Developer’'s Guide

iPlanet Application Server Enterprise Connector
for CICS

Version 6.0

806-5504-02
November 2000



Copyright © 2000 Sun Microsystems, Inc. Some preexisting portions Copyright © 2000 Netscape
Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, iPlanet the iPlanet logo, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. Netscape and the Netscape N
logo are registered trademarks of Netscape Communications Corporation in the U.S. and other countries. Other
Netscape logos, product names, and service names are also trademarks of Netscape Communications
Corporation, which may be registered in other countries.

Microsoft®, WINDOWS®, and NT®, are registered trademarks of Microsoft Corporation. IBM®, DB2®, OS/2®,
DB2/6000®, MVS/ESA®, RS/6000®, AIX®, S/390®, AS/400®, OS/390®, and OS/400® are registered
trademarks of IBM Corporation. UNIX® is a registered trademark of SCO Santa Cruz Operation. SAP®, and
R/3®, are registered or unregistered trademarks of SAP AG. Exceed® is a registered trademark of
Hummingbird Communications, Ltd.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and
Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of the product or this document may be reproduced in any form by any means
without prior written authorization of the Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright © 2000 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2000 Netscape
Communication Corp. Tous droits réservés.

Sun, Sun Microsystems, et Sun logo, iPlanet et the iPlanet logo, and Solaris sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays. Netscape et the Netscape N logo
sont des marques déposées de Netscape Communications Corporation aux Etats-Unis et d’autre pays. Les
autres logos, les noms de produit, et les noms de service de Netscape sont des marques déposées de Netscape
Communications Corporation dans certains autres pays.

Microsoft®, WINDOWS®, et NT®, sont des marques déposées de Microsoft Corporation. IBM®, DB2®, OS/2®,
DB2/6000®, MVS/ESA®, RS/6000®, AIX®, S/390®, AS/400®, OS/390®, et OS/400® sont des marques
déposées de IBM Corporation. UNIX® est des marques de fabrique de SCO Santa Cruz Operation. SAP®, et
R/3® sont des marques déposées de SAP AG. Exceed® est des marques de fabrique de Hummingbird
Communications, Ltd.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent I'utilisation,
la copie, la distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut étre
reproduite sous quelque forme ou par quelque moyen que ce soit sans I'autorisation écrite préalable de

I’ Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS EXPRESSES OU
IMPLICITES, TOUTES REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE
IMPLICITE D'APTITUDE A LA VENTE, OU A UN BUT PARTICULIER OU DE NON CONTREFAGON SONT
EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES EXCLUSIONS SERAIENT CONTRAIRES A LA LOI.



Contents

PrefaCe . 15
Chapter 1 OVEIrVIEW . . ... e e e e 19
Unified Integration Framework . ... ... ... 19
UL SBIVICES . . oottt e e e e e e 21
RUNTIME e 22

Data ObJeCt SEIVICES . . . ..ottt e e 22
Repository and Metadata Services . .. ... ... 22

The Three-tier Application Model . ....... . . . e 22
(4 117 o1 =T 23

312 Y= I T 23
Bl T . 24
Architecture of the CICS CONNECLOr .. ... o e e e e 24
Mainframe COMPONENTS . .. ... et e e 24
Connector-to-CICS ComMmMUNICAtION .. .. ... .t 25
Connector-to-CICS Architecture Over TCP/IP . ... .. e 26
Connector-to-CICS Architecture Over APPC . .. ... . e 27
Enterprise Connector Tools for CICS . ... ... e 27
Chapter 2 Viewing the Repository Contents .. ...... ... . i 29
Overview of the Repository BrOWSer . ... ... o e e 29
To Access the Repository Browser from Windows NT ............ ... i, 30
To Access the Repository Browser from Solaris ............ i 30
Viewing the RepOSItOrY . ... e e 31
Viewing the Hierarchy . ... ... . 31
To Refresh the Display of the Repository Contents .............. .t 32
Viewing Data ObJeCtS . ... ...t e e e 32
The Service Provider ODjJeCt . . ... ... 32
FUNCLION ODbJeCtS . ... 34
Function Object Template . ... . 34



4

OPEIAIONS . . ettt e e e e 35

AataBlOCK . . . . oo 36
Field Atributes . .. ... 36
Mapping CICS Data Types to UIF Data TYPEeS .. ...ttt 37

PrOPE Y St . . 39

ENtity Mapping .. ..o 43
Chapter 3 Working With Data Objects . ......... . ... e 45
Data OB CtS . . . ot 45

Primitive ODJeCtS . ... o 46
integer, float, double . ... .. . . 46
fixed length string, variable length string . . .. ....... ... .. 47

Structure ODjJECTS . .. e 47

ANTAY OB BCES . .o 47

Type Information ObJeCtS . . . ... o 48

UIF API Naming CONVENLIONS .. ... ottt e e ettt e e e e 48

OPErAtION . e 49

TANget . . o 49

YD ot 50

Changing AttribULE TYPES . ..ottt e e e e e e e e 50

Working with Serviet Samples . ... ... 50

Acquiring the UIF Runtime Object . . ... ... . e 51

Creating the Service Provider Object . ........... i e 51

Creating FUNCtion ODjJectS . ... ... . 52

Setting Up and Executing the Function Object . ........ ... .. . . . i 53
To Set Up and Execute the Function Object ....... ... ... ... . i 53
CICS User Management ... ...ttt e e e e 55

Deploying a Connector Application .. ......... .. 56

Using the Deployment ToOl . .. ... 56
Package J2EE Application Components IntoModules . . ............. ... .. L. 56
Assemble the Module Into a Deployable Unit . .......... ... ... i i 57
Deploy the Unit to One or More iPlanet Application Server Operating Environments . ... .. 57

Using the Command Line to Deploy . ... 57

Chapter 4 Programming Examples . ...... ... e 59
Gl S SaMPIE o 59

ACTIVALION o 59

ToRunthe CICS Samples 0n NT ... o e e 60

To Runthe CICS Sample on Solaris . ....... ...t e e 61

Phone Book Sample Operation . ...... ...t e 61

C0de SaMPIES ..o 62

PhoneBook Servlet Java Code . .. ... ..o 62

iPlanet Application Server Enterprise Connector for CICS Developer's Guide * November 2000



PhoneBook JSP Sample Code . ... ... o 72

TelCO SaMIPIE .o 76
Appendix A Error Messages and Codes ........... ..t e 77
DESCPtION Of EFTOrS .. oottt e e e e e e e 77
Error Handling Code ... ... i 78
Appendix B Communication Failure Codes .......... ... i 81
CONNECTION. RC .o e e e 81
CONNECTION.REIaYRC . ... o e e e 83
CONNECTION.StUDRC .. .. e e e e e 83
CONNECTION.StUDREASON . . ... e e e e 84
GlOS S ANy oot 85
IO X 89



6 iPlanet Application Server Enterprise Connector for CICS Developer's Guide * November 2000



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1-1

1-3

List of Figures

CICS INtegration . . ..ottt e 20
The Unified Integration Framework . ............ i i 21
Three-tier Web-based Computer Model . .......... ... .. i i, 23
Connector-to-CICS Architecture Over TCP/IP . ... ..o e 26
Connector-to-CICS Architecture Over APPC: .. ... ..ot 27
ReEPOSITONY BrOWSEE . oo 31
Service Provider Configuration Object . ......... ... ... i 33
Function Object TYPE ...t 35
OPEratIONS . . .o 36
PrOPEIY SOt .o 40
ENtity Mapping . ..o 44
Primitive Object .. ... . 46
Structure ObjJect .. ... 47
Array ObjJeCt . o 48



8 iPlanet Application Server Enterprise Connector for CICS Developer's Guide * November 2000



Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

2-1

2-3
24
2-5

2-7
3-1
3-2

A-1
B-1
B-2

List of Tables

Service Provider Configuration Object Field Definitions ........................ 33
CICS AttribULES . o 37
USBE Ty BS ..ttt e e e 37
Comparable UIF Primitive User Types for CICS User Types .................... 38
Comparable UIF Array User Types for CICSUser Types ........ovviiiiinennn.n. 38
Comparable UIF Structure User Types for CICS User Types ..................... 38
Description of Communication Fields ........... ... ... ... ... . i 40
Type Information ObJeCtS . ... ..o i 48
Standard Provider Object TYPES . ..o iieeee 52
Function Object Parameters . ...t e e 52
Error MESSAgES . oottt ettt 77
CONNECTION.RC EFTOIS .\ttt ettt e et ettt e e e 81
CONNECTION.StUDREasON COAES .. ...\ttt i 83



10 iPlanet Application Server Enterprise Connector for CICS Developer's Guide « November 2000



List of Procedures

To Access the Repository Browser from Windows NT ... . i 30
To Access the Repository Browser from Solaris ... e 30
To Refresh the Display of the Repository Contents . ......... ...t 32
To Set Up and Execute the Function Object ............ .. i e 53
ToRunthe CICS Samples 0N NT ... e e e e 60
To Runthe CICS Sample on Solaris ... ... ... s 61

11



12 iPlanet Application Server Enterprise Connector for CICS Developer's Guide « November 2000



List of Code Examples

Changing Data TYPES . ..ottt ettt e e e e e 50
Acquiring the UIF RuNtime Object . ... ... . e e e 51
Creating the Service Provider Object . . ... . e 51
Creating the FUNCLION ObjJeCt .. ... o e e 52
Setting Up and Executing the Function Object ........ ... . . i e 53
Setting WebUSerld . . .. ..o 55
PhoneBoOoKSErVIEt.Java . .. ... 62
PhonNEBOOKFOIM S oot 72
Error Handling Code Sample ... ... . 79

List of Code Examples 13



14  iPlanet Application Server Enterprise Connector for CICS Developer's Guide * November 2000



Preface

The iPlanet Application Server Enterprise Connector for CICS Developer’s Guide gives a
brief overview of the CICS connector and explains how to write the servlet or
Enterprise Java Bean (EJB) applications. The iPlanet Application Server Enterprise
Connector for CICS Developer’s Guide is written for application programmers who
develop internet or intranet applications for the CICS Enterprise Information
System (EIS).

This preface contains information about the following topics:

Prerequisites

What’s in This Guide
Documentation Conventions
Guide Online

Related Information

Prerequisites

This guide assumes that you are familiar with the following topics:

iPlanet Application Server programming concepts
The Internet and World Wide Web

CICS Programming Concepts

Java Programming Language and Java servlets
Enterprise JavaBeans

Java Programming Language

15



What's in This Guide

The iPlanet Application Server Enterprise Connector for CICS Developer’s Guide covers
the information you need to know to write servlets or EJBs that utilize UIF and the
iPlanet Application Server Enterprise Connector for CICS to connect to your CICS

EIS.

The following table lists a short summary of what each chapter covers.

See this chapter

Chapter 1, “Overview

Chapter 2, “Viewing the
Repository Contents

Chapter 3, “Working With
Data Objects

Chapter 4, “Programming
Examples

Appendix A, “Error Messages
and Codes

Appendix B, “Communication
Failure Codes”

If you want to do this

Familiarize yourself with conceptual information before
writing UIF APIs servlets or EJBs.

View all contents of the Repository Browser.

Acquire UIF objects and execute function objects. The
chapter also describes how to use the UIF API to develop
a servlet or EJB which communicates with the EIS.

View a simple sample application and view examples of
code that can be used to set up the CICS Enterprise
Connector.

Display error messages for CICS Enterprise Connector
and their codes. This appendix also includes a sample of
the error handling code that can be used by the servlet
developer.

Display a list of the most common causes for
communication failure, and the recommended action to
be taken.

Documentation Conventions

This guide uses URLSs of the form;

http://server.port/path/file.html

In these URLS, server is the name of server on which you run your application; port
is your Internet domain number; path is the directory name on the server; and file is
an individual filename. Italic items in URLSs are placeholders.

This guide uses the following font conventions:

iPlanet Application Server Enterprise Connector for CICS Developer’s Guide * November 2000



< The nonospace font is used for sample code and code listings, APl and
language elements (such as function names and class names), file names, path
names, directory names, and HTML tags.

= [ltalic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

Guide Online

You can find the iPlanet Application Server Enterprise Connector for CICS Developer’s
Guide online in PDF and HTML formats. To locate these files, use the following
URL:

http://docs.iplanet.com/docs/manuals/

Related Information

In addition to this guide, there is additional information for administrators, end
users and developers. Use the following URL to view the related documentation:

http://docs.iplanet.com/docs/manuals/ias.html

The following lists the documents that are available:
= iPlanet Application Server Enterprise Connector for CICS Administrator’s Guide
= iPlanet Web Server Developer’s Guide

= iPlanet Application Server Administrator’s Guide

= iPlanet Application Server Installation Guide

= iPlanet Application Server Overview Guide

= iPlanet Application Server Release Notes

= iPlanet Application Server Administrator’s Guide

= iPlanet Application Builder User’s Guide

< iPlanet Application Builder Installation Guide

= iPlanet Application Builder Release Notes

< iPlanet Unified Integration Framework Release Notes

Preface 17



= iPlanet Unified Integration Framework Developer’s Guide

18 iPlanet Application Server Enterprise Connector for CICS Developer's Guide * November 2000



Chapter 1

Overview

The iPlanet Application Server Enterprise Connector for CICS is used for building
and delivering scalable applications that integrate the application server with
legacy CICS applications. The iPlanet Application Server Enterprise Connector for
CICS enables communication between an end user and a remote CICS Enterprise
Information System (EIS). This chapter introduces the three-tier, web-based
computing model and describes the basic connector concepts.

This chapter contains information about the following topics:
= Unified Integration Framework

= The Three-tier Application Model

= Architecture of the CICS Connector

= Enterprise Connector Tools for CICS

Unified Integration Framework

The Unified Integration Framework (UIF) is an application programming
framework that provides a single Application Programming Interface (API) to
access different back-end systems. A connector is developed for each EIS to allow
communication between the UIF APl and the EIS, see Figure 1-1. The UIF APl is
the only API necessary to access the EIS.

19



Unified Integration Framework

Figure 1-1  CICS Integration

Bk TAUILTNL
o

[OSTL §90 Rdsla. T

The UIF enables development of server extensions that integrate with legacy CICS
applications and systems, client-server applications, and third-party Internet
solutions. These extensions provide a consistent access layer to disparate EIS,
dramatically reducing development effort. The framework provides support for
features such as object pooling, distributed state, and session management.

A generic data repository is also part of the UIF, which is used to hold metadata
parameters and other information about the EIS. For example, the metadata often
describes the physical connection between systems, the data that is available, and
methods you can use to process data. See Figure 1-2.

20 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Unified Integration Framework

Figure 1-2  The Unified Integration Framework

Since EISs are implemented differently, the details for each EIS implementation
differ.

UIF Services

The UIF is a component of the iPlanet Application Server. The iPlanet Application
Server plays a prominent role in a three-tier application model. See the “The
Three-tier Application Model” for a description. The UIF mediates between the
iPlanet Application Server application and the EIS tier, namely the data sources
and databases.

The UIF provides an API to access the following services:
= Runtime
= Data Object Services

= Repository and Metadata Services

Chapter 1  Overview 21



The Three-tier Application Model

Runtime

The UIF runtime services supply core services for resource management, thread
management, communication and life cycle management, and exception
management. The UIF runtime services understand and interpret metadata
repository contents.

Data Object Services

The Data Object Services implements universal data representation common to all
connectors. See Chapter 3, “Working With Data Objects” for description of data
objects.

Repository and Metadata Services

The UIF repository and metadata services model a persistent information hierarchy
that supports datatype definitions and inheritance. Italso manage the instances and
reuse of data objects from datatype definitions.

The Three-tier Application Model

The machine and software involved are divided into the following three tiers:
= Client Tier

= Server Tier

= EISTier

The connectors serve as an essential link allowing the server tier to communicate
with the EIS tier, as shown in Figure 1-3. Communication between the application
server and the EIS is facilitated by the UIF API. This layer of functionality resides as
an added layer to the iPlanet Application Server and enables data communication
with diverse EISs in a seamless and uniform manner.

22  iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



The Three-tier Application Model

Figure 1-3  Three-tier Web-based Computer Model
UIF

Connector

“a

T

e o o e e

Weh-user Client iPlanet
Client Tier Server Tier EIS Tier
Client Tier

The client tier is represented as the user interface. Requests for data originate here,
represented by web browsers or rich clients (such as a Java applet).

Server Tier

The server tier is represented by an application server and optionally a web server
such as the iPlanet Web Server Enterprise Edition. The server tier houses the
business logic (your application servlets and/or Enterprise Java Beans), and
provides scalability, high availability load balancing, and integration with a variety
of data sources.

Chapter 1 Overview 23



Architecture of the CICS Connector

EIS Tier

The EIStier isrepresented by Enterprise Resource Planning (ERP) systems or other EIS
data systems such as CICS.

Architecture of the CICS Connector

The iPlanet Application Server Enterprise Connector for CICS allows you to build
interactive web-based e-Business applications. Specifically, the iPlanet Application
Server Enterprise Connector for CICS allows you to retrieve, display, and
manipulate data within a CICS program that is initiated by an EJB or servlet.

The iPlanet Application Server Enterprise Connector for CICS stores data that
defines the services available to a servlet or EJB from a CICS system in the
repository. Repository data includes metadata definitions of Data Sources and
Service Provider Types. These define general characteristics of CICS connector and
configuration information about particular CICS systems.

A set of enterprise tools provides graphic user interfaces to help you manipulate
the enterprise connector enabled CICS functionality.

Mainframe components

Installation of iPlanet Application Server for CICS on the mainframe includes the
following modules:

= SRVXLINK, which automatically transfers data between iPlanet Application
Server for CICS and a CICS program, passing data via the COMMAREA.

= Relay (TCP/IP only).

If your CICS program follows Distributed Program Link (DPL) guidelines, you do
not need to modify your CICS program; you can use the SRVXLINK module,
which automatically transfers data between CICS program (via the COMMAREA)
and the iPlanet Application Server.

If your program does not follow DPL guidelines, you must modify the program to
follow the DPL guidelines.

24 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Architecture of the CICS Connector

Connector-to-CICS Communication

The iPlanet Application Server Enterprise Connector for CICS communicates with
the mainframe via TCP/IP or APPC.

The connector does not directly invoke user CICS transactions, rather the connector
invokes the SRVX transaction (default) of the SRVXLINK program. The connector
passes the user transaction name and any input parameters to SRVXLINK.
SRVXLINK then invokes the user transaction, passing the input data via the
COMMAREA.

The connection with the CICS back end is either persistent or non-persistent.
Persistent connections are achieved by specifying a REQUEST field in the
repository as SendLast. This causes a re-use of connections in the pool, and enable
scaling to high transaction rates. This is the recommended mode of operation.

Non persistent connections are achieved by specifying a REQUEST field in the
repository as SendAndEnd. This opens a new connection for each request. This
mode of operation is suitable for infrequent (occasional) requests to CICS EIS.

Chapter 1 Overview 25



Architecture of the CICS Connector

Connector-to-CICS Architecture Over TCP/IP

iPlanet Application Server for CICS enabled servers can communicate with CICS
regions. Figure 1-4 shows the interaction between the server and the MVS machine
that hosts CICS over TCP/IP.

Figure 1-4  Connector-to-CICS Architecture Over TCP/IP

CICSs
Enternprize o
Conmec o
TR

Listere ey f

A Listener/Relay component resides on the OS/390 (MVS) operating system. It
connects the iPlanet Application Server Enterprise Connector for CICS server,
which communicates via TCP/IP, to the CICS system, which uses the SNAZAPPC
protocol (LU6.2).

The TCP/IP conversation with the application server is persistent, whereas the
conversations with the CICS transactions can be nonpersistent. To achieve
scalability, the connections to the relay are pooled in iPlanet Application Server
Enterprise Connector for CICS and can be re-used by many other users. Each
connection can be used to conduct many transactions with the CICS system. For
example, when a user issues a request to run a new transaction in CICS, a
connection is pulled from the pool and the request for a new transaction is
forwarded to the relay. The relay then allocates a new conversation with CICS,
which invokes a new transaction. For more information about pooling see the
iPlanet Application Server Enterprise Connector for CICS Administrator’s Guide.

26 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Enterprise Connector Tools for CICS

Connector-to-CICS Architecture Over APPC

A SRVX transaction resides on OS/390 (MVS). It connects the iPlanet Application
Server for CICS application server to the CICS server, which communicates via
APPC to the CICS system.

One or more iPlanet Application Server for CICS enabled servers can communicate
with CICS regions.

Figure 1-5 shows the interaction between the server and the MVS machine that
hosts CICS over APPC.

Figure 1-5  Connector-to-CICS Architecture Over APPC:

LGS Reglan

Sk

Enterprise Connector Tools for CICS

The Enterprise Connector Tools are as follows:
= Management Console - includes the User Mapping and Data Mining Tools
o User Mapping - allows you to map user ID’s for access into the EIS.

o Data Mining Tool - includes capabilities of determining the available
functions in the EIS, translating and reformatting data and loading data
into the data repository.

Chapter 1  Overview 27



Enterprise Connector Tools for CICS

= Repository Browser - allows you to browse data in the repository. You can
view the available functions (input and output parameters) for the EIS. For
developer’s use of the Repository Browser see Chapter 2.

For more information about these tools, refer to the iPlanet Application Server
Enterprise Connector for CICS Administrator’s Guide.

28 iPlanet Application Server Enterprise Connector for CICS Developer's Guide ¢« November 2000



Chapter 2

Viewing the Repository Contents

The Repository Browser is designed to provide the developer with a convenient
tool to view the contents of the repository.

This chapter describes the following topics:
= Qverview of the Repository Browser

= Viewing the Repository

= The Service Provider Object

= Function Objects

= Operations

= Entity Mapping

Overview of the Repository Browser

The developer must be able to see the contents of the repository to be able to
program an application. Variable values in the repository can not be changed using
the repository browser. XML files may be imported and exported using the
repository browser but use of this feature is not recommended.

CAUTION The Repository Browser should not be used for editing even though import,
export, and delete actions on repository nodes are enabled. Only advanced
administrators should use these functions.

29



Overview of the Repository Browser

To Access the Repository Browser from
Windows NT

= Select Start > Programs> iPlanet Application Server 6.0 > UIF 6.0 SP1
Repository Browser.

To Access the Repository Browser from Solaris
1. Enter the following command lines:

cd iplanet/ias6/ias/ APPS/ bin

and

. | bspbr owser. sh

The Repository Browser is shown in Figure 2-1.

30 iPlanet Application Server Enterprise Connector for CICS Developer's Guide ¢« November 2000



Viewing the Repository

Figure 2-1  Repository Browser
ey

ST | BT | S | N | e |
L
ﬂ:::

5 enbeler Trpss
§  Chl R

Viewing the Repository

The Repository Browser is divided into two panes. When you open the browser the
left pane displays nodes containing the adapter (connector) types and data sources.
These nodes are hierarchical and can be expanded to show details of the data
structure and function objects. The right pane displays the properties and values of
the node selected in the left pane.

Viewing the Hierarchy

You can expand and collapse your view of the repository. Initially, the hierarchy
displays the following:

Chapter 2  Viewing the Repository Contents 31



The Service Provider Object

= the root node
* connector types

e data sources

To Refresh the Display of the Repository
Contents

= Click Refresh to refresh the display of the Repository contents.

Viewing Data Objects

The Repository Browser allows you to view data object templates, data object
types, and data object image nodes in different ways. The node specifies the view
that is currently displayed.

Details are included for the following objects:
= The Service Provider Object
= Function Objects

= Operations

The Service Provider Object

The service provider object is the logical representation of a connection to an EIS.
Usually, the service provider object is not bound to a physical connection until it is
absolutely necessary. The service provider object is under the service provider
template as shown in Figure 2-2.

32 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



The Service Provider Object

Figure 2-2  Service Provider Configuration Object

o4
i
[ ]

ga

éI

=g

Table 2-1 lists the fields and the definitions of all the fields.

Table 2-1  Service Provider Configuration Object Field Definitions

Field Definition

host Host machine name of the target machine.
Password CICS user password.

port TCP/IP port that is used to connect to the Relay.
User CICS user name.

WebUserld ID for user mapping.

Chapter 2  Viewing the Repository Contents 33



Function Objects

Function Objects

A function object is a group of related operations that share a common state and is
located under the function object template. Function object definitions represent
business methods available for execution on the specific enterprise server. These
are derived from metadata mined from the enterprise server.

A function object needs to be set up and associated with a service provider before
it can be executed. Figure 2-3 shows the function object.

Function Object Template

The function object template includes function objects. The function object
TransactionControl contains the following operations:

e COMMIT — Used to commit the transaction.
< PREPARE — Used to prepare the transaction for a commit.
< ROLLBACK — Used to rollback the changes that were done in this transaction.

Other function objects represent CICS programs. Each of these nodes contain
operations.

34  iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Operations

Figure 2-3  Function Object Type

- gchild
| Erens
LR ]
i gatud
B updpmnw
i
- gelras
i charmbos.
L= B

i

Operations

The operation node contains the dataBlocks and propertySet nodes as shown in
Figure 2-4.

Chapter 2  Viewing the Repository Contents 35



Operations

Figure 2-4  Operations

I fepontey oot |

o e Ty
it
b clabal oy AEnsuiek
b ot T Mamr= dalafixk
LT R i L s Ty gwWaia
s Trmrascioe” et
i pobed
3 L
T
il
T T
§ - Lpardsl
¥ parkcckrd
o
4 g Nacdioediges N
E g
[y
bk
) LT
nEDATE
#REE
LIa L
- F LA
® ENTERTE R
= P
L
R e L ]
& ALD
i DRELETE | | o
H-UFas
& - T&ED

i ook
b e D .
i ERTIT il P -

dataBlock

The dataBlock contains two structures: INPUT and OUTPUT. The INPUT and
OUTPUT structures contain fields that can be one of the following types: primitive,
structure, or array.

Field Attributes

The attributes describe characteristics of fields. Figure 2-5 displays the field
attributes.

The attributes are connected to the following fields:
= Name - field name

Type - field UIF type

36 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Operations

= Max Length - maximum value of length

e Default - default value that the field contains

Other Field Attributes

Every connector has its own field types in addition to the standard UIF types.
These are explained in Table 2-7.

Mapping CICS Data Types to UIF Data Types

The CICS connector has data types with the following attributes as shown in Table
2-2 through Table 2-6.

Table 2-2 CICS Attributes

Attributes Description

Total_digits Total number of digits including fractional part
Precision Number of digits in the fractional part

Len Length of the string field

User_type These specify the data type

The four user types are explained in Table 2-3.
Table 2-3  User Types

User Type Description

101 - zoned The attribute total digits is needed to represent the length of
the zoned value. Precision is optional.

102 - packed The attribute total digits is needed to represent the length of
the packed decimal. Precision is optional.

103 - short Represents Short value (half word integer)

104 - long Represents Long value (double word integer)

Chapter 2  Viewing the Repository Contents 37



Operations

During runtime the UIF type is mapped to the EIS type. Table 2-4 describes the
comparable UIF user type for each of the CICS primitive user types.

Table 2-4 Comparable UIF Primitive User Types for CICS User Types

Type in CICS Type in UIF

Pic 9(n) Comp-4. or
Pic 9(n) binary.

e short 1<n>4 T_integer + user_type = "103"
e int 9<n>5 T_integer

e long 10<n>18 T_double + user_type = "104"
Pic 9(n) Comp-1 T_float

Pic 9(n) Comp-2 T_double

Pic x(n) T _fstring + size="n"

Pic 9(n) Comp-3. or T-fstring + user_type = "102"

Pic 9(n) Packed -decimal
Pic 9(n) T_fstring + user_type = "101"

The comparable types in UIF for CICS array types are described in Table 2-5.
Table 2-5 Comparable UIF Array User Types for CICS User Types

Typein CICS Type in UIF

Fixed

occurs length T_array + array_size = "length”

Dynamic

occursMinLength to MaxLength T_array + array_size="MaxLength"+ size_is
depending on <variable> = <variable>

The comparable types in UIF for CICS structure types are described in Table 2-6.
Table 2-6 Comparable UIF Structure User Types for CICS User Types

Type in CICS Type in UIF
level structname <T_struct name = "structname">
field level field 1 pic 9(4). <T_integer name = "field1" user_type="103">

38 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide * November 2000



Operations

Table 2-6 Comparable UIF Structure User Types for CICS User Types

Type in CICS Type in UIF
field level pic x(8). <T_fstring name = "field2" size="8">
01 <level <99 </T_struct>

level < field level < 99

propertySet
The propertySet contains the properties of the operation.

The CICS propertySet contains one field: connection. It is used internally by the
CICS connector. The value of this entry matches the function object name. See
Figure 2-5.

Chapter 2  Viewing the Repository Contents 39



Operations

Figure 2-5  PropertySet

Table 2-7 lists the communication fields and includes a description.
Table 2-7 Description of Communication Fields

Field Name Description
Applid Specifies a CICS program name that is to be invoked on the
CICS system.

40 iPlanet Application Server Enterprise Connector for CICS Developer's Guide ¢ November 2000



Operations

Table 2-7 Description of Communication Fields (Continued)

Field Name

Description

Applind

Conversation Type

LU

Used to indicate the conversation state status, and can be in
one of the following three states:

E — Conversation is inactive.

The conversation has either not yet started or already ended.
The E state is an ending state. To leave the E state, the client
application must start a new conversation.

M - Client application has the right to send data and the
service application must receive it.

When in the M state the client application is in control of the
conversation.

S — Service application has the right to send data and the client
application must receive it.

When in the S state the service application is in control of the
conversation.

The client starts the client application from an inactive state
(E). The client application's first call to iAS for CICS identifies
the service application with all needed conversation
parameters.

The first call starts the service application on the remote
platform, if not already started. The conversation then
continues until one of the applications stops it, either
normally, or abnormally, at which point the conversation
enters the E state.

Pooled — must be specified for TCP/IP connection.
Direct — must be specified for APPC connection.

The Logic Unit (LU) name where the transaction specified in
TranName is defined if SRVXLINK is used. This is where
SRVXLINK itself resides.

Chapter 2  Viewing the Repository Contents

41



Operations

Table 2-7 Description of Communication Fields (Continued)

Field Name

Description

Request

StubRC
StubRequest

Target system 1D

Transaction Name
Target Transaction
Name

Use Stub

Hold Conversation

RC

This field specifies the communication operation that the
Relay performs: The following listst the tpes of requests:

SendAndEnd - Send data to the server application, wait for a
reply, and then end the conversation.

SendLast — Send data to the server application and wait for a
reply.

Send — Send data to the server application.

Receive — Receive data from the server application.

End - End the conversation with the server.

Quit — Abort the conversation with the server.

If you do not intend to use the Server Side API, you should
use "SendLast" or "SendAndEnd".

Return code from the SRVXLINK program.

Instructs SRVXLINK what to do. The following values are
acceptable:

COMMIIT - to automatically commit the transaction upon
successful execution of the EIS program.

EXECUTE - not to automatically commit the transaction.

The system ID of the CICS in which SRVXLINK starts a
program. If the program resides on the same CICS as
SRVXLINK, no specification program is required.

Default transaction name for the SRVXLINK program is
SRVX.

Not used in this version

Determines whether you are using the SRVXLINK program
or not. Values should be “Y” or “N”.

This configuration places the conversation on “hold” for the
user until he wants to access it again. This option guarantees
that the user accesses the same CICS transaction on its next
execution of an operation, within the same user interaction.

Return Code. The return code is received by the CICS
Connector during its conversation with the Relay.

42  iPlanet Application Server Enterprise Connector for CICS Developer's Guide * November 2000



Entity Mapping

Table 2-7 Description of Communication Fields (Continued)

Field Name Description

RelayRC This is the return code (RC) that the Relay received from
conversations with the CICS server.

Entity Mapping

User mapping information consist of definitions of user mapping tables from the
web domain to EIS domain for a specific EIS. The contents of the user mapping
tables are managed via the connector Management Console. See Figure 2-6 for
details of the Entity Mapping. Refer to the iPlanet Application Server Enterprise
Connector for CICS Administrator’s Guide for details on the Management Console.

Chapter 2  Viewing the Repository Contents 43



Entity Mapping

Figure 2-6  Entity Mapping

The WebUserld represents the web domain and is mapped to the EIS domain.

44 iPlanet Application Server Enterprise Connector for CICS Developer's Guide ¢ November 2000



Chapter 3

Working With Data Objects

The applications programmer needs to be able to understand and know how to use
the UIF API to develop a servlet, or EJB, which communicates with the EIS. The
UIF APl is an object oriented framework.

The iPlanet Application Server Enterprise Connector for CICS is used to execute
CICS functions on a remote CICS server. The servlet or EJB uses the CICS
connector to access the CICS server.

This chapter describes the procedures for acquiring UIF objects and executing
function objects.

The following topics are described:
= Data Objects

< UIF API Naming Conventions
< Working with Servlet Samples

= Deploying a Connector Application

Data Objects

A data object is used by UIF to represent data or metadata in a generic fashion.

Data objects are used to exchange data between a servlet and UIF, and between
UIF and the connector.

The iPlanet Application Server Enterprise Connector for CICS allows you to access
data through the data object interface.

The data object interface:

= presents a unified representation of EIS data types

45



Data Objects

46

= represents complex data

e supports most common primitive data types.
The types of data objects are:

= Primitive Objects

= Structure Objects

= Array Objects

= Type Information Objects

Primitive Objects

A primitive data type object, see Figure 3-1 contains a single value of one of the
following types:

= integer, float, double

= fixed length string, variable length string

Figure 3-1  Primitive Object

1.0

“abc®

integer, float, double

Integer, float, and double data type objects hold a value whose type corresponds to
the Java data type.

When a primitive data object is assigned to a list, array, or structure; the data object
is unwrapped and its value is copied into the list, array or structure. The data object
itself is not used. When a primitive value is obtained by using an untyped get
method, such as getField(), getElem(), getAttr(), or getCurrent(), the returned value
is wrapped in a primitive data object. In this case, the value is copied. Modifying
the returned primitive data object does not change the source object.

iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Data Objects

fixed length string, variable length string

Strings correspond to the Java string data type. A fixed length string has a
maximum length, whereas a variable length string has no restrictions by the
connector or UIF.

The maximum length of a fixed-length string is set when the string’s initial value is
specified, for example four characters as shown in the following line:

list.addElemFString(“abcd”)

A fixed length string is truncated if it is longer than the string’s initial value.

Structure Objects

Structure objects, see Figure 3-2, contain other data objects or primitive values as
fields. Each object within the structure object is referred to by a string that
represents the field name. Field names have a maximum length of 64 characters. A
structure’s fields are heterogeneous.

Figure 3-2  Structure Object

"Field 1' "Figld 2 "Figld

1.0 "abg"

Circular references are not allowed. iPlanet Application Server Enterprise
Connector for CICS prevents a data object being used as an attribute of itself.
Indirect circular references are not checked.

CAUTION Anerror message is not generated if an indirect circular reference is defined.
Unpredictable results occur if a circular reference is used at runtime.

Array Objects

An array object, see Figure 3-3, contains data objects or primitive values as
elements in the object. Array elements must be homogeneous. Each element within
the array object is referred to by an integer that specifies its position in the array
object.

Chapter 3  Working With Data Objects 47



UIF APl Naming Conventions

Figure 3-3  Array Object

0 o

1 "defg"

Type Information Objects

Type information objects are structured objects that contain the type information of
a data object; for example, the definition of the fields in a structure and the fields
corresponding data types see Table 3-1. Instances of data objects can be created of
type information objects. Each of these instances contain a reference to a type of
information object. Numerous data types can share the same type information
object.

Table 3-1 Type Information Objects

DataObjectInfo Type Target Object

IBSPDataObjectPrimitivelnfo describes the type number, size  IBSPDataObjectPrimitive
of value (if type is string or binary), and the default value.

IBSPDataObjectStructurelnfo describes the type information  IBSPDataObjectStructure
of all fields of the target structure. The type information of
each field is in turn described by a type information object.

IBSPDataObijectListInfo describes the initial capacity and IBSPDataObijectL.ist
maximal element count of the target list.

IBSPDataObjectArraylnfo describes the initial capacity, IBSPDataObjectArray
maximal element count and the type information of elements
of the target array.

UIF APl Naming Conventions

Methods in the UIF API conform to a naming convention that specifies the
following:

= operation

48 iPlanet Application Server Enterprise Connector for CICS Developer's Guide * November 2000



UIF API Naming Conventions

* target
- type
The following example shows a UIF API method:

get El entStri ng()
get is the operation, Elem is the target, and String is the type.

Operation
There are many types of operations but the two most commonly used are:
e get

= set

Target

The targets are:
= None (primitive)

= Attr (complex DataObiject such as a list, array, or structure) that uses path to
address attribute.

In the API, methods of the IBSPDataObject interface do not distinguish
between an element in an array and a field in a structure; an element or field is
referred to as an attribute.

The path to an element is its element number, beginning from zero. The path to
afield is its field name. Element numbers and field names can be combined to
create paths to attributes in complex data objects, such as a field of a structure
that contains a list of elements. In this case, you specify the path as the
individual attributes separated by periods (.); for example, use “field1.[01]” to
identify the first element of a list at field1 in the structure.

= Elem (listZarray) uses index to address element.
= Field (structure) uses name to address field.

« Current (itr) addresses object iterator is currently on.

Chapter 3  Working With Data Objects 49



Working with Servlet Samples

Type

The types of operations are:

e Int

« Float
= Double
e String
= FString

= DataObiject

« None

Changing Attribute Types

An attribute type can not be changed. Code Example 3-1 causes an error because it
tries to change the primitive object type from integer to float.

Code Example 3-1  Changing Data Types

| ist.addEl em nt (100) ; // assume 100 is added to elenent 1

|l ist.setElenFloat (1, 3.14) ; // fails because the type of elenent is int
You can change the data type of non-primtive, as in the foll ow ng exanpl e:
| i st.addEl enDat aCbj ect (aStruct) ; // add a structure is to elenent 1
Iist.setEl enDataObject (1, array) ; // change to array succeeds

Working with Servlet Samples

To execute an operation the servlet must be capable of the following:
= Acquiring the UIF Runtime Object

= Creating the Service Provider Object

= Creating Function Objects

= Setting Up and Executing the Function Object

The following examples show how to carry out these tasks.

50 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Working with Servlet Samples

Acquiring the UIF Runtime Obiject

The runtime object is the entry point into UIF. It is both the object factory and the
access point for creating other objects.

Code Example 3-2 shows how to acquire a runtime object.

Code Example 3-2  Acquiring the UIF Runtime Object

private | BSPRunti ne get Runtine()
{

com ki vasoft. | Context _ctx =
((com net scape. server.servlet.platformhttp. Pl atfornServl et Cont ext)
get Servl et Cont ext ()). get Context ();

I BSPRunti nme i bspruntime = access_cBSPRunti ne. get cBSPRunti ne

(_ctx, null, null);
return ibspruntime;

Creating the Service Provider Object

The service provider object is the logical representation of a connection to an EIS.
Typically, the service provider object is not bound to a physical connection until it
is absolutely necessary. A service provider must be enabled before it can be used.

Code Example 3-3 shows how to create the service provider object.

Code Example 3-3  Creating the Service Provider Object

private | BSPServi ceProvi der get ServiceProvider (| BSPRuntine runtine)

deb. printIn("Before createServiceProvider()");

if (runtime !'= null)

return runtine.createServiceProvider("CICS', "ClCS_spl");
el se

deb.printin("runtine is null");
return null;

Chapter 3  Working With Data Objects 51



Working with Servlet Samples

Table 3-2 defines the function object parameters

Table 3-2  Standard Provider Object Types

Parameter Definition
CICS Data source name
CICS sp1l Service provider name

Creating Function Objects

A function object is a group of related operations that share a common state. In
iPlanet Application Server for CICS, a function object needs to be set up and
associated with a service provider before the function object can be executed.

Function object definitions, which represent business methods available for
execution on the specific enterprise systems, are derived from metadata mined
from the enterprise system.

Code Example 3-4 shows how to create the function object
Code Example 3-4  Creating the Function Object

| BSPFuncti onGbj ect fn = null;
|f( runtime !'= null )

deb. println("Before getServiceProvider()");
sp = get Servi ceProvider(runtine);

deb. println("After getServiceProvider()");
if( sp!=null )

deb. printlIn("Before createFunctionCbject()");
fn = runtime.createFunctionObject(“CICS”, “phonebook”);

Table 3-3 defines the function object parameters.

Table 3-3 Function Object Parameters

Parameter Definition
CICS Data source name
phonebook Function name

52 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Working with Servlet Samples

Setting Up and Executing the Function Object

To Set Up and Execute the Function Object
1. Specify and enable the service provider.

2. Set the WebUserld that represents the web domain and that is mapped to the
EIS domain.

Refer to "CICS User Management", for details.

3. Prepare the function object, set up the propertySet, and set the input
parameters in the function object’s dataBlock.

4. Execute the function object.
5. Retrieve the output parameters from the function block.
6. Disable the service provider.

Code Example 3-5 shows how to set up and execute the function object.

Code Example 3-5  Setting Up and Executing the Function Object

private dataRecord executePB(|BSPRuntinme runtime, |BSPServiceProvider sp,

{

String request Code, dataRecord input) t hrows BspException

int hr = 1;

| BSPFuncti onGbj ect fn = null;

| BSPDat aCbj ect data = null, prop = null;
String lastnane = new String("");
String firstnane = new String("");
String extension = new String("");
String zipcode = new String("");
dataRecord o_entry = nul|;

if( (runtime !'=null) && (sp !'= null) )
{
fn runtine. creat eFuncti onCoj ect ("CI CS", "phonebook");
hr sp. enabl e();
if( fn!=null )
{

hr
hr

fn.useServi ceProvider(sp);
fn. prepare(request Code) ;

data = fn.getDataBl ock();
if( data !'= null )

data.set AttrFString("1NPUT. REQC', request Code);

data.set AttrFString("1 NPUT. LNAME", i nput. m | ast Nane) ;
data.set AttrFString("! NPUT. FNAME", i nput. m first Nane);
data.set AttrFString("1 NPUT. EXTENTI ON', i nput . m ext ensi on) ;
data.set AttrFString("1NPUT. ZI PC', i nput. m zi pcode) ;

Chapter 3  Working With Data Objects 53



Working with Servlet Samples

Code Example 3-5  Setting Up and Executing the Function Object (Continued)

prop = fn.getProperties();

if( prop !'=null )
{
prop. set Attrlnt (" CONNECTI ON. St ubReason", 0 );

hr = fn.execute();

if( hr ==
data = fn.getDataBl ock();
if( data !'= null )

deb. println(" MG

"+data.get AttrFString(" OUTPUT. M5G') ) ;
deb. printl n(" REQC:
"+data.get AttrFString(" OUTPUT. REQC") ) ;
| ast nane = data.get AttrFString("OUTPUT. LNAME") ;
deb. printl n("LNAME: "+l ast nane);
firstname = data.get AttrFString(" OUTPUT. FNAME") ;
deb. println("FNAVE: "+firstnane);
extension = data.getAttrFString(" OUTPUT. EXTENTI ON") ;
deb. printl n("EXTENTI ON: "+extension);
zi pcode = data.getAttrFString("OQUTPUT. ZI PC");
deb. println("zl PC. "+zipcode);
o_entry = new dat aRecord(| astnane, firstnane,
ext ensi on, zipcode);
o_entry. m nessage = new
String(data.getAttrFString(" OUTPUT. M5G') ) ;
}

e

rop = fn.getProperties();
f(prop !'= null)

~

deb. println("APPLI D:

"+prop. get AttrFString(" CONNECTI ON. Applid"));
deb. println("LU:

"+prop. get AttrFString(" CONNECTI ON. LU"));

}
Y 17 if(hr == 0)
el se
deb. println("Search Failed");
Yy /1 if(data !'= null)
el se
deb. println("Search Failed");

Yy /1 if( fn = null )
el se

deb. printIn("Search Failed");
hr = sp.disable();

54  iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Working with Servlet Samples

Code Example 3-5  Setting Up and Executing the Function Object (Continued)

Yy /1 if( (runtine I'= null) & (sp !'= null) )

el se
deb. println("Search Failed");

return o_entry;

CICS User Management

The application programmer provides a WebUserld to the CICS Enterprise
connector, which determines the CICS authorization context to be used to process
the request. The WebUserld must be set with the configuration structure of the
service provider before enabling by calling the enable() method.

Code Example 3-6 illustrates how to set WebUser test as the WebUserld before
enabling the service provider.

Code Example 3-6 Setting WebUserld

// Create runtinme

I BSPRuntime runtime = getRuntinme();
if(runtime '= null )
{

/'l Create Service Provider
sp = get Servi ceProvider(runtimnme);
if(sp!=null )

/1 Get Service Provider config structure

| BSPDat aObj ect confi g=sp. get Config();
/1 Setting WebUser-test in the WebUserld field of the config structure

config.setAttrFString("WbUserld", WbUser-test);
fn = runtine.createFuncti onObject("Cl CS", "BAPI_CUSTOVER GETDETAI L") ;

hr - sp. enabl e();

Chapter 3  Working With Data Objects

55



Deploying a Connector Application

Deploying a Connector Application

A developer creates an application on a development machine and then deploys
the application to an application server. Deployment of an application includes
installing all application files and registering all components on the destination
server.

You can deploy the servlet in one of the following ways:
= Using the Deployment Tool
= Using the Command Line to Deploy

In addition to deploying the servlet you must create and import the XML files,
which describe the function objects, to the repository. For more details on how to
do this, see the iPlanet Application Server Enterprise Connector for CICS
Administrator’s Guide, Chapter 3 - Managing Data: The Data Mining Tool.

Using the Deployment Tool

The iPlanet Application Server Deployment Tool is a GUI-based tool allows you to:
= Package J2EE Application Components Into Modules
= Assemble the Module Into a Deployable Unit

= Deploy the Unit to One or More iPlanet Application Server Operating
Environments

Package J2EE Application Components Into Modules

J2EE application components are archived into modules according to the container
that receives them upon deployment. You can archive J2EE application
components into an EJB JAR module (archived with a . j ar extension) or a Web
Application module (archived with a . war extension). Each module also contains a
J2EE and an iPlanet Application Server specific deployment descriptors saved to
XML files.

56 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Deploying a Connector Application

Assemble the Module Into a Deployable Unit

J2EE modules that comprise an application are assembled into a single application
Enterprise Archive (. ear) file. The application . ear file also contains a J2EE
deployment descriptor saved to an XML file. Depending on your requirements, the
. ear file might also contain alternate deployment descriptor XML files to be used
in deployment.

NOTE . ear archives are meant to be cross platform and works no matter where
you build the archive. For example, you can successfully deploy . ear files
that you have built on NT to Solaris and vice versa.

Deploy the Unit to One or More iPlanet Application Server Operating
Environments

At deployment, the . ear file is copied to the targeted iPlanet Application Server
environments. Some archived application files are automatically distributed to
their appropriate directories on one or more instances on the iPlanet Application
Server and then registered with the iPlanet Application Server. For example, static
HTML files,

Using the Command Line to Deploy

A Web Application Module can be deployed as a standalone unit or can be
packaged with other modules to create an application. ear file. The . ear file
contains all the modules with the application components required to run an
application, along with component level and application level deployment
descriptor files.

After you create an . ear file or a module that you may want to deploy, you may
want to register it automatically via a batch file at a scheduled time and date. In this
case, you would create the . ear file or module as you normally would using the
Deployment Tool, but you would not use the tool for deployment.

For more detailed information on deployment, consult the Deployment Tool
Outline Help, which installs as part of the iPlanet Application Server Deployment
Tool.

Chapter 3  Working With Data Objects 57



Deploying a Connector Application

58 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide * November 2000



Chapter 4

Programming Examples

You must know how to acquire UIF objects and execute functions by using
function objects to program for the iPlanet Application Server Enterprise
Connector for CICS. You also need to know how to use servlets with the iPlanet
Application Server Enterprise Connector for CICS to access functions on a CICS
EIS.

This chapter includes the following information:
e CICS Sample
e Code Samples

= Telco Sample

CICS Sample

The CICS samples provided show the general flow of a connector program.

Activation

The CICS sample consist of servlets which activate CICS programs that access the
CICSEIS.

You must have set up the environment before activating the samples. See Post
Installation Issues in Chapter 2 of the iPlanet Application Server Enterprise Connector
for CICS Administrator’s Guide.

59



CICS Sample

To Run the CICS Samples on NT

1. Select Programs>iPlanet Application Server 6.0 > CICS Connector 6.0 - Sample
Applications.

The CICS samples page is displayed with links to the samples.

2. Click on the link “To Start The PhoneBook Demo” to activate the PhoneBook
servlet.

Edl Neea [ Cowmnacals  pelp

i‘ﬁiﬁnﬂ:tﬂ-ﬂ
Foramd  Fiskad Sacwny ik

d mﬂ‘.l ¥ o mlllb T .l.ll_.\,llq.- it ‘S.g-q,le-\. v el

ﬂmwﬂwuﬂmﬂmlﬂﬂhmgumymjm

CICS Phonebook Samples

To Siars The PhopefckDemo
Hée neat page does ot deplyr, mere méommation ghaout the ermor

oan ke found i the log Sl= o the drectory
[HlAS Enrertony e it

Frad &e FPhamePcokDemo log

Teo Start The ThopeB-kETHDemno

e naxt page doed ot display, mors micrmatica, sbau the srror
can ba found n the log 8= mthe drectory

[BLAS Dhre sy [ S emend s

Bead the Phore Bk ETE Demo bog nd pb log

CICS Telco Sample

To Sims The Tekood e
e nent page does rot deplay, mors sformahon shout the e

i ke Colmed n TAE logg Ble o the darectory

60 iPlanet Application Server Enterprise Connector for CICS Developer's Guide ¢ November 2000



CICS Sample

To Run the CICS Sample on Solaris

1. Start your browser.
2. Enter the following URL: <host name>:<web server port>/cicsSamples.

The CICS Samples page appears, showing links to the Phone Book and Telco
samples.

Phone Book Sample Operation

1. Clickon:To Start The PhoneBookDeno link
The Phone Book Form dialog box is displayed.

2. Type in the WebUserld and last name of the person for whom you want
information.

Click Display to show the person’s details.
Phone Book Form

FYHERLIM

4. The following display confirms the successful installation of the CICS
connector.

Fhane Book Fesm

Messagn  “PHONEROOK ENTRY WAS DISPFLAYED *

Chapter 4  Programming Examples 61



Code Samples

Code Samples

The code samples are included to show the programmer how to set INPUT
parameters, set the transaction name and get the OUPUT parameters.

This is a fully operational sample. You can use it as a model for building your own
application.

PhoneBook Servlet Java Code

Code Example 4-1 PhoneBookServlet.java

ERE I R I R I B T R I I I N I I I

*/

@ #) Si mpl eServl et.javal. 22 97/ 10/ 25
Copyright (c) 1996-1997 Sun M crosystens, Inc. Al R ghts Reserved.

This software is the confidential and proprietary information of Sun
M crosystens, Inc. ("Confidential Information"). You shall not

di scl ose such Confidential Information and shall use it only in
accordance with the terns of the |license agreenent you entered into
with Sun.

SUN MAKES NO REPRESENTATI ONS OR WARRANTI ES ABOUT THE SUI TABI LI TY OF THE
SOFTWARE, ElI THER EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LI M TED TO THE

I MPLI ED WARRANTI ES OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR
PURPCSE, OR NON- | NFRI NGEMENT. SUN SHALL NOT BE LI ABLE FOR ANY DANAGES
SUFFERED BY LI CENSEE AS A RESULT OF USI NG MODI FYI NG CR DI STRI BUTI NG
THI S SOFTWARE OR | TS DERI VATI VES.

CopyrightVersion 1.0

package PhoneBookDeno;

i nport java.io.*;

i mport com ki vasoft. | Context;

i nport javax.servlet.?*;

i mport javax.servlet.http.*;

i nport java.util.*;

i mport javax.nam ng.*;

i nport javax. nam ng.spi.?*;

i mport netscape. bsp. *;

i nport netscape. bsp.runtine. *;

i mport net scape. bsp. dat aobj ect . *;
i nport net scape. bsp. BspExcepti on. *;

/

* %

<form acti on="/ NASApp/ appl i cati on nane/ PhoneBookServl et" nethod=get >

62

iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000




Code Samples

Code Example 4-1 PhoneBookServlet.java

* This is a sinple exanple of an HTTP Servlet. It responds to the GET
* and HEAD net hods of the HTTP protocol.

*/

publ i ¢ cl ass PhoneBookServl et extends HttpServlet

private Test Debug deb = new Test Debug(" PhoneBookDenvo. | 0g");
private Context _context;

protected String getlnputString(HttpServletRequestrequest, String
par amet er Nane)

This nethod is useful since getVal String returns null on
sonme platforns and an enpty string on other platforms for
m ssing input paraneters.lt also renpves any whitespace
characters that the user nmy have inadvertantly entered.

~—~——
~—— —

String paraneter
| =

request . get Par anet er ( par anet er Nane) ;
if (paraneter 1)

nu
parameter = paraneter.trinm();

return paraneter;

}

Cont ext get Cont ext ()
throws Exception, BspException

Hasht abl e env = new Hasht abl e(11);
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"com ki vasoft.eb.jndi.GDSInitContextFactory");

if (_context == null)
_context = new Initial Context(env );

return _context;

private void Do(lBSPRuntine runtinme, |BSPServiceProvider sp, String
request Code) throws BspException
{
int hr = 1;
| BSPFunct i onObj ect fn = null;
| BSPDat aChj ect data = null, prop = null;

deb. printin("Before Do()");
deb. println("Transacti onControl ");

if( (runtine !'=null) && (sp !'= null) )

deb. printlIn("Before createFunctionCbject()");

Chapter 4  Programming Examples 63




Code Samples

Code Example 4-1 PhoneBookServlet.java

" +prop.
" +prop.
" +prop.
" +prop.
" +prop.

" +pr op.

fn = runtime.createFuncti onObject("C CS", "TransactionContr ol

deb. printIn("After createFunctionject()");
hr = sp. enabl e();

deb.printIn("After enable(), hr = "+hr);
if( fn!=null )

hr = fn.useServi ceProvider(sp);
deb. println("After useServiceProvider(), hr = "+hr);

hr = fn.prepare(request Code);
prop = fn.getProperties(),

if( prop !'=null )

i
{

/] prop.setAttrFString("CONNECTI ON. Conver sati onType",
/1 prop.setAttrFString(" CONNECTI ON. Applid", "PHONBOOX");
I

");

"POOLED") ;

prop. set AttrFString(" CONNECTI ON. Request”, "SendAndEnd");

/1 prop.setAttrFString("CONNECTI ON. LU", "A06CI CS1");
/1 prop.setAttrFString(" CONNECTI ON. TranNane", "SRVX");
/1 prop.setAttrFStri ng(" CONNECTI ON. Rel ayHost ", " lvF")
/1 prop.setAttrFString("CONNECTI ON. Rel ayPort", "4701");
/1 prop.setAttrFString("CONNECTI ON. Target Tr anNane", "

/1 prop.setAttrFString("CONNECTI ON. Tar get SYSI D',

/1 prop. setAttrFString( CONNECTI ON. Rel ayRC' "00")'

prop. set AttrFString(" CONNECTI ON. UseSt ub™, "Y");
prop. set AttrFString(" CONNECTI ON. Hol dConver sat i on"
prop. set Attrlnt (" CONNECTI ON. St ubReason", 0 );

~~
~—

deb. printlIn("Before execute()");
hr = fn.execute();

deb. printIn("After execute(), hr = "+hr);
if( hr == 0 ) /] 222222222222222222222?

prop = fn.getProperties();

deb. printIn("After getProperties()");
if(prop !'= null)

deb. println(" * * * * * x ")

deb. println("APPLID:
get AttrFString(" CONNECTI ON. Applid"));

/1 deb.println("UserlD:
get AttrFString(" CONNECTI ON. User| D"));

/1 deb. println("Password:
get AttrFString(" CONNECTI ON. Password"));

deb. println("LU:
get AttrFString(" CONNECTI ON. LU' ))

deb. println("Target SYSI D:
get AttrFString(" CONNECTI ON. Target SYSID"));

/1 deb.println("Rel ayHost:
get AttrFString(" CONNECTI ON. Rel ayHost ")) ;

"),

64  iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide * November 2000




Code Samples

Code Example 4-1 PhoneBookServlet.java

/1 deb.println("Rel ayPort:
"+prop. get AttrFString(" CONNECTI ON. Rel ayPort ™)) ;
deb. println("TranNane:
"+prop. get Attr FStri ng(" CONNECTI ON. Tr anName")) ;
deb. println("Target TranNane:
" +prop. get Attr FStri ng(" CONNECTI ON. Tar get TranNang") ) ;
deb. printl n("Request:
" +prop. get Attr FStri ng(" CONNECTI ON. Request ")) ;
deb. println("Appli nd:
" +prop. get Attr FStri ng(" CONNECTI ON. Appl i nd"));
deb. println("RC
"+prop. get AttrFString(" CONNECTI ON. RC") ) ;
deb. println("Rel ayRC:
" +prop. get Attr FString(" CONNECTI ON. Rel ayRC'") ) ;
deb. println("StubRC:
"+prop. get Attr FString(" CONNECTI ON. St ubRC") ) ;
deb. println(" St ubReason:
"+l nteger.toString(prop.getAttrint("CONNECTION ")));
deb. println("StubRequest:
"+prop. get Attr FStri ng(" CONNECTI ON. St ubRequest ")) ;
deb. println("UseSt ub:
"+prop. get Attr FStri ng(" CONNECTI ON. UseStub ));
deb. printlin(" ****");

}
Yy 11 if(hr == 0)
el se
deb. printlIn("Search Failed");
Yy /1 if(prop !'= null)
el se
deb. println("Search Failed");
Yy /1 if( fn = null
el se
deb. println("Search Failed");
hr = sp.disable();
deb. printlin(" After di sable(), hr = "+hr);

Yy /7 if( (runtine !'= null) & (sp !'= null) )
el se

deb. printl n( Search Fail ed");
deb.printin(" ");
return;

}

private dataRecord executePB(|BSPRuntime runtime, |BSPServiceProvider sp,
String request Code, dataRecord input) t hrows BspException
{

int hr = 1;

| BSPFuncti onObj ect fn = null;

| BSPDat aCbj ect data = null, prop = null;
String | astnane = new String("");
String firstnane = new String("");

Chapter 4  Programming Examples 65



Code Samples

Code Example 4-1 PhoneBookServlet.java

String extension = new String("");
String zi pcode = new String("");
dat aRecord o_entry = null;

deb. println("Before executePB()");
deb. printl n("PhoneBook") ;

i{f( (runtine !'= null) && (sp '= null) )

deb. println("Before createFunctionObject()");

fn = runtinme.createFuncti onObj ect("C CS", "phonebook");
deb. printIn("After createFunctionject()");

hr = sp. enabl e();

deb.printIn("After enable(), hr = "+hr);

if( fn!=null

hr = fn.useServi ceProvider(sp);
deb. printIn("After useServiceProvider(), hr = "+hr+" request Code

"+r equest Code) ;

hr = fn. prepare(request Code);
deb. printIn("After prepare(), hr = "+hr);

data = fn. getDataBl ock();
deb. printIn("After getDataBl ock()");
if( data !'= null )
{
11 dat a. set AttrFString("Cl CS. | NPUT. BDATA", "");

data.set AttrFString("1NPUT. REQC', request Code);

data.set AttrFString("1 NPUT. LNAME", i nput. m | ast Nane) ;
data.set AttrFString("! NPUT. FNAME", i nput. m first Nane);
data.set AttrFString("1 NPUT. EXTENTI ON', i nput . m ext ensi on) ;
data.set AttrFString("1NPUT. ZI PC', i nput. m zi pcode) ;

prop = fn.getProperties();
deb. printIn("After getProperties()");

if( prop !'=null )
{
/] prop.setAttrFString("CONNECTI ON. Conver sati onType",

" POOLED") ;

rop.set AttrFString(" CONNECTI ON. Applid", "PHONBOOX");
rop.set AttrFString(" CONNECTI ON. Request ", "SendAndEnd");
prop. set AttrFString("CONNECTI ON. LU', "A06CI CS1");
rop.set AttrFString(" CONNECTI ON. TranNane", "SRvX");
prop. set AttrFString(" CONNECTI ON. Rel ayHost ", "M");
prop. set AttrFString(" CONNECTI ON. Rel ayPort", "4701");
/1 prop.setAttrFString("CONNECTI ON. Tar get TranName", " ");
/1 prop.setAttrFString(" CONNECTI ON. Target SYSID', " ");
/1 prop.setAttrFString("CONNECTI ON. Rel ayRC', "00");
/ prop.set AttrFString(" CONNECTI ON. UseSt ub", "Y");
/ prop.set AttrFString(" CONNECTI ON. Hol dConversation", "Y");
prop. set Attrlnt (" CONNECTI ON. St ubReason", 0 );

T TT

~—

66

iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000




Code Samples

Code Example 4-1 PhoneBookServlet.java

}

deb. printlIn("Before execute()");
hr = fn.execute();

deb. printIn("After execute(), hr = "+hr);
if( hr == 0) || 2222727220222222222222222

data = fn.getDataBl ock();
deb. printIn("After getDataBl ock()");
if( data !'= null )

deb.println(" * * * * * x ")
deb. printl n(" MG
"+data.get Attr FString(" OUTPUT. M5G") ) ;
deb. printl n(" REQC:
"+data.get AttrFStri ng(" OUTPUT. REQC') ) ;
| astnane = data.get AttrFString("OUTPUT. LNAME") ;
deb. printl n("LNAME: "+l ast nane);
firstname = data.get AttrFString(" OUTPUT. FNAME") ;
deb. println("FNAVE: "+firstnane);
extension = data.getAttrFString(" OUTPUT. EXTENTI ON") ;
deb. printl n("EXTENTI ON: "+extension);
zi pcode = data.getAttrFString("OQUTPUT. ZI PC");
deb. printIn("zl PC. "+zi pcode);
o_entry = new dataRecord(l astname, firstnane,
ext ensi on, zipcode);
o_entry. mnessage = new
String(data.getAttrFString("OQUTPUT. M5G'));
}

prop = fn.getProperties();
deb. printIn("After getProperties()");
if(prop !'= null)

deb. println("APPLI D:
"+prop. get Attr FString(" CONNECTI ON. Applid"));

/1 deb.println("UserlD:
"+prop. get Attr FString(" CONNECTI ON. User I D"));

/1 deb. println("Password:
"+prop. get Attr FString(" CONNECTI ON. Password"));

deb. println("LU:
"+prop.get Attr FString(" CONNECTI ON. LU") ) ;

deb. println("Target SYSI D:
" +prop. get Attr FStri ng(" CONNECTI ON. Tar get SYSID') ) ;

/1 deb.println("Rel ayHost:
"+prop. get Attr FString(" CONNECTI ON. Rel ayHost ")) ;

/1 deb.println("RelayPort:
"+prop. get Attr FString(" CONNECTI ON. Rel ayPort™"));

deb. println("TranNane:
" +prop. get Attr FStri ng(" CONNECTI ON. Tr anNanme") ) ;

Chapter 4  Programming Examples

67



Code Samples

Code Example 4-1 PhoneBookServlet.java

deb. println("Target TranNamne:
" +prop. get Attr FStri ng(" CONNECTI ON. Tar get TranNane") ) ;
deb. printl n("Request:
" +prop. get Attr FStri ng(" CONNECTI ON. Request ")) ;
deb. println(" Appli nd:
" +prop. get AttrFStri ng(" CONNECTI ON. Appl i nd"));
deb. println("RC
"+prop.get Attr FString(" CONNECTI ON. RC") ) ;
deb. println("Rel ayRC:
"+prop. get Attr FString(" CONNECTI ON. Rel ayRC") ) ;
deb. println("StubRC:
" +prop. get Attr FStri ng(" CONNECTI ON. St ubRC") ) ;
deb. println(" St ubReason:
"+l nteger.toString(prop.getAttrlnt("CONNECTI ON. St ubReason")));
deb. println("StubRequest:
"+prop. get Attr FStri ng(" CONNECTI ON. St ubRequest ")) ;
deb. println("UseSt ub:
" +prop. get AttrFStri ng(" CONNECTI ON. UseSt ub")) ;
deb. println(" * * * * * x ")

}
Y 17 if(hr == 0)
el se
deb. println("Search Failed");
Yy /1 if(data !'= null)
el se
deb. printlIn("Search Failed");

Yy /1 if( fnt=null )
el se
deb. println("Search Failed");
hr = sp.disable();
deb. printlin(" After di sable(), hr = "+hr);

Yy /7 if( (runtine !'= null) & (sp !'= null) )
el se

deb. printl n( Search Fail ed");
deb.printin(" ");
return o_entry;

private | BSPRuntine get Runtine() throws BspException

com ki vasoft. | Context ctx =
((com netscape. server.servlet.platfornmhttp. Pl atfornServl et Cont ext)
get Servl et Cont ext ()) . get Context();

deb. printIn(" before access_cBSPRunti nme. get cBSPRuntinme ");
I BSPRunti nme i bsprunti me = access_cBSPRunti ne. get cBSPRuntine(_ctx, null,
nul 1) ;

deb. printIn(" after access_cBSPRuntime. get cBSPRuntimnme ");
return ibspruntine;

68 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Code Samples

Code Example 4-1 PhoneBookServlet.java

private | BSPServi ceProvi der get ServiceProvider(lBSPRuntine runtine)
{

deb. printIn("Before createServiceProvider()");

if (runtime !'= null)

return runtine.createServiceProvider("CICS', "ClCS_spl");
el se

deb.printin("runtinme is null");
return null;

}

publ i ¢ dat aRecord sendRequest (String i_request Code, dataRecord
i _entry,String WebUserld) throws Exception

dat aRecord out put = null;

int operation = -1,
| BSPSer vi ceProvi der sp=nul | ;
int hr=1;
try
{

deb. printIn("i_requestCode : "+i _
deb. printin(" Before getRuntine()");
I BSPRuntime runtime = getRuntinme();
deb. printin("After getRuntine()")
if(runtime !'= null

{

r equest Code) ;

n
)

deb. printl n("Before getServiceProvider()");
sp = get ServiceProvider(runtine);

deb. printIn("After getServiceProvider()");
if( sp!=null )

| BSPDat aChj ect confi g=sp. get Config();

i f(WebUser |l d!=null)

config.setAttrFString("WbUserld", WebUser|d);
deb. printIn("after set webuserid"+WbUserld);

deb. println("request Code : "+i _request Code);
if (i_requestCode. equal s("TAD") ||
i _request Code. equal s("ADD") ||
i _request Code. equal s(" DI SPLAY") ||
i _request Code. equal s(" DELETE") ||
i _request Code. equal s(" UPDATE"))
out put = executePB(runtine, sp, i_requestCode, i_entry);

if (i_requestCode. equal s("PREPARE") ||
I _request Code. equal s(" ROLLBACK") ||

Chapter 4  Programming Examples 69



Code Samples

Code Example 4-1 PhoneBookServlet.java

i _request Code. equal s("COW T"))
Do(runtinme, sp, i_requestCode);

}
cat ch(BspExcepti on BspError)

i f(sp!=null)
{

hr = sp. disable();
deb. printIn("After disable(), hr

"+hr);
%hrow( BspError);

%:atch(Exception Error)
i f(sp!'=null)

hr = sp. di sable();
deb. printIn("After disable(), hr = "+hr);

}
throw(Error);

return (output);

/**
* Handl e the GET and HEAD met hods by buil ding a sinple web page.
* HEAD is just |ike GET, except that the server returns only the
* headers (including content |ength) not the body we write.
*
/
public void doGet
Ht t pSer vl et Request r equest,
Ht t pSer vl et Responser esponse ) throws Servl et Exception, | OException

deb. printIn("4. Before sendRequest ");
Request Di spat cher di spat cher=null;
try
{
String WebUser | d=get | nput String(request, "WbUserld");

dat aRecord i nput = new dat aRecor d(

get Il nput String(request, "l ast nane"),

get |l nput String(request,"firstnane"),

get |l nput String(request, "extension"),

get I nput String(request, "zi pcode"));
deb.printin("4a. last Nane : "+ input.ml ast Nane);
String oper = null;
oper = getlnputString(request,"tad");

if(oper == null)
oper = getlnputString(request,"add");
i f(oper == null)

oper = getlnputString(request,"disp");

70 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Code Samples

Code Example 4-1 PhoneBookServlet.java

i f(oper == null)
oper = getlnputString(request,"del");
i f(oper == null)

oper = getlnputString(request,"update");
i f(oper == null)
oper = getlnputString(request,"prepare");

i f(oper == null)
oper = getlnputString(request,"roll back");
i f(oper == null)

oper = getlnputString(request,”"comit");
deb. printIn("5. Operation:"+oper);

dat aRecord out put = sendRequest (oper, i nput, WebUser1d);
deb.printIn("6. After sendRequest ");

deb.printIn("7. first Nane : "+ output.mfirstNane);
deb.printIn("8. extension : "+ output.mextension );
deb. printIn("9. zipcode: "+ output.mzipcode );

response. set Cont ent Type("text/htm ");

di spatcher =
get Ser vl et Cont ext (). get Request Di spat cher ("/j sp/ PhoneBookForm j sp");
request.setAttribute("l ast nane_val ue", out put. m | ast Nane) ;
request.setAttribute("firstname_val ue", out put. mfirstNane);
request.set Attri but e("extension_val ue", out put. m ext ensi on);
request.set Attribute("zi pcode_val ue", out put. m zi pcode) ;
request.set Attribut e("nmessage_val ue", out put. m message) ;

}
cat ch(BspExcepti on BspError)
deb. printl n("BspException:"+BspError. get Message());

response. set Cont ent Type("text/htm ");
di spatcher =

get Ser vl et Cont ext () . get Request Di spat cher ("/j sp/ Excepti onForm j sp");

| BSPDat aObj ect Structure info = null;
i nf o=BspError.getlnfo();

if (info!=null & info.attrExists("nsgid") )

request.setAttri but e("BspException", BspError. get Message()+", Error code : " +
i nfo.getAttrint("nsgid"));
el se

request.set Attri but e("BspException", BspError. get Message());
}
cat ch( Excepti on excepti on)

deb. println("Exception:"+exception.toString());
response. set Cont ent Type("text/htm");

Chapter 4  Programming Examples 71



Code Samples

Code Example 4-1 PhoneBookServlet.java

di spatcher =

get Ser vl et Cont ext () . get Request Di spat cher ("/j sp/ Excepti onForm j sp");
request.set Attribute("Exception",exception.toString());

di spatcher.incl ude(request, response);

deb.printIn("8. before return ");
return;

}

/** handl es the HTTP POST operation **/
public void doPost (HttpServl et Request request, HttpServl et Response
response)
throws Servl et Exception, | OException {
doGet (request, response) ;

PhoneBook JSP Sample Code

Code Example 4-2 PhoneBookForm.jsp

<%
String | astnane_val ue = "GRYNBAUM';
/** get the error nessage fromthe request attributes **/
oj ect obj1 = request.getAttribute("lastnane_val ue");
if (obj1ll=null) {
| ast nane_val ue = (String) obj1;
%
<%
String firstnane_value = "";
/** get the error nessage fromthe request attributes **/
oj ect obj2 = request.getAttribute("firstnane_val ue");
if (obj2!=null)
firstnane_value = (String) obj2;
%
<%
String extension_value = "";
/** get the error nessage fromthe request attributes **/
oj ect obj 3 = request.getAttribute("extension_value");
if (obj3!'=null)
extension_value = (String) obj3;

72  iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Code Samples

Code Example 4-2 PhoneBookForm.jsp

}
%>
<%
String zipcode_value = "";
/** get the error nessage fromthe request attributes **/
oj ect obj4 = request.getAttribute("zi pcode_val ue");
if (obj4!=null)
zi pcode_value = (String) obj4;
%>
<%
String message_value = "";
/** get the error nessage fromthe request attributes **/
oj ect obj5 = request.getAttribute("nessage_val ue");
if (obj5!'=null)
nmessage_val ue = (String) obj5;
%>
<%
String WebUserld = "";
/** get the error nessage fromthe request attributes **/
hj ect obj 6 = request. get Paranet er ("WbUserld");
if (obj6!'=null) {
WebUserld = (String) obj6;
" }
<HTM_>
<HEAD>
<TI TLE>Phone Book Deno</ Tl TLE>
</ HEAD>
<BODY>
<cent er >
<TABLE BORDER=0 CELLSPACI NG=0 CELLPADDI NG=0 W DTH="600" >
<tr>

<td VALI GN=TOP W DTH="420" >
<form acti on="/ NASApp/ PhoneBookDeno/ PhoneBookSer vl et" net hod=post >
<TABLE BORDER=0 CELLSPACI NG=0 CELLPADDI NG=6 W DTH="100% >
<tr>
<t d BGCOLOR="#8979C8" >
<b><font face="sans-serif,arial, helvetica" col or=white>
Phone Book Fornx/font></b>
</td>
</[tr>
<tr VALI GN=TOP>
<t d BGCOLOR="#666699" >
<p>
<center>
<TABLE BORDER=0 cel | spaci ng=0 cel | paddi ng=0>

<tr>

Chapter 4  Programming Examples

73




Code Samples

Code Example 4-2 PhoneBookForm.jsp

<td><font face="arial, helvetica, sans-serif" color=white
size="-1">WebUser | d: </font ></td>

<td><font face="arial, helvetica, sans-serif">

<i nput type="text" nane="WbUserld" size=20 maxsi ze=50
val ue="We" ></font>

</td>

</tr>
<tr>
<td><font face="arial, helvetica, sans-serif" color=white
si ze="-1">Last Nane: </font></td>
<td><font face="arial, helvetica, sans-serif">
<i nput type="text" nane="I| astnane"
val ue=" <%l ast name_val ue%" si ze=20 maxsi ze=50></f ont >
</td>
</[tr>
<tr>
<td><font face="arial, helvetica, sans-serif" color=white
size="-1">First Nane:</font></td>
<td><font face="arial, helvetica, sans-serif">
<i nput type="text" nanme="firstnane"
val ue="<%firstnanme_val ue%" size=20 nmaxsi ze=50></f ont >
</td>
</[tr>
<tr>
<td><font face="arial, helvetica, sans-serif" color=white
si ze="-1">Ext ensi on: </font></td>
<td><font face="arial, helvetica, sans-serif">
<i nput type="text" nane="extension"
val ue=" <% ext ensi on_val ue%" size=20 naxsi ze=20></font >
</td>
</[tr>
<tr>
<td><font face="arial, helvetica, sans-serif" color=white
size="-1">Zi p Code: </font></td>
<td><font face="arial, helvetica, sans-serif">
<i nput type="text" nane="zi pcode" val ue="<%zi pcode_val ue%"
si ze=20 maxsi ze=20></font>
</td>
</tr>
<tr>
<td><font face="arial, helvetica, sans-serif">

74 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Code Samples

Code Example 4-2 PhoneBookForm.jsp

<i nput type="hidden" name="WebUserld" val ue="<%WbUser| d%"
si ze=20 maxsi ze=50 ></font>
</td>
</tr>
</ TABLE>
</ center>
</td>
</tr>
</ TABLE>
<TABLE BORDER=0 CELLSPACI NG=0 CELLPADDI NG=0 W DTH="100% >
<tr>
<td BGCOLOR="#666699">
<TABLE>
<tr>
<td val i gn=t op><i nput type="submt" name="tad" val ue=" TAD ">
&nbsp;
</td>
<td val i gn=t op><i nput type="submit" name="add" val ue=" ADD ">
&nbsp;
</td>
<td val i gn=t op><i nput type="submt" name="disp" val ue="Dl SPLAY" >
&nbsp;
</td>
<td val i gn=t op><i nput type="subnit" name="del" val ue="DELETE">
&nbsp;
</td>
<td val i gn=t op><i nput type="subnit" nanme="update" val ue="UPDATE">
&nbsp;
</td>
</tr>
</ TABLE>
</td>
</[tr>
</ TABLE>
</td>
</tr>
</forne
</ TABLE>
<BR><B>Message : "<%nessage_val ue%" </B></BR>
<!--#include file="Copyright.jsp" -->
</ BODY>
</ HTML>

Chapter 4  Programming Examples

75



Telco Sample

Telco Sample

Refer to the iPlanet Application Server Enterprise Connector for CICS Administrator’s
Guide for information on how to activate the CICS Telco sample.

76  iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Appendix A

Error Messages and Codes

The developer writes servlets that use connectors to connect with the EIS. Error
messages are generated to assist the developer in debugging these processes. This
appendix contains a list of identified errors and the error handling code that is
used to catch the error.

The following topics are described:
= Description of Errors

= Error Handling Code

Description of Errors

Table A-1 lists the error handling codes, msgid, and the corresponding messages.
Table A-1 Error Messages

Error Message Code Error Message
msgid
1 Communication Failure. Error: {error text} (rc : {return code}),

Applind : {indication}.

2 Failed to connect to Relay or SRVXLINK: RC:{return code},
RelayRC:{relay return code}, StubRC:{stub return code},
StubReason:{stub error code}.

3 {Input\Output} data is too long, maximal length {length},
actual length {length}.

4 Illegal user type value {type code} for property name {name}.

5 Internal error. Failed to get {object type} {object name}.

6 Internal error. Object {object name} is NULL.

7



Error Handling Code

Table A-1 Error Messages (Continued)

Error Message Code Error Message

msgid

7 Type not supported, in Data Object {object name}, field {field
name}, type {field type}.

8 Not used.

9 Not used.

10 Not used.

11 Not used.

12 Not used.

13 Not used.

14 Not used.

15 Not used.

16 Failed to {get\set} user defined type.

17 Failed to initialize marshalling parameters, error code: {return
code}.

18 Array {name} has {number} element,{text} {valid value}
elements.

19 Illegal value={value} of field {field name}.

20 Field {field name) has illegal Value {value} ,contain more

digits than {max digits}.

21 Field {field name} has illegal Value {value} ,contain illegal
character {char}.

22 Field {field name} has invalid length,Max Len {length}, is
smaller than {property name} {value}.

Error Handling Code

The error handling code is an example of how to handle an exception raised by the
connector.

When there is an error in the process the CICS connector throws a BspException
object. The exception object contains a data object. The data object contains the
numeric code, msgid, as listed in Table A-1.

An example of error handling code is shown in Code Example A-1.

78 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide * November 2000



Code Example A-1

Error Handling Code Sample

Error Handling Code

e e Nt

ry

some code in the servlet
catch (BspException e)
| BSPDat aObj ect Structure info =
error Message += " Error :
i nf o=e. getlInfo();
if (info !'= null

error Message += "

Error code :

nul | ;

" + e.get Message()

&& info.attrExists("nsgid") )

" + info.getAttrint("nsgid")

Appendix A

Error Messages and Codes

79



Error Handling Code

80 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Appendix B

Communication Failure Codes

This appendix describes the codes that are output if there is a communication
failure. The communication error may occur during the execute method of the
function object.

The CONNECTION structure in the properties data block contains communication
status information in the following fields.

= CONNECTION.RC

= CONNECTION.RelayRC

= CONNECTION.StubRC

= CONNECTION.StubReason

A zero value in each of these fields indicates a successful communication process.
If the communication process failed, one, or more, of the above fields contain a
failure code that can be used to identify the source of the problem.

CONNECTION.RC

Table B-1 lists the most common causes for CONNECTION.RC errors.
Table B-1 CONNECTION.RC Errors

Error Description and Action
Code

05 Session not bound, allocation failed

Description: Conversation can not be started because the session is not bound.
This could be a configuration or operational problem.

Action: If this connection has worked before, contact the network operator in
order to activate the connection.

81



CONNECTION.RC

Table B-1 CONNECTION.RC Errors

Error
Code

Description and Action

20

43

81

82

83

91

Transaction id error
Description: The transaction id does not exist (mainframe only).

Action: Check the application table to check whether the application exists or
whether a default entry is present

Error on getting application record

Description: A conversation state error has been encountered. The application
has issued a request incompatible with the current state. This is probably due to
a programming error.

Action: Check the protocol according to protocol specifications.
Async: connection record not yet arrived

Description: A connection record has been passed to the non-blocking interface
but the result is not yet available. This happens when the non-blocking
application tries to check whether a reply is available. This is not necessarily an
error and should be handled by the application. The conversation continues.

Action: The calling program must retry later with the same connection record.
Async: Timeout

Description: A timeout occurs when communicating through the non-blocking
interface. This is similar to error type 81.

Action: The calling program must retry later with the same connection record.
Timeout - cleanup

Description: A call to SRVRQT has timed out. The problem is probably caused
by the remote application which is not responding. The session is cleaned up
and the sockets are closed.

Action: Correct the remote application or supply a larger timeout value.
Application Table Missing or Invalid

Description: The application table is missing in the path specified by the
SRVAPPL specification and in the working directory.

Action: Specify the SRVAPPL environment variable to point to a valid
application table or create a valid application table in your working directory.

82 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



CONNECTION.RelayRC

Table B-1 CONNECTION.RC Errors

Error Description and Action
Code

92 Workstation communication error

Description: the connection is lost during the conversation. The most probable
cause for this is that the remote application has abended. If this is not the case,
the session was deactivated by force.

Action: Find the cause of the remote application abend and correct the problem.

If the remote application was not abended check whether the connection was
force deactivated.

CONNECTION.RelayRC

These are the same as those listed for CONNECTION.RC. in Table B-1.

CONNECTION.StubRC

The possible values for CONNECTION.StubReason are listed in Table B-2.
Table B-2 CONNECTION.StubReason codes

StubReason Code

CICO_XL_SUCCESS DC C00’
CICO_XL_LINKERR DC C01
CICO_XL_NOTPREPARED DC C02’
CICO_XL_ALREADYPREPARED DC C03
CICO_XL_MUSTROLLBACK DC C'04’
CICO_XL_COMMITFAILED DC C0%
CICO_XL_ROLLBACKFAILED DC C06’
CICO_XL_SIGNONFAILED DC C07

Appendix B Communication Failure Codes

83



CONNECTION.StubReason

CONNECTION.StubReason

Possible values for the CONNUNICATION.StubReason can be found in the CICS
documentation.

84  iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Glossary

APl Application Programming Interface. Software that an application utilizes to
carry out and request lower level services by the operating system. In addition, a
set of standard software data formats that application programs use to initiate
contacts with other programs, computers, and systems.

Applet A Java program that can be distributed as an attachment in a World Wide
Web document and executed in a Java-enabled web browser.

Applications Programmer Responsible for writing servlets or EJBs that call the
UIF API. Uses the Repository Browser to determine the available data types and
access methods.

Array Object Contains data objects or primitive values as elements in the object.
Array elements must be homogeneous. Each element within the array object is
referred to by an integer that specifies its position in the array object.

Attribute Field Attributes that describe allowable attributes for the field where
the input and output are located.

CICS Customer Information Control System. An IBM communications program
designed to allow transactions entered at a remote site to be processed
concurrently by a mainframe host.

Connection Parameters Contains information needed to connect to the CICS
system.

Daemon A program that is not explicitly invoked, yet remains idle until
summoned (called on).

85



Data Block Describes the input and output of operations. The data block can only
contain two structures: input and output. All of the input and output structures
contain fields that can be only one of the following types: primitive structure or
array.

Data Object Used by UIF to represent data or metadata in a generic fashion. Data
objects are used to exchange data between a servlet and UIF, and between UIF and
the connector.

Data Source The Data Source contains all the information needed to connect to
the CICS system, and stores all the function objects. In addition, the Data Source
determines which system to mine, and where to place the function objects.

Deployment Deploying an application includes installing all of the application’s
files, and the registering of all it’s components on the destination server. You
deploy an application using the Deployment Tool, a separate tool accessible from
the iPlanet Application Server (iAS). An application must be deployed before it can
be used.

EJB Enterprise Java Beans. A server-side component architecture for writing
reusable business logic and portable enterprise applications. They are written
entirely in Java and run on any EJB compliant server. They are operating system,
platform, and middleware independent, thereby preventing vendor lock-in.

EIS Enterprise Information System, also referred to as a backend system.

Enterprise Connector The component in iPlanet Application Server Enterprise
Connector for R/3, PeopleSoft, Tuxedo, or CICS that enables you to access the
appropriate backend system.

ERP Enterprise Resource Planning An integrated information system that links
various systems such as human resources, manufacturing, sales, transport and
finance within an enterprise. ERP modules may be able to interface with an
organization's own software with varying degrees of effort, and, depending on the
software, ERP modules may be alterable via the vendor's proprietary tools as well
as proprietary or standard programming languages.

Function Object A group of business methods available for execution on the
specific enterprise server. These are derived from metadata mined from the
enterprise server that share a common state. These are derived from metadata
mined from the enterprise server.

86 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



Group Name Name of the specific group of application servers. For load
balancing only.

iPlanet Application Server iThe Iplanet Application Server provides the most
robust e-commerce platform for delivering innovative and leading edge
application services to a broad range of servers, clients, and devices.

iWS iPlanet Web Server that is ideally suited to the Java Development
community for use as the development and test platform for web applications.

Java An object oriented programming language developed by Sun Microsystems,
Inc. to create executable content (i.e, self running applications) that can be easily
distributed through networks like the Internet. Developers use Java to create
special programs called applets that can be incorporated in web pages to make
them interactive. A Java enabled web browser is required to interpret and run the
Java applets.

Operations Directory A directory with one operation (Execute), and which
contains data blocks and property sets.

Primitive Object A data type that contains a single value of an integer, float,
double, or fixed length string, variable length string.

Repository A specialized structure where all the module’s functions are stored
for the use of iPlanet Application Server Enterprise Connector.

Repository Browser The component that enables you to browse data (content) in
the repository, and to view the available functions (input and output parameters)
for the backend system.

Runtime Object The entry point into the UIF.

Service Provider Object The logical representation of a connection to an EIS. It is
the logical representation of a connection to an EIS, and must be enabled before it
can be used. Typically, the service provider object is not bound to a physical
connection until it is absolutely necessary.

Server Tier The server tier is represented by an application server and optionally
a web server such as the iPlanet Web Server Enterprise Edition. The server tier
houses the business logic (Enterprise Java Beans of your application servlets), and
provides scalability, high availability load balancing, and integration with a variety
of data sources.

Glossary 87



88

Servlet An application that calls the iPlanet Application Server Enterprise
Connector for R/3, PeopleSoft, Tuxedo, or CICS.

Structure Object Contains other data objects or primitive values as fields and
whose fields are heterogeneous. Each object within the structure object is referred
to by a string that represents the field name. Field names have a maximum length
of 32 characters.

System Name The system name used. For load balancing connection only.

Three-Tier Application Model A model of an application system that is
composed of the following three tiers: Client, Service, and EIS.

Type Information Objects Structured objects that contain the type information
of a data object; i.e. definition of the fields in a structure and the fields
corresponding data types. Instances of data objects can be created of type
information objects. Each of these instances contain a reference to a type of
information object. Numerous data types can share the same type information
object.

UIF iPlanet Unified Integration Framework, an application programming
framework that provides a single Application Programming Interface (API) to
access different backend systems.

URL Universal Resource Locator, an address for a resource or site (usually a
directory or file) on the World Wide Web and the convention that web browsers
use for locating files and other remote services.

XML A common cross platform format used to populate a repository.
Worker A worker is an out of process unthreaded procedure. The conversation to

the backend system is done by the worker process. The worker returns the results
to the connector using the proprietary protocol.

iPlanet Application Server Enterprise Connector for CICS Developer's Guide « November 2000



A

Application Programming Interfaces (API), 22
authorization, 55

C

Connector
Relay, 24
SRVXLINK, 24
Connector-to-CICS Architecture
Over APPC, 27
Over TCP/IP, 26

D

Data Mining Tool, 27
Data Object Services, 21
Data Objects, 45
Array Obijects, 47
Primitive Objects, 46
Structure Objects, 47
Deploying a Connector Application, 55, 56
Using the Command Line to Deploy, 57
Using the Deployment Tool, 56
Description of Errors, 77, 81

Index

E

EIS, 22

Enterprise Connector Tools for CICS, 27
Enterprise Information System (EIS), 21
Entity Mapping, 43

Error Handling Code, 78, 83

F

Function Objects
Create the Function Object, 52
Description, 34
Template, 34

iPlanet Application Server , see iAS
iPlanet Web Server Enterprise Edition, 23

L

long
user types, 37

89



M Creating the Service Provider Object, 51
short

Management Tool, 27 user types, 37

Mapping
Mapping CICS Data Types to UIF Data Types, 37
mapping
user ID’s, 27 U
UIF, 19
UIF API, 19
O Unified Integration Framework (UIF)
. About the Unified Integration Framework, 22
Operations, 35 UIF Services, 21
Data Blocks user tvpes
Field Attributes, 36 Ionygp 37
Property Set, 39 packed, 37
short, 37
zoned, 37
P
packed
user types, 37 W
WebUserld
Mapping, 44

Setting WebUserld, 55

Repository
Refresh Display of Repository Contents, 32
Viewing Data Objects, 32 Z
Viewing the Hierarchy, 31
Viewing the Repository, 31
Repository and Metadata Services, 21
Repository Browser, 28
Run Time, 21

zoned
user types, 37

S

Samples
Activation, 77, 81

Server Tier, 23
Service Provider Object, 32

90 iPlanet Application Server Enterprise Connector for CICS Developer’'s Guide ¢ November 2000



	Chapter�1
	Overview
	Unified Integration Framework
	UIF Services
	Runtime
	Data Object Services
	Repository and Metadata Services


	The Three-tier Application Model
	Client Tier
	Server Tier
	EIS Tier

	Architecture of the CICS Connector
	Mainframe components
	Connector-to-CICS Communication
	Connector-to-CICS Architecture Over TCP/IP
	Connector-to-CICS Architecture Over APPC


	Enterprise Connector Tools for CICS

	Chapter�2
	Viewing the Repository Contents
	Overview of the Repository Browser
	To Access the Repository Browser from Windows NT
	To Access the Repository Browser from Solaris

	Viewing the Repository
	Viewing the Hierarchy
	To Refresh the Display of the Repository Contents
	Viewing Data Objects

	The Service Provider Object
	Function Objects
	Function Object Template

	Operations
	dataBlock
	Field Attributes
	Mapping CICS Data Types to UIF Data Types

	propertySet

	Entity Mapping

	Chapter�3
	Working With Data Objects
	Data Objects
	Primitive Objects
	integer, float, double
	fixed length string, variable length string

	Structure Objects
	Array Objects
	Type Information Objects

	UIF API Naming Conventions
	Operation
	Target
	Type
	Changing Attribute Types

	Working with Servlet Samples
	Acquiring the UIF Runtime Object
	Creating the Service Provider Object
	Creating Function Objects
	Setting Up and Executing the Function Object
	CICS User Management


	Deploying a Connector Application
	Using the Deployment Tool
	Package J2EE Application Components Into Modules
	Assemble the Module Into a Deployable Unit
	Deploy the Unit to One or More iPlanet Application Server Operating Environments

	Using the Command Line to Deploy


	Chapter�4
	Programming Examples
	CICS Sample
	Activation
	To Run the CICS Samples on NT
	To Run the CICS Sample on Solaris
	Phone Book Sample Operation

	Code Samples
	PhoneBook Servlet Java Code
	PhoneBook JSP Sample Code

	Telco Sample

	Appendix�A
	Error Messages and Codes
	Description of Errors
	Error Handling Code

	Appendix�B
	Communication Failure Codes
	CONNECTION.RC
	CONNECTION.RelayRC
	CONNECTION.StubRC
	CONNECTION.StubReason

	Glossary
	Index

