
Overview Guide
iPlanet Application Server

Version 6.0

806-3491-01
May 2000

Copyright © 2000 Sun Microsystems, Inc. Some preexisting portions Copyright © 2000 Netscape
Communications Corporation. All rights reserved.

Sun, Sun Microsystems, and the Sun logo, Netscape, Netscape Navigator, Netscape Certificate Server,
Netscape DevEdge, Netscape FastTrack Server, iPlanet, and the Netscape N and Ship’s Wheel logos are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
Netscape and the Netscape N logo are registered trademarks of Netscape Communications Corporation in the
U.S. and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries.

Other product and brand names are trademarks of their respective owners.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and
Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of the product or this document may be reproduced in any form by any means
without prior written authorization of the Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
BBB

Copyright © 2000 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2000 Netscape
Communication Corp. Tous droits réservés.

Sun, Sun Microsystems, et the Sun logo sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et d’autre pays. Netscape et the Netscape N logo sont des marques
déposées de Netscape Communications Corporation aux Etats-Unis et d’autre pays. Les autres logos, les
noms de produit, et les noms de service de Netscape sont des marques déposées de Netscape Communications
Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent
l'utilisation, la copie, la distribution et la décompilation. Aucune partie de ce produit ni de ce document ne
peut être reproduite sous quelque forme ou par quelque moyen que ce soit sans l’autorisation écrite préalable
de l’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS
EXPRESSES OU IMPLICITES, TOUTES REPRÉSENTATIONS ET TOUTES GARANTIES, Y
COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À UN BUT
PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA
MESURE OÙ DE TELLES EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

Printed in the United States of America 00 99 98 5 4 3 2 1

3

Contents

Preface . 7
Using the Documentation . 7
About This Guide . 9
How This Guide is Organized . 10
Documentation Conventions . 10

Chapter 1 iPlanet Application Server . 1 1
Executive Overview . 11
New Features . 13

Certified Compliance with Java 2 Enterprise Edition . 13
J2EE Enhancements . 15
Improved Performance, Scalability and Reliability . 16
Enterprise-Class Development and Deployment Tools . 17

iPlanet Application Builder . 17
Third Party Tools . 17

Enhanced Management and Administration . 18
iPlanet Application Server Administration Tool . 18
Dynamic Application Management . 18
iAS Deployment Tool . 19
iAS Installation Tool . 19
Event Logging and Failure Analysis . 19
Support for Third-Party Management Tools . 20

Tight Integration with iPlanet Directory Server and iPlanet Web Server . 20
iPlanet Directory Server . 20
iPlanet Web Server . 20

Key Features . 21
Application Model . 21
Industry-Standard Application Components . 22
High Scalability . 22
Application Partitioning . 22
Dynamic Load Balancing . 23

4 iPlanet Application Server Overview Guide • May 2000

High Performance . 23
JSP Caching . 24
Result Caching . 24
Database Connection Caching . 25
Data Streaming . 25
Multi-threaded Capabilities . 26
Optimized Communication with Web Servers . 26
Session and State Management . 26
High Availability . 27
Security . 28

Security Using Access Control Lists . 28
JMS - Java Message Server . 30
Next Generation Applications with XML . 30

Chapter 2 Application Server Architecture . 31
Application Server Overview . 31

The Multitiered Environment . 34
Industry Standard Components . 35

Chapter 3 Architectural Details . . 37
Server Processes . 37

Summary of Process Interactions . 38
The Executive Server . 39
The Administrative Server . 39
The Java Server . 40

System Components . 41
Protocol Manager . 42
Load Balancing System . 42
Request Management System . 43
Application Components . 43
Application Services . 43

Services Hosted by KJS . 44
System Services . 46
Transaction Management System . 47

Local versus Global Transactions . 47
Architectural Details . 48
Security . 48
Administrative Services . 48

Chapter 4 J2EE Concepts . . 51
J2EE Concepts . 51

The Multi-Tiered Model . 52

5

J2EE Benefits . 53
J2EE Components . 54
Servlets . 55
Java Server Pages . 56
Enterprise Java Beans . 56

Session Beans and Entity Beans . 57
Entity EJBs . 57

The J2EE Programming Model . 58
Presentation Logic and Layout . 60
Business Logic . 60
Data Access Logic . 61
Rich Clients . 62
Container Managed Persistence . 63
RMI-IIOP . 64
Using JDBC for Database Access . 64
JDBC Overview . 65

Chapter 5 iAS Product Family . 67
iAS in the iPlanet Framework . 68
The iPlanet Application Server Product Family . 69

iPlanet Application Builder . 69
iAS Deployment Tool . 70
iAS Administration Tool . 70

Dynamic Application Management . 71
iPlanet Unified Integration Framework . 71
iAS Enterprise Connectors . 72
iPlanet Process Manager . 73
Sample Applications . 73
Encina Transaction Manager . 74
iPlanet Directory Server . 74
iPlanet Web Server Enterprise Edition . 75

Index . 77

6 iPlanet Application Server Overview Guide • May 2000

7

Preface

This preface contains the following topics:

• Using the Documentation

• About This Guide

• How This Guide is Organized

• Documentation Conventions

Using the Documentation
The Overview Guide is only one of several documents that help you develop, deploy, and
manage web-based enterprise applications. The following table lists the tasks and concepts
that are described in the iPlanet Application Server (iAS), iPlanet Application Builder
(iAB) printed manuals and online release notes. If you are trying to accomplish a specific
task or learn more about a specific concept, refer to the appropriate manual.

Note that the printed manuals are also available as online files in PDF and HTML format at
http://docs.iplanet.com

Table 1

For information about See the
following

Shipped with

Late-breaking information about the software and
the documentation

readme.htm iAS6.0 iAB 6.0

Installing iPlanet Application Server and its
various components (Web Connector plug-in,
iPlanet Application Server Administrator), and
configuring the sample applications

Installation
Guide

iAS6.0

Installing iPlanet Application Builder install.htm iAB 6.0

Using the Documentation

8 iPlanet Application Server Overview Guide • May 2000

Basic features of iAS, such as its software
components, general capabilities, and system
architecture

Overview iAS6.0, iAB 6.0

Administering one or more application servers
using the iPlanet Application Server
Administrator tool to perform the following tasks:

• Deploying applications with the Deployment
Manager tool

• Monitoring and logging server activity

• Setting up users and groups

• Administering database connectivity

• Administering transactions

• Load balancing servers

• Managing distributed data synchronization

Administration
& Deployment
Guide

iAS6.0

Migrating your applications to the new iPlanet
Application Server 6.0 programming model from
version 2.1 and version 4.0, including a sample
migration of an Online Bank application provided
with iPlanet Application Server

Migration Guide iAS6.0, iAB 6.0

Creating iAS6.0 applications within an integrated
development environment by performing the
following tasks:

• Creating and managing projects

• Using wizards

• Creating data-access logic

• Creating presentation logic and layout

• Creating business logic

• Compiling, testing, and debugging
applications

• Deploying and downloading applications

• Working with source control

• Using third-party tools

User’s Guide iAB 6.0

Table 1

For information about See the
following

Shipped with

About This Guide

Preface 9

About This Guide
The Overview Guide describes the product components, features, and system architecture of
iPlanet Application Server (iAS). The guide contains useful background information on the
application servers, Java 2 Enterprise Edition and products that integrate with iAS.

Creating iAS6.0 applications that follow the new
open Java standards model (Servlets, EJBs, JSPs,
and JDBC), by performing the following tasks:

• Creating the presentation and execution layers
of an application

• Placing discrete pieces of business logic and
entities into Enterprise Java Beans (EJB)
components

• Using JDBC to communicate with databases

• Using iterative testing, debugging, and
application fine-tuning procedures to generate
applications that execute correctly and quickly

Programmer’s
Guide (Java)

 iAB 6.0

Using the public classes and interfaces, and their
methods in the Netscape Application Server class
library to write Java applications

Server
Foundation
Class Reference
(Java)

iAS6.0, iAB 6.0

Creating C++ applications using the iAS class
library by performing the following tasks:

• Designing applications

• Writing AppLogics

• Creating HTML templates

• Creating queries

• Running and debugging applications

Programmer's
Guide (C++)

Order separately

Using the public classes and interfaces, and their
methods in the iAS class library to write C++
applications

Server
Foundation
Class Reference
(C++)

Order separately

Table 1

For information about See the
following

Shipped with

How This Guide is Organized

10 iPlanet Application Server Overview Guide • May 2000

How This Guide is Organized
This guide is divided into 5 chapters. Chapter 1 gives an executive overview of iPlanet
Application Server. Chapter 2 and 3 focuses on architecture, Chapter 4 gives an overview of
J2EE and Chapter 5 expands on the iPlanet product family.

Documentation Conventions
Files and directory paths are given in the Windows format with backslashes separating
directory names. For Unix versions, the directory paths are the same, except slashes are
used instead of backslashes to separate directories.

This guide uses URLs of the form: http://server.domain:port/path/file.html

Where server is the name of the server on which you run your application; domain is your
internet domain name; path is the directory structure on the server; and file is the individual
filename. Italic items in URLs are placeholders.

This guide uses the following font conventions:

• The monospace font is used for sample code and code listings, API and language
elements (such as function names and class names), file names, path names, directory
names and HTML tags.

• Italic type is used for book titles, emphasis, variables and placeholders, and words used
in the literal sense.

11

Chapter 1

iPlanet Application Server

This chapter summarizes the main features and components of iPlanet Application Server
(iAS).

Executive Overview
iPlanet Application Server 6.0 provides the most robust e-commerce platform for delivering
innovative and leading edge application services to a broad range of servers, clients and
devices. Built on a heritage of world-class scalability, reliability and performance, the
iPlanet Application Server delivers on the requirements for global e-commerce success by
rapid time-to-market, the ability to leverage information systems and business processes
across the extended enterprise. With thousands of customers, the iPlanet Application Server
enables enterprises, service providers and dot.com businesses to exploit the enormous
opportunities of the Net Economy.

iPlanet Application Server delivers on the requirements for e-commerce success, including
the ability to:

• Develop and deliver applications based on Java 2 Platform Enterprise Edition (J2EE)
standards

• Handle unplanned successes through a highly scalable, reliable, and available
architecture

• Provide business-to-business, business-to-consumer, and business-to-employee
solutions on a single platform

• Leverage and integrate information assets both internal and external to the enterprise

• Automate business processes across suppliers, customers, and partners

Executive Overview

12 iPlanet Application Server Overview Guide • May 2000

iPlanet Application Server provides robust support for the J2EE standards. At virtually
every level of development and deployment, iPlanet Application Server features interfaces
and functionality that conform to the J2EE specification. In addition, iPlanet Application
Server provides additional key capabilities through services such as load-balancing,
failover, and high-availability applied to these same J2EE standards. For example, iPlanet
Application Server delivers load-balancing services across JavaServer Pages and servlets.

Based on an “open tools” strategy, application development for the iPlanet Application
Server platform can be performed with a number of different toolkit options, including:

• iPlanet Application Builder offers wizard-based development and tight integration with
the application server.

• Support for Forte for Java, Enterprise Edition featuring enterprise-class development
for team development capabilities, including distributed debugging.

• Third party products, such as WebGain VisualCafe, IBM VisualAge, Macromedia
Dreamweaver, and Inprise JBuilder plug into the iPlanet Application Server
architecture for tight integration.

• The iPlanet Application Server solution includes the ability to automate business
processes across J2EE business logic and legacy/enterprise business logic. The iPlanet
Process Manager is a comprehensive web-based solution for designing, deploying and
managing business processes on the iPlanet Application Server.

For comprehensive integration with multiple back-end information systems, iPlanet
Application Server includes a Unified Integration Framework and Enterprise Connectors
which extend the application and data assets for ERP environments, such as IBM CICS,
BEA Tuxedo, SAP R/3, and PeopleSoft, into dynamic Web services.

New Features

Chapter 1 iPlanet Application Server 13

New Features
iPlanet Application Server 6.0 provides significant enhancements over previous versions of
the product. This includes full compliance with the Java™ 2 Platform, Enterprise Edition
(J2EE™) APIs and specifications, improvements in performance, scalability and reliability,
and enhanced manageability and administration. The iPlanet Application Server platform
provides a new integration framework that simplifies and accelerates the development of
applications that integrate across multiple information systems, including SAP R/3, CICS,
Tuxedo, and PeopleSoft. The product family includes an enterprise class tool suite, as well
as support for industry-leading developer and deployment tools. iPlanet Application Server
is backward compatible with previous versions of iPlanet Application Server.

Certified Compliance with Java 2 Enterprise
Edition
iPlanet Application Server 6.0 features strong support for a wide range of industry
standards, including Java™ 2 Platform, Enterprise Edition (J2EE™) and is certified with
the Compliance Test Suite (CTS). J2EE provides a complete, secure foundation and
describes a rich set of standards for security, development, deployment, code re-use and
portability that allows the enterprise to create applications that are portable and vendor
independent. J2EE consists of the following components and APIs:

Enterprise JavaBeans™ (EJB) 1.1 The server-side component architecture for the J2EE
platform. EJB enables rapid and simplified development of distributed, transactional,
secure, and portable Java applications.

JavaServer Pages™ (JSP) 1.1 The JavaServer Pages technology provides a simplified,
fast way to create dynamic web content. The JSP technology enables rapid development of
web-based applications that are server- and platform-independent

Java Servlets 2.2 Provides web developers with a simple, consistent mechanism for
extending the functionality of a web server and for accessing existing business systems.

JDBC™ 2.0 (Core and Standard Extensions, and Optional Package 2.0) Provides access
virtually any tabular data source from the Java programming language. It provides
cross-DBMS connectivity to a wide range of SQL databases, and now, with the new JDBC
API, it also provides access to other tabular data sources, such as spreadsheets or flat files.

Java Transaction API (JTA) 1.0 Specifies standard Java interfaces between a transaction
manager and the parties involved in a distributed transaction system: the resource manager,
the application server, and the transactional applications.

Java Naming and Directory Interface™ (JNDI) 1.2 Works in concert with other J2EE
technologies to organize and locate components in a distributed computing environment.

New Features

14 iPlanet Application Server Overview Guide • May 2000

RMI-IIOP 1.0.1 Remote Method Invocation (RMI) over Internet Inter-Orb Protocol (IIOP)
delivers Common Object Request Broker Architecture (CORBA) compliant distributed
computing capabilities to the Java™ 2 platform and to the Java Development Kit (JDK™)
1.2. This enables Rich Clients such as stand alone Java applications to communicate
directly with the application server.

Java Message Service (JMS) 1.0.2 Provides a set of standard Java language interfaces to
enterprise messaging systems, often called message-oriented middleware. These interfaces
are implemented by products called JMS providers. The JMS API and provider framework
enables the development of portable, message-based applications in the Java programming
language.

JavaMail™ 1.1 Provides a set of abstract classes that model a mail system. The API
provides a platform independent and protocol independent framework to build Java
technology-based mail and messaging applications.

JavaBeans™ Activation Framework (JAF) 1.0 Enables developers to take advantage of
standard services to determine the type of an arbitrary piece of data, encapsulate access to it,
discover the operations available on it, and to instantiate the appropriate bean to perform
said operation(s). For example, if a browser obtained a JPEG image, this framework would
enable the browser to identify that stream of data as an JPEG image, and from that type, the
browser could locate and instantiate an object that could manipulate, or view that image.

Extensible Markup Language (XML) XML is used as the standard for describing all
J2EE Deployment Descriptors. iPlanet Application Server use XMLfor application
assembly and deployment.

Other standards include:

• CORBA 2.3 enables cross-platform interoperability

• HTML is the universal language of the Web

• LDAP (Lightweight Directory Access Protocol) enables access to large scale
directories, providing authentication and access control

• SNMP provides an interface which enables status monitoring by network management
systems

• IMAP/POP3 are standard electronic e-mail protocols

• XA is a standard protocol for distributed database transactions

New Features

Chapter 1 iPlanet Application Server 15

J2EE Enhancements
More than just complying with the J2EE standard, iPlanet Application Server enhances the
functionality of the J2EE specification:

• Overall availability is improved with failover for key J2EE components:

• Stateful EJB failover

• Rich client failover

• Rich client load balancing over RMI-IIOP

• JSP load-balancing — JSPs now can have GUIDs:

• GUIDs uniquely identify each JSP process. This enables JSP to be load-balanced,
similarly to servlets, and applogics in previous versions of the application server.

• This also enables JSPs to use results caching

• There is continued support for JSPs without GUIDs, as unregistered JSPs

• There is a conversion tool provided to transform JSP 0.92 pages (Netscape Application
Server 4.0) to JSP 1.1.

• JSP Page Caching — calls to JSP pages are cached, providing similar functionality as
results caching in NAS 4.0.

• JMS Connection Pooling and User Mapping — Connection Pooling enhances the
performance and reliability of iPlanet Application Server applications using JMS via
the creation and management of pools of connections from iPlanet Application Server
to a JMS-enabled messaging product. User mapping speeds iPlanet Application Server
application development and eases administration by supporting the easy mapping of
users — authenticated at the web application level — to users, groups, and roles
authorized by the JMS-enabled messaging provider.

• There is a performance boost for compositional JSPs.

• Support for JSP 1.1 tag library extensions.

New Features

16 iPlanet Application Server Overview Guide • May 2000

Improved Performance, Scalability and
Reliability
The iPlanet Application Server provides a fifth generation architecture with market proven
performance, scalability, and reliability leadership at leading e-commerce sites. For
customers requiring high transaction integrity and continuous up-time, the iPlanet
Application Server eliminates single points of failure through application failover at every
level of the J2EE development environment, including JavaServer Pages, Java Servlets, and
Enterprise JavaBeans failover. iPlanet Application Server also ensures that user information
and application data are not lost during a failure by distributing the state and session
information of a transaction across multiple servers.

iPlanet Application Server features enhanced load balancing capabilities. For example,
there is weighted round robin load balancing — administrators can assign characteristics
such as numbers of CPUs and CPU speed to determine how servers can balance requests.
iPlanet Application Server supports load balancing among CPUs within a multiprocessor
server, and provides load-balancing capabilities across the J2EE processes.iPlanet
Application Server also provides response time and server-load based load balancing. Load
balancing is also available for JSP processes, and rich clients.

iPlanet Application Server provides high performance features including connection
caching and pooling, results caching, data streaming, optimized web server communication,
and a multi-threaded, multiprocessing architecture. The iPlanet Application Server also
provides application partitioning to ensure that application logic is run on the server with
the most capacity. iPlanet Application Server also features performance improvements with
Web and Directory services. For example, this release features high-performance
connectivity with the iPlanet Web Server and iPlanet Directory Server products.

iPlanet Application Server integrates the Encina transaction monitor as core feature of the
server for optimal performance, reliability, and manageability. The Encina transaction
monitor provides reliability for distributed transactions.

Many iPlanet Application Server components, including JSPs and applications, can be
deployed without shutting down the relevant servers. This provides maximum availability
while offering up-to-date application functionality.

Reacting to “unplanned success” is the most critical requirement for e-commerce platforms
on the internet where demand can scale from hundreds to millions of users over-night. The
iPlanet Application Server provides superior performance required to react to such high
volume by allowing companies to scale applications across multiple CPUs within a physical
hardware server, as well as across multiple machines.

New Features

Chapter 1 iPlanet Application Server 17

Enterprise-Class Development and Deployment
Tools
iPlanet Application Server supports the Java programming environment for new application
development, as well as existing Netscape Application Server 4.0 C++ applications.
However, Java applications are easier to develop and maintain, because they can take
advantage of the enhanced, standards-based application model.

Application developers can choose from among various tools to build applications. These
tools can range from simple text editors, to visual Java editors and visual HTML editors, to
integrated development environments (IDEs). iPlanet Application Server's workbench
plug-in framework enables a best-of-breed approach — developers can choose the
development tool of preference for creating iPlanet Application Server applications. J2EE
compliance provides simple plug-in capabilities for applications and components that are
externally developed or purchased on the open market.

The tools include iPlanet Application Builder and iPlanet Extension Builder. These tools
are tightly integrated with iPlanet Application Server but are packaged separately.

iPlanet Application Builder
iPlanet Application Builder is an Internet application development tool designed to simplify
the creation of multi-tiered enterprise-class applications that run on iPlanet Application
Server. iPlanet Application Builder provides an intuitive and productive web development
environment that enables developers to leverage the rich, prebuilt application and
infrastructure services of Application Server. By targeting the distributed multitier
application model of iPlanet Application Server, iPlanet Application Builder enables
developers to rapidly build sophisticated, business-critical web applications for the Internet.
iPlanet Application Builder also interoperates with third-party tools such as WebGain
VisualAge, Inprise JBuilder, and Macromedia Dreameaver.

Third Party Tools
Forte for Java Enterprise Edition is available for customers who are deploying large
(10-200) development teams, and working from a large pool of reusable components. Forte
for Java has strong versioning capabilities, making it ideal for environments where there is a
need to manage and control frequent application changes.

iPlanet Application Server also supports sophisticated Object to Relational (OR) mapping
middleware. CocoBase, from Thought, Inc., provides a dynamic repository based Object to
Relational mapping tool which delivers Container Managed Persistence (CMP) and Bean
Managed Persistence.

New Features

18 iPlanet Application Server Overview Guide • May 2000

Enhanced Management and Administration
iPlanet Application Server eases application management by providing integrated
management facilities.

iPlanet Application Server Administration Tool
iPlanet Application Server Administration Tool (iASAT) manages one or more iAS
machines or applicationsis. iASAT is a Java application with a graphical user interface that
manages such tasks as performance settings, load balancing parameters and configuring
devices. iASAT enables the following capabilities:

• Remote management of multiple servers and distributed applications.

• Dynamic deployment and scaling of applications.

• Performance tuning and optimization of the server environment.

• Management and tuning involves tasks such as adjusting database connection threads,
adjusting load-balancing parameters, configuring web servers, and managing roles

• Event Logging and Failure Analysis

• Security features including viewing and management of security roles

• Transaction Management features for local or global transactions

• Application management features for J2EE applications

Dynamic Application Management
iPlanet Application Server’s architecture allows partitioned applications to run even if one
or more servers fail. In a load-balanced server configuration, application logic can be
replicated on multiple servers. If a server fails, the load balancing module dynamically
directs requests to other available servers, thus preventing application-wide failure.

Because the iPlanet Application Server architecture promotes high availability of
applications, server administrators can use iPlanet Application Server Administrator to
perform a variety of tasks in real time, without interrupting an application’s operation.
These tasks include:

• monitoring, reconfiguring, or replacing servers

• swapping out or updating application components

New Features

Chapter 1 iPlanet Application Server 19

iAS Deployment Tool
The iPlanet Application Server Deployment Tool Features:

• Support for creation and deployment (and enhanced XML editing) of J2EE modules

• Support for J2EE assembly and automated deployment of J2EE applications and
components Configuration of security roles, authentication for the application, and
binding in LDAP

iAS Installation Tool
iPlanet Application Server Installation Tool provides four types of installation options:

• Express provides the quickest installation. Most configuration parameters are set to
default.

• Typical installation lets the administrator override some of the default configuration
parameters.

• Custom offers a complete installation. Administrators can configure databases,
transactions, and server processes and connections.

• Silent is a non-interactive installation process. Once an administrator has determined
the optimal parameters for a given server type, these can be re-used to quickly set up
additional installations.

Event Logging and Failure Analysis
iPlanet Application Server provides facilities for logging requests from Web servers and
logging system-level and application-level events on iPlanet Application Servers. For
deployed applications, system administrators can use contemporaneous logs to assist with
failure analysis and to detect attempted security breaches.

Event logging occurs in multiple ways on the iPlanet Application Server:

• Application developers can enable logging in their application logic to assist with
failure analysis. For example, an application can log messages like “Transaction
succeeded” or “Transaction failed” depending on conditions and events at run-time.

• System administrators can enable automatic event logging to record the messages
generated by dynamically loadable modules (DLMs) and application execution.

• System administrators can enable HTTP request logging to record and monitor the
requests received by a Web server. Administrators can specify brief, normal, or
detailed logging. If logging is enabled, iPlanet Application Server logs information
about the HTTP requests to a specified target database. Administrators can then
analyze the logs, generate custom reports, and so on. HTTP request logging requires
NSAPI or ISAPI Web Connectors.

New Features

20 iPlanet Application Server Overview Guide • May 2000

Support for Third-Party Management Tools
iPlanet Application Server provides the ability to be monitored and managed via SNMP
agents such as HP OpenView. SNMP is a protocol used to exchange data about system and
network status and activity.

iPlanet Application Server stores variables pertaining to network management in a tree-like
hierarchy known as the server’s management information base (MIB). Through this MIB,
iPlanet Application Server exposes key management information to third-party tools that
run SNMP. As a result, iPlanet Application Server can integrate with an enterprise’s server
management tools, thereby allowing other solutions for remote administration.

Tight Integration with iPlanet Directory Server
and iPlanet Web Server
iPlanet Application Server includes the run-time versions of the iPlanet Directory Server
and iPlanet Web Server, Enterprise Edition.

iPlanet Directory Server
iPlanet Directory Server, which is packaged with iPlanet Application Server, is iPlanet’s
implementation of the Lightweight Directory Access Protocol (LDAP). iPlanet Application
Server uses iPlanet Directory Server not only to store iPlanet Application Server
configuration data but also as a central repository for user and group information. A single
iPlanet Directory Server can support multiple instances of iPlanet Application Server. This
means that administrative data for all iPlanet Application Server installations can be
centralized in one place. iPlanet Directory Server automatically monitors any updates made
to iPlanet Application Server clusters or applications. This feature can reduce
administration and ensure the most recent applications are loaded.

The iPlanet Application Server Administrator acts as an LDAP client and can access
information about users and groups. As a result of this integration with LDAP, iPlanet
Application Server provides unified management of users, groups, and roles across the
enterprise.

iPlanet Web Server
iPlanet Web Server plug-in for iPlanet Application Server provides performance
improvements over other web server platforms; iPlanet Web Server supports servlet and
Java ServerPages standards, enabling J2EE application partitioning for performance
improvements, load-balancing capabilities, and component fail-over services.

Key Features

Chapter 1 iPlanet Application Server 21

Key Features

Application Model
An application model is the conceptual division of a software application into functional
components. The iPlanet Application Server application model promotes code reusability
and faster application deployment.

The iPlanet Application Server application model divides an application into multiple
layers: presentation, business logic, and data access. Presentation is further separated to
distinguish page layout and presentation logic. Data access refers to both databases and
other data sources.

The iPlanet Application Server application model is component-oriented. For Java
applications, the application model has been enhanced to be fully compliant with the J2EE
standard.

The following table lists the main components that make up the functions of an application
in the iPlanet Application Server environment:

Functionality in
Application

Application Components

Presentation logic Servlets

Page layout JavaServer Pages

Business logic Enterprise JavaBeans

Database access Enterprise JavaBeans using JDBC; query files

Access to other data
sources

Connectors, JMS

Key Features

22 iPlanet Application Server Overview Guide • May 2000

Industry-Standard Application Components
For developing Java applications, we recommend that you use standard components
whenever possible. These standards-based components include servlets, JavaServer Pages
(JSPs), and Enterprise JavaBeans (EJBs), described as follows:

• Servlets are Java classes that define page logic and page navigation. Servlets also
support the creation or invocation of business components.

• JSPs are web browser pages written in a combination of HTML, JSP tags, and Java.

• EJBs encapsulate an application’s business rules and business entities.

In addition, application components can invoke JDBC calls. JDBC is a standard API for
database connectivity.

High Scalability
iPlanet Application Server has a scalable architecture. This means that applications can be
built to meet the needs of initial deployment. Applications can then be scaled as business
needs grow.

Application scaling is accomplished in two main ways: either by adding more servers to a
cluster of servers, or by adding more CPUs to a multi-CPU system. Application logic can
then be deployed to the new servers. Developers do not need to change any application
logic as the user base grows.

In addition, application tasks can be assigned to the server best able to process the request
efficiently. This is accomplished either through application partitioning or through dynamic
load balancing.

Application Partitioning
The iPlanet Application Server architecture supports application partitioning, which allows
logic to be distributed across servers as an application scales to accommodate heavier loads.
Using iPlanet Application Server Administration Tool, system administrators can partition
an application into functional areas.

For example, in an online catalog application, the application logic for order processing,
inventory management, and checkout processing can reside on different servers. Regardless
of how applications are partitioned and distributed, the application functions as a single,
cohesive unit.

Key Features

Chapter 1 iPlanet Application Server 23

Application logic can also be grouped where each group consists of related operations. For
example, a group might contain all logic associated with order processing. Each application
component can belong to one or more groups. Applications can also share application logic.

System administrators can deploy these groups of application logic objects locally or
globally across application servers in the following ways:

• Portions of an application might uniquely reside on different iPlanet Application
Servers, yet still run as a single application. In this way, application logic can be stored
on the server that can run it most efficiently. For example, data-intensive application
logic can be run on the server that is closest to the data source to avoid latencies
associated with accessing remotely located data.

• For load-balanced applications, the same group of application logic objects can be
stored on multiple servers. This allows an application to run the application logic more
efficiently on the server with the most available resources.

• Applications might dynamically share certain application logic objects. For example,
all applications in a network might share the same application logic for user login and
authentication, or for credit card authorization.

• Application partitioning gives system administrators tremendous flexibility to scale
and tune the performance of applications. In addition, having application components
stored on multiple servers helps ensure high application availability in the event of a
server shutdown.

Dynamic Load Balancing
In an environment with multiple iPlanet Application Server installations, incoming requests
first pass through the Load Balancing System. The Load Balancing System directs the
request to the server best suited to process it. iPlanet Application Server offers many load
balancing methods, including server load, response time, round robin and weighted round
robin mechanisms. These are covered in detail in the Administration section.
Administrators can choose the among these load balancing mechanisms, as well as tune the
parameters as appropriate.

High Performance
iPlanet Application Server is a high performance, multi-threaded, and multiprocessing
application server. iPlanet Application Server can handle a high number of concurrent
requests, database connections, and sessions, and provides high performance even under
heavy loads.

Key Features

24 iPlanet Application Server Overview Guide • May 2000

In addition to the high-performance architecture, iPlanet Application Server offers many
features which offer enhanced efficiency.

iPlanet Application Server delivers high performance between web servers, other iPlanet
Application Server machines, and heterogeneous back-end data sources through the
following features:

• JSP caching

• Result caching

• Database connection caching

• Data streaming

• Multi-threaded capabilities

• Optimized Communication with Web servers

Aside from the application server, other factors affecting application performance include
network topology, network and server hardware, database architecture, and application
programming.

JSP Caching
iPlanet Application Server 6.0 provides a new feature called JSP Caching, which aids in
development of compositional JSPs. This provides functionality to cache JSPs within the
Java engine, thereby making it possible to have a master JSP which includes multiple JSPs
(similar to a portal page), each of which can be cached using different cache criteria. JSP
caching is in addition to result caching.

Result Caching
iPlanet Application Server improves application performance by caching the results of
application logic execution. Developers can optionally enable this feature in their
applications.

If caching is enabled, iPlanet Application Server saves the application logic’s input
parameters and results in the cache. The next time the iPlanet Application Server executes
the same request, the server can first check the cache to determine whether the input
parameters match the cached input parameters. If they match, the server retrieves the results
from the cache instead of executing the request again. Result caching is especially effective
for large data requests that involve lengthy processing time and for frequently accessed
application logic.

Key Features

Chapter 1 iPlanet Application Server 25

iPlanet Application Server has the ability to cache the results of a servlet in order to make
subsequent calls to the same servlet faster. iPlanet Application Server caches the results of a
request (i.e. a servlet’s execution) for a specific amount of time, so that if another call for
that data happens, it can just return the cached data rather than having to perform the
operation again.

Database Connection Caching
To improve performance, the iPlanet Application Server caches database connections so
that commonly used, existing connections are re-used rather than re-established each time.
Connection caching avoids the overhead involved in creating a new database connection for
each request.

Application developers can enable database connection caching in their application logic.
At run time, when a request creates a new connection to a database, iPlanet Application
Server stores the connection in the cache. When the request has completed using the
connection, the connection is marked as free in the cache. If a new request is made to the
same database by the same user, iPlanet Application Server can first check the cache and
use an existing free connection rather than creating a new one. If the freed connection
remains unused after a specified time-out period, it is released by the server.

System administrators can use the iPlanet Application Server Administration Tool to
specify server-wide settings for database connection caching, such as the initial number of
slots in the cache and the time-out limit for free connections, and so on.

Using iPlanet Application Server Administration, system administrators can monitor server
performance and tune the number of available connections in the cache. This ensures an
optimal ratio of cached connections to system resources.

Data Streaming
iPlanet Application Server provides data streaming facilities. Streaming improves
performance by allowing users to begin viewing results of requests sooner, rather than
waiting until the complete operation has been processed. Application developers can
explicitly control what data is streamed, or allow the system to provide automatic
streaming.

Streaming is especially useful for large data sets involving lengthy queries. For example,
suppose a user requests a price list containing 10,000 items. The application can process the
query and display items to the user as they become available, for example, 40 at a time
(typically one full page view), rather than wait until all 10,000 items have been retrieved
from the database.

Key Features

26 iPlanet Application Server Overview Guide • May 2000

Multi-threaded Capabilities
iPlanet Application Server supports the multi-threading capabilities of the host operating
system. An application can optimize performance by processing requests on multiple
threads, which maximizes CPU resource utilization.

Application developers automatically take advantage of multi-threading in their
applications. In addition, developers can run database operations such as queries, inserts,
updates, deletes, and so on, asynchronously. Asynchronous operations allow an application
to do other work while a time-consuming operation, such as a large query, runs in the
background.

System administrators can use iPlanet Application Server Administration tool to specify
settings for multi-threading, such as the following:

• Minimum and maximum number of threads to handle all requests

• Minimum and maximum number of threads to handle asynchronous database requests

Typically, administrators will monitor server performance and tune the number of available
threads to achieve an optimal ratio of threads to system resources.

Optimized Communication with Web Servers
iPlanet Application Server optimizes application performance through tighter integration
with web servers. This integration occurs using Web Connector Plug-ins and corresponding
Listeners. iPlanet Application Server supports NSAPI, ISAPI, and optimized CGI for
iPlanet, Microsoft, and CGI-compatible Web servers, respectively.

Session and State Management
iPlanet Application Server supports state and session management capabilities required for
web-based applications. iPlanet Application Server provides a number of classes and
interfaces that application developers can use to maintain state and user session
information.

State and session information is stored on each server in a distributed environment. For
example, an application can display a login screen, prompt users to enter their user name
and password, then save this information in a session object. Thereafter, the application
uses this same information to log in to multiple databases without prompting the user to
type it in again.

Key Features

Chapter 1 iPlanet Application Server 27

Similarly, in an online shopping application, a session object can store a list of products
selected for purchase (such as quantity, price, and so on) and persistent variables (such as
running order totals).

State and session management is especially important for applications that have complex,
multi-step operations. In an environment where application logic is partitioned across
different servers, system administrators can use the iPlanet Application Server
Administration to optionally designate a single server to act as the central repository for all
state information. As in previous versions, iAS maintains and replicates distributed user
session-information and distributed application-state information.

High Availability
Many enterprise applications must be accessible (available) to users 24 hours a day, 7 days
a week. iPlanet Application Server provides a highly available and reliable solution through
the use of load balancing and dynamic failover (also called failure recovery).

iPlanet Application Server enables you to distribute all or part of an application across
multiple servers. As a result, if one server goes down, the other servers can continue to
handle requests. iPlanet Application Server minimizes downtime by providing automatic
application restarting. In addition, iPlanet Application Server maintains and replicates
distributed user-session information and distributed application-state information.
Information is maintained as long as more than one iPlanet Application Server installation
is running in a cluster with the server that crashed.

Developers need not be concerned with building recovery and scalability features into their
application. The application inherits these features simply by being hosted on the runtime
environment.

iPlanet Application Server 6.0 features a set of failover capabilities that promote application
availability. These include:

• Stateful session bean failover A session bean implements business logic. For
example, a bean may hold the contents of an online shopping cart. If there are
unexpected fatal problems with the server, the bean fails over to another server, and the
user picks up where they left off. Supporting failover for stateful session beans is an
iPlanet Application Server value-added feature. J2EE programs do not need any
modification to support this iPlanet Application Server failover feature.

• Rich Client failover The Rich Client Corba Executive Service (CXS) acts as a bridge
between Rich Clients that use the Internet Inter-ORB Protocol (IIOP) and the EJBs on
iPlanet Application Server's Java engine(s). If the CXS server within iPlanet
Application Server crashes, the state of the bridge objects for all EJBs are restored to
that before the crash.

Key Features

28 iPlanet Application Server Overview Guide • May 2000

Security
Planet Application Server supports all J2EE security requirements, including role-based
authentication, certificate authentication, and form-based authentication.

iPlanet Application Server provides secure web server communication and supports SSL,
HTTPS, and HTTP challenge-response authentication to clients. To bridge the security gap
between browsers and data sources, iPlanet Application Server supports user
authentication, cookies, and database access controls for the secure handling of
transactional operations. Event logging and tracking enables detection of, and protection
against, unauthorized access.

Security Using Access Control Lists
iPlanet Application Server 6.0 also provides for security through Access Control Lists
(ACL). In this model, secure applications depends on two kinds of validation:

You authenticate users by comparing a user name and password provided by the user with a
user name and password stored in the directory server using LDAP. Authentication is held
in the user’s session and remains available until the session expires or the user logs out.
Components can retrieve the identity in order to ensure that the caller is authentic.

You create secure components by setting up access control lists (ACLs) that define
permissions granted to specific users and groups. These lists are also stored in the Directory
Server using LDAP. Components can test for a user’s membership in these groups.

The following diagram shows the basic steps in the security model:

• First, the application establishes a session for the user, and prompts the user to supply a
user name and password.

username
password

request context
create session

session

authenticate user

servlet EJB

identity
name
role

ACL
user/group
permission

ACL
user/group
permissionlog user out

request

request

request

invalidate session

tim
e

request

request

authenticate
user

sessions

Key Features

Chapter 1 iPlanet Application Server 29

• A servlet authenticates the user name and password by comparing them with the values
in the Directory Server, and then “logs the user in” by authenticating the user’s session.

• The server’s context, a programmatic view of the state of the server, recognizes the
authenticated session by managing an identity object to components. Components can
test authenticity by examining this identity.

• Additionally, components can test the identity to see whether it has permission to
perform certain tasks. These permissions are defined in an access control list, which
resides in the Directory Server.

• If the user logs out or the session expires, the context can no longer supply the identity,
so authentication fails for any requests that require security.

The identity can be used to determine whether a user or group is a member of a certain
“role”, so that application flow can be controlled based on a user’s function in the
application paradigm. For example, if part of your application is restricted to paying
customers only, those customers can be associated with a group called PayingCustomers.
You can then write your components to perform tasks based on a user’s membership in that
group.

Additionally, each component can have an access control list (ACL) that defines the
permissions given to various users or groups with respect to that component. You define the
permissions and the users/groups to which they apply either from the iPlanet Application
Server Administration Tool or in component configuration files. For example, an EJB that
represents an employee database can contain an ACL specifying that members of the group
Employee can only read the data, while members of the group Manager can also update the
data.

Key Features

30 iPlanet Application Server Overview Guide • May 2000

JMS - Java Message Server
JavaTM Message Service (JMS) 1.0.2 provides a set of standard Java language interfaces to
Enterprise Messaging Systems, often called Message Oriented Middleware. These
interfaces are implemented by products called JMS Providers. The JMS API and provider
framework enables the development of portable, message based applications in the Java
programming language.

JMS provides connection Pooling and User Mapping:

• Connection Pooling enhances the performance and reliability of iAS applications using
JMS via the creation and management of pools of connections from iAS to a
JMS-enabled messaging product.

• User mapping speeds iAS application development and eases administration by
supporting the easy mapping of users authenticated at the web application level to
users, groups, and roles authorized by the JMS-enabled messaging provider

Next Generation Applications with XML
iPlanet Application Server provides complete support for building the next generation of
vertical applications using XML. iAS is bundled with the Apache XML parser (Xerces) and
XSL processor (Xalan). The rich generating and validating capabilities allow the Xerces-J
Parser to be used for:

• Advanced vertical applications that use XML as their data format.

• Instant validation for creating XML editors.

• Creating and maintaining integrity of e-business data expressed in XML.

• Internationalizing XML applications.

• Creating XML aware Web servers.

Xerces provides excellent XML parsing and generation. It conforms to theW3C XML,
XML schema and DOM (Level 1 and 2) standards, as well as the defacto SAX (version 2)
standard for fully-validating Java parsers. The Xerces parser is component based, modular
and can be easily configured.

XML documents are converted to HTML, text and other XML document types using the
XSL processor, Xalan. for transforming XML documents into HTML, text, or other XML
document types. Xalan-J version 1.0.1 conforms to the Java W3C Recommendations for
XSL Transformations (XSLT) and the XML Path Language (XPath).

31

Chapter 2

Application Server Architecture

This chapter summarizes the design elements of iAS and describes the Application Server
structure.

This chapter contains the following sections:

• Application Server Overview

• The Multitiered Environment

Application Server Overview
An Application Server runs the software between a browser and data. For example, when a
customer enters an order from a browser, a web server sends the request to the application
server which executes logic and also retrieves and updates customer data from back-end
sources. The application server runs the business programs instead of the client (browser,
rich client), web server or back-end system. It sits in the middle between a client and an
enterprise’s data and other applications. It physically separates out the business logic from
the client and the data into an architecture known as multitier computing. Application
servers enables a business to develop and deploy applications quickly and easily and
increase the quantity of their users without reprogramming. It can do this because it is on a
separate tier.

Application Server Overview

32 iPlanet Application Server Overview Guide • May 2000

Application servers are the next logical step in enterprise web development. They
developed from the need to have mission critical applications consistently available to an
ever growing number of clients. Additionally these applications needed to be secure and
reliable so that regardless of the number of people accessing the system or the source of
data, the application server would always be up and running. Prior to application servers,
web applications were often run on web servers which are really only designed to serve up
web pages. Running and developing applications was slow and complex.

Application servers are part of a multi-tiered architecture. This is an architecture where
there is a physical separation between the client which requests information, the programs
that process the request and the data that is operated on. The multi-tiered architecture
evolved from the mainframe where client, data and process were centralized in the one
place. GUI interfaces were rare and remote multiple database access was difficult.
Client/Server computing followed in the mid 1980’s, where processing was divided
between the Client (a PC) and a Server (a mainframe) and requests were usually handled in
queries by a relational database system. The presentation and business logic was applied by
the PC after receiving processed data from the mainframe. This system allowed for modular
development and a GUI but deployment proved problematic.

Three-tier computing then divided the presentation logic from the business logic. This
separation meant that the business code was independent of how it was presented and
where. The business logic layer, now in the middle tier, need not be concerned with what
type of client displayed the data. Three-tier was more portable, worked across different
types of platforms and allowed for the balancing of requests from the client across multiple
servers. Security was easier to implement as the application software was now off the client

Limiting

Web Server

Static Test
and

Images

CGI – Slow
APIs – Difficult

CGI APIs

Dynamic Pages
with Database

Content

Difficult to Scale

JavaScript/
Visual Basic

Business
Process Support

for Small
Communities

Reliable,
Scalable, and Fast

Application
Servers

Business Critical
Applications for

Extended
Enterprises

Application Server Evolution

Application Server Overview

Chapter 2 Application Server Architecture 33

and costs were substantially reduced. But providing the underlying functions of the middle
layer such as transaction processing, security and accessing of the data layer was still
complex. The emergence of development tools and a runtime environment to solve this
problem came together as the Application Server.

Application Server Overview

34 iPlanet Application Server Overview Guide • May 2000

The Multitiered Environment
iPlanet Application Server is the middleware between enterprise data sources and the
clients that access those data sources. Business code is stored and processed on iPlanet
Application Server rather than on clients. An application is deployed and managed in a
single location, and the application is accessible to large numbers of heterogeneous clients.

iPlanet Application Server applications run in a distributed, multitiered environment. This
means that an enterprise system might consist of several application servers — computers
running the iPlanet Application Server software — along with multiple database servers
and web servers. Application code can be distributed among the application servers.
Overall, the machines and software involved are divided into three tiers:

• a client tier; the user interface. Requests for data originate here, represented by web
browsers or rich clients (such as a Java application).

• a server tier represented by a web server such as iPlanet Web Server Enterprise Edition
and an application server which runs the business code such as iPlanet Application
Server.

• a data tier, represented by relational databases or other back-end data sources such as
Oracle or SAP R/3.

Web
browsers

Legacy Systems

Application
Server(s)

iPlanet

Client Tier Server Tier Data Tier

Enterprise Apps

Databases

Rich
clients

Internet

Web
Server

Rich Client

Application Server Overview

Chapter 2 Application Server Architecture 35

• End users interact with client software, typically a web browser, to use the application.

• When a request originates from a web browser, it is sent to the web server. Assuming
the request requires application processing or data access, the web server forwards the
request to iPlanet Application Server (iAS).

• When a request originates from a java client, it is sent to iAS by way of an RMI/IIOP
link.

• iAS handles requests by running the appropriate application code (and accessing data
sources if needed). iAS returns the results to the web server, which in turn forwards the
reply back to the client.

Industry Standard Components
iPlanet Application Server is 100% compliant with the Java 2 Platform Enterprise Edition.
J2EE is a component based architecture for multi-tiered computing. With J2EE, business
logic can be reused and the application can be run on other platforms. Transaction
management, life- cycle management, and resource pooling are built into the J2EE platform
and provided automatically to the components it supports. Component and application
developers are free to focus on specifics such as business logic and user interfaces. The
J2EE application model encapsulates the layers of functionality in specific types of
components. Business logic is encapsulated in Enterprise JavaBean (EJB) components.
Client interaction can be presented through HTML, Java Server Pages (JSP), Servlets and
stand alone applets. For more information on J2EE see Chapter 4 “J2EE Concepts”
Following is a list of specific standards and components that iPlanet Application Server 6.0
supports:

• JDK 1.2 Specification

• Java Servlet 2.2 Specification

• Enterprise JavaBeans 1.1 Specification

• JavaServer Pages 1.1 Specification

• JDBC 2.0 Core Specification

• JDBC 2.0 Standard Extensions Specification

• JTA 1.0 Specification

• JNDI 1.2 Specification

• RMI-IIOP 1.0.1 Specification

• JavaMail 1.1 Specification

Application Server Overview

36 iPlanet Application Server Overview Guide • May 2000

• Java Message Service1.0.2 Specification

• JAF 1.0 Specification

• Corba 2.3 Specification

• HTML

• XML

• LDAP

• SNMP

• XA

Note that for building application components written in C++, iPlanet Application Server
provides the Foundation Class Library.

37

Chapter 3

Architectural Details

This chapter describes the processes, systems, and services that make up the architecture of
iAS.

The chapter contains the following sections:

• Server Processes

• System Components

Server Processes
The architecture of iAS includes three main types of internal servers, which are often called
engines or processes. They are responsible for all processing within iPlanet Application
Server. The following table summarizes the internal servers:

Note that C++ applications are supported in iPlanet Application Server 6.0 for
compatibility. All new applications should be developed using J2EE tools.

Internal Server Process Name Description

Executive Server KXS Provides most system services such as
Load balancing Dsync, repository and
failover.

Administrative Server KAS Provides system services for iAS
administration and failure recovery.

Java Server KJS Provides services to Java applications.

Server Processes

38 iPlanet Application Server Overview Guide • May 2000

Summary of Process Interactions
The following figure shows how the four iPlanet Application Server processes interact, and
the relationship of the application server to other complementary services:

When a web server forwards requests to iAS, the requests are first received by the
Executive Server process (KXS). The KXS process forwards the request either to a Java
Server process (KJS). A KJS process runs Java programming logic. Note that for migration
purposes a KCS, C++ engine exists and runs C++ programming logic. KCS runs in a
similar manner to the KJS engine.

Each KJS process maintains a specified number of threads and runs the programming logic
to completion on those threads. The results are returned to the web server and sent on to the
client browser.

The iAS technique of processing application requests is the key to reducing the load on a
web server, thereby providing faster response time. A server administrator can configure
the iAS environment for best performance by

• adding any number of iAS machines.

• specifying any number of KJS processes.

• maintaining any number of threads on each process.

In addition to providing high performance, the internal processes make it possible for iAS to
remain available 24 hours a day, 7 days a week. If a KJS process goes down, the KXS
process restarts it. And if the KXS process itself fails, then it is restarted by an additional
process—the Administrative Server process (KAS). Additional monitoring in iAS makes
sure that the KAS process is always running.

Server Processes

Chapter 3 Architectural Details 39

If all iAS processes go down, then other iAS machines in the cluster will take over, (this
assumes a multiserver environment.) In addition, iAS can replace the index page with a
redirected page and also send notifications by email and FAX to alert the system
administrator and redirect the system to a different site.

The next several sections describe the internal servers in more detail.

The Executive Server
The Executive Server is the main engine in the iPlanet Application Server. The Executive
Server is responsible for hosting many of the system-level services as they are needed by
iAS.

The Executive Server process (KXS) also distributes application requests to the appropriate
application process, Java Server.

For example, here is what happens when an application request comes into iPlanet
Application Server:

1. The Executive Server invokes the request manager, a system-level service.

2. The request manager assigns a thread from the pool to the request and forwards the
request to the appropriate Java Server which loads the application class if necessary
and executes the application logic.

3. When the request completes, the thread is returned to the thread pool.

The Administrative Server
The Administrative Server enables administration of one or more iPlanet Application
Servers. It registers with the appropriate server or servers all changes made to the system
and application settings using iAS Administrator Tool (iASAT), the GUI administration
tool.

The Administrative Server also hosts the failure-recovery service that restarts the other
server processes if they become unavailable. This failure-recovery service provides a high
degree of fault tolerance for iPlanet Application Server.

Server Processes

40 iPlanet Application Server Overview Guide • May 2000

The Java Server
The Java Server processes is the application server. Business logic components written in
Java are hosted in the Java Server. Business logic components are the core of the
application, holding the compiled code instructions written by the developer.

The Java Server (KJS) also hosts the application-level services. These services are
dynamically loaded into the appropriate process as needed by an application component.
For example, when an EJB requires access to a database, the Java Server loads in the data
access engine, uses its services, and then dismisses it. The database connection provided by
the data access engine is cached in the Java Server active memory. If another request enters
the system and accesses the same database, the cached connection is used. In this way, iAS
reduces the need to invoke the data access engine, thereby increasing the performance of
request processing.

System Components

Chapter 3 Architectural Details 41

System Components
This section describes the main internal systems that make up the iAS architecture. These
systems are shown in the following figure:

This section describes the following topics:

• Protocol Manager

• Load Balancing System

• Request Management System

• Application Components

• Application Services

• System Services

• Transaction Management System

• Security

• Administrative Services

Other System
Services

Other System
Services

Transaction
Management

System

Transaction
Management

System

Application ServicesApplication Services

Load Balancing SystemLoad Balancing System

Request Management SystemRequest Management System

Application ComponentsApplication Components

Protocol ManagerProtocol Manager

S
ec

ur
ity

S
ec

ur
ity

iP
la

ne
t A

dm
in

is
tr

at
iv

e
S

er
vi

ce
s

iP
la

ne
t A

dm
in

is
tr

at
iv

e
S

er
vi

ce
s

System Components

42 iPlanet Application Server Overview Guide • May 2000

Protocol Manager
Communication between a web server and iPlanet Application Server occurs through
NSAPI, ISAPI, and optimized CGI. Optimization and superior performance are achieved
through optimized communication via a plug-in on top of the internal protocol. Internal
components manages different protocols as they are encountered.

When a request comes in from a web browser, the request is passed to the web server via
the HTTP or HTTPS protocol. The request is processed by the appropriate web connector.
Web connectors include the NSAPI web connector, ISAPI web connector, and optimized
CGI web connector for iPlanet, Microsoft, and CGI-compatible web servers, respectively.

Load Balancing System
In an environment with multiple iAS installations, incoming requests first pass through the
Load Balancing System. The Load Balancing System directs the request to the server best
suited to process it. The Load Balancing System includes a Load Monitor and a Load
Balancer. There are a number of types of load balancing:

iAS employs several load balancing methods for optimum performance:

• Weighted round robin load balancing

• Response time load balancing

• System load based load balancing

In addition, the following load balancing types are supported

• Intraserver process level load balancing

• JSP load balancing

• Rich client load balancing

Administrators can choose the best method and once implemented requests are routed to the
most appropriate iAS machine.

System Components

Chapter 3 Architectural Details 43

Request Management System
Incoming requests are handled by the Request Management System. iAS is multi-threaded,
and the Request Management System assigns threads from a dynamic thread pool to
process the requests. The Request Management System enables the simultaneous
processing of a high volume of requests. System administrators can configure thread pool
parameters for optimal request processing. The Request Management System includes the
following subsystems:

• The Thread Manager provides a dynamic pool of threads. From this pool, a thread is
assigned to process the request.

• The Queue Manager gets involved when requests must be queued until a thread
becomes available.The Queue Manager manages the list of pending requests and
descriptive information. This information includes things such as the unique request ID
and a request’s current processing status, such as waiting, in process, finished, and so
on.

• Request Logging, if enabled by the system administrator, keeps an information log of
web server requests in a back-end database or in log files.

Application Components
Each incoming request identifies one or more application components. These components,
in turn, are identified by their globally unique identifier, or GUID. GUIDs are checked
against iAS’s Global Directory Service (GDS) and iPlanet Directory Server, an LDAP
server. If necessary, iPlanet Directory Server authenticates the request by checking against
known role information. The appropriate application component is then executed to process
the request. For example, the request may invoke a servlet, which in turn may call one or
more EJBs.

For more information about application components, see the Programmer’s Guide.

Application Services
Application services enable management of application functions, such as user sessions,
application states, cookies, email notification, result caching, and so on. These services are
invoked by application components using API calls. Application services are loaded into a
KJS process. The following sections summarize the services available to Java applications:

System Components

44 iPlanet Application Server Overview Guide • May 2000

Services Hosted by KJS
The following services are available to applications written in Java: Services Hosted by KJS
only S

Application
Service

Description

State and session
management

Manages user session information, such as user login, page
navigation information, and “shopping cart” selections. Manages
persistent state information. Distributed iAS machines can use a
state workspace to share information.

Cookie
management

Generates HTTP cookies for cookie-aware web browsers. For
non-cookie aware browsers, emulated cookies are embedded in
URLs or hidden fields.

Data access
management

Provides and manages access to databases.

Transaction
management

Manages database transactions, providing commit and rollback
support for those transactions. See “Transaction Management
System” for more information.

Database
connection
pooling

Caches database connections so that future access for the same
database is provided immediately.

Result caching Caches result-set data so future requests can be processed more
efficiently. If the request has been stored in the result cache, the
previously computed result is returned immediately. Otherwise, the
application logic is executed and the result is processed. System
administrators can configure result cache settings such as the
number of cache slots, time-outs, and cache cleaning interval.

Application events Based on time criteria or other event criteria, allows applications to
send and receive emails, to invoke Java applications,to invoke a
servlet. This is useful for administration.

HTML streaming Provides streaming of data back to HTML clients so as to return
data more efficiently.

Connectors Allow enterprise applications to integrate with applications
deployed on iAS. Connectors are persistent modules that are
dynamically loaded into iAS and are accessed by multiple EJBs
over the life of the extension. Although connectors act as
application services, connectors can also be considered as
application components.

System Components

Chapter 3 Architectural Details 45

The following services are available only to applications written in Java:

Application Service Description

JSP compiler Interprets JSP tags, the HTML-like tags that determine the layout of
pages sent to a web browser. The compiler supports Version 1.1 of
the JavaServer Pages specification.

Servlet container Contains and manages servlets through their life cycle by providing
network services over which requests and responses are set, by
decoding MIME-based requests, and by formatting MIME-based
responses. Supports HTTP and HTTPS.

EJB container Provides a home for EJBs and manages the beans it contains.
Management involves registering beans, providing a remote
interface for them, creating and destroying instances, checking
security, managing their active state, and coordinating distributed
transactions. The EJB container can also manage all persistent data
within the bean and includes a full global transaction manager.

Distributed
transactions

Supports transactions involving multiple databases (of different
types or in different locations). A distributed transaction is invoked
from an EJB and uses the built-in transaction processing manager
of iAS.

LDAP support Eases management and security by providing a central repository
for information about users and groups.

System Components

46 iPlanet Application Server Overview Guide • May 2000

System Services
System services increase the efficiency with which application requests are processed.
These services are not directly used by applications, but rather provide additional
application support outside the scope of application logic. There is no API access to
system-level services. A description of these services is provided in the following table.
(Note that some of the following services are described elsewhere in this chapter.)

Table 3-1

System Service Description

Protocol
management

Manages communications with clients by supporting the various
protocols used by the iPlanet Application Server.

Request
management

Manages requests as they arrive at the server, routing them to the
proper processes (the Java Server) and managing request thread
allocations.

Global Directory
Service

Repository for all application server metadata information

JNDI The Java Naming and Directory Interface (JNDI) is a standard
extension to the Java platform. The JNDI API provides Java
applications with a unified interface to multiple naming and
directory services in the enterprise.

Event logging Maintains a log of application logic execution. Application
developers can enable logging in their application logic to assist
with debugging and tuning. In addition, system administrators can
enable automatic event logging, which records the messages
generated by dynamically loadable modules (DLMs) and
application logic objects when processing user requests. Event
logging can run in all processes.

Load balancing Determines how application request loads are balanced among
multiple servers.

Application result
caching

Caches application results so that future requests for the same
application components by the same user are handled immediately.

Failure recovery Restarts the Executive Server, or Java Server processes if they ever
become unavailable.

Distributed data
synchronization

Supports failure recovery by synchronizing data. Data is
synchronized not only across all KJS processes running in iAS, but
also across all iAS installations within a cluster.

SNMP support Provides access to iAS via SNMP agents, thereby allowing remote
management from third-party administration tools.

System Components

Chapter 3 Architectural Details 47

Transaction Management System
The transaction management system provides support for the EJB transaction model. It is
also responsible for the transparent propagation of the transaction context across processes
and two phase commit coordination.

Local versus Global Transactions
For J2EE applications, iAS supports both local transactions and global transactions.

Global transactions can span multiple databases of potentially heterogeneous types,. Global
transactions are managed and coordinated by the transaction manager, and can span
multiple databases and processes. The transaction manager typically uses the XA protocol
to interact with database back-ends. Global transactions occur using a two-phase commit
from Encina, a transaction manager built into iPlanet Application Server.

Local transactions involve access to a single database. They provide better application
performance because they are less complex. Local transactions are native to a single
database and are restricted within a single process.

Global transactions can only be started declaratively through EJBs. By contrast, local
transactions can only be executed programmatically, from either servlets, JSPs, or EJBs.

Both the JDBC and iPlanet Application Server APIs rely on the Data Access Engine to
interact with database drivers. iPlanet Application Server provides native support for the
following database drivers: Oracle, DB2, Informix, Sybase, and (on Windows NT only)
SQLServer. There is also an ODBC driver. iPlanet Application Server can automatically
configure the drivers if they are installed before iPlanet Application Server.

The transaction management system also includes the Java Transaction API (JTA). JTA is
used for managing connections to a single database. JTA specifies local Java interfaces
between the transaction manager and the other transaction elements (which include iPlanet
Application Server and the transactional application). JTA provides a Java mapping of the
industry-standard X/Open XA protocol, which is used for distributed database applications.

Kernel services Provide low-level services to all other services and subsystems.
Examples of kernel services include language-binding engines and
the lock manager.

Table 3-1

System Service Description

System Components

48 iPlanet Application Server Overview Guide • May 2000

Architectural Details
The following figure shows the architectural details of the transaction management system:

Both the JDBC and iAS APIs rely on the Data Access Engine to interact with database
drivers. iAS provides native support for the following database drivers: Oracle, DB2,
Informix, Sybase, and (on Windows NT only) SQLServer.

The transaction management system also includes the user transaction interface specified in
the JTA specification. This interface allows the application developer to explicitly
demarcate transactions. For more information see the JTA specification and Programmer’s
Guide.

Security
Security in iAS is role based as specified in the J2EE specifications. Roles are defined by
the application assemblers and are accorded permissions to access bean methods, servlets
and JSPs. These roles are mapped at deployment time to LDAP users and groups. See the
Administration and Deployment Guide or the Programmer’s Guide.

Administrative Services
Administrative services run in KAS, the Administrative Server process. KAS enables
remote administration of servers and applications. KAS also supports other services, such
as application partitioning, event logging, request monitoring, and dynamic configuration of
key server settings.

iAS

Transaction
management system

JDBC

Data Access
Engine

JTA
Databases

Database drivers

Chapter 3 Architectural Details 49

Clients that access administrative services include iAS Administration Tool, iPlanet
Directory Server, and third-party SNMP agents. For more information, see the
Administration and Deployment Guide.

50 iPlanet Application Server Overview Guide • May 2000

51

Chapter 4

J2EE Concepts

This chapter describes the Java 2 Platform, Enterprise Edition and its role in the iPlanet
Application Server.

This chapter contains the following sections:

• J2EE Concepts

• J2EE Components

• The J2EE Programming Model

J2EE Concepts
J2EE solves the problem of the cost and complexity in developing multi-tiered services that
are scalable, highly available, secure and reliable. It achieves this by providing an open
standard architecture through the J2EE Platform and the J2EE Application Model. This
platform allows developers to focus on the business logic while J2EE handles all the low
level details. With J2EE, services are easily enhanced and rapidly deployed, allowing
business to quickly react to competitive changes.

J2EE is an open environment for developing and deploying multi-tiered services where
thin-client applications invoke business logic that executes on an application server such as
the iPlanet Application Server. It comprises of a set of services, application programming
interfaces and protocols. The Java programming language the Java Virtual Machine and
Java Bean components are the foundation of J2EE.

J2EE Concepts

52 iPlanet Application Server Overview Guide • May 2000

The Multi-Tiered Model

In the graphic above, the servlet receives the request, validates input, calls the session bean
and calls the JSP. The JSP formats the HTML and responds to the client. The session bean
validates the request, executes the process, and enforces transactions. The entity beans
manage the data.

In a multi tiered model, the first tier is the client and is usually a web browser or stand alone
Java application. This invokes the business logic on one or more middle tiers running on
dedicated hardware, which in turn accesses data from the Enterprise Information Service on
the third tier.

Developing a multi-tiered service requires client applications, business and presentation
logic (the applications that get, update and present data) and infrastructure code. The
infrastructure is the low level system components that access various databases, system
resources and provide security. Infrastructure details are handled by J2EE in iAS so the
developer needs only to develop the business and presentation logic.

In the middle tier, business logic is implemented as Enterprise Java Beans components
(EJB), while the presentation logic is implemented as Java Server Pages (JSP) and Servlets.
Servlets and JSPs allow the separation of the request processing from the presentation logic.
The presentation layer of the model allows easy access to the middle-tier business
functions. JSP technology allows developers to present dynamically created web pages.
Servlets allow developers to create dynamic presentations to users completely in the Java
programming language.

Presentation Application Logic

Servlet

JSP

Session
Bean

Entity
Bean

Entity
Bean

Logic Layout Business Data Access

J2EE Concepts

Chapter 4 J2EE Concepts 53

J2EE Benefits

• J2EE provides a seamless Java solution across all layers.

• Separation of tasks in the layered platform architecture into business logic away from
system services and the user interface, placing business logic it in a middle tier between
the two.

• Open set of standards— EJB, JSP, servlets, JDBC, JNDI, RMI make up the J2EE
platform.

• Portability— The Java feature of “Write Once, Run Anywhere”(WORA) is in all these
technologies. This means that any third party provider can write specially designed
components for iAS, reducing the cost of development.

• Scalability— Scalability is the responsibility of the iAS - the application does not need
to code for this. Enterprise application systems support high scalability by using a
multitier, distributed application architecture with the integrated components.

Client-Side
Presentation

Server-Side
Presentation

Server-Side
Business Logic

Enterprise
Information

Systems
BrowserBrowser

DesktopDesktop

Other DevicesOther Devices

Web ServerWeb Server EJBEJB
ContainerContainer

JSP
EJB

EJB

EJB
JSP

Java
Servlet

Pure
HTML

Java
Applet

Java
Appli-

cations

J2EE
Client

J2EE
Platform

J2EE
Platform

J2EE Concepts

54 iPlanet Application Server Overview Guide • May 2000

• Components— The presentation logic, business logic, and data access logic are
separated into suitable components and deployed on multiple servers. This enables s an
application to take advantage of the high performance of multi threaded and
multiprocessing systems.

• Language and API experiences can be leveraged when dealing with another area. For
example, experience of writing a Java applet is similar to writing a servlet. Experience
of writing a servlet is similar to writing an EJB.

• Sandbox, Garbage Collection, and Exception Handling automatically reduces the
problem of one component blocking the operation of the server or another component.
For example, servlets allow you to plug custom code into a Web server as a plug- in or
extension library would. The difference however, is that servlets have garbage
collection and exception handling abilities, so a problem in a servlet should not affect
the server operation. EJBs function in the same way and can be deployed on a database
or application server.

J2EE Components
Transaction management, life- cycle management, and resource pooling are built into the
J2EE platform and provided automatically to the components it supports. Component and
application developers are free to focus on specifics such as business logic and user
interfaces. The J2EE application model encapsulates the layers of functionality in specific
types of components. Business logic is encapsulated in Enterprise JavaBean (EJB)
components. Client interaction can be presented through the following:

• Plain HTML Web pages

• Web pages powered by Java applets

• Java Servlets API

• JavaServer Pages technology

• Stand- alone Java applications

Components communicate transparently using various standards, including HTML, XML,
HTTP, SSL, RMI, IIOP, and others.

J2EE Concepts

Chapter 4 J2EE Concepts 55

J2EE is made of different components;

• Servlets— an efficient platform- independent replacement for CGI scripts responding
to client requests.

• JavaServer Pages (JSP)— a type of server- side scripting, which can dynamically
generate Web pages.

• Enterprise JavaBeans (EJB)— server- side session management, business logic
encapsulating and abstractions for accessing persistent data.

• Java Database Connectivity (JDBC)— an API that describes a standard Java library
for accessing data sources.

• Transaction Support— declarative transactions for components where
transactions can span components and processes.

• Java Naming and Directory Interface (JNDI)— an abstract interface to name
binding and directory search services.

• Remote Method Invocation (RM/IIOP)— an enabling technology for distributed
object communication.

• CORBA Compatible— CORBA complements Java by providing a distributed objects
framework, services to support that framework and interoperability with other
languages.

Servlets

In J2EE, servlets manage the presentation logic of an application by acting as a central
dispatcher for applications by processing form input, invoking business logic components
by accessing Enterprise JavaBeans, and formatting page output using JSPs. Servlets control
the application’s flow from one user interaction to the next by generating content in
response to a request from a user.

Servlets are used to handle request and response from browser clients. Servlets are like
applets except they run on a server instead of a client.

Servlets
Request from Client

HTML

Calls to Business Logic

Dispatch to

J2EE Concepts

56 iPlanet Application Server Overview Guide • May 2000

Java Server Pages

JavaServer Pages (JSPs) are the presentation layout mechanism. They are browser pages in
HTML or XML. They can optionally contain Java code, which enables them to perform
complex processing, conditionalize output, and communicate with other objects in your
application. JSPs in iPlanet Application Server 6.0 are based on the JSP 1.1 specification

In iPlanet Application Server applications, you use JSPs as the individual pages that make
up your application. You can call a JSP from a servlet to handle the output from a user
interaction, or, since JSPs have the same access to the application environment as any other
application components, you can use a JSP as a destination from an interaction.

JSPs are compiled into servlets, either when installed or the first time they are called. This
makes JSPs available to the application environment as standard objects and enables them
to be called from a client using a URL.

You can think of servlets and JSPs as opposite sides of the same coin: each can perform the
tasks of the other. However, because JSPs are written as HTML files, with embedded Java
code, they are best suited for layout tasks. Servlets are best suited as central dispatchers for
incoming requests.JavaServer Pages (JSPs).

Enterprise Java Beans

Enterprise JavaBeans (EJBs) are applications. If servlets act as the central dispatcher for
your application and handle presentation logic, EJBs do the bulk of your application’s
actual data and rules processing but provide no presentation or visible user- interface
services. EJBs enable you to partition your business logic, rules, and objects into discrete,
modular, and scalable units. Each EJB encapsulates one or more application tasks or

}
Servlets

HTML Response
to Client

Request from Client or Dispatch
from another Component

JSP

Request
EJB Container

EJBEJB

Response

Calls to Data Layer
or other Busines Components

J2EE Concepts

Chapter 4 J2EE Concepts 57

application objects, including data structures and the methods that operate on them.
Typically, EJBs also take parameters and send back return values. EJBs always work within
the context of a “container,” which serves as a link between the EJBs and the server that
hosts them. As an iPlanet Application Server developer, you need not worry about the
container for your EJBs. The iPlanet Application Server software environment provides the
container. This container provides all the standard container services denoted in the EJB 1.1
specification. It also provides additional services such as stateful session bean failover. In
fact, the container can handle all remote access, security, concurrency, transaction control,
and database access. Because the actual implementation details are part of the container,
and there is a standard, prescribed interface between a container and its EJBs, the bean
developer is freed from having to know or handle platform- specific implementation details.
Instead, the enterprise bean developer can create generic, task- focused EJBs for use with
any vendor’s products that support the EJB Standard.

Session Beans and Entity Beans
There are two kinds of EJBs: entity and session. Each of these bean types is used differently
in a server application. An EJB can be an object that represents a stateless service, an object
that represents a session with a particular client (and which automatically maintains state
across multiple client-invoked methods), or can be a persistent entity object possibly shared
among multiple clients. A session bean implements business logic. All functionality for
remote access, security, concurrency, and transactions is provided by the EJB container. A
session EJB is a private resource used only by the client that creates it. More information on
session beans can be found in the EJB 1.1 specification.

Entity EJBs
Entity beans most commonly represent persistent data. This data is maintained directly in a
database, or accessed through a back-end application as an object. A simple example of an
Entity Bean would be one that is defined to represent a single row in a database table, and
where each instance of the Bean represents a specific row. A more complex example would
be an Entity Bean designed to represent complicated views of joined tables in a database
where each instance of the Bean would represent a single customer’s shopping cart
contents.

Unlike Session Beans, Entity Bean instances can be accessed simultaneously by multiple
clients. The container, is responsible for synchronizing the instance’s state by using
transactions. This delegation of responsibility to the container, means the Bean developer
does not need to worry about concurrent access to methods from multiple transactions.

The persistence of an Entity Bean can either be managed by the bean itself, or by the bean’s
container. When the Entity Bean manages it’s own persistence, it’s called Bean-managed
persistence. When the bean delegates this function to the container, it’s called
container-managed persistence (CMP).

J2EE Concepts

58 iPlanet Application Server Overview Guide • May 2000

Bean-managed Persistence. The bean developer must implement persistence code (such as
JDBC calls) directly in the EJB class methods, if the bean is to manage it’s own persistence.
The possible downside of this implementation is the loss of portability, if a proprietary
interface is used, and also the risk of tying the bean to a specific database.

Container-managed Persistence (CMP). The container provider uses the iPlanet
Application Server Deployment Tool (iASDT) to generate the bean code to implement the
container persistence process. The container manages, transparently to the bean, the
persistence state. The bean developer does not need to implement any data access code in
the bean’s methods. Not only is this method simpler for the bean developer to implement,
but it makes the bean fully portable, without any ties to a specific database.

Finally, any number of entity beans can be installed in a container. The container
implements a home interface for each entity bean. The home interface enables a client to
create, look up, and remove entity objects. A client can look up an entity bean’s home
interface through the Java Naming and Directory Interface (JNDI).

The J2EE Programming Model
The iPlanet Application Server 6.0 Application Server is Java 2 Platform, Enterprise
Edition specification version 1.2 (J2EE 1.2) compliant and is based on standards developed
by the Java community, including servlets, JavaServer Pages, and Enterprise JavaBeans.
iPlanet Application Server 6.0 programming model is for Java applications only. C++
applications continue to use the NAS 2.1 model.

iPlanet Application Server 6.0 is backward compatible with NAS 2.1. applications. NAS
2.1 applications can run on iPlanet Application Server 6.0 without code alteration. NAS 4.0
applications are compatible with conversion to the J2EE standard and do need some
conversion.

J2EE Concepts

Chapter 4 J2EE Concepts 59

Application flow is similar between the iPlanet Application Server version 6.0 model and
the previous version 4.0 and 2.1 models. Each user interaction is handled by one (or more)
application components that process the inputs, perform business logic functions, interact
with a database, and provide an output page that answers the input and sets up the next user
interaction. The new programming model describes three tiers of application logic, each of
which is represented by a set of components or APIs.

Programming
Tier

NAS 2.1
component

NAS 4.0
component

iAS 6.0
component

Description

Presentation
Logic

AppLogic Java servlet
and
proprietary
standards

Java servlet Controls the application’s interface to the user
by processing requests, generating content in
response, formatting and delivering that
content back to the user. In 6.0, servlets
process incoming requests and orchestrate the
response. Business logic is normally
offloaded to EJBs, and output is usually
offloaded to JSPs.

Presentation
Layout (part of
Presentation
Logic)

HTML
template

JavaServer
Page (JSP)
and
proprietary
standards

JavaServer
Page (JSP)

Controls the appearance of each page. Part of
the presentation logic, usually handled by
JavaServer Pages. JSPs are HTML pages that
contain embedded Java, and thus are much
more versatile and powerful than 2.1 HTML
templates.

Business Logic AppLogic Enterprise
JavaBeans
(EJBs) and
proprietary
standards

Enterprise
JavaBeans
(EJBs)

Controls business logic. EJBs enable business
logic to be persistent across calls, offer
improved caching, and are designed to work
closely with JDBC for database transactions.

Data Access
Logic

DAE JDBC and
proprietary
standards

JDBC Controls database storage and retrieval. The
JDBC API is available to all Java
components, as are all APIs, though database
transactions are usually controlled by EJBs in
the 6.0 model.

J2EE Concepts

60 iPlanet Application Server Overview Guide • May 2000

Presentation Logic and Layout
Presentation logic describes the flow of an application from the perspective of each user
interaction: request processing, followed by content generation and delivery. The goal of
presentation logic is to create a logical answer to a request, and to prompt for another
request. The goal of presentation layout is to display the content of this answer in a
predetermined format. Application functions such as user sessions, security and user
authentication, and input validation are also handled by the presentation logic.

In short, presentation logic involves everything related to the application’s interface with
the user.

In the NAS 2.1 programming model, presentation logic was controlled by an AppLogic,
while layout was handled by an HTML template. At run-time, the AppLogic provided
output to populate the template.

In the iAS 6.0 programming model, presentation logic is usually handled by a Java servlet.
Layout is usually handled by a JSP. At runtime, the servlet uses a JSP to format the content
generated by the business logic.

The two major alternatives to this basic model are as follows:

• Handle all presentation logic and layout for a given interaction in a JSP. This can be an
easy way to control an interaction that has no business logic and little to process from
the previous interaction. For example, the “front page” for an application often requires
no processing at all.

• Handle all presentation logic and layout in a servlet. This can be efficient for
interactions that have very little layout. For example, a simple database report might
just list the rows retrieved from a database query. It doesn’t make sense to incur the
overhead of a JSP call when the page can be simply output from a servlet.

Business Logic
Business logic describes the activities that involve the generation of specific content:
storing and retrieving data, and performing computations on that data. The goal of business
logic is to perform the activities that generate or determine answers to questions posed by
the presentation logic.

In short, business logic involves the content provided by and generated for the application.

In the NAS 2.1 programming model, business logic was controlled by the same AppLogic
that handled the presentation logic for a given user interaction.

J2EE Concepts

Chapter 4 J2EE Concepts 61

In the iAS 6.0 programming model, business logic is usually handled by one or more
Enterprise JavaBeans (EJBs), which control database transactions and encapsulate the
results. EJBs are powerful, reusable components that empower applications with a great
deal of flexibility, since EJBs can be invoked or inspected from any other object and can be
made to be persistent.

One alternative to this model is to handle business logic in the presentation logic (servlets
and/or JSPs), much the same way that AppLogics handled business logic. This can be
efficient for short, directed business events such as specific directory requests, but this
approach lacks the flexibility and power that EJBs bring to the programming model.

Data Access Logic
Data access logic describes transactions with a database or directory server. The goal of
data access logic is to provide an interface between an application and the set of data that
concerns it. Data access is normally performed as a function of business logic.

In short, data access logic involves the storage and retrieval of the content collected or
generated by business logic.

In the NAS 2.1 programming model, data access logic was controlled by calls made from an
AppLogic using APIs from several classes and interfaces, including the DataSet ,
DBDataSet , and DBStoredProcedure classes and the ICallableStmt ,
IColumn , IDataConn , IDataConnSet , IHierQuery , IHierResultSet ,
IListDataSet , IPreparedQuery , IQuery , IResultSet , ITable , ITrans ,
and IValList interfaces.

In the iAS 6.0 programming model, data access logic is handled by the JDBC standard set
of APIs. The previous APIs are all deprecated in iAS 6.0.

J2EE Concepts

62 iPlanet Application Server Overview Guide • May 2000

Rich Clients
The Rich Client is a stand-alone Java program that can directly access EJBs deployed on
iPlanet Application Server. Traditionally, clients communicated with iPlanet Application
Server through the web-path, i.e. by speaking HTTP to server components such as JSPs and
Servlets which in turn had access to EJBs within the context of the server. The J2EE v1.2
specification, however, requires that stand-alone clients be able to talk to iPlanet
Application Server using the RMI-IIOP standard. Chapter 9 of the J2EE v1.2 specification
also requires that these stand-alone clients operate within the context of an Application
Client Container (ACC) that isolates server-specific issues, leaving the clients completely
portable. Through its Rich Client infrastructure, iPlanet Application Server allows Java
clients to directly access EJBs on iPlanet Application Server. These clients could operate
within an ACC that ships with iPlanet Application Server as required by the J2EE ACC
specification or more straight forward direct access (non ACC path) the way Java
programmers are used to writing them.

The diagram below is a schematic representation of the iPlanet Application Server
architecture and illustrates the difference between the Rich Client and web paths. While
browser clients communicate with iPlanet Application Server using HTTP through a Web
Server, Rich Clients circumvent the Web server and directly access EJBs as RMI-IIOP
clients. Failover support is also provided for entity bean failover in case of a Corba
Executive Service (CXS) crash

The Rich Client is a first-tier program that executes in its own Java Virtual Machine (JVM),
possibly in an ACC. Deploying the Rich Client requires the specification of deployment
descriptors using XML.

JSPs

Servlets
EJBs

JDBC

Extensions

Web
Database

Enterprise
Applications

iPlanet Application Server

Server

Legacy
System

Rich
Client RMI-IIOP

HTTP

Browser

Client

J2EE Concepts

Chapter 4 J2EE Concepts 63

Container Managed Persistence
If you want the EJB container to manage the storing of entity bean variables to an
underlying resource manager, then the iPlanet Application Server Deployment Tool is used
to configure the EJB container with container managed persistence (CMP) settings.

iPlanet Application Server implements CMP with:

• Support for the J2EE v 1.2 specification CMP model.

• Support of multiple pluggable pooling and persistence managers on a per bean basis.

• Provide user with a deployment tool (iASDT) to perform the object relational (O/R)
mapping and create the separate CMP deployment descriptor XML files.

• Support for Commit Options B and C

• Support for sophisticated custom finder methods

• Pluggable Persistence Managers

Bean
Jar
File

Bean to
Database
Mapping
Informat

ion
(xml file)

Mapping
Tool

CMP Runtime

Deployment
Time

Run Time

Database

Load

Store

Etc. . .

Container

EJB Container

EJBEJB

Import Schema

J2EE Concepts

64 iPlanet Application Server Overview Guide • May 2000

Pluggable persistence managers allow users to set the persistence policies for a bean at
deployment time. This flexible framework allows a customer to use a third party persistence
manager of choice at deployment time. Factory classes for persistence manager can be set in
the bean's deployment descriptor XML file. The classes specified in these fields will be
used by the container to create either zero or one persistence managers for a bean.

iPlanet Application Server also supports sophisticated Object to Relational (OR) mapping
middleware. CocoBase, from Thought, Inc., provides a dynamic repository based Object to
Relational mapping tool which delivers CMP and Bean Managed Persistence.

RMI-IIOP
RMI over IIOP combines the best features of RMI with the best features of CORBA. Like
RMI, RMI over IIOP speeds distributed application development by allowing developers to
work completely in the Java programming language. When using RMI over IIOP to
produce Java technology-based distributed applications, there is no separate Interface
Definition Language (IDL) or mapping to learn. Like RMI, RMI over IIOP provides
flexibility by allowing developers to pass any serializable Java object (Objects By Value)
between application components. Like CORBA, RMI over IIOP is based on open standards
defined with the participation of hundreds of vendors and users in the Object Management
Group. Like CORBA, RMI over IIOP uses IIOP as its communication protocol. IIOP eases
legacy application and platform integration by allowing application components written in
C++, Smalltalk, and other CORBA supported languages to communicate with components
running on the Java platform.

Using JDBC for Database Access
In iAS, Enterprise JavaBeans (EJBs) support database access primarily through the JDBC
API. iPlanet Application Server supports all of JDBC 2.0 API including result set
enhancements, batch updates, distributed transactions, row sets, and JNDI support for
datasource name lookups.

While this section assumes familiarity with JDBC 2.0, it also describes specific
implementation issues that may have programming ramifications. For example, the JDBC
specifications do not make it clear what constitute JDBC resources. In the specifications,
some JDBC statements—such as any of the Connection class methods that close
database connections—release resources without specifying exactly what those resources
are.

J2EE Concepts

Chapter 4 J2EE Concepts 65

JDBC Overview
JDBC is a set of Java classes and methods that let you embed database calls in your server
applications. That’s all you need to know in order to start using JDBC in your server
applications.

More specifically, JDBC is a set of interfaces that every server vendor, such as iPlanet, must
implement according to the JDBC specifications. iPlanet Application Server provides a
JDBC type 2 driver which supports a variety of database back-ends. This driver processes
the JDBC statements in your applications and routes the SQL arguments they contain to
your database engines.

J2EE Concepts

66 iPlanet Application Server Overview Guide • May 2000

67

Chapter 5

iAS Product Family

This chapter describes the applications and services that integrate with the iPlanet
Application Server.

This chapter contains the following sections:

• iPlanet Application Builder

• iAS Deployment Tool

• iAS Administration Tool

• iAS Enterprise Connectors

• iPlanet Unified Integration Framework

• iPlanet Process Manager

• Sample Applications

• Encina Transaction Manager

• iPlanet Directory Server

• iPlanet Web Server Enterprise Edition

iAS in the iPlanet Framework

68 iPlanet Application Server Overview Guide • May 2000

iAS in the iPlanet Framework
iAS operates seamlessly with other iPlanet and many third party products to provide a
comprehensive enterprise solution.

iAS integrates with any J2EE third party product and with all iPlanet solutions, some of
which are shown above. Solutions to track, profile and maintain customers as well as
include all company relationships such as banks, customers, suppliers and employees are
available such as the fully service extensible applications like Process Builder, Biller Xpert,
Trader Xpert and Seller Xpert.

iPlanet Application ServeriPlanet Application Server

iPlanet Web ServeriPlanet Web Server

XMLXML

Rich ClientRich Client

Transaction ManagerTransaction Manager Directory ServerDirectory Server

WAPWAP

iPlanet Application ServeriPlanet Application ServeriPlanet Application ServeriPlanet Application Server

iPlanet Web ServeriPlanet Web Server

XMLXML

Rich ClientRich Client

Transaction ManagerTransaction Manager Directory ServerDirectory Server

WAPWAP

Enterprise ApplicationsEnterprise ApplicationsDatabasesDatabases

JDBCJDBC JMSJMS

Enterprise ConnectorsEnterprise Connectors
(SAP, (SAP, PeopleSoftPeopleSoft, CICS, Tuxedo, Custom), CICS, Tuxedo, Custom)

ExtensionsExtensions

AsynchronousAsynchronous
MessagingMessaging

((MQSeriesMQSeries))

Unified Integration FrameworkUnified Integration Framework

B2B IntegrationB2B Integration
iPlanetiPlanet ECXpertECXpert

3rd Party Directory Server

Enterprise ApplicationsEnterprise ApplicationsDatabasesDatabases

JDBCJDBC JMSJMS

Enterprise ConnectorsEnterprise Connectors
(SAP, (SAP, PeopleSoftPeopleSoft, CICS, Tuxedo, Custom), CICS, Tuxedo, Custom)

ExtensionsExtensions

AsynchronousAsynchronous
MessagingMessaging

((MQSeriesMQSeries))

Unified Integration FrameworkUnified Integration Framework

B2B IntegrationB2B Integration
iPlanetiPlanet ECXpertECXpert

3rd Party Directory Server

DeploymentDeployment
ToolTool

AdministrationAdministration
ToolTool

SNMPSNMP

DeploymentDeployment
ToolTool

AdministrationAdministration
ToolTool

SNMPSNMP

Process EngineProcess Engine

Process BuilderProcess Builder

Application BuilderApplication Builder

33rdrd Party ToolsParty Tools

Extension BuilderExtension Builder

Process EngineProcess Engine

Process BuilderProcess Builder

Application BuilderApplication Builder

33rdrd Party ToolsParty Tools

Extension BuilderExtension Builder

Components

Content Mgt Personalization Profiling Security Membership

Portal Server

Custom

Content Mgt Personalization Profiling Security Membership

Portal Server

Content Mgt Personalization Profiling Security Membership

Portal Server

CustomBillerX BuyerX SellerX TraderXCustom BillerX BuyerX SellerX TraderXCustom

The iPlanet Application Server Product Family

Chapter 5 iAS Product Family 69

The iPlanet Application Server Product Family
In addition to the core application server, the iPlanet Application Server product line
includes a comprehensive set of products and tools to help your organization quickly and
efficiently create business critical applications. These include:

iPlanet Application Builder
An Internet application development tool designed to simplify the creation of multi-tiered
enterprise-class applications that run on iPlanet Application Server. iPlanet Application
Builder provides an intuitive and productive web development environment that enables
developers to leverage the rich, prebuilt application and infrastructure services of
Application Server. By targeting the distributed multitier application model of iPlanet
Application Server, iPlanet Application Builder enables developers to rapidly build
sophisticated, business-critical web applications for the Internet.

iPlanet Application Builder 6.0 can be used with third party development tools, including
Symantec Visual Café, Macromedia Dreamweaver, Inprise JBuilder, WebGain Studio, and
others.

iPlanet Application Builder makes application development easy by offering powerful
programming integrated development environment, including the following functions:

• Java code editing with integrated builds and testing

• Debugging support using third-party IDEs

• WYSIWYG html editing

• Java code editing along with building, testing, and integrated debugging support

• Visual data modeling and point-and-click SQL editing

• HTML page and JSP design with point-and-click data binding

• Client-side Javascript support

• Deployment support

• Integrated source control

Wizard-based development, including the following features:

• Various wizards designed to guide you in creating parts of your application, allowing
you to quickly prototype.

The iPlanet Application Server Product Family

70 iPlanet Application Server Overview Guide • May 2000

• Many of the files that iPlanet Application Builder creates for you, especially Java files,
contain auto-generated code to get you started, including wizard support for JDBC
RowSet objects for point-and-click data binding, Java servlets, EJBs, and JavaServer
pages.

iAS Deployment Tool
An application must be deployed before it can be used, and iAS Deployment Tool is a GUI
tool that makes application deployment easier. You access this tool either from iAS
Administration Tool or from iPlanet Application Builder. The deployment tool can also be
used stand alone.

The iPlanet Application Server Deployment Tool Features:

• Support for creation and deployment (and enhanced XML editing) of J2EE modules

• Support for J2EE assembly and automated deployment of J2EE applications and
components Configuration of security roles, authentication for the application, and
binding in LDAP

For detailed information about using iAS Deployment Tool, see the Administration and
Deployment Guide

iAS Administration Tool
iAS Administration Tool (iASAT) is a GUI tool that contains several smaller tools for
managing one or more iAS machines or applications.

When you deploy an application, iAS Deployment Manager installs all the application’s
files and registers all of its components on the destination server (a server on which iAS has
been installed).

iPlanet Application Server Administrator enables the following capabilities:

• Remote management of multiple servers and distributed applications.

• Dynamic deployment and scaling of applications.

• Performance tuning and optimization of the server environment.

• Management and tuning involves tasks such as adjusting database connection threads,
adjusting load-balancing parameters, configuring web servers, and managing roles

• Event Logging and Failure Analysis

• Security features including viewing and management of security roles

The iPlanet Application Server Product Family

Chapter 5 iAS Product Family 71

• Transaction Management features for local or global transactions

• Application management features for J2EE applications

For detailed information about using iAS Administration Tool, see the Administration and
Deployment Guide.

Dynamic Application Management
iPlanet Application Server’s architecture allows partitioned applications to run even if one
or more servers fail. In a load-balanced server configuration, application logic can be
replicated on multiple servers. If a server fails, the load balancing module dynamically
directs requests to other available servers, thus preventing application-wide failure.

Because the iPlanet Application Server architecture promotes high availability of
applications, server administrators can use iPlanet Application Server Administrator to
perform a variety of tasks in real time, without interrupting an application’s operation.
These tasks include:

• monitoring, reconfiguring, or replacing servers

• swapping out or updating application components

iPlanet Unified Integration Framework
The iPlanet Unified Integration Framework is a toolkit that enables development of server
extensions that integrate with new, web-based enterprise applications and systems,
client-server applications, and third-party Internet solutions. These extensions provide a
consistent access layer to disparate back-end systems, dramatically reducing development
effort. The framework provides support for features such as object-pooling, distributed state
and session management, template streaming, and multi-threading enables
high-performance, fault-tolerant integration that can scale to tens-of-thousands of users.
Corporate IT developers, application vendors, and system integrators can easily build server
extensions to iPlanet Application Server in Java or C/C++.

The Unified Integration Framework offers:

• Faster time to market

• Enhanced manageability

• Enhanced application performance

• Enhanced Web-based application solutions

• Lower development costs

The iPlanet Application Server Product Family

72 iPlanet Application Server Overview Guide • May 2000

iAS Enterprise Connectors
iPlanet Application Server Enterprise Connectors include packaged solutions for CICS,
Tuxedo, SAP R/3 and PeopleSoft. Companies that want to extend their assets — and
decrease their time to market in the Net Economy — can quickly and easily convert their
legacy data into rich, dynamic Internet application services. iPlanet Enterprise Connectors
provide “out-of-the-box” integration using the iPlanet Unified Integration Framework —
developers can add new services on top of native logic without needing to learn the native
back-end APIs. Developers can extract both native legacy data and logic, and store it into a
metadata repository. New, Internet-ready services are added to the logic and the application
can then be deployed to the Internet without any modification to native code. New services
are rendered as Enterprise JavaBeans, components which can be reused across multiple
applications.

• Packaged Enterprise Connectors offer “out-of-the box” integration capability to
common legacy and enterprise resource planning (ERP) systems

• All iPlanet integration solutions work together in any combination on a single iPlanet
Application Server installation

• Provides support for Internet standards including Java 2 Enterprise Edition (J2EE),
XML, WAP, JMS

• Consistent development model and API utilize a common integration framework

• Comprehensive solutions convert existing enterprise, legacy and ERP assets into
dynamic Internet services

The iPlanet Application Server Product Family

Chapter 5 iAS Product Family 73

iPlanet Process Manager
A comprehensive web-based solution for designing, deploying, managing, and participating
in automated business processes such as claims management, customer self service, and
order fulfillment. An intuitive development environment and advanced scalability and
reliability features allow an enterprise to easily extend information on Enterprise Resource
Planning (ERP) systems, mainframes, and custom applications to employees, partners,
suppliers, and customers. It includes iPlanet Process Builder, iPlanet Process Express,
iPlanet Process Administrator, iPlanet Application Server, iPlanet Web Server, and iPlanet
Directory Server.

iPlanet Process Manager helps streamline communication and business processes by
providing authorized employees, partners, suppliers, and customers with immediate,
real-time access to core business processes and applications using a standard web browser.
This allows participants in automated processes to search for information in a variety of
categories: work in progress, application, process instance, date, and user. iPlanet Process
Manager also allows an enterprise to customize user interfaces without the need for custom
software.

Sample Applications
iAS includes sample web-based applications, enabling you to quickly learn techniques for
developing and deploying applications in a iAS environment.

These Sample Applications are fully functional and J2EE compliant. See the developers
section of the iPlanet web site for these and upcoming examples.

• Java Pet Store

• Bank

• Fortune

• J2EE developers examples

One sample presents a bookstore application that simulates browsing, searching, and
ordering books online. This Java application demonstrates the iAS application model that
uses industry-standard components such as servlets, JavaServer Pages, Enterprise
JavaBeans, and data access with JDBC. For information about installing or using the online
bookstore application, see the Installation Guide or the Programmers Guide (Java).

The iPlanet Application Server Product Family

74 iPlanet Application Server Overview Guide • May 2000

Another sample presents a banking application that simulates a user session with an online
account. This sample demonstrates techniques for migrating existing applications to comply
with the industry-standard Java application model. For information about installing the
bank application, see the Installation Guide. For details about the application code, see the
Migration Guide.

Encina Transaction Manager
iPlanet Application Server integrates the Encina transaction monitor as a core feature of the
server for optimal performance, reliability, and manageability. The Encina transaction
monitor provides reliability in area of distributed transactions. Global transactions are
coordinated within a Java Server with the Transaction Manager. Global Transactions are a
set of related operations that must be executed as a unit, though each operation may run in a
different process.

You can use global transactions to update a database that uses one or more EJBs running
concurrently for the same global transaction, from within one or more KJS processes. This
occurs when an EJB triggers another EJB to run and they both participate in the same
transaction. You can also update multiple databases that are distributed over different
geographic locations or update multiple databases of different types, such as Oracle and
Sybase).

iPlanet Directory Server
iPlanet Directory Server (iDS) provides a comprehensive, enterprise-wide directory service
for managing information about users, groups, and access control lists. iAS 6.0 includes
iPlanet Directory Server, which supports versions 2 and 3 of the Lightweight Directory
Access Protocol (LDAP). iAS uses the Directory Server for storing configuration
information.

• IDS automatically monitors any updates made to iAS clusters or applications. This
reduces the burden on system administrators when adding or modifying J2EE
applications ensuring the most recent applications are available.

• iDS manages password policies and user groups for iAS.

• iDS Stores information on location and availability of components in iAS. iDS stores
application configuration information and access controls for J2EE application
components.

• iDS clusters alongside iAS clusters to ensure high availability of server configuration.

The iPlanet Application Server Product Family

Chapter 5 iAS Product Family 75

• iDS integration with iAS provides significant performance improvements over using
flat file or RDBMS systems for user and application information.

For more information, see the data sheet for iPlanet Directory Server 6.0.

iPlanet Web Server Enterprise Edition
iPlanet Web Server Enterprise Edition, (iWS) is best suited for the Enterprise and Service
Provider segment, particularly for e-commerce sites. Designed to handle the extremely high
demands of managed sites, while minimizing the IT workload required to build, secure, and
maintain the. iWS:

• Maximizes uptime through intelligent load balancing, process monitors, dynamic log
rotation, and support for multiple processes on UNIX®

• Delivers a personalized user experience through its high-performance Java(TM)
application platform supporting Java Servlets, JavaServer Pages(TM), and in-process,
plugable Java Virtual Machines

• Performs optimally at high load because of its multi-process, multi-threaded
architecture, HTTP 1.1 compliance, and support for SSL hardware accelerators

• Eases management of complex websites with millions of users through delegated
administration, cluster management, SNMP monitoring and tight integration with
iPlanet Directory Server

The iPlanet Application Server Product Family

76 iPlanet Application Server Overview Guide • May 2000

77

Index

A
Administrative Server (KAS), 38, 39

application events, 44

B
Business Logic, 60

C
C++ Server (KCS), 38, 40
caching

database connections, 44
results, 44

client tier, 34
cookie management, 44

D
data tier, 34
distributed transactions, 45

E
EJB container, 45

EJBs
entity beans, 57

Enterprise Java Beans, 56

Entity Beans, 63
entity beans, 57
event logging, 46
Executive Server (KXS), 38, 39

F
failure recovery service, 39, 46

G
Global Directory Service (GDS), 46

J
Java Naming and Directory Interface (JNDI), 46
Java Server (KJS), 38, 40
JDBC, 65
JSP compiler, 45

78 iPlanet Application Server Overview Guide • May 2000

K
KXS, KAS, KJS, KCS, 37

L
LDAP, 45
listeners, 42
load balancing, 42, 46

P
protocol manager, 42

R
request management, 43

Rich, 62
Rich Clients, 62
RMI-IIOP, 64

S
sample applications, 73
services

application services, 43
system services, 46

servlet container, 45
session management, 44
state management, 44

T
The Java Server, 40

transaction management, 47

U
Unified Integration Framework, 71

W
web connectors, 42
WORA), 53

