lead to a file
table overflow very easily.

To deal with this problem, the server maintains a “Maximum number of ‘waiting’
keepalive connections” counter. A ‘waiting’ keepalive connection is a connection that has
fully completed processing of the previous request over the connection and is now
waiting for a new request to arrive on the same connection. If the server has more than
the maximum waiting connections open when a new connection starts to wait for a
keepalive request, the server closes the oldest connection. This algotithm keeps an upper
bound on the number of open, waiting keepalive connections that the server can
maintain.

iPlanet Web Server does not always honor a KeepAlive request from a client. The
following conditions cause the server to close a connection even if the client has
requested a KeepAlive connection:

+ KeepAliveTi meout is set to 0.
« MaxKeepAl i ve count is exceeded.

* Dynamic content, such as CGI, does not have an HT'TP cont ent _| engt h
header set or the header is not lowercase.

* Requestis not HTTP CGET or HEAD
* HTTP 1.1 pipelined request.

* The request was determined to be bad-- if have bad client sends only headers, no
content.

KeepAliveCount <KeepAliveCount/
KeepAliveMaxCount>

The number of sessions currently waiting for a keepalive connection and the maximum
number of sessions that the server allows to wait at one time.

Tuning

Edit the MaxKeepAl i veConnect i ons parameter in the magnus. conf file.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Using perfdump Statistics to Tune Your Server

KeepAliveHits

The number of times a request was successfully received from a connection that had
been kept alive.

This setting is not tunable.

KeepAliveFlushes

The number of times the server had to close a connection because the
KeepAl i veCount exceeded the KeepAl i veMaxCount .

This setting is not tunable.

KeepAliveTimeout

Specifies the number of seconds the server will allow a client connection to remain open
with no activity. A web client may keep a connection to the server open so that multiple
requests to one server can be serviced by one network connection. Since a given server
can handle a finite number of open connections (limited by active threads), a high
number of open connections will prevent new clients from connecting. Setting the
timeout to a lower value, however, may prevent the transfer of large files as timeout does
not refer to the time that the connection has been idle. For example, if you are using a
2400 baud modem, and the request timeout is set to 180 seconds, then the maximum file
size that can be transferred before the connection is closed is 432000 bits (2400
multiplied by 180).

When SSL is enabled, KeepAl i veTi meout defaults to 0, which effectively disables
petsistent connections. If you want to use persistent connections with SSL, set
KeepAl i veTi neout to a non-zero value.

Tuning

You can change KeepAl i veTi meout in the Performance Tuning page in the Server
Manager.

Cache Information

This information applies to the accelerator cache, not the file cache. For an explanation
of the caches, see File and Accelerator Caches.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 9

Using perfdump Statistics to Tune Your Server

10

Cachel nf o:

enabl ed yes

CacheEntries 2/ 8192

CacheSi ze(byt es) 0/0

Ht Ratio 474254/ 474264 (100. 00)
pol I I nterval 7200

This section desctibes the server’s cache information. The contents of a file are cached to
a specific static file on disk, with the keys being the file’s URI. If multiple virtual servers
are set up, the key also includes the virtual server’s host ID and the port number.

enabled

If the cache is disabled, the rest of this section is not displayed.

Tuning
To disable the server accelerator cache, add the following line to the Obj . conf file:

Init fn=cache-init disable=true

CacheEntries <CurrentCacheEntries /
MaxCacheEntries>

The number of current cache entries and the maximum number of cache entries. A single
cache entry represents a single URI.

Tuning

To set the maximum number of cached files in the cache, add the following line to the
obj . conf file:

Init fn=cache-init MaxNunber O CachedFi | es=xxxxx

CacheSize <CurrentCacheSize / MaxCacheSize>

The CacheSize has been deprecated for this release, since the files are cached in the file
cache, not the accelerator cache. For more information, see File and Accelerator Caches.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Using perfdump Statistics to Tune Your Server

Hit Ratio <CacheHits / CacheLookups (Ratio)>

The hit ratio value tells you how efficient your site is. The hit ratio should be above 90%.
If the number is 0, you need to optimize your site. See the troubleshooting section for
more information on how to improve your site.

This setting is not tunable.

pollinterval

Since pol I I nt er val is deprecated for this release, this field displays MaxAge from
nsf c. conf . If you have not tuned MaxAge, it defaults to 30 seconds.

For tuning information on this setting, see MaxAge.

DNS Cache Information
Server DNS cache di sabl ed

The DNS cache caches IP addresses and DNS names.

enabled

If the cache is disabled, the rest of this section is not displayed.

Tuning

By default, the DNS cache is off. Add the following line to 0bj . conf to enable the
cache:

Init fn=dns-cache-init

CacheEntries <CurrentCacheEntries /
MaxCacheEntries>

The number of current cache entries and the maximum number of cache entries. A single
cache entry represents a single IP address or DNS name lookup.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 11

Using perfdump Statistics to Tune Your Server

12

Tuning

To set the maximum size of the DNS cache, add the following line to the 0bj . conf
file:

Init fn=dns-cache-init cache-si ze=xxxxx

HitRatio <CacheHits / CacheLookups (Ratio)>

The hit ratio is displays the number of cache hits and the number of cache lookups. A
good hit ratio for the DNS cache is ~60-70%.

This setting is not tunable.

Native Threads Pool

Native Thread Pool Data:

I dl e/ Peak/ Limt 1/ 1/ 100

Work queue length/Limt 0/2147483647
Peak work queue | ength 1

Work queue rejections 0

The native thread pool is used internally by the server to execute NSAPI functions that
require a native thread for execution.

iPlanet Web Server uses NSPR, which is an underlying portability layer that provides
access to the host OS services. This layer provides abstractions for threads that are not
always the same as those for the OS-provided threads. These non-native threads have
lower scheduling overhead so their use improves performance. However, these threads
are sensitive to blocking calls to the OS, such as I/O calls. To make it easier to write
NSAPI extensions that can make use of blocking calls, the server keeps a pool of threads
that safely support blocking calls (usually this means it is a native OS thread). During
request processing, any NSAPI function that is not marked as being safe for execution
on a non-native thread is scheduled for execution on one of the threads in the native

thread pool.

If you have written your own NSAPI plug-ins such as NameTr ans, Ser vi ce, ot
Pat hCheck functions, these execute by default on a thread from the native thread
pool. If your plug-in makes use of the NSAPI functions for I/O exclusively or does not
use the NSAPI I/O functions at all, then it can execute on a non-native thread. For this

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Using perfdump Statistics to Tune Your Server

to happen, the function must be loaded with a “Nat i veThr ead=no0” option
indicating that it does not requite a native thread. To do this, add this to the “| oad-
nmodul es” Init line in the 0bj . conf file:

Init funcs="pcheck_uri_clean_fixed_init" shlib="C:/Netscape/pl86244/
P186244.dl 1" fn="I| oad-nodul es" NativeThread="no"

The Nat i veThr ead flag affects all functions in the f UNCS list, so if you have more
than one function in a library but only some of them use native threads, use separate Init
lines.

Idle/Peak/Limit

Idle indicates the number of threads that are currently idle. Peak indicates the peak
number in the pool. Limit indicates the maximum number of native threads allowed in
the thread pool, and is determined by the setting of Nat i vePool MaxThr eads. For
morte information, see Native Thread Pool Size.

Tuning

Modify the Nat i vePool MaxThr eads directive in magnus. conf .

Work queue length/Limit

These numbers refer to a queue of server requests that are waiting for the use of a native
thread from the pool. The Work Queue Length is the current number of requests waiting
for a native thread. Limit is the maximum number of requests that can be queued at one
time to wait for a native thread., and is determined by the setting of the

Nat i vePool QueueSi ze directive in MBgNnus. conf . For more information, see
Native Thread Pool Size.

Tuning

Modify the Nat i vePool QueueSi ze directive in magnus. conf

Peak work queue length

This is the highest number of requests that were ever queued up simultaneously for the
use of a native thread since the server was started. This value can be viewed as the
maximum concurrency for requests requiring a native thread.

This setting is not tunable.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 13

Using perfdump Statistics to Tune Your Server

Work queue rejections

This is the cumulative number of requests that have needed the use of a native thread,
but that have been rejected due to the work queue being full. By default, these requests
are rejected with a “503 - Service Unavailable” response.

This setting is not tunable.

PostThreadsEarly

This advanced tuning parameter changes the thread allocation algorithm by causing the
server to check for threads available for accept before executing a request. The default is
set to Off. Recommended only in those situations when the load on the server is
primarily comprised of lengthy transactions such as LiveWire and the Netscape
Application Server or custom applications that access databases and other complex back-
end systems. Turning this on allows the server to grow its thread pool more rapidly.

Tuning
Tutn this parameter on by adding this directive to magnus. conf :

Post ThreadsEarly 1

Native Thread Pool Size

In previous versions of the server, you controlled the native thread pool by setting
system environment variables. In iPlanet Web Server, Enterprise Edition 4.1, you can
use the directives in Magnus. conf to control the size of the native ketnel thread pool.
We recommend using the magnus. conf directives; however, if you have set the
system environment variables previously, they override the magnus. conf directives.

For more information on the magnus.conf directives, see Nat i vePool St ackSi ze/
Nat i vePool QueueSi ze/ Nat i vePool MaxThr eads/

Nat i vePool M nThr eads. For mote information on the system environment
variables, see Thread Pool Environmental Variables.

Nat i vePool St ackSi ze/ Nat i vePool QueueSi ze/
Nat i vePool MaxThr eads/ Nati vePool M nThr eads

Use these ditectives to control the native thread pool.

14 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Using perfdump Statistics to Tune Your Server

Nat i vePool St ackSi ze determines the stack size of each thread in the native
(kernel) thread pool.

Nat i vePool QueueSi ze determines the number of threads that can wait in the
queue for the thread pool. If all threads in the pool are busy, then the next request-
handling thread that needs to use a thread in the native pool must wait in the queue. If
the queue is full, the next request-handling thread that tries to get in the queue is rejected,
with the result that it returns a busy response to the client. It is then free to handle
another incoming request instead of being tied up waiting in the queue.

Nat i vePool MaxThr eads determines the maximum number of threads in the
native (kernel) thread pool.

Nat i vePool M nThr eads determines the minimum number of threads in the native
(kernel) thread pool.

Thread Pool Environmental Variables

NSCP_POCOL_ WORKQUEUENAX. This value defaults to Ox7FFFFFFF (a very latge
number). Setting this beow the RQThr ot t | € value causes the setver to execute a busy
function instead of the intended NSAPI function whenever the number of requests
waiting for service by pool threads exceeds this value. The default returns a “503 Service
Unavailable” response and logs a message if LogVer bose is enabled. Setting this above
RqThr ot t | e causes the setver to teject connections before a busy function can
execute.

This value represents the maximum number of concurrent requests for service which
require a native thread. If your system is unable to fulfill requests due to load, letting
more requests queue up increases the latency for requests and could result in all available
request threads waiting for a native thread. In general, set this value to be high enough to
avoid rejecting requests under “normal” conditions, which would be the anticipated
maximum number of concurrent users who would execute requests requiring a native

thread.

The difference between this value and RQThr ot t | e is the number of requests reserved
for non-native thread requests (such as static HTML, gif, and jpeg files). Keeping a
reserve (and rejecting requests) ensures that your server continues to fill requests for
static files, which prevents it from becoming unresponsive during periods of very heavy
dynamic content load. If your server consistently rejects connections, this value is set too
low or your server hardware is overloaded.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 15

Using perfdump Statistics to Tune Your Server

16

NSCP_POCL_ THREADNMAX. This value reptesents the maximum numbet of threads in
the pool. Set this value as low as possible to sustain the optimal volume of requests. A
higher value allows more requests to execute concurrently, but has more overhead due to
context switching, so “bigger is not always better.” If you are not saturating your CPU
but you ate seeing requests queue up, then increase this number. Typically, you will not
need to increase this number.

Busy Functions

The default busy function returns a “503 Service Unavailable” response and logs a
message if LogVer bose is enabled. You may wish to modify this behavior for your
application. You can specify your own busy functions for any NSAPI function in the
obj . conf file by including a service function in the configuration file in this format:

busy="<ny- busy-functi on>"
For example, you could use this sample service function:
Servi ce fn="send-cgi" busy="service-toobusy"

This allows different responses if the server become too busy in the course of processing
a request that includes a number of types (such as Ser vi ce, AddLog, and

Pat hCheck). Note that your busy function will apply to all functions that require a
native thread to execute when the default thread type is non-native.

To use your own busy function instead of the default busy function for the entire server,
you can write an NSAPT init function that includes af unc_i nsert call as shown
below:

extern "C' NSAPI _PUBLIC int ny_custom busy_function(pblock *pb, Session *sn,
Request *rq);

ny_init(pblock *pb, Session *, Request *)

func_insert("service-toobusy", ny_custom busy_function);

Busy functions are never executed on a pool thread, so you must be careful to avoid
using function calls that could cause the thread to block.

Asynchronous DNS Lookup (Unix)

You can configure the server to use Domain Name System (DNS) lookups during
normal operation. By default, DNS is not enabled; if you enable DNS, the server looks
up the host name for a system’s IP address. Although DNS lookups can be useful for

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Note

Using perfdump Statistics to Tune Your Server

server administrators when looking at logs, they can impact performance. When the
server receives a request from a client, the client’s IP address is included in the request. If
DNS is enabled, the server must look up the hostname for the IP address for every client
making a request.

DNS causes multiple threads to be serialized when you use DNS services. If you do not
want serialization, enable asynchronous DNS. You can enable it only if you have also
enabled DNS. Enabling asynchronous DNS can improve your system’s performance if
you are using DNS.

If you turn off DNS lookups on your server, host name restrictions will not work, and
hostnames will not appear in your log files. Instead, you’ll see IP addresses.

You can also specify whether to cache the DNS entries. If you enable the DNS cache,
the server can store hostname information after receiving it. If the server needs
information about the client in the future, the information 1s cached and available
without further querying. You can specify the size of the DNS cache and an expiration
time for DNS cache entries. The DNS cache can contain 32 to 32768 entries; the default
value is 1024 entries. Values for the time it takes for a cache entry to expire can range
from 1 second to 1 year (specified in seconds); the default value is 1200 seconds (20
minutes).

It is recommended that you do not use DNS lookups in server processes because they
are so resource intensive. If you must include DNS lookups, be sure to make them
asynchronous. For more information on asynchronous DNS, see the Performance
Tuning page in the online help.

enabled

If asynchronous DNS is disabled, the rest of this section will not be displayed.

Tuning

Add “AsyncDNS on” to magnus. conf .

NamelLookups

The number of name lookups (DNS name to IP address) that have been done since the
server was started.

This setting is not tunable.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 17

Performance Buckets

AddrLookups

The number of address loops (IP address to DNS name) that have been done since the
server was started.

This setting is not tunable.

LookupsIinProgress

The current number of lookups in progress.

This setting is not tunable.

Performance Buckets

Performance buckets allow you to define buckets, and link them to various server
functions. Every time one of these functions is invoked, the server collects statistical data
and adds it to the bucket. For example, Send- cgi and NSSer vl et Ser vi ce are
functions used to serve the CGI and Java servlet requests respectively. You can either
define two buckets to maintain separate counters for CGI and servlet requests, or create
one bucket that counts requests for both types of dynamic content. The cost of
collecting this information is little and impact on the server performance is negligible.
This information can later be accessed using The perfdump Utility. The following
information is stored in a bucket:

* Name of the bucket. This name is used for associating the bucket with a function.
* Description. A description of the functions that the bucket is associated with.

* Number of requests for this function. The total number of times that this
function was requested to be invoked.

* Number of times the function was invoked. This number may not coincide with
the number of requests for the function because some functions may be executed
more than once for a single request.

* Function latency or the dispatch time. The time taken by the server to invoke the
function.

* Function time. The time spent in the function itself.

The following buckets are pre-defined by the server:

18 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Performance Buckets

« cache-bucket.

Records the statistics for accelerated cache functions. All the static content requests
served using the accelerator cache are counted in this bucket.

« defaul t-bucket.

Records statistics for the functions not associated with any user defined or built-in
bucket.

Configuration

Specify all the configuration information for performance buckets in the 0bj . conf
file. By default the feature is disabled. To enable petrformance measurement add the
following line in Obj . conf :

Init fn="perf-init" enabl e=true

The following examples show how to define new buckets.

Init fn="define-perf-bucket" nane="acl - bucket" description="ACL bucket"
Init fn="define-perf-bucket" name="fil e-bucket" descri pti on="Non-cached
responses”

Init fn="define-perf-bucket" nane="cgi-bucket" description="C4d Stats"

The prior example creates three buckets: acl - bucket ,fi | e- bucket ,and cgi -
bucket . To associate these buckets with functions, add bucket =bucket - nane in
front of the obj . conf function for which you wish to measute performance.

Pat hCheck fn="check-acl" acl ="default" bucket="acl -bucket"
Servi ce met hod="(GET| HEAD| POST) " type="*~magnus-internal /*" fn="send-
file" bucket="file-bucket"
<bj ect nane="cgi ">
bj ect Type fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi" bucket="cgi-bucket"
</ Cbj ect >

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 19

Performance Buckets

20

Performance Report

The server statistics in buckets can be accessed using The perfdump Utility. The

performance buckets information is located in the last section of the report that

per f dunp returns. To enable reports on performance buckets, complete the following

steps:

1. Define an extension for the performance bucket report. Add the following line to
the m me. types file:

type=perf exts=perf

2. Associate the type you declared in M me. t ypes with the ser vi ce- dunp
function in the obj . conf file:

Servi ce fn=service-dunp type=perf

3. Usethe URL http://server_nanme: port_nunber/. perf to view the

performance report.

Note You must include a petiod (.) before the extension you defined in the Imi nNe. t ypes
file (in this case, . perf).

The report contains the following information:

Average column shows per request statistics.

Request processing time is the total time the required by the server to process
all the requests it has received so far. Even on the busiest of the servers this

number will be very small compared to the server uptime.
Number of Requests is the total number of requests for the function.

Number of Invocations is the total number that the function was invoked. This
differs from the number of requests in that a function could be called multiple
times while processing one request. The percentage column for this row is

calculated in reference to the total number of invocations for all the buckets.

Latency (in seconds) The time iPlanet Web Server takes to prepare for calling
“send-cgt.”

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Performance Buckets

* Function Processing Time (in seconds) The petcentage of Function

Processing Time and Total Response Time is calculated with reference to the

total Request processing time. (The time spent in “send-cgi” (that is, the time

requited to fork/exec the CGI program plus the execution time of the program

itself.)

* Total Response Time (in seconds) The sum of Function Processing Time and

Latency.

* Percent column displays of Number of Requests is calculated with reference to

the Total number of requests.

The following is an example of the performance bucket information available through

perfdump:

Per f ormance Counters:

Server start tine: Mon Cct

Aver age

Tot al nunber of requests:

Request processing tine: 0. 0010

Cache Bucket (cache-bucket)
Nunber of Requests:

Nunmber of |nvocations:

Lat ency: 0. 0001
Function Processing Tine: 0. 0003
Total Response Ti ne: 0. 0004

Def aul t Bucket (default-bucket)
Nunber of Requests:
Nunmber of Invocations:

Lat ency: 0. 0000

11 15:37:26 1999

Tot al

474851
485. 3198

474254
474254
48. 7520
142. 7596
191. 5116

597
9554
0. 1526

Per cent

99. 87%
98. 03%
10. 05%
29. 42%
39. 46%)

0.13%
1. 97%
0.03%

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 21

File and Accelerator Caches

Function Processing Tine: 0. 0256 245. 0459 (50.49%
Total Response Ti ne: 0. 0257 245. 1985 (50.52%

File and Accelerator Caches

22

In iPlanet Web Server, Enterprise Edition 4.1 there are two caches: a front-end
accelerator cache that caches response headers and contains pointers to the static file
cache, and a static file cache which holds static file information as well as content. The
cache-init directive initializes the accelerator cache. The file cache is turned on by
default. If you want to change the default cache setup, you need to create a file called
nf sc. conf . For more information, see Configuring the File Cache.

The file cache is implemented using a new file cache module, NSFC, which caches static
HTML, image and sound files. In previous versions of the server, the file cache was
integrated with the accelerator cache for static pages. Therefore, an HTTP request was
serviced by the accelerator, or passed to the NSAPI engine for full processing, and
requests that could not be accelerated did not have the benefit of file caching. This
prevented many sites with NSAPI plug-ins, customized logs, or used server-parsed
HTML from taking advantage of the accelerator.

The NSFC module implements an independent file cache used in the NSAPI engine to
cache static files that could not be accelerated. It is also used by the accelerator cache,
replacing its previously integrated file cache. NSFC caches information that is used to
speed up processing of server-parsed HTML.

Configuring the Accelerator Cache

The cache-i ni t function controls the accelerator caching. To optimize server speed,
you should have enough RAM for the server and cache because swapping can be slow.
Do not allocate a cache that is greater in size than the amount of memory on the system.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Example

File and Accelerator Caches

Table 1.1 The cache-init parameters

di sabl e (optional) Specifies whether the file cache is
disabled or not. If set to anything but “false”
the cache is disabled. By default, the cache is
enabled.

MaxNumber OF CachedFi | es (optional) Maximum number of entries in the
accelerator cache. The default is 4096,
minimum is 32, maximum is 32768.

MaxNunber Of OpenCachedFi | es (optional) Maximum number of
accel_file_cache entries with file_cache entries.

Default 1s 512, minimum is 32, maximum is
32768.

CacheHashSi ze (optional) size of hash table for the accelerator
cache. Default is 8192, minimum is 32,
maximum is 32768.

NoOver f | ow (optional) IRIX only.

| sd obal (optional) IRIX only.

Init fn="cache-init" MaxNunber O CachedFi | es=15000
MaxNurber Of OpenCachedFi | es=15000 CacheHashSi ze=15101

Configuring the File Cache

By default, the file cache is turned on and uses the default values for all parameters
described below. If you would like to change parameter values, you need to create a text
file called NSt c. conf in the Server_root/ https- server-id/ config
directory. To change a parameter value for improved performance, type the parameter
and its new value in the NSf ¢. conf file.

CopyFiles

When CopyFi | es is set to “true,” the file is copied to a temporary file which the server
displays when users access the file. Defaults to “false” on Unix and “true” on Windows

NT. The temporary file is stored in the directory specified in TenpDi r .

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 23

File and Accelerator Caches

CopyFi | es=true

FileCacheEnable

Specifies whether the file cache is enabled or not.
By default, this is set to true.

Fi | eCacheEnabl e=t r ue

HashInitSize

The size of the file cache hash table. The default size is 2 * MaxFiles +1. For example, if
your MaXFi | es is set to 1024, the default Hashl ni t Si ze is 2049.

Hashl nit Si ze=9131

HitOrder

If the MaxFi | es limit has been reached when the server creates a new file cache entry,
the server marks an existing entry for deletion. If Hi t Or der is set to “true” the file
entry marked for deletion is the one that has received the fewest hits. If Hi t Or der is
set to “false” the file entry marked for deletion is the one that has gone the longest
without a hit.

Hi t Order=true

MaxAge

The maximum age (in seconds) of a valid cache entry. This setting controls how long
cached information will continue to be used once a file has been cached. An entry older
than MaxAge is teplaced by a new entry for the same file if the same file is referenced
through the cache.

Set MaxAge based on whether the content is updated (existing files ate modified) on a
regular schedule or not. For example, if content is updated four times a day at regular
intervals, MaXAge could be set to 21600 seconds (6 hours). Otherwise, consider setting
MaxAge to the longest time you are willing to setve the previous vetsion of a content
file, after the file has been modified.

By default, this is set to 30.

24 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

File and Accelerator Caches

MaxAge=30

MaxFiles
The maximum number of files that may be in the cache at once.
By default, this is set to 1024.

MaxFi | es=1024

MediumFileSizeLimit (Unix)

The size (in bytes) of the largest file that is considered to be “medium” in size. The
contents of medium files are cached by mapping the file into virtual memory (currently
only on Unix platforms). The contents of “large” files (larger than “medium”) are not
cached, although information about large files is cached.

By default, this is set to 525000 (525 KB).

Medi unti | eSi zeLi m t =525000

MediumFileSpace
The size (in bytes) of the virtual memory used to map all medium sized files.
By default, this is set to 10000000 (10MB).

Medi unti | eSpace=10000000

SmallFileSizeLimit (Unix)

The size (in bytes) of the largest file considered to be “small” in size. The contents of
small files are cached by allocating heap space and reading the file into it.

The idea of distinguishing between small files and medium files is to avoid wasting part
of many pages of virtual memory when there are lots of small files. So the

Smal | Fi | eSi zeLi mi t would typically be a slightly lower value than the VM page
size.

By default, this is set to 2048.

Smal | Fil eSi zeLi m t =2048

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 25

File and Accelerator Caches

26

SmallFileSpace

The size of heap space (in bytes) used for the cache, including heap space used to cache
small files.

By default, this is set to 1MB for Unix, 0 for Windows NT.

Smal | Fi | eSpace=1000000

TempDir

TenpDi r sets the directory name where the temporary files are copied if COpyFi | es
is set to “true.” Defaults to syst em t enp_di r/ net scape/
server_instance.

If you assign a temporary directory, the server creates a structure within that directory for
the temporary files. For example, on Windows N'T if you set the temporary directory to
C:/mytemp, the temporary files are created in the file C: / myt enp/ c/

server _doc_r oot . The C directory comes from the drive letter.

TenpDir=C. /tenp

TransmitFile

When Tr ansmi t Fi | e is set to “true,” open file desctiptors ate cached for files in the
file cache, rather than the file contents, and PR_Tr ansni t Fi | e is used to send the
file contents to a client. When set to “true,” the distinction normally made by the file
cache between small, medium, and large files no longer applies, since only the open file
descriptor is being cached. By default, TransmitFile is “false” on Unix and “true” on
Windows NT.

This directive is intended to be used on Unix platforms that have native OS suppott for
PR _Transmi t Fi | e, which currently includes HPUX and AIX. It is not
recommended for other Unix platforms.

TransnitFil e=true

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

File and Accelerator Caches

File Cache Dynamic Control and
Monitoring

An object can be added to 0bj . conf to enable the NSFC file cache to be dynamically
monitored and controlled while the server is running. Typically this would be done by
first adding a NanmeTr ans directive to the “default” object:

NaneTrans fn="assi gn-name" from="/nsfc" nanme="nsfc"
Then add a new object definition:

<Cbj ect nane=nsfc>
Servi ce fn=service-nsfc-dunp
</ Obj ect >

This enables the file cache control and monitoring function (NS c- dunp) to be
accessed via the URL, “/ nsf ¢.” By changing the “from” parameter in the NameTr ans
directive, a different URI can be used.

The following is an example of the information you receive when you access the URI:

Net scape Enterprise Server File Cache Status (pid 7960)
The file cache is enabl ed.
Cache resource utilization

Nunber of cached file entries = 1039 (112 bytes each, 116368 total
byt es)

Heap space used for cache = 237641/1204228 bytes

Mapped nmenory used for mediumfile contents = 5742797/ 10485760 bytes
Nunber of cache | ookup hits = 435877/ 720427 (60.50 %

Nunber of hits/m sses on cached file info = 212125/ 128556

Nunber of hits/m sses on cached file content = 19426/ 502284

Nunber of outdated cache entries deleted = 0

Nunmber of cache entry replacements = 127405

Total nunber of cache entries deleted = 127407

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 27

File and Accelerator Caches

28

Nunber

of busy del eted cache entries = 17

Par amet er settings

HitOrder: false

CacheFi
CacheFi
Transm

MaxAge:

lelnfo: true
| eContent: true
tFile: false

30 seconds

MaxFil es: 1024 files

Smal | Fi

| eSi zeLimt: 2048 bytes

Medi unFi | eSi zeLimt: 537600 bytes

CopyFi |

es: false

Directory for tenporary files: /tnp/netscape/https-axilla.nomcom

Hash tabl e size: 2049 buckets

You can include a quety stting = when you access the “/ NSt ¢” URL The following

values are recognized:

?l i st - Lists the files in the cache.

r ef r esh=n - Causes the client to reload the page every 7 seconds.
?restart - Causes the cache to be shut down and then started.
?start - Starts the cache.

?st op - Shuts down the cache.

If you choose the ?| i St option, the file listing includes the file name, a set of flags, the
current number of references to the cache entry, the size of the file, and an internal file

ID value. The flags are as follows:

iPlanet Web Server 4.1 Performance

C - File contents are cached.

D - Cache entry is marked for delete.

E-PR GetFil el nfo() returned an error for this file.
I - File information (size, modify date, etc.) is cached.

M - File contents are mapped into virtual memory.

O - File descriptor is cached (when TransmitFile is set to true).

Tuning, Sizing, and Scaling

Unix Platform-Specific Issues

* P - File has associated private data (should appear on Sht m files).
e T - Cache entry has a temporary file.

* W - Cache entry is locked for write access.

For sites with scheduled updates to content, consider shutting down the cache while the
content is being updated, and starting it again after the update is complete. Although
performance will slow down, the server operates normally when the cache is off.

Unix Platform-Specific Issues

The various Unix platforms all have limits on the number of files that can be open in a
single process at one time. For busy sites, increase that number to 1024.

e Solaris: in/ et c/ system setrlimfd_nax, and reboot.
* AIX:run Sm t and check the kernel tuning parameters.
e HP-UX: run Samand check the kernel tuning parameters.

These Unix platforms have proprietary sites for additional information about tuning their
systems for web servers:

e AIX-http://ww.rs6000.i bm com resource/technol ogy/
si zing. htm

e IRIX-http://ww.sgi.comtech/web/

* Compaq Tru64 Unix - ht t p: / / www. t r u64uni x. conpaq. cont f aqs/
publications/internet/ Tl TLE. HTM

e SUN-http://ww. sun. conl sun-on-net/ performance/
book2ref. htm

Tuning Solaris for Performance
Benchmarking

The following table shows the operating system tuning for Solatis used when
benchmarking. These values are an example of how you might tune your system to
achieve the desired result.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 29

Unix Platform-Specific Issues

Table 1.2 Tuning Solaris for performance benchmarking

Parameter Scope Default Value | Tuned Value Comments

tlim_fd_max /etc/system 1024 8192 Process open file descriptors
limit; should account for the
expected load (for the associated
sockets, files, pipes if any).

tlim_fd_cur /etc/system 64 8192

sq_max_size /etc/system 2 0 Controls streams driver queue
size; setting to 0 makes it infinity
so the performance runs wont
be hit by lack of buffer space.
Set on clients too.

tcp_close_wait_interval ndd/dev/tcp 240000 60000 Set on clients too.

tcp_time_wait_interval ndd/dev/tcp 240000 60000 For Solaris 7 only. Set on clients
too.

tcp_conn_req_max_q ndd/dev/tcp 128 1024

tcp_conn_req_max_q0 ndd/dev/tcp 1024 4096

tep_ip_abort_interval ndd/dev/tcp 480000 60000

tcp_keepalive_interval ndd/dev/tcp 7200000 900000 For high traffic web sites lower
this value.

tcp_rexmit_interval_initial ndd/dev/tcp 3000 3000 If retransmission is greater than
30-40%, you should increase this
value.

tep_rexmit_interval_max ndd/dev/tcp 240000 10000

tcp_rexmit_intetval_min ndd/dev/tcp 200 3000

tep_smallest_anon_port ndd/dev/tcp 32768 1024 Set on clients too.

tep_slow_start_initial ndd/dev/tcp 1 2 Slightly faster transmission of
small amounts of data.

tcp_xmit_hiwat ndd/dev/tcp 8129 32768 To increase the transmit buffer.

tcp_recv_hiwat ndd/dev/tcp 8129 32768 To increase the receive buffer.

30 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Miscellaneous magnus.conf Directives

Tuning HP-UX for Performance
Benchmarking

The following table shows the operating system tuning for HP-UX used when
benchmarking. These values are an example of how you might tune your system to
achieve the desired result.

Table 1.3 Tuning HP-UX for performance benchmarking

Parameter Scope Default Value | Tuned Value Comments
maxfiles /stand/ 2048 4096 Must edit file by hand to
system increase beyond 2048 limit

allowed by sam

maxfiles_lim /stand/ 2048 4096 Must edit file by hand to

system increase beyond 2048 limit
allowed by sam

tep_time_wait_interval ndd/dev/tcp 60000 60000

tcp_conn_req_max ndd/dev/tcp 20 1024

tep_ip_abort_interval ndd/dev/tcp 600000 60000

tep_keepalive_interval ndd/dev/tcp 72000000 900000

tep_rexmit_interval_initial ndd/dev/tcp 1500 1500

tep_trexmit_interval_max ndd/dev/tcp 60000 60000

tcp_rexmit_interval_min ndd/dev/tcp 500 500

tcp_xmit_hiwater_def ndd/dev/tcp 32768 32768

tep_recv_hiwater_def ndd/dev/tcp 32768 32768

Miscellaneous magnus.conf Directives

You can use the following magnus. conf directives to configure your server to
function more effectively:

* RgThrottl e (See About RqThrottle)
+ Post ThredsEar | y (See PostThreadsEatly)
* MaxProcs (See Multi-process Mode)

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 31

Miscellaneous magnus.conf Directives

32

« M nAccept Thr eadPer Socket and MaxAccept Thr eadPer Socket
(SeeAccept Thread Information)

+ M nCd St ubs, MaxCG St ubs, and CA St ubl dl eTi neout (See CGIStub

Processes (Unix))
» SndBuf Si ze and RcvBuUf Si ze (See Buffer Size)

Multi-process Mode

You can configure the server to handle requests using multiple processes and multiple
threads in each process. This flexibility provides optimal performance for sites using
threads and also provides backward compatibility to sites running legacy applications that
are not ready to run in a threaded environment. Because applications on Windows N'T
generally already take advantage of multi-process considerations, this feature mostly
applies to Unix platforms.

The advantage of multiple processes is that legacy applications which are not thread-
aware or thread safe can be run morte effectively in iPlanet Web Server. However,
because all the Netscape extensions are built to support a single-process, threaded
environment, they cannot run in the multi-process mode. WAI, LiveWire, Java, Server-
side JavaScript, LiveConnect and the Web Publishing and Search plug-ins fail on startup
if the server is in multi-process mode.

There are two approaches to multi-thread design:

* iPlanet Web Server with a single process

e iPlanet Web Server with multiple processes

In the single-process design, the server receives requests from web clients to a single
process. Inside the single server process, many threads are running which are waiting for
new requests to arrive. When a request arrives, it is handled by the thread receiving the
request. Because the server is multi-threaded, all extensions written to the server
(NSAPI) must be thread-safe. This means that if the NSAPT extension uses a global
resource (like a shared reference to a file or global variable) then the use of that resource
must be synchronized so that only one thread accesses it at a time. All plug-ins provided
by Netscape are thread-safe and thread-aware, providing good scalability and
concurrency. However, your legacy applications may be single-threaded. When the server
runs the application, it can only execute one at a time. This leads to severe performance
problems when put under load. Unfortunately, in the single-process design, there is no
real workaround.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Note

Miscellaneous magnus.conf Directives

In the multi-process design, the setver spawns multiple server processes at startup. Each
process contains one or more threads (depending on the configuration) which receive
incoming requests. Since each process is completely independent, each one has its own
copies of global variables, shated libraties, caches, and other resources. Using multiple
processes requires more resources from your system. Also, if you try to install an
application which requires shared state, it has to synchronize that state across multiple
processes. NSAPI provides no helper functions for implementing cross-process
synchronization.

If you are not running any NSAPI in your server, you should use the default settings: one
process and many threads. If you are running an application which is not scalable in a
threaded environment, you should use a few processes and many threads, for example, 4
or 8 processes and 256 or 512 threads per process.

MaxPr ocs (Unix)

Use this directive to set your Unix server in multi-process mode, which allows for higher
scalability on multi-processor machines. If, for example, you are running on a four-
processor CPU, setting MaXPr ocs to 4 improves performance: one process pet
processot.

If you are running iPlanet Web Setver in multi-process mode, you cannot run LiveWire,

Web Publisher, and WAL
This directive results in one primordial process and four active processes:
MaxProcs 4

This value is not tunable from the Server Manager. You must use magnus. conf .

Accept Thread Information

M nAccept Thr eadsPer Socket /
MaxAccept Thr eadsPer Socket

Use this directive to specify how many threads you want in accept mode on a listen
socket at any time. It’s a good practice to set this to equal the number of processes. You
can set this to twice (2X) the number of processes, but setting it to a number that is too
great (such as ten (10X) ot fifty (50x)) allows too many threads to be created and slows
the server down.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 33

Miscellaneous magnus.conf Directives

Note

CGIStub Processes (Unix)

You can adjust the CE St ub parameters on Unix systems. In the iPlanet Web Server,
the CGI engine creates CA St Ub processes as needed to handle CGI processes. On
systems that serve a large load and rely heavily on CGI-generated content, it is possible
for the CA St ub processes spawned to consume all system resources. If this is
happening on your server, the CG St ub processes can be tuned to restrict how many
new CGE St ub processes can be spawned, their timeout value, and the minimum
number of CE St ub processes that will be running at any given moment.

Ifyouhaveani Nit-cgi function in the 0bj . conf file and you are running in multi-
process mode, youmust add Lat el nit = yes totheinit-cgi line.

M nCG St ubs/MaxCd St ubs/CA3 St ubl dl eTi neout

The three directives (and their defaults) that can be placed in the magnus. conf file to
control Cgi st ub are:

M nCd St ubs 2
MaxCd St ubs 10
CG St ubl dl eTi meout 45

M nCG St ubs controls the number of processes that ate started by default. The first
CG St ub process is not started until a CGI program has been accessed. The default
value is 2. Note that if you have aini t - Qi directive in the 0bj . conf file, the
minimum number of CA St Ub processes are spawned at startup.

MaxCGA St ubs controls the maximum number of CE St Ub processes the server can
spawn. This is the maximum concurrent CA St UD processes in execution, not the
maximum number of pending requests. The default value shown should be adequate for
most systems. Setting this too high may actually reduce throughput. The default value is
10.

CG St ubl dl eTi meout causes the setver to kill any CE St ub processes that have
been idle for the number of seconds set by this directive. Once the number of processes
is at M nCA St ubs it does not kill any mote processes.

34 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Miscellaneous magnus.conf Directives

Buffer Size

SndBuf Si ze/ RcvBuf Si ze

You can specify the size of the send buffer (SndBuf Si ze) and the receiving buffer
(RcvBuUf Si ze) at the server’s sockets. For more information regarding these buffers,
see your Unix documentation.

About RqgThrottle

The RgThr ot t | e parameter in the magnus. conf file specifies the maximum
number of simultaneous transactions the web server can handle. The default value is 512.
Changes to this value can be used to throttle the server, minimizing latencies for the
transactions that are performed. The RQThr ot t | e value acts across multiple virtual
servers, but does not attempt to load-balance.

To compute the number of simultaneous requests, the server counts the number of
active requests, adding one to the number when a new request arrives, subtracting one
when it finishes the request. When a new request arrives, the server checks to see if it is
already processing the maximum number of requests. If it has reached the limit, it defers
processing new requests until the number of active requests drops below the maximum
amount.

In theory, you could set the maximum simultaneous requests to 1 and still have a
functional server. Setting this value to 1 would mean that the server could only handle
one request at a time, but since HI'TP requests generally have a very short duration
(response time can be as low as 5 milliseconds), processing one request at a time would
still allow you to process up to 200 requests per second.

However, in actuality, Internet clients frequently connect to the server and then do not
complete their requests. In these cases, the server waits 30 seconds or more for the data
before timing out. (You can define this timeout petiod using the Accept Ti meout
directive in magnus. conf . It has a default of 300 seconds, or 5 minutes.) Also, some
sites do heavyweight transactions that take minutes to complete. Both of these factors
add to the maximum simultaneous requests that are required. If your site is processing
many requests that take many seconds, you may need to increase the number of
maximum simultaneous requests.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 35

Miscellaneous magnus.conf Directives

36

Note

The defaults are 48/512. If your site is expetiencing slowness and the
Acti veThr eads count remains close to the limit, consider increasing the maximum
threads limit. To find out the active thread count, use The perfdump Utility.

A suitable RqThr ot t | € value ranges from 200-2000 depending on the load. If you
want your server to use all the available resources on the system (that is, you don’t run
other server software on the same machine), then you can increase RgThrottl e toa
larger value than necessary without negative consequences.

If you are using older NSAPI plug-ins that are not reentrant, they will not work with the
multithreading model desctibed in this document. To continue using them, you should
revise them so that they are reentrant. If this is not possible, you can configure your
setver to work with them by setting RQThr ot t | e to 1 and then using a high value for
MaxPr ocs, such as 48 or greater, but this will advetsely impact your setver’s
performance.

Tuning

There are two ways to tune the thread limit: through editing the magnus. conf file and
through the Server Manager.

If you edit the magnus. conf file, RgThr ot t | eM nPer Socket is the minimum
value and RqQThr ot t | € is the maximum value.

The minimum limit is a goal for how many threads the server attempts to keep in the
Wi t i ngThr eads state. This number is just a goal. The number of actual threads in
this state may go slightly above or below this value. The default value is 48. The
maximum threads represents a hard limit for the maximum number of active threads that
can run simultaneously, which can become a bottleneck for performance. The default
value is 512.

If you use the Server Manager, follow these steps:

1. Go to the Preferences tab.

2. Click the Performance Tuning link.

3. Enter the desired value in the Maximum simultaneous requests field.

For additional information, see the online help for the Performance Tuning page.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Tuning the ACL Cache

Tuning the ACL Cache

Because of the default size of the cache (200 entries), the ACL cache can be a bottleneck
or can simply not serve its purpose on a heavily trafficked site. On a heavily trafficked
site well more than 200 users can hit ACL-protected resources in less time than the
lifetime of the cache entties. When this situation occurs, the iPlanet Web Server has to
query the LDAP server more often to validate users, which impacts performance.

This bottleneck can be avoided by increasing the size of the ACL cache with the
ACLUser CacheSi ze directive in magnus. conf . Note that increasing the cache
size will use more resources; the larger you make the cache the more RAM you'll need to

hold it.

There can also be a potential (but much harder to hit) bottleneck with the number of
groups stored in a cache entry (by default four). If a user belongs to five groups and hits
five ACLs that check for these different groups within the ACL cache lifetime, an
additional cache entry is created to hold the additional group entry. When there are two
cache entries, the entry with the original group information is ignored.

While it would be extremely unusual to hit this possible performance problem, the

number of groups cached in a single ACL cache entry can be tuned with the
ACLG oupCacheSi ze directive.

Using magnus.conf Directives

In order to adjust the cache values you will need to manually add these directives to your
magnus. conf file.

ACLCachelLifetime

Set this directive to a number that determines the number of seconds before the cache
entries expire. Fach time an entry in the cache is referenced, its age is calculated and
checked against ACLCachelLi f et i me. The entry is not used if its age is greater than
or equal to the ACLCachelLi f et i ne. The default value is 120 seconds. If this value is
set to 0, the cache is turned off. If you use a large number for this value, you may need to
restart the iPlanet Web Setver when you make changes to the LDAP entries. For
example, if this value is set to 120 seconds, the iPlanet Web Server might be out of sync
with the LDAP server for as long as two minutes. If your LDAP is not likely to change
often, use a large number.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 37

Improving Servlet Performance

ACLUserCacheSize

Set this directive to a number that determines the size of the User Cache (default is 200).

ACLGroupCacheSize

Set this directive to a number that determines how many group IDs can be cached for a
single UID/cache entty (default is 4).

Setting LogVerbose

If you set LogVerbose to on, you can verify that the ACL cache settings are being used.
When LogVerbose is running you should expect to see these messages in your errors log
when the server starts:

User authentication cache entries expire in ### seconds.
User authentication cache hol ds ### users.

Up to ### groups are cached for each cached user.

Improving Servilet Performance

38

The use of NSAPI cache will improve servlet performance in cases where the
obj . conf configuration file has many directives. To enable NSAPI cache include the
following line in Obj . conf :

Init fn="nsapi-cache-init" enable=true

It’s advisable to have the servlet engine NameTr ans (NanmeTr ans
f n="NSSer vl et NameTr ans" name="ser vl et") to be the first in the list.

This directive uses highly-optimized URI cache for loaded servlets and will return
REQ_PROCEED:f the match is found, thus eliminating the need of other NameTr ans

directives to be executed.

j vm conf /j viml2. conf has a configuration parameter, called

jvm sti ckyAtt ach. Setting the value of this parameter to 1 will cause threads to
remember that they are attached to the JVM, thus speeding up request processing by
eliminating At t achCur r ent Thr ead and Det achCur r ent Thr ead calls. It can

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Improving Servlet Performance

however have a side-effect as recycled threads which may be doing other processing can
be suspended by the garbage collector arbitrarily. Thread pools can be used to eliminate
this side effect for other subsystems.

Thread Pools

You can specify a number of configurable native thread pools, by adding the following
directives to the obj . conf:

Init fn="thread-pool-init" name=nanme_of _t he_pool MaxThreads=n M nThreads=n
QueueSi ze=n StackSi ze=n

Pool must be declared before it’s used. To use the pool add

pool =nanme_of _t he_pool parameter to load-modules directive of the appropriate
subsystem. The older parameter Nat i veThr ead=yes will always engage one default
native pool, called NativePool.

In addition to configuring the native pool parameters on Windows NT using the
environmental variables beginning with “NSCP_POOL,” the following parameters can
be added to magnus. conf for convenience:

Nat i vePool M nThr eads. Default value is 1.
Nat i vePool MaxThr eads. Default value is 128.
Nat i vePool QueueSi ze. Default value is unlimited.

Nat i vePool St ackSi ze. Default value is the same as the default value for the
OS.

Any of the parameters can be omitted to reflect the default behavior.

Native pool on Unix is normally not engaged, as all threads are OS-level threads. Using
native pools on Unix may introduce a small performance overhead as they’ll require an
additional context switch; however they can be used to localize] vm st i ckyAt t ach
effect ot for other purposes, such as tesoutce control/management ot to emulate single-
threaded behavior of plug-ins (by setting max Thr eads=1).

On Windows NT, at least the default native pool is always being used and iPlanet Web
Server uses fibers (uset-scheduled threads) for initial request processing. Using custom/
additional pools on Windows N'T' will introduce no additional overhead.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 39

Common Performance Problems

Common Performance Problems

40

This section discusses a few common performance problems to check for on your web
site:

* Low-Memory Situations

* Under-Throttled Server

* Cache Not Utilized

* KeepAlive Connections Flushed
* Log File Modes

* Using Local Variables

Low-Memory Situations

If you need iPlanet Web Server to run in low-memoty situations, try reducing the thread
limit to a bare minimum by lowering the value of RqThr ot t | € in your

magnus. conf file. Also you may want to reduce the maximum number of processes
that the iPlanet Web Setver will spawn by lowering the value of the MaXPr ocs value in
the magnus. conf file.

Under-Throttled Server

The server does not allow the number of active threads to exceed the Thread Limit value.
If the number of simultaneous requests reaches that limit, the server stops servicing new
connections until the old connections are freed up. This can lead to increased response
time.

In iPlanet Web Setver, the server’s default RQThr ot t | e value is 512. If you want your
server to accept mote connections, you need to increase the RqQThr ot t | e value.

Checking

The symptom of an under-throttled server is a server with a long response time. Making
a request from a browser establishes a connection fairly quickly to the server, but on
under-throttled servers it may take a long time before the response comes back to the
client.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Common Performance Problems

The best way to tell if your setver is being throttled is to look at the

Wi ti ngThr eads count. If this number is getting close to 0 or is 0, then the setver is
not accepting new connections right now. Also check to see if the number of

Acti veThr eads and BusyThr eads are close to their limits. If so, the server is
probably limiting itself.

Tuning

See About RqThrottle.

Cache Not Utilized

If the cache is not utilized, your server is not performing optimally. Since most sites have
lots of GIF or JPEG files (which should always be cacheable), you need to use your
cache effectively.

Some sites, however, do almost everything through CGIs, SHTML, or other dynamic
sources. Dynamic content is generally not cacheable and inherently yields a low cache hit
rate. Don’t be too alarmed if your site has a low cache hit rate. The most important thing
is that your response time is low. You can have a very low cache hit rate and still have
very good response time. As long as your response time is good, you may not care that
the cache hit rate is low.

Checking

Begin by checking your Hit Ratio. This is the percentage of times the cache was used
with all hits to your server. A good cache hit rate is anything above 50%. Some sites may
even achieve 98% or higher.

In addition, if you are doing a lot of CGI or NSAPI calls, you may have a low cache hit
rate.

Tuning
If you have custom NSAPI functions (nametrans, pathcheck, etc), you may have a low

cache hit rate. If you are writing your own NSAPI functions, be sure to see the
programmer’s guide for information on making your NSAPI code cacheable as well.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 41

Common Performance Problems

42

Warning

KeepAlive Connections Flushed

A web site that might be able to service 75 requests per second without keepalives may
be able be able to do 200-300 requests per second when keepalives are enabled.
Therefore, as a client requests various items from a single page, it is important that
keepalives are being used effectively. If the KeepAl i veCount exceeds the

KeepAl i veMaxCount , subsequent KeepAlive connections will be closed (ot
“flushed”) instead of being honored and kept alive.

Checking

Check the KeepAl i veFl ushes and KeepAl i veHi t s values. On a site where
KeepAlives are running well, the ratio of KeepAl i veFl ushes to

KeepAl i veHi t s is very low. If the ratio is high (greater than 1:1), your site is
probably not utilizing the HT'TP KeepAlives as well as it could.

Tuning

To reduce KeepAlive flushes, increase the MaxKeepAl i veConnect i ons value in
the magnus.conf file. The default value is 200. By raising the value, you keep more
waiting keepalive connections open.

On Unix systems, if you increase the MaxKeepAl i veConnect i ons value too high,
the server can run out of open file descriptors. Typically 1024 is the limit for open files
on Unix, so increasing this value above 500 is not recommended.

Log File Modes

Keeping the log files on verbose mode can have a significant affect of performance.

Client-Host, Full-Request, Method, Protocol, Query-String, URI, Referer, User-Agent,
Authorization and Auth-User: Because the “obscure” variable cannot be provided by the
internal “accelerated” path, the accelerated path will not be used at all. Therefore
performance numbers will decrease significantly for requests that would typically benefit
from the accelerator, for example static files and images.

iPlanet Web Server, Enterprise Edition 4.1 has a relaxed logging mode that eases the
requirements of the log subsystem. Adding “r el axed. | ogname=anyt hi ng” to
the “f | ex-i ni t” line in Obj . conf changes the behavior of the server in the

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Sizing Issues

following way: Logging variables other than the “blessed few” does not prevent the
accelerated path from being used. If the accelerator is used, the “non-blessed” variable

«_ 2

(which is then not available internally) will be logged as “- . The server does not use the
accelerator for dynamic content like CGIs or SHIML, so all the variables would be

logged correctly for these requests.

Using Local Variables

The JavaScript virtual machine in iPlanet Web Server, Enterprise Edition 4.1
implements significant improvements in processing local variables (variables declared
inside a function). Therefore, you should minimize the use of global variables (variables
declared between the <setver> and </server> tags), and wtite applications to use
functions as much as possible. This can improve the application performance
significantly.

Sizing Issues

This section examines subsystems of your server and makes some recommendations for
optimal performance:

* Processors

* Memory

* Drive Space
* Networking

For more information on scalability, see the studies in Scalability Studies.

Processors

On Solaris and Windows NT, iPlanet Web Server transparently takes advantage of
multiple CPUs. In general, the effectiveness of multiple CPUs vaties with the operating
system and the workload. Dynamic content performance improves the most as more
processors are added to the system. Because static content involves mostly IO and more
primary memoty means more caching of the content (assuming the server is tuned to

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 43

Sizing Issues

take advantage of the memory) more time is spent in IO rather than any busy CPU
activity. Our study of dynamic content performance on a four-CPU machine indicate a
40-60% increase for NSAPI and about 50-80% increase for servlets.

See the Scalability Studies for more information.

Memory

As a baseline, iPlanet Web Server requires 64MB RAM. If you have multiple CPUs, get at
least 64MB per CPU. For example, if you have four CPUs, you should install at least
256MB RAM for optimal performance. At high numbers of peak concurrent users, also
allow extra RAM for the additional threads. After the first 50 concurrent users, add an
extra 512KB per peak concurrent user.

Drive Space

You need to have enough drive space for your OS, document tree, and log files. In most
cases 2GB total is sufficient.

Put the OS, swap/paging file, iPlanet Web Server logs, and document tree each on
separate hard drives. Thus, if your log files fill up the log drive, your OS will not suffer.
Also, you’ll be able to tell whether, for example, the OS paging file is causing drive
activity.

Your OS vendor may have specific recommendations for how much swap or paging
space you should allocate. Based on our testing, iPlanet Web Server performs best with
swap space equal to RAM, plus enough to map the document tree.

Networking

For an Internet site, decide how many peak concurrent users you need the server to
handle, and multiply that number of users by the average request size on your site. Your
average request may include multiple documents. If you’re not sure, try using your home
page and all its associated subframes and graphics.

Next decide how long the average user will be willing to wait for a document, at peak
utilization. Divide by that number of seconds. That’s the WAN bandwidth your server
needs.

44 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

For example, to support a peak of 50 users with an average document size of 24kB, and
transferring each document in an average of 5 seconds, we need 240 KBytes/s - or 1920
kbit/s. So our site needs two T1 lines (each 1544 kbit/s). This allows some overhead for
growth, too.

Your server’s network interface card should support more than the WAN it’s connected
to. For example, if you have up to 3 T1 lines, you can get by with a 10BaseT interface. Up
to a T3 line (45 Mbit/s) you can use 100BaseT. But if you have more than 50 Mbit/s of
WAN bandwidth, consider configuring multiple 100BaseT interfaces, or look at Gigabit
Ethernet technology.

For an intranet site, your network is unlikely to be a bottleneck. However, you can use
the same calculations as above to decide.

Scalability Studies

This scalability section contains the results of three studies covering the following topics:
* Scalability of Dynamic and Static Content (4.0)

e Connection Scalability Study (4.0)

* iPlanet Web Server 4.1 Scalability Study

You can refer to these studies for a sample of how the server performs, and how you
might configure your system to best take advantage of the iPlanet Web Server’s
strengths.

For additional performance information, see the Mindcraft white paper “iPlanet Web
Server, Enterprise Edition 4.1 and Stronghold 2.4.2 Performance Comparison Analysis
and Details” at:

http://www.mindcraft.com/whitepapets/iws/iwsee4-sh242-p2 html

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 45

Scalability Studies

Scalability of Dynamic and Static
Content (4.0)

Scalability for the server varies for different content types, but all types of content scale
well. This section describes a study that tests the scalability of vatious types of content:
100% static, 100% dynamic, and mixed load (30% static + 70% dynamic). Please note
that this study was not done using optimal equipment or configuration to produce
benchmarks.

Perl-CGI and C-CGI scale the most by a factor of 0.88, followed by SHTML and mixed
load, with a scaling factor of 0.79. Java servlets scale moderately by a factor of 0.68.
NSAPDs scaling factor is 0.57. Finally, 100% static content’s scaling factor is only 0.44,
which is expected. The poor scalability of static content is most likely due to the fact that
the system only has a single disk to store content, and system performance is
bottlenecked on disk I/O. Petformance will improve if you spread the data out on more
than one disk, or if you use a faster disk or faster file system.

Study Goals

This study shows how well iPlanet Web Server, Enterprise Edition scales against one
CPU, two CPUs and four CPUs. This study also helps in determining what kind of
configuration (CPU and memory) is required for different types of content. The studies
were conducted against the following content:

* 100% Static

+ 100% SHTML

* 100% C-CGI

e 100% Petl-CGI

* 100% NSAPI

e 100% Java Servlets

* Mixed loads: 30% Static + 10% SHTML + 20% Petl-CGI + 20% NSAPI + 20%
Java servlets

Study Assumptions

The following assumptions were made to make the studies more realistic:

46 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

* A1 CPU machine has 256 MB of memory.
* A 2 CPU machine has 512 MB of memory.
* A4 CPU machine has 1 GB of memory

* A normal web site would have mixed load (static + dynamic) content; 30%
Static,10% SHTML, 20% Perl- CGI, 20% NSAPI, and20% Java servlets

* The expected average response time is no more than 20 seconds

Setting up the Study

After modifying the / et ¢/ Syst emappropriately (physmem=256MB for one CPU
or 512MB for two CPUs or 1GB for four CPUs), we rebooted the server. Using the
psr admcommand, we disabled the desired number of CPUs. We started the server.
After making a note of the memory (using t Op command) and CPU utilization (using
Vst at command), we started WebBench clients, first with one client, then with two
clients, and so on, until the server CPU utilization was close to 100%.

The result with the highest requests/second and response time no mote than 20ms was
considered a good reading. We repeated this three times to check for consistency.

Application. The default configuration (0bj . conf and magnus. conf) of iPlanet
Web Setver, Enterprise Edition 4.0 was used.

Study Tool. WebBench 3.0.

Server. The server under test was an E450 with 4 CPUs (168MHz) and 1.6 GB of
memory. The server parameters were tuned appropriately.

Clients. The clients were Wintel (running Windows NT 4.0) machines running 1 or
more clients (depending on the size of the machine). In all 7 to 8 machines were used.

Each WebBench 3.0 client was configured to run HT'TP 1.0, with 24 threads.
Network. All systems are connected through a single 100baseT switch.

CPU. The number of CPUs used was controlled by the psr admcommand (and
- f option).

Memory. The amount of physical memory used was controlled by the adding the line
set physmenex in the / et ¢/ syst emfile; where X was equal to 0x8000 for 256
MB, 0x10000 for 512 MB and 0x20000 for 1 GB.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 47

Scalability Studies

Content. The static content was a 64 MB tree (provided by WebBench 3.0), containing
6000 files. The files vatied in size from 1K to 500K. The document root (in 0bj . conf)
was pointed to this tree, which is on a separate disk. Except NSAPI executables, all other
content--such as SHITMI, C-CGI, Petl-CGI and Java servlets--were on the same disk as
the document root.

Study Results

The following sections show the results of the study.

100% Static

The study used Web Bench 3.0 standard static content tree comprising files of different
sizes totalling about 64 MB. Each file belongs to a particular class depending on its size.
The workload characteristics ensure small and medium sized files are accessed more than
the large files, reflecting a more realistic stress on the server. The study was first run with
defaults (without tuning the file cache with nSf ¢. conf). The server scales moderately
with a scaling factor of 0.40.

The study was run for the second time after tuning the file cache. The scaling factor was
still about 0.40. The Nnsf . conf was configured to cache or mmap all the content,
guaranteeing better performance. Figure 1.1 and Figure 1.2 show the average requests
per second and average throughput for 100% static content against one CPU, two CPUs
and four CPUs, for both unconfigured and configured nsf c. conf .

Figure 1.1 Requests per second for 100% static content

Reguests far 1000 Static Conturt

1300 + sk

B Datwk Satinge

B Tigrasd 4o F il O pching

LR LR LA
N OP s

48 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Notes

Scalability Studies

Figure 1.2 Throughput for 100% static content

Threughpws for 100 Static Corvant

3 100m
i eom Bl
= . S F
g s B Dtk Safings
E_ L] B Tirisd o il pch ing
E’ 2000
E il
1:CFL) 2P 4.CRY

¥ OPUs

The numbers with an asterisk (*) in the graphs ate estimated. These numbers are
estimated due to the small number of client machines and plenty of available CPU idle
time. When all the four CPUs were enabled, and all available 18 clients wete used, the
server (CPU) was still idle for approximately 30% of the time, with default file cache (no
nsfc. conf present), and about 50% with a relatively tuned nsf c. conf . The
maximum numbers obtained wete 853 req/second and 5134 KB per second throughput,
for default configuration and 955 requests/second and 5900 KB pet second throughput
when nsf c. conf was tuned.

Also note that the cache-hit ratio typically never reaches 100% unless the study is run a
number of times (this is due to statistical nature of the study--not all files in the workload
are necessarily accessed during any run).

100% SHTML

This study was run against the file M xed- di rs. sht m . This file has a number of
echo statements, an include of 8 KB, and displays the last modification time stamp of a
file. Figure 1.3 and Figure 1.4 represent average requests per second and average
throughput for 100% SHTML content against one CPU, two CPUs and four CPUs.
From the graphs it is clear that the server scales well above average, with a scaling factor
of 0.79.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 49

Scalability Studies

Figure 1.3 Requests per second for 100% SHTML content

Requesisisec for 100%: SHTML Content

Aisghi st S e
~BHESEE=EE

Figure 1.4 Throughput for 100% SHTML content

Throughput for 10006 SHTML Content

1-CPU P &CPU
¥ Pl

100% C-CGil

100% C-CGI was tested by accessing a C executable called pr i nt env. This executable
prints the CGI environment. Figure 1.5 and Figure 1.6 represent average requests per
second and average throughput for 100% C-CGI content against one CPU, two CPUs
and four CPUs. From the graphs it is clear that the server scales very well for C-CGI
content. It scales with a factor of 0.88.

50 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

Figure 1.5 Requests per second for 100% C-CGI content

Requesisidec for 100%: O-061 Content

Figure 1.6 Throughput of 100% C-CGI content

Thraughput far 10059 CLG| Content

100% Perl-CGlI

This study ran against a Petl script called pr i nt env. pl . This script prints the CGI
environment, just like the C executable pri nt env does. Figure 1.7 and Figure 1.8
represent average requests per second and average throughput for 100% Perl-CGI
content against one CPU, two CPUs, and four CPUs. From the graphs it is clear that the
server scales very well, similar to C-CGI. The scaling factor is 0.88.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 51

Scalability Studies

Figure 1.7 Requests per second for 100% Perl-CGI content

FeguestelZes for 100% Pel-CGi

16D
140
g1
i 100
m
3- re]
a
o
]

1AL X 1] Pl

aCPik

Figure 1.8 Throughput for 100% Perl-CGlI content

Thraughput far 1009 Perl.CEH

: s

L3

i

@
-
-
= o

CPil

100% NSAPI

The NSAPI module used in this study was pri nt env2. so. This module prints the
NSAPI environment variables along with some text to make the entire response over 1
KB. Figure 1.9 and Figure 1.10 represent average requests per second and average
throughput for 100% NSAPI content against one CPU, two CPUs, and four CPUs.

52 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

Figure 1.9 Requests per second for 100% NSAPI content

RegestalSec for 100% NSAFI

1300
1000

3 L]
GO0
10
X0

0

1-CPU e] &L
¥ Ol

Figure 1.10 Throughput for 100% NSAPI content

Thraughgput for 100% NSAF

g
~H52HEHHEB

1-CPU P &CPU
¥ Pl

100% Java Servlets

This study was conducted using the WASP servlet. It prints out the servlet's initialization
arguments, environments, request headers, connection/client info, URL information, as
well as remote user information. Figure 1.11 and Figure 1.12 represent average requests

per second and average throughput for 100% Java servlets content against one CPU, two
CPUs, and four CPUs. From the graphs it is clear that the server scales moderately well

for Java servlets content. The scaling factor is 0.68.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 53

Scalability Studies

Figure 1.11 Response per seconds for 100% lava servlets

Fesponselses for 100 Java Servels

Figure 1.12 Throughput for 100% Java servlets

Thraughgut for 1005 Java Serviets

Thrsughpenbiyesssod
~HHHEEEZEHR

Mixed Load

The mixed load study was conducted using the 64 MB static content tree for static
content, and all the dynamic scripts/executables for the dynamic content. The wotkload
was configured so that 30% of the requests would access files from the static tree, 10%
of the requests would access the m X-di r. shtm file, 20% pri nt env. pl , 20%
pri nt env, 20% the NSAPI . S0 and the remaining 20% of the requests would access
the WASP servlet. Figure 1.13 and Figure 1.14 show average requests per second and
average throughput for content with mixed load against one CPU, two CPUs and four
CPUs. From the graphs it is clear that the server scales well for content with mixed load.
The scaling factor for such a mixed load 1s 0.79.

54 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

Figure 1.13 Requests per second for mixed content

RequestslSes for MixedLoad

LTS

cHFBREEEE

Figure 1.14 Throughput for mixed content

Threughput for MizedLasd

1-CPU »CFU &CPU
& P lis

Connection Scalability Study (4.0)

This study shows how many connections you can have for a given number of CPUs and
the memory needed as the number of connections increases.

In terms of the number of requests that the server can handle, it scales well from one
CPU to four CPUs. With a load of 5500 concurrent usets, the server on a four CPUs
system handles close to 2136 requests per second with a reasonable response time.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 55

Scalability Studies

Each iPlanet Web Server process seems capable of handling up to 1500 requests with a
reasonable response time; however, it is recommended that each process handle up to
1000 requests per second. You can increase the number of processes for the optimal
performance. Usually, when you increase of number of processes you reduce response
time.

In terms of memory footprint, it seems to grow 1 MB for each 350 incremental requests.
This is true only for the single process. When the number of processes is increased, the

memory footprint becomes 60 MB, with 40 MB of this 60 MB an mmaped file to share

data between processes.

Configuration and Study Details

The goal of this exercise was to study the cost of connections on a four CPU system.
This study deliberately uses a bate minimum size of i ndex. ht m . All the load
generators are set up to GET this i ndex. ht ml file.

Analysis

Table 1.4, Figure 1.15, and Figure 1.16, show that the number of requests served and
throughput scale almost linearly from one CPU to four CPUs, with reasonable response
time.

Table 1.4 Throughput vs. number of CPUs

Number of CPUs Number of Throughput (MB) Response time
Requests (ms)

1 CPU 885 2.8 29.5

2 CPUs 1571 4.9 5.6

4 CPUs 2136 7.9 5.0

56 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

Figure 1.15 Throughput in Number of Requests

Throughpul in Numbser ol Requesis

=m
ﬁ-?l:lIl
13m
&
2 1om
:
-

1 T
R e i [P
Murmizssr of (P

Figure 1.16 Throughput in MB

Throughpud in MBylas

LES »
B
g * 2
f L]
i
e
i=
n T
1kl FRe 2l & CFii
Paumber ol CPU

Table 1.5, Figure 1.17, Figure 1.18, and Figure 1.19 show that the throughput and
requests handled scale quite well with increasing load on the system from 500 concurrent
users all the way up to 5500 clients. Note that we started more than one iPlanet Web

Setver process when it reached 1500 requests per second, otherwise there are long delays
for all the requests.

Table 1.5 Statistics on a 4 CPU system

Load Throughput Number of Response Notes
Requests Time

500 0.73 19 4.15

1000 1.46 393 4.15

1500 2.16 589 4.15

2000 2.80 785 4.70

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 57

Scalability Studies

Table 1.5 Statistics on a 4 CPU system

Load Throughput Number of Response Notes
Requests Time

2500 3.65 982 5.00

3000 4.38 1177 6.00

3500 4.90 1374 8.30

4000 5.60 1548 10.00

4500 6.30 1769 5.00 MaxProc=3

5000 7.00 1908 5.00 MaxProc=3

5500 7.70 2136 5.00 MaxProc=3

Figure 1.17 Throughput in MB vs. requested load

Throughpu! in MByles vs Reguesiled Lead

LMD L0 LIS LMD LED0 A0 L0 LANE REE LS LEE
Aemquiested Corecdioe

58 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

Figure 1.18 Throughput in number of requests vs. requested load

Throughpd in Nwembaer of Reguesls ve Requesled Load
225]

20m
175]
1500
126
10m
75
500
25

umber ol Fagissls

150 Lind i 150 LT L [&yei] [E1i] D HEE LR LSS
Reaussind Domadions
Figure 1.19 Response time vs. requested load

Response Time vs Requesied Load
10

Aeapinss Time in g
Ea

L0 LMD LT LEO0 L0 LNEE L3S0 LADG LAS LSO L
Repuesied Comnedions

Table 1.6 and Figure 1.20 show that the memory footprint grew about 1M for each
additional 1000 load imposed on the system (or each 400 requests). The last three rows
of Table 1.6 show MaxProc has been tuned to 3 to increase the performance, since a

single iPlanet Web Server process could not handle the number of requests at the load of
4500.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 59

Scalability Studies

60

Table 1.6 Memory usage vs. load imposed

Load Size Res Note

500 17 15

1000 17 15

1500 18 15

2000 18 15

2500 21 17

3000 21 17

3500 21 17

4000 21 17

4500 62 14 MaxProc=3
5000 65 15 MaxProc=3
5500 64 15 MaxProc=3

Figure 1.20 Memory usage vs. load imposed

Memary Usapge vs Loads

=E
AES

5 1]

i Ll A -] AED NN AEm LN EEn AAD LEEE e

—CEzn

magnus.conf Directive Settings Used in Study
* RqThrottle 1024

* RqThrottleMaxAcceptThreads 8

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

* SingleAccept Off

* KeepAliveTimeout 100000

* MaxKeepAliveConnections 512
* ListenQ 1024

* BlockingListenSocket On

IPlanet Web Server 4.1 Scalability Study

The major focus of this study was to address scalability of the iPlanet Web Server 4.1
server on a Solaris E4500 system, whose configuration is given below. This study has the
following sections:

* Goals

e Server Settings Used

* Hardware and Software Configuration of the System
* Load Generators Used

* Performance Metrics

¢ Results

Goals

The study focused mainly on these issues:

* Extending and supplementing the iPlanet Web Server 4.0 sizing studies

* Studying scalability using up to 8 CPUs

* Showing how well iPlanet Web Server, Enterprise Edition scales on an E4500 server
The studies were conducted against the following content:

* 100% Static

* 100% Static with SSL

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 61

Scalability Studies

* 100% SHTML
e 100% Perl-CGI
* 100% Java Servlets

While the per]-CGI and servlet tests used the same load as described in the previous
studies of iPlanet Web Server 4.0, static and SHTML tests were different both in content
and the method used to generate load; for these two tests there is no direct comparison
with the previous studies. In addition, SSL-enabled performance, scalability, and the
effect of using an alternate threads library, which is available on Solaris 8, were studied.
This study also emphasizes scalability on larger servers.

Server Settings Used

The study used default settings for the server except for the static test, for which the file
cache was enabled. For this test, the cache was configured to be large enough to contain
all the directories being accessed.

The following NSf c. conf settings were used:

Fi | eCacheEnabl e=t r ue

MaxAge=7200

MaxFi | es=200500

MaxQOpenFi | es=200500

Snal | Fi | eSi zeLi mi t =10240

Smal | Fi | eSpace=2147483648

Medi unFi | eSi zeLi m t =10

Medi unti | eSpace=1024

The following Obj . conf setting (all on one line) enabled the cache:

Init fn="cache-init" MaxNunber O CachedFi | es="200500"
MaxNumber Of OpenCachedFi | es="200500" CacheHashSi ze="400001" Reaper="off"

For java servlets, the JVM was configured to use the JDK1.2.2-05a production release.

Hardware and Software Configuration of the System

The server ran the Solaris 8 operating system with the settings described below.

System Limits

System limits were set using the following / €t ¢/ Syst emsettings:

set rlimfd_max=8192

62 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

set rlimfd_cur=8192

set sq_nax_size=0

set tcp:tcp_conn_hash_si ze=81920

Here is another tcp setting used (via ndd):

tcp_time_wait_interval =60000

System Hardware

Scalability Studies

A Sun Enterprise E4500/E5500 computer with a System clock frequency of 100 MHz
and 12288 MB of memory was used. The following tables summarize the CPUs,
memory, and I/O cards.

Table 1.7 CPU summary

Board CPU Module RunMHz Ecache MB CPU Impl. CPU Mask
0 0 400 8.0 US-IT 10.0

0 1 1 400 8.0 US-IT 10.0

2 4 0 400 8.0 US-II 10.0

2 5 1 400 8.0 US-1I 10.0

4 8 0 400 8.0 US-1I 10.0

4 9 1 400 8.0 US-1I 10.0

5 10 0 400 8.0 US-II 10.0

5 11 1 400 8.0 US-IT 10.0

6 12 0 400 8.0 US-IT 10.0

6 13 1 400 8.0 US-IT 10.0

7 14 0 400 8.0 US-1I 10.0

7 15 1 400 8.0 US-II 10.0

Table 1.8 Memory summary

Board Bank MB Status Condition Speed Intrlv. Factor Intrlv. Width

0 0 1024 Active OK 60ns 8-way A

0 1 1024 Active OK 60ns 8-way A

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 63

Scalability Studies

Table 1.8 Memory summary

Board Bank MB Status Condition Speed Intrlv. Factor Intrlv. Width
2 0 1024 Active OK 60ns 8-way A
2 1 1024 Active OK 60ns 8-way A
4 0 1024 Active OK 60ns 8-way A
4 1 1024 Active OK 60ns 4-way B
5 0 1024 Active OK 60ns 8-way A
5 1 1024 Active OK 60ns 4-way B
6 0 1024 Active OK 60ns 8-way A
6 1 1024 Active OK 60ns 4-way B
7 0 1024 Active OK 60ns 8-way A
7 1 1024 Active OK 60ns 4-way B
Table 1.9 I/O card summary
Board Bus Type Freq. MHz Slot Name Model
1 SBus 25 0 SUNW,socal/sf (scsi-3) 501-3060
1 SBus 25 1 SUNW,hme SUNW,501-2739
1 SBus 25 1 SUNW, fas/sd (block)
1 SBus 25 2 SUNW. gfe SUNW,sbus-qfe
1 SBus 25 2 SUNW.gfe SUNW,sbus-qfe
1 SBus 25 2 SUNW gfe SUNW,sbus-qfe
1 SBus 25 2 SUNW gfe SUNW,sbus-qfe
1 SBus 25 3 SUNW,hme
1 SBus 25 3 SUNW, fas/sd (block)
1 SBus 25 13 SUNW socal/sf (scsi-3) 501-3060
3 SBus 25 0 SUNW socal/sf (scsi-3) 501-3060
3 SBus 25 1 SUNW,hme SUNW,501-2739
3 SBus 25 1 SUNW, fas/sd (block)

64 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

Table 1.9 I/O card summary

Board Bus Type Freq. MHz Slot Name Model

3 SBus 25 3 SUNW,hme

3 SBus 25 3 SUNW fas/sd (block)

3 SBus 25 13 SUNW ,socal/sf (scsi-3) 501-3060

Load Generators Used

These load generators were used:

* The Microsoft application stress tool, available at:

http://homer.rte. mcrosoft.com

* A home grown ht t p load generator that generates static loads

Performance Metrics

For all tests, operations per second (number of successful requests processed per second)
and throughput were the performance metrics.

Results

The following figure shows the overall results of the study for the types of content
examined.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 65

Scalability Studies

Figure 1.21 Sizing data for different micro-benchmarks

Sizing Daia for DMiTerent Micro-
Benchmarks

-

3 [in 1
; [SRt
~ it i WEEL, % o
._E- BFE, w reriR
= Eot

A0 - b ™ = o

L L]
L B i =

dnte eppedl dwml sk

The static tests involved downloading files from 60 directoties, each containing 100 files.
The files ranged in size from 1K to 50K Since static downloads are not CPU bound,
caching the contents in memory makes downloads faster. For small downloads, the
performance is more limited by memoty latency than bandwidth. This may explain the
better performance data when using the E450 (which was used for 4.0 studies) than the
E4500 systems used for the current study.

Figure 1.22 Static content scalability

Static Content Scalability

| 2 = —

B

Bieik

s/ mer.

=

66 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

Figure 1.23 Static load throughput

Static Load Throughput

ME / sec.

For SSL-enabled static tests, the operations were very CPU bound, and good scaling was
seen up to 4 CPUs (a factor of 0.7). For the default two-level Solaris threads library the
scaling stalled beyond 4 CPUs. When the same test was repeated using single level
threads, scaling improved considerably for 8 CPU tests.

Figure 1.24 Static content SSL scalability

Siatic Content S5L Scalability

(Bl d el thraasd
|l p thresd

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 67

Scalability Studies

Figure 1.25 Static SSL throughput

Siatic S5L Throughput

1000

B

ElG
-3':. i M dad chrasd
E -.“:U T M« p thread

LY 1 e]

roa

Also shown here are the results of an SSL-enabled static test using the session cache. The
cache is tuned for 100% session re-use: only one handshake computation is performed
for the duration of the test.

Figure 1.26 Static/SSL scalability with and without session cache

Static / S5L Scalability With and
Without Session Cache

tie
i
r
E i &0
e el Biio% rg-use |
i M ne ro-dse
F 130 1 3
o
"
(R L]
4] T
4 1 |

#CPLUs

For SHTML, a nested include of depth 3 was used. These results are shown in the
following figures. A factor of 0.4 scaling was seen going from 2 to 4 CPUs.

68 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

Scalability Studies

Figure 1.27 SHTML scalability

SHTML Scalability
i 11 ELE
0 L
hnd
g soe Al
g" N
L
) ¥ I 1 - E
¥CFUs

Figure 1.28 SHTML scalability throughput

SHTML Scalability: Througzh put

T]
5 =
fi -
-]
i s
-
= B
s
|
1 - T
z] r

g CPUs

The Perl-CGI test was identical to the same test in the 4.0 study. The Perl-CGI test
scaled well all the way to 8 CPUs. For a simple pri Nt env test, near linear scaling was
seef.

iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling 69

Scalability Studies

Figure 1.29 Perl-CGl scalability

Perl-CGH Scalability

A

e 44
-;I o] | .
E 150
= 1 i -

L1} —
T
2 4]
¥ CPU«

The servlet test achieved the best scaling using alternate lib threads. A factor of 1.8
scaling was seen going from 2 to 8 cpus. Here we need to investigate limitations imposed
by the JVM and contention at the kernel level.

Figure 1.30 WAGSP servlet scalability

WASP Serviet Scalability

L]

G

5d4d

Bdel thread

AL v p ihread

a0da

Chpee [wer,

r3i]

1a4

70 iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling

	iPlanet Web Server 4.1 Performance Tuning, Sizing, and Scaling
	About Server Performance
	Performance Issues
	Monitoring Performance

	The perfdump Utility
	Sample Output

	Using perfdump Statistics to Tune Your Server
	ListenSocket Information
	Address
	ActiveThreads
	WaitingThreads
	BusyThreads
	Thread limits <min/max>

	KeepAlive Information
	KeepAliveCount <KeepAliveCount/ KeepAliveMaxCount>
	KeepAliveHits
	KeepAliveFlushes
	KeepAliveTimeout

	Cache Information
	enabled
	CacheEntries <CurrentCacheEntries / MaxCacheEntries>
	CacheSize <CurrentCacheSize / MaxCacheSize>
	Hit Ratio <CacheHits / CacheLookups (Ratio)>
	pollInterval
	DNS Cache Information
	enabled
	CacheEntries <CurrentCacheEntries / MaxCacheEntries>
	HitRatio <CacheHits / CacheLookups (Ratio)>

	Native Threads Pool
	Idle/Peak/Limit
	Work queue length/Limit
	Peak work queue length
	Work queue rejections
	PostThreadsEarly
	Native Thread Pool Size
	Busy Functions

	Asynchronous DNS Lookup (Unix)
	enabled
	NameLookups
	AddrLookups
	LookupsInProgress

	Performance Buckets
	Configuration
	Performance Report

	File and Accelerator Caches
	Configuring the Accelerator Cache
	Configuring the File Cache
	CopyFiles
	FileCacheEnable
	HashInitSize
	HitOrder
	MaxAge
	MaxFiles
	MediumFileSizeLimit (Unix)
	MediumFileSpace
	SmallFileSizeLimit (Unix)
	SmallFileSpace
	TempDir
	TransmitFile

	File Cache Dynamic Control and Monitoring

	Unix Platform-Specific Issues
	Tuning Solaris for Performance Benchmarking
	Tuning HP-UX for Performance Benchmarking

	Miscellaneous magnus.conf Directives
	Multi-process Mode
	Accept Thread Information
	CGIStub Processes (Unix)
	Buffer Size
	About RqThrottle

	Tuning the ACL Cache
	Using magnus.conf Directives
	ACLCacheLifetime
	ACLUserCacheSize
	ACLGroupCacheSize

	Setting LogVerbose

	Improving Servlet Performance
	Thread Pools

	Common Performance Problems
	Low-Memory Situations
	Under-Throttled Server
	Checking
	Tuning

	Cache Not Utilized
	Checking
	Tuning

	KeepAlive Connections Flushed
	Checking
	Tuning

	Log File Modes
	Using Local Variables

	Sizing Issues
	Processors
	Memory
	Drive Space
	Networking

	Scalability Studies
	Scalability of Dynamic and Static Content (4.0)
	Study Goals
	Study Assumptions
	Setting up the Study
	Study Results
	Figure 1.1 Requests per second for 100% static content
	Figure 1.2 Throughput for 100% static content
	Figure 1.3 Requests per second for 100% SHTML content
	Figure 1.4 Throughput for 100% SHTML content
	Figure 1.5 Requests per second for 100% C-CGI content
	Figure 1.6 Throughput of 100% C-CGI content
	Figure 1.7 Requests per second for 100% Perl-CGI content
	Figure 1.8 Throughput for 100% Perl-CGI content
	Figure 1.9 Requests per second for 100% NSAPI content
	Figure 1.10 Throughput for 100% NSAPI content
	Figure 1.11 Response per seconds for 100% Java servlets
	Figure 1.12 Throughput for 100% Java servlets
	Figure 1.13 Requests per second for mixed content
	Figure 1.14 Throughput for mixed content

	Connection Scalability Study (4.0)
	Configuration and Study Details
	Analysis
	Figure 1.15 Throughput in Number of Requests
	Figure 1.16 Throughput in MB
	Figure 1.17 Throughput in MB vs. requested load
	Figure 1.18 Throughput in number of requests vs. requested load
	Figure 1.19 Response time vs. requested load
	Figure 1.20 Memory usage vs. load imposed

	magnus.conf Directive Settings Used in Study

	iPlanet Web Server 4.1 Scalability Study
	Goals
	Server Settings Used
	Hardware and Software Configuration of the System
	Load Generators Used
	Performance Metrics
	Results
	Figure 1.21 Sizing data for different micro-benchmarks
	Figure 1.22 Static content scalability
	Figure 1.23 Static load throughput
	Figure 1.24 Static content SSL scalability
	Figure 1.25 Static SSL throughput
	Figure 1.26 Static/SSL scalability with and without session cache
	Figure 1.27 SHTML scalability
	Figure 1.28 SHTML scalability throughput
	Figure 1.29 Perl-CGI scalability
	Figure 1.30 WASP servlet scalability

