Migration Guide

iPlanet Application Server

Version 6.0

866-3495-01
January 2001

Copyright © 2001 Sun Microsystems, Inc. Some preexisting portions Copyright © 2001 Netscape
Communications Corporation. All rights reserved.

Sun, Sun Microsystems, and the Sun logo, Netscape, Netscape Navigator, Netscape Certificate Server,
Netscape DevEdge, Netscape FastTrack Server, iPlanet, and the Netscape N and Ship’s Wheel logos are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
Netscape and the Netscape N logo are registered trademarks of Netscape Communications Corporation in the
U.S. and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries.

Other product and brand names are trademarks of their respective owners.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and
Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of the product or this document may be reproduced in any form by any means
without prior written authorization of the Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS I1S” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2001 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2001 Netscape
Communication Corp. Tous droits réservés.

Sun, Sun Microsystems, et the Sun legat des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et d’autre pays. Netscape et the Netscape N logo sont des marques
déposées de Netscape Communications Corporation aux Etats-Unis et d’autre pays. Les autres logos, les
noms de produit, et les noms de service de Netscape sont des marques déposées de Netscape Communications
Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent
l'utilisation, la copie, la distribution et la décompilation. Aucune partie de ce produit ni de ce document ne
peut étre reproduite sous quelque forme ou par quelque moyen que ce soit sans I'autorisation écrite préalable
de I'Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS
EXPRESSES OU IMPLICITES, TOUTES REPRESENTATIONS ET TOUTES GARANTIES, Y
COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A UN BUT
PARTICULIER OU DE NON CONTREFAGCON SONT EXCLUES, EXCEPTE DANS LA
MESURE OU DE TELLES EXCLUSIONS SERAIENT CONTRAIRES A LA LOI.

Printed in the United States of America00999854321
SERAIENT CONTRAIRES A LA LOI.

Contents

PrefaCE . 7
Using the DOCUMENTAtIONo o e et e e ettt et e e 7
How This Guide ISOrganized 10
Documentation CONVENLIONSttt e et e 10
Related INformation o 11
Chapter 1 Migration OVEIrVIEW i e e e e e 13
The New J2EE Programming Model e 13
Component Modularity and Flexibility 15
Presentation Logic and Layout i 15
BUSINESS LOGIC . . . oottt 16
Data ACCESS LOGIC . . . oottt et e e e e e e e e 16
Migrating NAS 2.1 Applications to iPlanet Application Server 6.0o .. 17
Migrating NAS 4.0 Applications to iPlanet Application Server 6.0 18
Chapter 2 Running NAS 2.1 Applications e 19
NAS 2.1 Application COMPONENTSttt e 19
HTML TemMplates e e e e e e 20
AP OGICS . ittt 20
Database Logic: DAE aNd JDBCttt e e e 20

N A S REGIS Y . ot 21
Deploying NAS 2.1 Applications 21
JaVA EXTENSIONS .. . 21
C++ Applications and EXTENSIONSottt e e e e e e 22
Beginning the Migration ProCesst e 22
Migrating the Sample Applicatons 22
Online Bank EXample 22
Migration From NAS 2.1 to iPlanet Application Server 6.0 - SolarisOnly 23

C++ COnlineBank(NAS2.1) Sample Application i e 24

US Population Java Sample Application 24

4

US Population C++ Sample Application 25

Chapter 3 Migrating NAS 2.1 Applications e 27
Redesigning Your Application 27
Migrating Presentation LOQICottt e e 28
Recreating AppLOogics as SErVIetS 28
APPLOGIC . vt 28
STV . o 29
Recreating Presentation Layout o 29
Recreating Sessions and SECUNILY e 30
Migrating BUSINESS LOGIC oottt e e e 30
Migrating Data ACCESS LOGIC« .ottt et e et e e e e 30
Incompatibility Errors 31
Partial Component Migrations it e 31
Calling EJBs from Java APPLOGICSottt e e e 31
Calling Servlets from Java APPLOGICSttt 33
Calling Java AppLogics from ServIets 34
Accessing the ServIet’s APPLOGICottt 35
Calling C++ AppLogics from ServIets 36
Sessions in Partially Migrated Applications 36
Making the Session Visible 37
Converting ITemplateDatato ResultSet i e 37
Chapter 4 Running NAS 4.0 Applications e 39
OV VI W oo e 39
Differences Between NAS 4.0 and iPlanet Application Server 6.0o.o... 40
Migrating NAS 4.0 COMPONENTS . ..ottt ettt e et e e e e 40
Basic Migration STEPS . ..ottt 41
JDK MIgratioN .o 41
JDK Migration StEPS .ottt 42
SerVIet Migration e 42
Servliet API Changesot 43
Serviet Migration StEPSt 44
Serviet DeploymeNnt o e 45
JOP Migration 46
GX Tags Deprecatedottt 46

JSP Migration StEPS ..ottt 46
Converting JSP 0.92 t0 JSP 1.0 i 46

EJB Migration ... o 48
EJB Migration StePS . ..ottt e 48
Instances Where EJB Code Must Be Changed or Re-compiled 49
Exception Handling Changes e e 50

iPlanet Application Server Migration Guide < January 2001

EJB DeploymMeNt . ..o 50

INDI MIGrationo e e e e e e 51
JAVA EXTENSIONS . . oot e e 51
Gt EXEBNSIONS . . oottt e e e 52
Using Rich Client (ISecurity Interface) i e 52
SECUNILY FEALUIES . .. ottt ettt e e e e e e e e e e e e 52
Migration Example “The Bank™” 53
Comparison of iPlanet Application Server 6.0 Bank Application & NAS 4.0 nsOnlineBank 53
General Porting GUIdeliNgS 55
Further Reading o e e e 55
Chapter 5 Running NetDynamics Applications i, 57
L0 YT 1= P 57
Migration Planning Considerations it 58
Migration Path 58
Migration Planning and EStimating i 59
iPlanet Migration Toolbox and J2EE Assisted Take-Off JATO), 60
iPlanet Migration TOOIDOX o e e 60
JATO Application Framework 61
IMTZIATO COMMUNILY . oo e e e e e e e e e e e e 62
X o o 63

6 iPlanet Application Server Migration Guide « January 2001

Preface

This guide describes how to migrate applications from Netscape Application Server
versions 2.1 and 4.0 to iPlanet Application Server 6.0. In addition, this guide includes

information for migrating Net Dynamics applications.
This preface contains the following sections:

e Using the Documentation

e How This Guide Is Organized

» Documentation Conventions

* Related Information

Using the Documentation

The following table lists the tasks and concepts that are described in the iPlanet Application
Server and iPlanet Application Builder manuals Bel@ase Notes. If you are trying to
accomplish a specific task or learn more about a specific concept, refer to the appropriate

manual.

Note that the printed manuals are also available online in PDF and HTML format, at:

http://iplanet.com/manuals/ias.

For information about See the following

Shipped with

Late-breaking information about the Release Notes
software and the documentation

Installing iPlanet Application Server and its Installation Guide
various components (Web Connector

plug-in, iPlanet Application Server

Administrator), and configuring the sample

applications

iPlanet Application
Server 6.0, iPlanet
Application Builder 6.0

iPlanet Application
Server 6.0

Using the Documentation

For information about See the following

Shipped with

Installing iPlanet Application Builder. install.htm

Basic features of iPlanet Application Server, Getting Sarted Guide
such as its software components, general
capabilities, and system architecture.

Administering one or more application Administration &
servers using the iPlanet Application Server Deployment Guide
Administrator Tool to perform the following

tasks:

« Deploying applications with the
Deployment Manager tool

* Monitoring and logging server activity
e Setting up users and groups

* Administering database connectivity
¢ Administering transactions

« Load balancing servers

« Managing distributed data
synchronization

Migrating your applications to the new Migration Guide
iPlanet Application Server 6.0 programming

model from the Netscape Application Server

version 2.1, including a sample migration of

an Online Bank application provided with

iPlanet Application Server

iPlanet Application
Builder 6.0

Available online.

iPlanet Application
Server 6.0

iPlanet Application
Server 6.0, iPlanet
Application Builder 6.0

8 iPlanet Application Server Migration Guide < January 2001

Using the Documentation

For information about See the following

Shipped with

Creating iPlanet Application Server 6.0 User’s Guide
applications within an integrated

development environment by performing the

following tasks:

¢ Creating and managing projects

e Using wizards

« Creating data-access logic

« Creating presentation logic and layout
¢ Creating business logic

e Compiling, testing, and debugging
applications

« Deploying and downloading applications
* Working with source control
e Using third-party tools

Creating iPlanet Application Server 6.0 Programmer’s Guide
applications that follow the open Java (Java)

standards moddl (Servlets, EJBs, JSPs, and

JDBC), by performing the following tasks:

« Creating the presentation and execution
layers of an application

« Placing discrete pieces of business logic
and entities into Enterprise Java Bean
(EJB) components

« Using JDBC to communicate with
databases

« Using iterative testing, debugging, and
application fine-tuning procedures to
generate applications that execute
correctly and quickly

Using the public classes and interfaces, and ~ Server Foundation

iPlanet Application
Builder 6.0

iPlanet Application
Builder 6.0

iPlanet Application

their methods in the iPlanet Application Class Reference (Java) Builder 6.0

Server classlibrary to write Java
applications

Preface 9

How This Guide Is Organized

For information about See the following Shipped with
Using the public classes and interfaces, and ~ Server Foundation Order separately
their methods in the iPlanet Application Class Reference (C++)

Server classlibrary to write C++

applications

How This Guide Is Organized

This guide is organized into five chapters, as follows:

e Chapter 1, Migration Overview

e Chapter 2, Running NAS 2.1 Applications

e Chapter 3, Migrating NAS 2.1 Applications

e Chapter 4, Running NAS 4.0 Applications

e Chapter 5, Running NetDynamics Applications

In addition, there is a complete code walkthrough of an example migration using the Online
Bank sample application from NAS 4.0 to iPlanet Application Server 6.0. This code
example is also available online. Check the iPlanet web site support area for more migration
details.

Documentation Conventions

10

File and directory paths are given in Windows format (with backslashes separating
directory names). For Unix versions, the directory paths are the same, except that slashes
are used instead of backslashes to separate directories.

This guide uses URLs of the form:
http: //server .domai n/path/file.html

In these URLsserver is the name of server on which you run your applicatiomain is
your Internet domain nameath is the directory structure on the server; fileds an
individual filename. Italic items in URLs are placeholders.

This guide uses the following font conventions:

iPlanet Application Server Migration Guide « January 2001

Related Information

« Thenonospace font is used for sample code and code listings, APl and language
elements (such as function nhames and class names), file names, pathnames, directory
names, and HTML tags.

« ltalictype is used for book titles, emphasis, variables and placeholders, and words used
in the literal sense.

Related Information

Specifications related to thelanet Application Server 6.0 programming model are provided
in the docs directory on your installation CD. However, always refer to the online
documentation first as this may have been updated since you have received the product.

The official specifications are maintained at the following URLs. Note that these sites do
not necessarily contain the versions of these specifications that are suppartathy
Application Server.

For information about See the following

Serviets http://java. sun. coni product s/ servl et
JavaServer Pages (JSPs) http://java. sun. coni products/jsp
Enterprise JavaBeans (EJBS) http://java. sun. conl products/ejb

Java Naming and Directory Interface http://java. sun. coni product s/ j ndi
(INDI)

Java Database Connectivity (JDBC) http://java. sun. coni products/j dbc

Additionally, the he following resources are available:

Programming with Servlets and JSPs

e Java Serviet Programming, by Jason Hunter with William Crawford, O’Reilly Publishing
e Java Threads, 2nd Edition, by Scott Oaks & Henry Wong, O'Reilly Publishing

 The web sitét t p: // wwv servl et central . com

Programming with EJBs

e Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

e The web siténttp://ejbhome.iona.com

Preface 11

Related Information

Programming with JDBC
* Database Programming with JDBC and Java, by George Reese, O’'Reilly Publishing

e JDBC, by Graham Hamilton, Rick Cattell, Maydene Fisher

12 iPlanet Application Server Migration Guide ¢ January 2001

Chapter 1

Migration Overview

This chapter introduces the iPlanet Application Server 6.0 programming model and
comparesit to both the NAS 4.0 programming model and the NAS 2.1 programming
model. It aso describes the basics of migrating applications to the new model.

The new iPlanet Application Server 6.0 programming model is for Java applications only.
C++ applications continue to use the NAS 2.1 model. Note the following compatibility
issues:

< iPlanet Application Server 6.0 is backward compatible with NAS 2.1 applications.
NAS 2.1 applications can run on iPlanet Application Server 6.0 without code
alteration.

« iPlanet Application Server 6.0 is compatible with NAS 4.0 applications with
conversion to the J2EE standard. NAS 4.0 applications do require some conversion.

The New J2EE Programming Model

iPlanet Application Server 6.0 is Java 2 Platform, Enterprise Edition (J2EE) specification
version 1.2 compliant and is based on standards developed by the Java community, namely
servlets, JavaServer Pages, and Enterprise JavaBeans. This is in contrast to the proprietar
AppLogic-based programming model used in NAS 2.1. NAS 4.0 is based on the J2EE
programming model but uses earlier versions of the standards.

Application flow is similar between the iPlanet 6.0 model and the previous 4.0 and 2.1
models. Each user interaction is handled by one (or more) application components that
process the inputs, perform business logic functions, interact with a database, and provide
an output page that answers the input and sets up the next user interaction. The 6.0 model,
like the 4.0 model, is more modular and segregates activities into more discrete
components.

13

The New J2EE Programming Model

The new programming model describes three tiers of application logic, each of whichis
represented by a set of components or APIs. Thesetiers are described in the following table;

Programming NAS 2.1 NAS 4.0 iPlanet Description
Tier component component Application
Server 6.0
component
Presentation AppLogic Javaservlet Javaservlet Controls the application’s
Logic and interface to the user by
propietrary processing requests, generating
standards content in response, formatting
and delivering that content back
to the user. In 6.0, servlets
process incoming requests and
orchestrate the response.
Business logic is normally
offloaded to EJBs, and output is
usually offloaded to JSPs.
Presentation HTML JavaServer JavaServer Controls the appearance of each
Layout (part of template Page (JSP) Page (JSP) page. Part of the presentation
Presentation and logic, usually handled by
Logic) propietrary JavaServer Pages. JSPs are
standards HTML pages that contain
embedded Java, and thus are
much more versatile and
powerful than 2.1 HTML
templates.
Business Logic ~ AppLogic Enterprise Enterprise Controls business logic. EJBs
JavaBeans JavaBeans enable business logic to be
(EJBs) and (EJBs) persistent across calls, offer
propietrary improved caching, and are
standards designed to work closely with
JDBC for database transactions.
Data Access DAE JDBCand JDBC Controls database storage and
Logic propietrary retrieval. The JDBC APl is
standards available to all Java components,

as are all APIs, though database
transactions are usually
controlled by EJBs in the 6.0
model.

14 iPlanet Application Server Migration Guide ¢ January 2001

The New J2EE Programming Model

This section includes the following additional topics:
e Component Modularity and Flexibility

e Presentation Logic and Layout

« Business Logic

« Data Access Logic

Component Modularity and Flexibility

The terms “normally” and “usually” appear frequently in this document and in the
Programmer’s Guidavith regard to theroles of iPlanet Application Server 6.0 components.
Since servlets, JSPs, and EJBs @l reside within the same virtual machine and are all Java
objects, they share aflexibility that allows each task to be addressed by more than one
component. There are no hard and fast rules specifying which tasks are appropriate for
which components. For example, an entire complex application could be written using only
JSPs, or only servlets.

However, the components are designed to work together in a modular way, taking
advantage of the strengths of each component. For example, it is more cumbersome to
perform layout tasks in a servlet, but JSPs (as HTML pages) are highly suitable for layout
tasks. Alternatively, presentation logic is compact and elegant in a servlet.

The segregation and order of components describes a powerful application model that runs
well in adistributed environment. Choose components that perform the tasks you need,
using the programming tiers described here as a guideline.

Presentation Logic and Layout

Presentation logic describes the flow of an application from the perspective of each user
interaction: request processing, followed by content generation and delivery. The goal of
presentation logic is to create alogical answer to a request, and to prompt for another
request. The goal of presentation layout is to display the content of this answer in a
predetermined format. Application functions such as user sessions, security and user
authentication, and input validation are also handled by the presentation logic.

In short, presentation logic involves everything related to the application’s interface with
the user.

In the NAS 2.1 programming model, presentation logic was controlled by the AppLogic
class, while layout was handled by an HTML template. At run-time, AppLogic objects
provided output to populate the template.

Chapter 1 Migration Overview 15

The New J2EE Programming Model

16

In the iPlanet Application Server 6.0 programming model, presentation logic is usually
handled by a Java servlet. Layout is usually handled by a JSP. At runtime, the servlet usesa
JSP to format the content generated by the business logic.

The two major aternatives to this basic model are as follows:

« Handle all presentation logic and layout for a given interaction in a JSP. This can be an
easy way to control an interaction that has no business logic and little to process from
the previous interaction. For example, the “front page” for an application often requires
no processing at all.

« Handle all presentation logic and layout in a servlet. This can be efficient for
interactions that have very little layout. For example, a simple database report might
just list the rows retrieved from a database query. It doesn’t make sense to incur the
overhead of a JSP call when the page can be simply output from a servlet.

Business Logic

Business logic describes the activities that involve the generation of specific content:
storing and retrieving data, and performing computations on that data. The goal of business
logic is to perform the activities that generate or determine answers to questions posed by
the presentation logic.

In short, business logic involves the content provided by and generated for the application.

In the NAS 2.1 programming model, business logic was controlled by the same AppLogic
that handled the presentation logic for a given user interaction.

In the iPlanet Application Server 6.0 programming model, business logic is usually handled
by one or more Enterprise JavaBeans (EJBs), which control database transactions and
encapsulate the results. EJBs are powerful, reusable components that empower applications
with a great deal of flexibility, since EJBs can be invoked or inspected from any other

object and can be made to be persistent.

One alternative to this model is to handle business logic in the presentation logic (serviets
and/or JSPs), much the same way that AppLogics handled business logic. This can be
efficient for short, directed business events such as specific directory requests, but this
approach lacks the flexibility and power that EJBs bring to the programming model.

Data Access Logic

Data access logic describes transactions with a database or directory server. The goal of
data access logic is to provide an interface between an application and the set of data that
concerns it. Data access is normally performed as a function of business logic.

iPlanet Application Server Migration Guide ¢ January 2001

Migrating NAS 2.1 Applications to iPlanet Application Server 6.0

In short, data access logic involves the storage and retrieval of the content collected or
generated by business logic.

Inthe NAS 2.1 programming model, data access | ogic was controlled by calls made from an
AppLogic using APIs from several classes and interfaces, including theDat aSet ,

DBDat aSet , and DBSt or edPr ocedur e classesand thel Cal | abl eSt nt,

| Col um, | Dat aConn, | Dat aConnSet , | Hi er Query, | Hi er Resul t Set ,

I Li st Dat aSet , | PreparedQuery,| Query, | Resul t Set,| Tabl e, | Trans,
and | Val Li st interfaces.

In the iPlanet Application Server 6.0 programming model, data access logic is handled by
the JDBC standard set of APIs. The previous APIs are all deprecated in iPlanet Application
Server 6.0.

Migrating NAS 2.1 Applications to iPlanet
Application Server 6.0

Migration involves altering an application written for the NAS 2.1 programming model so
that it conforms to the iPlanet Application Server 6.0 programming model. There are three
approaches to this process, each of which is covered in this document:

No migration. This approach involves no actions by the developer and depends solely
on backward-compatible support by the server. This is an acceptable approach if you
do not want to take advantage of the flexibility and power that the new standards-based
model provides, although many of the APIs supported in NAS 2.1 are now deprecated
and may not be supported in future releases.

Backward-compatibility is described in Chapter 2, “Running NAS 2.1 Applications.”

Partial migration. In this approach, part of the application conforms to the new
programming model, while the rest relies on backward-compatibility. This enables
developers to migrate one portion of an application at a time (for example, one level of
interaction with a user, or one programming tier) while still retaining the portions of the
application that are known and tested.

iPlanet Application Server 6.0 supports partial migration by providing “glue” between
the old components and the new components. This support is described in “Partial
Component Migrations” in Chapter 3, “Migrating NAS 2.1 Applications.”

Complete migration to the new programming model. This approach requires a lot of
development resources and involves a full redesign, but it enables the application to
take full advantage of the features of the new programming model.

This approach is described in Chapter 3, “Migrating NAS 2.1 Applications.”

Chapter 1 Migration Overview 17

Migrating NAS 4.0 Applications to iPlanet Application Server 6.0

Migrating NAS 4.0 Applications to iPlanet
Application Server 6.0

NAS 4.0 uses Netscape and older Java standards which have been replaced with J2EE 1.2
standards in iPlanet Application Server 6.0. Y ou need to replace deprecated methods and
redeploy your applications with the new XML descriptors. Tools are provided to help with
the process. For more information, see Chapter 4, “Running NAS 4.0 Applications.”

18 iPlanet Application Server Migration Guide « January 2001

Chapter 2

Running NAS 2.1 Applications

This chapter describes how to run NAS 2.1 applications on iPlanet Application Server 6.0
without making any source-level changes. Information on setting up the online Bank
exampleis at the end of the chapter. It is recommended you set up the Bank example first
before running your own applications on i Planet Application Server 6.0. The Bank example
will help you walk through a step by step migration.

iPlanet Application Server 6.0 is completely backward-compatible with NAS 2.1. In other
words, you should be able to deploy your older NAS 2.1 application on iPlanet Application
Server 6.0 without code alteration. However, implementation requires some steps. For

example, C++ applications and extensions must be recompiled before deploying on the new
server (see “C++ Applications and Extensions” on page 22). Also, you must have correct
the class path for the version of JDBC you use.

This chapter includes the following sections:
* NAS 2.1 Application Components

« Deploying NAS 2.1 Applications

* Java Extensions

e C++ Applications and Extensions

« Beginning the Migration Process

e Migrating the Sample Applicatons

NAS 2.1 Application Components

This section describes the iPlanet Application Server 6.0 support for each of the major
types of components from the 2.1 programming model. This support is outlined in the
following sections:

19

NAS 2.1 Application Components

20

HTML Templates

e ApplLogics

« Database Logic: DAE and JDBC
* NAS Registry

HTML Templates

For presentation layout, NAS 2.1-style HTML Templates, including GX tags, are fully

supported without alteration by the NAS template engine. If a template is called by a

servlet, however, it is compiled as a JSP. JSPs support GX tags with the exception of
hierarchical queries.

AppLogics

The AppLogic framework is fully supported in iPlanet Application Server 6.0, though many
of the proprietary APIs introduced in NAS 2.1 have been deprecated in favor of the Java
standards on which the new programming model is based. For more information, see
iPlanet Application Server Foundation Class Reference.

Database Logic: DAE and JDBC

The NAS 2.1 database access classes and interfaces are now deprecated in favor of JDBC,
the Java standard database connectivity APl. Code that uses NAS 2.1 database connection
and query methods is supported in iPlanet Application Server 6.0, but this support may
disappear in a future release.

The new JDBC layer provides the same functionality as the old 2.1 JDBC layer and many
new methods are supported. As a result, you may want to modify some of your Applogic
code to remove workarounds or add new JDBC calls.

AppLogics should use either of the foillowing JDBC layers:
e The new JDBC layer.

e The old JDBC layer, but not both. Servlets and EJBs should use only the new JDBC
layer. Mixing and matching of JDBC calls from each version is not supported.

iPlanet Application Server Migration Guide « January 2001

Deploying NAS 2.1 Applications

Y ou can use JDBC AppLogics from NAS 2.1 against the same iPlanet Application Server
6.0 JDBC layer, but you must make sure that the JDBC 2.0 interfaces are |oaded into the
JVM instead of the 1.2 interfaces. For example, if you get alog message like the following,
you probably have the JDBC 1.2 interfaces in your CLASSPATH before the JDBC 2.0
interfaces:

[01/05/99 11:25:51:0] error: APPLOG C-caught_exception: Caught
Excepti on:

j ava. |l ang. NoSuchMet hodError: java.sql. Statenent: method

addBat ch(Ljava/lang/ String;)V not found

NAS Registry

Part of the NAS registry now residesin an LDAP directory, though for the most part access
to it has not changed. For more information, see the Administration & Deployment Guide.

Deploying NAS 2.1 Applications

UsetheiPlanet Application Server Administrator Tool to deploy al applications to i Planet
Application Server. For more information, see the Administration & Deployment Guide.

Java Extensions

To migrate JavaNAS 2.1 extensions to iPlanet Application Server 6.0, perform the
following steps:

1. LoadIDL codeiniPlanet Extension Builder 6.0 and create new generated code.

2. Merge any changes which have been made to the previous extensions into the new
generated code.

3. Convert any referencesto NMI to NI (if applicable).
4. Perform all other Java code changes for JDK 1.2.2.

5. Recompile all code.

Chapter 2 Running NAS 2.1 Applications 21

C++ Applications and Extensions

C++ Applications and Extensions

iPlanet Application Server 6.0 provides new versions of required C++ header files. For this
reason, C++ applications and extensions must be recompiled using the new header files.
Users must recompile and link their extensions against iPlanet Application Server 6.0
libraries.

iPlanet Application Server provides pre-built extensions for several legacy systems,
including MQSeries, TUXEDO, and CICS. These extensions have been re-released to
provide support for iPlanet Application Server 6.0, though they will retain support for the
NAS 2.1 programming model.

Beginning the Migration Process

When you decide to migrate your application to the new model, it is easiest to begin by
redesigning your application and coming up with atransition plan. It is often best to
gradually migrate parts of an application to anew programming model, rather than planning
alarge-scale migration for the entire application. However, it is also possible to migrate
gradually by programming tier (presentation layout, business logic, and so on) rather than
by application component.

For information on partial migration, including how to alow 2.1 components (like
AppLogics) to interact with 6.0 components (like servlets and EJBS), see “Partial
Component Migrations” in Chapter 3, “Migrating NAS 2.1 Applications.”

Migrating the Sample Applicatons

22

This section describes how you can migrate the following example applications:
e Online Bank Example

* US Population Java Sample Application

e US Population C++ Sample Application

Online Bank Example

This example is divided into the following sections:

e Migration From NAS 2.1 to iPlanet Application Server 6.0 - Solaris Only

iPlanet Application Server Migration Guide « January 2001

Migrating the Sample Applicatons

e C++ COnlineBank(NAS2.1) Sample Application

Migration From NAS 2.1 to iPlanet Application Server 6.0 - Solaris
Only

iPlanet Application Server 6.0 includes JDK 1.2.2 as part of its distribution. With the new
JDK1.2 all the java core packages ljkava. i 0,j ava. | ang, and so on, are packaged
intort . jar instead of the classes.zip as in JDK 1.1. You canrfind ar in the

following location:

/iAS6.0-install-directory/nas/usr/javaljre/lib

If you want to compile any java classes you have to haveg ar in theCLASSPATH and
you should use theavac, located in the /iAS6.0-install-directory/nas/usr/java/bin
directory, for compilation.

To migrate from NAS 2.1 to iPlanet Application Server 6.0 (Solaris platforms), perform the
following steps:

1. Copy the OnlineBank java Application package to the machine where iPlanet
Application Server 6.0 has been successfully installed by creating a new directory
OnlineBank undeGXAPP.

/iAS6.0-install-directory/nas/APPS/GXApp/OnlineBank

2. Create a new directory called OnlineBank under docs/GXApp in the webserver
installation directory.

INetscape/Suitespot/docs/GXApp/OnlineBank

Then copy all the HTML files of OnlineBank in NAB 2.1 webserver docs directory
into the OnlineBank directory.

3. Create an entry fdcsanpl e in thet nsnanes. or a. Make sur&ksanpl e points to
the Oracle database running 8.0.5.

4. Register usingr eg utility.

Change directory to /iAS6.0-install-directory/nas/APPS/GXApp/OnlineBank then run
/iAS6.0-install-directory/nas/bin/kregnl i neBank. gxr .

Make sure that you are running the iPlanet Application Server 6.0 kreg and not the old
2.1 version.

5. Run the sample applicatidntp://hostname/GXApp/OnlineBank/OBLogin.htrahd
then go further to see the account balance and other options.

Chapter 2 Running NAS 2.1 Applications 23

Migrating the Sample Applicatons

24

C++ COnlineBank(NAS2.1) Sample Application
To run the C++ COnlineBank(NAS2.1) Sample Application, perform the following steps:

1.

Copy the COnlineBank Application to the machine where iPlanet Application Server
6.0 has been successfully installed by creating a new directory COnlineBank under
GXApp /1AS6.0-install-directory/nass APPS/GX A pp/COnlineBank,

Create anew directory called COnlineBank under docs/GXApp in the webserver
installation directory: /Netscape/Suitespot/docs/ GX A pp/COnlineBank, and copy al
the HTML files of COnlineBank in NAB 2.1 webserver docs directory into the above
created COnlineBank directory.

Set the following two environment variables:
setenv GX_ROOTDIR /iAS6.0-install-directory/nas
setenv GX_ROOT /iAS6.0-install-directory/nas

Create an entry for ksanpl e inthet nsnanes. or a. Make sure ksanpl e pointsto
the Oracle Database running 8.0.5.

Run make with the supplied makefile: /usr/ccs/bin/make -f makefile (Where
/usr/ccg/bin is the directory where the make file exists). This action copiesthe
generated libCOnlineBank.so fileinto the /iA S6.0-install-directory/nas/gxlib directory.
Register using kr eg utility.

Changethedirectory to /iAS6.0-install-directory/nas/ APPS/GX App/COnlineBank then
run /iAS6.0-install-directory/nas/bin/kreg COnl i neBank. gxr .

Make sure that you are running the new iPlanet Application Server 6.0 kreg and not the
old NAS 2.1 version.

Run the sample application http://hosthame/GX A pp/COnlineBank/COBL ogin.html
and check the account balance and other options.

US Population Java Sample Application

To migrate the US Population Java example from NAS 2.1 to iPlanet Application Server
6.0, perform the following steps:

1.

Copy the US Population java application package to a new directory called States on
the machine where iPlanet Application Server 6.0 has been successfully installed (for
example: GXAPP/IASE.0-install-directory/nas/ APPS/GX App/ States).

iPlanet Application Server Migration Guide « January 2001

Migrating the Sample Applicatons

Create anew directory called States under docs/GXApp in the webserver installation
directory:

/Netscape/Suitespot/docs/ GX App/States

Then, copy al the HTML files from the US Population application in NAB 2.1
webserver docs directory into the above named States directory.

Create an entry for ksanpl e inthet nsnanes. or a. Make sureksanpl e pointsto
the Oracle DataBase version 8.0.5.

Register using kreg utility.

Then change the directory to /| AS6.0-install-directory/nas/ APPS/GX App/States, and
then run /IAS6.0-install-directory/nas/bin/kreg st at es. gxr.

Make sure that you are running thei Planet Application Server 6.0 kr eg and not the old
2.1 version.

Run the US Population application:
http://hostname/GX App/States/index.html

Then click on RunRegi onRepor t to see the population statistics.

US Population C++ Sample Application

To migrate the US Population C++ example from NAS 2.1 to iPlanet Application Server
6.0, perform the following steps:

1.

Copy the US Population C++ application to the machine where iPlanet Application
Server 6.0 has been successfully installed. Copy it to a new directory called CStates
under GXAPP (for example: /|AS6.0-install-directory/nas/ APPS/GX App/CStates).

Create anew directory called CStates under docs/GXApp in the webserver installation
directory:

/Netscape/Suitespot/docs/GX A pp/CStates.

Then copy all the HTML files of US Population in NAB 2.1 webserver documents
directory into the above created CStates directory.

Create an entry for ksanpl e inthet nsnanes. or a. Make sure ksanpl e pointsto
the Oracle DataBase version 8.0.5.

Run nmake on the states.mak file (nmake -f st ates. mak).

Copy the generated states.dll to /IAS6.0-install-directory/nas/bin directory.

Chapter 2 Running NAS 2.1 Applications 25

Migrating the Sample Applicatons

6. Register using kr eg utility.

Then change directory to /1A S6.0-install-directory/nass APPS/IGX A pp/CStates, and run
/IASGE.0-install-directory/nas/bin/kreg st at es. gxr.

Make sure that you are running the iPlanet Application Server 6.0 kr eg and not the
older 2.1 version.

7. Runthe US Population application:
http://hostname/GX A pp/CStates/index.html

Then click on RunRegi onRepor t to see the population statistics.

26 iPlanet Application Server Migration Guide ¢ January 2001

Chapter 3

Migrating NAS 2.1 Applications

This chapter describes altering your NAS 2.1 applicationsto fit the iPlanet Application
Server 6.0 programming model.

This chapter includes the following sections:

Redesigning Your Application
Migrating Presentation Logic
Migrating Business Logic
Migrating Data Access Logic

Partial Component Migrations

Redesigning Your Application

When redesigning an existing application, it is important to keep in mind that changes made
to one part will affect the others.

It may be useful to think of your application as one of the following models:

A series of user interactions to reach a goal. Example: an online survey or standardized
test.

An activity clearinghouse with a central front page. Example: an online bank, with a
central page that leads to several activities (that is, withdrawals, transfers, and so on).

In reality, your application is likely to be a combination of the two. For example, an online
bank could really be a central clearinghouse where each of the pathways leads to a series c
user interactions to reach a goal.

27

Migrating Presentation Logic

However your application is subdivided, it is often best to migrate one part at atime. For
more details, see “Partial Component Migrations” on page 31.

Migrating Presentation Logic

28

This section describes the following concepts:
« Recreating AppLogics as Servlets
e Recreating Presentation Layout

* Recreating Sessions and Security

Recreating AppLogics as Servlets

AppLogics map directly to servlets. They are similar in that they are both called by URLSs,
and they both contain mechanisms to process input and generate output. The main
difference, besides the layout of the code itself, is that servlets generally do not perform
business logic, as AppLogics do. Rather, business logic is handled in EJBs and referenced
by the servlet, similarly to the way presentation layout is handled in JSPs and referenced by
the servlet. In short, a servlet is like an AppLogic with the business logic re-implemented in
a separate entity.

For information about servlets, see Chapter 3, “Controlling Applications with Servlets,” in
theProgrammer’s Guide (Java)

Servlets must contain aser vi ce() method (or, for HTTP servlets, this can be
implemented asdoGet () , doPost (), etc. depending on the HTTP transport method),
whichislogically similar to the execut e() method in an AppLogic. Thisisthe main flow
of execution for the component.

Moreover, where iPlanet Application Server createsan| Val Li st member variableto
contain incoming data for an AppLogic, for servlets, iPlanet Application Server instead
creates arequest object and passesit as a parameter to the servlet. Likewise, where
AppLogicsusean| Val Li st for output, servlets use a response object, also passed to the
servlet as a parameter. The following code examplesillustrate both cases:

AppLogic

public class MyAppLogi c extends ApplLogic {
public void execute () throws | CException {

String | ast Nane = val I n. getVal String("l ast Nanme");

iPlanet Application Server Migration Guide « January 2001

Migrating Presentation Logic

return result ("<htm ><body>\n"
+ "<p>Your last nane is " + lastNane + ".\n"
+ "</ body></htm >\n");

Servlet

public class nyServlet extends HttpServlet {
public void service (HtpServl et Request req,
Ht t pSer vl et Response res)
throws | OException, ServletException
{

res. set Content Type("text/htm");
String | ast Nane = req.get Paraneter ("l ast Nane");

PrintWiter output = res.getWiter();

out put. println("<htm ><body>\n");
+ "<p>Your last nane is " + lastNane + ".\n"
+ "</ body></htm >\n");

}

Note that you can also reimplement an AppL ogic as a JSP, since JSPs and servlets are more
or less the same entity from different viewpoints. For example;

<ht m ><body>
<p>Your |ast nanme is <display property="request: parans:| ast Nane">.
</ body></ht ml >

For information about servlets, see Chapter 4, “Presenting Application Pages with
JavaServer Pages,” in tReogrammer’s Guide (Java)

Recreating Presentation Layout

Inasense, your 2.1 HTML templates are already migrated. The iPlanet Application Server
6.0 template engine simply compiles these templates asif they were JSPs. The new
template engine supports GX tags for backward compatibility, with the exception of
hierarchical queries.

Chapter 3 Migrating NAS 2.1 Applications 29

Migrating Business Logic

However, GX tag support in JSPsis deprecated, so these templates must be converted to use
standard JSP tags and syntax. JSPs use beans to encapsul ate output parameters, and can
access arbitrary Java objects as well. Y ou can even access EJBs directly from JSPs.
Normally, however, you set attributes in the request object during the execution of aservlet
and then recall themin a JSP.

For more details about JSPs, including examples, see Chapter 4, “Presenting Application
Pages with JavaServer Pages,” inRinegrammer’s Guide (Java)

Recreating Sessions and Security

iPlanet Application Server 6.0 sessions use the Ht t pSessi on interface. The concepts are
similar to the way sessions worked in NAS 2.1, though the API is different. A servlet (or
AppLogic) creates a session, thereby instantiating a session object that persists for the life
of the user session. A session cookieis returned to the client and reread on subsegquent
interactions with that client. Once the session exists, you can bind objectsto it.

Security in servlets has changed. For more information, see “Understanding the Security
Model,” in Chapter 12, “Writing Secure Applications,” in tReogrammer’s Guide (Java)

Migrating Business Logic

Businesslogic is handled in iPlanet Application Server 6.0 through Enterprise JavaBeans
(EJBs) rather than in AppLogics. An important distinction between AppLogics and EJBsis
that EJBs can be made to be persistent during a “session” with the user, separately
designated from the user’s session, in the case of session beans. Entity beans exist
independently of users, and thus potentially persist through the life of the server.

You write these EJBs to perform discrete tasks, then connect to them from servlets. For
example you would do this if you have an electronic shopping cart.

For details on JDBC and transaction support, see Chapter 8, “Handling Transactions with
EJBs,” and Chapter 8, “Handling Transactions with EJBs,” ifPtlogrammer’s Guide
(Java)

Migrating Data Access Logic

This section describes redeploying database calls using the JDBC API.

The JDBC layer in iPlanet Application Server 6.0 supports 100% of the JDBC 2.0
specification and standard extensions.

30 iPlanet Application Server Migration Guide ¢ January 2001

Partial Component Migrations

For details on JDBC and transaction support, see Chapter 8, “Handling Transactions with
EJBs,” and Chapter 9, “Using JDBC for Database Access,” iRtthgrammer’s Guide
(Java)

The JDBC 2.0 interfaces provided in $GX_ROOTDI R/ sol ari sdbg/ JDK_1. 2/ j ava (or
similar directory) must be before any other JDBC interfaces in the CLASSPATH. iPlanet
Application Server 6.0 works with JDK 1.2 which has JDBC 2.0 interfacesin

$JAVA HOMVE/ lib/rt.jar,somakesurethisrt.jar isafter theiPlanet Application
Server provided classes, as follows:

set env CLASSPATH

Incompatibility Errors

If you get alog message like the following, you probably have the JDBC 1.2 interfacesin
your CLASSPATH before the JDBC 2.0 interfaces:

[01/05/99 11:25:51:0] error: APPLOA C-caught _exception:
Caught Excepti on:

j ava. |l ang. NoSuchMet hodError: java.sql. Statenment: method
addBat ch(Lj ava/l ang/ String;)V not found

Partial Component Migrations

This section describes how to use older components (Java and C++ AppL ogics) with newer
components (servlets and EJBs). The following four combinations are supported:

e Calling EJBs from Java AppLogics
e Calling Servlets from Java AppLogics
e Calling Java AppLogics from Servlets

e Calling C++ AppLogics from Servlets

Calling EJBs from Java AppLogics

Since there is no special context shared between servlets and EJBs, you call an EJB from a
AppLaogic in exactly the same way you would from a servlet.

Chapter 3 Migrating NAS 2.1 Applications 31

Partial Component Migrations

This example shows an AppL ogic accessing an EJB called ShoppingCart. The AppLogic
creates a handle to the cart by casting the user’s session ID as a ShoppingCart after
importing the cart’s remote interface. The cart is stored in the user’s session.

i mport cart. ShoppingCart;
/] Get the user’s session and shopping cart
//first create the session
| Sessi on2 sess = createSessi on(GXSESSI ON. GXSESSI ON_DI STRI B,

0, //no timeout
“call g b", [l app nanme
null, /Isystem-gen’d ID
null);

/lcreate an IValList to store the shopping cart in the session
IValList ival = sess.getSessionData();

ShoppingCart cart = (ShoppingCart)ival.getVal(“shoppingCart");

/I If the user has no cart, create a new one
if (cart == null) {
cart = new ShoppingCart();
ival.setVal("shoppingCart", cart);

}

Y ou can access EJBs by using the Java Naming Directory Interface (JNDI) to establish a
handle, or proxy, to the EJB. Y ou can then refer to the EJB as aregular object; any
overhead is managed by the bean’s container.

This example shows the use of JNDI to look up a proxy for a shopping cart:

String jndi Nm = "Bookstore/cart/ Shoppi ngCart*";
j avax. nam ng. Context initCtx;
bj ect hone;
try {
initCGx = new javax. naming. I nitial Context(env);
} catch (Exception ex) {

return null;
}
try {
java.util.Properties props = null;
home = initCx. | ookup(jndi Nm;
}
cat ch(j avax. nanm ng. NaneNot FoundExcepti on e)
{
return null;
}
cat ch(j avax. nam ng. Nam ngException e)
{

32 iPlanet Application Server Migration Guide « January 2001

Partial Component Migrations

return null;

}
try {
| Shoppi ngCart cart = ((I| Shoppi ngCartHone) home).create();

} catch () {...}

Calling Servlets from Java AppLogics

You can call aservlet from a Java AppLogic, for example if you want your AppLogic to
call aJSP, using GXCont ext . NewRequest () or GXCont ext . NewRequest Async() . For
more details and specific examples of NewRequest () , see the documentation for the
GXCont ext class, intheiPlanet Application Server Foundation Reference.

You can also call aJSP from an AppLogic, since JSPs and servlets are the same type of
object after instantiation.

To call a servlet from an AppLogic using the same process call the servlet's serlvet engine
(an AppLogic callecser vI et Runner), consider the following example:

cl ass SomeAppl ogi ¢ extends Appl ogi ¢ {
int execute() {
val I n. setVal String("appNanme", "nsOnl i neBank") ;
val I n.setVal String("servl et Nane", "Login");
val I n.setVal String("SCRI PT_NAME", "nsOnl i neBank/ Logi n") ;
com net scape. server. servl et. servl etrunner. Servl et Runner sr =
new
com net scape. server. servl et. servl etrunner. Servl et Runner () ;
sr.valln = valln;
sr.val Qut = val Qut;
sr.context = context;
sr.stream = this.stream
sr.ticket = this.ticket;
sr.request = this.request;
sr. COVBet (COMzet ()) ;
sr. COMAddRef () ;
sr.execute();

}

To call a servlet from an AppLogic in a new process usiviRequest (), consider the
following example:

Chapter 3 Migrating NAS 2.1 Applications 33

Partial Component Migrations

cl ass SomeAppl ogi ¢ extends Appl ogi ¢ {
int execute() {
val I n. setVal String("appNane", "nsFortune");
val I n.setVal String("servl et Nane", "fortune");
val I n. setVal String("SCRI PT_NAME", "nsOnl i neBank/ Logi n");
ret Val ue = GXCont ext . NewRequest (m_Cont ext
" Appl ogi cServl et _nsFortune_fortu
ne",
val I n, val Qut, host, port, 0);

}

Y ou can call aJSP in much the same way, as in the following example:

public class SomeAppl ogi c extends Applogic {
int execute() {
val I n. setVal String("appNane", "Systent');
val I n.setVal String("servl et Nane", "JSPRunner");
val I n.setVal String("JSP", "nsOnl i neBank/jsp/abc.jsp");
val I n. setVal String("SCRI PT_NAME", "nsOnl i neBank/ Logi n");
retVal ue =
GXCont ext . NewRequest (m_Cont ext ,
" Appl ogi ¢
Servl et _System JSPrunner",
val I n, val Qut, host, port, 0);

}
To call aservlet using a GUID, consider the followin example:

public class SomeAppl ogi c extends Applogic {
int execute() {
val I n. setVal String("appNange", "nsFortune");
val I n.setVal String("servl et Nane", "fortune");
newRequest (" { 6F3547D0- FDCB- 1687- B323- 080020A16896} ",
val I n, val Qut, 0) ;

Calling Java AppLogics from Servlets

Y ou can call AppLogics from servlets using GXCont ext . NewRequest () or

GXCont ext . NewRequest Async() . For more details and specific examples, see the
documentation for the GXCont ext class, in theiPlanet Application Server Foundation
Class Reference.

34 iPlanet Application Server Migration Guide ¢ January 2001

Partial Component Migrations

In order to call an AppLogic using NewRequest (), you must first cast the server's context
to anl Cont ext object, and then set up the input and oukpal Li st objects for the
AppLogic.

This example shows how to obtainla@ont ext object, set up parameters for the
AppLogic, and finally call the AppLogic usingswRequest () :

i mport java.io.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport com ki vasoft. appl ogic. *;

i nport com ki vasoft.types.*;

i mport com net scape. server. servl et. extension.*;

public class call AnAppLogi c extends HttpServlet {

public void service(HtpServl et Request req,
Ht t pSer vl et Response res)
throws Servl et Exception, | OException

/1 first set up ic as a handle to an | Context
Servl et Cont ext sctx = get Servl et Context();

com net scape. server. | Server Cont ext i sc;

isc = (com netscape. server. | Server Context) sctx;
com ki vasoft.|Context ic = isc.getContext();

//set up IVallLists and GU D

IVal List vi = GX CreateValList(); // valln

val I n. setVal String("randonmParaneter”, "Cirdan the
Shi pwri ght");

I Val Li st vo = GX. CreateVal List(); // val Qut

String al = req. get Paraneter (" AppLogi cToCal | ");
/1 expect ApplLogicToCall in request

//finally, call the ApplLogic
GXCont ext . NewRequest (ic, al, vi, vo, 0);

Accessing the Servlet’'s AppLogic

Each servlet is contained in an AppLogic. Y ou can access the AppLogic instance
controlling your servlet using the method get AppLogi c() intheiPlanet Application
Server feature interface Ht t pSer vl et Request 2.

Chapter 3 Migrating NAS 2.1 Applications 35

Partial Component Migrations

36

i mport java.io.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i nport com ki vasoft. appl ogic. *;

i nport com ki vasoft.types. *;

i mport com net scape. server.servlet.extension.*;7

public class call AnAppLogi c extends HttpServlet {
public void service(HtpServl et Request req,

Ht t pSer vl et Response res)
throws Servl et Exception, | OException

{
Htt pServl et Request 2 req2 = (Htt pServl et Request 2) req;
AppLogi c al = req2. get AppLogi c();
/lal is now a handle to the superclass

}

Calling C++ AppLogics from Servlets

The method GXCont ext . NewRequest () asdescribed in “Calling Servlets from Java
AppLogics” on page 33, calls an AppLogic by GUID and provides handles to objects as
input and output parameters. This method works for calling C++ AppLogics as well as Java
AppLogics, since the AppLogic is called by the specified name or GUID and not by a
handle specific to Java. See the example shown in that section.

Sessions in Partially Migrated Applications

TheHt t pSessi on2 interface is an additional session interface that gives you direct access
to the session object. Using this interface, you can share sessions (and therefore data)
between applogics and servlets.

In servlets, a session is an instance of HttpSession. But in AppLogics, session data is an

| Val Li st object. An AppLogic stores integers, strings, and blobs (byte arrays) in a
session, whereas a servlet stores serializable objects in a session. As a result, there is no
immediate mapping between what an AppLogic stores and what a servlet stores in a session
(except for strings).

iPlanet Application Server Migration Guide « January 2001

Partial Component Migrations

TheHt t pSessi on2 interface solves the issue of sharing session data. Ht t pSessi on2
provides methods for storing and retrieving integers, strings, blobs, and user login
data—methods that parallel what an AppLogic developer uses. In this way,

Ht t pSessi on2 enables sessions to work back and forth across AppLogics and servlets.

Ht t pSessi on2 provided ogi nSessi on() andl ogout Sessi on() for servlets to
share the AppLogic session API. These methods have been deprecated in iPlanet
Application Server 6.0. These two methods are typically used wiht hori zed(), as

is done for AppLogics. Servlets are also registered with an access control list, so that a
secure session established in an AppLogic can be used in a servlet, and vice versa.

For more information, see Chapter 12, “Writing Secure Applications,” iRithgrammer’s
Guide (Java)

Making the Session Visible

Note that, because sessions are controlled with cookies, a session created in an AppLogicis
not visible in aservlet by default. Thisis because cookies are domain- and URI-dependent,
and the URI for aservlet is different from that of an AppLogic. To work around this
problem, call set Sessi onVi si bi | i ty() beforeyou cal saveSessi on() whenyou
create asession in an AppLogic.

It isimportant to do this before calling saveSessi on() , since saving the session also
creates the session cookie.

For example, in an AppLogic, consider the following example:

domai n=". nydonai n. cont';

path="/"; //make entire domain visible

i sSecur e=tr ue;

if (setSessionVisiblity(donmain, path, isSecure) == GXE. SUCCESS)
{ Il session is now visible to entire donmain }

For more information about sessions, see Chapter 11, “Creating and Managing User
Sessions,” in th@rogrammer’s Guide (Java)

Converting ITemplateData to ResultSet

NAS 2.1 provided an interface called I TemplateData to represent a hierarchical source of
dataused for HTML template processing. INNAS 2.1, | Tenpl at eDat a (Java) provides
methods for iterating through rows in a set of memory-based hierarchical dataand
retrieving column values. This functionality is not supported in iPlanet Application Server
6.0, although group names are supported (and required).

Chapter 3 Migrating NAS 2.1 Applications 37

Partial Component Migrations

38

IniPlanet Application Server 6.0, | Tenpl at eDat a functionality is replaced with JDBC
ResultSet objects. You canconvert | Tenpl at eDat a objectsto Resul t Set objects
using themethod convert | Tenpl at eDat aToResul t Set () fromtheBaseUt i | s class.
For specific usage information, see the documentation for the Baselt i | s classin the
iPlanet Application Server Foundation Class Reference. The following example shows an
| Tenpl at eDat a conversionto aResul t Set inan AppLogic. Note that you must
provide a data group name as a parameter to the conversion method.

| Tenpl ateData itd = GX CreateTenpl at eDat aBasi c(" nyTenpl at eDat a") ;
/1 popul ate nyTenpl at eDat a

ResultSet rs =
Baseltils. convert| Tenpl at eDat aToResul t Set (" dat aG oupl",
itd);

iPlanet Application Server Migration Guide « January 2001

Chapter 4

Running NAS 4.0 Applications

This chapter describes the basic steps to migrate your Netscape Application Server 4.0
applications to run on iPlanet Application Server 6.0.

This chapter contains the following sections:

* Overview

- Differences Between NAS 4.0 and iPlanet Application Server 6.0
e Migrating NAS 4.0 Components

e Migration Example “The Bank”

Overview

iPlanet Application Server 6.0 is certified compliant with Java 2 Platform, Enterprise
Edition specification version 1.2 (J2EE 1.2). While the architecture of iPlanet Application
Server 6.0 is the same as NAS 4.0, the 100% J2EE standard means that your applications
must conform to J2EE 1.2 in order to run.

The migration effort depends on how much your applications depend on deprecated J2EE
and NAS proprietary methods. Deployment and JavaServer Pages require conversion
procedures. Tools are provided for these procedures. In general your effort will be to
replace deprecated methods, convert and redeploy. One way to check if your applications
have deprecated methods is to recompile them.

39

Differences Between NAS 4.0 and iPlanet Application Server 6.0

Follow the steps outlined in this chapter to begin the migration of your application. Y ou

may find it helpful to work through the “Bank” migration example which is available online
at the iPlanet web site. Go to http://www.iPlanet.com/support for further information. There
is a step by step migration of a NAS 4.0 application to run on iPlanet Application Server 6.0

available.

Differences Between NAS 4.0 and iPlanet
Application Server 6.0

The following table highlights the main differences between NAS 4.0 and iPlanet

Application Server 6.0 components. Each of these component differences and the procedure

to migrate, follows the table.

Component NAS 4.0 Migration Tactic Effort iPlanet
Application
Server 6.0
JDK JOK 1.1.7 See JDK Migration Medium JDK 1.2.2
Servlets Serviet 2.1 See Servlet Migration Low/None Servlet 2.2
Servlet UsesNTV Usetool to convertto Medium Uses XML
Deployment Deployment XML. See Servlet Descriptors
descriptors Deployment
JSP JSP0.92 See JSP Migration Medium JSP1.1
EJB EJB 1.0 See EJB Migration EJB 1.1
EJB Deployment UsesProperty file Usetool to convertto Medium Uses XML
Deployment XML. See EJB Descriptors
descriptors Deployment.
JNDI JNDI 1.1 See JNDI Migration JNDI 1.2
Security ACL Checking See Security Section Low declarativebased

Migrating NAS 4.0 Components

40

This section outlines the requirements for migrating various NAS 4.0 components to iPlanet

Application Server 6.0. The following topics are included here:

« Basic Migration Steps

iPlanet Application Server Migration Guide « January 2001

Migrating NAS 4.0 Components

e JDK Migration

e Servlet Migration

* Servlet Deployment
e JSP Migration

« EJB Migration

« EJB Deployment

« JNDI Migration

» Java Extensions

e C++ Extensions

e Using Rich Client (ISecurity Interface)

Basic Migration Steps

The basic steps you need to consider for migrating NAS 4.0 components to iPlanet
Application Server are as follows:

1. Look for deprecated/modified methods in your code.
2. Replace deprecated methods as shown in this chapter.
Convert Java Server Pages with supplied tool.

Convert descriptors for servlets and EJBs with the supplied tool.

a > w

Redeploy your application using the iPlanet Application Server Deployment Tool as
described in Chapter 2, of tihelministration & Deployment Guide.

JDK Migration

iPlanet Application Server 6.0 uses the Java 2 Development Toolkit version 1.2.2 (JDK
1.2.2).

An important difference for iPlanet Application Server is that if a native interface is used
such as NMI, you need to replace it with INI.

For more information regarding the changes from JDK 1.1.7 to JDK 1.2.2 go to
http://java. sun. conf products/jdk/ 1. 2/ docs/rel notes/features. htn

Chapter 4 Running NAS 4.0 Applications 41

Migrating NAS 4.0 Components

For more information on JDK 1.2.2 go to:
http://java. sun. conl product s/j dk/ 1. 2/ docs/ i ndex. ht m

JDK Migration Steps
To migrate NAS 4.0 applications from JDK 1.1.7 to JDK 1.2.2, perform the following
steps:

1. Getthelist of deprecated methods and their replacements at:

http://java. sun. conij 2eel/ j 2sdkee/ t echdocs/ api / deprecated-1i st. ht
m

For specific incompatibilities, see:
http://java. sun. conl products/jdk/ 1.2/ conpatibility. htmn
2. Replace the deprecated methods and recompile your application.

3. Redeploy your application.

Servlet Migration

iPlanet Application Server 6.0 uses version 2.2 of the Java Servlet Specification. For
detailed information on the Specification go to: http://java.sun.com/products/serviet/.

To find out what is new in Java Servlet APl 2.2 go to:
http:/devel oper.java.sun.com/devel oper/technical Articles/Servlets/servletapi/

Servletsfrom NAS 4.0 will run asison iPlanet Application Server 6.0 if they use interfaces
from version 2.1 only and do not use any deprecated classes.

Thefollowing major changes have been made to the Java Servlet specification since version
2.1

e Javaclass, configured in XML

* Servlet lives in a container

e Servlet is always part of an application

e Servlets are archived invar files

e Security features have been added

« The introduction of the web application concept

e The introduction of the web application archive files

« Response buffering added

42 iPlanet Application Server Migration Guide « January 2001

Migrating NAS 4.0 Components

The introduction of distributable servlets

Request Di spat cher can be acquired by name

Request Di spat cher can be acquired using a relative path
Internationalization improvements

Many clarifications of distributed servlet engine semantics

Behaviour of servlet parameter validation has changed (for more information, see the
Programmer’s Guidg

Servlet APl Changes

The following servliet API changes have been implemented:

Theget Local e method was added to tser vl et Request interface to aid in
determining what client locale.

isSecur e method was added to tier vl et Request interface. This indicates
whether or not the request was transmitted via a secure transport such as HTTPS.

get | ni t Par armet er andget | ni t Par anet er Nanes method were added to
theSer vl et Cont ext interface. Initialization parameters can now be set at the
application level to be shared by all servlets that are part of that application.

The construction methods bhavai | abl eExcept i on have been replaced as
existing constructor signatures. These constructors have been replaced by simpler
signatures.

Theget Ser vl et Nane method was added to tBer vl et Conf i g interface. This
allows a servlet to obtain the name by which it is known to the system, if any.

Added theget Header s method to thétt t pSer vl et Request interface to allow
all the headers associated with a particular name to be retrieved from the request.

Added the sUser | nRol e andget User Pri nci pl e methods to the
Ht t pSer vl et Request method to allow servlets to use an abstract role based
authentication.

Added theaddHeader , addl nt Header , andaddDat eHeader methods to the
Ht t pSer vl et Response interface to allow multiple headers to be created with the
same header name.

Added theget Attri but e,get Attri but eNanes, set Attri bute, and
renoveAttri but e methods to thett t pSessi on interface to improve the
naming conventions of the API. Tget Val ue, get Val ueNanes, set Val ue,
andr enoveVal ue methods are deprecated.

Chapter 4 Running NAS 4.0 Applications 43

Migrating NAS 4.0 Components

a4

Added theget Cont ext Pat h method to thétt t pSer vl et Request interface so
that the part of the request path associated with a web application can be obtained.

Servlet Migration Steps
There are two paths to migration:

a.

Replace both NAS 4.0 deprecated methods and J2EE deprecated methods to make
your application 100% J2EE compliant

Replace NAS 4.0 deprecated methods only. Your application will run on iPlanet
Application Server 6.0 even if it uses J2EE deprecated methods. However, it is
advisable to plan to migrate to J2EE 1.2, as the deprecated methods may not be
available in the future.

Note that some methods have been deprecated in HTTPSession2.

To migrate your servlets from NAS 4.0 to a 100% J2EE complliant application, you will
need to replace NAS 4.0 propietary methods and J2EE deprecated methods. Follow the
Optional Step 1 to accomplish this replacement.

1.

(Optional) Replace Servlet 2.2 deprecated methods.

For a list of deprecated methods go to
http://java.sun.com/products/servlet/2.2/javadoc/deprecated-list.html

Replace Access Control List based logic with declar ative security model.

Use the new declarative based security procedure described in the servlet specification
instead of Access Control Lists (ACL). Security is implemented as part of deployment
in XML files instead of at the application level.

a.

Remove the following deprecated HTTPSession2 security methods:

bool ean | ogi nSession(String user, String paswd);
voi d | ogout Sessi on();
bool ean i sAut hori zed(String target, String perm ssion);

Use the auth method tag in XML files to set the authentication method to either
Basic, Certificate, or Form based.

Inthe. xm file, use the<security constrai nt > to specify the roles that
can execute the servlets. Create roles usirg e- nane> or reference a logical
role by using<r ol e- 1 i nk> tags.

Remove the ACL entriesgxr files.

iPlanet Application Server Migration Guide « January 2001

Migrating NAS 4.0 Components

Replace URI naming that usesthe AppPath astheroot for absolute referencesto
JSPsor other servlets.

IniPlanet Application Server 6.0 the application context root is the root for absolute
references. A servlet would forward to another JSP in the same application asitself, in
the following manner.

RequestDispatcher rd = req.getRequestDispatcher(“/sample.jsp™);
rd.forward(req,res);

Heresample.jsp isinthe same application as the servlet that isincluding it. Y ou will
find the JSP under AppPat h/ Appl i cat i onNane rather than AppPat h, which would
have been the casein NAS 4.0.

Servlet Deployment

Servlet 2.2 hasintroduced the use of XML filesto replace the deployment descriptor used in
NAS4.0. The NTV descriptor filesin your NAS 4.0 application must be converted to XML
files and added to the web application archive file that the deployment tool creates.

1.

Convert NTV descriptor filesto XML files
Use the following tool to convert the NTV filesto XML.:
convert Nt v2Xm $pat h/ appl nf o. nt v $newpat h/ ny App. xni

$pat h pointsto thelocation of the appl nf 0. nt v (which internally provides the
location of the serlvet info NTV files).

The conversion tool creates 2 new files, my App. xml , andi as- myApp. xm , in
$newpat h. Thesefilesrepresent the J2EE and the iPlanet Application Server-specific
XML respectively.

Convert NTV decriptor files and add them to the EJB JAR archivefile. To perform this
procedure, use the following steps:

a. Create anew web application as described in Chapter 2 of the Administration &
Deployment Guide.

b. On the Servlet menu, select “Import from 4.0.”

c. Navigate to th@ppl nf 0. nt v file that you want to convert and choose OK.

Theappl nf o. nt v file and servlet files that it points to will be converted into a

. xm files, which willbe added to your web application.

d. Continue adding servlet files and other files to your web application.

Chapter 4 Running NAS 4.0 Applications 45

Migrating NAS 4.0 Components

46

e. Saveand deploy your web application as described in Chapter 2 of the
Administration & Deployment Guide.

3. Deploy your application as described in Chapter 2, “Running NAS 2.1 Applications.

JSP Migration

iPlanet Application Server 6.0 employs version 1.1 of the Java Server Pages Specification.
The JSP 1.1 specification is integrated with the J2EE, particularly for security, transaction,
and session state concepts. For detailed information on the Specification, go to
http://java.sun.com/products/jsp/

The JSP 1.1 specification extends JSP 0.92 to JSP 1.1 by incorporating the following
enhancements:

« Using Servlet 2.2 as the foundations for its semantics.
« Enabling the delivery of translated JSP pages into JSP containers.
* Providing a portable Tag Extension mechanism.

In addition, iPlanet Application Server 6.0 provides caching and load balancing for JSPs
and provides custom tag extensions.

GX Tags Deprecated

GX tags have been deprecated. Migrate any NAS 4.0 JSP templates with GX tags in them.
iPlanet Application Server uses JSP extension tags instead.

JSP Migration Steps

To migrate your NAS 4.0 JavaServer Pages, perform the following steps:

1. Replace URI naming that uses ty@pPat h as the root for absolute references to
servlets or other JSPs.3.

2. Convert JavaServer Pages from specification 0.92 to 1.1. JavaServer Pages must be
migrated. You can use th@nvert 2j sp11 tool to convert JSP 0.92 to JSP 1.1,
outlined in the section, Converting JSP 0.92 to JSP 1.1.

Converting JSP 0.92 to JSP 1.1

Use the supplied conversion toobfvert 2j sp11) to convert already existing JSP 0.92
files. The tool can be used to convert individual files, or it can recurse through an entire tree
of directories, converting all JSP files found.

NOTE: Remember to create back up copies of your files prior to conversion.

iPlanet Application Server Migration Guide « January 2001

Migrating NAS 4.0 Components

The conversion tool convertsall the 0.92 JSPfilesto their 1.1 equivalent, keeping the same
name. The 0.92 versions of the files are copied to afile of the same name, with the
extension .0.92. For example, if you convert afile myApp.jsp, that file becomes the new
JSP 1.1 version, and the older version is copied to afile called myApp.jsp.0.92.

If any of the 0.92 JSP filesin a given conversion contain an error, then the conversion for
that file fails, creating an empty output file. In this event, re-copy the corresponding

fil ename. 0. 92 versionback tof i | ename, correct the error, and run the conversion
script again for that file.

Usage:
convert2jspll [-r] -ap appPath file/directory

Argument Description

-r Optional. Recursively convert all the JSPsin the specified
directory/folder and all subdirectories/sub-folders. If this
option is not given, only convert the specified file.

-ap appPath Specify theappPat h for your NASinstallation (for example,
/ export/ nas4/ nas/ APPS on Solaris, or
C:. \ Net scape\ Ser ver 4\ NAS\ APPS on Windows NT).

fileldirectory Specify afileto convert, or adirectory (with - r) where all
files should be converted. This directory must be relative to
the appPat h given with the - ap option.

Examples

Note that in these examples, appPat h isC: \ Net scape\ Ser ver 4\ NAS\ APPS on
Windows NT and/ expor t/ nas4/ nas/ APPS on Solaris.

The following first example converts al of the JSP filesin adirectory called
myAppl i cat i on whichisrooted in your appPat h:
Windows NT: convert2jspll -r -ap

c:\ net scape\ server 4\ nas\ APPS nyAppli cation

Solaris: convert2jspll -r -ap /export/nas4/ nas/ APPS
nmyAppl i cati on

Chapter 4 Running NAS 4.0 Applications 47

Migrating NAS 4.0 Components

48

The second example, converts asingle JSP file called ny JSP. j sp inadirectory called
myAppl i cati on whichisrooted inyour appPat h:

Windows NT: convert2j spll -ap c:\ net scape\server 4\ nas\ APPS
nyAppl i cation\nyJSP.|jsp
Solaris: convert2j spll -ap /export/nas4/ nas/ APPS

nmyAppl i cation/ myJSP.jsp

EJB Migration

iPlanet Application Server 6.0 employs version 1.1 of the Enterprise Java Bean (EJB)
Specification. For detailed information on the EJB specification go to:

http://java.sun.com/products/ejb/
The EJB specification includes the following primary changes from EJB 1.0to EJB 1.1:

* The Entity bean specification has been tightened, and support for entity beans is
mandatory for Container providers. The modifications affect mainly support for
transactions, Enterprise Bean Environments, Security and Deployment Descriptors.
There is very little impact for EJB 1.0 applications in runtime. The only change to the
runtime API of the EJB Container is the replacement of the
java.security.ldentity class with th¢ ava. security. Princi pal
interface.

The following changes in the EJB 1.1 specification were made to improve the support for
the development, application assembly, and deployment of iPlanet Application Server 6.0
applications.

e Support is enhanced for the enterprise bean’s environment. The Bean Provider must
specify all the bean’s environmental dependencies using entries in a JNDI naming
context.

e Support for Application Assembly in the deployment descriptor.

« Bean Provider and Application Assembler responsibilities have been clearly divided.

EJB Migration Steps

To migrate your NAS 4.0 Enterprise Java Beans, perform the following steps:

iPlanet Application Server Migration Guide « January 2001

Migrating NAS 4.0 Components

Replace Access Control List based logic with declarative security model.

Aswith servlets, Access Control Lists on EJBs must be removed. Use the
<net hod- per m ssi on> tag to specify the rules that can execute EJB methods.

Convert deployment descriptors.
For more information, see EJB Deployment.

Modify code and descriptors to exclude deprecated classes and replace with new
methods.

EJB 1.0 enterprise bean code does not have to be changed or re-compiled to run in an EJB
1.1 Container, except in the exceptions detailed below. The mandatory migration is for the
deployment descriptors to be converted to the EJB 1.1 XML.

Instances Where EJB Code Must Be Changed or Re-compiled
Y ou must change or re-compile EJB code in the following instances:

The bean uses thievax. j t s. User Tr ansact i on interface. The package name
of thej avax. j t s interface has changedjtavax. t r ansact i on, and there have
been minor changes to the exceptions thrown by the methods of this interface. An
enterprise bean that usesftevax. j t s. User Tr ansact i on interface needs to be
modified to use the new napavax. t ransacti on. User Transact i on.

The bean uses thyet Cal | erl dentity() orisCallerlnRole(ldentity

i denti ty) methods of th¢ avax. ej b. EJBCont ext interface. These methods
were deprecated in EJB 1.1 because the glagsa. security. ldentityis
deprecated in Java 2 platform. An enterprise bean written to the EJB 1.0 specification
needs to be modified to use the new methods to waak BIB 1.1 Containers.

The bean is an entity bean that useddher Tr ansact i on interface. In EJB 1.1, an
entity bean must not use thiser Tr ansact i on interface.

The bean uses thdser Tr ansact i on interface and implements the
Sessi onSynchr oni zat i on interface at the same time. This behavior is
disallowed in EJB 1.1.

The bean violates any of the additional semantic restrictions defined in EJB 1.1 but
which were not defined in EJB 1.0.

For every EJBCr eat e there must be a matchiig BPost Cr eat e.
EJBPost Cr eat e was optional in EJB 1.0 and is how mandatory

Chapter 4 Running NAS 4.0 Applications 49

Migrating NAS 4.0 Components

50

Exception Handling Changes

The EJB 1.1 specification of exception handling preserved the rules defined in the EJB 1.0
specification, with the following exceptions:

e EJB 1.0 specified that the enterprise bean business methods and container-invoked
callbacks use theava. r m . Renpt eExcept i on to report non-application
exceptions. This practice is deprecated in EJB 1.1—the enterprise bean methods should
use thg avax. ej b. EJBExcept i on, or other suitabl®unt i mreExcepti on to
report non-application exceptions.

* InEJB 1.1, all non-application exceptions thrown by the instance result in the rollback
of the transaction in which the instance executed, and in discarding the instance. In EJB
1.0, the Container would not rollback a transaction and discard the instance if the
instance threw theava. r ni . Renot eExcepti on.

« InEJB 1.1, an application exception does not cause the Container to automatically
rollback a transaction. In EJB 1.0, the Container was required to rollback a transaction
when an application exception was passed through a transaction boundary started by
the Container. In EJB 1.1, the Container performs the rollback only if the instance have
invoked theset Rol | back- Onl y() method on it€£JBCont ext
obj ect . j avax. ej b. ej bex.

EJB Deployment

EJB 1.1 has introduced the use of XML files to replace the deployment descriptor used in
NAS 4.0. The Property descriptor files in your NAS 4.0 application must be converted to
XML files. In addition to registering the application you must ejitoReg.

To convert the Property files to XML use the supplied tamvert PropsXM.. The
following steps outlines its use:

1. Convert property files to XML files.
Use the following tool to convert the .props files to XML.:.

convert Props2Xm $pat h/ f oobar . props $newpat h/ nyAppEj b. xm

$pat h points to the location afpr ops file and the tool results in the generation of
two XMLs mny AppEJB. xm andi as- myAppEj b. xm files. These files represent
the J2EE and the iPlanet Application Server-specific XML respectively.

2. Convert NTV decriptor files and add them to the EJB JAR archive file.

a. Create a new EJB JAR module, as described in Chapter 2 Adifigistration &
Deployment Guide.

iPlanet Application Server Migration Guide « January 2001

Migrating NAS 4.0 Components

b. Onthe EBJ menu, select “Import from 4.0.”

c. Navigate to the pr operti es file that you want to convert and choose OK. The
. properti es file will be converted into axm files, which will be added to
your EBJ JAR module.

d. Continue addingcl ass files and other files to your EBJ JAR module.

e. Save and deploy your EBJ JAR module as described in Chapter 2 of the
Administration & Deployment Guide.

3. Modify you application code to handle exceptions and transactions.

If you are using Transactions or Exceptions you may need to make some code changes
See the section “Exception Handling Changes.”

4. Deploy your application as described in faministration & Deployment Guide.

JNDI Migration

iPlanet Application Server 6.0 uses version 1.2 of the Java Naming and Directory Interface
(JNDI) extension. JNDI is provided as part of the Java Enterprise API set.

NAS 4.0 applications that use JNDI 1.1 must be migrated to JNDI 1.2. The specific
incompatibilities can be seen at:

http://java.sun.com/products/jndi/1.2/compat.html#incompat

In J2EE every application defines its own naming environment which is specified via the
component's deployment descriptor. A component's descriptor should also contain
information about all EJBs and data sources that it is looking up via ejb-ref and resource-ref
elements. Migrating NAS4.0 applications to iPlanet Application Server 6.0 involves the
following requirements:

« ldentifying usage of beans/resources that are being looked up by the application.
e Setting up appropriate deployment descriptor entries for resource-refs and ejb-refs.

« Ensure that environment lookup happens via
j ava: conp/ env/ <envi onnent Ent r yName> pattern as specified by the J2EE
specification.

Java Extensions

To migrate NAS 4.0 Java extensions to iPlanet Application Server 6.0, perform the
following steps:

Chapter 4 Running NAS 4.0 Applications 51

Security Features

1. LoadIDL codeiniPlanet Extension Builder 6.0 and create new generated code.

2. Merge any changes which have been made to the previous extensions into the new
generated code.

3. Convert any references to NMI to NI (if applicable).
4. Perform all other Java code changes for JDK 1.2.2.

5. Recompile all code.

C++ Extensions

To migrate NAS 4.0 C++ extensions to iPlanet Application Server 6.0, recompile and link
NAS 4.0 C++ extensions against iPlanet Application Server 6.0 libraries.

Using Rich Client (ISecurity Interface)

Thel Securi ty interface needsto beimplemented when using Rich Client. | Security sets
the user name and password in Rich Client.

Security Features

iPlanet Application Server 6.0 implements security constraints at deployment time.

Standard declarative access control rules are defined by the devel oper when the application

is deployed. Developers will, for example, specify several levels of security such as
administrator, guest, member etc. Then they will write code to check the current user’s
permission level when accessing secure procedures. At deployment time, groups of users
are assigned the correct security level allowing the application to easily verify permission
level before accessing the restricted procedure.

In NAS 4.0, security was implemented at the application level by setting up access control
lists that define permissions granted to specific users and groups. NAS 4.0 implemented
security at the code level, iPlanet Application Server 6.0 implements security independent
of the code at the deployment of the application.

For tips on security go to:
http://www.java.sun.com/security/seccodeguide.html.
For EJB related security go to:

http://www.java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Security.fm.html

52 iPlanet Application Server Migration Guide ¢ January 2001

Migration Example “The Bank”

Migration Example “The Bank”

Use this example to walk through the migration process. Y ou can also modify the NAS 4.0
nsOnline Bank source and migrate the sample to iPlanet Application Server 6.0 prior to
migrating your own applications, as an example. Refer to the code source online at
http://www.i Planet.com/support/.

This section describes the guidelines for porting a bank sample application from NAS 4.0 to
iPlanet Application Server 6.0.

TheiPlanet Application Server 6.0 Bank Sample application includes the following
features:

« Bank sample application is using new Form based login (J2EE style).

» Proprietary methods liket t pSessi on2,1 ogi nSessi on, NASRowSet are
replaced with the J2EE equivalent.

« EJB deployment descriptors are describedxn files.
e EJB lookup is URL based like “java:comp/env/"lookupname".

e Servlet deployment is described in.aan file instead of proprietarynt v file.

Comparison of iPlanet Application Server 6.0
Bank Application & NAS 4.0 nsOnlineBank

This section compares NAS 4.0 and iPlanet Application Server 6.0 components.

Component iPlanet Application Server 6.0 NAS 4.0

Servlets UsesHt t pSessi on (standard java UsesHt t pSessi on2
API), for Session creation; Form-basednethod
Login mechanism (J2EE style) for | ogi nSessi on API
Login Authentication. Bank does not for (login)
use proprietary methods (e.g., authentication and also
Nestcape-APIshit t pSessi on2, shared sessions
| ogi nSessi on. Note that between applogics and

Ht t pSessi on2 is used in iPlanet servlets.
Application Server 6.0 to share session
data between Applogics and servlets.

Chapter 4 Running NAS 4.0 Applications 53

Migration Example “The Bank”

Component

iPlanet Application Server 6.0

NAS 4.0

Servlet Deployment

EJBs

EJB Deployment

JSPs

LDAP

Deployment instructions are described
in xml file. Each servlet has both J2EE
XML and iPlanet Application Server
specific XML. Servlets are registered
through webappr eg command line
utility.

J2EE specific URL style lookup
"java: comp/ env/ < | ookup
nane >".By gettingaDat aSour ce
object using this lookup,Database
connection is created uses new factory
class

"com net scape. server.jndi.
Root Cont ext Fact ory".

Deployment descriptors are described
in XML.

Each EJB has both J2EE XML and
iPlanet Application Server-pecific
XML.

EJB’s are registered through ej br eg
command line utility

Context Root starts from
IAPPS/App-Name/directory.

Authenticate domainis" uid=admin,
ou=Administrators,
ou=TopologyManagement,
o=NetscapeRoot"; Authenticate
Password is"<user selected password at
the time of installation >".

Deployment
instructions are
described in ntv file.

Usesold style
"gjb/<lookup name >".

Dat aSour ceNane is
grabbed from NAS
registry, passesto
NASRowSet method
for creation of Database
connection, and uses
Factory class
"com.kivasoft.eb.jndi.G
DSInitContextFactory".

Deployment
instructions are
described in property
file.

Context Root starts
from /APPS/directory.

Uses default
Authenticate domain
(uid) "cn=Directory
Manager"; Authenticate
Password is
"dmanager".

54 iPlanet Application Server Migration Guide ¢ January 2001

Further Reading

General Porting Guidelines

This section outlines some general porting guidelines for migrating NAS 4.0 application
components to iPlanet Application Server 6.0.

e LDAP: LDAP code (.javafile) should reflect the LDAP server port number which is
supplied at installation time

« DataBase:DataSource should be passed through the <resource ref > tag instead of
<env entry> tag.

e Servlet: If aservlet is doing alook up for an EJB, the corresponding J2EE Servlet
XML should have <ej b-r ef > tag.

* For Form-based mechanism: J2EE Servlet XML should have the
<l ogi n- confi g> tag.
e Login Page: should be aj sp file for Form-based login mechanism.

* Text Fieldsfor Form-based Login page: user name should bej'_user nane"
password should bg " passwor d".

* Login pages: (like | ogi n, j sp, andl ogi nerror.j sp) should be kept under
<install -1 ocation>/<app-nanme>.

« EJBs if Dat aSour ce is passed througér esour ce r ef > tag, the corresponding
iPlanet Application Server EJB XML should hagjendi - nane>, similiar to the
datasourcé | dbc/ Local DS". LocalDS.

EJB XML files are generated usiflg opToEJB tool (note that there may be
additional manual steps after the conversion).

Further Reading

Java™ 2 Platform, Enterprise Edition Specification VersionQogyright 1999, Sun
Microsystems, Inc. Availableat htt p: //j ava. sun. coni j 2ee/ docs. ht m

Java™ 2 Platform, Enterprise Edition Technical Overv{i@®EE Overview).Copyright
1998, 1999, Sun Microsystems, Inc. Available at
http://java. sun.com j2ee/white. htm

Java™ 2 Platform, Standard Edition, v1.2.2 API| Specificafi28E specification).
Copyright 1993-99, Sun Microsystems, Inc. Available at
http://java. sun. com products/jdk/ 1. 2/docs/api/index. htm

Chapter 4 Running NAS 4.0 Applications 55

Further Reading

Enterprise JavaBeans™ Specification, Version(EEIB specification). Copyright1998,
1999, Sun Microsystems, Inc. Availableat htt p: //j ava. sun. conl products/ej b

Enterprise JavaBeans™ to CORBA Mapping, Version{EJB-CORBA
mapping).Copyright 1998, 1999, Sun Microsystems, Inc. Available at
http://java. sun. conf products/ejb

JavaServer Pages™ Specification, Version(ISP specification). Copyright 1998, 1999,
Sun Microsystems, Inc. Availableat htt p: //j ava. sun. com product s/j sp

Java™ Servlet Specification, Version 2=rvlet specification). Copyright 1998,1999, Sun
Microsystems, Inc. Availableat htt p: //j ava. sun. coni pr oduct s/ ser vl et

JDBC™ 2.0 AP(JDBC specification). Copyright 1998, 1999, Sun Microsystems, Inc.
Availableat htt p: / /] ava. sun. coni pr oduct s/ j dbc

JDBC™ 2.0 Standard Extension AGDBC extension specification). Copyright 1998,
1999, Sun Microsystems, Inc. Availableathtt p: //j ava. sun. com
product s/ j dbc

Java™ Naming and Directory Interface 1.2 Specifica(i@DI specification). Copyright
1998, 1999, Sun Microsystems, Inc. Availableat htt p: //
j ava. sun. coni product s/ j ndi

Java™ Message Service, Version 1 @M S specification). Copyright 1998, Sun
Microsystems, Inc. Availableat ht t p: // j ava. sun. com pr oduct s/ j s.

Java™ Transaction API, Version 1.qUITA specification). Copyright 1998, 1999, Sun
Microsystems, Inc. Availableat htt p: // j ava. sun. com products/jta

Java™ Transaction Service, Version 0(95bS specification). Copyright 1997-1999, Sun
Microsystems, Inc. Availableat htt p: //j ava. sun. coml products/jts

JavaMail™ API Specification Version 1(JavaMail specification). Copyright 1998, Sun
Microsystems, Inc. Availableathtt p: //j ava. sun. coni pr oduct s/ j avanai |

JavaBeans™ Activation Framework Specification Version 1JAE specification).
Copyright 1998, Sun Microsystems, Inc. Availableathtt p: //j ava. sun. com
beans/ gl asgow/ j af . ht nl

The Java™ 2 Platform, Enterprise Edition Application Programming Mdtedyright
1999, Sun Microsystems, Inc. Availableathtt p: //j ava. sun. coni j 2ee/ apm

56 iPlanet Application Server Migration Guide ¢ January 2001

Chapter 5

Running NetDynamics Applications

This chapter is a planning guide for the migration of applications built with NetDynamics.
This chapter is divided into the following sections:

* Overview

e Migration Planning Considerations

e iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)

Overview

In the past, we have suggested a number of options for migrating NetDynamics 3.x, 4.X,
and 5.x applications to J2EE for iAS 6.0. Some of those options specified staged upgrades
to NetDynamics 5.x and then to J2EE.

With the increasing acceptance and maturity of J2EE, and because newly available
automated tools can ease the transition for applications written with older versions of
NetDynamics (Versions 3.x and 4.x), we favor the migration of NetDynamics 3.x and 4.x
applications directly to J2EE, rather than through an intermediate NetDynamics 5.x
migration step.

This chapter discusses some of the considerations involved in planning a NetDynamics to
J2EE migration effort. In particular, we look at some of the issues that may affect the work
effort required to migrate applications and some factors that might even dictate that a full
migration to J2EE not be performed.

In addition, this chapter introduces ffRtanet Migration Toolbox (iMT), which provides
automated enablement for the migration of NetDynamics applications to the iPlanet
Application Server J2EE environment.

57

Migration Planning Considerations

The migrated applications utilize theiPlanet J2EE Assisted Take-Off (JATO) application
framework, which not only provides for an intuitive transition of applications from the
NetDynamics application framework to J2EE, but also serves as a standal one application
framework upon which future J2EE devel opment can be based. JATO isprovided to iIMT
customers with full ownership of the source code.

A comprehensive discussion of theiMT and JATO is beyond the scope of this chapter.
Please contact your iPlanet representative when you require information regarding the iM T
beyond that which is provided here.

Migration Planning Considerations

Not surprisingly, the task of determining the scope of amigration effort is quite
challenging. The NetDynamics environment provided for a great deal of flexibility in
development. The organization of NetDynamics applications, the development standards,
individual developer styles, and custom extensions and enhancements, among other things,
can significantly affect the level of effort required to migrate a particular set of
NetDynamics applications to J2EE.

TheiPlanet Migration Toolbox includes some basic tools to jumpstart the migration
estimation effort. The NDPr ojectPeeker tool generates an inventory of NetDynamics
project objects to provide an idea of the size and composition of the projects. Another tool,
which is currently under development, will utilize the output of the NDProjectPeeker tool to
generate basic estimates for the migration effort. Theinitial estimates generated using the
information compiled by these tools will be improved by incorporating the analysis
described in this chapter.

This section includes the following topics:
* Migration Path

* Migration Planning and Estimating

Migration Path

We generally recommend that older NetDynamics applications be migrated directly to
J2EE for iAS 6.0, but there may be some good reasons to upgrade NetDynamics 3.x and 4.x
applications to NetDynamics 5.x. Some of these reasons may include:

* It can be determined that the upgrade to NetDynamics 5.x can be performed relatively
quickly for a particular application and the application will be retired prior to the
termination of support for the NetDynamics 5.x product in December of 2001.

58 iPlanet Application Server Migration Guide <« January 2001

Migration Planning Considerations

Additionally, there may be some issues that would make a near-term migration to J2EE
infeasible:

« An application uses custom or third party components which can only operate within a
NetDynamics environment.

« An application is dependent upon a capability or feature that only NetDynamics can
provide.

However, in general, we believe that a direct migration to J2EE is more desirable:

« Applications with an expected service life beyond the next two years should generally
be moved to J2EE.

e The upgrade to NetDynamics 5.x can require a significant amount of effort. In some
cases, the effort required to upgrade some older NetDynamics applications to
NetDynamics 5.x may be of the same magnitude as an iMT-enabled migration to J2EE
for iAS, especially when tasks such as testing are taken into account.

* Any dependency on NetDynamics will have to be addressed anyway since
NetDynamics support will be phased out.

e The pool of NetDynamics-trained personnel will shrink over the next few years.

Migration Planning and Estimating

The iPlanet Migration Toolbox planning tools can give a useful first impression of the
magnitude of the NetDynamics to J2EE migration effort, but meaningful estimates can only
be generated by analyzing the unique set of factors represented by the body of the
applications to be migrated. Some of the factors that should be considered in estimating the
effort required to migrate NetDynamics applications include:

« The skills set and application knowledge of the migration team:
m J2EE
m NetDynamics
= Domain knowledge of applications being migrated
e The number of NetDynamics projects and pages which must be migrated.
« The extent to which the NetDynamics API was used:
n Was the NetDynamics API used extensively for coding the event methods?

m Were existing Enterprise JavaBeans and other business logic components written
to be independent of the NetDynamics API?

Chapter 5 Running NetDynamics Applications 59

iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)

e The structure of the applications:
m Have the applications been carefully tiered into display, business, and data layers?

m Are custom classes which must be migrated? What is the degree of dependence of
these custom classes on NetDynamics?

e The organization of the applications:

n Do applications consist of many, smaller NetDynamics projects, or fewer, larger
projects?

m The extent to which different applications within the organization are
interdependent.

For larger collections of NetDynamics projects, you may need to consider including some
additional tasks in the analysis:

e An architectural overview
* Anin-depth analysis of any custom classes and how they are used
« An close examination of a representative sample of NetDynamics projects

e A pilot migration

IPlanet Migration Toolbox and J2EE Assisted
Take-Off (JATO)

60

This section includes the following topics:
e iPlanet Migration Toolbox

« JATO Application Framework

e IMT/JATO Community

iPlanet Migration Toolbox

The iPlanet Migration Toolbox (iMT) contains a set of tools to perform the automated
phases of NetDynamics to J2EE conversions:

« NetDynamicsExtraction Tool — This tool extracts the declarative information and the
Java code from NetDynamics projects into XML description files.

iPlanet Application Server Migration Guide ¢ January 2001

iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)

e Application Trandation Tool — This tool uses the XML description files to construct
J2EE-compliant versions of the NetDynamics projects in the JATO framework.

e Othertools — The iPlanet Migration Toolbox also contains convenience tools for
compiling and packaging the translated projects.

The iMT was designed to migrate NetDynamics applications to J2EE as completely as
possible. Its primary function is to move the application structure to a new application
environment which supports the NetDynamics constructs and capabilities. Secondarily, the
iMT tries to migrate all the declarative application functionality to this new application
framework. Those functions supplied by NetDynamics wizards are, in large part, migrated
to J2EE.

Once the automated part of the migration process is complete, it is necessary to evaluate th
appropriateness of the custom code from the old applications. There is no practical way to
convert custom code in a NetDynamics application to make it correct in a J2EE
environment. The original code is commented out and moved to the appropriate module and
method to make manual conversion of the code easier. Though the task is not small, it
should be, in general, straightforward once the migration developer is familiar with the
JATO J2EE component classes and methods.

Typically, a migration developer will perform a preliminary run of the iMT on an
application to assess the level of manual migration effort that will be required for the
project. The iMT generates an inventory of code-level items of interest which will need
evaluation and possible modification during the manual code porting phase. This change
inventory should be used to help refine the migration work plan.

JATO Application Framework

J2EE Assisted Take-Off (JATO) is an application framework built to provide developers
with a foundation for building J2EE applications in a consistent and efficient manner.
Instead of inventing ways to build applications and the infrastructure to support them, we
have, with JATO, the procedures and support infrastructure to start building applications
right away. In other words, we regain some of the productivity advantages we had with
NetDynamics. Furthermore, the availability of a standard framework will not only enable
organizations to ensure development consistency in the organization over time, but also
reduce the likelihood that new team members would have to be trained to use a proprietary,
internal J2EE application framework.

JATO is intended to not merely be a stepping-stone for the jump from NetDynamics to
J2EE, but to be a framework upon which J2EE applications can be built long after the last
NetDynamics application has been migrated.

Chapter 5 Running NetDynamics Applications 61

iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)

IMT/JATO Community

TheiPlanet Migration Toolbox team moderates an online iIMT/JATO discussion
community at: http://www.egroups.com/group/iPlanet-JATO

62 iPlanet Application Server Migration Guide « January 2001

A

Administrator Tool, 21
application flow, 13

Application Framework
J2EE Assisted Take-Off (JATO), 61

Application Translation Tool, 61
AppLogic-based programming model, 13
AppLogics, 20

B

Business Logic, 16

C

C++ Extensions, 52
CICS, 22

Comparison of iAS 6.0 Bank Application & NAS 4.0
nsOnlineBank, 53

Complete migration to the new programming
model., 17

Convert NTV decriptor files, 45
Converting, 46

Converting ITemplateData to ResultSet, 37
Converting JSP 0.92 Pages to JSP 1.1, 46

Index

D

Data access logic, 16

Database Logic
DAE and JDBC, 20

Deploying NAS 2.1 Applications on iAS 6.0, 21
Deprecated, 46

E

EJB JAR, 50

EJB Migration, 48

Enterprise JavaBeans, 13
Exception Handling Changes, 50

F

format
URLSs, in manual, 10

Further Reading, 55

G

General Porting Guide Lines for Bank Sample
Application (from NAS 4.0 to iAS 6.0), 55

GX tags, 20

63

H

HTML Templates, 20

I
iMT
iPlanet Migration Toolbox, 57
iPlanet J2EE Assisted Take-Off (JATO), 58
iPlanet Migration Toolbox (iMT), 57, 60

J

J2EE Assisted Take-Off (JATO)
application framework, 61

J2EE Programming Model, 13

JATO
iPlanet J2EE Assisted Take-Off, 58

Java Extensions, 21, 51
JavaServer Pages, 13
JDBC layers, 20

JDK Migration, 41

JDK Migration Steps, 42
JNDI Migration, 51

JSP Migration, 46

JSP Migration Steps, 46

M

Migration Basics NAS 4.0 to iAS 6.0, 18

Migration Toolbox
planning and estimating migration effort, 59

MQSeries, 22

64 iPlanet Application Server Migration Guide ¢ January 2001

N

NAS 2.1 Application Components, 19
NAS Registry, 21
NDProjectPeeker, 58

NetDynamics
migrating applications to iPlanet Application
Server, 57

NetDynamics Extraction Tool, 60

P

Presentation Logic and Layout, 15

Programming Model
J2EE, 13

R

Rich Client, 52
Running NAS 2.1 Applications on iAS 6.0, 19

S

Security Features, 52

Servlet API Changes, 43

Servlet Deployment, 45

Servlet Migration, 42

Sessions in Partially Migrated Applications, 36

T

TUXEDO, 22

U

URLs
format, in manual, 10

US Population C++ Sample Application, 25
US Population Java Sample Application, 24

Index 65

66 iPlanet Application Server Migration Guide ¢ January 2001

	Migration Guide
	iPlanet Application Server

	Version 6.0
	Contents
	Preface 7
	Chapter�1

	Migration Overview 13
	Chapter�2

	Running NAS 2.1 Applications 19
	Chapter�3

	Migrating NAS 2.1 Applications 27
	Chapter�4

	Running NAS 4.0 Applications 39
	Chapter�5

	Running NetDynamics Applications 57
	Preface

	Using the Documentation
	How This Guide Is Organized
	Documentation Conventions
	Related Information
	Programming with Servlets and JSPs
	Programming with EJBs
	Programming with JDBC
	Chapter�1
	Migration Overview

	The New J2EE Programming Model
	Component Modularity and Flexibility
	Presentation Logic and Layout
	Business Logic
	Data Access Logic

	Migrating NAS 2.1 Applications to iPlanet Application Server 6.0
	Migrating NAS 4.0 Applications to iPlanet Application Server 6.0
	Chapter�2
	Running NAS 2.1 Applications

	NAS 2.1 Application Components
	HTML Templates
	AppLogics
	Database Logic: DAE and JDBC
	NAS Registry

	Deploying NAS 2.1 Applications
	Java Extensions
	1. Load IDL code in iPlanet Extension Builder 6.0 and create new generated code.
	2. Merge any changes which have been made to the previous extensions into the new generated code.
	3. Convert any references to NMI to JNI (if applicable).
	4. Perform all other Java code changes for JDK 1.2.2.
	5. Recompile all code.

	C++ Applications and Extensions
	Beginning the Migration Process
	Migrating the Sample Applicatons
	Online Bank Example
	Migration From NAS 2.1 to iPlanet Application Server 6.0 - Solaris Only
	1. Copy the OnlineBank java Application package to the machine where iPlanet Application Server 6...
	2. Create a new directory called OnlineBank under docs/GXApp in the webserver installation direct...
	3. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to the Oracle databa...
	4. Register using kreg utility.
	5. Run the sample application http://hostname/GXApp/OnlineBank/OBLogin.html, and then go further ...

	C++ COnlineBank(NAS2.1) Sample Application
	1. Copy the COnlineBank Application to the machine where iPlanet Application Server 6.0 has been ...
	2. Create a new directory called COnlineBank under docs/GXApp in the webserver installation direc...
	3. Set the following two environment variables:
	4. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to the Oracle Databa...
	5. Run make with the supplied makefile: /usr/ccs/bin/make -f makefile (Where /usr/ccs/bin is the ...
	6. Register using kreg utility.
	7. Run the sample application http://hostname/GXApp/COnlineBank/COBLogin.html and check the accou...

	US Population Java Sample Application
	1. Copy the US Population java application package to a new directory called States on the machin...
	2. Create a new directory called States under docs/GXApp in the webserver installation directory:
	3. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to the Oracle DataBa...
	4. Register using kreg utility.
	5. Run the US Population application:

	US Population C++ Sample Application
	1. Copy the US Population C++ application to the machine where iPlanet Application Server 6.0 has...
	2. Create a new directory called CStates under docs/GXApp in the webserver installation directory:
	3. Create an entry for ksample in the tnsnames.ora. Make sure ksample points to the Oracle DataBa...
	4. Run nmake on the states.mak file (nmake -f states.mak).
	5. Copy the generated states.dll to /IAS6.0-install-directory/nas/bin directory.
	6. Register using kreg utility.
	7. Run the US Population application:
	Chapter�3
	Migrating NAS 2.1 Applications

	Redesigning Your Application
	Migrating Presentation Logic
	Recreating AppLogics as Servlets
	AppLogic
	Servlet

	Recreating Presentation Layout
	Recreating Sessions and Security

	Migrating Business Logic
	Migrating Data Access Logic
	Incompatibility Errors

	Partial Component Migrations
	Calling EJBs from Java AppLogics
	Calling Servlets from Java AppLogics
	Calling Java AppLogics from Servlets
	Accessing the Servlet’s AppLogic

	Calling C++ AppLogics from Servlets
	Sessions in Partially Migrated Applications
	Making the Session Visible

	Converting ITemplateData to ResultSet
	Chapter�4
	Running NAS 4.0 Applications

	Overview
	Differences Between NAS 4.0 and iPlanet Application Server 6.0
	Migrating NAS 4.0 Components
	Basic Migration Steps
	1. Look for deprecated/modified methods in your code.
	2. Replace deprecated methods as shown in this chapter.
	3. Convert Java Server Pages with supplied tool.
	4. Convert descriptors for servlets and EJBs with the supplied tool.
	5. Redeploy your application using the iPlanet Application Server Deployment Tool as described in...

	JDK Migration
	JDK Migration Steps
	1. Get the list of deprecated methods and their replacements at:
	2. Replace the deprecated methods and recompile your application.
	3. Redeploy your application.

	Servlet Migration
	Servlet API Changes
	Servlet Migration Steps
	a. Replace both NAS 4.0 deprecated methods and J2EE deprecated methods to make your application 1...
	b. Replace NAS 4.0 deprecated methods only. Your application will run on iPlanet Application Serv...
	1. (Optional) Replace Servlet 2.2 deprecated methods.
	2. Replace Access Control List based logic with declarative security model.
	a. Remove the following deprecated HTTPSession2 security methods:
	b. Use the auth method tag in XML files to set the authentication method to either Basic, Certifi...
	c. In the .xml file, use the <security constraint> to specify the roles that can execute the serv...
	d. Remove the ACL entries .gxr files.

	3. Replace URI naming that uses the AppPath as the root for absolute references to JSPs or other ...

	Servlet Deployment
	1. Convert NTV descriptor files to XML files
	2. Convert NTV decriptor files and add them to the EJB JAR archive file. To perform this procedur...
	a. Create a new web application as described in Chapter 2 of the Administration & Deployment Guide.
	b. On the Servlet menu, select “Import from 4.0.”
	c. Navigate to the appInfo.ntv file that you want to convert and choose OK.
	d. Continue adding servlet files and other files to your web application.
	e. Save and deploy your web application as described in Chapter 2 of the Administration & Deploym...

	3. Deploy your application as described in Chapter 2, “Running NAS 2.1 Applications.

	JSP Migration
	GX Tags Deprecated
	JSP Migration Steps
	1. Replace URI naming that uses the AppPath as the root for absolute references to servlets or ot...
	2. Convert JavaServer Pages from specification 0.92 to 1.1. JavaServer Pages must be migrated. Yo...

	Converting JSP 0.92 to JSP 1.1
	Examples

	EJB Migration
	EJB Migration Steps
	1. Replace Access Control List based logic with declarative security model.
	2. Convert deployment descriptors.
	3. Modify code and descriptors to exclude deprecated classes and replace with new methods.

	Instances Where EJB Code Must Be Changed or Re-compiled
	Exception Handling Changes

	EJB Deployment
	1. Convert property files to XML files.
	2. Convert NTV decriptor files and add them to the EJB JAR archive file.
	a. Create a new EJB JAR module, as described in Chapter 2 of the Administration & Deployment Guide.
	b. On the EBJ menu, select “Import from 4.0.”
	c. Navigate to the .properties file that you want to convert and choose OK. The .properties file ...
	d. Continue adding .class files and other files to your EBJ JAR module.
	e. Save and deploy your EBJ JAR module as described in Chapter 2 of the Administration & Deployme...

	3. Modify you application code to handle exceptions and transactions.
	4. Deploy your application as described in the Administration & Deployment Guide.

	JNDI Migration
	Java Extensions
	1. Load IDL code in iPlanet Extension Builder 6.0 and create new generated code.
	2. Merge any changes which have been made to the previous extensions into the new generated code.
	3. Convert any references to NMI to JNI (if applicable).
	4. Perform all other Java code changes for JDK 1.2.2.
	5. Recompile all code.

	C++ Extensions
	Using Rich Client (ISecurity Interface)

	Security Features
	Migration Example “The Bank”
	Comparison of iPlanet Application Server 6.0 Bank Application & NAS 4.0 nsOnlineBank
	General Porting Guidelines

	Further Reading
	Chapter�5
	Running NetDynamics Applications

	Overview
	Migration Planning Considerations
	Migration Path
	Migration Planning and Estimating

	iPlanet Migration Toolbox and J2EE Assisted Take-Off (JATO)
	iPlanet Migration Toolbox
	JATO Application Framework
	iMT/JATO Community

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	P
	R
	S
	T
	U

