
iPlanet Web Server 6.0 Performance
Tuning, Sizing, and Scaling Guide

This guide is intended for advanced administrators only. Be cautious when you
tune your server. Do not change any values except in exceptional circumstances.
Read this guide and other relevant server documentation before making any
changes. Always backup your configuration files first.

The following topics are covered in this guide:

• About Server Performance

• Monitoring Current Activity Using the Server Manager

• Monitoring Current Activity Using the perfdump Utility

• Using Statistics to Tune Your Server

• Using Performance Buckets

• Configuring the File Cache

• Tuning the ACL User Cache

• Using Quality of Service

• Using Load Balancing

• Threads, Processes, and Connections

• Unix/Linux Platform-Specific Issues

• Improving Java Performance

• Miscellaneous magnus.conf Directives

• Miscellaneous obj.conf Parameters

• Common Performance Problems
13

About Server Performance
• Tuning Solaris for Performance Benchmarking

• Sizing and Scaling Your Server

• Scalability Studies

About Server Performance
iPlanet Web Server was designed to meet the needs of the most demanding, high
traffic sites in the world. It runs flexibly on both Unix/Linux and Windows NT,
and can serve both static and dynamically generated content. iPlanet Web Server
can also run in SSL mode, enabling the secure transfer of information.

Your customers’ needs may vary significantly. This guide helps you define your
server workload and size a system to meet your performance needs. This guide
addresses miscellaneous configuration and Unix/Linux platform-specific issues. It
also describes the perfdump performance utility and tuning parameters that are
built into the server.

Virtual Servers
Virtual servers add another layer to the performance improvement process.
Certain settings are tunable for the entire server, while others are based on an
individual virtual server. You can also use the quality of service (QOS) features to
set resource utilization constraints for an individual virtual server or class of
virtual servers. For example, you can use the quality of service features to limit the
number of connections allowed for a virtual server or class of virtual servers.

Performance Issues
The first step toward sizing your server is to determine your requirements.
Performance means different things to users than to webmasters. Users want fast
response times (typically less than 100 ms), high availability (no “connection
refused” messages), and as much interface control as possible. Webmasters and
system administrators, on the other hand, want to see high connection rates, high
data throughput, and uptime approaching 100%. In addition, for virtual servers the
goal might be to provide a targeted level of performance at different price points.
You need to define what performance means for your particular situation.
14 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

About Server Performance
Here are some areas to consider:

• Number of peak concurrent users

• Security requirements

Encrypting your iPlanet Web Server’s data streams with SSL makes an
enormous difference to your site’s credibility for electronic commerce and
other security-conscious applications, but it also can seriously impact your
CPU load. SSL always has a significant impact on throughput, so for best
performance minimize your use of SSL, or consider using a multi-CPU server
to handle it.

• Size of document tree

• Dynamic vs. static content

The content you serve affects your server’s performance. An iPlanet Web
Server delivering mostly static HTML can run much faster than a server that
has to execute CGIs for every query.

When running an SSL server on Solaris without the use of Java, performance
gains can be achieved by enabling SmartHeap. SmartHeap can be enabled by
uncommenting a few lines in the server's start script.

SmartHeap is not currently compatible with Java on iPlanet Web Server 6.0.

Monitoring Performance
You can monitor the performance of your server by:

• Monitoring Current Activity Using the Server Manager

• Monitoring Current Activity Using the perfdump Utility

• Using Performance Buckets

• Using Quality of Service

• Using Load Balancing

These tools are explained in more detail in the following sections.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 15

Monitoring Current Activity Using the Server Manager
Monitoring Current Activity Using the Server
Manager

iPlanet Web Server lets you monitor many performance statistics through the
Server Manager user interface and through stats-xml. Once statistics are enabled,
you can monitor them in the following areas:

• Connections

• DNS

• Keep-alive

• Cache

• Virtual Server

Enabling Statistics
You must enable statistics on you iPlanet Web Server before you will be able to
monitor performance. This can be done through the Server Manager or editing the
obj.conf and magnus.conf files.

Enabling Statistics from the Server Manager
To enable statistics from the user interface, follow these steps:

1. From the Server Manager, select the Monitor tab.

2. Select Monitor Current Activity.

The Enable Statistics /Profiling page appears.

3. Select Yes to enable.

4. Click OK.

5. Click Apply.

6. Select Apply Changes to restart the server for your changes to take effect.

Enabling Statistics with stats-xml
You can also enable statistics directly by editing obj.conf and magnus.conf. Users
who create automated tools or write customized programs for monitoring and
tuning may prefer to work directly with stats-xml.
16 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Monitoring Current Activity Using the Server Manager
To enable the statistics using stats-xml, follow these steps:

1. Under the default object in obj.conf, add the following line:

NameTrans fn="assign-name" from="/stats-xml/*" name="stats-xml"

2. Add the following Service function to obj.conf:

<Object name="stats-xml">
Service fn="stats-xml"
</Object>

3. Add the stats-init SAF to magnus.conf.

Here’s an example of stats-init in magnus.conf:

Init fn="stats-init" update-interval="5" virtual-servers="2000"

profiling="yes"

The above example shows you can also designate the following:

❍ update-interval. The period in seconds between statistics updates. A
higher setting (less frequent) will be better for performance. The minimum
value is 1; the default value is 5.

❍ virtual-servers. The maximum number of virtual servers for which you
track statistics. This number should be set equal to or higher than the
number of virtual servers configured. Smaller numbers result in lower
memory usage. The minimum value is 1; the default is 1000.

❍ profiling. Enable NSAPI performance profiling. The default is "no" which
results in slightly better server performance. However, if you enable
statistics through the user interface, profiling is turned on by default.

For more information on editing the configuration files, see the NSAPI
Programmer’s Guide.

Monitoring Statistics
Once you’ve enabled statistics, you can get a variety of information on how your
server instance and your virtual servers are running. The statistics are broken up
into functional areas.

To monitor statistics from the Server Manager, follow these steps:

1. From the Server Manager, select the Monitor tab.

2. Select Monitor Current Activity.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 17

Monitoring Current Activity Using the Server Manager
3. Make sure that Statistics /Profiling is enabled.

4. Select the refresh interval from the drop-down list under Monitor Web Server
Statistics:

❍ 5

❍ 10

❍ 15

The refresh interval is the number of seconds between updates of the statistics
information displayed.

5. Select the type of web server statistics to display from the drop-down list:

❍ Connections

❍ DNS

❍ Keep-alive

❍ Cache

❍ Virtual Server

6. Click Submit.

A page appears displaying the type of statistics you selected. The page is
updated every 5-15 seconds, depending upon what you chose for the refresh
interval. All pages will display a bar graph of activity, except for Connections.

7. Select the process ID from the drop-down list.

You can view current activity through the Server Manager, but these categories are
not fully relevant for tuning your server. perfdump statistics are recommended for
tuning your server. For more information on tuning, see Using Statistics to Tune
Your Server.

Virtual Server Statistics
Virtual Server statistics can be viewed from the Server Manager. Here you can
choose to display statistics for the server instance, an individual virtual server, or
all. This information is not provided through perfdump.
18 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Monitoring Current Activity Using the perfdump Utility
Monitoring Current Activity Using the perfdump
Utility

The perfdump utility is an SAF built into iPlanet Web Server that collects various
pieces of performance data from the web server internal statistics and displays
them in ASCII text. The perfdump utility allows you to monitor a greater variety of
statistics than available through the Server Manager.

Changes to perfdump in this Release
The biggest change in perfdump for the 6.0 release is that the statistics are now
unified. Previously perfdump only monitored a single process. Now the statistics,
for example file cache size and number of threads, are multiplied by the number of
processes to give you a more accurate view of the server as a whole. The categories
in the .perf output have changed as well.

Installing the perfdump Utility
To install perfdump, you need to make the following modifications in obj.conf:

1. Add the following object to your obj.conf file after the default object:

<Object name="perf">
Service fn="service-dump"
</Object>

2. Add the following to the default object:

NameTrans fn=assign-name from="/.perf" name="perf"

3. If not already enabled, enable stats-xml.

If you need to enable stats-xml, see “Enabling Statistics,” on page 16.

4. Restart your server software.

5. Access perfdump by entering this URL:

http://yourhost/.perf

You can request the perfdump statistics and specify how frequently (in seconds) the
browser should automatically refresh. This example sets the refresh to every 5
seconds:

http://yourhost/.perf?refresh=5
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 19

Monitoring Current Activity Using the perfdump Utility
For more information on editing the configuration files, see the NSAPI
Programmer’s Guide.

Sample perfdump Output

ns-httpd pid: 14480

ConnectionQueue:

Current/peak/limit queue length 0/48/5000
Total connections queued 3753
Average queueing delay 0.0013 seconds

ListenSocket ls1:

Address http://0.0.0.0:1890
Acceptor threads 1
Default virtual server test

KeepAliveInfo:

KeepAliveCount 1/256
KeepAliveHits 4
KeepAliveFlushes 1
KeepAliveTimeout 30 seconds

SessionCreationInfo:

Active Sessions 1
Total Sessions Created 48/512

CacheInfo:

enabled yes
CacheEntries 5/1024
Hit Ratio 93/190 (48.95%)
Maximum age 30

Native pools:

NativePool:
Idle/Peak/Limit 1/1/128
Work queue length/Peak/Limit 0/0/0

Server DNS cache disabled

Async DNS disabled

20 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Statistics to Tune Your Server
Using Statistics to Tune Your Server
This section describes the information available through the perfdump utility and
discusses how to tune some parameters to improve your server’s performance. The
default tuning parameters are appropriate for all sites except those with very high
volume. The only parameters that large sites may regularly need to change are
RqThrottle, MaxKeepAliveConnections, and KeepAliveTimeout, which are
tunable from magnus.conf and the Server Manager.

The perfdump utility monitors statistics in these categories:

• Connection Queue Information

• Listen Socket Information

• Keep-Alive/Persistent Connection Information

• Session Creation Information

• Cache Information

• Thread Pools

• DNS Cache Information

• Asynchronous DNS Lookup (Unix/Linux Only)

Once you have viewed the statistics you need, you can tune various aspects of your
server’s performance using:

• The magnus.conf file

• The Server Manager Preferences tab

The Server Manager Preferences tab includes many interfaces for setting values for
server performance, including:

• The Performance Tuning page

• The File Cache Configuration page

• The Treads page (Unix)

• The Native Threads page (NT)

• The Generic Threads page (NT)

• The Magnus Editor
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 21

Using Statistics to Tune Your Server
The Magnus Editor allows you to set values for numerous directives in the
following categories which are accessible from the drop-down list:

• DNS Settings

• SSL Settings

• Performance Settings

• CGI Settings

• Keep-Alive Settings

• Logging Settings

Connection Queue Information
Connection queue information shows the number of sessions in the queue, and the
average delay before the connection is accepted.

Following is an example of how these statistics are displayed in perfdump:

Current /peak /limit
Current/peak/limit queue length shows, in order:

• The number of connections currently in the queue

• The largest number of connections that have been in the queue simultaneously;

• The maximum size of the connection queue.

In the Server Manager ‘limit’ is referred to as Maximum Number of Queued
Connections.

Tuning
If the peak queue length is close to the limit, you may wish to increase the
maximum connection queue size to avoid dropping connections under heavy load.

ConnectionQueue:

Current/peak/limit queue length 0/48/5000
Total connections queued 3753
Average queueing delay 0.0013 seconds
22 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Statistics to Tune Your Server
You can increase the connection queue size by:

• Setting or changing the value of ConnQueueSize in the Magnus Editor of the
Server Manager

• Editing the ConnQueueSize directive in magnus.conf

Total Connections Queued
Total connections queued is the total number of times a connection has been
queued. This includes newly accepted connections and connections from the
keep-alive system.

This setting is not tunable.

Average Queuing Delay
Average queueing delay is the average amount of time a connection spends in the
connection queue. This represents the delay between when a request connection is
accepted by the server, and a request processing thread (also known as a session)
begins servicing the request.

This setting is not tunable.

Listen Socket Information
This listen socket information includes the IP address, port number, number of
acceptor threads, and the default virtual server for the listen socket. For tuning
purposes, the most important field in the listen socket information is the number of
acceptor threads.

You can have many listen sockets enabled for virtual servers, but you will at least
have one (usually http://0.0.0.0:80) enabled for your default server instance.

CAUTION Setting the connection queue too high can degrade server
performance. It was designed to prevent the server from becoming
overloaded with connections it cannot handle. If your server is
overloaded and you increase the connection queue size, the latency
of request handling will increase further, and the connection queue
will fill up again.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 23

Using Statistics to Tune Your Server
Tuning
You can create listen sockets through the Server Manager, and edit much of a listen
socket’s information. For more information, see “Adding and Editing Listen
Sockets,” on page 150 of the Administrator’s Guide.

If you have created multiple listen sockets, perfdump displays them all.

Set the TCP/IP listen queue size for all listen sockets by:

• Editing the ListenQ parameter in magnus.conf

• Setting or changing the ListenQ value in the Magnus Editor of the Server
Manager

• Entering the value in the Listen Queue Size field of the Performance Tuning
page of the Server Manager

Address
This field contains the base address that this listen socket is listening on. It contains
the IP address and the port number.

If your listen socket listens on all IP addresses for the machine, the IP part of the
address is 0.0.0.0.

Tuning
This setting is tunable when you edit a listen socket. If you specify an IP address
other than 0.0.0.0, the server will make one less system call per connection. Specify
an IP address other than 0.0.0.0 for best possible performance.

For more information, see “Adding and Editing Listen Sockets,” on page 150 of the
Administrator’s Guide.

ListenSocket ls1:

Address http://0.0.0.0:1890
Acceptor threads 1
Default virtual server test
24 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Statistics to Tune Your Server
Acceptor Threads
Acceptor threads are threads that wait for connections. The threads accept
connections and put them in a queue where they are then picked up by worker
threads. Ideally, you want to have enough acceptor threads so that there is always
one available when a user needs one, but few enough so that they do not provide
too much of a burden on the system. A good rule is to have one acceptor thread per
CPU on your system. You can increase this value to about double the number of
CPUs if you find indications of TCP/IP listen queue overruns.

Tuning
You can tune this number through the user interface when you edit a listen socket.
For more information, see “Adding and Editing Listen Sockets,” on page 150 of the
Administrator’s Guide.

Default Virtual Server
Software virtual servers work using the HTTP 1.1 Host header. If the end user’s
browser does not send the host header, or if the server cannot find the virtual
server specified by the Host header, iPlanet Web Server handles the request using a
default virtual server. Also, for hardware virtual servers, if iPlanet Web Server
cannot find the virtual server corresponding to the IP address, it displays the
default virtual server. You can configure the default virtual server to send an error
message or serve pages from a special document root.

Tuning
You can specify a default virtual server for an individual listen socket and for the
server instance. If a given listen socket does not have a default virtual server, the
server instance’s default virtual server is used.

You can specify a default virtual server for a listen socket by:

• Setting or changing the default virtual server information using the Edit Listen
Sockets page on the Preferences Tab of the Server Manger. The settings for the
default virtual server are on the Connection Group Settings page that appears
when you click Groups.

• Editing the defaultvs attribute of the CONNECTIONGROUP element in the
server.xml file. For more information, see the chapter on server.xml in the
NSAPI Programmer’s Guide.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 25

Using Statistics to Tune Your Server
Keep-Alive/Persistent Connection Information
This section provides statistics about the server’s HTTP-level keep-alive system.

The following example shows the keep-alive statistics displayed by perfdump:

Both HTTP 1.0 and HTTP 1.1 support the ability to send multiple requests across a
single HTTP session. A web server can receive hundreds of new HTTP requests per
second. If every request was allowed to keep the connection open indefinitely, the
server could become overloaded with connections. On Unix/Linux systems this
could lead to a file table overflow very easily.

To deal with this problem, the server maintains a “Maximum number of ‘waiting’
keep-alive connections” counter. A ‘waiting’ keep-alive connection has fully
completed processing the previous request, and is now waiting for a new request
to arrive on the same connection. If the server has more than the maximum waiting
connections open when a new connection waits for a keep-alive request, the server
closes the oldest connection. This algorithm keeps an upper bound on the number
of open waiting keep-alive connections that the server can maintain.

iPlanet Web Server does not always honor a keep-alive request from a client. The
following conditions cause the server to close a connection even if the client has
requested a keep-alive connection:

• KeepAliveTimeout is set to 0.

• MaxKeepAliveConnections count is exceeded.

KeepAliveInfo:

KeepAliveCount 1/256
KeepAliveHits 4
KeepAliveFlushes 1
KeepAliveTimeout 30 seconds

NOTE The name “keep-alive” should not be confused with TCP
“keep-alives.” Also, note that the name “keep-alive” was changed
to “Persistent Connections” in HTTP/1.1, but the .perf continues
to refer to them as “KeepAlive” connections.
26 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Statistics to Tune Your Server
• Dynamic content, such as a CGI, does not have an HTTP content-length
header set. This applies only to HTTP 1.0 requests. If the request is HTTP 1.1,
the server honors keep-alive requests even if the content-length is not set.
The server now can use chunked encoding for these requests if the client can
handle them (indicated by the request header transfer-encoding: chunked).
For more information regarding chunked encoding, see the NSAPI
Programmer’s Guide.

• Request is not HTTP GET or HEAD.

• The request was determined to be bad. For example if the client sends only
headers with no content.

KeepAliveThreads
You can configure the number of threads used in the keep-alive system by:

• Editing the KeepAliveThreads parameter in magnus.conf

• Setting or changing the KeepAliveThreads value in the Magnus Editor of the
Server Manager

KeepAliveCount
This setting has two numbers:

• Number of connections in keep-alive mode

• Maximum number of connections allowed in keep-alive mode simultaneously

Tuning
You can tune the maximum number of sessions that the server allows to wait at
one time before closing the oldest connection by:

• Editing the MaxKeepAliveConnections parameter in the magnus.conf file

• Setting or changing the MaxKeepAliveConnections value in the Magnus
Editor of the Server Manager

NOTE The number of connections specified by
MaxKeepAliveConnections is divided equally among the
keep-alive threads. If MaxKeeepAliveConnections is not equally
divisible by KeepAliveThreads, the server may allow slightly more
than MaxKeepAliveConnections simultaneous keep-alive
connections.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 27

Using Statistics to Tune Your Server
KeepAliveHits
The number of times a request was successfully received from a connection that
had been kept alive.

This setting is not tunable.

KeepAliveFlushes
The number of times the server had to close a connection because the
KeepAliveCount exceeded the MaxKeepAliveConnections.

This setting is not tunable.

KeepAliveTimeout
Specifies the number of seconds the server will allow a client connection to remain
open with no activity. A web client may keep a connection to the server open so
that multiple requests to one server can be serviced by a single network connection.
Since a given server can handle a finite number of open connections, a high
number of open connections will prevent new clients from connecting.

Tuning
You can change KeepAliveTimeout by:

• Editing the KeepAliveTimeout parameter in magnus.conf

• Setting or changing the KeepAliveTimeout value in the Magnus Editor of the
Server Manager

• Entering the value in the HTTP Persistent Connection Timeout field of the
Performance Tuning page in the Server Manager

UseNativePoll
This option is not displayed in perfdump or Server Manager statistics. However,
for Unix /Linux users, it should be enabled for maximum performance.

To enable native poll for your keep-alive system from the Server Manager, follow
these steps:

1. Go to the Server Manager Preferences tab and select the Magus Editor.

2. From the drop-down list choose, Keep-Alive Settings and click Manage.

3. Use the drop-down list to set UseNativePoll to on.

4. Click OK.
28 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Statistics to Tune Your Server
5. Click Apply.

6. Select Apply Changes to restart the server for your changes to take effect.

Session Creation Information
Session creation statistics are only displayed in perfdump. Following is an example
of SessionCreationInfo displayed in perfdump:

Active Sessions shows the number of sessions (request processing threads)
currently servicing requests.

Total Sessions Created shows both the number of sessions that have been created
and the maximum number of sessions allowed.

Reaching the maximum number of configured threads is not necessarily
undesirable, and you need not automatically increase the number of threads in the
server. Reaching this limit means that the server needed this many threads at peak
load, but as long as it was able to serve requests in a timely manner, the server is
adequately tuned. However, at this point connections will queue up in the
connection queue, potentially overflowing it. If you check your perfdump output
on a regular basis and notice that total sessions created is often near the
RqThrottle maximum, you should consider increasing your thread limits.

Tuning
You can increase your thread limits by:

• Editing the RqThrottle parameter in magnus.conf

• Setting or changing the RqThrottle value in the Magnus Editor of the Server
Manager

• Entering the value in the Maximum Simultaneous Requests field of the
Performance Tuning page in the Server Manager

SessionCreationInfo:

Active Sessions 1
Total Sessions Created 48/512
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 29

Using Statistics to Tune Your Server
Cache Information
The Cache information section provides statistics on how your file cache is being
used. The file cache caches static content so that the server handles requests for
static content quickly. For tuning information, see “Configuring the File Cache,” on
page 42.

Following is an example of how the cache statistics are displayed in perfdump:

enabled
If the cache is disabled, the rest of this section is not displayed.

Tuning
The cache is enabled by default. You can disable it by:

• Unselecting it from the File Cache Configuration page under Preferences in the
Server Manger

• Editing the FileCacheEnable parameter in the nsfc.conf file. For more
information, see the NSAPI Programmer’s Guide.

CacheEntries
The number of current cache entries and the maximum number of cache entries are
both displayed. A single cache entry represents a single URI.

Tuning
You can set the maximum number of cached entries by:

• Entering a value in the Maximum Number of Files field on the File Cache
Configuration page under Preferences in the Server Manger

• Creating or editing the MaxFiles parameter in the nsfc.conf file. For more
information, see the NSAPI Programmer’s Guide.

CacheInfo:

enabled yes
CacheEntries 5/1024
Hit Ratio 93/190 (48.95%)
Maximum age 30
30 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Statistics to Tune Your Server
Hit Ratio (CacheHits / CacheLookups)
The hit ratio gives you the number of file cache hits versus cache lookups.
Numbers approaching 100% indicate the file cache is operating effectively, while
numbers approaching 0% could indicate that the file cache is not serving many
requests.

This setting is not tunable.

Maximum age
The maximum age displays the maximum age of a valid cache entry. This
parameter controls how long cached information is used after a file has been
cached. An entry older than the maximum age is replaced by a new entry for the
same file.

Tuning
If your web site’s content changes infrequently, you may want to increase this
value for improved performance. You can set the maximum age by:

• Entering or changing the value in the Maximum Age field of the File Cache
Configuration page in the Server Manager

• Editing the MaxAge parameter in the nsfc.conf file. For more information, see
the NSAPI Programmer’s Guide.

Thread Pools
Three types of thread pools can be configured through the Server Manager:

• Thread Pools (Unix /Linux)

• Native Thread Pools (NT)

• Generic Thread Pools (NT)

Thread Pools (Unix /Linux only)
Since threads on Unix/Linux are always operating system (OS)-scheduled, as
opposed to user-scheduled, Unix/Linux users do not need to use native thread
pools, and this option is not offered in their user interface. However, you can edit
the OS-scheduled thread pools and add new thread pools if needed, using the
Server Manager.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 31

Using Statistics to Tune Your Server
Native Thread Pools (NT only)
On NT, the native thread pool (NativePool) is used internally by the server to
execute NSAPI functions that require a native thread for execution.

Windows NT uses can edit their native thread pool settings using the Server
Manager.

iPlanet Web Server uses NSPR, which is an underlying portability layer providing
access to the host OS services. This layer provides abstractions for threads that are
not always the same as those for the OS-provided threads. These non-native
threads have lower scheduling overhead so their use improves performance.
However, these threads are sensitive to blocking calls to the OS, such as I/O calls.
To make it easier to write NSAPI extensions that can make use of blocking calls, the
server keeps a pool of threads that safely support blocking calls. This usually
means it is a native OS thread. During request processing, any NSAPI function that
is not marked as being safe for execution on a non-native thread is scheduled for
execution on one of the threads in the native thread pool.

If you have written your own NSAPI plug-ins such as NameTrans, Service, or
PathCheck functions, these execute by default on a thread from the native thread
pool. If your plug-in makes use of the NSAPI functions for I/O exclusively or does
not use the NSAPI I/O functions at all, then it can execute on a non-native thread.
For this to happen, the function must be loaded with a NativeThread=”no” option,
indicating that it does not require a native thread.

To do this, add the following to the “load-modules” Init line in the magnus.conf
file:

Init funcs="pcheck_uri_clean_fixed_init"
shlib="C:/Netscape/p186244/P186244.dll" fn="load-modules"
NativeThread="no"

The NativeThread flag affects all functions in the funcs list, so if you have more
than one function in a library, but only some of them use native threads, use
separate Init lines.

Native pools:

NativePool:
Idle/Peak/Limit 1/1/128
Work queue length/Peak/Limit 0/0/0
32 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Statistics to Tune Your Server
Generic Thread Pools (NT only)
On NT, you can set up additional thread pools using the Server Manger. Use
thread pools to put a limit on the maximum number of requests answered by a
service function at any moment. Additional thread pools are a way to run
thread-unsafe plug-ins. By defining a pool with a maximum number of threads set
to 1, only one request is allowed into the specified service function.

Idle /Peak /Limit
Idle indicates the number of threads that are currently idle. Peak indicates the peak
number in the pool. Limit indicates the maximum number of native threads
allowed in the thread pool, and is determined by the setting of
NativePoolMaxThreads.

Tuning
You can modify the NativePoolMaxThreads by:

• Editing the NativePoolMaxThreads parameter in magnus.conf

• Entering or changing the value in the Maximum Threads field of the Native
Thread Pool page in the Server Manager

Work Queue Length /Peak /Limit
These numbers refer to a queue of server requests that are waiting for the use of a
native thread from the pool. The Work Queue Length is the current number of
requests waiting for a native thread.

Peak is the highest number of requests that were ever queued up simultaneously
for the use of a native thread since the server was started. This value can be viewed
as the maximum concurrency for requests requiring a native thread.

Limit is the maximum number of requests that can be queued at one time to wait
for a native thread, and is determined by the setting of NativePoolQueueSize.

Tuning
You can modify the NativePoolQueueSize by:

• Editing the NativePoolQueueSize parameter in magnus.conf

• Entering or changing the value in the Queue Size field of the Native Thread
Pool page in the Server Manager
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 33

Using Statistics to Tune Your Server
NativePoolStackSize
The NativePoolStackSize determines the stack size in bytes of each thread in the
native (kernel) thread pool.

Tuning
You can modify the NativePoolStackSize by:

• Editing the NativePoolStackSize parameter in magnus.conf

• Setting or changing the NativePoolStackSize value in the Magnus Editor of
the Server Manager

• Entering or changing the value in the Stack Size field of the Native Thread Pool
page in the Server Manager

NativePoolQueueSize
The NativePoolQueueSize determines the number of threads that can wait in the
queue for the thread pool. If all threads in the pool are busy, then the next
request-handling thread that needs to use a thread in the native pool must wait in
the queue. If the queue is full, the next request-handling thread that tries to get in
the queue is rejected, with the result that it returns a busy response to the client. It
is then free to handle another incoming request instead of being tied up waiting in
the queue.

Setting The NativePoolQueueSize lower than the RqThrottle value causes the
server to execute a busy function instead of the intended NSAPI function whenever
the number of requests waiting for service by pool threads exceeds this value. The
default returns a “503 Service Unavailable” response and logs a message if
LogVerbose is enabled. Setting The NativePoolQueueSize higher than
RqThrottle causes the server to reject connections before a busy function can
execute.

This value represents the maximum number of concurrent requests for service
which require a native thread. If your system is unable to fulfill requests due to
load, letting more requests queue up increases the latency for requests, and could
result in all available request threads waiting for a native thread. In general, set
this value to be high enough to avoid rejecting requests by anticipating the
maximum number of concurrent users who would execute requests requiring a
native thread.
34 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Statistics to Tune Your Server
The difference between this value and RqThrottle is the number of requests
reserved for non-native thread requests, such as static HTML and image files.
Keeping a reserve and rejecting requests ensures that your server continues to fill
requests for static files, which prevents it from becoming unresponsive during
periods of very heavy dynamic content load. If your server consistently rejects
connections, this value is either set too low, or your server hardware is overloaded.

Tuning
You can modify the NativePoolQueueSize by:

• Editing the NativePoolQueueSize parameter in magnus.conf

• Entering or changing the value in the Queue Size field of the Native Thread
Pool page in the Server Manager

NativePoolMaxThreads
NativePoolMaxThreads determine the maximum number of threads in the native
(kernel) thread pool.

A higher value allows more requests to execute concurrently, but has more
overhead due to context switching, so “bigger is not always better.” Typically, you
will not need to increase this number, but if you are not saturating your CPU and
you are seeing requests queue up, then you should increase this number.

Tuning
You can modify the NativePoolMaxThreads by:

• Editing the NativePoolMaxThreads parameter in magnus.conf

• Entering or changing the value in the Maximum Threads field of the Native
Thread Pool page in the Server Manager

NativePoolMinThreads
Determines the minimum number of threads in the native (kernel) thread pool.

Tuning
You can modify the NativePoolMinThreads by:

• Editing the NativePoolMinThreads parameter in magnus.conf

• Setting or changing the NativePoolMinThreads value in the Magnus Editor of
the Server Manager

• Entering or changing the value in the Minimum Threads field of the Native
Thread Pool page in the Server Manager
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 35

Using Statistics to Tune Your Server
DNS Cache Information
The DNS cache caches IP addresses and DNS names. Your server’s DNS cache is
disabled by default. In the DNS Statistics for Process ID All page under Monitor in
the Server Manager the following statistics are displayed:

enabled
If the DNS cache is disabled, the rest of this section is not displayed.

Tuning
By default, the DNS cache is off. You can enable DNS caching by:

• Adding the following line to magnus.conf:

Init fn=dns-cache-init

• Setting the DNS value to on in the Magnus Editor of the Server Manager

• Selecting DNS Enabled from the Performance Tuning page under Preferences
in the Server Manger

CacheEntries (CurrentCacheEntries / MaxCacheEntries)
The number of current cache entries and the maximum number of cache entries. A
single cache entry represents a single IP address or DNS name lookup. The cache
should be as large as the maximum number of clients that will access your web site
concurrently. Note that setting the cache size too high will waste memory and
degrade performance.

Tuning
You can set the maximum size of the DNS cache by:

• Adding the following line to the magnus.conf file:

Init fn=dns-cache-init cache-size=1024

The default cache size is 1024

• Entering or changing the value in the Size of DNS Cache field of the
Performance Tuning page in the Server Manager

HitRatio (CacheHits / CacheLookups)
The hit ratio displays the number of cache hits versus the number of cache lookups.

This setting is not tunable.
36 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Statistics to Tune Your Server
Asynchronous DNS Lookup (Unix/Linux Only)
You can configure the server to use Domain Name System (DNS) lookups during
normal operation. By default, DNS is not enable. If you enable DNS, the server
looks up the host name for a system’s IP address. Although DNS lookups can be
useful for server administrators when looking at logs, they can seriously impact
performance. When the server receives a request from a client, the client’s IP
address is included in the request. If DNS is enabled, the server must look up the
hostname for the IP address for every client making a request. Do not enable DNS
lookup for high-volume servers.

In order for asynchronous DNS lookups to work correctly, the DNS resolver must
be properly configured. See your operating system documentation for details.

Enable Asynchronous DNS to Avoid Multiple Thread Serialization
DNS causes multiple threads to be serialized when you use DNS services. If you do
not want serialization, enable asynchronous DNS. You can enable it only if you
have also enabled DNS. Enabling asynchronous DNS can improve your system’s
performance if you are using DNS.

Caching DNS Entries
You can also specify whether to cache the DNS entries. If you enable the DNS
cache, the server can store hostname information after receiving it. If the server
needs information about the client in the future, the information is cached and
available without further querying. You can specify the size of the DNS cache and
an expiration time for DNS cache entries. The DNS cache can contain 32 to 32768
entries; the default value is 1024. Values for the time it takes for a cache entry to
expire can range from 1 second to 1 year specified in seconds; the default value is
1200 seconds (20 minutes).

Limit DNS Lookups to Asynchronous
It is recommended that you do not use DNS lookups in server processes because
they are so resource-intensive. If you must include DNS lookups, be sure to make
them asynchronous.

NOTE If you turn off DNS lookups on your server, host name restrictions
will not work, and hostnames will not appear in your log files.
Instead, you’ll see IP addresses.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 37

Using Statistics to Tune Your Server
enabled
If asynchronous DNS is disabled, the rest of this section will not be displayed.

Tuning
You can enable asynchronous DNS by:

• Adding AsyncDNS on in the magnus.conf file

• Setting the AsyncDNS value to on in the Magnus Editor of the Server Manager

• Selecting Async DNS Enabled from the Performance Tuning page under
Preferences in the Server Manger

NameLookups
The number of name lookups (DNS name to IP address) that have been done since
the server was started.

This setting is not tunable.

AddrLookups
The number of address loops (IP address to DNS name) that have been done since
the server was started.

This setting is not tunable.

LookupsInProgress
The current number of lookups in progress.

This setting is not tunable.

Busy Functions
The default busy function returns a “503 Service Unavailable” response and logs a
message if LogVerbose is enabled. You may wish to modify this behavior for your
application. You can specify your own busy functions for any NSAPI function in
the obj.conf file by including a service function in the configuration file in this
format:

busy="<my-busy-function>"

For example, you could use this sample service function:

Service fn="send-cgi" busy="service-toobusy"
38 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Performance Buckets
This allows different responses if the server become too busy in the course of
processing a request that includes a number of types (such as Service, AddLog,
and PathCheck). Note that your busy function will apply to all functions that
require a native thread to execute when the default thread type is non-native.

To use your own busy function instead of the default busy function for the entire
server, you can write an NSAPI init function that includes a func_insert call as
shown below:

extern "C" NSAPI_PUBLIC int my_custom_busy_function(pblock *pb,
Session *sn, Request *rq);

my_init(pblock *pb, Session *, Request *)

{

func_insert("service-toobusy", my_custom_busy_function);

}

Busy functions are never executed on a pool thread, so you must be careful to
avoid using function calls that could cause the thread to block.

Using Performance Buckets
Performance buckets allow you to define buckets, and link them to various server
functions. Every time one of these functions is invoked, the server collects
statistical data and adds it to the bucket. For example, send-cgi and
NSServletService are functions used to serve the CGI and Java servlet requests
respectively. You can either define two buckets to maintain separate counters for
CGI and servlet requests, or create one bucket that counts requests for both types of
dynamic content. The cost of collecting this information is little and impact on the
server performance is usually negligible. This information can later be accessed
using the perfdump utility. The following information is stored in a bucket:

• Name of the bucket. This name is used for associating the bucket with a
function.

• Description. A description of the functions that the bucket is associated with.

• Number of requests for this function. The total number of requests that
caused this function to be called.

• Number of times the function was invoked. This number may not coincide
with the number of requests for the function because some functions may be
executed more than once for a single request.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 39

Using Performance Buckets
• Function latency or the dispatch time. The time taken by the server to invoke
the function.

• Function time. The time spent in the function itself.

The default-bucket is pre-defined by the server. It records statistics for the
functions not associated with any user defined bucket.

Configuration
You must specify all the configuration information for performance buckets in the
magnus.conf and obj.conf files. Only the default bucket is automatically
enabled.

First, you must enable performance measurement as described in “Monitoring
Current Activity Using the perfdump Utility,” on page 19.

The following examples show how to define new buckets in magnus.conf:

The prior example creates three buckets: acl-bucket, file-bucket, and
cgi-bucket. To associate these buckets with functions, add bucket=bucket-name to
the obj.conf function for which you wish to measure performance. For example:

PathCheck fn="check-acl" acl="default" bucket="acl-bucket"
...
Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file" bucket="file-bucket"
...
<Object name="cgi">

ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi" bucket="cgi-bucket"

</Object>

Init fn="define-perf-bucket" name="acl-bucket" description="ACL bucket"
Init fn="define-perf-bucket" name="file-bucket" description="Non-cached
responses"
Init fn="define-perf-bucket" name="cgi-bucket" description="CGI Stats"
40 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Performance Buckets
Performance Report
The server statistics in buckets can be accessed using the perfdump utility. The
performance buckets information is located in the last section of the report that
perfdump returns.

For more information, see “Enabling Statistics,” on page 16 and “Using
Performance Buckets,” on page 39.

The report contains the following information:

❍ Average, Total, and Percent columns give data for each requested statistic.

❍ Request Processing Time is the total time required by the server to process
all the requests it has received so far.

❍ Number of Requests is the total number of requests for the function.

❍ Number of Invocations is the total number of times that the function was
invoked. This differs from the number of requests in that a function could
be called multiple times while processing one request. The percentage
column for this row is calculated in reference to the total number of
invocations for all the buckets.

❍ Latency is the time in seconds iPlanet Web Server takes to prepare for
calling the function.

❍ Function Processing Time is the time in seconds iPlanet Web Server spent
inside the function. The percentage of Function Processing Time and Total
Response Time is calculated with reference to the total Request processing
time.

❍ Total Response Time is the sum in seconds of Function Processing Time
and Latency.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 41

Configuring the File Cache
The following is an example of the performance bucket information available
through perfdump:

Configuring the File Cache
The iPlanet Web Server uses a file cache to serve static information faster. In the
previous version of the server, there was also an accelerator cache that routed
requests to the file cache, but the accelerator cache is no longer used. The file cache
contains information about files and static file content. The file cache also caches
information that is used to speed up processing of server-parsed HTML.

The file cache is turned on by default. The file cache settings are contained in a file
called nsfc.conf. You can use the Server Manager to change the file cache settings.

To configure the file cache, follow these steps:

1. From the Server Manager, select the Preferences tab.

2. Select File Cache Configuration.

3. Check Enable File Cache, if not already selected.

4. Choose whether or not to transmit files.

When you enable Transmit File, the server caches open file descriptors for files
in the file cache, rather than the file contents, and PR_TransmitFile is used to
send the file contents to a client. When Transmit File is enabled, the distinction
normally made by the file cache between small, medium, and large files no
longer applies, since only the open file descriptor is being cached. By default,

Performance Counters:
--
 Average Total Percent

Total number of requests: 474851
Request processing time: 0.0010 485.3198

Default Bucket (default-bucket)
Number of Requests: 597 (0.13%)
Number of Invocations: 9554 (1.97%)
Latency: 0.0000 0.1526 (0.03%)
Function Processing Time: 0.0256 245.0459 (50.49%)
Total Response Time: 0.0257 245.1985 (50.52%)
42 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Configuring the File Cache
Transmit File is enabled on Windows NT, and not enabled on Unix. On Unix,
only enable Transmit File for platforms that have native OS support for
PR_TransmitFile, which currently includes HP-UX and AIX. It is not
recommended for other Unix/Linux platforms.

5. Enter a size for the hash table.

The default size is twice the maximum number of files plus 1. For example, if
your maximum number of files is set to 1024, the default hash table size is 2049.

6. Enter a maximum age in seconds for a valid cache entry.

By default, this is set to 30.

This setting controls how long cached information will continue to be used
once a file has been cached. An entry older than MaxAge is replaced by a new
entry for the same file, if the same file is referenced through the cache.

Set the maximum age based on whether the content is updated (existing files
are modified) on a regular schedule or not. For example, if content is updated
four times a day at regular intervals, you could set the maximum age to 21600
seconds (6 hours). Otherwise, consider setting the maximum age to the longest
time you are willing to serve the previous version of a content file after the file
has been modified.

7. Enter the Maximum Number of Files to be cached.

By default, this is set to 1024.

8. (Unix /Linux only) Enter medium and small file size limits in bytes.

By default, the Medium File Size Limit is set to 525000 (525 KB).

By default, Small File Size Limit is set to 2048.

The cache treats small, medium, and large files differently. The contents of
medium files are cached by mapping the file into virtual memory (currently
only on Unix/Linux platforms). The contents of “small” files are cached by
allocating heap space and reading the file into it. The contents of “large” files
(larger than “medium”) are not cached, although information about large files
is cached.

The advantage of distinguishing between small files and medium files is to
avoid wasting part of many pages of virtual memory when there are lots of
small files. So the Small File Size Limit is typically a slightly lower value than
the VM page size.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 43

Configuring the File Cache
9. (Unix /Linux only) Set the medium and small file space.

The medium file space is the size in bytes of the virtual memory used to map
all medium sized files. By default, this is set to 10000000 (10MB).

The small file space is the size of heap space in bytes used for the cache,
including heap space used to cache small files. By default, this is set to 1MB for
Unix/Linux.

10. Click OK.

11. Click Apply.

12. Select Apply Changes to restart your server.

Using the nocache Parameter
You can use the parameter nocache for the Service function send-file to specify
that files in a certain directory not be cached. For example, if you have a set of files
that changes too rapidly for caching to be useful, you can put them in a directory
and instruct the server not to cache files in that directory by editing obj.conf.

For example:

In the above example, the server does not cache static files from /export/mydir/
when requested by the URL prefix /myurl.

<Object name=default>
...
NameTrans fn="pfx2dir" from="/myurl" dir="/export/mydir" name="myname"
...
Service method=(GET|HEAD|POST) type=*~magnus-internal/* fn=send-file
...
</Object>
<Object name="myname">
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file nocache=""
</Object>
44 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Configuring the File Cache
Monitoring the File Cache with the Server
Manager
To view the file cache statistics the Server Manager, follow these steps:

1. From the Server Manager, select Monitor.

2. Select Monitor Current Activity.

If you have not yet enabled statistics, when the Monitor Statistics of a Web
Server page appears, click OK.

3. Choose a Refresh Interval.

4. From the drop-down list of statistics to be displayed, choose Cache.

5. Click OK.

6. The cache statistics appear, refreshed every 5-15 seconds, depending upon the
refresh interval you chose.

The statistics include information on your cache settings, as well as how many hits
the cache is getting, and so on.

File Cache Dynamic Control and Monitoring
You can add an object to obj.conf to dynamically monitor and control the
nsfc.conf file cache while the server is running. To do this:

1. Add a NameTrans directive to the default object:

NameTrans fn="assign-name" from="/nsfc" name="nsfc"

2. Add an nsfc object definition:

<Object name=”nsfc”>
Service fn=service-nsfc-dump

</Object>

This enables the file cache control and monitoring function (nsfc-dump) to be
accessed via the URI, “/nsfc.” By changing the “from” parameter in the
NameTrans directive, a different URI can be used.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 45

Configuring the File Cache
The following is an example of the information you receive when you access the
URI:

You can include a query string when you access the “/nsfc” URI. The following
values are recognized:

• ?list - Lists the files in the cache.

• ?refresh=n - Causes the client to reload the page every n seconds.

• ?restart - Causes the cache to be shut down and then restarted.

• ?start - Starts the cache.

• ?stop - Shuts down the cache.

iPlanet Web Server File Cache Status (pid 7960)

The file cache is enabled.

Cache resource utilization

Number of cached file entries = 1039 (112 bytes each, 116368 total bytes)
Heap space used for cache = 237641/1204228 bytes
Mapped memory used for medium file contents = 5742797/10485760 bytes
Number of cache lookup hits = 435877/720427 (60.50 %)
Number of hits/misses on cached file info = 212125/128556
Number of hits/misses on cached file content = 19426/502284
Number of outdated cache entries deleted = 0
Number of cache entry replacements = 127405
Total number of cache entries deleted = 127407
Number of busy deleted cache entries = 17

Parameter settings

HitOrder: false
CacheFileInfo: true
CacheFileContent: true
TransmitFile: false
MaxAge: 30 seconds
MaxFiles: 1024 files
SmallFileSizeLimit: 2048 bytes
MediumFileSizeLimit: 537600 bytes
CopyFiles: false
Directory for temporary files: /tmp/netscape/https-axilla.mcom.com
Hash table size: 2049 buckets
46 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Tuning the ACL User Cache
If you choose the ?list option, the file listing includes the file name, a set of flags,
the current number of references to the cache entry, the size of the file, and an
internal file ID value. The flags are as follows:

• C - File contents are cached.

• D - Cache entry is marked for delete.

• E - PR_GetFileInfo() returned an error for this file.

• I - File information (size, modify date, etc.) is cached.

• M - File contents are mapped into virtual memory.

• O - File descriptor is cached (when TransmitFile is set to true).

• P - File has associated private data (should appear on shtml files).

• T - Cache entry has a temporary file.

• W - Cache entry is locked for write access.

For sites with scheduled updates to content, consider shutting down the cache
while the content is being updated, and starting it again after the update is
complete. Although performance will slow down, the server operates normally
when the cache is off.

Tuning the ACL User Cache
The ACL user cache is on by default. Because of the default size of the cache (200
entries), the ACL user cache can be a bottleneck, or can simply not serve its
purpose on a site with heavy traffic. On a busy site more than 200 users can hit
ACL-protected resources in less time than the lifetime of the cache entries. When
this situation occurs, the iPlanet Web Server has to query the LDAP server more
often to validate users, which impacts performance.

This bottleneck can be avoided by increasing the size of the ACL cache with the
ACLUserCacheSize directive in magnus.conf. Note that increasing the cache size
will use more resources; the larger you make the cache the more RAM you'll need
to hold it.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 47

Tuning the ACL User Cache
There can also be a potential (but much harder to hit) bottleneck with the number
of groups stored in a cache entry (by default four). If a user belongs to five groups
and hits five ACLs that check for these different groups within the ACL cache
lifetime, an additional cache entry is created to hold the additional group entry.
When there are two cache entries, the entry with the original group information is
ignored.

While it would be extremely unusual to hit this possible performance problem, the
number of groups cached in a single ACL cache entry can be tuned with the
ACLGroupCacheSize directive.

ACL User Cache Directives
To adjust the ACL user cache values you will need to manually add the following
directives to your magnus.conf file:

• ACLCacheLifetime

• ACLUserCacheSize

• ACLGroupCacheSize

ACLCacheLifetime
Set this directive to a number that determines the number of seconds before the
cache entries expire. Each time an entry in the cache is referenced, its age is
calculated and checked against ACLCacheLifetime. The entry is not used if its age
is greater than or equal to the ACLCacheLifetime. The default value is 120 seconds.
If this value is set to 0, the cache is turned off. If you use a large number for this
value, you may need to restart the iPlanet Web Server when you make changes to
the LDAP entries. For example, if this value is set to 120 seconds, the iPlanet Web
Server might be out of sync with the LDAP server for as long as two minutes. If
your LDAP is not likely to change often, use a large number.

ACLUserCacheSize
Set this directive to a number that determines the size of the User Cache (default is
200).

ACLGroupCacheSize
Set this directive to a number that determines how many group IDs can be cached
for a single UID/cache entry (default is 4).
48 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Quality of Service
Verifying ACL User Cache Settings
With LogVerbose you can verify that the ACL user cache settings are being used.
When LogVerbose is running you should expect to see these messages in your
errors log when the server starts:

User authentication cache entries expire in ### seconds.

User authentication cache holds ### users.

Up to ### groups are cached for each cached user.

Tuning
You can turn LogVerbose on by:

• Editing the LogVerbose parameter in magnus.conf

• Setting or changing the LogVerbose value to on in the Magnus Editor of the
Server Manager

Using Quality of Service
The quality of service features let you limit the amount of bandwidth and number
of connections for a server instance, class of virtual servers, or individual virtual
server. You can set these performance limits, track them, and optionally enforce
them.

For more information, see “Using Quality of Service” on page 213 of the
Administrator’s Guide.

Using Load Balancing
Load balancing is dividing the amount of server traffic between two or more
computers so that more work gets done in the same amount of time and all online
users will generally be served faster.

CAUTION Do not turn on LogVerbose on a production server, because doing so
degrades performance and increases the size of your error logs
considerably.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 49

Using Load Balancing
You can use a third party plug-in, for example the “Resonate Command Module
for iPlanet Web Server”, to provide load balancing capabilities. Other companies
may also provide load balancing solutions that work with iPlanet Web Server. For
more information, contact the load balancing plug-in provider.

Using libresonate
You can use the load balancing plug-in libresonate to allow your server to execute
a program when certain thread load conditions are met, so a load distribution
product on the front-end can redistribute the load.

There are two methods that you can use to trigger the load balancer to increase or
decrease load:

Standard. Base load decisions on the number of queued requests. This is a passive
approach. By letting the queue fill up you are already delaying some requests. In
this case you want the HighThreshold to be a low value and LowThreshold to be a
high value.

Aggressive. Base load decisions on the number of active threads in the pool. This
is designed to more tightly control the requests so that you would reduce the load
before requests get queued.

Library configuration
In order to enable the plug-in, you need to modify magnus.conf manually. This
should look something like this:

Init fn="load-modules" funcs="init-resonate"
shlib="server_root/bin/https/lib/libresonate.so"

Init fn="init-resonate" ThreadPool="sleep"
EventExePath="/tools/ns/bin/perl5" LateInit="yes"
CmdLow="/usr/netscape/ent41/plugins/loadbal/CmdLow.pl"
CmdHigh="/usr/netscape/ent41/plugins/loadbal/CmdHigh.pl"

The init-resonate function can take the following parameters:

Table 0-1 init-resonate Parameters

Parameter Description

ThreadPool the name of the thread pool to monitor

Aggressive if set to TRUE this argument causes the plug-in use the pool
thread count rather than the queue thread count
50 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Load Balancing
If you set LogVerbose on in magnus.conf, the error log contains information on
how the plug-in is configured and when it is invoked.

A sample of the information in the error log is shown below:

[12/Jun/2000:09:36:35] verbose (20685): Resonate plugin watching
thread pool sleep
[12/Jun/2000:09:36:35] verbose (20685): Resonate plugin aggressive
setting is FALSE
[12/Jun/2000:09:36:35] verbose (20685): Resonate plugin poll time
set to 2000
[12/Jun/2000:09:36:35] verbose (20685): Resonate plugin
HighThreshold set to 5
[12/Jun/2000:09:36:35] verbose (20685): Resonate plugin LowThreshold
set to 1

PollTime how frequently to check the thread status, by default 2000
milliseconds

HighThreshold defines the queue size/# of threads where HighCmd is
executed in order to increase load on the server. The default is
4096.

LowThreshold defines the queue size/# of threads where the LowCmd is
executed in order to decrease load on the server. The default is
1.

EventExePath pointer to the script program you want to run (i.e.
/usr/bin/perl or /bin/sh). Defaults to perl or perl.exe
depending on platform.

CmdLow pointer to the script to be run when the LowThreshold is met

ArgsLow arguments to send to CmdLow

CmdHigh pointer to the script to be run when the HighThreshold is
met

ArgsHigh arguments to send to CmdHigh

NOTE You must specify LateInit="yes" when loading this module. This
is because the module creates a monitoring thread and this
monitoring thread needs to start after ns-httpd has started.

Table 0-1 init-resonate Parameters

Parameter Description
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 51

Using Load Balancing
[12/Jun/2000:09:36:35] verbose (20685): Resonate plugin event
executable path set to /tools/ns/bin/perl5
[12/Jun/2000:09:36:35] verbose (20685): Resonate plugin low command
set to /usr/netscape/ent41/plugins/loadbal/CmdLow.pl
[12/Jun/2000:09:36:35] verbose (20685): Resonate plugin high command
set to /usr/netscape/ent41/plugins/loadbal/CmdHigh.pl

This is what will the log entries will look like when LogVerbose on is set and the
plugin is activated:

[12/Jun/2000:09:40:12] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2000:09:40:14] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2000:09:40:16] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2000:09:40:18] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2000:09:40:20] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2000:09:40:30] verbose (20699): Resonate plugin increasing
load.

Testing
To test the load balancer, you can create an NSAPI plug-in that prints an HTML
page and then calls sleep() for a period to simulate execution time. This way you
can build up a simulated load on the server and ensure that the load balancer
commands are working properly.

To configure the sample program, follow these steps:

1. Add a new mine.type so this isn’t run for every request by modifying
config/mime.types and adding:

type=magnus-internal/sleep exts=sleep

2. Create a file in your document root directory with the extension of .sleep.

It doesn’t matter if anything is in this file, it is used as a placeholder only.

3. Load the module into the server by editing magnus.conf.

Init fn="load-modules" funcs="dosleep"
shlib="/usr/netscape/ent41/plugins/nsapi/examples/dosleep.so"
pool="sleep"

In the example above, you are changing shlib to the location of the library,
and setting pool to the name of the thread pool you defined earlier:
52 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Using Load Balancing
4. Add this Service line where the others are found (note that order is not
important):

Service method="(GET|HEAD)" fn="dosleep" duration="10"
type="magnus-internal/sleep"

The argument duration tells the server how long to sleep for each request in
seconds.

5. Restart your server.

You should now be ready to test the load balancer plug-in. The NSAPI plug-in will
keep the threads busy long enough to simulate whatever load you want. The
load-balancing plug-in is tested by retrieving the .sleep file you created earlier.

Sample
Below is a sample dosleep.c:

#ifdef XP_WIN32
#define NSAPI_PUBLIC __declspec(dllexport)
#else /* !XP_WIN32 */
#define NSAPI_PUBLIC
#endif /* !XP_WIN32 */

#include "nsapi.h"

#define BUFFER_SIZE 1024

#ifdef __cplusplus
extern "C"
#endif
NSAPI_PUBLIC int dosleep(pblock *pb, Session *sn, Request *rq)
{
 char buf[BUFFER_SIZE];
 int length, duration;
 char *dur = pblock_findval("duration", pb);

 if (!dur) {
 log_error(LOG_WARN, "dosleep", sn, rq, "Value for duration is
not set.");

 return REQ_ABORTED;
 }

 duration = atoi(dur);

 /* We need to get rid of the internal content type. */
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 53

Threads, Processes, and Connections
 param_free(pblock_remove("content-type", rq->srvhdrs));
 pblock_nvinsert("content-type", "text/html", rq->srvhdrs);

 protocol_status(sn, rq, PROTOCOL_OK, NULL);

 /* get ready to send page */
 protocol_start_response(sn, rq);

 /* fill the buffer with our message */
 length = util_snprintf(buf, BUFFER_SIZE,
"<title>%s</title><h1>%s</h1>\n", "Sleeping", "Sleeping");
 length += util_snprintf(&buf[length], BUFFER_SIZE - length,
"Sample NSAPI that is sleeping for %d seconds...\n", duration);

 /* write the message to the client */
 if (net_write(sn->csd, buf, length) == IO_ERROR)
 {
 return REQ_EXIT;
 }
 sleep(duration);
 return REQ_PROCEED;
}

Threads, Processes, and Connections
In iPlanet Web Server 6.0, acceptor threads on a listen socket accept connections
and put them onto a connection queue. Session threads then pick up connections
from the queue and service the requests. The session threads post more session
threads if required at the end of the request. The policy for adding new threads is
based on the connection queue state:

• Each time a new connection is returned, the number of connections waiting in
the queue (the backlog of connections) is compared to the number of session
threads already created. If it is greater than the number of threads, more
threads are scheduled to be added the next time a request completes.

• The previous backlog is tracked, so that if it is seen to be increasing over time,
and if the increase is greater than the ThreadIncrement value, and the number
of session threads minus the backlog is less than the ThreadIncrement value,
then another ThreadIncrement number of threads are scheduled to be added.
54 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Threads, Processes, and Connections
• The process of adding new session threads is strictly limited by the
RqThrottle value.

• To avoid creating too many threads when the backlog increases suddenly
(such as the startup of benchmark loads), the decision whether more threads
are needed is made only once every 16 or 32 times a connection is made based
on how many session threads already exist.

The following directives that affect the number and timeout of threads, processes,
and connections can be tuned in the Magnus Editor or magnus.conf:

• ConnQueueSize

• HeaderBufferSize

• IOTimeout

• KeepAliveThreads

• KeepAliveTimeout

• KernelThreads

• ListenQ

• MaxKeepAliveConnections

• MaxProcs (Unix Only)

• PostThreadsEarly

• RcvBufSize

• RqThrottle

• RqThrottleMin

• SndBufSize

• StackSize

• StrictHttpHeaders

• TerminateTimeout

• ThreadIncrement

• UseNativePoll (Unix only)

For more information about these directives, see the NSAPI Programmer’s Guide.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 55

Threads, Processes, and Connections
Listen Socket Acceptor Threads
You can specify how many threads you want in accept mode on a listen socket at
any time. It’s a good practice to set this to less than or equal to the number of CPUs
in your system.

Tuning
You can set the number of listen socket acceptor threads by:

• Editing the server.xml file

• Entering the number of acceptor threads you wish in the Acceptor field of Edit
a Listen Socket page of the Server Manager

Process Modes
You can run your iPlanet Web Server in one of the following two modes:

• iPlanet Web Server with a single process

• iPlanet Web Server with multiple processes

Single Process Mode
In the single-process mode the server receives requests from web clients to a single
process. Inside the single server process many threads are running that are waiting
for new requests to arrive. When a request arrives, it is handled by the thread
receiving the request. Because the server is multi-threaded, all NSAPI extensions
written to the server must be thread-safe. This means that if the NSAPI extension
uses a global resource, like a shared reference to a file or global variable, then the
use of that resource must be synchronized, so that only one thread accesses it at a
time. All plug-ins provided by Netscape/iPlanet are thread-safe and thread-aware,
providing good scalability and concurrency. However, your legacy applications
may be single-threaded. When the server runs the application, it can only execute
one at a time. This leads to server performance problems when put under load.
Unfortunately, in the single-process design, there is no real workaround.
56 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Threads, Processes, and Connections
Multi-Process Mode
You can configure the server to handle requests using multiple processes with
multiple threads in each process. This flexibility provides optimal performance for
sites using threads, and also provides backward compatibility to sites running
legacy applications that are not ready to run in a threaded environment. Because
applications on Windows NT generally already take advantage of multi-thread
considerations, this feature applies to Unix/Linux platforms.

The advantage of multiple processes is that legacy applications that are not
thread-aware or thread safe can be run more effectively in iPlanet Web Server.
However, because all the Netscape/iPlanet extensions are built to support a
single-process threaded environment, they may not run in the multi-process mode,
and the Search plug-ins will fail on startup if the server is in multi-process mode.

In the multi-process mode, the server spawns multiple server processes at startup.
Each process contains one or more threads (depending on the configuration) which
receive incoming requests. Since each process is completely independent, each one
has its own copies of global variables, caches, and other resources. Using multiple
processes requires more resources from your system. Also, if you try to install an
application which requires shared state, it has to synchronize that state across
multiple processes. NSAPI provides no helper functions for implementing
cross-process synchronization.

If you are not running any NSAPI in your server, you should use the default
settings: one process and many threads. If you are running an application which is
not scalable in a threaded environment, you should use a few processes and many
threads, for example, 4 or 8 processes and 128 or 512 threads per process.

MaxProcs (Unix/Linux)
Use this directive to set your Unix/Linux server in multi-process mode, which may
allow for higher scalability on multi-processor machines. If you set the value to less
than 1, it will be ignored and the default value of 1 will be used.

Tuning
You can set the value for MaxProcs by:

• Editing the MaxProcs parameter in magnus.conf

• Setting or changing the MaxProcs value in the Magnus Editor of the Server
Manager

NOTE You will receive duplicate startup messages when running your
server in MaxProcs mode.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 57

Threads, Processes, and Connections
Maximum Simultaneous Requests
The RqThrottle parameter in the magnus.conf file specifies the maximum
number of simultaneous transactions the web server can handle. The default value
is 128. Changes to this value can be used to throttle the server, minimizing latencies
for the transactions that are performed. The RqThrottle value acts across multiple
virtual servers, but does not attempt to load-balance.

To compute the number of simultaneous requests, the server counts the number of
active requests, adding one to the number when a new request arrives, subtracting
one when it finishes the request. When a new request arrives, the server checks to
see if it is already processing the maximum number of requests. If it has reached
the limit, it defers processing new requests until the number of active requests
drops below the maximum amount.

In theory, you could set the maximum simultaneous requests to 1 and still have a
functional server. Setting this value to 1 would mean that the server could only
handle one request at a time, but since HTTP requests for static files generally have
a very short duration (response time can be as low as 5 milliseconds), processing
one request at a time would still allow you to process up to 200 requests per
second.

However, in actuality, Internet clients frequently connect to the server and then do
not complete their requests. In these cases, the server waits 30 seconds or more for
the data before timing out. You can define this timeout period using the IOTimeout
directive in magnus.conf. The default value is 30 seconds. Also, some sites do
heavyweight transactions that take minutes to complete. Both of these factors add
to the maximum simultaneous requests that are required. If your site is processing
many requests that take many seconds, you may need to increase the number of
maximum simultaneous requests. For more information on IOTimeout, see
“IOTimeout Information,” on page 62.

Suitable RqThrottle values range from 100-500, depending on the load.

RqThrottleMin is the minimum number of threads the server initiates upon
start-up. The default value is 48. RqThrottle represents a hard limit for the
maximum number of active threads that can run simultaneously, which can
become a bottleneck for performance. The default value is 128.
58 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Unix/Linux Platform-Specific Issues
Tuning
You can tune the number of simultaneous requests by:

• Editing RqThrottleMin and RqThrottle in the magnus.conf file

• Entering or changing values for the RqThrottleMin and RqThrottle fields in
the Magnus Editor of the Server Manager

• Entering the desired value in the Maximum Simultaneous Requests field from
the Performance Tuning page under Preferences in the Server Manger

Unix/Linux Platform-Specific Issues
The various Unix/Linux platforms all have limits on the number of files that can be
open in a single process at one time. For busy sites, increase that number to 8192.

• Solaris: in /etc/system, set rlim_fd_max, and reboot.

• AIX: run smit and check the kernel tuning parameters.

• HP-UX: run sam and check the kernel tuning parameters.

These Unix platforms have proprietary sites for additional information about
tuning their systems for web servers:

• AIX - http://www.rs6000.ibm.com/resource/technology/sizing.html

• IRIX - http://www.sgi.com/tech/

• Compaq Tru64 Unix - http://www.compaq.com/alphaserver/

• SUN - http://www.sun.com/sun-on-net/performance/book2ref.html

NOTE If you are using older NSAPI plug-ins that are not reentrant, they
will not work with the multithreading model described in this
document. To continue using them, you should revise them so that
they are reentrant. If this is not possible, you can configure your
server to work with them by setting RqThrottle to 1, and then
using a high value for MaxProcs, such as 48 or greater, but this will
adversely impact your server’s performance.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 59

Improving Java Performance
Improving Java Performance
There are a number of ways you can improve Java performance on iPlanet Web
Server. These include:

• Configuring the Session Manager

• Using Java Heap Tuning

• Using an Alternate Thread Library

• Using Pre-compiled JSPs

• Configuring Class Reloading

Configuring the Session Manager
You can configure some attributes of the session manager to improve performance
problems.

• If you are exhausting the maximum number of sessions, try increasing the
value of maxSessions from the default value of 1000.

• If you have relatively short-lived sessions, try decreasing the session timeout
(timeOut) value from the default value of 30 minutes. You can also reduce the
frequency at which the session reaper runs by decreasing reapInterval from
the default value of once every 10 minutes.

• In multi-process mode both iWSSessionManager and MMapSessionManager
use cross-process locks to ensure session data integrity. These can be
configured to improve performance as described below.

Tuning maxLocks (Unix/Linux)
The implication of the number specified in maxLocks can be gauged by dividing
the value of maxSessions with maxLocks. For example, if maxSessions = 1000
and you set maxLocks = 10, then approximately 100 sessions (1000/10) will
contend for the same lock. Increasing maxLocks will reduce the number of sessions
that contend for the same lock and may improve performance and reduce latency.
However, increasing the number of locks also increases the number of open file
descriptors, and reduces the number of available descriptors that would otherwise
be assigned to incoming connection requests.
60 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Improving Java Performance
Tuning MMapSessionManager (Unix/Linux)
The following example describes the effect on process size when configuring the
MMapSessionManager:

maxSessions = 1000

maxValuesPerSession = 10

maxValueSize = 4096

This example would create a memory mapped file of size 1000 X 10 X 4096 bytes, or
~40 MB. As this is a memory mapped file, the process size will increase by 40MB
upon startup. The larger the values you set for these parameters, the greater will be
the increase in process size.

For more information, see the Programmer’s Guide to Servlets.

Using Java Heap Tuning
Java heap tuning is application dependent and can be done using the jvm12.conf
configuration file in the server instance’s config directory. For additional Java
heap and Garbage Collection tuning refer to:

http://java.sun.com/docs/hotspot/gc

Though it applies to JDK 1.3.1, concepts are similar and will work for JDK1.2.2_07
which is bundled with iPlanet Web Server 6.0.

Using an Alternate Thread Library
On Solaris 8 and above, using an alternate thread library, such as libthread or
/usr/lib/lwp, gives optimal performance. You can enable this using the
LD_LIBRARY_PATH environmental variable in the start script.

Using Pre-compiled JSPs
Compiling JSPs is a resource intensive and relatively time-consuming process. You
will improve performance if you pre-compile your JSPs before installing them into
your server. More information on compiling JSPs for iPlanet Web Server using the
command-line compiler can be found under “Using Java Server Pages” in the
Programmer’s Guide to Servlets.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 61

Miscellaneous magnus.conf Directives
Configuring Class Reloading
The reload-interval of the class-loader element controls the frequency at
which the server checks for changes in servlets and JSPs. In a production
environment where changes are made in a scheduled manner, set this value to a
high number to prevent the server from constantly checking for updates. The
default value is 30 seconds. For more information, see the Programmer’s Guide to
Servlets.

Miscellaneous magnus.conf Directives
The following sections discuss magnus.conf directives you can use to configure
your server to function more effectively:

• IOTimeout Information

• CGIStub Processes (Unix/Linux)

• Buffer Size

• Strict HTTP Header Checking

IOTimeout Information
This directive replaces AcceptTimeout in earlier versions of iPlanet Web Server.
Use IOTimeout to specify the number of seconds the server waits between
accepting a connection to a client and receiving information from it. The default
setting is 30 seconds. Under most circumstances you should not have to change
this setting. By setting it to less than the default 30 seconds, you can free up threads
sooner. However, you may also disconnect users with slower connections.

Tuning
You can set theIOTimeout by:

• Editing the IOTimeout parameter in magnus.conf

• Setting or changing the IOTimeout value in the Magnus Editor of the Server
Manager
62 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Miscellaneous magnus.conf Directives
CGIStub Processes (Unix/Linux)
You can adjust the CGIStub parameters on Unix/Linux systems. In iPlanet Web
Server, the CGI engine creates CGIStub processes as needed. On systems that serve
a large load and rely heavily on CGI-generated content, it is possible for the
CGIStub processes to consume all system resources. If this is happening on your
server, the CGIStub processes can be tuned to restrict how many new CGIStub
processes can be spawned, their timeout value, and the minimum number of
CGIStub processes that will be running at any given moment.

The four directives and their defaults that can be tuned to control Cgistub are:

• MinCGIStubs

• MaxCGIStubs

• CGIStubIdleTimeout

• CGIExpirationTimeout

MinCGIStubs controls the number of processes that are started by default. The first
CGIStub process is not started until a CGI program has been accessed. The default
value is 2. If you have a init-cgi directive in the magnus.conf file, the minimum
number of CGIStub processes are spawned at startup.

MaxCGIStubs controls the maximum number of CGIStub processes the server can
spawn. This is the maximum concurrent CGIStub processes in execution, not the
maximum number of pending requests. The default value shown should be
adequate for most systems. Setting this too high may actually reduce throughput.
The default value is 10.

CGIStubIdleTimeout causes the server to kill any CGIStub processes that have
been idle for the number of seconds set by this directive. Once the number of
processes is at MinCGIStubs it does not kill any more processes. The default is 45.

CGIExpirationTimeout limits the maximum time in seconds that CGI processes
can run.

NOTE If you have an init-cgi function in the magnus.conf file and you
are running in multi-process mode, you must add LateInit = yes
to the init-cgi line.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 63

Miscellaneous obj.conf Parameters
Tuning
You can set the all of the CGIStub processes by:

• Editing them in magnus.conf

• Setting or changing their values in the Magnus Editor of the Server Manager

Buffer Size
You can specify the size of the send buffer (SndBufSize) and the receiving buffer
(RcvBufSize) at the server’s sockets. For more information regarding these buffers,
see your Unix/Linux documentation.

Tuning
You can set the buffer size by:

• Editing the SndBufSize and RcvBufSize parameters in magnus.conf

• Setting or changing the SndBufSize and RcvBufSize values in the Magnus
Editor of the Server Manager

Strict HTTP Header Checking
The server provides strict HTTP header checking, rejecting connections that
include inappropriately duplicated headers.

Tuning

You can suppress this check by setting the StrictHttpHeaders directive to off in
magnus.conf:

StrictHttpHeaders off

Miscellaneous obj.conf Parameters
You can use some obj.conf function parameters to improve your server’s
performance. In addition to the ones listed below, see “Using the nocache
Parameter” on page 44 for information on that parameter.

For more information on using obj.conf, see the NSAPI Programmer’s Guide.
64 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Miscellaneous obj.conf Parameters
find-pathinfo-forward
The parameter find-pathinfo-forward for the PathCheck function
find-pathinfo and the NameTrans functions pfx2dir and assign-name can help
you improve your performance. This parameter instructs the server to search
forward for PATH_INFO in the path after ntrans-base, instead of backward from
the end of path in the server function find-pathinfo.

For example:

NameTrans fn="pfx2dir" find-pathinfo-forward="" from="/cgi-bin"
dir="/export/home/cgi-bin" name="cgi"

NameTrans fn="assign-name" from="/perf" find-pathinfo-forward=""
name="perf"

This feature can improve performance for certain URLs by doing fewer stats in the
server function find-pathinfo. On Windows NT, you can also use this feature to
prevent the server from changing “\” to “/” when using the PathCheck server
function find-pathinfo.

nostat
You can specify the parameter nostat in the NameTrans function assign-name to
prevent the server from doing a stat on a specified URL whenever possible. Use the
following syntax:

nostat=virtual-path

For example:

<Object name=default>

NameTrans fn="assign-name" from="/nsfc" nostat="/nsfc" name="nsfc"

</Object>

<Object name=nsfc>

 Service fn=service-nsfc-dump

 </Object>

NOTE The server ignores the find-pathinfo-forward parameter if the
ntrans-base parameter is not set in rq->vars when the server
function find-pathinfo is called. By default, ntrans-base is set.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 65

Common Performance Problems
In the above example, the server does not stat for path /ntrans-base/nsfc and
ntrans-base/nsfc/* if ntrans-base is set. If ntrans-base is not set, the server does not
stat for URLs /nsfc and /nsfc/*. By default ntrans-base is set. The example
assumes the default PathCheck server functions are used.

When you use nostat=virtual-path in the assign-name NameTrans, the server
assumes that stat on the specified virtual-path will fail. Therefore, use nostat only
when the path of the virtual-path does not exist on the system, for example, in
NSAPI plug-in urls. Using nostat on those URLs improves performance by
avoiding unnecessary stats on those URLs.

Common Performance Problems
This section discusses a few common web site performance problems to check for:

• Magnus Editor Values

• check-acl Server Application Functions

• Low-Memory Situations

• Under-Throttled Server

• Cache Not Utilized

• Keep-Alive Connections Flushed

• Log File Modes

Magnus Editor Values
You can set most of the tuning parameter values of the magnus.conf file using the
Magnus Editor in the Server Manager. However, once you have set the values, the
Administration Server does not check if they are valid. Please see the NSAPI
Programmer’s Guide to learn about the default values and acceptable ranges that
should be entered in the Magnus Editor fields.
66 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Common Performance Problems
check-acl Server Application Functions
For optimal performance of your server, use ACLs only when required.

The default server is configured with an ACL file containing the default ACL
allowing write access to the server only to ‘all’, and an es-internal ACL for
restricting write access for ‘anybody’. The latter protects the manuals, icons, and
search UI files in the server.

The default obj.conf file has NameTrans lines mapping the directories that need to
be read-only to the es-internal object, which in turn has a check-acl SAF for the
es-internal ACL.

The default object also contains a check-acl SAF for the “default” ACL.

You can improve your server’s performance by removing the aclid properties
from virtual server tags in server.xml. This stops any ACL processing.

You can also improve performance by removing the check-acl SAF from the
default object for URIs that are not protected by ACLs.

Low-Memory Situations
If you need iPlanet Web Server to run in low-memory situations, reduce the thread
limit to a bare minimum by lowering the value of RqThrottle. Also, you may want
to reduce the maximum number of processes that the iPlanet Web Server will
spawn by lowering the value of the MaxProcs value.

Under-Throttled Server
The server does not allow the number of active threads to exceed the thread limit
value. If the number of simultaneous requests reaches that limit, the server stops
servicing new connections until the old connections are freed up. This can lead to
increased response time.

In iPlanet Web Server, the server’s default RqThrottle value is 128. If you want
your server to process more requests concurrently, you need to increase the
RqThrottle value.

The symptom of an under-throttled server is a server with a long response time.
Making a request from a browser establishes a connection fairly quickly to the
server, but on under-throttled servers it may take a long time before the response
comes back to the client.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 67

Common Performance Problems
The best way to tell if your server is being throttled is to see if the number of active
sessions is close to, or equal to the maximum number allowed via RqThrottle. To
do this, see “Maximum Simultaneous Requests,” on page 58.

Cache Not Utilized
If the cache is not utilized, your server is not performing optimally. Since most sites
have lots of GIF or JPEG files that should always be cacheable, you need to use
your cache effectively.

Some sites, however, do almost everything through CGIs, SHTML, or other
dynamic sources. Dynamic content is generally not cacheable, and inherently
yields a low cache hit rate. Don’t be too alarmed if your site has a low cache hit rate.
The most important thing is that your response time is low. You can have a very
low cache hit rate and still have very good response time. As long as your response
time is good, you may not care that the cache hit rate is low.

Check your Hit Ratio using statistics from perfdump or the Monitor Current
Activity page of the Server Manager. The hit ratio is the percentage of times the
cache was used with all hits to your server. A good cache hit rate is anything above
50%. Some sites may even achieve 98% or higher.

In addition, if you are doing a lot of CGI or NSAPI calls, you may have a low cache
hit rate. If you have custom NSAPI functions, you may have a low cache hit rate.

Keep-Alive Connections Flushed
A web site that might be able to service 75 requests per second without keep-alive
connections, may be able to do 200-300 requests per second when keep-alive is
enabled. Therefore, as a client requests various items from a single page, it is
important that keep-alive connections are being used effectively. If the
KeepAliveCount exceeds the MaxKeepAliveConnections, subsequent keep-alive
connections will be closed, or ‘flushed’, instead of being honored and kept alive.

Check the KeepAliveFlushes and KeepAliveHits values using statistics from
perfdump or the Monitor Current Activity page of the Server Manager. On a site
where keep-alive connections are running well, the ratio of KeepAliveFlushes to
KeepAliveHits is very low. If the ratio is high (greater than 1:1), your site is
probably not utilizing keep-alive connections as well as it could.

To reduce keep-alive flushes, increase the MaxKeepAliveConnections value in the
magnus.conf file or the Magnus Editor of the Server Manager. The default value is
200. By raising the value, you keep more waiting keep-alive connections open.
68 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Tuning Solaris for Performance Benchmarking
Log File Modes
Keeping the log files on verbose mode can have a significant affect of performance.
You can set LogVerbose to on in magnus.conf or the Magnus Editor of the Server
Manager.

Tuning Solaris for Performance Benchmarking
The following table shows the operating system tuning for Solaris used when
benchmarking for performance and scalability. These values are an example of
how you might tune your system to achieve the desired result.

CAUTION On Unix/Linux systems, if you increase the
MaxKeepAliveConnections value too high, the server can run out of
open file descriptors. Typically 1024 is the limit for open files on
Unix/Linux, so increasing this value above 500 is not recommended.

Table 2 Tuning Solaris for performance benchmarking

Parameter Scope Default Value Tuned Value Comments

rlim_fd_max /etc/system 1024 8192 Process open file descriptors
limit; should account for the
expected load (for the
associated sockets, files,
pipes if any).

rlim_fd_cur /etc/system 64 8192

sq_max_size /etc/system 2 0 Controls streams driver
queue size; setting to 0 makes
it infinity so the performance
runs wont be hit by lack of
buffer space. Set on clients
too.

tcp_close_wait_interval ndd
/dev/tcp

240000 60000 Set on clients too.

tcp_time_wait_interval ndd
/dev/tcp

240000 60000 For Solaris 7 only. Set on
clients too.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 69

Sizing and Scaling Your Server
Sizing and Scaling Your Server
This section examines subsystems of your server and makes some
recommendations for optimal performance:

• Processors

• Memory

• Drive Space

• Networking

tcp_conn_req_max_q ndd
/dev/tcp

128 1024

tcp_conn_req_max_q0 ndd
/dev/tcp

1024 4096

tcp_ip_abort_interval ndd
/dev/tcp

480000 60000

tcp_keepalive_interval ndd
/dev/tcp

7200000 900000 For high traffic web sites
lower this value.

tcp_rexmit_interval_initial ndd
/dev/tcp

3000 3000 If retransmission is greater
than 30-40%, you should
increase this value.

tcp_rexmit_interval_max ndd
/dev/tcp

240000 10000

tcp_rexmit_interval_min ndd
/dev/tcp

200 3000

tcp_smallest_anon_port ndd
/dev/tcp

32768 1024 Set on clients too.

tcp_slow_start_initial ndd
/dev/tcp

1 2 Slightly faster transmission
of small amounts of data.

tcp_xmit_hiwat ndd
/dev/tcp

8129 32768 To increase the transmit
buffer.

tcp_recv_hiwat ndd
/dev/tcp

8129 32768 To increase the receive
buffer.

Table 2 Tuning Solaris for performance benchmarking (Continued)

Parameter Scope Default Value Tuned Value Comments
70 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Sizing and Scaling Your Server
Processors
On Solaris and Windows NT, iPlanet Web Server transparently takes advantage of
multiple CPUs. In general, the effectiveness of multiple CPUs varies with the
operating system and the workload. Dynamic content performance improves as
more processors are added to the system. Because static content involves mostly
IO, and more primary memory means more caching of the content (assuming the
server is tuned to take advantage of the memory) more time is spent in IO rather
than any busy CPU activity. Our study of dynamic content performance on a
four-CPU machine indicate a 40-60% increase for NSAPI and about 50-80%
increase for servlets.

Memory
As a baseline, iPlanet Web Server requires 64MB RAM. Multiple CPUs require at
least 64MB per CPU. For example, if you have four CPUs, you should install at
least 256MB RAM for optimal performance. For high numbers of peak concurrent
users, also allow extra RAM for the additional threads. After the first 50 concurrent
users, add an extra 512KB per peak concurrent user.

Drive Space
You need to have enough drive space for your OS, document tree, and log files. In
most cases 2GB total is sufficient.

Put the OS, swap/paging file, iPlanet Web Server logs, and document tree each on
separate hard drives. Thus, if your log files fill up the log drive, your OS will not
suffer. Also, you’ll be able to tell whether, for example, the OS paging file is
causing drive activity.

Your OS vendor may have specific recommendations for how much swap or
paging space you should allocate. Based on our testing, iPlanet Web Server
performs best with swap space equal to RAM, plus enough to map the document
tree.
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 71

Scalability Studies
Networking
For an Internet site, decide how many peak concurrent users you need the server to
handle, and multiply that number of users by the average request size on your site.
Your average request may include multiple documents. If you’re not sure, try
using your home page and all its associated subframes and graphics.

Next decide how long the average user will be willing to wait for a document, at
peak utilization. Divide by that number of seconds. That’s the WAN bandwidth
your server needs.

For example, to support a peak of 50 users with an average document size of 24kB,
and transferring each document in an average of 5 seconds, we need 240 KBs (1920
kbit/s). So our site needs two T1 lines (each 1544 kbit/s). This also allows some
overhead for growth.

Your server’s network interface card should support more than the WAN it’s
connected to. For example, if you have up to three T1 lines, you can get by with a
10BaseT interface. Up to a T3 line (45 Mbit/s), you can use 100BaseT. But if you
have more than 50 Mbit/s of WAN bandwidth, consider configuring multiple
100BaseT interfaces, or look at Gigabit Ethernet technology.

For an intranet site, your network is unlikely to be a bottleneck. However, you can
use the same calculations as above to decide.

Scalability Studies
This scalability section contains the results of three studies covering the following
topics:

• Study Goals

• iWS 6.0 Server Configuration Tested

• Scalability of Dynamic and Static Content

• Scalability Study Settings and Configurations

• iWS 6.0 Scalability Performance and Sizing on F4800

• Performance Results

You can refer to these studies for a sample of how the server performs, and how
you might configure your system to best take advantage of the iPlanet Web
Server’s strengths.
72 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
Study Goals
This study shows how well iPlanet Web Server 6.0 Enterprise Edition scales against
1, 2, 4, and 8 CPUs. This study also helps in determining what kind of
configuration (CPU and memory) is required for different types of content. The
studies were conducted against the following content:

• 100% Static

• 100% SHTML

• 100% C-CGI

• 100% Perl-CGI

• 100% NSAPI

• 100% Java Servlets

• Java servlet applications

iWS 6.0 Server Configuration Tested
• Mostly out-of-the box settings

• File Cache configured via nsfc.conf for in cache static tests with 40,000 files
ranging from 5K to 250K in size

• Tested with two virtual servers (secure and non-secure) on two listen sockets
of the same instance

• SSL and non-SSL run without configuring two instances

• Java tests run with both the default and /usr/lib/lwp thread libraries

• HTTP 1.0 and HTTP 1.1 for static tests

• magnus.conf settings shown below

Sample magnus.conf Used for iWS 6.0 Sizing
#ServerRoot /usr/iplanet/servers
ServerID https-test
ServerName test
ErrorLog /usr/iplanet/servers/https-test/logs/errors
PidLog /usr/iplanet/servers/https-test/logs/pid
User nobody
MtaHost localhost
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 73

Scalability Studies
DNS off
Security on
ClientLanguage en
AdminLanguage en
DefaultLanguage en
RqThrottle 256
StackSize 131072
CGIWaitPid on
MinCGIStubs 10
MaxCGIStubs 40
TempDir /tmp/https-test

Init fn=flex-init access="$accesslog"
format.access="%Ses->client.ip% - %Req->va
rs.auth-user% [%SYSDATE%] \"%Req->reqpb.clf-request%\"
%Req->srvhdrs.clf-status%
%Req->srvhdrs.content-length%"
Init fn=load-types mime-types=mime.types
Init fn="load-modules"
shlib="/export/home/iWS6/install/bin/https/lib/libNSServl
etPlugin.so"
funcs="NSServletEarlyInit,NSServletLateInit,NSServletNameTrans,NSSe
rvletService" shlib_flags="(global|now)"
Init fn="NSServletEarlyInit" EarlyInit=yes
Init fn="NSServletLateInit" LateInit=yes
Init fn="load-modules"
shlib="/export/home/iWS6/install/docs/nsapi/libnsapi-test
.so" funcs="nsapi_test,net_test"
Init fn="load-modules" funcs="shtml_init,shtml_send"
shlib="/export/home/iWS6/in
stall/bin/https/lib/libShtml.so" NativeThread="no"
Init fn="shtml_init" LateInit="yes"

Scalability of Dynamic and Static Content
This section describes a study that tests the scalability of various types of content.
They are as follows:

• 100% static

• Dynamic using C-CGI, Perl-CGI, NSAPI, SHTML

• Dynamic content using Java servlets
74 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
Java tests were done using both micro benchmarks as well as a shopping cart
servlet application.

Near linear scaling was observed for Perl and C-CGI tests using up to 8 CPUs.

SHTML tests also scaled close to 100% up to 4 CPUs. The NSAPI scaling factor is
60%, and its raw performance approached the static content downloads. Static
content scalability also peaked to 60%. The testing for some of these cases was
limited to 4 CPUs due to network imposed restrictions. Finally, Java applications
were found to scale well up to 4 CPUs, with a factor of 70%; and with a factor of
55% beyond 4 CPUs. Java servlet applications showed similar scalability.

Most tests were repeated in SSL enabled mode. SSL static and CGI tests scaled
nearly linearly. SSL tests were done with both 100% session cache enabled and
session cache totally disabled. Both modes showed uniformly good scalability for
all tests. SSL benchmarks for non-Java tests performed optimally with the
SmartHeap memory allocator. This can be enabled using the start script.

Scalability Study Settings and Configurations
In addition to studying the performance of static and dynamic content of different
types, the performance of the keep-alive subsystem on iPlanet Web Server 6.0 was
tested and compared against iPlanet Web Server 4.1. The very scalable keep-alive
handling solution in iPlanet Web Server 6.0 differs from 4.1 in the following ways:

• The keep-alive connection is not associated with a thread

• Tunable magnus.conf parameters for the keep-alive subsystem

These parameters include:

❍ MaxKeepAliveConnections

❍ KeepAliveThreads

❍ KeepAliveTimeout

Some Tunings Used for Best Performance
• Static content:

❍ File cache (nsfc.conf)

❍ MaxKeepAliveConnections and KeepAliveTimeout

❍ Pipelined requests

• KeepAliveThreads was not changed from the default value
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 75

Scalability Studies
• SSL tests:

❍ Enabled SmartHeap using the start script

❍ Used SSL session cache

• Java tests used the /usr/lib/lwp thread library. Set LD_LIBRARY_PATH to
include /usr/lib/lwp in the start script.

Using the Solaris Network Cache and Accelerator (SNCA)
The Solaris Network Cache and Accelerator (SNCA) is a caching server which
provides improved web performance to the Solaris operating environment. It is
available on Solaris 8 update 5.

To enable SNCA to work with iPlanet Web Server, follow these steps:

1. In the Solaris operating environment, edit configuration interface file
/etc/nca/nca.if and add "*" to the first non-comment line.

This enables SNCA for all network interfaces.

2. Edit /etc/nca/ncakmod.conf changing the field ‘status’ to ‘enabled’ and
changing the field ‘ncad_status’ to ‘enabled’.

3. Edit /etc/nca/ncalogd.conf changing the field ‘status’ to ‘enabled’.

4. Reboot the system for changes to take effect.

5. Edit the iPlanet Web Server server.xml file so the listen socket on port 80 o
includes family="nca" as shown below:

<LS id="ls1" ip="0.0.0.0" port="80" family="nca" security="off"
acceptorthreads="1">

The server must be listening on port 80 for this to work.

6. Restart the server for all changes to take effect.

Setting the TZ Environment Variable on Solaris
In most instances, the timezone environment variable (TZ) is set to the correct
value by default when you log on using the local /etc/default/init file. You can
set the default value if it has not already been set, or you can change the value
before starting the server.

To set the TZ environment variable, follow these steps:

1. In csh enter setenv TZ in the first non-commented line of
/etc/default/init.
76 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
2. In Bourne shell enter:

TZ = <value>

export TZ;

iWS 6.0 Scalability Performance and Sizing on
F4800
• Load generated using E4500 with 12 CPUs

• Server and client connected back-to-back using GB/sec ethernet

• F4800 Server configuration shown below

Performance Results
For most cases, scalability plots are shown. Performance is shown as a function of
the number of CPUs enabled. The following metrics were used to characterize
performance:

• Operations per second (ops/sec) = successful transactions per second

• Throughput data transferred in MB or KB per second

F4800 System Configuration: Sun Microsystems sun4u Sun Fire 4800
System clock frequency: 150 MHz
Memory size: 49152 Megabytes
Keyswitch position: On

========================= CPUs ==

 Port Run E$ CPU CPU Temp Sensor Voltage Sensor
FRU Name ID MHz MB Impl. Mask Deg C Status Volts DC Status
---------- ---- ---- ---- ------ ---- ----- ------ -------- ------
/N0/SB0/P0 0 750 8.0 US-III 3.4 54 Green 1.74 Green
/N0/SB0/P1 1 750 8.0 US-III 3.4 53 Green 1.73 Green
/N0/SB0/P2 2 750 8.0 US-III 3.4 56 Green 1.72 Green
/N0/SB0/P3 3 750 8.0 US-III 3.4 55 Green 1.73 Green
/N0/SB2/P0 8 750 8.0 US-III 3.4 54 Green 1.73 Green
/N0/SB2/P1 9 750 8.0 US-III 3.4 53 Green 1.74 Green
/N0/SB2/P2 10 750 8.0 US-III 3.4 57 Green 1.72 Green
/N0/SB2/P3 11 750 8.0 US-III 3.4 53 Green 1.72 Green
/N0/SB4/P0 16 750 8.0 US-III 3.4 53 Green 1.73 Green
/N0/SB4/P1 17 750 8.0 US-III 3.4 54 Green 1.74 Green
/N0/SB4/P2 18 750 8.0 US-III 3.4 56 Green 1.73 Green
/N0/SB4/P3 19 750 8.0 US-III 3.4 54 Green 1.72 Green

memory 16 way interleaved
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 77

Scalability Studies
• Response time for single transaction (round-trip time) in milliseconds

While operations per second data is shown for all cases, the response time and
throughput are shown only where available.

The following sections show the results of the study.
78 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
Static Test
This test was performed with static download of a randomly selected file from a
pool of 400 directories each containing 100 files that ranged in size from 5K to 250K.
Tests were done with the file cache configured to include all files in the directories.
Results are shown for:

• HTTP 1.0 with default file cache

• HTTP 1.1 with default file cache and with persistent connections

• HTTP 1.1 with expanded file cache and persistent connections

• HTTP 1.1 with expanded file cache, persistent connections, and pipelined
requests.

Notes:

• 8 CPU data not provided due to single GB ethernet card saturation at 4 CPUs

• 65% scaling achieved

Figure 1 Static and File Cache Performance

0

500

1000

1500

2000

2500

3000

1 2 4

CPUs Used

o
p

s/
se

c

HTTP 1.1 persistent
expanded file cache

HTTP 1.1 persistent
pipelined expanded
file cache

HTTP 1.1 persistent
default file cache

HTTP 1.0 default file
cache
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 79

Scalability Studies
Perl-CGI (printenv.pl) Test
This test ran against a Perl script called printenv.pl that prints the CGI
environment. This script outputs approximately 0.5K of data per request. The goal
was to saturate the CPUs on the server. The graph below demonstrates that the
server scales very well, with a scaling factor close to 100%.

Figure 2 Perl-CGI Performance

0

50

100

150

200

250

300

350

400

0 5 10

CPUs Used

P
er

fo
rm

an
ce

ops/sec

response time
millisec

throughput KB/sec
80 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
C-CGI printenv Test
This test was performed by accessing a C executable called printenv.This
executable outputs approximately 0.5K of data per request. The goal was to
saturate the CPUs on the server. From the graph below it is clear that the server
scales very well for C-CGI content. It scales with a factor of 100%.

Figure 3 C-CGI printenv Performance

0

100

200

300

400

500

600

700

800

900

1 2 4 8

CPUs Used

p
er

fo
rm

an
ce

ops/sec

response time
millisec

throughput KB/sec
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 81

Scalability Studies
SHTML Test
This test was run against the file stresstest.shtml. This file has three levels of
nested includes. The numbers represent average requests per second and average
throughput. The goal was to saturate the CPUs on the server. From the graph
below it is clear that the server scales well, with a scaling factor of 95%.

Notes:

• Maximum idle CPU time 20% on 4 CPUs

• 8 CPU data unavailable due to network and client limitations

• Throughput plotted as MB per second X 100

Figure 4 SHTML Performance

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3

CPUs Used

p
er

fo
rm

an
ce ops/sec

response time millisec

throughput MB/sec x 100
82 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
WASP Servlet Test
This test was conducted using the WASP servlet. It prints out the servlet’s
initialization arguments, environments, request headers, connection/client info,
URL information, and remote user information. The goal was to saturate the CPUs
on the server. Figure 5 represents average requests per second. From the graph
below it is clear that the server scales moderately well for Java servlets content. The
scaling factor is 65%.

To access the WASP servlet shipped with iWS 6.0, look in the directory where you
installed your server for:

/plugins/servlets/examples/legacy/servlets/WASP/WASPServlet.java

Notes:

• Servlet deployed as a web application

• Tested with default and alternate (/usr/lib/lwp) thread libraries on Solaris 8

• Run in HTTP 1.0 mode without SSL

• Alternate thread library performance up to 20% better for higher CPU counts

Figure 5 WASP Servlet Performance

0

500

1000

1500

2000

2500

1 2 4 8

CPUs Used

o
p

s/
se

c default thread library

alternate thread
library
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 83

Scalability Studies
WASP Servlet Throughput and Response Time Test
This test was conducted using the WASP servlet. It prints out the servlet’s
initialization arguments, environments, request headers, connection/client info,
URL information, and remote user information. Figure 6 represent average
throughput and response time in seconds. The goal was to saturate the CPUs on
the server. From the graph it is clear that the server scales moderately well for Java
servlets content. The scaling factor is 65%.

To access the WASP servlet shipped with iWS 6.0, look in the directory where you
installed your server for:

/plugins/servlets/examples/legacy/servlets/WASP/WASPServlet.java

• Throughput shown in MB per second response time in seconds

Data provided only for alternate (/usr/lib/lwp) thread library on Solaris 8

• 8 CPU performance not shown due to client limitations

Figure 6 WASP Servlet Throughput and Response Time

0

0.5

1

1.5

2

2.5

1 2 4

CPUs Used

p
er

fo
rm

an
ce

throughput MB/sec

response time sec
84 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
NSAPI Test
The NSAPI module used in this test was printenv2.so. It prints the NSAPI
environment variables along with some text to make the entire response 2KB. This
graph represents average requests per second. The goal was to saturate the CPUs
on the server.�

Notes:

• 2KB of data from the server

• 8 CPU data not at full capacity due to client limitations

• Throughput and response time not available due to client limitations

Figure 7 NSAPI Performance

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8

CPUs Used

o
p

s/
se

c

ops/sec
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 85

Scalability Studies
Static SSL with 100% Session Cache Use Test
A 1KB static SSL file was used for this test. Tests were performed in SSL mode with
the SSL session cache both enabled and disabled. The goal was to saturate the
CPUs on the server.

Notes:

• SmartHeap enabled for this test

• 8 CPU data not available due to client limitations

Figure 8 Static SSL with 100% Session-Cache Use Performance

0

100

200

300

400

500

600

700

800

900

1 2 4

CPUs Used

O
p

s/
se

c

100% session reuse

session cache disabled
86 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
WASP Servlet SSL Test
This test was conducted using the WASP servlet in SSL mode. The goal was to
saturate the CPUs on the server. Figure 9 represents average requests per second
with SSL session cache enabled and disabled. From the graph below it is clear that
the server scales moderately well for Java servlets content. The scaling factor is 75%

To access the WASP servlet shipped with iWS 6.0, look in the directory where you
installed your server for:

/plugins/servlets/examples/legacy/servlets/WASP/WASPServlet.java

Notes:

• Alternate (/usr/lib/lwp) thread library used for Java servlets

• Throughput data not available due to client limitations

• SmartHeap was disabled

Figure 9 WASP Servlet SSL Performance

0

50

100

150

200

250

300

350

1 2 4 8

CPUs Used

o
p

s/
se

c no session cache

100% session
cache
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 87

Scalability Studies
C-CGI SSL Full Session Cache Test
This test was performed by accessing the printenv C executable in SSL mode.
Average requests per second and average throughput are shown. The goal was to
saturate the CPUs on the server. From the graph it is clear that the server scales
very well for C-CGI content with a factor of 100%. SSL session cache was enabled
for this test.

Notes:

• SSL cipher rsa_rc4_128_md5

Figure 10 C-CGI SSL Full Session Cache Performance

0

200

400

600

800

1000

1200

1 2 4 8

CPUs Used

p
er

fo
rm

an
ce

ops/sec

response time
millisec

throughput KB/sec
88 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
C-CGI SSL Test
This test was performed by accessing the printenv C executable in SSL mode.
Average requests per second and average throughput are shown. The goal was to
saturate the CPUs on the server. From the graph below it is clear that the server
scales very well for C-CGI content with a factor of 100%. SSL session cache was
disabled for this test.

Notes:

• SSL ciphers rsa_rc4_128_md5

• 8 CPU data not available due to client limitations

Figure 11 C-CGI SSL Performance

0

50

100

150

200

250

300

1 2 4

CPUs Used

p
er

fo
rm

an
ce

responsetime
millisec

throughput KB/sec

ops/sec
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 89

Scalability Studies
Java Bookstore Application Test
This Java servlet web application test used multiple servlets and static image files
simulating an online bookstore. Each servlet session involved multiple actions
sharing a login using userID and password. Other actions included browsing the
bookstore index, adding books to the shopping cart, searching by author and
subject, and finally checkout and order. Final checkout and order invalidated the
session. Each client login represented a session, and several concurrent clients were
used during the benchmark. The Oracle database was used, with Oracle JDBC thin
driver used for connections. Results below show the number of successful
transactions and response time as a function of CPUs used. Close to 75% server
scaling was achieved.

Notes:

• Customized connection pools for optimal performance

• Alternate (/usr/lib/lwp) thread library used for optimal performance

Figure 12 Java Bookstore Application Performance

0

100

200

300

400

500

600

1 2 4

CPUs Used

o
p

s/
se

c

ops/sec

response time
millisec

ops/sec
90 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
Java Servlet Bookstore Test
This Java servlet application test used multiple servlets and static image files
simulating an online bookstore. Each servlet session involved multiple actions
sharing login, database, userID and password. Other actions included browsing
the bookstore index, adding books to the shopping cart, searching by author and
subject, and final checkout and order. Final checkout and order invalidated the
session. Each client login represented a session and the similar shopping session
was implemented for all clients. The Oracle database was running on the same
system as the server, and the Oracle JDBC thin driver was used for connections.
80% scaling was achieved.

Notes:

• SSL enabled

• Session cache disabled

Figure 13 Bookstore Performance in Secure Mode

0

100

200

300

400

500

600

700

800

1 2 4

CPUs Used

p
er

fo
rm

an
ce ops/sec

responsetime millisec

throughput KB/sec
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 91

Scalability Studies
Keep-Alive Subsystem for Static Content Test
This test was performed with static download of a randomly selected file from a
pool of 400 directories each containing 100 files. Results are shown for iWS 4.1, and
iWS 6.0 with persistent connections and pipelined requests. Tests were conducted
with a file cache configured to include all files in the directories. This graph shows
the response time as a function of concurrent keep-alive connections. From this test
it is clear that the iWS 6.0 keep-alive subsystem performed nearly 2X better than
iWS 4.1, especially at higher client counts.

Notes:

• Tested using a depth=5 pipelined static download of random file from 40,000
files

• Compared iWS4.1 and iWS 6.0 performance

• magnus.conf RqThrottle 128

• Unable to test beyond 512 clients due to network limitations

Figure 14 Keep-Alive iWS 6.0 Versus iWS 4.1 Performance

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Number of Clients

re
sp

o
n

se
 t

im
e

m
se

c

iWS4.1

iWS6
92 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

Scalability Studies
iWS 6.0 and iWS 4.1 Keep-Alive Performance Comparison
This test was performed with static download of a randomly selected file from a
pool of 400 directories each containing 100 files ranging in size from 5 to 250K.
Results are shown for iWS 4.1 and iWS 6.0 with persistent connections and
pipelined requests. Tests were conducted with a file cache configured to include all
files in the directories. The graph below demonstrates iWS 6.0 requests per second
performance against iWS 4.1. From this test it is clear that the iWS 6.0 keep-alive
subsystem performed nearly two times better than iWS 4.1, especially at higher
client counts.

Notes:

• Random pipeline length between 5-15

• Cache configured to contain all 40,000 files

• Keep-Alive settings: MaxKeepAliveConnections = 1024, KeepAliveTimeout =
3600

Figure 15 Comparison of iWS 6.0 and iWS 4.1 Keep-Alive Performance

0

500

1000

1500

2000

2500

3000

1 2 4

CPUs Used

o
p

s/
se

c

iWS4.1

iWS6
iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide 93

Scalability Studies
Java Web Application Stress and Stability Test
This test utilized sessions, request dispatcher, JSPs, and tag libraries.

• Solaris 8 4X400 Mhz UltraSPARC.

• Over 1.8 million servlets and JSPs served per hour

• 76-78% CPU utilization (over 20% idle time)

Figure 16 Java Web Application Stress and Stability

190000

192000

194000

196000

198000

200000

202000

13
:4

1
14

:4
1
16

:1
1
17

:1
1
18

:1
1
19

:1
1
20

:1
1
21

:1
1
22

:1
1
23

:1
1

0:
11

1:
11

2:
11

3:
11

4:
11

5:
11

6:
11

7:
11

8:
11

9:
11

10
:1

1
11

:1
1
12

:1
1
13

:1
1
14

:1
1

Time (30 minute interval)

F
o

o
t-

p
ri

n
t

(K
B

yt
es

)

0

5

10

15

20

25

30

35

40

45

50

H
it

s
(i

n
 M

ill
io

n
s)

Foot-print (KBytes)

Hits (in Millions)
94 iPlanet Web Server Performance Tuning, Sizing, and Scaling Guide • June 2001

	iPlanet Web Server 6.0 Performance Tuning, Sizing, and Scaling Guide
	About Server Performance
	Virtual Servers
	Performance Issues
	Monitoring Performance

	Monitoring Current Activity Using the Server Manager
	Enabling Statistics
	Enabling Statistics from the Server Manager
	1. From the Server Manager, select the Monitor tab.
	2. Select Monitor Current Activity.
	3. Select Yes to enable.
	4. Click OK.
	5. Click Apply.
	6. Select Apply Changes to restart the server for your changes to take effect.

	Enabling Statistics with stats-xml
	1. Under the default object in obj.conf, add the following line:
	2. Add the following Service function to obj.conf:
	3. Add the stats-init SAF to magnus.conf.

	Monitoring Statistics
	1. From the Server Manager, select the Monitor tab.
	2. Select Monitor Current Activity.
	3. Make sure that Statistics /Profiling is enabled.
	4. Select the refresh interval from the drop-down list under Monitor Web Server Statistics:
	5. Select the type of web server statistics to display from the drop-down list:
	6. Click Submit.
	7. Select the process ID from the drop-down list.
	Virtual Server Statistics

	Monitoring Current Activity Using the perfdump Utility
	Changes to perfdump in this Release
	Installing the perfdump Utility
	1. Add the following object to your obj.conf file after the default object:
	2. Add the following to the default object:
	3. If not already enabled, enable stats-xml.
	4. Restart your server software.
	5. Access perfdump by entering this URL:

	Sample perfdump Output

	Using Statistics to Tune Your Server
	Connection Queue Information
	Current /peak /limit
	Tuning

	Total Connections Queued
	Average Queuing Delay

	Listen Socket Information
	Tuning
	Address
	Tuning

	Acceptor Threads
	Tuning

	Default Virtual Server
	Tuning

	Keep-Alive/Persistent Connection Information
	KeepAliveThreads
	KeepAliveCount
	Tuning

	KeepAliveHits
	KeepAliveFlushes
	KeepAliveTimeout
	Tuning

	UseNativePoll
	1. Go to the Server Manager Preferences tab and select the Magus Editor.
	2. From the drop-down list choose, Keep-Alive Settings and click Manage.
	3. Use the drop-down list to set UseNativePoll to on.
	4. Click OK.
	5. Click Apply.
	6. Select Apply Changes to restart the server for your changes to take effect.

	Session Creation Information
	Tuning

	Cache Information
	enabled
	Tuning

	CacheEntries
	Tuning

	Hit Ratio (CacheHits / CacheLookups)
	Maximum age
	Tuning

	Thread Pools
	Thread Pools (Unix /Linux only)
	Native Thread Pools (NT only)
	Generic Thread Pools (NT only)
	Idle /Peak /Limit
	Tuning

	Work Queue Length /Peak /Limit
	Tuning

	NativePoolStackSize
	Tuning

	NativePoolQueueSize
	Tuning

	NativePoolMaxThreads
	Tuning

	NativePoolMinThreads
	Tuning

	DNS Cache Information
	enabled
	Tuning

	CacheEntries (CurrentCacheEntries / MaxCacheEntries)
	Tuning

	HitRatio (CacheHits / CacheLookups)

	Asynchronous DNS Lookup (Unix/Linux Only)
	Enable Asynchronous DNS to Avoid Multiple Thread Serialization
	Caching DNS Entries
	Limit DNS Lookups to Asynchronous
	enabled
	Tuning

	NameLookups
	AddrLookups
	LookupsInProgress

	Busy Functions

	Using Performance Buckets
	Configuration
	Performance Report

	Configuring the File Cache
	1. From the Server Manager, select the Preferences tab.
	2. Select File Cache Configuration.
	3. Check Enable File Cache, if not already selected.
	4. Choose whether or not to transmit files.
	5. Enter a size for the hash table.
	6. Enter a maximum age in seconds for a valid cache entry.
	7. Enter the Maximum Number of Files to be cached.
	8. (Unix /Linux only) Enter medium and small file size limits in bytes.
	9. (Unix /Linux only) Set the medium and small file space.
	10. Click OK.
	11. Click Apply.
	12. Select Apply Changes to restart your server.
	Using the nocache Parameter
	Monitoring the File Cache with the Server Manager
	1. From the Server Manager, select Monitor.
	2. Select Monitor Current Activity.
	3. Choose a Refresh Interval.
	4. From the drop-down list of statistics to be displayed, choose Cache.
	5. Click OK.
	6. The cache statistics appear, refreshed every 5-15 seconds, depending upon the refresh interval...

	File Cache Dynamic Control and Monitoring
	1. Add a NameTrans directive to the default object:
	2. Add an nsfc object definition:

	Tuning the ACL User Cache
	ACL User Cache Directives
	ACLCacheLifetime
	ACLUserCacheSize
	ACLGroupCacheSize

	Verifying ACL User Cache Settings
	Tuning

	Using Quality of Service
	Using Load Balancing
	Using libresonate
	Standard
	Aggressive
	Library configuration
	Testing
	1. Add a new mine.type so this isn't run for every request by modifying config/mime.types and add...
	2. Create a file in your document root directory with the extension of .sleep.
	3. Load the module into the server by editing magnus.conf.
	4. Add this Service line where the others are found (note that order is not important):
	5. Restart your server.

	Sample

	Threads, Processes, and Connections
	Listen Socket Acceptor Threads
	Tuning

	Process Modes
	Single Process Mode
	Multi-Process Mode
	MaxProcs (Unix/Linux)
	Tuning

	Maximum Simultaneous Requests
	Tuning

	Unix/Linux Platform-Specific Issues
	Improving Java Performance
	Configuring the Session Manager
	Tuning maxLocks (Unix/Linux)
	Tuning MMapSessionManager (Unix/Linux)

	Using Java Heap Tuning
	Using an Alternate Thread Library
	Using Pre-compiled JSPs
	Configuring Class Reloading

	Miscellaneous magnus.conf Directives
	IOTimeout Information
	Tuning

	CGIStub Processes (Unix/Linux)
	Tuning

	Buffer Size
	Tuning

	Strict HTTP Header Checking

	Miscellaneous obj.conf Parameters
	find-pathinfo-forward
	nostat

	Common Performance Problems
	Magnus Editor Values
	check-acl Server Application Functions
	Low-Memory Situations
	Under-Throttled Server
	Cache Not Utilized
	Keep-Alive Connections Flushed
	Log File Modes

	Tuning Solaris for Performance Benchmarking
	Table 2 Tuning Solaris for performance benchmarking�

	Sizing and Scaling Your Server
	Processors
	Memory
	Drive Space
	Networking

	Scalability Studies
	Study Goals
	iWS 6.0 Server Configuration Tested
	Sample magnus.conf Used for iWS 6.0 Sizing

	Scalability of Dynamic and Static Content
	Scalability Study Settings and Configurations
	Some Tunings Used for Best Performance
	Using the Solaris Network Cache and Accelerator (SNCA)
	1. In the Solaris operating environment, edit configuration interface file /etc/nca/nca.if and ad...
	2. Edit /etc/nca/ncakmod.conf changing the field ‘status’ to ‘enabled’ and changing the field ‘nc...
	3. Edit /etc/nca/ncalogd.conf changing the field ‘status’ to ‘enabled’.
	4. Reboot the system for changes to take effect.
	5. Edit the iPlanet Web Server server.xml file so the listen socket on port 80 o includes family=...
	6. Restart the server for all changes to take effect.

	Setting the TZ Environment Variable on Solaris
	1. In csh enter setenv TZ in the first non-commented line of /etc/default/init.
	2. In Bourne shell enter:

	iWS 6.0 Scalability Performance and Sizing on F4800
	Performance Results
	Static Test
	Figure 1 Static and File Cache Performance

	Perl-CGI (printenv.pl) Test
	Figure 2 Perl-CGI Performance

	C-CGI printenv Test
	Figure 3 C-CGI printenv Performance

	SHTML Test
	Figure 4 SHTML Performance

	WASP Servlet Test
	Figure 5 WASP Servlet Performance

	WASP Servlet Throughput and Response Time Test
	Figure 6 WASP Servlet Throughput and Response Time

	NSAPI Test
	Figure 7 NSAPI Performance

	Static SSL with 100% Session Cache Use Test
	Figure 8 Static SSL with 100% Session-Cache Use Performance

	WASP Servlet SSL Test
	Figure 9 WASP Servlet SSL Performance

	C-CGI SSL Full Session Cache Test
	Figure 10 C-CGI SSL Full Session Cache Performance

	C-CGI SSL Test
	Figure 11 C-CGI SSL Performance

	Java Bookstore Application Test
	Figure 12 Java Bookstore Application Performance

	Java Servlet Bookstore Test
	Figure 13 Bookstore Performance in Secure Mode

	Keep-Alive Subsystem for Static Content Test
	Figure 14 Keep-Alive iWS 6.0 Versus iWS 4.1 Performance

	iWS 6.0 and iWS 4.1 Keep-Alive Performance Comparison
	Figure 15 Comparison of iWS 6.0 and iWS 4.1 Keep-Alive Performance

	Java Web Application Stress and Stability Test
	Figure 16 Java Web Application Stress and Stability

