C++ Foundation Class Reference

IPlanet Application Server

Version 6.0

806-4794-01
May 2000

Copyright © 2000 Sun Microsystems, Inc. Some preexisting portions Copyright © 2000 Netscape
Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, iPlanet, the iPlanet logo, Java, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Netscape and the Netscape N logo are registered trademarks of Netscape Communications
Corporation in the U.S. and other countries. Other Netscape logos, product names, and service
names are also trademarks of Netscape Communications Corporation, which may be registered in
other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms
and Conditions

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of the product or this document may be reproduced in any
form by any means without prior written authorization of the Sun-Netscape Alliance and its
licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS I1S” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2000 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2000
Netscape Communication Corp. Tous droits réservés.

Sun, Sun Microsystems, iPlanet, the iPlanet logo, Java, et Solaris sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays.

Netscape et the Netscape N logo sont des marques déposées de Netscape Communications
Corporation aux Etats-Unis et d’autre pays. Les autres logos, les noms de produit, et les noms de
service de Netscape sont des marques déposées de Netscape Communications Corporation dans
certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent
l'utilisation, la copie, la distribution et la décompilation. Aucune partie de ce produit ni de ce
document ne peut étre reproduite sous quelque forme ou par quelque moyen que ce soit sans
I'autorisation écrite préalable de I’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de
licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS EXPRESSES
OU IMPLICITES, TOUTES REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE
GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A UN BUT PARTICULIER OU DE NON
CONTREFAGON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES EXCLUSIONS
SERAIENT CONTRAIRES A LA LOL.

Contents

Preface 15
Using the DOCUMENTAtIONot e e e e e 15
ADOUL THIS GUIE ... e e e e e 18
Naming CONVENTIONS ottt e e e e e e e 18
Chapter 1 Class Library Components by Programming Task 21
RUNNING APPLOGICS . . oo e e 21
SECUNNG APPLOGICS . .\ ottt e 22
Managing UsSer SESSIONS\ttt et ettt e e e e e 22
Managing Application Statest e 22
Working with Databases e 22
Creating Reports Using Templates e e 24
Creating and Managing Application EVents i 24
Sending and Receiving Electronic Mail 24
Managing Object Lifetime e 24
... 25
Chapter 2 ClasSSES ...ttt e e e e 27
GXAPPLOGIC ClASSottt e 27
Include File . ..o 28
MEMIDErS .« o 28
MethOdS . ..o e 28
Related TOPICS v ettt e e e 30
CreateDataConn() . ..ot 30
CreateDataCoNNSEt()\ttt 33
CreateHIErQUEIY () o vt e 34
CreateMailboX() . ..o oot 36
CrEaleQUEIY () vttt e e e 37
CrEaESESSION() oottt et e e 38
CrEALETIANS() .« . oottt ettt e e e et e 41

4

DeleteCache() ..ot 43

DEStrOY SESSION() o ottt 44
EValOULPUL() ..ot 45
EvalTemplate() 48
EXOCULE() . ottt 51
GEtAPPEVENT() .ottt 52
LSS ION() .+ v ottt et e 53
GetStateTrEEROO () . ..ottt e 54
ISAULNONIZEA() . ..ot 56
ISCaChEd() .. ot 58
LoadHIErQUEIY () oottt e 58
LOadQUEIY () ottt 62
LOg() et 64
LOgINSESSION()+ v vttt et 65
LOgOULSESSION() .« ottt ettt e e 68
NEWREUEST() .« oottt e e e e 69
NEWREQUESTASYNC() . v oot ettt et e e e e e e e e e 71
RemoveAllCachedResUItS()t e 74
RemoveCachedResUlt()o 75
RESUIT() .. 77
SAVESESSION() .« o ittt 78
SEtCACHECIIEIIA() . . ottt et e 79
SetSessioNViSIDIlITY () ..o e 82
SetVariable() ... 83
SKIPCACNE() .ot 85
StreamReSUIL() ... 86
StreamResURBINArY () ... oo 87
StreamResUltHeader() e 88
Session2 class (deprecated).ot 89
GXSESSION2 ClaSS . . oottt 89
Package Include File 90
Related TOPICS . ..ottt 90
GXTemplateDataBasiC Classttt 91
INClude File ... o 92
MEtNOOS .o 92
IMPIEMENES ..o 92
Related TOPICS . ..ot e 92
GroOUPAPPENA()+ttt e e 92
ROWAPPENA() oot 93
GXTemplateDataBasiC()o ottt 94
GXTemplateMapBasiC Classt 95
INClude File ... o 96
MEtNOOS . . oo 96

iPlanet Application Server C++ Foundation Class Reference « May 2000

IMPIEMENES o 96

Related TOPICS . ..ottt 96
PUL() oo 96
Chapter 3 Interfaces e 99
IGXAppEvent interface (deprecated)ttt 100
INClude File . ..o 100
MRS . ..o 100
EXAMPIe o 101
Related TOPICS . ..ot 102
DelEtEEVENT() . .ot 103
DiSabIEEVENT() .. .ot 103
ENabIeEVeNt() . ..o 104
ENUMEVENTS() ..ot e e 104
QUENYEVENT() ..o 106
RegIStErEVENT() ..ot 107
SEEEVENE() ..ottt 110
IGXAPPEVENTMQr iNterface e 112
Attributes and ACLIONS i 112
Features of Application EVent SUPPOIt it e e 113
Accessing and Creating ApplicationEvents i 114
RegIStEriNg EVENTS i e 114
INclude File . .. oo 114
MEtNOOS . ..o 114
Related TOPICS ...t 115
CrEatEEV Nt () . oottt 115
DeletEEVENT() ..ttt 115
DiSabIEEVENT() ..ot 116
ENabIeEVeNt() . ..o 116
ENUMEVENTS() ..ot e 117
G EVENT() . ottt 120
RegIStErEVENT() ..o 120
TrgOerEVENt() oo 122
IGXAPPEVENtODbj iNterfaceo e 123
INnclude File . .. oo 123
MRS . ..o 123
Related TOPICS . ..ot 124
AdAACHION() .ot 124
DeletE A CTIONS() .ttt 125
ENUMACTIONS() . .ot e e e 126
GEtAIIDULES() . . oo 126
GEINAME() oottt 127
SO A DULES () .. ottt e 127

6

INClude File ..o 129
MEtNOOS .o 129
ALIOC() oo 129
G AAANESS () . ittt et 130
GEESIZE() oottt 131
S DALA() . o ot e 132
IGXCallableStmt interfacet 133
INclude File ..o 133
MEtNOOS . o 133
Related TOPICS . ..ot 134

(4 [T (5 1 134
EXOCULE() . ottt e 134
EXecUteMUILIPIERS()o 137
GEtMOIERESUITS() ..ottt e 140
G PArAMS() . oottt 141
GEtRESUISEL() ..ot 143
SO PArAMIS() .\ ottt 144
IGXCOIUMN INTEI ACE. . . . ottt e e e e e 145
Include File ..o 145
MEtNOOS . o 145
Related TOPICS . ..ot 147
GEINAME() .+ttt 147
GetNUIISAHOWEA() . ..o e e 148
G PIECISION() .ottt 150
GEtSCAlE() .ot e 151
Gt IZE() ottt 152
GEtTabIE() ottt 154
G PE() oottt 155
IGXDataCoNn INTEIfaCEottt e 156
Include File ..o 157
MEtNOOS .o 157
Related TOPICS . ..ot 157
ClOSECONN() .ttt et e 158
(1 4=T: 1 1= I T T 1= o () I 159
DisablETHIggEr() oottt 160
(10T o) I g To o =1 (TP 161
ENableTrigger() ..o 162
EXECULEQUEIY () ottt e 162
GetCONNINTO() ..ttt 164
Gt ONNPIOPS()« ittt 165
G D IV () o oottt 166
G TabIE() ottt 167

iPlanet Application Server C++ Foundation Class Reference « May 2000

GEtTaAbIES() .ottt 169

PrepareCall()o 170
PrepareQUEIY () .ottt 172
SO CONNPIOPS() ottt ittt 174
IGXDataCoNnnSet INTerfacet 174
INnClude File . ..o 175
MRS . ..o 175
Related TOPICS . ..ottt 175
AdACONN() Lt 175
IGXENUMObjeCt INterface 176
INClude File . ..o 176
MEtNOOS . ..o 176
Related TOPICS . ..ot 177
ENUMCOUNT() oo 177
ENUMN X) oo 178
ENUMRESEE() ..ot 179
IGXENTOr INTEI aCE .. . ottt e e e 180
INnclude File . .. oo 180
MEtNOOS . ..o 181
GEtEITOrCOde() .ottt 181
GetErrorCodeNUMI() . ..ot e e 182
GELEITOIMESSAGE()« v vttt it et et e e e 182
GetEIrTOrFacility () ..o 183
IGXHIerQUEIY INtErface e e e 184
INnclude File . .. oo 184
MEtNOOS . ..o 185
Related TOPICS . ..ot 185
AdAQUEIY () oottt 185
DlQUEIY () ot 187
EXECULE() o ittt 188
IGXHierResultSet interface 189
INnclude File . .. oo 189
MRS . ..o 190
EXAMPIe o e 190
Related TOPICS . ..ot 192
COUNT() ottt 192
GetCOIUMN() oo 193
GetCoIUMNBY OIA() . .ottt e e e 195
GEtRESUISEL() .ot e 196
GEtROWNUMDEI() ..o e 197
GetValueDateString() ... oot 198
GetValueDouble() 199
GetValUeINt() ..ot e 200

8

GetValUeS NG () . .ottt 201

MOVEN EXE() oot e 202
MOVETO() ettt e e e 203
IGXLOCK INTEIACE . ..ot e 204
INClude File ..o 204
MEtNOOS . o 204
ChangeMode() ..ot 204
LOCK() ottt 205
UNLOCK() .« 207
IGXMaiIBOX INTEITACEottt e e e 209
INClude File ..o 209
MEtNOOS .o 209
Related TOPICS . ..ot 210

(4 [0 71 (5 1 P 210

(0 0 T=] o T 1S 211
Rt EVE() oo e 213
RetrIEVECOUNT() . ..ot 215
Rt EVERESET() ..ottt 217
SENA() .+t 218
I0bject interface (deprecated) it 220
PaCKAgE ..o 220
IGXOrder INtErfacet 220
Include File ... o 220
MEtNOOS . oo 220
Related TOPICS . ..ot 220
GO S AtE() ..ottt e 221
IGXPreparedQuUery INterfaceot 223
INclude File ..o 223
MEtNOOS . oo 223
Related TOPICS . ..ot 224
EXOCULE() . ottt 224
SO PArAMIS() ..ottt 226
IGXQUENY INTErTaCe . . . o 226
Include File ..o 227
MEtNOOS . oo 227
Related TOPICS . ..ot 228
GetFields() ..ot 228
GEtGIOUPBY () oottt 229
GetHAVING() . oot 230
(1o (@] o (=T Y/ () T 231

G SO) vttt 232

G TabIES() . .ottt 233
GBI () oottt 234

iPlanet Application Server C++ Foundation Class Reference « May 2000

SR IO) ottt 235

SO GIOUPBY ()« vttt et e 237
SEHAVING () oottt e 237
SO OIAEIBY () ottt 238
=1 5T N 240
S TabIES () ot 241
SOV B () oot 242
IGXRESUITSEt INterface 244
INClude File . .. oo 244
MRS . ..o 244
Related TOPICS . ..ot 245

(4 [0 71 (5 1 245
EnumMCOIUMNRESEL() ..ot e 246
ENUMCOIUMNS() ..o e 246
FEtCINEXt() . oo 247
GetCOIUMN() Lo 248
GetCoIUMNBY OIA() . .ottt e 249
GetColumnOrdinal()o 250
GEtNUMCOIUMNS() .ttt e e e e e e 252
(€11 (@] o [T o () P 252
GEtROWNUMDEI() .. e 253
Gt AtUS() oottt 254
GetValueBinary()o 255
GetValueBinaryPieCe()o 255
GetValueDateString() . ..o ot 258
GetValueDouble() 259
GetValUeINt() ..o 259
GetValUBSIZE() . oo 260
GetValueS NG () ..ot 261
GtV aAlUBT XL () . ottt 262
GetValUeTeXIPIECE() . vttt e e 263
MOVET O () ottt 264
ROWC OUNT() ot e 265
WasSNUII() o 266
IGXSEqUENCE INTEITaCEo e e 266
INClude File . ..o 267
MRS . ..o 267
Related TOPICS . ..ot 267

0] oT o () T 268
GECUITENE() . ottt e 268
GEIN EXE() ottt 269
IGXSequUeNnCeEMgr INtEIfacet 271
INClude File . ..o 271

MEtNOOS . ..o 271

Related TOPICS . ..ot e e 272
CreatESBgUENCE() vttt et e e e 272
GEESBOUENCE() .« ot ittt ittt et e e 274

IGXSESSION2 INTEITACEottt e 276

INClude File ..o 277

MEtNOOS . oo 277
GEtSESSIONA PP) « ottt et e 277
GEtSESSIONDALA() + o vt ettt 278
GetSESSIONFIAgS() .« .ottt 280
GtSESSIONID() . ot ettt 281
GetSESSIONTIMEOUL() ...ttt e e e e e e e e 282
SAVESESSION() .« ottt e 283
SetSESSIONDALA() . ..ottt 284

IGXSessioNIDGEN INErface 285

Include File ..o 286

MEtNOOS .o 286

Related TOPICS . ..ot 286
GENErAtESESSID () . ottt 286
GenerateVariantlID() oo 288
MaPTOBASEID () . ottt 289

IGXState2 INTEIfACE . .. e 291

INclude File ..o 292

MEtNOOS .o 292
CreateStateChild() ... 292
DeleteStateChild()o e 294
GetStateChild() 295
GetStateChildCoUNt()o 296
GetStatECONTENTS() . oottt 296
GetStateFIagS() ..ot 297
GetStatENAME() . .ttt 298
GetStatETIMEOUL() . . ottt e e 299
AV ATE () .+ it 299
S StAtEC ONTENTS() . . ottt 300

IGXStreamBuUffer INterface 302

INnclude File ... o 303

MeEthod . . 303
GetStreamMDaAta() .« . oottt 303

IGXTable INterface 304

INnclude File ... o 304

MEtNOOS . o 304

Related TOPICS . ..ot 305
ADAROW() oot 305

10 iPlanet Application Server C++ Foundation Class Reference « May 2000

ANIOCROW() oot 307

DEIEtER OV () ottt 309
EnUuMCOIUMNRESEL() ..ot e 311
ENUMCOIUMNS() ..ot e 312
GetCOIUMN() Lo 312
GetCoIUMNBY OIA() . .ottt e e e 313
GetColumnOrdinal()o 314
GetDAtACONN() . ottt 316
GEENAME() oottt 316
GEtNUMCOIUMNS() .ottt e e e e e 317
SetValUEBINANY () ..\ttt 317
SetValueBinaryPieCe() . ..ot e 318
SetValueDateString () . ..ot 319
SetValueDoUbIE() ... 321
SetValUEINt() ..o 322
SEtValUESIIING() oo ettt 323
SOtV aAlUET EXE() .ottt 323
SEtValUE T EXtPIECE() .ottt e 324
UpPdateROW () ..o e 325
IGXTemplateData interface. 328
INnclude File . .. oo 329
MEtNOOS . .. 329
Related TOPICS . ..ot 329
GetValUB() oo 330
IS EMPEY () oot 331
MOVEN XL) .ot e 331
SEHINT() ..ot 332
IGXTemplateMap iNterface. 333
INnclude File . .. oo 333
MeEthod . .. 333
Related TOPICS ...ttt 333
GO()+ ettt 334
IGXTIle INtEI aCE o et 335
INnclude File . .. oo 335
MRS . ..o 336
EXAMPIe 336
Related TOPICS . ..ottt 338
GetTileChild() ..o oot 338
GetTilEValUEB() . ot 339
MOVETIIENEXIRECOIA() . ..\ttt e e e e 339
MOVETIIETORECOIA() .. oottt e e e e 340
IGXTraNS INEEITaCE . . o oo e e 340
INClude File . .. oo 341

11

12

MEtNOOS . ..o 341

EXAMPIe . 341
Related TOPICS . ..ot e 343
BegiN() o e 343
oMM () oot 344
ROIIDACK() . ot e 345
IGXValLiSt iNterface oo 346
INClude File ..o 347
MEtNOOS . oo 347
Related TOPICS . ..ot e 348
COUNT() et 348
GEIN XK Y () . oottt 349
GetVal() oo 351
GEtVaAIBLOB() .ottt 352
GEtValBLOBSIZE() ..ottt 353
GetValBYRE () ..o 353
GetVallNt() ..o 354
GetValS NG () ..ot 355
REMOVEVAl() .. o 356
RESEIPOSIION() ...t 357
SOtV al() .ot 358
SEtValBLOB() . .ottt 359
SetValBY RE () .o 360
StV allNt() ..o 361
SEtValStriNg() ..ot 362
Chapter 4 C++ FUNCHONS e e e e e e e e 365
GXCoNteXtGetAPPEVENIMOI() . . o ottt 366
GXCoNtextGetSesSiONCOUNT(). .. oottt e e e e e 366
GXCreateBUI eI (). ..ot 367
GXCreateStreamBuUTfer() i 368
GXCreateTemplateDataBasiC()o v e 369
GXCreateTemplateMapBasiC()ottt e 371
GXCreateVallist(). ..ottt e 371
GXDeleteCriticalSECtioN()ottt 372
GXENterCriticalSection()ot 373
GXGEtCUITENtDAtETIME() . . oottt e e e e e e e e e 374
GXGEtValLiSt() .. oot e 375
GXGEtValLIStBLOB() . . oo vttt e 376
GXGEtVAILIStGUID() . . . o v e e e e e e 377
GXGEtValListStriNg() . . .ottt 378
GXGUIDTOSIING() o v oottt e e e e 379
GXINItCHItICalSECtiON() ...ttt 380

iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

GXLeaveCriticalSeCtion()ot 381

GXProcesSOULPUL() . oottt e e e 382
GXStValLiSt() oottt 384
GXSEtValLiStBLOB() . . .ottt e e 385
GXSetValLiStGUID () . . ottt e 386
GXSetValLiStStriNg(). . . oottt 386
GXSErNGTOGUID () . oottt e e 387
GXSYINC DEC() « vttt ettt e et e e e e e e 388
GXSY N C DESTROY () .+ ottt ittt et e e e e e e e e e 389
GXSY N C N C () e ettt ettt e e e e e e e e 390
GXSY N C NI T () o vt ettt e e e e e e 391
GXSY N C LOCK ()« vttt ettt e e e e e e e e e 392
GXSYNC _UNLOCK (). ottt ettt e e e e e e e e e e 393
GXV AL CIAr() o oot 395
G XV AL COPY () o v vttt e 395
GXWatFOrOrder(). . o oot e e e 396
Chapter 5 C++Macros and StrUCtUIES ittt e e 399
Y =T o P 399
SHTUCTUN S oot e e e e e e 399

L= T T 403
Appendix A Return CoOeS i 409
IO X o e 411

13

14 iPlanet Application Server C++ Foundation Class Reference « May 2000

Preface

This preface contains the following topics:
= Using the Documentation
= About This Guide

= Naming Conventions

Using the Documentation

The following table lists the tasks and concepts that are described in the iPlanet
Application Server (iAS) and iPlanet Application Builder (iAB) printed manuals
and online README file. If you are trying to accomplish a specific task or learn
more about a specific concept, refer to the appropriate manual.

Note that the printed manuals are also available as online files in PDF and HTML
format. In addition, note that iAB 6.0 is for developing Java applications.

For information about See the following Shipped with

Late-breaking information about the readme.htm iAS 6.0, iIAS 6.0

software and the documentation Developer Edition
(Solaris), iIAB 6.0

Installing iPlanet Application Server and Installation iAS 6.0 Developer

its various components (Web Connector Guide Edition (Solaris), iAS 6.0

plug-in, iPlanet Application Server
Administrator), and configuring the
sample applications

Installing iPlanet Application Builder install.htm iAB 6.0
Basic features of iAS, such as its software Overview iAS 6.0, IAS 6.0
components, general capabilities, and Developer Edition

system architecture (Solaris), iIAB 6.0

15

Using the Documentation

For information about

See the following

Shipped with

Deploying iPlanet Application Server at
your site, by performing the following
tasks:

« Planning your iPlanet Application
Server environment

= Integrating the product within your
existing enterprise and network
topology

= Developing server capacity and
performance goals

= Running stress tests to measure server
performance

= Fine-tuning the server to improve
performance

Administering one or more application
servers using the iPlanet Application
Server Administrator tool to perform the
following tasks:

= Deploying applications with the
Deployment Manager tool

= Monitoring and logging server activity
= Setting up users and groups

= Administering database connectivity
= Administering transactions

= Load balancing servers

= Managing distributed data
synchronization

Migrating your applications to the new
iPlanet Application Server 6.0
programming model from version 2.1,
including a sample migration of an Online
Bank application provided with iPlanet
Application Server

Deployment
Guide

Administration
Guide

Migration Guide

iAS 6.0

iAS 6.0

iAS 6.0, iIAS 6.0
Developer Edition
(Solaris), iIAB 6.0

16 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

Using the Documentation

For information about See the following

Shipped with

Creating iAS 6.0 applications within an User’s Guide
integrated development environment by
performing the following tasks:

« Creating and managing projects

= Using wizards

= Creating data-access logic

= Creating presentation logic and layout
« Creating business logic

= Compiling, testing, and debugging
applications

= Deploying and downloading
applications

= Working with source control
« Using third-party tools

Creating iAS 6.0 applications that follow Programmer’s
the new open Java standards model Guide (Java)
(Servlets, EJBs, JSPs, and JDBC), by

performing the following tasks:

< Creating the presentation and
execution layers of an application

= Placing discrete pieces of business
logic and entities into Enterprise Java
Beans (EJB) components

= Using JDBC to communicate with
databases

« Using iterative testing, debugging, and
application fine-tuning procedures to
generate applications that execute
correctly and quickly

Using the public classes and interfaces, Server
and their methods in the iPlanet Foundation Class
Application Server class library to write Ref-erence (Java)

Java applications

iAB 6.0

iAS 6.0 Developer
Edition (Solaris), iAB6.0
6.0

iAS 6.0 Developer
Edition (Solaris), iAB
6.0

Preface 17

About This Guide

For information about See the following Shipped with
Creating iAS C++ applications using the Programmer's Order separately
iAS class library by performing the Guide (C++)

following tasks:

« Designing applications

= Writing AppLogics.

= Creating HTML templates
= Creating queries

< Running and debugging applications

Using the public classes and interfaces, Server Order separately
and their methods in the iPlanet Foundation Class
Application Server class library to write Reference (C++)

C++ applications

About This Guide

The iPlanet Application Server Foundation Class Reference (C++) provides
specification-level documentation for the public classes and interfaces, and their
methods, in the iPlanet Application Server Foundation Class Library. Use this book
to look up how a particular class or interface method works, what syntax is
required, and for examples on how to use it.

For conceptual and task-oriented information on designing and developing iPlanet
Application Server applications, read the Programmer’s Guide (C++).

Naming Conventions

18

Item Convention

Class name “GX” prefix, followed by mixed case with initial
uppercase. For example, GXTemplateMapBasic class.

Interface name “IGX” prefix, followed by mixed case with initial
uppercase. For example, IGXPreparedQuery.

Method name Mixed case with initial uppercase. For example,
GetTables().

Parameters Mixed case with initial lowercase. For example, myQuery.

iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

Chapter 1

ClaiPlanetss Library Components by
Programming Task

This chapter provides a list grouped according to general functionality, of the
classes, interfaces, and methods that make up the iPlanet Application Server
Foundation Class Library.

For your convenience, this chapter lists the following commonly used tasks along
with the classes, interfaces, and methods you need to accomplish those tasks:

= Running AppLogics

= Securing AppLogics

= Managing User Sessions

< Managing Application States

< Working with Databases

< Creating Reports Using Templates

= Creating and Managing Application Events
= Sending and Receiving Electronic Mail

= Managing Object Lifetime

Running AppLogics

= Execute() in the GXAppLogic class

= NewRequest() in the GXAppLaogic class

= NewRequestAsync() in the GXAppLogic class

21

22

Setting and Retrieving AppLogic Parameters
e GXCreateValList()

e |GXValList interface

Returning AppLogic Results
= Result() in the GXAppLogic class

« StreamResult() and StreamResultHeader() in the GXAppLogic class

e |GXStreamBuffer interface

Caching Results and Managing the Result Cache
= IsCached(), SetCacheCriteria(), and SkipCache() in the GXAppLogic class

= DeleteCache(), RemoveAllCachedResults(), and RemoveCachedResult() in
the GXAppLogic class

Securing AppLogics

LoginSession(), IsAuthorized(), and LogoutSession() in the GXAppLogic class

Managing User Sessions

= CreateSession(), GetSession(), and SaveSession() in the GXAppLogic class
e GXSession?2 class

e |GXSession2 interface

Managing Application States

= GetStateTreeRoot() in the GXAppLogic class
= |GXState2 interface

Working with Databases

Connecting to Databases
= CreateDataConn() in the GXAppLogic class

iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

e |GXDataConn interface

Managing Asynchronous Operations

e GX DA _EXEC_ASYNC parameter flag for ExecuteQuery() in the
IGXDataConn interface

« IGXOrder interface

Managing Database Sequences

= 1GXSequenceMgr interface

= |IGXSequence interface

Using Stored Procedures

« PrepareCall() in the IGXDataConn interface
= IGXCallableStmt interface

Using Database Triggers

CreateTrigger(), EnableTrigger(), DisableTrigger(), and DropTrigger()in the
IGXDataConn interface

Managing Database Transactions

= CreateTrans() in the GXAppLogic class

= IGXTrans interface

Creating Queries

Flat queries

= CreateQuery() in the GXAppLogic class

e 1GXQuery interface

Hierarchical queries

< CreateHierQuery() in the GXAppLogic class
= IGXHierQuery interface

Prepared queries

= CreateDataConnSet() in the GXAppLogic class
= IGXDataConnSet interface

< PrepareQuery() in the IGXDataConn interface

Chapter 1 ClaiPlanetss Library Components by Programming Task

23

= IGXPreparedQuery interface
e LoadHierQuery() in the GXAppLogic class

Working with Result Sets
e |GXResultSet interface

e |GXHierResultSet interface
e |GXTable interface

e |GXColumn interface

Creating Reports Using Templates

< EvalOutput() and EvalTemplate() in the GXAppLogic class
= GXTemplateDataBasic class
= IGXTemplateData interface
e GXTemplateMapBasic class
e IGXTemplateMap interface

Creating and Managing Application Events
= GXContextGetAppEventMgr()

= IGXAppEventMgr interface and IGXAppEventObj interface

Sending and Receiving Electronic Mail
= CreateMailbox() in the GXAppLogic class

e |GXMailBox interface

Managing Obiject Lifetime

IGXObject interface

24 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

Chapter 1 25

26 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

Chapter 2

Classes

This chapter provides reference material on the classes in the iPlanet Application
Server Foundation Class Library.

The following classes are included in this chapter:
= GXAppLogic class

= GXSession2 class

= GXTemplateDataBasic class

e GXTemplateMapBasic class

GXAppLogic class

The GXAppLogic class is the base class for all AppLogic code. It provides a suite of
useful AppLogic-related helper methods and member variables. You can, for
example, use methods in your derived GXAppLogic class to create database
connections, queries, transactions, and HTML output.

To derive a class from GXAppLogic, include gxapplogic.h and write a class
declaration such as the following:

#i ncl ude <gxappl ogi c. h>
cl ass Hel | oAppLogic : public GXAppLogic

In your derived class, override the Execute() method to implement the main task
of the AppLogic object, as shown in the following example:

STDVETHODI MP
Hel | oAppLogi c: : Execut e()

27

GXAppLogic class

28

{
return Resul t("<htm ><body>Hel | o, worl d! <body></htnm >");
}
Include File
gxapplogic.h
Members
Variable Description
iAB object, which provides access to iPlanet Application Server
services. Some objects require services from iAB.
iAB
iAB object containing input parameters and other information. During
the method, an AppLogic can access items in the iAB to retrieve
the arguments passed into the request.
iAB iABobject containing output parameters. During the iABmethod,
the AppLogic can add or update items in the iABto specify output
values for the request.
Methods
Method Description
iAB Creates a new data connection object and opens a
connection to a database or data source.
iAB Creates a collection used to dynamically assign query
name / data connection pairs before loading a query file.
iAB Creates a new query object used for building and
running a hierarchical query.
iAB Creates an electronic mailbox object used for
communicating with a user through email.
iAB Creates a new query object used for building and
running a flat query.
iAB Creates a new session object used for tracking a

user session.

iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Method Description

iAB Creates a new transaction object used for transaction
processing operations on a database.

iAB Deletes the result cache for a specified AppLogic.

iIAB Deletes a user session.

iAB Creates an output report by merging data with a report
template file.

iAB Creates an output report by merging data with a report
template file. The report is an HTML document that can
be viewed using a Web browser.

iAB Performs the main task of an AppLogic object, such as
accessing a database, generating a report, or other
operations. Should be overridden or implemented.

iAB Retrieves the application event object.

iAB Returns an existing user session.

iAB Returns an existing root node of a state tree or creates a
new one.

iAB Checks a user’s permission level to a specified action or
AppLogic.

iAB Returns true if AppLogic results are being saved in the
result cache.

iAB Creates a hierarchical query by loading a query file and
one or more query names with associated data
connections.

iAB Writes a message to the server log.

iAB Logs an authorized user into a session with a secured
application.

iAB Logs a user out of a session with a secured application.

iAB Calls another AppLogic from within the current
AppLogic.

iAB Calls another AppLogic from within the current
AppLogic, and runs it asynchronously.

iAB Clears an AppLogic’s result cache.

iAB Clears specific results from an AppLogic’s result cache.

iAB Specifies the return value of an AppLogic.

Chapter 2 Classes

29

GXAppLogic class

Method Description

iAB Saves changes to a session.

iAB Stores AppLogic results, such as HTML, data values,
and streamed results, in a result cache.

iAB Sets the session visibility.

iAB Sets a value that is passed to later AppLogic requests
that are called by the same client session.

iAB Skips result caching for the current AppLogic execution.

iAB Streams output results as a string.

iAB Streams output binary data, such as a GIF file.

iAB Streams output header data.

Related Topics

Chapter 4, “Writing Server-Side Application Code,” and Chapter 11, “Running and
Debugging Applications,” in Programmer’s Guide.

CreateDataConn()

Creates a new data connection object and opens a connection to a database or data
source.

HRESULT Cr eat eDat aConn(

DWORD f | ags,

DWORD dri ver,

| GXVal Li st *props,

| GXCont ext *cont ext,

| GXDat aConn **ppConn) ;

flags. One or more optional flags used for connecting to the specified data source.

To try to use a cached connection, if one is available, specify
GX_DA_CACHED. If no cached connections are currently available, a new one
is created.

To always create a new connection (instead of using a cached connection),
specify GX_DA_NEW.

To retry if a connection is not available, specify GX_DA_CONN_BLOCK.

To return a failure immediately after the first attempt if a connection is not
available, specify GX_DA_CONN_NOBLOCK.

30 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

The AppLogic can pass one parameter from both mutually exclusive pairs, as
shown in the following example:

(GX_DA_CACHED | GX_DA_CONN_BLOCK)

Specify 0 (zero) to use the system’s default settings: GX_DA CACHED and
GX_DA_CONN_BLOCK

driver. Specify one of the following:

GX_DA_DRIVER_ODBC GX_DA_DRIVER_SYBASE_CTLIB
GX_DA _DRIVER_MICROSOFT _JET GX_DA_DRIVER_MICROSOFT_SQL
GX_DA_DRIVER_INFORMIX_SQLNET GX_DA_DRIVER_INFORMIX_CLI
GX_DA DRIVER_INFORMIX_CORBA GX_DA_DRIVER_DB2_CLI
GX_DA_DRIVER_ORACLE_OCI GX_DA_DRIVER_DEFAULT

If GX_DA_DRIVER_DEFAULT is specified, the iPlanet Application Server
evaluates the drivers and their associated priorities set in the registry to determine
the driver to use. Specify GX_DA_DRIVER_DEFAULT if your system uses ODBC
and native drivers, and if you want the iPlanet Application Server to choose
between an ODBC driver and a native driver at connection time.

props. IGXValList of connection-specific information required to log in to the data
source. Use the following keys for the connection parameters:

e "DSN' for the data source name.
e "DB" for the database name.
e "USER' for the user name.

e "pPsSwW' for the password.

context. A pointer to the IGXContext object, which provides access to iPlanet
Application Server services. Specify NULL.

ppConn. A pointer to the created IGXDataConn object. When the AppLogic is
finished using the object, call the Release() method to release the interface instance.

Chapter 2 Classes 31

GXAppLogic class

Usage

A data connection is a communication link or session with a database or other data
source. Before interacting with a data source, an AppLogic must first establish a
connection with it. Each connection is represented by a data connection object,
which contains all the information needed to communicate with a database or data
source, such as the name of the database, database driver, user name, password,
and so on. A data connection object is an instance of the IGXDataConn interface.

Use CreateDataConn() to set up a separate connection for each database or data
source you want to access. AppLogic objects refer to the data connection object in
their methods that perform subsequent operations on the database.

Rules
« Call CreateDataConn() before running any other database operations
requiring a data connection object.

= Your network and the database server must be correctly configured and
running so that the AppLogic on your application server can log into the
database management system with which it will communicate.

= The data source name, database name, user name, and password must be valid
for the database management system to which you want to connect.

= The AppLogic must log in with sufficient access rights to perform all
operations it attempts on the data source.

Tips

= Before logging in to the database, the AppLogic should check the user’s
security level to verify sufficient access rights to perform intended operations
on the database.

= The Data Access Engine (DAE) manages database connections and related
housekeeping tasks, such as shutdown and cleanup. While the DAE performs
these tasks automatically and intermittently, an AppLogic can also explicitly
close data connections using CloseConn() in the IGXDataConn interface.

« Before using an ODBC connection, you must use the ODBC administration
utility supplied with your database software to define and name a data source.
For more information about how to do this, refer to your ODBC
documentation.

< To connect to a Sybase database, specify NULL for the datasource, and specify
the database in the form of server:database_name. For example:

devds003: dnet 00a

32 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

/1 Method to open a connection to a database
STDVETHCDI VP

OBBaseAppLogi c: : Get OBDat aConn(| GXDat aConn **ppConn)
{

HRESULT hr =GXE_SUCCESS;

/!l Create a vallist for the connection paraneters
| GXVal Li st *pLi st =GXCr eat eVal Li st () ;
if(pList) {
/1 Set up the connection paraneters
GXSet Val Li st String(pList, "DSN', OB _DSN);
GXSet Val Li st String(pList, "DB", "");
GXSet Val Li st String(pList, "USER', OB _USER);
GXSet Val Li st String(pList, "PSW', OB_PASSWORD);

/1 Attenpt to create the connection
hr = CreateDataConn(0, GX DA DRI VER DEFAULT, pList, m pContext,
ppConn) ;

/I Release pList when it's no longer needed
pList->Release();

return hr;

}

Related Topics
IGXDataConn interface IGXValList interface

“About Database Connections” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

CreateDataConnSet()

Creates a collection used to dynamically assign query name/data connection pairs
before loading a query file.

Syntax
HRESULT Cr eat eDat aConnSet (
DWORD f | ags,
| GXDat aConnSet **ppDat aConnSet) ;

flags. Specify 0. Internal use only.

Chapter 2 Classes 33

GXAppLogic class

ppDataConnSet. Pointer to the created IGXDataConnSet object. When the
AppLogic is finished using the object, call the Release() method to release the
interface instance.

Usage

Use CreateDataConnsSet() only if you are loading a query file using
LoadHierQuery(). To use a query file, an AppLogic first establishes a data
connection with each database on which any queries will be run.

Next, the AppLogic calls CreateDataConnSet() to create an IGXDataConnSet
object, then populates this collection with query name / data connection pairs.
Each query name in the collection matches a named query in the query file.
IDataConnSet provides a method for adding query name / data connection pairs
to the collection. In this way, AppLogic can use standardized queries and select
and assign data connections dynamically at runtime.

Finally, the AppLogic calls LoadHierQuery() to create the hierarchical query
object.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
LoadHierQuery(),
IGXDataConn interface

“About Database Connections” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

CreateHierQuery()

Creates a new query object used for building and running a hierarchical query.

Syntax
HRESULT Creat eH er Query(
| GXHi er Query **pHQ) ;

pHQ. A pointer to the created IGXHierQuery object. When AppLogic is finished
using the object, call the Release() method to release the interface instance.

Usage
Use CreateHierQuery() for nested output or for merging query results with a
template using EvalOutput() or EvalTemplate().

34 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

A hierarchical query can be more complex than a flat query. A hierarchical query
combines one or more flat queries which, when run on the database server, returns
a result set with multiple nested levels of data. The number of nested levels is
limited only by system resources.

The hierarchical query is not necessarily a single query. In fact, a hierarchical query
is a collection of one or more flat queries arranged in a series of cascading
parent-child, one-to-many relationships. The parent query obtains the outer level
of information, or summary, and the child query obtains the inner level of
information, or detail. The parent level of information determines the grouping of
information in its child levels. The child query is run multiple times, once for each
row in the parent query’s result set.

Tips
= Use CreateQuery() instead for simple, flat queries requiring tabular,
non-nested output that is merged with HTML templates.

= Touse a hierarchical query, an AppLogic first creates each individual flat
query and defines its selection criteria. Next, it creates the IGXHierQuery
object with CreateHierQuery(), then calls AddQuery() repeatedly to add a
child query to a parent query for each level of detail in the hierarchical query.

=« Alternatively, an AppLogic can create a hierarchical query by loading a query
file using LoadHierQuery(). With this technique, the iPlanet Application
Server can cache query objects to service requests for identical queries more
quickly.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.
/] Create the hierarchical query

| GXHi er Query *pHg=NULL;
i f(((hr=CreateH erQuery(&Hq))==GXE_SUCCESS) &pHq) {

/1 Add a query
pHg- >AddQuer y(pQuery, pConn, "Sel Custs", "", "");

Chapter 2 Classes 35

GXAppLogic class

Related Topics

AddQuery() in the IGXHierQuery interface,
CreateDataConn(),

CreateQuery(),

Execute() in the IGXHierQuery interface,
IGXHierQuery interface ,

IGXHierResultSet interface

““Caching AppLogic Results to Improve Performance” in Chapter 4, “Writing
Server-Side Application Code,” in Programmer’s Guide.

CreateMailbox()
Creates an electronic mailbox object used for communicating with a user’s mailbox.
Syntax
HRESULT Creat eMai | box(
LPSTR pHost,
LPSTR pUser,

LPSTR pPassword,
LPSTR pUser Addr,
| GXMai | box **ppMai | box) ;

pHost. Address of POP and SMTP server, such as mail.myOrg.com. If the POP
and SMTP servers are running on different hosts, you must use two separate
CreateMailbox() calls.

pUser. Name of user’s POP account, such as jdoe.
pPassword. Password for POP server.

pUserAddr. Return address for outgoing mail, such as john@myOrg.com. Usually
the electronic mail address of the user sending the message.

ppMailbox. A pointer to the created IGXMailbox object. When the AppLogic is
finished using the object, call the Release() method to release the interface instance.

Usage
Use CreateMailbox() to set up a mail session for sending and receiving electronic
mail messages.

In the Internet electronic mail architecture, different servers are used for incoming
and outgoing messages.

= POP (post-office protocol) servers process incoming mail and forward
messages to the recipient’s mailbox.

36 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

= SMTP (simple mail transport protocol) servers forward outgoing mail to the
addressee’s mail server.

Rules
= The specified user account and password must be valid for the specified POP
host name.

< The user address must be valid for the specified SMTP server.

Tip
Once instantiated, use the methods in the IGXMailBox interface to open and close a
mailbox, as well as send and receive mail messages.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXMailBox interface

“Introduction to Email in iPlanet Application Server Applications” in Chapter 10,
“Integrating Applications with Email” in Programmer’s Guide.

CreateQuery()

Creates a new query object used for building and running a flat query.

Syntax
HRESULT Creat eQuery(
| GXQuery **ppQuery);

ppQuery. A pointer to the created IGXQuery object. When AppLogic is finished
using the object, call the Release() method to release the interface instance.

Usage

A flat query is the simplest type of query. It retrieves data in a tabular,
non-hierarchical result set. Unlike a hierarchical query, a flat query returns a result
set that is not divided into levels or groups.

An AppLogic can also use CreateQuery() to create a query object to perform
SELECT, INSERT, DELETE, or UPDATE operations on a database.

Chapter 2 Classes 37

GXAppLogic class

Tips

< Toquery adatabase, the AppLogic first uses CreateQuery() to create the query
object, then constructs the query selection criteria using methods in the
IGXQuery interface, and finally runs the query on a database server. The
AppLogic can process results using methods in the IGXResultSet interface.

< Alternatively, AppLogic can pass a SQL SELECT statement directly to the
database server using SetSQL() in the IGXQuery interface.

< To retrieve data with nested levels of information, use CreateHierQuery()
instead.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

I/l Create a query to insert data into a table
| GXQuery *pUser Quer y=NULL;

i f(((hr=CreateQuery(&User Query))==GXE_SUCCESS) & &pUser Query) {
pUser Query->Set SQL(" I NSERT | NTO OBUser (user Name, password, userType,
eMni |) VALUES (:userNane, :password, :userType, :eMiil)");

Related Topics
CreateDataConn()

CreateQuery(),

IGXHierQuery interface ,

IGXHierResultSet interface ,

ExecuteQuery() in the IGXDataConn interface

CreateSession()
Creates a new session object used for tracking a user session.

38 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Syntax
HRESULT Creat eSessi on(
DWORD dwFl ags,
ULONG dwTi neout ,
LPSTR pAppNane,
LPSTR pSessi onl D,
| GXSessi onl DGen *pl DGen,
| GXSessi on2 **ppSessi on);

dwFlags. Specify one of the following flags, or 0 to use the default system settings:

e GXSESSION_LOCAL to make the session visible to AppLogics in the local
process only.

e GXSESSION_CLUSTER to make the session visible to all AppLogics within the
cluster.

= GXSESSION_DISTRIB to make the session visible to all AppLogics on all
iPlanet Application Servers.

e GXSESSION_TIMEOUT_ABSOLUTE to specify that the session expires at a
specific date and time. Do not use this flag. It is currently unimplemented but
reserved for future use.

e GXSESSION_TIMEOUT_CREATE to specify that the session expires n seconds
from the time the session was created.

The default scope is distributed and the default timeout is 60 seconds from the time
the session was last accessed.

dwTimeout. Session timeout, in number of seconds, or zero for no timeout. The
meaning of timeout depends on the timeout flag specified in dwFlags. A value of 0
means the session is deleted when the AppLogic calls DestroySession().

pAppName. Name of the application associated with the session. The application
name enables the iPlanet Application Server to determine which AppLogics have
access to the session data. Specify NULL to use the application name assigned to
the AppLogic during kreg registration.

pSessionID. The session ID to use. Specify NULL to use the default ID generated
by the system.

pIDGen. The session ID generation object used to generate session IDs. Specify
NULL to use the default IGXSessionIDGen object, or specify a custom session 1D
generation object.

ppSession. A pointer to the created 1GXSession2 object. When AppLogic is
finished using the object, call the Release() method to release the interface instance.

Chapter 2 Classes 39

GXAppLogic class

Usage

Use CreateSession() to create a new session between a user and your application.
AppLogics use sessions to store information about each user’s interaction with an
application. For example, a login AppLogic might create a session object to store
the user’s login name and password. This session data is then available to other
AppLogics in the application.

Rule
If you implement a custom session class, you must override CreateSession().

-LrJlflcomment this when this flag becomes implemented.

If you specified

Java only: GXESSION.GXSESSION_TIMEOUT_ABSOLUTE
C++ only: GXSESSION_TIMEOUT_ABSOLUTE

in dwFlags, then use the

Java only: getTime() method in the Java Date Class

C++ only: mktime() function in the C library

to convert a date/time to seconds. Then, pass this value as the timeout argument.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
In the following code, GetSession() checks if a session exists. If there isn’t an
existing session, CreateSession() creates a new session.

hr = Cet Session(0, "Catal og", NULL, &m pSession);
if (hr !'= GXE_SUCCESS)

Log(" Coul d not get session, creating a new one");
hr = CreateSessi on(GXSESSI ON_DI STRI B, 0, NULL,
NULL, NULL, &m pSession);

40 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

GXAppLogic class

Related Topics
GetSession(),
SaveSession(),
GXSession2 class,
IGXSession2 interface

“Starting a Session” in Chapter 8, “Managing Session and State Information” in
Programmer’s Guide.

“Writing Hierarchical Queries” in Chapter 6, “Querying a Database” in
Programmer’s Guide.

CreateTrans()

Creates a new transaction object used for transaction processing operations on a
database.

Syntax
HRESULT CreateTrans(
| GXTrans **ppTrans);

ppTrans. A pointer to the created IGXTrans object. When AppLogic is finished
using the object, after a call to either Commit() or Rollback(), call the Release()
method to release the interface instance.

Usage

Transaction processing allows the AppLogic to define a series of operations that
succeed or fail as a group. If all operations in the group succeed, then the system
commits, or saves, all of the modifications from the operations. If any operation in
the group fails for any reason, then the AppLogic can roll back, or abandon, any
proposed changes to the target table(s).

If your application requires transaction processing, use CreateTrans() to create a
transaction object. Pass this transaction object to subsequent methods, such as
AddRow() or ExecuteQuery(), that make up a transaction.

Tips

= Use this method in conjunction with AddRow(),UpdateRow(), and
DeleteRow() methods in the IGXTable interface and ExecuteQuery() in
thelGXDataConn interface.

= To manage transaction processing operations, use CreateTrans() to create an
instance of the IGXTrans interface, then use Begin(), Commit(), and
Rollback() in the IGXTrans interface to begin, commit, and rollback the
transaction, respectively.

Chapter 2 Classes 41

GXAppLogic class

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

/!l Create a transaction for several insert operations
| GXTrans *pTx=NULL;

i f(((hr=CreateTrans(&pTx))==GXE_SUCCESS) &&pTx) {
/1 Begin the transaction
pTx->Begi n();
| GXResul t Set *pRset =NULL;

/1 Update User
if

(((hr=pUser PQuery- >Execut e(0, pUserVal List, pTx, NULL,
&pRset)) ==GXE_SUCCESS) &&pRset) {

/!l The result set is not needed; release it
pRset - >Rel ease();

/1 Update Custoner
i f(((hr=pCust PQuery->Execute(0, pCustValList, pTx, NULL,
&pRset)) ==GXE_SUCCESS) &pRset) {

/1 Al updates succeeded. Commit the transaction

pTx->Comm t (0, NULL);

GXSet Val Li st String(mpValln, "ssn", mpSsn);

GXSet Val Li st String(m pVal I n, "OUTPUTMESSAGE", "Successfully
updat ed custoner record");

0) ! =GXE_SUCCE
Handl eOBSyst enError (" Coul d not chain to CShowCust Page
appl ogi c");

el se {
pTx->Rol | back() ;

Handl eOBSyst enError (" Coul d not insert checking account record
for new customer");

i f (NewRequest (" AppLogi ¢ CShowCust Page", m pVal I n, m pVal Qut,
SS)

}

el se {
pTx->Rol | back();
Handl eOBSyst enError (" Coul d not insert checking account record for

new custoner");
pTx->Rel ease();

el se
Handl eOBSystenError ("Coul d not start transaction");

42 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

Related Topics
IGXTrans interface

“Managing Database Transactions” in Chapter 5, “Working with Databases” in

Programmer’s Guide.

DeleteCache()

Deletes the result cache for a specified AppLogic.

Syntax
HRESULT Del et eCache(
LPSTR gui d);

guid. The guid that identifies the AppLogic whose result cache to delete. Specify

NULL to delete the current AppLogic’s cache.

Usage

GXAppLogic class

To free system resources, use DeleteCache() to clear all results from an AppLogic’s
cache when the results are no longer needed. This method also stops further

caching of results.

Tips

= Toclear an AppLogic’s result cache, but continue caching, use

RemoveAllCachedResults().

= Toclear a specific result from the cache, use RemoveCachedResult().

Return Value

HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
HRESULT hr;
LPSTR gui d;

hr = Del eteCache(guid);
if (hr == GXE_SUCCESS)

el se

guid = GXGet Val ListString(mpValln, "applogic");

sprintf(msg, "Successfully deleted cache");

sprintf(msg, "Failed to del ete cache");

Chapter 2

Classes

43

GXAppLogic class

Related Topics
RemoveAllCachedResults(),
RemoveCachedResult(),
SetCacheCriteria()

“Caching AppLogic Results to Improve Performance” in Chapter 4, “Writing
Server-Side Application Code” in Programmer’s Guide.

DestroySession()
Deletes a user session.

Syntax
HRESULT Dest roySessi on(
| GXSessi onl DGen *pl DGen) ;

pIDGen. The session ID generation object used to generate session IDs. Specify
NULL to use the default IGXSessionIDGen object, or specify a custom session 1D
generation object.

Usage

To increase security and conserve system resources, use DestroySession() to delete
a session between a user and the application when the session is no longer
required. An AppLogic typically calls DestroySession() when the user logs out of
an application.

Tip

If the AppLogic set a timeout value for the session when it was created, you need
not delete the session explicitly with DestroySession(). The session is deleted
automatically when the timeout expires.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateSession(),
GetSession()

“Removing a Session and Its Related Data” in Chapter 8, “Managing Session and
State Information” in Programmer’s Guide.

44 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

GXAppLogic class

EvalOutput()

Creates an output report by merging data with a report template file. Depending
on the client—AppLogic or web browser—EvalOutput() returns either a
self-describing data stream or HTML output.

Syntax 1
Merges a template with data from a hierarchical query object.

HRESULT Eval Qut put (
LPSTR t enpl at ePat h,
| GXHi er Query *query,
| GXTenpl at eMap *map,
| GXSt ream *stream
| GXVal Li st *props);

Syntax 2
Merges a template with data from an IGXTemplateData object or IGXHierResultSet
object. IGXHierResultSet objects implement the IGXTemplateData interface.

HRESULT Eval Qut put (
LPSTR t enpl at ePat h,
| GXTenpl at eDat a *dat a,
| GXTenpl at eMap *map,
| GXSt ream *stream
| GXVal Li st *props);

templatePath. Path to the template file used to create the report. At a minimum,
specify the file name. Do not specify the filename extension; for example, specify
“report” instead of “report.ntml”. The EvalOutput() method automatically uses
the correct filename extension depending on the client type. Use a relative path
whenever possible. The iPlanet Application Server first searches for the template
using the specified path. If the template is not found, the iPlanet Application Server
uses the configured TEMPLATEN\PATH search path to find it. For more
information on configuring the search path, see Administration and Deployment
Guide.

query. Pointer to the hierarchical query object from which CreateTrans() derives
the hierarchical result set to merge with the template. The Template Engine runs
the query on the database server. To specify this parameter, the AppLogic must
first create the specified hierarchical query, using CreateHierQuery() in the
GXAppLogic class, and then define it using methods in the IGXHierQuery
interface or calling LoadHierQuery().

Chapter 2 Classes 45

GXAppLogic class

map. Pointer to the field map that links template fields to calculated values. Fields
in the template are expressed with the cell type gx tags. Additionally, the map can
be used to map source data with a non-matching field name but
identically-formatted data. To specify this parameter, the AppLogic should
instantiate the GXTemplateMapBasic class, add template / field mappings using
Put() in the IGXTemplateMap interface, then pass the populated
IGXTemplateMap object to EvalOutput() for template processing.

stream. Pointer to the output stream where results will be captured for subsequent
retrieval and processing. Specify NULL to use the default stream, which sends
results back to the client. To specify this parameter, an AppLogic creates a stream
buffer object from IGXStreamBuffer, which it passes to EvalOutput(). After
EvalOutput() returns, the AppLogic calls GetStreamData() in the
IGSXtreamBuffer interface to retrieve the contents of the buffer as an array of byte
values.

data. Pointer to the IGXTemplateData object containing data. This can be a
hierarchical result set from executing a hierarchical query or it can be data
programmatically organized in memory. To specify this data in memory, an
AppLogic must first instantiate the GXTemplateDataBasic class (or implement
your own version of the IGXTemplateData interface), populate the
IGXTemplateData object with rows of hierarchical data, then pass it to
EvalOutput() for template processing.

props. Specify NULL.

Usage

Use EvalOutput() in an AppLogic that returns output to different types of clients.
The EvalOutput() method detects the client type, selects the appropriate template
file to merge with the data, and generates the appropriate output, as described in
the following table:

Client Template File Used by Output Returned by iAB
iAB
Web browser HTML HTML page
AppLogic that passed to itsiAB ~ GXML Self-describing data stream,
call the following key and value which contains the names of
in the input iAB parameter: the fields in the result set and
their values.

key: gx_client_type

value: "ocl"

46 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

GXAppLogic class

Client Template File Used by Output Returned by iAB
iAB
AppLogic that does not specify HTML HTML page

a client type explicitly, or that
passed to its iAB call the
following key and value in the
input iAB parameter:

key: gx_client_type
value: "http"

Both the GXML and HTML template files contain embedded tags, called GX tags,
that specify how the Template Engine merges dynamic data with the template to
produce the output report. In addition, the HTML template file can contain
graphics, static text, and other components, just like any HTML-formatted
document.

The data that the Template Engine merges with the template can come from several
sources. Most commonly, it comes from the result set of a hierarchical query.
However, it can also come from an IGXTemplateData object containing data
organized hierarchically in memory.

Tips

= |If possible, write queries so that field names in the result set match the field
names in the template. Otherwise, you must use an IGXTemplateMap object to
map field names.

= To create an GXML file, you can convert an HTML template file with the
khtml2gxml utility. This utility strips HTML tags from the template file and
saves the file as a GXML file. The following is an example of how to run the
utility from the command line:

kht m 2gxm nytenpl ate. ht m

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

Chapter 2 Classes 47

GXAppLogic class

Il Create a hierarchical query used for tenplate processing
| GXHi er Query *pHg=NULL;

i f(((hr=CreateH erQuery(&Hq))==GXE_SUCCESS) &&pHq) {
// Add a query that has al ready been defined
pHa- >AddQuer y(pQuery, pConn, "Sel Custs™, "", "");

/1 Pass the hierarchical query to Eval Qutput()
i f(Eval Qut put ("apps/tenpl ate/customer", pHg, NULL, NULL,
NULL) ! =GXE_SUCCESS)
Resul t (" <HTML><BODY>Unabl e to eval uate tenpl at e. </ BODY></ HTML>") ;

Related Topics

EvalTemplate(),

Result(),

IGXHierQuery interface ,

GXTemplateDataBasic class and the IGXTemplateData interface ,
GXTemplateMapBasic class and the IGXTemplateMap interface

“Returning Results From an AppLogic Object” in Chapter 4, “Writing Server-Side
Application Code” in Programmer’s Guide.

EvalTemplate()

Creates an output report by merging data with a report template file. The report is
an HTML document that can be viewed using a Web browser.

Syntax 1
Merges an HTML report template with data from a hierarchical query object.

HRESULT Eval Tenpl at e(
LPSTR pat h,
| GXHi er Query *query,
| GXTenpl at eMap *nap,
| GXStream *st ream
| GXVal Li st *props);

Syntax 2

Merges an HTML report template with data from an IGXTemplateData object or
IGXHierResultSet object. IGXHierResultSet objects implement the
IGXTemplateData interface.

48 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

GXAppLogic class

HRESULT Eval Tenpl at e(
LPSTR pat h,
| GXTenpl at eDat a *dat a,
| GXTenpl at eMap *map,
| GXStream *stream
| GXVal Li st *props);

path. Path to the HTML template file used to create the report. At a minimum,
specify the file name. Use a relative path whenever possible. The iPlanet
Application Server first searches for the template using the specified path. If the
template is not found, the iPlanet Application Server uses the configured
TEMPLATEN\PATH search path to find it. For more information on configuring the
search path, see the Administration and Deployment Guide.

query. Pointer to the hierarchical query object from which EvalTemplate() derives
the hierarchical result set to merge with the HTML template. The Template Engine
runs the query on the database server. To specify this parameter, the AppLogic
must first create the specified hierarchical query, using CreateHierQuery() in the
GXAppLogic class, and then define it using methods in the IGXHierQuery
interface or calling LoadHierQuery().

map. Pointer to the field map that links template fields to calculated values. Fields
in the template are expressed with the cell type gx tags. Additionally, the map can
be used to map source data with a non-matching field name but
identically-formatted data. To specify this parameter, the AppLogic should
instantiate the GXTemplateMapBasic class, add template / field mappings using
Put() in the IGXTemplateMap interface, then pass the populated
IGXTemplateMap object to EvalTemplate() for template processing.

stream. Pointer to the output stream where results will be captured for subsequent
retrieval and processing. Specify NULL to use the default stream, which sends
results back to the client. To specify this parameter, an AppLogic creates a stream
buffer object from IGXStreamBuffer, which it passes to EvalOutput(). After
EvalTemplate() returns, the AppLogic calls GetStreamData() in the
IGSXtreamBuffer interface to retrieve the contents of the buffer as an array of byte
values.

data. Pointer to the IGXTemplateData object containing data. This can be a
hierarchical result set from executing a hierarchical query or it can be data
programmatically organized in memory. To specify this data in memory, an
AppLogic must first instantiate the GXTemplateDataBasic class (or implement
your own version of the IGXTemplateData interface), populate the
IGXTemplateData object with rows of hierarchical data, then pass it to
EvalTemplate() for template processing.

Chapter 2 Classes 49

GXAppLogic class

props. Specify NULL.

Usage

Use EvalTemplate() to create an HTML report by merging data with an HTML
template file. An HTML template is an HTML document with the addition of
special embedded tags, called GX tags, that specify how the Template Engine
merges dynamic data with the template to produce the output report or HTML
page. In addition to these dynamic links, a template can contain static text,
graphics, and other components, just like any HTML-formatted document.

The data that the Template Engine merges with the template can come from several
sources. Most commonly, it comes from the result set of a hierarchical query.
However, it can also come from an IGXTemplateData object containing data
organized hierarchically in memory.

Tips

= Ifyour AppLogic requires the flexibility of returning different output
depending on the client—a Web browser or another AppLogic—use
EvalOutput() instead.

< If possible, write queries so that field names in the result set match the field
names in the template. Otherwise, you must use an IGXTemplateMap object to
map field names.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

I/l Create a flat query

| GXQuery *pQuer y=NULL;

pQuery->Set Tabl es(" OBCust oner, OBAccount");

pQuery->Set Fi el ds("| ast Nane, firstNane, userName, ssn");
pQuery->Set Wher e(wher eCl ause) ;

pQuery->Set Order By("| ast Nane, firstNane");

/1l Create the hier query used for tenplate processing
| GXHi er Query *pHg=NULL;

i f(((hr=CreateH er Query(&pHq)) ==GXE_SUCCESS) &&pHaq) {
/1 Add a query
pHg- >AddQuery(pQuery, pConn, "Sel Custs", "", "");

/1 Pass the hierarchical query to Eval Tenpl ate()
i f(Eval Tenpl ate("Custoner. html ", pHg, NULL, NULL, NULL)!=GXE_SUCCESS)
Resul t (" <HTML><BODY>Unabl e to eval uate tenpl at e. </ BODY></ HTML>") ;

50 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Related Topics

EvalOutput(),

IGXHierQuery interface ,

GXTemplateDataBasic class and the IGXTemplateData interface ,
GXTemplateMapBasic class and the IGXTemplateMap interface

“Returning Results From an AppLogic Object” in Chapter 4, “Writing Server-Side
Application Code” in Programmer’s Guide.

Execute()

Performs the main task of an AppLogic, such as accessing a database, generating a
report, or other operations. It should be overridden in your AppLogic subclass.

Syntax
HRESULT Execute()

Usage

iPlanet Application Server calls the AppLogic’s Execute() method automatically
whenever a request is received for an AppLogic, such as when a user submits a
form or an information request.

Rule
By default, Execute() does nothing except return a value of zero (0). You should
always write code to override this method in your GXAppLogic derived class.

Tips

= Ingeneral, your AppLogic class will inherit from the GXAppLogic class and
override the default behavior of the Execute() method, such as retrieving an
orders report from a database.

< The AppLogic can analyze the m_pValln member variable for input arguments
using methods in the IGXValList interface.

< The AppLogic can modify the m_pValln member variable using methods in
the IGXValList interface.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
In the following example, Execute() displays an HTML page:
OBShowNewCust Page: : Execut e()

{

Chapter 2 Classes 51

GXAppLogic class

i f (Eval Tenpl at e(" GXApp/ COnl i neBank/ t enpl at es/ NewCust . ht ml ",
(1 GXH er Quer y*) NULL, NULL, NULL, NULL)!=GXE_SUCCESS)

Resul t (" <HTML><BCDY>Unabl e to eval uate tenpl at e. </ BODY></ HTML.>") ;
return GXE_SUCCESS;

}

Related Topics
Result(),
IGXValList interface

“Performing the Main Task in an AppLogic Object” in Chapter 4, “Writing
Server-Side Application Code” in Programmer’s Guide.

GetAppEvent()

Retrieves the application event object.

GetAppEvent() is deprecated. See New Usage section for more information.

Syntax
HRESULT Get AppEvent (
| GXAppEvent **ppAppEvent);

ppAppEvent. A pointer to the retrieved IGXAppEvent object. When the AppLogic
is finished using the object, call the Release() method to release the interface
instance.

New Usage
This method is deprecated and is provided for backward compatibility only.

New applications should use the IGXAppEventMgr interface and
IGXAppEventObj interface, along with the helper function
GXContextGetAppEventMgr().

Old Usage

Use GetAppEvent() to retrieve an IGXAppEvent object. Through the
IGXAppEvent interface, you can create and manage application events. An
AppLogic uses application event objects to define events that are triggered at a
specified time or times or when triggered explicitly.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

52 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Related Topics
IGXAppEvent interface,
RegisterEvent() in the IGXAppEvent interface

“Using Events” in Chapter 3, “Application Development Techniques” in
Programmer’s Guide.“Managing Database Transactions” in Chapter 5, “Working
with Databases” in Programmer’s Guide.iAB

GetSession()

Returns an existing user session.

Syntax
HRESULT Get Sessi on(
DWORD dwFl ags,
LPSTR pAppNane,
| GXSessi onl DGen *pl DGen,
| GXSessi on2 **ppSessi on);

dwrFlags. Specify 0 (zero).

pAppName. Name of the application associated with the session. The application
name enables the iPlanet Application Server to determine which AppLogics have
access to the session data. Specify NULL to use the application name assigned to
the AppLogic during kreg registration.

pIDGen. The session ID generation object used to generate session IDs. Specify
NULL to use the default IGXSessionIDGen object, or specify a custom session 1D
generation object.

ppSession. A pointer to the created or retrieved IGXSession2 object. When the
AppLogic is finished using the object, call the Release() method to release the
interface instance.

Usage
Use GetSession() to obtain an existing session. Use it also to determine if a user
session exists before calling CreateSession()to create one.

Rule
If you implement a custom session class, you must implement your own method to
get a session, which in turn, can call the GetSession() method.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Chapter 2 Classes 53

GXAppLogic class

Example 1
In the following code, GetSession() checks if a session exists. If there isn’t an
existing session, CreateSession() creates a new session.

hr = Cet Session(0, "Catal og", NULL, &m pSession);
if (hr !'= GXE_SUCCESS)

Log(" Coul d not get session, creating a new one");
hr = CreateSessi on(GXSESSI ON_DI STRI B, 0, NULL,
NULL, NULL, &m pSession);

Example 2
In the following code, GetSession() gets an existing session, then checks if the user
is authorized to perform a secured task:

Related Topics
CreateSession(),
LoginSession(),
SaveSession(),
GXSession2 class ,
IGXSession2 interface

“Using an Existing Session” in Chapter 8, “Managing Session and State
Information” in Programmer’s Guide.

GetStateTreeRoot()

Returns an existing root node of a state tree or creates a new one.

Syntax

HRESULT Get St at eTr eeRoot (
DWORD dwFl ags,
LPSTR pNane,
| GXSt at e2 **ppSt at eTr ee)

dwFlags. Specify one of the following flags or zero to use the default settings:
e GXSTATE_LOCAL to make the node visible to the local process only.

e GXSTATE_CLUSTER to make the node visible to all AppLogics within the
cluster.

54 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

e GXSTATE_DISTRIB, the default, to make the node visible to all AppLogics on
all servers.

e GXSTATE.GXSTATE_PERSISTENT to write the data to a persistent store that
survives server crashes. [commented out for 2.11; this feature might be fixed in
a future release.]

pName. The name of the root node. If a node with this name doesn’t already exist,
anew node is created.

ppStateTree. A pointer to the created IGXState2 object. When the AppLogic is
finished using the object, call the Release() method to release the interface instance.

Usage

Use GetStateTreeRoot() to create a state tree. A state tree is a hierarchical data
storage mechanism. It is used primarily for storing application data that needs to
be distributed across server processes and clusters.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following code shows how to create a state tree and a child node:

HRESULT hr;
hr = Cet St at eTr eeRoot (GXSTATE_DI STRI B, "G amy", &m pStateRoot);

if (hr == NCERROR && m pSt at eRoot)

{
| GXState2 *pState = NOERROR
hr = m pSt at eRoot - >Get St at eChi | d(" Best Fenml e Vocal ",

&pSt at e) ;
if (hr '= NOCERROR || !pState)
{
hr = m pSt at eRoot - >Creat eSt at eChi | d(" Best Fenal e Vocal ",
0, GXSTATE_ DI STRIB, &pState):

Related Topics
IGXState2 interface

“Using the State Layer” in Chapter 8, “Managing Session and State Information” in
Programmer’s Guide.

Chapter 2 Classes 55

GXAppLogic class

IsAuthorized()

Checks a user’s permission level to a specified action or AppLogic.

Syntax 1
Use in most cases.

HRESULT | sAut hori zed(
LPSTR pTar get,
LPSTR pPer m ssi on,
DWORD *pResul t);

Syntax 2
Contains several parameters that are placeholders for future functionality.

HRESULT | sAut hori zed(
LPSTR pDormai n,
LPSTR pTar get,
LPSTR pPer mi ssi on,
DWORD net hod,
DWORD f | ags,
| GXCred *pCred,
| GXObj ect *pEnv,
DWORD *pResul t);

pDomain. The type of Access Control Lists (ACL). An ACL (created by the server
administrator) defines the type of operations, such as Read or Write, that a user or
group can perform. There are two types of ACLs: AppLogic and general. For this
parameter, specify one of the following strings, which specifies the type of ACL to
check for this user:

"kiva:acl,logic"
"kiva:acl,general”

pTarget. The name of the ACL, if the ACL is a general type. If the ACL is an
AppLogic ACL, specify the AppLogic name or GUID string.

pPermission. The type of permission, for example, “EXECUTE.”
method. Specify 0.

flags. Specify 0.

pCred. Specify NULL.

pEnv. Specify NULL.

56 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

pResult. Pointer to the client-allocated variable that contains the returned
permission status. The variable is set to one of the following enum constants:

Constant Description

GXACL_ALLOWEDIAB The specified permission is granted to the user.
GXACL_NOTALLOWED The specified permission is not granted to the user.

iAB

GXACL_DONTKNOWIA The specified permission is unlisted or there is conflicting
B information.

Usage

Use IsAuthorized() in portions of the code where application security is enforced
through Access Control Lists (ACL). This method lets an application check if a user
has permission to execute an AppLogic or perform a particular action. The
application can use the result of IsAuthorized() as a condition in an If statement. It
can, for example, return a message to users who are denied access to an AppLogic.

Application developers should obtain the list of registered ACLs, users and groups
from the server administrator who created these items. ACLs are created through
the Enterprise Administrator tool or through the kreg tool.

Rule
Before calling IsAuthorized(), the application must create a session with
CreateSession()and a user must be logged in with LoginSession().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

DWORD auth_result = 0;

if (lIsAuthorized("Shop_Inventory", "WRITE', &auth_result) !=
NOERROR || auth_result != (DWORD) GXACL_ALLOWED)

Log(" Unaut hori zed access: Shop_Il nventory");
Eval Qut put (" ki vaapp/ shop/ unaut hori zed_access",

(I GXTenpl ateData *) NULL,
(1 GXTenpl ateMap *) NULL, NULL, NULL);

Chapter 2 Classes 57

GXAppLogic class

}

el se
/'l Update inventory

Related Topics
LoginSession()

“Secure Sessions” in Chapter 9, “Writing Secure Applications” in Programmer’s
Guide.

IsCached()

Returns true if AppLogic results are being saved in the result cache.

Syntax
BOCOL | sCached()

Usage

Call IsCached() to determine whether caching is enabled for the current AppLogic.
You should, for example, call IsCached() before calling SetCacheCriteria() to
avoid inadvertently overwriting the current contents of the result cache.

Return Value
A BOOL true if caching is enabled, or a BOOL false if not.

Related Topics
SkipCache()

“Caching AppLogic Results to Improve Performance” in Chapter 4, “Writing
Server-Side Application Code” in Programmer’s Guide.

LoadHierQuery()

Creates a hierarchical query by loading a query file containing one or more query
names and associated data connections.

Syntax
HRESULT LoadH er Query
LPSTR pFi | eNane,
| GXDat aConnSet *pDat aConnSet,
DWORD f | ags,
| GXVal Li st *pPar ans,
| GXHi er Query **ppHi er Query);

58 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

pFileName. Name of the query (.GXQ) file, including the path. Use a relative path
when possible.

A query file is an ASCII text file containing one or more SQL statements. You can
create the file using any ASCII text editor. Use the following syntactical guidelines:

= The file for a hierarchical query contains several SQL SELECT statements
(compliant with ANSI SQL89) with the following additions:

o Each query is preceded by the following line:
query queryName using (driverCode, DSN, UserNane) is

o Forachild query, append the following line after the SQL SELECT
statement:

join current QueryNane to parent parent Name where
current Quer yNanme. t abl e. col uim = parent Nane. col or Al i as

= In the query file, do not use any semicolons (;) or other vendor-specific SQL
statement terminators.

pDataConnSet. Collection of query name/data connection pairs. The query
names in the collection must match the named queries in the query file. The
associated IDataConn object identifies the data connection for the query.

flags. Specify 0 (zero). Internal use only.

pParams. IGXValList of query file parameters, or NULL. A collection of
placeholders for the WHERE clause. A placeholder may be a name or a number. It
is prefixed by a colon (:) character. The placeholders can be replaced by specifying
replacement values in the ValList parameter.

ppHierQuery. Pointer to the created IGXHierQuery object. When the AppLogic is
finished using the object, call the Release() method to release the interface instance.

Usage

Use LoadHierQuery() to create a hierarchical query object. An AppLogic can
retrieve standardized queries stored in a data file and, at runtime, can dynamically
select and assign the data sources on which the query is run. You create the query
file separately using the Query Designer or an ASCII text editor, ANSI 89 standard
SQL SELECT statements, and specialized syntax. A query file can define both flat
and hierarchical queries.

Chapter 2 Classes 59

GXAppLogic class

To use a query file, the AppLogic first establishes a data connection with each
database on which any queries will be run. Next, the AppLogic calls
CreateDataConnSet()in the AppLogic class to create an IGXDataConnSet
collection, then populates this collection with query name / data connection pairs.
Each query name in the collection matches a named query in the query file.

IGXDataConnSet provides a method for adding query name / data connection
pairs to the collection. In this way, AppLogic can use standardized queries and
assign data connections dynamically at runtime. Finally, the AppLogic calls
LoadHierQuery() to create the hierarchical query object.

Rules

= AppLogic must first call CreateDataConnSet()to create an IGXDataConnSet,
then add query name / data connection pairs using AddConn() in the
IGXDataConnSet interface.

< The query names in the collection must match the query names in the query
file.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following example shows a query (GXQ) file and a section of an AppLogic that
loads the hierarchical query file and creates an HTML report:

Quiery file:

/* STATES */

query STATES using (ODBC, kstates, kuser) is
sel ect STATES. STATE as STATES STATE

from STATES

where (STATES. REG ON = ': REG ON')

order by STATES. STATE asc

/* DETAILS */
query DETAILS using (ODBC, kdetails, kuser) is
sel ect COUNTI ES. COUNTYNAM as COUNTI ES_COUNTYNAM
COUNTI ES. POP as COUNTI ES_POP,
COUNTI ES. STATE as COUNTI ES_STATE
f rom COUNTI ES
order by COUNTI ES. COUNTYNAM asc

join DETAILS to parent STATES
wher e DETAI LS. COUNTI ES. STATE = ’ STATES. STATES_STATE'

60 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

AppLogic code snippet:

| GXDat aConnSet *connSet = NULL;
HRESULT hr;

hr = Creat eDat aConnSet (0, &connSet);
i f (hr == GXE_SUCCESS)

{

/] Create database connections
| GXDat aConn *conn_det ai | DB NULL;
| GXDat aConn *conn_st at esDB NULL;

| GXVal Li st *pLi st =GXCr eat eVal Li st () ;

pLi st->SetVal String("DSN', "kdetails");
pLi st->SetVal String("DB", "");

pLi st->SetVal String("USER', "kuser");

pLi st->Set Val String("PSW"', "kpassword");

/] Create first connection

hr = CreateDataConn(0, GX_DA DRI VER DEFAULT, pList,
NULL, &conn_detail DB);

i{f (hr == GXE_SUCCESS)

pLi st->SetVal String("DSN', "dstates");
pLi st->SetVal String("DB", "");

pLi st->SetVal String("USER', "kuser");

pLi st->Set Val Stri ng("PSW', "kpassword");

/! Create second connection

hr = CreateDataConn(0, GX_DA DRI VER DEFAULT, pList,
NULL, &conn_stat esDB);

pLi st - >Rel ease();

if (hr == GXE_SUCCESS)
{

/1 Specify query / db connection pairs
connSet - >AddConn(" DETAI LS", conn_detail DB);
connSet - >AddConn(" STATES", conn_st at esDB);

/] Create | GXVal List that contains the
/1 REG ON paraneter value to pass to the
/'l hierarchical query

| GXVal Li st param = GXCreateVal Li st ();
param >Set Val String("REG ON', "WEST");

| GXHi er Query *hqry;
/1 Load the GXQ file with the db connection set
/1 and paraneter val ue

hr = LoadH er Query("state.gxq", connSet, O,
param &hqry);

i f (hr == GXE_SUCCESS)
/1 Run the report

Chapter 2

Classes

61

GXAppLogic class

62

Eval Qut put ("state", hqgry, NULL,
NULL, NULL);

el se

Related Topics
CreateDataConnSet(),
IGXDataConnSet interface,
IGXHierQuery interface

“Working with Query Files” in Chapter 6, “Querying a Database” in Programmer’s
Guide.

LoadQuery()

Creates a flat query by loading a query file.

Syntax

HRESULT LoadQuery(
LPSTR pFi | eNane,
LPSTR pQuer yNane,
DWORD f | ags,
| GXval Li st *pPar ans,
| GXQuery **ppQuery);

pFileName. Name of the query (.GXQ) file, including the path. Use a relative path
when possible.

A query file is an ASCII text file containing one or more SQL statements. You can
create the file using any ASCII text editor. Use the following syntactical guidelines:

< The query file for a flat query contains a SQL SELECT statement (compliant
with ANSI SQL89) preceded by the following line:

/* optional coments */
query queryName using (driverCode, DSN, UserNane) is

where queryName is the name of the flat query. Do not use any semicolons (;) in
the query file.

= In the query file, do not use any semicolons (;) or other vendor-specific SQL
statement terminators. The SQL statement may contain placeholders in the
WHERE clause.

iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

pQueryName. Name of the query in the query file.
flags. Specify 0 (zero). Internal use only.

pParams. IGXValList of query file parameters, or null. A collection of placeholders
for the WHERE clause. A placeholder may be a name or a number. It is prefixed by
acolon (:) character. The placeholders can be replaced by specifying replacement
values in the IGXValList parameter.

ppQuery. Pointer to the created IGXQuery object. When the AppLogic is finished
using the object, call the Release() method to release the interface instance.

Usage

Use LoadQuery() to create a flat query object by loading a query (.GXQ) file. An
AppLogic can retrieve standardized queries stored in a data file and, at runtime,
can dynamically select and assign the data source on which the query is run.

You create the query file separately using the Query Designer or an ASCII text
editor, ANSI 89 standard SQL SELECT statements, and special syntax.

To run the flat query, call ExecuteQuery() in the IGXDataConn interface.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following example shows a query (GXQ) file and a section of an AppLogic that
loads and executes the query:

Query file:

/* STATES */

query STATES using (ODBC, kstates, kuser) is
sel ect STATES. STATE as STATES_STATE

from STATES

where (STATES. REGION = ': REG ON)

order by STATES. STATE asc

AppLogic code snippet:

Chapter 2 Classes 63

GXAppLogic class

64

HRESULT hr;

/| Create database connection
| GXDat aConn *conn = NULL;

| GXVal Li st *pLi st =GXCr eat eVal Li st ();

pLi st->SetVal String("DSN', "kstates");

pLi st->SetVal String("DB", "");

pLi st->Set Val String("USER', "kuser");

pLi st->Set Val Stri ng("PSW', "kpassword");

hr = CreateDataConn(0, GX DA DRI VER DEFAULT, pList,

NULL, &conn);
if (hr == GXE_SUCCESS)
{
/] Create | GXVal List that contains the REG ON
/| paraneter value to pass to the
/'l hierarchical query
| GXVal Li st param = GXCreat eVal Li st ();
par am >Set Val String("REG ON', "WEST");

I GXQuery *qry;

/1l Load the GXQ file with the paraneter val ue
hr = LoadQuery("state.gxq", "STATES', O,
param &qry);

/1 Execute the query

| GXResul t Set *rs = NULL;

hr = conn->Execut eQuery(GX_DA RS BUFERRI NG qry, NULL,
NULL, &rs);

Related Topics
IGXQuery interface

“Working with Query Files” in Chapter 6, “Querying a Database” in Programmer’s
Guide.

Log()

Writes a message to the server log.

Syntax 1
Logs a message (type = GXEVENTTYPE_INFORMATION and category = 0).

HRESULT Log(
LPSTR msQ) ;

iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Syntax 2
Logs an event with a message, specifying the type and category of event.

HRESULT Log(
DWORD t ype,
DWORD cat egory,
LPSTR msQ) ;

msg. Message text to log.

type. Message type. Use one of the following variables:
e GXEVENTTYPE_INFORMATION

* GXEVENTTYPE_ERROR

e GXEVENTTYPE_SYSTEM

= GXEVENTTYPE_WARNING

category. User-defined message category. Do not use the range of values reserved
for the iPlanet Application Server systems, which is 0 to 65535, inclusive.

Usage

Use Log() for displaying or storing simple messages or for debugging. The output
can be directed to the console, to a text file, or to a database table. To direct output,
use the iPlanet Application Server Administrator. For more information, see the
Administration and Deployment Guide.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

LoginSession()
Logs an authorized user into a session with a secured application.

Syntax 1
Use in most cases.

HRESULT Logi nSessi on(
LPSTR pNane,
LPSTR pPassword);

Syntax 2
Contains several parameters that are placeholders for future functionality.

Chapter 2 Classes 65

GXAppLogic class

HRESULT Logi nSessi on(
LPSTR pDonai n,
DWORD dwivet hod,
DWORD dwrl ags,
LPSTR pNane,
LPBYTE pAut hDat a,
ULONG nAut hDat a) ;

name. The login user name.
password. The user password.
pDomain. Specify NULL.
dwMethod. Specify 0.

dwFlags. Specify 0.

pName. The login user name.
pAuthData. The user password.

nAuthData. The size of the password.

Usage

Call LoginSession() after creating a user session with CreateSession()or after
retrieving a user session with GetSession(). LoginSession() checks the passed in
login name and password against the user names and passwords stored in the
iPlanet Application Server (the administrator sets up and manages this
information) and logs the user into the session if the login name and password are
valid.

If login is successful, a security credential object is created and associated with the
session. The server checks this security credential object each time it receives an
AppLogic request, and verifies if the user has execute permission for the AppLogic.

Using LoginSession() in conjunction with IsAuthorized(), an application can
ensure that only authorized users can execute certain AppLogics or take certain
actions.

Tip

The server administrator creates users and passwords and manages access to
AppLogics and specified resources, such as sales or forecast reports. During the
development and debugging phases, application developers can use the kreg tool
to create users, groups, and ACLs in the GXR file. These tasks cannot be done
programmatically.

66 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

STDVETHODI MP
ShopWel cone: : Execut e()
{

char buffer[256];
buffer[0] ="'\0";

/1 Verify user login
if (mpValln->CGetVal String("NAVE", buffer, sizeof(buffer)) !'= NOERROR

m pVal | n- >Cet Val Stri ng(" PASSWORD', buffer, sizeof(buffer)) !=
NCERRCR)

Log("m ssing | ogi n NAME/ PASSWORD') ;
return Eval CQut put ("ki vaapp/ shop/ pl ease_| ogi n_agai n",
(I GXTenpl ateData *) NULL,
(1 GXTenpl ateMap *)° NULL, NULL, NULL);
}
/1 1f login is successful, create a session
| GXSessi on2 *nmySess = NULL;
HRESULT hr;
hr = Get Sessi on(0, NULL, NULL, &nySess);
if (hr !'= NOERROR ||
I mySess)

hr =Cr eat eSessi on(0, 60000, NULL, NULL, NULL, &nySess);
if (hr == NOERROR)
Log("created session: success");
el se
Log("created session: fail");
} else
Log("got session");

Now, | ook up user NAME/ PASSWORD i n dat abase
and see what role the user has. The dat abase
shoul d have a user table which tracks all the
users of the online shop application.

STR rol e;
|l e = /* Database | ookup here. */ "Shop_Custoner";

/1 Call LoginSession() to set up the session with that
/1 role. Future requests to AppLogics in this session
/1 will now operate under the right role.

I

S~
og—~—"Y————

=

Logi nSessi on(rol e,
SaveSessi on(NULL) ;

if (mySess)
mySess- >Rel ease() ;

Chapter 2 Classes 67

GXAppLogic class

/1 Check to see if the current role is authorized

/'l against some of the nore advanced operations, and
/1l choose the appropriate main nenu page to return to
/'l the user.

DWORD aut h_result = 0;

if ((lIsAuthorized("Shop_Inventory", "READ', &auth_result) == NOERROR
&&
auth_result == (DWORD) GXACL_ALLOVWED) ||

(I sAut hori zed(" Shop_Dai |l y_Forecast", "READ', &auth_result) ==
NCERROR &&
auth_result == (DWORD) GXACL_ALLOVED) ||
(I'sAut hori zed(" Shop_Weekly_Forecast", "READ', &auth result) ==
NCERRCR &&

auth_result == (DWORD) GXACL_ALLOWED))
return Eval Qut put (" ki vaapp/ shop/ mai nnenu_advanced",
(I GXTenpl ateData *) NULL,
(1 GXTenpl ateMap *)° NULL, NULL, NULL);
return Eval Qut put ("ki vaapp/ shop/ nai nnenu_r egul ar",
(1 GXTenpl ateData *) NULL,
(1 GXTenpl at eMap *) NULL, NULL, NULL);

68

Related Topics
IsAuthorized(),
LogoutSession()

“Secure Sessions” in Chapter 9, “Writing Secure Applications” in Programmer’s

Guide.

LogoutSession()
Logs a user out of a session with a secured application.

Syntax
HRESULT Logout Sessi on(
DWORD dwFl ags) ;

dwrFlags. Specify 0.

Usage

If the AppLogic called LoginSession() to log into a session with a secured
application, call LogoutSession() when the user exits the application, or the
secured portion of it.

iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Rule
Call GetSession()before calling LogoutSession().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetSession(),
IsAuthorized(),
LoginSession()

“Secure Sessions” in Chapter 9, “Writing Secure Applications” in Programmer’s
Guide.

NewRequest()
Calls another AppLogic from within the current AppLogic.

Syntax 1

Passes in the specified IGXValList of input parameters and result values. The
location of the AppLogic execution depends on partitioning and load balancing
criteria.

HRESULT NewRequest (
LPSTR gui d,
| GXCbj ect *vin,
| GXObj ect *vQut,
DWORD f | ag) ;

Syntax 2
Same as Syntax 1, but explicitly specifies the location of AppLogic execution.

HRESULT NewRequest (
LPSTR gui d,
| GXCbj ect *vin,
| GXChj ect *vQut,
DWORD host,
DWORD port,
DWORD f | ag) ;

guid. String GUID or name of the AppLogic to execute.
vin. IGXValList object containing input parameters to pass to the called AppLogic.

vOut. IGXValList object containing result values of the called AppLogic.

Chapter 2 Classes 69

GXAppLogic class

host. IP address of the Internet host of the iPlanet Application Server where the
AppLogic is to be executed. Specify 0 to execute the AppLogic locally.

port. Internet port of the iPlanet Application Server where the AppLogic is to be
executed. Specify 0 to execute the AppLogic locally.

flag. Specify zero.

Usage

Use NewRequest() to call another AppLogic from within the current AppLogic.
When it calls NewRequest(), the AppLogic passes to the iPlanet Application
Server the GUID or name of the AppLogic to execute and, optionally, any input
and output parameters.

iPlanet Application Server constructs a request using the parameters specified and
processes it like any other request, by instantiating the AppLogic and passing in its
parameters. The results from the called AppLogic module are returned to the
calling AppLogic.

The AppLogic that NewRequest() invokes can do one of the following tasks:
= Process application logic and return result values in the vOut parameter.

= Process application logic and return the resulting data form (such as a report)
by streaming the output or by calling Result().

= Process application logic and return result values in the vOut parameter as
well as return the resulting data form (such as a report) by streaming the
output or by calling Result().

If the called AppLogic uses EvalOutput() to stream results, EvalOutput() returns
HTML results by default. The current AppLogic can, however, specify that
EvalOutput() return a non-HTML data stream by setting the gx_client_type key to
"ocl" in the input IGXValList of NewRequest(). For example:

val list.SetVal String("gx_client_type", "ocl");

Rule
The specified GUID string, input parameters, and output parameters must be valid
for the specified AppLogic.

Tips

= The calling AppLogic can create new input and output ” in Chapter 8,
“Managing Session and State Information” in Programmer’s Guide. so as to
avoid changing its own input and output IGXValLists.

70 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

= The AppLuogic can call another AppLogic, passing its own input and output
IGXValLists. In this case, the called AppLogic accesses the same stream
destinations as the calling AppLogic.

< Use NewRequestAsync() instead of NewRequest() to execute asynchronous
request.

« Called AppLogics might reside on different servers, depending on partitioning
and load balancing configurations, might be written in a different language, or
might have cached results. The calling AppLogic can be unaware or
independent of these conditions.

= Using NewRequest(), you can modularize parts of the application, build
dynamic header/footer information and smart reporting templates, and hide
complex or confidential business logic in secure submodules or even separate
servers.

= Use NewRequest() judiciously. Each invoked AppLogic uses a certain amount
of communications and server resources.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXValList interface

“Passing Parameters to AppLogic From Code” in Chapter 4, “Writing Server-Side
Application Code” in Programmer’s Guide.

NewRequestAsync()

Calls another AppLogic from within the current AppLogic, and runs it
asynchronously.

Syntax 1

Passes in the specified IGXValList of input parameters and result values. The
location of the AppLogic execution depends on partitioning and load balancing
criteria.

HRESULT NewRequest Async(
LPSTR gui d,
| GXCbj ect *vin,
| GXObj ect *vQut,
DWORD f | ag,
| GXOrder **ppOrder);

Chapter 2 Classes 71

GXAppLogic class

Syntax 2
Same as Syntax 1, but explicitly specifies the location of AppLogic execution.

HRESULT NewRequest Async(
LPSTR gui d,
| GXCbj ect *vin,
| GXObj ect *vQut,
DWORD host,
DWORD port,
DWORD f | ag
| GXOrder **ppOrder);

guid. String GUID or name of the AppLogic to execute.
vin. IGXValList object containing input parameters to pass to the called AppLogic.
vOut. EvalOutput()object containing result values of the called AppLogic.

host. IP address of the Internet host of the iPlanet Application Server where the
AppLogic is to be executed. Specify 0 to execute the AppLogic locally.

port. Internet port of the iPlanet Application Server where the AppLogic is to be
executed. Specify 0 to execute the AppLogic locally.

flag. Specify 0.

ppOrder. Pointer to the returned IGXOrder object, which the AppLogic can use to
obtain the status of the request. When the calling AppLogic is finished using the
order object, call the Release() method to release the interface instance.

Usage

Use NewRequestAsync() to call another AppLogic from within the current
AppLogic, and run it asynchronously. Executing an AppLogic asynchronously is
useful if the AppLogic performs a lengthy operation, or if the AppLogic acts as a
monitor or remains persistent. For example, an asynchronous AppLogic may
perform a lengthy database query to produce a complex result set that it sends an
e-mail to a destination address. Another AppLogic module may run continuously
and re-index HTML pages every 24 hours.

When an AppLogic calls NewRequestAsync(), it passes to the iPlanet Application
Server the GUID of the AppLogic module to execute and, optionally, any input and
output parameters.

The iPlanet Application Server constructs a request using the parameters specified
and processes it like any other request, by instantiating the AppLogic and passing
in its parameters. The results from the called AppLogic module are returned to the
calling AppLogic.

72 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

The AppLogic that NewRequestAsync() invokes can do one of the following tasks:

Process application logic and return result values in the vOut parameter.

Process application logic and return the resulting data form (such as a report)
by streaming the output or by calling Result().

Process application logic and return result values in the vOut parameter as
well as return the resulting data form (such as a report) by streaming the
output or by calling Result().

Rules

The specified AppLogic must be accessible to the iPlanet Application Server.

The specified GUID string, input parameters, and output parameters must be
valid for the specified AppLogic module.

Tips

To get the current status of the request, use the GetState() method in the
returned 1GXOrder object.

The calling AppLogic can use GXWaitForOrder() to wait for one or multiple
asynchronous requests to return.

The calling AppLogic can create new input and output IGXValLists so as to
avoid changing its own input and output IGXValLists.

The AppLogic can call another AppLogic, passing its own input and output
IGXValLists. In this case, the called AppLogic accesses the same stream
destinations as the calling AppLogic. To prevent conflicts in streaming, the
calling AppLogic can use GXWaitForOrder() to wait until the called AppLogic
is finished.

Using NewRequestAsync(), you can modularize parts of the application, build
dynamic header/footer information and smart reporting templates, and hide
complex or confidential business logic in secure submodules or even separate
servers.

Use NewRequestAsync() judiciously. Each invoked AppLogic uses a certain
amount of communications and server resources.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

Chapter 2 Classes 73

GXAppLogic class

i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB
i AB

Related Topics
IGXOrder interface,
IGXValList interface

“Passing Parameters to AppLogic From Code” in Chapter 4, “Writing Server-Side
Application Code” in Programmer’s Guide.

RemoveAllCachedResults()

Clears an AppLogic’s result cache.

Syntax
HRESULT RenoveAl | CachedResul t s(
LPSTR gui d);

guid. The guid that identifies the AppLogic whose result cache to clear. Specify
NULL to clear the current AppLogic’s cache.

74 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Usage

To free system resources, use RemoveAllCachedResults() to clear an AppLogic’s
result cache when the results are no longer needed. This method clears the cache,
but does not disable caching.

Tips
= Toclear an AppLogic’s entire result cache and discontinue caching, use
DeleteCache().

= To clear a specific result from the cache, use RemoveCachedResult().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
HRESULT hr;
LPSTR gui d;

guid = GXGet Val ListString(mpValln, "applogic");
hr = RenpbveAl | CachedResul t s(gui d);

i f (hr == GXE_SUCCESS)

sprintf(msg, "Successfully cleared cached results");
el se

sprintf(nmsg, "Failed to clear cached results");

Related Topics
DeleteCache(),
RemoveCachedResult(),
SetCacheCriteria()

“Caching AppLogic Results to Improve Performance” in Chapter 4, “Writing
Server-Side Application Code,” in Programmer’s Guide.

RemoveCachedResult()
Clears a specific result from an AppLogic’s result cache.

Syntax

HRESULT RenopveCachedResul t (
LPSTR gui d
| GXVal Li st *criteria);

Chapter 2 Classes

75

GXAppLogic class

guid. The guid that identifies the AppLogic whose cached result to clear. Specify
NULL to clear the current AppLogic’s cached result.

criteria. An IGXValList object that contains the criteria for selecting the result to
remove. In the IGXValList object, set a specific value that matches the cache criteria
passed to SetCacheCriteria(). For example, if the cache criteria passed to
SetCacheCriteria() was "Salary=40000-60000"), you can remove results where
salary is 50000 by setting in the IGXValList object a "Salary" key to a value of
"50000".

Usage
Use RemoveCachedResult() to clear a specific result from an AppLogic’s cache
when the result is no longer needed.

Tips
= Toclear an AppLogic’s entire result cache and discontinue caching, use
DeleteCache().

= Toclear an AppLogic’s entire result cache, but continue caching, use
RemoveAllCachedResults().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
HRESULT hr;
LPSTR gui d;

guid = GXGet Val ListString(mpValln, "applogic");

resul tList = GXCreateVal List();
hr = resul tList->SetVal String("Salary", "50000");

hr = RemovedCachedResul t (guid, resultList);

if (hr == GXE_SUCCESS)

sprintf(msg, "Successfully deleted specified result");
el se

sprintf(msg, "Failed to delete specified result");

Related Topics
DeleteCache(),
RemoveAllCachedResults(),
SetCacheCriteria()

76 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

“Caching AppLogic Results to Improve Performance” in Chapter 4, “Writing
Server-Side Application Code,” in Programmer’s Guide.

Result()

Specifies the return value of an AppLogic.

Syntax
HRESULT Resul t (
LPSTR resul t);

result. Text representing the result value of the current AppLogic.

Usage

Use Result() in conjunction with the Execute()method to define a return value for
an AppLaogic. In general, use Result() in an AppLogic that services HTTP or HTML
requests and returns a simple HTML string that does not require streaming.

In the Execute() method, the AppLogic can call Result() in conjunction with the
return statement to send data results directly back to the entity that called the
AppLogic.

Rule
An AppLogic can stream results using StreamResultHeader()or StreamResult(). If
the AppLogic streams results, call Result() only after finishing streaming.

Tips
= An AppLogic can cache results for reuse using SetCacheCriteria().

= Alternatively, the AppLogic can return results using a template. The AppLogic
can call EvalOutput()to merge a dynamically created result set from a
hierarchical query with a template to produce formatted results. The result
from EvalOutput() is streamed automatically.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

i f (Eval Tenpl at e(" GXApp/ COnl i neBank/ t enpl at es/ NewCust . htm ",
(1 GXHi er Query*) NULL, NULL, NULL, NULL)!=GXE_SUCCESS)

Resul t (" <HTM.><BODY>Unabl e to eval uate tenpl at e. </ BODY></ HTM.>") ;
return GXE_SUCCESS;

Chapter 2 Classes 77

GXAppLogic class

Related Topics
Execute(),
StreamResult(),
StreamResultHeader()

“Returning HTML Results” in Chapter 4, “Writing Server-Side Application Code,
in Programmer’s Guide.

SaveSession()
Saves changes to a session.

Syntax
HRESULT SaveSessi on(
| GXSessi onl DGen *pl DGen) ;

pIDGen. The session ID generation object used to generate session IDs. Specify
NULL to use the default IGXSessionIDGen object, or specify a custom session 1D
generation object.

Usage

Use SaveSession() to ensure that changes are saved in the distributed state storage
area, which stores the session information for subsequent use if any other
AppLogics are invoked within the same session.

The SaveSession() method uses a cookie—if the Web browser supports cookies—
to pass the session ID back and forth between the Web browser and iPlanet
Application Server. It transfers only the session ID, not the session information
itself, to provide better information security.

HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Because SaveSession() uses StreamResultHeader()to register the cookie, be sure to
call SaveSession() before calling StreamResult(), EvalTemplate(), or any other
HTTP body streaming methods.

Tip

< The AppLogic needs to call the SaveSession() method in the GXAppLogic
class at least once to set a cookie. The SaveSession() method in the IGXSession2
interface only saves data to the distributed state store, whereas SaveSession()
in the GXAppLogic class saves data to the distributed state store and sets a
cookie.

< The AppLogic should call SaveSession() to save changes after updating
session data.

78 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

< To improve performance, keep smaller amounts of information in the session.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateSession(),
GetSession(),
GXSession2 class,
IGXSession2 interface

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

SetCacheCriteria()

Stores AppLogic results, such as HTML, data values, and streamed data, in a result
cache.

Syntax

HRESULT Set CacheCriteria(
ULONG ti neout,
ULONG cachesi ze,
LPSTR criteria)

timeout. Number of seconds the AppLogic result remains in the result cache after
the last access. To clear the result cache after a specified time from its creation, use
the GXREPOSIT_TIMEOUT_CREATE flag, as shown in the following example:
Set CacheCri t eri a(GXREPCSI T_TI MEQUT_CREATE | 300, ...).In this example,
the cache is cleared 300 seconds after it is created. Set timeout to zero to clear the
result cache and disable caching for this AppLogic.

cachesize. Maximum number of results to be cached for the AppLogic at any time.
The result cache stores distinct AppLogic output up to the cachesize limit. If the
AppLogic generates another output to cache, the least accessed member of the
cache is dropped. Setting cachesize to zero clears the result cache and disables
caching for this AppLogic.

criteria. Criteria expression containing a string of comma-delimited descriptors.
Each descriptor defines a match with one of the input parameters to the AppLogic.
Use the following syntax:

Chapter 2 Classes 79

GXAppLogic class

Syntax Description
arg Test succeeds for any value of arg in the input parameter list. For
example:

Set CacheCriteria(3600, 1, " Enpl oyeeCode") ;

ar g=v Test whether arg matches v (a string or numeric expression). For
example:

"st ock=NSCP"

Assign an asterisk (*) to the argument to cache a new set of results every
time the AppLogic module runs with a different value. For example:

Set CacheCriteria(3600, 1, "Enmpl oyeeCode=*");

arg=vl|v2 Test whether arg matches any values in the list (v1, v2, and so on). For
example:

"dept =sal es| nar ket i ng| support"
arg=nl-n2 Test whether arg is a number that falls within the range. For example:

"sal ar y=40000- 60000"

Usage

Use ppSession. A pointer to the created or retrieved IGXSession2 object. When the
AppLogic is finished using the object, call the Release() method to release the
interface instance.

SetCacheCriteria() to specify caching for the results from an AppLogic. An
AppLogic can cache any type of result. Caching improves performance for
time-consuming operations such as queries and report generation.

When caching is enabled for an AppLogic, the iPlanet Application Server stores its
input parameter values and its results in the cache so that, if the AppLogic is called
again with the same parameters (matching the cache criteria), the iPlanet
Application Server retrieves its results directly from the cache instead of running
the AppLogic again. If the AppLogic is called with different parameters, the iPlanet
Application Server runs the AppLogic again and saves its result in the cache as
well.

Each AppLogic has only one cache but it can contain multiple sets of results if the
AppLogic was run multiple times with different parameters for each call.

80 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Tips

= Do not use caching if real-time results are needed. For example, to ensure
current data, caching is not recommended for query operations on highly
volatile data.

= Use SkipCache() to bypass result caching if an error occurred during
AppLogic execution.

= Use IsCached() to test whether caching is currently enabled. Calling
IsCached() is important because it prevents calling SetCacheCriteria() too
many times.

= To change the caching criteria for AppLogic, call again, this time specifying
different caching criteria. Each subsequent call supersedes the previous call,
discarding the current contents of the result cache, and its criteria remain in
effect until the next SetCacheCriteria() call, if applicable.

= To stop caching results, call DeleteCache(). A subsequent call to
SetCacheCriteria() can reactivate caching.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example 1

/1 Verify AppLogic caching before setting cache criteria
if(!lIsCached()) {
Log ("Set criteria to save output from 3 deptcodes");
i f(SetCacheCriteria(60, 3, "deptcode")!=GXE_SUCCESS)
Log(" Coul d not set criteria");
el se
Log("Succeeded in setting criteria");

el se
Log("Not setting Criteria");

Example 2
/1l Cache multiple results for up to 100 val ues of Departnent

Set CacheCriteria(3600, 100, "Departnent");

Example 3
/| Cache single result for given matching val ue of Departnent

Set CacheCriteria(3600, 1, "Departnent=Cperations");

Chapter 2 Classes 81

GXAppLogic class

Example 4
/1l Cache multiple results for two matchi ng val ues of dept

Set CacheCriteria(3600, 2, "Depart ment =Research | Engi neering");

Example 5
/| Cache one result for salary in a range

Set CacheCriteria(3600, 1, "Sal ar y=40000- 60000") ;

Example 6
/'l Cache two results for several paraneters

Set CacheCriteria(3600, 2,
"Depart ment =Sal es, Sal ar y=40000- 60000") ;

Related Topics
DeleteCache(),
RemoveAllCachedResults(),
RemoveCachedResult(),
IsCached(),

SkipCache()

“Caching AppLogic Results to Improve Performance” in Chapter 4, “Writing
Server-Side Application Code,” in Programmer’s Guide.

SetSessionVisibility()

Sets the session visibility.

Syntax
HRESULT Set Sessi onVisibility(
LPSTR domai n,
LPSTR pat h,
BOCL i sSecure)
domain. The domain in which the session is visible.
path. The path to which this session must be visible.

isSecure. If TRUE, the session is visible only to secure servers (HTTPS).

82 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Usage

Because of the way cookies are used to identify sessions, iAS sessions are, by
default, accessible only within the same URL name space where they were created.
As a result, if you call only the SaveSession() method, then your session is not
visible to any other domain or URL.

However, if you call SetSessionVisibility() before calling SaveSession(), you can
control the visibility of the session. The SetSessionVisibility() method internally
controls the attributes of the cookie used in transmitting the session ID.

You must be part of the domain to set the domain attribute. For example, if the
domain is set to iplanet.com, then the session is visible to foo.iplanet.com,
bar.iplanet.com, and so on. Domains must have at least two periods (.) in them. For
example, .net is an invalid domain attribute.

By default, the session is visible only to the URL that created the session cookie.
Use the path parameter to specify different URLs that will be visible. For example,
the path /phoenix would match "/phoenixbird" and "/phoenix/bird.html". To
make the entire server root visible, specify a path of "/", the most general value
possible.

Both the domain and path parameters are null-terminated character strings. They
are not modified within the SetSessionVisibility() method.

Rule

For the session visibility to take effect, you must invoke SetSessionVisibility()
before a call to SaveSession(). The SaveSession() method uses the visibility
attributes set from SetSessionVisibility().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
SaveSession()

SetVariable()

Sets a value that is passed to later AppLogic requests that are called by the same
client. If the client is a browser, cookies are used to transfer variable values.

Syntax 1

HRESULT Set Vari abl e(
LPSTR nane,
LPSTR val ue);

Chapter 2 Classes 83

GXAppLogic class

Syntax 2

HRESULT Set Vari abl e(
LPSTR nane,
LPSTR val ue,
ULONG ti neout,
LPSTR url Pat h,
LPSTR ur | Domai n,
BOOL secure);

name. The name of the value to record for this browser session. The value will
appear on any future AppLogic’s input IGXValList under this name.

value. The string value to record.

timeout. Number of seconds before the cookie expires. Applies to HTTP clients
only.

urlPath. The subset of URLs in a domain for which the cookie is valid. Applies to
HTTP clients only.

urlDomain. The domain for which the cookie is valid. Applies to HTTP clients
only.

secure. If a cookie is marked secure, it will be sent only if the communications
channel with the host is a secure one. Currently, this means that secure cookies will
be sent only to HTTPS (HTTP over SSL) servers. Applies to HTTP clients only.

Usage

Use SetVariable() to store information specific to a client that you want to pass to
other AppLogics invoked by the same client. The values set with SetVariable() are
passed to the input IGXValList (m_pValln) of the called AppLogics.

In the case of an HTTP client, SetVariable() streams the variable outin an HTTP
header. The HTTP header registers a cookie, which is the mechanism used to pass
data back and forth between the browser and the iPlanet Application Server.

Rule

Because SetVariable() streams information in an HTTP header, call it before calling
any HTTP body streaming methods, such as StreamResult(), EvalOutput(), and
EvalTemplate().

84 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

Tip

If your application requires more security, you should use iPlanet Application
Server’s session mechanism instead of cookies to maintain session information.
With a iPlanet Application Server session, data is stored on the server and only a
session ID is passed between the client and the server. For more information about
the session mechanism, see IGXSession2 interface.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Using Cookies” in Chapter 3, “Application Development Techniques,” in
Programmer’s Guide.

SkipCache()

Skips result caching for the current AppLogic execution.

Syntax
HRESULT Ski pCache()

Usage
Use SkipCache() to prevent results from the current request from being saved in
the results cache if an error occurs during AppLogic execution.

Rule
For SkipCache() to have any effect, you must first enable caching by calling
SetCacheCriteria().

Return Value

Related Topics
DeleteCache(),
RemoveAllCachedResults(),
RemoveCachedResult(),
IsCached(),
SetCacheCriteria(),
IGXValList interface

“Caching AppLogic Results to Improve Performance” in Chapter 4, “Writing
Server-Side Application Code,” in Programmer’s Guide.

Chapter 2 Classes 85

GXAppLogic class

StreamResult()
Streams results as a string.

Syntax
HRESULT StreanResult(
LPSTR res);

res. The body data to stream. If returning HTML body data, you can use HTML
formatting following HTTP body conventions. See your HTTP documentation for
more information.

Usage

Use StreamResult() to stream data as soon as it is available. With streaming, an
AppLogic can make the first portion of the data available for use immediately,
even if the remainder of the stream has not yet been processed. This is especially
useful with large volumes of data, such as a query that takes a while for the
database server to process completely. An AppLogic can process and display those
rows in the result set that have been returned. Without streaming, AppLogic must
prepare the entire result first before returning any data.

The StreamResult() method is typically used to stream HTTP body content. Before
calling StreamResult(), the AppLogic must call StreamResultHeader() to return
the HTTP header data first. The HTTP protocol separates data streams into header
and body data, and specifies that the header data and body data are returned in
that order. For details about HTTP header and body data, see your HTTP
documentation.

Tips

= Alternatively, use EvalTemplate() to stream HTTP body output. It merges data
with an HTML template. As soon as a segment of the output page is finished,
EvalTemplate() streams it out to the Web browser.

< An AppLogic can call StreamResultHeader() and StreamResult() repeatedly
to stream more results.

= To stream binary data, use StreamResultBinary().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics

StreamResultBinary(),
StreamResultHeader()

86 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXAppLogic class

“Streaming Results” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

StreamResultBinary()
Streams binary data, such as a GIF file.

Syntax

HRESULT StreanResul t Bi nary(
LPBYTE buf,
ULONG of f set
ULONG | engt h) ;

buf. The array from which binary data is streamed.

offset. Index in the array. The starting position in the array to start streaming
binary body data.

length. Number of bytes to stream from the array, starting at the specified offset
position.

Usage

Use StreamResultBinary() to stream binary data as soon as it is available. With
streaming, an AppLogic can make the first portion of the data available for use
immediately, even if the remainder of the stream has not yet been processed. This
is especially useful with large volumes of data, such as a query that takes a while
for the database server to process completely. An AppLogic can process and
display those rows in the result set that have been returned. Without streaming,
AppLogic must prepare the entire result first before returning any data.

The StreamResultBinary() method is used to stream HTTP body data of binary
type, such as an image (GIF) file. Before calling StreamResultBinary(), the
AppLogic should call StreamResultHeader() to return the HTTP header data first.
The HTTP protocol separates data streams into header and body data, and
specifies that the header data and body data are returned in that order. For details
about HTTP header and body data, see your HTTP documentation.

Tips

= Alternatively, use EvalTemplate() to stream HTTP body output. It merges data
with an HTML template. As soon as a segment of the output page is finished,
EvalTemplate() streams it out to the waiting Web browser.

< To stream non-binary data, use StreamResult().

Chapter 2 Classes 87

GXAppLogic class

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
StreamResult(),
StreamResultHeader()

“Streaming Results” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

StreamResultHeader()
Streams header data.

Syntax
HRESULT StreanResul t Header (
LPSTR hdr)

hdr. The header data to stream. If returning HTTP header data, use the HTTP
header conventions, such as the following:

"Content - Type: text/htm"
"Location: <redirect url>"

See your HTTP documentation for more information.

Usage

Use StreamResultHeader() to return header data before streaming body data. With
streaming, an AppLogic can make the first portion of the data available for use
immediately, even if the remainder of the stream has not yet been processed. This
is especially useful with large volumes of data, such as a query that takes a while
for the database server to process completely. An AppLogic can process and
display those rows in the result set that have been returned. Without streaming,
AppLogic must prepare the entire result first before returning any data.

The StreamResultHeader() method is typically used in conjunction with
StreamResult() to stream HTTP data. Before calling StreamResult(), the AppLogic
should call StreamResultHeader() to return the HTTP header data first. The HTTP
protocol separates data streams into header and body data, and specifies that the
header data and body data are returned in that order. For details about HTTP
header and body data, see your HTTP documentation.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

88 iPlanet Application Server C++ Foundation Class Reference « May 2000

Session2 class (deprecated)

Related Topics
StreamResult(),
StreamResultBinary()

“Streaming Results” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

Chapter 13, “Taking Advantage of NAS Features” in Programmer’s Guide

(Java)Chapter 13, “Taking Advantage of NAS Features” in Programmer’s Guide
(Java)

Chapter 9, “Using JDBC for Database Access” in Programmer’s Guide (Java)

Session2 class (deprecated)

The Session2 class is deprecated and is provided for backward compatibility only.
New applications should use the methods provided by the standard
javax.servlet.http.HttpSession interface. In addition, iASIAB provides the
HttpSession?2 interface, an extension to HttpSession that supports applications that
must call AppLogics.

For more information, see Chapter 11, “Creating and Managing User Sessions,” in
the Programmer’s Guide (Java), or see the Migration Guide.

GXSession?2 class

The Session2 GXSession2 class is designed to help you implement a custom session
class if your application requires additional session functionality. To create a
custom session class, subclass the Session2 GXSession2 class, then define new
methods. Your subclass can, for example, define accessor methods to read and
write information specific to your session. An online shopping application, for
example, might require specialized methods, such as AddIltemToCart(), to track
shopping items per user session.

When you subclass the Session2GXSession2 class, you must do the following:

< Override the createSession()CreateSession() and getSession()GetSession()
methods in the AppLogicGXAppLogic class. In these methods, you can invoke
the base AppLogicGXAppLogic methods to obtain an 1Session2IGXSession2
object, and construct your own session class by passing in this object, as shown
in the following example:

Chapter 2 Classes 89

GXSession2 class

HRESULT hr;
| GXSessi on2 *pSession = Null
hr = GXAgent:: Get Sessi on(dwHl ags, pAppName, pl DGen, &pSession);

if (hr == GXE_SUCCESS)
{
m pSessi on = new MySessi on(pSessi on);
if (!m_pSession)
hr = GXE_ALLOC FAI LED;
pSessi on- >Rel ease() ;

return hr

= Pass in the ISession21GXSession2 interface in the subclass constructor, as
shown in the following example:

public class MySession extends Session2
{
public MySession(l Session2 sess)
cl ass MySession : public GXSession2
{
public:
My Sessi on(| GXSessi on2 *pSess);

Because the Session2GXSession?2 class delegates the implementation of methods in
the 1Session21GXSession2 interface to the object passed to its constructor, you don’t
have to implement every method of that interface in your subclass. You need only
define the methods you want to add.

Package Include File
com.kivasoft.session gxapplogic.h

Related Topics
ISession2 interface (deprecated)IGXSession2 interface

“Using Custom Sessions” in Chapter 8, “Managing Session and State Information”
in Programmer’s Guide.

Chapter 9, “Using JDBC for Database Access” in Programmer’s Guide (Java)

90 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXTemplateDataBasic class

GXTemplateDataBasic class

The GXTemplateDataBasic class represents a memory-based, hierarchical source of
data used for HTML template processing. It implements the IGXTemplateData
interface, and provides methods for creating and managing this hierarchical data.

The most common sources of data used for template processing are result sets
obtained from queries on supported relational database management systems.
However, an AppLogic might need to obtain data from non-RDBMS sources. For
example, an AppLogic might display a list of numbers generated from a formula,
or it might display a list of processors available on the server machine and their
CPU loads. To display such information, the AppLogic can create an instance of
theGXTemplateDataBasic class, populate that instance with rows of hierarchical
data, and then pass the GXTemplateDataBasicobject to the Template Engine for
processing by calling EvalTemplate() or EvalOutput() in the GXAppLogic class.

Alternatively, to provide application-specific special processing and to hook into
the template generation process, AppLogic can subclass the GXTemplateDataBasic
class and override the member methods in the IGXTemplateData interface.

An AppLogic can create a flat or hierarchical data structure.

< For a flat data structure, create the data structure using
GXTemplateDataBasic(), then call RowAppend() for each row of data to be
added, specifying the column name and data in each row.

< For a hierarchical data structure, proceed in the following sequence:
a. Create the parent GXTemplateDataBasic() instance.
b. Create the child GXTemplateDataBasic() instance.

c. Add one or more rows to the child data structure using RowAppend() on
the child instance.

d. Define the start of a new parent row by using RowAppend() on the parent
instance.

e. Join the child data structure to the parent data structure using the parent’s
GroupAppend().

f. Repeat steps 2 through 5 for each subsequent group of data.

The number of nesting levels is limited only by system resources. One parent row
can contain many joined child instances, in which case the AppLaogic calls the
parent’s GroupAppend() more than once after calling the parent’s RowAppend().

Chapter 2 Classes 91

GXTemplateDataBasic class

92

Include File
gxtmplbasic.h

Methods

Method Description

GroupAppend() Links the specified child group to the current parent group.

RowAppend() Appends a new row of data to the current template data
object or group.

GXTemplateDataBasic() Creates an empty template data object with the specified
name.

Implements

IGXTemplateData interface

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class

IGXTemplateData interface

“Constructing a Hierarchical Result Set with GXTemplateDataBasic” in Chapter 7,
“Working with Templates” in Programmer’s Guide.

GroupAppend()

Links the specified child group to the current parent group.

Syntax
HRESULT G oupAppend(
GXTenpl at eDat aBasi ¢ *pChi | d) ;

pChild. Pointer to the child GXTemplateDataBasic object to link. When AppLogic
is finished using the object, call the Release() method to release the interface
instance.

Usage
Use GroupAppend() to define the hierarchical relationship from a parent row to
child GXTemplateDataBasic objects.

iPlanet Application Server C++ Foundation Class Reference « May 2000

GXTemplateDataBasic class

Rules
= Call GroupAppend() only after calling RowAppend(). The child instance is
associated with the last row from the last call to RowAppend() on the parent.

< The AppLogic must first create the parent and child objects using new
GXTemplateDataBasic(), then populate the child object with rows of data
using RowAppend().

Tip

Use GroupAppend() for hierarchical data objects only.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class
IGXTemplateData interface

“Constructing a Hierarchical Result Set with GXTemplateDataBasic” in Chapter 7,
“Working with Templates” in Programmer’s Guide.

RowAppend()

Appends a new row of data to the current template data object or group.

Syntax
HRESULT RowAppend(
LPSTR szRow) ;

szRow. String containing a series of column name and value pairs, separated by
semi-colons, using the following format:

"col uml=val uel[; col um2=value2[...]]"

The columns must be identical for each RowAppend()call within the same
GXTemplateDataBasicobject.

Usage
Use RowAppend()to populate the template data object with rows of data.

Rule
AppLogic must first create the template data object using GXTemplateDataBasic().

Chapter 2 Classes 93

GXTemplateDataBasic class

Tip

Add rows in the sequence in which you want the Template Engine to process them.
The template data object is processed in physical order only. AppLogic can only
append rows to the data object. It cannot subsequently insert, delete, or sort
records in the template data object.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class

IGXTemplateData interface

“Constructing a Hierarchical Result Set with GXTemplateDataBasic” in Chapter 7,
“Working with Templates” in Programmer’s Guide.

GXTemplateDataBasic()

Creates an empty template data object with the specified name.

Syntax
HRESULT GXTenpl at eDat aBasi c(
LPSTR pNane) ;

pName. Name of the parent or child data object referred to in the template.

Usage
Use new GXTemplateDataBasic() to create parent and child data objects.

Rule
The specified data object name must be unique within this template data object.

Tips
= Use RowAppend()to populate this data object with rows of data.

= For hierarchical template data objects, use GroupAppend() to define the
hierarchy among GXTemplateDataBasic objects.

= The specified data object name must be unique within the hierarchical result
set.

= Create parent and child groups in the sequence in which you want the
Template Engine to process them. The template data object is processed in
physical order only.

94 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXTemplateMapBasic class

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class

IGXTemplateData interface

“Constructing a Hierarchical Result Set with GXTemplateDataBasic” in Chapter 7,
“Working with Templates” in Programmer’s Guide.

GXTemplateMapBasic class

The GXTemplateMapBasic class represents an object that contains one or more
mappings between fields in an HTML template and the data used to replace those
fields. It provides a method for defining these mappings before processing the
template using EvalTemplate() or EvalOutput() in the GXAppLogic class.

Fields in the HTML template are defined using special GX markup tags. The data,
which the Template Engine uses to replace those fields dynamically at runtime, can
come from any of the following sources: a calculated value, a column in a result set,
afield in an IGXTemplateData template data object, or a field from a map object.

Before calling EvalTemplate() or EvalOutput() in the GXAppLaogic class, an
AppLogic uses the Put() method in the GXTemplateMapBasic class to link the field
name in the GX markup tag with a precomputed value or a named column or field
in the data source. After defining the mappings, the AppLogic passes the
populated IGXTemplateMapBasic object as the map parameter in EvalTemplate()
or EvalOutput(). The Template Engine uses these mappings during template
processing to dynamically transfer data values from the data source to the HTML
output report.

Mapping allows the AppLogic to use the same template for multiple data sources
with different column names, for a data source whose schema changes over time,
or for memory-based data sources defined using a TemplateDataBasic object.

While it is not necessary, you may derive a class from GXTemplateMapBasic, by
writing a class declaration such as the following:

cl ass MyTenpl at eMapBasi ¢ : public Tenpl at eMapBasi ¢

To provide application-specific special processing, the AppLogic can subclass
GXTemplateMapBasic and override its Get() method in the IGXTemplateMap
interface to hook into the Template Engine generation process. For example,
AppLogic can intercept and filter data from a database before the Template Engine
processes it.

Chapter 2 Classes 95

GXTemplateMapBasic class

96

Include File
gxtmplbasic.h

Methods

Put() Adds a mapping to the template map.

Implements
IGXTemplateMap interface

Related Topics

EvalTemplate() and EvalOutput() in the GXAppLogic class,
GXTemplateDataBasic class,

IGXTemplateData interface,

IGXTemplateMap interface

“TagAttributes” in Chapter 7, “Working with Templates” in Programmer’s Guide.

Put()

Maps the value assigned to the id attribute in the HTML template to another value.

Syntax
HRESULT Put (
LPSTR szKey,
| GXBuf fer *pBuff);

szKey. In the GX markup tag in the HTML template, the name of the field, or
placeholder, assigned to the id attribute. Must be an identical match
(case-sensitive).

pBuff. Pointer to the IGXBuffer object that contains the expression to substitute for
the specified template field name, such as:

e Calculated value, such as a number or date.

< Name of the column in the hierarchical result set that the Template Engine uses
to process the template. In your template, the column name must begin with a
“$” character.

iPlanet Application Server C++ Foundation Class Reference « May 2000

GXTemplateMapBasic class

= Name of a field in the GXTemplateDataBasic object that the Template Engine
uses to process the template. In your template, the field name must begin with
a “$” character.

Usage
Use Put() to add template field/data source pairs to the template map before
calling EvalTemplate() or EvalOutput() in the GXAppLogic class.

Rule
Use the GXCreateBuffer() function to create the IGXBuffer object. Thereafter, use
methods in the IGXBuffer interface to manipulate the memory block.

Tip
The AppLogic can place the Put() method call inside a loop to construct the field

map iteratively. For example, the AppLogic could use this technique to populate a
map from a file, line by line.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

STDVETHCDI VP
OBBaseAppLogi c: : Handl eOBVal i dati onError (LPSTR pMessage)

HRESULT hr =GXE_SUCCESS;

i AB GXTenpl at eMapBasi ¢ map;

i ABI GXBuf fer *pBuf f=GXCreateBuffer();

i ABi f (pBuff)

i AB{

i ABpBuf f->Al | oc(strl en(pMessage) +1) ;

i ABst rcpy((char*) pBuff->Get Address(), pMessage);

i ABmap. Put (" OUTPUTMESSAGE", pBuff);

i AB// Send it to the tenplate

i ABhr =Eval Tenpl at e(" GXApp/ COnl i neBank/ t enpl at es/
ValidationError.htm ", (1GXTenpl ateData*) NULL,

&map, i ABNULL, i AB
NULL) ;

i ABpBuUf f - >Rel ease();

i AB}

i ABreturn hr;

Chapter 2 Classes 97

GXTemplateMapBasic class

Related Topics

EvalTemplate() and EvalOutput() in the GXAppLogic class,
GXTemplateDataBasic class,

IGXTemplateData interface,

IGXTemplateMap interface

“TagAttributes” in Chapter 7, “Working with Templates” in Programmer’s Guide.

98 iPlanet Application Server C++ Foundation Class Reference « May 2000

This chapter provides reference material on the interfaces in the iPlanet

Chapter

3

Interfaces

Application Server Foundation Class Library.

The following interfaces are included in this chapter:

IGXAppEvent interface (deprecated)

IGXAppEventMgr interface
IGXAppEventObj interface
IGXBuffer interface
IGXCallableStmt interface
IGXColumn interface
IGXDataConn interface
IGXDataConnSet interface
IGXEnumObject interface
IGXError interface
IGXHierQuery interface
IGXHierResultSet interface
IGXLock interface
IGXMailBox interface
IGXObject interface
IGXOrder interface

IGXPreparedQuery interface

IGXQuery interface
IGXResultSet interface
IGXSequence interface
IGXSequenceMgr interface
IGXSession2 interface
IGXSessionIDGen interface
IGXState?2 interface
IGXStreamBuffer interface
IGXTable interface
IGXTemplateData interface
IGXTemplateMap interface
IGXTile interface

IGXTrans interface
IGXValList interface

Chapter 13, “Taking Advantage of NAS Features” in Programmer’s Guide
(Java)Chapter 12, “Writing Secure Applications” in Programmer’s Guide (Java)

99

IGXAppEvent interface (deprecated)

IGXAppEvent interface (deprecated)

100

IGXAppEvent is deprecated and is provided for backward compatibility only.
New applications should use the iAS API’s two replacement interfaces:
IGXAppEventMgr and IGXAppEventOb;.

The IGXAppEvent interface represents the defined events an application supports.
An AppLogic can define events that are triggered at a specified time or times or
when triggered explicitly.

Currently, an AppLogic can execute two actions when an event is triggered:
= Run aspecified AppLogic
< Send an email

Events are stored persistently in the iPlanet Application Server, and are removed
only when your application explicitly deletes them. They are typically used to
schedule routine administrative tasks, such as making back-ups or getting
statistics.

The IGXAppEvent interface defines methods for registering, triggering, enabling,
disabling and deleting events. To create an instance of the IGXAppEvent interface,
use the GetAppEvent() method in the GXAppLogic class.

Include File
gxiappevent.h

Methods

Method Description

DeleteEvent() Removes a registered event from iPlanet Application Server.
DisableEvent() Disables a registered event.

EnableEvent() Enables a registered event.

EnumEvents() Enumerates through the list of registered events.
QueryEvent() Returns the properties of a registered event.

RegisterEvent() Registers a named event for use in applications.

SetEvent() Triggers a registered event.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXAppEvent interface (deprecated)

Example

The following example shows AppLogic code that registers two application events:

= The first event runs the RepGenAgent AppLogic at 5 AM everyday

< The second event emails a report generated by RepGenAgent at 6 AM
everyday

STDVETHCDI VP
Report Agent : : Execut e()
{

HRESULT hr = NOERROR,

| GXAppEvent *pAppEvent = NULL;

| GXval Li st *pVal Li st = NULL;

LPSTR pReport EvNane = "Report Event";
LPSTR pRepCGenEvNane = "RepGenEvent";

I/l Get a reference to the AppEvent Manager

hr = Cet AppEvent (&pAppEvent);

if ((hr '= NCERROR) || (pAppEvent == NULL))
return StreanResult (" AppEvent not found!
");

/] Create a vallist to pass infornation
/1 for appevent registration of the first event
pVal Li st = GXCreateVal List();
if (pValList == NULL) {
AppEvent - >Rel ease();
return Result(m_pValOut, "Can’t create ValList
");

}
/l Add the appevent name to the vallist
GXSetValListString(pValList, GX_AE_RE_KEY_NAME,

pRepGenEvName);

/I Set the appevent state to be enabled
GXSetValListint(pValList, GX_AE_RE_KEY_STATE,
GX_AE_RE_EVENT_ENABLED);

/I Set the appevent time to be 05:00:00 hrs everyday
GXSetValListString(pValList, GX_AE_RE_KEY_TIME, "5:0:0

//*");
/I Set the appevent action to run the RepGenAgent applogic

GXSetValListString(pValList, GX_AE_RE_KEY_NREQ,

"GUIDGX-{630CB09B-
1A1D-1315-AD23-0800207B918B}");

/I Register the appevent
hr = pAppEvent->RegisterEvent(pRepGenEvName, pValList);
pValList->Release();

/I Create a vallist to pass information
/I for appevent registration of the second event

Chapter 3 Interfaces

101

IGXAppEvent interface (deprecated)

I
pVal Li st = GXCreateVal Li st();
if (pVal List == NULL) {
pAppEvent - >Rel ease() ;
return Result(m_pValOut, "Can’t create ValList
");

/I Add the appevent name to the vallist
GXSetValListString(pValList, GX_AE_RE_KEY_NAME,
pReportEvName);

I/l Set the appevent state to be enabled
GXSetValListint(pValList, GX_AE_RE_KEY_STATE,
GX_AE_RE_EVENT_ENABLED);

I/l Set the appevent time to be 06:00:00 hrs everyday
GXSetValListString(pValList, GX_AE_RE_KEY_TIME, "6:0:0
//*");

/I Set the appevent action to send

/I e-mail to report@acme.com

GXSetValListString(pValList, GX_AE_RE_KEY_MTO,
"report@acme.com");

/I The content of the e-mail is in /tmp/report-file
GXSetValListString(pValList, GX_AE_RE_KEY_MFILE, "/tmp/report-
file™);

/I The e-mail host running the SMTP server is mailsvr
GXSetValListString(pValList, GX_AE_RE_KEY_MHOST, "mailsvr");

/I The sender's e-mail address is admin@acme.com
GXSetValListString(pValList, GX_AE_RE_KEY_SADDR,
"admin@acme.com");

/Il Register the appevent
hr = pAppEvent->RegisterEvent(pReportEvName, pValList);

/I Clean-up resources and return

1

pValList->Release();

pAppEvent->Release();

return StreamResult("Successfully Registered RepGenEvent and
ReportEvent
");

Related Topics
GetAppEvent() method in the GXAppLogic class

IGXAppEventMgr interface
IGXAppEventObj interface

102 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXAppEvent interface (deprecated)

IGXValList interface

“Using Events” in Chapter 3, “Application Development Techniques” in
Programmer’s Guide.

DeleteEvent()

Removes a registered event from the iPlanet Application Server.

Syntax
HRESULT Del et eEvent (
LPSTR pEvent Nane) ;

pEventName. The name of the registered event to delete.

Usage
Use DeleteEvent() to remove an event that is no longer required. To temporarily
stop a event from being triggered, use DisableEvent().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
DisableEvent()

RegisterEvent()

DisableEvent()

Disables a registered event.

Syntax
HRESULT Di sabl eEvent (
LPSTR pEvent Nane) ;

pEventName. The name of the registered event to disable.

Usage

Use DisableEvent() to temporarily stop an event from being triggered. The event is
disabled until it is enabled with EnableEvent(). To remove an event from the
iPlanet Application Server permanently, use DeleteEvent().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Chapter 3 Interfaces 103

IGXAppEvent interface (deprecated)

104

Related Topics
DeleteEvent()

EnableEvent()
RegisterEvent()

EnableEvent()

Enables a registered event.

Syntax
HRESULT Enabl eEvent (
LPSTR pEvent Nane) ;

pEventName. The name of the registered event to enable.

Usage

Use EnableEvent() to prepare a specified event for activation. Call EnableEvent()
after you register an event with RegisterEvent(), or to enable a trigger that was
disabled with DisableEvent().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
DisableEvent()

RegisterEvent()

EnumEvents()
Returns the list of registered events.

Syntax
HRESULT EnunEvent (
| GXEnumObj ect **ppEvents);

ppEvent. Pointer to the IGXEnumObject object that contains the list of registered
events. When the AppLogic is finished using the object, call the Release() method
to release the interface instance.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXAppEvent interface (deprecated)

Usage

Use EnumEvents() to get information on all the registered events. The
IGXEnumObject object returned by EnumEvents() contains a set of IGXValList
objects, one per event. Each IGXValList contains the properties assigned to the
event when it was registered with RegisterEvent().

Tip
Use the methods in the IGXEnumObject interface to iterate through the contents of
the returned IGXEnumObiject object.

Example
The following AppLogic code shows how to use EnumEvents() to get information
on all the registered events and save it to a report;

HRESULT hr = NOCERROR;
| GXEnumObj ect *pEObj s = NULL;
| GXAppEvent *pAppEvent = NULL;

| GXval Li st *pVal Li st = NULL;
CHAR pBuf [128];

ULONG ul Count = 0;

FI LE *f p;

/1 Open /trrp/report file for ertlng the report
fp = fopen("/tnp/report-file", "wW');

/1l Get a reference to the AppEvent Manager
hr = Get AppEvent (&pAppEvent);

/] Get the Enureration object for all registered appevents
hr = pAppEvent - >EnuntEvent s(&pEbj s) ;

/1 Retrieve the count of registered appevents
hr = pEQbj s- >EnunCount (&ul Count) ;

fprintf(fp, "Nunber of Registered Events: %\ n", ul Count);

/1 Reset the next enuneration object to be the first instance
hr = pEQObj s- >EnunReset (0);

/1 lterate through all the enuneration instances
while (ul Count--) {

CHAR pKey][256] ;

GXVAL val ;

/1l Get the next instance
hr = pEObj s- >EnumNext ((1 GXOoj ect **) &pVal Li st);

/!l Retrieve and print the name of the appevent
pVal Li st - >Get Val ByRef (GX_AE_RE_KEY_NAME, &val);

Chapter 3 Interfaces 105

IGXAppEvent interface (deprecated)

fprintf(fp, "\nDefinitions for AppEvent named %\n",
val . u. pstrVval);

/'l Reset to the first GXVAL in the ValList
pVal Li st - >Reset Posi tion();

/Il Iterate through all the GXVALs in the

// vallist and print themto a file

whil e (pVal Li st->Cet Next Key(pKey, 256) == NCERROR) {
pVal Li st - >Get Val ByRef (pKey, &val);

if (GXVT_TYPE(val.vt) == GXVT_LPSTR)

fprintf(fp, "\t%=% (LPSTR)\n", pKey, val.u.pstrVal);
el se

fprintf(fp, "\t%=% (DWORD)\n", pKey, val.u.ulVal);

pVal Li st - >Rel ease();

}
/| Save the file
fclose(fp);

/'l Release all resources used and return

pEQbj s- >Rel ease();

pAppEvent - >Rel ease() ;

return StreanResul t ("Successfully generated report
");

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetAppEvent() method in the GXAppLogic class

IGXValList interface

QueryEvent()

Returns the properties of a registered event.

Syntax
HRESULT QueryEvent (
LPSTR pEvent Nane,
| GXVal Li st **ppVal Li st);

pEventName. The name of the registered event to enable.

ppValList. Pointer to the IGXValList object that contains the returned event
information. When the AppLuogic is finished using the object, call the Release()
method to release the interface instance.

106 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXAppEvent interface (deprecated)

Usage
When an AppLogic calls RegisterEvent(), it can specify any of the following:

= The initial state—enable or disabled—of the event

= The time the event is to be triggered

< The AppLogic to execute when the event is triggered
= The email to send when the event is triggered

Use QueryEvent() to get the properties that were specified for a specific event.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
RegisterEvent()

RegisterEvent()

Registers a named event for use in applications.

Syntax

HRESULT Regi st er Event (
LPSTR pEvent Nane,
| GXVal Li st *pVal Li st);

pEventName. The name of the event to register.

pValList. The IGXValList object that specifies the properties of the event. The
following table lists the keys and values you can specify:

Key Value

GX_AE_RE_KEY_NAME A string representing the name of the event. If
specified, the name must be the same one specified as
the pEventName parameter.

GX_AE_RE_KEY_STATE An enum that specifies the initial state of the event:
GX_AE_RE_EVENT_DISABLED
GX_AE_RE_EVENT_ENABLED

Chapter 3 Interfaces 107

IGXAppEvent interface (deprecated)

Key

Value

GX_AE_RE_KEY_TIME

GX_AE_RE_KEY_NREQ

GX_AE_RE_KEY_MFILE*

GX_AE_RE_KEY_MTO*
GX_AE_RE_KEY_MHOST*
GX_AE_RE_KEY_SADDR*

The time at which the event will be triggered. Use the
following format:

hh:mm:ss W/DD/MM

hh: 0 -23

mm: 0 - 59

ss:0-59

W (day of the week): 0 - 6 with 0 = Sunday.
DD (day of the month): 1- 31

MM (month): 1 - 12

Each of these fields may be either an asterisk (meaning
all legal values) or a list of elements separated by
commas. An element is either a number or two
numbers separated by a minus sign indicating an
inclusive range. For example, 2, 5 - 7:0:0 5/*/* means
the event is triggered at 2 AM, 5AM, 6 AM and 7 AM
every Friday.

The specification of days can be made by two fields:
day of the month (DD) and day of the week (W). If both
are specified, both take effect. For example, 1:0:0 1/15/*
means the event is triggered at 1 AM every Monday, as
well as on the fifteenth of each month. To specify days
by only one field, set the other field to *.

The AppLogic to execute when the event is triggered.
Use the following format:

GUIDGX-{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXX
XXXXX?Param1=ABC&Param2=123

The name of the file that contains the body of an email
message.

A comma separated list of users to send the email to.
The name of the SMTP mail server.

The sender’s email address.

* You must specify all of these items if sending email when the event is triggered.

108 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXAppEvent interface (deprecated)

Usage

Use RegisterEvent() to define each event your application will use. You can specify

that a triggered event sends an email, or runs an AppLogic, or both.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

The following example shows how to define and register an application event:;

HRESULT hr = NOERROR;

| GXAppEvent *pAppEvent = NULL;

| GXval Li st *pVal Li st = NULL;

LPSTR pReport EvName = "ReportEvent";
LPSTR pRepCGenEvNanme = "RepGenEvent";

/] Get a reference to the AppEvent Manager

hr = Get AppEvent (&pAppEvent);

if ((hr '= NCERROR) || (pAppEvent == NULL))
return StreanResul t (" AppEvent not found!
");

/Il Create a vallist to pass information
/1 for appevent registration of the first event
pVal Li st = GXCreateVal List();
i f (pVval List == NULL) ({
pAppEvent - >Rel ease() ;
return Result(m_pValOut, "Can't create ValList
");

/I Add the appevent name to the vallist
GXSetValListString(pValList, GX_AE_RE_KEY_NAME, pRepGenEvName);

/I Set the appevent state to be enabled
GXSetValListint(pValList, GX_AE_RE_KEY_STATE,

GX_AE_RE_EVENT_ENABLED);

/I Set the appevent time to be 05:00:00 hrs everyday
GXSetValListString(pValList, GX_AE_RE_KEY_TIME, "5:0:0 */*/*");

/I Set the appevent action to run the RepGenAgent applogic
GXSetValListString(pValList, GX_AE_RE_KEY_NREQ,

"GUIDGX-{630CB09B-1A1D-1315-AD23-0800207B918B}");

/I Register the appevent
hr = pAppEvent->RegisterEvent(pRepGenEvName, pValList);
pValList->Release();

Related Topics
EnableEvent()

Chapter 3 Interfaces

109

IGXAppEvent interface (deprecated)

110

SetEvent()
GetAppEvent() method in the GXAppLogic class
IGXValList interface

SetEvent()

Triggers a registered event.

Syntax

HRESULT Set Event (
LPSTR pEvent Nane,
DWORD dwOverri deFl ag,
| GXVal Li st *pVal Li st);

pEventName. The name of the event to trigger.

dwOverrideFlag. Specify 0 (zero) to trigger the event with the previously
specified actions. To override the defined actions, you can specify the following:

e GX_AE_SE_ACTION_NOMAIL if you don’t want to send email when the
event is triggered.

e GX_AE_SE_ACTION_NOREQ if you don’t want to run an AppLogic when the
event is triggered.

pValList. The IGXValList object that specifies the event properties you want to
override. Specify NULL to use the properties already defined for the event. The
following table lists the keys and values you can specify:

Key Value

GX_AE_RE_KEY_NAME A string representing the name of the event. If specified,
the name must be the same one specified as the
pEventName parameter.

GX_AE_RE_KEY_STATE An enum that specifies the initial state of the event:
GX_AE_RE_EVENT_DISABLED
GX_AE_RE_EVENT_ENABLED

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXAppEvent interface (deprecated)

Key

Value

GX_AE_RE_KEY_TIME

GX_AE_RE_KEY_NREQ

GX_AE_RE_KEY_MFILE*

GX_AE_RE_KEY_MTO*
GX_AE_RE_KEY_MHOST*
GX_AE_RE_KEY_SADDR*

The time at which the event will be triggered. Use the
following format:

hh:mm:ss W/DD/MM

hh: 0-23

mm: 0 - 59

ss:0-59

W (day of the week): 0 - 6 with 0 = Sunday.
DD (day of the month): 1 - 31

MM (month): 1 -12

Each of these fields may be either an asterisk (meaning all
legal values) or a list of elements separated by commas.
An element is either a number or two numbers separated
by a minus sign indicating an inclusive range. For
example, 2,5 - 7:0:0 5/*/* means the event is triggered at 2
AM, 5AM, 6 AM and 7 AM every Friday.

The specification of days can be made by two fields: day
of the month (DD) and day of the week (W). If both are
specified, both take effect. For example, 1:0:0 1/15/*
means the event is triggered at 1 AM every Monday, as
well as on the fifteenth of each month. To specify days by
only one field, set the other field to *.

The AppLogic to execute when the event is triggered. Use
the following format:

GUIDGX-{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXX
XXX?Paraml=ABC&Param2=123

The name of the file that contains the body of an email
message.

A comma separated list of users to send the email to.
The name of the SMTP mail server.

The sender’s email address.

* You must specify all of these items if sending email when the event is triggered.

Chapter 3 Interfaces 111

IGXAppEventMgr interface

Usage
Use SetEvent() to trigger a registered event immediately. This is useful for testing
purposes.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
RegisterEvent()

GetAppEvent() method in the GXAppLogic class
IGXValList interface

IGXAppEventMgr interface

112

Application components can define events that are either triggered at a specified
time or triggered explicitly. Events are stored persistently in the iPlanet
Application Server, and are removed only when your application explicitly deletes
them. Events are typically used to schedule routine administrative tasks, such as
making back-ups or getting statistics.

iAS uses two new interfaces to support events:

= The IGXAppEventMgr interface manages application events. This interface
defines methods for creating, registering, triggering, enabling, disabling,
enumerating, and deleting events.

= The IGXAppEventObj interface represents the defined events an application
supports. This interface defines methods not only for getting or setting
attributes of an event, but also for adding, deleting, or enumerating actions of
the event.

IGXAppEventMgr and IGXAppEventObj should be used in new or revised
applications. Existing iAS applications can continue using the deprecated
IGXAppEvent interface, which supports the previous model for application events.

Attributes and Actions

For each event, you define associated attributes and actions. Attributes determine
the following characteristics:

= the event’s state (enabled or disabled)

= the execution mode (concurrent or serial) of the event’s actions

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXAppEventMgr interface

the time at which to trigger the event

When an event is triggered, it performs one or more of the following types of
actions:

o executes a specified servlet.
o executes a specified AppLogic.

o sends an email message.

Features of Application Event Support
Support for application events includes the following:

Added functionality

o Execution of multiple actions of any type. (IGXAppEvent supports only
one action of each type.)

o Inaddition to executing an AppLogic and sending email, a triggered event
can now execute a servlet as one of the supported action types.

o Synchronous or asynchronous triggering of events. (IGXAppEvent
supports only synchronous triggering.)

o Execution of actions in the same order they are registered.

o Execution of actions either concurrently or serially.

o Support for passing an input IGXValList object to triggered events.
Different interfaces

Previously, application events were represented by an IGXValList object, and
you used the IGXAppEvent interface to manage the events. Now an
application event is represented by an IGXAppEventObj, and you use
IGXAppEventMgr to manage and control the events.

Separate actions and attributes

Previously, attributes and actions were not distinguished. They were all
treated as event properties and specified within a single IGXValList object.
Now attributes are described by entries in one IGXValList object, and each
action is represented by its own additional IGXValList object.

IGXAppEventObj has methods for getting or setting attributes and for adding,
deleting, or enumerating actions.

Chapter 3 Interfaces 113

IGXAppEventMgr interface

114

Accessing and Creating Application Events

To access an IGXAppEventMgr object, use the C++ helper function
GXContextGetAppEventMgr():

HRESULT GXCont ext Get AppEvent Myr (
| GXCont ext *pCont ext

| GXAppEvent Mgr **ppAppEvent Myr) ;

The pContext parameter is a pointer to an IGXContext object, which provides
access to iPlanet Application Server services. Specify a value of m_pContext, a
member variable in the GXAppLogic class.

The ppAppEventMgr parameter is a pointer to the returned IGXAppEventMgr
object.

After creating the IGXAppEventMgr object, you can create an application event (an
instance of IGXAppEventObj) by calling CreateEvent() on the IGXAppEventMgr
object.

Registering Events

After creating an application event, you can set its attributes and add actions using
methods on the IGXAppEventObj. Then, register the application event by calling
registerEvent() on the manager object.

Include File
gxiappevent.h

Methods

Method Description

CreateEvent() Creates an empty application event object.

DeleteEvent() Removes a registered event from iPlanet Application Server.
DisableEvent() Disables a registered event.

EnableEvent() Enables a registered event.

EnumEvents() Enumerates through the list of registered events.
QueryEvent() Retrieves the IGXAppEventObj for a registered event.
RegisterEvent() Registers a named event for use in applications.

SetEvent() Triggers a registered event.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXAppEventMgr interface

Related Topics

GXContextGetAppEventMgr(),
IGXAppEventMgr interface,
IGXAppEventObj interface

“Using Events” in Chapter 3, “Application Development Techniques” in
Programmer’s Guide.

CreateEvent()
Creates an empty application event object.

Syntax
HRESULT Creat eEvent (
LPSTR pEvent Nane
| GXAppEvent Gbj **appevent Obj);

pEventName. The name of the event to create.

appeventObj. A pointer to the returned IGXAppEventOb;.

Usage

Use CreateEvent() to create an empty IGXAppEventObj object. You can use
methods of the IGXAppEventObj interface to set attributes and actions on the
returned object.

Changes to the event object do not take effect until it is registered with the manager
object, through a call to RegisterEvent().

Call the Release() method (defined in the IGXObject interface) when you are done.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
QueryEvent()

RegisterEvent()

DeleteEvent()

Removes a registered event from iPlanet Application Server.
Syntax

HRESULT Del et eEvent (
LPSTR pEvent Nane) ;

Chapter 3 Interfaces 115

IGXAppEventMgr interface

116

pEventName. The name of the registered event to delete.

Usage
Use DeleteEvent() to remove an event that is no longer required. The specified
event is removed from iASIAS.

To temporarily stop an event from being triggered, use DisableEvent().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
DisableEvent()

RegisterEvent()

DisableEvent()

Disables a registered event.

Syntax
HRESULT Di sabl eEvent (
LPSTR pEvent Nane) ;

pEventName. The name of the registered event to disable.

Usage

Use DisableEvent() to temporarily stop an event from being triggered. The event is
disabled until it is enabled with EnableEvent(). To permanently remove an event
from the registry, use DeleteEvent().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
DeleteEvent()

EnableEvent()

RegisterEvent()

EnableEvent()

Enables a registered event.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXAppEventMgr interface

Syntax
HRESULT Enabl eEvent (
LPSTR pEvent Nane) ;

pEventName. The name of the registered event to enable.

Usage

Use EnableEvent() to enable an event. A given event could have been disabled in
either of two ways: by a previous call to DisableEvent() or by initially registering
the event using a disabled state attribute.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
DisableEvent()

RegisterEvent()

EnumEvents()
Enumerates through the list of registered events.

Syntax
HRESULT EnunEvent s(
| GXEnunmObj ect **ppEvents);

ppEvents. Pointer to the IGXEnumObiject object that contains the list of registered
events. When an application component is finished using the object, call the
Release() method to release the interface instance.

Usage

Use EnumEvents() to get information on all the registered events. The
IGXEnumObject object returned by EnumEvents() contains a set of
IGXAppEventObj objects, one per event. Each IGXAppEventObj contains the
attributes and actions that were assigned to the event when it was registered with
RegisterEvent().

Tip
Use the methods in the IGXEnumObiject interface to iterate through the contents of
the returned IGXEnumObiject object.

Example
The following AppLogic code shows how to use EnumEvents() to get information
on all the registered events and save it to a report;

Chapter 3 Interfaces 117

IGXAppEventMgr interface

HRESULT hr = NOERROR;

| GXEnumObj ect *pECbj s = NULL;

| GXAppEvent Myr *pAppEvent Mgr = NULL;
CHAR pBuf [128];

ULONG ul Count = O;

FI LE *fp;

/1 Open /tnp/report-file for witing the report
fp = fopen("/tnp/report-file", "wW');

/] Get a reference to the AppEvent Manager
hr = GXCont ext Get AppEvent Mgr (m cont ext, &pAppEvent Myr);

/1 Get the Enuneration object for all registered appevents
hr = pAppEvent Myr - >EnunEvent s(&pEMj s) ;

/1 Retrieve the count of registered appevents
hr = pEQoj s- >EnunCount (&l Count);
fprintf(fp, "Nunber of Registered Events: %\ n", ul Count);

/] Reset the next enuneration object to the first instance
hr = pEQObj s- >EnunReset (0);

/1 lterate through all the enuneration instances
while (ul Count--) {

CHAR pKey|[256] ;

CHAR nane[256] ;

GXVAL val ;

| GXval Li st *pVal Li st = NULL;

| GXAppEvent Cbj *pAppEvent Cbj = NULL;

/1 Get the next instance
hr = pEQbj s- >EnumNext ((| GXChj ect **) &pAppEvent Obj) ;

/1 Retrieve and print the nanme of the appevent
hr = pAppEvent Qbj - >CGet Nane(nane, 256);
fprintf(fp, "\nDefinitions for AppEvent named %\n", nane);

/1 Retrieve attributes
hr = pAppEvent Obj - >CGet Attri but es(&pVal Li st);

/!l Reset to the first GXVAL in the Val List
pVal Li st - >Reset Posi tion();

fprintf(fp, "\ nAttributes for AppEvent\n");
/1 lterate through all the GXVALs in the
/1 vallist and print themto a file
whi | e (pVal Li st ->Get Next Key(pKey, 256) == NCERROR) {
pVal Li st - >Get Val ByRef (pKey, &val);
I f (GXVT_TYPE(val .vt) == GXVT_LPSTR)
fprintf(fp, "\t%=% (LPSTR)\n", pKey, val.u.pstrVal);
el se
fprintf(fp, "\t%=% (DWORD)\n", pKey, val.u.ul Val);

}
pVal Li st - >Rel ease() ;

118 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXAppEventMgr interface

/1 Retrieve and print Actions
fprintf(fp, "\nActions for AppEvent\n");
hr = pAppEvent Obj - >EnumAct i ons(&EAct i onoj s) ;

/1 Retrieve the count of registered appevents

hr = pEActi onObj s- >EnuntCount (&ul Acti onCount) ;

fprintf(fp, "Number of Actions for event: %\n",
ul Acti onCount) ;

/| Reset the next enunmeration object to be the first instance
hr = pEActi onObj s- >EnunReset (0);

/1 lterate through all the enuneration instances

whil e (ul ActionCount--) {

/1 Get the next action

hr = pEActi onCbj s- >EnunNext ((| GXObj ect **) &Val Li st);

/1l Reset to the first GXVAL in the Val List
pVal Li st->Reset Posi tion();

/1 lterate through all the GXVALs that describe the action
whi | e (pVal Li st ->Get Next Key(pKey, 256) == NOERROR) {
pVal Li st - >Get Val ByRef (pKey, &val);
i f (GXVT_TYPE(val .vt) == GXVT_LPSTR)
fprintf(fp, "\t%=% (LPSTR)\n", pKey,
val . u. pstrVval);
el se
fprintf(fp, "\t%=% (DWORD)\n", pKey,
val . u. ul Val);

pVal Li st - >Rel ease() ;

pEAct i onoj s- >Rel ease() ;
pAppEvent Qbj - >Rel ease();
}

/| Save the file
fclose(fp);

/'l Release all resources used and return

pEQbj s- >Rel ease();

pAppEvent Myr - >Rel ease();

return StreanResult ("Successfully generated report
");

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXEnumObject interface

Chapter 3 Interfaces 119

IGXAppEventMgr interface

120

GetEvent()
Retrieves the IGXAppEventODbj for a registered event.

Syntax
HRESULT Get Event (
LPSTR pEvent Nane,

| GXAppEvent Gbj **ppAppEvent);

pEventName. The name of the registered event.

ppAppEvent. Pointer to the IGXAppEventObj object for the given event. When
the application component is finished using the object, call the Release() method to
release the interface instance.

Usage

After calling GetEvent(), you can call methods on the returned IGXAppEventOb;.
For example, you can query the object by calling GetAttributes() or
EnumActions(), or you can modify the object by calling SetAttributes().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
RegisterEvent()

RegisterEvent()

Registers a named event for use in applications.

Syntax
HRESULT Regi st er Event (
| GXAppEvent Obj *appEvent Obj);

appEventObj. The event object whose attributes and actions have been set.

Usage

After an application event object is created with CreateEvent(), you define its
attributes and actions using methods of the IGXAppEventObj interface. Then you
use RegisterEvent() to register the specified event object. Registration commits the
changed attributes and actions to the server and to the registry. If an event object
already exists for the given name, the existing object is deleted and replaced with
the specified object.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXAppEventMgr interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following example shows how to define and register an application event:

HRESULT hr = NOERROR

| GXAppEvent Mgr *pAppEvent Mgr = NULL;
| GXval Li st *pVal Li st = NULL;

LPSTR pRepGenEvNanme = "RepGenEvent";

/] Get a reference to the AppEvent Manager
hr = GXCont ext Get AppEvent Mgr (m cont ext, &pAppEvent);

if ((hr '= NOCERROR) || (pAppEventMgr == NULL))
return StreanmResul t (" AppEvent Mgr not found!
");

/1 Create an enpty Event bject
hr = pAppEvent Myr - >Cr eat eEvent (pRepGenEvNane, &pAppEvent bj);
if ((hr 1= NCERROR) || (pAppEventnj == NULL))

return StreanResul t (" CreateEvent failed!
");

/1 Prepare and set the Attributes.
/!l Create a vallist for the Attributes
pVal Li st = GXCreateVal List();

/1 Set the appevent tine to be 05:00:00 hrs everyday
GXSet Val Li st String(pVal List, GX_AE2_RE KEY_TIME, "5:0:0 */*/*");

// Set the attributes
hr = pAppEvent Obj ->Set Attri butes(pVal List);
if (hr = NOERROR)
return StreanResult("Can’t set Attributes
");

pVal Li st - >Rel ease();
/!l Add 4 Actions in the order we want themto be executed

/1 Set action 1 to run the SunmaryRepGenAgent 1l appl ogic
pVal Li st = GXCreateVal List();
GXSet Val Li st String(pVal Li st, GKX_AE2_RE KEY_NREQ,
" GUI DGX- { 630CB09B- 1A1D- 1315- AD23- 0800207B918B} ") ;
hr = pAppEvent Qbj - >AddActi on(pVal List);
pVal Li st - >Rel ease() ;

/1 Set action 2 to run the SummaryRepGenAgent 2 appl ogi c
pVal Li st = GXCreateVal List();
GXSet Val Li st String(pVal Li st, GX AE2_RE_KEY_NREQ
" GUI DGX- { 414643FA- B74A- 1544- C25E- 0800207B8777}") ;
hr = pAppEvent Qbj - >AddAct i on(pVal List);
pVal Li st - >Rel ease();

Chapter 3 Interfaces

121

IGXAppEventMgr interface

/1 Set action 3 to run the Detail RepGenServletl servlet

pVal Li st = GXCreateVal List();

GXSet Val Li st String(pVal Li st, GX_AE2_RE_KEY_SERVLET,
"Det ai | RepGenServl et1");

hr = pAppEvent Qbj - >AddAct i on(pVal List);

pVal Li st - >Rel ease();

/1 Set action 4 to run the Detail RepGenServlet2 servlet

pVal Li st = GXCreateVal List();

GXSet Val Li st String(pVal Li st, GKX_AE2_RE KEY_SERVLET,
"Det ai | RepCGenServl et 2");

hr = pAppEvent Qbj - >AddActi on(pVal List);

pVal Li st - >Rel ease() ;

/1 Register the appevent
hr = pAppEvent Myr - >Regi st er Event (pAppEvent Qbj) ;

pAppEvent Qbj - >Rel ease();
pAppEvent Myr - >Rel ease();

Related Topics
EnableEvent()

SetEvent()

TriggerEvent()

Triggers a registered event.

Syntax

HRESULT Tri gger Event (
LPSTR pEvent Nane,
| GXval Li st *pVal Li st,
BOOL syncFl ag) ;

pEventName. The name of the event to trigger.

pValList. The IGXValList object that specifies the input that is passed to the
triggered event and its actions.

syncFlag. The boolean flag that indicates whether the event is to be triggered
synchronously (value is true) or asynchronously (value is false).

Usage

Use TriggerEvent() to trigger a registered event. When you specify the pValList
parameter, a copy of this IGXValList object is passed as input to all actions
registered with the application event.

122 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXAppEventObj interface

If the action is ... Then pValList is ...

an AppLogic. passed as input to that AppLogic.

an email message. simply ignored.

aservlet. passed to the servlet as the valln of the underlying
AppLogic.

Use the syncFlag parameter to determine synchronous or asynchrous execution.
Typical usage is to set syncFlag to false, which provides asynchronous execution
and better application performance. When syncFlag is false, the event is triggered,
and the method call returns immediately, without waiting for the actions to finish
executing.

If syncFlag is true, then the method call does not return immediately. Instead, the
call blocks until the event is triggered and all actions have executed. In some cases,
it may be desirable for actions to finish executing before returning control to the
application.

Actions are triggered in the same order in which they were added to the
application event object.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
RegisterEvent()

IGXAppEventODbj interface

See the IGXAppEventMgr interface for details on IGXAppEventObj.

Include File
gxiappevent.h

Methods
Method Description
AddAction() Appends an action to an ordered list of actions.

Chapter 3 Interfaces 123

IGXAppEventObj interface

Method Description

DeleteActions() Deletes all actions added to this IGXAppEventObj.
EnumActions() Enumerates the actions added to this IGXAppEventOb.
GetAttributes() Retrieves the list of attributes of an IGXAppEventObj.
GetName() Retrieves the name of the IGXAppEventObj.
SetAttributes() Sets a list of attribute values for the IGXAppEventObj.

Related Topics
IGXAppEventMgr interface

AddAction()

Appends an action to an ordered list of actions.

Syntax
HRESULT AddActi on(
| GXVal Li st *action);

action. The input IGXValList object that defines the action to add. When an event
is triggered, actions are executed in the same order in which they were added. The
entries in this IGXValList object vary from one action type to another.

The keys and values you can specify are as follows.

For AppLogics:

Key Value

GX_AE2 RE_KEY_NREQ The AppLogic to execute when the event is
triggered. Use the following format:

GUIDGX-{XXX XXX XX -XXXXK-XXXX-XXXX
XXXXXXXXXXXX?Param1=ABC&Param2=1
23. The parameters and their values are
passed as input to the events.

For email:

To send email when the event is triggered, all of the following items must be
specified.

124 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXAppEventObj interface

Key Value

GX_AE2_RE_KEY_MFILE The name of the file that contains the body of an email
message.

GX_AE2_RE_KEY_MTO A comma separated list of users to send the email to.

GX_AE2_RE_KEY_MHOST The name of the SMTP mail server.
GX_AE2_RE_KEY_SADDR The sender’s email address.

For servlets:

Key Value

GX_AE2_RE_KEY_SERVLET The name of the servlet to be executed when the event is
triggered. Use the following format:

appName/ ServletName?Param1=ABC&Param2=123.
Parameters and their values are passed as input to the
events. The only required item is the servlet name. The
application name and parameters are optional.

Usage

Use the AddAction() method after creating an application event object (by calling
CreateEvent() on the IGXAppEventMgr object). After you change an event (for
example, by adding or deleting actions or by setting attributes), you must register
the event in order for the changes to take effect.

To list the added actions, use EnumActions(). To delete all actions, use
DeleteActions().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

DeleteActions()
Deletes all actions added to this IGXAppEventObj.

Syntax
HRESULT Del et eActions();

Chapter 3 Interfaces 125

IGXAppEventObj interface

Usage
Use this method to remove all actions associated with this IGXAppEventObj.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

EnumActions()
Enumerates the actions added to this IGXAppEventODb;.

Syntax
HRESULT EnumActi ons(
| GXEnunbj ect **acti ons);

actions. A pointer to the returned IGXEnumObject.

Usage

Use this method to obtain a list of actions that have been added to this
IGXAppEventObj. Each entry in the returned IGXEnumObject is an IGXValList
object representing an action.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

GetAttributes()
Retrieves the list of attributes of an IGXAppEventObj.

Syntax
HRESULT Get Attri butes(
| GXVal Li st **attrlList);

attrList. A pointer to the returned IGXValList object.

Usage
Call this method after calling SetAttributes().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
SetAttributes()

126 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXAppEventObj interface

GetName()
Retrieves the name of the IGXAppEventObj.

Syntax
HRESULT Get Nang(
LPSTR pNane,
unsi gned | ong nNane) ;

pName. A pointer to an input buffer.

nName. The size of the input buffer.

Usage

The name of an IGXAppEventObj is set by calling CreateEvent() on the
IGXAppEventMgr object. After creating an application event object, use the
GetName() method to retrieve the name.

Return Value
A string representing the name of the application event object, or null for failure.

SetAttributes()
Sets a list of attribute values for the IGXAppEventOb.

Syntax
HRESULT Set Attri butes(
| GXVal Li st *attrlList);

attrList. The input IGXValList object that specifies the attributes. The keys and
values you can specify are as follows.

- GX_AE2 RE_KEY_STATE

An enum that specifies the initial state of the event. This key is optional and
has the following possible values:

» GX_AE2_RE_EVENT_DISABLED
. GX_AE2_RE_EVENT_ENABLED (the default)
- GX_AE2_RE_KEY_TIME

An optional key that specifies the time at which the event will be triggered. Use
the following format:

o hh:mm:ss W/DD/MM

Chapter 3 Interfaces 127

IGXAppEventObj interface

o hh:0-23

o mm:0-59

o ss:0-59

o W (day of the week): 0 - 6 with 0 = Sunday.
o DD (day of the month): 1 - 31

o MM (month): 1-12

Each of these fields may be either an asterisk (meaning all legal values) or a list
of elements separated by commas. An element is either a number or two
numbers separated by a minus sign indicating an inclusive range. For example,
2,5-7:0:.0 5/*/* means the event is triggered at 2 AM, 5AM, 6 AM and 7 AM
every Friday.

The specification of days can be made by two fields: day of the month (DD)
and day of the week (W). If both are specified, both take effect. For example,
1:0:0 1/15/* means the event is triggered at 1 AM every Monday, as well as on
the fifteenth of each month. To specify days by only one field, set the other field
to *.

GX_AE2_RE_KEY_ACTION_MODE

An optional key that specifies whether actions are to be executed concurrently
(at the same time) or in series (one after another). In serial execution, each
action finishes executing before the next one starts, and execution occurs in the
same order in which the actions were added.

This key has the following possible values:
o GX_AE2_RE_ACTION_SERIAL
o GX_AE2_RE_ACTION_CONCURRENT (the default)

Usage

Use the SetAttributes() method after creating an application event object (by
calling CreateEvent() on the IGXAppEventMgr object). After you change an event
(for example, by adding or deleting actions or by changing attributes), you must
register the event in order for the changes to take effect.

Tip

None of the attributes are required to be set. The default state is enabled, and the
default action mode is concurrent.

To retrieve the list of attributes that are set, use GetAttributes().

128 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXBuffer interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetAttributes()

IGXBuffer interface

The IGXBuffer interface represents a block of memory. Input arguments and
output value(s) of methods are sometimes stored in IGXBuffer objects. For
example, the Get**() methods in the IGXQuery interface return values in an
IGXBuffer object.

IGXBuffer provides methods for specifying and obtaining the size of the memory
block, obtaining its starting address, and copying data to it.

To create an instance of the IGXBuffer interface, use the GXCreateBuffer()

function.
Include File
gxibuff.h
Methods
Method Description
Alloc() Specifies the size of the memory block, in bytes.
GetAddress() Returns the address of the memory block.
GetSize() Returns the size of the memory block, in bytes.
SetData() Copies data to a memory block.
Alloc()
Specifies the size of the memory block, in bytes.
Syntax
HRESULT Al | oc(
ULONG nSi ze) ;

nSize. Size of the memory block, in bytes.

Chapter 3 Interfaces 129

IGXBuffer interface

Usage
After creating a memory buffer with the GXCreateBuffer() function, use Alloc() to
specify its size.

Subsequent calls to GetSize() return the size that AppLogic specified when it called
Alloc().

Rules

= |Ifthe AppLogic creates its own new IGXBuffer object, it must first specify the
size of the memory block by calling Alloc() before using other methods in the
interface.

< AppLogic can call Alloc() only once.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

LPSTR str = "Hello Worl d";

| GXBuf f er buff;

buf f = GXCreateBuffer();

buf f->Al | oc(128);

buf f - >Set Dat a((LPBYTE) str, 12);

Related Topics
GetAddress()

GetAddress()

Returns the address of the memory block.

Syntax
LPBYTE Get Address();

Usage

Use GetAddress() to obtain the starting address of the buffer that was allocated by
Alloc(). The starting address of the buffer is needed when copying data to and
from the buffer.

130 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXBuffer interface

Rule

Before calling GetAddress(), the memory buffer must be allocated first by calling
Alloc(). When the system returns an IGXBuffer object (for example, when the
AppLogic calls a Get**() method in the IGXQuery interface), it automatically
allocates the memory buffer.

Return Value

HRESULT hr;

| GXBuf fer *buff;

buff = NULL;

hr = query->Get Tabl es(&uff);
if (hr == NOERROR && buff)

{
/1l Use | GXBuffer interface here. The nenory held by
/1 the | GXBuffer object should be treated as read-only.
11
StreanResul t ("The tabl es accessed by the query are ");
StreanResul t ((LPSTR) buf f->Get Address());
StreanResul t (".
");
/'l Rel ease buff when done with it.
11
buf f - >Rel ease();

}

Related Topics

Alloc()

GetSize()

Returns the size of the memory block, in bytes.

Syntax
ULONG Get Si ze();

Chapter 3 Interfaces 131

IGXBuffer interface

Usage
Use GetSize() to determine the length of the memory buffer that the AppLogic
specified when it called Alloc().

Rule
Before calling GetSize(), AppLogic must first specify the size of the memory block
by calling Alloc().

Return Value
Size of the memory block, in bytes.

Related Topics
GetAddress()

SetData()

SetData()

Copies data to a memory block.

Syntax

HRESULT Set Dat a(
LPBYTE pDat a,
ULONG nDat aLen);

pData. The data to copy to the memory buffer.

nDatalen. The length, in bytes, of the data to copy to the memory buffer.

Usage

Use SetData() to copy data to a memory buffer. The buffer can then be passed to a
method, such as the SetValPieceByOrd() method in the IGXTable interface, that
accepts data values in a buffer object.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

LPSTR str = "Hello Worl d";

| GXBuf f er buff;

buf f = GXCreateBuffer();

buf f->Al | oc(128);

buf f - >Set Dat a((LPBYTE) str, 12);

132 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXCallableStmt interface

t abl e- >Set Val Pi eceByOrd(1, buff, 12);
buf f - >Rel ease();

Related Topics
GetAddress()

GetSize()

IGXCallableStmt interface

The IGXCallableStmt interface provides a standard way to call stored procedures
in any database server. A stored procedure is a block of SQL statements stored in a
database. Stored procedures provide centralized code for manipulating data and
reduce the amount of data that needs to be sent to the client side of an application.
They are typically used to execute database operations, for example, modify, insert,
or delete records.

To call a stored procedure from an AppLogic, use the IGXCallableStmt object. The
IGXCallableStmt interface defines methods for executing a stored procedure or
function, and setting and getting parameter values to and from a stored procedure.

To create an instance of the IGXCallableStmt interface, use PrepareCall() in the
IGXDataConn interface.

Include File

gxidata.h

Methods

Method Description

Close() Releases the callable statement.

Execute() Executes the stored procedure called by the

IGXCallableStatement object.

ExecuteMultipleRS() Executes a stored procedure, called by the IGXCallableStmt object,
that can return multiple result sets.

Chapter 3 Interfaces 133

IGXCallableStmt interface

Method Description

GetMoreResults() Checks if there is a result set to retrieve. This method is valid only if
you used ExecuteMultipleRS(), not Execute(), to execute a
stored procedure called by the IGXCallableStmt object.

GetParams() Returns the value of the stored procedure’s output parameter or
parameters.
GetResultSet() Retrieves a result set. This method is valid only if you used

ExecuteMultipleRS() (instead of Execute()) to execute a stored
procedure called by the IGXCallableStmt object.

SetParams() Specifies the parameter values to pass to the stored procedure.

Related Topics
PrepareCall() in the IGXDataConn interface

“Using Stored Procedures” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

Close()
Releases the callable statement.

Syntax
HRESULT C ose()

Usage
Use Close() to release a callable statement object after the AppLogic has finished
processing the results returned by the stored procedure.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Execute()
Executes the stored procedure called by the IGXCallableStmt object.

134 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXCallableStmt interface

Syntax
HRESULT Execut g(
DWORD dwFl ags,
| GXVal Li st *pPar ans,
| GXTrans *pTrans,
| GXVal Li st *pProps,
| GXResul t Set **ppResul t Set) ;

dwrFlags.

= For synchronous operations, the default, specify 0 (zero) or
GX_DA_EXEC_SYNC.

= For asynchronous operations, specify GX_DA_EXEC_ASYNC.

pParams. Pointer to an IGXValList object that contains parameters to pass to the
callable statement. If you use SetParams() instead to specify the parameters,
specify NULL here.

pTrans. Pointer to an IGXTrans object that contains the transaction associated with
this callable statement, or NULL for no transaction.

pProps. Pointer to the IGXValList object that contains properties, or NULL for no
properties. This parameter applies only if the callable statement returns a result set.
Informix stored procedures, for example, return out parameter values only as a
result set. Sybase, DB2, and MS SQL Server stored procedures also support the
return of a result set. Multiple result sets, however, is not supported.

After instantiating an object of the IGXValList interface, set any of the following
properties:

= RS_BUFFERING turns on result set buffering when set to “TRUE” or “YES.”

= RS_INIT_ROWS specifies the initial size of the buffer, in number of rows. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA _BUFFER_EXCEEDED and result set buffering will be turned off.

e RS_MAX_ROWS specifies the maximum number of rows for the buffer. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA_BUFFER_EXCEEDED and result set buffering will be turned off.

e RS_MAX_SIZE specifies the maximum number of bytes for the buffer.

If RS_BUFFERING is enabled and if the optional parameters are not specified, the
global values in the registry are used instead.

Chapter 3 Interfaces 135

IGXCallableStmt interface

136

ppResultSet. Pointer to the IGXResultSet object that contains the returned result
set from the stored procedure, if the database supports this feature. Informix, DB2,
MS SQL Server and Sybase support it. When the AppLogic is finished using the
object, call the Close() method in the IGXResultSet interface, then call the Release()
method to release the interface instance.

Usage

Use Execute() to run a callable statement that has been created with PrepareCall()
in the IGXDataConn interface. If the stored procedure called by the
IGXCallableStmt object can return multiple result sets, use ExecuteMultipleRS()
instead.

If the stored procedure called by the IGXCallableStmt object contains parameters,
instantiate anlGXValList object and use SetVal() or SetValByRef() in the
IGXValList interface to specify the parameter values to pass to the stored
procedure.

After creating and setting up the IGXValList object, pass it to Execute() or
SetParams(). If you use SetParams() to pass parameters to the stored procedure,
specify NULL for the params parameter in Execute().

Rule

When accessing a stored procedure on Sybase or MS SQL Server, input parameter
names specified in the call must be prefixed with the ampersand (&) character, for
example, ¶ml. Other database drivers accept the ampersand, as well, as the
colon (:) character. For all database drivers, input/output and output parameter
names are prefixed with the colon () character, for example, :param2.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

/1 Wite the conmand to call the stored procedure
| GXQuery *qgry = NULL;
hr = CreateQuery(&qry);
if (hr == NCERROR &&
ary)

gry->Set SQL("{:ret = call myFunction(¶mt)}");

/Il Prepare the callable statenment for execution
| GXCal | abl eStnt *s = NULL;
hr = conn->PrepareCal | (0, gry, NULL, NULL, &s);
if (hr == NOERROR &&

s)

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXCallableStmt interface

/1 Set the in paraneter val ues

| GXVval Li st *par ans;

parans = GXCreateVal List();
paranms->SetVal Int(":ret", 9999);
par ans- >Set Val | nt (" &par anll", 20);

| GXResul t Set *rs = NULL;

/1 Run the call abl e statenent
hr = s->Execute(0, params, NULL, NULL, &rs);
if (hr == NOERROR &&

rs)

/I Get the stored procedure’s output value
IGXValList *paramsOut = NULL;
hr = s->GetParams(0, ¶msOut);
if (hr == NOERROR &&
paramsOut)

Related Topics
PrepareCall() in the IGXDataConn interface

GetParams()
SetParams()

“Using Stored Procedures” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

ExecuteMultipleRS()

Executes a stored procedure, called by the IGXCallableStmt object, that can return

multiple result sets.

Syntax
HRESULT ExecuteMul ti pl eRS(
DWORD dwFl ags,
| GXval Li st *pPar ans,
| GXTrans *pTrans,
| GXVal Li st *pProps)

dwFlags.
Specify 0.

Chapter 3

Interfaces

137

IGXCallableStmt interface

138

pParams. Pointer to an IGXValList object that contains parameters to pass to the
callable statement. If no parameters are required, pass in an empty IGXValList. If
you use SetParams() instead to specify the parameters, specify NULL here.

pTrans. Pointer to an IGXTrans object that contains the transaction associated with
this callable statement, or NULL for no transaction.

pProps. Pointer to the IGXValList object that contains properties, or NULL for no
properties.

After instantiating an object of the IGXValList interface, set any of the following
properties:

< RS _BUFFERING turns on result set buffering when set to “TRUE” or “YES.”

< RS_INIT_ROWS specifies the initial size of the buffer, in number of rows. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA _BUFFER_EXCEEDED and result set buffering will be turned off.

e RS_MAX_ROWS specifies the maximum number of rows for the buffer. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA _BUFFER_EXCEEDED and result set buffering will be turned off.

= RS_MAX_ SIZE specifies the maximum number of bytes for the buffer.

If RS_BUFFERING is enabled and if the optional parameters are not specified, the
global values in the registry are used instead.

Usage

Use ExecuteMultipleRS() to run a callable statement that returns multiple result
sets. The callable statement should already have been created with PrepareCall()
in the IGXDataConn interface.

If the stored procedure called by the IGXCallableStmt object contains parameters,
instantiate anlGXValList object and use SetVal() or SetValByRef() in the
IGXValList interface to specify the parameter values to pass to the stored
procedure.

After creating and setting up the IGXValList object, pass it to ExecuteMultipleRS()
or SetParams(). If you use SetParams() to pass parameters to the stored procedure,
specify NULL for the pParams parameter in ExecuteMultipleRS().

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXCallableStmt interface

Rule

When accessing a stored procedure on Sybase or MS SQL Server, input parameter
names specified in the call must be prefixed with the ampersand (&) character, for
example, ¶ml. Other database drivers accept the ampersand, as well, as the
colon (:) character. For all database drivers, input/output and output parameter
names are prefixed with the colon (:) character, for example, :param?2.

Tip
The difference between Execute() and ExecuteMultipleRS() is that Execute() can

return only a single result set. If you're not sure how many results sets, if any, a
stored procedure returns, use ExecuteMultipleRS().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

hr = stnt->ExecuteMul tipl eRS(0, parans, NULL, NULL);
DWORD nor eResult = TRUE;
do {

hr = stnt->Cet MoreResul t s(&oreResul t);

if (moreResult == FALSE)

StreanResult("No nore Results to process
");
br eak;

el se

{
| GXResul t Set *pResul t Set ;
hr = stnt->Get Resul t Set (&Resul t Set) ;
if (pResultSet)

Di spl ayResul t (pResul t Set) ;
pResul t Set - >Rel ease() ;

} \M}1i | e(TRUE) ;

Related Topics
PrepareCall() in the IGXDataConn interface

GetMoreResults()
GetResultSet()

Chapter 3 Interfaces 139

IGXCallableStmt interface

140

“Using Stored Procedures” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

GetMoreResults()

Checks if there is a result set to retrieve. This method is valid only if you used
ExecuteMultipleRS() (instead of Execute()) to execute a stored procedure called by
the IGXCallableStmt object.

Syntax
HRESULT Get Mor eResul t s(
BOOL *pMbreResul t)

pMoreResult. Pointer to the client-allocated BOOL variable that contains the
returned information.

Usage

If you used ExecuteMultipleRS() to execute a stored procedure that returns
multiple results sets, use GetMoreResults() in conjunction with GetResultSet() to
check if there is a result set before retrieving it.

If there is a current result set with unretrieved rows, GetMoreResults() discards
the current result set and makes the next result set available.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

hr = stnt->ExecuteMul tipl eRS(0, parans, NULL, NULL);
DWORD nor eResult = TRUE;
do {

hr = stnt->Get MoreResul t s(&roreResul t);

i f (nmoreResult == FALSE)

StreanResult ("No nore Results to process
");
br eak;

el se
| GXResul t Set *pResul t Set ;
hr = stnt->Cet Resul t Set (& Resul t Set) ;
if (pResultSet)

Di spl ayResul t (pResul t Set) ;
pResul t Set - >Rel ease() ;

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXCallableStmt interface

}
} \M}1i | e(TRUE) ;

Related Topics
PrepareCall() in the IGXDataConn interface

ExecuteMultipleRS()
GetResultSet()

“Using Stored Procedures” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

GetParams()
Returns the value of the stored procedure’s output parameter or parameters.

Syntax
HRESULT Get Par ans(
DWORD dwkl ags
| GXVal Li st **ppPar ans) ;

dwrFlags. Specify 0 (zero).

ppParams. Pointer to the IGXValList object that contains the stored procedure’s
output parameters. When the AppLogic is finished using the object, call the
Release() method to release the interface instance.

Usage

Some stored procedures return output parameters. If the stored procedure your
callable statement executes returns output parameters, use GetParams() to get the
values.

The GetParams() method returns the values in an IGXValList object. The key
names associated with the values are the parameter names as specified in the query
that was passed to the PrepareCall() method.

Tip
Informix stored procedures return output parameters in a result set. This result set

is returned by Execute() or ExecuteMultipleRS(). The GetParams() method,
therefore, does not apply to Informix stored procedures.

Chapter 3 Interfaces 141

IGXCallableStmt interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

/1 Wite the command to call the stored procedure
| GXQuery *qry = NULL;
hr = CreateQuery(&qry);
if (hr == NCERROR &&
ary)

gry->Set SQL("{:ret = call nmyFunction(¶ntl)}");

/'l Prepare the callable statement for execution
| GXCal | abl eStmt *s = NULL;
hr = conn->PrepareCal | (0, gry, NULL, NULL, &s);
if (hr == NOERROR &&

s)

/1 Set the in paraneter val ues

| GXVval Li st *par ans;

parans = GXCreateVal List();
paranms->SetVal Int(":ret", 9999);
par ans- >Set Val | nt (" &par anll", 20);

| GXResul t Set *rs = NULL;

/1 Run the call abl e statenent
hr = s->Execute(0, params, NULL, NULL, &rs);
if (hr == NOERROR &&

rs)

/I Get the stored procedure’s output value
IGXValList *paramsOut = NULL;
hr = s->GetParams(0, ¶msOut);
if (hr == NOERROR &&
paramsOut)

Related Topics
PrepareCall() in the IGXDataConn interface

Execute()
SetParams()

“Using Stored Procedures” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

142 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXCallableStmt interface

GetResultSet()

Retrieves a result set. This method is valid only if you used ExecuteMultipleRS()
(instead of Execute()) to execute a stored procedure called by the IGXCallableStmt
object.

Syntax
HRESULT Get Resul t Set (
| GXResul t Set **ppResul t Set)

ppResultSet. Pointer to the IGXResultSet object that contains the returned result
set. When the AppLaogic is fnished using the object, call the Release() method to
release the interface instance.

Usage

If you used ExecuteMultipleRS() to execute a stored procedure that returns
multiple results sets, use GetResultSet() in conjunction with GetMoreResults() to
retrieve the results sets.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

hr = stnt->ExecuteMul tipl eRS(0, parans, NULL, NULL);
DWORD nor eResult = TRUE;
do {

hr = stnt->Get MoreResul t s(&roreResul t);

if (moreResult == FALSE)

StreanResult("No nore Results to process
");
br eak;

el se

{
| GXResul t Set *pResul t Set ;
hr = stnt->Get Resul t Set (&pResul t Set) ;
if (pResultSet)

Di spl ayResul t (pResul t Set) ;
pResul t Set - >Rel ease() ;

} \M}1i | e(TRUE) ;

Chapter 3 Interfaces 143

IGXCallableStmt interface

Related Topics
PrepareCall() in the IGXDataConn interface

ExecuteMultipleRS()
GetMoreResults()

“Using Stored Procedures” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

SetParams()
Specifies the parameter values to pass to the stored procedure.

Syntax

HRESULT Set Par ans(
DWORD dwFl ags
| GXVal Li st *pPar ans) ;

dwFlags. Specify 0 (zero). For internal use only.

pParams. Pointer to the IGXValList object that contains the parameters to pass to
the stored procedure. You must set all parameters required by the stored
procedure. If you don’t, a runtime error will occur when Execute() is called. If you
use SetParams(), specify NULL for the pParams parameter in Execute().

Usage

If the stored procedure the callable statement executes accepts input parameters,
use SetParams() to pass the parameter or parameter values. The alternative is to
pass the parameter values with the Execute() method. Parameters passed to
Execute() supersede parameters specified with SetParams().

For both SetParams() and Execute(), you pass the parameter values in an
IGXValList object.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
PrepareCall() in the IGXDataConn interface

Execute()
GetParams()

“Using Stored Procedures” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

144 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXColumn interface

Chapter 12, “Writing Secure Applications” in Programmer’s Guide (Java)

IGXColumn interface

The IGXColumn interface represents a column definition in a table. IGXColumn
provides methods for obtaining descriptive information about a table column from
the database catalog, which contains the column definition. Column attributes
include the column name, precision, scale, size, table, and data type.

IGXColumn is part of the Data Access Engine (DAE) service.

To create an instance of this interface, use one of the following methods:

e GetColumn() or GetColumnByOrd() in the IGXHierResultSet interface

e GetColumn(), GetColumnByOrd(), or EnumColumns() in the IGXTable

interface

e GetColumn(), GetColumnByOrd(), or EnumColumns() in the IGXResultSet

interface

Include File
gxidata.h

Methods

Method

Description

GetName()
GetNullsAllowed()

GetPrecision()

GetScale()

GetSize()

GetTable()
GetType()

Returns the name of the column or alias.
Returns true if NULL values are allowed in the column.

Returns the precision, which is the maximum length or maximum
number of digits, of the column.

Returns the scale, which is the number of digits to the right of the
decimal point, of the column of type double.

Returns the maximum length, in number of bytes, allowed for a
value in this column.

Returns the table object in which this column exists.

Returns the data type of the column.

Chapter 3 Interfaces 145

IGXColumn interface

The following example shows how to iterate through a table to get the names and
types of the columns;

HRESULT hr;

| GXDat aConn *conn;

/'l Retrieve connection with CreateDataConn().
/1 Not shown here.

| GXTabl e *tabl e = NULL;
hr = conn->Get Tabl e(" Products", &table);
if (hr == NOERROR &&

t abl e)

/1 Stream back col um information.

/1

StreanResul t (" <h2>Products Tabl e: </ h2>");
hr = tabl e- >EnuntCol umReset () ;

i f (hr == NCERROR)

whil e (TRUE)

| GXCol umm *col utmm = NULL;
hr = tabl e- >EnuntCol utms(&col um) ;
if (hr == NOERROR &&

col um)

char buffer[256];
buffer[0] = '\0";

col um- >Get Nane(buf fer, sizeof (buffer));
StreanResul t ("Col utm Nane = ");
StreanResul t (buffer);

StreanResul t (", ");

DWORD t ype;

type = 0;

col um- >CGet Type(& ype) ;

sprintf(buffer, "Colum Type = %", type);
StreanResul t (buffer);

StreanResul t ("
");

col um- >Rel ease() ;

}

el se

/1 No nore colums, exit |oop.
br eak;
}
}

}
t abl e- >Rel ease();

146 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXColumn interface

Related Topics
GetColumn() or GetColumnByOrd() in the IGXHierResultSet interface

GetColumn(), GetColumnByOrd(), or EnumColumns() in the IGXTable interface

GetColumn(), GetColumnByOrd(), or EnumColumns() in the IGXResultSet
interface

GetName()

Returns the name of the column or alias.

Syntax

HRESULT Get Nang(
LPSTR pBuff,
ULONG nBuff);

pBuff. Buffer allocated by the client to hold the zero-terminated string that
contains the returned column name or alias.

nBuff. Length of the buffer allocated by the client for the returned column name or
alias.

Usage
Use GetName() when the name of the column is unknown and is required for
subsequent operations.

Tips

= For computed columns in a query, specify aliases so that using GetName()
returns the alias name. Otherwise, the column can be identified only by ordinal
position.

= Do not rely on the case of the returned name. It might be all uppercase or
mixed case, depending on the database.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

The following example shows how to iterate through a table to get the names of
columns:

Chapter 3 Interfaces 147

IGXColumn interface

HRESULT hr;
| GXDat aConn *conn;

/1 Retrieve connection with CreateDataConn().
/1 Not shown here.

| GXTabl e *tabl e = NULL;
hr = conn->Get Tabl e(" Products", &table);
if (hr == NCERROR &&
tabl e)
{

/] Stream back col umm nanes.

11

StreanResul t (" <h2>Products Tabl e: </ h2>");
hr = tabl e- >EnuntCol umReset () ;

i f (hr == NOERROR)

whi | e (TRUE)
| GXCol um *col utm = NULL;
hr = tabl e- >EnuntCol ums(&col um) ;
if (hr == NOERROR &&
col um)

char buffer[256];
buffer[0] ="'\0";

col um- >Get Nane(buffer, sizeof(buffer));
StreanResul t (" Col um Nanme = ");
StreanResul t (buffer);
StreanResul t (", ");
col um- >Rel ease() ;

el se

br eak;

Related Topics
“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases” in Programmer’s Guide.

GetNullsAllowed()

Determines whether NULL values are allowed in the column.

148 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXColumn interface

Syntax
HRESULT Get Nul | sAl | owed(
BOOL *pNul | sAl | owed) ;

pNullsAllowed. Pointer to the variable that contains the returned boolean result.

Usage

A column may require data values. Use GetNullsAllowed() if this information is
unknown to determine, for subsequent operations, whether nulls are allowed or
not.

Tip

For numeric columns that allow NULLSs, the value is usually zero (0) in the column
if a NULL is inserted. For more information, see your database vendor’s
documentation.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following example shows how to iterate through a result set and return the
column names, as well as whether null values are allowed in each column:

HRESULT hr;
| GXResul t Set *resul tset;

/1l Performquery here to retrieve resultset, not shown,
/1 with | GXDat aConn: : Execut eQuery.

StreanResul t ("<h2>Resul t Set col umm i nformation: </ h2>");
hr = resul t set - >EnuntCol umReset () ;
i f (hr == NOERROR)

\{/\lnile (TRUE)

| GXCol um *col umm = NULL;
hr = resul t set - >EnuntCol uims(&ol um) ;
if (hr == NOERROR &&

col um)

char buffer[256];
buffer[0] = '\0";

col um- >Get Narre(buffer Si zeof(buffer))
StreanResul t (" Col utm Nane = ");
StreanResuIt(buffer)

StreanResul t (", ");

Chapter 3 Interfaces 149

IGXColumn interface

BOCOL nul | sAl' | owed;
nul | sAl | owed = FALSE;
col um->Get Nul | sAl'l owed(&nul | sAl | owed) ;
sprintf(buffer, "Nulls Allowed = %", (null sAl | oned
? "TRUE" : "FALSE"));
StreanResul t (buffer);
StreanResult (", ");

el se

/1 No nore colums; exit |oop.
br eak;

Related Topics
“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases” in Programmer’s Guide.

GetPrecision()

Returns the precision, which is the maximum length or maximum number of
digits, of the column.

Syntax
HRESULT Get Preci si on(
ULONG *pPr eci sion);

pPrecision. Pointer to the variable that contains the returned precision, which
represents the maximum length or maximum number of digits of the column.

Usage
Use GetPrecision() when the precision of the column is unknown and is required
for subsequent operations.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following example shows how to iterate through a result set and return the
column names, as well as the precision value of each column:

150 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXColumn interface

HRESULT hr;
| GXResul t Set *resul tset;

/1 Performquery here to retrieve resultset, not shown,
/1 with | GXDat aConn: : Execut eQuery.

StreanResul t ("<h2>Resul t Set col umm i nf ormati on: </ h2>");
hr = resul t set - >EnuntCol umReset () ;

if (hr == NOERROR)

\{/\lnile (TRUE)

| GXCol um *col umtm = NULL;
hr = resul t set - >EnuntCol uims(&ol um) ;
if (hr == NOERROR &&
col um)
{

char buffer[256];
buffer[0] = '\0";

col um- >Get Narre(buffer Si zeof(buffer))
StreanResul t (" Col utm Nane = ;
StreanResuIt(buffer)

StreanResul t (", ");

ULONG pr eci si on;

precision = 0;

col um- >CGet Preci si on(&preci si on);

sprintf(buffer, "Colum precision = %", precision);
StreanResul t (buffer);

StreanResul t ("
");

el se

/1 No nore colums; exit |oop.
br eak;

Related Topics
“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases” in Programmer’s Guide.

GetScale()

Returns the scale, which is the number of digits to the right of the decimal point, of

a column of type double.

Chapter 3 Interfaces

151

IGXColumn interface

Syntax
HRESULT Get Scal e(
ULONG *pScal e) ;

pScale. Pointer to the variable that contains the returned scale, which represents
the fixed number of digits to the right of the decimal point.

Usage
Use GetScale() when the scale of the column is unknown and is required for
subsequent operations.

Rules
« Use GetScale() with numeric columns, including SQL DECIMAL, NUMERIC,
and FLOAT data types.

= The value returned from GetScale() depends on the data type of the column.
For example, it returns zero (0) for integers. For more information, see your
database server documentation.

= For computed columns in a result set, the value returned from GetScale()
depends on the data type of the evaluated expression.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases” in Programmer’s Guide.

GetSize()

Returns the maximum length, in number of bytes, allowed for a value in this
column.

Syntax
HRESULT Get Si ze(
ULONG *pSi ze) ;

pSize. Pointer to the variable that contains the returned size, which represents the
maximum length of the column.

Usage

Use GetSize() when the maximum allowable length of the column is unknown and
is required for subsequent operations. Note that GetSize() does not return the
actual size of data in the column.

152 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXColumn interface

Rules
= The value returned from GetSize() depends on the data type of the column.
For more information, see your database server documentation.

< For computed columns in a result set, the value returned from GetSize()
depends on the data type of the evaluated expression.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following example shows how to iterate through a result set and return the
column names, as well as the maximum allowable length of each column:

HRESULT hr;
| GXResul t Set *resul tset;

/1 Performquery here to retrieve resultset, not shown,
/1 with | GXDat aConn: : Execut eQuery.

StreanResul t ("<h2>Resul t Set col umm i nformation: </ h2>");
hr = resul t set - >EnuntCol umReset () ;
i f (hr == NOERROR)

\{/\lnile (TRUE)

| GXCol um *col umm = NULL;
hr = resul t set - >EnuntCol uims(&ol um) ;
if (hr == NOERROR &&

col um)

char buffer[256];
buffer[0] = '\0";

col um- >Get Narre(buffer Si zeof(buffer))
StreanResul t (" Col utm Nane = ");
StreanResuIt(buffer)

StreanResul t (", ");

ULONG si ze;

size = 0;

col um->Get Si ze(&si ze);

sprintf(buffer, "Max Size = %", size);
St reanResul t(buffer)

StreanResult (", ");

el se

/1 No nore colums; exit |oop.
br eak;

Chapter 3 Interfaces 153

IGXColumn interface

Related Topics
“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases” in Programmer’s Guide.

GetTable()

Returns the table object in which this column exists.

Syntax
HRESULT Get Tabl e(
| GXTabl e **ppTabl e);

ppTable. Pointer to the returned IGXTable object that contains the table definition
associated with this column. When AppLaogic is finished using the object, call the
Release() method to release the interface instance.

Usage

Use GetTable() when the table definition of the column is unknown and is
required for subsequent operations. For result set columns, this method returns a
table object, which is a description of the columns in the result set.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

/1 WAl k through all colums in a resultset and stream
/'l back col um information.

HRESULT hr;
| GXResul t Set *resul tset;

/1 Performquery here to retrieve resultset, not shown,
/1 with | GXDat aConn: : Execut eQuery.

StreanResul t ("<h2>Resul t Set col um i nformation: </ h2>");
hr = resul tset->EnunmCol utmReset ();

if (hr == NOERROR)

{

154 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXColumn interface

whi | e (TRUE)

| GXCol um *col umm = NULL;

hr = resul t set - >EnuntCol uims(&ol um) ;
if (hr == NOERROR &&

{

char buffer[256]
buffer[0] = "\0O

col um- >Cet Nane(buffer si zeof(buffer))
StreanResul t (" Col utm Nanme = ");
StreanResuIt(buffer)

StreanResult (", ");

/1l Get the table object in which this columm exists
| GXTabl e *tabl e;

table = NULL;
i f (columm->Get Tabl e(& abl e) == NOERROR &&
t abl e)

buffer[0] ="'\0";

tabl e- >Cet Nane(buffer si zeof (buffer));
StreanmResul t (" Col um Table = ");

St reanmResul t(buffer)

StreanResul t (", ");

t abl e- >Rel ease() ;

/1l Process other columm information

Related Topics
IGXTable interface

“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases” in Programmer’s Guide.

GetType()

Returns the data type of the column.

Syntax
HRESULT Get Type(
DWORD * pdwType) ;

pdwType. Pointer to the variable that contains one of the following macro-defined
constants (defined in gxidata.h), which represent SQL data types.

Note: Some SQL data types are combined under a single category of data types. For
example, GX_DA_TYPE_LONG includes short and integer data types, as well as
tiny, small, and big integers.

Chapter 3 Interfaces 155

IGXDataConn interface

Usage

Variable Description

GX_DA_TYPE_ERROR Error data type. See Appendix A, “Return Codes” for
more information.

GX_DA_TYPE_BINARY All binary data types, including binary large objects
(BLOBS).

GX_DA_TYPE_DATETIME Timestamp (date and time) data type. See the
GXDATETIME struct in Chapter 5, “C++ Macros and
Structures.”

GX_DA_TYPE_DATE Date data type.

GX_DA_TYPE_TIME Time data type.

GX_DA_TYPE_DOUBLE Double and related data types, including real, float,
and decimal data types.

GX_DA _TYPE_LONG Long and related data types, including int.

GX_DA_TYPE_STRING String and related data types, including char and

variable-length strings.

Use GetType() when the data type of the column is unknown and is required for
subsequent operations.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases” in Programmer’s Guide.

Chapter 13, “Taking Advantage of NAS Features” in Programmer’s Guide (Java)

IGXDataConn interface

156

The IGXDataConn interface represents a connection to a relational data source.
IGXDataConn provides methods for preparing a query, executing a query,
identifying table(s) to work with, and closing the connection explicitly. In addition,
the data connection object is used in other operations for interacting with a data
source.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXDataConn interface

IGXDataConn is part of the Data Access Engine (DAE) service. To create an
instance of the IGXDataConn interface, use CreateDataConn() in the GXAppLogic

class.

Include File
gxidata.h

Methods

Method

Description

CloseConn()
CreateTrigger()
DisableTrigger()

DropTrigger()
EnableTrigger()

ExecuteQuery()
GetConnlnfo()

GetConnProps()
GetDriver()

GetTable()
GetTables()

PrepareCali()

PrepareQuery()
SetConnProps()

Explicitly closes a database connection.
Creates a new trigger object in the specified table.

Disables a trigger associated with a specified table. This feature is
supported by Oracle databases only.

Removes a trigger from a specified table.

Enables a trigger for a specified table. This feature is supported by
Oracle databases only.

Executes a flat query on the data connection.

Returns database and user information about the current database
connection.

Returns registry information about the current database connection.

Returns the identifier of the data source driver that the current
database connection is using.

Returns the table definition object for the specified table.

Returns an IGXValList of database tables or views that are available
to the specified user.

Creates an IGXCallableStmt object that contains a call to a stored
procedure.

Prepares a flat query object for subsequent execution.

Specifies registry values for the current database connection.

Related Topics

CreateDataConn() in the AppLogic class (deprecated)

Chapter 3 Interfaces 157

IGXDataConn interface

158

GetDataConn() in the IGXTable interface
AddRow(), DeleteRow(), and UpdateRow() in the IGXTable interface
IGXSequence interface

“Running Hierarchical Queries” in Chapter 6, “Querying a Database” in
Programmer’s Guide.

“Inserting Records in a Database,” “Updating Records in a Database,” and
“Deleting Records From a Database” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

CloseConn()
Explicitly closes the database connection.

Syntax
HRESULT C oseConn(
DWORD dwFl ags) ;

dwFlags. Specify 0, or GX_DA_UNBIND_TRANS, which explicitly unbinds a
physical connection from a transaction.

Usage

The Data Access Engine performs certain housekeeping tasks, such as shutdown
and cleanup, automatically and intermittently. Use CloseConn() to explicitly close
a database connection and release system resources, such as when memory is low.
Calling CloseConn() breaks the virtual connection to the database and puts the
physical connection back into the database connection cache.

Rules
= Closing the database connection changes the state of the IGXDataConn object
to closed.

= Close a database connection only after the AppLogic no longer needs it. A
run-time error will occur if subsequent operations attempt to use a data
connection object that has already been closed.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateDataConn() in the GXAppLogic class

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXDataConn interface

“About Database Connections” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

CreateTrigger()

Creates a new trigger object in the specified table.

Syntax

HRESULT CreateTrigger(
LPSTR pTabl e,
LPSTR pNane,
LPSTR pCondi ti on,
LPSTR pOpti ons,
LPSTR pSQ.BI ock) ;

pTable. The table on which the trigger is defined. You can specify the name of the
owner as a prefix to the table name, for example, "jim.myTable".

pName. The name of the trigger object to create.

pCondition. The condition that determines whether or not the SQL procedure
(defined in the pSQLBIlock parameter) executes. For example, you can specify that
the SQL procedure executes only if a column contains a specific value:

"FOR EACH ROWWHEN(city = ' San Francisco’)"

pOptions. The row operations that determine when the trigger executes. For
example, you can specify that the trigger be activated BEFORE or AFTER an
INSERT, UPDATE, and/or DELETE operation:

"AFTER | NSERT, UPDATE"

pSQLBIlock. The definition of the SQL block to execute when the trigger goes into
effect. Refer to your database documentation for information on the SQL block
format.

Usage

A trigger is a SQL procedure associated with a table. It is automatically activated
when a specified row operation, such as INSERT, UPDATE, and DELETE, is issued
against the table. Use CreateTrigger() to specify the table and the data
modification command that should activate the trigger, and the action or actions
the trigger is to take.

Tips

= For specific information on supported trigger options and conditions, refer to
the description of triggers in your database documentation.

Chapter 3 Interfaces 159

IGXDataConn interface

160

= After creating a trigger, enable it by calling EnableTrigger(). The following are

exceptions to the rule:

o Sybase does not support the enabling or disabling of triggers.

o Oracle automatically enables a trigger when the trigger is created; you can

optionally call EnableTrigger(), but it will have no effect.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

| GXDat aConn *conn = NULL;

"FOR EACH ROWWHEN(title="Director’)",
" AFTER | NSERT",

"[SQL instruction here]l");

f (hr == NOERROR)

i

{
conn- >Enabl eTri gger (" enpl oyees", "ProcessNew');

}

c

onn- >Rel ease();

HRESULT hr;
hr = CreateDataConn(0, GX_DA DRI VER _ODBC, conn_parans,
&conn) ;
if (hr == NCERROR &&
conn)
hr = conn->CreateTri gger ("enpl oyees", "ProcessNew',

NULL,

Related Topics
DisableTrigger()

DropTrigger()
EnableTrigger()

DisableTrigger()

Disables a trigger associated with a specified table. This feature is supported by

Oracle databases only.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXDataConn interface

Syntax

HRESULT Di sabl eTri gger (
LPSTR pTabl e,
LPSTR pNane) ;

pTable. The table in which the trigger is located.

pName. The name of the trigger to disable.

Usage

Use DisableTrigger() to temporarily stop a trigger from being activated. The
trigger is disabled until it is enabled with EnableTrigger(). To remove a trigger
from a table permanently, use DropTrigger().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateTrigger()

DropTrigger()
EnableTrigger()

DropTrigger()

Removes a trigger from a specified table.

Syntax

HRESULT DropTri gger (
LPSTR pTabl e,
LPSTR pNane) ;

pTable. The table on which the trigger is defined.

pName. The name of the trigger to remove.

Usage

Use DropTrigger() to delete a trigger that is no longer required. To temporarily
stop a trigger from being activated, use DisableTrigger().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateTrigger()

Chapter 3 Interfaces 161

IGXDataConn interface

162 iPlanet Applicati

DisableTrigger()
EnableTrigger()

EnableTrigger()

Enables a trigger for a specified table. This feature is supported by Oracle
databases only.

Syntax

HRESULT Enabl eTri gger (
LPSTR pTabl e,
LPSTR pNane) ;

pTable. The table on which the trigger is defined.

pName. The name of the trigger to enable.

Usage

Use EnableTrigger() to prepare a specified trigger for activation. Call
EnableTrigger() after you create a trigger with CreateTrigger(), or to enable a
trigger that was disabled with DisableTrigger().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
CloseConn()

Related Topics
CreateTrigger(); DisableTrigger()

DropTrigger()

ExecuteQuery()

Executes a flat query on the data connection.

Syntax
HRESULT Execut eQuery(
DWORD dwrl ags,
I GXQuery *pQuery,
| GXTrans *pTrans,
| GXval Li st *pProps,
| GXResul t Set **ppResul t Set) ;

on Server C++ Foundation Class Reference ¢ May 2000

IGXDataConn interface

dwFlags. Specifies flags used to execute this query.

= For synchronous operations, the default, specify zero or GX_DA _EXEC _SYNC.
= For asynchronous operations, specify GX_DA _EXEC_ASYNC.

< To activate result set buffering, specify GX_DA_RS_BUFFERING.

The AppLuogic can pass both result set buffering and either synchronous or
asynchronous queries as the flags parameter, as shown in the following example:

(GX_DA _EXEC_ASYNC | GX_DA RS BUFFERI NG

pQuery. Pointer to the IGXQuery object that contains the flat query object to
execute.

pTrans. Pointer to the IGXTrans object that contains the transaction to which this
query applies, or NULL.

pProps. Pointer to the IGXValList object that contains query properties, or NULL
for no properties. After instantiating an object of the IGXValList interface, set any
of the following properties:

e RS _BUFFERING turns on result set buffering when set to “TRUE”.

< RS_INIT_ROWS specifies the initial size of the buffer, in number of rows. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA_BUFFER_EXCEEDED.

< RS_MAX_ROWS specifies the maximum number of rows for the buffer. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA_BUFFER_EXCEEDED.

= RS_MAX_SIZE specifies the maximum number of bytes for the buffer.

If RS_BUFFERING is enabled and if the optional parameters are not specified, the
global values in the registry are used instead.

ppResultSet. Pointer to the IGXResultSet object that contains the returned result
of the query. When the AppLaogic is finished using the object, and after calling the
CloseConn() method, call the Release() method to release the interface instance.

Rules

= Before calling ExecuteQuery(), AppLogic must create a query by first calling
createQuery() in the GXAppLogic class to create the IGXQuery object, then
using methods in the IGXQuery interface to define the query.

Chapter 3 Interfaces 163

IGXDataConn interface

= Ifthe query is part of a transaction, before calling ExecuteQuery(), the
AppLogic must first create the IGXTrans transaction object using
CreateTrans() in the GXAppLogic class, then begin the transaction using
Begin() in the IGXTrans interface, and then specify the IGXTrans object as a
parameter when calling ExecuteQuery().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

/1l Create a vallist for |oadQuery() paraneters
| GXVal Li st *pLi st =GXCr eat eVal Li st ()

if(pList) {
GXSet Val Li st String(pList, "ssn", pSsn);

/1 Load the query fromthe query file

| GXQuery *pQuer y=NULL;

i f(((hr=LoadQuery(Sel Cust Accts.gxq", "Sel CustAccts", 0, pList,
& Query)) ==GXE_SUCCESS) &&pQuery) {

/| Execute the query

| GXResul t Set *pRset =NULL;

i f (((hr=pConn->Execut eQuery(0, pQuery, NULL, NULL,
&pRset)) ==GXE_SUCCESS) &&pRset) {

/'l Process the result set

Related Topics
CreateDataConn() in the GXAppLogic class

IGXQuery interface
IGXResultSet interface
IGXTrans interface
IGXValList interface

“About Database Connections” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

GetConnlnfo()

Returns database and user information about the current database connection.

164 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXDataConn interface

Syntax
HRESULT Get Connl nf o(
| GXVal Li st **ppConnl nfo);

ppConninfo. A pointer to the IGXValList object that contains the returned
connection information. When the client code is finished using the object, call the
Release() method to release the interface instance.

Usage

When the client code calls the CreateDataConn() method in the GXAppLogic class
to create a connection between the client and the specified database, it passes the
following parameters: flags, driver, datasource, database, username, and
password. Once a data connection has been established, you can call
GetConnlinfo() to return the datasource, database, user, and password values.

Tip
To return the driver value, use GetDriver().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

GetConnProps()

Returns registry information about the current database connection.

Syntax
HRESULT Get ConnPr ops(
| GXVal Li st **ppProps);

ppProps. A pointer to the IGXValList object that contains the returned connection
information. When the client code is finished using the object, call the Release()
method to release the interface instance.

Usage

Use GetConnProps() to get database connection information that the iPlanet
Application Server administrator set through the Enterprise Administrator. The
information is returned in an IGXValList object that contains the following keys
and values:

Key Value

"cache_free_entries" An integer indicating the number of slots set for free
connections.

Chapter 3 Interfaces 165

IGXDataConn interface

Key Value

"cache_alloc_size" An integer indicating the initial number of slots in the
connection cache.

"conn_db_vendor” A string that identifies the database vendor, for example,
“Oracle” or “Sybase.”

The GetConnProps() method might return other information depending on the
database being used.

Applications typically use the database vendor information in conditional code
that executes differently depending on the type of database.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
SetConnProps()

GetDriver()

Returns the identifier of the data source driver that the current database connection
is using.

Syntax

public int getDriver()

HRESULT GetDri ver(
DWORD * pdwDr i ver);

pdwDriver. Pointer to the variable that contains the returned driver information,
which can be one of the following:

GX_DA_DRIVER_ODBC GX_DA_DRIVER_SYBASE_CTLIB
GX_DA_DRIVER_MICROSOFT JET GX_DA DRIVER_MICROSOFT SQL
GX_DA DRIVER_INFORMIX_SQLNET GX_DA_DRIVER_INFORMIX_CLI
GX_DA DRIVER_INFORMIX_CORBA GX_DA_DRIVER_DB2_CLI

GX_DA _DRIVER_ORACLE_OCI GX_DA_DRIVER_DEFAULT

166 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXDataConn interface

Usage

When the client code calls the CreateDataConn() method in the GXAppLogic class
to create a connection between the client and the specified database, it passes the
following parameters: flags, driver, datasource, database, username, and
password. Once a data connection has been established, you can call various
methods in the IGXDataConn interface to return the values that were passed to
CreateDataConn().

Call GetDriver() to return the driver information.

Tip
To return the datasource, database, user, and password values, use GetConnlnfo().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

GetTable()

Returns the table definition object for the specified table.

Syntax
HRESULT Get Tabl e(
LPSTR szTabl e,
| GXTabl e **ppTabl e) ;

szTable. Name of the table to request. This can include the schema name, for
example, “jim.myTable.” Do not use patterns or wildcards.

ppTable. Pointer to the IGXTable object that contains the returned result of the
query. When the AppLogic is finished using the object, call the Release() method
to release the interface instance.

Usage
Use GetTable() for the following reasons:

< Tochange data in the table using methods in the IGXTable interface to insert,
update, and delete rows.

< When the schema of a table is unknown, to obtain information about the table
definition from the database catalog, such as table name, table columns, data
connection, and so on.

Chapter 3 Interfaces 167

IGXDataConn interface

168 iPlanet Applicati

Rule

The AppLogic usually calls GetTable() only once to obtain a table definition.
Subsequent calls return a separate IGXTable object that represents the same table.
Each AppLogic can call GetTable() and operate on its own copy of the table
definition.

Tips

= [f the table name is unknown, use GetTables() to retrieve an IGXValList of
tables in the data source, then use methods in the IGXValList interface and the
GXVAL struct to iterate through the table names obtained and determine
which table to retrieve.

e To obtain additional information about individual columns, use the
IGXColumn interface.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

/!l Create the data connection
| GXDat aConn *pConn=NULL;

i f(((hr=Get OBDat aConn(& Conn)) ==GXE_SUCCESS) &&pConn) {
| GXTabl e *pTabl e=NULL;

/1l Get the table
i f(((hr=pConn->Cet Tabl e(" OBTransacti on",
&pTabl e)) ==GXE_SUCCESS) &&pTabl e) {

/1 Look up the colum ordinals for the table

ULONG t ransTypeCol =0;

pTabl e- >Get Col umOr di nal ("transType", & ransTypeCol);
ULONG post Dat eCol =0;

pTabl e- >Get Col umOr di nal (" post Dat e", &post Dat eCol) ;
ULONG acct Nuntol =0;

pTabl e- >Get Col umOr di nal ("acct Nunt', &acct NuntCol) ;
ULONG anount Col =0;

pTabl e- >Get Col uimOr di nal ("amount ", &anount Col) ;

Related Topics
IGXTable interface

CreateDataConn() in the GXAppLuogic class
GXVAL struct
IGXValList interface

ion Server C++ Foundation Class Reference ¢ May 2000

IGXDataConn interface

“About Database Connections” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

GetTables()

Returns an IGXValList of database tables or views that are available to the specified
user.

Syntax
HRESULT Get Tabl es(
LPSTR szQualifier
LPSTR szOaner,
LPSTR szTabl e,
| GXVal Li st **ppTabl eLi st);

szQualifier. Specify NULL. Driver-dependent.
szOwner. Specify NULL, or a schema name, which returns tables for that schema.

szTable. Table or view name with wildcards, or NULL for all tables. Wildcards
must be in the format supported by the data source. For example, you can use
search patterns using the following characters:

= underscore () for single characters

= percent sign (%) for any sequence of zero or more characters

ppTableList. Pointer to the IGXValList object that contains the returned list of
table names. When AppLogic is finished using the object, call the Release() method
to release the interface instance.

Usage

Use GetTables() when the list of available tables on the data source is unknown.
The AppLogic can obtain a subset of available tables by specifying wildcards in the
table name.

Rules

< The AppLogic must be logged in with sufficient privileges to obtain a list of
tables from the database. For more information, see your database server
documentation.

= The AppLogic must specify a valid table name, view name, or name pattern.
Aliases and synonyms are not supported for security reasons.

Chapter 3 Interfaces 169

IGXDataConn interface

170

Tip

Use methods in the IGXValList interface and the GXVAL struct to iterate through
the table names obtained and determine which table(s) to work with. Thereafter,
use CreateDataConn() to access each table.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXTable interface

CreateDataConn() in the GXAppLaogic class
IGXValList interface

“About Database Connections” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

PrepareCall()

Creates an IGXCallableStmt object that contains a call to a stored procedure.

Syntax
HRESULT PrepareCall (
DWORD dwFl ags,
I GXQuery *pQuery,
| GXTrans *pTrans,
| GXVal Li st *pProps,
| GXCal | abl eStnt **ppCal |);

dwrFlags. Specify 0.

pQuery. Pointer to the IGXQuery object that contains the call to a stored
procedure. The stored procedure call should have been specified with the
SetSQL() method in the IGXQuery interface.

pTrans. Pointer to an IGXTrans object that contains the transaction associated with
this callable statement, or NULL for no transaction. This same IGXTrans object
must then be passed to the Execute() method of the IGXCallableStmt interface.

pProps. Specify NULL.

ppCall. Pointer to the returned IGXCallableStmt object. When the AppLogic is
finished using the object, call the Release() method to release the interface instance.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXDataConn interface

Usage

Use PrepareCall() to create a IGXCallableStmt object that contains a call to a stored
procedure. After creating the callable statement, run it by calling Execute() in the
IGXCallableStmt interface.

Rules

=« Before calling PrepareCall(), the AppLogic must create a query by first calling
createQuery() in the GXAppLogic class to create the IGXQuery object, then
using the SetSQL() method in the IGXQuery interface to define the call to a
stored procedure.

< When accessing a stored procedure on Sybase or MS SQL Server, input
parameter names must be prefixed with the ampersand (&) character, for
example, ¶ml. Other database drivers accept the ampersand, as well as,
the colon (:) character. For all database drivers, input/output and output
parameter names are prefixed with the colon (;) character, for example,
param2.

Example

| GXval Li st *conn_par ans;

/] Set connection paraneters
conn_parans = GXCreateVal List();

conn_par ans->Set Val String("DSN', "salesDB");
conn_par ans- >Set Val Stri ng("DB", "sal esDB") ;
conn_par ans- >Set Val Stri ng("USER', "steve");
conn_par ans->Set Val Stri ng("PSW', "pass7878");

| GXDat aConn *conn =
HRESULT hr;

NULL,;

/!l Create the data connection

hr = CreateDataConn(0, GX_DA DRI VER ODBC, conn_parans, NULL,

&conn) ;
if (hr
conn)

NCERRCR &&

/1 Create query that contains the call

/1 stored procedure
| GXQuery *qry = NULL;

hr = CreateQuery(&qry);

if (hr == NOERROR &&
ary)
qry->Set SQL("{:ret = call nyFunction(:parant)}");
| GXCal | abl eStmt *s = NULL;

to the

Chapter 3 Interfaces 171

IGXDataConn interface

/1l Prepare the callable statenent for execution
hr = conn->PrepareCal |l (0, qgry, NULL, NULL, &s);
if (hr == NOCERROR &&

s)

/1 Set paraneters and run call abl e statenent

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXCallableStmt interface

PrepareQuery()

Prepares a flat query object for subsequent execution.

Syntax
HRESULT Pr epareQuery(
DWORD dwrl ags,
| GXQuery *pQuery,
| GXTrans *pTrans,
| GXval Li st *pProps,
| GXPr epar edQuery **ppPQuery);

dwFlags. Specify 0.

pQuery. Pointer to the IGXQuery object that contains the query or statement to
execute.

pTrans. Pointer to the IGXTrans object that contains the transaction to which this
query applies, or NULL. This same Include File object must then be passed to the
Execute() method of the IGXPreparedQuery interface.

pProps. Specify NULL.

ppPQuery. Pointer to the IGXPreparedQuery object that contains the returned
prepared query. When AppLogic is finished using the object, call the Release()
method to release the interface instance.

172 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXDataConn interface

Usage

Use PrepareQuery() to prepare the query, then execute the prepared query using

Execute() in the IGXPreparedQuery interface. An application can also use
PrepareQuery() with result set buffering to pre-fetch result set data efficiently
from a back-end database.

Rule
Before calling PrepareQuery(), AppLogic must create a query by first calling

createQuery() in the AppLogic class (deprecated) to create the IGXQuery object,

then using methods in the IGXQuery interface to define the query.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

GXQuery *pUser Quer y=NULL;
f(((hr=CreateQuery(&User Query))==GXE_SUCCESS) &pUser Query) {
pUser Query->Set SQL(" | NSERT | NTO OBUser (user Nane, password,
user Type,
eMai |) VALUES (:userNane, :password, :userType, :eMiil)");

/1 Create an Insert query
|
i

GXQuery *pAcct Quer y=NULL;
f(((hr=CreateQuery(&Acct Query))==GXE_SUCCESS) &8pAcct Query) {
pAcct Query->Set SQL(" I NSERT | NTO OBAccount VALUES (:acct Num
:ssn,
:acct Type, :balance)");

/1 Create another Insert query
|
i

/1 Create the data connection and prepared query objects
| GXDat aConn *pConn=NULL;

i f(((hr=CGet OBDat aConn(&Conn)) ==GXE_SUCCESS) &&pConn) {
| GXPr epar edQuery *pUser PQuer y=NULL;
| GXPr epar edQuery *pAcct PQuer y=NULL,;

/1 Create prepared queries
pConn- >Pr epareQuery(0, pUserQuery, NULL, NULL, &pUserPQuery);
pConn- >Pr epareQuery(0, pAcctQery, NULL, NULL, &pAcctPQuery);

Related Topics
IGXPreparedQuery interface

IGXQuery interface

IGXTrans interface

Chapter 3 Interfaces

173

IGXDataConnSet interface

IGXValList interface
CreateDataConn() in the GXAppLaogic class

“About Database Connections” in Chapter 5, “Working with Databases” in
Programmer’s Guide.

SetConnProps()

Specifies registry values for the current database connection.

Syntax
HRESULT Set ConnPr ops(
| GXVal Li st *pProps);

pProps. A pointer to the IGXValList object that contains the connection properties
to set in the registry. Use the following defined key names for the connection

properties:

Key Value

"cache_free_entries" An integer indicating the number of slots set for free
connections.

"cache_alloc_size" An integer indicating the initial number of slots in the
connection cache.

Usage

Use SetConnProps() to override database connection properties that the iPlanet
Application Server administrator set through the Enterprise Administrator. To get
the current connection properties programmatically, call GetConnProps().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetConnProps()

IGXDataConnSet interface

The IGXDataConnSet interface represents a collection of data connections and
associated query names. It is used in conjunction with loading a query file.

174 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXDataConnSet interface

Use IGXDataConnSet when loading a hierarchical query from a file. The AppLogic
first establishes a data connection with each database on which any queries will be
run. Next, the AppLogic calls CreateDataConnSet() in the GXAppLogic class to
create an empty IGXDataConnSet object, then populates this object with query
name / data connection pairs.

In this way, the AppLogic can use parameterized queries and select and assign
data connections dynamically at runtime. Finally, the AppLogic calls
LoadHierQuery() in the GXAppLogic class to create the hierarchical query object.

IGXDataConnSet is part of the Data Access Engine (DAE) service.
To create an instance of the IGXDataConnSet interface, use CreateDataConnSet()
in the GXAppLogic class.

Include File
gxidata.h

Methods

AddConn() Associates a query name with a data connection object and adds
it to the IGXDataConnSet object.

Related Topics
CreateDataConnSet() in the GXAppLaogic class

“About Database Connections” in Chapter 5, “Working with Databases” in the
Programmer’s Guide.

AddConn()

Associates a query name with a data connection object and adds it to the
IGXDataConnSet object.

Syntax
HRESULT AddConn(
LPSTR pQuer yNane,
| GXDat aConn *pConn) ;

pQueryName. Name of a query in the query file.

Chapter 3 Interfaces 175

IGXEnumObject interface

pConn. Name of the data connection object representing an active connection with
the data source on which the query will be run.

Rules
= Every named query in the qulery file must have a corresponding named query
in the IGXDataConnSet object.

< The AppLogic must first create the data connection object using
CreateDataConn() in the GXAppLogic class.

< Duplicate query names are not permitted.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateDataConnSet() in the GXAppLaogic class

“About Database Connections” in Chapter 5, “Working with Databases” in the
Programmer’s Guide.

IGXEnumObject interface

176

The IGXEnumObiject interface represents an enumeration object that contains
IGXObject instances. Some methods that return a list of objects, such as
EnumEvents() in the IGXAppEventMgr interface, return an IGXEnumObject
object.

The IGXEnumObiject interface defines methods for counting and accessing the
IGXObject instances in an IGXEnumObiject.

Include File
gxienum.h

Methods

Method Description

EnumCount() Returns the number of IGXObject instances in an IGXEnumObject.
EnumNext() Returns the next IGXObject instance in an IGXEnumObject.
EnumReset() Resets to the first IGXObject instance in an IGXEnumObiject.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXEnumObiject interface

Related Topics
EnumEvents() in the IGXAppEventMgr interface

EnumCount()
Returns the number of IGXObject instances in an IGXEnumObject.

Syntax
HRESULT EnuntCount (
ULONG *pCount) ;

pCount. Pointer to the variable that contains the returned number of IGXObject
instances in the IGXEnumObject.

Usage
Use EnumCount() to determine the number of objects to process before iterating
through the IGXObject instances in the IGXEnumObiject.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

In the following example, EnumEvents() returns all the application events
registered with the iPlanet Application Server in an IGXEnumObiject. The
EnumCount() method is used in conjunction with EnumNext() and EnumReset()
to access objects in the IGXEnumObject.

| GXEnumObj ect *pECbj s = NULL;
ULONG ul Count = 0;

/'l suppose pAppEvent Mgr has a valid reference to | GXAppEvent Myr
obj ect

/] Get the Enumeration object for all registered appevents
hr = pAppEvent Myr - >EnunEvent s(&Ej s) ;

/1 Retrieve the count of registered appevents
hr = pEObj s- >EnunCount (&ul Count) ;

fprintf(fp, "Nunber of Registered Events: %\ n", ul Count);

/1 Reset the next enuneration object to be the first instance
hr = pEQbj s- >EnunReset (0);

/1 lterate through all the enuneration instances

Chapter 3 Interfaces 177

IGXEnumObject interface

178

while (ul Count--) {
/1 Process the objects

}

Related Topics
EnumEvents() in the IGXAppEventMgr interface

EnumNext()

EnumReset()

EnumNext()
Returns the next IGXObject instance in an IGXEnumObject.

Syntax
HRESULT EnunmNext (
| GXObj ect **ppNext);

ppNext. Pointer to the returned IGXObject object. When the AppLogic is finished
using the object, call the Release() method to release the interface instance.

Usage
Use EnumNext() in conjunction with EnumCount() and EnumReset() to iterate
through an IGXEnumObiject.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

In the following example, EnumEvents() returns all the application events
registered with the iPlanet Application Server in an IGXEnumObiject. The
EnumNext() method is used in conjunction with EnumCount() and EnumReset()
to access objects in the IGXEnumObject.

/1 Retrieve the count of registered appevents
hr = pEQbj s- >EnunCount (&ul Count) ;

/! Reset to the first object
hr = pEQObj s- >EnunReset (0);

/1 lterate through all the enuneration instances

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXEnumObiject interface

while (ul Count--) {
| GXObj ect *pCb] = NULL;

/1 Get the next instance
hr = pEObj s- >EnumNext (&pbj) ;
if ((hr '= NOERROR) || (pObj == NULL)) {
pEMbj s- >Rel ease() ;
return StreanResul t ("EnunmNext failed!
");
}

/1 Make sure the object supports the | GXAppEvent Obj
/1 interface (it shoul d)
| GXAppEvent Gbj * pAEGhb] = NULL;
hr = pQObj->Querylnterface(llD_| GXAppEvent Obj, (LPVO D
*) &AEQD]) ;
pQbj - >Rel ease() ;
if ((hr '= NCERROR) || (pAEQhj == NULL)) {
pAEQbj - >Rel ease() ;
return StreanResult ("Querylnterface on EnumNext Obj

fail ed!
");

/1l Process the objects

/! Rel ease when done.
pAEQbj - >Rel ease() ;

Related Topics
EnumEvents() in the IGXAppEventMgr interface

EnumCount()

EnumReset()

EnumReset()
Resets to the first IGXObject instance in an IGXEnumObject.

Syntax
HRESULT EnunReset (
DWORD dwFl ags) ;

dwrFlags. Specify 0.
Usage

Use EnumReset() before iterating through an IGXEnumObject. Doing so ensures
that iteration begins at the first IGXObject instance in the IGXEnumObject.

Chapter 3 Interfaces 179

IGXError interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

/1 Retrieve the count of objects in the | GXEnuntbj ect
hr = pEQbj s- >EnunCount (&ul Count) ;

/1 Reset the next enuneration object to be the first instance
hr = pEQObj s- >EnunReset (0);

/1 lterate through all the enuneration instances
while (ul Count--) {
/1 Process the objects

}

Related Topics
EnumEvents() in the IGXAppEventMgr interface

EnumCount()

EnumNext()

IGXError interface

The IGXError interface represents an error code object that consists of a code and a
corresponding error message that originates from a facility, such as an operating
system or a database. In this release, IGXError handles database errors only.

Use the methods in the IGXError interface to get error codes and messages
returned by a database.

The IGXError interface is implemented by the IGXDataConn object. To use it, cast
IGXDataConn to the IGXError interface, as shown in the following example:

| GXDat aConn *conn;
| GXError *error;

conn->Querylnterface(l1 D IGXError, (LPVOD *) &error);

Include File
gxierror.h

180 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXError interface

Methods
Method Description
GetErrorCode() Returns the current error code as a string.

GetErrorCodeNum() Returns the current error code as a number.

GetErrorMessage() Returns the message associated with the current error code.
GetErrorFacility() Returns a description of the facility that generated an error code.
GetErrorCode()
Returns the current error code as a string.
Syntax
HRESULT get Er r or Code(

LPSTR pCode,

ULONG nSi ze) ;

pCode. Pointer to the buffer allocated by the client to store the returned error code.

nSize. The size of the buffer to store the error code. 256 bytes is usually sufficient.
If the error code string exceeds the specified size, it is truncated.

Usage

Use GetErrorCode() after a database operation, such as running a stored
procedure or executing a query, to retrieve the error code for debugging or
error-handling purposes. The following is an example of a returned error code:
"ORA-03130".

Tip

For ODBC, the error codes usually consist of the ODBC error code and the database
error code separated by a space, for example, "S1000 1017". Sometimes just the
ODBC error code, such as "S1000", is returned.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetErrorCodeNum()

GetErrorMessage()

Chapter 3 Interfaces 181

IGXError interface

GetErrorFacility()

GetErrorCodeNum()

Returns the current error code as a number.

Syntax
HRESULT get Er r or CodeNun{
DWORD *nCode) ;

nCode. Pointer to the variable allocated by the client to store the returned error
code.

Usage

Use GetErrorCodeNum() after a database operation, such as running a stored
procedure or executing a query, to retrieve the error code for debugging or
error-handling purposes.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetErrorCode()

GetErrorMessage()
GetErrorFacility()

GetErrorMessage()

Returns the message associated with the current error code.

Syntax

HRESULT get Er r or Code(
LPSTR pCode,
LPSTR pMessage,
ULONG nSi ze) ;

pCode. Specify NULL.

pMessage. Pointer to the buffer allocated by the client to store the returned
message.

nSize. The size of the buffer to store the error message.

182 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXError interface

Usage

Use GetErrorMessage() after a database operation, such as running a stored
procedure or executing a query, to retrieve the message associated with the current
error code. The AppLogic can then display the message to users. The following is
an example of a returned error message: "[ODBC][Visigenic
driver][S1000]Connection attempt failed".

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetErrorCode()
GetErrorCodeNum()
GetErrorFacility()

GetErrorFacility()

Returns a description of the facility that generated an error code.

Syntax

HRESULT getErrorFacility(
LPSTR pDescri pti on,
ULONG nSi ze) ;

pDescription. Pointer to the buffer allocated by the client to store the returned
string description.

nSize. The size of the buffer to store the string description. If the string exceeds the
specified size, it is truncated.

Usage

Use GetErrorFacility() after a database operation, such as running a stored
procedure or executing a query, to get information on which driver generated the
current error code. The following is an example of a description returned by
GetErrorFacility(): "ODBC DAD".

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetErrorCode()

GetErrorCodeNum()

Chapter 3 Interfaces 183

IGXHierQuery interface

GetErrorMessage()

IGXHierQuery interface

184

The IGXHierQuery interface represents a hierarchical query. IGXHierQuery
provides methods for retrieving hierarchical information organized in nested
levels of detail, as in the following example:

Asi a 170
Chi na 110
Japan 60

Eur ope 80
France 70
Por t ugal 10

A hierarchical query combines multiple flat queries organized in cascading,
parent-child relationships. Each query is an IGXQuery object containing data
selection criteria. The IGXHierQuery object contains the definition of the
hierarchical structure of parent-child relationships among IGXQuery objects.

To use a hierarchical query, the AppLogic first creates each individual query and
defines its selection criteria. Next, it creates the IGXHierQuery object and calls
AddQuery() repeatedly to add a child query to a parent query for each level of
detail in the hierarchical query.

After the hierarchical query is constructed, the AppLogic calls its Execute()
method to run the hierarchical query on the target data source and retrieve a
hierarchical result set in an IGXHierResultSet object.

Alternatively, the AppLogic can load a hierarchical query stored in a file. For more
information, see LoadHierQuery() and CreateDataConnSet() in the GXAppLogic
class.

To create an instance of the IGXHierQuery interface, use createHierQuery() in the
GXAppLogic class.

Include File
gxidatap.h

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXHierQuery interface

Methods

Method Description

AddQuery() Adds a child query to a parent query, defining an
additional level of detail in the hierarchical query.

DelQuery() Removes a child query from its parent query.

Execute() Executes a hierarchical query and returns a hierarchical

result set.

Related Topics
createHierQuery() in the GXAppLogic class

“Writing Hierarchical Queries” in Chapter 6, “Querying a Database” in
Programmer’s Guide.

AddQuery()

Adds a child query to a parent query, defining an additional level of detail in the
hierarchical query.

Syntax

HRESULT AddQuer y(
| GXQuery *pQuery,
| GXDat aConn *pConn,
LPSTR szAli as,
LPSTR szParent,
LPSTR szJoin);

pQuery. Pointer to the IGXQuery object that contains the flat query object to
append as a child to the parent query.

pConn. Pointer to the IGXDataConn object that contains the data connection
where the child query will be executed. Each flat query in the hierarchical query
can retrieve data from a different data source.

szAlias. Name used to uniquely identify this child query in the query hierarchy.
AppLogic must specify a child name that is unique within the hierarchical query.

Chapter 3 Interfaces 185

IGXHierQuery interface

186

szParent. Name of the parent query to contain this child query. Use an empty
string (") for the highest level in the hierarchical query. When adding a child query
to an existing parent query, the specified parent name must have already been
specified in a previous AddQuery() call.

szJoin. Join clause used to specify a join for this query, defining the relationship
between a field in the child query and a field in the parent query. Use an empty
string for the highest level in the hierarchical query. Use the following
iPlanetiPlanet-compliant syntax for the join clause:

"Par ent Query. tabl e. col um=’"chil dQuery.tabl e.col um’"
Optionally, you can specify the schema:

" Par ent Query. schena. t abl e. col um="chi | dQuery. schema. t abl e. col um’ "

NOTE The only difference between the iPlanet Application Server and
SQL join syntax is that, with iPlanet, you prepend the clause with
the query name.

To refer to a field name in the parent query, include the parent query name before
the field name, as shown in the following example, in which CITY is the name of
the parent query:

HRESULT hr = hqr->AddQuery(pQ yEMP, pConn, "EMP', "CITY",
"EMP. enpl oyee.city = "CITY.city' ")

Use the AND and OR operators to specify additional join conditions. Use
parentheses to specify the order of precedence in complex join criteria.

Usage

Use AddQuery() when constructing the hierarchical query to define the
hierarchical relationships among child and parent queries. The number of nested
levels, and thus the number of AddQuery() calls, is limited only by system
resources.

Rules

= The AppLogic must first create the data connection using CreateDataConn() in
the GXAppLaogic class.

< The AppLogic must then create the specified child query using createQuery()
in the GXAppLogic class. A separate child query must exist for every level of
data.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXHierQuery interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

/1 Create the hier query
| GXHi er Query *pHg=NULL;

i £(((hr=CreateH er Query(&pHq)) ==GXE_SUCCESS) &&pHa) {
/1 Add a query
pHg- >AddQuer y(pQuery, pConn, "Sel Custs", "", "");

Related Topics
createHierQuery() in the GXAppLaogic class

IGXQuery interface
IGXDataConn interface

“Writing Hierarchical Queries” in Chapter 6, “Querying a Database” in
Programmer’s Guide.

DelQuery()

Removes a child query from its parent query.

Syntax
HRESULT Del Query(
LPSTR szNan®) ;

szName. Name of the child query to remove.

Usage

Use DelQuery() to remove a child query that is no longer needed. Any children of
the deleted child query are also removed.

Rule
The specified child query must exist in the hierarchical query.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createHierQuery() in the AppLogic class (deprecated)

Chapter 3 Interfaces 187

IGXHierQuery interface

188

“Writing Hierarchical Queries” in Chapter 6, “Querying a Database” in
Programmer’s Guide.

Execute()
Executes a hierarchical query and returns a hierarchical result set.

Syntax
HRESULT Execut g(
DWORD dwrl ags,
DWORD dwTi neout ,
| GXVal Li st *pProps,
| GXHi er Resul t Set **ppHi er Resul t Set) ;

dwFlags. Specifies flags used to execute this hierarchical query.

= For synchronous operations, the default, specify zero or GX_DA_EXEC_SYNC.
=« For asynchronous operations, specify GX_DA_EXEC_ASYNC.

« To activate result set buffering, specify GX_DA_RS BUFFERING.

The AppLogic can pass both result set buffering and either synchronous or
asynchronous queries as the flags parameter, as shown in the following example:

(GX_DA_EXEC_ASYNC | GX_DA_RS_BUFFERING).
dwTimeout. Specify 0 (zero).

pProps. Pointer to the IGXValList object that contains query properties, or NULL
for no properties. After instantiating an object of the IGXValList interface, set any
of the following properties:

= RS_BUFFERING turns on result set buffering when set to “TRUE”.

< RS_INIT_ROWS specifies the initial size of the buffer, in number of rows. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA_BUFFER_EXCEEDED.

< RS_MAX_ROWS specifies the maximum number of rows for the buffer. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA_BUFFER_EXCEEDED.

e RS_MAX_SIZE specifies the maximum number of bytes for the buffer.

If RS_BUFFERING is enabled and if the optional parameters are not specified, the
global values in the registry are used instead..

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXHierResultSet interface

ppHierResultSet. Pointer to the IGXHierResultSet object that contains the
returned result of the hierarchical query. When the AppLogic is finished using the
object, call the Release() method to release the interface instance.

Usage

After constructing a hierarchical query using AddQuery(), the AppLogic uses
Execute() to execute the query on the database server. Results are returned in a
hierarchical result set.

Rule
AppLogic must first construct the hierarchical query using AddQuery().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics

createHierQuery() in the AppLaogic class (deprecated)
IGXHierResultSet interface

IGXValList interface

“Writing Hierarchical Queries” in Chapter 6, “Querying a Database” in
Programmer’s Guide.

IGXHierResultSet interface

The IGXHierResultSet interface represents a hierarchical result set retrieved by a
hierarchical query. IGXHierResultSet provides methods to iterate through rows in
the hierarchical result set and retrieve information about each row. Alternatively,
an AppLogic can process hierarchical result sets by passing them directly to the
Template Engine using EvalOutput() in the GXAppLaogic class.

IGXHierResultSet is part of the Data Processing Engine (DPE) service. To create an
instance of IGXHierResultSet, use Execute() in the IGXHierQuery interface, as
shown in the following example:

| GXHi er Resul t Set *hrs = NULL;
HRESULT hr;
hr = hqry->Execute(0, 0, NULL, &hrs);

Include File
gxidatap.h

Chapter 3 Interfaces 189

IGXHierResultSet interface

Methods
Method Description
Count() Returns the total number of rows retrieved so far from the data

GetColumn()

GetColumnByOrd()

GetResultSet()
GetRowNumber()

GetValueDateString()

GetValueDouble()

GetValuelnt()

GetValueString()

source for the specified child query.

Returns the column definition for the column with the specified
name in the specified child query.

Returns the column definition for the column in the specified
ordinal position for the specified child query.

Returns the result set for a specified child query.

Returns the number of the current row for the specified child
query in the hierarchical result set.

Returns the value of a Date type column, as a string, from the
specified child query in the result set.

Returns the value of a double type column from the specified
child query in the result set.

Returns the value of an int type column from the specified child
query in the result set.

Returns the value of a string type column from the specified
child query in the result set.

MoveNext() Moves to the next row for the specified child query in the result
set.

MoveTo() Moves to the specified row for the specified child query in the
result set.

Example

The following code runs a hierarchical query and with the returned hierarchical

result set, checks a user’s access level to determine which listbox options to display:

LPSTR t enpl at eNane;
| GXDat aConn *conn;
I GXQuery *qry;
LPSTR want edUser ;

/1 Not shown here, creation of data connection and creation
/1 of query of users.

190 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXHierResultSet interface

| GXHi er Query *hqry = NULL;
Creat eHi er Query(&hary);
hgry->AddQuery(qry, conn, "USERS', "", "");

/| Execute the hierarchical query.

| GXHi er Resul t Set *hrs = NULL;

HRESULT hr;

hr = hqry->Execute(0, 0, NULL, &hrs);
if (hr == NOERRCR && hrs)

ULONG i ;

i f (hrs->CGet RowNunber ("USERS", &) == NOERROR &&
i > 0)
/1 The current rowis row 1, so there is at |east
/1 one user returned in the USERS sub-query.
I
/1 The business logic here is to check the user’s
/] access level, and show different |istbox options
/1 depending on the |evel.
/1

LPSTR sel Adm n;
LPSTR sel Nor nal ;
char access[64];
access[0] = '\0;
char buffer[1024];
buffer[0] ="'\0";

hr = hrs->Get Val ueString("USERS", "AccesslLevel", access,
si zeof (access));
if (hr == NOERROR &&
strcnp(access, "AccessAdmi n") == 0)

sel Admi n "<option sel ect ed>AccessAdm n</option>";

sel Nor mal "<opti on>Nor nal </ opti on>";
el se
sel Admin = "<opti on>AccessAdm n</option>";
sel Normal = "<option sel ect ed>Nor mal </ opti on>";

}

sprintf(buffer,

"<sel ect nanme=accessControl Level >\ n%s %</ sel ect >",
sel Adm n,
sel Normal) ;

W have a tenplate map which we fill

wi th dynam c val ues. The tenpl ate shoul d
refer to these values in gx cell

pl acehol ders.

~ I~~~
~—— — —

GXTenpl at eMapBasi ¢ *map = new GXTenpl at eMapBasi c() ;
| GXBuf fer *b;

b = GXCreateBufferFronttring(buffer);

map- >Put (" ACCESS", b);

b- >Rel ease();

Chapter 3 Interfaces

191

IGXHierResultSet interface

b = GXCreat eBufferFronttring(access);
map- >Put (" ACCESS LEVEL", b);
b- >Rel ease();
hr = Eval Qut put (t enpl at eNane,

(1 GXTenpl ateData *) hrs,

(I GXTenpl ateMap *) nap,

NULL, NULL);

map- >Rel ease();

el se

/1 No users returned in the USERS sub-query.

I

StreanResul t ("No user matches the login nanme: ");
StreanResul t (want edUser) ;

hr s- >Rel ease() ;

}

Related Topics
createHierQuery() in the GXAppLogic class

IGXHierQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a Database
in Programmer’s Guide.

Count()

Returns the total number of rows retrieved so far from the data source for the
specified child query.

Syntax

HRESULT Count (
LPSTR qr yNane,
ULONG *nRows) ;

gryName. Name of the child query that generated the result set.

nRows. Pointer to the variable that contains the returned number of rows in the
result set.

Usage

Use Count() to return the current number of rows processed so far in the result set.
If iterating through rows in a result set that has been completely returned, use
Count() to determine the current maximum number of rows to process.

192 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXHierResultSet interface

Tip
If result set buffering is enabled, the AppLogic can use Count() to find the current
number of rows in the buffer.

Rule
The specified child query must exist in the result set.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createHierQuery() in the GXAppLaogic class

IGXHierQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a Database”
in Programmer’s Guide.

GetColumn()

Returns the column definition for the column with the specified name in the
specified child query.

Syntax

HRESULT Get Col umm(
LPSTR qr yNane,
LPSTR col Nare,
| GXCol um **ppCol) ;

gryName. Name of the child query that generated the result set.

colName. Name of the column. Must not be qualified with the schema name or
table name (if necessary, use column alias to ensure that the colName is
unambiguous).

ppCol. Pointer to the IGXColumn object that contains the returned column
definition. When AppLogic is finished using the object, call the Release() method
to release the interface instance.

Usage

Use GetColumn() when the data definition of the column is unknown and is
required for subsequent operations. The AppLogic can then use methods in the
IGXColumn interface to obtain descriptive information about a table column from
the database catalog, such as the column name, precision, scale, size, table, and
data type.

Chapter 3 Interfaces 193

IGXHierResultSet interface

194

Rules
= The specified child query must exist in the result set.

= The specified column name must exist in the result set.

Tips
e Use GetColumnByOrd() instead when the column position is known but its
name is unknown.

« Columns that are the result of query expressions or formulas, such as
i nvoi ce. count * product. pri ce, should have a column alias in the
result set. AppLogic can call SetFields() in the IGXQuery interface to specify
field aliases using the "as" keyword.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

| GXHi er Resul t Set *hrs = NULL;

/1 Not shown here, execution of hierarchical query
/] that retrieves the hierarchical resultset.

I GXCol um *col = NULL;
HRESULT hr;
hr = hrs->Get Col um(" 1 NVO CES", "Date", &col);
if (hr == NOERROR &&col)
/] Call columm methods, such as | GXCol um:: Get Nane() here.

col - >Rel ease() ;

Related Topics
createHierQuery() in the GXAppLogic class

IGXHierQuery interface
IGXColumn interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a Database”
in Programmer’s Guide.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXHierResultSet interface

GetColumnByOrd()

Returns the column definition for the column in the specified ordinal position for
the specified child query.

Syntax

HRESULT Get Col umByOr d(
LPSTR qr yNane,
ULONG col | ndex,
| GXCol utm **ppCol) ;

gryName. Name of the child query that generated the result set.

collndex. Ordinal position of a column in the result set. The ordinal position of the
first column in the result set is 1, the second column is 2, and so on.

ppCol. Pointer to the IGXColumn object that contains the returned column
definition. When AppLogic is finished using the object, call the Release() method
to release the interface instance.

Usage

Use GetColumnByOrd() when the data definition of the column is unknown and is
required for subsequent operations. AppLogic can then use methods in the
IGXColumn interface to obtain descriptive information about a table column from
the database catalog, such as the column name, precision, scale, size, table, and
data type.

Rules
= The specified child query must exist in the result set.

= The specified column position must exist in the result set.

Tip

Use GetColumn() instead when the column name is known but its ordinal position
is unknown.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
| GXHi er Resul t Set *hrs = NULL;

I/ Not shown here, execution of hierarchical query

/1l that retrieves the hierarchical resultset.

Chapter 3 Interfaces 195

IGXHierResultSet interface

196

| GXCol utm *col = NULL;
HRESULT hr;
hr = hrs->Get Col umByOrd("1 NvO CES", 1, &col);
if (hr == NOERROR && col)
{
/1 Call columm nethods, such as | GXCol um: : Get Nane() here.

col - >Rel ease();
}

Related Topics
createHierQuery() in the GXAppLaogic class

IGXHierQuery interface
IGXColumn interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a Database”
in Programmer’s Guide.

GetResultSet()

Returns the result set for a specified child query.

Syntax
HRESULT Get Resul t Set (
LPSTR qr yName,
| GXResul t Set **ppResul t Set) ;

gryName. Name of the child query that generated the result set to retrieve.

ppResultSet. Pointer to the IGXResultSet object that contains the returned result
set. When AppLogic is finished using the object, call the Release() method to
release the interface instance.

Usage

Use GetResultSet() to retrieve and manipulate a particular child result set in the
hierarchical result set. The AppLogic can then use methods in the IGXResultSet
interface to get data from the result set columns.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXHierResultSet interface

Rule
The specified child query must exist in the result set.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/1l Look up list of custoners matching criteria from database

| GXHi er Resul t Set *pHRset =NULL;

i f(((hr=LookupCustomer(pSsn, plLastNane, pFirstNane, pAcctNum
&pHRset)) ==GXE_SUCCESS) &&pHRset) {

/1 Check the result set to see if any custoners are found
| GXResul t Set *pRset =NULL;
i f(((hr=pHRset->Get Resul t Set (" Sel Custs",
&pRset)) ==GXE_SUCCESS) &&pRset) {
Related Topics

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a Database”
in Programmer’s Guide.

GetRowNumber()

Returns the number of the current row for the specified child query in the
hierarchical result set.

Syntax

HRESULT Get RowNunber (
LPSTR qr yNane,
ULONG *pOrd);

gryName. Name of the child query that generated the result set.

pOrd. Pointer to the variable that contains the returned row number for the
current row.

Usage

When iterating through rows in a child set, use GetRowNumber() to keep track of
the number of rows processed.

Chapter 3 Interfaces 197

IGXHierResultSet interface

198

Rule
The specified child query must exist in the result set.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createHierQuery() in the GXAppLogic class
IGXHierQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a Database”
in Programmer’s Guide.

GetValueDateString()

Returns the value of a Date type column, as a string, from the specified child query
in the result set.

Syntax
HRESULT Get Val ueDat eStri ng(
LPSTR qr yNane,
LPSTR col Nare,
LPSTR pVal,
ULONG nVal) ;

gryName. Name of the child query that generated the result set.
colName. Name of the column from which to retrieve the date.
pVal. Pointer to the variable that contains the returned column value.

nVal. Length of the variable.

Usage

Use GetValueDateString() to retrieve date values from the result set for
subsequent processing. The following is an example of the format in which
GetValueDateString() returns a date:

Jan 26 1998 12:35:00

Rule
The specified column must be a Date, Date Time, or Time data type.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXHierResultSet interface

Example
| GXHi er Resul t Set *hrs = NULL;

I/ Not shown here, execution of hierarchical query

/1l that retrieves the hierarchical resultset.

char buffer[256];

buffer[0] = '\0";

HRESULT hr;

hr = hrs->Cet Val ueDateString("!NVO CES", "ShipDate", buffer,
si zeof (buffer));

Related Topics
GetValueDouble()

GetValuelnt()
GetValueString()

GetValueDouble()

Returns the value of a double type column from the specified child query in the
result set.

Syntax

HRESULT Get Val ueDoubl e(
LPSTR qr yName,
LPSTR col Nane,
doubl e *pVval);

gryname. Name of the child query that generated the result set.
colName. Name of the column from which to retrieve the double value.

pVal. Pointer to the variable that contains the returned column value.

Usage

Use GetValueDouble() to retrieve decimal, floats, real, numeric, and double values
from the result set for subsequent processing.

Rule

The specified column must be a double data type.

Chapter 3 Interfaces 199

IGXHierResultSet interface

200

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetValueDateString()

GetValuelnt()
GetValueString()

GetValuelnt()

Returns the value of an int type column from the specified child query in the result
set.

Syntax

HRESULT Get Val uel nt (
LPSTR qr yNane,
LPSTR col Nare,
ULONG *pVal) ;

gryname. Name of the child query that generated the result set.
colName. Name of the column from which to retrieve the value.

pVal. Pointer to the variable that contains the returned column value.

Usage
Use GetValuelnt() to retrieve int or long values from the result set for subsequent
processing.

Rule
The specified column must be an int or long data type.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetValueDateString()

GetValueDouble()
GetValueString()

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXHierResultSet interface

GetValueString()

Returns the value of a string type column from the specified child query in the
result set.

Syntax

HRESULT Get Val ueStri ng(
LPSTR qr yName,
LPSTR col Name,
LPSTR pVal ,
ULONG nVal) ;

gryname. Name of the child query that generated the result set.
colName. Name of the column from which to retrieve the value.
pVal. Pointer to the variable that contains the returned column value.

nVal. Length of the variable.

Usage
Use GetValueString() to retrieve string values from the result set for subsequent
processing.

Rule
The specified column must be a String data type.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
| GXHi er Resul t Set *hrs = NULL;

I/ Not shown here, execution of hierarchical query

/1l that retrieves the hierarchical resultset.

char buffer[256];
buffer[0] = "'\0";
HRESULT hr;

hr = hrs->Get Val ueString("CUSTOVERS", "Country", buffer,
si zeof (buffer));

Chapter 3 Interfaces 201

IGXHierResultSet interface

202

if (hr == NOERROR)

{
StreanResul t ("The custoner lives in the country of ");
StreanResul t (buffer);
StreanResul t (".
");

}

Related Topics
GetValueDateString()

GetValueDouble()
GetValuelnt()

MoveNext()

Moves to the next row for the specified child query in the result set.

Syntax
HRESULT MoveNext (
LPSTR qr yNane) ;

gryName. Name of the child query that generated the result set.

Usage
Use MoveNext() when iterating through rows in the result set to retrieve the
contents of the next sequential row.

Rule
The specified child query must exist in the result set.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds. If the target row
is out of range, HRESULT is set to -1.

Related Topics
createHierQuery() in the GXAppLaogic class

IGXHierQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a Database”
in Programmer’s Guide.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXHierResultSet interface

MoveTo()

Moves to the specified row for the specified child query in the result set.

Syntax

HRESULT MoveTo(
LPSTR qr yName,
ULONG nRow) ;

gryName. Name of the child query that generated the result set.

nRow. Number of the row in the result set to move to. The number of the first row
in the result set is 1, the second row is 2, and so on.

Usage
Use MoveTo() to move the internal cursor to a specific row in the result set,
skipping over rows to be excluded from processing.

Rules
= The specified child query must exist in the result set.

= The specified row number must exist in the result set.

« If RS_BUFFERING is turned on, AppLogic can move forward and backwards
in the result set. However, if RS_BUFFERING is not turned on, AppLogic can
move forward to subsequent rows only. AppLogic cannot return to rows that
have been processed previously.

Tip
For certain database drivers, this operation may be very slow and should be
avoided if possible.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds. If the target row
is out of range, HRESULT is set to -1.

Related Topics
createHierQuery() in the GXAppLogic class

IGXHierQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a Database”
in Programmer’s Guide.

Chapter 3 Interfaces 203

IGXLock interface

IGXLock interface

The IGXLock interface provides concurrency control for objects operating in a
multithreaded environment (for example, in applications that use distributed
state).

AppLogics use locks to protect objects during concurrent operations. For example,
state and session nodes implement this interface. Applications that access state or
session data concurrently must synchronize using the methods in this interface.

A lock has the following attributes:

= Alock mode. You can specify an exclusive or shared lock. An exclusive lock
prevents other threads from accessing a locked object. You can also use the lock
mode to specify that an operation may continue even if the desired locking
mode is not available.

< Acaller ID. This setting provides a unique identifer for the caller that places or
removes a lock. The identifier is an array of bytes.

The IGXLock interface defines methods for locking and unlocking objects. It also
defines a method for changing the lock mode.

Include File
gxilock.h

Methods

Method Description

ChangeMode() Changes the lock mode of a currently locked object. This method is
not available for the lock interface implemented by state and session

objects.
Lock() Locks an object.
Unlock() Unlocks a previously locked object.
ChangeMode()

Changes the lock on an object.

204 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXLock interface

NOTE This method is not supported for locks on state and session nodes.
State and session support only one lock mode, GXLOCK_EXCL,
which cannot be changed.

Syntax

HRESULT ChangeMbde(
DWORD dwd dMbde,
i nt dwNewbde,
LPBYTE pl D
ULONG nSi ze) ;

dwOldMode. Current lock mode applied to an object. The mode is one of
GXLOCK_EXCL (exclusive lock) or GXLOCK_SHARE (shared lock).

dwNewMode. New locking mode, one of GXLOCK_EXCL (exclusive lock) or
GXLOCK_SHARE (shared lock). Optionally, the mode may also include
GXLOCK_NOBLOCK if the operation should be allowed to continue if the desired
locking mode is not available. If GXLOCK_NOBLOCK is not specified, then a
thread is blocked if the desired locking mode is not available.

pID. ID of the caller requesting the change to the lock. This value is read only.

nSize. Size of the identifier.

Usage
Use ChangeMode() to change a lock on an object.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Lock()

Locks an object.

Syntax

HRESULT Lock(
DWORD dwrl ags,
LPBYTE pl D
ULONG nSi ze) ;

Chapter 3 Interfaces 205

IGXLock interface

dwrFlags. Locking mode, one of GXLOCK_EXCL (exclusive lock) or
GXLOCK_SHARE (shared lock). Optionally, the mode may also include
GXLOCK_NOBLOCK if the operation should be allowed to continue if the desired
locking mode is not available. If GXLOCK_NOBLOCK is not specified, then a
thread is blocked if the desired locking mode is not available.

GXLOCK_EXCL is the only mode currently supported for locking a state or session
node. You cannot specify GXLOCK_NOBLOCK for state and session nodes.

pID. ID of the caller requesting the lock. This value is a byte array. For state and
session objects that implement the locking interface, you can pass in a null value
for pID because these implementations automatically use the ID of the calling
thread for pID.

nSize. Size of the identifier.

Usage
Use Lock() to lock an object.

Rules
When you lock certain kinds of nodes, the following rules apply:

= After locking a parent state node, do not create or delete a child node under it.

= After locking a state or session node, do not delete the node.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds, or an error code,
such as GXE_FAIL on failure.

Example
The following code shows how to lock and unlock a state node:

| GXSt at e2 *mar ket news = NULL;
HRESULT hr = cacheroot->Cet St at eChi |l d(" nkt news", &market news);
if (hr !'= GXE_SUCCESS || ! marketnews)

return;

/1 we expect marketnews state node to be accessed concurrently

| GXLock *I = null;
hr = mar ket news->Queryl nterface(llD_I GXLock, (LPVOD *)&l);
if (hr !'= GXE_SUCCESS || !I)
{
mar ket news- >Rel ease() ;
return;

206 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXLock interface

hr = | ->Lock(GXLOCK_EXCL, NULL, 0);
if (hr !'= GXE_SUCCESS)
{

mar ket news- >Rel ease() ;

| - >Rel ease();

Log("lock error");

return;

}

/1 we now have the node | ocked in exclusive npde
..., do work
/1 and unl ock the node

hr = 1 ->Unl ock(GXLOCK. GXLOCK_EXCL, NULL, 0);
if (hr !'= GXE_SUCCESS)
{

mar ket news- >Rel ease() ;

| - >Rel ease();

Log("unl ock error");

return;

}

Related Topics
GXAppLogic or GXSession2 classes

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

Unlock()

Unlocks a previously locked object.

Syntax

HRESULT Unl ock(
DWORD dwrl ags,
LPBYTE pl D
ULONG nSi ze) ;

dwFlags. The locking mode previously used to lock the object, either
GXLOCK_EXCL (exclusive lock), or GXLOCK_SHARE (shared lock).

GXLOCK_EXCL is the only mode currently supported for unlocking a state or
session node.

pID. The ID of the caller that requests lock removal. This value is a byte array. The
ID must match the ID with which you set the lock.

Chapter 3 Interfaces 207

IGXLock interface

Usually you pass in the ID of the executing thread that requests the lock. For state
and session objects that implement the locking interface, you can pass in a null
value for pID because these implementations automatically use the ID of the
calling thread for pID.

nSize. Size of the identifier.

Usage
Use Unlock() to remove a lock on an object.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following code shows how to lock and unlock a state node:

| GXSt at e2 *mar ket news = NULL;
HRESULT hr = cacheroot->Cet St at eChi | d(" nkt news", &market news);
if (hr !'= GXE_SUCCESS || ! marketnews)

return;

/1 we expect marketnews state node to be accessed concurrently

| GXLock *I = null;
hr = mar ket news->Querylnterface(llD_I GXLock, (LPVOD *)&l);
if (hr !'= GXE_SUCCESS || !I)
{
mar ket news- >Rel ease() ;
return;

hr = | ->Lock(GXLOCK_EXCL, NULL, 0);
if (hr != GXE_SUCCESS)

mar ket news- >Rel ease() ;
| - >Rel ease();
Log("lock error");
return;

}

/1 we now have the node | ocked in exclusive npde
1., do work
/1 and unl ock the node

hr = 1 ->Unl ock(GXLOCK. GXLOCK_EXCL, NULL, 0);
if (hr !'= GXE_SUCCESS)
{

mar ket news- >Rel ease() ;

208 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXMailBox interface

| - >Rel ease();
Log("unl ock error");
return;

}

Related Topics
GXAppLogic or GXSession2 classes

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

IGXMailBox interface

The IGXMailBox interface represents an electronic mailbox used for
communicating with incoming and outgoing electronic mail. IGXMailBox provides
methods for opening and closing a mailbox, as well as for receiving and sending
mail messages. You must have access to either an SMTP or POP mail server.

To create an instance of the IGXMailbox interface, use CreateMailbox() in the
GXAppLogic class, as shown in the following example:

| GXMai | box *pSendMBox = NULL;
Cr eat eMai | box(pSendHost , pUser, pPswd, pUser Addr ,

&pSendMBox)
Include File
gximailbox.h
Methods
Method Description
Close() Closes an open electronic mailbox session.
Open() Opens a session with the mail server.
Retrieve() Retrieves unread electronic mail messages from the inbox.
RetrieveCount() Counts the number of available unread electronic mail messages in
the inbox.
RetrieveReset() Resets the status of retrieved messages in the mailbox from read to

unread and abandons (rolls back) any message deletions.

Send() Sends an electronic mail message to one or more mail addresses.

Chapter 3 Interfaces 209

IGXMailBox interface

Related Topics
CreateMailbox() in the GXAppLogic class

Chapter 10, “Integrating Applications with Email,” in Programmer’s Guide.

Close()

Closes an open electronic mailbox session.

Syntax
HRESULT C ose()

Usage

Use Close() to close a mailbox session and commit changes on the mail server, if
applicable. If sessions are open on both the POP and SMTP server, Close()
terminates both sessions.

Closing a session does not terminate the IGXMailbox object. The AppLogic can
later reopen a session using Open().

Rule
The AppLogic can only close a mailbox session that is open.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/1 Define the string paraneters that will be passed

/1 to | GXMail box nethods

LPSTR SendHost = "sntp. ki vasoft. cont';

LPSTR RecvHost = "pop. ki vasoft.conf;

LPSTR pUser = "eugene";

LPSTR pPswd = "eugenesSecr et Passwor d";

LPSTR pUser Addr = "eugene@i vasoft. conf;

LPSTR pSendTo[] {"friend@therhost.net", NULL};
LPSTR pMesg = "Hi Friend, How are you?";

HRESULT hr = NULL;

210 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXMailBox interface

public void SendMil ()

{
/1 Create an | GXMui |l box instance
| GXMai | box *pSendMBox = NULL;
if ((hr = CreateMil box(pSendHost, pUser, pPswd, pUser Addr,
&pSendMBox)) == NOERROR && pSendMBox ! = NULL)

/1 Open the mailbox to send the nessage
if ((hr = pSendMBox->Open(OPEN_SEND)) == NCERROR)
{
pSendMBox- >Send(pSendTo, pSendMesg);

/1 Cose the mail box

pSendMBox- >O ose() ;

}
pSendMBox- >Rel ease();

}

Related Topics
Open()

CreateMailbox() in the GXAppLogic class

Chapter 10, “Integrating Applications with Email,” in Programmer’s Guide.

Open()

Opens a session with the mail server.

Syntax
HRESULT Open(
DWORD dwFl ag) ;

dwFlag. Access level used to open the mailbox. Specify one of the following
options:

= OPEN_RECYV to receive emails. Sets up a session with the POP server only.

Chapter 3 Interfaces 211

IGXMailBox interface

= OPEN_SEND to send emails. Sets up a session with the SMTP server only.
e OPEN_SEND JOPEN_RECYV to send and receive emails.

Usage

Use Open() to explicitly open a session with the mail server after instantiating the
IGXMailbox object. Alternatively, the AppLogic can open a session after having
closed a previous session using Close().

Depending on the setting of the dwFlag parameter, Open() starts a session on the
SMTP server only, on the POP server only, or on both servers at once (two separate
sessions).

Rule
The AppLogic must call Open() before calling other methods.

Tip
To conserve system resources, use only the access level you need. For example, if

the AppLogic will only be sending electronic mail messages, specify OPEN_SEND,
not OPEN_SEND JOPEN_RECV.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

/1 Define the string paraneters that will be passed
/1 to | GXMail box met hods

LPSTR SendHost = "sntp. ki vasoft. cont;

LPSTR RecvHost = "pop. ki vasoft. conf;

LPSTR pUser = "eugene";

LPSTR pPswd = "eugenesSecr et Password";

LPSTR pUser Addr = "eugene@i vasoft. coni;

LPSTR pSendTo[] = {"friend@t herhost.net", NULL};
LPSTR pMesg = "Hi Friend, How are you?";

HRESULT hr = NULL;

public void SendMail ()
{

212 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXMailBox interface

/'l Create an | GXMail box instance

| GXMai | box *pSendMBox = NULL;

if ((hr = CreateMil box(pSendHost, pUser, pPswd, pUser Addr,
&pSendMBox)) == NOERROR && pSendMBox ! = NULL)

/1 Open the mailbox to send the nessage
if ((hr = pSendMBox->Cpen(OPEN _SEND)) == NOERROR)
{
pSendMBox- >Send(pSendTo, pSendMesg);

/1l Close the mail box

pSendMBox- >Cl ose() ;

}
pSendMBox- >Rel ease();

}

Related Topics
Send()
CreateMailbox() in the GXAppLogic class

Chapter 10, “Integrating Applications with Email,” in Programmer’s Guide.

Retrieve()
Retrieves electronic mail messages from the inbox.

Syntax
HRESULT Retrieve(
BOCOL bLat est,
BOOL bDel ete
| GXVal Li st **ppMsgs) ;

bLatest. Specify true to retrieve the latest unread messages. Specify false to
retrieve all messages in the inbox.

bDelete. Specify true to delete retrieved messages when the mailbox session is
closed. Specify false to leave the retrieved messages on the mail server.

Chapter 3 Interfaces 213

IGXMailBox interface

ppMsgs. Pointer to the IGXValList object that contains the message strings. The
keys are the message humbers. When the AppLogic is finished using the object, call
the Release() method to release the interface instance.

Usage
Use Retrieve() to get unread messages from the inbox. Once retrieved, messages
are marked as READ.

Rule

To use Retrieve(), the AppLogic must have first opened the mailbox session using
Open() and have specified either OPEN_RECYV or OPEN_SEND JOPEN_RECYV as
the dwFlag parameter.

Tip
AppLogic can use RetrieveReset() to undo changes (deletes, read flags) to
messages in the inbox.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
public void RecvMail ()
{

| GXMai | box *pRecviMBox = NULL;
| GXVal Li st *pRecvMsg = NULL;
int Numvsgs = O;

/1 Only check nessages received after the | ast open
BOOL Latest = true;
/'l Remove retrieved nmessages fromthe mail server

BOOL Del ete = true;
/1 Create a mail box instance
if ((hr = CreateMil box(host, user, passwd, user addr,

&pRecvMBox)) == NOERROR && pRecviMBox ! = NULL)

/1 Open a mail box to receive new nessages

214 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXMailBox interface

if ((hr = pRecvMBox->Open(OPEN_RECV)) == NCERROR)
{
/] Count the number of unretrieved nmessages
i f((Numvsgs = pRecvMBox->RetrieveCount()) > 0)
{
/1l Get the nessages
i f((pRecvMBox->Retrieve(Latest, Delete,
&RecvMsg)) == NOERROR)

/1 Use | GXval Li st nmethods to iterate through
/1 the returned | GXVal List. The keys in the
/1 1GXVal Li st are the nessage nunbers. The

/1 values are the enmai|l nessages as strings

Related Topics
Open()

CreateMailbox() in the GXAppLogic class

Chapter 10, “Integrating Applications with Email,” in Programmer’s Guide.

RetrieveCount()
Counts the number of unread electronic mail messages in the inbox.

Syntax
LONG Retri eveCount ();

Usage

Before calling Retrieve(), use RetrieveCount() to count the number of retrievable
messages in the inbox. The AppLogic might do this to avoid retrieving an empty
inbox. If the AppLogic iterates through the messages after they have been
retrieved, the AppLogic can call RetrieveCount() to determine the maximum
number of iterations required to process all available inbox messages.

Rule

To use RetrieveCount(), the AppLogic must have first opened the mailbox session
using Open() and have specified either OPEN_RECV or

OPEN_SEND | OPEN_RECYV as the dwFlag parameter.

Chapter 3 Interfaces 215

IGXMailBox interface

Return Value

The number of available unread electronic mail messages in the inbox. The
RetrieveCount() method returns 0 for no messages and a negative number if an
error ocurred.

Example
public void RecvMail ()
{

| GXMai | box *pRecviMBox = NULL;
| GXVal Li st *pRecvMsg = NULL;
int NumVsgs = O;

/1 Only check nessages received after the | ast open
BOOL Latest = true;
/1 Remove retrieved nmessages fromthe mail server

BOOL Del ete = true;

/! Create a mail box instance
if ((hr = CreateMil box(host, user, passwd, user addr,
&pRecvMBox)) == NOERROR && pRecvMBox ! = NULL)

/1 Open a mailbox to receive new nessages
if ((hr = pRecvMBox->Cpen(OPEN_RECV)) == NCERROR)
{
/1l Count the nunber of unretrieved nessages
i f((Numvbgs = pRecvMBox->RetrieveCount()) > 0)
{
/1 Get the nessages
i f ((pRecvMBox->Retrieve(Latest, Delete,
&RecvMsg)) == NOERROR)
{
/1 Use | GXVal Li st nethods to iterate through

216 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXMailBox interface

/1 the returned | GXval List. The keys in the
/1 1GXVal Li st are the nessage nunmbers. The

/1 values are the email| nessages as strings

Related Topics
Open()

Retrieve()
CreateMailbox() in the GXAppLogic class

Chapter 10, “Integrating Applications with Email,” in Programmer’s Guide.

RetrieveReset()

Resets the status of retrieved messages in the mailbox from read to unread and
abandons (rolls back) any message deletions.

Syntax
HRESULT RetrieveReset();

Usage
Use RetrieveReset() to undo any changes made as a result of retrieving inbox
messages with Retrieve().

Rules

= To use RetrieveReset(), the AppLogic must have first opened the mailbox
session using Open() and have specified either OPEN_RECV or
OPEN_SEND |OPEN_RECYV as the dwFlag parameter.

= Before calling RetrieveReset(), the AppLogic must first call Retrieve().

= Toabandon changes made with Retrieve(), AppLogic must call
RetrieveReset() before calling Close() or terminating the session.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
Open()

Retrieve()
CreateMailbox() in the GXAppLogic class

Chapter 10, “Integrating Applications with Email,” in Programmer’s Guide.

Chapter 3 Interfaces 217

IGXMailBox interface

Send()

Sends an electronic mail message to one or more mail addresses.

Syntax

HRESULT Send(
LPSTR *ppTo,
LPSTR pMesgq) ;

ppTo. A list of email addresses, to which you want to send e-mail. The address or
addresses must be supplied in a null-terminated array.

pMesg. Text of the electronic mail message. Use Internet mail formatting
conventions for specifying advanced features in the message text, such as CC: or
BCC: addresses, the Subject header, uuencode, MIME attachments, receipt
notification, and so on. For syntax specifications, see your POP and SMTP protocol
documentation.

Rules

= Touse Send(), the AppLogic must have first opened the mailbox session using
Open() and have specified either OPEN_SEND or
OPEN_SEND | OPEN_RECYV as the dwFlag parameter.

= The specified addresses must be valid Internet mail addresses.

= The specified message text must follow POP and SMTP protocol conventions.

Tip

The Send() method automatically includes the FROM: address that the AppLogic
specified in the pUserAddr parameter of CreateMailbox() in the GXAppLogic
class.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

/1 Define the string paraneters that will be passed
/1 to | GXMail box nethods

LPSTR SendHost "snt p. ki vasoft. cont;

LPSTR RecvHost = "pop. ki vasoft. conf;

LPSTR pUser = "eugene";

LPSTR pPswd = "eugenesSecr et Passwor d";
LPSTR pUser Addr = "eugene@i vasoft. coni;

218 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXMailBox interface

LPSTR pSendTo[] = {"friend@t herhost.net", NULL};
LPSTR pMesg = "Hi Friend, How are you?";

HRESULT hr = NULL;

public void SendMil ()
{
I/l Create an | GXMail box instance
| GXMai | box *pSendMBox = NULL;
if ((hr = CreateMil box(pSendHost, pUser, pPswd, pUser Addr,
&pSendMBox)) == NOERROR && pSendMBox ! = NULL)

{
/1 Open the mailbox to send the nessage
if ((hr = pSendMBox->Cpen(OPEN_SEND)) == NOERROR)
{
pSendMBox- >Send(pSendTo, pSendMesg);
/1 O ose the mail box
pSendMBox- >Cl ose() ;
}
}
pSendMBox- >Rel ease();
}
Related Topics
Open(),
Retrieve()

CreateMailbox() in the GXAppLogic class

Chapter 10, “Integrating Applications with Email,” in Programmer’s Guide.

Chapter 3 Interfaces 219

I0bject interface (deprecated)

IODbject interface (deprecated)

The 10bject interface is not necessary in the new application model. This interface
is deprecated and is provided for backward compatiblity only.

The 10bject interface is the base interface for all iPlanet Application Server Java
interfaces. Generally, iAS applications do not use this interface directly; they use
the specialized derived interfaces instead.

Package
com.kivasoft

IGXOrder interface

220

The IGXOrder interface represents the current processing status of an
asynchronous operation. IGXOrder provides methods for obtaining the status and
return code of an asynchronous operation.

To run an asynchronous database operation, the AppLogic must specify
GX_DA_EXEC_ASYNC as the dwFlags parameter in any of the following
methods:

e ExecuteQuery() in the IGXDataConn interface

= AddRow(), DeleteRow(), or UpdateRow() in the IGXTable interface

To create an instance of the IGXOrder interface for an asynchronous query, use
GetOrder() in the IGXResultSet interface.

Include File
gxiorder.h

Methods

GetState() Returns the processing status of the asynchronous operation
on the database server: active, done, canceled, or unknown.

Related Topics
ExecuteQuery() in the IGXDataConn interface

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXOrder interface

GetOrder() in the IGXResultSet interface
GXWaitForOrder() helper function

GetState()

Returns the processing status of the asynchronous operation.

Syntax

HRESULT Get St at e(
DWORD * pdwSt at e,
DWORD * pdwResul t,
ULONG *pGuess) ;

pdwsState. Pointer to the variable that contains the returned status code. The
variable is set to one of the following:

Constant Description

GXORDER_STATE_ACTIVE The asynchronous operation is still being
processed.

GXORDER_STATE_CANCEL The asynchronous operation has been
cancelled.

GXORDER_STATE_DONE The asynchronous operation has been

completely processed. Check the pdwResult
variable to see if the operation completed
with a result of success or failure.

GXORDER_STATE_UNKNOWN The status of the asynchronous operation is
unknown.

pdwResult. Pointer to the variable that contains the returned result, which is the
HRESULT return value of the operation (which is what is obtained if the operation
were called synchronously.)

pGuess. Pointer to the variable that contains the returned estimate about the
current completion percentage of the operation. iPlanet Application Server internal
use only.

Usage
Use GetState() to return status information to use in error-handling code.

Chapter 3 Interfaces 221

IGXOrder interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
| GXOrder *pOrder;
ULONG nOr der ;

HRESULT hr, ReqResult;

i f (NewRequest Async(asyncGUI DStr, m pValln,

m pVal Qut, 0, &pOrder) == GXE_SUCCESS)

Log("Successfully invoked async AppLogic\n");

/1 wait for async applogic to finish (nax 100 seconds)

hr = GX\Wi t For Order (& Order, 1, &Order, m pContext, 100);
if (hr !'= NOERROR)

{
return Result("Error in executing async request:
order wait returned an error");
}
el se
{
pOrder->Cet State(NULL, &ReqgResult, NULL);
if (ReqResult != NOERROR)
return Result("Error in executing async
request");
}

el se

Log("Failed to invoke async ApplLogic\n");

222 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXPreparedQuery interface

Related Topics
ExecuteQuery() in the IGXDataConn interface

GetOrder() in the IGXResultSet interface
GXWaitForOrder() helper function

IGXPreparedQuery interface

The IGXPreparedQuery interface represents a prepared flat query. An
IGXPreparedQuery object contains a SQL statement that has been compiled. This is
what makes a statement “prepared.” An AppLogic uses a prepared query when it
needs to execute a SQL statement multiple time with different parameters.

For example, if an AppLogic runs an INSERT statement several times, each time
with a different set of values to insert into the table, using a prepared query
involves the following steps:

1. Prepare (compile) the INSERT statement with placeholder parameters whose
values will be specified later.

2. Specify a set of parameter values.

3. Execute the prepared query.

4. Specify another set of parameter values.
5. Execute the prepared query.

By preparing the SQL statement, the database needs to compile the statement only
once. Without prepared statements, the database must recompile each statement
every time it is executed, which is less efficient.

To create an instance of the IGXPreparedQuery interface, use PrepareQuery() in
the IGXDataConn interface.

Include File

gxidata.h

Methods

Name Description

Execute() Executes a prepared query.

Chapter 3 Interfaces 223

IGXPreparedQuery interface

224

Name Description

SetParams() Specifies the parameters and flags for a prepared query.

Related Topics
PrepareQuery() in the IGXDataConn interface

“Using Prepared Database Commands” in Chapter 5, “Working with Databases,”
in Programmer’s Guide.

Execute()
Executes a prepared query.

Syntax
HRESULT Execut e(
DWORD dwFl ags,
| GXval Li st *pPar ans,
| GXTrans *pTrans,
| GXVal Li st *pProps,
| GXResul t Set **ppResul t Set) ;

dwFlags. Specifies flags used to execute this prepared query. To activate result set
buffering, specify GX_DA_ RS BUFFERING. Otherwise, specify zero.

pParams. Pointer to an IGXValList object that contains parameters to pass to the
prepared query. Parameters are used to execute the query.

pTrans. Pointer to an IGXTrans object that contains the transaction associated with
this query, or NULL for no transaction.

pProps. Pointer to the IGXValList object that contains query properties, or NULL
for no properties. After instantiating an object of the IGXValList interface, set any
of the following properties:

< RS_BUFFERING turns on result set buffering when set to “TRUE”.

< RS_INIT_ROWS specifies the initial size of the buffer, in number of rows. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA _BUFFER_EXCEEDED and result set buffering will be turned off.

= RS_MAX_ROWS specifies the maximum number of rows for the buffer. If the
result set size exceeds this setting, a FetchNext() call will return the error
GX_DA _BUFFER_EXCEEDED and result set buffering will be turned off.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXPreparedQuery interface

= RS_MAX_ SIZE specifies the maximum number of bytes for the buffer.

If RS_ BUFFERING is enabled and if the optional parameters are not specified, the
global values in the registry are used instead.

ppResultSet. Pointer to the IGXResultSet object that contains the returned result
set from the callable statement, if the database supports this feature. When
AppLogic is finished using the object, call the Close() method in the IGXResultSet
interface, then call the Release() method to release the interface instance.

Usage

Use Execute() to run a prepared query. If the command contains parameters,
instantiate an IGXValList object and use SetVal() or SetValByRef() in the
IGXValList interface to specify the parameter values to pass to the command.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

/1l Create the prepared query
| GXPr epar edQuery *pPQuer y=NULL;

i f(((hr=pConn->PrepareQuery(0, pQuery, NULL, NULL,
&pPQuery)) ==GXE_SUCCESS) &&pPQuery) {

| GXResul t Set *pRset =NULL;

/| Execute the prepared query
i f(((hr=pPQuery->Execute(0, pList, NULL, NULL,
&pRset)) ==GXE_SUCCESS) &&pRset) {

Related Topics
IGXValList interface

IGXTrans interface
PrepareQuery() in the IGXDataConn interface

“Using Prepared Database Commands” in Chapter 5, “Working with Databases,”
in Programmer’s Guide.

Chapter 3 Interfaces 225

IGXQuery interface

SetParams()
Specifies the parameters for a prepared query.

Syntax

HRESULT Set Par ans(
DWORD dwrl ags,
| GXVal Li st *pPar ans) ;

dwrFlags. Specify zero (0).
pParams. Pointer to an IGXValList object that contains parameters to pass to the

prepared query.

Usage
To pass parameters to the prepared query using SetParams(), you must pass
NULL for the pParams parameter in Execute().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXValList interface

IGXTrans interface
PrepareQuery() in the IGXDataConn interface

“Using Prepared Database Commands” in Chapter 5, “Working with Databases,”
in Programmer’s Guide.

IGXQuery interface

The IGXQuery interface represents a flat query. IGXQuery provides methods for
specifying and obtaining the criteria used to select data from a data source. The
AppLogic uses IGXQuery member methods to specify all parts of the SQL SELECT
statement, including the SELECT, FROM, GROUP BY, HAVING, ORDER BY, and
WHERE clauses.

To run a flat query, the AppLogic performs the following steps:
1. Creates an IGXQuery object using createQuery() in the GXAppLogic class.

2. Specifies query criteria using methods in the IGXQuery interface.

226 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXQuery interface

3. Executes the query, passing the loaded IGXQuery object to ExecuteQuery() in
the IGXDataConn interface.

4. Processes the result set using methods in the IGXResultSet interface.

The AppLaogic can also use IGXQuery methods to obtain information about query
criteria when the criteria are unknown. Before executing the query on the data
source, the AppLogic can evaluate and, if necessary, dynamically change the query

criteria.

To create an instance of the IGXQuery interface, use the createQuery() method in
the GXAppLogic class.

Include File

gxidata.h

Methods

Method Description

GetFields() Returns a comma-separated list of arbitrary SQL expressions or
columns to be included in the result set of the query.

GetGroupBy() Returns the GROUP BY clause of the query.

GetHaving() Returns the HAVING clause of the query.

GetOrderBy() Returns the ORDER BY clause of the query.

GetSQL() Returns the SQL pass-through statement associated with the query.

GetTables()

GetWhere()
SetFields()

SetGroupBy()

SetHaving()

SetOrderBy()

SetsSQL()

Returns a comma-separated list of tables in the FROM clause of the
query.
Returns the WHERE clause of the query.

Specifies the list of columns and computed fields to be included in the
result set of the query. Required method when writing a query.

Specifies the GROUP BY clause of the query, determining how rows
are grouped and calculated.

Specifies the HAVING clause of the query, determining which
aggregate rows qualify for inclusion in the result set.

Specifies the ORDER BY clause of the query, determining how rows
are sorted in the result set.

Specifies the SQL statement to be passed directly to the data source.

Chapter 3 Interfaces 227

IGXQuery interface

Method Description

SetTables() Specifies the FROM clause of the query, identifying one or more tables
to be queried. Required method when writing a query.

SetWhere() Specifies the WHERE clause of the query, determining which rows
qualify for inclusion in the result set.

Related Topics
createQuery() in the GXAppLogic class

ExecuteQuery() in the IGXDataConn interface
IGXResultSet interface

“Writing Flat Queries” in Chapter 6, “Querying a Database,” in Programmer’s
Guide.

GetFields()

Returns a comma-separated list of arbitrary SQL expressions or columns to be
included in the result set of the query.

Syntax
HRESULT Get Fi el ds(
| GXBuf fer **ppBuff);

ppBuff. Pointer to the IGXBuffer object that contains the returned text, a
comma-separated list of columns that the query defines for the result set, starting
with the first column and proceeding sequentially, left to right. This method
allocates the IGXBuffer object automatically. When the AppLogic is finished using
the object, call the Release() method to release the interface instance.

Usage
In a SQL SELECT statement, the first clause specifies the SELECT keyword as well
as the list of columns to be retrieved in the result set.

Use GetFields() when the requested columns in a query are unknown, such as
when using a query from another source. The AppLogic can analyze this list to
determine the names of the columns as well as the order in which they will appear
in the result set. Before executing or re-executing the query, the AppLogic can
evaluate and, if necessary, dynamically change columns and column order in the
query by calling SetFields().

228 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXQuery interface

Tips

= To use a query obtained from another source such as a file, the AppLogic can
call GetFields() and other GetXXXX() member methods to test the query
statement before submitting it to the server for processing. The AppLogic can
then use the SetXXXX() member methods to change the statement and avoid
lengthy queries or syntax errors.

< Use methods in the IGXBuffer interface to manipulate the returned memory
block.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createQuery() in the GXAppLaogic class

“Writing Flat Queries” in Chapter 6, “Querying a Database,” in Programmer’s
Guide.

GetGroupBy()
Returns the GROUP BY clause of the query.

Syntax
HRESULT Get Gr oupBy(
| GXBuf fer **ppBuff);

ppBuff. Pointer to the IGXBuffer object that contains the returned text, the
GROUP BY clause of the query. This method allocates the IGXBuffer object
automatically. When the AppLogic is finished using the object, call the Release()
method to release the interface instance.

Usage

In a SQL SELECT statement, the GROUP BY clause specifies rows to summarize
into aggregate rows using column functions (such as SUM or MAX) or column
names.

Use GetGroupBy() when the GROUP BY clause of the query is unknown, such as
when using a query from another source. Before executing the query, the AppLogic
can evaluate and, if necessary, dynamically change the GROUP BY clause by
calling SetGroupBy().

Chapter 3 Interfaces 229

IGXQuery interface

Tips

= To use a query obtained from another source such as a file, the AppLogic can
call GetGroupBYy() and other GetXXXX() member methods to test the query
statement before submitting it to the server for processing. The AppLogic can
then use the SetXXXX() member methods to change the statement and avoid
lengthy queries or syntax errors.

< Use methods in the IGXBuffer interface to manipulate the returned memory
block.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createQuery() in the GXAppLaogic class

“Writing Flat Queries” in Chapter 6, “Querying a Database,” in Programmer’s
Guide.

GetHaving()
Returns the HAVING clause of the query.

Syntax
HRESULT Get Havi ng(
| GXBuf fer **ppBuff);

ppBuff. Pointer to the IGXBuffer object that contains the returned text, the
HAVING clause of the query. This method allocates the IGXBuffer object
automatically. When the AppLogic is finished using the object, call the Release()
method to release the interface instance.

Usage
In a SQL SELECT statement, the HAVING clause specifies which of the aggregate
rows returned by the GROUP BY clause are selected for the result set.

Use GetHaving() when the HAVING clause of the query is unknown, such as
when using a query from another source. Before executing the query, the AppLogic
can evaluate and, if necessary, dynamically change the HAVING clause by calling
SetHaving().

Tips

To use a query obtained from another source such as a file, the AppLogic can call
GetHaving() and other Chapter 10, “Integrating Applications with Email,” in
Programmer’s Guide.

230 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXQuery interface

e GetXXXX() member methods to test the query statement before submitting it
to the server for processing. The AppLogic can then use the SetXXXX()
member methods to change the statement and avoid lengthy queries or syntax
errors.

< Use methods in the IGXBuffer interface to manipulate the returned memory
block.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createQuery() in the GXAppLaogic class

“Writing Flat Queries” in Chapter 6, “Querying a Database,” in Programmer’s
Guide.

GetOrderBy()
Returns the ORDER BY clause of the query.

Syntax
HRESULT Get Or der By(
| GXBuf fer **ppBuff);

ppBuff. Pointer to the IGXBuffer object that contains the returned text, the ORDER
BY clause of the query. This method allocates the IGXBuffer object automatically.
When the AppLogic is finished using the object, call the Release() method to
release the interface instance.

Usage

In a SQL SELECT statement, the ORDER BY clause specifies one or more columns
by which rows in the result set are sorted, as well as whether they appear in
ascending or descending ASCII order.

Use GetOrderBy() when the ORDER BY clause of the query is unknown, such as
when using a query from another source. Before executing the query, the AppLogic
can evaluate and, if necessary, dynamically change the ORDER BY clause by
calling SetOrderBy().

Rule

Some database vendors have restrictions on the ordering and usage of ORDER BY
clauses. Read your database vendor’s documentation carefully and test queries to
ensure that they return the desired results.

Chapter 3 Interfaces 231

IGXQuery interface

Tips

= To use a query obtained from another source such as a file, the AppLogic can
call GetOrderBy() and other GetXXXX() member methods to test the query
statement before submitting it to the server for processing. The AppLogic can
then use the SetXXXX() member methods to change the statement and avoid
lengthy queries or syntax errors.

< Use methods in the IGXBuffer interface to manipulate the returned memory
block.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createQuery() in the GXAppLaogic class

“Writing Flat Queries” in Chapter 6, “Querying a Database,” in Programmer’s
Guide.

GetSQL()

Returns the SQL pass-through statement associated with the query.

Syntax
HRESULT Get SQL(
| GXBuf fer **ppBuff);

ppBuff. Pointer to the IGXBuffer object that contains the returned text, the SQL
pass-through statement of the query, in a single concatenated string. This method
allocates the IGXBuffer object automatically. When the AppLogic is finished using
the object, call the Release() method to release the interface instance.

Usage

Use GetSQL() when the query string is unknown, such as when using a query
from another source. Before executing the query, the AppLogic can dynamically
change the SQL statement by calling SetSQL().

Rule
If a query is set using SetSQL() as well as the SetXXXX() methods, the SetSQL()
string will be executed, not the string specified by SetXXXX().

232 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXQuery interface

Tips

= To use a query obtained from another source such as a file, the AppLogic can
call GetSQL() and other GetXXXX() member methods to test the query
statement before submitting it to the server for processing. The AppLogic can
then use the SetXXXX() member methods to change the statement and avoid
lengthy queries or syntax errors.

< Use methods in the IGXBuffer interface to manipulate the returned memory
block.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createQuery() in the GXAppLaogic class

“Writing Flat Queries” in Chapter 6, “Querying a Database,” in Programmer’s
Guide.

GetTables()

Returns a comma-separated list of tables in the FROM clause of the query.

Syntax
HRESULT Get Tabl es(
| GXBuf fer **ppBuff);

ppBuff. Pointer to the IGXBuffer object that contains the returned text, the FROM
clause of the query. This method allocates the IGXBuffer object automatically.
When the AppLogic is finished using the object, call the Release() method to
release the interface instance.

Usage

In a SQL SELECT statement, the FROM clause specifies one or more source tables,
views, or table aliases to search in the query. In iPlanet Application Builder, the
AppLogic can obtain table names only.

Use getTables() when the FROM clause of the query is unknown, such as when
using a query from another source. Before executing the query, the AppLogic can
evaluate and, if necessary, dynamically change the FROM clause by calling
SetTables().

Chapter 3 Interfaces 233

IGXQuery interface

Tips

= To use a query obtained from another source such as a file, the AppLogic can
call getTables() and other GetXXXX() member methods to test the query
statement before submitting it to the server for processing. The AppLogic can
then use the SetXXXX() member methods to change the statement and avoid
lengthy queries or syntax errors.

< Use methods in the IGXBuffer interface to manipulate the returned memory
block.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createQuery() in the GXAppLaogic class

“Writing Flat Queries” in Chapter 6, “Querying a Database,” in Programmer’s
Guide.

GetWhere()
Returns the WHERE clause of the query.

Syntax
HRESULT Get Wher e(
| GXBuf fer **ppBuff);

ppBuff. Pointer to the IGXBuffer object that contains the returned text, the
WHERE clause of the query. This method allocates the IGXBuffer object
automatically. When the AppLogic is finished using the object, call the Release()
method to release the interface instance.

Usage
In a SQL SELECT statement, the WHERE clause specifies the search condition and
determines which rows in the table are selected for the result set.

Use GetWhere() when the WHERE clause of the query is unknown, such as when
using a query from another source. Before executing the query, the AppLogic can
evaluate and, if necessary, dynamically change the WHERE clause by calling
SetWhere().

234 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXQuery interface

Tips

= To use a query obtained from another source such as a file, the AppLogic can
call GetWhere(') and other GetXXXX() member methods to test the query
statement before submitting it to the server for processing. The AppLogic can
then use the SetXXXX() member methods to change the statement and avoid
lengthy queries or syntax errors.

< Use methods in the IGXBuffer interface to manipulate the returned memory
block.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createQuery() in the GXAppLaogic class

“Writing Flat Queries” in Chapter 6, “Querying a Database,” in Programmer’s
Guide.

SetFields()

Specifies the list of columns and computed fields to be included in the result set of
the query. Required method when writing a query.

Syntax
HRESULT Set Fi el ds(
LPSTR szFi el ds);

szFields. List of field names, separated by commas, or an asterisk (*) to include all
fields. Extra whitespace characters are ignored. Use the AS keyword to specify field
aliases. Defaults to all fields (*).

Usage

In a SQL SELECT statement, the first clause specifies the SELECT keyword as well
as the list of columns and computed fields to be retrieved in the result set. The
AppLogic can specify field aliases using the AS keyword in the SetFields()
parameter list.

A computed field is the result of an expression using either of the following kinds
of expressions:

= Mathematical functions, including SQL string, numeric, time, date, system,
and data type conversion functions and mathematical operators

Chapter 3 Interfaces 235

IGXQuery interface

= Aggregate functions, including SUM, COUNT, MIN, MAX, AVG, to
summarize values per column across a group of rows. These functions are
commonly used in conjunction with the GROUP BY clause, which the
AppLogic can specify using SetGroupBy().

Rules
= Use ANSI 92 SQL-compliant syntax for the field list.

= Use implementation-specific SQL syntax extensions only on data sources that
support them. Using extensions may compromise portability across platforms.

= Any specified column names must appear in one of the tables specified in
SetTables(). Table qualified names are permitted, such as
"prod. nane, enp. nane".
Tip
For computed fields, use the AS keyword so that the AppLogic can process the
column in the result set by alias name.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

| GXQuery *pQuer y=NULL;

i f(pAcct Num
pQuery->Set Tabl es(" OBCust omer, OBAccount");
el se

pQuery->Set Tabl es(" OBCust oner") ;

pQuery->Set Fi el ds("| ast Nane, firstNane, userName, ssn");
pQuery- >Set Wher e(wher edl ause) ;
pQuery->Set Order By ("Il ast Nane, firstName");

Related Topics
createQuery() in the GXAppLuogic class

“Specifying Columns and Computed Fields” in Chapter 6, “Querying a Database,”
in Programmer’s Guide.

236 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXQuery interface

SetGroupBy()

Specifies the GROUP BY clause of the query, determining how rows are grouped
and calculated.

Syntax
HRESULT Set Gr oupBy(
LPSTR szG oupBy) ;

szGroupBy. GROUP BY clause of the query, using standard SQL syntax.

Usage

In a SQL SELECT statement, the GROUP BY clause specifies rows to combine using
column functions (such as SUM or MAX) or column names. Such groupings are
called aggregate rows, which are single rows in a result set that combine data from
a group of database rows with one or more column values in common.

Rules
= Use ANSI 92 SQL-compliant syntax for the GROUP BY clause.

= Use implementation-specific SQL syntax extensions only on data sources that
support them. Using extensions may compromise portability across platforms.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createQuery() in the GXAppLaogic class

“Summarizing Data” in Chapter 6, “Querying a Database,” in Programmer’s Guide.

SetHaving()

Specifies the HAVING clause of the query, determining which aggregate rows
qualify for inclusion in the result set.

Syntax

HRESULT Set Havi ng(
LPSTR szG oupBy);

szGroupBy. HAVING clause of the query, using standard SQL syntax.

Chapter 3 Interfaces 237

IGXQuery interface

Usage

The HAVING clause is used in conjunction with the aggregate functions (SUM,
AVG, and so on) and the GROUP BY clause. In a SQL SELECT statement, the
HAVING clause specifies a condition that determines which aggregate rows are
selected for the result set. The HAVING clause restricts the number of aggregate
rows retrieved in the result set. If unspecified, all aggregate rows will be retrieved.

Rules
= Use ANSI 92 SQL-compliant syntax for the HAVING clause.

= Use implementation-specific SQL syntax extensions only on data sources that
support them. Using extensions may compromise portability across platforms.

Tips

= The order in which you specify a HAVING clause, in relation to other query
clauses, may affect which records are retrieved in the result set. See your
RDBMS server documentation for more information.

< Toimprove the AppLogic performance, be sure to specify a HAVING or
WHERE clause to avoid retrieving rows unnecessarily, especially for large
tables.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
createQuery() in the GXAppLaogic class

“Summarizing Data” in Chapter 6, “Querying a Database,” in Programmer’s Guide.

SetOrderBy()

Specifies the ORDER BY clause of the query, determining how rows are sorted in
the result set.

Syntax
HRESULT Set Or der By(
LPSTR szOr der By) ;

szOrderBy. ORDER BY clause of the query, using standard SQL syntax. Supports
the ASC and DESC keywords for sorting.

238 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXQuery interface

Usage

In a SQL SELECT statement, the ORDER BY clause specifies one or more columns
by which rows in the result set are sorted. The AppLogic can also specify whether
records appear in ascending (the default) or descending ASCII order using the ASC
and DESC keywords, respectively.

Rules
= Use ANSI 92 SQL-compliant syntax for the ORDER BY clause.

= Use implementation-specific SQL syntax extensions only on data sources that
support them. Using extensions may compromise portability across platforms.

< Any specified column names must appear in one of the columns specified in
SetFields().

= Some database vendors have restrictions on the ordering and usage of ORDER
BY clauses. Read your database vendor’s documentation carefully and test
queries to ensure that they return the desired results.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
| GXQuery *pQuer y=NULL;

i f(pAcct Num
pQuery->Set Tabl es(" OBCust omer, OBAccount");
el se

pQuery->Set Tabl es(" OBCust oner") ;

pQuery->Set Fi el ds("| ast Nane, firstNane, userName, ssn");
pQuery- >Set Wher e(wher edl ause) ;
pQuery->Set OrderBy("| ast Nane, firstName");

Related Topics
createQuery() in the GXAppLuogic class

“Sorting Data” in Chapter 6, “Querying a Database” of Programmer’s Guide.

Chapter 3 Interfaces 239

IGXQuery interface

SetSQL()

Specifies the SQL statement to be passed directly to the data source.

Syntax
HRESULT Set SQ(
LPSTR szSQL) ;

szSQL. SQL statement, using standard SQL syntax, to execute on the target data
source. Specify a single, concatenated string. Do not use semicolon (;) characters or
other vendor-specific statement delimiters.

Usage

The AppLogic can use SetSQL() as an alternative to using other iPlanet
Application Builder methods, such as constructing queries, inserting, updating,
and deleting rows, and managing transactions. The AppLogic can also use
SetSQL() to run specialized SQL statements, such Data Definition Language (DDL)
commands, Data Control Language (DCL) commands, and so on.

Rules
= Use ANSI 92 SQL-compliant syntax for the SQL statement.

= Use implementation-specific SQL syntax extensions only on data sources that
support them. Using extensions may compromise portability across platforms.

< The AppLogic must be logged in with sufficient privileges to permit any
operations requested in the passed-through SQL statement.

= Ifinserting or updating rows in a table, the AppLogic must specify values that
are valid. For example, the AppLogic cannot omit specifying a value for any
column defined as NOT NULL and without a DEFAULT value, such as keys.

= Using SetSQL() overrides all previous calls to SetXXXX() member methods for
this query object. If a query is set using SetSQL() as well as the SetXXXX()
methods, the SetSQL() string will be executed, not the string specified by
SetXXXX().

= |f the statement is part of a transaction, the AppLogic must first create an
instance of the IGXTrans interface using CreateTrans() in the AppLogic class
(deprecated). The AppLogic must then call Begin() before executing the
statement and, after executing the statement, call Commit() or Rollback() as
appropriate.

Tip
To determine whether a column is defined as NOT NULL, use GetNullsAllowed()
in the IGXColumn interface.

240 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXQuery interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

/!l Create a query to update a table

| GXQuery *pUser Quer y=NULL;

i f(((hr=CreateQuery(&UserQuery))==GXE_SUCCESS) &&pUser Query) {
pUser Query->Set SQL(" UPDATE OBUser SET password = :password, eMail

:eMail WHERE user Nane = :userNanme");

Related Topics
createQuery() in the GXAppLaogic class

“Using Pass-Through Database Commands” in Chapter 5, “Working with
Databases,” in Programmer’s Guide.

“Writing Flat Queries” in Chapter 6, “Querying a Database,” in Programmer’s
Guide.

Vendor documentation regarding SQL programming for the specific data source
that is the target of the SQL statement.

SetTables()

Specifies the FROM clause of the query, identifying one or more tables to be
queried. Required method when writing a query.

Syntax
HRESULT Set Tabl es(
LPSTR szTabl es);

szTables. List of table names separated by commas. Whitespace characters are
ignored.

Usage

In a SQL SELECT statement, the FROM clause specifies one or more source tables,
views, or table aliases to search in the query. In iPlanet Application Builder, the
AppLogic can specify table names only.

Rules
= Use ANSI 92 SQL-compliant syntax for the FROM clause.

Chapter 3 Interfaces 241

IGXQuery interface

= Use implementation-specific SQL syntax extensions only on data sources that
support them. Using extensions may compromise portability across platforms.

= The AppLogic can specify table names but not table aliases or view names.

= The AppLogic can use the same table several times in a query. To do so, specify
a different alias name each time the table is used.

Return Value

SetWhere()

| GXQuery *pQuer y=NULL;

i f(pAcct Num
pQuery->Set Tabl es(" OBCust omer, OBAccount");
el se

pQuery->Set Tabl es(" OBCust oner") ;

pQuery->Set Fi el ds("| ast Nane, firstNane, userName, ssn");
pQuery- >Set Wher e(wher edl ause) ;
pQuery->Set Order By ("Il ast Nane, firstName");

Related Topics
createQuery() in the GXAppLuogic class

“Specifying Tables” in Chapter 6, “Querying a Database,” in Programmer’s Guide.

SetWhere()

Specifies the WHERE clause of the query, determining which rows qualify for
inclusion in the result set.

Syntax
HRESULT Set Wher e(
LPSTR szWere);

szWhere. WHERE clause of the query, using standard SQL syntax.

242 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXQuery interface

Usage

In a SQL SELECT statement, the WHERE clause specifies the search condition and
determines which rows in the table are selected for the result set. The WHERE
clause restricts the number of rows retrieved in the result set. If unspecified, all
rows in the source table will be retrieved.

Rules

= Use ANSI 92 SQL-compliant syntax for the WHERE clause.

= Use implementation-specific SQL syntax extensions only on data sources that
support them. Using extensions may compromise portability across platforms.

Tip

To improve AppLogic performance, be sure to specify a HAVING or WHERE

clause to avoid retrieving rows unnecessarily, especially for large tables.

Return Value

HRESULT, which is set to GXE_SUCCESS if the method succeeds.
| GXQuery *pQuery=NULL;

i f(pAcct Num
pQuery->Set Tabl es(" OBCust omer, OBAccount");
el se

pQuery->Set Tabl es(" OBCust oner") ;

pQuery->Set Fi el ds("| ast Name, firstName, userName, ssn");
pQuery- >Set Wher e(wher edl ause) ;

pQuery->Set Order By ("l ast Nane, firstName");

Related Topics

createQuery() in the GXAppLuogic class

“Specifying Conditions on Row Retrieval” in Chapter 6, “Querying a Database,” in
Programmer’s Guide.

Chapter 3 Interfaces 243

IGXResultSet interface

IGXResultSet interface

244

The IGXResultSet interface represents the results of a flat query. IGXResultSet
provides methods to iterate through rows in the result set and retrieve data from
each row. To retrieve data from the result set, the AppLogic uses methods tailored
for specific column types. For example, if retrieving data from a string column, use
GetValueString(). If retrieving binary data, use GetValueBinary().

To process hierarchical result sets, use methods in the IGXHierResultSet interface
or EvalTemplate() in the GXAppLogic class instead.

IGXResultSet is part of the Data Access Engine (DAE) service.

To create an instance of the IGXResultSet interface, use ExecuteQuery() in the
IGXDataConn interface or Execute() in the IGXPreparedQuery interface.

Include File

gxidata.h

Methods

Method Description

Close() Releases the connection used by the result set.

EnumColumnReset()

EnumColumns()
FetchNext()
GetColumn()

GetColumnByOrd()

GetColumnOrdinal()

GetNumColumns()

GetOrder()

GetRowNumber()
GetStatus()

Resets the column enumeration to the first column in the
result set.

Returns the definition of the next column in the result set.
Retrieves the next row in the result set.

Returns the column definition of the column with the
specified name.

Returns the column definition for the column in the specified
ordinal position.

Returns the ordinal position of the column with the specified
name.

Returns the number of columns in the result set.

For asynchronous queries, returns an IGXOrder object used
for obtaining the current status of the query.

Returns the number of the current row in the result set.

Returns the processing status of the asynchronous database
operation on the database server.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXResultSet interface

Method

Description

GetValueBinary()

GetValueBinaryPiece()

GetValueDateString()

GetValueDouble()

GetValuelnt()

GetValueSize()

GetValueString()

GetValueText()

GetValueTextPiece()

MoveTo()
RowCount()

WasNuli()

Returns the value of a BINARY column from the current row in
the result set.

Returns the value of a LONGBINARY column from the
current row in the result set.

Returns the value of a Date type column from the current row
in the result set.

Returns the value of a double type column from the current
row in the result set.

Returns the value of an int type column from the current row
in the result set.

Returns the cumulutive number of bytes that have been fetched
from a column in the current row of the result set.

Returns the value of a String type column from the current
row in the result set.

Returns the value of a TEXT column from the current row in the
result set.

Returns the value of a LONGTEXT column from the current
row in the result set.

Moves to the specified row in the result set.

Returns the total number of rows retrieved thus far from the
data source.

Checks if the value of a column is null or not.

Related Topics

ExecuteQuery() in the IGXDataConn interface

Execute() in the IGXPreparedQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

Close()

Releases the connection used by the result set.

Chapter 3 Interfaces

245

IGXResultSet interface

Syntax
HRESULT Fet chNext (
DWORD dwFl ags) ;

dwFlags. Specify 0 (zero). Internal use only.

Usage

Call Close() to release a connection used by a result set object when the connection
is no longer required. An AppLogic should release unused connections to prevent
bottlenecks, especially for applications that support many concurrent users, or that
access heavily-used databases.

Tip
After calling Close(), release the result set object by calling its Release() method.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

EnumColumnReset()
Resets the column enumeration to the first column in the result set.

Syntax
HRESULT EnuntCol ummReset () ;

Usage

Use EnumColumnReset() before iterating through and retrieving columns in a
result set. The EnumColumnReset() method ensures that column retrieval starts
from the first column.

Thereafter, use EnumColumns() to retrieve each column sequentially. Each
EnumColumns() call returns an IGXColumn object for the next column.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

EnumColumns()
Returns the definition of the next column in the result set.

246 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXResultSet interface

Syntax
HRESULT EnuntCol umrms(
| GXCol um **ppCol um) ;

ppColumn. Pointer to the IGXColumn object that contains the returned column of
data. When the client code is finished using the object, call the Release() method to
release the interface instance.

Usage

Use EnumColumns() when the column definition is unknown and required for
subsequent operations. The AppLogic can use the returned IGXColumn object to
determine characteristics of the column, such as its name, data type, size, whether
nulls are allowed, and so on.

Before iterating through columns, the AppLogic should call EnumColumnReset()
to ensure that EnumColumns() starts with the first column in the table. Each
subsequent EnumColumns() call moves to the next sequential column in the result
set and retrieves its column definition in an IGXColumn object.

Tips
« The columns might not be returned in the order in which they are defined in
the database catalog.

e Test for NULL to determine when the last column has been retrieved.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXColumn interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

FetchNext()

Retrieves the next row in the result set.

Syntax
HRESULT Fet chNext ();

Usage

Use FetchNext() when iterating through rows in the result set to retrieve the
contents of the next sequential row and put them in the row buffer for subsequent
processing (if RS_BUFFERING has been turned ON).

Chapter 3 Interfaces 247

IGXResultSet interface

If result set buffering was activated, FetchNext() checks the buffer first before
fetching the result set from the actual data source. For more information about
result set buffering, see the description of the props parameter of ExecuteQuery()
in the IGXDataConn interface.

Tips

= If the AppLogic needs to iterate through the result set more than once, be sure
to start with the first row again by calling MoveTo() and specifying row
number 1. This works only when buffering is enabled.

= [Ifresult set buffering is enabled, the AppLogic can use MoveTo() to go to any
row in the buffer.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

« |f the end of the result set has been reached, HRESULT is set to
GX_DA _END_OF FETCH, a macro-based constant (defined in gxidata.h).

= If the length of the buffer has been exceeded, HRESULT is set to
GX_DA_BUFFER_EXCEEDED, a macro-based constant (defined in gxidata.h).

Related Topics
ExecuteQuery() in the IGXDataConn interface

Execute() in the IGXPreparedQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetColumn()

Returns the column definition of the column with the specified name.

Syntax

HRESULT Get Col umm(
LPSTR col Nane,
| GXCol utm **ppCol) ;

colName. Name of a column or column alias (such as computed columns) in the
result set, or an empty string if no alias is specified for the computed column.

ppCol. Pointer to the IGXColumn object that contains the returned column
definition. Calling GetColumn() creates the IGXColumn object automatically.
When the AppLogic is finished using the object, call the Release() method to
release the interface instance.

248 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXResultSet interface

Usage

Use GetColumn() when the data definition of the column is unknown and is
required for subsequent operations. The AppLogic can then use methods in the
IGXColumn interface to obtain descriptive information about a table column from
the database catalog, such as the column name, precision, scale, size, table, and
data type.

Tips
e Use GetColumnByOrd() instead when the column position is known but its
name is unknown.

« Columns that are the result of query expressions or formulas, such as
i nvoi ce. count * product. price, should have a field alias for the
column in the result set. Otherwise, the AppLogic can refer to the column only
by its ordinal position. The AppLogic calls SetFields() in the IGXQuery
interface to specify field aliases.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXColumn interface

ExecuteQuery() in the IGXDataConn interface
Execute() in the IGXPreparedQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetColumnByOrd()

Returns the column definition for the column in the specified ordinal position.

Syntax

HRESULT Get Col umByOr d(
ULONG col | ndex,
| GXCol um **ppCol);

collndex. Ordinal position of a column in the result set. The ordinal position of the
first column in the result set is 1, the second column is 2, and so on. The ODBC
maximum is 255 columns.

Chapter 3 Interfaces 249

IGXResultSet interface

250

ppCol. Pointer to the IGXColumn object that contains the returned column
definition. Calling GetColumnByOrd() creates the IGXColumn object
automatically. When the AppLogic is finished using the object, call the Release()
method to release the interface instance.

Usage

Use GetColumnByOrd() when the name of the column is unknown and is required
for subsequent operations. The AppLogic can then use methods in the IGXColumn
interface to obtain descriptive information about a table column from the database
catalog, such as the column name, precision, scale, size, table, and data type.

Tip
Use GetColumn() instead when the column name is known but its ordinal position
is unknown.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXColumn interface

ExecuteQuery() in the IGXDataConn interface
Execute() in the IGXPreparedQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetColumnOrdinal()

Returns the ordinal position of the column with the specified name.

Syntax

HRESULT Get Col ummOr di nal (
LPSTR szCol um,
ULONG *pOrdinal) ;

szColumn. Name of a column in the result set.

pOrdinal. Pointer to the variable that contains the returned ordinal position of the
specified column. The ordinal position of the first column in the result set is 1, the
second column is 2, and so on.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXResultSet interface

Usage

Use GetColumnOrdinal() when the ordinal position of the column is unknown but
is required for subsequent operations. For example, the ordinal position of a
column is a required parameter value for the GetValue**() methods, such as
GetValueString() and GetValuelnt().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
| GXHi er Resul t Set *pHRset =NULL;

/| Execute a hierarchical query

i f (((hr=pHg- >Execute(0, 0, NULL, &pHRset))== GXE_SUCCESS) &&pHRset) {

| GXResul t Set *pRset =NULL,;

/] Get aresult set fromthe hierarchical result set

i f(((hr=pHRset->Cet Resul t Set ("Sel Cust", &pRset))==
GXE_SUCCESS) &&pRset) {

/'l Retrieve a value fromthe result set

/Il First, get the ordinal position of the colum
ULONG ssnl ndex=0;

pRset - >Get Col umOr di nal ("ssn", &ssnl ndex);

char tnpStr[200];

/'l Next, get the value of the specified colum

pRset - >Get Val ueStri ng(ssnl ndex, tnpStr, 200);

Related Topics
ExecuteQuery() in the IGXDataConn interface

Execute() in the IGXPreparedQuery interface

Chapter 3 Interfaces 251

IGXResultSet interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetNumColumns()
Returns the number of columns in the result set.

Syntax
HRESULT Get NunCol umms(
ULONG *pnCol s) ;

pnCols. Pointer to the variable that contains the returned number of columns in
the result set.

Usage

Use GetNumColumns() if the number of columns in the result set is unknown and
required for subsequent operations. For example, when iterating through columns
in the result set, the AppLogic can use this information to specify the maximum
number of iterations.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
ExecuteQuery() in the IGXDataConn interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetOrder()

For asynchronous queries, returns an IGXOrder object used for obtaining the
current status and return value of the query.

Syntax
HRESULT Get Or der (
| GXOrder **ppOrder);

ppOrder. Pointer to the IGXOrder object that contains the returned IGXOrder
object. When the AppLogic is finished using the object, call the Release() method
to release the interface instance.

Usage
Use GetOrder() to create an IGXOrder object that the AppLogic can use to return
status information about an asynchronous query.

252 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXResultSet interface

Rule

The query must be run asynchronously. To run an asynchronous query, the
AppLogic must specify GX_DA_EXEC_ASYNC as the dwFlags parameter in
ExecuteQuery() in the IGXDataConn interface.

Tips
= The AppLogic can determine the status of the query (active, done, cancelled, or
unknown) using GetState() in the IGXOrder interface.

= Alternatively, use the GXWaitForOrder() function, which waits until the
asynchronous operation is done, to determine the processing status of an
asynchronous query.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXOrder interface

ExecuteQuery() in the IGXDataConn interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetRowNumber()

Returns the number of the current row in the result set.

Syntax
HRESULT Get RowNurber (
ULONG *pOrd);

pOrd. Pointer to the variable that contains the returned row number. The number
of the first row in the result set is 1, the second row is 2, and so on. If zero is
returned the first time the AppLogic calls GetRowNumber(), that means the result
set is empty.

Usage
When iterating through rows in the result set, use GetRowNumber() to keep track
of the number of rows processed.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Chapter 3 Interfaces 253

IGXResultSet interface

Related Topics
ExecuteQuery() in the IGXDataConn interface

Execute() in the IGXPreparedQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetStatus()

Returns the processing status of the asynchronous database operation on the
database server.

Syntax
HRESULT Get St at us(
DWORD *pSt at us) ;

pStatus. Pointer to the variable that contains the returned status code. The variable
is set to one of the following macro-based constants (defined in gxiorder.h):

Constant Description

GXORDER_STATE_ACTIVE The asynchronous database operation is still
being processed.

GXORDER_STATE_CANCEL The asynchronous database operation has been
cancelled.

GXORDER_STATE_DONE The asynchronous database operation has been
completely processed.

GXORDER_STATE_UNKNOWN The status of the asynchronous database

operation is unknown.

Usage
Use GetStatus() to return status information to use in error-handling code.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

254 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXResultSet interface

GetValueBinary()

Returns the value of a BINARY column in the current row of the result set.

Syntax

HRESULT Get Val ueBi nar y(
ULONG Ordi nal ,
LPBYTE pVal ue,
ULONG nSi ze) ;

Ordinal. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

pValue. Pointer to the buffer that contains the returned column value.

nSize. Size of the buffer to contain the returned column value.

Usage

Use GetValueBinary() to retrieve binary data of which the total size is equal to or
smaller than 64Kb. If the value of the data is larger than 64Kb, use
GetValueBinaryPiece().

Rule
The data type of the column must be BINARY, VARBINARY, or equivalent
database type.

Tip
If the value of the data is of type LONGBINARY, use GetValueBinaryPiece().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetValueBinaryPiece()

Returns the value of a LONGBINARY column in the current row from the result
set.

Chapter 3 Interfaces 255

IGXResultSet interface

256 iPlanet Applicati

Syntax
HRESULT Get Val ueBi nar yPi ece(
ULONG Or di nal ,
ULONG nLengt h,
LPBYTE pVal ue,
ULONG nSi ze) ;

Ordinal. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

nLength. The requested length of the data, in bytes. Up to 64Kb.
pValue. Pointer to the buffer that contains the returned column value.

nSize. Size of the client-allocated buffer to contain the returned column value.

Usage

Use GetValueBinaryPiece() to retrieve binary data of which the total size is larger
than 64K. Such binary data must be retrieved in 64K increments. Therefore, you
might use GetValueBinaryPiece() several times to retrieve large amounts of data.

Rules
= The data type of the column must be longvarbinary or equivalent database
vendor binary type.

« You cannot call GetValueBinaryPiece() for a row after you call FetchNext().
Tips

= To determine the total size of the binary data that has been retrieved, use
GetValueSize().

= To retrieve binary data of which the total size is less than 64Kb, use
GetValueBinary().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following example shows how to retrieve BLOBs from a database:

HRESULT hr;
| GXQuery *pQuery = NULL;
| GXResul t Set *pRS = NULL;

on Server C++ Foundation Class Reference ¢ May 2000

IGXResultSet interface

Creat eQuery(&Query);

pQuery->Set Tabl es(" bl obt abl e");
pQuery->Set Fi el ds(" bl obcol ");

hr = pConn->Execut eQuery(0, pQuery, NULL, NULL, &pRS);
if (hr == GXE_SUCCESS && pRS != NULL)
{

ULONG nRows;

hr = pRS- >Get RowNunber (&Rows) ;

if (hr == GXE_SUCCESS && nRows)
{
LPBYTE pBl obChunk = NULL;
ULONG expect Si ze, got Si ze;
expect Si ze = 65535;

pBl obChunk = new LPBYTE[65536] ;
i f (!pBl obChunk)

return -1,

hr = pRS->Cet Val ueBi naryPi ece(1, expectSize, &pBl obChunk,
65536) ;

if (hr == GXE_SUCCESS)

{
PRS- >Cet Val ueSi ze(1, &gotSize);
if (gotSize == expectSize)

fprintf(stderr, "got a full chunk, size = %l\n",

got Si ze) ;

Chapter 3 Interfaces

257

IGXResultSet interface

258 iPlanet Applicati

el se
fprintf(stderr, "got a partial chunk, size = %\ n",

got Si ze) ;

}
PRS- >Rel ease();

}

Related Topics
“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetValueDateString()

Returns the value of a Date type column, as a string, from the current row in the
result set.

Syntax

HRESULT Get Val ueDat eStri ng(
ULONG col | ndex,
LPSTR pVal ,
ULONG nVal) ;

collndex. Ordinal position of a column in the result set. The ordinal position of the
first column in the result set is 1, the second column is 2, and so on.

pVal. Pointer to the variable that contains the returned column value.

nVal. Length of the variable.

Usage

Use GetValueDateString() to retrieve date values from the result set for
subsequent processing. The following is an example of the format in which
GetValueDateString() returns a date:

Jan 26 1998 12:35:00

Rule
The specified column must be a Date, Date Time, or Time data type.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

on Server C++ Foundation Class Reference ¢ May 2000

IGXResultSet interface

Related Topics
“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetValueDouble()

Returns the value of a double type column from the current row in the result set.

Syntax

HRESULT Get Val ueDoubl g(
ULONG col | ndex,
doubl e *pVval);

collndex. Ordinal position of a column in the result set. The ordinal position of the
first column in the result set is 1, the second column is 2, and so on.

pVal. Pointer to the variable that contains the returned column value.

Usage
Use GetValueDouble() to retrieve decimal, floats, real, numeric, and double values
from the result set for subsequent processing.

Rule
The specified column must be a double data type.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetValuelnt()

Returns the value of an int type column from the current row in the result set.

Syntax

HRESULT Get Val uel nt (
ULONG col I ndex,
ULONG *pVal) ;

collndex. Ordinal position of a column. The ordinal position of the first column in
the result set is 1, the second column is 2, and so on.

pVal. Pointer to the variable that contains the returned column value.

Chapter 3 Interfaces 259

IGXResultSet interface

Usage
Use GetValuelnt() to retrieve int or long values from the result set for subsequent
processing.

Rule
The specified column must be an int or long data type.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetValueSize()

Returns the cumulutive number of bytes that have been fetched from a column in
the current row of the result set.

Syntax

HRESULT Get Val ueSi ze(
ULONG col | ndex,
ULONG *pSi ze) ;

collndex. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

pSize. Pointer to the buffer that contains the returned number of bytes that have
been fetched.

Usage

Use GetValueSize() during data retrieval to check the size of the BLOB column that
has been retrieved. When the AppLogic first calls GetValueSize() before calling
GetValueBinaryPiece() to retrieve the value of a LONGBINARY column,
GetValueSize() returns 0.

Each subsequent GetValueSize() call during data retrieval returns the cumulative
size of the data that has been retrieved.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetValueBinaryPiece()

260 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXResultSet interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetValueString()

Returns the value of a String type column from the current row in the result set.

Syntax

HRESULT Get Val ueStri ng(
ULONG col | ndex,
LPSTR pVal,
ULONG nVal) ;

collndex. Ordinal position of a column in the result set. The ordinal position of the
first column in the result set is 1, the second column is 2, and so on.

pVal. Pointer to the variable that contains the returned column value.

nVal. Length of the variable.

Usage
Use GetValueString() to retrieve String values from the result set for subsequent
processing.

Rule
The specified column must be a String data type.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

| GXHi er Resul t Set *pHRset =NULL;

/| Execute a hierarchical query
i f(((hr=pHg->Execute(0, 0, NULL, &pHRset))== GXE_SUCCESS) &&pHRset) {

| GXResul t Set *pRset =NULL,;

/1 Get aresult set fromthe hierarchical result set

i f(((hr=pHRset->Cet Resul t Set ("Sel Cust", &pRset))==
GXE_SUCCESS) &&pRset) {

Chapter 3 Interfaces 261

IGXResultSet interface

262 iPlanet Applicati

/'l Retrieve a value fromthe result set

/1l First, get the ordinal position of the colum
ULONG ssnl ndex=0;

pRset - >Get Col umOr di nal ("ssn", &ssnl ndex);

char tnpStr[200];

/1l Next, get the value of the specified colum
pRset - >Get Val ueStri ng(ssnl ndex, tnpStr, 200);
Related Topics

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetValueText()

Returns the value of a TEXT column in the current row from the result set.

Syntax

HRESULT Get Val ueText (
ULONG O di nal ,
LPSTR pVal ue,
ULONG nSi ze) ;

Ordinal. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

pValue. Pointer to the buffer that contains the returned column value.

nSize. Size of the client-allocated buffer to contain the returned column value.

Usage
Use GetValueText() to retrieve TEXT data of which the total size is equal to or
smaller than 64K.

Rule
The data type of the column must be TEXT or database equivalent.

Tips
= To determine the actual size of the TEXT data, use GetValueSize().

= [fthe value of the data is of type LONGTEXT, use GetValueTextPiece().

on Server C++ Foundation Class Reference ¢ May 2000

IGXResultSet interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

GetValueTextPiece()

Returns the value of a LONGTEXT column in the current row from the result set.

Syntax
HRESULT Get Val ueText Pi ece(
ULONG Ordi nal ,
ULONG nLengt h,
LPSTR pVal ue,
ULONG nSi ze) ;

Ordinal. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

nLength. The requested length of the data, in bytes. Up to 64Kb.
pValue. Pointer to the buffer that contains the returned column value.

nSize. Size of the client-allocated buffer to contain the returned column value.

Usage

Use GetValueTextPiece() to retrieve LONGTEXT data. LONGTEXT values must be
retrieved in 64K increments, therefore, you must use GetValueTextPiece()
repeatedly to retrieve the data.

Rules
= The data type of the column must be LONGTEXT or database equivalent.

= Call GetValueTextPiece() until you get all the data before calling FetchNext()
again.

Tips

= To determine the actual size of the LONGTEXT data, use GetValueSize(). The
actual size of the data determines the number of times you need to call
GetValueTextPiece().

< For data of type TEXT, use GetValueText().

Chapter 3 Interfaces 263

IGXResultSet interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

MoveTo()

Moves to the specified row in the result set.

Syntax
HRESULT MoveTo(
ULONG nRow) ;

nRow. Number of the row in the result set to move to. The number of the first row
in the result set is 1, the second row is 2, and so on.

Usage

Use MoveTo() to move the internal cursor to a specific row in the result set,
skipping over rows to be excluded from processing. In addition, if RS BUFFERING
is ON, after iterating through all rows in a result set, the AppLogic can return to the
first row in the result set in preparation for the next iteration.

Rules
= The specified row number must exist in the result set.

= If row buffering is not enabled for the result set, the AppLogic can move
forward to subsequent rows only. The AppLogic cannot return to rows that
have been processed previously.

Tip
Use RowCount(), if the database driver supports it, to obtain the maximum
number of rows in the result set.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds. If the end of the
result set has been reached, HRESULT is set to GXE_EOF.

Related Topics
ExecuteQuery() in the IGXDataConn interface

Execute() in the IGXPreparedQuery interface

264 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXResultSet interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

RowCount()

Returns the total number of rows retrieved thus far from the data source.

Syntax
HRESULT RowCount (
ULONG *nRows) ;

nRows. Pointer to the variable that contains the returned number of rows in the
result set.

Usage

Use RowCount() to return the current number of rows processed so far in the
result set. This method is useful for checking that data exists in the result set before
processing the result set.

If iterating through rows in a result set that has been completely returned, use
RowCount() to determine the current maximum number of rows to process.
Tip

If result set buffering is enabled, the AppLogic can use RowCount() to find the
current number of rows in the buffer.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/1 Execute the query
| GXResul t Set *pRset =NULL;

i f(((hr=pConn->ExecuteQuery(0, pQuery, NULL, NULL,
&pRset)) ==GXE_SUCCESS) &&pRset) {

/!l Check if there is data in the result set

ULONG nunRows=0;

i f(((hr=pRset->RowCount (&unRows)) ==GXE_SUCCESS) &&nunRows)
{

/1l Process result set

Chapter 3 Interfaces 265

IGXSequence interface

Related Topics
ExecuteQuery() in the IGXDataConn interface

Execute() in the IGXPreparedQuery interface

“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

WasNull()

Checks if the value of a column is null or not.

Syntax

HRESULT WasNul | (
ULONG Or di nal ,
BOOL *bNul) ;

Ordinal. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

bNull. Pointer to the client-allocated BOOL variable that contains the returned
information.

Usage

Use WasNull() to check if a column value is null or not. This method is useful for
determining if a null return value is an error condition or if the column contained
no value.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Getting Data From a Flat Query’s Result Set” in Chapter 6, “Querying a
Database,” in Programmer’s Guide.

IGXSequence interface

266

The IGXSequence interface represents a sequence in an underlying database.
Sequences are implemented in the database server to provide unique, incremental
numbers assigned to records in a database. For example, the AppLogic can create a
customer ID sequence to generate customer IDs, or create a purchase order
sequence to generate purchase order numbers.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXSequence interface

The IGXSequence interface provides methods to determine the current sequence

value or to increment to the next sequence value. Sequences are useful for many

types of applications, such as order entry applications.

The 1GXSequence interface is part of the Data Access Engine (DAE) service.

To create an instance of the 1GXSequence interface, use CreateSequence() in the

IGXSequenceMgr interface, as shown in the following example:

| GXDat aConn *conn

hr = CreateDat aConn(0, GX DA DRI VER ODBC, conn_parans, NULL, &conn);

/1 Cast the connection to the | SequenceMgr interface

hr = conn->Querylnterface(llD_| GXSequenceMyr, (LPVAO D *)
&seqnor) ;

| GXSequence *seq = NULL;
hr = seqngr->Creat eSequence("nySeq", "orders.|D', 100,
1, NULL, &seq);

Include File
gxisequence.h

Methods

Method Description

Drop() Deletes the sequence from the database.

GetCurrent() Returns the current value in the sequence.

GetNext() Increments the sequence and returns its incremented value.

Related Topics
CreateSequence() in the IGXSequenceMgr interface

“Using Sequences” in Chapter 5, “Working with Databases,” in Programmer’s
Guide.

Chapter 3 Interfaces

267

IGXSequence interface

268 iPlanet Applicati

Drop()

Deletes the sequence from the database.

Syntax
HRESULT Drop();

Usage

Use Drop() to remove a sequence from the database. Be careful when using this
method. If the database implements the sequence as a field in a table, Drop() will
delete the entire table, not just the sequence field. If the database implements the
sequence as an object, as does Oracle for example, Drop() deletes only the
sequence object.

Typically, once you start a sequence there is no reason to delete it. The sequence is
normally used to create a permanent, unique numbering system for data in a
database. However, you might use Drop() if you are using the sequence
mechanism to generate unique sequential numbers for a temporary programmatic
purpose.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateSequence() in the IGXSequenceMgr interface

“Using Sequences” in Chapter 5, “Working with Databases,” in Programmer’s
Guide.

GetCurrent()

Returns the current value in the sequence.

Syntax
HRESULT Get Current (
DWORD *dwCur r Val) ;

dwCurrVal. Pointer to the variable that contains the returned current value of the
sequence.

Usage
Use GetCurrent() to obtain the current value of the sequence without actually
incrementing the sequence value.

Alternatively, use GetNext() to increment the sequence and obtain its incremented
value.

on Server C++ Foundation Class Reference ¢ May 2000

IGXSequence interface

Rule
For Oracle databases, the session must first call GetNext() before it can call
GetCurrent().

Tip
Unlike GetNext(), calling GetCurrent() does not change the value of the sequence.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateSequence() in the IGXSequenceMgr interface

“Using Sequences” in Chapter 5, “Working with Databases,” in Programmer’s
Guide.

GetNext()

Increments the sequence and returns its incremented value.

Syntax
HRESULT Get Next (
DWORD *dwCur r Val) ;

dwCurrVal. Pointer to the variable that contains the returned incremented value
of the sequence.

Usage

Use GetNext() to increment and return the value of the sequence by the amount
specified in the dwlincrement parameter in the CreateSequence() method in the
IGXSequenceMgr interface. The incrementation value is always a positive integer.

Alternatively, use GetCurrent() to obtain the current value of the sequence without
incrementing the sequence.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Rules

= For Informix and Sybase databases, the session that creates the sequence must
call GetNext() at least once before any other session can call GetSequence() in
the IGXSequenceMgr interface.

= For Oracle databases, the session must first call GetNext() before it can call
GetCurrent().

Chapter 3 Interfaces 269

IGXSequence interface

Tip

Successive calls to GetNext() return successive integers.

Example

hr = Creat eDat aConn(0, GX DA DRI VER ODBC, conn_parans, NULL, &conn);
if (hr == NOERROR &&

conn)

| GXSequenceMyr *seqnur;

/1 Cast the connection to an | SequenceMyr interface

/1 and set up the sequence

hr = conn->Querylnterface(l|D_| GXSequenceMyr, (LPVA D *)
&seqnyr) ;

if (hr == NOERROR)

| GXSequence *seq = NULL;

hr = seqngr->Creat eSequence("nmySeq", "orders.ID', 100,
1, NULL, &seq);

if (hr == NOERROR &&
seq)

DWORD seqVal = O0;
/1l To start the sequence, call GetNext()
hr = seq->Get Next (&seqVal);
if (hr == NOERROR)
{
/1 Use the sequence nunber.
11
| GXQuery *qry;
CreateQuery(&qry);
char tnp[512];

270 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXSequenceMgr interface

sprintf(tnp, "INSERT into orders (ID) val ues
(%), (cust) values (%)", seqVal,

cust Nane) ;

qry->Set SQL(tnp) ;

/!l ... Execute insert conmmand.

Related Topics
CreateSequence() in the IGXSequenceMgr interface

“Using Sequences” in Chapter 5, “Working with Databases,” in Programmer’s
Guide.

IGXSequenceMgr interface

The IGXSequenceMgr interface provides methods for creating and retrieving an
IGXSequence object, which represents a sequence in an underlying database.
Sequences provide unique, incremental numbers assigned to records in a database.
After creating a sequence by calling CreateSequence(), the AppLogic can use
methods in the IGXSequence interface to retrieve sequence values.

The IGXSequenceMgr interface is part of the Data Access Engine (DAE) service.

The IGXSequenceMgr interface is implemented by the IGXDataConn object. To use
it, cast IGXDataConn to the IGXSequenceMgr interface, as shown in the following
example:

| GXDat aConn *dc;
| GXSequenceMgr *sm
dc->Querylnterface(llD_| GXSequenceMgr, (LPVOD *) &m;

Include File
gxisequence.h

Methods

Method Description

CreateSequence() Creates a new sequence object in the underlying database.

Chapter 3 Interfaces 271

IGXSequenceMgr interface

272

Method Description

GetSequence() Returns an existing sequence object for the specified sequence
name in the underlying database.

Related Topics
IGXSequence interface

CreateSequence()
Creates a new sequence object in the underlying database.

Syntax
HRESULT Cr eat eSequence(
LPSTR szNane,
LPSTR szCol ,
DWORD dwSt art,
DWORD dw ncr enment
LPSTR szOpti ons,
| GXSequence **ppSequence);

szName. Name of the sequence. The name can be simple (such as " nySeq") or
qualified with the name of the database owner (such as " mary. mySeq").

szCol. Name of the column in the database table to use if the database supports
sequence column types. For more information, see your database vendor’s
documentation. If NULL, defaults to " SEQVAL" .

dwsStart. Starting value of the sequence. Must be a positive integer.

dwincrement. Value by which to increment the sequence with each call to
GetNext(). Must be a positive integer. Defaults to one (1). Not all databases
support this feature. For more information, see your database vendor’s
documentation.

szOptions. Additional sequence creation options that are database
vendor-specific:

= For Oracle, these are options to the " CREATE Sequence" command.

= For SQL Server (Sybase and Microsoft) databases, these are column options for
the " CREATE Tabl e" command.

= For Informix, no options exist.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXSequenceMgr interface

For more information, see your database vendor’s documentation.

ppSequence. Pointer to the returned IGXSequence object. When the AppLogic is
finished using the object, call the Release() method to release the interface instance.

Usage

Use CreateSequence() to create a new IGXSequence object, representing an
incremental number generator, with the specified starting value. The AppLogic can
then use methods in the IGXSequence interface to obtain the current or next value
of this sequence object.

Sequences provide unique, incremental numbers assigned to records in a database.
For example, you can create a customer ID sequence to generate customer IDs, or
create a purchase order sequence to generate purchase order numbers.

Tip

For Oracle databases, CreateSequence() creates a sequence object. For Sybase,

Informix, and Microsoft SQL Server databases, CreateSequence() creates a table
object with a sequence column.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
hr = Creat eDat aConn(0, GX DA DRI VER ODBC, conn_parans, NULL, &conn);
if (hr == NOERROR &&

conn)

| GXSequenceMyr *seqnur;

/1 Cast the connection to an | SequenceMyr interface

/1 and set up the sequence

hr = conn->Queryl nterface(l|D_| GXSequenceMyr, (LPVAO D *)
&seqnyr) ;

i f (hr == NOERROR)

| GXSequence *seq = NULL;
hr = seqngr- >Cr eat eSequence("mySeq", "orders.|D', 100,

Chapter 3 Interfaces 273

IGXSequenceMgr interface

1, NULL, &seq);
if (hr == NOERROR &&
seq)

DWORD seqVal = O0;
/1l To start the sequence, call GetNext()
hr = seq->Get Next (&seqVal);
if (hr == NOERROR)
{
/1 Use the sequence nunber.
11
| GXQuery *qry;
CreateQuery(&qry);
char tnp[512];
sprintf(tnp, "INSERT into orders (ID) val ues
(%), (cust) values (%)", seqVal,

cust Nane) ;

gry->Set SQL(t np) ;

[/l ... Execute insert conmand.

Related Topics
IGXSequence interface

GetSequence()

Returns an existing sequence object, for the specified sequence name, from the
underlying database.

Syntax
| GXDat aConn *dc;
| GXSequenceMgr *sm

dc->Querylnterface(llD_| GXSequenceMgr, (LPVOD *) &m;

274 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXSequenceMgr interface

HRESULT Get Sequence(
LPSTR szNane,
LPSTR szCol ,
| GXSequence **ppSequence);

szName. Name of the sequence. The name can be simple (such as " nySeq") or
qualified with the name of the database owner (such as " mary. nySeq").

szCol. Name of the column in the database table to use if the database supports
sequence column types. For more information, see your database vendor’s
documentation. If NULL, defaults to " SEQVAL" .

ppSequence. Pointer to the returned IGXSequence object. When the AppLogic is
finished using the object, call the Release() method to release the interface instance.

Usage

Use GetSequence() to obtain the IGXSequence object with the specified name in the
underlying database. The AppLogic can then use methods in the IGXSequence
interface to obtain the current or next value of this sequence object.

Sequences provide unique, incremental numbers assigned to records in a database.
For example, you can create a customer ID sequence to generate customer IDs, or
create a purchase order sequence to generate purchase order numbers.

Rules
= Use CreateSequence() to create the IGXSequence object.

= The specified sequence name must be valid.

= For Informix and Sybase databases, the session that creates the sequence must
call GetNext() at least once before any other session can call GetSequence().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXSequence interface

Chapter 12, “Writing Secure Applications” in Programmer’s Guide (Java)

Chapter 3 Interfaces 275

IGXSession2 interface

IGXSession?2 interface

The IGXSession2 interface represents a session between a user and an application.
AppLogics use sessions to store information about each user’s interaction with the
application. For example, a login AppLogic might create a session object to store
the user’s login name and password. This session data is then available to other
AppLogics in the application.

Session data is stored in a distributed state layer in the iPlanet Application Server,
so that the data is available even when the server destroys the AppLogic when it
has finished executing. Storing the session data in the distributed state layer also
enables AppLogics running in different clusters or servers to access the data.

A session has the following attributes, which are set when the AppLogic creates a
session:

< Aunique ID. You can specify an ID, or use the default ID the system generates.

< Anassociation with an application. This setting enables the iPlanet Application
Server to determine which AppLogics have access to the session data.

< Atimeout value. You can specify if the session is automatically destroyed after
a specified time. If you don’t specify a timeout value (timeout = 0), the session
is destroyed when you call the DestroySession() method in the GXAppLogic
class.

= Scope. You can specify if the session data is available at the local, cluster, or
enterprise-wide level.

= Persistence. You can specify if the session persists in the event of a server
crash.[Commented out for 2.11; this feature will probably be implemented
properly in a future release.]

The IGXSession2 interface defines methods for setting and retrieving data in a
session. It also defines methods for retrieving the attributes—ID, associated
application, timeout value, and scope—of a session.

To create an instance of the IGXSession2 interface, use the CreateSession() method
in the GXAppLogic class.

If your application requires a custom session object, for example, to support
additional methods, you can subclass the GXSession2 class and define your own
methods.

Include File
gxapplogic.h

276 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXSession2 interface

Methods

Method Description

GetSessionApp() Returns the name of the application associated with the session.

GetSessionData() Returns session data.

GetSessionFlags() Returns the flags associated with the session when it was
created.

GetSessionID() Returns the session ID.

GetSessionTimeout() Returns the session’s timeout value in seconds.

SaveSession() Saves changes to a session.
SetSessionData() Sets session data.
GetSessionApp()

Returns the name of the application associated with the session.

Syntax

HRESULT Get Sessi onApp(
LPSTR pAppName
ULONG nAppNane) ;

pAppName. Pointer to the buffer allocated by the client to store the returned
application name.

nAppName. The size of the buffer to store the application name.

Usage
Use GetSessionApp() to retrieve the name of the application associated with the
session. All AppLogics in an application have access to the same session data.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following code shows how to create a session and get the name of the
application associated with the session:

HRESULT hr;
CHAR AppNane[128] ;

Chapter 3 Interfaces 277

IGXSession2 interface

| GXSessi on2 *m pSessi on

//Create a session and associate it with nyApp application
hr = CreateSessi on(GXSESSI ON_DI STRI B, 0, "myApp",
NULL, NULL, &m pSession);

/1 Get the application nane associated with the session
/'] Get Sessi onApp() should return "nyApp"
hr = m_pSessi on- >Cet Sessi onApp(AppNane, 128);
if (hr !'= GXE_SUCCESS)

return Result (" Get SessionApp returned error");
sprintf(nmsg, "Session application name: %\n\n", AppNane);
Log(nsg);

Related Topics
CreateSession() in the GXAppLogic class

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

GetSessionData()

Returns session data.

Syntax
HRESULT Get Sessi onDat a(
| GXVal Li st **ppSessi onDat a) ;

ppSessionData. Pointer to the IGXValList object that contains the returned session
data. When the AppLogic is finished using the object, call the Release() method to
release the interface instance.

Usage

Use GetSessionData() to retrieve session data for processing. Data is returned in an
IGXValList object. This method retrieves the contents that were last saved in the
distributed store with SaveSession(). Use methods in the IGXValList interface to
iterate through and access items in the IGXValList object.

278 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXSession2 interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/1 Method for retrieving the user nane from session data
STDVETHODI MP_(LPSTR)

OBSessi on: : Get User Nane()

LPSTR pRet =NULL,;

/1 Pull the username fromthe session data

| GXVal Li st *pDat a=NULL;

i f((Cet Sessi onDat a(&oDat a) ==GXE_SUCCESS) &&pDat a) {
LPSTR pTrmp=GXCet Val Li st Stri ng(pData, "userNane");

if(pTm) {
pRet =new char[strl en(pTnp)+1];
strcpy(pRet, pTnp);

}

pDat a- >Rel ease();

}

return pRet;

}

Related Topics
CreateSession() in the GXAppLogic class

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

GetSessionFlags()

Returns the flags associated with the session when it was created.

Chapter 3 Interfaces

279

IGXSession2 interface

Syntax
HRESULT Get Sessi onFl ags(
DWORD * pdwFl ags) ;

pdwFlags. Pointer to the client-allocated variable that contains the returned
session flag.

Usage
Use GetSessionFlags() to retrieve the flags that were specified when the session
was created with CreateSession(). The following table describes the valid session

flags:

Flag Description

GXSESSION_LOCAL The session is visible to the local process
only.

GXSESSION_CLUSTER The session is visible to all AppLogics
within the cluster.

GXSESSION_DISTRIB The session is visible to all AppLogics in the
enterprise environment.

GXSESSION_PERSISTENT The session persists in the event of a server
crash.

GXSESSION_TIMEOUT_ABSOLUTE The session expires at a specific date and
time.

GXSESSION_TIMEOUT_CREATE The session expires n seconds from the time

the node was created.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

The following code shows how to create a session and get the associated flags:
HRESULT hr;

DWORD Fl ag;

| GXSessi on2 *m pSessi on

/|l Create a session with distributed scope

280 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXSession2 interface

hr = CreateSessi on(GXSESSI ON DI STRIB, 0, "myApp",
NULL, NULL, &m pSession);

/1Get the flag associated with the session
/| Get Sessi onFl ags() shoul d return GXSESSI ON_DI STRI B
hr = m pSessi on- >CGet Sessi onFl ags(&Fl ag) ;
if (hr !'= GXE_SUCCESS)

return Result("GetSessionFlags returned error");
sprintf(msg, "Session flag: 0x%\n", Flag);
Log(nsg);

Related Topics
CreateSession() in the GXAppLogic class

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

GetSessionID()

Returns the session ID.

Syntax

HRESULT Get Sessi onl D(
LPCSTR pSessl D
ULONG nSessl D);

pSessID. Pointer to the buffer allocated by the client to store the returned session
ID.

nSessID. The size of the buffer to store the session ID.

Usage

Use GetSessionlD() to retrieve the unique ID associated with a session. The
GetSessionID() method returns the base or intrinsic 1D, not the transformed IDs
generated by a custom ID generator.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following code shows how to create a session and get the session ID:

Chapter 3 Interfaces 281

IGXSession2 interface

HRESULT hr;
DWORD Sessl D[128];

| GXSessi on2 *m pSessi on

//Create a session using the default 1D generator
hr = CreateSessi on(GXSESSI ON DI STRIB, 0, "myApp",
NULL, NULL, &m pSession);

//Cet the session ID
hr = m pSessi on->Get Sessi onl D(Sessl D, 128);
if (hr !'= GXE_SUCCESS)

return Result("GetSessionlD returned error");
sprintf(nmsg, "Session ID %\n", SesslD);
Log(nsg);

Related Topics
CreateSession() in the GXAppLogic class

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

GetSessionTimeout()
Returns the session’s timeout value in seconds.

Syntax
HRESULT Get Sessi onDat a(
ULONG *pTi nmeout) ;

pTimeout. Pointer to the buffer allocated by the client to store the returned
timeout value.

Usage

Use GetSessionTimeout() to find out if a session is terminated after a specified
time, or if it needs to be terminated explicitly. A timeout value of 0 means the
session ends when it is explicitly terminated with the DestroySession() method.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

282 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXSession2 interface

Example
The following code shows how to create a session and get session’s timeout value:

HRESULT hr;
ULONG Ti neout ;

| GXSessi on2 *m pSessi on

//Create a session with no tinmeout val ue
hr = CreateSessi on(GXSESSI ON_DI STRI B, 0, "myApp",
NULL, NULL, &m pSession);

//Cet the timeout value
/1 get Sessi onTi meout () should return O
hr = m _pSessi on- >Cet Sessi onTi neout (&Ti nmeout) ;
if (hr !'= GXE_SUCCESS)

return Result (" Get SessionTi neout returned error");
sprintf(nmsg, "Session tineout value: %\ n", Tineout);
Log(nsg);

Related Topics
CreateSession() in the GXAppLogic class

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

SaveSession()
Saves changes to a session.

Syntax
HRESULT saveSessi on(
DWORD dwFl ags) ;

dwkFlags. Specify 0 (zero).

Usage

Use SaveSession() to ensure changes are saved in the distributed state storage area,
which stores the session information for subsequent use if any other AppLogic
objects are invoked within the same session.

Chapter 3 Interfaces 283

IGXSession2 interface

Tips

< The AppLogic needs to call the SaveSession() method in the GXAppLogic
class at least once to set a cookie, which passes the session ID between the Web
browser and iPlanet Application Server. The SaveSession() method in the
IGXSession2 interface only saves data to the distributed state store, whereas
SaveSession() in the GXAppLogic class saves data to the distributed state store
and sets a cookie.

< The AppLogic should call SaveSession() to save changes after updating
session data with SetSessionData() or after modifying the IGXValList returned
by GetSessionData().

< Toimprove performance, keep smaller amounts of information in the session.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateSession() and SaveSession() in the GXAppLogic class

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

SetSessionData()

Updates session with specified data.

Syntax
HRESULT Set Sessi onDat a(
| GXVal Li st *pSessi onDat a) ;

pSessionData. The IGXValList object containing the session data to set.

Usage

Use SetSessionData() to write or update session data. Session data is stored in a
distributed state layer in the iPlanet Application Server, making session data
accessible to distributed server processes.

Tips
< The AppLogic should call SaveSession() to save changes after updating
session data with SetSessionData().

< To improve performance, keep smaller amounts of information in the session.

284 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXSessionIDGen interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
CreateSession() in the GXAppLogic class

“Starting a Session” in Chapter 8, “Managing Session and State Information,” in
Programmer’s Guide.

IGXSessionIDGen interface

The IGXSessionIDGen interface represents a session ID generator. The
session-related methods in the GXAppLogic class take an IGXSessionIDGen object
as a parameter. By default, iPlanet Application Server uses the IGXSessionIDGen
object to generate a session ID when an AppLogic creates a new session with the
CreateSession() method in the GXAppLogic class.

The session ID—based on a 64-bit number—uniquely identifies a session between a
user and an application. In a Web-based application, session IDs are passed
between the Web browser and iPlanet Application Server to verify user sessions as
users traverse the application. For non-browser clients, session IDs are tracked on
the server.

If you want to use your own technique for generating session IDs, you can create a
class that implements the IGXSessionIDGen interface and add your own code.

If your application requires additional security, you can implement a custom
session ID generator that continually changes the session ID that is passed between
the Web browser and iPlanet Application Server. Internally, however, there must
be a constant or base ID that remains unchanged for the iPlanet Application Server
to identify sessions correctly. Therefore, your custom code needs to implement an
algorithm for creating and mapping variable IDs to a base ID.

The IGXSessionIDGen interface defines methods for generating session IDs,
creating variable IDs, and mapping variable IDs to the base ID. To implement a
custom session ID generator, create a class that implements the IGXSessionIDGen
interface, and implement all the interface methods.

Include File
gxapplogic.h

Chapter 3 Interfaces 285

IGXSessionIDGen interface

Methods

Method Description

GenerateSessID() Generates a new session ID.

GenerateVariantID() Accepts an input session ID and generates a different ID.
MapToBaselD() Maps a variable session ID to a base ID.

Related Topics
CreateSession() and GetSession() in the GXAppLogic class

IGXSession?2 interface

GenerateSessID()

Generates a new session ID.

Syntax

HRESULT Gener at eSess|)
DWORD dwFl ags,
ULONG nSessl D,
LPSTR pSess!| D) ;

dwFlags. Specify 0. For internal use only.
nSessID. The size of the buffer to store the returned session ID.

pSessID. The buffer to store the returned session ID.

Usage

When an AppLogic calls CreateSession() to create a new session, it needs to pass in
a pointer to an IGXSessionIDGen object as an argument. If the AppLogic passes
NULL, the iPlanet Application Server uses the default IGXSessionIDGen to
generate a session ID.

To use a different mechanism for generating session IDs, create a class that
implements the IGXSessionIDGen interface and implement GenerateSessID().
When you pass your session 1D generator object as an argument to
CreateSession(), it invokes your implementation of GenerateSessID().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

286 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXSessionIDGen interface

Example

In the following code example, which is specific to the Solaris platform,
GenerateSessID() is implemented to use a high resolution counter as the session
ID:

STDMETHODI MP

MySess| DGen: : Gener at eSess| D{ DAORD dwFl ags, ULONG nSess| D, LPSTR
pSessl D)

{

if (!pSesslD)
return GXE_I NVALI D_ARG

WORD64 Hi ResCount er;
H ResCounter = gethrtine();
CHAR i d[64]
sprintf(id, "%1d", H ResCounter);
strncpy(pSessI D, id, nSesslD);
pSessl D[nSessID-1] = '\0";
return NOERROR

}

Related Topics
GenerateVariantID(), MapToBaselD()

GenerateVariantlD()

Accepts an input session ID and generates a different ID.

Syntax
HRESULT GenerateVari ant | D
LPCSTR pBasel D,
DWORD dwFl ags,
ULONG nVari ant| D
LPSTR pVari antlD);

pBaselD. The base session ID from which the variable ID is to be generated.
dwFlags. Specify 0 (zero). For internal use only.

nVariantlD. The size of the buffer to store the variable session ID.

Chapter 3 Interfaces 287

IGXSessionIDGen interface

288

pSessID. The buffer to store the variable session ID.

Usage

If your AppLogic creates a custom class to implement the IGXSessionIDGen
interface, you need to implement all the methods in the interface, including
GenerateVariantID().

You can write GenerateVariantlD() to implement a way to generate session IDs
that change. Changing a session’s ID as it is passed between the Web browser and
iPlanet Application Server provides additional security. Internally, however, the
iPlanet Application Server uses a base ID that does not change. Therefore, if you
implement GenerateVariantlD() to create variable IDs, you also need to write
MaptoBaselD() to convert variable IDs to a base ID.

If you don’t want to generate variable IDs in your application, implement
GenerateVariantlD() to simply return the base ID.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
In the following code example, which is specific to the Solaris platform,
GenerateVariantlD() is implemented to generate different IDs from a base ID:

STDVETHODI MP

MySessl DGen: : Cener at eVari ant | D(LPCSTR pBasel D, DWORD dwkl ags, ULONG
nVariant1 D, LPSTR pVariantlD)

{
if (!pBaselD || !pVariantID || nVariantlD <= GXStrLen(pBasel D))
return GXE_I NVALI D_ARG

CHAR i d[64] ;

WORD64 Hi ResCount er;

H ResCounter = gethrtine();

sprintf(id, "%1d. %", H ResCounter, pBaselD);

strncpy(pVariantlI D, id, nVariantlD);
pVariantl Dl nVariantID-1] = '\0";

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXSessionIDGen interface

return NOERROR
}

Related Topics
GenerateSessID(), MapToBaselD()

MapToBaselD()

Maps a variable session ID to a base ID.

Syntax

HRESULT MapToBasel I
LPCSTR pVari ant | D,
DWORD dwFl ags,
ULONG nBasel D,
LPSTR pBasel D) ;

pVariantlD. The variable ID to map to the base ID.
dwFlags. Specify 0 (zero). For internal use only.
nBaselD. The size of the buffer to store the returned base ID.

pBaselD. The buffer to store the returned base ID.

Usage

If your AppLogic creates a custom class to implement the IGXSessionIDGen
interface, you need to implement all the methods in the interface, including
MapToBaselD().

You can write MapToBaselD() in conjunction with GenerateVariantID() to
implement a way to generate session IDs that change. Changing a session’s ID as it
is passed between the Web browser and iPlanet Application Server provides
additional security. Internally, however, the iPlanet Application Server uses a base
ID that does not change. Therefore, if you implement GenerateVariantID() to
create variable IDs, you also need to implement MaptoBaselD() to convert these
variable IDs to a base ID.

If you don’t want to generate variable IDs in your application, implement
GenerateVariantlD() and MapToBaselD() to simply return the base ID.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Chapter 3 Interfaces 289

IGXSessionIDGen interface

Example
In the following code example, MapToBaselD() is overridden to convert variable
IDs generated by GenerateVariantlD() to the base ID:

STDMETHODI MP

MySess| DGen: : MapToBasel D(LPCSTR pVari ant | D, DWORD dwFl ags, ULONG
nBasel D, LPSTR pBasel D)

{
if (IpvariantiD || !pBasel D)
return GXE_I NVALI D_ARG
LPSTR p = strchr(pVariantID, '.");
if ('p)
return GXE_FAIL;
*p++ = 7\01;
CHAR i d[64] ;
sprintf(id, "9%", p);
strncpy(pBasel D, id, nBasel D);
pBasel D[nBasel D-1] = '\0’;
*__p =
return NOERROR,
}

Related Topics
GenerateVariantlD(), GenerateSessID()

290 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXState2 interface

IGXState2 interface

The IGXState2 interface represents a node, or state object, in the State tree. A state
tree is a hierarchical data storage mechanism. It is used primarily for storing
application data that needs to be distributed across server processes and clusters.
For example, the session data your application creates and maintains is stored in
nodes of a state tree.

Use a state tree in your application if it needs to maintain and share data in a
multi-server environment running load-balanced application components. A node
has the following attributes:

< A name. Nodes on the same level of the state tree must have unique names, but
not otherwise.

e Contents in the form of an IGXValList.

< Atimeout value. You can specify if the content of the node automatically
expires after a specified time. If you don’t specify a timeout value (timeout = 0),
the content is saved until the node is deleted explicitly.

< Scope. You can specify if the node data is available at the local, cluster, or
enterprise-wide level.

= Persistence. You can specify if the node persists in the event of a server crash.
[Commented out for 2.11; this feature will probably be implemented properly
in a future release.]

The IGXState2 interface defines methods for creating and deleting nodes, setting
and retrieving node contents, and retrieving the attributes of a node.

To create a state tree, use the following methods:
= GetStateTreeRoot() method in the GXAppLogic class to create the root node.

« CreateStateChild() in this interface to create the child nodes.

Include File

gxistate.h

Methods

Method Description

CreateStateChild() Creates a child node under the node on which this method is

called.

Chapter 3 Interfaces 291

IGXState?2 interface

Method Description
DeleteStateChild() Deletes a child node.
GetStateChild() Gets a specified child node.
GetStateChildCount() Gets the count of children nodes.
GetStateContents() Gets the contents of the node.
GetStateFlags() Gets the flags assigned to the node when it was created.
GetStateName() Returns the name of the node.
GetStateTimeout() Returns the node’s timeout value in seconds.
SaveState() Saves updates to the node contents.
SetStateContents() Sets node contents.
CreateStateChild()
Creates a child node under the node on which this method is called.
Syntax
HRESULT Creat eStat eChil d(

LPCSTR pNane,

ULONG Ti nmreout,
DWORD dwrl ags,
| GXStat e2 **ppChil d);

pName. The name of the child node. If a child node with the given name already
exists, this method returns an error.

Timeout. The unit of timeout is seconds. The meaning of timeout depends on the
timeout flag specified in dwFlags. A value of 0 means the contents of the node is
saved until deleted explicitly. You can assign a non-zero timeout value only to
child nodes that are leaf nodes. Parent nodes can only have a timeout value of 0.

dwFlags. Specify one of the following flags, or 0 to use the default system settings:
e GXSTATE_LOCAL to make the node visible to the local process only.

e GXSTATE_CLUSTER to make the node visible to all application components
within the cluster.

e GXSTATE_DISTRIB to make the node visible to all application components in
the enterprise environment.

292 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXState2 interface

e GXSTATE.GXSTATE_PERSISTENT to write the data to a persistent store that
survives server crashes. [Commented out for 2.11; this feature will probably be
implemented properly in a future release.]

e GXSTATE.GXSTATE_TIMEOUT_ABSOLUTE to specify that the contents of
the node expires at a specific date and time. [Commented out for 4.0; this
feature is still unimplemented.]

e GXSTATE_TIMEOUT_CREATE to specify that the contents of the node expires
n seconds from the time the node was created.

The default scope is distributed and the default timeout is 60 seconds from the time
the node was last accessed.

ppChild. A pointer to the created IGXState2 object. When the AppLogic is finished
using the object, call the Release() method to release the interface instance.

Usage

Use CreateStateChild() to add a child node to a state tree. The application
component should already have created the root node of the tree with
GetStateTreeRoot() in the GXAppLogic class.

To create a new child node in a particular position of the tree, traverse the tree until
you reach the node that will be the parent of the new child node. Then call
CreateStateChild().

Rules

= The scope of a parent node must be the same as or greater than the scope of its
child nodes. For example, if the scope of a child node is set to the cluster level,
its parent node must be set to either the cluster or distributed level.

<« Parent nodes can only have a timeout value of 0.

Tips

« To traverse the state tree to find the desired location in which to create a new
child node, use GetStateChild(). Each successive call to GetStateChild()
descends one level in the tree.

= If you specified GXSTATE.GXSTATE_TIMEOUT_ABSOLUTE in dwFlags, use
the getTime(') method in the Java Date Classmktime() function in the C library
to convert a date/time to seconds. Then, pass this value as the timeout
argument.

Chapter 3 Interfaces 293

IGXState?2 interface

e The GXSTATE.GXSTATE_PERSISTENT flag is provided as a fail-safe feature.
It is not intended to replace a database and should not be used to store long
term data. The AppLogic should set an appropriate timeout for the node, or
delete the node explicitly when it is no longer needed.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following code shows how to create a child node if it doesn’t already exist:

HRESULT hr;

hr = Get St at eTr eeRoot (GXSTATE_DI STRI B, "G amy", &m pStateRoot);

if (hr == NOERROR && m pSt at eRoot)
{
| GXState2 *pState = NOERROR
hr = m pSt at eRoot - >Get St at eChi | d(" Best Fenml e Vocal ",
&pSt at e) ;
if (hr '= NOERROR || !pState)
{
hr = m pSt at eRoot - >Cr eat eSt at eChi | d(" Best Fenal e Vocal ",
0, GXSTATE DISTRIB, &pState);
Related Topics

“Using the State Layer” in Chapter 8, “Managing Session and State Information,
in Programmer’s Guide.

DeleteStateChild()

Deletes a child node from a state tree.

Syntax
HRESULT Del et eSt at eChi | d(
LPCSTR pNan®) ;

pName. The name of the child node to delete.

294 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXState2 interface

Usage

Use DeleteStateChild() to delete a child node from a state tree when your
application no longer needs it. A child node can be deleted only from its parent
node. For example, if the state tree has three levels and you want to delete a node at
the third level, traverse the tree until you find its parent node at the second level.
Then call DeleteStateChild() to delete a specific node.

Rule
You can delete a parent node only after deleting its child nodes.

Tip

To traverse the state tree to find the parent node of the child node to delete, use
GetStateChild(). Each successive call to GetStateChild() descends one level in the
tree.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Using the State Layer” in Chapter 8, “Managing Session and State Information,”
in Programmer’s Guide.

GetStateChild()

Gets a specified child node.

Syntax

HRESULT Get St at eChi | d(
LPCSTR pNane,
| GXStat e2 **ppChi |l d);

pName. The name of the child node to get.

ppChild. A pointer to the retrieved IGXState2 object. When the AppLogic is
finished using the object, call the Release() method to release the interface instance.

Usage

Use GetStateChild() to retrieve a node whose content you want to get or update.
Your application component can also use GetStateChild() to traverse a state tree to
find the parent node of child nodes to add or delete.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Chapter 3 Interfaces 295

IGXState?2 interface

Related Topics
“Using the State Layer” in Chapter 8, “Managing Session and State Information,
in Programmer’s Guide.

GetStateChildCount()

Gets the count of children nodes.

Syntax

HRESULT Get St at eChi | dCount (
DWORD dwrl ags,
ULONG *pCount) ;

dwrFlags. Currently unused.

pCount. Pointer to where the child count is returned.

Usage
Use this method to return the number of children at any given state node.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Using the State Layer” in Chapter 8, “Managing Session and State Information,
in Programmer’s Guide.

GetStateContents()

Gets the contents of the node.

Syntax
HRESULT Get St at eCont ent s(
| GXVal Li st **ppContents);

ppContents. Pointer to the returned IGXValList that contains the contents of the
current child node. When the AppLogic is finished using the object, call the
Release() method to release the interface instance.

Usage

Use GetStateContents() to retrieve the contents of the node, or to check if the node
contains contents before setting values in the node. This method retrieves the
contents that were last saved in the distributed store with SaveState().

296 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXState2 interface

Tips
= To traverse the state tree to find a specific node, use GetStateChild(). Each
successive call to GetStateChild() descends one level in the tree.

< If you update the contents of a node with SetStateContents() but do not save
the contents in the distributed store with SaveState(), GetStateContents() will
not return the content set with SetStateContents(). It will return the contents
that were last saved.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Using the State Layer” in Chapter 8, “Managing Session and State Information,”
in Programmer’s Guide.

GetStateFlags()

Gets the flags assigned to the node when it was created.

Syntax
HRESULT Get St at eFl ags(
DWORD * pdwFl ags) ;

pdwFlags. Pointer to the client-allocated variable that contains the returned state
flag.

Usage

Use GetStateFlags() to retrieve the flag that represents the node’s scope, lifetime,
and timeout criteria. This flag is specified when the state node is created. The
following table describes the valid session flags:

Flag Description

GXSTATE_LOCAL The node is visible to the local process only.

GXSTATE_CLUSTER The node is visible to all application
components within the cluster.

GXSTATE_DISTRIB The node is visible to all application
components in the enterprise environment.

GXSTATE_PERSISTENT The node persists in the event of a server
crash.

Chapter 3 Interfaces 297

IGXState?2 interface

Flag Description

GXSTATE_TIMEOUT_ABSOLUTE The contents of the node expires at a specific
date and time.

GXSTATE_TIMEOUT_CREATE The contents of the node expires n seconds
from the time the node was created.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Using the State Layer” in Chapter 8, “Managing Session and State Information,”
in Programmer’s Guide.

GetStateName()

Returns the name of the node.

Syntax

HRESULT Get St at eNane(
LPSTR pNane,
ULONG nNane) ;

pName. Pointer to the buffer allocated by the client to store the returned node
name.

nName. The size of the buffer to store the node name.

Usage
Use GetStateName() when the name of the node is unknown and is required for
subsequent operations.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Using the State Layer” in Chapter 8, “Managing Session and State Information,
in Programmer’s Guide.

GetStateTimeout()

Returns the node’s timeout value in seconds.

298 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXState2 interface

Syntax
HRESULT Get St at eTi neout (
ULONG *pTi neout) ;

pTimeout. Pointer to the buffer allocated by the client to store the returned
timeout value.

Usage

Use GetStateTimeout() in conjunction with GetStateFlags() to determine if and
when the contents of the node expires. A timeout value of 0 means the node
contents are saved until the node is deleted explicitly.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Using the State Layer” in Chapter 8, “Managing Session and State Information,”
in Programmer’s Guide.

SaveState()

Saves updates to the node contents.

Syntax
HRESULT SaveSt at e(
DWORD dwFl ags) ;

dwFlags. Specify 0 (zero). Internal use only.

Usage
Use SaveState() after you set or change the contents of a node. This method flushes
the node contents into the distributed store.

Tip

The GetStateContents() method retrieves the contents that were last saved in the
distributed store with SaveState(). Therefore, if you update the contents of a node
with SetStateContents(), but do not call SaveState(), GetStateContents() will not
return the content set with SetStateContents().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Chapter 3 Interfaces 299

IGXState?2 interface

Related Topics
“Using the State Layer” in Chapter 8, “Managing Session and State Information,”
in Programmer’s Guide.

SetStateContents()

Sets node contents.

Syntax
HRESULT Set St at eCont ent s(
| GXVal Li st *pContents);

pContents. Pointer to the IGXValList of values to set in the current node.

Usage
Use SetStateContents() to update the contents of a node.

Tips
= Totraverse the state tree to find the child node to update, use GetStateChild().
Each successive call to GetStateChild() descends one level in the tree.

= Call SaveState() after you set or change the contents of a node. This method
flushes the node contents into the distributed store. If you call
SetStateContents() several times before calling SaveState(), only the value
from the last SetStateContents() call is saved.

< The GetStateContents() method retrieves the contents that were last saved in
the distributed store with SaveState(). Therefore, if you update the contents of
a node with SetStateContents(), but do not call SaveState(),
GetStateContents() will not return the content set with SetStateContents().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
The following code shows how to create a child node and set its contents:

| State2 tree = get StateTreeRoot (GXSTATE. GXSTATE_DI STRI B, "G anmmy");

if (tree!=null)

{
IState2 child = tree. get StateChil d("Best Fermal e Vocal");
if (child == null)

300 iPlanet Application Server C++ Foundation Class Reference May 2000

IGXState2 interface

{
child = tree.createStateChil d("Best Fenmale Vocal", O,
GXSTATE. GXSTATE_DI STRI B) ;
}
if (child != null)
{
IVal Li st val = GX. CreateVal List();
val . setVal String("w nner", "Witney Houston");
val . setVal String("runner up", "Barbara Streisand");
chil d. set St at eContents(val);
chil d. saveSt at e(0);
}
HRESULT hr;

hr = Cet St at eTr eeRoot (GXSTATE_DI STRI B, "G ammy", &m pStateRoot);

if (hr == NOERROR && m pSt at eRoot)

| GXSt ate2 *pState = NOERROR
hr = m pSt at eRoot - >Get St at eChi | d(" Best Fenml e Vocal ",
&pSt at e) ;
if (hr = NOERROR || !pState)
{
hr = m pSt at eRoot - >Creat eSt at eChi | d(" Best Femal e Vocal ",
0, GXSTATE DISTRIB, &pState);

if (hr == NOERROR && pSt at e)

pSt at e- >Get St at eCont ent s(&pVL) ;

if (1pWL)
{

Chapter 3 Interfaces

301

IGXStreamBulffer interface

I GXval Li st *pVL = GXCreateVal List();
pVL->Set Val String("w nner", "Witney Houston");
pVL->Set Val String("runnerup", "Barbara

Strei sand");

hr
hr

pSt at e- >Set St at eCont ent s(pVL) ;
pSt at e- >SaveSt at e(0) ;

pVL- >Rel ease() ;
}
Related Topics

“Using the State Layer” in Chapter 8, “Managing Session and State Information,”
in Programmer’s Guide.

IGXStreamBuffer interface

302

The IGXStreamBuffer interface represents a buffer for capturing streamed output
during template processing. Use a stream buffer if your AppLogic needs to
manipulate the data before sending it to another AppLogic. For example, the
AppLogic can collect the data in a stream buffer, then parse it or save it to a file.

To capture the data in a stream buffer, use the EvalOutput() method in the
GXAppLogic class and pass in an IGXStream object. To manipulate the data in the
stream buffer, use the GetStreamData() method in this interface.

To create an instance of the IGXStreamBuffer interface, use the
GXCreateStreamBuffer() helper function.

Include File
gxstream.h

Method

GetStreamData() Returns an array of byte values from the stream buffer.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXTable interface

GetStreamData()

Returns an array of byte values from the stream buffer.

Syntax

HRESULT Get St reanDat a(
DWORD f | ags,
LPBYTE pBuff,
ULONG nBuff);

flags. Specify 0 (zero).
pBuff. Pointer to the client-allocated buffer to store the data.

nBuff. Length of the client-allocated buffer.

Usage

Use GetStreamData() to retrieve the contents of the stream buffer that was
captured during streamed template processing. The AppLogic can then
manipulate the data as needed.

Rule

Call GetStreamData() after EvalOutput() in the GXAppLogic class. The
EvalOutput() method captures output in the stream buffer if the AppLogic passes
in an IGXStream object.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
EvalOutput() in the GXAppLogic class

IGXTable interface

The IGXTable interface represents the definition of a table that is part of a relational
data source. IGXTable provides methods to perform the following types of
operations:

< Add, update, and delete rows in the table.

< Obtain information about table attributes as they are defined in the database
catalog. Table attributes include the table name, table columns, data
connection, and so on. To obtain additional information about individual
columns, use the methods in the IGXColumn interface.

Chapter 3 Interfaces 303

IGXTable interface

The IGXTable interface is part of the Data Access Engine (DAE) service.

To create an instance of the IGXTable interface, use GetTable() in the
IGXDataConn interface or GetTable() in the IGXColumn interface.

Each call to GetTable() returns a new IGXTable object rather than returning an

existing table object.

Include File

gxidata.h

Methods

Method Description

AddRow() Inserts a new row in the table.

AllocRow() Allocates a new, empty row buffer, replacing the previous row

DeleteRow()
EnumColumnReset()
EnumColumns()
GetColumn()
GetColumnByOrd()

GetColumnOrdinal()
GetDataConn()

GetName()
GetNumColumns()
SetValueBinary()
SetValueBinaryPiece()
SetValueDateString()
SetValueDouble()
SetValuelnt()
SetValueString()
SetValueText()

buffer if one exists.

Deletes one or more rows in the table.

Resets the column enumeration to the first column in the table.
Returns the definition of the next column in the table.

Returns the definition of a column with the specified name.

Returns the definition of the column in the specified ordinal
position.

Returns the ordinal position of the column specified by name.

Returns the data connection object associated with the data
source in which the table is defined.

Returns the name of the table.

Returns the number of columns in the table object.

Specifies a BINARY value of a column in the row buffer.
Specifies a LONG BINARY value of a column in the row buffer.
Specifies the Date value of a column in the row buffer.
Specifies the double value of a column in the row buffer.
Specifies the int value of a column in the row buffer.
Specifies the String value of a column in the row buffer.

Specifies a TEXT value of a column in the row buffer.

304 iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXTable interface

Method Description

SetValueTextPiece() Specifies a LONGTEXT value of a column in the row buffer.

UpdateRow() Modifies one or more rows in the table with the contents of the
row buffer.

Related Topics

“Inserting Records in a Database,” “Updating Records in a Database,” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

AddRow()

Inserts a new row in the table.

Syntax
HRESULT AddRow(
DWORD dwrl ags,
| GXTrans *pTrans);

dwFlags. Specifies one of the following flags used to execute this insert operation:
= For synchronous operations, the default, specify zero or GX_DA_EXEC_SYNC.
< For asynchronous operations, specify GX_DA_EXEC_ASYNC.

pTrans. Pointer to the IGXTrans object that contains the transaction associated
with this insert operation, or NULL.

Usage
Use AddRow() to insert a new record into a table.

Rules
= Before adding a row, the AppLogic must first call AllocRow() to create a row
buffer.

= Next, the AppLogic must specify data values for the new row by calling any of
the SetValueXXX() methods, such as SetValueString() or SetValueBinary().

< The AppLogic must specify a value for any column defined as NOT NULL and
without a DEFAULT value, such as keys.

< The AppLogic must be logged into the database with sufficient privileges to
insert records in the target table.

Chapter 3 Interfaces 305

IGXTable interface

= Ifthe insert operation is part of a transaction, the AppLogic must first create an
instance of the IGXTrans interface using CreateTrans() in the GXAppLogic
class. The AppLogic must then call Begin() before executing the statement and,
after executing the statement, call Commit() or Rollback() as appropriate.

Tips
= To determine whether a column is defined as NOT NULL, use
GetNullsAllowed() in the IGXColumn interface.

= Alternatively, the AppLogic can insert records by passing a SQL INSERT
statement using SetSQL() in the IGXQuery interface. The statement must
comply with ANSI 92 SQL syntax.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/]l Get a table
| GXTabl e *pTabl e=NULL;

i f (((hr=pConn->Cet Tabl e(" OBTransacti on",
&pTabl e)) ==GXE_SUCCESS) &&pTabl e) {

/1 Look up the colum ordinals for the table

ULONG t ransTypeCol =0;

pTabl e- >Get Col umOrdi nal ("transType", & ransTypeCol);
ULONG post Dat eCol =0;

pTabl e- >Get Col uimOr di nal (" post Dat e", &post Dat eCol) ;
ULONG acct NuntCol =0;

pTabl e- >Get Col umOr di nal ("acct Nuni', &acct NuntCol) ;
ULONG arnount Col =0;

pTabl e- >Get Col uimOr di nal ("anmount”, &anount Col) ;

/'l Create a transaction

| GXTrans *pTx=NULL;

i f(((hr=CreateTrans(&Tx))==GXE_SUCCESS) &&pTx) {
pTx->Begi n();

306 iPlanet Application Server C++ Foundation Class Reference May 2000

IGXTable interface

/1 Alocate a new row

pTabl e- >Al | ocRow() ;

pTabl e- >Set Val ueStri ng(acct NunCol , pFromAcct);

pTabl e- >Set Val uel nt (transTypeCol , TRANSTYPE_W THDRAWAL) ;
pTabl e- >Set Val ueDat eSt ri ng(post Dat eCol , dateStr);

pTabl e- >Set Val ueDoubl e(anobunt Col , anount*-1.0);

// Add the rowto the table
i f(pTabl e- >AddRow(0, pTx) ==GXE_SUCCESS) {

Related Topics
IGXTrans interface

“Inserting Records in a Database,” “Updating Records in a Database,” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

AllocRow()

Allocates a new, empty row buffer, replacing the previous row buffer if one exists.

Syntax
HRESULT Al |l ocRowW();

Usage

Use AllocRow() to allocate a new row buffer before adding or updating records in
a table. The row buffer is a virtual representation of a row in the target table,
including all column definitions. The AppLogic writes data values to the row
buffer first, then writes the contents of the row buffer to either a new record using
AddRow() or to one or more existing records using UpdateRow().

Rules

= The AppLogic must call AllocRow() before specifying column values with a
SetValueXXX() method.

e The AppLogic must call AllocRow() every time before calling AddRow() or
UpdateRow().

Chapter 3 Interfaces 307

IGXTable interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/] Get a table
| GXTabl e *pTabl e=NULL;

i f (((hr=pConn->Cet Tabl e(" OBTransacti on",
&pTabl e)) ==GXE_SUCCESS) &&pTabl e) {

/1 Look up the colum ordinals for the table

ULONG transTypeCol =0;

pTabl e- >Get Col umOrdi nal ("transType", & ransTypeCol);
ULONG post Dat eCol =0;

pTabl e- >Get Col uimOr di nal (" post Dat e", &post Dat eCol) ;
ULONG acct NuntCol =0;

pTabl e- >Get Col umOr di nal ("acct Nunt', &acct NuntCol) ;
ULONG arnount Col =0;

pTabl e- >Get Col umOr di nal ("anmount”, &anount Col) ;

/'l Create a transaction

| GXTrans *pTx=NULL;

i f(((hr=CreateTrans(&Tx))==GXE_SUCCESS) &&pTx) {
pTx->Begi n();

/1 Allocate a new row

pTabl e- >Al | ocRow() ;

pTabl e- >Set Val ueStri ng(acct NunCol , pFromAcct);

pTabl e- >Set Val uel nt (transTypeCol , TRANSTYPE_W THDRAWAL) ;
pTabl e- >Set Val ueDat eSt ri ng(post Dat eCol , dateStr);

pTabl e- >Set Val ueDoubl e(anobunt Col, anount*-1.0);

// Add the rowto the table

308 iPlanet Application Server C++ Foundation Class Reference May 2000

IGXTable interface
i f (pTabl e- >AddRow(0, pTx) ==GXE_SUCCESS) {

Related Topics

“Inserting Records in a Database,” “Updating Records in a Database,” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

DeleteRow()

Deletes one or more rows in the table.

Syntax

HRESULT Del et eRow(
DWORD dwrl ags,
LPSTR szWer e,
| GXTrans *pTrans);

dwFlags. Specifies one of the following flags used to execute this delete operation:
= For synchronous operations, the default, specify zero or GX_DA_EXEC_SYNC.
= For asynchronous operations, specify GX_DA_EXEC_ASYNC.

szWhere. Selection criteria expression for one or more rows to delete. The syntax is
the same as the SQL WHERE clause, only without the WHERE keyword. Use ANSI
92-compliant syntax. If an empty string is specified, all rows in the table are
deleted.

pTrans. Pointer to the IGXTrans object that contains the transaction associated
with this delete operation, or NULL.

Rules
= The AppLogic must be logged into the database with sufficient privileges to
delete records in the target table.

= Ifthe delete operation is part of a transaction, the AppLogic must first create an
instance of the IGXTrans interface using CreateTrans() in the GXAppLogic
class. The AppLogic must then call Begin() before executing the statement and,
after executing the statement, call Commit() or Rollback() as appropriate.

Tip
Alternatively, the AppLogic can delete records by passing a SQL DELETE

statement using SetSQL() in the IGXQuery interface, then executing the query. The
statement must comply with ANSI 92 SQL syntax.

Chapter 3 Interfaces 309

IGXTable interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
| GXVal Li st *conn_par ans;

conn_parans = GXCreateVal List();

conn_par ans- >Set Val String("DSN', "sal esDB");
conn_par ans- >Set Val String("DB", "sal esDB");
conn_par ans- >Set Val Stri ng("USER', "steve");
conn_par ans- >Set Val Stri ng("PSWD', "pass7878");

| GXDat aConn *conn = NULL;
HRESULT hr;

hr = Creat eDat aConn(0, GX DA DRI VER ODBC, conn_parans, NULL, &conn);
if (hr == NOERROR &&

conn)

| GXTabl e *tabl e = NULL;
hr = conn->Get Tabl e(" enpl oyees", &table);
if (hr == NOERROR &&

tabl e)

tabl e- >Del et eRow(0, "lastname="Smith’", NULL);

t abl e- >Rel ease();

}

conn- >Rel ease();

}

conn_par ans- >Rel ease();

310 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXTable interface

Related Topics
IGXTrans interface

“Deleting Records From a Database” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

“Using Pass-Through Database Commands” in Chapter 5, “Working with
Databases” in Programmer’s Guide.

EnumColumnReset()
Resets the column enumeration to the first column in the table.

Syntax
HRESULT EnuntCol ummReset () ;

Usage

Use EnumColumnReset() before iterating through and retrieving columns in a
table. EnumColumnReset() ensures that column retrieval starts from the first
column.

Thereafter, use EnumColumns() to retrieve each column sequentially. Each
EnumColumns() call returns an IGXColumn object for the next column.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases,” in Programmer’s Guide.

“Inserting Records in a Database,” “Updating Records in a Database,” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

EnumColumns()
Returns the definition of the next column in the table.

Syntax
HRESULT EnuntCol umrms(
| GXCol um **ppCol um) ;

ppColumn. Pointer to the IGXColumn object that contains the returned next
column of data. When the AppLogic is finished using the object, call the Release()
method to release the interface instance.

Chapter 3 Interfaces 311

IGXTable interface

Usage

Use EnumColumns() when the column definition is unknown and required for
subsequent operations. The AppLogic can use the returned IGXColumn object to
determine characteristics of the column, such as its name, data type, size, whether
nulls are allowed, and so on.

Before iterating through columns, the client code should call EnumColumnReset()
to ensure that EnumColumns() starts with the first column in the table. Each
subsequent EnumColumns() call moves to the next sequential column in the table
and retrieves its column definition in an IGXColumn object.

Tips
= The columns might not be returned in the order in which they are defined in
the database catalog.

e Test for NULL to determine when the last column has been retrieved.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXColumn interface

“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases,” in Programmer’s Guide.

GetColumn()

Returns the definition of a column with the specified name.

Syntax
HRESULT Get Col umm(
LPSTR szCol um,
| GXCol um **ppCol um) ;

szColumn. Name of the column to retrieve.

ppColumn. Pointer to the IGXColumn object that contains the returned column
definition. When the AppLogic is finished using the object, call the Release()
method to release the interface instance.

Usage

Use GetColumn() when the column definition is unknown but its name is known.
The AppLogic can use the IGXColumn object to determine other characteristics
about the column, such as its data type, size, whether nulls are allowed, and so on.

312 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXTable interface

Rule
The specified column name must exist in the table.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXColumn interface

“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases,” in Programmer’s Guide.

GetColumnByOrd()

Returns the definition of the column in the specified ordinal position.

Syntax

HRESULT Get Col umByOr d(
ULONG Or di nal ,
| GXCol umtm **ppCol um) ;

Ordinal. Ordinal number (position) of the column in the table. The first column is
1, the second column is 2, and so on.

ppColumn. Pointer to the IGXColumn object that contains the returned column
definition. When the AppLogic is finished using the object, call the Release()
method to release the interface instance.

Usage

Use GetColumnByOrd() when the column definition is unknown but its position
in the table is known, such as when iterating through columns in the table. The
AppLogic can use the IGXColumn object to determine other characteristics about
the column, such as its name, data type, size, whether nulls are allowed, and so on.

Rule
The specified column number must exist in the table.

Tips
= Column positions in a table may change between different table objects.

= Columns are not guaranteed to be in the same order in which the database lists
them.

Chapter 3 Interfaces 313

IGXTable interface

= Toiterate through columns in a table using GetColumnByOrd(), call
GetNumColumns() to determine the maximum number of columns in the
table, then proceed sequentially through each column using
GetColumnByOrd(), beginning with column 1, through the last column.

= Alternatively, call EnumColumnReset() to start with the first column in the
table, then call EnumColumns() repeatedly through the last column.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
IGXColumn interface

“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases,” in Programmer’s Guide.

GetColumnOrdinal()

Returns the ordinal position of the column specified by name.

Syntax

HRESULT Get Col umOr di nal (
LPSTR szCol um,
ULONG *pOrdinal) ;

szColumn. Name of the column.

pOrdinal. Pointer to the buffer allocated by the client to contain the returned
ordinal position of the specified column. The first column is 1, the second column is
2, and so on.

Usage

Use GetColumnOrdinal() when the ordinal position of a column is unknown and
is required for subsequent operations. For example, the ordinal position of a
column is a required parameter value for the SetValue**(') methods, such as
SetValueString() and SetValuelnt().

Rule
The specified column name must exist in the table.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

314 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXTable interface

Example
/] Create a data connection

| GXDat aConn * pConn=NULL;

i f(((hr=CGet OBDat aConn(& Conn)) ==GXE_SUCCESS) &&pConn) {
| GXTabl e *pTabl e=NULL;

/1 CGet the table
i f (((hr=pConn->Get Tabl e(" OBTransacti on",
&pTabl e)) ==GXE_SUCCESS) &&pTabl e) {

/1 Look up the columm ordinals for the table
ULONG transTypeCol =0;
pTabl e- >Get Col utmOr di nal ("transType", & ransTypeCol);
ULONG post Dat eCol =0;
pTabl e- >Get Col umOr di nal (" post Dat e", &post Dat eCol) ;
ULONG acct NunCol =0;
pTabl e- >Get Col uimOr di nal ("acct Nuni', &acct Nuntol) ;
ULONG anount Col =0;
pTabl e- >Get Col utmOr di nal ("anount”, &anount Col) ;
Related Topics
IGXColumn interface

“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases,” in Programmer’s Guide.

GetDataConn()

Returns the data connection object associated with the data source in which the
table is defined.

Syntax
HRESULT Get Dat aConn(
| GXDat aConn **ppDat aConn) ;

Chapter 3 Interfaces 315

IGXTable interface

ppDataConn. Pointer to the IGXDataConn object that contains the returned data
connection object associated with the data source in which the table is defined.
When the AppLogic is finished using the object, call the Release() method to
release the interface instance.

Usage
Use GetDataConn() when the data connection associated with the table is
unknown and is required for subsequent operations.

Tip
The IGXDataConn object that GetDataConn() returns may not be equal (==) to the
IGXDataConn object that CreateDataConn(), in the GXAppLogic class, returned.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
“About Database Connections” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

GetName()

Returns the name of the table.

Syntax

HRESULT Get Nang(
LPSTR pBuff,
ULONG nBuff);

pBuff. Pointer to the buffer allocated by the client to contain the returned table
name.

nBuff. The length of the pBuff buffer, in bytes.

Usage

Use GetName() when the name of the table is unknown and is required for
subsequent operations.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
Chapter 5, “Working with Databases,” in Programmer’s Guide.

316 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXTable interface

GetNumColumns()
Returns the number of columns in the table object.

Syntax
HRESULT Get NunCol umms(
ULONG *pnCol s) ;

pnCols. Pointer to the returned number of columns in the table.

Usage

Use GetNumColumns() when the number of columns defined in the table is
unknown and is required for subsequent operations. When iterating through
columns in a table, the AppLogic can use this information to specify the maximum
number of iterations.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
Chapter 5, “Working with Databases,” in Programmer’s Guide.

SetValueBinary()

Specifies a BINARY value of a column in the row buffer.

Syntax

HRESULT Set Val ueBi nar y(
ULONG Ordi nal ,
LPBYTE pVal ue,
ULONG nOXf f set,
ULONG nLengt h);

Ordinal. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

pValue. A byte array expression to assign to the column.

nOffset. Number of bytes to skip from the beginning of the byte array. This value
specifies the starting point within the array.

nLength. Number of bytes to set for the byte array.
Usage

Use SetValueBinary() for BINARY data of which the total size is equal to or smaller
than 64K.

Chapter 3 Interfaces 317

IGXTable interface

Rules
= The AppLogic must call AllocRow() before attempting to write to the row
buffer.

= The data type of the column must be BINARY or VARBINARY, or database
equivalent.

Tip
Use SetValueBinaryPiece() for LONGBINARY, LONGVARBINARY, or equivalent
type values.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics

“Inserting Records in a Database,” “Updating Records in a Database,” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

SetValueBinaryPiece()
Specifies a LONGBINARY value of a column in the row buffer.

Syntax

HRESULT Set Val ueBi nar y(
ULONG Or di nal ,
LPBYTE pVal ue,
ULONG nOf f set,
ULONG nLengt h);

Ordinal. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

pValue. A byte array expression to assign to the column.

nOffset. Number of bytes to skip from the beginning of the byte array. This value
specifies the starting point within the array.

nLength. Number of bytes to set for the byte array.

Usage

Use SetValueBinaryPiece() to specify LONGBINARY data. LONGBINARY data
must be added in 64K increments, therefore, you must use SetValueBinaryPiece()
several times to add the data.

318 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXTable interface

Rules
= The AppLogic must call AllocRow() before attempting to write to the row
buffer.

< The data type of the column must be LONGBINARY, LONGVARBINARY, or
database equivalent.

< Must be called after AllocRow() but before AddRow() or UpdateRow().
Tip
Use SetValueBinary() for BINARY, VARBINARY, or equivalent type values.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics

“Inserting Records in a Database,” “Updating Records in a Database” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

SetValueDateString()

Specifies the Date value of a column in the row buffer.

Syntax

HRESULT Set Val ueDat eStri ng(
ULONG O di nal ,
LPSTR pVal ue) ;

Ordinal. Ordinal number (position) of the target column in the table. The first
column is 1, the second column is 2, and so on.

pValue. A date expression to assign to the column. Use one of the following
formats:

= "Fri Oct 10 14:35:59.999 PDT 1997"

The subseconds (,999 in the example) and time zone (PDT in the example) are
optional.

= "1997-10-01 14:35:59.999"

The time is optional.

Rule
The AppLogic must call AllocRow() before attempting to write to the row buffer.

Chapter 3 Interfaces 319

IGXTable interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/] Get a table
| GXTabl e *pTabl e=NULL;

i f (((hr=pConn->Cet Tabl e(" OBTransacti on",
&pTabl e)) ==GXE_SUCCESS) &&pTabl e) {

/1 Look up a colum ordinal
ULONG post Dat eCol =0;
pTabl e- >Get Col umOr di nal (" post Dat e", &post Dat eCol) ;

/1l Allocate a new row and set a datestring val ue
pTabl e- >Al | ocRow) ;
pTabl e- >Set Val ueDat eStri ng(post Dat eCol, dateStr);

Related Topics

“Inserting Records in a Database,” “Updating Records in a Database” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

SetValueDouble()

Specifies the double value of a column in the row buffer.

Syntax

HRESULT Set Val ueDoubl g(
ULONG Ordi nal ,
doubl e nVal ue);

Ordinal. Ordinal number (position) of the target column in the table. The first
column is 1, the second column is 2, and so on.

nValue. A double expression to assign to the column.

Rule
The AppLogic must call AllocRow() before attempting to write to the row buffer.

320 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXTable interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/] Get a table
| GXTabl e *pTabl e=NULL;

i f (((hr=pConn->Cet Tabl e(" OBTransacti on",
&pTabl e)) ==GXE_SUCCESS) &&pTabl e) {

/1 Look up a colum ordinal
ULONG anount Col =0;
pTabl e- >Get Col uimOr di nal ("anmount”, &anount Col) ;

/1l Allocate a new row and set a doubl e val ue
pTabl e- >Al | ocRow) ;
pTabl e- >Set Val ueDoubl e(anount Col , anount*-1.0);

Related Topics

“Inserting Records in a Database,” “Updating Records in a Database” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

SetValuelnt()

Specifies the int value of a column in the row buffer.

Syntax

HRESULT Set Val uel nt (
ULONG Ordi nal ,
DWORD nVal ue) ;

Ordinal. Ordinal number (position) of the target column in the table. The first
column is 1, the second column is 2, and so on.

nValue. An int expression to assign to the column.

Rule
The AppLogic must call AllocRow() before attempting to write to the row buffer.

Chapter 3 Interfaces 321

IGXTable interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/] Get a table
| GXTabl e *pTabl e=NULL;

i f (((hr=pConn->Cet Tabl e(" OBTransacti on",
&pTabl e)) ==GXE_SUCCESS) &&pTabl e) {

/1 Look up a colum ordinal
ULONG transTypeCol =0;
pTabl e- >Get Col umOrdi nal ("transType", & ransTypeCol);

/1 Allocate a new row and set an int val ue
pTabl e- >Al | ocRow) ;
pTabl e- >Set Val uel nt (transTypeCol , TRANSTYPE_W THDRAWAL) ;

Related Topics

“Inserting Records in a Database,” “Updating Records in a Database” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

SetValueString()

Syntax

HRESULT Set Val ueStri ng(
ULONG Ordi nal ,
LPSTR pVal ue);

Ordinal. Ordinal number (position) of the target column in the table. The first
column is 1, the second column is 2, and so on.

pValue. Pointer to the variable that contains the string expression to assign to the
column.

Rule
The AppLogic must call AllocRow() before attempting to write to the row buffer.

322 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXTable interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

/] Get a table
| GXTabl e *pTabl e=NULL;

i f (((hr=pConn->Cet Tabl e(" OBTransacti on",
&pTabl e)) ==GXE_SUCCESS) &&pTabl e) {

/1 Look up a columm ordinal
ULONG acct NuntCol =0;
pTabl e- >Get Col umOr di nal ("acct Nunt', &acct NuntCol) ;

/1 Allocate a new row and set a string val ue
pTabl e- >Al | ocRow) ;
pTabl e- >Set Val ueStri ng(acct NunCol , pFromAcct);
Related Topics
“Inserting Records in a Database,” “Updating Records in a Database” and “Using

Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

SetValueText()

Specifies a TEXT value of a column in the row buffer.

Syntax

HRESULT Set Val ueText (
ULONG Or di nal ,
LPSTR pVal ue,
ULONG nOf f set,
ULONG nLengt h);

Ordinal. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

pValue. A string expression to assign to the column.
nOffset. Number of characters to skip from the beginning of the string.

nLength. Number of characters to set.

Chapter 3 Interfaces 323

IGXTable interface

Usage
Use SetValueText() for TEXT data, or database equivalent, of which the total size is
equal to or smaller than 64K.

Rules
= The AppLogic must call AllocRow() before attempting to write to the row
buffer.

= The data type of the column must be TEXT or database equivalent.

Tip
Use SetValueTextPiece() for LONGTEXT or equivalent type values.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics

“Inserting Records in a Database,” “Updating Records in a Database” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

SetValueTextPiece()

Specifies a LONG TEXT value of a column in the row buffer.

Syntax

HRESULT Set Val ueText (
ULONG Or di nal ,
LPSTR pVal ue,
ULONG nOf f set,
ULONG nLengt h);

Ordinal. Ordinal number (position) of the column in the table definition. The first
column is 1, the second column is 2, and so on.

pValue. A string expression to assign to the column.
nOffset. Number of characters to skip from the beginning of the string.

nLength. Number of characters to set.

Usage

Use SetValueTextPiece() for LONGTEXT data. LONGTEXT values must be added
in 64K increments, therefore, you must call SetValueTextPiece() repeatedly to add
the data.

324 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXTable interface

Rules
= The AppLogic must call AllocRow() before attempting to write to the row
buffer.

< The data type of the column must be LONGTEXT or database equivalent.

Tip
Use SetValueText() for TEXT or equivalent type values.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics

“Inserting Records in a Database,” “Updating Records in a Database” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

UpdateRow()

Modifies one or more rows in the table with the contents of the row buffer.

Syntax

HRESULT Updat eRow(
DWORD dwFl ags,
LPSTR szWher e,
| GXTrans *pTrans);

dwFlags. Specifies one of the following flags used to execute this update
operation:

< For synchronous operations, the default, specify zero or GX_DA_EXEC_SYNC.
< For asynchronous operations, specify GX_DA_EXEC_ASYNC.

szWhere. Selection criteria expression for one or more rows to update. The syntax
is the same as the SQL WHERE clause, only without the WHERE keyword. Use
ANSI 92-compliant syntax. If an empty string is specified, all rows in the table are
updated.

pTrans. Pointer to the IGXTrans object that contains the transaction associated
with this update operation, or NULL.

Rules
= Before modifying a row, the AppLogic must first call AllocRow() to create the
row buffer.

Chapter 3 Interfaces 325

IGXTable interface

Next, the AppLogic must specify data values for the new row by calling any of
the following methods: SetValueDateString(), SetValueDouble(),
SetValuelnt(), SetValueString().

For tables defined with one or more UNIQUE keys, the AppLogic can perform
a single-record update but not a multiple-record update.

The AppLogic must specify a value for any column defined as NOT NULL and
without a DEFAULT value, such as keys.

The AppLogic must be logged into the database with sufficient privileges to
update records in the target table.

If the update operation is part of a transaction, the AppLogic must first create

an instance of the IGXTrans interface using CreateTrans() in the GXAppLogic
class. The AppLogic must then call Begin() before executing the statement and,
after executing the statement, call Commit() or Rollback() as appropriate.

Tips

The UpdateRow() method overwrites all columns in the target record(s) with
the contents of the row buffer. Therefore, retrieve the row first using a query,
assign the column values to the row buffer, then change only the column(s)
you want to update.

To determine whether a column is defined as NOT NULL, use
GetNullsAllowed() in the IGXColumn interface.

Alternatively, the AppLogic can update records by passing a SQL INSERT
statement using SetSQL() in the IGXQuery interface. The statement must
comply with ANSI 92 SQL syntax.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example

| GXVal Li st *conn_par ans;

/1 Set connection paraneters

conn_parans = GXCreateVal List();

conn_par ans- >Set Val String("DSN', "sal esDB");
conn_par ans- >Set Val String("DB", "sal esDB");
conn_par ans- >Set Val Stri ng("USER', "steve");
conn_par ans- >Set Val Stri ng("PSWD', "pass7878");

326 iPlanet Application Server C++ Foundation Class Reference « May 2000

| GXDat aConn *conn = NULL;

HRESULT hr;

// Create a data connection

hr = Creat eDat aConn(0, GX DA DRI VER ODBC, conn_parans,

if (hr == NOERRCR &&

conn)

| GXTabl e *tabl e = NULL;
hr = conn->Get Tabl e(" enpl oyees", &table);
if (hr == NOERROR &&

tabl e)

hr = tabl e->All ocRow();
if (hr == NOERROR)

ULONG col ;
t abl e- >Get Col umOr di nal ("regi on", &col);
t abl e->Set Val ueString(col, "East");

t abl e- >Updat eRow(0, "regi on="West’", NULL);

}

t abl e- >Rel ease();

}

conn- >Rel ease();

}

conn_par ans- >Rel ease();

Related Topics
IGXTrans interface

IGXTable interface

NULL, &conn);

Chapter 3 Interfaces

327

IGXTemplateData interface

“Updating Records in a Database” in Chapter 5, “Working with Databases,” in
Programmer’s Guide

“Using Pass-Through Database Commands” in Chapter 5, “Working with
Databases,” in Programmer’s Guide.

IGXTemplateData interface

The IGXTemplateData interface represents a hierarchical source of data used for
HTML template processing. IGXTemplateData provides methods for iterating
through rows in a set of memory-based hierarchical data and retrieving column
values.

To create an IGXTemplateData object, an AppLogic calls the
GXCreateTemplateDataBasic() helper function. The AppLogic populates the
IGXTemplateData object with rows of hierarchical data, then passes this
GXTemplateDataBasic object as the data parameter in EvalTemplate() or
EvalOutput() in the GXAppLogic class. The Template Engine then draws upon the
hierarchical data during template processing using methods in the
IGXTemplateData interface.

The Template Engine normally processes the hierarchical template data internally.
To provide application-specific special processing and hook into the template
generation process, the AppLogic can subclass the GXTemplateDataBasic class and
override the IGXTemplateData member methods.

Include File

gxitmpl.h

Methods

Method Description

GetValue() The Template Engine calls this method to dynamically retrieve the value
of the specified field from the current row in the hierarchical template
data.

ISEmpty() The Template Engine calls this method to determine whether the

specified group in the hierarchical result set is empty (contains no rows).

MoveNext() The Template Engine calls this method to retrieve the next row of the
specified group in the hierarchical template data object.

SetHint() Placeholder method for future functionality.

328 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXTemplateData interface

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class

GXTemplateDataBasic class

“Constructing a Hierarchical Result Set with GXTemplateDataBasic” in Chapter 7,
“Working with Templates,” in Programmer’s Guide.

GetValue()

The Template Engine calls this method to dynamically retrieve the value of the
specified field from the current row in the hierarchical template data.

Syntax
HRESULT Get Val ue(
LPSTR szExpr,
| GXBuf f er **ppBuff);

szExpr. Name of a field in the template data object.

ppBuff. Pointer to the IGXBuffer object that will contain the returned value of the
specified field in the current row. After the function is done, the returned buffer
should hold a zero-terminated string. This method allocates the IGXBuffer object
automatically. When the AppLogic is finished using the object, call the Release()
method to release the interface instance.

Usage
The Template Engine calls GetValue() to retrieve values from the hierarchical
template data object for subsequent processing.

Rule
The specified field name must exist in the template data object.

Tips

< When processing result sets, first call ISEmpty() to determine whether rows
were returned. Next, for each row in the result set, call GetValue() to retrieve
field values, then call MoveNext() to move to the next row in the result set,
until the end of the result set is reached.

= Use methods in the IGXBuffer interface to manipulate the returned memory
block.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Chapter 3 Interfaces 329

IGXTemplateData interface

330

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class

GXTemplateDataBasic class

“Constructing a Hierarchical Result Set with GXTemplateDataBasic” in Chapter 7,
“Working with Templates,” in Programmer’s Guide.

IsEmpty()

The Template Engine calls this method to determine whether the specified group
in the hierarchical result set is empty (contains no rows).

Syntax

HRESULT | sEnpt y(
LPSTR group,
BOOL *enpty);

group. Name of a group in the hierarchical result set.

Usage

The Template Engine calls ISEmpty() to test whether the specified group in the
IGXTemplateData object contains any rows of data before processing individual
fields using GetValue().

Rule
The specified group name must exist in the hierarchical data set.

Tip

When processing result sets, first call IsSEmpty() to determine whether rows were
returned. Next, for each row in the result set, call GetValue() to retrieve field
values, then call MoveNext() to move to the next row in the result set, until the end
of the result set is reached.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class

GXTemplateDataBasic class

“Constructing a Hierarchical Result Set with GXTemplateDataBasic” in Chapter 7,
“Working with Templates,” in Programmer’s Guide.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXTemplateData interface

MoveNext()

The Template Engine calls this method to retrieve the next row of the specified
group in the hierarchical template data object.

Syntax
HRESULT MoveNext (
LPSTR group);

group. Name of a group to process in the hierarchical data of the template data
object.

Usage

The Template Engine calls MoveNext() when iterating through rows in the
template data object to retrieve the contents of the next sequential hierarchical row
of data.

Rule
The specified group name must exist in the hierarchical data set.

Tip

When processing result sets, first call IsSEmpty() to determine whether rows were
returned. Next, for each row in the result set, call GetValue() to retrieve field
values, then call MoveNext() to move to the next row in the result set, until the end
of the result set is reached.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class

GXTemplateDataBasic class

“Constructing a Hierarchical Result Set with GXTemplateDataBasic” in Chapter 7,
“Working with Templates,” in Programmer’s Guide.

SetHint()

The SetHint() method is a placeholder for future functionality. Currently, it is
implemented to return 0. If you create a custom template data class that
implements the IGXTemplateData interface, implement SetHint() to return 0.

Chapter 3 Interfaces 331

IGXTemplateMap interface

Syntax

HRESULT Set Hi nt (
LPSTR group,
DWORD f | ags,
ULONG nax,
| GXVal Li st *pVal);

IGXTemplateMap interface

332

The IGXTemplateMap interface represents a mapping between a template field
specification and dynamic data used for HTML template processing.
IGXTemplateMap provides the Get() method for resolving the i d attribute in a GX
markup tag. Each i d attribute contains a field name that can be mapped.

To create a field map, an AppLogic calls the GXCreateTemplateMapBasic() helper
function. The AppLogic then populates the field map using Put(), in the
GXTemplateMapBasic class, for each field mapping, then passes this
IGXTemplateMap object as the map parameter in EvalTemplate() or EvalOutput()
in the GXAppLogic class. When the Template Engine encounters a GX markup tag
with the i d attribute while processing the template, it calls Get() in the
IGXTemplateMap interface to resolve the name.

To provide application-specific special processing, an AppLogic can subclass the
GXTemplateMapBasic class and override the Get() method to hook into the
Template Engine generation process. For example, the AppLogic can intercept and
filter data from a database before the Template Engine processes it.

Include File

gxitmpl.h

Method

Get() Resolves the id attribute specified in a GX markup tag in the template

being processed by the Template Engine. This method is called by the
Template Engine.

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class

GXTemplateDataBasic class

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXTemplateMap interface

IGXTemplateData interface

“GX Markup Tag Syntax” in Chapter 7, “Working with Templates,” in
Programmer’s Guide.

Get()

Resolves the i d attribute specified in a GX markup tag in the template being
processed by the Template Engine. This method is called by the Template Engine.

Syntax
HRESULT Cet (
LPSTR szExpr,
| GXObj ect *pDat a,
| GXCbj ect *pMark,
| GXBuf fer **pBuff);

szExpr. In the current GX markup tag in the HTML template being processed, the
name of the field, or placeholder, assigned to the id attribute. Must be an identical
match (case-sensitive).

pData. Specify NULL. Internal use only.
pMark. Specify NULL. Internal use only.

pBuff. Pointer to the IGXBuffer object that contains the returned value. This
method allocates the IGXBuffer object automatically. When AppLogic is finished
using the object, call the Release() method to release the interface instance.

Usage

GX markup tags are used in an HTML template to identify where dynamic data
appears in the output report. In the GX markup tags, the i d attribute specifies any
of the following items: the name of a flat query within a hierarchical query, a field
in the hierarchical result set or TemplateDataBasic object, or an HTML template.
The type of item specified in the i d attribute depends on the t ype attribute that is
specified in the same GX markup tag.

The Template Engine calls Get() to resolve thei d attribute specified in a GX
markup tag in the template being processed by the Template Engine. To provide
application-specific special processing, an AppLogic can subclass the
GXTemplateMapBasic class and override Get() to manipulate the Template Engine
generation process. For example, an AppLogic can intercept and filter data from a
database before the Template Engine processes it.

Chapter 3 Interfaces 333

IGXTile interface

Rule
An AppLogic should use Get() only to override it after subclassing the
GXTemplateMapBasic class.

Tip
Use methods in the IGXBuffer interface to manipulate the memory block.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
EvalTemplate() and EvalOutput() in the GXAppLogic class

GXTemplateDataBasic class
IGXTemplateData interface

“GX Markup Tag Syntax” in Chapter 7, “Working with Templates,” in
Programmer’s Guide.

IGXTile interface

334

The IGXTile interface represents a tile, which is a record set that contains multiple
records. A tile can also contain nested tiles. Organized like a hierarchical result set,
atile is returned by the GXProcessOutput() helper function.

AppLogics use IGXTile together with GXProcessOutput() when working with
non-HTML results returned by another AppLogic. The following are the general
steps for getting the tile:

1. Aclient AppLogic calls an AppLogic with NewRequest().

2. Through NewRequest(), the client passes input and output IGXValLists to the
called AppLogic. If the client is an AppLogic, it specifies the value "ocl" for the
gx_client_type key in the input IGXValList.

3. The called AppLogic processes the request and sends back results using its
output IGXValList or by calling EvalOutput().

4. The client calls the GXProcessOutput() helper function to process the results
into an IGXTile object.

5. Using methods in the IGXTile interface, the client traverses the tile and
retrieves values to populate user interface controls, such as text boxes or list
boxes, on a form.

iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXTile interface

The tile corresponds to the structure specified by theti | e and cel | tags in the
template file that the called AppLogic used when it called EvalOutput(). Thetile
tag determines the tile or record set, and the cel | tag, the values in each record.

Include File

gxcipm.h

Methods

Method Description

GetTileChild() Returns the specified child tile.

GetTileValue() Returns the value of a specified field in a record.
MoveTileNextRecord() Moves to the next record in the tile.
MoveTileToRecord() Moves to a specific record in the tile.
Example

The following example shows a template file used by a called AppLogic when
generating output, and a section of a program that uses GXProcessOutput() and
IGXTile methods to process the output:

GXML template file:

<gx type=tile id="PRODUCTS" nax=100>

<gx type=cel |l id="PRODUCTS. Cat egory"></gx>
<gx type=cell i d="PRODUCTS. ProdNane" ></gx>
</ gx>

<gx type=tile id="CATEGORI ES'" max=100>

<gx type=cel | id="CATEGORI ES. Cat egoryl d"></gx>
</ gx>

Code snippet:

/1 Call this ApplLogic

hr = pConn->NewRequest (guid, vin, vQut, 0);
if (hr !'= NCERROR)

{

Chapter 3 Interfaces 335

IGXTile interface

336

printf("Failed to i nvoke NewRequest()\n");
exit(-1);

/] Get the root tile fromthe output vallist
mai nTi l e = NULL;
hr = GXProcessQut put (NULL, 0, vQut, &minTile);

if (hr == NOERROR)

{

/llterate over all categories and print their nanes

ptile = NULL;

if ((hr = mainTile->GetTileChild("CATEGORI ES", &ptile))
NCERROR)

{

printf("Unable to get tile child, hr = %\n", hr);

}

while (ptile & hr == NOERROR)

{

hr = ptile->CGetTileVal ue(" CATEGORI ES. Nane", sval,
si zeof (sval));

if (hr == NOERROR)

{
for (int i=0; i < (depth * 2); i++)
printf(" ");
printf("Category %\n", sval);
}

hr = ptile->CGetTil eVal ue(" CATEGORI ES. Cat egoryl d",

si zeof (sval));

iPlanet Application Server C++ Foundation Class Reference * May 2000

sval ,

IGXTile interface

if (hr == NOERROR)

{
test _Cat al og(pConn, sval, depth+1);

hr = ptile->MveTil eNext Record();

}
if (ptile)
ptil e->Rel ease();

Related Topics
NewRequest() and EvalOutput() in the GXAppLogic class

GXProcessOutput(),
IGXValList interface

GetTileChild()

Returns the specified tile.

Syntax

HRESULT Get Til eChil d(
LPSTR nane,
IGXTile **tile);

name. The name of the child tile in the tile. This name must match a name
assigned to the i d attribute of type ti | e in the template file.

tile. A pointer to the retrieved IGXTile object. When the client is finished using the
object, call the Release() method to release the interface instance.

Usage

Use GetTileChild() to retrieve a tile from which to get records and record values.
Use it in conjunction with MoveTileNextRecord() and GetTileValue() to traverse
the tile and retrieve record values. The client can call these methods in a loop until
all values in a tile have been retrieved.

Chapter 3 Interfaces 337

IGXTile interface

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetTileValue(),
MoveTileNextRecord()

GetTileValue()

Returns the value of a specified field in a record.

Syntax

HRESULT Get Til eVal ue(
LPSTR nane,
LPSTR val ue,
ULONG val uel en);

name. The name of the field in the current record. This name must match a name
assigned to the i d attribute of type cel | in the template file.

value. Pointer to a buffer allocated by the client to store the returned string value.

valuelen. The size of the buffer to store the value.

Usage

Use GetTileValue() to retrieve values in a record. Use it in conjunction with
GetTileChild() and MoveTileNextRecord() to traverse the tile and retrieve each
value. The client can call these methods in a loop until all values in a tile have been
retrieved.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetTileChild(),
MoveTileNextRecord()

MoveTileNextRecord()
Moves to the next record in the tile.

Syntax
HRESULT MoveTi | eNext Record()

338 iPlanet Application Server C++ Foundation Class Reference May 2000

IGXTrans interface

Usage

Use MoveTileNextRecord() to go to the next record in a tile after retrieving values
in the current record. Use the method in conjunction with GetTileChild() and
GetTileValue() to traverse the tile and retrieve each value. The client can call these
methods in a loop until all values in a tile have been retrieved.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetTileChild(),
GetTileValue()

MoveTileToRecord()

Moves to a specific record in the tile.

Syntax
HRESULT MoveTi | eToRecor d(
ULONG ord);

ord. The position of the record in the tile. The first record in a tile is 1, the second is
2, and so on.

Usage

Use MoveTileToRecord() when iterating through the tile multiple times. For
example, after iterating through all the records, the AppLogic can return to the first
record in preparation for the next iteration. If the tile contains many records, the
AppLogic can also use MoveTileToRecord() to display only several records at a
time.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

IGXTrans interface

The IGXTrans interface represents a transaction object used for subsequent
transaction processing operations. IGXTrans provides operations for beginning,
committing, and rolling back transactions.

Chapter 3 Interfaces 339

IGXTrans interface

After instantiating a transaction object, the AppLogic calls Begin() to start the
transaction. Next, the AppLogic performs any query, insert, update, or delete
operations, passing the transaction object to the respective method in the IGXTable
interface. Finally, the AppLogic closes the transaction by calling either Commit()
to save all changes or Rollback() to cancel them. Closing a transaction terminates
the transaction object and releases system resources.

The calls that make up a transaction can be in any part of the code; they need not be
consecutive. The commands in a transaction are united by the fact that they all
have the same transaction object as a parameter.

An application can process several transactions simultaneously. Each transaction
works with a different database connection object. Within a single transaction,
however, all the commands must access a single database through a single
connection object.

To create an instance of the IGXTrans interface, use CreateTrans() in the
GXAppLogic class.

Include File
gxitrans.h
Methods
Method Description
Begin() Starts the transaction.
Commit() Commits the transaction, saving any changes.
Rollback() Rolls back the transaction, abandoning any changes.
Example

/] Create a transaction for several insert operations
| GXTrans *pTx=NULL;

i f(((hr=CreateTrans(&Tx))==GXE_SUCCESS) &&pTx) {
/1 Begin the transaction
pTx->Begi n();
| GXResul t Set *pRset =NULL;

340 iPlanet Application Server C++ Foundation Class Reference May 2000

IGXTrans interface

/1 Update User
i f(((hr=pUser PQuery->Execute(0, pUserValList, pTx, NULL,
&pRset)) ==GXE_SUCCESS) &&pRset) {

/!l The result set is not needed; release it

pRset - >Rel ease();

/1 Updat e Custoner
i f (((hr=pCust PQuery->Execute(0, pCustValList, pTx, NULL,
&pRset)) ==GXE_SUCCESS) &&pRset) {

/1 Al is ok. Commit the transaction

pTx->Conmmit (0, NULL);

GXSet Val Li st String(mpValIn, "ssn", mpSsn);
GXSet Val Li st String(mpVal I n, "OUTPUTMESSAGE", "Successfully

updat ed custoner record");

i f (NewRequest (" AppLogi ¢ CShowCust Page", m pVal I n, m pVal Qut,
0) | =GXE_SUCCESS)
Handl eOBSyst enError (" Coul d not chain to CShowCust Page
appl ogic");
}
el se {
pTx->Rol | back();

Handl eOBSyst enError (" Coul d not insert checking account
record

for new customer");

el se {

Chapter 3 Interfaces 341

IGXTrans interface

pTx->Rol | back();
Handl eOBSyst enError (" Coul d not insert checking account record

for
new custoner");
}
pTx->Rel ease();
}
el se

Handl eOBSyst enError (" Coul d not start transaction");

Related Topics
CreateTrans() in the GXAppLogic class

AddRow(), UpdateRow(), and DeleteRow() in the IGXTable interface

“Managing Database Transactions” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

Begin()

Starts the transaction.

Syntax
HRESULT Begi n();

Usage

Use Begin() to start a transaction before performing any operations in the
transaction. Subsequent operations belong to the current transaction until either
Commit() or Rollback() is called.

Rules
= AppLogic must start the transaction explicitly using Begin() before performing
any query, insert, update, or delete operations associated with the transaction.

< AppLogic must complete the transaction explicitly by calling Commit() to save
any changes to tables or Rollback() to abandon them. If a database error occurs
before either are called, the database server will roll back the transaction
automatically.

342 iPlanet Application Server C++ Foundation Class Reference « May 2000

IGXTrans interface

Tip
Use transactions judiciously to avoid locking conflicts. For example, avoid
deadlocks by not using different open transactions on the same table.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/] Create a transaction

| GXTrans *pTx=NULL;

i f(((hr=CreateTrans(&Tx))==GXE_SUCCESS) &&pTx) {
/1 Begin the transaction
pTx->Begi n();

Related Topics

CreateTrans() in the GXAppLogic class
AddRow(), UpdateRow(), and DeleteRow() in the IGXTable interface

“Managing Database Transactions” in Chapter 5, “Working with Databases,” in

Programmer’s Guide.

Commit()
Commits the transaction, saving any changes.

Syntax
HRESULT Conmi t (
DWORD dwFl ags,
| GXCbj ect **ppEvent);

dwFlags. Specify 0.

ppEvent. Specify NULL. Internal use only.

Usage
Use Commit() to commit a transaction and write unsaved changes to disk.

Commit() saves the changes, terminates the transaction object, and releases system

resources.

Chapter 3 Interfaces

343

IGXTrans interface

Rules
= The AppLogic must start the transaction explicitly by calling Begin(') before
any changes associated with the transaction can be committed.

< The AppLogic must complete the transaction explicitly by calling Commit() to
save any changes to tables or Rollback() to abandon them.

< The AppLogic cannot reuse an IGXTrans object that has been committed. It
must create a new one using CreateTrans() in the GXAppLogic class.

Tips

« [fanerror occurs before the commit operation succeeds, the database server
usually rolls back the transaction automatically.

= The target database server may take time to process a commit request.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/1 Update Custoner record

i f(((hr=pCustPQuery->Execute(0, pCustValList, pTx, NULL,
&pRset)) ==GXE_SUCCESS) &&pRset) {

/1 Qperation succeeded. Conmit the transaction.
pTx->Conmi t (O, NULL);

GXSet Val Li st String(m_pVal I n, "OUTPUTMESSAGE", "Successfully
updat ed

custoner record");

Related Topics
CreateTrans() in the GXAppLogic class

AddRow(), UpdateRow(), and DeleteRow() in the IGXTable interface

“Managing Database Transactions” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

Rollback()

Rolls back the transaction, abandoning any changes.

344 iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXTrans interface

Syntax
HRESULT Rol | back();

Usage
Many database servers buffer changes made during a transaction, then update the
affected tables only after the commit request is received.

Rolling back a transaction terminates the transaction object and releases system
resources.

Rules
< The AppLogic must start the transaction explicitly by calling Begin() before
any changes associated with the transaction can be rolled back.

= The AppLogic must complete the transaction explicitly by calling Commit() to
save any changes to tables or Rollback() to abandon them.

< The AppLogic cannot reuse an IGXTrans object that has been rolled back. It
must create a new one using CreateTrans() in the GXAppLogic class.

Tip
If an error occurs before the commit operation succeeds, the database server
usually rolls back the transaction automatically.

Return Value
“Getting Information About Columns or Fields” in Chapter 5, “Working with
Databases,” in Programmer’s Guide.

“Inserting Records in a Database,” “Updating Records in a Database,” and “Using
Pass-Through Database Commands” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

HRESULT, which is set to GXE_SUCCESS if the method succeeds.
Example
/1 Update User

i f(((hr=pUserPQuery->Execute(0, pUserVal List, pTx, NULL,
&pRset)) ==GXE_SUCCESS) &&pRset) {

/1l Query succeeded. Perform update.
el se
pTx->Rol | back() ;

Handl eOBSyst enError (" Coul d not insert checking account record for
new

Chapter 3 Interfaces 345

IGXValList interface

custoner");

Related Topics
CreateTrans() in the GXAppLogic class

AddRow(), UpdateRow(), and DeleteRow() in the IGXTable interface

“Managing Database Transactions” in Chapter 5, “Working with Databases,” in
Programmer’s Guide.

IGXValList interface

An IGXValList represents a collection of GXVAL objects. This collection is not a
sequential list, but an unordered set of GXVAL objects with no implied sequence or
progression.

For iPlanet Application Server-enabled AppLogics, input arguments and output
value(s) are stored in IGXValList objects. Every request to an AppLogic passes a list
of input arguments, and every result from an AppLogic returns a list of output
values. The GXAppLogic class defines two member variables, m_pValln and
m_pValOut, to contain the input arguments and output values, respectively, of
AppLogic execution.

In an IGXValList, values and objects are mapped to keys. The key name is the name
of a GXVAL object. AppLogic code refers to GXVAL object in the IGXValList by its
key name. Key names are unique within each IGXValList object.

The IGXValList interface provides methods for adding, retrieving, removing, and
counting GXVAL objects in the IGXValList instance. Using methods in the
IGXValList interface, the AppLogic can test for input arguments and modify their
contents for output values.

Keys may be passed to the AppLogic as a request from an HTML document or
from another AppLogic module. In an HTML form, keys are often the field names
defined in the form. In this way, the AppLogic can easily identify expected,
common, or “well-known” keys, and the AppLogic can ignore irrelevant
parameters.

For example, an AppLogic named getLogin might prompt users for their username
and login, then pass this information, identified as “username” and “password”, to
other AppLogics for processing. An AppLogic named validateLogin could retrieve
the input parameters, find the values associated with the well-known keys
“username” and “password”, then take action based on the data that the user
entered (testing for its existence, performing a range or length check, looking up
the combination in a password table, and so on).

346 iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXValList interface

To create an instance of the IGXValList interface, use the GXCreateValList()

function.

Include File

gxival.h

Methods

Method Description

Count() Returns the number of GXVAL objects in the IGXValList.

GetNextKey() Retrieves the key name of the next GXVAL object in the
IGXValList.

GetVal() Copies the specified GXVAL object from the IGXValList.

GetValBLOB() Returns the specified BLOB object.

GetValBLOBSize() Returns the size of a BLOB IGXValList object.

GetValByRef() Gets the specified GXVAL object in the IGXValList.

GetValint() Retrieves an integer value from the specified GXVAL object in the

GetValSstring()

RemoveVal()

ResetPosition()

SetVal()

SetValBLOB()
SetValByRef()

SetValint()

SetValString()

IGXValList.

Retrieves a string value from the specified GXVAL object in the
IGXValList.

Removes the specified GXVAL object from the IGXValList.

Resets the iterator position to the “first” GXVAL object in the
IGXValList.

Adds a GXVAL object to the IGXValList, or overwrites an existing
one.

Adds a BLOB object to the IGXValList object.

Adds a GXVAL object to the IGXValList, or overwrites an existing
one.

Adds a GXVAL object of type integer to the IGXValList, or
overwrites an existing one.

Adds a GXVAL object of type string to the IGXValList, or
overwrites an existing one.

Chapter 3 Interfaces 347

IGXValList interface

Related Topics
GXVAL struct

m_pValln and m_pValOut in the GXAppLogic class
execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

Count()
Returns the number of GXVAL objects in the IGXValList.

Syntax
HRESULT Count (
ULONG *pCount) ;

pCount. Pointer to the returned count of GXVAL objects.

Usage

When the contents of an IGXValList are unknown, an AppLogic can iterate
through each GXVAL object to test, retrieve, and update information. Use Count()
to determine the maximum number of iterations needed to go completely through
the IGXValList.

Rule
Do not add or remove GXVAL objects to or from the IGXValList when iterating
through the IGXValList.

Tips
= Use Count() in conjunction with GetNextKey() and ResetPosition() to iterate
through the IGXValList.

= Adding or deleting GXVAL objects changes the number of objects in a
IGXValList. Be sure to update the GXVAL object count after each add or delete
operation.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetNextKey()

348 iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXValList interface

ResetPosition()

GXVAL struct

m_pValln and m_pValOut in the GXAppLaogic class
Execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

GetNextKey()
Retrieves the key name of the next GXVAL object in the IGXValList.

Syntax

HRESULT Get Next Key(
LPSTR pKey,
ULONG nKey) ;

pKey. Pointer to a buffer allocated by the client to store the returned key string.

nKey. The size of the buffer to store the key.

Usage

When the contents of a IGXValList are unknown, the AppLogic can iterate through
each GXVAL object and retrieve its key name. The AppLogic can then take action
based on this information, or use the key name in operations that retrieve, update,
or remove GXVAL objects in the IGXValList list.

Rule
Do not add or remove GXVAL obijects to or from the IGXValList when iterating
through the IGXValList.

Tip
Use GetNextKey() in conjunction with Count() and ResetPosition() to iterate
through the IGXValList.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
CHAR pKey|[256] ;

GXVAL val ;

Chapter 3 Interfaces 349

IGXValList interface

/! Reset to the first GXVAL in the ValList before iteration
pVal Li st - >Reset Posi tion();

I/ lterate through all the GXVALs in the

/1l vallist and print themto a file

whi | e (pVal Li st->Cet Next Key(pKey, 256) == NCERROR) {
pVal Li st - >Get Val ByRef (pKey, &val);

if (GXVT_TYPE(val .vt) == GXVT_LPSTR)
fprintf(fp, "\t%=% (LPSTR)\n", pKey, val.u.pstrVal);
el se
fprintf(fp, "\t%=% (DWORD)\n", pKey, val.u.ulVal);
Related Topics
Count()
ResetPosition()
GXVAL struct
Execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

GetVal()
Copies the specified GXVAL object from the IGXValList.

Syntax

HRESULT Get Val (
LPSTR pKey,
GXVAL *pVal);

pKey. Key name of the GXVAL object to copy from the IGXValList.

pVal. Pointer to the GXVAL allocated by the client to store the copy of the
retrieved GXVAL object.

350 iPlanet Application Server C++ Foundation Class Reference * May 2000

IGXValList interface

Usage

Use GetVal() if the data type of the GXVVAL obiject is not known. Use
GetValString() instead for string objects, GetVallnt() for integer objects, and
GetValBLOB() for BLOB objects.

GetVal() makes a deep copy of the GXVAL object.

Rule
The specified key name must currently exist in the IGXValList.

Tip
Use the GXVALClear() function to release a GXVAL object when the AppLogic no
longer needs it.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetValBLOB(), GetValint(), and GetValString() in the IGXValList interface

GXVAL struct
m_pValln and m_pValOut in the GXAppLogic class
Execute() in the GXAppLuogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

GetValBLOB()
Returns a specified BLOB object from the IGXValList.

Syntax
HRESULT Get Val BLOB(
LPSTR pKey,
LPBYTE pVal ,
ULONG nBuf ferLen);
pKey. Key name of the GXVAL object that contains the BLOB value to retrieve.
pVal. Pointer to a buffer allocated by the client to store the returned value.

nBufferLen. Length of the buffer allocated by the client.

Chapter 3 Interfaces 351

IGXValList interface

Usage

Use GetValBLOB() when the type of a GXVAL object is a BLOB, but its value is not
known and needed for subsequent operations. Use GetValString() instead for
string objects and GetVallnt() for integer objects. If the type of the GXVVAL object is
not known, use GetVal().

Rule
The data type must be TEXT, BINARY, VARBINARY, or database equivalent.

Tip
Call GetValBLOBSize() before GetValBLOB() to determine the size of the BLOB so
the code can allocate the appropriate buffer size for it.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetValBLOBSize() and SetValBLOB() in the IGXValList interface

GetValBLOBSize()
Returns the size of a specified BLOB object in the IGXValList.

Syntax

HRESULT Cet Val BLOBSI ze(
LPSTR pKey,
ULONG *pBuf f Len);

pKey. Key name of the GXVAL object that contains the BLOB.

pBuffLen. Pointer to a buffer allocated by the client to store the returned value.

Usage
BLOB objects can be large. If you want to determine the size of a BLOB object
before retrieving it, use GetValBLOBSize().

Rule
The data type must be TEXT, BINARY, VARBINARY, or database equivalent.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetValBLOB()

352 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXValList interface

GetValByRef()
Gets the specified GXVAL object from the IGXValList.

Syntax

HRESULT Cet Val ByRef (
LPSTR pKey,
GXVAL *pVal);

pKey. Key name of the GXVAL object to get from the IGXValList.

pVal. Pointer to the GXVAL allocated by the client to store the retrieved GXVAL
object.

Usage

Use GetValByRef() if the data type of the GXVAL object is not known, or if
iterating through an IGXValList to get each GXVAL object. Use GetValString()
instead for string objects, GetVallnt() for integer objects, and GetValBLOB() for
BLOB objects.

GetValByRef() makes a shallow copy of the specified GXVAL object in the
IGXValList. If you want a deep copy, call GetVal().

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
CHAR pKey[256] ;
GXVAL val ;

/! Reset to the first GXVAL in the ValList before iteration
pVal Li st - >Reset Posi tion();

/] lterate through all the GXVALs in the

I/ vallist, get each value and print it to a file

whi | e (pVal Li st->Cet Next Key(pKey, 256) == NOERROR) {
pVal Li st - >Get Val ByRef (pKey, &val);

if (GXVT_TYPE(val.vt) == GXVT_LPSTR)
fprintf(fp, "\t%=% (LPSTR)\n", pKey, val.u.pstrVal);

Chapter 3 Interfaces 353

IGXValList interface

el se

fprintf(fp, "\t%=% (DWORD)\n", pKey, val.u.ulVal);

Related Topics

GetValBLOB(), GetVallnt(), and GetValString() in the IGXValList interface
GXVAL struct

m_pValln and m_pValOut in the GXAppLogic class

Execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

GetValint()
Retrieves an integer value from the specified GXVAL object in the IGXValList.

Syntax

HRESULT Get Val I nt (
LPSTR pKey,
LONG *pVal) ;

pKey. Key name of the GXVAL object from which to retrieve the integer value.

pVal. Pointer to a buffer allocated by the client to store the returned value.

Usage

Use GetVallnt() if the data type of the GXVAL object is known to be an integer.
Otherwise, use GetValString() instead for string objects, GetValBLOB() for BLOB
objects, or GetVal() for objects of other types.

Rules
= The specified key name must currently exist in the IGXValList.

= The data type of the specified GXVAL object must map to the enum value
GXVT_l4.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GXVAL struct

354 iPlanet Application Server C++ Foundation Class Reference May 2000

IGXValList interface

m_pValln and m_pValOut in the GXAppLogic class
Execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in

Programmer’s Guide.

GetValString()
Retrieves a string value from the specified GXVAL object in the IGXValList.

Syntax

HRESULT Get Val Stri ng(
LPSTR pKey,
LPSTR pBuff,
ULONG nBuff);

pKey. Key name of the GXVAL object from which to retrieve the string value.

pBuff. Pointer to a buffer allocated by the client to store the returned value.

nBuff. Length of the buffer allocated by the client.

Usage

Use GetValString() when the data type of the GXVAL object is known to be a
string. Otherwise, use GetVal() instead for integer objects, GetValBLOB() for
BLOB obijects, or GetVal() for objects of other types.

Rules
= The specified key name must currently exist in the IGXValList.

= The data type of the specified GXVAL object must map to the enum value
GXVT_LPSTR.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GXVAL struct

m_pValln and m_pValOut in the GXAppLaogic class
Execute() in the GXAppLogic class

Chapter 3 Interfaces

355

IGXValList interface

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

RemoveVal()
Removes the specified GXVAL object from the IGXValList.

Syntax
HRESULT RenoveVal (
LPSTR pKey);

pKey. Key name of the GXVAL object to remove from the IGXValList.

Usage

Use RemoveVal() to delete a GXVAL obiject that is no longer needed in the
IGXValList. For example, if the AppLogic contains overloaded methods, you might
want to remove a GXVAL object to ensure that the proper method is executed.

Rules
= The specified key name must currently exist in the IGXValList.

= Do not remove GXVAL objects from the IGXValList when iterating through the
IGXValList.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
SetVal() and ResetPosition() in the IGXValList interface

GXVAL struct
m_pValln and m_pValOut in the GXAppLogic class
Execute() in the GXAppLuogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

ResetPosition()
Resets the iterator position to the “first” GXVAL object in the IGXValList.

356 iPlanet Application Server C++ Foundation Class Reference May 2000

IGXValList interface

Syntax
HRESULT Reset Position()

Usage

When the contents of an IGXValList are unknown, the AppLogic can iterate
through each GXVAL object and retrieve its key name. Before iterating through the
IGXValList, the AppLogic needs to call ResetPosition() once to ensure that
iteration begins at the “first” GXVAL object in the IGXValList.

Rule

Do not add or remove GXVAL objects to or from the IGXValList when iterating

through the IGXValList.

Tips

= The first GXVAL object is not necessarily the first one added to the IGXValList.

= Use ResetPosition() in conjunction with Count() and GetNextKey() to iterate
through the IGXValList.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
CHAR pKey|[256] ;
GXVAL val ;

/! Reset to the first GXVAL in the Val List before iteration

pVal Li st - >Reset Posi tion();

/Il Iterate through all the GXVALs in the

/1 vallist and print themto a file

whi | e (pVal Li st - >Cet Next Key(pKey, 256) == NOERROR) ({
pVal Li st - >Get Val ByRef (pKey, &val);

if (GXVT_TYPE(val.vt) == GXVT_LPSTR)
fprintf(fp, "\t%=% (LPSTR)\n", pKey, val.u.pstrVal);
el se

fprintf(fp, "\t%=% (DWORD)\n", pKey, val.u.ulVal);

Chapter 3 Interfaces 357

IGXValList interface

Related Topics
Count() and GetNextKey() in the IGXValList interface

GXVAL struct
m_pValln and m_pValOut in the GXAppLaogic class
Execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

SetVal()
Copies a GXVAL object to the IGXValList.

Syntax

HRESULT Set Val (
LPSTR pKey,
GXVAL *pVal);

pKey. Key name of the GXVAL object to add to the IGXValList.

pVal. The GXVAL object, identified by pKey, to add to the IGXValList.

Usage
Use SetVal() to add an existing GXVAL object to the IGXValList. If a GXVAL object
with the same key name already exists, SetVal() overwrites it with the new one.

SetVal() makes a deep copy of the existing GXVAL object to add it to the
IGXValList. If you do not want to make a deep copy, use SetValByRef() instead.

Rule
Do not add new GXVAL objects to the IGXValList when iterating through the
IGXValList.

Tip
To add a new GXVAL object of type integer, string, or BLOB to the IGXValList, use
SetValint(), SetValString(), or SetValBLOB(), respectively.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GXVAL struct

358 iPlanet Application Server C++ Foundation Class Reference May 2000

IGXValList interface

m_pValln and m_pValOut in the GXAppLogic class
Execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

SetValBLOB()
Adds a BLOB object to the IGXValList.

Syntax

HRESULT Set Val BLOB(
LPSTR pKey,
LPBYTE pBuf f,
ULONG nBuf f Len);

pKey. Key name of the GXVAL object to add to the IGXValList.
pBuff. The value of the BLOB object to add to the IGXValList.

nBuffLen. Number of bytes to set for the byte array. The first nBuffLen bytes in
the array pBuff hold the value.

Usage

Use SetValBLOB() to add a GXVAL object that contains a BLOB value to the
IGXValList. If a GXVAL object with the same key name already exists,
SetValBLOB() overwrites it with the new one.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GetValBLOB()

GetValBLOBSize()

SetValByRef()
Copies a GXVAL object to the IGXValList.

Syntax

HRESULT Set Val ByRef (
LPSTR pKey,
GXVAL *pVal);

Chapter 3 Interfaces 359

IGXValList interface

pKey. Key name of the GXVAL object to add to the IGXValList.

pVal. The GXVAL object, identified by pKey, to add to the IGXValList.

Usage

Use SetValByRef() to add an existing GXVAL object to the IGXValList. If a GXVAL
object with the same key name already exists, SetValByRef() overwrites it with the
new one.

SetVValByRef() makes a shallow copy of the existing GXVAL object to add it to the
IGXValList. To make a deep copy, use SetVal().

Rule

Do not add new GXVAL objects to the IGXValList when iterating through the
IGXValList.

Tip

To add a new GXVAL object of type integer, string, or BLOB to the IGXValList, use
SetValint(), SetValString(), or SetValBLOB(), respectively.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Related Topics
GXVAL struct

m_pValln and m_pValOut in the GXAppLogic class
Execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

SetVvallint()
Adds a GXVAL object of type integer to the IGXValList.

Syntax
HRESULT Set Val I nt (
LPSTR pKey,
LONG nVal) ;
pKey. Key name of the GXVAL object to create or overwrite.

nVal. The integer value to assign to the GXVAL object identified by pKey.

360 iPlanet Application Server C++ Foundation Class Reference May 2000

IGXValList interface

Usage

Use SetValint() to add a GXVAL object of type integer to the IGXValList. If a
GXVAL object with the same key name already exists, SetVallnt() overwrites it
with the new one.

Rules
When iterating through existing GXVAL objects in the IGXValList, do not add new
GXVAL obijects to the IGXValList.

Tips
To add a new GXVAL object of type string or BLOB to the IGXValList, use
SetValString() or SetValBLOB(), respectively.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/1l Create an | GXVal Li st and set integer val ues

| GXVal Li st *pAcct 1Val Li st =GXCr eat eVal Li st () ;

pAcct 1Val Li st ->Set Val I nt (": bal ance", 0);
pAcct 1Val Li st->Set Val I nt (": acct Type", 1);
Related Topics

GXVAL struct

m_pValln and m_pValOut in the GXAppLaogic class
Execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

SetValString()
Adds a GXVAL object of type string to the IGXValList.

Syntax

HRESULT Set Val Stri ng(
LPSTR pKey,
LPSTR val) ;

Chapter 3 Interfaces 361

IGXValList interface

pKey. Key name of the GXVAL object to create or overwrite.

val. The string value to assign to the GXVAL object identified by pKey.

Usage

Use SetValString() to add a GXVAL object of type string to the IGXValList. If a
GXVAL object with the same key name already exists, SetValString() overwrites it
with the new one.

Rules

When iterating through existing GXVAL objects in the IGXValList, do not add new
GXVAL objects to the IGXValList.

Tips

To add a new GXVAL object of type integer or BLOB to the IGXValList, use
SetVallnt() or SetValBLOB(), respectively.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Example
/1 Create an | GXval List and set string val ues

| GXVal Li st *pCust Val Li st =GXCr eat eVal Li st ();

i f(pUserVal Li st &pCust Val Li st) {
pCust Val Li st->Set Val String(":ssn", mpSsn);
pCust Val Li st->SetVal String(":firstName", m pFirstNanme);
pCust Val Li st->Set Val String(":|astNanme", m pLast Nane);

Related Topics
GXVAL struct

m_pValln and m_pValOut in the GXAppLogic class
Execute() in the GXAppLogic class

“Passing Parameters to AppLogic From Code” and “Returning Output Parameters
in an IGXValList Object” in Chapter 4, “Writing Server-Side Application Code,” in
Programmer’s Guide.

362 iPlanet Application Server C++ Foundation Class Reference « May 2000

Chapter 4

C++ Functions

This chapter discusses C++ functions in the iPlanet Application Server Foundation

Class Library.

The following functions are included in this chapter:

GXContextGetAppEventMgr()
GXCreateBuffer()
GXCreateStreamBuffer()
GXCreateTemplateMapBasic()
GXEnterCriticalSection(')
GXGetVallList()
GXGetValListGUID()
GXGUIDToString()
GXLeaveCriticalSection()
GXSetValList()
GXSetValListGUID()
GXStringToGUID()
GXSYNC_DESTROY()
GXSYNC_INIT()
GXSYNC_UNLOCK()
GXVALCopy()

GXContextGetSessionCount()
GXCreateValList()
GXCreateTemplateDataBasic()
GXDeleteCriticalSection()
GXGetCurrentDateTime()
GXGetValListBLOB()
GXGetValListString()
GXInitCriticalSection()
GXProcessOutput()
GXSetValListBLOB()
GXSetValListString()
GXSYNC_DEC()
GXSYNC_INC()
GXSYNC_LOCK()
GXVALClear()
GXWaitForOrder()

365

GXContextGetAppEventMgr()

GXContextGetAppEventMgr()

Retrieves the object for managing application events.

Syntax
HRESULT GXCont ext Get AppEvent Myr (
| GXCont ext *pCont ext,

| GXAppEvent Myr ** ppAppEvent Myr)

pContext. A pointer to the IGXContext object, which provides access to iASIAS
services. Specify m_pContext, a member variable in the GXAppLogic class.

pAppEventMgr. Pointer to the returned IGXAppEventMgr object.

Usage

Use GXContextGetAppEventMgr() to retrieve an IGXAppEventMgr object.
Through the IGXAppEventMgr interface, you can create and manage application
events. Application event objects define events that are triggered at a specified time
or triggered explicitly.

Return Value
IGXAppEventMgr object, or NULL for failure.

Include File
gxdimutil.h

Related Topics
IGXAppEventMgr interface

GXContextGetSessionCount()

366

Returns the number of sessions in the cluster.

Syntax

GXCont ext Get Sessi onCount (
| GXCont ext *pCont ext,
DWORD dwkl ags,
LPSTR pAppNane,
ULONG *pCount)

pContext. A pointer to the IGXContext object, which provides access to iASiPlanet
services. Specify m_pContext, a member variable in the GXAppLogic class.

dwFlags. Not used.

iPlanet Application Server C++ Foundation Class Reference « May 2000

GXCreateBuffer()

pAppName. Name of the application for which sessions are being counted.

pCount. A ULONG pointer to where the session count is returned.

Usage
Use GXContextGetSessionCount() to obtain a count of sessions in the cluster.

Return Value
An integer representing the session count.

Include File
gxdimutil.h

Related Topics
GetStateChildCount() in the IGXState2 interface

GXCreateBuffer()

Creates a new IGXBuffer object, which represents a block of memory.

Syntax
| GXBuf f er *GXCreateBuffer();

Usage

Use to create a memory block that can be shared by multiple objects. Thereafter,
use methods in the IGXBuffer interface to manage this memory block. When the
AppLogic is finished using the object, call the Release() method to release the
interface instance.

Tips
= After creating the IGXBuffer object, call Alloc() in the IGXBuffer interface to
allocate the memory buffer managed by the IGXBuffer.

= Call GetAddress() to obtain the starting address of the memory block.

Return Value
IGXBuffer object.

Include File
gxutil.h

Chapter 4 C++ Functions 367

GXCreateStreamBuffer()

Example

STDVETHODI MP
OBBaseAppLogi c: : Handl eOBVal i dati onError (LPSTR pMessage)
{

HRESULT hr = GXE_SUCCESS;
GXTenpl at eMapBasi ¢ nap;

| GXBuffer *pBuff = GXCreateBuffer();
i f(pBuff)
{

pBuf f->Al | oc(strl en(pMessage) +1);

strcpy((char*) pBuff->Get Address(), pMessage);

map. Put (" OUTPUTMESSAGE", pBuff);

/1 Send it to the tenplate

hr =Eval Tenpl at e(" GXApp/ COnl i neBank/ t enpl at es/
Val idationError. htm ", (1GXTenpl ateData*) NULL, &ap, NULL,
NULL) ;

pBuf f - >Rel ease() ;

return hr;

Related Topics
IGXBuffer interface

GetFields(), GetGroupBy(), GetHaving(), GetOrderBy(), GetSQL(), GetTables(),

and GetWhere() in the IGXQuery interface
GetValue() in the IGXTemplateData interface
Get() in the IGXTemplateMap interface

GXCreateStreamBuffer()

Creates a new IGXStream object, which represents a buffer for capturing streamed

output during template processing.

Syntax
| GXSt r eam * GXCr eat eSt r eanBuf f er (
| GXStream *pstream;

pstream. Specify NULL to create a simple stream buffer. Specify another stream

buffer to chain two stream buffers.

368 iPlanet Application Server C++ Foundation Class Reference May 2000

GXCreateTemplateDataBasic()

Usage

Use GXCreateStreamBuffer() to create a stream buffer to pass to EvalOutput() or
EvalTemplate(). The EvalOutput() and EvalTemplate() methods merge a
template with data from the IGXTemplateData object and stream the output to the
buffer. Use a stream buffer if, for example, your AppLogic needs to manipulate the
data before sending it to another AppLogic.

Tip

The IGXStream object implements the IGXStreamBuffer interface. To manipulate
data in a stream buffer, use the GetStreamData() method in the IGXStreamBuffer
interface.

Return Value
IGXStream object.

Include File
gxutil.h

Related Topics
EvalOutput() and EvalTemplate() in the GXAppLogic class

IGXStreamBuffer interface

GXCreateTemplateDataBasic()

Creates a GXTemplateDataBasic object, which represents a hierarchical source of
data.

Syntax
GXTenpl at eDat aBasi ¢ * GXCr eat eTenpl at eDat aBasi ¢(
LPSTR name = NULL)

name. The name of the TemplateDataBasic object.

Usage

Use GXCreateTemplateDataBasic() to create a hierarchical source of data to pass to
EvalOutput() or EvalTemplate(). The EvalOutput() and EvalTemplate() methods
merge a template with data from the ITemplateData object and stream an output
report.

Return Value
GXTemplateDataBasic object.

Chapter 4 C++ Functions 369

GXCreateTemplateDataBasic()

Include File
gxtmplbasic.h

Example

In the following code snippet, two TemplateDataBasic objects are created to store
the results from a query to avoid running the same query twice. The two
TemplateDataBasic objects are then combined into one and passed to
evalTemplate() for processing.

GXTenpl at eDat aBasi ¢ *pAcct sTenpDB = GXCr eat eTenpl at eDat aBasi ¢(" Sel Cust Accts");

GXTenpl at eDat aBasi ¢ *pAcct sTenpDB2 =
GXCr eat eTenpl at eDat aBasi c(" Sel Cust Accts2");

i f (pAcct sTenpDB&&pAcct sTenpDB2) {

char pAcct Desc[200] ;
char pAcct Nun{ 200] ;

/1l Get the indices of colums in the result set

ULONG acct DescCol =0;

pRset - >Get Col umOr di nal (" OBAccount Type_acct Desc", &acct DescCol);
ULONG acct NunCol =0;

pRset - >Get Col umOr di nal (" OBAccount _acct Nunt', &acct NuntCol);

char tnpStr[300];

/1l Loop through the result set and add rows to the
é/ {Terrpl at eDat aBasi ¢ obj ects
0

pRset - >Get Val ueStri ng(acct DescCol, pAcctDesc, 200);
pRset - >Get Val ueStri ng(acct NunCol , pAcct Num 200);
sprintf(tnpStr, "acctDesc=%; acct Nun¥%", pAcctDesc, pAcctNun;
pAcct sTenpDB- >RowAppend(t npStr);
pAcct sTenpDB2- >RowAppend(t mpStr) ;

} whil e(pRset - >Fet chNext () ==GXE_SUCCESS) ;

/!l Create dummy parent to contain the two tenplate objects
GXTenpl at eDat aBasi ¢ *pPar ent =NULL;
i f((pParent=GXCr eat eTenpl at eDat aBasi c("Parent"))) {

/] Create one dummy row

pPar ent - >RowAppend(" Dunmy=dumy") ;

pPar ent - >G oupAppend(pAcct sTenpDB) ;

pPar ent - >G oupAppend(pAcct sTenpDB2) ;

/1 Merge the tenplate data results with a tenplate
i f (Eval Tenpl at e(" GXApp/ COnl i neBank/ t enpl at es/ Transfer. htm ",
pParent, NULL, NULL, NULL)!=GXE_SUCCESS)
Resul t (" <HTML><BCODY>Unabl e to eval uate tenpl at e. </ BODY></
HTML>") ;

pPar ent - >Rel ease();

370

iPlanet Application Server C++ Foundation Class Reference « May 2000

GXCreateTemplateMapBasic()

Related Topics
EvalOutput() and EvalTemplate() in the GXAppLogic class

IGXTemplateData interface

GXTemplateDataBasic class

GXCreateTemplateMapBasic()

Creates a new GXTemplateMapBasic object, which represents a mapping between
a template field specification and dynamic data used for template processing.

Syntax
GXTenpl at eMapBasi ¢ * GXCr eat eTenpl at eMapBasi c() ;

Usage

Use GXCreateTemplateMapBasic() to create a template map object to pass to
EvalOutput() or EvalTemplate(). A template map object is used to link template
fields to calculated values or to source data with a non-matching field name but
identically-formatted data.

Return Value
GXTemplateMapBasic object.

Include File
gxtmplbasic.h

Related Topics
EvalOutput() and EvalTemplate() in the GXAppLogic class

IGXTemplateMap interface
GXTemplateMapBasic class

GXCreateValList()

Creates a new IGXValList object.

Syntax
| GXVal Li st *GXCreat eVal Li st ();

Chapter 4 C++ Functions 371

GXDeleteCriticalSection()

Usage

Use GXCreateValList() to create a new IGXValList object. Thereafter, use methods
in the IGXValList interface to manage this IGXValList object. When the AppLogic
is finished using the object, call the Release() method to release the interface
instance.

Return Value
IGXValList object.

Include File
gxval.h

Example

/1 Set up an I GXVal List for inserting data into a database
| GXVal Li st *pCust Val Li st =GXCr eat eVal Li st ();

i f (pUserVal Li st &pCust Val Li st) {
pCust Val Li st->Set Val String(":ssn", mpSsn);
pCust Val Li st->SetVal String(":prefix", mpPrefix);
pCust Val Li st->SetVal String(":firstNane", m pFirstNane);
pCust Val Li st->Set Val String(":|astName", m pLast Nane);

/1l Create the query to update the OBCustoner table
GXQuery *pCust Quer y=NULL;

i f(((hr=CreateQuery(&Cust Query))==GXE_SUCCESS) & pCust Query) {
pCust Query- >Set SQL(" UPDATE OBCustoner SET prefix = :prefix, firstNane
= :firstNane, lastNane = :lastNanme, WHERE ssn = :ssn");

/1 Execute the query and pass in the | GXval Li st
i f(((hr=pCust PQuery->Execute(0, pCustValList, pTx, NULL,
&pRset)) ==GXE_SUCCESS) &&pRset)

Related Topics
IGXValList interface

GXGetValList(), GXGetValListBLOB(), GXGetValListGUID(), and
GXGetValListBLOB() functions

GXDeleteCriticalSection()

Deletes a critical section object.

372 iPlanet Application Server C++ Foundation Class Reference « May 2000

GXEnterCriticalSection()

Syntax
voi d GXDel eteCritical Secti on(GXCRI T_SECTI ON *Xx) ;

X. Pointer to the GXCRIT_SECTION variable that represents the critical section to
delete.

Usage

Use GXDeleteCriticalSection() to destroy a critical section object that AppLogic no
longer needs. Calling GXDeleteCriticalSection() releases the system resources
allocated for the critical section object.

Rules
= The specified critical section variable must be initialized by a previous call to
GXInitCriticalSection().

= Before deleting the object, the AppLogic must release ownership of the
specified critical section by calling GXLeaveCriticalSection().

= Subsequent calls to the critical section are invalid. To use the critical section
again, the AppLogic must subsequently initialize the critical section using
GXInitCriticalSection().

Tips

=« Delete a critical section as soon as the AppLogic no longer needs it, such asiin a
destructor method.

<« In multithreaded programming, use critical sections in your AppLogic to
ensure synchronization when multiple threads can manipulate the same object.

Return Value
void

Include File
gxplat.h

Related Topics
“Using Critical Sections” in Chapter 3, “Application Development Techniques,” in
<Italic>Programmer’s Guide.

GXEnterCriticalSection()

Waits for exclusive ownership of a critical section and returns when ownership is
granted.

Chapter 4 C++ Functions 373

GXGetCurrentDateTime()

Syntax
voi d GXEnterCritical Secti on(GXCRI T_SECTI ON *Xx);

X. Pointer to the GXCRIT_SECTION variable that represents the critical section to
enter.

Usage

Use GXEnterCriticalSection() to obtain exclusive thread access to a shared resource
before performing any operations on the protected resource.
GXEnterCriticalSection() blocks until the thread is granted ownership.

Rules
= The specified critical section must be initialized by a previous call to
GXInitCriticalSection().

= The specified critical section must be released by a subsequent call to
GXLeaveCriticalSection(). Otherwise, a deadlock may occur.

Tips
= Release a critical section as soon as the AppLogic no longer needs it so that
other threads may acquire it.

< In multithreaded programming, use critical sections in your AppLogic to
ensure synchronization when multiple threads can manipulate the same object.

Include File
gxplat.h

Related Topics
“Using Critical Sections” in Chapter 3, “Application Development Techniques,” in
<Italic>Programmer’s Guide.

GXGetCurrentDateTime()

374

Returns the current system date and time in a GXDATETIME format.

Syntax
voi d GXGet Current Dat eTi me(
GXDATETI ME *pDT) ;

pDT. Pointer to the GXDATETIME struct that will be filled with the returned
system date and time.

iPlanet Application Server C++ Foundation Class Reference « May 2000

GXGetValList()

Usage

Use GXGetCurrentDateTime() to obtain the current system date and time for use
in subsequent operations, such as computing the elapsed time or saving timestamp
information in a new or modified row in a table.

Return Value
void

Include File
gxutil.h

Example

/] Cet the current date tine
GXDATETI ME dt ;

GXGet Cur rent Dat eTi ne(&dt) ;
char dateStr[50];

sprintf(dateStr, "%l-%l-% %l: %: %", dt.year, dt.nonth, dt.day,
dt. hour, dt.mnute, dt.second);

Log(dateStr);

Related Topics
GXDATETIME struct

GXGetValList()

Retrieves the data type and value of a GXVAL object in an IGXValList.

Syntax

HRESULT GXGet Val Li st (
| GXVal Li st *Ilist,
LPSTR key,
GXVALTYPE *type,
DWORD *val) ;

list. IGXValList containing the GXVAL object whose data type and value to
retrieve.

key. Key name of the GXVAL object whose data type and value to retrieve.

type. Pointer to the GXVALTYPE variable allocated by the client to store the
retrieved data type of the GXVVAL object.

Chapter 4 C++ Functions 375

GXGetValListBLOB()

val . Pointer to the DWORD variable allocated by the client to store the retrieved
value of the GXVAL object.

Usage

Use the GXGetValList() function when the GXVAL object is 32 bits in size, but its
exact type and value are not known and needed for subsequent operations. If the
GXVAL object is of type string, BLOB, or GUID, use GXGetValListString(),
GXGetValListBLOB(), and GXGetValListGUID(), respectively.

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxval.h

Related Topics
GXSetValList()

GXVAL struct
IGXValList interface

GXGetValListBLOB()

Returns the BLOB object in an IGXValList.

Syntax

LPBYTE GXGet Val Li st BLOB(
| GXVal Li st *list,
LPSTR key,
DWORD *pSi ze) ;

list. IGXValList containing the GXVAL object whose BLOB value to retrieve.
key. Key name of the GXVAL object whose BLOB value to retrieve.

pSize. Pointer to the DWORD variable allocated by the client to store the size of

the BLOB.

376 iPlanet Application Server C++ Foundation Class Reference May 2000

GXGetValListGUID()

Usage

Use the GXGetValListBLOB() function when the type of a GXVAL object is a
BLOB, but its value is not known and needed for subsequent operations. If the
GXVAL object is of DWORD size or of type integer, use GXGetValList(). If it is of
type string or GUID, use GXGetValListString() and GXGetValListGUID(),
respectively.

Tip
GXGetValListBLOB() returns a pointer to the BLOB, therefore, the value can
change if subsequent operations change the value in the GXVAL object.

Return Value
A pointer to the BLOB, or NULL if an error occurs.

Include File
gxval.h

Related Topics
GXSetValListBLOB()

GXVAL struct
IGXValList interface

GXGetValListGUID()

Returns the GUID object in an IGXValList.

Syntax

GUI D GXGet Val Li st GUI)
| GXVal Li st *list,
LPSTR key);

list. IGXValList containing the GXVAL object whose GUID value to retrieve.

key. Key name of the GXVAL object whose GUID value to retrieve.

Usage

Use the GXGetValListGUID() function when the type of the GXVAL object is a
GUID, but its value is not known and needed for subsequent operations. If the
GXVAL object is of DWORD size or of type integer, use GXGetValList(). If it is of
type string or BLOB, use GXGetValListString() and GXGetValListBLOB(),
respectively.

Chapter 4 C++ Functions 377

GXGetValListString()

Return Value
A copy of the GUID.

Include File
gxval.h

Related Topics
GXSetValListGUID()

GXVAL struct
IGXValList interface

GXGetValListString()

Retrieves the string value of a GXVAL object in an IGXValList.

Syntax

LPSTR GXGet Val Li st Stri ng(
| GXVal Li st *list,
LPSTR key);

list. IGXValList containing the GXVAL object whose string value to retrieve.

key. Key name of the GXVAL object whose string value to retrieve.

Usage

Call the GXGetValListString() function to get the value of a GXVAL object of type
string. If the GXVAL object is of DWORD size or of type integer, use
GXGetValList(). If it is of type BLOB or GUID, use GXGetValListBLOB() and
GXGetValListGUID(), respectively.

Tip
GXGetValListString() returns a pointer to the string, therefore, the value can
change if subsequent operations change the value in the GXVAL object.

Return Value
A pointer to the string.

Include File
gxval.h

378 iPlanet Application Server C++ Foundation Class Reference May 2000

GXGUIDToString()

Example

OBCust oner For mAppLogi c: : OBCust orrer For mAppLogi c():

m_pSsn(NULL) ,

m _pUser Narme(NULL) ,

m_pPrefi x(NULL),

m _pFi rst Nanme(NULL) ,

m_pM ddl eName(NULL) ,

m _pLast Narme(NULL)
/1 Method that gets values fromthe
/I AppLogic’s input IGXValList
STDMETHODIMP_(BOOL)
OBCustomerFormAppLogic::GetForminputs()

m_pSsn=GXGetValListString(m_pValln, "ssn");
m_pUserName=GXGetValListString(m_pValln, "userName");
m_pPrefix=GXGetValListString(m_pValln, "prefix");
m_pFirstName=GXGetValListString(m_pValln, "firstName");
m_pMiddleName=GXGetValListString(m_pValln, "middleName");
m_pLastName=GXGetValListString(m_pValln, "lastName");

Related Topics
GXSetValListString()

GXVAL struct
IGXValList interface

GXGUIDToString()

Converts a GUID to a string.

Syntax

HRESULT GXGUI DToStri ng(
REFI I D i dCl ass,
LPSTR szd ass);

idClass. The GUID to convert to string.

szclass. The client-allocated string buffer that will be filled with the string
representation of the GUID.

Usage

Use GXGUIDToString() if you need the GUID string for debugging purposes, or if
you need to pass a GUID as a string. The NewRequest() method, for example,
takes a GUID string as a parameter.

Chapter 4 C++ Functions 379

GXiInitCriticalSection()

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxutil.h

Related Topics
GXStringToGUID()

GXInitCriticalSection()

Initializes a critical section object.

Syntax
void GXInitCritical Secti on(GXCRI T_SECTI ON *x);

X. Pointer to a previously declared GXCRIT_SECTION variable that represents the
critical section to initialize.

Usage
Use GXInitCriticalSection() to allocate a critical section object to be used in
subsequent operations to synchronize thread access to a particular process.

Rules
= The AppLogic must declare the critical section variable as type
GXCRIT_SECTION before initializing it.

= The specified critical section must be initialized by a call to
GXInitCriticalSection(') before subsequent critical section operations.

= The specified critical section must be destroyed by a subsequent call to
GXDeleteCriticalSection().

Tips
= Consider calling GXInitCriticalSection() in a constructor method.

= Destroy the critical section object using GXDeleteCriticalSection() as soon as
the AppLogic no longer needs it.

< In multithreaded programming, use critical sections in your AppLogic to
ensure synchronization when multiple threads can manipulate the same object.

Return Value
void

380 iPlanet Application Server C++ Foundation Class Reference May 2000

GXLeaveCriticalSection()

Include File
gxplat.h

Related Topics
“Using Critical Sections” in Chapter 3, “Application Development Techniques,” in
<Italic>Programmer’s Guide.

GXLeaveCriticalSection()

Releases ownership of a critical section object.

Syntax
voi d GXLeaveCritical Secti on(GXCRI T_SECTI ON *Xx);

X. Pointer to the GXCRIT_SECTION variable that represents the critical section to
leave.

Usage

Use GXLeaveCriticalSection() to release exclusive thread access to shared
resources after completing operations on the protected resource. Releasing
ownership allows other threads to acquire the critical section.

Rules
= The specified critical section must be initialized by a previous call to
GXInitCriticalSection().

= The thread must already have ownership of the specified critical section by a
previous call to GXEnterCriticalSection().

Tips
= The AppLogic can call GXEnterCriticalSection() and GXLeaveCriticalSection()
repeatedly before calling GXDeleteCriticalSection().

= Leave acritical section as soon as the AppLogic no longer needs it so that other
threads may acquire it.

=« In multithreaded programming, use critical sections in your AppLogic to
ensure synchronization when multiple threads can manipulate the same object.

Include File
gxplat.h

Chapter 4 C++ Functions 381

GXProcessOutput()

Related Topics
“Using Critical Sections” in Chapter 3, “Application Development Techniques,” in
<Italic>Programmer’s Guide.

GXProcessOutput()

Processes the results in an AppLogic’s output IGXValList (vOut) and returns an
IGXTile object from which the caller can extract data.

Syntax

HRESULT ProcessQut put (
| GXCont ext *pCont ext,
DWORD f | ags,
| GXVal Li st *pVal Li st
| GXTile **ppTile);

context. The IGXContext object, which gives the AppLogic access to iPlanet
Application Server services. Pass in the AppLogic’s context member variable.

flags. Specify 0. Internal use only.

pValList. The output IGXValList that contains the results returned by a called
AppLogic.

ppTile. Pointer to the returned IGXTile object.

Usage
Use GXProcessOutput() to process non-HTML results that are returned in the
following situation:

1. Aclient (AppLogic or OCL client application) calls an AppLogic with
NewRequest().

2. Through NewRequest(), the client passes input and output IGXValLists to the
called AppLogic. The client specifies the value "ocl" for the gx_client_type key
in the input IGXValList.

3. The called AppLogic processes the request and returns results in the output
IGXValList.

GXProcessOutput() returns the processed data as an IGXTile object. Data in the
IGXTile object is organized like a hierarchical result set. The client can use methods
in the IGXTile interface to loop through the result set and retrieve values.

382 iPlanet Application Server C++ Foundation Class Reference « May 2000

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxcipm.h

Example

GXProcessOutput()

/1 Call an ApplLogic
hr = NewRequest (guid, vlin, vQut, 0);
if (hr = NCERROR)

printf("Failed to i nvoke NewRequest()\n");
exit(-1);

/1 Get the root tile fromthe output vallist
mai nTi |l e = NULL;

hr = GXProcessQut put (NULL, O, vQut, &mainTile);

erate over all categories and print their nanes
e = NULL;
(

{

printf("Unable to get tile child, hr = %\n", hr);
}
while (ptile &% hr == NOERROR)
{

hr = mai nTi | e->Get Ti | eChi | d(" CATEGORI ES", &ptile)) != NOERROR)

hr = ptile->GetTil eVal ue(" CATEGCORI ES. Nane", sval, sizeof(sval));

if (hr == NOERROR)

for (int i=0; i < (depth * 2); i++)
printf(" ");
printf("Category %\n", sval);

}

hr = ptile->MveTil eNext Record();
}
if (ptile

ptil e->Rel ease();

Related Topics
NewRequest() in the GXAppLogic class

IGXTile interface

Chapter 4

C++ Functions

383

GXSetValList()

GXSetValList()

Specifies the data type and DWORD-sized value of a GXVAL object in an
IGXValList.

Syntax

HRESULT GXSet Val Li st (
| GXval Li st *Ilist,
LPSTR key,
GXVALTYPE type,
DWORD val) ;

list. IGXValList that contains the GXVAL object whose data type and value to set.
If the GXVAL object does not already exist, GXSetValList() creates it.

key. Key name of the GXVAL object whose data type and value to set. If the
GXVAL object does not already exist, GXSetValList() creates it.

type. The data type to assign to the GXVAL obiject.

val . The DWORD sized value to assign to the GXVAL object.

Usage

Call the GXSetValList() function to assign a DWORD sized value to a GXVAL
object in an IGXValList. If the GXVAL object does not already exist, GXSetValList()
creates it, then copies it to the IGXValList.

If you want to assign a string, a BLOB, or a GUID value to a GXVAL object, use
GXSetValListString(), GXSetValListBLOB(), and GXSetValListGUID(),
respectively.

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxval.h

Related Topics
GXGetValList()

GXVAL struct
IGXValList interface

384 iPlanet Application Server C++ Foundation Class Reference May 2000

GXSetValListBLOB()

GXSetValListBLOB()

Specifies a BLOB value for a GXVAL object in an IGXValList.

Syntax

HRESULT GXSet Val Li st BLOB(
| GXVal Li st *list,
LPSTR key,
LPBYTE val ,
DWORD si ze) ;

list. IGXValList that contains the GXVAL object whose BLOB value to set. If the
GXVAL object does not already exist, GXSetValListBLOB() creates it.

key. Key name of the GXVAL object whose BLOB value to set. If the GXVAL object
does not already exist, GXSetValListBLOB() creates it.

val. The BLOB value to assign to the GXVAL object.

size. The size of the BLOB.

Usage

Call the GXSetValListBLOB() function to assign a BLOB value to a GXVAL object
in an IGXValList. If the GXVAL object does not already exist, GXSetValListBLOB()
creates it, then copies it to the IGXValList.

If you want to assigh a DWORD-sized value, a string, or a GUID value to a GXVAL
object, use GXSetValList(), GXSetValListString(), and GXSetValListGUID(),
respectively.

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxval.h

Related Topics
GXGetValListBLOB()

GXVAL struct
IGXValList interface

Chapter 4 C++ Functions 385

GXSetValListGUID()

GXSetValListGUID()

Specifies a GUID value for a GXVAL object in an IGXValList.

Syntax

HRESULT GXSet Val Li st GUI)
| GXVal Li st *list,
LPSTR key,
QU D *);

list. IGXValList that contains the GXVAL object whose GUID value to set. If the
GXVAL object does not already exist, GXSetValListGUID() creates it.

key. Key name of the GXVAL object whose GUID value to set. If the GXVAL
object does not already exist, GXSetValListGUID() creates it.

GUID *. Pointer to the GUID to copy to the specified GXVAL object.

Usage

Call the GXSetValListGUID() function to assign a GUID value to a GXVAL object
in an IGXValList. If the GXVAL object does not already exist, GXSetValListGUID()
creates it, then copies it to the IGXValList.

If you want to assign a DWORD-sized value, a string, or a BLOB value to a GXVAL
object, use GXSetValList(), GXSetValListString(), and GXSetValListBLOB(),
respectively.

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxval.h

Related Topics
GXGetValListGUID()

GXVAL struct
IGXValList interface

GXSetValListString()

Specifies a string value for a GXVAL object in an IGXValList.

386 iPlanet Application Server C++ Foundation Class Reference May 2000

GXStringToGUID()

Syntax

HRESULT GXSet Val Li st Stri ng(
| GXVal Li st *list,
LPSTR key,
LPSTR val) ;

list. IGXValList that contains the GXVAL object whose string value to set. If the
GXVAL object does not already exist, GXSetValListString() creates it.

key. Key name of the GXVAL object whose string value to set. If the GXVAL object
does not already exist, GXSetValListString() creates it.

val. The string value to set in the specified GXVAL object.

Usage

Call the GXSetValListString() function to assign a string value to a GXVAL object
in an IGXValList. If the GXVAL object does not already exist, GXSetValListString()
creates it, then copies it to the IGXValList.

If you want to assign a DWORD-sized value, a BLOB, or a GUID value to a
GXVAL, use GXSetValList(), GXSetValListBLOB(), and GXSetValListGUID(),
respectively.

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxval.h

Related Topics
GXGetValListString()

GXVAL struct
IGXValList interface

GXStringToGUID()

Converts a string to a GUID.

Syntax

HRESULT GXStri ngToGUI I
LPSTR szd ass,
QU D *idcl ass);

Chapter 4 C++ Functions 387

GXSYNC_DEC()

szClass. The string to parse as a GUID. It must be in GUID format:
{ XOKKKK= XXXK= XXX XXX XXIXXKIXKHXKK}

idclass. Pointer to the client-allocated GUID in which to return the parsed GUID
value.

Usage

Use GXStringToGUID() if you do not want to work directly with a GUID struct.
You might find it easier to set the value of a GUID by passing it a string than by
assigning values to the 128-bit members in a GUID structure.

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxutil.h

Related Topics
GXGUIDTostring()

GXSYNC_DEC()

Decrements a variable under the protection of a spin lock.

Syntax

LONG GXSYNC_DEC(
LONG *pv,
GXSYNCVAR *pLock)

pv. Pointer to the LONG variable to decrement.

pLock. Pointer to the spin lock to use while decrementing.

Return Value
The decremented LONG value.

Usage
Use GXSYNC_DEC() to decrement a variable, by one (1), using a spin lock to
ensure synchronized access to it.

GXSYNC_DEC() calls GXSYNC_LOCK() automatically before decrementing the
variable and calls GXSYNC_UNLOCK() automatically after decrementing the
variable.

388 iPlanet Application Server C++ Foundation Class Reference May 2000

GXSYNC_DESTROY()

Alternatively, use GXSYNC_INC() to increment a variable using a spin lock.

Rule
The specified spin lock must be initialized by a previous call to GXSYNC_INIT().

Include File
gxutil.h

Related Topics

“Using Spin Locks” in Chapter 3, “Application Development Techniques,” in
<lItalic>Programmer’s Guide.

GXSYNC_DESTROY()

Destroys a spin lock.

Syntax
voi d GXSYNC_DESTROY(
GXSYNCVAR *pSyncVar)

pSyncVar. Pointer to the previously initialized spin lock to destroy.

Return Value
void

Usage

Use GXSYNC_DESTROY/() to destroy a spin lock that AppLogic no longer needs.
Calling GXSYNC_DESTROY/() releases the system resources allocated for the spin
lock.

Rules
= The specified spin lock must be initialized by a previous call to
GXSYNC_INIT().

= Subsequent calls to the spin lock are invalid. To use the spin lock again, the
AppLogic must subsequently initialize the spin lock using GXSYNC_INIT().

Tips
« Destroy a spin lock using GXSYNC_DESTROY() as soon as the AppLogic no
longer needs it.

Chapter 4 C++ Functions 389

GXSYNC_INC()

= Use spin locks to ensure synchronous access for only short processes consisting
of just one or several brief operations. Extensive or careless use of spin locks
(such as for longer processes like memory allocation or ODBC calls) can reduce
AppLogic performance. For longer processes, use alternative means instead,
such as the lock manager or semaphore locks.

Include File
gxutil.h

Example

/1 declare class that uses spin | ocks
class myd ass {
GXSYNCVAR m sync;
class:: MO ass(){ // constructor
GXSYNC INIT(&m sync);} // initialize sync var
class::~MyCl ass(){ // destructor
GXSYNC _DESTROY(&m sync);} // destroy sync var

}s

Related Topics
“Using Spin Locks” in Chapter 3, “Application Development Techniques,” in
<Italic>Programmer’s Guide.

GXSYNC_INC()

Increments a variable under the protection of a spin lock.

Syntax

LONG GXSYNC_I NC(
LONG *pv,
GXSYNCVAR *pLock)

pv. Pointer to the LONG variable to increment.

pLock. Pointer to the spin lock to use while incrementing.

Return Value
The incremented LONG value.

Usage
Use GXSYNC_INC() to increment a variable, by one (1), using a spin lock to ensure
synchronized access to it.

390 iPlanet Application Server C++ Foundation Class Reference May 2000

GXSYNC_INIT()

GXSYNC_INC() calls GXSYNC_LOCK() automatically before incrementing the
variable and calls GXSYNC_UNLOCK() automatically after incrementing the
variable.

Alternatively, use GXSYNC_DEC() to decrement a variable using a spin lock.

Rule
The specified spin lock must be initialized by a previous call to GXSYNC_INIT().

Include File
gxutil.h

Related Topics
“Using Spin Locks” in Chapter 3, “Application Development Techniques,” in
<lItalic>Programmer’s Guide.

GXSYNC_INIT()

Initializes a spin lock.

Syntax
voi d GXSYNC_I NI T(
GXSYNCVAR *pSyncVar)

pSyncVar. Pointer to the GXSYNCVAR synchronization variable, representing a
spin lock, to initialize.

Return Value
void

Usage

Use GXSYNC_INIT() to declare and allocate a synchronization variable of type
GXSYNCVAR to be used to synchronize access to shared resources, via a spin lock,
in subsequent operations.

Rules
= The spin lock must be initialized by a call to GXSYNC _INIT() prior to
subsequent spin lock operations.

= The specified spin lock must be destroyed by a subsequent call to
GXSYNC_DESTROY().

Chapter 4 C++ Functions 391

GXSYNC_LOCK()

Tips
= Destroy a spin lock using GXSYNC_DESTROY() as soon as the AppLogic no
longer needs it.

= Use spin locks to ensure synchronous access for only short processes consisting
of just one or several brief operations. Extensive or careless use of spin locks
(such as for longer processes like memory allocation or ODBC calls) can reduce
AppLogic performance. For longer processes, use alternative means instead,
such as the lock manager or semaphore locks.

Include File
gxutil.h

Example

/'l declare class that uses spin |ocks
class nmyd ass {
GXSYNCVAR m sync;
class:: MW ass(){ // constructor
GXSYNC_I NI T(&m sync);} // initialize sync var
class::~MyCl ass(){ // destructor
GXSYNC_DESTROY(&m sync);} // destroy sync var

Related Topics
“Using Spin Locks” in Chapter 3, “Application Development Techniques,” in
<lItalic>Programmer’s Guide.

GXSYNC_LOCK()

Acquires a spin lock.
Syntax

voi d GXSYNC_LOCK(
GXSYNCVAR *cs)

cs. Pointer to the spin lock to acquire.

Return Value
void

392 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

GXSYNC_UNLOCK()

Usage

Use GXSYNC_LOCK() to acquire exclusive access to the shared resource(s) that
the specified spin lock protects. While an AppLogic owns the spin lock, other
clients cannot acquire it.

Rules
= The specified spin lock must be initialized by a previous call to
GXSYNC_INIT().

= The specified spin lock must be released by a subsequent call to
GXSYNC_UNLOCK(). Otherwise, a deadlock occurs.

Tips
= The AppLogic must not wait or go to sleep while it owns a spin lock.

« Release a spin lock as soon as the AppLogic no longer needs it so that other
clients may acquire it.

= Use spin locks to ensure synchronous access for only short processes consisting
of just one or several brief operations. Extensive or careless use of spin locks
(such as for longer processes like memory allocation or ODBC calls) can reduce
AppLogic performance. For longer processes, use alternative means instead,
such as the lock manager or semaphore locks.

Include File
gxutil.h

Example

/1 Use a spin lock for exclusive access to a variable
GXSYNC _LOCK(&SyncVar); // acquire the spin |lock
m | D1++;

Related Topics

“Using Spin Locks” in Chapter 3, “Application Development Techniques,” in
<lItalic>Programmer’s Guide.

GXSYNC_UNLOCK()

Releases an acquired spin lock.

Chapter 4 C++ Functions 393

GXSYNC_UNLOCK()

Syntax
voi d GXSYNC_UNLOCK(
GXSYNCVAR *cs)

cs. Pointer to the spin lock to release.

Return Value
void

Usage
Use GXSYNC_UNLOCK() to release a spin lock that was acquired in a preceding
GXSYNC_LOCK() call. Releasing the spin lock allows other clients to acquire it.

Rules
= The specified spin lock must be initialized by a previous call to
GXSYNC_INIT().

« The specified spin lock must be acquired by a previous call to
GXSYNC_LOCK().

Tips
= Release a spin lock as soon as the AppLogic no longer needs it so that other
clients may acquire it.

= Use spin locks to ensure synchronous access for only short processes consisting
of just one or several brief operations. Extensive or careless use of spin locks
(such as for longer processes like memory allocation or ODBC calls) can reduce
AppLogic performance. For longer processes, use alternative means instead,
such as the lock manager or semaphore locks.

Include File
gxutil.h

Example

/1 Use a spin lock for exclusive access to a variable
GXSYNC _LOCK(&SyncVar); // acquire the spin lock
m | D1++;

394 iPlanet Application Server C++ Foundation Class Reference May 2000

GXVALClear()

Related Topics
“Using Spin Locks” in Chapter 3, “Application Development Techniques,” in
<Italic>Programmer’s Guide.

GXVALClear()

Clears the contents of a GXVAL object and releases any secondary allocated
memory that the GXVAL object may have been pointing to.

Syntax
HRESULT GXVALd ear (
GXVAL *pVal);

pVal. Pointer to the GXVAL object to clear.

Usage

When your AppLogic no longer requires GXVAL objects that you created with the
GXVALCopy() function or the GetVal() method in the IGXValList interface, call
the GXVALCIear() function.

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxval.h

Related Topics
GXVAL struct

GXVALCopy()

Copies a GXVAL object to another.

Syntax

HRESULT GXVALCopy (
GXVAL *pSrc,
GXVAL *pDst);

pVal. Pointer to the source GXVAL object to copy.

pDst. Pointer to the destination GXVAL object to which the source GXVAL object
is to be copied.

Chapter 4 C++ Functions 395

GXWaitForOrder()

Usage

Use GXVALCopy() to work with a copy of a GXVAL object. You must create the
destination GXVAL object before calling GXVALCopy(). When your AppLogic no
longer requires the copy of the GXVAL object, call GXVALClear() to release it.

Return Value
HRESULT, which is set to GXE_SUCCESS if the function succeeds.

Include File
gxval.h

Related Topics
GXVAL struct

GXWaitForOrder()

Waits for asynchronous, flat database queries to be completed within a specified
time frame.

Syntax

HRESULT GXWai t For Or der (
| GXOrder **pOr der,
ULONG nOr der,
ULONG *pnCOr der,
| GXObj ect *pEvent Src,
ULONG nTi neout) ;

pOrder. Pointer to an array of IGXOrder objects. Each element in the array
corresponds to an asynchronous operation.

nOrder. Number of IGXOrder objects in the array.

pnOrder. Pointer to the variable that contains the returned index of the order that
is finished, if any. If the returned pnOrder equals -1, and error occurred.
Otherwise, pnOrder equals the index of the finished order (0 to n-1).

pEventSrc. Pointer to an IGXODbject variable that provides the blocking services,
such as the IGXContext object (m_pContext) in the AppLogic class (deprecated).

nTimeout. Maximum number of seconds to wait before expiring, if none of the
asynchronous queries is finished.

396 iPlanet Application Server C++ Foundation Class Reference May 2000

GXWaitForOrder()

Usage

Use GXWaitForOrder() to wait for one or more asynchronous operations, such as
asynchronous database queries, to return the completed results from the database
server on which they were submitted. Asynchronous queries that were started
using ExecuteQuery() in the IGXDataConn interface may return results sets that
are not yet finished. An AppLogic module must wait for the result set to be
finished before using the result set.

When running asynchronous queries, the AppLogic needs to determine when a
particular query has finished processing on the database server. The
GXWaitForOrder() function will block efficiently until either one of the following
conditions occurs:

< The status of the IGXOrder object associated with one of the queries changes to
GX_STATE_DONE, a macro-based constant defined in gxiorder.h.

= The specified timeout limit has been exceeded.

Rules

< To run an asynchronous query, the AppLogic must specify
GX_DA_EXEC_ASYNC as the dwFlags parameter of ExecuteQuery() in the
IGXDataConn interface.

= Toretrieve an IGXOrder object, use GetOrder() in the IGXResultSet interface
on an unfinished result set.

= When the AppLogic is finished using the IGXOrder object, call the Release()
method to release the interface instance.

Tips
= GXWaitForOrder() replaces the GXOrderWait() and GXOrderWaitTimeout()
functions in the previous release.

e The GXWaitForOrder() function will return as soon as any error occurs or an
asynchronous operation (IGXOrder) in the input array is complete or a timeout
happens. Remove any completed IGXOrder objects from the array before
calling GXWaitForOrder() again on the same array. Also, check the IGXOrder
using GetState() in the IGXOrder interface to determine whether the
asynchronous query completed successfully or returned an error.

Return Value
HRESULT, which is set to GXE_SUCCESS if the method succeeds.

Include File
gxorder.h

Chapter 4 C++ Functions 397

GXWaitForOrder()

Example

| GXOrder *pOr der;
ULONG nCr der;
HRESULT hr, ReqResult;

i f (NewRequest Async(asyncGUI DStr, mpValln,
m pVal Qut, 0, &pOrder) == GXE_SUCCESS)

{
Log(" Successfully i nvoked async AppLogic\n");
/[l wait for async applogic to finish (nax 100 seconds)
hr = GX\Wai t For Order (& Order, 1, &Order, m pContext, 100);
if (hr !'= NOERROR)
{
return Result("Error in executing async request:
order wait returned an error");
el se
pOrder->Cet Stat e(NULL, &ReqgResult, NULL);
I f (RegResult != NCERROR)
return Result("Error in executing async request");
}
el se

Log("Failed to i nvoke async AppLogic\n");

Related Topics
ExecuteQuery() in the IGXDataConn interface

GetOrder() in the IGXResultSet interface
IGXOrder interface

398 iPlanet Application Server C++ Foundation Class Reference May 2000

Chapter 5

C++ Macros and Structures

This chapter discusses the macros and structures in the iPlanet Application Server
Foundation Class Library.

Macros
« GXDLM_DECLARE
e GXDLM_IMPLEMENT
e GXDLM_IMPLEMENT_BEGIN
e GXDLM_IMPLEMENT_END
e GXGUID_EQUAL

Structures
= GUID struct
= GXDATETIME struct
= GXVAL struct

GXDLM_DECLARE

Associates a C++ class in a dynamically loadable, shared library module (DLM)
with a GUID.

Syntax
GXDLM DECLARE(cl ass_nane, cl sid)

399

Structures

class_name. The C++ class to associate with a GUID. This class can be any
Component Object Model (COM) class, such as a GXAgent-derived class.

clsid. The GUID to associate with the specified class. You should already have
defined the GUID object from the GUID struct.

Usage

Use the GXDLM_DECLARE macro in conjunction with the
GXDLM_IMPLEMENT_BEGIN, GXDLM_IMPLEMENT, and
GXDLM_IMPLEMENT_END macros to provide a DLM with
iPlanetiPlanet-specific exported C functions. iPlanet Application Server expects to
find these exported functions when it loads the DLM at runtime. The exported
functions are required to fully initialize the DLM and to create C++ instances from
it.

Rules
< Call GXDLM_DECLARE once for each AppLogic module or exported C++
class in a DLM.

e Call GXDLM_DECLARE in a header file.

Include File
gxdim.h

GXDLM_IMPLEMENT

Establishes to the iPlanet Application Server the entry point in a dynamically
loadable, shared library module (DLM) for one exported C++ class.

Syntax
GXDLM_| MPLEMENT(cl ass_nane, cl sid)

class_name. The C++ class to establish.

clsid. The GUID associated with the class.

Usage

Use the GXDLM_IMPLEMENT macro in conjunction with the
GXDLM_DECLARE, GXDLM_IMPLEMENT_BEGIN, and
GXDLM_IMPLEMENT_END macros to provide a DLM with iPlanet-specific
exported C functions. iPlanet Application Server expects to find these exported
functions when it loads the DLM at runtime. The exported functions are required
to fully initialize the DLM and to create C++ instances from it.

400 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

Structures

Rules
= Call GXDLM_IMPLEMENT once for each exported C++ class in an DLM that
you want the iPlanet Application Server to access and create dynamically.

e GXDLM_IMPLEMENT calls must be made between the
GXDLM_IMPLEMENT_BEGIN and GXDLM_IMPLEMENT_END calls.

< There can be only one GXDLM_IMPLEMENT_BEGIN and
GXDLM_IMPLEMENT_END block in a DLM.

= Call GXDLM_IMPLEMENT in a C++ source (.cpp, non-header) file.

Include File
gxdim.h

GXDLM_IMPLEMENT_BEGIN

Establishes to the iPlanet Application Server the entry point to the dynamically
loadable, shared library module (DLM).

Syntax
GXDLM_| MPLEMENT_BEG N()

Usage

Use the GXDLM_IMPLEMENT_BEGIN macro in conjunction with the
GXDLM_DECLARE, GXDLM_IMPLEMENT, and GXDLM_IMPLEMENT_END
macros to provide a DLM with iPlanet-specific exported C functions. iPlanet
Application Server expects to find these exported functions when it loads the DLM
at runtime. The exported functions are required to fully initialize the DLM and to
create C++ instances from it.

Rules
e Call GXDLM_IMPLEMENT _BEGIN before GXDLM_IMPLEMENT.

« There can be only one GXDLM_IMPLEMENT_BEGIN and
GXDLM_IMPLEMENT_END block in a DLM.

= Call GXDLM_IMPLEMENT_BEGIN in a C++ source (.cpp, non-header) file.

Include File
gxdim.h

GXDLM_IMPLEMENT_END

Indicates that all exported C++ classes in the dynamically loadable, shared library
module (DLM) have been established with iPlanet Application Server.

Chapter 5 C++ Macros and Structures 401

Structures

Usage

Syntax
GXDLM | MPLEMENT _END()

Usage

Use the GXDLM_IMPLEMENT_END macro in conjunction with the
GXDLM_DECLARE, GXDLM_IMPLEMENT_BEGIN, and GXDLM_IMPLEMENT
macros to provide a DLM with iPlanet-specific exported C functions. iPlanet
Application Server expects to find these exported functions when it loads the DLM
at runtime. The exported functions are required to fully initialize the DLM and to
create C++ instances from it.

Rules
e Call GXDLM_IMPLEMENT_END after GXDLM_IMPLEMENT.

« There can be only one GXDLM_IMPLEMENT_BEGIN and
GXDLM_IMPLEMENT_END block in a DLM.

e Call GXDLM_IMPLEMENT_END in a C++ source (.cpp, non-header) file.

Include File
gxdim.h

GXGUID_EQUAL

Determines whether two GUIDs are equivalent.

Syntax
GXCGUI D_EQUAL(gui d1, gui d2)

guidl. The first GUID to use in the comparison.

guid2. The second GUID to use in the comparison.

Use GXGUID_EQUAL to compare if two AppLogic modules are the same. This
information is necessary when implementing the Querylnterface() method.

Return Value
True if the GUIDs are the same.

Include File
gx.util.h

402 iPlanet Application Server C++ Foundation Class Reference « May 2000

Structures

See Also
Querylnterface() in the IGXObject interface

GUID struct

A GUID structure holds a globally unique identifier (GUID), which identifies
AppLogic modules and iPlanet Application Server services. This identifier is a
128-bit value.

Syntax

typedef struct _GUID {
unsi gned | ong Dat al;
unsi gned short Data2;
unsi gned short Data3;
unsi gned char Dat a4[9];

} QU D

Datal. Specifies the first eight hexadecimal digits of the GUID.
Data2. Specifies the first group of four hexadecimal digits of the GUID.
Data3. Specifies the second group of four hexadecimal digits of the GUID.

Data4. Specifies an array of eight elements that contains the third and final group
of eight hexadecimal digits of the GUID in elements 0 and 1, and the final 12
hexadecimal digits of the GUID in elements 2 through 7.

GXDATETIME struct
A GXDATETIME structure contains date and time data.

Syntax

typedef struct tagGXDATETI ME {
short year;
unsi gned short nont h;
unsi gned short day;
unsi gned short hour;
unsi gned short ninute;
unsi gned short second;
unsi gned short fraction;
unsi gned short timezone;

} GXDATETI ME;

year. Year. Range (A.D.): 1to 32767. Range (B.C.): -32768 to -1.

month. Number of the month. Range: 1 to 12.

Chapter 5 C++ Macros and Structures 403

Structures

day. Number of the day of the month. Range: 1 to 31.
hour. Hours since midnight. Range: 0 to 23.

minute. Minutes after the hour. Range: 0 to 59.
second. Seconds after the minute. Range: 0 to 59.
fraction. Milliseconds after the second.

timezone. Time zone information.

Include File
gxitypes.h

GXVAL struct

A GXVAL structure represents a single value of a particular data type. Parameters
that are passed to an AppLogic, or results that are retrieved from an AppLogic, are
contained in an IGXValList object that contains one or more GXVAL objects.

Syntax

typedef struct tagGXVAL {
GXVALTYPE vt ;
WORD wReser vedl;
WORD wReser ved?2;
WORD wReser ved3;
uni on
{
unsi gned char cVal;
short iVal;
| ong | Val;
float fltVal;
doubl e dbl Val ;
SCCODE codeVal ;
unsi gned short bool Val ;
unsi gned char bVal;
unsi gned short uiVal;
| Unknown *punkVal ;
LPSTR pstrVal ;
voi d *pvoi dVval ;
Poow
} GXVAL;

vt. The data type of the GXVAL object’s value. The following table lists the enum
values you can use:

404 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

Structures

Enum value

Type

GXVT_I2
GXVT_14
GXVT_R4
GXVT_R8
GXVT_ERROR
GXVT_BOOL
GXVT_UNKNOWN
GXVT_I1
GXVT_UlI1
GXVT_UI2
GXVT_Ul4
GXVT_I8
GXVT_UI8
GXVT_LPSTR
GXVT_CLSID
GXVT_BLOB

2-byte signed integer
4-byte signed integer
4-byte real number
8-byte real number
4-byte error code for internal use
BOOL True or False
IUnknown FAR pointer
1-byte signed char
1-byte unsigned char
2-byte unsigned short
4-byte unsigned long
64-bit signed integer
64-bit unsigned integer
null terminated string
GUID

Large binary object

wReservedl, wReserved2, wReserved3. Reserved.

cVal. A 1-byte signed integer number, byte, char, or ASCII character.

iVal. A 2-byte signed integer number, or short.

IVVal. A 4-byte signed integer number, or int.

fltval. A 4-byte real number, or float.

dblVal. An 8-byte real number, or double.

codeVal. A 4-byte error code. Internal use only.

boolVal. True=any non-zero number. False=0.

bVal. A 1-byte unsigned char.

Chapter 5 C++ Macros and Structures

405

Structures

uiVal. A 2-byte unsigned integer number, or short.
ulVval. A 4-byte unsigned integer number, or long.
punkVal. An lUnknown FAR pointer.

pstrVal. A generic char pointer.

pvoidVal. A generic void pointer.

Include File
gxival.h

Related Topics
IGXValList interface

GXVALClear()
GXVALCopy()

406 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

Appendix A

Return Codes

Many methods and functions in the iPlanet Server Foundation Class Library return
the HRESULT type as an error code. The following table lists the HRESULT types

defined in gxgenericerr.h;

HRESULT Value
GXE_SUCCESS 0
GXE_ERROR 0x80240001
GXE_INVALID_ARG 0x80240002
GXE_INVALID_INTERFACE 0x80240003
GXE_NOT_SUPPORTED 0x80240004
GXE_EOF 0x80240005
GXE_READ_FAILED 0x80240006
GXE_WRITE_FAILED 0x80240007
GXE_ALLOC_FAILED 0x80240008
GXE_INVALID_NAME 0x80240009
GXE_INVALID_EXPR 0x8024000a
GXE_INVALID_INDEX 0x8024000b
GXE_TOO_SMALL 0x8024000c
GXE_FAIL 0x8024000d
GXE_NOINTERFACE 0x8024000e
GXE_MEM_ALLOC_FAILED 0X8024000f

409

410 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

A

AddAction(), 124
AddConn(), 175
AddQuery(), 185
AddRow(), 305

Alloc(), 129

AllocRow(), 307
asynchronous operations, 396

B

Begin(), 343
Binary Large Obijects (BLOBs), 376, 385

C

ChangeMode(), 204

classes
GXAppLogic, 27
GXSession2, 89
GXTemplateDataBasic, 91
GXTemplateMapBasic, 95
overview, 27

Close(), 134, 210, 245

CloseConn(), 158

Commit(), 344

constants

Index

GX_DA_TYPE_BINARY, 156
GX_DA_TYPE_DATE, 156
GX_DA TYPE DATETIME, 156
GX_DA _TYPE_DOUBLE, 156
GX_DA _TYPE_ERROR, 156
GX_DA_TYPE_LONG, 156
GX_DA_TYPE_STRING, 156
GX_DA_TYPE_TIME, 156
GX_STATE_ACTIVE, 254
GX_STATE_CANCEL, 254
GX_STATE_DONE, 254
GX_STATE_UNKNOWN, 254
GXACL_ALLOWED, 57
GXACL_DONTKNOW, 57
GXACL_NOTALLOWED, 57
GXORDER_STATE_ACTIVE, 221
GXORDER_STATE_CANCEL, 221
GXORDER_STATE_DONE, 221
GXORDER_STATE_UNKNOWN, 221
Count(), 192, 348
CreateDataConn(), 30
CreateDataConnSet(), 33
CreateEvent(), 115
CreateHierQuery(), 34
CreateMailbox(), 36
CreateQuery(), 37
CreateSequence(), 272
CreateSession(), 38
CreateStateChild(), 292
CreateTrans(), 41
CreateTrigger(), 159
critical sections, 372, 373, 380, 381

411

D

dates, 374, 404
DeleteActions(), 125
DeleteCache(), 43
DeleteEvent(), 103, 115
DeleteRow(), 309
DeleteStateChild(), 294
DelQuery(), 187
DestroySession(), 44
DisableEvent(), 103, 116
DisableTrigger(), 160
Drop(), 268
DropTrigger(), 161

E

EnableEvent(), 104,116
EnableTrigger(), 162
EnumActions(), 126
EnumColumnReset(), 246, 311
EnumColumns(), 246, 312
EnumCount(), 177
EnumEvents(), 104, 117
EnumNext(), 178
EnumReset(), 179
EvalOutput(), 45
EvalTemplate(), 48
Execute(), 51, 134, 188, 224
ExecuteMultipleRS(), 137
ExecuteQuery(), 162

GXCreateTemplateDataBasic(), 369
GXCreateTemplateMapBasic(), 371

GXCreateValList(), 371

GXDeleteCriticalSection(), 372

GXEnterCriticalSection(), 373

GXGetCurrentDateTime(), 374

GXGetValList(), 375
GXGetValListBLOB(), 376
GXGetValListGUID(), 377
GXGetValListString(), 378
GXGUIDTosString(), 379
GXInitCriticalSection(), 380

GXLeaveCriticalSection(), 381

GXProcessOutputt(), 382
GXSetValList(), 384
GXSetValListBLOB(), 385
GXSetValListGUID(), 386
GXSetValListString(), 386
GXStringToGUID(), 387
GXSYNC_DESTROY(), 389
GXSYNC_INC(), 388,390
GXSYNC_INIT(), 391
GXSYNC_LOCK(), 392
GXSYNC_UNLOCK(), 393
GXVALClear(), 395
GXVALCopy(), 395
GXWaitForOrder(), 396

G

GenerateSessID(), 286
GenerateVariantID(), 288
Get(), 334

GetAddress(), 130
GetAppEvent(), 52
GetAttributes(), 126
GetColumn(), 193, 248, 312

F GetColumnByOrd(), 195, 249, 313

FetchNext(), 247 GetColumnOrdinal(), 250, 314

functions GetConninfo(), 164
GXContextGetAppEventMgr()), 366 GetConnProps(), 165
GXContextGetSessionCount(), 366 GetCurrent(), 268
GXCreateStreamBuffer(), 368 GetDataConn(), 316

412 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

GetDriver(), 166
GetErrorCode(), 181
GetErrorCodeNum(), 182
GetErrorFacility(), 183
GetErrorMessage(), 182
GetEvent(), 120
GetFields(), 228
GetGroupBy(), 229
GetHaving(), 230
GetMoreResults(), 140
GetName(), 127, 147, 316
GetNext(), 269
GetNextKey(), 349
GetNullsAllowed(), 148
GetNumColumns(), 252, 317
GetOrder(), 252
GetOrderBy(), 231
GetParams(), 141
GetPrecision(), 150
GetResultSet(), 143, 196
GetRowNumber(), 197, 253
GetScale(), 151
GetSequence(), 274
GetSession(), 53
GetSessionApp(), 277
GetSessionData(), 278
GetSessionFlags(), 280
GetSessionID(), 281
GetSessionTimeout(), 282
GetSize(), 131,152
GetSQL(), 232
GetState(), 221
GetStateChild(), 295
GetStateChildCount(), 296
GetStateContents(), 296
GetStateFlags(), 297
GetStateName(), 298
GetStateTimeout(), 299
GetStateTreeRoot(), 54
GetStatus(), 254
GetStreamData(), 303
GetTable(), 154, 167

GetTables(), 169, 233
GetTileChild(), 338
GetTileValue(), 339
GetType(), 155
GetVaBLOB(), 352

GetVal(), 351
GetValBLOBSize(), 353
GetValByRef(), 353
GetValint(), 354
GetValstring(), 355
GetValue(), 330
GetValueBinary(), 255
GetValueBinaryPiece(), 255
GetValueDateString(), 198, 258
GetValueDouble(), 199, 259
GetValuelnt(), 200, 259
GetValueSize(), 260
GetValueString(), 201, 261
GetValueText(), 262
GetValueTextPiece(), 263
GetWhere(), 234
GroupAppend(), 92

GUID struct, 403

GUIDs, 377, 379, 386, 387, 402, 403
GX_DA_TYPE_BINARY, 156
GX_DA_TYPE_DATE, 156
GX_DA_TYPE_DATETIME, 156
GX_DA_TYPE_DOUBLE, 156
GX_DA_TYPE_ERROR, 156
GX_DA_TYPE_LONG, 156
GX_DA_TYPE_STRING, 156
GX_DA_TYPE_TIME, 156
GX_STATE_CANCEL, 254
GX_STATE_DONE, 254
GX_STATE_UNKNOWN, 254
GXACL_ALLOWED, 57
GXACL_DONTKNOW, 57
GXACL_NOTALLOWED, 57

GXAppLogic class
CreateDataConn(), 30
CreateDataConnSet(), 33
CreateHierQuery(), 34

Index

413

CreateMailbox(), 36
CreateQuery(), 37
CreateSession(), 38
CreateTrans(), 41
DeleteCache(), 43
described, 27
DestroySession(), 44
EvalOutput(), 45
EvalTemplate(), 48
Execute(), 51
GetAppEvent(), 52
GetSession(), 53
GetStateTreeRoot(), 54
IsAuthorized(), 56
IsCached(), 58
LoadHierQuery(), 58
LoadQuery(), 62
Log(), 64
LoginSession(), 65
LogoutSession(), 68
m_pContext, 28
m_pStream, 28
m_pValin, 28
m_pValOut, 28
NewRequest(), 69
NewRequestAsync(), 71
RemoveAllCachedResults(), 74
RemoveCachedResult(), 75
Result(), 77
SaveSession(), 78
SetCacheCriteria(), 79
SetSessionVisibility(), 82
SetVariable(), 83
SkipCache(), 85
StreamResult(), 86
StreamResultBinary(), 87
StreamResultHeader(), 88
GXContextGetAppEventMgr(), 366
GXContextGetSessionCount(), 366
GXCreateStreamBuffer(), 368
GXCreateTemplateDataBasic(), 369
GXCreateTemplateMapBasic(), 371
GXCreateValList(), 371
GXDATETIME struct, 404
GXDeleteCriticalSection(), 372

GXDLM_DECLARE, 399

GXDLM_IMPLEMENT, 400
GXDLM_IMPLEMENT_BEGIN, 401
GXDLM_IMPLEMENT_END, 402
GXEnterCriticalSection(), 373
GXGetCurrentDateTime(), 374
GXGetValLisString(), 378
GXGetValList(), 375
GXGetValListBLOB(), 376
GXGetValListGUID(), 377
GXGUID_EQUAL, 402
GXGUIDToString(), 379
GXInitCriticalSection(), 380
GXLeaveCriticalSection(), 381
GXORDER_STATE_ACTIVE, 221
GXORDER_STATE_CANCEL, 221
GXORDER_STATE_DONE, 221
GXORDER_STATE_UNKNOWN, 221
GXProcessOutput(), 382

GXSession2 class
described, 89

GXSetValList(), 384
GXSetValListBLOB(), 385
GXSetValListGUID(), 386
GXSetValListString(), 386
GXStringToGUID(), 387
GXSYNC_DESTROY(), 389
GXSYNC_INC(), 388,390
GXSYNC_INIT(), 391
GXSYNC_LOCK(), 392
GXSYNC_UNLOCK(), 393
GXTemplateDataBasic class
described, 91
GroupAppend(), 92
GXTemplateDataBasic(), 94
RowAppend(), 93
GXTemplateDataBasic(), 94
GXTemplateMapBasic class
described, 95
Put(), 96
GXVAL struct, 405
GXVALClear(), 395
GXVALCopy(), 395

414 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

GXWaitForOrder(), 396

IGX_STATE_ACTIVE, 254
IGXAppEvent interface
DeleteEvent(), 103
described, 100
DisableEvent(), 103
EnableEvent(), 104
EnumEvents(), 104
QueryEvent(), 106
RegisterEvent(), 107
SetEvent(), 110
IGXAppEventMgr interface
CreateEvent(), 115
DeleteEvent(), 115
described, 112
DisableEvent(), 116
EnableEvent(), 116
EnumEvents(), 117
GetEvent(), 120
RegisterEvent(), 120
TriggerEvent(), 122
IGXAppEventObj interface
AddAction(), 124
DeleteActions(), 125
described, 123
EnumActions(), 126
GetAttributes(), 126
GetName(), 127
SetAttributes(), 127
IGXBuffer interface
Alloc(), 129
described, 129
GetAddress(), 130
GetSize(), 131
SetData(), 132
IGXCallableStmt interface
Close(), 134
described, 133
Execute(), 134
ExecuteMultipleRS(), 137
GetMoreResults(), 140

GetParams(), 141
GetResultSet(), 143
SetParams(), 144

IGXColumn interface

described, 145
GetName(), 147
GetNullsAllowed(), 148
GetPrecision(), 150
GetScale(), 151
GetSize(), 152
GetTable(), 154
GetType(), 155

IGXDataConn interface

CloseConn(), 158
CreateTrigger(), 159
described, 156
DisableTrigger(), 160
DropTrigger(), 161
EnableTrigger(), 162
ExecuteQuery(), 162
GetConnlinfo(), 164
GetConnProps(), 165
GetDriver(), 166
GetTable(), 167
GetTables(), 169
PrepareCali(), 170
PrepareQuery(), 172
SetConnProps(), 174

IGXDataConnSet interface

AddConn(), 175
described, 174

IGXEnumObiject interface

described, 176

EnumCount(), 177
EnumNext(), 178
EnumReset(), 179

IGXError interface

described, 180
GetErrorCode(), 181
GetErrorCodeNum(), 182
GetErrorFacility(), 183
GetErrorMessage(), 182

IGXHierQuery interface

AddQuery(), 185
DelQuery(), 187
described, 184

Index

415

Execute(), 188
IGXHierResultSet interface
Count(), 192
described, 189
GetColumn(), 193
GetColumnByOrd(), 195
GetResultSet(), 196
GetRowNumber(), 197
GetValueDateString(), 198
GetValueDouble(), 199
GetValuelnt(), 200
GetValueString(), 201
MoveNext(), 202
MoveTo(), 203
IGXLock interface
ChangeMode(), 204
described, 204
Lock(), 205
Unlock(), 207
IGXMailbox interface
Close(), 210
described, 209
Open(), 211
Retrieve(), 213
RetrieveCount(), 215
RetrieveReset(), 217
Send(), 218
IGXOrder interface
described, 220
GetState(), 221
IGXPreparedQuery interface
described, 223
Execute(), 224
SetParams(), 226
IGXQuery interface
described, 226
GetFields(), 228
GetGroupBy(), 229
GetHaving(), 230
GetOrderBy(), 231
GetSQL(), 232
GetTables(), 233
GetWhere(), 234
SetFields(), 235
SetGroupBy(), 237
SetHaving(), 237

416

SetOrderBy(), 238
SetSQL(), 240
SetTables(), 241
SetWhere(), 242

IGXResultSet interface

Close(), 245

described, 244
EnumColumns(), 246
FetchNext(), 247
GetColumn(), 248
GetColumnByOrd(), 249
GetColumnOrdinal(), 250
GetNumColumns(), 252
GetOrder(), 252
GetRowNumber(), 253
GetStatus(), 254
GetValueBinary(), 255
GetValueBinaryPiece(), 255
GetValueDateString(), 258
GetValueDouble(), 259
GetValuelnt(), 259
GetValueSize(), 260
GetValueString(), 261
GetValueText(), 262
GetValueTextPiece(), 263
MoveTo(), 264
RowCount(), 265
WasNull(), 266

IGXSequence interface

described, 266
Drop(), 268
GetCurrent(), 268
GetNext(), 269

IGXSequenceMgr interface

CreateSequence(), 272
described, 271
GetSequence(), 274

IGXSession2 interface

described, 276
GetSessionApp(), 277
GetSessionData(), 278
GetSessionFlags(), 280
GetSessionID(), 281
GetSessionTimeout(), 282
SaveSession(), 283
SetSessionData(), 284

iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

IGXSessionIDGen interface
described, 285
GenerateSessID(), 286
GenerateVariantID(), 288
MapToBaselD(), 289

IGXState?2 interface
CreateStateChild(), 292
DeleteStateChild(), 294
described, 291
GetStateChild(), 295
GetStateChildCount(), 296
GetStateContents(), 296
GetStateFlags(), 297
GetStateName(), 298
GetStateTimeout(), 299
SaveState(), 299
SetStateContents(), 300

IGXStreamBuffer interface
described, 302
GetStreamData(), 303

IGXTable interface
AddRow(), 305
AllocRow(), 307
DeleteRow(), 309
described, 304
EnumColumnReset(), 311
EnumColumns(), 312
GetColumn(), 312
GetColumnByOrd(), 313
GetColumnOrdinal(), 314
GetDataConn(), 316
GetName(), 316
GetNumColumns(), 317
SetValueBinary(), 317
SetValueBinaryPiece(), 318
SetValueDateString(), 319
SetValueDouble(), 321
SetValuelnt(), 322
SetValueString(), 323
SetValueText(), 323
SetValueTextPiece(), 324
UpdateRow(), 325

IGXTemplateData interface
described, 328
GetValue(), 330
ISEmpty(), 331
MoveNext(), 331

SetHint(), 332
IGXTemplateMap interface
described, 333
Get(), 334
IGXTile interface
described, 335
GetTileChild(), 338
GetTileValue(), 339
MoveTileNextRecord(), 339
MoveTileToRecord(), 340
IGXTrans interface
Begin(), 343
Commit(), 344
described, 340
Rollback(), 345
IGXTResultSet interface
EnumColumnReset(), 246
IGXValList interface
Count(), 348
described, 346
GetNextKey(), 349
GetVal(), 351
GetValBLOB(), 352
GetValBLOBSize(), 353
GetValByRef(), 353
GetValint(), 354
GetValstring(), 355
RemoveVal(), 356
ResetPosition(), 357
SetVal(), 358
SetValBLOB(), 359
SetValByRef(), 360
SetVallnt(), 361
SetValString(), 362
interfaces
IGXAppEvent, 100
IGXAppEventMgr, 112
IGXAppEventObj, 123
IGXBuffer, 129
IGXCallableStmt, 133
IGXColumn, 145
IGXDataConn, 156
IGXDataConnSet, 174
IGXEnumObject, 176
IGXError, 180
IGXHierQuery, 184

Index

417

IGXHierResultSet, 189 GXDLM_DECLARE, 399

IGXLock, 204 GXDLM_IMPLEMENT, 400
IGXMailbox, 209 GXDLM_IMPLEMENT_BEGIN, 401
IGXOrder, 220 GXDLM_IMPLEMENT_END, 402

IGXPreparedQuery, 223
IGXQuery, 226
IGXResultSet, 244
IGXSequence, 266
IGXSequenceMgr, 271
IGXSession2, 276
IGXSessionIDGen, 285
IGXState2, 291
IGXStreamBuffer, 302
IGXTable, 304
IGXTemplateData, 328
IGXTemplateMap, 333
IGXTile, 335
IGXTrans, 340
IGXValList, 346
overview, 99
I0bject interface, 220
IsAuthorized(), 56
IsCached(), 58
IsEmpty(), 331

L

LoadHierQuery(), 58
LoadQuery(), 62
Lock(), 205

Log(), 64
LoginSession(), 65
LogoutSession(), 68

M

m_pContext, 28
m_pStream, 28

m_pValin, 28
m_pValOut, 28
macros

GXGUID_EQUAL, 402
MapToBaselD(), 289
MoveNext(), 202, 331
MoveTileNextRecord(), 339
MoveTileToRecord(), 340
MoveTo(), 203, 264

N

NewRequest(), 69
NewRequestAsync(), 71

O

Open(), 211

P

PrepareCall(), 170
PrepareQuery(), 172
Put(), 96

Q

QueryEvent(), 106

R

RegisterEvent(), 107, 120

RemoveAllCachedResults(), 74

418 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

RemoveCachedResult(), 75 SetValueBinaryPiece(), 318

RemoveVal(), 356 SetValueDateString(), 319
ResetPosition(), 357 SetValueDouble(), 321
Result(), 77 SetValuelnt(), 322
Retrieve(), 213 SetValueString(), 323
RetrieveCount(), 215 SetValueText(), 323
RetrieveReset(), 217 SetValueTextPiece(), 324
Rollback(), 345 SetWhere(), 242
RowAppend(), 93 SeVariable(), 83
RowCount(), 265 SkipCache(), 85

spin locks, 388, 389, 390, 391, 392, 393
StreamResult(), 86
StreamResultBinary(), 87

S StreamResultHeader(), 88

. structures
SaveSession(), 78, 283 GUID struct. 403
SaveState(), 299 GXDATETIME struct, 404
Send(), 218 GXVAL struct, 405

Session2 class, 89

SetAttributes(), 127

SetCacheCriteria(), 79

SetConnProps(), 174 T
SetData(), 132
SetEvent(), 110
SetFields(), 235
SetGroupBy(), 237
SetHaving(), 237
SetHint(), 332

times, 374, 404
TriggerEvent(), 122

SetOrderBy(), 238 U
SetParams(), 144 Unlock(), 207
IGXPreparedQuery interface, 226 UpdateRow(), 325

SetSessionData(), 284
SetSessionVisibility(), 82
SetSQL(), 240

SetStateContents(), 300 vV

SetTables(), 241

SetVal(), 358 variables
SetValBLOB(), 359 m_pContext, 28
SetValByRef(), 360 m_pf/t;ﬁim'z 828
SetValint(), 361 m:gVaIOl’Jt, 28

SetValString(), 362
SetValueBinary(), 317

Index 419

W

WasNull(), 266

420 iPlanet Application Server C++ Foundation Class Reference ¢ May 2000

