
Migration Guide
iPlanet Application Server
Version 6.0
866-3495-01
January 2001

Copyright © 2001 Sun Microsystems, Inc. Some preexisting portions Copyright © 2001 Netscape
Communications Corporation. All rights reserved.

Sun, Sun Microsystems, and the Sun logo, Netscape, Netscape Navigator, Netscape Certificate Server,
Netscape DevEdge, Netscape FastTrack Server, iPlanet, and the Netscape N and Ship’s Wheel logos are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
Netscape and the Netscape N logo are registered trademarks of Netscape Communications Corporation in the
U.S. and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries.

Other product and brand names are trademarks of their respective owners.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and
Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of the product or this document may be reproduced in any form by any means
without prior written authorization of the Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2001 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2001 Netscape
Communication Corp. Tous droits réservés.

Sun, Sun Microsystems, et the Sun logo sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et d’autre pays. Netscape et the Netscape N logo sont des marques
déposées de Netscape Communications Corporation aux Etats-Unis et d’autre pays. Les autres logos, les
noms de produit, et les noms de service de Netscape sont des marques déposées de Netscape Communications
Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent
l'utilisation, la copie, la distribution et la décompilation. Aucune partie de ce produit ni de ce document ne
peut être reproduite sous quelque forme ou par quelque moyen que ce soit sans l’autorisation écrite préalable
de l’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS
EXPRESSES OU IMPLICITES, TOUTES REPRÉSENTATIONS ET TOUTES GARANTIES, Y
COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À UN BUT
PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA
MESURE OÙ DE TELLES EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

Printed in the United States of America 00 99 98 5 4 3 2 1

SERAIENT CONTRAIRES À LA LOI.

Contents

Preface . 7
Using the Documentation 7
How This Guide Is Organized 10
Documentation Conventions 10
Related Information . 11

Chapter 1 Migration Overview . 13
The New J2EE Programming Model . 13

Component Modularity and Flexibility . 15
Presentation Logic and Layout . 15
Business Logic . 16
Data Access Logic . 16

Migrating NAS 2.1 Applications to iPlanet Application Server 6.0 . 17
Migrating NAS 4.0 Applications to iPlanet Application Server 6.0 . 18

Chapter 2 Running NAS 2.1 Applications . 19
NAS 2.1 Application Components . 19

HTML Templates . 20
AppLogics . 20
Database Logic: DAE and JDBC . 20
NAS Registry . 21

Deploying NAS 2.1 Applications . 21
Java Extensions . 21
C++ Applications and Extensions . 22
Beginning the Migration Process . 22
Migrating the Sample Applicatons . 22

Online Bank Example . 22
Migration From NAS 2.1 to iPlanet Application Server 6.0 - Solaris Only 23
C++ COnlineBank(NAS2.1) Sample Application . 24

US Population Java Sample Application . 24
3

US Population C++ Sample Application . 25

Chapter 3 Migrating NAS 2.1 Applications . 27
Redesigning Your Application . 27
Migrating Presentation Logic . 28

Recreating AppLogics as Servlets . 28
AppLogic . 28
Servlet . 29

Recreating Presentation Layout . 29
Recreating Sessions and Security . 30

Migrating Business Logic . 30
Migrating Data Access Logic . 30

Incompatibility Errors . 31
Partial Component Migrations . 31

Calling EJBs from Java AppLogics . 31
Calling Servlets from Java AppLogics . 33
Calling Java AppLogics from Servlets . 34

Accessing the Servlet’s AppLogic . 35
Calling C++ AppLogics from Servlets . 36
Sessions in Partially Migrated Applications . 36

Making the Session Visible . 37
Converting ITemplateData to ResultSet . 37

Chapter 4 Running NAS 4.0 Applications . 39
Overview . 39
Differences Between NAS 4.0 and iPlanet Application Server 6.0 . 40
Migrating NAS 4.0 Components . 40

Basic Migration Steps . 41
JDK Migration . 41

JDK Migration Steps . 42
Servlet Migration . 42

Servlet API Changes . 43
Servlet Migration Steps . 44

Servlet Deployment . 45
JSP Migration . 46

GX Tags Deprecated . 46
JSP Migration Steps . 46
Converting JSP 0.92 to JSP 1.1 . 46

EJB Migration . 48
EJB Migration Steps . 48
Instances Where EJB Code Must Be Changed or Re-compiled . 49
Exception Handling Changes . 50
4 iPlanet Application Server Migration Guide • January 2001

EJB Deployment . 50
JNDI Migration . 51
Java Extensions . 51
C++ Extensions . 52
Using Rich Client (ISecurity Interface) . 52

Security Features . 52
Migration Example “The Bank” . 53

Comparison of iPlanet Application Server 6.0 Bank Application & NAS 4.0 nsOnlineBank 53
General Porting Guidelines . 55

Further Reading . 55

Chapter 5 Running NetDynamics Applications . 57
Overview . 57
Migration Planning Considerations . 58

Migration Path . 58
Migration Planning and Estimating . 59

iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO) . 60
iPlanet Migration Toolbox . 60
JATO Application Framework . 61
iMT/JATO Community . 62

Index . 63
5

6 iPlanet Application Server Migration Guide • January 2001

ation

riate
Preface

This guide describes how to migrate applications from Netscape Application Server
versions 2.1 and 4.0 to iPlanet Application Server 6.0. In addition, this guide includes
information for migrating Net Dynamics applications.

This preface contains the following sections:

• Using the Documentation

• How This Guide Is Organized

• Documentation Conventions

• Related Information

Using the Documentation
The following table lists the tasks and concepts that are described in the iPlanet Applic
Server and iPlanet Application Builder manuals and Release Notes. If you are trying to
accomplish a specific task or learn more about a specific concept, refer to the approp
manual.

Note that the printed manuals are also available online in PDF and HTML format, at:
http://iplanet.com/manuals/ias.

For information about See the following Shipped with

Late-breaking information about the
software and the documentation

Release Notes iPlanet Application
Server 6.0, iPlanet
Application Builder 6.0

Installing iPlanet Application Server and its
various components (Web Connector
plug-in, iPlanet Application Server
Administrator), and configuring the sample
applications

Installation Guide iPlanet Application
Server 6.0
7

Using the Documentation
Installing iPlanet Application Builder. install.htm iPlanet Application
Builder 6.0

Basic features of iPlanet Application Server,
such as its software components, general
capabilities, and system architecture.

Getting Started Guide Available online.

Administering one or more application
servers using the iPlanet Application Server
Administrator Tool to perform the following
tasks:

• Deploying applications with the
Deployment Manager tool

• Monitoring and logging server activity

• Setting up users and groups

• Administering database connectivity

• Administering transactions

• Load balancing servers

• Managing distributed data
synchronization

Administration &
Deployment Guide

iPlanet Application
Server 6.0

Migrating your applications to the new
iPlanet Application Server 6.0 programming
model from the Netscape Application Server
version 2.1, including a sample migration of
an Online Bank application provided with
iPlanet Application Server

Migration Guide iPlanet Application
Server 6.0, iPlanet
Application Builder 6.0

For information about See the following Shipped with
8 iPlanet Application Server Migration Guide • January 2001

Using the Documentation
Creating iPlanet Application Server 6.0
applications within an integrated
development environment by performing the
following tasks:

• Creating and managing projects

• Using wizards

• Creating data-access logic

• Creating presentation logic and layout

• Creating business logic

• Compiling, testing, and debugging
applications

• Deploying and downloading applications

• Working with source control

• Using third-party tools

User’s Guide iPlanet Application
Builder 6.0

Creating iPlanet Application Server 6.0
applications that follow the open Java
standards model (Servlets, EJBs, JSPs, and
JDBC), by performing the following tasks:

• Creating the presentation and execution
layers of an application

• Placing discrete pieces of business logic
and entities into Enterprise Java Bean
(EJB) components

• Using JDBC to communicate with
databases

• Using iterative testing, debugging, and
application fine-tuning procedures to
generate applications that execute
correctly and quickly

Programmer’s Guide
(Java)

iPlanet Application
Builder 6.0

Using the public classes and interfaces, and
their methods in the iPlanet Application
Server class library to write Java
applications

Server Foundation
Class Reference (Java)

iPlanet Application
Builder 6.0

For information about See the following Shipped with
Preface 9

How This Guide Is Organized

nline

ration

shes
How This Guide Is Organized
This guide is organized into five chapters, as follows:

• Chapter 1, Migration Overview

• Chapter 2, Running NAS 2.1 Applications

• Chapter 3, Migrating NAS 2.1 Applications

• Chapter 4, Running NAS 4.0 Applications

• Chapter 5, Running NetDynamics Applications

In addition, there is a complete code walkthrough of an example migration using the O
Bank sample application from NAS 4.0 to iPlanet Application Server 6.0. This code
example is also available online. Check the iPlanet web site support area for more mig
details.

Documentation Conventions
File and directory paths are given in Windows format (with backslashes separating
directory names). For Unix versions, the directory paths are the same, except that sla
are used instead of backslashes to separate directories.

This guide uses URLs of the form:

http://server.domain/path/file.html

In these URLs, server is the name of server on which you run your application; domain is
your Internet domain name; path is the directory structure on the server; and file is an
individual filename. Italic items in URLs are placeholders.

This guide uses the following font conventions:

Using the public classes and interfaces, and
their methods in the iPlanet Application
Server class library to write C++
applications

Server Foundation
Class Reference (C++)

Order separately

For information about See the following Shipped with
10 iPlanet Application Server Migration Guide • January 2001

Related Information

ctory

 used

uct.

do

• The monospace font is used for sample code and code listings, API and language
elements (such as function names and class names), file names, pathnames, dire
names, and HTML tags.

• Italic type is used for book titles, emphasis, variables and placeholders, and words
in the literal sense.

Related Information
Specifications related to the iPlanet Application Server 6.0 programming model are provided
in the docs directory on your installation CD. However, always refer to the online
documentation first as this may have been updated since you have received the prod

The official specifications are maintained at the following URLs. Note that these sites
not necessarily contain the versions of these specifications that are supported by iPlanet
Application Server.

Additionally, the he following resources are available:

Programming with Servlets and JSPs
• Java Servlet Programming, by Jason Hunter with William Crawford, O’Reilly Publishing

• Java Threads, 2nd Edition, by Scott Oaks & Henry Wong, O’Reilly Publishing

• The web site http://www.servletcentral.com

Programming with EJBs
• Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

• The web site http://ejbhome.iona.com

For information about See the following

Servlets http://java.sun.com/products/servlet

JavaServer Pages (JSPs) http://java.sun.com/products/jsp

Enterprise JavaBeans (EJBs) http://java.sun.com/products/ejb

Java Naming and Directory Interface
(JNDI)

http://java.sun.com/products/jndi

Java Database Connectivity (JDBC) http://java.sun.com/products/jdbc
Preface 11

Related Information
Programming with JDBC
• Database Programming with JDBC and Java, by George Reese, O’Reilly Publishing

• JDBC, by Graham Hamilton, Rick Cattell, Maydene Fisher
12 iPlanet Application Server Migration Guide • January 2001

on.

ion
amely:
rietary

at
ovide

odel,
Chapter 1

Migration Overview

This chapter introduces the iPlanet Application Server 6.0 programming model and
compares it to both the NAS 4.0 programming model and the NAS 2.1 programming
model. It also describes the basics of migrating applications to the new model.

The new iPlanet Application Server 6.0 programming model is for Java applications only.
C++ applications continue to use the NAS 2.1 model. Note the following compatibility
issues:

• iPlanet Application Server 6.0 is backward compatible with NAS 2.1 applications.
NAS 2.1 applications can run on iPlanet Application Server 6.0 without code
alteration.

• iPlanet Application Server 6.0 is compatible with NAS 4.0 applications with
conversion to the J2EE standard. NAS 4.0 applications do require some conversi

The New J2EE Programming Model
iPlanet Application Server 6.0 is Java 2 Platform, Enterprise Edition (J2EE) specificat
version 1.2 compliant and is based on standards developed by the Java community, n
servlets, JavaServer Pages, and Enterprise JavaBeans. This is in contrast to the prop
AppLogic-based programming model used in NAS 2.1. NAS 4.0 is based on the J2EE
programming model but uses earlier versions of the standards.

Application flow is similar between the iPlanet 6.0 model and the previous 4.0 and 2.1
models. Each user interaction is handled by one (or more) application components th
process the inputs, perform business logic functions, interact with a database, and pr
an output page that answers the input and sets up the next user interaction. The 6.0 m
like the 4.0 model, is more modular and segregates activities into more discrete
components.
13

The New J2EE Programming Model
The new programming model describes three tiers of application logic, each of which is
represented by a set of components or APIs. These tiers are described in the following table:

Programming
Tier

NAS 2.1
component

NAS 4.0
component

iPlanet
Application
Server 6.0
component

Description

Presentation
Logic

AppLogic Java servlet
and
propietrary
standards

Java servlet Controls the application’s
interface to the user by
processing requests, generating
content in response, formatting
and delivering that content back
to the user. In 6.0, servlets
process incoming requests and
orchestrate the response.
Business logic is normally
offloaded to EJBs, and output is
usually offloaded to JSPs.

Presentation
Layout (part of
Presentation
Logic)

HTML
template

JavaServer
Page (JSP)
and
propietrary
standards

JavaServer
Page (JSP)

Controls the appearance of each
page. Part of the presentation
logic, usually handled by
JavaServer Pages. JSPs are
HTML pages that contain
embedded Java, and thus are
much more versatile and
powerful than 2.1 HTML
templates.

Business Logic AppLogic Enterprise
JavaBeans
(EJBs) and
propietrary
standards

Enterprise
JavaBeans
(EJBs)

Controls business logic. EJBs
enable business logic to be
persistent across calls, offer
improved caching, and are
designed to work closely with
JDBC for database transactions.

Data Access
Logic

DAE JDBC and
propietrary
standards

JDBC Controls database storage and
retrieval. The JDBC API is
available to all Java components,
as are all APIs, though database
transactions are usually
controlled by EJBs in the 6.0
model.
14 iPlanet Application Server Migration Guide • January 2001

The New J2EE Programming Model

th

c
This section includes the following additional topics:

• Component Modularity and Flexibility

• Presentation Logic and Layout

• Business Logic

• Data Access Logic

Component Modularity and Flexibility
The terms “normally” and “usually” appear frequently in this document and in the
Programmer’s Guide with regard to the roles of iPlanet Application Server 6.0 components.
Since servlets, JSPs, and EJBs all reside within the same virtual machine and are all Java
objects, they share a flexibility that allows each task to be addressed by more than one
component. There are no hard and fast rules specifying which tasks are appropriate for
which components. For example, an entire complex application could be written using only
JSPs, or only servlets.

However, the components are designed to work together in a modular way, taking
advantage of the strengths of each component. For example, it is more cumbersome to
perform layout tasks in a servlet, but JSPs (as HTML pages) are highly suitable for layout
tasks. Alternatively, presentation logic is compact and elegant in a servlet.

The segregation and order of components describes a powerful application model that runs
well in a distributed environment. Choose components that perform the tasks you need,
using the programming tiers described here as a guideline.

Presentation Logic and Layout
Presentation logic describes the flow of an application from the perspective of each user
interaction: request processing, followed by content generation and delivery. The goal of
presentation logic is to create a logical answer to a request, and to prompt for another
request. The goal of presentation layout is to display the content of this answer in a
predetermined format. Application functions such as user sessions, security and user
authentication, and input validation are also handled by the presentation logic.

In short, presentation logic involves everything related to the application’s interface wi
the user.

In the NAS 2.1 programming model, presentation logic was controlled by the AppLogi
class, while layout was handled by an HTML template. At run-time, AppLogic objects
provided output to populate the template.
Chapter 1 Migration Overview 15

The New J2EE Programming Model

e an
from
ires

ht
the

iness
d by

tion.

ogic

dled
d

cations

vlets
e
is

l of
 that
In the iPlanet Application Server 6.0 programming model, presentation logic is usually
handled by a Java servlet. Layout is usually handled by a JSP. At runtime, the servlet uses a
JSP to format the content generated by the business logic.

The two major alternatives to this basic model are as follows:

• Handle all presentation logic and layout for a given interaction in a JSP. This can b
easy way to control an interaction that has no business logic and little to process
the previous interaction. For example, the “front page” for an application often requ
no processing at all.

• Handle all presentation logic and layout in a servlet. This can be efficient for
interactions that have very little layout. For example, a simple database report mig
just list the rows retrieved from a database query. It doesn’t make sense to incur
overhead of a JSP call when the page can be simply output from a servlet.

Business Logic
Business logic describes the activities that involve the generation of specific content:
storing and retrieving data, and performing computations on that data. The goal of bus
logic is to perform the activities that generate or determine answers to questions pose
the presentation logic.

In short, business logic involves the content provided by and generated for the applica

In the NAS 2.1 programming model, business logic was controlled by the same AppL
that handled the presentation logic for a given user interaction.

In the iPlanet Application Server 6.0 programming model, business logic is usually han
by one or more Enterprise JavaBeans (EJBs), which control database transactions an
encapsulate the results. EJBs are powerful, reusable components that empower appli
with a great deal of flexibility, since EJBs can be invoked or inspected from any other
object and can be made to be persistent.

One alternative to this model is to handle business logic in the presentation logic (ser
and/or JSPs), much the same way that AppLogics handled business logic. This can b
efficient for short, directed business events such as specific directory requests, but th
approach lacks the flexibility and power that EJBs bring to the programming model.

Data Access Logic
Data access logic describes transactions with a database or directory server. The goa
data access logic is to provide an interface between an application and the set of data
concerns it. Data access is normally performed as a function of business logic.
16 iPlanet Application Server Migration Guide • January 2001

Migrating NAS 2.1 Applications to iPlanet Application Server 6.0

olely
you
ased
ated

.”

el of
 the

en
l

 to
In short, data access logic involves the storage and retrieval of the content collected or
generated by business logic.

In the NAS 2.1 programming model, data access logic was controlled by calls made from an
AppLogic using APIs from several classes and interfaces, including the DataSet,
DBDataSet, and DBStoredProcedure classes and the ICallableStmt,
IColumn, IDataConn, IDataConnSet, IHierQuery, IHierResultSet,
IListDataSet, IPreparedQuery, IQuery, IResultSet, ITable, ITrans,
and IValList interfaces.

In the iPlanet Application Server 6.0 programming model, data access logic is handled by
the JDBC standard set of APIs. The previous APIs are all deprecated in iPlanet Application
Server 6.0.

Migrating NAS 2.1 Applications to iPlanet
Application Server 6.0

Migration involves altering an application written for the NAS 2.1 programming model so
that it conforms to the iPlanet Application Server 6.0 programming model. There are three
approaches to this process, each of which is covered in this document:

• No migration. This approach involves no actions by the developer and depends s
on backward-compatible support by the server. This is an acceptable approach if
do not want to take advantage of the flexibility and power that the new standards-b
model provides, although many of the APIs supported in NAS 2.1 are now deprec
and may not be supported in future releases.

Backward-compatibility is described in Chapter 2, “Running NAS 2.1 Applications

• Partial migration. In this approach, part of the application conforms to the new
programming model, while the rest relies on backward-compatibility. This enables
developers to migrate one portion of an application at a time (for example, one lev
interaction with a user, or one programming tier) while still retaining the portions of
application that are known and tested.

iPlanet Application Server 6.0 supports partial migration by providing “glue” betwe
the old components and the new components. This support is described in “Partia
Component Migrations” in Chapter 3, “Migrating NAS 2.1 Applications.”

• Complete migration to the new programming model. This approach requires a lot of
development resources and involves a full redesign, but it enables the application
take full advantage of the features of the new programming model.

This approach is described in Chapter 3, “Migrating NAS 2.1 Applications.”
Chapter 1 Migration Overview 17

Migrating NAS 4.0 Applications to iPlanet Application Server 6.0
Migrating NAS 4.0 Applications to iPlanet
Application Server 6.0

NAS 4.0 uses Netscape and older Java standards which have been replaced with J2EE 1.2
standards in iPlanet Application Server 6.0. You need to replace deprecated methods and
redeploy your applications with the new XML descriptors. Tools are provided to help with
the process. For more information, see Chapter 4, “Running NAS 4.0 Applications.”
18 iPlanet Application Server Migration Guide • January 2001

ct

r

Chapter 2

Running NAS 2.1 Applications

This chapter describes how to run NAS 2.1 applications on iPlanet Application Server 6.0
without making any source-level changes. Information on setting up the online Bank
example is at the end of the chapter. It is recommended you set up the Bank example first
before running your own applications on iPlanet Application Server 6.0. The Bank example
will help you walk through a step by step migration.

iPlanet Application Server 6.0 is completely backward-compatible with NAS 2.1. In other
words, you should be able to deploy your older NAS 2.1 application on iPlanet Application
Server 6.0 without code alteration. However, implementation requires some steps. For
example, C++ applications and extensions must be recompiled before deploying on the new
server (see “C++ Applications and Extensions” on page 22). Also, you must have corre
the class path for the version of JDBC you use.

This chapter includes the following sections:

• NAS 2.1 Application Components

• Deploying NAS 2.1 Applications

• Java Extensions

• C++ Applications and Extensions

• Beginning the Migration Process

• Migrating the Sample Applicatons

NAS 2.1 Application Components
This section describes the iPlanet Application Server 6.0 support for each of the majo
types of components from the 2.1 programming model. This support is outlined in the
following sections:
19

NAS 2.1 Application Components

any
va

 JDBC,
ection
y

any
gic

BC
• HTML Templates

• AppLogics

• Database Logic: DAE and JDBC

• NAS Registry

HTML Templates
For presentation layout, NAS 2.1-style HTML Templates, including GX tags, are fully
supported without alteration by the NAS template engine. If a template is called by a
servlet, however, it is compiled as a JSP. JSPs support GX tags with the exception of
hierarchical queries.

AppLogics
The AppLogic framework is fully supported in iPlanet Application Server 6.0, though m
of the proprietary APIs introduced in NAS 2.1 have been deprecated in favor of the Ja
standards on which the new programming model is based. For more information, see
iPlanet Application Server Foundation Class Reference.

Database Logic: DAE and JDBC
The NAS 2.1 database access classes and interfaces are now deprecated in favor of
the Java standard database connectivity API. Code that uses NAS 2.1 database conn
and query methods is supported in iPlanet Application Server 6.0, but this support ma
disappear in a future release.

The new JDBC layer provides the same functionality as the old 2.1 JDBC layer and m
new methods are supported. As a result, you may want to modify some of your Applo
code to remove workarounds or add new JDBC calls.

AppLogics should use either of the foillowing JDBC layers:

• The new JDBC layer.

• The old JDBC layer, but not both. Servlets and EJBs should use only the new JD
layer. Mixing and matching of JDBC calls from each version is not supported.
20 iPlanet Application Server Migration Guide • January 2001

Deploying NAS 2.1 Applications
You can use JDBC AppLogics from NAS 2.1 against the same iPlanet Application Server
6.0 JDBC layer, but you must make sure that the JDBC 2.0 interfaces are loaded into the
JVM instead of the 1.2 interfaces. For example, if you get a log message like the following,
you probably have the JDBC 1.2 interfaces in your CLASSPATH before the JDBC 2.0
interfaces:

[01/05/99 11:25:51:0] error: APPLOGIC-caught_exception: Caught
Exception:
java.lang.NoSuchMethodError: java.sql.Statement: method
addBatch(Ljava/lang/String;)V not found

NAS Registry
Part of the NAS registry now resides in an LDAP directory, though for the most part access
to it has not changed. For more information, see the Administration & Deployment Guide.

Deploying NAS 2.1 Applications
Use the iPlanet Application Server Administrator Tool to deploy all applications to iPlanet
Application Server. For more information, see the Administration & Deployment Guide.

Java Extensions
To migrate Java NAS 2.1 extensions to iPlanet Application Server 6.0, perform the
following steps:

1. Load IDL code in iPlanet Extension Builder 6.0 and create new generated code.

2. Merge any changes which have been made to the previous extensions into the new
generated code.

3. Convert any references to NMI to JNI (if applicable).

4. Perform all other Java code changes for JDK 1.2.2.

5. Recompile all code.
Chapter 2 Running NAS 2.1 Applications 21

C++ Applications and Extensions
C++ Applications and Extensions
iPlanet Application Server 6.0 provides new versions of required C++ header files. For this
reason, C++ applications and extensions must be recompiled using the new header files.
Users must recompile and link their extensions against iPlanet Application Server 6.0
libraries.

iPlanet Application Server provides pre-built extensions for several legacy systems,
including MQSeries, TUXEDO, and CICS. These extensions have been re-released to
provide support for iPlanet Application Server 6.0, though they will retain support for the
NAS 2.1 programming model.

Beginning the Migration Process
When you decide to migrate your application to the new model, it is easiest to begin by
redesigning your application and coming up with a transition plan. It is often best to
gradually migrate parts of an application to a new programming model, rather than planning
a large-scale migration for the entire application. However, it is also possible to migrate
gradually by programming tier (presentation layout, business logic, and so on) rather than
by application component.

For information on partial migration, including how to allow 2.1 components (like
AppLogics) to interact with 6.0 components (like servlets and EJBs), see “Partial
Component Migrations” in Chapter 3, “Migrating NAS 2.1 Applications.”

Migrating the Sample Applicatons
This section describes how you can migrate the following example applications:

• Online Bank Example

• US Population Java Sample Application

• US Population C++ Sample Application

Online Bank Example
This example is divided into the following sections:

• Migration From NAS 2.1 to iPlanet Application Server 6.0 - Solaris Only
22 iPlanet Application Server Migration Guide • January 2001

Migrating the Sample Applicatons

ew

 the

un

e old
• C++ COnlineBank(NAS2.1) Sample Application

Migration From NAS 2.1 to iPlanet Application Server 6.0 - Solaris
Only
iPlanet Application Server 6.0 includes JDK 1.2.2 as part of its distribution. With the n
JDK1.2 all the java core packages like java.io, java.lang, and so on, are packaged
into rt.jar instead of the classes.zip as in JDK 1.1. You can find rt.jar in the
following location:

/iAS6.0-install-directory/nas/usr/java/jre/lib

If you want to compile any java classes you have to have rt.jar in the CLASSPATH and
you should use the javac, located in the /iAS6.0-install-directory/nas/usr/java/bin
directory, for compilation.

To migrate from NAS 2.1 to iPlanet Application Server 6.0 (Solaris platforms), perform
following steps:

1. Copy the OnlineBank java Application package to the machine where iPlanet
Application Server 6.0 has been successfully installed by creating a new directory
OnlineBank under GXAPP.

/iAS6.0-install-directory/nas/APPS/GXApp/OnlineBank

2. Create a new directory called OnlineBank under docs/GXApp in the webserver
installation directory.

/Netscape/Suitespot/docs/GXApp/OnlineBank

Then copy all the HTML files of OnlineBank in NAB 2.1 webserver docs directory
into the OnlineBank directory.

3. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to
the Oracle database running 8.0.5.

4. Register using kreg utility.

Change directory to /iAS6.0-install-directory/nas/APPS/GXApp/OnlineBank then r
/iAS6.0-install-directory/nas/bin/kreg OnlineBank.gxr.

Make sure that you are running the iPlanet Application Server 6.0 kreg and not th
2.1 version.

5. Run the sample application http://hostname/GXApp/OnlineBank/OBLogin.html, and
then go further to see the account balance and other options.
Chapter 2 Running NAS 2.1 Applications 23

Migrating the Sample Applicatons
C++ COnlineBank(NAS2.1) Sample Application
To run the C++ COnlineBank(NAS2.1) Sample Application, perform the following steps:

1. Copy the COnlineBank Application to the machine where iPlanet Application Server
6.0 has been successfully installed by creating a new directory COnlineBank under
GXApp /iAS6.0-install-directory/nas/APPS/GXApp/COnlineBank,

2. Create a new directory called COnlineBank under docs/GXApp in the webserver
installation directory: /Netscape/Suitespot/docs/GXApp/COnlineBank, and copy all
the HTML files of COnlineBank in NAB 2.1 webserver docs directory into the above
created COnlineBank directory.

3. Set the following two environment variables:

setenv GX_ROOTDIR /iAS6.0-install-directory/nas

setenv GX_ROOT /iAS6.0-install-directory/nas

4. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to
the Oracle Database running 8.0.5.

5. Run make with the supplied makefile: /usr/ccs/bin/make -f makefile (Where
/usr/ccs/bin is the directory where the make file exists). This action copies the
generated libCOnlineBank.so file into the /iAS6.0-install-directory/nas/gxlib directory.

6. Register using kreg utility.

Change the directory to /iAS6.0-install-directory/nas/APPS/GXApp/COnlineBank then
run /iAS6.0-install-directory/nas/bin/kreg COnlineBank.gxr.

Make sure that you are running the new iPlanet Application Server 6.0 kreg and not the
old NAS 2.1 version.

7. Run the sample application http://hostname/GXApp/COnlineBank/COBLogin.html
and check the account balance and other options.

US Population Java Sample Application
To migrate the US Population Java example from NAS 2.1 to iPlanet Application Server
6.0, perform the following steps:

1. Copy the US Population java application package to a new directory called States on
the machine where iPlanet Application Server 6.0 has been successfully installed (for
example: GXAPP/IAS6.0-install-directory/nas/APPS/GXApp/States).
24 iPlanet Application Server Migration Guide • January 2001

Migrating the Sample Applicatons
2. Create a new directory called States under docs/GXApp in the webserver installation
directory:

/Netscape/Suitespot/docs/GXApp/States

Then, copy all the HTML files from the US Population application in NAB 2.1
webserver docs directory into the above named States directory.

3. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to
the Oracle DataBase version 8.0.5.

4. Register using kreg utility.

Then change the directory to /IAS6.0-install-directory/nas/APPS/GXApp/States, and
then run /IAS6.0-install-directory/nas/bin/kreg states.gxr.

Make sure that you are running theiPlanet Application Server 6.0 kreg and not the old
2.1 version.

5. Run the US Population application:

http://hostname/GXApp/States/index.html

Then click on RunRegionReport to see the population statistics.

US Population C++ Sample Application
To migrate the US Population C++ example from NAS 2.1 to iPlanet Application Server
6.0, perform the following steps:

1. Copy the US Population C++ application to the machine where iPlanet Application
Server 6.0 has been successfully installed. Copy it to a new directory called CStates
under GXAPP (for example: /IAS6.0-install-directory/nas/APPS/GXApp/CStates).

2. Create a new directory called CStates under docs/GXApp in the webserver installation
directory:

/Netscape/Suitespot/docs/GXApp/CStates.

Then copy all the HTML files of US Population in NAB 2.1 webserver documents
directory into the above created CStates directory.

3. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to
the Oracle DataBase version 8.0.5.

4. Run nmake on the states.mak file (nmake -f states.mak).

5. Copy the generated states.dll to /IAS6.0-install-directory/nas/bin directory.
Chapter 2 Running NAS 2.1 Applications 25

Migrating the Sample Applicatons
6. Register using kreg utility.

Then change directory to /IAS6.0-install-directory/nas/APPS/GXApp/CStates, and run
/IAS6.0-install-directory/nas/bin/kreg states.gxr.

Make sure that you are running the iPlanet Application Server 6.0 kreg and not the
older 2.1 version.

7. Run the US Population application:

http://hostname/GXApp/CStates/index.html

Then click on RunRegionReport to see the population statistics.
26 iPlanet Application Server Migration Guide • January 2001

made

rdized

 a
 on).

line
ries of
Chapter 3

Migrating NAS 2.1 Applications

This chapter describes altering your NAS 2.1 applications to fit the iPlanet Application
Server 6.0 programming model.

This chapter includes the following sections:

• Redesigning Your Application

• Migrating Presentation Logic

• Migrating Business Logic

• Migrating Data Access Logic

• Partial Component Migrations

Redesigning Your Application
When redesigning an existing application, it is important to keep in mind that changes
to one part will affect the others.

It may be useful to think of your application as one of the following models:

• A series of user interactions to reach a goal. Example: an online survey or standa
test.

• An activity clearinghouse with a central front page. Example: an online bank, with
central page that leads to several activities (that is, withdrawals, transfers, and so

In reality, your application is likely to be a combination of the two. For example, an on
bank could really be a central clearinghouse where each of the pathways leads to a se
user interactions to reach a goal.
27

Migrating Presentation Logic

Ls,

m
nced
ed by
d in

” in
However your application is subdivided, it is often best to migrate one part at a time. For
more details, see “Partial Component Migrations” on page 31.

Migrating Presentation Logic
This section describes the following concepts:

• Recreating AppLogics as Servlets

• Recreating Presentation Layout

• Recreating Sessions and Security

Recreating AppLogics as Servlets
AppLogics map directly to servlets. They are similar in that they are both called by UR
and they both contain mechanisms to process input and generate output. The main
difference, besides the layout of the code itself, is that servlets generally do not perfor
business logic, as AppLogics do. Rather, business logic is handled in EJBs and refere
by the servlet, similarly to the way presentation layout is handled in JSPs and referenc
the servlet. In short, a servlet is like an AppLogic with the business logic re-implemente
a separate entity.

For information about servlets, see Chapter 3, “Controlling Applications with Servlets,
the Programmer’s Guide (Java).

Servlets must contain a service() method (or, for HTTP servlets, this can be
implemented as doGet(), doPost(), etc. depending on the HTTP transport method),
which is logically similar to the execute() method in an AppLogic. This is the main flow
of execution for the component.

Moreover, where iPlanet Application Server creates an IValList member variable to
contain incoming data for an AppLogic, for servlets, iPlanet Application Server instead
creates a request object and passes it as a parameter to the servlet. Likewise, where
AppLogics use an IValList for output, servlets use a response object, also passed to the
servlet as a parameter. The following code examples illustrate both cases:

AppLogic
public class MyAppLogic extends AppLogic {

public void execute () throws IOException {
...
String lastName = valIn.getValString("lastName");
28 iPlanet Application Server Migration Guide • January 2001

Migrating Presentation Logic
...
return result ("<html><body>\n"

+ "<p>Your last name is " + lastName + ".\n"
+ "</body></html>\n");

}
}

Servlet
public class myServlet extends HttpServlet {
public void service (HttpServletRequest req,

HttpServletResponse res)
throws IOException, ServletException

{
...
res.setContentType("text/html");
String lastName = req.getParameter("lastName");
...
PrintWriter output = res.getWriter();
output.println("<html><body>\n");

+ "<p>Your last name is " + lastName + ".\n"
+ "</body></html>\n");

}
}

Note that you can also reimplement an AppLogic as a JSP, since JSPs and servlets are more
or less the same entity from different viewpoints. For example:

<html><body>
<p>Your last name is <display property="request:params:lastName">.
</body></html>

For information about servlets, see Chapter 4, “Presenting Application Pages with
JavaServer Pages,” in the Programmer’s Guide (Java).

Recreating Presentation Layout
In a sense, your 2.1 HTML templates are already migrated. The iPlanet Application Server
6.0 template engine simply compiles these templates as if they were JSPs. The new
template engine supports GX tags for backward compatibility, with the exception of
hierarchical queries.
Chapter 3 Migrating NAS 2.1 Applications 29

Migrating Business Logic

tion

or

with
However, GX tag support in JSPs is deprecated, so these templates must be converted to use
standard JSP tags and syntax. JSPs use beans to encapsulate output parameters, and can
access arbitrary Java objects as well. You can even access EJBs directly from JSPs.
Normally, however, you set attributes in the request object during the execution of a servlet
and then recall them in a JSP.

For more details about JSPs, including examples, see Chapter 4, “Presenting Applica
Pages with JavaServer Pages,” in the Programmer’s Guide (Java).

Recreating Sessions and Security
iPlanet Application Server 6.0 sessions use the HttpSession interface. The concepts are
similar to the way sessions worked in NAS 2.1, though the API is different. A servlet (or
AppLogic) creates a session, thereby instantiating a session object that persists for the life
of the user session. A session cookie is returned to the client and reread on subsequent
interactions with that client. Once the session exists, you can bind objects to it.

Security in servlets has changed. For more information, see “Understanding the Security
Model,” in Chapter 12, “Writing Secure Applications,” in the Programmer’s Guide (Java).

Migrating Business Logic
Business logic is handled in iPlanet Application Server 6.0 through Enterprise JavaBeans
(EJBs) rather than in AppLogics. An important distinction between AppLogics and EJBs is
that EJBs can be made to be persistent during a “session” with the user, separately
designated from the user’s session, in the case of session beans. Entity beans exist
independently of users, and thus potentially persist through the life of the server.

You write these EJBs to perform discrete tasks, then connect to them from servlets. F
example you would do this if you have an electronic shopping cart.

For details on JDBC and transaction support, see Chapter 8, “Handling Transactions
EJBs,” and Chapter 8, “Handling Transactions with EJBs,” in the Programmer’s Guide
(Java).

Migrating Data Access Logic
This section describes redeploying database calls using the JDBC API.

The JDBC layer in iPlanet Application Server 6.0 supports 100% of the JDBC 2.0
specification and standard extensions.
30 iPlanet Application Server Migration Guide • January 2001

Partial Component Migrations

rom an
For details on JDBC and transaction support, see Chapter 8, “Handling Transactions with
EJBs,” and Chapter 9, “Using JDBC for Database Access,” in the Programmer’s Guide
(Java).

The JDBC 2.0 interfaces provided in $GX_ROOTDIR/solarisdbg/JDK_1.2/java (or
similar directory) must be before any other JDBC interfaces in the CLASSPATH. iPlanet
Application Server 6.0 works with JDK 1.2 which has JDBC 2.0 interfaces in
$JAVA_HOME/lib/rt.jar, so make sure this rt.jar is after the iPlanet Application
Server provided classes, as follows:

setenv CLASSPATH
:$GX_ROOTDIR/solarisdbg/JDK_1.1:...:$JAVA_HOME/lib/rt.jar:
...

Incompatibility Errors
If you get a log message like the following, you probably have the JDBC 1.2 interfaces in
your CLASSPATH before the JDBC 2.0 interfaces:

[01/05/99 11:25:51:0] error: APPLOGIC-caught_exception:
Caught Exception:
java.lang.NoSuchMethodError: java.sql.Statement: method
addBatch(Ljava/lang/String;)V not found

Partial Component Migrations
This section describes how to use older components (Java and C++ AppLogics) with newer
components (servlets and EJBs). The following four combinations are supported:

• Calling EJBs from Java AppLogics

• Calling Servlets from Java AppLogics

• Calling Java AppLogics from Servlets

• Calling C++ AppLogics from Servlets

Calling EJBs from Java AppLogics
Since there is no special context shared between servlets and EJBs, you call an EJB f
AppLogic in exactly the same way you would from a servlet.
Chapter 3 Migrating NAS 2.1 Applications 31

Partial Component Migrations
This example shows an AppLogic accessing an EJB called ShoppingCart. The AppLogic
creates a handle to the cart by casting the user’s session ID as a ShoppingCart after
importing the cart’s remote interface. The cart is stored in the user’s session.

import cart.ShoppingCart;

// Get the user’s session and shopping cart

//first create the session

ISession2 sess = createSession(GXSESSION.GXSESSION_DISTRIB,

0, //no timeout

"callEjb", //app name

null, //system-gen’d ID

null);

//create an IValList to store the shopping cart in the session

IValList ival = sess.getSessionData();

ShoppingCart cart = (ShoppingCart)ival.getVal("shoppingCart");

// If the user has no cart, create a new one

if (cart == null) {

cart = new ShoppingCart();

ival.setVal("shoppingCart", cart);

}

You can access EJBs by using the Java Naming Directory Interface (JNDI) to establish a
handle, or proxy, to the EJB. You can then refer to the EJB as a regular object; any
overhead is managed by the bean’s container.

This example shows the use of JNDI to look up a proxy for a shopping cart:

String jndiNm = "Bookstore/cart/ShoppingCart";

javax.naming.Context initCtx;

Object home;

try {

 initCtx = new javax.naming.InitialContext(env);

} catch (Exception ex) {

return null;

}

try {

java.util.Properties props = null;

home = initCtx.lookup(jndiNm);

}

catch(javax.naming.NameNotFoundException e)

{

return null;

}

catch(javax.naming.NamingException e)

{
32 iPlanet Application Server Migration Guide • January 2001

Partial Component Migrations

gine
return null;

}

try {

IShoppingCart cart = ((IShoppingCartHome) home).create();

...

} catch (...) {...}

Calling Servlets from Java AppLogics
You can call a servlet from a Java AppLogic, for example if you want your AppLogic to
call a JSP, using GXContext.NewRequest() or GXContext.NewRequestAsync(). For
more details and specific examples of NewRequest(), see the documentation for the
GXContext class, in the iPlanet Application Server Foundation Reference.

You can also call a JSP from an AppLogic, since JSPs and servlets are the same type of
object after instantiation.

To call a servlet from an AppLogic using the same process call the servlet’s serlvet en
(an AppLogic called ServletRunner), consider the following example:

class SomeApplogic extends Applogic {
int execute() {

valIn.setValString("appName","nsOnlineBank");
valIn.setValString("servletName","Login");
valIn.setValString("SCRIPT_NAME","nsOnlineBank/Login");
com.netscape.server.servlet.servletrunner.ServletRunner sr =

new
com.netscape.server.servlet.servletrunner.ServletRunner();

sr.valIn = valIn;
sr.valOut = valOut;
sr.context = context;
sr.stream = this.stream;
sr.ticket = this.ticket;
sr.request = this.request;
sr.COMSet(COMGet());
sr.COMAddRef();
sr.execute();
...

}
}

To call a servlet from an AppLogic in a new process using NewRequest(), consider the
following example:
Chapter 3 Migrating NAS 2.1 Applications 33

Partial Component Migrations
class SomeApplogic extends Applogic {
int execute() {

valIn.setValString("appName","nsFortune");
valIn.setValString("servletName","fortune");
valIn.setValString("SCRIPT_NAME","nsOnlineBank/Login");
retValue = GXContext.NewRequest(m_Context,

"ApplogicServlet_nsFortune_fortu
ne",

valIn,valOut,host,port,0);
...

}
}

You can call a JSP in much the same way, as in the following example:

public class SomeApplogic extends Applogic {
int execute() {

valIn.setValString("appName","System");
valIn.setValString("servletName","JSPRunner");
valIn.setValString("JSP","nsOnlineBank/jsp/abc.jsp");
valIn.setValString("SCRIPT_NAME","nsOnlineBank/Login");
retValue =

GXContext.NewRequest(m_Context,
"Applogic

Servlet_System_JSPrunner",
valIn,valOut,host,port,0);

...
}

}

To call a servlet using a GUID, consider the followin example:

public class SomeApplogic extends Applogic {
int execute() {

valIn.setValString("appName","nsFortune");
valIn.setValString("servletName","fortune");
newRequest("{6F3547D0-FDCB-1687-B323-080020A16896}",

valIn,valOut,0);
}

}

Calling Java AppLogics from Servlets
You can call AppLogics from servlets using GXContext.NewRequest() or
GXContext.NewRequestAsync(). For more details and specific examples, see the
documentation for the GXContext class, in the iPlanet Application Server Foundation
Class Reference.
34 iPlanet Application Server Migration Guide • January 2001

Partial Component Migrations

t
In order to call an AppLogic using NewRequest(), you must first cast the server’s contex
to an IContext object, and then set up the input and output IValList objects for the
AppLogic.

This example shows how to obtain an IContext object, set up parameters for the
AppLogic, and finally call the AppLogic using NewRequest():

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.kivasoft.applogic.*;
import com.kivasoft.types.*;
import com.netscape.server.servlet.extension.*;

public class callAnAppLogic extends HttpServlet {

public void service(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException
{

// first set up ic as a handle to an IContext
ServletContext sctx = getServletContext();
com.netscape.server.IServerContext isc;
isc = (com.netscape.server.IServerContext) sctx;
com.kivasoft.IContext ic = isc.getContext();

//set up IValLists and GUID
IValList vi = GX.CreateValList(); // valIn
valIn.setValString("randomParameter", "Cirdan the

Shipwright");

IValList vo = GX.CreateValList(); // valOut

String al = req.getParameter("AppLogicToCall");
// expect AppLogicToCall in request

//finally, call the AppLogic
GXContext.NewRequest(ic, al, vi, vo, 0);

}
}

Accessing the Servlet’s AppLogic
Each servlet is contained in an AppLogic. You can access the AppLogic instance
controlling your servlet using the method getAppLogic() in the iPlanet Application
Server feature interface HttpServletRequest2.
Chapter 3 Migrating NAS 2.1 Applications 35

Partial Component Migrations

s
Java

cess
)

 an

s no
ession
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.kivasoft.applogic.*;
import com.kivasoft.types.*;
import com.netscape.server.servlet.extension.*;7

public class callAnAppLogic extends HttpServlet {

public void service(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException
{

HttpServletRequest2 req2 = (HttpServletRequest2)req;
AppLogic al = req2.getAppLogic();
//al is now a handle to the superclass
...

}
}

Calling C++ AppLogics from Servlets
The method GXContext.NewRequest() as described in “Calling Servlets from Java
AppLogics” on page 33, calls an AppLogic by GUID and provides handles to objects a
input and output parameters. This method works for calling C++ AppLogics as well as
AppLogics, since the AppLogic is called by the specified name or GUID and not by a
handle specific to Java. See the example shown in that section.

Sessions in Partially Migrated Applications
The HttpSession2 interface is an additional session interface that gives you direct ac
to the session object. Using this interface, you can share sessions (and therefore data
between applogics and servlets.

In servlets, a session is an instance of HttpSession. But in AppLogics, session data is
IValList object. An AppLogic stores integers, strings, and blobs (byte arrays) in a
session, whereas a servlet stores serializable objects in a session. As a result, there i
immediate mapping between what an AppLogic stores and what a servlet stores in a s
(except for strings).
36 iPlanet Application Server Migration Guide • January 2001

Partial Component Migrations

lets.

 a
The HttpSession2 interface solves the issue of sharing session data. HttpSession2
provides methods for storing and retrieving integers, strings, blobs, and user login
data—methods that parallel what an AppLogic developer uses. In this way,
HttpSession2 enables sessions to work back and forth across AppLogics and serv

HttpSession2 provides loginSession() and logoutSession() for servlets to
share the AppLogic session API. These methods have been deprecated in iPlanet
Application Server 6.0. These two methods are typically used with isAuthorized(), as
is done for AppLogics. Servlets are also registered with an access control list, so that
secure session established in an AppLogic can be used in a servlet, and vice versa.

For more information, see Chapter 12, “Writing Secure Applications,” in the Programmer’s
Guide (Java).

Making the Session Visible
Note that, because sessions are controlled with cookies, a session created in an AppLogic is
not visible in a servlet by default. This is because cookies are domain- and URI-dependent,
and the URI for a servlet is different from that of an AppLogic. To work around this
problem, call setSessionVisibility() before you call saveSession() when you
create a session in an AppLogic.

It is important to do this before calling saveSession(), since saving the session also
creates the session cookie.

For example, in an AppLogic, consider the following example:

domain=".mydomain.com";
path="/"; //make entire domain visible
isSecure=true;
if (setSessionVisiblity(domain, path, isSecure) == GXE.SUCCESS)

{ // session is now visible to entire domain }

For more information about sessions, see Chapter 11, “Creating and Managing User
Sessions,” in the Programmer’s Guide (Java).

Converting ITemplateData to ResultSet
NAS 2.1 provided an interface called ITemplateData to represent a hierarchical source of
data used for HTML template processing. In NAS 2.1, ITemplateData (Java) provides
methods for iterating through rows in a set of memory-based hierarchical data and
retrieving column values. This functionality is not supported in iPlanet Application Server
6.0, although group names are supported (and required).
Chapter 3 Migrating NAS 2.1 Applications 37

Partial Component Migrations
In iPlanet Application Server 6.0, ITemplateData functionality is replaced with JDBC
ResultSet objects. You can convert ITemplateData objects to ResultSet objects
using the method convertITemplateDataToResultSet() from the BaseUtils class.
For specific usage information, see the documentation for the BaseUtils class in the
iPlanet Application Server Foundation Class Reference. The following example shows an
ITemplateData conversion to a ResultSet in an AppLogic. Note that you must
provide a data group name as a parameter to the conversion method.

ITemplateData itd = GX.CreateTemplateDataBasic("myTemplateData");
... // populate myTemplateData
...
ResultSet rs =
BaseUtils.convertITemplateDataToResultSet("dataGroup1",

itd);
38 iPlanet Application Server Migration Guide • January 2001

ion
tions

2EE
n

tions
Chapter 4

Running NAS 4.0 Applications

This chapter describes the basic steps to migrate your Netscape Application Server 4.0
applications to run on iPlanet Application Server 6.0.

This chapter contains the following sections:

• Overview

• Differences Between NAS 4.0 and iPlanet Application Server 6.0

• Migrating NAS 4.0 Components

• Migration Example “The Bank”

Overview
iPlanet Application Server 6.0 is certified compliant with Java 2 Platform, Enterprise
Edition specification version 1.2 (J2EE 1.2). While the architecture of iPlanet Applicat
Server 6.0 is the same as NAS 4.0, the 100% J2EE standard means that your applica
must conform to J2EE 1.2 in order to run.

The migration effort depends on how much your applications depend on deprecated J
and NAS proprietary methods. Deployment and JavaServer Pages require conversio
procedures. Tools are provided for these procedures. In general your effort will be to
replace deprecated methods, convert and redeploy. One way to check if your applica
have deprecated methods is to recompile them.
39

Differences Between NAS 4.0 and iPlanet Application Server 6.0

ne
here
r 6.0

edure

lanet
Follow the steps outlined in this chapter to begin the migration of your application. You
may find it helpful to work through the “Bank” migration example which is available onli
at the iPlanet web site. Go to http://www.iPlanet.com/support for further information. T
is a step by step migration of a NAS 4.0 application to run on iPlanet Application Serve
available.

Differences Between NAS 4.0 and iPlanet
Application Server 6.0

The following table highlights the main differences between NAS 4.0 and iPlanet
Application Server 6.0 components. Each of these component differences and the proc
to migrate, follows the table.

Migrating NAS 4.0 Components
This section outlines the requirements for migrating various NAS 4.0 components to iP
Application Server 6.0. The following topics are included here:

• Basic Migration Steps

Component NAS 4.0 Migration Tactic Effort iPlanet
Application
Server 6.0

JDK JDK 1.1.7 See JDK Migration Medium JDK 1.2.2

Servlets Servlet 2.1 See Servlet Migration Low/None Servlet 2.2

Servlet
Deployment

Uses NTV
Deployment
descriptors

Use tool to convert to
XML. See Servlet
Deployment

Medium Uses XML
Descriptors

JSP JSP 0.92 See JSP Migration Medium JSP 1.1

EJB EJB 1.0 See EJB Migration EJB 1.1

EJB Deployment Uses Property file
Deployment
descriptors

Use tool to convert to
XML. See EJB
Deployment.

Medium Uses XML
Descriptors

JNDI JNDI 1.1 See JNDI Migration JNDI 1.2

Security ACL Checking See Security Section Low declarative based
40 iPlanet Application Server Migration Guide • January 2001

Migrating NAS 4.0 Components

s

K

d
• JDK Migration

• Servlet Migration

• Servlet Deployment

• JSP Migration

• EJB Migration

• EJB Deployment

• JNDI Migration

• Java Extensions

• C++ Extensions

• Using Rich Client (ISecurity Interface)

Basic Migration Steps
The basic steps you need to consider for migrating NAS 4.0 components to iPlanet
Application Server are as follows:

1. Look for deprecated/modified methods in your code.

2. Replace deprecated methods as shown in this chapter.

3. Convert Java Server Pages with supplied tool.

4. Convert descriptors for servlets and EJBs with the supplied tool.

5. Redeploy your application using the iPlanet Application Server Deployment Tool a
described in Chapter 2, of the Administration & Deployment Guide.

JDK Migration
iPlanet Application Server 6.0 uses the Java 2 Development Toolkit version 1.2.2 (JD
1.2.2).

An important difference for iPlanet Application Server is that if a native interface is use
such as NMI, you need to replace it with JNI.

For more information regarding the changes from JDK 1.1.7 to JDK 1.2.2 go to:
http://java.sun.com/products/jdk/1.2/docs/relnotes/features.html
Chapter 4 Running NAS 4.0 Applications 41

Migrating NAS 4.0 Components
For more information on JDK 1.2.2 go to:
http://java.sun.com/products/jdk/1.2/docs/index.html

JDK Migration Steps
To migrate NAS 4.0 applications from JDK 1.1.7 to JDK 1.2.2, perform the following
steps:

1. Get the list of deprecated methods and their replacements at:

http://java.sun.com/j2ee/j2sdkee/techdocs/api/deprecated-list.ht
ml

For specific incompatibilities, see:

http://java.sun.com/products/jdk/1.2/compatibility.html

2. Replace the deprecated methods and recompile your application.

3. Redeploy your application.

Servlet Migration
iPlanet Application Server 6.0 uses version 2.2 of the Java Servlet Specification. For
detailed information on the Specification go to: http://java.sun.com/products/servlet/.

To find out what is new in Java Servlet API 2.2 go to:
http:/developer.java.sun.com/developer/technicalArticles/Servlets/servletapi/

Servlets from NAS 4.0 will run as is on iPlanet Application Server 6.0 if they use interfaces
from version 2.1 only and do not use any deprecated classes.

The following major changes have been made to the Java Servlet specification since version
2.1:

• Java class, configured in XML

• Servlet lives in a container

• Servlet is always part of an application

• Servlets are archived in .war files

• Security features have been added

• The introduction of the web application concept

• The introduction of the web application archive files

• Response buffering added
42 iPlanet Application Server Migration Guide • January 2001

Migrating NAS 4.0 Components

 the

.

r

.

e
• The introduction of distributable servlets

• RequestDispatcher can be acquired by name

• RequestDispatcher can be acquired using a relative path

• Internationalization improvements

• Many clarifications of distributed servlet engine semantics

• Behaviour of servlet parameter validation has changed (for more information, see
Programmer’s Guide)

Servlet API Changes
The following servlet API changes have been implemented:

• The getLocale method was added to the ServletRequest interface to aid in
determining what client locale.

• isSecure method was added to the ServletRequest interface. This indicates
whether or not the request was transmitted via a secure transport such as HTTPS

• getInitParameter and getInitParameterNames method were added to
the ServletContext interface. Initialization parameters can now be set at the
application level to be shared by all servlets that are part of that application.

• The construction methods of UnavailableException have been replaced as
existing constructor signatures. These constructors have been replaced by simple
signatures.

• The getServletName method was added to the ServletConfig interface. This
allows a servlet to obtain the name by which it is known to the system, if any.

• Added the getHeaders method to the HttpServletRequest interface to allow
all the headers associated with a particular name to be retrieved from the request

• Added the isUserInRole and getUserPrinciple methods to the
HttpServletRequest method to allow servlets to use an abstract role based
authentication.

• Added the addHeader, addIntHeader, and addDateHeader methods to the
HttpServletResponse interface to allow multiple headers to be created with th
same header name.

• Added the getAttribute, getAttributeNames, setAttribute, and
removeAttribute methods to the HttpSession interface to improve the
naming conventions of the API. The getValue, getValueNames, setValue,
and removeValue methods are deprecated.
Chapter 4 Running NAS 4.0 Applications 43

Migrating NAS 4.0 Components

d.

 make

et
is
 be

ll
he

cation
ent

er
• Added the getContextPath method to the HttpServletRequest interface so
that the part of the request path associated with a web application can be obtaine

Servlet Migration Steps
There are two paths to migration:

a. Replace both NAS 4.0 deprecated methods and J2EE deprecated methods to
your application 100% J2EE compliant

b. Replace NAS 4.0 deprecated methods only. Your application will run on iPlan
Application Server 6.0 even if it uses J2EE deprecated methods. However, it
advisable to plan to migrate to J2EE 1.2, as the deprecated methods may not
available in the future.

Note that some methods have been deprecated in HTTPSession2.

To migrate your servlets from NAS 4.0 to a 100% J2EE complliant application, you wi
need to replace NAS 4.0 propietary methods and J2EE deprecated methods. Follow t
Optional Step 1 to accomplish this replacement.

1. (Optional) Replace Servlet 2.2 deprecated methods.

For a list of deprecated methods go to
http://java.sun.com/products/servlet/2.2/javadoc/deprecated-list.html

2. Replace Access Control List based logic with declarative security model.

Use the new declarative based security procedure described in the servlet specifi
instead of Access Control Lists (ACL). Security is implemented as part of deploym
in XML files instead of at the application level.

a. Remove the following deprecated HTTPSession2 security methods:

boolean loginSession(String user, String paswd);
void logoutSession();
boolean isAuthorized(String target, String permission);

b. Use the auth method tag in XML files to set the authentication method to eith
Basic, Certificate, or Form based.

c. In the .xml file, use the <security constraint> to specify the roles that
can execute the servlets. Create roles using <role-name> or reference a logical
role by using <role-link> tags.

d. Remove the ACL entries .gxr files.
44 iPlanet Application Server Migration Guide • January 2001

Migrating NAS 4.0 Components

3. Replace URI naming that uses the AppPath as the root for absolute references to
JSPs or other servlets.

In iPlanet Application Server 6.0 the application context root is the root for absolute
references. A servlet would forward to another JSP in the same application as itself, in
the following manner.

RequestDispatcher rd = req.getRequestDispatcher(“/sample.jsp”);
rd.forward(req,res);

Here sample.jsp is in the same application as the servlet that is including it. You will
find the JSP under AppPath/ApplicationName rather than AppPath, which would
have been the case in NAS 4.0.

Servlet Deployment
Servlet 2.2 has introduced the use of XML files to replace the deployment descriptor used in
NAS 4.0. The NTV descriptor files in your NAS 4.0 application must be converted to XML
files and added to the web application archive file that the deployment tool creates.

1. Convert NTV descriptor files to XML files

Use the following tool to convert the NTV files to XML:

convertNtv2Xml $path/appInfo.ntv $newpath/myApp.xml

$path points to the location of the appInfo.ntv (which internally provides the
location of the serlvet info NTV files).

The conversion tool creates 2 new files, myApp.xml, and ias-myApp.xml, in
$newpath. These files represent the J2EE and the iPlanet Application Server-specific
XML respectively.

2. Convert NTV decriptor files and add them to the EJB JAR archive file. To perform this
procedure, use the following steps:

a. Create a new web application as described in Chapter 2 of the Administration &
Deployment Guide.

b. On the Servlet menu, select “Import from 4.0.”

c. Navigate to the appInfo.ntv file that you want to convert and choose OK.

The appInfo.ntv file and servlet files that it points to will be converted into a
.xml files, which willbe added to your web application.

d. Continue adding servlet files and other files to your web application.
Chapter 4 Running NAS 4.0 Applications 45

Migrating NAS 4.0 Components

s.

ation.
tion,

Ps

them.

t be

 tree
e. Save and deploy your web application as described in Chapter 2 of the
Administration & Deployment Guide.

3. Deploy your application as described in Chapter 2, “Running NAS 2.1 Application

JSP Migration
iPlanet Application Server 6.0 employs version 1.1 of the Java Server Pages Specific
The JSP 1.1 specification is integrated with the J2EE, particularly for security, transac
and session state concepts. For detailed information on the Specification, go to
http://java.sun.com/products/jsp/

The JSP 1.1 specification extends JSP 0.92 to JSP 1.1 by incorporating the following
enhancements:

• Using Servlet 2.2 as the foundations for its semantics.

• Enabling the delivery of translated JSP pages into JSP containers.

• Providing a portable Tag Extension mechanism.

In addition, iPlanet Application Server 6.0 provides caching and load balancing for JS
and provides custom tag extensions.

GX Tags Deprecated
GX tags have been deprecated. Migrate any NAS 4.0 JSP templates with GX tags in
iPlanet Application Server uses JSP extension tags instead.

JSP Migration Steps
To migrate your NAS 4.0 JavaServer Pages, perform the following steps:

1. Replace URI naming that uses the AppPath as the root for absolute references to
servlets or other JSPs.3.

2. Convert JavaServer Pages from specification 0.92 to 1.1. JavaServer Pages mus
migrated. You can use the convert2jsp11 tool to convert JSP 0.92 to JSP 1.1,
outlined in the section, Converting JSP 0.92 to JSP 1.1.

Converting JSP 0.92 to JSP 1.1
Use the supplied conversion tool (convert2jsp11) to convert already existing JSP 0.92
files. The tool can be used to convert individual files, or it can recurse through an entire
of directories, converting all JSP files found.

NOTE: Remember to create back up copies of your files prior to conversion.
46 iPlanet Application Server Migration Guide • January 2001

Migrating NAS 4.0 Components
The conversion tool converts all the 0.92 JSP files to their 1.1 equivalent, keeping the same
name. The 0.92 versions of the files are copied to a file of the same name, with the
extension .0.92. For example, if you convert a file myApp.jsp, that file becomes the new
JSP 1.1 version, and the older version is copied to a file called myApp.jsp.0.92.

If any of the 0.92 JSP files in a given conversion contain an error, then the conversion for
that file fails, creating an empty output file. In this event, re-copy the corresponding
filename.0.92 version back to filename, correct the error, and run the conversion
script again for that file.

Usage:

convert2jsp11 [-r] -ap appPath file/directory

Examples
Note that in these examples, appPath is C:\Netscape\Server4\NAS\APPS on
Windows NT and /export/nas4/nas/APPS on Solaris.

The following first example converts all of the JSP files in a directory called
myApplication which is rooted in your appPath:

Argument Description

-r Optional. Recursively convert all the JSPs in the specified
directory/folder and all subdirectories/sub-folders. If this
option is not given, only convert the specified file.

-ap appPath Specify the appPath for your NAS installation (for example,
/export/nas4/nas/APPS on Solaris, or
C:\Netscape\Server4\NAS\APPS on Windows NT).

file/directory Specify a file to convert, or a directory (with -r) where all
files should be converted. This directory must be relative to
the appPath given with the -ap option.

Windows NT: convert2jsp11 -r -ap
c:\netscape\server4\nas\APPS myApplication

Solaris: convert2jsp11 -r -ap /export/nas4/nas/APPS
myApplication
Chapter 4 Running NAS 4.0 Applications 47

Migrating NAS 4.0 Components

s.
the

 for
 6.0

ust

ed.
The second example, converts a single JSP file called myJSP.jsp in a directory called
myApplication which is rooted in your appPath:

EJB Migration
iPlanet Application Server 6.0 employs version 1.1 of the Enterprise Java Bean (EJB)
Specification. For detailed information on the EJB specification go to:

http://java.sun.com/products/ejb/

The EJB specification includes the following primary changes from EJB 1.0 to EJB 1.1:

• The Entity bean specification has been tightened, and support for entity beans is
mandatory for Container providers. The modifications affect mainly support for
transactions, Enterprise Bean Environments, Security and Deployment Descriptor
There is very little impact for EJB 1.0 applications in runtime. The only change to
runtime API of the EJB Container is the replacement of the
java.security.Identity class with the java.security.Principal
interface.

The following changes in the EJB 1.1 specification were made to improve the support
the development, application assembly, and deployment of iPlanet Application Server
applications.

• Support is enhanced for the enterprise bean’s environment. The Bean Provider m
specify all the bean’s environmental dependencies using entries in a JNDI naming
context.

• Support for Application Assembly in the deployment descriptor.

• Bean Provider and Application Assembler responsibilities have been clearly divid

EJB Migration Steps
To migrate your NAS 4.0 Enterprise Java Beans, perform the following steps:

Windows NT: convert2jsp11 -ap c:\netscape\server4\nas\APPS
myApplication\myJSP.jsp

Solaris: convert2jsp11 -ap /export/nas4/nas/APPS
myApplication/myJSP.jsp
48 iPlanet Application Server Migration Guide • January 2001

Migrating NAS 4.0 Components

tion

ut
1. Replace Access Control List based logic with declarative security model.

As with servlets, Access Control Lists on EJBs must be removed. Use the
<method-permission> tag to specify the rules that can execute EJB methods.

2. Convert deployment descriptors.

For more information, see EJB Deployment.

3. Modify code and descriptors to exclude deprecated classes and replace with new
methods.

EJB 1.0 enterprise bean code does not have to be changed or re-compiled to run in an EJB
1.1 Container, except in the exceptions detailed below. The mandatory migration is for the
deployment descriptors to be converted to the EJB 1.1 XML.

Instances Where EJB Code Must Be Changed or Re-compiled
You must change or re-compile EJB code in the following instances:

• The bean uses the javax.jts.UserTransaction interface. The package name
of the javax.jts interface has changed to javax.transaction, and there have
been minor changes to the exceptions thrown by the methods of this interface. An
enterprise bean that uses the javax.jts.UserTransaction interface needs to be
modified to use the new name javax.transaction.UserTransaction.

• The bean uses the getCallerIdentity() or isCallerInRole(Identity
identity) methods of the javax.ejb.EJBContext interface. These methods
were deprecated in EJB 1.1 because the class java.security.Identity is
deprecated in Java 2 platform. An enterprise bean written to the EJB 1.0 specifica
needs to be modified to use the new methods to work in all EJB 1.1 Containers.

• The bean is an entity bean that uses the UserTransaction interface. In EJB 1.1, an
entity bean must not use the UserTransaction interface.

• The bean uses the UserTransaction interface and implements the
SessionSynchronization interface at the same time. This behavior is
disallowed in EJB 1.1.

• The bean violates any of the additional semantic restrictions defined in EJB 1.1 b
which were not defined in EJB 1.0.

• For every EJB Create there must be a matching EJBPostCreate.
EJBPostCreate was optional in EJB 1.0 and is now mandatory
Chapter 4 Running NAS 4.0 Applications 49

Migrating NAS 4.0 Components

ed

hould

ack
 EJB

ly
ction
d by
have

d in
 to

Exception Handling Changes
The EJB 1.1 specification of exception handling preserved the rules defined in the EJB 1.0
specification, with the following exceptions:

• EJB 1.0 specified that the enterprise bean business methods and container-invok
callbacks use the java.rmi.RemoteException to report non-application
exceptions. This practice is deprecated in EJB 1.1—the enterprise bean methods s
use the javax.ejb.EJBException, or other suitable RuntimeException to
report non-application exceptions.

• In EJB 1.1, all non-application exceptions thrown by the instance result in the rollb
of the transaction in which the instance executed, and in discarding the instance. In
1.0, the Container would not rollback a transaction and discard the instance if the
instance threw the java.rmi.RemoteException.

• In EJB 1.1, an application exception does not cause the Container to automatical
rollback a transaction. In EJB 1.0, the Container was required to rollback a transa
when an application exception was passed through a transaction boundary starte
the Container. In EJB 1.1, the Container performs the rollback only if the instance
invoked the setRollback-Only() method on its EJBContext
object.javax.ejb.ejbex.

EJB Deployment
EJB 1.1 has introduced the use of XML files to replace the deployment descriptor use
NAS 4.0. The Property descriptor files in your NAS 4.0 application must be converted
XML files. In addition to registering the application you must run ejbReg.

To convert the Property files to XML use the supplied tool convertPropsXML. The
following steps outlines its use:

1. Convert property files to XML files.

Use the following tool to convert the .props files to XML:.

convertProps2Xml $path/foobar.props $newpath/myAppEjb.xml

$path points to the location of .props file and the tool results in the generation of
two XMLs myAppEJB.xml and ias-myAppEjb.xml files. These files represent
the J2EE and the iPlanet Application Server-specific XML respectively.

2. Convert NTV decriptor files and add them to the EJB JAR archive file.

a. Create a new EJB JAR module, as described in Chapter 2 of the Administration &
Deployment Guide.
50 iPlanet Application Server Migration Guide • January 2001

Migrating NAS 4.0 Components

e

nges.

rface

he

e-ref

s.
b. On the EBJ menu, select “Import from 4.0.”

c. Navigate to the .properties file that you want to convert and choose OK. Th
.properties file will be converted into a .xml files, which will be added to
your EBJ JAR module.

d. Continue adding .class files and other files to your EBJ JAR module.

e. Save and deploy your EBJ JAR module as described in Chapter 2 of the
Administration & Deployment Guide.

3. Modify you application code to handle exceptions and transactions.

If you are using Transactions or Exceptions you may need to make some code cha
See the section “Exception Handling Changes.”

4. Deploy your application as described in the Administration & Deployment Guide.

JNDI Migration
iPlanet Application Server 6.0 uses version 1.2 of the Java Naming and Directory Inte
(JNDI) extension. JNDI is provided as part of the Java Enterprise API set.

NAS 4.0 applications that use JNDI 1.1 must be migrated to JNDI 1.2. The specific
incompatibilities can be seen at:

http://java.sun.com/products/jndi/1.2/compat.html#incompat

In J2EE every application defines its own naming environment which is specified via t
component's deployment descriptor. A component's descriptor should also contain
information about all EJBs and data sources that it is looking up via ejb-ref and resourc
elements. Migrating NAS4.0 applications to iPlanet Application Server 6.0 involves the
following requirements:

• Identifying usage of beans/resources that are being looked up by the application.

• Setting up appropriate deployment descriptor entries for resource-refs and ejb-ref

• Ensure that environment lookup happens via
java:comp/env/<envionmentEntryName> pattern as specified by the J2EE
specification.

Java Extensions
To migrate NAS 4.0 Java extensions to iPlanet Application Server 6.0, perform the
following steps:
Chapter 4 Running NAS 4.0 Applications 51

Security Features

s
sers
ion

ntrol
ted
dent
1. Load IDL code in iPlanet Extension Builder 6.0 and create new generated code.

2. Merge any changes which have been made to the previous extensions into the new
generated code.

3. Convert any references to NMI to JNI (if applicable).

4. Perform all other Java code changes for JDK 1.2.2.

5. Recompile all code.

C++ Extensions
To migrate NAS 4.0 C++ extensions to iPlanet Application Server 6.0, recompile and link
NAS 4.0 C++ extensions against iPlanet Application Server 6.0 libraries.

Using Rich Client (ISecurity Interface)
The ISecurity interface needs to be implemented when using Rich Client. ISecurity sets
the user name and password in Rich Client.

Security Features
iPlanet Application Server 6.0 implements security constraints at deployment time.
Standard declarative access control rules are defined by the developer when the application
is deployed. Developers will, for example, specify several levels of security such as
administrator, guest, member etc. Then they will write code to check the current user’
permission level when accessing secure procedures. At deployment time, groups of u
are assigned the correct security level allowing the application to easily verify permiss
level before accessing the restricted procedure.

In NAS 4.0, security was implemented at the application level by setting up access co
lists that define permissions granted to specific users and groups. NAS 4.0 implemen
security at the code level, iPlanet Application Server 6.0 implements security indepen
of the code at the deployment of the application.

For tips on security go to:

http://www.java.sun.com/security/seccodeguide.html.

For EJB related security go to:

http://www.java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Security.fm.html
52 iPlanet Application Server Migration Guide • January 2001

Migration Example “The Bank”
Migration Example “The Bank”
Use this example to walk through the migration process. You can also modify the NAS 4.0
nsOnline Bank source and migrate the sample to iPlanet Application Server 6.0 prior to
migrating your own applications, as an example. Refer to the code source online at
http://www.iPlanet.com/support/.

This section describes the guidelines for porting a bank sample application from NAS 4.0 to
iPlanet Application Server 6.0.

The iPlanet Application Server 6.0 Bank Sample application includes the following
features:

• Bank sample application is using new Form based login (J2EE style).

• Proprietary methods like HttpSession2, loginSession, NASRowSet are
replaced with the J2EE equivalent.

• EJB deployment descriptors are described in .xml files.

• EJB lookup is URL based like "java:comp/env/"lookupname".

• Servlet deployment is described in an .xml file instead of proprietary .ntv file.

Comparison of iPlanet Application Server 6.0
Bank Application & NAS 4.0 nsOnlineBank
This section compares NAS 4.0 and iPlanet Application Server 6.0 components.

Component iPlanet Application Server 6.0 NAS 4.0

Servlets Uses HttpSession (standard java
API), for Session creation; Form-based
Login mechanism (J2EE style) for
Login Authentication. Bank does not
use proprietary methods (e.g.,
Nestcape-APIs) HttpSession2,
loginSession. Note that
HttpSession2 is used in iPlanet
Application Server 6.0 to share session
data between Applogics and servlets.

Uses HttpSession2
method
loginSession API
for (login)
authentication and also
shared sessions
between applogics and
servlets.
Chapter 4 Running NAS 4.0 Applications 53

Migration Example “The Bank”
Servlet Deployment Deployment instructions are described
in xml file. Each servlet has both J2EE
XML and iPlanet Application Server
specific XML. Servlets are registered
through webappreg command line
utility.

Deployment
instructions are
described in ntv file.

EJBs J2EE specific URL style lookup
"java:comp/env/< lookup
name >". By getting a DataSource
object using this lookup,Database
connection is created uses new factory
class
"com.netscape.server.jndi.
RootContextFactory".

Uses old style
"ejb/<lookup name >".

DataSourceName is
grabbed from NAS
registry, passes to
NASRowSet method
for creation of Database
connection, and uses
Factory class
"com.kivasoft.eb.jndi.G
DSInitContextFactory".

EJB Deployment Deployment descriptors are described
in XML.

Each EJB has both J2EE XML and
iPlanet Application Server-pecific
XML.

EJB’s are registered through ejbreg
command line utility

Deployment
instructions are
described in property
file.

JSPs Context Root starts from
/APPS/App-Name/directory.

Context Root starts
from /APPS/directory.

LDAP Authenticate domain is " uid=admin,
ou=Administrators,
ou=TopologyManagement,
o=NetscapeRoot"; Authenticate
Password is "<user selected password at
the time of installation >".

Uses default
Authenticate domain
(uid) "cn=Directory
Manager"; Authenticate
Password is
"dmanager".

Component iPlanet Application Server 6.0 NAS 4.0
54 iPlanet Application Server Migration Guide • January 2001

Further Reading
General Porting Guidelines
This section outlines some general porting guidelines for migrating NAS 4.0 application
components to iPlanet Application Server 6.0.

• LDAP: LDAP code (.java file) should reflect the LDAP server port number which is
supplied at installation time

• DataBase: DataSource should be passed through the <resource ref > tag instead of
<env entry> tag.

• Servlet: If a servlet is doing a look up for an EJB, the corresponding J2EE Servlet
XML should have <ejb-ref> tag.

• For Form-based mechanism: J2EE Servlet XML should have the
<login-config> tag.

• Login Page: should be a .jsp file for Form-based login mechanism.

• Text Fields for Form-based Login page: username should be "j_username"
password should be "j_password".

• Login pages: (like login, jsp, and loginerror.jsp) should be kept under
<install-location>/<app-name>.

• EJBs: if DataSource is passed through <resource ref> tag, the corresponding
iPlanet Application Server EJB XML should have <jndi-name>, similiar to the
datasource "jdbc/LocalDS". LocalDS.

EJB XML files are generated using PropToEJB tool (note that there may be
additional manual steps after the conversion).

Further Reading
Java™ 2 Platform, Enterprise Edition Specification Version 1.2 Copyright 1999, Sun
Microsystems, Inc. Available at http://java.sun.com/j2ee/docs.html

Java™ 2 Platform, Enterprise Edition Technical Overview (J2EE Overview).Copyright
1998, 1999, Sun Microsystems, Inc. Available at
http://java.sun.com/j2ee/white.html

Java™ 2 Platform, Standard Edition, v1.2.2 API Specification (J2SE specification).
Copyright 1993-99, Sun Microsystems, Inc. Available at
http://java.sun.com/products/jdk/1.2/docs/api/index.html
Chapter 4 Running NAS 4.0 Applications 55

Further Reading
Enterprise JavaBeans™ Specification, Version 1.1 (EJB specification). Copyright1998,
1999, Sun Microsystems, Inc. Available at http://java.sun.com/products/ejb

Enterprise JavaBeans™ to CORBA Mapping, Version 1.1 (EJB-CORBA
mapping).Copyright 1998, 1999, Sun Microsystems, Inc. Available at
http://java.sun.com/products/ejb

JavaServer Pages™ Specification, Version 1.1 (JSP specification). Copyright 1998, 1999,
Sun Microsystems, Inc. Available at http://java.sun.com/products/jsp

Java™ Servlet Specification, Version 2.2 (Servlet specification). Copyright 1998,1999, Sun
Microsystems, Inc. Available at http://java.sun.com/products/servlet

JDBC™ 2.0 API (JDBC specification). Copyright 1998, 1999, Sun Microsystems, Inc.
Available at http://java.sun.com/products/jdbc

JDBC™ 2.0 Standard Extension API (JDBC extension specification). Copyright 1998,
1999, Sun Microsystems, Inc. Available at http://java.sun.com/
products/jdbc

Java™ Naming and Directory Interface 1.2 Specification (JNDI specification). Copyright
1998, 1999, Sun Microsystems, Inc. Available at http://
java.sun.com/products/jndi

Java™ Message Service, Version 1.0.2 (JMS specification). Copyright 1998, Sun
Microsystems, Inc. Available at http://java.sun.com/products/jms.

Java™ Transaction API, Version 1.0.1 (JTA specification). Copyright 1998, 1999, Sun
Microsystems, Inc. Available at http://java.sun.com/products/jta

Java™ Transaction Service, Version 0.95 (JTS specification). Copyright 1997-1999, Sun
Microsystems, Inc. Available at http://java.sun.com/products/jts

JavaMail™ API Specification Version 1.1 (JavaMail specification). Copyright 1998, Sun
Microsystems, Inc. Available at http://java.sun.com/products/javamail

JavaBeans™ Activation Framework Specification Version 1.0.1 (JAF specification).
Copyright 1998, Sun Microsystems, Inc. Available at http://java.sun.com/
beans/glasgow/jaf.html

The Java™ 2 Platform, Enterprise Edition Application Programming Model, Copyright
1999, Sun Microsystems, Inc. Available at http://java.sun.com/j2ee/apm.
56 iPlanet Application Server Migration Guide • January 2001

.x,
rades

4.x

cs to
work
 full
Chapter 5

Running NetDynamics Applications

This chapter is a planning guide for the migration of applications built with NetDynamics.

This chapter is divided into the following sections:

• Overview

• Migration Planning Considerations

• iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)

Overview
In the past, we have suggested a number of options for migrating NetDynamics 3.x, 4
and 5.x applications to J2EE for iAS 6.0. Some of those options specified staged upg
to NetDynamics 5.x and then to J2EE.

With the increasing acceptance and maturity of J2EE, and because newly available
automated tools can ease the transition for applications written with older versions of
NetDynamics (Versions 3.x and 4.x), we favor the migration of NetDynamics 3.x and
applications directly to J2EE, rather than through an intermediate NetDynamics 5.x
migration step.

This chapter discusses some of the considerations involved in planning a NetDynami
J2EE migration effort. In particular, we look at some of the issues that may affect the
effort required to migrate applications and some factors that might even dictate that a
migration to J2EE not be performed.

In addition, this chapter introduces the iPlanet Migration Toolbox (iMT), which provides
automated enablement for the migration of NetDynamics applications to the iPlanet
Application Server J2EE environment.
57

Migration Planning Considerations

nd 4.x

ively
The migrated applications utilize the iPlanet J2EE Assisted Take-Off (JATO) application
framework, which not only provides for an intuitive transition of applications from the
NetDynamics application framework to J2EE, but also serves as a standalone application
framework upon which future J2EE development can be based. JATO is provided to iMT
customers with full ownership of the source code.

A comprehensive discussion of the iMT and JATO is beyond the scope of this chapter.
Please contact your iPlanet representative when you require information regarding the iMT
beyond that which is provided here.

Migration Planning Considerations
Not surprisingly, the task of determining the scope of a migration effort is quite
challenging. The NetDynamics environment provided for a great deal of flexibility in
development. The organization of NetDynamics applications, the development standards,
individual developer styles, and custom extensions and enhancements, among other things,
can significantly affect the level of effort required to migrate a particular set of
NetDynamics applications to J2EE.

The iPlanet Migration Toolbox includes some basic tools to jumpstart the migration
estimation effort. The NDProjectPeeker tool generates an inventory of NetDynamics
project objects to provide an idea of the size and composition of the projects. Another tool,
which is currently under development, will utilize the output of the NDProjectPeeker tool to
generate basic estimates for the migration effort. The initial estimates generated using the
information compiled by these tools will be improved by incorporating the analysis
described in this chapter.

This section includes the following topics:

• Migration Path

• Migration Planning and Estimating

Migration Path
We generally recommend that older NetDynamics applications be migrated directly to
J2EE for iAS 6.0, but there may be some good reasons to upgrade NetDynamics 3.x a
applications to NetDynamics 5.x. Some of these reasons may include:

• It can be determined that the upgrade to NetDynamics 5.x can be performed relat
quickly for a particular application and the application will be retired prior to the
termination of support for the NetDynamics 5.x product in December of 2001.
58 iPlanet Application Server Migration Guide • January 2001

Migration Planning Considerations

in a

n

rally

e

J2EE

 only

ng the

ritten
Additionally, there may be some issues that would make a near-term migration to J2EE
infeasible:

• An application uses custom or third party components which can only operate with
NetDynamics environment.

• An application is dependent upon a capability or feature that only NetDynamics ca
provide.

However, in general, we believe that a direct migration to J2EE is more desirable:

• Applications with an expected service life beyond the next two years should gene
be moved to J2EE.

• The upgrade to NetDynamics 5.x can require a significant amount of effort. In som
cases, the effort required to upgrade some older NetDynamics applications to
NetDynamics 5.x may be of the same magnitude as an iMT-enabled migration to
for iAS, especially when tasks such as testing are taken into account.

• Any dependency on NetDynamics will have to be addressed anyway since
NetDynamics support will be phased out.

• The pool of NetDynamics-trained personnel will shrink over the next few years.

Migration Planning and Estimating
The iPlanet Migration Toolbox planning tools can give a useful first impression of the
magnitude of the NetDynamics to J2EE migration effort, but meaningful estimates can
be generated by analyzing the unique set of factors represented by the body of the
applications to be migrated. Some of the factors that should be considered in estimati
effort required to migrate NetDynamics applications include:

• The skills set and application knowledge of the migration team:

m J2EE

m NetDynamics

m Domain knowledge of applications being migrated

• The number of NetDynamics projects and pages which must be migrated.

• The extent to which the NetDynamics API was used:

m Was the NetDynamics API used extensively for coding the event methods?

m Were existing Enterprise JavaBeans and other business logic components w
to be independent of the NetDynamics API?
Chapter 5 Running NetDynamics Applications 59

iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)

yers?

nce of

er

me

e
• The structure of the applications:

m Have the applications been carefully tiered into display, business, and data la

m Are custom classes which must be migrated? What is the degree of depende
these custom classes on NetDynamics?

• The organization of the applications:

m Do applications consist of many, smaller NetDynamics projects, or fewer, larg
projects?

m The extent to which different applications within the organization are
interdependent.

For larger collections of NetDynamics projects, you may need to consider including so
additional tasks in the analysis:

• An architectural overview

• An in-depth analysis of any custom classes and how they are used

• An close examination of a representative sample of NetDynamics projects

• A pilot migration

iPlanet Migration Toolbox and J2EE Assisted
Take-Off (JATO)

This section includes the following topics:

• iPlanet Migration Toolbox

• JATO Application Framework

• iMT/JATO Community

iPlanet Migration Toolbox
The iPlanet Migration Toolbox (iMT) contains a set of tools to perform the automated
phases of NetDynamics to J2EE conversions:

• NetDynamics Extraction Tool – This tool extracts the declarative information and th
Java code from NetDynamics projects into XML description files.
60 iPlanet Application Server Migration Guide • January 2001

iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)

t

s

y, the

ated

ate the
ay to

e and
it

ge

rs

 we
ns
h
le

lso
ietary,

 last
• Application Translation Tool – This tool uses the XML description files to construc
J2EE-compliant versions of the NetDynamics projects in the JATO framework.

• Other tools – The iPlanet Migration Toolbox also contains convenience tools for
compiling and packaging the translated projects.

The iMT was designed to migrate NetDynamics applications to J2EE as completely a
possible. Its primary function is to move the application structure to a new application
environment which supports the NetDynamics constructs and capabilities. Secondaril
iMT tries to migrate all the declarative application functionality to this new application
framework. Those functions supplied by NetDynamics wizards are, in large part, migr
to J2EE.

Once the automated part of the migration process is complete, it is necessary to evalu
appropriateness of the custom code from the old applications. There is no practical w
convert custom code in a NetDynamics application to make it correct in a J2EE
environment. The original code is commented out and moved to the appropriate modul
method to make manual conversion of the code easier. Though the task is not small,
should be, in general, straightforward once the migration developer is familiar with the
JATO J2EE component classes and methods.

Typically, a migration developer will perform a preliminary run of the iMT on an
application to assess the level of manual migration effort that will be required for the
project. The iMT generates an inventory of code-level items of interest which will need
evaluation and possible modification during the manual code porting phase. This chan
inventory should be used to help refine the migration work plan.

JATO Application Framework
J2EE Assisted Take-Off (JATO) is an application framework built to provide develope
with a foundation for building J2EE applications in a consistent and efficient manner.
Instead of inventing ways to build applications and the infrastructure to support them,
have, with JATO, the procedures and support infrastructure to start building applicatio
right away. In other words, we regain some of the productivity advantages we had wit
NetDynamics. Furthermore, the availability of a standard framework will not only enab
organizations to ensure development consistency in the organization over time, but a
reduce the likelihood that new team members would have to be trained to use a propr
internal J2EE application framework.

JATO is intended to not merely be a stepping-stone for the jump from NetDynamics to
J2EE, but to be a framework upon which J2EE applications can be built long after the
NetDynamics application has been migrated.
Chapter 5 Running NetDynamics Applications 61

iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)
iMT/JATO Community
The iPlanet Migration Toolbox team moderates an online iMT/JATO discussion
community at: http://www.egroups.com/group/iPlanet-JATO
62 iPlanet Application Server Migration Guide • January 2001

Index

A
Administrator Tool, 21
application flow, 13
Application Framework

J2EE Assisted Take-Off (JATO), 61
Application Translation Tool, 61
AppLogic-based programming model, 13
AppLogics, 20

B
Business Logic, 16

C
C++ Extensions, 52
CICS, 22
Comparison of iAS 6.0 Bank Application & NAS 4.0

nsOnlineBank, 53
Complete migration to the new programming

model., 17
Convert NTV decriptor files, 45
Converting, 46
Converting ITemplateData to ResultSet, 37
Converting JSP 0.92 Pages to JSP 1.1, 46

D
Data access logic, 16
Database Logic

DAE and JDBC, 20
Deploying NAS 2.1 Applications on iAS 6.0, 21
Deprecated, 46

E
EJB JAR, 50
EJB Migration, 48
Enterprise JavaBeans, 13
Exception Handling Changes, 50

F
format

URLs, in manual, 10
Further Reading, 55

G
General Porting Guide Lines for Bank Sample

Application (from NAS 4.0 to iAS 6.0), 55
GX tags, 20
63

H
HTML Templates, 20

I
iMT

iPlanet Migration Toolbox, 57
iPlanet J2EE Assisted Take-Off (JATO), 58
iPlanet Migration Toolbox (iMT), 57, 60

J
J2EE Assisted Take-Off (JATO)

application framework, 61
J2EE Programming Model, 13
JATO

iPlanet J2EE Assisted Take-Off, 58
Java Extensions, 21, 51
JavaServer Pages, 13
JDBC layers, 20
JDK Migration, 41
JDK Migration Steps, 42
JNDI Migration, 51
JSP Migration, 46
JSP Migration Steps, 46

M
Migration Basics NAS 4.0 to iAS 6.0, 18
Migration Toolbox

planning and estimating migration effort, 59
MQSeries, 22

N
NAS 2.1 Application Components, 19
NAS Registry, 21
NDProjectPeeker, 58
NetDynamics

migrating applications to iPlanet Application
Server, 57

NetDynamics Extraction Tool, 60

P
Presentation Logic and Layout, 15
Programming Model

J2EE, 13

R
Rich Client, 52
Running NAS 2.1 Applications on iAS 6.0, 19

S
Security Features, 52
Servlet API Changes, 43
Servlet Deployment, 45
Servlet Migration, 42
Sessions in Partially Migrated Applications, 36

T
TUXEDO, 22
64 iPlanet Application Server Migration Guide • January 2001

U
URLs

format, in manual, 10
US Population C++ Sample Application, 25
US Population Java Sample Application, 24
Index 65

66 iPlanet Application Server Migration Guide • January 2001

	Migration Guide
	iPlanet Application Server

	Version 6.0
	Contents
	Preface 7
	Chapter�1

	Migration Overview 13
	Chapter�2

	Running NAS 2.1 Applications 19
	Chapter�3

	Migrating NAS 2.1 Applications 27
	Chapter�4

	Running NAS 4.0 Applications 39
	Chapter�5

	Running NetDynamics Applications 57
	Preface

	Using the Documentation
	How This Guide Is Organized
	Documentation Conventions
	Related Information
	Programming with Servlets and JSPs
	Programming with EJBs
	Programming with JDBC
	Chapter�1
	Migration Overview

	The New J2EE Programming Model
	Component Modularity and Flexibility
	Presentation Logic and Layout
	Business Logic
	Data Access Logic

	Migrating NAS 2.1 Applications to iPlanet Application Server 6.0
	Migrating NAS 4.0 Applications to iPlanet Application Server 6.0
	Chapter�2
	Running NAS 2.1 Applications

	NAS 2.1 Application Components
	HTML Templates
	AppLogics
	Database Logic: DAE and JDBC
	NAS Registry

	Deploying NAS 2.1 Applications
	Java Extensions
	1. Load IDL code in iPlanet Extension Builder 6.0 and create new generated code.
	2. Merge any changes which have been made to the previous extensions into the new generated code.
	3. Convert any references to NMI to JNI (if applicable).
	4. Perform all other Java code changes for JDK 1.2.2.
	5. Recompile all code.

	C++ Applications and Extensions
	Beginning the Migration Process
	Migrating the Sample Applicatons
	Online Bank Example
	Migration From NAS 2.1 to iPlanet Application Server 6.0 - Solaris Only
	1. Copy the OnlineBank java Application package to the machine where iPlanet Application Server 6...
	2. Create a new directory called OnlineBank under docs/GXApp in the webserver installation direct...
	3. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to the Oracle databa...
	4. Register using kreg utility.
	5. Run the sample application http://hostname/GXApp/OnlineBank/OBLogin.html, and then go further ...

	C++ COnlineBank(NAS2.1) Sample Application
	1. Copy the COnlineBank Application to the machine where iPlanet Application Server 6.0 has been ...
	2. Create a new directory called COnlineBank under docs/GXApp in the webserver installation direc...
	3. Set the following two environment variables:
	4. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to the Oracle Databa...
	5. Run make with the supplied makefile: /usr/ccs/bin/make -f makefile (Where /usr/ccs/bin is the ...
	6. Register using kreg utility.
	7. Run the sample application http://hostname/GXApp/COnlineBank/COBLogin.html and check the accou...

	US Population Java Sample Application
	1. Copy the US Population java application package to a new directory called States on the machin...
	2. Create a new directory called States under docs/GXApp in the webserver installation directory:
	3. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to the Oracle DataBa...
	4. Register using kreg utility.
	5. Run the US Population application:

	US Population C++ Sample Application
	1. Copy the US Population C++ application to the machine where iPlanet Application Server 6.0 has...
	2. Create a new directory called CStates under docs/GXApp in the webserver installation directory:
	3. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to the Oracle DataBa...
	4. Run nmake on the states.mak file (nmake -f states.mak).
	5. Copy the generated states.dll to /IAS6.0-install-directory/nas/bin directory.
	6. Register using kreg utility.
	7. Run the US Population application:
	Chapter�3
	Migrating NAS 2.1 Applications

	Redesigning Your Application
	Migrating Presentation Logic
	Recreating AppLogics as Servlets
	AppLogic
	Servlet

	Recreating Presentation Layout
	Recreating Sessions and Security

	Migrating Business Logic
	Migrating Data Access Logic
	Incompatibility Errors

	Partial Component Migrations
	Calling EJBs from Java AppLogics
	Calling Servlets from Java AppLogics
	Calling Java AppLogics from Servlets
	Accessing the Servlet’s AppLogic

	Calling C++ AppLogics from Servlets
	Sessions in Partially Migrated Applications
	Making the Session Visible

	Converting ITemplateData to ResultSet
	Chapter�4
	Running NAS 4.0 Applications

	Overview
	Differences Between NAS 4.0 and iPlanet Application Server 6.0
	Migrating NAS 4.0 Components
	Basic Migration Steps
	1. Look for deprecated/modified methods in your code.
	2. Replace deprecated methods as shown in this chapter.
	3. Convert Java Server Pages with supplied tool.
	4. Convert descriptors for servlets and EJBs with the supplied tool.
	5. Redeploy your application using the iPlanet Application Server Deployment Tool as described in...

	JDK Migration
	JDK Migration Steps
	1. Get the list of deprecated methods and their replacements at:
	2. Replace the deprecated methods and recompile your application.
	3. Redeploy your application.

	Servlet Migration
	Servlet API Changes
	Servlet Migration Steps
	a. Replace both NAS 4.0 deprecated methods and J2EE deprecated methods to make your application 1...
	b. Replace NAS 4.0 deprecated methods only. Your application will run on iPlanet Application Serv...
	1. (Optional) Replace Servlet 2.2 deprecated methods.
	2. Replace Access Control List based logic with declarative security model.
	a. Remove the following deprecated HTTPSession2 security methods:
	b. Use the auth method tag in XML files to set the authentication method to either Basic, Certifi...
	c. In the .xml file, use the <security constraint> to specify the roles that can execute the serv...
	d. Remove the ACL entries .gxr files.

	3. Replace URI naming that uses the AppPath as the root for absolute references to JSPs or other ...

	Servlet Deployment
	1. Convert NTV descriptor files to XML files
	2. Convert NTV decriptor files and add them to the EJB JAR archive file. To perform this procedur...
	a. Create a new web application as described in Chapter 2 of the Administration & Deployment Guide.
	b. On the Servlet menu, select “Import from 4.0.”
	c. Navigate to the appInfo.ntv file that you want to convert and choose OK.
	d. Continue adding servlet files and other files to your web application.
	e. Save and deploy your web application as described in Chapter 2 of the Administration & Deploym...

	3. Deploy your application as described in Chapter 2, “Running NAS 2.1 Applications.

	JSP Migration
	GX Tags Deprecated
	JSP Migration Steps
	1. Replace URI naming that uses the AppPath as the root for absolute references to servlets or ot...
	2. Convert JavaServer Pages from specification 0.92 to 1.1. JavaServer Pages must be migrated. Yo...

	Converting JSP 0.92 to JSP 1.1
	Examples

	EJB Migration
	EJB Migration Steps
	1. Replace Access Control List based logic with declarative security model.
	2. Convert deployment descriptors.
	3. Modify code and descriptors to exclude deprecated classes and replace with new methods.

	Instances Where EJB Code Must Be Changed or Re-compiled
	Exception Handling Changes

	EJB Deployment
	1. Convert property files to XML files.
	2. Convert NTV decriptor files and add them to the EJB JAR archive file.
	a. Create a new EJB JAR module, as described in Chapter 2 of the Administration & Deployment Guide.
	b. On the EBJ menu, select “Import from 4.0.”
	c. Navigate to the .properties file that you want to convert and choose OK. The .properties file ...
	d. Continue adding .class files and other files to your EBJ JAR module.
	e. Save and deploy your EBJ JAR module as described in Chapter 2 of the Administration & Deployme...

	3. Modify you application code to handle exceptions and transactions.
	4. Deploy your application as described in the Administration & Deployment Guide.

	JNDI Migration
	Java Extensions
	1. Load IDL code in iPlanet Extension Builder 6.0 and create new generated code.
	2. Merge any changes which have been made to the previous extensions into the new generated code.
	3. Convert any references to NMI to JNI (if applicable).
	4. Perform all other Java code changes for JDK 1.2.2.
	5. Recompile all code.

	C++ Extensions
	Using Rich Client (ISecurity Interface)

	Security Features
	Migration Example “The Bank”
	Comparison of iPlanet Application Server 6.0 Bank Application & NAS 4.0 nsOnlineBank
	General Porting Guidelines

	Further Reading
	Chapter�5
	Running NetDynamics Applications

	Overview
	Migration Planning Considerations
	Migration Path
	Migration Planning and Estimating

	iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)
	iPlanet Migration Toolbox
	JATO Application Framework
	iMT/JATO Community

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	P
	R
	S
	T
	U

