Developer’s Guide

iPlanet ™ Application Server

Version 6.0

BXX-XXXX-XX
November 2001

Copyright © 2001 Sun Microsystems, Inc. Some preexisting portions Copyright © 2001 Netscape Communications Corporation. All
rights reserved.

Sun, Sun Microsystems, and the Sun logo, iPlanet, and the iPlanet logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. Netscape and the Netscape N logo are registered trademarks of Netscape
Communications Corporation in the U.S. and other countries. Other Netscape logos, product names, and service names are also
trademarks of Netscape Communications Corporation, which may be registered in other countries.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The
Apache Software Foundation. All rights reserved.

This product includes Encina ® Software provided by Transarc Corp., a wholly-owned subsidiary of IBM Corporation. © 1998
Transarc Corp. Encina and Transarc are registered trademarks of Transarc Corporation.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of the
Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2001 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2001 Netscape Communication Corp.
Tous droits réservés.

Sun, Sun Microsystems, et le logo Sun, iPlanet, et le logo iPlanet sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et d’autre pays. Netscape et le logo Netscape N sont des marques déposées de Netscape
Communications Corporation aux Etats-Unis et d’autre pays. Les autres logos, les noms de produit, et les noms de service de
Netscape sont des marques déposées de Netscape Communications Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent I'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut étre reproduite sous quelque forme ou par
guelque moyen que ce soit sans I’autorisation écrite préalable de I’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A
UN BUT PARTICULIER OU DE NON CONTREFAGCON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES A LA LOI.

Contents

PrefaCE . . 17
Using the DOCUMENTAtION ittt et et e e 17
What You Should Already KNOWo e 20
How This Guide IsOrganized i e 20
Documentation CONVENTIONS i e e e e e e e 21
Related INformation 22
Chapter 1 Developing Applications e PA]
Application REQUITEMENTSot et e e e e e 23
About the Application Programming Model 24
The Presentation Layer e e e e e 24
SBIVIEES . . . 25

TP S 25

HT ML Pages . . oo e e e e 25
Client-Side JavaSCript 25

The BUSINESS LOGIC Layer . ..o o e e e e e 25
SESSION BEANS . . it 26
BNty BaANS . . .ot 26

The Data ACCESS LAYlttt e e e e e e e e e e e e e 26
Effective iPlanet Application Guidelines i 27
Presenting Data with Servlets and JSPS 27
Creating Reusable Application Code i 28
IMproving Performance i e 28
Scalability Planning 29
Modularizing Applications 29
Functional ISOlation 30
Reusable Code 31
Prepackaged COMPONENtSt 31
UNiQUe NamMES ..o e e e e 31
Shared Framework CIassesot 32
SesSioN and SECUNILY ISSUESottt e e e e e 32

Chapter 2 Controlling Applications with Servlets 33

ADOUL SEIVIETS . .. 33
Servlet Data FIOWo 34
SNVt TY DS o oottt 35

Aboutthe Server ENgine 36
Instantiating and Removing Serviets 36
Request Handlingo 36
Allocating Servlet ENging RESOUICESo it e e 37
Dynamically Reloading Servletsat Runtime i 38
Configuring Servlets for Deployment 38
Locating Serviet Files 38
Deploying SerVIetS 39

DESIgNING SEIVIETS ..o 39
Choosing a ServIet TYPe 40
Create Standard or Non-Standard Serviets i 40
Planning for SErvIEt REUSEo 40

Creating SerVIetS ... 40

Servlet Files for an iPlanet Application 41
The Servlet’'s Class File 41

Creating the Class Declaration oo 41
Overriding Methods 42
Accessing Parameters and Storing Data 44
Handling Sessions and SECUNItY e 45
Accessing Business Logic COMPONENTSttt e 45
Handling Threading ISSUES i e e 47
Delivering Client ReSUILS o e 48
The Servlet’s Deployment DeSCripLOrottt e e e 50
ElemMENtS . . . 51
Changing Configuration Files 51
iPlanet Application Server Optional Features i 52

INVOKING SerVIetS ... 52

CallingaServlet With a URL e 52
Invoking Specific Application ServIets i 52
Invoking Generic Application Servlets 53

Calling a Servlet Programmatically 54

Verifying Serviet Parameters 55

Chapter 3 Presenting Application Pages with JavaServer Pages 57

INtrodUCING JSPS . . oo 58

HOW JSPS WOTK ..ot e e 58

DESIgNING JOPS oo 59
Choosing @ COMPONENT e e e e e e 59
Designing for Ease of Maintenance ...t e e 61

iPlanet ™ Application Server Developer's Guide * November 2001

Designing for Portability 61

Handling EXCepliONS i e 61
CreatiNg JOPS . oo 61
GeNEral SYNTAX e 62
P TGS .t 62
EScape CharaCters 63
COMIMIBNTS .. . 63
DIrEC VS oot 64
L o o T 64

U@ INCIUAE > . .. 66

<O@ taglib... J0> . . e 67
SCHIPtiNG EIEMENtSo 68
Declarations <Ol ... 00> 68
EXPreSSIONS SOO= ... G Lo 69
SCHIPLIETS <. 00> . . o 69

AT ONS .« . o 69
SIS PIUSEB AN . e 70

RS 0TS] (] 0 1= o 1Y 72
ISP P O P Y > . . o e 73
SISPIINCIUE> . 73
ISP O AN > . . e 74

ISP PIUGIN> e 75
IMPLICIt ObJeCtS . . oo 77
Programming Advanced JSPS 78
INCluding Other RESOUICESottt e e e e e e 79
USING JaVaBeans o 81
ACCESSING BUSINESS ODJECESt e 81
DEPlOYING JOPS . . e 82
Unregistered JOPS . .. o 83
Registered JOPS . . o 83
INVOKING JOPS . . . 84
CallingalJSP With @ URL 84
Invoking JSPs in a Specific Application i 84
Invoking JSPs in a Generic Application i e 85
Invoking @aJSP From a Serviet 86
JSP 1.1 Tag SUMMAIY . ..ottt e e e e e e e 86
DIrEC VS oottt 86
EXPIESSIONS . . oot 87

RS Tod T 01 =] 87
COMIMIBNTS . . . 87
Bean-Related ACtIONS o 87
Other ACHIONS . . oo e e e 88
Modifying Custom Tags for JSP 1.1 o 88

Contents 5

6

Compiling JSPs: The Command-Line Compiler i 89

Value-added FeatUres e e 92
Custom Tag EXIENSIONS o e e e 92
Database Query Tag Library 93
LDAP Tag Library 97
Conditional Tag Library 104
Attribute Tag Library 108

JSP Load BalanCingooo i 109
JSP Page Caching i 110
Chapter 4 Introducing Enterprise JavaBeans i, 113
What Enterprise JavaBeans DOt 114
What is an Enterprise JavaBean? 115
Understanding Client CONracCtst e 115
Understanding Component CONraCtsttt e a e 116
Understanding JAR File CONtracts e 117
Session Beans and Entity Beans o 118
Understanding SesSioN BEANS it 118
Understanding Entity Beans i 118
EJB Role in an iPlanet Application Server Application i i, 119
Designing an Object-Oriented Application s 120
Planning GUIdeliNgS o e 121
USING SeSSION BRANSo 121
UsiNg ENtity Beans e 122
Planning for Failover RECOVEIY o i e e 123
Working with Databases 123
DeployiNg EJBS ... 123
Dynamically Reloading EIBS i 124
Using the ejbc Compiler oo e 124
Using INDI to Reference an EJB oo e 126
Chapter 5 Using Session EJBs to Manage BusinessRules 131
INtroducing SESSION EJBS . .. oot 131
SesSioN Bean COMPONENTS\ttt e et e e e e e e e e 133
Creating the Remote Interface i e e 133
Declaring vs. Implementing the Remote Interface i, 134
Creating the Class Definition i e e e 134
SESSION TIMEOUL . . oottt e e e 135
Passivation and ACtivationo 135
Creatingthe Home INterface e e 136
Additional Session Bean GUIEIINES 136
Creating Stateless or Stateful Beanst e 136

iPlanet ™ Application Server Developer's Guide * November 2001

Accessing iPlanet Application Server Functionality 137

Serializing Handles and References e 138
Managing TranSaCtioNSttt ettt e e e e 138
Committing a Transaction i e 138
ACCESSING DAatabasesottt e e e 139
Session Bean Failover 139
How to Configure a Stateful Bean with Failover 140

How the Failover Process WOrKKS o e e 140
Failover Guidelings 141

How Often Isthe State Saved? e 142

How the State IS Saved o 142
Chapter 6 Building Entity EIBS e 143
Introducing ENtity EIBS 143
How an Entity Bean iS ACCESSEAottt 145
Entity Bean COMPONENTS ottt et e e e e e e e e e e 145
Creating the Class Definition e 145
Using ejbActivate and ejbPassivate 147
Using ejbLoad and ejbStoret 147
Using setEntityContext and unsetEntityContextc i 149
Using ejbCreate Methods i e 149
Using FINder Methods e 150
Declaring vs. Implementing the Remote Interface i .. 151
Creating the Home Interface e 151
Defining Create Methods it e 151
Defining Find Methods 152
Creating the Remote Interface e 152
Additional Entity Bean Guidelines 153
Accessing iPlanet Application Server Functionality 153
Serializing Handles and References i 153
Managing TranSaCtioNSttt e ettt e e e 154
Committing a Transaction e 154
CommMIt OPLION C ..o e e 154
Handling CoNCUITENT ACCESS oot ettt et e e e e e e e e e e et 155
ACCESSING DAtabasesottt e 156
Container Managed PersiStenCettt e 156
FUILJ2EE SUPPOIt . . .o e e e 157
Third Party O/R Mapping TOOIS o e 157
Full Example of aCMP Entity Bean e 158
Using the Lightweight CMP Implementation i 158
Creating the Deployment Descriptorsby Hand i . 158
ejb-jar Deployment DeSCriplOrt 159
ias-ejb-jar Deployment Descriptor ot 159

Contents 7

8

CMP Bean Deployment DeSCHIPLOrttt e e e 160

Using the Deployment Tool e 170
Chapter 7 Handling Transactionswith EIBS 175
Understanding the Transaction Model 175
Specifying Transaction Attributes inan BB 176
Using Bean Managed TranSaCtionSsttt it 177
Chapter 8 Using JDBC for Database ACCeSSt 179
INtroducing DB C ... o 180

Supported Functionality 181

Understanding Database Limitations i i e 181

Understanding the iPlanet Application Server Limitations 182

Supported Databases 184
Using JDBC in Server Applicationst e e 185

USING IDBC INEIBS ..ottt 186

Managing Transactions with JDBC or javax.transaction.UserTransaction 186
Specifying Transaction Isolation Level i i 186

UsiNg JDBC iN SerVIEtS i e 187
Handling ConNNeCtioNS i e e e e 188

Local CONNECLIONS e 188

Registering a Local DatasoUIrCettt e 188
Global CoNNECLIONS i e e e 189
USING RESOUICE MaNagerS . . oottt ettt e e e e e e e e e e e 190
Registering a Global Datasourceuuiiit e 190
Creatinga Global Connection i 191
Container Managed Local ConNeCtioNSttt e 191
Registering a Container Managed Local Datasourcecoiiiiiinennneenn.. 192
Working With JDBC FEAtUIESottt e e e e e e 192

Working With CoNNECtiONS o 193

Pooling ConNeCtioNS o i 194

Working With RESUITSEt e 194

CONCUITENCY SUP PO .« ot ettt et e e e e e e s 194
Updatable Result SEet SUPPOIt o 195

Working with ResultSetMetaDatat e 196

Working with PreparedStatement 196

Working with CallableStatement 197

Handling Batch Updates e e 198

Creating Distributed Transactionsttt e e 199

WOrking With ROWSEt oo e 200

USING IASROWS BT .. .o 200
Using CachedROWSELo 201

iPlanet ™ Application Server Developer's Guide * November 2001

Creating @ ROWSet 202

Using JNDI for a Database DriVer 202
Chapter 9 Developing and Deploying CORBA-Based Clients 205
Overview of CORBA Clent SUPPOIT ot e e e e e e e 205

SCBNMAIIOS . . ittt et et 206

Stand-AloNne Program 206
SEIVEr-10-SB VOl . . . 207
Architectural OVEIVIEW e 208
iPlanet Value-Added Features e 208
NaMING SEIVICESot e e e e 209
CH+ ClIeNt SUPPOIt . . e e e e e e 209
Built-in ORB and Third Party ORB SUPPOIto 209
Basic Authentication and EJB Container Integration, 209
Client Side Authentication i 210
Load BalanCing 211
Scalability 212
High Availability 212
Minimal Ports Opened in Firewalls 212

LimMItatiONS .. 212

ChoosSiNgthe ORB e 213
RMIZIIOP Client Applications o e 213

Developing RMIZIIOP Client Applications e 214

JNDI Lookup forthe EIB Home Interface e 214
Client Authentication 219
Client-Side Load Balancing and Failover 221

Packaging RMIZIIOP Client Applications e e 222

Using the Assembly Tool GUI 223
Automating Reassembly Using Ant i 223
Using Application Client Container (ACC)ttt 223
Configuring RMIZIOP SUPPOIt e 225
Server Configuration 225
Client Configuration 226
Deploying RMI/ZIIOP Client Applications i e 235
Client DeploymMeNt 235
Deployment TOOIS 236
Server CLASSPATH Setting (SP2and Prior) ... 236
Configuring RMIZIIOP Applications for ORBIX e 237
REfErENCES . . . 237
ConfIQUIAtioN STEPSttt 237
ENnabling SeCUNItY 239
Running RMIZIIOP Client Applications i 241
Troubleshooting RMIZIIOP Client Applications i 241

Contents 9

10

Performance Tuning RMIZIIOP e 244

Recognizing Performance ISSUES it e e 244
Basic TUNING APProaches 244
Enhancing Scalability 245
Firewall Configuration for RMIZIIOP e 246
Viewing RMIZITOP LOg MESSA0ES oottt ettt et et e e et et e e e e 248
Monitoring Logs on WINAOWS o e e 248
Monitoring Logs on UNIX 249
Sample RMIZHIOP Applications e e 249
Converter Sample Application 249
Other RMIZIIOP Sample Applications s 250
C++ 1IOP Client Applications (Unix ONly) e 250
Configuring C++ IIOP Applications for ORBIX i et 251
REQUITEMENTS . .ottt e e 251
RETEIENCES . . o 251
Preparing for C++ Client Development e 252
Data Type Assumptions and Limitations i 252
Generating the IDL Files o e 253
USINGJ2SE 1A FMIC 2 .« oottt et e e e e e e e e 253
Using the OpenORB JavaTolDL Compiler e 254
Generating CPP Files from IDL Files e 254
Enabling Security for C++ IHOP Applications e 257
Lookup for the EJB Home Interface oo s 258
Client-Side Load Balancing and Failover e 258
Configuring the HHOP Bridget e e 259
Deploying C++ IIOP Client Applications e 260
Client DeploymMeNt 260
Server CLASSPATH Setting (SP2and Prior) ... e 261
Performance Tuning HHOP 261
Basic TUNING APProaches 261
Enhancing Scalability 262
Viewing HHOP LOG MESSA0ES ottt ittt et et e e et et e 263
Sample C++ HHOP Applications o e 263
Redeploying the Converter Sample for Use withaC++Client 264
Chapter 10 Packaging for Deployment e 267
Overview of Packaging and Deployment e 267
MOAUIES . . o 268
APPLICAtIONS . o 269
Naming Standards 271
Assembling Modules and Applications 271
SamMle FIlES .. 272
Assembling WAR Modules 272

iPlanet ™ Application Server Developer's Guide * November 2001

Using the Command Line Interface (CLI) i 273

Using the Deployment Tool 274
Using the Visual Café Plug-in e 276
Assembling EJB JAR Applications 277
Using the Command Line Interface (CLI) e 278
Using the Deployment Tool 278
Assembling RMI/ZIIOP Applications i 281
Deploying Modules and Applications 282
Deployment by Module 282
Deployment by Application 282
Deploying RMIZIIOP CHeNtS i e e e e e 283
Deploying Static CONTENto e e e e 283
Tools for Deploymento 283
The iasdeploy Command i 283

The iPlanet Deployment Tool e 284

The iPlanet Visual Café Plug-in e e 284
General Rules About Deployment 284
Redeploying an ApplicationorModule 284
Deploying to an iPlanet Application Server Cluster 284
Access to Shared Frameworks 285
INtroducing XML DTS . .. oot e e e e e e e e 285
J2EE Standard DesCriplorsttt e e e 286
Creating Deployment DesCriptorso e 286
Document Type Definition 286
The iPlanet Application Server RegiStry i s 287

A Globally Unique Identifier 287
Web Application XML DTD e e e e 288
Web Application OVEIVIEW e e e e e 288
Web Application XML DTDo e e e e e 288
Element for Specifying an iPlanet Application Server Web Application 289

EIB XML DTD .ttt ettt et et e 298
EIBJAR File CONtENTS o e 298
Specifying Parameter Passing RuUles 298
EJB iPlanet Application Server XML DTDt 299
Elements for Specifying EJB-JAR 299
Elements for Specifying Enterprise Beans i 299
Elements for Specifying Persistence Manager 301
Elements for Specifying Pool Manager i 301
Elements for Specifying EJB Reference 302
Elements for Specifying Resource Reference 302
Elements for Specifying Role Mapping 303
Elements for Specifying Role Implementation 303
RMIZIHOP CHENt XML DTD . ..ttt e et 304

Contents 11

iPlanet Application Server RMIZIIOP Client XML DTDt 304

Elements for Specifying EJB Reference Information 304
Elements for Specifying Resource Reference Information 304
Resource XML DT D e e 305
Datasource XML DTD e 305
Element for Specifying DatasOUICeSottt e 305
Element for Specifying iPlanet Application Server Resources 305
Elements for Specifying RESOUICESt e 306
Elements for Specifying JDBC DataSOoUICeSitiiein i 306
RMIZIIOP Client Datasource XML DTDot 307
Elements for Specifying Java Client ReSOUICESottt 307
Elements for Specifying JDBC Settingsttt 308
Chapter 11 Creating and Managing User SeSSiONSt 309
INtrodUCING SESSIONSot e e 309
SessioNs and COOKIES it 310
Sessions and URL ReWTItiNg e e e 310
Supported Tags and AtHDULESo e e 311

The URL ReWTItiNg ProCESSttt e e e e 313

The Location Header 316
Order of the CooKiIes i 316
SeSSIONS aNd SECUNILY . .. oottt e e 317
HOW 0 USE SESSIONS . . . o oottt ettt e e e e e e 317
Creating or ACCESSING & SESSION . .. oottt 317
Examining Session Properties 318
Binding Data to @ SESSIONottt e 320
Invalidating @ SESSION o 321
Controlling the SeSSION TYPEot e 321
Sharing Sessions With APPLOGICSottt 322
Chapter 12 Writing Secure Applications i 323
iPlanet Application Server Security GOals i 324
iPlanet Application Server Specific Security Features i 324
iPlanet Application Server Security Model 325
Web Client and URL Authorizations e 326
Web Client Invocation of Enterprise Bean Methods i, 326
RMI/IIOP Client Invocation of Enterprise Bean Methods 327
Security Responsibilities OVEIVIEW 327
APPLiCatioN DEVEIOPET i 327
ApPPlication ASSEMbIEr o 327
ApPPlication DEPIOYEr .. 328
Common Security TerminolOgYottt e e 328

12 iPlanet ™ Application Server Developer's Guide * November 2001

AUTNENTICATION . .. 328

AULNOKIZAtION 329
ROIE MaPPiNg . . oot 329
CONLAINEr SECUNILY . . . oottt e e e e e e e e e e e e e e e e e e e 329
ProgrammatiC SECUNILYo 330
Declarative SECUNILY o 330
Application Level SeCUrity 330
Serviet Level SECUNitY 331

EJB LeVel SECUNILY 331

User Authentication by ServIets 331
HTTP Basic Authentication e 331
Secure Socket Layer Mutual Authentication i 332
FOrm-Based LOgiN e 332
Programmatic LOgino 332
Form-Based vs. Programmatic Login e 333

The IProgrammaticLogin Interface i 333

The WebProgrammaticLogin Classt e 333

The EjbProgrammaticLogin Class e 335

User Authorization by ServIets 337
DefiNiNg ROIES 337
Referencing Security ROIES i 337
Defining Method Permissionso 338
Sample Web Application DD 338
User AUthorization DY EJBSot 339
DefiNiNg ROIES 339
Defining Method Permissions i e 340
Security Role ReferencCes 341
User Authentication for Single Sign-on 342
How to Configure for Single Sign-0n 342
Single Sign-on EXample 343
User Authentication for RMIZHHOP Clientso e 344
Guide to Security Information 345
User INformation o 345
SeCUNItY ROIES . . o 345
Web Server to Application Server Component SECUNitYt 346
Chapter 13 Taking Advantage of the iPlanet Application Server Features 347
Accessing the ServIet ENgine oo 347
Accessing the ServIet’s APPLOGICot e 348
Accessing the Server CONtEXEo e e e e 348
Caching Servlet ResUItS o 349
USING @ Startup Class oo e 351
The IStartupClass Interface 352

Contents 13

14

Building the Startup Class e 352

Deploying the Startup Classt e 353
How kjs Handles the StartupClass Object s 354
Appendix A Usingthe JavaMessage ServiCet 355
ADOUL the IMS APl e 355
JMS MesSaging Styleso 356
Enabling IMS and Integrating Providers i e e 358
UsiNg IMS in ApPliCatioNSot e e 358
JNDI and Application Component Deployment i, 358
CoNNECtioN Factory PrOXY e 358
Connection POOIINGo e 359
User [dentity Mappingottt e e 359
About Default USernameo 359
AbOUL EXPlICIt USer ID Map ...t e e 360
ConnectionFactoryProxies and Application Created Threads 361
JMS Features NOt SUPPOIted i e e 361
JMS ADMINISIrAtION 361
JMS Object Administration TOOISt e 362
JNDI Properties for IMS Administration ToOIS 362
JMS Object Administration for IBM MQ o e 363
Connection Factory Proxy Administration i 363
Creating @ PrOXY ..ttt 364
DlEtiNg @ PIOXY . . vttt 364
Listing ProxXy Parameterst 364
User ID Map Administrationt e 365
Connection Pooling Configuration i 366
Sample ApPPliCatioNS o 366
JMS Future in the iPlanet Application SErver e e 367
Default IMS ProVIider o 367
Message Driven Enterprise JavaBeans i 367
Using JMS in distributed transactions i i 367
Appendix B Runtime Considerationsttt 369
RUNtiMe ENVIrONmMENTS e 369
Module Runtime ENVIFONMENT e 369
Application Runtime EnVironment 370
The Classloader Hierarchy e 371
Dynamic Reloading i 374
Enabling Dynamic Reloading i e 374
Dynamic Reloading of Servlets and JSPS 375
Dynamic Reloading Of EJBSt 375

iPlanet ™ Application Server Developer's Guide * November 2001

Appendix C Sample Deployment Files 377

Application DD XML Files o 377
Sample Application DD XML File e 377
Web Application DD XML Files 378
Sample Web Application DD XML File e 378
Sample iPlanet Application Server Web-App DD XML File 382
EIB-JAR DD XML FIIES . . . o oottt e 383
Sample J2EE EJIB-JARDD XML File o 383
Sample iPlanet Application Server EJB-JARDD XMLFile 397
iPlanet Application Server Client DD XML Files i e 399
RMIZIIOP Client DD XML FIleso e 400
Resource DD XML Files 401
Gl 0SS aNY ottt 403
o = 419

Contents 15

16 iPlanet ™ Application Server Developer's Guide * November 2001

Preface

The iPlanet Application Server Developer’s Guide (Java'™) describes how to create and
run Java 2 Platform, Enterprise Edition (J2EE) applications that follow the new
open Java standards model for Servlets, Enterprise JavaBeans (EJBs), JavaServer
Pages (JSPs), and Java Database Connectivity (JDBC) on the iPlanet Application
Server.

This guide is intended for information technology developers in a corporate
enterprise who want to extend client-server applications to a broader audience
through the World Wide Web. In addition to describing programming concepts
and tasks, this guide offers sample code, implementation tips, reference material,
and a glossary.

This preface contains information about the following topics:
= Using the Documentation

< What You Should Already Know

< How This Guide Is Organized

= Documentation Conventions

= Related Information

Using the Documentation

Table 1 lists the tasks and concepts that are described in the iPlanet Application
Server printed manuals and online Release Notes. If you are trying to accomplish a
specific task or learn more about a specific concept, refer to the appropriate guide.

17

Note that the printed guides are also available as online files in Portable Document
Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs.ipl anet. coni docs/ manual s/i as. htm

Table 1 iPlanet ™ Application Server Documentation Roadmap

For information about See the following Shipped with
Late-breaking information about the Release Notes iPlanet Application
software and the documentation Server 6.0
Installing iPlanet Application Serverand Installation Guide iPlanet Application
its various components (Web Connector Server 6.0

plug-in, iPlanet Application Server
Administrator), and configuring the
sample applications

Creating iPlanet Application Server 6.0 Developer’s Guide iPlanet Application
applications that follow the open Java Server 6.0
standards model (Servlets, EJBs, JSPs,

and JDBC), by performing the following

tasks:

= Creating the presentation and
execution layers of an application

= Placing discrete pieces of business
logic and entities into Enterprise Java
Bean (EJB) components

= Using JDBC to communicate with
databases

= Using iterative testing, debugging,
and application fine-tuning
procedures to generate applications
that execute correctly and quickly

18 iPlanet ™ Application Server Developer's Guide * November 2001

Table 1 iPlanet ™ Application Server Documentation Roadmap

For information about

See the following

Shipped with

Administering one or more application
servers using the iPlanet Application
Server Administrator Tool to perform
the following tasks:

= Monitoring and logging server
activity

= Implementing security for Netscape
Application Server

= Enabling high availability of server
resources

= Configuring web-connector plugin
= Administering database connectivity
= Administering transactions

= Configuring multiple servers

= Administering multiple-server
applications

= Load balancing servers

= Managing distributed data
synchronization

= Setting up Netscape Application
Server for development

Migrating your applications to the new
iPlanet Application Server 6.0
programming model from the Netscape
Application Server version 2.1,
including a sample migration of an
Online Bank application provided with
iPlanet Application Server

Using the public classes and interfaces,
and their methods in the Netscape
Application Server class library to write
Java applications

Using the public classes and interfaces,
and their methods in the Netscape
Application Server class library to write
C++ applications

Administrator’s Guide

Migration Guide

Server Foundation
Class Reference (Java)

Server Foundation
Class Reference (C++)

iPlanet Application
Server 6.0

iPlanet Application
Server 6.0

iPlanet Application
Server 6.0

Order separately

Preface

19

What You Should Already Know

This guide assumes you are familiar with the following topics:

= J2EE specification

e HTML

= Java programming

= Java APIs as defined in specifications for EJBs, JSPs, and JDBC
= Structured database query languages such as SQL

= Relational database concepts

= Software development processes, including debugging and source code
control

How This Guide Is Organized

The first part of this guide provides an iPlanet Application Server environment
overview for designing programs. This part includes the following topic:

= Chapter 1, “Developing Applications”

The next part describes the programming tasks associated with presentation logic
and page design. This part includes the following topics:

= Chapter 2, “Controlling Applications with Servlets”
= Chapter 3, “Presenting Application Pages with JavaServer Pages”

The next part describes the programming tasks associated with business logic and
data access. This part includes the following topics:

= Chapter 4, “Introducing Enterprise JavaBeans”

= Chapter 5, “Using Session EJBs to Manage Business Rules”

= Chapter 6, “Building Entity EJBs”

= Chapter 7, “Handling Transactions with EJBs”

= Chapter 8, “Using JDBC for Database Access”

= Chapter 9, “Developing and Deploying CORBA-Based Clients”

20 iPlanet ™ Application Server Developer's Guide * November 2001

The next part describes issues that affect all application parts. This part includes the
following topics:

= Chapter 10, “Packaging for Deployment”

= Chapter 11, “Creating and Managing User Sessions”

= Chapter 12, “Writing Secure Applications”

= Chapter 13, “Taking Advantage of the iPlanet Application Server Features”
The appendixes include the following reference material:

= Appendix A, “Using the Java Message Service”

= Appendix B, “Runtime Considerations”

= Appendix C, “Sample Deployment Files”

Finally, a Glossary and Index are provided.

Documentation Conventions

File and directory paths are given in Microsoft Windows format (with backslashes
separating directory names). For Unix versions, the directory paths are the same,
except that forward slashes are used to separate directories.

This guide uses URLSs of the form:
ht t p: / / server. domain/ path/ file. ht m

In these URLS, server is the server name where applications are run; domain is your
Internet domain name; path is the server’s directory structure; and file is an
individual filename. Italic items in URLs are placeholders.

This guide uses the following font conventions:

= The nonospace font is used for sample code and code listings, APl and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

= [talic type is used for code variables.

= talic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

= Bold type is used as either a paragraph lead-in or to emphasis words used in
the literal sense.

Preface 21

Related Information

You can find a directory of URLSs for the official specifications at
install_dir/ i as/ docs/ i ndex. ht m Additionally, we recommend the following
resources:

Programming with Servlets and JSPs:

Java Servlet Programming, by Jason Hunter, O’Reilly Publishing

Java Threads, 2nd Edition, by Scott Oaks & Henry Wong, O’Reilly Publishing
The web site ishtt p: / / ww. servl etcentral . com

Programming with EJBs:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

The web siteishtt p: // www. orei | | y. coml cat al og/ ent j beans2/ .
Programming with JDBC:

Database Programming with JDBC and Java, by George Reese, O’Reilly Publishing

JDBC Database Access With Java: A Tutorial and Annotated Reference (Java Series), by
Graham Hamilton, Rick Cattell, Maydene Fisher

22 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 1

Developing Applications

This chapter summarizes the iPlanet ™ Application Server application design
process and offers effective development guidelines.

This chapter contains the following sections:
= Application Requirements
= About the Application Programming Model

= Effective iPlanet Application Guidelines

Application Requirements

When developing an iPlanet Application Server application, start by identifying
the application requirements. Typically, this means developing a distributed
application as a widely deployable application that is fast and secure, and that can
reliably handle additional requests as new users are added.

The iPlanet Application Server meets these needs because it supports the J2EE APls
as well as a set of pre-existing high performance features. For example, for an
online banking application, you can deliver:

= High performance
= Scalability

< Rapid deployment
= Security

= Rapid deployment of specific features; for example, account transfers, account
reporting, online trades, special offers to qualified customers

23

About the Application Programming Model

= Management and administration of different types of end users; for example,
individuals, corporations, or internal users

= Internal reporting

= Enterprise Information System (EIS) connectivity; that provides access to
information stored in legacy databases

About the Application Programming Model

A distributed application model allows different individual application areas to
focus on different functional elements, thereby improving performance. For
instance, designing security requirements may affect one or more application
model layers.

In the presentation layer, you may need to check a user’s identity so your
application could present one set of pages for anonymous users and another set for
registered users. Additionally, the application may present a page explaining why
the attempt to use a restricted feature failed and invite the user to become a
member. By the same token, premier customers might have access to some pages
that are denied to regular customers.

In the business logic layer, the application must authenticate login attempts against
known users, as well as test that users meet the criteria for accessing particular
application features.

In the data access layer, the application may need to restrict database access based
on the end user category.

The Presentation Layer

The presentation layer is where the user interface is dynamically generated. An
application may require the following application elements;

e Servlets
e JSPs
e HTML pages

= Client side JavaScript elements

24 iPlanet ™ Application Server Developer's Guide * November 2001

About the Application Programming Model

Servlets

Servlets handle the application’s presentation logic. Servlets are the page-to-page
navigation dispatchers, and they also provide session management and simple
input validation. Servlets tie business logic elements together.

A servlet developer must understand programming issues related to HTTP
requests, security, internationalization, and web statelessness (such as sessions,
cookies, and time-outs). For an iPlanet Application Server application, servlets
must be written in Java. Servlets are likely to call JSPs, EJBs, and JDBC objects.
Therefore, a servlet developer works closely with the application element
developers.

JSPs

JSPs handle most application display tasks, and they work in conjunction with
servlets to define the application’s presentation screens and page navigation. JSPs
are likely to call EJBs and JDBC objects. The EJBs typically encapsulate business
logic functionality. As such, they carry out calculations and other repetitively
requested tasks. JDBC objects are used to connect to databases, make queries, and
return query results.

HTML Pages
Properly designed HTML pages provide:

= Uniform appearance across different browsers.
= Efficient HTML loading across slow modem connections.

= Dynamically generated page appearances that are servlet or JSP dispatched.

Client-Side JavaScript

Client-side JavaScript can also be used to handle such things as simple input
validation before passing data to the server, or to make the user interface more
exciting. Client-side JavaScript developers work closely with servlet and JSP
developers.

The Business Logic Layer

The business logic layer typically contains deployed entities that encapsulate
business rules and other business functions in:

e Session beans

Chapter 1 Developing Applications 25

About the Application Programming Model

26

= Entity beans

Session Beans

Session beans encapsulate the business processes and rules logic. For example, a
session bean could calculate taxes for a billing invoice. When there are complex
business rules that change frequently (for example, due to new business practices
or new government regulations), an application typically uses more session beans
than entity beans, and session beans may need continual revision.

Session beans are likely to call a full range of JDBC interfaces, as well as other EJBs.
Applications perform better when session beans are stateless. Here’s why: suppose
taxes are calculated in a stateful session bean. The application must access a
specific server where the bean’s state information resides. If the server happens to
be down the application processing is delayed.

Entity Beans

Entity beans represent persistent objects, such as a database row. Entity beans are
likely to call a full range of JDBC interfaces. However, entity beans typically do not
call other EJBs. The entity bean developer’s role is to design an object-oriented
view of an organization’s business data. Creating this object-oriented view often
means mapping database tables into entity beans. For example, the developer
might translate a customer table, invoice table, and order table into corresponding
customer, invoice, and order objects.

An entity bean developer works with session bean and servlet developers to ensure
that the application provides fast, scalable access to persistent business data.

The Data Access Layer

In the Data Access layer, custom connectors work with the iPlanet ™ Application
Server Unified Integration Framework (UIF) to enable communication with legacy
EISs, such as IBM’s CICS.

Connector developers are most likely to use C++ and typically need to understand
issues related to wrapping C++ in Java, such as Java Native Interfaces (JNI), as well
as UIF.

UIF is an API framework, that enables the application server to pass information to
an EIS database. These developers are likely to integrate access to the following
systems:

= CORBA applications

iPlanet ™ Application Server Developer's Guide * November 2001

Effective iPlanet Application Guidelines

= Mainframe systems
= Third-party security systems

For more information about UIF, see the iPlanet Unified Integration Framework
Developer’s Guide and the release notes at the following URL:

http://docs.iplanet. coni docs/ nanual s/i as. ht m #ui fspl

Effective iPlanet Application Guidelines

This section lists guidelines to consider when designing and developing an iPlanet

™ Application Server application, and is merely a summary. For more details,
refer to later chapters in this guide.

The guidelines are grouped into the following goals:
= Presenting Data with Servlets and JSPs

= Creating Reusable Application Code

= Improving Performance

= Scalability Planning

= Modularizing Applications

Presenting Data with Servlets and JSPs

Servlets are often used for presentation logic and serve as central dispatchers of
user input and data presentation. JSPs are used to dynamically generate the
presentation layout. Both servlets and JSPs can be used to conditionally generate
different pages.

If the page layout is its main feature and there is little or no processing involved to
generate the page, it may be easier to use a JSP alone for the interaction.

For example, after an Online Bookstore application authenticates a user, it provides
a boilerplate portal front page for the user to choose one of several tasks, including
a book search, purchase selected items, and so on. Since this portal conducts little
or no processing, it can be implemented solely as a JSP.

Chapter 1 Developing Applications 27

Effective iPlanet Application Guidelines

28

Think of JSPs and servlets as opposite sides of the same coin. Each can perform all
the tasks of the other, but each is designed to excel at one task at the expense of the
other. The strength of servlets is in processing and adaptability, and since they are
Java files you can take advantage of integrated development environments while
you are writing them. However, performing HTML output from them involves
many cumbersome pri nt | n statements. Conversely, JSPs excel at layout tasks
because they are simply HTML files and can be edited with HTML editors, though
performing computational or processing tasks with them can be awkward.

For more information on JSPs, see Chapter 3, “Presenting Application Pages with
JavaServer Pages.”

Creating Reusable Application Code

Aside from using good object-oriented design principles, there are several things to
consider when developing an application to maximize reusability, including the
following tips:

= Use relative paths and URLs so links remain valid if the code tree moves.

= Minimize Java in JSPs; instead, put Java in servlets and helper classes. JSP
designers can revise JSPs without being Java experts.

= Use property files or global classes to store hard-coded strings such as the
datasource names, tables, columns, JNDI objects, or other application
properties.

e Use session beans, rather than servlets and JSPs, to store business rules that are
domain specific or likely to change often, such as input validation.

= Use entity beans for persistent objects; using entity beans allows management
of multiple beans per user.

= For maximum flexibility, use Java interfaces rather than Java classes.

= Use UlF-based connectors to access legacy data.

Improving Performance

Here are several tips to improve your application’s performance when it is
deployed on an iPlanet "™ Application Server:

iPlanet ™ Application Server Developer's Guide * November 2001

Effective iPlanet Application Guidelines

In most cases, deploy servlets and JSPs to the iPlanet ™ Application Server
rather than to the iPlanet Web Server. iPlanet ™ Application Server is best if
an application is highly transactional, requires failover support to preserve
session data, or accesses legacy data. The iPlanet Web Server is useful if an
application is mostly stateless, read-only, and non-transactional.

Use entity beans and stateless session beans; design for co-location to avoid
time intensive remote procedure calls.

When an application is deployed, ensure that the necessary EJBs and JSPs are
replicated and available to load into the same process as the calling servlet.

When returning multiple information rows, use JDBC RowSet objects when
possible. When committing complex data to a database, use efficient database
features, such as JDBC batch updates or direct SQL operations.

Follow general programming guidelines for improving Java performance.

Scalability Planning

To plan an application to easily scale as customer demand increases:

Develop your application so that it stores scaling or serializing information in
Ht t pSessi on objects that are configured for distribution.

Avoid using global variables.

Design an application to run in a multi-machine server farm environment.

Modularizing Applications

There are six major factors to keep in mind when modularizing your J2EE
Applications:

Functional Isolation
Reusable Code
Prepackaged Components
Unique Names

Shared Framework Classes

Session and Security Issues

Chapter 1 Developing Applications 29

Effective iPlanet Application Guidelines

Five packaging samples (A through E) provide examples of the packaging concepts
explained here. For an overview of these samples, see:

http://devel oper.ipl anet. conf appserver/sanpl es/ pkgi ng/ docs/ i ndex. ht m

30

For more information about packaging applications, see Chapter 10, “Packaging
for Deployment.”

Functional Isolation

Each module should do one thing and one thing only. For example, in a payroll
system, one enterprise bean should access the 401k accounts while a separate bean
accesses the salary database. This functional isolation of tasks leads to the physical
isolation of business logic into two separate beans. If separate development teams
create these beans, each team should develop its own EJB JAR package.

Scenatrio 1

Assume that the Ul development team works with both of the bean development
teams. In this case, the Ul development team should package its servlets, JSPs, and
static files into one WAR file. For example:

payroll system EAR file = payroll EJB jar
+ 401k ejb JAR
+ 1 common war from the Ul team

This isolation of functionality within an EAR file does not mean that modules
cannot interact with each other. The beans (in separate EJB JAR files) can call
business methods from each other. This packaging is illustrated in Sample A.

Scenario 2

Assume that each bean development team has its own Ul development team. If this
is the case, then each web development team should package its servlets, JSPs, and
static files into separate WAR files. For example:

payroll system EAR file = payroll EJB jar
+ 401k ejb JAR
+ 1 payroll Ul team's war + 1 401k Ul team's war

With this setup, the components in each WAR file can access components from the
other WAR file. This packaging is illustrated in Sample B.

Scenario 3

Assume that each module accesses functions from a shared library. If several
modules access methods from this library, then this library needs to be added to
one (and only one) module of the EAR file. For an example of this, see Sample C.

iPlanet ™ Application Server Developer's Guide * November 2001

Effective iPlanet Application Guidelines

Packaging Formulas

The following general formulas should be followed when packaging modules and
applications:

Table 1-1 Packaging formulas

Type of Development Group Teams in Group Modularizing Scheme

Small workgroup 1web devteam + 1lejbdevteam 1EAR=1ejb+1war

Enterprise workgroup 2 ejb dev teams + 1 web dev 1EAR =2¢jb +1war
team + 1 component + 1 standalone module

Reusable Code

Reusable components are the primary reason for packaging and deploying
modules rather than applications. If the code developed by one team of developers
is a reusable component that may be accessed by several applications (different
EAR files), then that code should be packaged and registered as a module using the
following command:

i asdepl oy depl oynodul e module_name

Prepackaged Components

If you do not want to create your application from scratch, you can use
prepackaged components. Today’s leading J2EE component vendors offer many
prepackaged components that provide modules for a whole host of services. Their
goal is to provide up to 60% of the standard components needed for an application.
With iPlanet Application Server, you can easily package applications that make use
of these readily available components.

Unique Names

It is important for each module, application, and EJB to have its own unique name.
You may want to establish some naming conventions that will help you ensure that
no two entities are assigned the same name. For example, one way to guarantee
that all modules have unique names is to use the application name as a prefix to the
module name. Using this convention, pkgi ngWar . war would be an ideal name for
the WAR module in the application pkgi ng. ear.

Chapter 1 Developing Applications 31

Effective iPlanet Application Guidelines

32

JNDI lookup names for EJBs must also be unique. Here too, establishing a
consistent naming convention may help. For example, appending the application
name and the module name to the EJB name would be one way to guarantee
unique names. In this case, myconpany. pkgi ng. pkgi ngEJB. MyEJB would be the
JNDI name for an EJB in the module pkgi ngEJB. j ar, which is packaged in the
application pkgi ng. ear.

Shared Framework Classes

Sometimes several applications need to access a single modular library -- for
example the LDAP SDK, the Cocobase CMP runtime, and so on. In such cases,
including the library in each J2EE application is not a good idea for two reasons:

= Library size: Most framework libraries are large, so including them in an
application increases the size of the packaged application.

= Different versions: Because a separate class loader loads each application,
several copies of the framework classes exist during runtime.

One way to include this library in the iPlanet Application Server runtime
environment is to add it to the System Classpath (in the i asenv. ksh script under
the install_dir/ i as/ env directory and in the iPlanet Application Server registry on
NT). This way the framework is loaded by the System Classloader. For more
information about the System Classloader, see “The Classloader Hierarchy,” on
page 371.

Session and Security Issues

If session sharing is a requirement, all of the components that need to access a
session should be contained in the same application. Session sharing across
application boundaries is not supported in iPlanet Application Server and is a
violation of the J2EE specification.

If an HTTP session needs to be shared between two WAR files in an EAR file, the
session should be marked "distributed"” in the Deployment Descriptor. Sample B
illustrates this.

You should not allow unauthorized runtime access to classes, EJBs, and other
resources. A module should only contain classes that are permitted to access other
resources included in the module. In addition, you should use the standard J2EE
declarative security (see Chapter 12, “Writing Secure Applications”) for sensitive
tasks.

iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 2

Controlling Applications with Servlets

This chapter describes how to create effective servlets to control application
interactions running on an iPlanet Application Server, including standard servlets.
In addition, this chapter describes the iPlanet Application Server features to use to
augment the standards.

This chapter contains the following sections:
= About Servlets

= About the Server Engine

= Designing Servlets

« Creating Servlets

= Invoking Servlets

About Servlets

Servlets, like applets, are reusable Java applications. However, servlets run on an
application server or web server rather than in a web browser.

Servlets supported by the iPlanet Application Server are based on the Java Servlet
Specification v2.2. All relevant specifications are accessible from

install_dir/ i as/ docs/ i ndex. ht m where install_dir is the directory where the
iPlanet Application Server is installed.

Servlets are used for an application’s presentation logic. A servlet acts as an
application’s central dispatcher by processing form input, invoking business logic
components encapsulated in EJBs, and formatting web page output using JSPs.
Servlets control the application flow from one user interaction to the next by
generating content in response to user requests.

33

About Servlets

The fundamental characteristics are:

= Servlets are created and managed at runtime by the iPlanet Application Server
servlet engine.

= Servlets operate on input data that is encapsulated in ar equest object.

= Servlets respond to a query with data encapsulated in ar esponse object.
= Servlets call EJBs to perform business logic functions.

= Servlets call JSPs to perform page layout functions.

= Servlets are extensible; use the APIs provided with the iPlanet Application
Server to add functionality.

= Servlets provide user session information persistence between interactions.

= Servlets can be part of an application or they can reside discretely on the
application server so they are available to multiple applications.

= Servlets can be dynamically reloaded while the server is running.

= Servlets are addressable with URLS; buttons on an application’s pages often
point to servlets.

= Servlets can call other servlets.

Several iPlanet Application Server API features enable an application to take
programmatic advantage of specific iPlanet features. For more information, see
“iPlanet Application Server Optional Features,” on page 52.

Servlet Data Flow

When a user clicks a Submit button, information entered in a display page is sent to
a servlet. The servlet processes the incoming data and orchestrates a response by
generating content, often through business logic components, which are EJBs. Once
the content is generated, the servlet creates a response page, usually by forwarding
the content to a JSP. The response is sent back to the client, which sets up the next
user interaction.

The following illustration shows the information flow to and from the servlet, as:
1. Servlet processes the client request
2. Servlet generates content

3. Servlet creates response and either:

34 iPlanet ™ Application Server Developer's Guide * November 2001

About Servlets

a. Sends it back directly to the client

or

b. Dispatches the task to a JSP

Page 1
| E—

— 1.
Servlet
O option1 3b.

Q option2

2

JSP

o option 1
O option2

The servlet remains in memory, available to process another request.

Servlet Types

There are two main servlet types:

= Generic servlets
o Extendjavax. servl et. GenericServl et.

o Are protocol independent; they contain no inherent HTTP support or any
other transport protocol.

e HTTP servlets
o Extendjavax.servlet.HtpServlet.

o Have built-in HTTP protocol support and are more useful in an iPlanet
Application Server environment.

Chapter 2 Controlling Applications with Servlets 35

About the Server Engine

For both servlet types, implement the constructor method i ni t () and the
destructor method dest roy() to initialize or deallocate resources, respectively.

All servlets must implement a ser vi ce() method, which is responsible for
handling servlet requests. For generic servlets, simply override the service method
to provide routines for handling requests. HTTP servlets provide a service method
that automatically routes the request to another method in the servlet based on
which HTTP transfer method is used. So, for HTTP servlets, override doPost () to
process POST requests, doGet () to process GET requests, and so on.

About the Server Engine

36

Servlets exist in a Java server process on an iPlanet Application Server and are
managed by the servlet engine. The servlet engine is an internal object that handles
all servlet meta functions. These functions include instantiation, initialization,
destruction, access from other components, and configuration management.

Instantiating and Removing Servlets

After the servlet engine instantiates the servlet, the servlet engine runs itsi ni t ()
method to perform any necessary initialization. Override this method to perform
an initialize a function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the server engine calls the dest r oy()
method in the servlet so that the servlet can perform any final tasks and deallocate
resources. Override this method to write log messages or clean up any lingering
connections that won’t be caught in garbage collection.

Request Handling

When a request is made, the iPlanet Application Server hands the incoming data to
the servlet engine. The servlet engine processes the request’s input data, such as
form data, cookies, session information, and URL name-value pairs, into an

Ht t pSer vl et Request request object type.

The servlet engine also captures client metadata by encapsulating it in an
Ht t pSer vl et Response response object type. The engine then passes both as
parameters to the servlet’s servi ce() method.

iPlanet ™ Application Server Developer's Guide * November 2001

About the Server Engine

In an HTTP servlet, the default ser vi ce() method routes requests to another
method based on an HTTP transfer method, such as POST, GET, and so on. For
example, HTTP POST requests are sent to the doPost () method, HTTP GET requests
are sent to the doGet () method, and so on. This enables the servlet to process
request data differently, depending on which transfer method is used. Since the
routing takes place in the service method, you generally do not override
service() inan HTTP servlet. Instead, override doGet (), doPost (), and so on,
depending on the request type you expect.

TIP To enable automatic routing in an HTTP servlet, call
request . get Met hod() , which provides the HTTP transfer method.
Since request data is already preprocessed into a name value list in
the iPlanet Application Server, you could simply override the
servi ce() method in an HTTP servlet without losing functionality.
However, this does make the servlet less portable, since it is now
dependent on preprocessed request data.

To perform the tasks to answer a request, override the ser vi ce() method for
generic servlets, and the doGet () or doPost () methods for HTTP servlets. Very
often, this means accessing EJBs to perform business transactions, collating the
information in the request object or in a JDBC Resul t Set object, and then passing
the newly generated content to a JSP for formatting and delivery back to the user.

Allocating Servlet Engine Resources

By default, the servlet engine creates a thread for each new request. This is less
resource intensive than instantiating a new servlet copy in memory for each
request. Avoid threading issues, since each thread operates in the same memory
space where variables can overwrite each other.

If a servlet is specifically written as a single thread, the servlet engine creates a pool
of ten servlet instances to be used for incoming requests. If a request arrives when
all instances are busy, it is queued until an instance becomes available. The number
of pool instances is configurable in the Deployment Descriptor (DD), which is an
iPlanet Application Server specific XML file. For more information about
deployment descriptors, see Chapter 10, “Packaging for Deployment.”

For more information on threading issues, see “Handling Threading Issues,” on
page 47.

Chapter 2 Controlling Applications with Servlets 37

About the Server Engine

38

Dynamically Reloading Servlets at Runtime

If no configuration file changes are needed, servlet reloading in an iPlanet
Application Server is done without restarting the server by simply redeploying the
servlet. The iPlanet Application Server notices the new component and reloads it
within 10 seconds. For more information, see Appendix B, “Runtime
Considerations.”

NOTE This feature is turned off by default for a production environment.
Turn it on when needed.

Configuring Servlets for Deployment

When you configure a servlet for deployment, you actually provide the metadata,
which the application server uses to create the servlet object and use it in the
application framework. For more information about servlet configuration, see
Chapter 10, “Packaging for Deployment.”

Locating Servlet Files

Servlet files and other application files reside in a directory structure location
known to the iPlanet Application Server as AppPat h. This variable defines the top
of a logical directory tree for the application. The AppPat h variable is similar to the
document path in a web browser. By default, AppPat h contains the value
BasePath/ APPS, where BasePath is the base iPlanet Application Server directory.

AppPat h and BasePat h are variables held in the iPlanet Application Server
registry, which is a repository for server and application metadata. For more
information, see “The iPlanet Application Server Registry,” on page 287 and the
Deployment Tool Online Help.

In addition to AppPat h and BasePat h, the registry has a third variable called

Modul esDi r Narre. This variable corresponds to a directory under AppPat h that is
the home for web modules that do not exist as a part of any J2EE application. They
are registered as standalone modules.

Table 2-1 describes important files and servlet locations:

iPlanet ™ Application Server Developer's Guide * November 2001

Designing Servlets

Table 2-1 Important Files and Servlet Locations
Location Variable Description
BasePat h Top of the iPlanet Application Server tree. All files in this

directory are part of the iPlanet Application Server. Defined by
the registry variable BasePat h.

AppPat h Top of the application tree. Applications reside in
subdirectories of this location. Defined by the registry variable
AppPat h.

Modul esDi r Name A special directory that contains all J2EE web and EJB modules

that are registered as stand-alone entities (in the Def aul t
application). This directory exists under AppPath. Defined by
the registry variable Modul esDi r Nane. The default value of
this variable in the registry is nodul es.

AppPath/ appName/ * Top of the subtree for the application appName. The appName
directory in turn contains subdirectories for different modules
within the application. For more information, see “Invoking
Servlets,” on page 52.

Deploying Servlets

You normally deploy servlets with the rest of an application using the iPlanet
Application Server Deployment Tool. You can also deploy servlets manually for
testing or to update servlets while the server is running. For more information, see
the Deployment Tool Online Help.

Designing Servlets

This section describes basic design decisions to make when planning the servlets
that help make up an application.

Web applications generally follow a request-response paradigm so that a user
normally interacts with a web application by following a directed sequence of
completing and submitting forms. A servlet processes the data provided in each
form, performs business logic functions, and sets up the next interaction.

How you design the application as a whole determines how to design each servlet
by defining the required input and output parameters for each interaction.

Chapter 2 Controlling Applications with Servlets 39

Creating Servlets

Choosing a Servlet Type

Servlets that extend Ht t pSer vl et are much more useful in an HTTP environment,
since that is what they were designed for. We recommend that all iPlanet
Application Server servlets extend Ht t pSer vl et rather than Generi cServl et to
take advantage of the built-in HTTP support. For more information, see “Servlet
Types,” on page 35.

Create Standard or Non-Standard Servlets

One important decision to make with respect to the servlets in your application is
whether to write them strictly according to the official specifications, which
maximizes their portability, or to utilize the features provided in the iPlanet
Application Server APIs. These APIs can greatly increase the usefulness of servlets
in an iPlanet Application Server framework.

You can also create portable servlets that only take advantage of iPlanet
Application Server features if the servlet runs in an iPlanet Application Server
environment.

For more information on iPlanet Application Server specific APIs, see “iPlanet
Application Server Optional Features,” on page 52.

Planning for Servlet Reuse

Servlets by definition are discrete, reusable applications that run on a server. A
servlet does not necessarily have to be tied to one application. You can create a
servlet library to be used across multiple applications by placing it in the
application named Def aul t .

However, there are disadvantages to using servlets that are not part of a specific
application. In particular, servlets in the Def aul t application are configured
separately from those that are part of a specific application.

Creating Servlets

To create a servlet, perform the following tasks:

= Design the servlet into your application, or, if accessed in a generic way, design
it to access no application data.

40 iPlanet ™ Application Server Developer's Guide « November 2001

Servlet Files for an iPlanet Application

= Create aclass that extends either Generi cServl et or Ht t pSer vl et , overriding
the appropriate methods so it handles requests.

= Use the iPlanet Application Server Administration Tool to create a web
application Deployment Descriptor (DD) for the servlet.

Servlet Files for an iPlanet Application

The files that make up a servlet include:
= The Servlet’s Class File
= The Servlet’s Deployment Descriptor

= iPlanet Application Server Optional Features

The Serviet's Class File

This section describes how to write a servlet, including the decisions to make about
an application and the servlet’s place in it.

Creating the Class Declaration

To create a servlet, write a public Java class that includes basic 1/0 support as well
as the package j avax. servl et . The class must extend either Generi cServl et or
Ht t pSer vl et . Since iPlanet Application Server servlets exist in an HTTP
environment, the latter class is recommended. If the servlet is part of a package,
you must also declare the package name so the class loader can properly locate it.

The following example header shows the HTTP servlet declaration called
nmyServl et:

i nport java.io.*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

public class nyServlet extends HttpServlet {

... servlet methods. . .

}

Chapter 2 Controlling Applications with Servlets 41

Servlet Files for an iPlanet Application

42

Overriding Methods

Next, override one or more methods to provide servlet instructions to perform its

intended task. All processing by a servlet is done on a request-by-request basis and
happens in the service methods, either ser vi ce() for generic servlets or one of the
doOperation() methods for HTTP servlets. This method accepts incoming requests,
processing them according to the instructions you provide, and directs the output
appropriately. You can create other methods in a servlet as well.

Business logic may involve database access to perform a transaction or passing the
request to an EJB.

Overriding Initialize

Override the class initializer i ni t () to initialize or allocate resources for the serviet
instance’s life, such as a counter. The i ni t () method runs after the servlet is
instantiated but before it accepts any requests. For more information, see the
servlet API specification.

NOTE Alli ni t () methods must call super.init(ServletConfig) toset
their scope. This makes the servlet’s configuration object available to
other servlet methods. If this call is omitted, a 500
SC_| NTERNAL_SERVER ERROR appears in the browser when the
servlet starts up.

The following example of the i ni t () method initializes a counter by creating a
public integer variable called t hi sMany:

public class nyServlet extends HttpServlet {
i nt thi sMany;

public void init (ServletConfig config) throws Servl et Exception
{

super.init(config);
t hi sMany = 0;

}

Now other servlet methods can access the variable.

Overriding Destroy

Override the class destructor dest r oy() to write log messages or to release
resources that are not released through garbage collection. The dest r oy() method
runs just before the servlet itself is deallocated from memory. For more
information, see the servlet API specification.

iPlanet ™ Application Server Developer's Guide * November 2001

Servlet Files for an iPlanet Application

For example, the dest r oy() method could write a log message like the following,
based on the example for “Overriding Initialize” above:

out.println("nyServlet was accessed " + thisMany " tines.\n");

Overriding Service, Get, and Post

When a request is made, the iPlanet Application Server hands the incoming data to
the servlet engine to process the request. The request includes form data, cookies,
session information, and URL name-value pairs, all in a type Ht t pSer vl et Request
object called the request object. Client metadata is encapsulated as a type

Ht t pSer vl et Response object called the response object. The servlet engine passes
both objects as the servlet’s ser vi ce() method parameters.

The default ser vi ce() method in an HTTP servlet routes the request to another
method based on the HTTP transfer method (POST, GET, and so on). For example,
HTTP POST requests are routed to the doPost () method, HTTP GET requests are
routed to the doGet () method, and so on. This enables the servlet to perform
different request data processing depending on the transfer method. Since the
routing takes place in servi ce(), there is no need to generally override ser vi ce()
in an HTTP servlet. Instead, override doGet (), doPost (), and so on, depending on
the expected request type.

The automatic routing in an HTTP servlet is based simply on a call to

request . get Met hod() , which provides the HTTP transfer method. In an iPlanet
Application Server, request data is already preprocessed into a name-value list by
the time the servlet sees the data, so simply overriding the ser vi ce() method inan
HTTP servlet does not lose any functionality. However, this does make the servlet
less portable, since it is now dependent on preprocessed request data.

Override the ser vi ce() method (for generic servlets) or the doGet () and/or
doPost () methods (for HTTP servlets) to perform tasks needed to answer the
request. Very often, this means accessing EJBs to perform business transactions,
collating the needed information (in the request object or in a JDBC result set
object), and then passing the newly generated content to a JSP for formatting and
delivery back to the client.

Most operations that involve forms use either a GET or a POST operation, so for
most servlets you override either doGet () or doPost () . Note that implementing
both methods to provide for both input types or simply pass the request object to a
central processing method, as shown in the following example:

public void doGet (HtpServletRequest request,
Ht t pSer vl et Response response)
throws Servl et Exception, | COException {
doPost (request, response);

Chapter 2 Controlling Applications with Servlets 43

Servlet Files for an iPlanet Application

a4

All request-by-request traffic in an HTTP servlet is handled in the appropriate
doOperation() method, including session management, user authentication,
dispatching EJBs and JSPs, and accessing iPlanet Application Server features.

If a servlet intends to call the Request Di spat cher method i ncl ude() or

f orwar d(), be aware the request information is no longer sent as HTTP POST,
GET, and so on. In other words, if a servlet overrides doPost (), it may not process
anything if another servlet calls it, if the calling servlet happens to receive its data
through HTTP GET. For this reason, be sure to implement routines for all possible
input types, as explained above. Request Di spat cher methods always call
service().

For more information, see “Calling a Servlet Programmatically,” on page 54.

NOTE Arbitrary binary data, such as uploaded files or images, can be
problematic, since the web connector translates incoming data into
name-value pairs by default. You can program the web connector
to properly handle these kinds of data and package them correctly
in the request object.

Accessing Parameters and Storing Data

Incoming data is encapsulated in a request object. For HTTP servlets, the request
object type is Ht t pSer vl et Request . For generic servlets, the request object type is
Ser vl et Request . The request object contains all request parameters, including
your own request values called attributes.

To access all incoming request parameters, use the get Par anet er () method. For
example:

String usernane = request.getParaneter("usernane");

Set and retrieve values in a request object using set Att ri but e() and
get Attri bute(), respectively. For example:

request.setAttribute("favoriteDwarf", "Dwalin");

This shows one way to transfer data to a JSP, since JSPs have access to the request
object as an implicit bean. For more information, see “Using JavaBeans,” on
page 81.

iPlanet ™ Application Server Developer's Guide * November 2001

Servlet Files for an iPlanet Application

Handling Sessions and Security

From a web or application server’s perspective, a web application is a series of
unrelated server hits. There is no automatic recognition if a user has visited the site
before, even if their last interaction were seconds before. A session provides a
context between multiple user interactions by remembering the application state.
Clients identify themselves during each interaction by a cookie, or, in the case of a
cookie-less browser, by placing the session identifier in the URL.

A session object can store objects, such as tabular data, information about the
application’s current state, and information about the current user. Objects bound
to a session are available to other components that use the same session.

For more information, see Chapter 11, “Creating and Managing User Sessions.”

After a successful login, you should direct a servlet to establish the user’s identity
in a standard object called a session object that holds information about the current
session, including the user’s login name and whatever additional information to
retain. Application components can then query the session object to obtain user
authentication.

To provide a secure user session for your application, see Chapter 12, “Writing
Secure Applications.”

Accessing Business Logic Components

In the iPlanet Application Server programming model, you implement business
logic, including database or directory transactions and complex calculations, in
EJBs. Arequest object reference can be passed as an EJB parameter to perform the
specified task.

Store the results from database transactions in JDBC Resul t Set objects and pass
object references to other components for formatting and delivery to the client.
Also, store request object results by using the r equest . set At tri but e() method,
or in the session by using the sessi on. put Val ue() method. Objects stored in the
request object are valid only for the request length, or in other words for this
particular servlet thread. Objects stored in the session persist for the session
duration, which can span many user interactions.

JDBC result sets are not serializable and cannot be distributed among multiple
servers in a cluster. For this reason, do not store result sets in distributed sessions.
For more information, see Chapter 11, “Creating and Managing User Sessions.”

This example shows a servlet accessing an EJB called Shoppi ngCart . The serviet
creates a cart handle by casting the user’s session ID as a cart after importing the
cart’s remote interface. The cart is stored in the user’s session.

Chapter 2 Controlling Applications with Servlets 45

Servlet Files for an iPlanet Application

i mport cart. Shoppi ngCart;

/1l Get the user’'s session and shopping cart
Ht t pSessi on sessi on = request. get Session(true);
Shoppi ngCart cart =

(Shoppi ngCart) sessi on. get Val ue(session. getld());

// 1f the user has no cart, create a new one
if (cart == null) {
String jndi Nm= "java: conp/ env/ ej b/ Shoppi ngCart";
javax. nam ng. Context initCtx = null;
Chj ect hone = nul | ;
try {
initCtx = new javax. nam ng. | nitial Context(env);
java.util.Properties props = null;
honme = initC x. | ookup(jndi Nm;
cart = ((IShoppi ngCart Hone) hone).create();
}
catch (Exception ex) {

Access EJBs from servlets by using the Java Naming Directory Interface (JNDI) to
establish a handle, or proxy, to the EJB. Next, refer to the EJB as a regular object;
overhead is managed by the bean’s container.

This example shows JNDI looking up a proxy for the shopping cart:

String jndi Nm= "java: conp/ env/ ej b/ Shoppi ngCart";
j avax. nam ng. Context initCtx;
hj ect hone;

try

{

}

catch (Exception ex)

{

}
try
{

initCx = new javax. nam ng. | nitial Context (env);

return nul | ;

java. util.Properties props = null;
home = initC x. | ookup(jndi Nm;

}

cat ch(j avax. nam ng. NameNot FoundExcepti on e)

{

46 iPlanet ™ Application Server Developer's Guide « November 2001

Servlet Files for an iPlanet Application

return nul | ;

}

cat ch(j avax. nam ng. Nam ngException e)

{

}
try
{

return null;

| Shoppi ngCart cart = ((I Shoppi ngCartHone) hone).create();

}
catch (...) {...}

For more information on EJBs, see Chapter 4, “Introducing Enterprise JavaBeans.”

Handling Threading Issues

By default, servlets are not thread-safe. The methods in a single servlet instance are
usually executed numerous times simultaneously (up to the available memory
limit). Each execution occurs in a different thread though only one serviet copy
exists in the servlet engine.

This is efficient system resource usage, but is dangerous because of how Java
manages memory. Because parameters (objects and variables) are passed by
reference, different threads can overwrite the same memory space as a side effect.
To make a servlet (or a block within a servlet) thread-safe, do one of the following:

= Synchronize write access to all instance variables, as in publ i ¢ synchroni zed
voi d method() (whole method) or synchroni zed(this) {...} (block only).
Because synchronizing slows response time considerably, synchronize only
blocks, or make sure that the blocks in the servlet do not need synchronization.

For example, this servlet has a thread-safe block in doGet () and a thread-safe
method called nySaf eMet hod() :

i mport java.io.*;
i mport javax.servlet.*;
i nport javax.servlet.http.*;

public class nyServlet extends HttpServlet {

public void doGet (HtpServletRequest request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException {
/| pre-processing
synchroni zed (this) {
//code in this block is thread-safe

}

Chapter 2 Controlling Applications with Servlets 47

Servlet Files for an iPlanet Application

48

/] ot her processing;

}

public synchroni zed i nt nySaf eMet hod (HttpServl et Request request)
{

[l everything that happens in this nethod is thread-safe

}
}

Use Si ngl eThr eadMbdel to create a single-threaded servlet. In this case, when
a single-threaded servlet is registered with the iPlanet Application Server, the
servlet engine creates a 10 servlet instance pool used for incoming requests (10
copies of the same servlet in memory). The number of servlet instances in the
pool is changed by setting the nunber - of - si ngl es element in the iPlanet
Application Server specific web application DD to a different number. The
iPlanet Application Server Deployment Tool is used to modify this number in
the iPlanet Application Server specific web application DD. For more
information on the iPlanet Application Server web application DD, see Chapter
10, “Packaging for Deployment,” the iPlanet Application Server Deployment
Tool, and the Administrator’s Guide. A single-threaded servlet is slower under
load because new requests must wait for a free instance in order to proceed,
but this is not a problem with distributed, load-balanced applications since the
load automatically shifts to a less busy kj s process.

For example, this servlet is completely single-threaded:

i mport java.io.*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

public class nyServl et extends HtpServlet
i mpl ement s Si ngl eThr eadModel {
servl et nethods. ..

Delivering Client Results

The final user interaction activity is to provide a response page to the client. The
response page can be delivered in two ways:

= Creating a Servlet Response Page
= Creating a JSP Response Page

Creating a Serviet Response Page

Generate the output page within a servlet by writing to the output stream. The
recommended way to do this depends on the output type.

iPlanet ™ Application Server Developer's Guide * November 2001

Servlet Files for an iPlanet Application

Always specify the output MIME type using set Cont ent Type() before any output
commences, as in this example:

response. set Cont ent Type("text/htm ");

For textual output, such as plain HTML, create a Pri nt Wi t er object and then
write to it using pri nt | n. For example:

PrintWiter output = response.getWiter();
output.println("Hello, Wrld\in");

For binary output, write to the output stream directly by creating a
Ser vl et Qut put St r eamobject and then write to it using pri nt () . For example:

Ser vl et Qut put St r eam out put = response. get Qut put Streamn();
out put . print (bi nary_data);

NOTE A servlet cannot call a JSP fromaPri nt Witer or
Ser vl et Qut put St r eamobject.

NOTE If you use the iPlanet Application Server with the iPlanet Web
Server, do not set the date header in the output stream using
set Dat eHeader () . This results in a duplicate date field in the
response page’s HTTP header the server returns to the client. This
is because the iPlanet Web Server automatically provides a header
field. Conversely, Microsoft Internet Information Server (11S) does
not add a date header, so one must be provided.

Creating a JSP Response Page
Servlets can invoke JSPs in two ways:
e Theinclude() method in the Request Di spat cher interface calls a JSP and

waits for it to return before continuing to process the interaction. The
i ncl ude() method can be called multiple times within a given servlet.

This example shows a JSP using i ncl ude() :

Request Di spat cher di spatcher =

get Servl et Cont ext (). get Request Di spat cher ("JSP_URI");
di spat cher.incl ude(request, response);

/| processi ng continues

Chapter 2 Controlling Applications with Servlets 49

Servlet Files for an iPlanet Application

50

e Theforward() method in the Request Di spat cher interface hands the JSP
interaction control. The servlet is no longer involved with the current
interaction’s output after invoking f or war d() , thus only one call to the
forwar d() method can be made in a particular servlet.

NOTE You cannot use the f or war d() method if you have already defined
aPrintWiter or Servl et Qut put St r eamobject.

This example shows a JSP using f or war d() :

Request Di spat cher di spatcher =
get Ser vl et Cont ext () . get Request Di spat cher ("JSP_URI ") ;
di spat cher. forward(request, response);

NOTE Identify which JSP to call by specifying a Universal Resource
Identifier (URI). The path is a St ri ng describing a path within the
Ser vl et Cont ext scope. There is also a get Request Di spat cher ()
method in the request object that takes a St ri ng argument
indicating a complete path. For more information about this
method, see the Java Servlet Specification, v2.2, section 8.

For more information about JSPs, see Chapter 3, “Presenting Application Pages
with JavaServer Pages.”

The Servlet's Deployment Descriptor

Servlet DDs are created by the iPlanet Application Server Deployment Tool (you
can also create them by hand). These descriptor files are packaged within Web
Application aRchive (. war) files. They contain metadata, plus information that
identifies the servlet and establishes its application role.

NOTE WAR module names identified by the first portion of their filenames
(without the . war extensions) must be unique when deploying to
the Application Server. Using a Java package-like naming scheme
for these module filenames ensures that name collisions do not
occur. The benefits of this naming practice apply not only to the
iPlanet Application Server, but to other J2EE application servers as
well.

iPlanet ™ Application Server Developer's Guide * November 2001

Servlet Files for an iPlanet Application

The sample applications for iPlanet Application Server contain instructions for
creating servlet DDs. These sample applications are located in the
install_dir/ i as/ i as- sanpl es directory.

Elements

The DD for a servlet contains standard J2EE specified elements as well as iPlanet
Application Server specific elements. The servlet DDs convey the elements and
configuration information of a web application between developers, assemblers,
and deployers. For more information about these elements, see Chapter 10,
“Packaging for Deployment.”

Changing Configuration Files

To modify deployment descriptor settings, you can use the Deployment Tool or a
combination of an editor and command line utilities such as Ant to reassemble and
deploy the updated deployment descriptor information.

Using the Deployment Tool

1. Open the EAR, WAR or EJB JAR file.

2. Modify the deployment descriptors.

3. Redeploy the EAR, WAR or EJB JAR module.

4. Restart the application server to pick up the modified deployment descriptor
settings.

Using the Command Line

Refer to the sample applications (in the install_dir/ i as/ i as- sanpl es directory) for
extensive examples of using Ant-based bui | d. xnl files to reassemble applications
and modules from the command line.

1. Edit the appropriate deployment descriptor file (web. xml ori as- web. xnm) by
hand.

2. Execute an Ant build command (such as bui | d war) to reassemble the
appropriate EAR, WAR or EJB JAR module.

3. Usetheiasdepl oy command to deploy the EAR or WAR file or module.

4. Restart the application server to pick up the modified deployment descriptor
settings.

Chapter 2 Controlling Applications with Servlets 51

Invoking Servlets

iIPlanet Application Server Optional Features

Many additional iPlanet features augment servlets for use in an iPlanet Application
Server environment. These features are not a part of the official specifications,
though some are based on emerging Sun standards and conform to future
standards.

For more information on the iPlanet Application Server features, see Chapter 13,
“Taking Advantage of the iPlanet Application Server Features.”

The iPlanet Application Server provides support for more robust sessions, based
on a previous version model of the iPlanet Application Server. This model uses the
same API as the session model described in the Servlet 2.2 Specification, which is
also supported. For more details on distributable sessions, see Chapter 11,
“Creating and Managing User Sessions.”

Invoking Servlets

Invoke a servlet by either directly addressing it from an application page with a
URL or calling it programmatically from an already running servlet. You can also
Verify servlet parameters. See the following sections:

« Calling a Servlet With a URL
= Calling a Servlet Programmatically

= Verifying Servlet Parameters

Calling a Servlet With a URL

Most times, you call servlets by using URLs embedded as links in the application’s
pages. This section describes how to invoke servlets using standard URLSs.

Invoking Specific Application Servlets

The URL request path that leads to a servlet responding to a request has several
sections. Each section has to locate the appropriate servlet. The request object
exposes the following elements when obtaining the request’s URI path:

= Context Path
e Servlet Path
e Pathinfo

52 iPlanet "™ Application Server Developer's Guide * November 2001

Invoking Servlets

For more information on these elements, see the Java Servlet Specification, v2.2,
section 5.4.

Address servlets that are part of a specific application as follows:

ht t p: / / server: port/ NASApp/ moduleName/ servletName?name=value

Table 2-2 describes each URL section.

Table 2-2 URL Fields for Servlets within a Specific Application

URL element Description

server: port The address and optional web server port number handling the
request.

NASApp Indicates to the web server that this URL is for an iPlanet Application

Server application. The request routes to the iPlanet Application Server
executive server.

moduleName The servlet module name (these names are unique across the server).
The moduleName corresponds to a directory under
AppPath/ applicationName for a module that is registered as part of an
application. It reflects the . war module name that contains the servlets
and JSPs, and its contents are the same as those of the . war module.

servletName The servlet name as configured in the XML file.

For example:

http://ww. ny- conpany. com NASApp/ Onl i neBooki ngs/ di rect edLogi n

Invoking Generic Application Servlets
Address servlets that are part of the generic Def aul t application as follows:

ht t p: / / server: port/ ser vl et / servletName?name=value

Table 2-3 describes each URL section.

Table 2-3 URL Fields for Servlets within a Generic Application

URL element Description

server: port The address and optional web server port number handling the
request.

servl et Indicates to the web server that this URL is for a generic servlet
object.

Chapter 2 Controlling Applications with Servlets 53

Invoking Servlets

Table 2-3 URL Fields for Servlets within a Generic Application

URL element Description

servletName The servlet name, as specified in the ser vl et - nanme element in the
Web App XML file.

?name=value. . . Optional servlet name-value parameters.

For example:

http://ww. | eMrt.conl servlet/cal cMrtgage?rate=8. 0&per =360&bal =180000

NOTE All servlets deployed to use the / ser vl et path must be deployed
with the application name Def aul t . Additionally, the servlet
engine of the web server instance must be deactivated in order to
pass the requests started with / ser vl et to the iPlanet Application
Server.

Calling a Servlet Programmatically

First, identify which servlet to call by specifying a URI. This is normally a path
relative to the current application. For instance, if your servlet is part of an
application with a context root called O f i ce, the URL to a servlet called
ShowSuppl i es from a browser is as follows:

htt p: // server: port/ NASApp/ O f i ce/ ShowSuppl i es?nane=val ue

You can call this servlet programmatically from another servlet in one of two ways,
as described below.

= Toinclude another servlet’s output, use the i ncl ude() method from the
Request Di spat cher interface. This method calls a servlet by its URI and waits
for it to return before continuing to process the interaction. The i ncl ude()
method can be called multiple times within a given servlet.

For example:

Request Di spat cher di spatcher =
get Ser vl et Cont ext (). get Request Di spat cher ("/ ShowSuppl i es");
di spat cher.incl ude(request, response);

< To hand interaction control to another servlet, use the Request Di spat cher
interface’s f or war d() method with the servlet’s URI as a parameter.

54 iPlanet ™™ Application Server Developer's Guide * November 2001

Invoking Servlets

NOTE Forwarding a request means the original servlet is no longer
involved with the current interaction output after f or war d() is
invoked. Therefore, only one f or war d() call can be made in a
particular servlet.

This example shows a servlet using f orwar d() :

Request Di spat cher di spatcher =
get Ser vl et Cont ext () . get Request Di spat cher ("/ ShowSuppl i es");
di spat cher. forward(request, response);

NOTE Both servlet invoking mechanisms, either programmatic (using
i ncl ude() orforward()) or from the URL, can use URL patterns
for the servlet specified in the DD XML file or the <ser vl et - name>
entry. For example, if the XML entry in the web. xmi file is:

<servl et - nane>Fort une</ servl et-nane>
<servl et - mappi ng>

<servl et - nane>Fort une</ servl et-nane>
<url - pattern>Busi ness</ url-pattern>
</ servl et - mappi ng>

You can access the servlet in either of the following ways:
= http://server: port/ NASApp/ context_root/ Fort une

= http://server: port/ NASApp/ context_root/ Busi ness

Verifying Servlet Parameters

You can verify the parameters passed to a servlet. This feature can increase iPlanet
Application Server response time and save development time.

iPlanet Application Server can call a specified class for parameter verification.
Based on the results of the verification, the server can either call the servlet method
or abort the call to the servlet, redirecting the user to an error page. You must
provide the parameter verification class and specify it in the Deployment Tool
during servlet deployment. You can specify which parameters are validated.

The parameter verification code need not be present within the servlet. If more
than one servlet accepts the same parameter, they must both use the same
parameter verification function for that parameter.

Chapter 2 Controlling Applications with Servlets 55

Invoking Servlets

In the IAS Params tab of the servlet descriptor in the Deployment Tool, you can
specify the following for each parameter:

= The name of the parameter

= Whether verification is required

= The class and method to call for verification
= The format of the parameter

= The parameter’s scope

= The error page to display in case of an error

56 iPlanet "™ Application Server Developer's Guide * November 2001

Chapter 3

Presenting Application Pages with
JavaServer Pages

This chapter describes how to use JavaServer Pages (JSPs) as page templates in an
iPlanet Application Server web application.

This chapter contains the following sections:

Introducing JSPs

How JSPs Work

Designing JSPs

Creating JSPs

Programming Advanced JSPs

Deploying JSPs

Invoking JSPs

JSP 1.1 Tag Summary

Modifying Custom Tags for JSP 1.1

Compiling JSPs: The Command-Line Compiler

Value-added Features

57

Introducing JSPs

Introducing JSPs

JSPs are browser pages in HTML or XML. They also contain Java code, which
enables them to perform complex processing, conditionalize output, and
communicate with other application objects. JSPs in iPlanet Application Server are
based on the JSP 1.1 specification. This specification is accessible from

install_dir/ i as/ docs/ i ndex. ht minstall_dir is where the iPlanet Application Server
is installed.

In an iPlanet Application Server application, JSPs are the individual pages that
make up an application. You can call a JSP from a servlet to handle the user
interaction output, or, since JSPs have the same application environment access as
any other application component, you can use a JSP as an interaction destination.

How JSPs Work

JSPs are made up of JSP elements and template data. Template data is anything not in
the JSP specification, including text and HTML tags. For example, the minimal JSP
requires no processing by the JSP engine and is a static HTML page.

The iPlanet Application Server compiles JSPs into HTTP servlets the first time they
are called. This makes them available to the application environment as standard
objects and enables them to be called from a client using a URL.

JSPs run inside a Java process on the server. This process, called a JSP engine, is
responsible for interpreting JSP specific tags and performing the actions they
specify in order to generate dynamic content. This content, along with any
template data surrounding it, is assembled into an output page and is returned to
the caller.

The response object contains a calling client reference; this is where a JSP presents
the page it creates. If a JSP is called from a servlet using the Request Di spat cher
interface’s f orwar d() method, f orwar d() provides the response object as a JSP
parameter. If a JSP is invoked directly from a client, the server managing the
relationship with the caller provides the response object.

In either case, the page is automatically returned to the client through the response
object reference without any additional programming.

You can create JSPs that are not part of any particular application. These JSPs are
considered part of a generic application. JSPs can also run in the iPlanet Web
Server and other web servers, but these JSPs have no access to any application data,
therefore their use is limited.

58 iPlanet "™ Application Server Developer's Guide * November 2001

Designing JSPs

JSPs and other application components can be updated at runtime without
restarting the server, making it easy to change an application’s look and feel
without stopping service. For more information, see Appendix B, “Runtime
Considerations.”

Designing JSPs

This section describes decisions to consider when writing JSPs. Since JSPs are
compiled into servlets, servlet design considerations are also relevant to JSPs. For
more information about design considerations for servlets, see Chapter 2,
“Controlling Applications with Servlets.”

A page’s information can loosely be categorized into page layout elements, which
consist of tags and information pertaining to the page structure, and page content
elements, which consist of the actual page information sent to the user.

You can design a page layout with the design as any browser page, interleaving
content elements where needed. For example, one page element might be a
welcome message (for example, “Welcome to our application!”) at the top of the page.
You can personalize this message with a call to the user’s name after authentication
(for example, “Welcome to our application, Mr. Einstein!”).

Since page layout is more or less a straightforward task, the design decisions must
relate to the way the JSP interacts with the application and how it is optimized.

This section contains the following subsections:
< Choosing a Component

= Designing for Ease of Maintenance

= Designing for Portability

= Handling Exceptions

Choosing a Component

The first task is to decide on a JSP or a servlet. If the main feature is the page layout
with little processing involved for page generation, use a JSP alone for the
interaction.

Chapter 3 Presenting Application Pages with JavaServer Pages 59

Designing JSPs

Think of JSPs and servlets as opposite sides of the same coin. Each can perform all
the tasks of the other, but each is designed to excel at one task at the expense of the
other. Servlets are strong in processing and adaptability, and since they are Java
files, you can take advantage of integrated development environments while
writing them. However, performing HTML output from them involves many
cumbersome pri nt | n statements that must be coded by hand. Conversely, JSPs
excel at layout tasks because they are simply HTML files and can be created with
HTML editors, though performing computational or processing tasks with them is
awkward. Choose the right component for the job at hand.

For example, the following component is presented as both a JSP and a servlet for
comparison. This component performs no complex content generation activities,
and works best as a JSP:

JSP:

<ht m ><head><ti t| e>Feedback</tit| e></ head><body>
<h1>The nane you typed is: <% request.getParaneter("name"); %.</hl>
</ body></ht i >

Servlet:

i mport java.io.*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

public class nyServlet extends HttpServlet {

public void service (HtpServl et Request req,

Ht t pSer vl et Response res)
throws Servl et Exception, | COException

{

response. set Cont ent Type("text/htm ");

PrintWiter output = response.getWiter();

out put. printl n("<htm ><head><titl e>Feedback</titl e></head>"
" <body>\ n"
+ "<h1>The nane you typed is:"
+ req.get Paraneter("name") + ".</hl1>"
+ "</ body></htm >";

+

}

For more information about servlets, see Chapter 2, “Controlling Applications with
Servlets.”

60 iPlanet "™ Application Server Developer's Guide * November 2001

Creating JSPs

Designing for Ease of Maintenance

Each JSP can call or include any other JSP. For example, you can create a generic
corporate banner, a standard navigation bar, and a left-side column table of
contents, where each element is in a separate JSP and is included for each page
built. The page can be constructed with a JSP functioning as a frameset,
dynamically determining the pages to load into each subframe. A JSP can also be
included when the JSP is compiled into a servlet or when a request arrives.

Designing for Portability

JSPs can be completely portable between different applications and different
servers. A disadvantage is that they have no particular application data
knowledge, but this is only a problem if they require that kind of data.

One possible use for generic JSPs is for portable page elements, such as navigation
bars or corporate headers and footers, which are meant to be included in other
JSPs. You can create a library of reusable generic page elements to use throughout
an application, or even among several applications.

For example, the minimal generic JSP is a static HTML page with no JSP-specific
tags. A slightly less minimal JSP might contain some Java code that operates on
generic data, such as printing the date and time, or that makes a change to the
page’s structure based on a standard value set in the request object.

Handling Exceptions

If an uncaught exception occurs in a JSP file, iPlanet Application Server generates
an exception, usually a 404 or 500 error. To avoid this problem, set the er r or Page
attribute of the <%@ page% tag.

Creating JSPs

JSPs are created in basically the same way as static HTML files are. You can use an
HTML editor to create pages and edit the page layout. You make a page a JSP by
inserting JSP-specific tags into the raw source code where needed.

The following sections describe how to use JSP-specific tags in HTML files to create
JSPs, including JSP elements, directive elements, scripting elements, and action
elements.

Chapter 3 Presenting Application Pages with JavaServer Pages 61

Creating JSPs

This section contains the following subsections:
= General Syntax

= Directives

= Scripting Elements

= Actions

« Implicit Objects

General Syntax

JSPs that adhere to the JSP 1.1 specification follow XML syntax for the most part,
which is consistent with HTML. In other words, tags are demarcated with < and >,
constructs have a start tag (<t ag>) and end tag (</ t ag>), and tags are
case-sensitive, such that <t ag> is different from <Tag> or <TAG>.

In general, you insert JSP tags inline in the file where needed, in the same way as
standard HTML tags. For example, if the request contains a parameter nanme that
contains the user name, a welcome sentence could look like this:

<p>Hel | 0, <% request.getParaneter("nanme"); %.</p>

JSP Tags

JSP tags use the<j sp: t ag> form, a form taken from XML. Some tags (particularly
scripting tags) have a shortcut use in HTML files, generally starting with <%and
ending with %.

NOTE These shortcuts are not valid for XML files.

Empty elements or tag constructs that have nothing between the start and end tags
can be shortened to one tag ending with / >. Some examples:

An include tag with no body:
<j sp:include page="/corporatel/banner.jsp"></jsp:include>
A shorter form of an include tag with no body:

<j sp:include page="/corporate/banner.jsp" />

62 iPlanet "™ Application Server Developer's Guide * November 2001

Creating JSPs

White space is not usually significant, although you must put a space character
between the opening tag and any attributes. For example, <% nyExpr essi on %
is valid, but <%=nyExpr essi on % is not.

Escape Characters

Attributes in which difficulty with nested single and double quotes exist use the
following escape characters:

e ‘isquotedas\
e "isquotedas \"
= 9% is quoted as % >

e <%is quoted as <\ %

Comments
There are two JSP comment types:

= JSP page comments that document what the page is doing

= Document generated comments sent to the client

JSP Comments

A JSP comment is contained within <% - and - - %, and can contain anything
except the text - - %. The following example, therefore is incorrect:

<% - anything but a closing --% ... --%

An alternative way to place a comment in a JSP is to use a Java comment. For
example:

<%/** this is a coiment ... **/ %

Generating Comments in Client Output

Use the HTML and XML comment syntax to generate comments to the requesting
client in the response output stream, as shown in the following example:

<l-- comments ... -->

The JSP engine treats comments as uninterpreted template text. If the generated
comment has dynamic data, obtain it through expression syntax, as shown in the
following example:

<!-- comments <% expression % nore conments ... -->

Chapter 3 Presenting Application Pages with JavaServer Pages 63

Creating JSPs

Directives

Use directives to set preferences within a JSP. Each directive has a number of
attributes that affect the behavior or state of the JSP.

<@ directive { attr="value" }* %
The valid directives are:

e <UD page%%

e <U@include%

e <U@dtaglib... %

<%@ page%>

The page directive sets the JSP page level preferences.

Syntax
<%@ page | anguage="j ava"
ext ends="cl assNane"
i mport="cl assNane{, +}"
session="true|fal se"
buf f er =" none| si zel nKB"
aut oFl ush="true| f al se"
i sThreadSaf e="true| fal se"
i nfo="text"
errorPage="jspUrl|"
i SErrorPage="true| fal se"
cont ent Type="m neType{; charset =charset }"
%

Attributes
Table 3-1 shows the valid attributes.

Table 3-1 JSP page Directives

Attribute Valid Values Description

| anguage java Default: j ava. Scripting language for this JSP. Currently,
iPlanet Application Server only supports j ava.

ext ends valid Java class name Defines a specific superclass for this JSP. This restricts the

JSP engine in many ways and should be avoided if
possible.

64 iPlanet "™ Application Server Developer's Guide * November 2001

Creating JSPs

Table 3-1 JSP page Directives
Attribute Valid Values Description
i mport comma-separated list ~ Types and classes available to other methods in this JSP.
of valid Java class This is identical to the i nport statement in a Java class.
names
sessi on trueorfalse Default: t r ue. Indicates the page must participate in an
HTTP session. If | anguage=j ava and sessi on=t r ue,
this option creates an implicit variable called sessi on
which points to or creates a session of type
javax.servlet.http. Ht pSessi on
buf f er none or buffer sizein Defines an output buffer. If set to none, all output is
kilobytes written directly to the output stream (@ Pri nt Wi ter
object). If a size is provided, then either the buffer is
flushed or an exception is raised when it is filled with
output. The behavior is determined by the aut oFl ush
attribute.
aut oFl ush trueorfalse Determines behavior when the output buffer is full. If

i sThreadSaf e

info

error Page

trueorfal se

text

valid URL for a JSP
error page

t r ue, output is flushed to the output stream when the
buffer is full. If f al se, an exception is raised when the
buffer is full.

Default: f al se. Indicates the thread safety level in the
page. The value determines the JSP engine behavior: if

t r ue, multiple requests are made to the JSP instance
simultaneously, otherwise multiple requests are handled
serially. For the most part, ensure your JSP is thread-safe
regardless of this setting, as this setting has no effect on
shared objects such as sessions or contexts.

A string inside the translated page which is obtained from
the page’s Ser vl et . get Ser vl et I nf o() method.

Error page for this JSP; must be a JSP. Any Thr owabl e
object thrown but not caught by the original page is
forwarded to the error page. The error page has an implicit
variable called except i on that contains a reference to the
un-caught exception. Note that if aut oFl ush=t r ue and
the initial JIspW i t er contents have been flushed to the
Ser vl et Response output stream (for example, if part of
the page has already been sent to the client), any
subsequent attempt to invoke an error page may fail.

Chapter 3 Presenting Application Pages with JavaServer Pages 65

Creating JSPs

Table 3-1 JSP page Directives

Attribute

Valid Values Description

i sSErrorPage

cont ent Type

trueorfalse Default: f al se. Indicates whether the current JSP page is
the possible target of another JSP page’s er r or Page. If
t r ue, the implicit variable except i on is defined and its
value is a reference to the offending Thr owabl e from the
source JSP page in error.

content type, Default:
optionally with text/ htm ; charset =l SO 8859-1
charset Defines the MIME type and character encoding for the

response. Values are either of the form TYPE or
TYPE; char set =CHARSET

Examples

<%@ page errorpage="errorpg. htm' %
<%@ page i nport="java.io.*,javax.nam ng.*" %

<% @ include%>

The include directive enables other JSP inclusions (or static pages) when the JSP is
compiled into a servlet. The resource is treated as a part of the JSP.

Another way to include other resources is to use the <j sp: i ncl ude> action, which
includes resources at request time. For more information on file inclusion, see
“Including Other Resources,” on page 79.

Syntax
<%@include file="file" %

Attributes

Table 3-2 shows the valid attribute.

Table 3-2 JSP i ncl ude Directive

Attribute Valid Values

Description

file Valid URL
(absolute) or URI
(relative path)

The file to be included.

66 iPlanet '™ Application Server Developer's Guide * November 2001

Creating JSPs

The file attribute is either relative to the current JSP, or absolute to the application’s
context root. For relative file attributes, the file name should not begin with a slash
(‘7). For absolute file attributes, the file name should begin with a slash (‘/’).

Example
If who. j sp is in the application MyApp (typically located in
install_dir/ i as/ APPS/ MyApp) and who. j sp contains the following tag:

<%@ ncl ude fil e="/add/baz.jsp" %

then the system tries to include the file baz. j sp from
install_dir/ i as/ APPS/ MyApp/ add/ baz. j sp.

If baz. j sp contains the following tag:
<%@ ncl ude file="who.jsp" %
then the system also includes the file install_dir/ i as/ APPS/ MyApps/ add/ who. j sp.

<% @ taglib... %>

The tag library directive enables custom tag creation. For more information on
creating custom tags, see “Value-added Features,” on page 92.

Syntax
<y@taglib uri="uriToTagLibrary" prefi x="prefixString" %

Attributes
Table 3-3 shows the valid attributes.

Table 3-3 JSP <t agl i b> Directive

Attribute Valid Values Description

uri Valid URI The URI is either an absolute (from the application’s context root)

(relative path) or arelative referencetoa . t | d XML file, describing the tag

library. The URI can be an alias that is unaliased by the <t agl i b>
entry in the web application JSP descriptor. For more information,
see JSP v1.1 specification section 5.2.

prefix String A custom tag prefix.

Example

Consider the following JSP file, who. j sp, in the application MyApp, and a
corresponding XML deployment descriptor file with a web application section as
follows:

Chapter 3 Presenting Application Pages with JavaServer Pages 67

Creating JSPs

<taglib>
<taglib-uri> http://ww. nmytaglib.com spTags </taglib-uri>
<taglib-1ocation> /who/ add/ baz.tld</taglib-Iocation>
<tagli b>

The JSP file contains the following:

<v@taglib uri="http://ww. nytaglib.com spTags" prefix="nytags" %
<nytags:special Tag attri bute="value"> ... </nytag: speci al Tag>

The JSP engine looks inside the web app descriptor to find a matching tag library
location for ht t p: / / www. nyt agl i b. cond spTags. The engine locates

/ who/ add/ baz. t | d, and therefore looks for an XML file

install_dir/ i as/ APPS/ MyApp/ who/ add/ baz. t | d. This is the tag library descriptor
file that describes the tags used in the file.

The URI or tag library location (if the URI is aliased) can also be relative. In this
case, the . t | d file is searched for relative to the current directory. For more details,
see JSP v1.1 specification, section 5.2.

Scripting Elements

Scripting elements are made up of the following tags:
= Declarations <%! ... %>

= Expressions <%= ... %>

= Scriptlets <%...%>

There are several implicit objects available to scripts, including the request and
response objects. For more information about implicit objects, see “Implicit
Objects,” on page 77.

Declarations <%! ... %>

The declarations element defines valid variables used throughout the JSP. Declare
anything legal in Java, including methods, as long as the declaration is complete.
Nothing appears in the output stream as a result of a declaration.

Syntax
<9% decl aration %

Example

<% int i=0; %

<% String scriptname="nyScript"; %
<% private void nyMethod () { ... } %

68 iPlanet "™ Application Server Developer's Guide * November 2001

Creating JSPs

Expressions <%= ... %>

The expressions element evaluates variables. The expression value is substituted
where the expression occurs. The result appears on the output stream.

Syntax
<U% expression %

Example
<p>My favorite color is <% userBean.favCol or %. </p>

Scriptlets <%...%>

The scriptlets element defines code blocks for execution and any legal code can
appear here.

Syntax
<% scri pt %

Example
<% int bal ance = request.getAttribute("bal ance");
if (balance < LIMT) {
println (UNDERLI M T_ALERT);

}
String bal String = format AsMney(bal ance) ;

%
Your current bal ance is <% bal ance %.

Actions

Actions perform activities, such as including other JSPs or specifying required
plug-ins, creating or loading a Java bean, or setting or retrieving bean properties.

Some actions allow request time expressions as parameters, allowing you to set
values for these attributes dynamically for the request. The attributes that allow
expressions as parameters are the val ue and nane attributes of

<j sp: set Proper t y> and the page attribute of <j sp: i ncl ude> and

<j sp: f orwar d>.

Standard actions are described as follows:
e <jsp: useBean> creates or accesses Java beans
= <jsp:setProperty> sets bean properties

= <jsp:getProperty>retrieves bean properties

Chapter 3 Presenting Application Pages with JavaServer Pages 69

Creating JSPs

e <jsp:include>includes other JSPs or HTML pages at request time
e <jsp: f orward> forwards execution control to another JSP

= <jsp:plugi n>dynamically loads browser plugins for special data types

<jsp:useBean>

The <j sp: useBean> action tries to find a Java bean with the given name (i d) and
scope. If the bean exists, it is made available, otherwise this action creates it using
the provided name, scope, and type and class information. A variable called name,
specified with the attribute i d="name", is made available to the JSP so to access the
object if the action succeeds.

<j sp: useBean> can be an empty tag, as in <j sp: useBean ... />, oritcan
contain other actions and close with the end tag </ j sp: useBean>. Other actions
that normally appear here are <j sp: set Pr oper t y> actions that set properties in
the (possibly newly created) bean. Template text, other scripts or declarations, and
so on are treated normally. Note that the <j sp: useBean> tag body is executed only
once, when the bean is created.

The <j sp: useBean> action must specify a unique i d="name" attribute. If the action
succeeds in creating or accessing an object, this name makes the object available to
scripting tags further down in the JSP.

Syntax

<j sp: useBean i d="name" scope="scope"
cl ass="className" |
cl ass="className" type="typeName" |
beanNanme="beanName" type="typeName" |
t ype="typeName" >

/1 optional body

</j sp: useBean>

Attributes
Table 3-4 shows the valid attributes.

Table 3-4 <j sp: useBean> Attributes
Attribute Description
id Unique identifying object name.

70 iPlanet ™ Application Server Developer's Guide * November 2001

Creating JSPs

Table 3-4 <j sp: useBean> Attributes
Attribute Description
scope The object lifecycle is one of the following:
= page: object is valid for this page only, even if the request encompasses more than one
page. The object is not forwarded to other pages.
= request: object is bound to the request object (retrieved with get At t ri but e(nane)
where nane is the object’s i d), and is available for the life of the request.
= sessi on: object is bound to the session object (retrieved with get Val ue(nane) where
nane is the object’s i d) and is available wherever the session is available for the session
life. A session must be active for this JSP in order to use this scope.
= applicati on:objectis bound to the Ser vl et Cont ext (retrieved with
get Attri but e(nane) where nane is the object’s i d) and is available for the application
existence, unless it is specifically destroyed.
cl ass Valid bean classname, used to instantiate the bean if it does not exist. If t ype is specified,
cl ass must be assignable tot ype. Both beanNamne and cl ass cannot be specified for the
same bean.
beanNane Valid bean name in the form of, a. b. c (classname) or a/ b/ ¢ (resource hame). Both
beanNane and cl ass cannot be specified for the same bean. The beanNan® attribute can be
an expression, evaluated at request time.
type Defines the bean variable t ype. This attribute enables the variable t ype to be distinct from

the implementation class specified. The type is required to be either the class itself, a class
superclass, or an interface implemented by the class specified. If unspecified, the value is the
same as the cl ass attribute value.

Examples
This example shows a bean creation or a bean access that already exists, called
current User of type com net scape. nyApp. User:

<j sp: useBean id="currentUser" cl ass="com net scape. nyApp. User" />

In this example, the object is present in the session. If so, it is given the local name
wonbat with Wonbat Type. A C assCast Except i on is raised if the object is the
wrong class and an | nst ant i ati onExcept i on is raised if the object is not defined.

<j sp: useBean i d="current User"
type="com net scape. nyApp. User"
scope="sessi on" />

For more information, see “Examples,” on page 72.

Chapter 3 Presenting Application Pages with JavaServer Pages 71

Creating JSPs

Table 3-5

<jsp:setProperty>
The <j sp: set Propert y> action sets the bean property values. It is used in a

<j sp: useBean> tag body to set the bean properties. The property values may be
determined with an expression or directly from the request object.

Syntax
<j sp: set Property name="beanName"

pr opert y="propertyName"

par am=" requestParameter” | val ue="value"
</jsp:setProperty>

Attributes
Table 3-5 shows the valid attributes.

<j sp: set Propert y> Attributes

Attribute

Description

namnme

property

par am

val ue

Bean name in which to set a property. The name must be defined previously in the file with
<j sp: useBean>.

The bean property name whose value is set. The property must be a valid bean property. If
property="*" then the tag iterates over the request object parameters, matching parameter
names and value type(s) to property names and setter method type(s) in the bean, setting each
matched property to the matching parameter value. If a parameter has an empty value, the
corresponding property is not modified. Note that any previous value for the parameter
persists.

The request object parameter name whose value is given to a bean property. If you omit

par am the request parameter name is assumed to be the same as the bean property name. If
the par amis not set in the request object or if it has an empty value, the <j sp: set Property>
action has no effect. A <j sp: set Pr oper t y> action cannot have both par amand val ue
attributes.

The value to assign to the given property. This attribute can accept an expression as a value;
the expression is evaluated at request time. A <j sp: set Pr oper t y> action cannot have both
par amand val ue attributes.

Examples
In this example, the name and per ni ssi ons properties are set:

<j sp:useBean id="currentUser" class="com netscape. nyApp. User" >
<j sp: set Property nane="current User"
property="name"
par an¥" name" >

72 iPlanet ™ Application Server Developer's Guide * November 2001

Creating JSPs

<j sp: setProperty name="current User"
pr opert y=" permissions”
par am=" permissions" >
</ j sp: useBean>

This example sets the property nane value to the corresponding request parameter
also called nane:

<j sp: set Property name="nyBean" property="name" param="name" />

<j sp: set Property nane="nyBean" property="nane"
val ue="<% request.getParaneter (\"name\" %)" />

<jsp:getProperty>
A <j sp: get Pr opert y> action places the bean property value, converted to a string,
into the output stream.

Syntax
<j sp: get Property name="heanName"
property="propertyName" >

Attributes
Table 3-6 shows the valid attributes.

Table 3-6 <j sp: get Propert y> Attributes

Attribute Description

nane Bean nane from which to retrieve a property. The name must be defined
previously in the file with <j sp: useBean>.

property The bean pr oper t y name whose value to retrieve. The pr operty must
be a valid bean property.

Examples
<j sp: get Property nane="currentUser" property="name" />

<jsp:include>
In the current page, a <j sp: i ncl ude> action includes the specified page at request

time, preserving the current page context. Using this method, the included page is
written to the output stream.

Chapter 3 Presenting Application Pages with JavaServer Pages 73

Creating JSPs

An additional method for including other resources is the <%@ i ncl ude%
directive, which includes the resource at compile time. For more information on
file inclusion, see “Including Other Resources,” on page 79.

Syntax
<j sp:include page="URI" flush="true|fal se"/>

Attributes
Table 3-7 shows the valid attributes.

Table 3-7 <j sp: i ncl ude> Attributes

Attribute Description

page Includes either an absolute or relative page reference. For absolute
references, this field begins with a slash (“/), and is rooted at the
application’s context root. For relative references, this field is relative to the
JSP file performing the include, and may contain an expression to be
evaluated at request time.

flush Determines whether to flush the included page to the output stream.

Examples
<j sp:include page="/tenpl ates/copyright.htm" flush="true" />

<jsp:forward>

The <j sp: f or war d> action allows the current request to be dispatched at runtime
to a static resource, a JSP page, or a Java servlet in the current page’s context,
terminating the current page’s execution. This action is identical to the

Request Di spat cher interface’s f or war d() method.

Syntax
<jsp:forward page="URL" />

Attributes
Table 3-8 shows the valid attributes.

Table 3-8 <j sp: f or war d> Attributes

Attribute Description

page Valid URL pointing to the page to include. This attribute may contain, at
request time, an expression to evaluate. The evaluation must be a valid
URL.

74 iPlanet ™ Application Server Developer's Guide * November 2001

Creating JSPs

NOTE If the page output is unbuffered (with <% page buf fer="none" %)and
data has already been written to the output stream, this tag results in a
runtime error.

Examples
<j sp: forward page="/who/ handl eAl ternati vel nput.jsp" />

The following element shows how to forward a static page based on a dynamic
condition.

<% String whereTo = "/tenpl ates/ " +soneVal ue; %
<j sp:forward page="<% whereTo %" />

<jsp:plugin>

The <j sp: pl ugi n> action enables a JSP author to generate HTML that contains the
appropriate browser dependent constructs (obj ect or enbed) to instruct the
browser to download (if required) an appropriate Java plug-in and execute an
Applet or JavaBean component. The <j sp: pl ugi n> tag attributes provide the
element presentation configuration data.

The <j sp: pl ugi n> tag is replaced by either the appropriate <obj ect > or <enbed>
tag for the requesting user agent and is sent to the response output stream.

There are two related actions that are only valid within a <j sp: pl ugi n> action:

= <jsp: parans> sends a parameter block to the Applet or JavaBean component.
Individual parameters are set with:

<j sp: par am nane="name" val ue="value" >

The section ends with </ j sp: par ams>. The names and values are component
dependent.

= <jsp:fall back> indicates the browser content if the plugin cannot be started
(either because obj ect or enbed is not supported, or due to some problem).
The tag body is presented to the browser when a failure of the surrounding
<j sp: pl ugi n> occurs. For example:

<jsp:plugin ...>
<j sp: fal | back>Pl ugi n coul d not be
started! </ b></jsp:fall back>

</j sp: pl ugi n>

If the plug-in starts, but the Applet or JavaBean cannot be found or started, a
plug-in specific message is sent to the user, often as a popup window reporting a
Cl assNot FoundExcepti on.

Chapter 3 Presenting Application Pages with JavaServer Pages 75

Creating JSPs

Syntax
<j sp: pl ugi n type="bean| appl et"
code=" objectCode"
codebase=" objectCodebase"
al i gn="alignment" }
ar chi ve="archiveList" }
hei ght =" height" }
hspace="hspace" }
j reversi on="jreversion" }
name="componentName" }
vspace="vspace" }
wi dt h="width" }
nspl ugi nurl =" URL" }
i epl ugi nurl ="URL" } >
<j sp: par ans
<j sp: par am nane=" paramName" val ue="paramValue" />
</jsp: parans> }
{ <jsp:fallback> fallbackText </ sp:fall back> }
</j sp: pl ugi n>

Lot e Mt W e W e W e o

Attributes

The <j sp: pl ugi n> tag takes most of its attributes from the HTML <appl et > and
<obj ect > tags (<appl et > is defined in HTML 3.2 and is deprecated, <obj ect > is
defined in HTML 4.01). Refer to the official HTML 4.01 specification where these
tags are described:

http://ww. w3. or g/ TR/ REC- ht m 40/
Table 3-9 shows the valid attributes.

Table 3-9 <j sp: pl ugi n> Attributes

Attribute Description

type Identifies the component type, bean or appl et .

code As defined by the HTML specification.

codebase As defined by the HTML specification.

align As defined by the HTML specification.

archi ve As defined by the HTML specification.

hei ght As defined by the HTML specification.

hspace As defined by the HTML specification.

jreversion Identifies the JRE specification version number the component requires

to operate. Default: 1. 1

76 iPlanet "™ Application Server Developer's Guide * November 2001

Creating JSPs

Table 3-9 <j sp: pl ugi n> Attributes (Continued)

Attribute Description

nane As defined by the HTML specification.
vspace As defined by the HTML specification.
title As defined by the HTML specification.
wi dth As defined by the HTML specification.

nspl ugi nurl URL where the JRE plug-in can be downloaded for Netscape
Navigator, default is implementation-defined.

i epl ugi nurl URL where the JRE plug-in can be downloaded for Microsoft Internet
Explorer, default is implementation-defined.

Examples
<j sp: plugin type="applet”
code="Tetris.class"
codebase="/htm " >
<j sp: par ans>
<j sp: param nane="node" val ue="extraHard"/>
</j sp: par ans>

<j sp: fal | back>
<p> unable to | oad Plugin </p>
</jsp:fall back>
</j sp: pl ugi n>

Implicit Objects

The JSP 1.1 specification defines some objects that are available implicitly for every
JSP. You can refer to them from anywhere in a JSP without previously defining
them (for example, with <j sp: useBean>).

Table 3-10 shows the objects available implicitly for every JSP.

Table 3-10 Implicitly Available Objects for Every JSP
Object Description Scope Java type
request The request that triggered request protocol dependent subtype of
this JSP’s execution. j avax. servl et. Servl et Request , for
example,

javax. servl et. Htt pSer vl et Request

Chapter 3 Presenting Application Pages with JavaServer Pages 77

Programming Advanced JSPs

Table 3-10 Implicitly Available Objects for Every JSP (Continued)

Object Description Scope Java type
response The request response (for page protocol dependent subtype of
example, the page and its j avax. servl et. Servl et Response, for
path returned to the caller). example,
javax. servl et. Ht pServl et Response
pageCont ext The JSP page context. page j avax. servl et. | sp. PageCont ext
sessi on The session object (ifany) session javax.servlet. http. H t pSessi on
created for or associated
with the caller.
application This JSP’s servlet context, application | avax. servl et. Servl et Cont ext
from the servlet’s
configuration object
through
get Servl et Config(),
get Cont ext ().
out An object that writes to the page javax.servlet.jsp.JspWiter
output stream.
config This JSP’s servlet page j avax. servl et. Servl et Config
configuration object
(Servl et Confi g).
page This page’s class instance page java. |l ang. Obj ect
that is processing the
current request.
exception For error pages only, the page j ava. | ang. Thr owabl e

uncaught Thr owabl e
exception that caused the
error page to be invoked.

For example, you can refer to the request object with one of the request parameters
as <% request. get Paranet er ("param"); %.

Programming Advanced JSPs

This section provides instructions for using advanced programing techniques and
includes the following subsections:

< Including Other Resources

78 iPlanet ™ Application Server Developer's Guide * November 2001

Programming Advanced JSPs

= Using JavaBeans

= Accessing Business Objects

Including Other Resources

An important JSP feature is the ability to dynamically include other page
generating resources or their results at runtime. You can include static HTML page
content or process a separate JSP and include its results in the output page.

For example, corporate headers and footers can be included on each page by
creating page stubs containing just the included elements. Note that it is possible to
include entire pages on a conditional basis, providing more flexibility than simply
inserting flat navigation bars or corporate headers.

There are two ways to include a resource in a JSP:
e the <%@i ncl ude% directive:
<Y%@i nclude fil e="filename" %
e the <j sp:incl ude> action:
<j sp:include page="URI" flush="true|fal se" />

If you include a resource with the <%@ i ncl ude% directive, the resource is
included when the JSP is compiled into a servlet, and is treated as part of the
original JSP. If the included resource is also a JSP, its contents are processed along
with the parent JSP. For more information, see “Directives,” on page 64.

If you include a resource with the <j sp: i ncl ude> action, the resource is included
when the JSP is called. For more information, see “Actions,” on page 69.

The following example shows how each page portion is a separate resource, while
access is from a single JSP. The source code for this example page shows both
methods for including resources: static resources are included with the

<j sp: i ncl ude> action, and dynamic resources are included with the

<%@ i ncl ude%> directive.

Chapter 3 Presenting Application Pages with JavaServer Pages 79

Programming Advanced JSPs

e ample Lorporale ["oge - Hetacape
Edl wiwn G- Cosnoricaum Hep

i B - A 4 o = = =§E sl
'_- =D [Faraos Scloz-d Howc Zcorch Helzoope Pt Sccaly 5oz
‘; J T cozkmaks £ lao ho:lh:lp:.-'.a'nw soracie ML p ot pcl cot ondalkzogin sp ll

cor por ate header: .
cor pHead. htm ~

rate IP age
e s
 » ‘e %) OINES

(.
table of contents: Lo, VR
appToc. j sp

Zualrerl

it Welcame to the

p i - -

Application, YourName!

pagecontent: ___ 1wz
wel cone. j sp . . Flea=r feel free 1 Erawae the ansllowrlen <7 any content.

Zuzitamiz e e cnT A dear rhar gy wlll fine ner s asharassser .

THolterE

fuzlterd EUT [zl2ass "zl frez 1o er_ovthe followl g o v plord e
cor por ate footer: e #
corpFoot. htm -] @

Znoiarss

=ualter

R

COpYrIahT () 1999 Amerlca OTriine, Incorporated. All Rlahts Reserved.
Complaints should yu tu desnul| @newliere oo

FW |Tn=nme -t Dare

S el o2 @2

afterLogin.jsp
<ht m ><head><tit| e>Sanpl e Corporate Page</title></head><body>

<p align="Ileft"><jsp:include page="corpHead. ht ' flush="true" /></p>
<%@incl ude file="navBar.jsp" %
<hr size="3">

<t abl e border=0><tr>

<td w dt h="25%><%@ i ncl ude fil e="appToc.jsp" %</td>
<td w dth="75% ><%@ i ncl ude fil e="appToc.jsp" %</td>
</tr></tabl e>

<hr >

<p align="Ileft"><jsp:include page="corpFoot. htnt flush="true" /></p>
</ body></ht i >

80 iPlanet "™ Application Server Developer's Guide * November 2001

Programming Advanced JSPs

Using JavaBeans

JSPs support several tags to instantiate and access JavaBeans. Beans perform
computations to obtain a result set and are stored as bean properties. JSPs provide
automatic support for creating beans and for examining their properties.

Beans themselves are separate classes created according to the JavaBean
specification. For information about JavaBeans, see:

http://java. sun. conl beans

It is common in beans to have getter and setter methods to retrieve and set bean
properties. Getter methods are named get Xxx(), where Xxx is a property called
xxX (the first letter is capitalized for the method name). If you have a corresponding
setter called set Xxx(), the setter must be the same parameter type as the getter
return value.

This supports standard JavaBeans, not EJBs. To access EJBs from a JSP, see
“Accessing Business Objects,” on page 81. In the JSP 0.92 specification, the request
and response objects were accessed through “implicit beans.” This support has
changed in the JSP 1.1 specification; several objects, including the request and
response objects, are available implicitly, with varying degrees of scope. For more
information, see “Implicit Objects,” on page 77.

Accessing Business Objects

Because JSPs are compiled into servlets at runtime, they have access to all server
processes, including EJBs. You access beans or servlets in the same way you would
access them from a servlet, as long as the Java code is embedded inside an escape
tag.

The method described here for contacting EJBs is identical to the method used from
servlets. For more information about contacting EJBs, see “Accessing Business
Logic Components,” on page 45.

This example shows a JSP accessing an EJB called Shoppi ngCart by importing the
cart’s remote interface and creating a cart handle with the user’s session ID:

<%@ i nport cart. ShoppingCart %;

<% // Get the user’s session and shopping cart
Shoppi ngCart cart =

(Shoppi ngCart) sessi on. get Val ue(session.getld());

/1l 1f the user has no cart, create a new one
if (cart == null) {

Chapter 3 Presenting Application Pages with JavaServer Pages 81

Deploying JSPs

cart = new Shoppi ngCart();
sessi on. put Val ue(session.getld(), cart);
} %

<% cart.get Dat aAsHTM.() %
This example shows JNDI looking up a proxy, or handle, for the cart:

<% String jndi Nm= "java:/conp/ ej b/ Shoppi ngCart";
j avax. nam ng. Context initcCtx;
Chj ect hone;
try {
initCtx = new javax. nam ng. | nitial Context (env);
} catch (Exception ex) {

return null;
}
try {
java. util.Properties props = null;
honme = initC x. | ookup(jndi Nm;
}
cat ch(j avax. nam ng. NameNot FoundExcepti on e)
{
return nul | ;
}
cat ch(j avax. nam ng. Nam ngException e)
{
return null;
}
try {

| Shoppi ngCart cart = ((I Shoppi ngCart Hone) hone).create();

} catch“(l...) {...}
%

<% cart.get Dat aAsHTM.() %

NOTE You must provide an EJB method to convert raw data to a format
acceptable to the page, such as get Dat aAsHTM.() , as shown above.

Deploying JSPs

There are two ways the iPlanet Application Server deploys JSPs, as either
unregistered or registered JSPs.

82 iPlanet ™ Application Server Developer's Guide * November 2001

Deploying JSPs

Unregistered JSPs

Unregistered JSPs are deployed by copying them to the corresponding directory
structure (appl i cati onNane/ nodul eNane), in the AppPat h. These JSPs are invoked
using the URL access as follows:

ht t p: / / server: port/ AppPrefix/ ModuleName/ JSPFileName

For more information, see “Invoking JSPs,” on page 84.

Registered JSPs

The iPlanet Application Server allows JSPs to be registered with GUI Ds, using XML.
This allows JSPs to use iPlanet Application Server value-added features such as
load balancing. This is done using XML files with the <j sp-fi | e> entry as detailed
in the Servlet 2.2 specification.

The following XML files are a deployment descriptor example for a registered JSP.
This is the web. xni file:

<?xm version="1.0" ?>
<! DOCTYPE web- app>
<web- app>
<di spl ay- nane> An Exanpl e Regi stered JSP File </displ ay- nane>
<servl et >
<servl et - name>JSPExanpl e</ ser vl et - nane>
<jsp-fil e>JSPExanpl e. jsp</jsp-file>
</servlet>
<servl et - mappi ng>
<servl et - nane>JSPExanpl e</ servl et - nane>
<url - pattern>/jspexanpl e</url-pattern>
</ servl et - mappi ng>
</ web- app>

This is the i as-web. xm file:

<?xm version="1.0" ?>
<i as- web- app>
<servl et >
<servl et - nane>JSPExanpl e</ servl et - nane>
<gui d>{ aaaabbbb- A456- 161A- 8be4- 0800203942f 2} </ gui d>
</servl et>
</i as-web- app>

Chapter 3 Presenting Application Pages with JavaServer Pages 83

Invoking JSPs

In this example, the JSP is registered with the GUI Dspecified in the i as- MyApp. xm
file. Although this example indicates that the servlet name is JSPExanpl e, it does
not mean that the . j sp extension is required. It is possible for the servlet name to
be JSPExanpl e. j sp instead.

This JSP is accessed from a URL by using one of the following examples:
e http://server: port/ AppPrefix/ ModuleName/ JSPExanpl e

e http://server: port/ AppPrefix/ ModuleName/ JSPExanpl e. j sp (use if the
servl et - name entry in the XML file is JSPExanpl e. j sp)

Invoking JSPs

A JSP is invoked programmatically from a servlet or by addressing it directly from
aclient using a URL. You can also include JSPs. For more information, see
“Including Other Resources,” on page 79.

Calling a JSP With a URL

JSPs can be called using URLs embedded as links in the application pages. This
section describes how to invoke JSPs using standard URLSs.

Invoking JSPs in a Specific Application
JSPs that are part of a specific application are addressed as follows:

ht t p: / / server: port/ AppPrefix/ ModuleName/ jspName?name=value

Table 3-11 shows each URL section.

Table 3-11 URL Sections

URL element Description
server: port Address and optional web server port number handling the request.
AppPrefix Indicates to the web server that the URL is for an iPlanet

Application Server application. The request is routed to the iPlanet
Application Server executive server. Configure this using the
registry entry SSPL_APP_PREFI X.

moduleName The name of the web module (these names are unique across the
server).
jspName The JSP’s file name, including the . j sp extension.

84 iPlanet ™ Application Server Developer's Guide * November 2001

Invoking JSPs

Table 3-11 URL Sections

URL element Description

?name=value. . . Optional name=value parameters to the JSP. These are accessible
from the r equest object.

For example:
http://ww. nyconpany. conf BookApp/ Onl i neBooki ngs/ di rect edLogi n. j sp

Using a generic application for a JSP has the same requirements and restrictions as
using a generic application for a servlet. There must be an application called

Def aul t with a registered XML file. Any URL request to access a servlet or JSP
with the / servl et/ entry is sent to the generic application Def aul t . For more
information about this requirement, see “Invoking Generic Application Servlets,”
on page 53.

Invoking JSPs in a Generic Application
JSPs that are not part of a specific application are addressed as follows:

ht t p: // server: port/ ser vl et/ jspName?name=value

Table 3-12 shows each URL section.

Table 3-12 URL Sections

URL element Description

server: port Address and optional web server port number handling the request.

servl et Indicates to the web server that the URL is for a generic servlet
object.

jspName The JSP’s name, including the . j sp extension.

?name=value. . . Optional name=value parameters to the JSP. These are accessible

from the r equest object.

For example:

http://ww. Who. conl servl et/ cal cMort.jsp?rate=8. 0&per =360&bal =180000

Chapter 3 Presenting Application Pages with JavaServer Pages 85

JSP 1.1 Tag Summary

Invoking a JSP From a Servlet

A servlet can invoke a JSP in one of two ways:

e Theinclude() method in the Request Di spat cher interface calls a JSP and
waits for it to return before continuing.

e Theforward() method in the Request Di spat cher interface hands JSP
interaction control.

For more information about these methods, see “Delivering Client Results,” on
page 48.

For example:

public class ForwardToJSP extends HttpServlet
{
public void service(HttpServl et Request req,
Ht t pSer vl et Response res)
throws Servl et Exception, | OException
{
Request Di spat cher rd = req. get Request Di spatcher("/test.jsp");
rd.forward(req, res);

JSP 1.1 Tag Summary

The following sections summarize the JSP 1.1 tags.

Directives

<%@ page| i ncl ude|taglib { attr="value" }* %

attr: page | anguage="java"
ext ends=" className"
i mport ="className{, +}"
session="true|fal se"
buf f er =" none| sizeInKB"
aut oFl ush="true| f al se"
i sThreadSaf e="true| fal se"
i nf o=" text"
err or Page=" jspUrl"
i SErrorPage="true| fal se"
cont ent Type="mimeType{ ; char set =charset} "

86 iPlanet '™ Application Server Developer's Guide * November 2001

JSP 1.1 Tag Summary

i ncl ude fil e="filename"

taglib uri="uriToTagLibrary"
pr ef i x=" prefixString"

For more information, see “Directives,” on page 64.

Expressions

<% expression %

For more information, see “Scripting Elements,” on page 68.

Scriptlets

<% scriptlet %

For more information, see “Scripting Elements,” on page 68.

Comments
<% - comment -- % JSP comment, not passed to client
<l-- comment --> standard HTML comment, passed to client

<% /** comment **/ % Java comment, encapsulated in scriptlet, passed to client

For more information, see “Comments,” on page 63.

Bean-Related Actions

<j sp: useBean i d="name" scope="scope"
cl ass="className" |
cl ass="className" type="typeName" |
beanName="beanName" type="typeName" |
t ype="typeName" >

/1 optional body

</j sp: useBean>

<j sp: set Property name="heanName"

propert y="propertyName"

par am=" requestParameter” | val ue="value"
</jsp:setProperty>

Chapter 3 Presenting Application Pages with JavaServer Pages 87

Modifying Custom Tags for JSP 1.1

<j sp: get Property name="beanName"
property="propertyName" >

For more information, see “Actions,” on page 69.

Other Actions

<j sp:incl ude page="relativeUrl"
flush="true|fal se" />

<jsp:forward page="URL" />

<j sp: plugi n type="bean| appl et"
code=" objectCode"
codebase=" objectCodebase"
al i gn="alignment" }
ar chi ve="archiveList" }
hei ght =" height" }
hspace="hspace" }
j reversi on="jreversion" }
name="componentName" }
vspace="vspace" }
wi dt h="width" }
nspl ugi nurl =" URL" }
i eplugi nurl ="URL" } >
<j sp: par ans
<j sp: par am nane=" paramName" val ue="paramValug" />
</jsp: paranms> }
{ <jsp:fall back> fallbackText </j sp:fal | back> }
</j sp: pl ugi n>

et Rt N W W e W e R

For more information, see “Actions,” on page 69.

Modifying Custom Tags for JSP 1.1

iPlanet Application Server custom tags may need to be modified for JSP 1.1 for the
following reasons:

e The.tld files do not conform to the DTD at:
http://java. sun. conlj 2ee/ dt ds/ web-j sptaglibrary_1 1.dtd

For example, every reference to the pr ef i x attribute must be changed to
short name.

= The following DOCTYPE element is missing:

88 iPlanet "™ Application Server Developer's Guide * November 2001

Compiling JSPs: The Command-Line Compiler

<! DOCTYPE taglib
PUBLIC "-//Sun M crosystens, Inc.//DTD JSP Tag Library 1.1//EN'
"http://java. sun.com j 2ee/ dtds/web-j sptaglibrary_1 1.dtd">

These modifications are necessary if you want to use the JSP command-line
compiler. For more information about this compiler, see “Compiling JSPs: The
Command-Line Compiler,” on page 89.

Compiling JSPs: The Command-Line Compiler

As of Service Pack 3, iPlanet Application Server uses the Jasper JSP compiler from
Apache Tomcat 3.2 to compile JSP 1.1 compliant source files into servlets. All of the
features available in this version of Jasper are available in the iPlanet Application
Server environment.

NOTE Jasper has been modified to meet the requirements of iPlanet
Application Server, so you should use only the Jasper version
provided with iPlanet Application Server. Other versions may not
work with iPlanet Application Server.

Developers can use the JSP compiler to perform syntax checks of JSP files prior to
deployment. Deployers can also benefit from the JSP compiler by precompiling JSP
files into WAR files before the WAR files are deployed to the application server.

The j spc command line tool is located under install_dir/ i as/ bi n (make sure this
directory is in your path). The format of the j spc command is as follows:

j spc [options] jsp_files

The jsp_files can be one of the following:

files One or more JSP files to be compiled.

-webapp dir A directory containing a web application. All JSPs in the
directory and its subdirectories are compiled. You cannot
specify a WAR, JAR, or ZIP file; you must first deploy it to an
open directory structure using i asdepl oy.

The basic options for the j spc command are:

Chapter 3 Presenting Application Pages with JavaServer Pages 89

Compiling JSPs: The Command-Line Compiler

90

-d dir

-p name

-C name

-uri base dir

-uriroot dir

-webi nc file

-webxm file

-ieplugin class_id

Enables quiet mode (same as - v0). Only fatal error messages
are displayed.

Specifies the output directory for the compiled JSPs. Package
directories are automatically generated based on the
directories containing the uncompiled JSPs. The default
top-level directory is the directory from which j spc is
invoked.

Specifies the name of the target package for all specified JSPs,
overriding the default package generation performed by the
- d option.

Specifies the target class name of the first JSP compiled.
Subsequent JSPs are unaffected.

Specifies the URI directory to which compilations are relative.
Applies only to JSP files listed in the command, and not to JSP
files specified with - webapp.

This is the location of each JSP file relative to the uri r oot . If
this cannot be determined, the defaultis/ .

Specifies the root directory against which URI files are
resolved. Applies only to JSP files listed in the command, and
not to JSP files specified with - webapp.

If this option is not specified, all parent directories of the first
JSP page are searched for a V\EB- | NF subdirectory. The closest
directory to the JSP page that has one is used.

If none of the JSP’s parent directories have a V\EB- | NF
subdirectory, the directory from which j spc is invoked is
used.

Creates partial servlet mappings for the - webapp option,
which can be pasted into aweb. xnl file.

Creates an entire web. xmi file for the - webapp option.

Specifies the Java plugin COM class ID for Internet Explorer.
Used by the <j sp: pl ugi n> tags.

The advanced options for the j spc command are:

iPlanet ™ Application Server Developer's Guide * November 2001

Compiling JSPs: The Command-Line Compiler

- v[level] Enables verbose mode. The level is optional; the default is 2.
Possible level values are:

= 0 - fatal error messages only

e 1 -error messages only

= 2 -error and warning messages only

= 3 -error, warning, and informational messages

= 4 -error, warning, informational, and debugging
messages

-dd dir Specifies the literal output directory for the compiled JSPs.
Package directories are not made. The default is the directory
from which j spc is invoked.

- mapped Generates separate wr i t e calls for each HTML line and
comments that describe the location of each line in the JSP file.
By default, all adjacent wr i t e calls are combined and no
location comments are generated.

- di e[code] Causes the JVM to exit and generates an error return code if a
fatal error occurs. If the code is absent or unparsable it defaults
tol.

-webi nc file Creates partial servlet mappings for the - webapp option,
which can be pasted into aweb. xm file.

-webxm file Creates an entire web. xmi file for the - webapp option.

-ieplugin class_id Specifies the Java plugin COM class ID for Internet Explorer.

Used by the <j sp: pl ugi n> tags.

When a JSP is compiled, a package is created for it. The package is located in
install_dir/ i as/ APPS/ appName/ moduleName/ WEB- | NF/ conpi | ed_j sp/ . (If the code
is deployed as an individual module, the moduleName is nodul es.) The package
name should start with j sp. APPS, which is the default package prefix name in
iPlanet Application Server.

Use the basic options of j spc when compiling the JSP for iPlanet Application
Server. iPlanet Application Server does not use the standard Jasper naming
conventions, so you must specify the generated file name, class name (- c), package
(- p) and directory (- d).

For example, to precompile f or t une. j sp to f ot une. j ava, use these commands:

cd install_dir/i as/ APPS/ f ort une/ f ort une

Chapter 3 Presenting Application Pages with JavaServer Pages 91

Value-added Features

jspc -d VEB-INF/conpiled_jsp -p jsp.APPS.fortune -c fortune fortune.jsp

The fortune. j ava file and its respective class are generated in the following
directory:

install_dir/ i as/ APPS/ f ort une/ f ort une/ VEB- | NF/ conpi | ed_j sp/j sp/ APPS/ f ort une

The package name of the f or t une. cl ass file isj sp. APPS. f or t une, because
f or t une is the package name of the JSP and iPlanet Application Server uses
j sp. APPS as a prefix.

NOTE iPlanet Application Server 6.0 SP3 supports debugging of the
compiled servlet code using Forte For Java Internet Edition 2.0.
However, you cannot debug the uncompiled JSP pages.

Additional documentation for the JSP compiler is on the Jakarta site:

http://jakarta. apache. org/tontat-4.0/jakarta-toncat-4.0/jasper/doc/jspc. htm

Value-added Features

The following sections summarize the iPlanet value-added features:
= Custom Tag Extensions

= JSP Load Balancing

= JSP Page Caching

Custom Tag Extensions

The JSP 1.1 specification has support for a user defined custom tags protocol.
Although the specification does not mandate any tags, as a value-added feature the
iPlanet Application Server contains custom tags that follow the JSP 1.1 defined tag
extension protocol. For more information, see the JSP 1.1 specification, Chapter 5.

Some tags provide LDAP and database query support, while others provide
support for conditionals inside JSPs because the specification provides no primitive
support.

To support JSP page caching, the iPlanet Application Server ships with a Cache tag
library. For details, see “JSP Page Caching,” on page 110.

92 iPlanet ™ Application Server Developer's Guide * November 2001

Value-added Features

The other tags included with the iPlanet Application Server are for internal use only,
to support converting GX tags. These tags are used in generating JSP 1.1 pages from
JSP 0.92 pages (which supported GX tags), and should not be used externally.

The following tag libraries are introduced by the iPlanet Application Server:
e Query

e LDAP

= Conditional

e Attribute

For examples of the custom tag extensions, see the samples in the
install_dir/ i as/ i as- sanpl es/i ast ags/ directory.

Database Query Tag Library

The query tag library supports row set declarative declarations in JSP pages, along
with loops to loop through a result set and a display tag for displaying column
values. The following sections describe the query tag library.

useQuery Tag

The useQuery tag declares a result set to use. The useQuer y tag defines what query
is being made and what available fields are for use. If the result set the useQuery
wants to save to is already in the scope, the tag body is skipped, and although the
row set is created it is ignored.

If the result set does not exist, the created row set is exported using the useQuery
tag’s i d attribute of the specified scope, which defaults to r equest . Either the
specified command is used, or a query located in the quer yFi | e is loaded. The
loaded query file name is either the name located in the quer yNane attribute, or, if
none is specified, the tag’s i d attribute value is used. Once the row set is initialized,
it may be executed if the execut e tag is specified. Note that you must execute a
query to use the f i el d tag outside of a loop.

If the query is loaded from a file rather than specified in the cormand attribute, the
file is loaded and cached by the Quer yLoader class. The two attributes quer yFi | e
and quer yName work in conjunction. The quer yFi | e locates the query file. If the
attribute value is a relative path, it is looked up in the RDBMS. pat h. quer y path. If
this variable is not set, the iPlanet Application Server specific GX. pat h. query
property is used. If the file is not located relative to the JSP, the query file should
look something like the following examples:

Chapter 3 Presenting Application Pages with JavaServer Pages 93

Value-added Features

query nanmel [using (ODBC, cdx, iplanet)] is select *
from Who, add where :whered ause
/* :whereC ause is an exanpl e of a bindOnLoad, naned paraneter */

query nane2 is select * fromWo, add where Who.x = add.y and
Who. name = : nane
/* :name is an exanple of a nanmed paraneter */

A blank line (without spaces, tabs, and so on) separates queries which are named
using the query ... is construct.

Syntax
<rdbm useQuery i d="export_nane"
scope="[page| request | sessi on| application]" command="sel ect *

from.."="Wo. gxq" queryNane="firstQuery"
execute="[true|fal se]" dataSourceNane="jdbc/..."
url ="odbc:...">...</rdbm useQuery>

param Tag

The par amtag sets a parameter on a row set. The parameter name can be either an
index or the actual parameter name as saved in the dictionary. Note that

bi ndOnLoad parameters must exist in the useQuery tag body before any

non-bi ndOnLoad parameters. The parameter value is either the value stored in the
value attribute or the par amtag body contents. Because JSP 1.1 tags don’t generally
nest (<% ... % being the notable exception), the only way to bind a parameter to
a value from another query is to place afi el d tag within the par amtag body and
have the par amtag use its body as the value, which is why you can place the value
in the tag’s body.

par amtags may exist within a useQuer y tag, in which case they set the parameters
directly against their parent query, or before al oop tag re-executes the row set, in
which case the parameter is set on the row set that the useQuer y tag exported.

Syntax

<rdbm param quer y="query-decl arati on- export - nang"

nane="name- of - paranet er" val ue="val ue" bi ndOnLoad="[true|fal se]"
type="[String| | nt]| Doubl e| Fl oat | Bi gDeci nal | Dat e| Bool ean| Ti ne| Ti nest a
mp"

format ="j ava-format-string for dates">val ue</rdbm paran

loop Tag

The | oop tag loops through the result set contents. The quer y attribute is used to
locate the result set or an enclosing useQuery tag. The st art attribute is used to
indicate the loops’s starting position. st art may either refer to a parameter or to an
attribute, which is looked up using PageCont ext . fi ndAttri bute(),ortoa

94 iPlanet ™ Application Server Developer's Guide * November 2001

Value-added Features

constant integer value. The value indicates which record number to start on, or

| ast , which causes the row set to be scrolled to the end, and then back max rows.
The max attribute is used to indicate the maximum number of records to display. If
execut e is specified, then the row set is executed before looping begins.

Syntax

<rdbm | oop i d="export_nane"

scope="[page| request | sessi on| application]"

quer y="query-decl arati on- export - nane"

start="[request - par anet er- nane| request - attri but e- nane| | ast | const ant
1"

max="1i nt eger - maxi mum nunber - of - r ows"

execute="{true|false]"> ..</rdbm | oop>

field Tag

The fi el d tag displays a particular result set column. The quer y attribute locates
the enclosing useQuer y tag or a previous useQuery tag’s exported result set. The
nane attribute identifies the column name to display. The f or mat attribute allows
the formatting of strings, numbers, or dates into the appropriate type. The

ur | Encode attribute can be used to encode the strings. If the column isnul | , the
fi el d tag body is output.

Syntax

<rdbm fi el d query="query-decl arati on-export-nane" nanme="field nane"
format="format for doubl es" url Encode="{fal se/true}">default

val ue</rdbm fi el d>

close Tag

The cl ose tag releases system resources. The r esour ce attribute locates the
exported query resource (result set) and calls cl ose() .

Syntax
<rdbm cl ose resour ce="query-declaration-export-name" / >

execute Tag
The execut e tag executes the identified query.

Syntax
<rdbm execut e quer y="query-declaration-export-name" / >

Chapter 3 Presenting Application Pages with JavaServer Pages 95

Value-added Features

goRecord Tag

The goRecor d tag executes the specified query and moves the result set to the
record indicated by the st art attribute. st art may either refer to a parameter, or
to an attribute, or to a constant. If the st art attribute is| ast, the result set is
moved to the last record.

Syntax

<rdbm goRecord query="query-decl arati on-export-nane"

execute="{fal se/true}"

start="[request - par anet er - nane| request - attri but e- nanme| | ast | const ant
">

default start</rdbm goRecord>

Example
The following tags produce the output display at the end of the example.

<HTM>

<BODY>

<v@taglib prefix="rdbm uri="rdbnmstags6_0.tld" %

<h2>Now | et us see</h2>

<rdbm useQuery id="a" queryFil e="dbns/ queri es. gxq"
dat aSour ceNarre="j dbc/ cdx" >

</ rdbm useQuery>

<rdbm useQuery id="b" queryFil e="dbns/ queri es. gxq"
dat aSour ceNamre="j dbc/ cdx" >

</ rdbm useQuery>

<t abl e border=1 cel | Paddi ng=3>
<t r ><t h>nane</t h><t h>phone</t h><t h>Ti t|l es Oamed</th></tr>
<rdbm | oop id="1o00pl" query="a" max="5" execute="true">
<tr>
<td><rdbm field query="a" nane="nane"/></td>
<td><rdbm field query="a" nane="phone"/></td>
<td>
<rdbm param query="b" i d="owner" type="Int">
rdbmfield query="a" name="id"/></rdbm paranr
<t abl e border=1 cel | Paddi ng=3 w dt h="100% >
<tr><th>title</th><th>price</th><th>artist</th></tr>
<rdbm | oop i d="1o0op2" query="b" nmax="5"execute="true">
<tr>
<td><rdbm field query="b" nane="title"/></td>
<td><rdbm field query="b" fornmat="3%#, ###. 00" nane="price"/>
</td>
<td><rdbm field query="b" nane="artist"/></td>
</tr>
</ rdbm | oop>
</t abl e>

96 iPlanet "™ Application Server Developer's Guide * November 2001

</td>
</[tr>

</rdbm | oop>

</t abl e>

</td>
</[tr>

</rdbm | oop>

</t abl e>

<rdbm cl ose resource="a"/>
<rdbm cl ose resource="b"/>

</ BODY>
</ HTM_>

Here are the results:

Value-added Features

name phone Titles Oramed
title price artist
Tohn Seller |555-1234
Bve Bye Burdie |£03.99 |Flop House
title price artist
Tay 4335 foo £12.00 Bar
flop House £15.00 Spatn

LDAP Tag Library

One unfortunate aspect of LDAP connections is that they are likely to be
request-specific, that is, the current user may be the only user authenticated to read
the LDAP attributes of that user’s data. Because of this, an additional

LDAPAut hent i cat e/Aut hori ze tag is required so mappings between current user
and connection to perform LDAP searches are programmable. When the LDAP server
is remote and a general authorization-capable login is not available, the

LDAPAut hent i cat e tag is used. The following sections describe the LDAP tag

library.

Chapter 3

Presenting Application Pages with JavaServer Pages

97

Value-added Features

authenticate Tag (also called connection)

The aut hent i cat e tag works in the LDAPTagSear ch context. The LDAPTagSear ch
is either retrieved from the PageCont ext using fi ndAttri but e and the query
attribute name, or by finding a parent useQuer y tag and getting its

LDAPTagSear ch. The ur|l and passwor d attributes are used for LDAPConnecti on
authentication, which the LDAPTagSear ch holds onto. If the ur | attribute has
parameters (that is, if the attribute has : Wao values in it after the standard

| dap: //server: port Nunber/ LDAP URL section), then the aut henti cat e tag
body needs to contain par amtags for each parameter. If the passwor d attribute is
unspecified, then the aut hent i cat e tag body should contain a passwor d tag as
well. At the end of the tag, the tag attempts to authenticate the LDAPTagSear ch.

Syntax
<l dap: [aut henti cat e| connecti on] query="nane of |dap exported query"
url ="ldap://..." password="..."> </l|dap:[authenticate|connection]>

authorize Tag

The aut hori ze tag works in the LDAPTagSear ch context. The LDAPTagSear ch is
either retrieved from the PageCont ext using fi ndAttri but e and the query
attribute name, or by finding a parent useQuer y tag and getting its

LDAPTagSear ch. The dn attribute is used to authorize the LDAPConnect i on, which
the LDAPTagSear ch holds onto. If the dn attribute has parameters (that is, if the
attribute has : Who values in it), then the aut hor i ze tag body needs to contain

par amtags for each parameter. At the end of the tag, the tag attempts to authorize
the LDAPTagSear ch.

Syntax

<l dap: aut hori ze query="nanme of |dap exported query"

dn="di sti ngui shed nane for the user to authorize agai nst">
</ | dap: aut hori ze>

param Tag

The par amtag sets the LDAP URL parameters. LDAP URLSs are specified in the ur |
and dn attributes of the aut hori ze tag and in the ur | attribute of the fi el d and
useQuery tags.

A URL par amis any Java level identifier with a prepended “: 7, similar to the query
parameters in a . gxq file. For example:

| dap:/ /i pl anet. com 389/ ui d=: user, ou=Peopl e, dc=i pl anet, dc=com

All parameters must be resolved by the end of the fi el d, aut henti cat e,
aut hori ze, or useQuery tags. Note that 389 is not a tag because it’s before the
LDAP URL DN section and isn’t a Java level identifier.

98 iPlanet "™ Application Server Developer's Guide * November 2001

Value-added Features

The par amtag body becomes the parameter value as named by the name attribute,
assuming no value is specified in the par amtag itself.

Syntax
<l dap: param name="par aneter name in authenticate userDN or query
url" query="nane of |dap exported query" value="...">default

val ue</| dap: par an®

password Tag

The passwor d tag sets the aut hent i cat e tag password. Like the par amtag, the
passwor d tag body becomes the password value, assuming that no value is
specified as a passwor d tag attribute. The passwor d tag is legal only inside the
aut hent i cat e tag.

Syntax

<l dap: password query="nane of |dap exported query"
val ue="...">default val ue</| dap: passwor d>
useQuery Tag

The useQuery tag describes the URL used to search the LDAP repository. At the
end of its body, an LDAPTagSear ch is placed into the context at the level indicated
by scope using the name indicated by i d. The ur| property contains the URL of a
query that al oop tag loops through or that afi el d tag displays. This is because
the | oop tag cannot specify parameter mappings except in the body — which is too
late for the loop to determine if there are any results. The fi el d tag can already
specify a URL and doesn’t need to reference a query, though it can.

The URL can also be loaded from a query file. The two attributes quer yFi | e and
quer yNane work in conjunction. The quer yFi | e locates the query file. If the
attribute value is a relative file specification, the file is searched for in the

LDAP. pat h. quer y path. If this variable is not set, then the iPlanet Application
Server specific GX. pat h. query property is used instead. The file is not located
relative to the JSP. The query file should look something like the following
example:

query namel is
| dap://directory: 389/ dc=con®?bl ah

query name2 is
| dap://directory: 389/ dc=or g?bl ah

A blank line (without spaces, tabs, etc.) separates the queries, which are named
using the query ... is construct.

Chapter 3 Presenting Application Pages with JavaServer Pages 99

Value-added Features

Syntax
<l dap: useQuery i d="exported LDAPTagSearch"
scope="[page| request | session|application]"” url="ldap://...

queryFil e="filenane for |dap query" queryNane="nanme of the query in
the | dap query file" connection="classnane of an LDAPPool Manager"
aut hori ze="di sti ngui shed name for the user to authorize

agai nst">...</| dap: useQuery>

loopEntry Tag

The | oopEnt ry tag loops through a series of LDAPENt ri es resulting from a search
that returns multiple entries. The quer y attribute points to an exported
LDAPTagSear ch (for more information, see “useQuery Tag,” on page 99). The
start and end tags work as specified in the query’s loop tag. If the useVL attribute
is true, then an {i d} _cont ent Count value is exported, which corresponds to the
Vi rtual Li st Response cont ent Count . On each pass through the loop, the current
LDAPENt ry is exported at the scope specified using the i d specified. The pre and

j unp attributes correspond to the bef or eCount and j unpTo parameters in the

Vi rtual Li st Cont r ol constructor. If the loop is using a Vi r t ual Li st Cont rol and
if the useVL attribute is set, then a Vi r t ual Li st Cont r ol is used to position the
returned entries window. The actual public draft URL for Vi r t ual Li st is located
here.

Syntax

<l dap: | oop[Entry] id="nane of attribute to export |oop’d val ue"
scope="[page| request | sessi on| application]" query="name of |dap
exported query" start="request variable nane" nmax="nunber"
pre="nunber of records before jump" junp="value of sort to junp to"
useVL="true/fal se"> </Idap: | oop[Entry] >

loopValue Tag

The | oopVal ue tag loops through a multi-value LDAPENt ry attribute or the first
LDAPENnt ry in an LDAPSear chResul t s. The quer y attribute points to an exported
LDAPTagSear ch (for more information, see “useQuery Tag,” on page 99). If this is
not specified, then the ent r y attribute points to an exported entry as specified by a
containing loop tag. One or the other must be specified. It is an error to specify both.
The at t ri but e tag names the multi-value attribute. The st art and end tags work
as specified in the query’s loop tag. On each pass through the loop, the current
LDAPAt t ri but e value is exported at the specified scope using the specified i d.

100 iPlanet ™ Application Server Developer's Guide * November 2001

Value-added Features

Syntax

<l dap: | oopVal ue i d="name of attribute to export |oop’d val ue"
scope="[page| request | sessi on| application]" query="name of |dap
exported query" entry="nane of |dap exported entry from| oopEntry"
attribute="nane of attribute to | oop through" start="..." max="...">
</ | dap: | oopVal ue>

field Tag

The fi el d tag prints out the value of a single value attribute as specified in the
query,url,orentry attributes, and the at t ri but e attribute. If no value exists, the
fi el d tag body is passed. The fi el d tag body is only evaluated if the ur| has
parameters (and hence, there are parameter bindings in the body that need to be
evaluated and set), or if the mapped value is nul | . If the attribute name is $DNS,
then the distinguished ent ry name is returned as the field value.

Syntax
<l dap: field query="nanme of query to use" entry="nane of |dap
exported entry from/loopEntry" url="Idap://..." attribute="nane of

attribute to display"> </Idap:field>

sort Tag

The sort tag works in conjunction with the useQuer y tag, setting a sort order for
the enclosing query. The quer y attribute identifies the enclosing useQuer y tag (or
an exported LDAPTagSear ch, if the sort tag occurs outside of the useQuery tag’s
body). The or der attribute specifies the sort order, as described by the

LDAPSor t Key constructor’s keyDescr i pti on parameter. The useQuery tag
supports multiple sorts. Sorts are prioritized in the order specified.

Syntax
<| dap: sort query="nane of |dap exported query" order="..."/>

close Tag

The cl ose tag releases resources back to the system. The r esour ce attribute locates
the exported query resource (LDAPTagSear ch) and calls cl ose() on it. This call
abandons any executing Sear chResul t s and releases the connection to the
connection pool (or calls di sconnect () on the connection, if the connection
doesn’t come from a pool; the connection can come from the aut hent i cat e tag).

Syntax
<l dap: cl ose resource="nane of |dap exported query"/>

Chapter 3 Presenting Application Pages with JavaServer Pages 101

Value-added Features

Example

The following example uses both LDAP and swi t ch tags. It is assumed that the
swi t ch tags are mostly self describing.

<HTM_>

<BODY>

<v@taglib prefix="cond" uri="condtags6_0.tld" %
<v@taglib prefix="I1dap" uri="|daptags6_0.tld" %
<U@taglib prefix="attr" uri="attribtags6_0.tld" %

<cond: par anet er nane="user">
<cond: exi st s>
<l dap: query id="c" url="Idap://|ocal host: 389/ ui d=: user,

ou=Peopl e, dc=i pl anet, dc=confcn, nai | al t er nat eaddr ess, i | ">
<cond: par anmet er nanme="password">
<cond: exi st s>
<| dap: aut henti cate query="c"
url ="1dap://1 ocal host: 389/ dc=
con??sub?(ui d=: user) ">
<| dap: param nane="user" >
<attr:get Paraneter name="user" />
</ | dap: par an>
<| dap: passwor d>
<attr:get Paraneter nanme="password" />
</ | dap: passwor d>
</ | dap: aut henti cat e>
</ cond: exi st s>
</ cond: par anet er >
<l dap: param name="user " ><attr: get Par anet er name="user" />
</ | dap: par an®
</ | dap: query>
<h2>Hel | o
<l dap:field query="c" attribute="cn">

No Contact Name for <attr:getParaneter name="user" /> in LDAP

</l dap: fiel d></h2>
<p>
Your main email is:
<bl ockquot e>
<l dap:field query="c" attribute="nmail"/>
</ bl ockquot e>

Your alternate enmni|l addresses are as follows:

102 iPlanet ™ Application Server Developer's Guide * November 2001

Value-added Features

<l dap: | oopVal ue i d="\Wo" scope="request" query="c"
attribute="mail al t er nat eaddr ess" >

<attr:get nane="foo" scope="request"/>

</ | dap: | oopVal ue>

</ ul >

<cond: | dap nane="c">

<cond: aut hent i cat ed>

<p>

Your enpl oyee nunber is:
<l dap:field attribute="enpl oyeenunber" query="c">
They renoved the enpl oyee nunbers fromldap -- not good

</l dap:field>

</ cond: aut hent i cat ed>

<cond: el se>

<cond: par anmet er nane="password" >

<cond: exi st s>Your specified password is incorrect. Please
retry! </ cond: exi st s>

<cond: el se>To see your enployee id, please specify a 'password
paranmeter in the url along with your user nane!<p></cond: el se>

</ cond: par anet er >

</ cond: el se>

</ cond: | dap>

<p>

<l dap: cl ose resource="c"/>
</ cond: exi st s>

<cond: el se>

To see your enployee information, please specify a 'user’ paraneter
inthe url!

<p>

</ cond: el se>

</ cond: par anet er >

</ body></ht i >

Woul d produce one of the following (at least, it would if they hadn't
renoved enpl oyee nunber from nsdirectory recently!)

Chapter 3 Presenting Application Pages with JavaServer Pages 103

Value-added Features

To see your employee information, please specify a'user’ parameter in the vrll

Hello David Navas

T our maity email is:
daven@netscape. com
Y our alternate email addresses are as followa:
* daven@imeom. com

o david navasi@me om.com
* david navas@netscape com

To see wour emplovee id, please specify a'password parameter it the 1l along with wour vser name!

Hello David Navas

T our tait ernail is:
daven(@netscape. com
Tour alternate email addresses are as follows:
* daver@moom. com
* david navasi@mecom.com

* david navasi@netscape.com

Vour employes munber is: 033150

104

Conditional Tag Library

The cond tag family supports swi t ch and case tags, allowing a special case when a
row set is at the end, when a user is given management-only information types,
when a user has requested high bandwidth content, and so on.

However, for ease of use and better readability, the following equivalents can be

used:

1. <cond:role> ... </cond:role>

2. <cond: rowset nanme="rowset name"> ... </cond:rowset>

3. <cond: | dap nane="ldap connection nane"> ... </cond: | dap>

4. <cond:attribute name="attribute nane"> ... </cond:attribute>

iPlanet ™ Application Server Developer's Guide * November 2001

Value-added Features

5. <cond: paraneter nane="paraneter nanme | $REMOTE_USER$"> ...
</ cond: par anet er >

6. <cond:else> ... </cond:el se>

7. <cond:equals value="..."> ... </cond:equal s>

8. <cond: equal sl gnoreCase value="..."> ... </cond: equal sl gnoreCase>
9. <cond:exists> ... </cond:exists>

10. <cond: not Enpty> ... </cond: not Enpty>

11. <cond: execut eNot Enpty> ... </cond: execut eNot Enpt y>

12. <cond:islLast> ... </cond:islLast>

13. <cond: Connected> ... </cond: connect ed>

14. <cond: aut henticated> ... </cond: aut henti cat ed>

Some ways may be more expressive than you really require. For example:
<cond: par anet er name="Who"> ... </cond: paraneter>

is the same as:

<cond: swi t ch><cond: val ue><% request . get Par anet er (" Who")
%</ cond: val ue> ... </cond:switch>

Additionally, one might assume that:

<cond: rowset val ue="rowset nane">
<cond: exi sts> ... </cond: exi st s></cond: r owset >

would be the same as:

<cond: rowset val ue="rowset nane">
<cond: case operation="="> ... </cond: case></cond: rowset >

Always consider, if the increased expressiveness is worth the trade-off in possible
user confusion.

The root tags are described next.

switch Tag

The swi t ch tag defaults to a straight value comparison. However, it is more likely
to be used as a RowSet type switch to replace some callbacks that DBRowSet
contains. The swi t ch tag keeps track of whether a particular case statement has
fulfilled the switch statement and only exports its body to the content page.

Chapter 3 Presenting Application Pages with JavaServer Pages 105

Value-added Features

Syntax

<cond: swi tch type="[val ue|rol e|rowset || dap|attribute| paraneter]”
val ue="const ant val ue, role nane, rowset nane, etc."> ..
</ cond: swi t ch>

case Tag

The case tag contains an operation and (possibly) a second operand, and is used to
determine if the case statement fulfills the swi t ch tag. Note that if a case and
switch combination are used where a value is required and no value is specified, a
value is obtained from an enclosing cond: dynani cVal ue tag. This allows the case
tag to implement only the tag interface, which allows more efficient JSP building.
The case tag body is not evaluated unless the case statement fulfills an as yet
unfulfilled switch statement.

If no operation is specified, the operation is assumed to be el se —that is, to fulfill
the switch regardless. If no operation is specified and the switch type isr ol e, the
operation assumes it is equal s.

Note that certain case operations make sense only in certain switch types. For
example:

e TheisLast and not Enpt y tags are useful for both I dap (query or entry) and
RowSet switch types.

= The execut eNot Enpt y operation makes sense only for RowSet switch types.

= The connect ed and aut hent i cat ed operations make sense only for | dap
switch types.

= The “=, <, >” etc. operations make sense only when comparing numerical
values. The switch and case values are converted to doubles (if necessary), and
their values are compared.

= The equal s and equal sl gnor eCase operations make sense only when
comparing strings, although equal s is called against the switch value equal s
method - which might be implemented by an object to compare itself to a
string (the case value, always). not Enpt y also makes sense for strings as a
check when a parameter has specified a non-zero length setting.

Syntax

<cond: case

oper ation="[=| <| >| <=| >=| | =] <>| ><| =>| =<| ~=| equal s| equal sl gnor eCase| e
| se| exi st s| not Enpt y| execut eNot Enpt y| i sLast | connect ed| aut henti cat ed|
{ et hod- nane}]"

val ue="..."></cond: case>

106 iPlanet ™ Application Server Developer's Guide * November 2001

Value-added Features

value Tag

The val ue tag body is evaluated and passed to the val ue tag’s parent. The parent
implements the | Val ueCont ai ni ngTag, which both swi t ch and dynani cVal ue do.
You can also specify the value in a val ue tag attribute. But then, if you do that, it is
better to put the value in the switch or case directly.

Syntax
<cond: val ue val ue="bl ah" >def aul t val ue</ cond: val ue>

Dynamic Value Tag

The dynani cVal ue tag body should have at least two elements. One is a val ue tag,
which builds the dynamic interest value. The second is a case tag, whose value
attribute is extracted from the enclosing dynami cVal ue instance. The

dynani cVal ue tag does have a val ue tag, as follows:

<cond: attri bute name="Wo">
<cond: dynani cVal ue val ue="10">
<cond: case operation="<">| ess than ten</cond: case>
<cond: case operation="=">equal to ten</cond:case>
<cond: case operation=">">greater than ten</cond: case>
</ cond: dynami cVal ue>
</ cond: attri but e>

There are no machine equivalents to comparison bits in the status register,
therefore the operation performs three (3) times.

Syntax

<cond: dynani cVal ue val ue="bl ah"> ... <cond:val ue/> ..
<cond: *case*/> ... </cond: dynam cVal ue>

Example

The following example shows how a switch might be used. The three links at the
end produce the three different output types:

<v@taglib prefix="cond" uri="condtags6_0.tld" %

<cond: par anet er name="showHeader " >
<cond: equal sl gnoreCase val ue="true">
h2>Now | et us see</h2>
</ cond: equal sl gnor eCase>
<cond: dynani cVal ue>
<cond: val ue val ue="fal se"/ >
<cond: equal sl gnor eCase>
I’ m not showi ng a header. Nope, not ne
</ cond: equal sl gnor eCase>
</ cond: dynani cVal ue>

Chapter 3 Presenting Application Pages with JavaServer Pages 107

Value-added Features

<cond: el se>
showHeader not specified or illegal value
</ cond: el se>
</ cond: par anet er >

The possible outputs are as follows:

http://localhoat/servlet/Queryd. isp showHeader niot specified or dlegal value
http://localhost/servlet/Queryd. jepshowHeader=true Now let us see
http: //localhoat/servlet/Queryd. jsp?shovHeader=Ffalse I'mnot showing & header. Nope, not mel

Attribute Tag Library
The following sections provide information on the attribute tag library.

getAttribute Tag

The get At t ri but e tag prints the named attribute’s value, which is retrieved from
the specified scope. If no scope is specified, fi ndAt t ri but e() is used to find the
attribute. If no value is found, the tag body is printed instead. The f or nat is used
as the query: fi el d tag.

Syntax
<attr:getAttribute name="attri but eNanme"
scope="[| page| request | sessi on| application]" format="...">default

val ue</attr:getAttribute>

setAttribute Tag

The set At tri but e tag sets the named attribute’s value in the specified scope. If no
scope is specified, page is assumed. The value is either the value specified in the
value attribute, or if none is specified, the tag body is used.

Syntax
<attr:setAttribute nane="attri buteNanme" val ue="..."

scope="[page| request | sessi on| application]">val ue</attr:setAttribute
>

108 iPlanet ™ Application Server Developer's Guide * November 2001

Value-added Features

getParameter Tag

The get Par anet er tag prints the named parameter’s value. If no parameter value
exists, the tag body is printed instead. The format attribute is used as the
query: fiel dtag.

Syntax
<attr:get Paraneter nane="paraneterNanme" fornat="url Encode">def aul t
val ue</ attr: get Paranet er >

Get Remote User Tag
The get Renot eUser tag prints the servlet’s remote user name.

Syntax
<attr:get Renot eUser >def aul t val ue</attr: get Renot eUser >

Example

For more information, see the examples in “LDAP Tag Library,” on page 97 and
“Conditional Tag Library,” on page 104.

JSP Load Balancing

Servlets can be load balanced because each servlet has a GUID associated with it.
You simply distribute the servlet across all the iPlanet Application Server
instances. However, JSPs are converted by iPlanet Application Server into servlets
at runtime and initially have no individual GUIDs associated with them. This
makes load balancing and failover of JSPs impossible when they are called directly
from the browser (as opposed to being called through a servlet).

iPlanet Application Server 6.0 supports load balancing of JSPs individually. To
obtain load balancing and failover capabilities for JSPs called directly from the
browser, follow these steps:

1. Inthe XML descriptor, assign a GUID to each JSP you want to load balance. For
details about assigning GUIDs to JSPs, see “Registered JSPs,” on page 83.

2. IniPlanet Application Server, JSPs are run using the system servlets
JSPRunner and JSPRunner Sti cky. These servlets are registered at the time of
installation. Use the Administration Tool to make these system servlets
distributed across the servers you want to include in the load balancing.

3. Check the servlet component properties of Syst em JSPRunner and
Syst em JSPRunner St i cky. Make sure that all the servers across which JSPs
are to be load balanced are listed correctly.

Chapter 3 Presenting Application Pages with JavaServer Pages 109

Value-added Features

4. Load balance the JSP just you would a servlet, through the administrative tool.
Distribute the JSPs across the servers you want to include in the load
balancing.

5. Restart the web server.

For details about distributing application components and changing component
properties, see the Administrator’s Guide.

JSP Page Caching

A new feature called JSP caching aids in compositional JSP development. This
provides functionality to cache JSPs within the Java engine, thereby allowing a
master JSP to include multiple JSPs (for example, a portal page). Each can be
cached using different cache criteria. Think of a portal page containing a window
to view stock quotes, another to view weather information, and so on. The stock
quote window can be cached for 10 minutes, the weather report window for 30
minutes, and so on.

Note that JSP caching is in addition to results caching. A JSP can be composed of
several JSPs, each having separate cache criteria. The composed JSP can be cached
in the KXS using the results caching with a GUI D. For more information, see
“Registered JSPs,” on page 83.

NOTE If you use your own request object in a JSP (extended from
Ht t pSer vl et Request) and use the Jasper JSP compiler, the JSP
caching provided by CachelLi b. t 1 d is not supported for that JSP.

JSP caching uses the custom tag library support provided by JSP 1.1. A typical
cacheable JSP page looks like this:

<v@taglib prefix="ias" uri="CachelLib.tld"%

<i as: cache>

<ias:criteria tineout="30">

<i as: check cl ass="com net scape. server.servlet.test.Checker"/>
<i as: param nane="y" val ue="*" scope="request"/>
</ias:criteria>

</ias: cache>

<% int i=0; %

<htm >

<body>

<h2>Hel | o there</h2>

110 iPlanet ™ Application Server Developer's Guide * November 2001

Value-added Features

shoul d be cached.

No? <% i ++ %</ b>
</ body>
</htm >

The <i as: cache> and </ i as: cache> tags delimit the cache constraints. The
<i as:criteria>tag specifies the timeout value and encloses different cache
criteria. Cache criteria are expressed using any or both tags, <i as: check> and
<i as: par ane. The tag syntax is as follows:

<ias:criteria timeout="val" >-specifiesthe cached element timeout, in
seconds. The cache criteria are specified here before the closing
</ias:criteria>.

<i as:check class="classname" />-isone mechanism of specifying cache
criteria. The cl assnane refers to a class that has a method called check, which
has the following signature:

publ i ¢ Bool ean check(Servl et Request, Servlet)
This returns a boolean value indicating if the element is to be cached or not.

<i as: param nane="par anNane" val ue="paranVal ue" scope="request"
/ > —is the other mechanism to specify cache criteria.

par anNane is the attribute name, passed in either request object (using
set Attri but e) or in the URI. This parameter is used as the cache criterion.

Table 3-13 shows the par anval ue parameter values, which determine if caching is
performed or not.

Table 3-13 par anVal ue Parameter Values

Constraint Description

X =" X must be present either as a parameter or as an attribute.

X = “v1]...|vk” , X is mapped to one of the strings (parameter/attribute). If
where vi might be “*” x=*, then the constraint is true of the current request if the

request parameter for x has the same value as was used to
store the cached buffer.

x="1-u" ,whereland x is mapped to a value in the range [1,u]
u are integers.

The scope identifies the attribute sources to be checked and can be page, r equest
(default), sessi on, or appl i cati on.

Chapter 3 Presenting Application Pages with JavaServer Pages 111

Value-added Features

Example
The following example represents a cached JSP page:

<v@taglib prefix="ias" uri="CachelLib.tld"%

<i as: cache>

<ias:criteria timeout="30">

<i as: check cl ass="com net scape. server.servlet.test.Checker"/>
<i as: param nane="y" val ue="*" scope="request"/>
</ias:criteria>

</i as: cache>

<% int i=0;, %

<htm >

<body>

<h2>Hel | o t here</ h2>

| should be cached.

No? <% i ++ %</ b>
</ body>
</htm >

where Checker is defined as:

package com net scape. server.servlet.test;

i nport com net scape. server. *;
i nport javax.servlet.*;
i nport javax.servlet.http.*;

public class Checker {
String chk = "42";
publ i c Checker ()
{

}

publ i ¢ Bool ean check(Servl et Request _req, Servlet _serv)

{

Ht t pServl et Request req = (HttpServl et Request) _req;
String par = req.getParaneter("x");
return new Bool ean(par == null ? false : par.equal s(chk));

}

Given the above, a cached element is valid for a request with parameter x=42 and y
equal to the value used to store the element. Note that it is possible to have
multiple sets of <i as: par ank and <i as: check> inside an <i as: cri teri a> block.
Also, it is possible to have multiple <i as: cri t eri a> blocks inside a JSP.

112 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 4

Introducing Enterprise JavaBeans

This chapter describes how Enterprise JavaBeans (EJBs) work in the iPlanet
Application Server application programming model. This chapter begins by
defining an EJB’s role and delivery mechanisms. Next it describes the two EJB
types—entity and session beans—and gives details on when to use them. Finally,
the chapter provides a design overview of an object-oriented iPlanet Application
Server application using EJBs to encapsulate business logic.

This chapter contains the following sections:

What Enterprise JavaBeans Do

What is an Enterprise JavaBean?

Session Beans and Entity Beans

EJB Role in an iPlanet Application Server Application
Designing an Object-Oriented Application

Using the ejbc Compiler

Using JNDI to Reference an EJB

NOTE If you know about EJBs and how they are used in an iPlanet

Application Server, jump ahead for specific instructions and
guidelines for developing EJBs for use with an iPlanet Application
Server. See Chapter 6, “Building Entity EJBs,” and Chapter 11,
“Creating and Managing User Sessions.”

113

What Enterprise JavaBeans Do

What Enterprise JavaBeans Do

114

In an iPlanet Application Server, EJBs are the application workhorses. Servlets act
as the application’s central dispatchers and handle the presentation logic. EJBs do
the bulk of the application’s actual data and rules processing, but provide no
presentation or visible user interface services. EJBs enable partitioning of business
logic, rules, and objects into discrete, modular, and scalable units. Each EJB
encapsulates one or more application tasks or objects, including data structures
and operation methods. EJBs take parameters and send back return values.

EJBs always work within the context of a container, which serves as a link between
the EJBs and the server that hosts them. The iPlanet Application Server software
environment provides the EJB container. This container provides all standard
container services denoted by the Sun EJB specification and also provides
additional services specific to an iPlanet Application Server.

The iPlanet Application Server Container:
(provides low level system support for EJBs)

EJB EJB EJB EJB

Transactions Persistence Security

iPlanet Application Server Services

The container handles remote access, security, concurrency, transaction control,
and database accesses. Because the actual implementation details are part of the
container, and there is a standard prescribed interface between a container and its
EJBs, the bean developer is freed from having to know or handle platform-specific
implementation details. Instead, the bean developer can create generic, task
focused EJBs to be used with any vendor’s products that support the EJB standard.

iPlanet ™ Application Server Developer's Guide * November 2001

What is an Enterprise JavaBean?

What is an Enterprise JavaBean?

The EJB architecture is component-based for development and deployment of
object-oriented, distributed, enterprise applications. An EJB is a single component
in an application. Applications written using EJBs are scalable, encapsulate
transactions, and permit secure multi-user access. These applications can be
written once and then deployed on any server that supports EJBs.

The fundamental EJB characteristics are as follows:

= Bean creation and management is handled at runtime by the iPlanet
Application Server provided container.

= Client access mediation is handled by the container and the server where the
bean is deployed, freeing the bean developer from having to process it.

= Restricting a bean to use standard container services defined by the EJB
specification guarantees that the bean is portable and deployable in any EJB
compliant container.

< Including a bean in, or adding a bean to an application made up of other,
separate bean elements—a composite application—does not require source code
changes or bean recompiling.

= Aclient’s bean definition view is controlled entirely by the bean developer. The
view is not affected by the container in which the bean runs or the server where
the bean is deployed.

= EJBs can be dynamically reloaded while the iPlanet Application Server is
running.

The EJB specification further states that an enterprise bean establishes three
contracts: client, component, and JAR file.

Understanding Client Contracts

The client contract determines the communication rules between a client and the
EJB container, establishes a uniform application development model that uses
EJBs, and guarantees greater bean reuse. The client contract stipulates how an EJB
object is identified, how its methods are invoked, and how it is created and
destroyed.

Chapter 4 Introducing Enterprise JavaBeans 115

What is an Enterprise JavaBean?

116

The EJB container enables distributed application building using your own
components and components from other suppliers. The iPlanet Application Server
provides high level transaction, state management, multithreading, and resource
pooling wrappers, thereby shielding you from having to know the low-level API
details.

An EJB instance is created and managed at runtime by a container class, but the EJB
itself can be customized at deployment time by editing its environmental
properties. Metadata, such as transaction mode and security attributes, are
separate from the bean itself, and are controlled by the container tools at design
and deployment. At runtime, a client’s bean access is container-controlled by the
server where the EJB is deployed.

The EJB container is also responsible for ensuring that a client can invoke the
specialized business methods the EJB defines. While a bean developer implements
methods inside the bean, the developer must provide a remote interface to the
container that tells the container how clients can call the bean’s methods.

Finally, the EJB supplies a home interface for the container. The home interface
extends the j avax. ej b. EJBHone interface defined in the EJB specification. This
provides a mechanism for clients to create and destroy EJBs. At its most basic, the
home interface defines zero or more cr eat e(. . .) methods for each way to create a
bean. In addition, some EJB types, known as entity beans, must also define finder
methods for each way used to look up a bean or a collection of beans.

Understanding Component Contracts

The component contract establishes the relationship between an EJB and its
container, and is completely transparent to a client. There are several parts to the
component contract for any given bean, as follows:

= Life cycle: For EJB session beans, this includes the j avax. ej b. Sessi onBean
andj avax. ej b. Sessi onSynchr oni zat i on interface implementations. For EJB
entity beans, this includes the j avax. ej b. Enti t yBean interface
implementation.

= Session context: A container implements the j avax. ej b. Sessi onCont ext
interface to pass services and information to a session bean instance when the
bean instance is created.

= Entity context: A container implements the j avax. ej b. Enti t yCont ext
interface to pass services and information to an entity bean when the bean
instance is created.

iPlanet ™ Application Server Developer's Guide * November 2001

What is an Enterprise JavaBean?

= Environment: A container implementsj ava. util . Properties and makes
these properties available to its EJBs.

e Services information: A container makes its services available to all of its EJBs.

Finally, you can extend the component contract to provide additional services
specific to an application.

Understanding JAR File Contracts

The standard format used to package an enterprise bean is the EJB-JAR file. This
format is the contract between the bean provider and application assembler, and
between the application assembler and the deployer. With the iPlanet Application
Server you can create a . j ar file containing EJBs using the iPlanet Application
Server Deployment Tool. For more information, see the Deployment Tool Online
Help.

NOTE EJB JAR names identified by the first portion of their filenames
(without the . j ar extensions) must be unique when deploying to
the Application Server. Use a Java package-like naming scheme for
EAR filenames and EJB names as found in the <ej b- nane> portion
of the ej b-j ar. xnl files; this ensures that name collisions do not
occur. The benefits of this naming practice apply not only to the
iPlanet Application Server, but to other J2EE application servers as
well.

The EJB-JAR file must contain the Deployment Descriptor (DD) as well as all class
files for the following:

= The enterprise bean class.
= The enterprise bean home and remote interface.
= The primary key class for an entity bean.

In addition, the EJB-JAR file must contain the class files for all classes and interfaces
for the enterprise bean class, and the remote and home interfaces to use. For more
information on the EJB-JAR file contents, see Chapter 10, “Packaging for
Deployment.”

Chapter 4 Introducing Enterprise JavaBeans 117

Session Beans and Entity Beans

Session Beans and Entity Beans

118

An EJB is an object that represents one of the following:
= A stateless service

= Asession with a particular client (which automatically maintains state across
multiple client-invoked methods)

= A persistent entity object (possibly shared among multiple clients)

There are two kinds of EJBs: entity and session. Each bean type is used differently in
a server application. The following sections describe the two bean types.

Understanding Session Beans

Session EJBs have the following characteristics:
= They execute in relation to a single client.

= Optionally, they handle transaction management according to property
settings.

= Optionally, they update shared data in an underlying database.
= They are relatively short lived.

= They are not guaranteed to survive a server crash, unless you use the iPlanet
Application Server failover support for stateful session beans.

A session bean implements business rules or logic. All functionality for remote
access, security, concurrency, and transactions are provided by the EJB container.
A session EJB is a private resource used only by the client that creates it. For
example, you might create an EJB to simulate an electronic shopping cart. Each
time a user logs in to an application, the application creates the session bean to hold
purchases for that user. Once the user logs out or finishes shopping, the session
bean is removed.

Understanding Entity Beans

Entity EJBs have the following characteristics:

= Data representation in the Enterprise Information System (EIS) resource,
usually a database.

= Bean managed transaction demarcation.

iPlanet ™ Application Server Developer's Guide * November 2001

EJB Role in an iPlanet Application Server Application

= Container managed transaction demarcation.
= Shared access for all users.

= Exists as long as its data is in a database.

= Transparently survives EJB server crashes.

The server that hosts EJBs and an EJB container provides a scalable runtime
environment for concurrently active entity EJBs. Entity EJBs represent persistent
data.

EJB Role in an iPlanet Application Server
Application

EJBs do the majority of business logic and data processing in an iPlanet Application
Server application. They function invisibly behind the scenes to make an
application work. Even though EJBs are at the heart of an iPlanet Application
Server application, users are seldom aware of EJBs, nor do they ever interact
directly with them.

When a user invokes an iPlanet Application Server application servlet from a
browser, the servlet invokes one or more EJBs to do the bulk of the application’s
business logic and data processing. For example, the servlet may load a JavaServer
Page (JSP) to the user’s browser to request a user name and password, then pass
the user input to a session bean to validate the input.

Servlet/IJSP > Serviet > EJB
User Interface |« App Dispatcher|<«—— Business Logic| DB

Y

Once a valid user name and password combination is accepted, the servlet might
instantiate one or more entity and session beans to execute the application’s
business logic, and then terminate. The beans themselves might instantiate other
entity or session beans to do further business logic and data processing.

For example, suppose a servlet invokes an entity bean that gives a customer service
representative access to a parts database. Access to the parts database might mean
the ability to browse the database, to queue up items for purchase, to place the
customer order (and permanently reduce the number of parts in the database), and
to bill the customer. It might also include the ability to reorder parts when stock is
low or depleted.

Chapter 4 Introducing Enterprise JavaBeans 119

Designing an Object-Oriented Application

As part of the customer order process, a servlet creates a session bean that
represents a shopping cart to keep temporary track of items as a customer orders
them. When the order is complete, the shopping cart data is transferred to the
order database, the quantity of each item in the inventory database is reduced, and
the shopping cart session bean is freed.

As this simplified example illustrates, EJBs are invoked by a servlet to handle most
of the application’s business logic and data processing. Entity beans are primarily
used to handle data access using the Java Database Connectivity (JDBC) API.
Session beans provide transient application objects and perform discrete business
tasks.

The challenge when creating an application that uses EJBs is determining how to
break up an application into servlets, JSPs, session beans, and/or entity beans.

Designing an Object-Oriented Application

120

Partitioning an iPlanet Application Server application’s business logic and data
processing into the most effective set of EJBs is the bulk of your job as a developer.
There are no hard and fast rules for object-oriented design with EJBs, other than
that entity bean instances tend to be long lived, persistent, and shared among
clients, while session bean instances tend to be short lived and used only by a
single client. Therefore, the following sections are mostly high level iPlanet
Application Server specific information to improve application speed, making EJBs
modular, shareable, and maintainable.

With all object-oriented development, you must determine what granularity level
you need for your business logic and data processing. Granularity level refers to
how many pieces you break an application into. A high level of
granularity—where you divide an application into many, smaller, more narrowly
defined EJBs—creates an application that may promote greater EJB sharing and
reuse among different applications at your site. A low level of granularity creates a
more monolithic application that usually executes more quickly.

NOTE Decomposing an application into a moderate to large number of
separate EJBs can create a huge application performance
degradation and more overhead. EJBs, like JavaBeans, are not
simply Java objects. EJBs are higher level entities than Java objects.
They are components with remote call interface semantics, security
semantics, transaction semantics, and properties.

iPlanet ™ Application Server Developer's Guide * November 2001

Designing an Object-Oriented Application

Planning Guidelines

In general, create an iPlanet Application Server application to balance the need for
execution speed with the need for sharing EJBs among applications and clients,
and deploying applications across servers:

= Ask the server administrator to co-locate EJBs with your presentation logic
(servlets and JSPs) on the same server to reduce the number of Remote
Procedure Calls (RPCs) when the application runs.

= Create stateless session beans instead of stateful session beans as much as
possible. If you must create stateful session beans, have the server
administrator turn on sticky load balancing for better performance.

= Create session EJBs that are small, generic, and narrowly task focused. Ideally,
these EJBs encapsulate behavior that is used in many applications.

In addition to these general considerations, decide which parts of an application
are candidates for entity and session beans.

Using Session Beans

Session beans are intended to represent transient objects and processes, such as a
single database record, a document copy for editing, or specialized business objects
for individual clients, such as a shopping cart. These objects are available only to a
single client. Because of this, session beans can maintain client-specific session
information, called the conversational state. Session beans that maintain the
conversational state are called stateful session beans; beans that do not are called
stateless session beans.

When a client is done with the session objects, the objects are released. When
designing an application, designate each temporary, single client object as a
potential session bean. For example, in an online shopping application each
shopping cart is a temporary object. The cart lasts only as long as the customer
selects items for purchase. Once the customer is done and the order is processed,
the cart object is no longer needed and is released.

Like an entity bean, a session bean may access a database through JDBC calls. A
session bean can also provide transaction settings. These transaction settings and
JDBC calls are referenced by the session bean’s container, which is transparent. The
container provided with the iPlanet Application Server handles the JDBC calls and
result sets.

Chapter 4 Introducing Enterprise JavaBeans 121

Designing an Object-Oriented Application

122

For a complete discussion of using session beans to define temporary objects and
rules for single client access in an iPlanet Application Server application, see
Chapter 5, “Using Session EJBs to Manage Business Rules.”

Using Entity Beans

Entity beans commonly represent persistent data. This data is maintained directly
in a database or accessed through an EIS application as an object. A simple example
of an entity bean is one defined to represent a single row in a database table and
where each bean instance represents a specific row. A more complex example is an
entity bean designed to represent complicated views of joined tables in a database
where each bean instance represents the contents of a single shopping cart.

Unlike session beans, entity bean instances are accessed simultaneously by
multiple clients. The container is responsible for synchronizing the instance state
by transactions in use. This responsibility delegation to the container means that
the bean developer does not need to consider concurrent access methods from
multiple transactions.

An entity bean’s persistence can either be managed by the bean or the container.
When an entity bean manages its own persistence, it’s called Bean Managed
Persistence. When the bean delegates this to the container, it’s called Container
Managed Persistence (CMP).

= Bean Managed Persistence: the bean developer implements persistence code
(such as JDBC calls) directly in the EJB class methods for bean managed
persistence. The possible downside is portability loss, if a proprietary interface
is used, and the risk of tying the bean to a specific database.

= Container Managed Persistence: the container provider uses the Deployment
Tool to implement the container persistence. The container transparently
manages the persistence state. Therefore, you do not need to implement any
data access code in the bean methods. Not only is this method simpler to
implement, but it makes the bean fully portable without any ties to a specific
database.

For a complete discussion of using entity beans to define persistent objects and
business logic in an iPlanet Application Server application, see Chapter 6,
“Building Entity EJBs.”

iPlanet ™ Application Server Developer's Guide * November 2001

Designing an Object-Oriented Application

Planning for Failover Recovery

Failover recovery is a process in which a bean can reinstantiate itself after a server
crash. Both stateless and stateful session beans support failover recovery. The
Deployment Tool is used to set the failover properties for session beans; for a
description of these settings see the Deployment Tool Online Help. For more
information about session bean failover recovery, see Chapter 5, “Using Session
EJBs to Manage Business Rules.”

Entity beans support failover recovery with the caveat that the reference to the
bean is lost after a server crash. To recover an entity bean, you must create a new
reference to it with a finder. For more information, see “Using Finder Methods,” on
page 150.

Working with Databases

In an iPlanet Application Server, the preferred method for working with databases
is through the JDBC API in conjunction with transaction attributes. Use the Java
Naming and Directory Interface (JNDI) to obtain a database connection. JNDI
provides a standard way for applications to find and access database services
independent of JDBC drivers.

For a complete discussion of using entity beans to define persistent objects and
business logic in an iPlanet Application Server application, see Chapter 8, “Using
JDBC for Database Access.”

For a complete description of transaction controls available through session and
entity beans, see Chapter 7, “Handling Transactions with EJBs.”

Deploying EJBs

Deploy EJBs with the rest of an application using the Deployment Tool. For more
information on how to deploy EJBs, see the Deployment Tool Online Help. For
information on property settings made by the Deployment Tool and how they
affect an application, see Chapter 10, “Packaging for Deployment.”

Chapter 4 Introducing Enterprise JavaBeans 123

Using the ejbc Compiler

Dynamically Reloading EJBs

EJB reloading in an iPlanet Application Server is done without restarting the server
by simply redeploying the EJB. The iPlanet Application Server notices the new
component and reloads it within 10 seconds. For more information, see Appendix
B, “Runtime Considerations.”

NOTE This feature is turned off by default for a production environment.
Turn it on when needed.

Using the ejbc Compiler

124

iPlanet Application Server includes the ej bc utility, which:
= Checks all EJB classes and interfaces for compliance with the EJB specification
= Generates stubs and skeletons

Stubs and skeletons are required by the EJB container and must be deployed with
the application files. These stubs and skeletons enable remote communication and
allow the container to intercept all bean requests.

The ej bc utility generates the following files:

Table 4-1 Files generated by the ejbc utility

File Description Required
ejbc Option
_Home_St ub. cl ass OMG JavalDL 07-59-99 -iiop
spec conformant Home
Stub class
_Remote_St ub. cl ass OMG JavalDL 07-59-99 -iiop
spec conformant Remote
Stub class
_ej b_Rmi CorbaBri dge_Home_Ti e. cl ass Home Interface Tieclass -iiop
_ej b_Rm CorbaBri dge_Remote_Ti e. cl ass OMG JavalDL 07-59-99 -iiop
spec conformant Tie class
ej b_Rm Cor baBri dge_Remote. cl ass Remote Interface Bridge -iiop
ej b_Rm Cor baBri dge_Home. cl ass Home Bridge -iiop
ej b_f ac_Implementation. cl ass Home Factory

iPlanet ™ Application Server Developer's Guide * November 2001

Table 4-1 Files generated by the ejbc utility

Using the ejbc Compiler

File

Description Required
ejbc Option

ej b_honme_Implementation. cl ass
ej b_kcp_skel _Remote. cl ass
ej b_kcp_skel _Home. cl ass

ej b_kcp_st ub_Remote. cl ass
ej b_kcp_st ub_Home. cl ass

ej b_skel _Implementation. cl ass
ej b_st ub_Remote. cl ass

ej b_stub_Home. cl ass

Home Skeleton

KCP Remote skeleton
KCP Home skeleton
KCP Remote stub
KCP Home stub
Remote Skeleton
Remote stub

Home stub

The ej bc syntax for typical use is as follows:

ej bc options Home Remote Implementation

RMIC (Remote Method Invocation Compiler) mode generates only the IIOP stubs
and skeleton classes, and it skips the rules checking for EJB spec compliance. The

ej bc syntax for RMIC mode is as follows:

ej bc options -rm ¢ Remote

The options can be as follows. If - sl , - sf, or - cnp is not specified, the bean is

compiled as a BMP entity bean.

Table 4-2 ejbc options

Compiles a stateful session bean to be Highly Available.

Option Description

- sl Compiles the bean as a stateless session bean.
- sf Compiles the bean as a stateful session bean.
-fo

-cnp Compiles the bean as a CMP entity bean.
-iiop Generates additional CORBA classes.

-gs Generates Java source files.

-d dir Specifies the output directory.

-hel p Displays a syntax summary.

-rmc Generates RMIC code.

Chapter 4 Introducing Enterprise JavaBeans 125

Using JNDI to Reference an EJB

Table 4-2 ejbc options

Option Description

-cl asspat h classpath Sets the classpath.

-cp Deprecated; use - cl asspat h instead.

-javaccp classpath Adds a prefix to the j avac classpath.

- debug Runs the ej bc utility in debug mode and prints debugging
information.

Using JNDI to Reference an EJB

The JNDI naming scheme for lookups of EJBs is illustrated here with an example
(patterned after the Hel | oWor | d sample that ships with the server). The servlet
source file, G eet er Servl et . j ava, looks up the home of the bean TheG eet er .

NOTE The principles illustrated here are also applicable to EJB lookups
from one EJB to another.

The JNDI Lookup in the Greet er Ser vl et . j ava file looks like this:

i nitContext = new javax.nanmi ng.lnitial Context();
String JNDI Nane = "java: conp/ env/ejb/greeter”;
hj ect objref = initContext.|ookup(JNDI Nane);
G eeter Home nyG eeter Home =
(G eet er Hone) Por t abl eRenpt eoj ect . narrow(obj r ef ,
Gr eet er Hone. cl ass) ;

NOTE iPlanet recommends that all references to EJBs be organized in the
ej b subcontext of the application component’s environment (for
example in the j ava: conp/ ej v/ ej b subcontext).

126 iPlanet ™ Application Server Developer's Guide * November 2001

Using JNDI to Reference an EJB

The ej b-ref entry in the web. xnl file of the referencing component looks like this:

<ej b-ref>
<ej b-ref - name>ej b/ gr eet er </ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ej b-ref-type>
<home>sanpl es. hel | owor | d. ej b. Gr eet er Hone</ home>
<renot e>sanpl es. hel | owor | d. ej b. G eet er </ r enot e>
<ej b-1i nk>TheG eet er</ ej b-1i nk>

</ejb-ref>

Two attributes are important in web. xm with respect to JNDI naming:
= Theej b-ref - namre attribute defines the lookup string as used in the source file.

= The ej b-1i nk attribute connects this reference to the target enterprise bean.
This is the name defined in the ej b- nane attribute of the ej b-j ar. xnm file of
the target enterprise bean.

According to the J2EE specification, the target bean should be part of an EJB JAR
module that is in the same J2EE application.

When the application is deployed, the references are stored in the registry (in
LDAP) at the following location:

SOFTWARE\ i Pl anet\ Appl i cati on Server\ 6.0\ J2EE- Modul e\ module_name\ ej b-ref s
Figure 4-1 shows the registry entry.

Chapter 4 Introducing Enterprise JavaBeans 127

Using JNDI to Reference an EJB

Figure 4-1 EJB reference registry entry

] mmazien-dormine
] o Ty e i e
_] smazer-inpieis
] tesaan o
_] meazion-zcops=
_'| TermEn s beae
_] eacandimsmis.i
_'I TETTE Ay 1
] wwicams e e
[3-__| coniscd -
=g LS
El- _imiigresie
Jmhl.lllwqiqr
] wi-rertypa=Seanin
] P narmpben resorevortiL el Qe Hort
] e pi Tre s
_'I rorsierrmepars beilrsorid o Cresder

The ej b-ref entry inthei as-web. xm file of the referencing component looks like
this:

<ej b-ref>
<ej b-ref-nanme>ej b/ greet er </ ej b-ref - nane>
<j ndi - name>ej b/ TheGr eet er </ j ndi - name>

</ ejb-ref>

128 iPlanet ™ Application Server Developer's Guide * November 2001

Using JNDI to Reference an EJB

In the ej b-r ef section of the iPlanet specific deployment descriptor, i as- web. xni ,
the lookup name (same as the ej b- r ef - nane attribute in web. xnl) is connected to
the INDI name of the target enterprise bean. The JNDI name of a bean is

ej b/ bean_name. For example, if the bean name (as defined by the ej b- name
attribute in the ej b-j ar. xnl file of the target bean) is TheG eet er, then the JNDI
name of the deployed bean is ej b/ TheG eet er.

Finally, the ej b-j ar. xml file of the target enterprise bean looks like this:

<ej b-jar>

<enterprise-beans>

<sessi on>
<di spl ay- name>TheGr eet er </ di spl ay- nane>
<ej b- name>TheG eet er </] b- nane>
<home>sanpl es. hel | owor | d. ej b. Gr eet er Hone</ honme>
<renot e>sanpl es. hel | owor | d. ej b. G eet er </ r enot e>
<ej b-cl ass>sanpl es. hel | owor | d. ej b. G eet er EJB</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Bean</transacti on-type>

</ sessi on>

</ejb-jar>

The deployment descriptor of the target enterprise bean (the ej b- nane attribute) is
the same as the ej b- | i nk attribute of the web. xm file and the JNDI name

(i ndi - name ini as- web. xm) of the referencing component. Also, the bean type,

home, and remote interfaces should be the same in the deployment descriptors of
the referencing component and the target bean.

For more information about the web. xnl , i as-web. xm ,and ej b-j ar. xnm files, see
Chapter 10, “Packaging for Deployment.”

When the EJB is deployed, all bean lookups are in the following section of the
registry:

SOFTWARE\ i Pl anet\ Appl i cation Server\6. 0\ EJB- Conponents
Figure 4-2 shows the registry entry.

Chapter 4 Introducing Enterprise JavaBeans 129

Using JNDI to Reference an EJB

Figure 4-2 EJB component registry entry

He EH# Helg
S SO TR AT Wiared
E]- 1 tppicaion Teree
B8
1] Bt et e
{=7] Vel i rucchuing
1] Wersmrmbursd
Bl_jan
(@] s
E-rl S [1]
@l i belSoeron
[S e
o
[] adresge Smrne a1 st M (i DedoaTige
[vt iy BeSoi0-21 s 1 o204 bR R |
L] it m | S 211 i) LT BT
[Corches 4 Sl B 311 i 0000 Dbl 7 eS|
[et Prosfioct= - RE0Ee M (2.1 el 330071 Dasbo AT |
[s Gl a5 % - B Ol d T 36 |
] Swmamrvoat uriorymi YOG Del2- | |- 08 F00| Cad=dT a1
L] Ehimnp et SRS B 21 b B DT
[MhaGrasters (bastatatn- 1 50-11 - w00 Deda P
g]
[i
[E | ilreniiih
G0
G- weat
1) 4 A gaictan
[3]- | LFE-Modie el

130 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 5

Using Session EJBs to Manage
Business Rules

This chapter describes how to create session EJBs that encapsulate an application’s
business rules and logic. Specifically, this chapter explains how to use session
beans to encapsulate repetitive, time bound, and user-dependent tasks that
represent the transient needs of a single, specific user.

This chapter includes the following sections:
= Introducing Session EJBs
= Session Bean Components

= Additional Session Bean Guidelines

Introducing Session EJBs

Much of a standard, distributed application consists of logical code units that
perform repetitive, time-bound, and user-dependent tasks. These tasks can be
simple or complex, and are often needed in different applications. For example,
banking applications must verify a user’s account ID and balances before
performing any transaction. These tasks define the business rules and logic that
you use to run your business. Such discrete tasks, transient by nature, are
candidates for session EJBs.

Session EJBs are self-contained code units that represent client-specific generic
object instances. These objects are transient in nature, created and freed throughout
an application’s life on an as-needed basis. For example, the shopping cart employed
by many web-based, online shopping applications is a typical session bean. It is
created by the online shopping application only when an item is chosen. When an

131

Introducing Session EJBs

132

item selection is completed, the item prices in the cart are calculated, the order is
placed, and the shopping cart object is freed. A user can continue browsing
merchandise in the online catalogue, and if the user decides to place another order,
a new shopping cart is created.

Often, a session bean has no dependencies on or connections to other application
objects. For example, a shopping cart bean might have a data list member for
storing item information, a data member for storing the total cost of items currently
in the cart, and methods for adding, subtracting, reporting, and totaling items. On
the other hand, the shopping cart might not have a live connection to the database
of all available items for purchase.

Session beans can either be stateless or stateful. A stateless session bean
encapsulates a temporary piece of business logic needed by a specific client for a
limited time span. A stateful session bean is transient, but uses a conversational
state to preserve information about its contents and values between client calls. The
conversational state enables the bean’s container to maintain information about the
session bean state and to recreate the state at a later point in program execution
when needed.

The defining characteristics of a session bean have to do with its non-persistent,
independent status within an application. One way to think of a session bean is as a
temporary, logical extension of a client application that runs on the application
server. A session bean:

= Executes for a single client.
= Updates data in an underlying database.
e Isshort lived.

Generally, a session bean does not represent shared data in a database, but obtains
a data snapshot. However, a bean can update data. Optionally, a session bean can
also be transaction aware. Its operations can take place in the context of a
transaction managed by the bean.

A client accesses a session bean through the bean’s remote interface, EJBObj ect .
An EJB object is a remote Java programming language object accessible from the
client through standard Java APIs for remote object calls. The EJB lives in the
container from its creation to its destruction, and the container manages the EJB’s
life cycle and support services. Where an EJB resides or executes is transparent to
the client. Finally, multiple EJBs can be installed in a single container. The container
provides services that allow clients to look up the interfaces of installed EJB classes
through the Java Naming and Directory Interface (JNDI).

iPlanet ™ Application Server Developer's Guide * November 2001

Session Bean Components

A client never accesses session bean instances directly. Instead, a client uses the
session bean’s remote interface to access a bean instance. The EJB object class that
implements a session bean’s remote interface is provided by the container. At a
minimum, an EJB object supports all j ava. ej b. EJIBObj ect interface methods. This
includes methods to obtain the session bean’s home interface, to get the object’s
handle, to test if the object is identical to another object, and to remove the object.
These methods are stipulated by the EJB specification. In addition, most EJB objects
also support specific business logic methods. These methods are at the heart of an
application.

All specifications are accessible from install_dir/ i as/ docs/ i ndex. ht m where
install_dir is the location where the iPlanet Application Server is installed.

Session Bean Components

When programming a session bean, you must provide the following class files:
= Enterprise bean remote interface, extending j avax. ej b. EJBObj ect

= Enterprise bean class definition

= Enterprise bean home interface, extending j avax. ej b. EJBHone

= Enterprise bean metadata (Deployment Descriptors (DDs) and other
configuration information)

Creating the Remote Interface

A session bean’s remote interface defines a user’s access to a bean’s methods. All
remote interfaces extend j avax. ej b. EJBObj ect . For example:

i mport javax.ejb.*;

i mport java.rm.*;

public interface MySessi onBean extends EJBObj ect {
/] define business nethod nethods here. ...

}

The remote interface defines the session bean’s business methods that a client calls.
The business methods defined in the remote interface are executed by the bean’s
container at runtime. For each method you define in the remote interface, you must
supply a corresponding method in the bean class itself. The corresponding method
in the bean class must have the same signature.

Chapter 5 Using Session EJBs to Manage Business Rules 133

Session Bean Components

134

Besides the business methods you define in the remote interface, the EJBObj ect
interface defines several abstract methods that enable you to retrieve the bean’s
home interface, to retrieve the bean’s handle (a unique identifier), to compare the
bean to another bean to see if it is identical, and to free or remove the bean when it
is no longer needed.

For more information about these built-in methods and how they are used, see the
EJB specification. All specifications are accessible from

install_dir/ i as/ docs/ i ndex. ht m where install_dir is the location where the iPlanet
Application Server is installed.

Declaring vs. Implementing the Remote Interface

A bean class definition must include one matching method definition, including
matching method names, arguments, and return types, for each method defined in
the bean’s remote interface. The EJB specification also permits the bean class to
implement the remote interface directly, but recommends against this practice to
avoid inadvertently passing a direct reference (through t hi s) to a clientin
violation of the client-container-EJB protocol intended by the specification.

Creating the Class Definition

For a session bean, the bean class must be defined as publ i ¢ and cannot be
abst ract . The bean class must implement the j avax. ej b. Sessi onBean interface.
For example:

i mport java.rm.*;

i mport java.util.*;

i mport javax.ejb.*;

public class MySessi onBean inpl enents Sessi onBean {

/1 Session Bean inplenentation. These nethods nust al ways i ncl uded.
public void ejbActivate() throws RenpteException {

}

public void ejbPassivate() throws RenoteException {
}

public void ej bRenobve() throws RenbteException{

}

public void set Sessi onCont ext (Sessi onCont ext ctx) throws
Renot eException {

}

/] other code onmtted here....

}

iPlanet ™ Application Server Developer's Guide * November 2001

Session Bean Components

The session bean must also implement one or more ej bCreat e(...) methods.
There must be one method for each way a client invokes the bean. For example:

public void ejbCreate() {
string[] userinfo = {"User Name", "Encrypted Password"} ;

Each ej bCreat e(...) method must be declared as publ i c, return voi d, and be
named ej bCr eat e. Arguments must be legal Java RMI types. The t hr ows clause
may define application specific exceptions and may include

java. rm . Renot eException orjava. ej b. Cr eat eExcepti on.

All useful session beans also implement one or more business methods. These
methods are usually unique to each bean and represent its particular functionality.
For example, if a session bean manages user logins, it might include a unique
function called val i dat eLogi n() .

Business method names can be anything, but must not conflict with the method
names used in the EJB architecture. Business methods must be declared as publ i c.
Method arguments and return value types must be legal for Java RMI. The t hr ows
clause may define application specific exceptions and must include

java. rm . Renot eExcepti on.

There is one interface implementation permitted in a session bean class definition,
particularly j avax. ej b. Sessi onSynchr oni zat i on, that enables a session bean
instance to be notified of transaction boundaries and synchronize its state with
those transactions. For more information about this interface, see the EJB
specification. All specifications are accessible from

install_dir/ i as/ docs/ i ndex. ht m where install_dir is the location where the iPlanet
Application Server is installed.

Session Timeout

The container removes inactive session beans after they are inactive for a specified
(or default) time. This timeout value is set in the bean’s deployment descriptor. For
more information, see “EJB XML DTD,” on page 298.

Passivation and Activation

The container passivates session beans after they are inactive for a specified (or
default) time. This timeout value is set in the bean’s deployment descriptor. For
more information, see “EJB XML DTD,” on page 298.

For more information about passivation, see the EJB specification. All specifications
are accessible from install_dir/ i as/ docs/ i ndex. ht m where install_dir is the
location where the iPlanet Application Server is installed.

Chapter 5 Using Session EJBs to Manage Business Rules 135

Additional Session Bean Guidelines

Creating the Home Interface

The home interface defines the methods that enable a client using the application to
create and remove session objects. A home interface always extends
j avax. ej b. EJBHone. For example:

i mport javax.ejb.*;
i mport java.rm.*;
public interface MySessi onBeanHone extends EJBHome {
MySessi onBean create() throws CreateException, RenoteException;

}

As this example illustrates, a session bean’s home interface defines one or more

cr eat e methods. Each method must be named cr eat e, and must correspond in
number and argument types to an ej bCr eat e method defined in the session bean
class. The return type for each create method, however, does not match its
corresponding ej bCr eat e method’s return type. Instead, it must return the session
bean’s remote interface type.

All exceptions defined in the t hr ows clause of an ej bCr eat e method must be
defined in the t hr ows clause of the matching create method in the remote interface.
In addition, the t hr ows clause in the home interface must always include

j avax. ej b. Cr eat eExcepti on.

All home interfaces automatically define two remove methods for destroying an
EJB when it is no longer needed.

NOTE Do not override these methods.

Additional Session Bean Guidelines

136

Before deciding which parts of an application you can represent as session beans,
you should know a few more things about session beans. A couple of these things
are related to the EJB specification for session beans, and a couple are specific to the
iPlanet Application Server and its support for session beans.

Creating Stateless or Stateful Beans

The EJB specification describes two state management modes for session beans:

iPlanet ™ Application Server Developer's Guide * November 2001

Additional Session Bean Guidelines

e STATELESS - the bean retains no state information between method calls, so
any bean instance can service any client.

e STATEFUL - the bean retains state information across methods and
transactions, so a specific bean instance must be associated with a single client
at all times.

If you use stateful session beans, co-locate the stateful beans with their clients.
Also, use sticky load balancing to reduce the number of RPCs, especially for session
beans that are passivated and activated frequently or for session beans that use
many resources, such as database connections and handles.

Accessing iPlanet Application Server
Functionality

You can develop session beans that adhere strictly to the EJB specification, you can
develop session beans that take advantage of both the specification and additional,
value-added iPlanet Application Server features, or you can develop session beans
that adhere to the specification in non-iPlanet Application Server environments,
but that take advantage of iPlanet Application Server features if they are available.
Make the choice that is best for your intended deployment scenario.

The iPlanet Application Server offers several features through the iPlanet
Application Server container, and the iPlanet Application Server APIs enable
applications to take programmatic advantage of specific iPlanet Application Server
environment features. Embed API calls in session beans if you plan on using those
beans only in an iPlanet Application Server environment.

For example, you can trigger a named application event from an EJB using the
| AppEvent Myr interface by using the following steps and example:

1. Firstobtain a com ki vasof t. | Cont ext instance by casting
j avax. ej b. Sessi onCont ext orj avax. ej b. Enti tyCont ext to
| Ser ver Cont ext .

2. Next, use the Get AppEvent Mgr () method in the GXCont ext class to create an
| AppEvent Myr object.

3. Finally, trigger the application event with t ri gger Event () .

Chapter 5 Using Session EJBs to Manage Business Rules 137

Additional Session Bean Guidelines

138

j avax. ej b. Sessi onCont ext m ct x;

com net scape. server. | Server Cont ext sc;

sc = (com net scape. server.| Server Context) mctx;

com ki vasoft. | Context kivaContext = sc.getContext();

| AppEvent Mgr nmgr = com ki vasoft. dl m GXCont ext . Get AppEvent Myr (i c);
nmgr.trigger Event ("event Nane") ;

Serializing Handles and References

The EJB specification indicates that to guarantee serializable bean references, you
should use handles rather than direct references to EJBs.

In the iPlanet Application Server, direct references are also serializable. If you take
advantage of this extension, be aware that not all vendors support it.

Managing Transactions

Many session beans interact with databases. You control bean transactions by
using settings in the bean’s property file. This permits specifying transaction
attributes at bean deployment time. By having a bean handle transaction
management there is no need to explicitly start, rollback, or commit transactions in
the bean’s database access methods.

By moving transaction management to the bean level, you gain the ability to place
all the bean’s activities—even those not directly tied to the database access—under
the same transaction control as your database calls. This guarantees that all
application parts controlled by a session bean run as part of the same transaction,
and either everything the bean undertakes is committed, or it is rolled back in a
failure case. In effect, a bean managed transactional state permits synchronizing
the application without programming any synchronization routines.

Committing a Transaction

When a session bean signals that it is time to commit a transaction, the actual
commit process is handled by the bean’s container. Besides affecting the data the
application processes, commit time also affects the session bean state. The iPlanet
Application Server container implements commit option C as described in the EJB
specification.

iPlanet ™ Application Server Developer's Guide * November 2001

Additional Session Bean Guidelines

When a commit occurs, it signals the container that the session bean has completed
its useful work and tells the container to synchronize its state with the underlying
datasource. The container permits the transaction to complete and then frees the
bean. Result sets associated with a committed transaction are no longer valid.
Subsequent requests for the same bean cause the container to issue a load to
synchronize state with the underlying datasource.

Note that transactions from the container are implicitly committed. Also, any
participant can rollback a transaction. For details about transactions, see Chapter 7,
“Handling Transactions with EJBs.”

Accessing Databases

Many session beans access and update data. Because session beans are transient, be
careful about how accesses occur. In general, use the JDBC API to make calls, and
always use the transaction and security management methods described in
Chapter 7, “ Handling Transactions with EJBs” to manage the transaction isolation
level and transaction requirements at the bean level.

For details about database accesses, see Chapter 8, “Using JDBC for Database
Access.”

Session Bean Failover

The session bean failover feature allows conversational state recovery for stateful
session beans when an iPlanet Application Server becomes unavailable due to a
service loss. Supporting failover for stateful session beans is an iPlanet Application
Server value-added feature. J2EE programs do not need any modification to
support the iPlanet Application Server failover feature. Failover is handled by the
container and is defined by the deployer in the deployment descriptor.

Imagine a corporate buyer performing online purchasing at an e-commerce web
site. After spending hours shopping, the buyer has hundreds of items in their
shopping cart (a stateful session bean). The system then has an unexpected fatal
problem and the iPlanet Application Server instance becomes unavailable. Without
failover capability, the failure would result in the buyer’s shopping cart becoming
empty; the stateful session bean’s state would be lost. With the failover feature in
place, the buyer is unaware of the system failure; the failover mechanism redirects
the client to a running iPlanet Application Server instance that has the bean’s state
before the failure. The buyer’s shopping cart contains the same selected items as it
did before the failover took place.

Chapter 5 Using Session EJBs to Manage Business Rules 139

Additional Session Bean Guidelines

140

Notable failover feature support for stateful session beans includes:

= Failover is a value-added feature that supports J2EE programs.

= Failover is transparent to the client; no special APIs are required.

= Failover is handled by the container and configured by the deployer.

= Distributed Store (DSync) is the enabling mechanism for restoring the state
after a system failure.

= Performance impact is minimal for stateful session beans that do not need
failover support.

How to Configure a Stateful Bean with Failover

Configuring a stateful session bean for failover is a combination of configuring the
bean with failover and DSync.

= During installation or runtime, configure the server for DSync.
= During deployment, configure the stateful session bean for failover.

To take advantage of the failover feature, the bean must be configured with both
failover and DSync. The DSync mechanism saves the session bean’s conversational
state during runtime. The failover mechanism allows the container to detect a
system failure and connects to another running iPlanet Application Server instance
that has the saved session bean state.

For more information, see the Administrator’s Guide for details on how to configure
a stateful session bean with failover during deployment and how to configure
DSync during runtime. For more information on configuring DSync during
installation, see the Installation Guide.

How the Failover Process Works

Stateful bean failover is achieved with a combination of smart stubs and a
distributed store. When a bean is deployed as a failover bean, the deployment tool
generates special stubs. On a method invocation, the smart stubs detect failures
and transparently relocate a bean to a new home potentially in a different engine.
The stubs determine if the bean’s reference has become stale by getting a
connection exception from the dead bean. The stubs then do a home look up and
obtain the remote interface. Once the bean is relocated, the stubs retry the method
on the recovered bean. The container guarantees at-most-once semantics when trying
a method.

iPlanet ™ Application Server Developer's Guide * November 2001

Additional Session Bean Guidelines

The container uses a distributed store that is based on DSync to maintain the bean
state. The bean state is saved at regular intervals and is automatically reinstated as
part of the recovery process.

For more information on the deployment descriptors used by stateful session beans
for failover, see Chapter 10, “Packaging for Deployment.”

Failover Guidelines
Keep in mind the following guidelines when implementing failover:

Keep ej bPassi vat e() and ej bActi vat e() simple.

Use obj . renove() to remove a bean, not hone. r enove(handl e) . Association
between a bean and its original home may not be preserved after failover.

Use judgement by carefully weighing the advantages of bean failover against
the failover process performance cost.

NOTE Do not configure every stateful bean with failover.

Remember, session bean state is conversational. Use entity beans for
transactional data.

The time interval for saving a stateful session bean’s state is configurable using
the Administration Tool (under the EJB tab); the default is 10 seconds.

If the bean is transactional, timer-based state saving is automatically disabled
during transactions. This ensures transactional data integrity in case of a server
engine failure during the transaction. Transactional database updates are
rolled back by the database if a failure occurs. The state of the recovered bean is
whatever it was at the begining of the failed transaction. However, if the
transaction proceeds smoothly, the bean state is saved when the transaction
completes, and timer-based saving resumes until the next transaction begins.

If the bean implements the iPlanet Application Server provided

com net scape. server. ej b. | EBFoSt at eModi fi cat i on interface, the state
saver can check if the state of the bean is modified or not before it performs the
expensive save operation. This interface defines two methods:

package com net scape. server.ejb;

public interface | EBFoStateMdification {

Chapter 5 Using Session EJBs to Manage Business Rules 141

Additional Session Bean Guidelines

/**
** This nethod is called by the container to check if a bean
** jnstance is dirty.

**/

bool ean isDirty();
/**

** Sometimes the container perfornms i medi ate saves. Then it
** calls to reset the dirty state of the nodified bean

**/

voi d setDirty(boolean dirty);
}

The user-supplied bean implementation has a boolean variable that tracks the
modified state of the bean. This variable is consulted prior to any state saving.

How Often Is the State Saved?

A container with failover configured saves the bean state during runtime at regular
intervals. The process for saving the state includes:

= Saving at regular, configurable time intervals.
= Saving on transaction boundaries, if the bean participates in transactions.

The regular time interval is configured in the Administration Tool.

How the State Is Saved
The process for state saving is as follows:

= First, each stateful session bean’s ej bPassi vat e() method is called.

= Next, the bean’s conversational state is serialized and saved to the distributed
store.

= Finally, the bean’s ej bAct i vat e() method is called.

NOTE Saving a bean state is expensive because of the operations involved.

142 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 6

Building Entity EJBs

This chapter describes what an entity EJB is and what entity beans must contain.
This chapter also provides additional guidelines for creating entity beans and for
determining what the entity bean’s needs are in an application.

This chapter contains the following sections:
= Introducing Entity EJBs

= Entity Bean Components

= Additional Entity Bean Guidelines

= Container Managed Persistence

All specifications are accessible from install_dir/ i as/ docs/ i ndex. ht m where
install_dir is the location where the iPlanet Application Server is installed.

Introducing Entity EJBs

The heart of a distributed, multi-user application involves interactions with
datasources which are often transactional, such as a database or an existing legacy
application. In most cases, the external datasource or business object is transparent
to the user, or is shielded or buffered from direct user interactions. These protected,
transactional, and persistent interactions with databases, documents, and other
business objects are candidates for entity EJB encapsulation.

Business EJBs are self-contained, reusable components—with data members,
properties, and methods—that represent generic instances, transactionally aware,
persistent data objects that are shared among clients. Persistence refers to the
creation and bean maintenance throughout the application’s lifetime.

There are two persistence management types, and the iPlanet Application Server
supports both types as listed below.

143

Introducing Entity EJBs

= Container managed persistence — this is when the container is responsible for
the bean persistence.

= Bean managed persistence — this is when the bean is responsible for their own
persistence.

A developer codes a bean managed entity bean by providing database access

calls—through JDBC and SQL—directly in the bean class methods. Database access
calls must be inthe ej bCreat e(), ej bRenove(), ej bFi ndXXX(), ej bLoad(), and
ej bSt or e() methods. The bean managed persistence advantage is that these beans
can be in any container without requiring the container to generate database calls.

Entity beans rely on the container to manage security, concurrency, transactions,
and other container specific services for the entity objects it manages. Multiple
clients can access an entity object at the same time and the container transparently
handles simultaneous accesses through transactions.

As an application developer, you cannot access the container’s entity bean services
directly, nor do you ever need to. Instead, the container is there to take care of low
level implementation details so you can focus on the larger role the entity bean
plays in an application picture.

Clients access an entity bean through the bean’s remote interface. The object that
implements the remote interface is called the EJB object. Usually, an entity EJB is
shared among multiple clients and represents a single entry point to a data
resource or business object, such as a database. Regardless of which client accesses
an entity object at a given time, each client’s object view is both location
independent and transparent to other clients.

Finally, any number of entity beans can be installed in a container. The container
implements a home interface for each entity bean. The home interface enables a
client to create, look up, and remove entity objects. A client looks up an entity
bean’s home interface through the Java Naming and Directory Interface (JNDI).

An entity bean includes the following attributes:
= Represents data in a database.

= Supports transactions.

= Executes for multiple clients.

= Persists for as long as needed by all clients.
= Transparently survives server crashes.

Generally, an entity bean represents shared data in a database and is transaction
aware. Its operations always take place in the context of transactions managed by
the bean’s container.

144 iPlanet ™ Application Server Developer's Guide * November 2001

Entity Bean Components

How an Entity Bean is Accessed

A client, such as a browser or servlet, accesses an entity bean through the bean’s
remote interface, EJBObj ect . An EJB object is a remote Java programming
language object accessible from the client through standard Java APIs for remote
object calls. The EJB lives in the container from its creation to its destruction, and
the container manages the EJB’s life cycle and support services.

A client never accesses an entity bean instance directly. Instead, a client uses the
entity bean’s remote interface to access a bean instance. The EJB object class that
implements an entity bean’s remote interface is provided by the container. At a
minimum, an EJB object supports all methods of the j ava. ej b. EJIBObj ect
interface. This includes methods to obtain the entity bean’s home interface, to get
the object’s handle, to retrieve the entity’s primary key, to test if the object is
identical to another object, and to remove the object. These methods are stipulated
by the EJB specification. In addition, the remote interface for most EJB objects also
supports specific business logic methods. These are the methods at the heart of a
specific application.

All specifications are accessible from install_dir/ i as/ docs/ i ndex. ht m where
install_dir is the location where the iPlanet Application Server is installed.

Entity Bean Components

When creating an entity bean, you must provide the following class files:
= Enterprise bean class
= Enterprise bean home interface, implementing j avax. ej b. EJBHore

= Enterprise bean remote interface, implementing j avax. ej b. EJBObj ect

Creating the Class Definition

For an entity bean, the bean class must be defined as publ i ¢ and cannot be
abst ract . The bean class must implement the j avax. ej b. Ent i t yBean interface.
For example:

i mport java.rm.*;

i mport java.util.*;

i mport javax.ejb.*;

public class MyEntityBean inplenments EntityBean {

/1 Entity Bean inplenmentation. These nethods nust always i ncl uded.

Chapter 6 Building Entity EJBs 145

Entity Bean Components

146

public void ejbActivate() throws RenpteException {

}
public void ejbLoad() throws RenpteException {

}

public void ejbPassivate() throws RenoteException {

}

public void ej bRenove() throws RenoteException{

}

public void ejbStore() throws RenpteException{

}
public void setEntityContext(EntityContext ctx) throws

Renot eException {

}

public void unsetEntityContext() throws RenpteException {
}

/'l other code onmtted here....

}

In addition to these methods, the entity bean class must also define one or more

ej bCreat e() methods and the ej bFi ndByPri mar yKey() finder method.
Optionally, it may define one ej bPost Cr eat e() method for each ej bCr eat e()
method. It may provide additional, developer defined finder methods that take the
form ej bFi nd XXX, where XXX represents a unique method name continuation
(for example, ej bFi ndAppl esAndOr anges) that does not duplicate any other
method names.

Finally, most useful entity beans also implement one or more business methods.
These methods are usually unique to each bean and represent its particular
functionality. Business method names can be anything, but must not conflict with
the method names used in the EJB architecture. Business methods must be declared
as publ i c. Method arguments and return value types must be Java RMI legal. The
t hr ows clause may define application specific exceptions and may include

java. rm . Renot eExcepti on.

There are two business method types to implement in an entity bean:

= internal ones, which are used by other business methods in the bean, but are
never accessed outside the bean itself

= external ones, which are referenced by the entity bean’s remote interface

The following sections describe the various methods in an entity bean’s class
definition.

The examples in these sections assume the following member variable definitions:

iPlanet ™ Application Server Developer's Guide * November 2001

Entity Bean Components

private transient javax.ejb.EntityContext mctx = null;

/1 These define the state of our bean
private int mquantity;
private int mtotal Sol d;

Using ejbActivate and ejbPassivate

When an entity bean instance is needed by a server application, the bean’s
container invokes ej bAct i vat e() to ready a bean instance for use. Similarly, when
an instance is no longer needed, the bean’s container invokes ej bPassi vat e() to
disassociate the bean from the application.

If, specific application tasks need to be performed when a bean is first made ready
for an application or needs to be performed when a bean is no longer needed,
program those operations within these methods.

Activation is not the same as creating a bean. You can only activate a bean that has
already been created. Similarly, passivation is not the same as removing a bean.
Passivation merely returns a bean instance to the container pool for later use.

ej bRemove() is required to actually terminate a bean instance.

The container passivates entity beans after they are inactive for a specified (or
default) time. This timeout value is set in the bean’s property file. For more
information, see “EJB XML DTD,” on page 298.

For more information about ej bCr eat e() and ej bRenove(), see “Using ejbCreate
Methods,” on page 149.

For more information about ej bAct i vat e() and ej bPassi vat e(), see the EJB
specification. All specifications are accessible from

install_dir/ i as/ docs/ i ndex. ht m where install_dir is the location where the iPlanet
Application Server is installed.

Using ejbLoad and ejbStore

An entity bean should permit its container to store the bean state information in a
database for synchronization purposes. Use your implementation of ej bSt or e()
to store state information in the database and use your implementation of

ej bLoad() to retrieve state information from the database. When the container
calls ej bLoad(), it synchronizes the bean state by loading state information from
the database.

The following example shows ej bLoad() and ej bSt or e() method definitions that
store and retrieve active data.

Chapter 6 Building Entity EJBs 147

Entity Bean Components

public void ejblLoad()
throws java.rmn . Renot eExcepti on
{
String itenmd;
Dat abaseConnecti on dc = null;
java.sql. Statenent stnt = null;
java.sql.ResultSet rs = null;

itemd = (String) mctx.getPrimaryKey();
Systemout. println("nyBean: Loading state for item" + itenld);

String query =
"SELECT s.total Sold, s.quantity " +
" FROMItems " +
" WHERE s.itemid =" + itemd;

dc = new Dat abaseConnection();

dc. creat eConnecti on(Dat abaseConnecti on. GLOBALTX) ;
stnt = dc.createStatenent();

rs = stnt.executeQuery(query);

if (rs !'=null) {
rs.next();
mtotal Sold = rs.getlnt(1);
m quantity = rs.getlnt(2);

}

public void ejbStore()
throws java.rm . Renot eException

{
String item d;
itemd = (String) mctx.getPrimaryKey();
Dat abaseConnection dc = null;
java.sql.Statenent stntl = null;
java.sql.Statenent stnt2 = null;

Systemout. println("nyBean: Saving state for item=" + itemd);
String updl =

"UPDATE Item" +

" SET quantity =" + mgquantity +

" WHERE itemid =" + itenid,
String upd2 =

"UPDATE Item" +

" SET total Sold =" + mtotal Sold +

148 iPlanet ™ Application Server Developer's Guide * November 2001

Entity Bean Components

" WHERE itemid =" + itenid;

dc = new Dat abaseConnection();

dc. creat eConnecti on(Dat abaseConnecti on. GLOBALTX) ;
stntl = dc.createStatenent();

st nt 1. execut eUpdat e(updl) ;

stntl.close();

stnt2 = dc.createStatenent();

st nt 2. execut eUpdat e(upd2) ;
stnt2.close();

}

For more information about bean isolation levels that access transactions
concurrently with other beans, see “Handling Concurrent Access,” on page 155.

Using setEntityContext and unsetEntityContext

A container calls set Ent i t yCont ext () after it creates an entity bean instance to
provide the bean’s interface to the container. Implement this method, to store the
container reference in an instance variable.

public void setEntityContext(javax.ejb.EntityContext ctx)
{

mctx = ctx;

}

Similarly, a container calls unset Ent i t yCont ext () to remove the container
reference from the instance. This is the last bean class method a container calls.
After this call, the Java garbage collection mechanism eventually callsfi nal i ze()
on the instance to clean it up and dispose it.

public void unsetEntityContext()
{

mctx = null;

}

Using ejbCreate Methods

The entity bean must also implement one or more ej bCreate(...) methods.
There must be one method for each way a client is allowed to invoke the bean. For
example:

public int ejbCreate() {
string[] userinfo = {"User Nanme", "Encrypted Password"};

}

Chapter 6 Building Entity EJBs 149

Entity Bean Components

150

Each ej bCr eat e() method must be declared as publ i c, return either the entity’s
primary key type or a collection, and be named ej bCr eat e. The return type can be
any legal Java RMI type that converts to a number for key purposes. Any
arguments must be legal Java RMI types. The t hr ows clause, may define
application specific exceptions, and may include j ava. r mi . Renpt eExcept i on
and/or j ava. ej b. Creat eExcept i on.

For each ej bCr eat e() method, the entity bean class may define an

ej bPost Cr eat e() method to handle entity services immediately following
creation. Each ej bPost Cr eat e() method must be declared as publ i ¢, must return
void, and be named ej bPost Cr eat e. The method arguments, if any, must match in
number and argument type of its corresponding ej bCr eat e method. The t hr ows
clause, may define application specific exceptions, and may include

java. rm . Renot eExcepti on and/orj ava. ej b. Cr eat eExcepti on.

Finally, an entity bean also implements one or more ej bRenove() methods to free
a bean when it is no longer needed.

Using Finder Methods

Because entity beans are persistent, are shared among clients, and may have more
than one instance instantiated at the same time, an entity bean must implement at
least one method, ej bFi ndByPri mar yKey() , that enables the client and the bean’s
container to locate a specific bean instance. All entity beans must provide a unique
primary key as an identifying signature. Implement the ej bFi ndByPri mar yKey()
method in the bean’s class to enable a bean to return its primary key to the
container.

The following example shows a definition for Fi ndByPri mar yKey() :

public String ejbFi ndByPrimaryKey(String key)
throws java.rn . Renot eExcepti on,
j avax. ej b. Fi nder Excepti on

{

[/ System out. println(" @ nmyBean. ej bFi ndByPri maryKey key = " +
key);

return key;
}

In some cases, you find a specific entity bean instance based on what the bean does,
based on certain values the instance is working with, or based on other criteria.
These implementation specific finder method names take the form ej bFi ndXxX,
where XXX represents a unique continuation of a method name (for example,

ej bFi ndAppl esAndOr anges) that does not duplicate any other method names.

iPlanet ™ Application Server Developer's Guide * November 2001

Entity Bean Components

Finder methods must be declared as publ i ¢, and their arguments and return
values must be legal Java RMI types. Each finder method return type must be the
entity bean’s primary key type or a collection of objects of the same primary key
type. If the return type is a collection, the return type must be one of the following:

e TheJDK 1lljava.util.Enumeration interface
e Thelava2java.util.Collection interface

The t hr ows clause of a finder method is an application specific exception, and may
include j ava. rmi . Renot eExcept i on and/or j ava. ej b. Fi nder Excepti on.

Declaring vs. Implementing the Remote Interface

A bean class definition must include one matching method definition including
matching method names, arguments, and return types, for each method defined in
the bean’s remote interface. The EJB specification permits the bean class to
implement the remote interface’s methods, but recommends against this practice to
avoid inadvertently passing a direct reference (through t hi s) to a clientin
violation of the client-container-EJB protocol intended by the specification.

Creating the Home Interface

The home interface defines the methods that enables a client accessing an
application to create and remove entity objects. A home interface always extends
j avax. ej b. EJBHone. For example:

i mport javax.ejb.*;
i mport java.rm.*;
public interface MyEntityBeanHone extends EJBHone {
M/EntityBean create() throws CreateException, RenoteException;

}

This example illustrates, an entity bean’s home interface defines one or more create
methods. Usually the home interface also defines one or more find methods
corresponding to the finder methods in the bean class.

Defining Create Methods

Each method must be named create, and must correspond in number and
argument types to an ej bCr eat e method defined in the entity bean class. The
return type for each create method, however, does not match the corresponding
ej bCr eat e method’s return type. Instead, it must return the entity bean’s remote
interface type.

Chapter 6 Building Entity EJBs 151

Entity Bean Components

152

All exceptions defined in the t hr ows clause of an ej bCr eat e method must be
defined in the t hr ows clause of the matching create method in the home interface.
In addition, the t hr ows clause in the home interface must always include

j avax. ej b. Cr eat eExcepti on.

Defining Find Methods

A home interface can define one or more find methods. Each method must be
named f i ndXXX (for example, f i ndAppl esAndOr anges), where XXX is a unique
method name continuation. Each finder method must correspond to one of the
finder methods defined in the entity bean class definition. The number and
argument types must also correspond to the finder method definitions in the bean
class. The return type, however, may be different. The finder method’s return type
in the home interface must be the entity bean’s remote interface type or a collection
of interfaces.

Finally, all home interfaces automatically define two remove methods for
destroying an EJB when it is no longer needed.

NOTE Do not override these methods.

Creating the Remote Interface

An entity bean’s remote interface defines a user’s access to a bean’s methods. All
remote interfaces extend j avax. ej b. EJBObj ect . For example:

i mport javax.ejb.*;

i mport java.rm.*;

public interface MyEntityBean extends EJBObj ect {
/] define business nethod nethods here....

}

The remote interface defines the entity bean’s business methods that a client calls.
The business methods defined in the remote interface are executed by the bean’s
container at runtime. For each method you define in the remote interface, you must
supply a corresponding method in the bean class. The corresponding method in
the bean class must have the same signature.

Besides the business methods you define in the remote interface, the EJBObj ect
interface defines several abstract methods that enables you to retrieve the bean’s
home interface, to retrieve the bean’s handle, to retrieve the bean’s primary key
which uniquely identifies the bean’s instance, to compare the bean to another bean
to see if it is identical, and to remove the bean when it is no longer needed.

iPlanet ™ Application Server Developer's Guide * November 2001

Additional Entity Bean Guidelines

For more information about these built-in methods and how they are used, see the
EJB specification. All specifications are accessible from

install_dir/ i as/ docs/ i ndex. ht m where install_dir is the location where the iPlanet
Application Server is installed.

Additional Entity Bean Guidelines

Before you decide what application parts you can represent as entity beans, you
should consider a few more guidelines. A couple of these are related to the EJB
specification for entity beans, and a couple are specific to the iPlanet Application
Server and its support for entity beans.

Accessing iPlanet Application Server
Functionality

You can develop entity beans that adhere strictly to the EJB specification, you can
develop entity beans that take advantage of both the specification and additional,
value-added iPlanet Application Server features, and you can develop entity beans
that adhere to the specifications in non-iPlanet Application Server environments
but take advantage of the iPlanet Application Server features if they are available.
Make the choice that is best for your intended deployment scenario.

The iPlanet Application Server offers several features through the iPlanet
Application Server container and the iPlanet Application Server APls that enables
your applications to take programmatic advantage of specific iPlanet Application
Server environment features. You can embed API calls in your entity beans if you
plan on using those beans only in an iPlanet Application Server environment.

Serializing Handles and References

The EJB specification indicates that to guarantee serializable bean references, you
should use handles rather than direct references to EJBs.

The iPlanet Application Server direct references are also serializable. You may wish
to take advantage of this extension, but be aware not all vendors support it.

Chapter 6 Building Entity EJBs 153

Additional Entity Bean Guidelines

154

Managing Transactions

Most entity beans interact with databases. You can control transactions in beans
using settings in the bean’s property file. This permits you to specify transaction
attributes at bean deployment time. By having a bean handle transaction
management you are freed from having to explicitly start, rollback, or commit
transactions in the bean’s database access methods.

By moving transaction management to the bean level, you gain the ability to place
all bean activities—even those not directly tied to database access—under the same
transaction control as your database calls. This guarantees that all application parts
controlled by an entity bean run as part of the same transaction, and either
everything the bean undertakes is committed, or is rolled back because of a failure.
In effect, bean managed transactional state permits you to synchronize an
application without having to code any synchronization routines.

Committing a Transaction

When a commit occurs, it signals the container that the entity bean has completed
its useful work and should synchronize its state with the underlying datasource.
The container permits the transaction to complete and then returns the bean to the
pool for later reuse. Result sets associated with a committed transaction are no
longer valid. Subsequent requests for the same bean cause the container to issue a
load to synchronize state with the underlying datasource.

Note that transactions begun in the container are implicitly committed. Also, any
participant can rollback a transaction. For more information on transactions, see
Chapter 7, “Handling Transactions with EJBs.”

Commit Option C

Commit option C is supported by the iPlanet Application Server. Commit option C
gets a bean instance from the free pool at the start of a transaction and transitions
the instance back to the free pool at the end of the transaction.

The lifecycle for every business method invocation under commit option C looks
like this:

ej bActi vate-> ej bLoad -> busi ness nethod -> ej bStore -> ej bPassi vate

If there is more than one transactional client concurrently accessing the same entity
EJBObj ect, the first client gets the ready instance and subsequent concurrent
clients get new instances from the pool.

iPlanet ™ Application Server Developer's Guide * November 2001

Additional Entity Bean Guidelines

Handling Concurrent Access

As an entity bean developer, you do not have to be concerned about concurrent
access to an entity bean from multiple transactions. The bean’s container
automatically provides synchronization in these cases. In an iPlanet Application
Server, the container activates one entity bean instance for each simultaneously
occurring transaction that uses the bean. Transaction synchronization is performed
automatically by the underlying database during database access calls.

The iPlanet Application Server EJB container implementation does not provide its
own synchronization mechanism when multiple transactions try to access an entity
bean. It creates a new entity bean instance for every new transaction. The iPlanet
Application Server container delegates the responsibility of the application
synchronization.

You typically perform this synchronization in conjunction with the underlying
database or resource. One approach would be to acquire the corresponding
database locks in the ej bLoad() method, for example by choosing an appropriate
isolation level or by using asel ect for updat e clause. The specifics depend on
the database being used. For more information, see the EJB specification as it
relates to concurrent access.

The following example ej bLoad() snippet illustrates the sel ect for update
syntax to obtain database locks. This prevents other instances from being loaded at
the same time.

public void ejbLoad() throws java.rm .RenoteException

{

/1l Get the lock on the corresponding DB table
try {
j ava. sql . Connecti on dbConn = ds. get Connection();
String query = "SELECT account Num bal ance FROM accounts "
+ "WHERE custonmerld = ? FOR UPDATE";
prepStm = dbConn. prepar eSt at enent (query);
prepStm.setString(1l, mcustonerld);
resultSet = prepStnt.executeQuery();
if ((resultSet !'=null) && resultSet.next()) {
acctNum = resul t Set.getlnt(1);
acctBal ance = resultSet.getlnt(2);
} else {
t hr ow new Renot eExcepti on("Dat abase error.
+ "Couldn’t find accout");
}
} catch (java.sql.SQ.Exception e) {
t hrow new Renot eExcepti on(" Dat abase error.
+ "Couldn’t |oad account");

Chapter 6 Building Entity EJBs 155

Container Managed Persistence

} finally {

try {
if (resultSet !'= null)

resul tSet.close();
if (prepStmt !'= null)
prepStm . cl ose();
if (dbConn != null)
dbConn. di sconnect () ;
} catch (java.sql.SQ.Exception e) {
System out. println("Unexpected exception while "
+ "cl osing resources"); }

Accessing Databases

Most entity beans work with databases, and always use the transaction and
security management methodsinj avax. ej b. depl oyment . Cont r ol Descri pt or to
manage transaction requirements. For details about creating and managing
transactions with beans, see Chapter 7, “Handling Transactions with EJBs.”

To work with data in the context of a bean managed transaction, use JDBC. For
details about using JDBC to work with data, see Chapter 8, “Using JDBC for
Database Access.”

Container Managed Persistence

An entity bean using container-managed persistence (CMP) defers the
management of its state (or persistence) to the iPlanet Application Server.
Normally, CMP beans persist to a relational database.

Developers use CMP to simplify the work of creating an entity bean. Rather than
write all the JDBC code that is necessary to implement a BMP entity bean, a
developer using CMP simply uses tools to create the bean’s deployment
descriptors. The deployment descriptors contain information that the container
uses to map fields to the bean to columns in a relational database.

For more information on CMP, see Chapter 9.4 of the EJB 1.1 specification.

The iPlanet Application Server provides the following support for CMP entity
beans:

= Full support for the J2EE v 1.2 specification’s CMP model (i.e., EJB 1.1).

156 iPlanet ™ Application Server Developer's Guide * November 2001

Container Managed Persistence

e Support for third party O/R mapping tools.

= An “out-of-the-box” lightweight implementation of CMP. Lightweight CMP
provides:

o A basic object-to-relational (O/R) mapping tool within the iPlanet
Application Server Deployment Tool that creates XML Deployment
Descriptors for each CMP bean.

o Support for compound (multi-column) primary keys.
o Support for sophisticated custom finder methods.

o Standards-based query language (SQL92).

Full J2EE Support

The iPlanet Application Server fully supports the Entity Bean Component Contract
defined in the EJB 1.1 specification. Here are a few items of interest:

= The iPlanet Application Server implements commit option C as defined in the
EJB 1.1 specification.

= The primary key class must be a subclass of j ava. | ang. Qbj ect. This is in
accordance with the specification, and ensures portability, but is noted because
a few vendors allow primitive types (such as i nt) to be listed as the primary
key class.

Third Party O/R Mapping Tools

iPlanet Application Server certifies third party enterprise tool vendors for use. In
general, third-party CMP solutions that fully support the EJB1.1 specification work
with iPlanet Web Server.

For example, Thought, Inc., provides CocoBase Enterprise as a sophisticated O/R
mapping solution for mapping EJBs to relational databases. To use Cocobase, you
build your EJBs using Cocobase’s O/R Mapping Tool, then deploy the beans using
the iPlanet Application Server’s Deployment Tool or the iPlanet Application
Server’s Command Line Interface (CLI).

Several other vendors are currently completing certification. Check the website
(devel oper . i pl anet. com) for current information on certified third party O/R
mapping tools.

Chapter 6 Building Entity EJBs 157

Container Managed Persistence

158

Full Example of a CMP Entity Bean

For a full example of a CMP entity bean, look at the Product sample application
from the J2EE Developer’s Guide, which is available here:

install_dir/ i as/ i as- sanpl es/ j 2eegui de/ pr oduct

Using the Lightweight CMP Implementation

The iPlanet Application Server provides an “out-of-the-box” lightweight CMP
implementation. The implementation includes a mapping tool, found in the iPlanet
Application Server Deployment Tool, and a CMP runtime environment. The CMP
runtime environment creates persistence managers for each CMP bean. The
persistence managers then use information specified in XML deployment
descriptors. The three deployment descriptors used in a CMP bean are:

e ejb-jar.xm -Thereisoneejb-jar.xnm fileineach EJB module. This
deployment descriptor is covered in detail in the EJB 1.1 specification.

e ias-ejb-jar.xm -Liketheejb-jar.xnl file, there is just one
i as-ej b-jar.xn file per EJB module. To use lightweight CMP, you must set
some properties in this file. For an overview of the DTD, see Chapter 10,
“Packaging for Deployment.”

= property-file-name. xm - Additionally, each CMP Bean has its own deployment
descriptor. The name of the file is specified in thei as- ej b-j ar. xnl file (by the
properties-file-locationelement; see Chapter 10, “Packaging for
Deployment,” for details). The contents of this file determine how the reference
implementation’s persistence managers load and store each bean’s state in a
relational database.

There are two ways to generate these files. The following sections cover each
method in detail:

= Creating the Deployment Descriptors by Hand
= Using the Deployment Tool

Creating the Deployment Descriptors by Hand

It’s easiest to understand what’s happening in the iPlanet Application Server’s
Deployment Tool if you know what’s happening behind the scenes, so the manual
steps are explained first.

iPlanet ™ Application Server Developer's Guide * November 2001

Container Managed Persistence

ejb-jar Deployment Descriptor

The ej b-j ar. xm file is described in detail in the EJB 1.1 specification. The ejb-jar
deployment descriptor is where important information like the transactional
attributes of the beans and the fields of a bean that are going to be
container-managed are specified. Any J2EE-compliant ejb-jar file is deployable on
the iPlanet Application Server if you provide a corresponding i as- ej b-j ar. xni
file.

ias-ejb-jar Deployment Descriptor

The J2EE vendor-specific information for Enterprise JavaBeans is stored in another
deployment descriptor, i as- ej b-j ar. xm . The Document Type Definition (DTD)
for this XML-based deployment descriptor is covered in detail in Chapter 10,
“Packaging for Deployment.”

There is some information that is unique to CMP beans that goes in this file,
however, within the <per si st ence- manager > element:

= The fully qualified class name for the factory class that creates persistence
managers is specified in the <f act or y- cl ass- name> element. The factory class
name for the reference implementation is
com net scape. server. ej b. SQLPer si st enceManager Factory.

= The relative path of the CMP bean’s specific property file within the
ej b-jar.xm fileis specified in the <properties-file-location>element.

Here’s a code snippet of what the relevant elements of the deployment descriptor
look like:

<per si st ence- manager >
<factory-cl ass- nane>
com net scape. server. ej b. SQLPer si st enceManager Fact ory
</factory-cl ass- nane>
<properties-file-location>
META- | NF/ MyPr oduct - i as- cnp. xmi
</properties-file-location>
</ per si st ence- manager >

Chapter 6 Building Entity EJBs 159

Container Managed Persistence

CMP Bean Deployment Descriptor

The file name of the CMP bean-specific deployment descriptor is specified in the

i as-ej b-jar.xn file. In the previous example, the properties file would be
named MyPr oduct -i as- cnp. xnl . The file’s root element is the

<i as- per si st ence- manager > node, but the rest is a simple bean property file. The
file uses a simple XML format to describe various properties. The DTD file for this
deployment descriptor is located here:

install_dir/ i as/ dt d/ | ASPer si st ence_manager _1_0. dtd
The tags in the xml file follow this basic format:

<bean- property>
<property>
<name></ nanme>
<type></type>
<val ue></val ue>
<delimter></delimter>
</ property>
</ bean- property>

Here are descriptions of the subelements of <pr opert y>:

nane is one of these valid names: dat aSour ce, al | Fi el ds,
findByPri mar yKeySQ., fi ndByPri mar yKeyPar ns, i nsert SQ.,
i nsert Parns, del et eSQL, del et ePar ns, | oadSQ., | oadPar ns,

| oadResul ts, st or eSQL, st or ePar s, or the name of a custom
finder.

Each of these properties is described later in this section.

type iseitherj ava.lang. Stringorjava. util.Vector. IfVector is
used as the type, the value is treated as a comma-delimited list.

val ue is any string.

delimter isalways, (acomma).

The following properties are defined in the lightweight CMP bean’s deployment
descriptor:

= Data Source (dat aSour ce)
= CMP field to RDB column mapping (al | Fi el ds)

= Persistence operations:

160 iPlanet ™ Application Server Developer's Guide * November 2001

Container Managed Persistence

o findByPrimaryKey (fi ndByPri mar yKeySQ. and f i ndByPr i mar yKeyPar ns)
o insert (i nsert SQL and i nsert Par s)

o delete (del et eSQL and del et ePar ns)

o load (1 oadSQ., | cadPar s, | oadResul t s)

o store (st oreSQ and st or ePar)

o custom finders (optional)

Data Source

The first property used in the XML file is the dat aSour ce property. The value of
the dat aSour ce property is the INDI name of the JDBC data source used as a
persistent store. For example:

<bean- property>
<property>
<name>dat aSour ce</ nane>
<type>j ava.l ang. Stri ng</type>
<val ue>j 2eequi de/ Pr oduct DB</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>

CMP Field to RDB Column Mapping

The al | Fi el ds property is where the O/R mapping is specified. In the val ue
element, a bracket-enclosed String maps the CMP fields to database columns. CMP
fields go to the left side of the =, while database columns go to the right of the
expression. A semicolon, ; , must separate the expressions. For example:

<bean- property>
<property>
<nane>al | Fi el ds</ nane>
<type>j ava.l ang. Stri ng</type>
<val ue>
{descri pti on=DESCRI PTI ON; pri ce=PRI CE; pr oduct | d=PRODUCTI D; }
</val ue>
<delimter> </delimter>
</ property>
</ bean- property>

Chapter 6 Building Entity EJBs 161

Container Managed Persistence

162

Persistence Operations

Persistence operations consist of three types of properties. These properties follow
the following naming patterns:

= xxxxSQ is an SQL statement for a particular persistence operation (such as
insert). The SQL statement in the xxxxSQL property is used to create a
j ava. sql . Prepar edSt at enent ; therefore, the SQL statement should conform
to the rules specified for parameterized queries (for example, use ? to signify a
parameter). To understand how to map your CMP fields to SQL datatypes, see
“Mapping Rules,” on page 169.

= xxxxPar ns is a list of parameters that are sent to the persistence operation. The
first field maps to the first parameter in the SQL statement (denoted by ?), the
second maps to the second, and so on.

e xxxxResul ts is alist of the fields in the Resul t Set that are returned from the
execution of the Pr epar edSt at enent .

The xxxx part of the name can be one of the following:

= findByPrimaryKey (fi ndByPri mar yKeySQL and f i ndByPri mar yKeyResul t s)
« insert (i nsert SQL and i nsert Par ns)

« delete (del et eSQL and del et ePar ns)

« load (I oadSQ., | oadPar ns, | oadResul t s)

e store (st oreSQ. and st or ePar ns)

= The name of a custom finder

Persistence operation properties vary based on whether their CMP bean has a
single-field primary key or a multi-field primary key. Where there is a difference, it
is noted in the following examples.

findByPrimaryKey

The findByPrimaryKey properties are f i ndByPr i nar yKeySQ. and

fi ndByPri mar yKeyPar ns. It is not necessary to provide the

fi ndByPri mar yKeyResul t s property for the fi ndByPr i mar yKey property because
it is already defined in the primary key class. This operation corresponds to the
findByPri mar yKey() method in the EJB’s home interface.

Here is a single-field primary key example:
<bean- property>

<property>
<name>f i ndByPr i mar yKeySQL</ name>

iPlanet ™ Application Server Developer's Guide * November 2001

Container Managed Persistence

<type>j ava. | ang. Stri ng</type>
<val ue>
SELECT PRODUCTI D FROM PRODUCT WHERE PRODUCTID = ?
</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<name>f i ndByPr i mar yKeyPar ns</ nane>
<type>java. util.Vector</type>
<val ue>pr oduct | d</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>

Here is a multi-field primary key example:

<bean- property>
<property>
<nanme>f i ndByPri mar yKeySQ.</ name>
<type>j ava. | ang. Stri ng</type>
<val ue>
SELECT PRODUCTI D, DESCRI PTI ON FROM PRODUCT WHERE PRODUCTID = ? AND DESCRI PTION = ?
</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<name>f i ndByPr i mar yKeyPar ns</ nane>
<type>java. util. Vector</type>
<val ue>product | d, descri pti on</val ue>
<delimter> </delimter>
</ property>
</ bean- property>

insert

The insert properties are i nsert SQL and i nser t Par ns. Inserts are exactly the same
for single- and muilti-field primary keys. This property corresponds to the bean’s
creat e() method in its home interface.

Chapter 6 Building Entity EJBs 163

Container Managed Persistence

<bean- property>
<property>
<name>i nsert SQL</ nanme>
<type>j ava.l ang. Stri ng</type>
<val ue>
I NSERT | NTO PRODUCT (DESCRI PTI ON, PRI CE, PRODUCTI D) VALUES(?, ?,?)
</val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<name>i nsert Par ns</ name>
<type>java. util.Vector</type>
<val ue>descri ption, pri ce, product | d</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>

delete

The delete properties are del et eSQL and del et ePar ns. The delete operation
provides the functionality for the r emove() function in the bean’s home interface.

Here is a single-field primary key example:

<bean- property>
<property>
<name>del et eSQL</ name>
<type>j ava.l ang. Stri ng</type>
<val ue>DELETE FROM PRODUCT WHERE PRODUCTI D = ?</val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<nane>del et ePar ns</ nane>
<type>java. util. Vector</type>
<val ue>pr oduct | d</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>

Here is a multi-field primary key example:

164 iPlanet ™ Application Server Developer's Guide * November 2001

Container Managed Persistence

<bean- property>
<property>
<nanme>del et eSQ.</ nane>
<type>j ava. |l ang. Stri ng</type>
<val ue>
DELETE FROM PRODUCT WHERE PRODUCTI D = ? AND DESCRIPTION = ?
</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<namne>del et ePar ns</ name>
<type>java. util. Vector</type>
<val ue>product | d, descri pti on</val ue>
<delimter> </delimter>
</ property>
</ bean- property>

load

The load properties are | oadSQL, | oadPar ns, and | oadResul t s. Load operations
are almost identical for single- and multi-field primary keys. There is a minor
difference in the | oadSQL property and, consequently, the | oadPar s property.
Load operations correspond to the EJB’s ej bLoad() method.

Here is a single-field primary key example:

<bean- property>
<property>
<name>l oadSQ.</ nane>
<type>j ava.l ang. Stri ng</type>
<val ue>
SELECT DESCRI PTI ON, PRI CE, PRODUCTI D FROM PRODUCT WHERE PRODUCTID = ?
</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<name>| oadPar ns</ name>
<type>j ava. | ang. Stri ng</type>
<val ue>pr oduct | d</ val ue>
<delimter> </delimter>
</ property>

Chapter 6 Building Entity EJBs 165

Container Managed Persistence

</ bean- property>
<bean- property>
<property>
<nane>| oadResul t s</ nane>
<type>java. util.Vector</type>
<val ue>descri ption, pri ce, product | d</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>

Here is a multi-field primary key example:

<bean- property>
<property>
<name>l oadSQ.</ nane>
<type>j ava. | ang. Stri ng</type>
<val ue>
SELECT DESCRI PTI ON, PRI CE, PRODUCTI D FROM PRODUCT WHERE PRCDUCTI D = ? AND DESCRI PTION = ?
</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<nane>| oadPar ns</ nane>
<type>java. util. Vector</type>
<val ue>product | d, descri pti on</val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<namne>| oadResul t s</ name>
<type>java. util. Vector</type>
<val ue>descri ption, pri ce, product | d</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>

store

The store properties are st or eSQL and st or ePar ns. As with load properties, there
are small differences in the st or eSQL and st or ePar ns properties. Make sure you
get the order right in the multi-field primary key. The store operation is performed
when the EJB container calls the ej bSt or e() method on the bean implementation.

166 iPlanet ™ Application Server Developer's Guide * November 2001

Container Managed Persistence

Here is a single-field primary key example:

<bean- property>
<property>
<nane>st or eSQL</ nane>
<type>j ava.l ang. Stri ng</type>
<val ue>
UPDATE PRODUCT SET DESCRI PTI ON=?, PRI CE=? WHERE PRODUCTID = ?
</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<name>st or ePar ms</ nane>
<type>java. util. Vector</type>
<val ue>descri ption, pri ce, product | d</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>

Here is a multi-field primary key example:

<bean- property>
<property>
<name>st or eSQL</ nane>
<type>j ava.l ang. Stri ng</type>
<val ue>
UPDATE PRODUCT SET PRI CE=? WHERE PRODUCTI D = ? AND DESCRI PTION = ?
</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<name>st or ePar ms</ nane>
<type>java. util. Vector</type>
<val ue>pri ce, product | d, descri pti on</val ue>
<delimter> </delimter>
</ property>
</ bean- property>

Chapter 6 Building Entity EJBs 167

Container Managed Persistence

Custom Finders

Optionally, you can add custom finders to the deployment descriptor. Custom
finder operations follow slightly different rules than other operations:

= For the xxxxSQL property of custom finders, the first argument to the finder
method defined in the home interface maps to the first parameter in the SQL
statement, the second to the second, and so on.

= The xxxxResul t s property for custom finders maps the columns of the
Resul t Set of the SQL statement to the primary key’s fields (for multi-field
primary keys) or to the primary key itself (for single-field primary keys).

For example, suppose the following method is defined in an entity bean’s home
interface:

public Collection findl nRange(doubl e | ow, doubl e high)
throws Fi nder Exception, RenoteException

The name of the property is the name found in the bean’s home interface. In this
example, this operation would have up to three properties in the deployment
descriptor: fi ndl nRangeSQ., fi ndl nRangePar ns, and fi ndl nRangeResul ts
(needed only for a multi-field primary key).

Here are the properties that implement this operation for a single-field primary
key:

<bean- property>
<property>
<nanme>f i ndl nRangeSQL</ nane>
<type>j ava.l ang. Stri ng</type>
<val ue>
SELECT PRODUCTI D FROM PRODUCT WHERE PRI CE BETVEEEN ? AND ?
</val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<nane>f i ndl nRangePar ns</ nanme>
<type>j ava. | ang. Vect or </ t ype>
<val ue>| ow, hi gh</val ue>
<delimter> </delimter>
</ property>
</ bean- property>

Here are the properties that implement this operation for a multi-field primary key:

168 iPlanet ™ Application Server Developer's Guide * November 2001

Container Managed Persistence

<bean- property>
<property>
<nanme>f i ndl nRangeSQL</ nane>
<type>j ava. |l ang. Stri ng</type>
<val ue>
SELECT PRODUCTI D, DESCRI PTI ON FROM PRODUCT WHERE PRI CE BETWEEN ? AND ?
</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<nane>f i ndl nRangePar ns</ name>
<type>j ava. | ang. Vect or </ type>
<val ue>| ow, hi gh</val ue>
<delimter> </delimter>
</ property>
</ bean- property>
<bean- property>
<property>
<name>f i ndl nRangeResul t s</ nane>
<type>java. util.Collection</type>
<val ue>producti d, descri pti on</val ue>
<delimter> </delimter>
</ property>
</ bean- property>

Mapping Rules

Lightweight CMP uses JDBC (specifically, the setter methods of the

Pr epar edSt at enent interface) to map CMP fields to columns in a relational
database table. Therefore, standard JDBC mapping rules apply to CMP fields.

For example, to map aj ava. | ang. Stri ng to an SQL column, Lightweight CMP
uses the set St ri ng method in the Pr epar edSt at enent interface. The
documentation for the Pr epar edSt at enent interface specifies that set St ri ng
maps to a VARCHAR.

Lightweight CMP supports all native Java field types, all the classes that represent
native types (such as Integer), java.lang.String, java.sql.Date, java.sql.Time,
java.sgl.Timestamp, and arbitrary serializable objects. Table 6-1 describes the
mappings between bean attributes and table columns.

Chapter 6 Building Entity EJBs 169

Container Managed Persistence

170

Table 6-1 EJB/JDBC mapping
Java Type JDBC Type JDBC Driver Access Methods
bool ean BIT get Bool ean(),
set Bool ean()

byte TI NYI NT get Byte(),setByte()
short SMVALLI NT get Short (), set Short ()
i nt I NTEGER getint(),setlnt()
| ong Bl G NT get Long(), set Long()
fl oat FLOAT get Fl oat (), set Fl oat ()
doubl e DOUBLE get Doubl e(), set Doubl e()
byte[] VARBI NARY or get Byt es(),set Byt es()

LONGVARBI NARY(1)
java.lang. String VARCHAR or getString(),setString()

LONGVARCHAR(1)
j ava. | ang. Bool ean BIT get Obj ect (), set wj ect ()
java. |l ang. | nt eger I NTEGER get Obj ect (), set wj ect ()
java. |l ang. Long Bl G NT get Obj ect (), set wj ect ()
java. | ang. Fl oat REAL get Obj ect (), set wj ect ()
j ava. | ang. Doubl e DOUBLE get Obj ect (), set wj ect ()
j ava. mat h. Bi gDeci mal NUMERI C get Obj ect (), set wj ect ()
java.sql . Date DATE get Date(),setDat e()
java.sql. Tine TI ME getTine(),setTi me()
java. sql . Ti mest anmp TI MESTAVP get Ti nest anp(),

set Ti nest anp()

any serializable class VARBI NARY or get Byt es(),set Bytes()

LONGVARBI NARY(1)

Using the Deployment Tool

A simpler way to create the standard ejb-jar deployment descriptors for a CMP
bean is by using the iPlanet Application Server Deployment Tool. This tool’s

extensive built-in help goes into great detail about how to create this deployment

descriptor.

iPlanet ™ Application Server Developer's Guide * November 2001

Container Managed Persistence

Start by either opening an existing EJB Module or creating a new one. For more
information on how to use this tool to create a CMP bean, refer to the help within
the tool. Once the EJB’s class files have been added the EJB Module, you can
right-click on the bean to edit its descriptor, as in Figure 6-1.

Figure 6-1 Selecting a bean in the iPlanet Application Server Deployment Tool

L. Mansi Appla sl Seive - Depliogasent T el M
R i Ihey Io= ey -
Dlem Ba Bes RETe W~ |9 I

E.ﬂ;‘-:E Apg i aRENS |
L | Rerguideprag
= T2 i LS - [EMAD
¥ = | Tesgais prod cEj biar
L %] T
- T T B Haira H"'W'-"I i
i. tztnirs Bnsn Ty Eairy ibesn
rpEEmenion Clyas Heme Demsde promic Prasod R
Frampin nierfarn Class Hare I!H;Il.l . product Proch el |
Hirmr e lac e Tiasy e ||;IH-:||l|;r- |:i11-1|_rIP|r\-r|-|rI-|1rn|-
P minlumicn Tyjes: !-ﬁuﬂnﬂ - e
| — T -

Fromany By Clase u'-'-a-lar-;l Shisg
Tramuaction Masagemenl Fepan -

ﬂ 'Wish Agpix atiose
s M e ”

{8 5 vodues sk,
Frannramiin fomse: ||;

Pailwwot | Puns by vakio @ Cnabis SVDO0E

Sarisinn it | |0
[FF 58 RIS RERITRR S SRR LR TR IR [TFR I e |

[-w' -

=l e = =

Once you open the deployment descriptor, the changes you make in the user
interface are reflected in the CMP EJB’s section of the ej b-j ar. xm deployment
descriptor, its section of the i as- ej b-j ar. xm deployment descriptor, and the
CMP bean-specific deployment descriptor. The CMP bean’s mapping information
is saved in a file named ejbname- i as- cnp. x . For an in-depth description of the
elements of the user interface, refer to the tool’s help.

Chapter 6 Building Entity EJBs 171

Container Managed Persistence

Figure 6-2 shows the Lightweight CMP tab.

Figure 6-2 The Lightweight CMP tab

(I Flanel apialis Sevv Deplopment Tk - E.

B G e ks foos e
[Dis/w Bl @iein &k E M

§ Y Deegeidepragix
B [0 [y i i pra L
'3 | respyds-prodicEf a
hhﬂuﬂi

Pty Chass: [com neissaps e b SaLF erseiEnceban sgaiF st
fivea Somver [i2eeg cinFraniCE

:n'-'l'la-himlrime-

-Jl EJE Wuaulas

Lt
FELECT FRODUCTID FROM PR
e piption

g g JBELECTFROCUICTID FRCWFR.

| kel | D

After you have studied the previous section on creating a deployment descriptor
by hand, everything should be familiar to you on the Lightweight CMP tab, with
these exceptions:

= The TABLE text box is an input field for the relational database table that you’ll
be accessing via the specified data source.

172 iPlanet ™ Application Server Developer's Guide * November 2001

Container Managed Persistence

= You can toggle the Key field for each EJB Attribute. To create a multi-field
primary key, merely set more than one attribute to t r ue; the change is reflected
in the bean’s corresponding deployment descriptor. (multi-field primary keys
require some other modifications, namely the inclusion of a primary key class
as defined in the EJB 1.1 specification).

= Use the Name, Type, and Value fields for the custom finders. Use these in the
same manner as described in the previous section.

NOTE You can start creating your EJB’s deployment descriptors in the
iPlanet Application Server’s Deployment Tool, save the application
in the tool, edit the files by hand, and then go back into the tool.
However, if you do this, make sure you re-open the EJB Module or
J2EE Application in the tool before you edit the deployment
descriptors, then re-save the application in the tool after you make
the changes. If you fail to do this, your changes in the user interface
are not reflected in the deployment descriptors.

Chapter 6 Building Entity EJBs 173

Container Managed Persistence

174 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 7

Handling Transactions with EJBs

This chapter describes the transaction support built-in to the EJB programming
model. This chapter contains the following sections:

« Understanding the Transaction Model
= Specifying Transaction Attributes in an EJB

= Using Bean Managed Transactions

Understanding the Transaction Model

One primary EJB advantage is the support they provide for declarative
transactions. In the declarative transaction model, attributes are associated with
beans at deployment time. It is the container’s responsibility, based on the attribute
value, to demarcate and transparently propagate the transactional context. The
container is also responsible, in conjunction with a transaction manager, for
ensuring that all participants in the transaction see a consistent outcome.

Declarative transactions free the programmer from explicitly demarcating
transactions. They facilitate component-based applications where multiple
components, potentially distributed and updating heterogeneous resources, can
participate in a single transaction. The EJB specification also supports programmer
demarcated transactions using j avax. t r ansact i ons. User Tr ansacti on. To
obtain a User Tr ansact i on object, you must perform a JNDI lookup.

It is necessary to understand the distinction between global and local transactions
in order to understand the iPlanet Application Server support for transactions.
Global transactions are managed and coordinated by a transaction manager, and
can span multiple databases and processes. The transaction manager typically uses
the XA protocol to interact with the Enterprise Information System (EIS) or
database. Local transactions are native to a single EIS or database only and are

175

Specifying Transaction Attributes in an EJB

restricted within a single process. Both local and global transactions are
demarcated using the j avax. transacti on. User Tr ansact i on interface, which the
client must use, but internally local transactions are implemented with the JDBC
API, which makes them faster than global transactions.

The iPlanet Application Server operates in either global or local transaction mode;
you cannot mix global and local transactions.

NOTE If your application uses global transactions, configure and enable
the corresponding iPlanet Application Server Resource Managers.
For more information, see the Deployment Tool Online Help and the
Administrator’s Guide.

The EJB specification requires support for flat (as opposed to nested) transactions. In
this model each transaction is decoupled from and independent of other
transactions in the system. In a flat transaction, you cannot start another
transaction in the same thread until the current transaction ends. Flat transactions
are by far the most prevalent model and are supported by most commercial
database systems. Nested transactions offer a finer granularity of control over
transactions.

NOTE Third party drivers are not allowed to participate in transactions.

Specifying Transaction Attributes in an EJB

176

Transaction attributes are specified on a bean-wide basis or on a per-method basis
for a bean’s remote interface. If both levels specify attributes, method-specific
values take precedence over bean-wide values. These two should be mixed with
care since some combinations are invalid as documented in the restrictions section.

Transaction attributes are specified as part of the bean’s XML DD file. For more
information, see “EJB iPlanet Application Server XML DTD,” on page 299.

iPlanet ™ Application Server Developer's Guide * November 2001

Using Bean Managed Transactions

Using Bean Managed Transactions

While it is preferable to use container managed transactions, your application
requirements may necessitate using bean managed transactions. For more
information on managing transactions programmatically, see the Enterprise
JavaBeans Specification, v1.1 for this interface at the following URL:

http://java. sun. conl product s/ ej b/ javadoc-1. 1/j avax/ ej b/ EJBCont ext . ht m

You can provide a pointer to a bean managed transaction. For example, if you start
a transaction for a stateful session bean, the bean is not passivated (failover is
affected: you see the state before the transaction). However, if you start a

transaction for a stateless session bean, the transaction is rolled back once the
method returns.

Chapter 7 Handling Transactions with EJBs 177

Using Bean Managed Transactions

178 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 8

Using JDBC for Database Access

This chapter describes how to use the Java Database Connectivity (JDBC) API for
database accesses with the iPlanet Application Server. This chapter provides high
level JDBC implementation instructions for servlets and EJBs using the iPlanet
Application Server; it also describes the specific iPlanet Application Server
resources affected by JDBC statements when those resources have clear
programming ramifications. In an iPlanet Application Server, EJBs support
database access primarily through the JDBC API. The iPlanet Application Server
supports the entire JDBC 2.0 API, as well as, many of the emerging JDBC 2.0
extensions, including result set enhancements, batch updates, distributed
transactions, row sets, and Java Naming and Directory Interface (JNDI) support for
datasource name lookups.

While this chapter assumes familiarity with JDBC 2.0, it also describes specific
implementation issues that may have programming ramifications. For example,
the JDBC specification does not make it clear what constitute JDBC resources. In
the specifications, some JDBC statements—such as, any Connect i on class methods
that close database connections—release resources without specifying exactly what
those resources are.

This chapter contains the following sections:
< Introducing JDBC

= Using JDBC in Server Applications

= Handling Connections

= Working with JDBC Features

179

Introducing JDBC

Introducing JDBC

From a programming perspective, JDBC is a set of Java classes and methods that
allows embedding database calls in server applications. That is all you need to
know in order to start using JDBC in your server application.

More specifically, JDBC is a set of interfaces that every server vendor, such as
iPlanet, must implement according to the JDBC specifications. The iPlanet
Application Server provides a JDBC type 2 driver which supports a variety of
Enterprise Information Systems (EISs) databases. The driver processes the JDBC
statements in your application and routes the SQL arguments they contain to your
database engines.

iPlanet Application Server Application

Request
E;—S/‘LL > Java Response EZNS-
or Server > o g
JsP > Pages JsP
Request

Servlets use data
" ~models and query
files to access
datasources
through EJBs and
JDBC RowsSet calls

Datasources

JDBC lets you write high level, easy-to-use programs that operate seamlessly with
and across many different databases without you knowing most of the low level
database implementation details.

180 iPlanet ™ Application Server Developer's Guide * November 2001

Introducing JDBC

Supported Functionality

The JDBC specification is a broad, database vendor independent set of guidelines.

The guidelines encompass the broadest database functionality range possible in a

simple framework. At a minimum, JDBC assumes the database supports the SQL-2
database access language. The JDBC specification has three parts:

= JDBC 2.0 describes the core database access and functionality that a server
vendor must implement to be JDBC compliant. The iPlanet Application Server
fully meets the compliance standard. From a database vendor’s perspective,
JDBC 2.0 describes a database access model that permits full access to the
standard SQL-2 language, the standard language portions each vendor
supports, and the language extensions each vendor implements.

= JDBC 2.0 describes additional database access and functionality. Primarily,
this functionality involves support for newly defined SQL-3 features, data
types, and mappings. The iPlanet Application Server implementation of JDBC
supports most JDBC feature enhancements, but omits support for the new
SQL-3 data types, such as blobs, clobs, and arrays. Currently, many database
vendors do not fully support them in their relational database management
systems. The iPlanet Application Server JDBC implementation also omits
support for SQL-3 data type mapping.

= JDBC 2.0 Standard Extension API describes advanced support features, many
of which offer improved database performance. The iPlanet Application Server
JDBC implementation currently supports Java Naming and Directory Interface
(JNDI) and row sets.

Understanding Database Limitations

When using JDBC in your server applications, you may encounter situations where
you do not obtain the results you desire or expect. You may think the problem lies
in JDBC or in the iPlanet Application Server JDBC driver implementation.
However, the vast majority of these problems are limitations in your database
engine.

Because JDBC covers the broadest possible database support, it enables you to
attempt operations not every database supports. For example, most database
vendors support most of the SQL-2 language, but no vendor provides fully
unqualified support for all of the SQL-2 standard. Most vendors built SQL-2
support on top of their existing proprietary relational database management
systems, and either those proprietary systems offer features not in SQL-2 or SQL-2

Chapter 8 Using JDBC for Database Access 181

Introducing JDBC

offers features not available in those systems. Most vendors have added non
standard SQL-2 extensions to their SQL implementation to support their
proprietary features. JDBC provides ways to access vendor specific features, but
realize these features may not be available for all databases you use.

This is especially true when you build an application that uses databases from two
or more vendors. As a result, not all vendors fully support all aspects of every
available JDBC class, method, and method arguments. More importantly, a set of
SQL statements embedded as an argument in a JDBC method call may or may not
be supported by the database or databases your server application uses. In order to
maximize JDBC usage, consult your database documentation about which SQL
and JDBC aspects they support. Therefore, first eliminate your database as causing
the problem before calling iPlanet technical support for database problems.

Understanding the iPlanet Application Server
Limitations

Like JDBC, the iPlanet Application Server supports the broadest spectrum of
database engines and features. In some cases, the iPlanet Application Server itself
or the iPlanet Application Server JDBC driver may not fully support a particular
database feature, or it may report incorrect information. If you cannot access a
database feature from your iPlanet Application Server application and you have
eliminated the database as the problem, check this section in the documentation
and the Release Notes to determine if the problem you encounter is a documented
iPlanet Application Server limitation. If not, fully document the problem and
contact iPlanet technical support.

NOTE Some JDBC access problems can result if you attempt to access
JDBC features that are either partially supported or not supported
by the iPlanet Application Server JDBC driver. Almost all feature
limitations apply to JDBC 2.0.

Table 8-1 lists the JDBC features that are not supported, either partially or
completely in the iPlanet Application Server.

182 iPlanet ™ Application Server Developer's Guide * November 2001

Table 8-1

JDBC Feature Limitations

Introducing JDBC

Feature

Limitation

Escape sequences

Connecti on. set Transacti onl sol ati on

Connect i on. get TypeMap

Connect i on. set TypeMap

Connect i on. cancel

Pr epar edSt at enent .

Pr epar edSt at enent .

Pr epar edSt at enent .
Pr epar edSt at enment .
Pr epar edSt at enment .
Pr epar edSt at enent .
Pr epar edSt at enent .

Cal | abl eSt at enent .

Cal | abl eSt at enent .
Cal | abl eSt at enent .
Cal | abl eSt at enent .
Cal | abl eSt at enent .

Cal | abl eSt at enent

set Ohj ect
addBat ch

set Ref

set Bl ob

set d ob

set Array
get Met aDat a
get oj ect

get Ref
get Bl ob
get d ob
get Array

Resul t Set . get Cur sor Nane

Supported only for Oracle databases.

Works only with isolation levels supported by your
database vendors.

Type maps are not supported.

Type maps are not supported.

Works only with databases that support it.
Works only with simple data types.

Works only with supported data manipulation statements
that return a count of records changed.

References are not supported.

Bl obs are not supported. Use set Bi naryStrean() instead.
Cl obs are not supported. Use set Bi naryStrean() instead.
Ar r ays are not supported. Use set Bi naryStrean() instead.
Not supported.

Works only with scalar types. JDBC 2.0 offers a second
version of this method that includes a map argument. The
map argument is ignored.

References are not supported.
SQL3-style bl obs are not supported.
SQL3-style cl obs are not supported.

Ar r ays are not supported.

Updatable Resul t Set is not supported.
Behavior differs depending on database:

For Oracle, if user does not specify a cursor name with
Set Cur sor Name, an empty string is returned.

For Sybase, if the result set is not updatable, a cursor name
is automatically generated by the iPlanet Application
Server. Otherwise an empty string is returned.

For ODBC, Informix, and DB2, the driver returns a cursor
name if none is specified.

Chapter 8 Using JDBC for Database Access 183

Introducing JDBC

Table 8-1 JDBC Feature Limitations
Feature Limitation
Resul t Set . get Obj ect Works only with scalar types. JDBC 2.0 offers two other
versions of this method that includes a map argument. The
map argument is ignored.
Resul t Set . updat e(hj ect Works only with scalar types.
Resul t Set . get Ref References are not supported.
Resul t Set. get Bl ob SQL3-style bl obs are not supported.
Resul t Set . get C ob SQL-style cl obs are not supported.
Resul t Set . get Array Ar r ays are not supported.
Resul t Set Met aDat a. get Tabl eNane Returns an empty string for non-ODBC database access.
Dat abaseMet aDat a. get UDTs Not supported.
execut eUpdat e after a row insertion For DB2, returns O instead of 1.
For more information about working with Resul t Set, Resul t Set Met aDat a, and
Pr epar edSt at enent , see the appropriate sections later in this chapter.
Supported Databases
Table 8-2 lists the databases currently supported by the iPlanet Application Server.
Table 8-2 Supported Databases
Database Notes
Oracle Support is through the Oracle OCI interface. Both Oracle 7 and 8 database instances are
supported in a fully multi-threaded environment. The iPlanet Application Server coexists
with all Oracle RDBMS tools and utilities, such as SQL*Plus, Server Manager, and Oracle
Backup.
Informix Support is through Informix CLI interface. Both Informix Online Dynamic Server and
Informix Universal Server are supported.
Sybase Support is through Sybase CTLIB. Sybase server version 12 and client version 12 are
supported.
Microsoft Support is through the Microsoft ODBC interface. Microsoft SQLServer on Windows only is
SQL Server supported.

184 iPlanet ™ Application Server Developer's Guide * November 2001

Using JDBC in Server Applications

Table 8-2 Supported Databases

Database Notes

DB2 Support is through the DB2 CLI client interface. DB2 versions 5.1 and 6.1, and client version
7.1 are supported.

ODBC

The iPlanet Application Server does not specifically support or certify any ODBC 2.0 or 3.0
compliant driver sets, though they may work.

NOTE Because the databases supported by the iPlanet Application Server
are constantly being updated and database vendors are consistently
upgrading their products, always check with the iPlanet technical
support for the latest database support information.

Using JDBC in Server Applications

JDBC is part of the iPlanet Application Server runtime environment. This means
JDBC is always available any time you use Java to program an application. In a
typical multi-tiered server application, you use JDBC to access an EIS database
from a client, from the presentation layer, in servlets, and in EJBs.

However, in practice it makes sense—for security and portability reasons—to
restrict database accesses to the middle layers of a multi-tiered server application.
In the iPlanet Application Server programming model, this means placing all JDBC
calls in servlets and EJBs, with the preference being towards EJBs.

There are two reasons for this programming preference:

= Placing all JDBC calls inside EJBs makes your application more modular and
more portable.

= EJBs provide built-in mechanisms for transaction control.

Placing JDBC calls in well designed EJBs frees you from programming explicit
transaction control using JDBC or j ava. transacti on. User Tr ansact i on that
provide low level transaction support under JDBC.

NOTE Always use a globally available datasource to create a global
(bean- wi de) connection so that the EJB transaction manager
controls the transaction.

Chapter 8 Using JDBC for Database Access 185

Using JDBC in Server Applications

186

Using JDBC in EJBs

Placing your JDBC calls in EJBs ensures a high degree of server application
portability. It also frees you from having to manage transaction control with
explicit JDBC calls. Because EJBs are components, use them as building blocks for
many applications with little or no changes, and maintain a common interface to
your EIS database.

Managing Transactions with JDBC or
javax.transaction.UserTransaction

Using the EJB transaction attribute property to manage transactions is
recommended, but not mandatory. There may be times when explicit transaction
management programming using JDBC or

javax. transaction. User Tr ansact i on is appropriate for an application. In these
cases, program the transaction management in the bean yourself. Using an explicit
transaction in an EJB is called a bean managed transactions.

Transactions can be local to a specific method (met hod- speci fi c) or they can
encompass the entire bean (bean- wi de).

There are two steps for creating a bean managed transaction:

1. Setthe EJB transaction attribute property to TX_BEAN_MANAGED in the bean’s
deployment descriptor.

2. Program the appropriate JDBC or transaction management statements in the
bean, including statements to start the transaction, and to commit or roll it
back.

Do not program explicit transaction handling in EJBs when the transaction
attribute property is not TX_BEAN_MANAGED. For more information about handling
transactions with JDBC, see the JDBC 2.0 API specification.

Specifying Transaction Isolation Level

Specify or examine the transaction level for a connection using the

set Transacti onl sol ati on() and get Transacti onl sol ati on() methods,
respectively. Note that you cannot call set Tr ansacti onl sol ati on() during a
transaction.

Table 8-3 defines the transaction isolation levels, as follows:

iPlanet ™ Application Server Developer's Guide * November 2001

Using JDBC in Server Applications

Transaction Isolation Levels

Transaction Isolation Level Description

TRANSACTI ON_NONE Transactions are not supported. Only used with

Connecti on. get Transacti onl sol ati on()

TRANSACTI ON_READ_COWM TTED Dirty reads are prevented; non-repeatable reads and phantom

reads can occur.

TRANSACTI ON_READ_UNCOWMM TTED Dirty reads, non-repeatable reads and phantom reads can occur.
TRANSACTI ON_REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom

reads can occur.

TRANSACTI ON_SERI ALI ZABLE Dirty reads, non-repeatable reads and phantom reads are

prevented.

Before specifying a bean’s transaction isolation level, verify the level is supported
by your database management system. Not all databases support all isolation
levels. Test your database programmatically by using the method
supportsTransactionl sol ati onLevel () injava. sql . Dat abaseMet aDat a, as
shown in the following example:

j ava. sql . Dat abaseMet aDat a db;
i f (db.supportsTransactionlsol ati onLevel (TRANSACTI ON_SERI ALI ZABLE) {
Connecti on. set Transact i onl sol ati on(TRANSACTI ON_SERI ALI ZABLE) ;

}

For more information about these isolation levels and what they mean, see the
JDBC 2.0 API specification.

Using JDBC in Servlets

Servlets are at the heart of an iPlanet Application Server application. They stand
between a client interface, such as an HTML page on a browser, the JSP that
generated the HTML, and the EJBs that do the bulk of an application’s work.

The iPlanet Application Server applications use JDBC embedded in EJBs for most
database accesses. This is the preferred method for database accesses using the
iPlanet Application Server because it enables you to take advantage of the
transaction control built-in to EJBs and their containers. Servlets, however, can also
provide database access through JDBC.

Chapter 8 Using JDBC for Database Access 187

Handling Connections

In some situations, accessing a database directly from a servlet can offer a speed
advantage over accessing a database from EJBs. There is less call overhead, if an
application is spread across servers so that EJBs are accessible only through the
Java Remote Method Interface (RMI). Use direct database service through servlets
sparingly. If providing database access from servlets, restrict access to very short
durations, the transaction is read-only, and take advantage of the JDBC 2.0 RowSet
class.

If access to a database is from a servlet, use the JDBC 2.0 RowSet interface to
interact with the database. A row set is a Java object that encapsulates a set of rows
that have been retrieved from a database or other tabular datasource, such as a
spreadsheet. The RowSet interface provides JavaBean properties that allow a
RowSet instance to be configured to connect to a datasource and retrieve a set of
rows. For more information about working with row sets, see “Working with
RowSet,” on page 200.

Handling Connections

The iPlanet Application Server implements the JDBC 2.0 compliant interface
j ava. sqgl . Connect i on. The connection behavior depends on if it is a local, global
or container managed local connection.

Local Connections

A Connect i on object is called a local connection if its transaction context is not
managed by an EJB container. The transaction context in a local connection cannot
propagate across processes or datasources; it is local to the current process and to
the current datasource.

The transaction context on this connection type is managed using the
set Aut oConmi t (), commit (), androl | back() methods.

Registering a Local Datasource

The first step to create a local connection is to register the datasource with the
iPlanet Application Server. Once the datasource is registered, the datasource can be
used to make connections to the listed database using get Connecti on().

Register the datasource by creating an XML resource descriptor file that describes
the datasource properties. Next, register the properties with the iPlanet
Application Server using the Administration Tool or the r esr eg utility. resr eg
takes as its argument, the resource descriptor file name describing the datasource.

188 iPlanet ™ Application Server Developer's Guide * November 2001

Handling Connections

NOTE When run, r esr eg overwrites existing entries.

For example, to register a datasource called Sanpl eDS which connects to an Oracle
database using the username kdeno, password kdeno, database ksanpl e and
server ksanpl e, create an XML descriptor file like the following, and name it
Sanpl eDS. xm (use the iPlanet Application Server Deployment Tool to create an
XML file):

<i as-resource>
<resour ce>
<j ndi - name>j dbc/ Sanpl eDS</ j ndi - nanme>
<j dbc>
<dat abase>ksanpl e</ dat abase>
<dat asour ce>ksanpl e</ dat asour ce>
<user name>kdeno</ user nane>
<passwor d>kdeno</ passwor d>
<driver-type>ORACLE_OCI </ dri ver-type>
</jdbc>
</ resource>
</ias-resource>

Then use this resource descriptor file to register the datasource with the following
command:

resreg Sanpl eDS. xm

For more information about resource descriptor files, see Chapter 10, “Packaging
for Deployment.” For more information about the iPlanet Application Server
Administration Tool, see the Administrator’s Guide.

Global Connections

A Connect i on object is called a global connection if its transaction context is
managed by the EJB container. The transaction context in a global connection can
be propagated across datasources. The transaction context is managed implicitly
by the EJB container for container managed transactions, or explicitly for bean managed
transactions. For more information about transactions, see Chapter 7, “Handling
Transactions with EJBs.”

Transaction management methods are disabled for global connections, for
example, set Aut oConmi t (), conmi t (), and rol | back().

Chapter 8 Using JDBC for Database Access 189

Handling Connections

Using Resource Managers

The datasource collection in which a global transaction participates is known as a
resource manager. All resources managers must be registered with the iPlanet
Application Server and be enabled to participate in global transactions. Resource
managers are set up at install time or they are set up using the iPlanet Application
Server Administration Tool (for more information, see the Administrator’s Guide). A
global connection must be associated with a resource manager.

Registering a Global Datasource

The first step in creating a global connection is to register the datasource with the
iPlanet Application Server. Once the datasource is registered, the datasource is
used to make connections to the listed database using get Connecti on().

Register the datasource by creating an XML resource descriptor file that describes
the datasource properties. Next, register the properties with the iPlanet
Application Server using the Administration Tool or the r esr eg utility. r esr eg
takes as its argument, the resource descriptor file name describing the datasource.

NOTE When run, r esr eg overwrites existing entries.

For example, to register a datasource called @ obal Sanpl eDS which connects to an
Oracle database using the username kdeno, password kdeno, database ksanpl e
and server ksanpl e, create a XML descriptor file like the following, and name it

d obal Sanpl eDS. xni (use the iPlanet Application Server Deployment Tool to
create the XML file):

<i as-resource>
<r esour ce>
<j ndi - name>j dbc/ G obal Sanpl eDS</ j ndi - nane>
<j dbc>
<dat abase>ksanpl e</ dat abase>
<dat asour ce>ksanpl e</ dat asour ce>
<user name>kdeno</ user nanme>
<passwor d>kdeno</ passwor d>
<driver-type>ORACLE _OCl </driver-type>
<r esour ce- ngr >ksanpl e_r nx/ r esour ce- ngr >
</ j dbc>
</ resource>
</ias-resource>

Use the resource descriptor file to register the datasource with the following
command:

190 iPlanet ™ Application Server Developer's Guide * November 2001

Handling Connections

resreg 4 obal Sanpl eDS. xmi

For more information about resource descriptor files, see Chapter 10, “Packaging
for Deployment.” For more information about the iPlanet Application Server
Administration Tool, see the Administrator’s Guide.

Creating a Global Connection

The following program demonstrates how a datasource is looked up and a
connection created from it. As illustrated, the string that is looked up is the same as
specified in the <j ndi - nane> tag in the resource descriptor file.

Initial Context ctx = null;
String dsNanmel = "j dbc/ @ obal Sanpl eDS';
Dat aSource dsl = null;

try

{

ctx = new Initial Context();

dsl = (DataSource)ctx.| ookup(dsNanel);

User Transaction tx = ej bCont ext. get User Transacti on();
t x. begi n();

Connecti on connl = dsl. get Connection();

/'l use connl to do sone database work -- note that

connl.commt(),
/1 connl.rollback() and connl.set AutoCommit() can not used here

tx.conmit();

} catch(Exception e) {
e.printStackTrace(System out);

}

Container Managed Local Connections

A Connect i on object is considered a container managed local connection when the
transaction context is managed by the EJB container and global transactions are
disabled. With container managed transactions, the transaction context is managed
implicitly by the EJB container and with bean managed transactions the transaction
context is handled explicitly.

Chapter 8 Using JDBC for Database Access 191

Working with JDBC Features

Connection object methods set Aut oConmi t (), commi t (), and rol | back() are
disabled for this connection type.

For more information on how to enable or disable global transactions in an EJB
container, see the Administrator’s Guide.

Registering a Container Managed Local Datasource

The container managed local datasource registering process is the same as for the
local and global datasources. For more information, see “Registering a Local
Datasource,” on page 188.

Working with JIDBC Features

While this chapter is not a JDBC primer, it does introduce how to use JDBC in EJBs
with the iPlanet Application Server. The following sections describe various JDBC
interfaces and classes that either have special requirements in the iPlanet
Application Server environment, or are new JDBC 2.0 features you are encouraged
to use when developing an iPlanet Application Server application.

For example, “Working with Connections,” on page 193 describes the resources the
iPlanet Application Server releases when a connection is closed because this
information differs among different JDBC implementations. On the other hand,
“Pooling Connections,” on page 194 and “Working with RowSet,” on page 200
offer more extensive coverage because these are new JDBC 2.0 features that offer
increased power, flexibility, and server application speed.

This section covers the following topics:
= Working with Connections

= Pooling Connections

= Working with ResultSet

= Working with ResultSetMetaData

= Working with PreparedStatement

< Working with CallableStatement

< Handling Batch Updates

= Creating Distributed Transactions

= Working with RowSet

192 iPlanet ™ Application Server Developer's Guide * November 2001

Working with JDBC Features

« Using JNDI for a Database Driver

Working with Connections

When opening a JDBC connection, the iPlanet Application Server allocates
connection resources. Call Connect i on. cl ose() when a connection is no longer
needed, to free the connection resources. Always reestablish connections before
continuing database operations after you call Connecti on. cl ose().

Use Connecti on. i sd ose() to test whether the connection is closed. This method
returns false if the connection is open, and returns true only after

Connecti on. cl ose() is called. To determine if a database connection is invalid by
catching the exception that is thrown when a JDBC operation is attempted on a
closed connection.

Finally, opening and closing connections is an expensive operation. If an
application uses several connections, and if connections are frequently opened and
closed, the iPlanet Application Server automatically provides connection pooling.
Connection pooling provides a connection cache that automatically closes when
necessary.

NOTE Connection pooling is an automatic feature of the iPlanet
Application Server; the API is not exposed.

setTransactionlsolation

Not all database vendors support all transaction isolation levels available in JDBC.
The iPlanet Application Server permits specifying any isolation level your database
supports, but throws an exception against values your database does not support.
For more information, see “Specifying Transaction Isolation Level,” on page 186.

getTypeMap, setTypeMap

The iPlanet Application Server JDBC driver implementation does not support type
mapping, a new SQL-3 feature that most database vendors do not support.

cancel
cancel () is supported for all databases that support cancel ().

Chapter 8 Using JDBC for Database Access 193

Working with JDBC Features

194

Pooling Connections

Two costlier database operations to execute in JDBC are for creating and
destroying database connections. Connection pooling permits a single connection
cache for connection requests. A connection is returned to the pool for later reuse
without actually destroying it. A later call to create a connection merely retrieves
an available connection from the pool.

The iPlanet Application Server automatically provides JDBC connection pooling
wherever you make JDBC calls. The process of pooling database connections works
differently for each connection type.

= For local connections, the database connections are pooled when they are
closed by the application.

= For global connections, the database connections are tied to the thread that
initiated the transaction. These connections are later reused by transactions
that execute on the thread.

= For container managed local connections, the connecti on. cl ose() method
does not release the connection to the connection pool immediately. When the
transaction that the connection is participating in is finished, the connection is
released back to the connection pool by the iPlanet Application Server.

In each Java engine, each driver (Oracle, Sybase, Informix and DB2) has its own
connection pool. Each connection pool size is according to the application
requirements. For more information on the connection pool settings (such as,
maximum number of connections, connection timeout and so on), see the
Administrator’s Guide.

Working with ResultSet

Resul t Set is a class that encapsulates the data returned by a database query. Be
aware of the following behaviors or limitations associated with this class.

Concurrency Support

The iPlanet Application Server supports concurrency for FORWARD- ONLY
READ- ONLY and for SCROLL- | NSENSI TI VE READ- ONLY result sets. On callable
statements, the iPlanet Application Server also supports concurrency for
FORWARD- ONLY UPDATABLE result sets.

SCROLL- SENSI TI VE concurrency is not supported.

iPlanet ™ Application Server Developer's Guide * November 2001

Working with JDBC Features

Updatable Result Set Support

In the iPlanet Application Server, creation of updatable result sets is restricted to
queries on a single table. The SELECT query for an updatable result set must
include the FOR UPDATE clause:

SELECT. .. FOR UPDATE [OF col umm_name_I i st]

NOTE Use join clauses to create read-only result sets against multiple
tables; however, these result sets are not updatable.

For Sybase, the select list must include a unique index column. Sybase also permits
calling execut e() or execut eQuery() to create an updatable result set. However,
the statement must be closed before you can execute any other SQL statements.

To use an updatable result set with Oracle 8, you must wrap the result set query in
a transaction, as follows:

conn. set Aut oConmi t (f al se);
ResultSet rs =
st nt. execut eQuery(" SELECT. .. FOR UPDATE...");

rs. updat eRows();
conn.commit ();
For Microsoft SQL Server, if concurrency for a result set is CONCUR_UPDATABLE, the

SELECT statement in the execut e() or execut eQuery() methods must not include
the ORDER BY clause.

getCursorName

One result set method, get Cur sor Nane() , enables the determining of the cursor
name used to fetch a result set. If a cursor name is not specified by the query itself,
different database vendors return different information. The iPlanet Application
Server attempts to handle these differences as transparently as possible. Table 8-4
indicates the cursor name returned by different database vendors if no cursor name
is specified in the initial query.

Table 8-4 Cursor Name

Database Vendor getCursorName Value Returned

Oracle If a cursor name is not specified with set Cur sor Nane() , an
empty string is returned.

Chapter 8 Using JDBC for Database Access 195

Working with JDBC Features

Table 8-4 Cursor Name

Database Vendor getCursorName Value Returned

Sybase If a cursor name is not specified with set Cur sor Nane(),
and the result set is not updatable, a unique cursor name is
automatically generated by the iPlanet Application Server.
Otherwise an empty string is returned.

Informix, DB2, ODBC If a cursor name is not specified with set Cur sor Name() , the
driver automatically generates a unique cursor name.

getObject

The iPlanet Application Server implements this JDBC method and it only works
with scalar data types. JDBC 2.0 adds additional method versions that include a
map argument. The iPlanet Application Server does not implement maps and
ignores map arguments.

getRef, getBlob, getClob, and getArray

References, blobs, clobs, and arrays are new SQL-3 data types. The iPlanet
Application Server does not implement these data objects or their methods.
However, to work with references, blobs, clobs, and arrays use

get Bi naryStrean() and set Bi naryStreant).

Working with ResultSetMetaData

The get Tabl eNane() method only returns meaningful information for OBDC
compliant databases. For all other databases, this method returns an empty string.

Working with PreparedStatement

Pr epar edSt at enent is a class that encapsulates a query, update, or insert
statement that is used repeatedly to fetch data. Be aware of the following behaviors
or limitations associated with this class.

NOTE Use the iPlanet Application Server feature Sgl Uti | . | oadQuery()
to load an i ASRowSet with a prepared statement. For more
information, see the Sgl Uti | class entry in the Foundation Class
Reference (Java).

196 iPlanet ™ Application Server Developer's Guide * November 2001

Working with JDBC Features

setObject
This method may only be used with scalar data types.

addBatch

This method enables ganging of a set of data manipulation statements together to
pass to the database as if it were a single statement. addBat ch() only works with
SQL data manipulation statements that return a count of the number of rows
updated or inserted. Contrary to the claims of the JDBC 2.0 specification,

addBat ch() does not work with any SQL data definition statements such as
CREATE TABLE.

setRef, setBlob, setClob, setArray

References, blobs, clobs, and arrays are new SQL-3 data types. The iPlanet
Application Server does not implement these data objects or the methods that work
with them. However, to work with references, blobs, clobs, and arrays use

get Bi naryStrean() and set Bi naryStreant).

getMetaData

Not all database systems return complete metadata information. See your database
documentation to determine what kind of metadata your database provides to
clients.

Working with CallableStatement

Cal | abl eSt at erent is a class that encapsulates a database procedure or function
call for databases that support returning result sets from stored procedures. Be
aware of the following limitation associated with this class. The JDBC 2.0
specfication states that callable statements can return an updatable result set. This
feature is not supported in the iPlanet Application Server.

getRef, getBlob, getClob, getArray

References, blobs, clobs, and arrays are new SQL-3 data types. The iPlanet
Application Server does not implement these data objects or the methods that work
with them. However, to work with references, blobs, clobs, and arrays use

get Bi naryStrean() and set Bi naryStreant).

Chapter 8 Using JDBC for Database Access 197

Working with JDBC Features

198

Handling Batch Updates

The JDBC 2.0 specification provides a batch update feature to an application to
pass multiple SQL update statements (I NSERT, UPDATE, DELETE) in a single
database request. This statement ganging can result in a significant performance
increase when a large number of update statements are pending.

The St at enent class includes two new methods for executing batch updates:

= addBat ch() permits adding a SQL update statement (I NSERT, UPDATE, DELETE)
to a group of statements prior to execution. Only update statements that return
a simple update count can be grouped using this method.

= execut eBat ch() permits execution of a collection of SQL update statements as
a single database request.

In order to use batch updates, an application must disable auto commit options, as
follows:

[l turn off autocommit to prevent each statement from comiting
separately
con. set Aut oCommi t (f al se);

Statenent stm = con.createStatenent();

stmt.addBatch("INSERT INTO employees VALUES(4671, 'James
Williams’)");

stmt.addBatch("INSERT INTO departments VALUES(560, 'Produce’)");
stmt.addBatch("INSERT INTO emp_dept VALUES(4671, 560)");

//submit the batch of updates for execution
int[] updateCounts = stmt.executeBatch();
con.commit();

Call clearBatch() to remove all ganged statements from a batch operation before
executeBatch() is called (for example, because an error is detected).

NOTE The JDBC 2.0 specification erroneously implies that batch updates
can include Data Definition Language (DDL) statements, such as,
CREATE TABLE DDL statements do not return a simple update
count, and cannot be grouped for a batch operation. Also, some
databases do not allow data definition statements in transactions.

iPlanet ™ Application Server Developer's Guide * November 2001

Working with JDBC Features

Creating Distributed Transactions

The JDBC 2.0 specification provides the capability for handling distributed
transactions. A distributed transaction is a single transaction that applies to
multiple, heterogeneous databases that may reside on separate server machines.

Distributed transaction support is already built-in to the iPlanet Application Server
EJB container. If an EJB does not specify the TX_BEAN_MANAGED transaction
attribute, automatic support for distributed transactions in an application is
enabled.

In servlets and EJBs that specify the TX_BEAN_ MANAGED transaction attribute, you
can still use distributed transactions, but you must manage transactions using the
JTS User Tr ansact i on class. For example:

Initial Context ctx = null;
String dsNanel "j dbc/ Sanpl eDS1";
String dsNanme2 "j dbc/ Sanpl eDS2" ;

Dat aSource ds1 nul | ;
Dat aSour ce ds2 nul | ;
try {
ctx = new Initial Context();
ds1 = (DataSource)ctx. | ookup(dsNanel);
ds2 = (DataSource)ctx.| ookup(dsName2);

} catch(Exception e) {
e.printStackTrace(System out);

}

User Transacti on tx = ej bCont ext. get User Transacti on();
tx. begi n();

Connecti on connl
Connecti on conn2

ds1. get Connection();
ds2. get Connection();

/!l do some work here

tx.conmit();

In this example, ds1 and ds2 must be registered with the iPlanet Application
Server as global datasources. In other words, their datasource properties files must
include a Resour ceMyr entry whose value must be configured at install time.

Chapter 8 Using JDBC for Database Access 199

Working with JDBC Features

200

Dat aBase=ksanpl e

Dat aSour ce=ksanpl e
User Nane=kdeno
PassWr d=kdeno

Dri ver Type=ORACLE_OCI
Resour ceMgr =or ar m

In this example, or ar mmust be a valid Resour ceMgr entry and must be enabled to
obtain a global connection successfully. In order to be a valid Resour ceMgr entry,
an resource manager must be listed the registry in CCS0\ RESOURCEMGR, and the
entry itself must have the following properties.

Dat abaseType (string key)
| sEnabl ed (integer type)

Openstring (string type key)
ThreadMode (string type key)

Working with RowSet

A RowSet is an object that encapsulates a set of rows retrieved from a database or
other tabular data store, such as a spreadsheet. To implement a RowSet , a program
must import j avax. sql , and implement the RowSet interface. RowSet extends the
j ava. sgl . Resul t Set interface, permitting it to act as a JavaBean component.

Because a RowSet is a JavaBean, you can implement RowSet events and set
properties on the RowSet . Furthermore, because RowSet is a Resul t Set extension,
you can iterate through a RowSet just as you would iterate through a Resul t Set .

To fill a RowSet call the RowSet . execut e() method. The execut e() method uses
property values to determine the datasource and retrieve data. The actual
properties to set and examine depends upon the implementation of RowSet
invoked.

For more information about the RowSet interface, see the JDBC 2.0 Standard
Extension API Specification.

Using iIASRowSet

The iPlanet Application Server provides a RowSet class called i ASRowSet for
convenience. i ASRowSet extends Resul t Set , therefore call methods are inherited
from the Resul t Set object. i ASRowSet overrides the get Met aDat a() and cl ose()
methods of Resul t Set . Because i ASRowSet is not a driver-level class, it is easier to
use than Resul t Set .

The RowSet interface is fully supported except as noted in Table 8-5.

iPlanet ™ Application Server Developer's Guide * November 2001

Working with JDBC Features

Table 8-5 RowSet Interface Support Exceptions

Method Argument Exception Thrown Reason

set ReadOnl y() false SQLExcepti on i ASRowSet is
already read-only.

set Type() TYPE_SCROLL_I NSENSI TI VE SQLException SCROLL_I NSENSI Tl VE
is not supported.

set Concurrency() CONCUR_UPDATABLE SQLExcepti on i ASRowSet is
read-only.

addRowSet Li st ener () any None Not supported.

renoveRowSet Li stener () any None Not supported.

set Nul I () any type name Arguments Not supported.

ignored

set TypeMap() java.util. Mp None Map is a JDBC 2.0
feature that is not
currently
supported.

RowSetReader

i ASRowSet provides a full RowSet Reader class implementation.

RowSetWriter

i ASRowSet is read-only, but an interface for this class is provided for future
expansion. At present, its only method, wri t eDat a() throws SQLExcept i on.

RowSetInternal

This internal class is used by RowSet Reader to retrieve information about the
RowSet . It has a single method, get Ori gi nal Row() , which returns the original
Resul t Set instead of a single row.

Using CachedRowSet

The JDBC specification provides a RowSet class called CachedRowSet .
CachedRowSet permits data retrieval from a datasource, then detaches from the
datasource while examining, and modifying the data. A cached row set keeps track
of the original data retrieved and any data changes made by an application. If the
application attempts to update the original datasource, the row set is reconnected
to the datasource, and only those rows that have changed are merged back into the
database.

Chapter 8 Using JDBC for Database Access 201

Working with JDBC Features

Creating a RowSet
To create a row set in an the iPlanet Application Server application:

i ASRowSet rs = new i ASRowSet () ;

Using JNDI for a Database Driver

All JDBC driver managers, such as the JDBC driver manager implemented in the
iPlanet Application Server, must find and access a JDBC driver by looking up the
driver and a JDBC URL for connecting to the database. However, a JDBC URL may
not only be specific to a particular vendor’s JDBC implementation, but also to a
specific machine and port number. Such hard-coded dependencies make it hard to
write portable applications that can easily be shifted to different JDBC
implementations and machines at a later time.

JDBC 2.0 specifies using JNDI to provide a uniform, platform and JDBC vendor
independent way for an application to find and access remote services over the
network. In place of this hard-coded information, JNDI permits assigning a logical
name to a particular datasource. Once the logical name is established, you need
only modify it a single time to change the deployment and application location.

JDBC 2.0 specifies that all JDBC datasources are registered in the j dbc naming
subcontext of a INDI namespace, or in one of its child subcontexts. The JNDI
namespace is hierarchical, like a file system’s directory structure, so it is easy to
find and nest references. A datasource is bound to a logical JNDI name. The name
identifies a subcontext, j dbc, of the root context, and a logical name. In order to
change the datasource, just change its entry in the JNDI namespace without having
to modify the application.

For more information about JNDI, see the JDBC 2.0 Standard Extension API.

The rest of this section uses an example of a datasource lookup to describe how to
reference resource factories. The same principle is applicable to all resources (such
as JavaMail references).

The resource lookup in the application code looks like this:

String dsNane = "java: conp/ env/ Hel | oDbDat aSour ce";
Dat aSource ds = (j avax. sql . Dat aSource)i nit Cont ext.| ookup(dsNane);
Connecti on conn = ds. get Connection();

202 iPlanet ™ Application Server Developer's Guide * November 2001

Working with JDBC Features

The resource being queried is listed in the r es- r ef - name attribute of the web. xni
file as follows:

<resource-ref>
<descri pti on>Dat asour ce Reference</description>
<res-ref-nane>Hel | oDbDat aSour ce</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

</ resource-ref>

The resour ce-ref section in the iPlanet specific deployment descriptor,

i as-web. xm , maps the r es-r ef - nane (the name being queried in the application
code) to the INDI name of the datasource. The JNDI name is the same as the name
of the datasource as defined in the resource file when the resource is registered
with the server.

<resource-ref>
<res-ref-nane>Hel | oDbDat aSour ce</ r es-r ef - nane>
<j ndi - name>j dbc/ hel | odb/ Hel | oDbDB</ j ndi - nanme>
</resource-ref>

The resource registration file is an XML file that lists the JNDI name of the
datasource and maps it to a driver that has been registered with the iPlanet server.
The JNDI name should be the same as the one listed in the j ndi - nane attribute of
the resour ce-ref section of thei as-web. xni file.

<i as-resource>
<resource>
<j ndi - nanme>j dbc/ hel | odb/ Hel | oDbDB</ j ndi - nane>
<j dbc>
<driver-type>Poi nt BaseDriver</driver-type>
<dat abase-url >
j dbc: poi nt base:// | ocal host/i assanpl es
</ dat abase-url >
<user nanme>hel | odb</ user nane>
<passwor d>hel | odb</ passwor d>
</ j dbc>
</ resource>
</ias-resource>

For more information about the web. xn , i as-web. xm , and resource XML files,
see Chapter 10, “Packaging for Deployment.”

When the resource is registered, it is entered in the following section of the registry
(in the LDAP namespace):

SOFTWARE\ i Pl anet\ Appl i cati on Server\ 6. 0\ Dat aSour ce
Figure 8-1 shows the registry entry.

Chapter 8 Using JDBC for Database Access 203

Working with JDBC Features

Figure 8-1 Datasource registry entry

1Y Mansl Nagalip 1 di

He E# Help
[T T——
Gl 3 Applicion Terer
=g 1]
) Aot plsat A AT
1) Betebare plareimading
. jmm.-l
] v siorebi (1P
Hyan
[ey
o3 i pues]
El _iielaSaros
[l i

5]

?
|

st praniay e lor sira el s correscionrs 08
o i s P D iy

A eoies de oot D wi | - Dulan | (0TS

i -

|
%

204 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 9

Developing and Deploying
CORBA-Based Clients

This chapter explains how to access to EJBs via the IIOP (RMI or IDL over IIOP)
protocol within an iPlanet Application Server environment.

This chapter contains the following sections:

= Overview of CORBA Client Support

< RMI/IIOP Client Applications

e C++ IIOP Client Applications (Unix Only)

Overview of CORBA Client Support

iPlanet Application Server supports access to EJBs via the IIOP protocol as
specified in the Enterprise JavaBeans Specification, V1.1, and the Enterprise
JavaBeans to CORBA Mapping specification. These clients use JNDI to locate EJBs
and use Java RMI/I110P to access business methods of remote EJBs, or they use C++
with I1OP to access business methods of remote EJBs.

The following topics are covered in this overview:
e Scenarios

= Architectural Overview

< iPlanet Value-Added Features

« Limitations

= Choosing the ORB

205

Overview of CORBA Client Support

Scenarios

The most common scenarios in which CORBA clients are employed are when
either a stand-alone program or another application server acts as a client to EJBs
deployed to iPlanet Application Server.

Stand-Alone Program

In the simplest case, a stand-alone program running on a variety of operating
systems uses IIOP to access business logic housed in back-end EJB components, as
shown in Figure 9-1.

Figure 9-1 Stand-alone program

C++ iPlanet
Program Application Server
IOP ~_
RMI/IIOP L
Java _
EJB Container
Program

206 iPlanet ™ Application Server Developer's Guide * November 2001

Overview of CORBA Client Support

Server-to-Server

Web servers, CORBA objects, and even other application servers can use IIOP to
access EJBs housed in an iPlanet Application Server, as shown in Figure 9-2.

Figure 9-2 Server-to-server

Web Server

Servlet
Application iPlanet

Server Application Server

EJB RMI/IIOP
| ()
CORBA Server >
lop EJB Container

Chapter 9 Developing and Deploying CORBA-Based Clients 207

Overview of CORBA Client Support

208

Architectural Overview

CORBA client support in iPlanet Application Server involves a specialized Java
Engine process named the CORBA Executive Server (CXS). The CXS acts as a
bridge between Java or C++ clients using 11OP and EJBs deployed to one or more
Java Engines acting as EJB containers. For every EJB accessed by CORBA clients,
the 11OP Bridge process handles the incoming I1OP-based requests and maps these
requests to internal calls to EJBs housed within the EJB containers, as shown in
Figure 9-3.

Figure 9-3 Architecture

iPlanet Application Server
nga | iPlanet | RMI/IIOP > iPlanet
Client ORB ORB
IIOP ’
i -
Other |RMI/IIOP Bridge
ORB (cxs/IVM) _
EJB Container
C++ Other |IIOP Other Java Engine
= - ;

Client ORB ORB (kjs/IVM) n

In this release of iPlanet Application Server, you can use the ORB that is bundled as
part of the Application Server, or you can use a third-party ORB (ORBIX 2000).

iPlanet Value-Added Features

iPlanet’s implementation of CORBA clients goes beyond the specification by
providing the following value-added features:

< Naming Services

e C++ Client Support

iPlanet ™ Application Server Developer's Guide * November 2001

Overview of CORBA Client Support

e Built-in ORB and Third Party ORB Support

= Basic Authentication and EJB Container Integration
= Client Side Authentication

= Load Balancing

= Scalability

= High Availability

< Minimal Ports Opened in Firewalls

Naming Services

The CORBA clients use the standard CORBA COS Naming Service to resolve
EJBHome objects. As EJBs are deployed to iPlanet Application Server, they are
automatically and dynamically registered in the naming service.

C++ Client Support

C++ clients using I1OP are supported for Unix systems in this release of iPlanet
Application Server. For more information, see “C++ IIOP Client Applications
(Unix Only),” on page 250.

Built-in ORB and Third Party ORB Support

iPlanet provides a built-in ORB to support IIOP access to EJBs. You can also install
and configure a third party ORB (ORBIX 2000) to use I1OP with iPlanet Application
Server. For more information, see “Choosing the ORB,” on page 213.

Basic Authentication and EJB Container Integration

Although the CORBA standards do not yet define a means of performing basic
authentication between a CORBA client and an EJB server, iPlanet provides such
support in the Application Server. This feature enables the EJB deployer to control
access to EJBs using standard declarative and programmatic controls that apply to
both web and CORBA clients.

As a CORBA client authenticates to the iPlanet Application Server, the principal
information is automatically propagated to the EJB container for authorization
based on the standard EJB security mechanisms. To trigger collection of the client’s
user name and password, iPlanet provides a client-side callback mechanism that

Chapter 9 Developing and Deploying CORBA-Based Clients 209

Overview of CORBA Client Support

210

enables an application to obtain a user name and password through
application-specific means. Once the user name and password information is
collected by the iPlanet CORBA infrastructure, this information is propagated over
IIOP to the Application Server.

Client Side Authentication

If ORBIX 2000 is the ORB used for RMI/110P, portable interceptors implement
security by providing hooks, or interception points, which define stages within the
request and reply sequence. Services can use these interception points to query
request and reply data, and to transfer service contexts between clients and servers.

There are two interceptors, one each on the client side and server side. The client
interceptor intercepts the request before it is sent to the server, then checks whether
the Pri nci pal class (which implements

com net scape. ej b. client.|UserPrincipal) isset. If itis set, the interceptor
instantiates the class and calls the set Pri nci pal method. Inside the set Pri nci pal
method, user I d and passwor d instance variables should be set; you can
implement custom code inside this method for getting the user ID and password.
The client interceptor uses the corresponding accessor methods to retrieve these
values.

Subsequently, these values are stored in the PI Curr ent object (which is a table of
slots). Separate slots are created in the Pl Cur r ent object for storing the user ID and
password. Subsequently, the client interceptor creates the service contexts, one
each for user ID and password, and adds them to the request before sending it. The
user ID and password are stored in the PI Cur r ent object in the first request. For
subsequent requests, they are retrieved from the PI Cur r ent object.

If the Pri nci pal class is not set, the request is sent unchanged, and no service
context data is added.

On the server side, upon receipt of the request, the server interceptor is invoked.
The server interceptor checks whether service context data is present in the request.
If it is not present, the request is allowed to proceed further. If service context data
is present, the server interceptor extracts the user ID and password and calls the

| ogi n method of the security manager. This method authenticates the user. If
authentication fails, an exception is sent back to the client. If it succeeds, the request
is allowed to proceed further.

On both the server and client side, the interceptors must be registered using the
ORBI ni ti al i zer class for this functionality to take effect. The ORBI ni ti | ai zer
class on client side also creates the PI Cur r ent object.

iPlanet ™ Application Server Developer's Guide * November 2001

Overview of CORBA Client Support

Role mapping is done at the method or bean level for controlling the access. The
EJB container retrieves the role mapping information from the security manager to
authorize access to the method or bean. If the user is authorized, the method is
executed. Otherwise an or g. ong. CORBA. NO_PERM SSI ON exception is thrown.

Load Balancing

As new IIOP requests arrive at an instance of iPlanet Application Server, the
Application Server load balances these requests against one or more JVMs acting as
EJB containers. Load balancing is implemented in a simple round-robin scheme.
Upon startup, the application server obtains a list of the available EJB container
processes, also known as Java Engines. As home lookup requests arrive from
CORBA clients, the Application Server uses a list of engines to select the target
engine on which an EJB home is hosted. Subsequent lookups for that EJB home,
bean creations on that home, and business method invocations on the created
beans go to the same target engine.

Client-Side Load Balancing

If the built-in iPlanet ORB is used, client applications can rotor through a list of the
available CORBA processes or use round-robin DNS to implement basic,
client-side load balancing.

If ORBIX 2000 is the ORB used, other client-side load balancing options are
available. The naming service defines a repository of names that map to objects. A
name maps to one object only. ORBIX 2000 extends the naming service model to
allow a name to map to a group of objects. An object group is a collection of objects
that can increase or decrease in size dynamically. Each object group has a selection
algorithm. This algorithm is applied when a client resolves the name associated
with the object group. Three algorithms are supported:

e Round-robin selection
e Random selection
= Active load balancing selection

Object groups provide a way to replicate frequently requested objects and thereby
distribute the request-processing load. The naming service directs client requests to
the various replicated objects according to the object group’s selection algorithm.
The existence of an object group is transparent to the client, which resolves the
object group name in the same way that it resolves any other name.

Chapter 9 Developing and Deploying CORBA-Based Clients 211

Overview of CORBA Client Support

212

Scalability

Multiple CORBA processes can be configured for each application server instance.
This feature enables system administrators to configure any number of JVMs
dedicated to handling incoming IIOP requests. Administrators can modify the
number of processing threads available for each CORBA and EJB container process
to suit the expected loads of the system.

High Availability

The following features contribute to high availability:

= Auto Restart of Java Engines: The application server monitors both the Bridge
processes as well as the Java Engines supporting the EJB containers. If a
process fails, administrative services automatically restart the failed process.

= Stateful Session Bean Failover: CORBA clients can take advantage of the
built-in EJB stateful session bean replication feature of iPlanet Application
Server. If a Java Engine housing an EJB container fails, then subsequent
requests to the stateful session bean continue to be processed once the Java
Engine restarts.

= EJB Handle and Object Reference Failover: If a Bridge process fails and is
automatically restarted, the CORBA clients can continue to access EJBs without
interruption.

Minimal Ports Opened in Firewalls

If the built-in iPlanet ORB is used, the Bridge process handles both name service
and business method calls on a common, fixed IP port number. This approach
helps to minimize the number of ports opened in firewalls positioned between
CORBA clients and iPlanet Application Server instances on which Bridge processes
are configured.

Limitations

CORBA client support in iPlanet Application Server has the following limitations:
= |tapplies only to accessing EJBs.

= General RMI objects cannot be accessed via RMI/ZI1OP.

= Transaction propagation from Java RMI/I1OP clients is not supported.

< When you are using JDK 1.3.x on the client side, only primitive data types can
be exchanged.

iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

Choosing the ORB

iPlanet provides a built-in ORB to support IIOP access to EJBs. You can also install
and configure a third party ORB (ORBIX 2000) to use I1OP with iPlanet Application
Server.

If your company uses ORBIX 2000 as its standard ORB, or if you wish to develop
C++ clients that communicate with EJBs, you should configure iPlanet Application
Server to use ORBIX 2000. ORBIX 2000 also offers additional authentication and
load balancing options. For information about installing ORBIX 2000 and
integrating it with iPlanet Application Server, see the Administrator’s Guide.

For more information about configuring RMI/11OP applications to use ORBIX
2000, see “Configuring RMI/110P Applications for ORBIX,” on page 237. For more
information about configuring C++ 11OP applications to use ORBIX 2000, see
“Configuring C++ IIOP Applications for ORBIX,” on page 251.

RMI/IIOP Client Applications

Using RMI/110P-based client applications with iPlanet Application Server is very
similar to using clients with other J2EE-certified application servers. With minimal,
if any, changes to the JNDI lookup section of your client, you can reuse your Java
client to work with a variety of J2EE application servers.

The following topics are covered in this section:

Developing RMI/ZIIOP Client Applications

= Packaging RMI/ZIIOP Client Applications

« Configuring RMI/1IOP Support

= Deploying RMI/ZIIOP Client Applications

= Configuring RMI/1IOP Applications for ORBIX
= Running RMI/IIOP Client Applications

= Troubleshooting RMI/1IOP Client Applications
= Performance Tuning RMI/Z1IOP

= Firewall Configuration for RMI/I11OP

= Viewing RMI/IIOP Log Messages

= Sample RMI/1IOP Applications

Chapter 9 Developing and Deploying CORBA-Based Clients 213

RMI/IIOP Client Applications

Developing RMI/IIOP Client Applications
The following topics are covered in this section:

< JNDI Lookup for the EJB Home Interface

= Client Authentication

e Client-Side Load Balancing and Failover

JNDI Lookup for the EJB Home Interface

One of the first steps in coding an RMI/ZIIOP client is to perform a lookup of an
EJB’s home interface. In preparation for performing a JNDI lookup of the home
interface, you must first set several environment properties for the

I ni tial Context.Then you provide a lookup name for the EJB.

The steps and an example are summarized in the following sections.
= Specifying the Naming Factory Class

= Specifying the Target 11OP Bridge

= Specifying the INDI Name of an EJB

< AJNDI Example

Specifying the Naming Factory Class

According to the RMI/110P specification, the client must specify

com sun. j ndi . cosnami ng. CNCt xFact or y as the value of the
java.naming.factory.initial entryinan instance of a Properti es object. This
object is then passed to the JNDI | ni t i al Cont ext constructor prior to looking up
an EJB’s home interface. For example:

Properties env = new Properties();

env. put ("j ava. nam ng. factory.initial", "com sun.jndi.cosnanm ng. CNCt xFactory");
env. put ("j ava. nam ng. provider.url", "iiop://" + host + ":"+port);
Context initial = new Initial Context(env);

hject objref = initial.lookup("java:conp/env/ejb/ MyConverter");

Specifying the Target IIOP Bridge
According to the RMI/I10P specification, your client must set the
j ava. nami ng. provi der. ur| property to a value of the following form:

i i op:// server: port

214 iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

The server identifies the host on which an iPlanet Application Server instance
resides. The port identifies a specific IOP Bridge process running on the
application server host.

Along with the j ava. nani ng. factory.initial property, you can specify the
j ava. nami ng. provi der. url property either on the command line or in the client
application’s code.

The following is an example of setting the 11IOP URL on the Java command line
(this command must be all on one line):

java -Djava. nam ng. provider.url="iiop://127.0.0.1 :9010"
-Dj ava. nam ng. factory.initial =com sun.jndi.cosnan ng. CNC xFact ory
j 2eegui de.cart.Cartdient

In this case, the client application does not need to instantiate a Pr operti es object:

public static void main(String[] args) {
Context initial = new Initial Context();
hject objref = initial.lookup("java:conp/env/ejb/ MConverter");

}

As an alternative, you can set the IIOP URL within the client application. In the
following example, two command line arguments are passed into the main classes
of the client.

public static void main(String[] args) {
String host = args[O0];
String port = args[1];
Properties env = new Properties();

env. put ("java. nam ng. factory.initial",
"com sun. j ndi . cosnami ng. CNCt xFact ory") ;

env. put ("j ava. nam ng. provider.url"™, "iiop://" + host + ":"+port);
Context initial = new Initial Context(env);
hject objref = initial.lookup("java:conp/env/ejb/ MyConverter");

Chapter 9 Developing and Deploying CORBA-Based Clients 215

RMI/IIOP Client Applications

216

Specifying the JNDI Name of an EJB

After creating a new JNDI | ni ti al Cont ext object, your client calls the | ookup
method on the I ni ti al Cont ext to locate the EJB’s home interface. The name of the
EJB is provided on the call to | ookup. When using RMI/I10P to access remote EJBS,
the parameter is referred to as the “JNDI name” of the EJB. Depending on how
your client application is packaged, the supported values of the JNDI name vary.

The JNDI Name Without an Application Client Container

When the client is not packaged as part of an Application Client Container (ACC),
you must specify the absolute name of the EJB in the JNDI lookup. iPlanet supports
the following approaches to performing the JNDI lookup outside of an ACC:

initial.lookup("ejb/ejb-name");
initial.lookup("ejb/module-name/ ejb-name") ;

The ejb-name is the name of the EJB as it appears in the <ej b- name> element of the
EJB’s deployment descriptor. For example, here is a lookup using the value
MyConverter:

initial.lookup("ejb/MConverter");

This lookup requires that the EJB deployment descriptor specify MyConvert er as
the <ej b- nane>, as follows:

<ej b-jar>
<ent erpri se-beans>
<sessi on>
<ej b- name>MyConvert er </ ej b- name>
<home>j 2eegui de. convert er. Convert er Home</ hone>
<r enot e>j 2eegui de. converter. Converter</renote>

</ sessi on>
</ enterprise-beans>
</ejb-jar>

Using only the ejb name in the JNDI lookup on the RMI/ZIIOP client works
properly as long as only one EJB of this name is registered in the Application
Server. If you have more than one EJB of this name registered, you must qualify the
ejb name with the name of the EJB JAR module in which the EJB of interest exists.
You can do this by including the module name in front of the ejb name in the JNDI
lookup. The EJB JAR module name is the name of the EJB JAR file minus the . j ar
extension.

iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

In the Converter sample application, since the EJB JAR module name is

j 2eegui de- convert er Ej b (based on the EJB JAR file name of

j 2eegui de- converter Ej b. j ar), a lookup based on the module name looks like
this:

initial.lookup("ejb/j2eeguide-converterE b/ MyConverter");

The safe approach is to always use the module name qualifier when performing
JNDI lookups from RMI/ZIIOP clients that do not use Application Client Container
packaging. The only drawback of the module name approach is that the client
becomes aware of additional aspects of the deployment structure of the server side
environment beyond the absolute EJB name.

As of Service Pack 3, you can also use the prefix j ava: conp/ env/ ej b/ when
performing lookups via absolute references. For example, the lookup in the
Converter sample could be written as follows:

initial.lookup("java: conp/env/ejbl/ MConverter");
Or, with a module name, it could be written as follows:
initial.lookup("java:conp/env/ejbl/j2eeguide-converterE b/ MyConverter");

There is no mechanical difference between supplying this prefix and the first two
approaches. You might find the j ava: conp/ env/ ej b/ confusing when used in
conjunction with absolute EJB references because this notation is typically used
when you are using indirect EJB references.

The JNDI Name When Using an Application Client Container

If you are using an Application Client Container (ACC) to house the client, the
JNDI name can use the logical name of the EJB as specified in the <ej b- r ef - nane>
element in the ACC deployment descriptor. This approach to specifying the JNDI
name of an EJB, although dependent on packaging and running the client in the
context of an ACC, is the same approach as used within a servlet or EJB housed
within the Application Server.

As is the case for servlets and EJBs that perform lookups on EJBs, the format of the
lookup must be as follows:

initial.lookup("java: conp/env/ejbl/ejb-ref-nane");

The ejb-ref-name is the value specified in the <ej b- r ef - name> element of the ACC
deployment descriptor.

In the following example, since Si npl eConvert er appears in the <ej b-r ef - nane>
element of the ACC deployment descriptor, a value of Si npl eConverter isused in
the INDI lookup:

initial.lookup("java: conp/env/ejb/SinpleConverter");

Chapter 9 Developing and Deploying CORBA-Based Clients 217

RMI/IIOP Client Applications

The appl i cation-client.xm filelooks like this:

<application-client>
<di spl ay- name>converter-acc</di spl ay- nane>
<descri pti on>
Currency Converter Application dient Container Sanple
</ descri ption>
<ej b-ref>
<ej b-ref - name>Si npl eConvert er </ ej b-ref - name>
<ej b-ref-type>Sessi on</ej b-ref-type>
<home>j 2eegui de. convert er. Convert er Home</ hone>
<r enot e>j 2eegui de. converter. Converter</renote>
<ej b-1ink>Test </ ej b-1ink>
</ejb-ref>
</ application-client>

A benefit of using ACC packaging is that the JNDI names specified in the client
application are indirectly mapped to the absolute JNDI names of the EJBs.
However, this aspect is about the only real benefit of using ACC. See “Using
Application Client Container (ACC),” on page 223 for more details.

A JNDI Example

The following client program is taken from the Currency Converter application
that is part of the J2EE Developer’s Guide examples bundled in iPlanet Application
Server. See “Sample RMI/I1OP Applications,” on page 249 for more information
on the RMI/ZIIOP samples included with the application server.

package j 2eegui de. converter;

i mport java.util.*;

i mport j avax. nami ng. Cont ext ;

i mport javax. nam ng.lnitial Context;

i mport javax.rm . Portabl eRenot eCbj ect ;

i mport j 2eegui de. converter. Converter;
i nport j 2eegui de. converter. Converter Hone;

public class Converterdient {

public static void main(String[] args) {
try {

if (args.length !'= 2) {
Systemout. println("Wong nunber of argunments to client");
Systemexit(1);

}

String host = args[O0];

String port = args[1];

Properties env = new Properties();

218 iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

env. put ("j ava. nam ng. factory.initial",
"com sun. j ndi . cosnami ng. CNCt xFact ory") ;

env. put ("j ava. nam ng. provider.url", "iiop://" + host
+ ":"+port);

Context initial = new Initial Context(env);

Chj ect objref = initial.lookup("ejb/MConverter");

/1 Aternatively, the nodul e nane could be used as a qualifier:.
/1 Cbject objref =
/1 initial.lookup("ejb/j2eeguide-converterE b/ MyConverter");

Convert er Hone hone
=(Convert er Hone) Port abl eRenpt eChj ect . narr ow(obj r ef,
Convert er Hone. cl ass) ;

Converter currencyConverter = hone.create();

doubl e amount = currencyConverter. dol | ar ToYen(100. 00);
Systemout. println(String.val ueX (anount));

amount = currencyConverter.yenToEuro(100. 00);
Systemout. println(String.val ued (anount));

}

catch (Exception ex) {
Systemerr.println("Caught an unexpected exception!");
ex. printStackTrace();

Client Authentication

To take advantage of the optional authentication mechanism for RMI/110P clients,
you must provide a security principal class that implements the

com net scape. ej b. client.|UserPrincipal interface. This class is instantiated
once by the client side iPlanet RMI/11OP infrastructure as the JNDI | ookup method
is called. The client side RMIZ1IOP infrastructure calls the set Pri nci pal method
of this interface before the JNDI lookup triggers a call to the remote name services.

The security principal class must be named in the client’s properties and the class
must be present in the client’s CLASSPATH to enable the RMI/ZIIOP infrastructure
to load the class during execution of the client.

Chapter 9 Developing and Deploying CORBA-Based Clients 219

RMI/IIOP Client Applications

220

For example, in the Converter sample application, you could add a third property
specifying the security principal class to be instantiated as the JNDI lookup is
performed:

Properties env = new Properties();
env. put ("j ava. nam ng. factory.initial",
"com sun. j ndi . cosnam ng. CNCt xFactory");
env. put ("j ava. nam ng. provider.url", "iiop://" + host + ":"+port);
env. put ("com netscape. ej b.client.Principal dass",
"j 2eegui de. converter. Rm Principal");

Context initial = new Initial Context(env);
Chj ect objref = initial.lookup("ejb/MConverter");

The Rmi Pri nci pal class is the class that you develop that implements the
com net scape. ej b. client.|UserPrincipal interface.

Sample Principal Class

The | User Pri nci pal interface can be implemented in several ways. The simplest
is to pop up a dialog in the setPrincipal callback to capture a user/password pair
and store them in the username and password private string fields. Then,
whenever an EJB invocation occurs from the client, the get User | d and

get Passwor d methods are used to set the security context propagated by the client.

The 11OP Bridge attempts to authenticate the user and password with the iPlanet
Application Server security manager. If an authentication exception occurs in
Bridge the client side ORB is notified and the set Pri nci pal method is called to
obtain the correct user/password information. The client side RMI/ZI1OP
infrastructure retries the request automatically three times, after which an
authentication exception is generated on the client side.

i mport com netscape. ejb.client.|UserPrincipal;
public class Principal inplenments |UserPrincipal {

private String usernane;
private String password;

public void setPrincipal () {
/1 Pop up QU to take user name and password

}

public String getUserld() {
return usernang;

}

iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

public String getPassword() {
return password;
}
}

Another valid implementation of | User Pri nci pal supports multiple user
identities in the same client JVM. This is done by using Thr eadLocal variables to
store the user name and password. In this case, the methods in the

| User Pri nci pal implementation must to be Thr eadLocal aware.

Client-Side Load Balancing and Failover

Although iPlanet Application Server provides server-side load balancing and
failover for RMI/Z11OP access, you may consider implementing client side
approaches to further enhance the performance and availability of your
application.

iPlanet ORB Configuration

If you are using the built-in iPlanet ORB, you can configure client-side load
balancing in these ways:

= Manual Selection from the List of Known Bridges

You can create a wrapper class to round-robin through a set of known bridge
host name and port combinations on behalf of the client business application. If
a communication exception occurs for one of the host name and port
combinations, the wrapper class attempts to use the next host name and port
combination in the list.

For example, the following exception is thrown by the underlying client classes
when the remote IIOP Bridge cannot be contacted:

j avax. nam ng. Commruni cat i onExcepti on: Cannot connect to ORB. Root
exception is org.ong. CORBA. COW FAI LURE:

Your client wrapper code can catch this exception and select the next available
host_name: port pairing to re-attempt access to the EJB.

< Round Robin DNS

To implement a simple load balancing scheme without making source code
changes to your client, you can leverage the round-robin feature of DNS. In
this approach, you define a single virtual host name representing multiple
physical IP addresses on which 11OP Bridge processes are listening. Assuming

Chapter 9 Developing and Deploying CORBA-Based Clients 221

RMI/IIOP Client Applications

222

that you configure all of the I1OP Bridge process to listen on a common IIOP
port number, the client application can use a single host_name: I1IOP_port
during the JNDI lookup. The DNS server resolves the host name to a different
IP address each time the client is executed.

After developing the client application, you must package your application in
preparation for deployment.

ORBIX Configuration

If ORBIX 2000 is the ORB used, other client-side load balancing options are
available. The naming service defines a repository of names that map to objects. A
name maps to one object only. ORBIX 2000 extends the naming service model to
allow a name to map to a group of objects. An object group is a collection of objects
that can increase or decrease in size dynamically. Each object group has a selection
algorithm. This algorithm is applied when a client resolves the name associated
with the object group. Three algorithms are supported:

< Round-robin selection
< Random selection
= Active load balancing selection

Object groups provide a way to replicate frequently requested objects and thereby
distribute the request-processing load. The naming service directs client requests to
the various replicated objects according to the object group’s selection algorithm.
The existence of an object group is transparent to the client, which resolves the
object group name in the same way that it resolves any other name.

For Unix, you can set the flag ORBI X_LOADBALANCI NG=t r ue or f al se in the
i asenv. ksh file, which sets the Java argument as follows:

- DORBI XLoadBal anci ng=$0RBI X_LOADBALANCI NG
For Windows, you can set the Java argument in the registry as follows:

HKEY_LOCAL_MACHI NE\ SOFTWARE\ i Pl anet\ Appl i cati on
Server\ 6. 0\ Java\ JavaAr gs=- DORBI XLoadBal anci ng=t r ue

Packaging RMI/IIOP Client Applications

You can package RMI/ZIIOP Client Applications in these ways:
= Using the Assembly Tool GUI
= Automating Reassembly Using Ant

iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

= Using Application Client Container (ACC)

Using the Assembly Tool GUI

The iPlanet Application Server Deployment Tool automatically generates a JAR file
containing EJB-specific home and remote interface and stub classes when you
indicate that an EJB is accessible via [IOP. As an alternative to copying individual
class files to the client, this JAR file can be deployed as part of the client application.

The Deployment Tool does not support packaging of applications to be deployed
as part of an Application Client Container.

Automating Reassembly Using Ant

If you have an interest in a command line means of packaging RMI/11OP client
applications, it is recommended that you review the Ant-based bui | d. xni files
supplied as part of the sample applications. The bui | d. xn files for
RMI/110P-based samples contain ani nstal | _cl i ent target that can be easily
enhanced to assemble a self-contained client JAR file in much the same manner as
the Deployment Tool creates a JAR file of client-oriented classes.

Using Application Client Container (ACC)

Although iPlanet does not recommend deployment of client applications in
Application Client Containers, this deployment and runtime method is supported
as part of the J2EE specification. This approach is not recommended because, in the
current state of the ACC specification, using ACC introduces additional
complexity with minimal benefit. Furthermore, due to the limited definition of
ACC within the J2EE v1.2, support for ACC varies widely across J2EE application
servers.

If you choose to experiment with ACC on iPlanet Application Server, take the
following deployment steps into consideration:

e Theiasacc.jar JAR file supplied as part of iPlanet Application Server must
be in the client’'s CLASSPATH. This file can be copied from the following
location to the client environment:

install_dir/ i as/ cl asses/j avali asacc. | ar

Including this file eliminates the need to include the i ascli ent . j ar file in the
client’s environment.

= AJ2EE v1.2-compliant EAR file needs to be created. This EAR file must
contain:

Chapter 9 Developing and Deploying CORBA-Based Clients 223

RMI/IIOP Client Applications

The RMIZIIOP client application classes, home and remote interfaces and
stubs.

A J2EE v1.2 XML descriptor file named app- cl i ent . xnl . For example:

<?xm version="1.0" encodi ng="UTF-8""?>

<I DOCTYPE application-client PUBLIC '-//Sun M crosystens,
Inc.//DTD J2EE Application Cient 1.2//EN
"http://java.sun.conl j 2ee/dtds/application-client_1 2.dtd’ >

<application-client>
<di spl ay- nane>convert er - acc</ di spl ay- nane>
<descri ption>
Currency Converter Application dient Container Sanple
</ descri ption>
<ej b-ref>
<ej b-ref - name>Si npl eConverter</ejb-ref-nanme>
<ej b-ref-type>Sessi on</ejb-ref-type>
<home>j 2eegui de. converter. Convert er Hone</ hone>
<r enot e>j 2eegui de. converter. Converter</renote>
<ej b-1i nk>Test </ ej b-1i nk>
</ejb-ref>
</ application-client>

An iPlanet Application Server specific XML descriptor file (typically
named i as- app-client.xm). This descriptor maps EJB references to
absolute EJB names.

<?xm version="1.0" encodi ng="UTF-8""?>

<IDOCTYPE i as-java-client-jar PUBLIC '-//Sun M crosystens, Inc.//DID iAS
Enterprise JavaBeans 1.0//EN
"http://devel oper.ipl anet.conl appserver/dtds/| ASjava_client_jar_1 0.dtd >

<ias-java-client-jar>
<ejb-ref>
<ej b-ref - name>Si npl eConvert er </ ej b-ref - name>
<j ndi - nanme>ej b/ MyConverter</j ndi - nane>
</ejb-ref>
</ias-java-client-jar>

A J2EE v1.2 XML descriptor file named appl i cati on. xni .

For more information about the structure of an RMIZIIOP client EAR file, see
Chapter 10, “Packaging for Deployment.”

224 iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

NOTE EJB JAR names identified by the first portion of their filenames
(without the . j ar extensions) must be unique when deploying to
the Application Server. Use a Java package-like naming scheme for
EAR filenames and EJB names as found in the <ej b- nane> portion
of the ej b-j ar. xnl files; this ensures that name collisions do not
occur. The benefits of this naming practice apply not only to the
iPlanet Application Server, but to other J2EE application servers as
well.

To invoke the client through the Application Client Container, use the following
command:

java com net scape. ej b. client. AppCont ai ner client_ear_file -i asXm ias_xml_file

Configuring RMI/IIOP Support

To enable RMI/I1OP access to EJBs deployed to iPlanet Application Server, you
must configure both the Application Server and client environments, as described
in these sections:

= Server Configuration
= Client Configuration

The following configuration steps are required only once; they do not need to be
repeated as you deploy EJBs and client applications.

Server Configuration

If your installation of iPlanet Application Server does not already have the I1OP
Bridge process configured, you must start the iPlanet Application Server
Administrative tool to add an IIOP Bridge process to the application server
environment.

1. Start the iPlanet Application Server Administration Tool
On UNIX:
install_dir/ i as/ bi n/ ksvradmi n
On Windows:

Start->Programs->iPlanet Application Server->iAS Administration Tool

Chapter 9 Developing and Deploying CORBA-Based Clients 225

RMI/IIOP Client Applications

Connect to your application server instance and double click on the server
name icon to see a list of the processes defined for this instance of the
Application Server. You should see at least one kj s and possibly a single kxs
process (the kxs process is not required for RMI/11OP access to EJBs). If you
see a cxs process, you already have an IIOP Bridge process defined in your
application server instance. In this case, double click the cxs process entry,
note the 11OP port number, and continue to the next section. If you don’t see a
Bridge process, continue to the next step to define one.

Select any of the existing process entries and then select File->New->Process.

Select cxs from the pull-down list of process types and enter a port number
(for example, port 10822) that does not conflict with the other port numbers
already in use by the kj s and kxs processes. Take the default IIOP port
number (9010) as long as it does not conflict with other port assignments in
your system environment. Click on OK to instantiate the process.

After several seconds, you see the 1IOP Bridge process running in the
Application Server environment. This process, along with all of the other
application server processes listed in the Administrative Tool, is automatically
started as the application server is restarted.

On UNIX, you can also check for the existence of the 11OP bridge process from
the command line. For example (each command is all on one line):

ps -ef | grep iiop

root 1153 1 0 17:

00:15 ? 0:00 /bin/sh /usr/iPlanet/ias6/ias/bin/kjs -cset CCSO

-eng 3 -iiop -DORBi nsPort=9010

This output shows an iPlanet Java Engine process started with the -i i op
option. This option informs this instance of the Java Engine to start itself as an
IIOP Bridge process rather than a J2EE web and EJB container process.

Instantiating a cxs process completes the server side configuration for
RMI/I1OP support.

Client Configuration

To enable a Java application client to access EJBs housed in iPlanet, you must
ensure that a suitable Java 2 environment, the iPlanet ORB, and several JAR files
are available on the client system, as in Figure 9-4.

226 iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

Figure 9-4 Client configuration

Java-Based
REIIIOR Client

Application

Haome 'F | | Remaote I/F |

Home Stub |[Remate Stub)
\Updated as EJB IF changes

(@aschent jar || |ava jar

Java2 SE || iPlanet
JYIN ORE
Chrer firme arstall

The steps are explained in the following sections:
= Configuring a Java 2 Environment and iPlanet ORB

= Installing RMI/ZIIOP Client Support Classes

Configuring a Java 2 Environment and iPlanet ORB

A Java 2 environment and the iPlanet ORB must be present on the client to support
communication to remote EJBs via RMI/IIOP. Either the Java 2environment
bundled as part of the iPlanet Application Server or one of the tested variants
described in the section “Using an Existing JDK,” on page 228 must be used on the
client. Other Java 2 environments are likely to work properly, but these
environments are not supported by iPlanet.

NOTE It is strongly recommended that you use JDK 1.2.x on the client side.
With a JDK 1.3.x-based client, only values of primitive data types
can be exchanged between the client and server.

Chapter 9 Developing and Deploying CORBA-Based Clients 227

RMI/IIOP Client Applications

228

Using the Bundled JDK

Because it is the platform on which iPlanet performs the bulk of its RMIZIIOP
testing, the recommended Java 2 platform for client side RMI/110P-based
applications is the Java 2 environment that is bundled as part of the application
server. To use this JVM on the client side, you can simply copy the Java 2
environment from an iPlanet installation to your client environment and set the
PATH appropriately to pick up the appropriate java executable file. Since the
bundled Java 2 environment includes the iPlanet ORB, you do not need to modify
the Java 2 environment after you copy it to the client side.

The bundled Java 2 platform is in the following location on your Application
Server installation:

install_dir/ i as/ usr/javal

To copy the server’s JVM environment to your client, follow these steps:
1. Navigate to install_dir/ i as/ usr/ .

2. Copy the entire j ava/ directory to your client environment. You can zip or tar
thej ava/ directory, transfer the archive to the client system, and expand it into
a directory of your choice.

3. Setyour client’s PATH to include client_side_JVM_directory/ j ava/ bi n.

4. Executejava -fullversion toensure that the appropriate JDK (1.2.2_10) is
being used. On UNIX, execute whi ch j ava to check your work.

Now that you’ve installed the bundled JDK along with the iPlanet ORB, you need
to install several supporting JAR files in your client environment. Proceed to
“Installing RMI/110OP Client Support Classes,” on page 233 to install these JAR
files.

Using an Existing JDK

Basic testing of several distributions of the Java 2 environment have demonstrated
that, with minor setup steps, you can leverage an existing Java 2 environment in
support of RMI/ZIIOP clients accessing EJBs housed in iPlanet Application Server.
In these cases, you must copy the iPlanet ORB files from an iPlanet Application
Server environment to the pre-existing JVM on the client system.

The following combinations of operating systems and Java 2 platforms have been
tested with iPlanet Application Server:

e SolarisandJava2 1.2
= Solaris or Linux and Java 1.3 (Primitive Data Types Only)

e Windows 98, NT, or 2000 and Java 2 1.2

iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

= Windows 98, NT, or 2000 and Java 2 1.3 (Primitive Data Types Only)

Other combinations of operating systems and Java 2 platforms may work properly
with RMI/I10OP and iPlanet Application Server, but no testing has been performed
on other combinations. Regardless of the combination chosen, you should ensure
that you test your configuration thoroughly prior to making a determination that it
is suitable for production use.

Solaris and Java 2 1.2
In this scenario, you have already installed a Java 2 1.2 environment on a Solaris
system and you plan to use this JVM as the platform for your RMI/11OP client.

In the following instructions, JAVA_HOVE is used as the directory in which the JDK
1.2 distribution has been installed. For example:

export JAVA HOME=/usr/javal. 2

1. Copy the Java extensions directory from an iPlanet Application Server Solaris
installation to your Solaris client system.

Copy the following directory:
install_dir/i as/usr/javal/jrel/lib/ext
to your Solaris client’s JDK installation:

$IAVA HOME/ jrel/li bl ext

Ensure that the spar c/ directory containing shared object files is copied as part
of this step. The iPlanet ORB, native serialization files and other support files
are copied to your client in this step.

2. Copy the orb. properti es file from your iPlanet installation:
install_dir/ias/usr/java/jre/lib/orb.properties
to your client’s JDK installation:
$IAVA_HOVE/ jre/lib/

3. Set the PATH to make sure the DLLs can be accessed by the client application:
export PATH=$JAVA HOVE/ bi n: $JAVA HOVE/ jrel/li b/ ext/i 386: $PATH

Now that you’ve configured the existing JDK to use the iPlanet ORB, you need to
install several supporting JAR files in your client environment. Proceed to
“Installing RMI/110P Client Support Classes,” on page 233 to install these JAR
files.

Chapter 9 Developing and Deploying CORBA-Based Clients 229

RMI/IIOP Client Applications

Solaris or Linux and Java 1.3 (Primitive Data Types Only)

In this scenario, you have already installed a Java 2 1.3 environment on either a
Solaris or Linux system and you plan to use this JVM as the platform for your
RMI/I10P client. The following approach was tested with both Solaris and RedHat
6.2.

NOTE Due to incompatabilities between the native serialization libraries in
JDK 1.2 and JDK 1.3, if you use JDK 1.3 on the client side, only
values of primitive data types can be exchanged between the client
and server.

1. Create a directory on the client to hold the iPlanet ORB. For example:

nkdir -p /opt/iplanet/orb

2. Copy the following JAR files from the iPlanet Application Server installation to
your Linux system to an appropriate directory on the client system, for
example, to/opt /i pl anet/orb/.

install_dir/ias/usr/javal/jre/lib/ext/rmorb.jar
install_dir/i as/usr/javal/jrel/lib/ext/iioprt.jar
3. Set the environment. For example:
JAVA HOMVE=/ opt / j dk1. 3
PATH=: $JAVA_HOVE/ bi n: $JAVA HOVE/ jre/ i b/ i 386: $PATH

CLASSPATH=/ opt /i planet/orb/iioprt.jar:/opt/iplanet/orb/rmorb.ja
r

LD_LI BRARY_PATH=$JAVA HOVE/ jre/lib: $JAVA HOVE/ jre/lib/i 386
export JAVA HOVE PATH CLASSPATH LD_LI BRARY_PATH

4. When you execute the client application, you must specify the ORB classes
associated with the iPlanet ORB. If you do not specify the iPlanet ORB classes,
the ORB classes bundled in Java 2 1.3 are used. Since the 1.3 ORB classes are
incompatible with the iPlanet ORB, errors result when the 1.3 ORB classes are
not overridden.

You can specify the iPlanet ORB classes as properties on the command line
(this command must be all on one line):

java - Dorg. ong. CORBA. ORBCl ass=com net scape.ejb.client.d ient ORB
- Dor g. ong. CORBA. ORBSI ngl et onCl ass=com sun. cor ba. ee. i nternal . cor ba. ORBSi ngl et on
j 2eegui de. converter. ConverterCient ias_host 9010

230 iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

When you execute your client application, you may encounter the following
error:

ERROR! The shared library ioserl2 could not be found.

This error message occurs because of incompatabilities between the JDK 1.2.x
native serialization code required by the iPlanet ORB and the serialization code
in JDK 1.3.x distributions. If you attempt to use complex data types with
RMI/IIOP and JDK 1.3.x on the client side, this error message is typically
accompanied by a Java stack trace indicating a serialization or deserialization
error.

When you use JDK 1.3.x with primitive data types, you can usually ignore this
error message, because the primitive data types are serialized and deserialzed
correctly.

Now that you’ve configured the existing JDK to use the iPlanet ORB, you need to
install several supporting JAR files in your client environment. Proceed to
“Installing RMI/110OP Client Support Classes,” on page 233 to install these JAR
files.

Windows 98, NT, or 2000 and Java 2 1.2
In this scenario, you have already installed a Java 2 1.2 environment on Windows,
and you plan to use this JVM as the platform for your RMI/1IOP client.

In the following instructions, JAVA_HOMVE is used as the directory in which the JDK
1.2 distribution has been installed. For example:

set JAVA HOMVE=c:\JDK1. 2.2

1.

Copy the Java extensions directory from an iPlanet Application Server
Windows installation to your Windows client system.

Copy the directory:

install_dir\i as\usr\java\jre\lib\ext

to your client’s JDK installation:

Y%JAVA HOVE% j re\li b\ ext

Copy the or b. properti es file from your iPlanet installation:
install_dir\ias\usr\java\jre\lib\orb.properties

to your client’s JDK installation:

% AVA_HOME% j re\l i b\

Copy native serialization DLLs from your iPlanet installation:

Chapter 9 Developing and Deploying CORBA-Based Clients 231

RMI/IIOP Client Applications

install_dir\i as\usr\java\jre\bin\ioser12.dll

to your client’s JDK installation:

% AVA_HOVE% j r e\ bi n\

Set the PATH to make sure the DLLs can be accessed by the client application:
set PATH=%JAVA HOVE% bi n; Y°PATHY

Now that you’ve configured the existing JDK to use the iPlanet ORB, you need to
install several supporting JAR files in your client environment. Proceed to
“Installing RMI/110OP Client Support Classes,” on page 233 to install these JAR
files.

Windows 98, NT, or 2000 and Java 2 1.3 (Primitive Data Types Only)
In this scenario, you have already installed a Java 2 1.3 environment on Windows
and you plan to use this JVM as the platform for your RMIZ1IOP client.

NOTE Due to incompatabilities between the native serialization libraries in

JDK 1.2 and JDK 1.3, if you use JDK 1.3 on the client side, only
values of primitive data types can be exchanged between the client
and server.

Create a directory on the client to hold the iPlanet ORB. For example:
c:\iplanet\ orb\

Copy the following JAR files from the iPlanet Application Server installation to
the ORB directory on your Windows system to an appropriate directory on the
client system, for example, toc: \i pl anet\ orb\ .

install_dir\i as\usr\java\jre\lib\ext\rmiorb.jar
install_dir\ias\usr\java\jre\lib\ext\iioprt.jar

Before running the client application, ensure that the PATH and CLASSPATH
settings include the iPlanet ORB JAR files:

set JAVA HOVE=c:\j dkl.3
set PATH=%J AVA HOVE% bi n; %°ATHY%

set CLASSPATH=c:\i planet\orb\iioprt.jar;c:\iplanet\orb\rm orb.jar; U CLASSPATHY%

232 iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

4. When you execute the client application, you must specify the ORB classes
associated with the iPlanet ORB. If you do not specify the iPlanet ORB classes,
the ORB classes bundled in Java 2 1.3 are used. Since the 1.3 ORB classes are
incompatible with the iPlanet ORB, errors result when the 1.3 ORB classes are
not overridden.

You can specify the iPlanet ORB classes as properties on the Java command
line (the command must be all on one line):

java - Dorg. ong. CORBA. ORBCl ass=com net scape.ejb.client.dient ORB
- Dor g. ong. CORBA. ORBSI ngl et onCl ass=com sun. cor ba. ee. i nternal . cor ba. ORBSi ngl et on
j 2eegui de. converter. ConverterCient ias_host 9010

5. When you execute your client application, you may encounter the following
error:

ERROR! The shared library ioserl2 could not be found.

This error message occurs because of incompatabilities between the JDK 1.2.x
native serialization code required by the iPlanet ORB and the serialization code
in JDK 1.3.x distributions. If you attempt to use complex data types with
RMI/IIOP and JDK 1.3.x on the client side, this error message is typically
accompanied by a Java stack trace indicating a serialization or deserialization
error.

When you use JDK 1.3.x with primitive data types, you can usually ignore this
error message, because the primitive data types are serialized and deserialzed
correctly.

Now that you’ve configured the existing JDK to use the iPlanet ORB, you need to
install several supporting JAR files in your client environment. Proceed to
“Installing RMI/110OP Client Support Classes,” on page 233 to install these JAR
files.

Installing RMI/IIOP Client Support Classes

Regardless of the Java 2 platform used on the client side, the client’s CLASSPATH
must include the file i ascl i ent . j ar, an iPlanet-specific JAR file containing
several security-related classes supporting iPlanet’s client authentication feature (if
you are using ACC, i asclient.jar isreplaced by i asacc. j ar). The standard

j avax. j ar file must also be included in your client CLASSPATH. This file contains
standard Java interfaces for naming services and other Java extensions.

These JAR files can be copied from an iPlanet installation to your client
environment and added to the client’s CLASSPATH. On UNIX, you can find these
files in the following location of an iPlanet Application Server installation:

install_dir/i as/cl asses/java/iasclient.jar

Chapter 9 Developing and Deploying CORBA-Based Clients 233

RMI/IIOP Client Applications

234

install_dir/i as/cl asses/j aval/javax.jar

On Windows, you can find these files in the following location of an iPlanet
Application Server installation:

install_dir/i as/cl asses/java/iasclient.jar

install_dir/i as/lib/javaljavax.jar

Once you've copied these supporting files to the client environment, you must
configure the client’s CLASSPATH to include the JAR files.

RMI/IIOP Client Access to EJBs on Same System

If you are experimenting with RMI/I1OP client access using a client that is on the
same machine as the application server, you can take a shortcut to setting up the
PATH and CLASSPATH variables. Simply reference the existing, pre-installed
copies of the j avax.jar,iasclient.jar,andtheJVMin

install_dir/ usr/j ava/ bi n/ . For example, to test RMI/ZIIOP access locally, set the
CLASSPATH variable as follows:

On Windows:

set CLASSPATH=d:\i pl anet\ias6\ias\lib\java\javax.jar;
d:\iplanet\ias6\ias\classes\java\iasclient.jar; UCLASSPATH%

(The Windows System PATH environment variable already contains
install_dir/ usr/j ava/ bi n/ of the bundled JDK, so there is no need to set this again
on Windows.)

You could set the Windows System CLASSPATH to avoid having to manually set
the variable.

On UNIX:

export CLASSPATH=/usr/ipl anet/ias6/ias/cl asses/javaljavax.jar:
lusr/iplanet/ias6/ias/classes/javaliasclient.jar: $CLASSPATH

On UNIX, you must also modify the PATH to include the bundled JDK directory:
export PATH=/usr/iplanet/ias6/ias/usr/javal bi n: $PATH
RMI/IIOP Client Access to EJBs from a Remote System

If you are using a remote client system, follow these steps to establish the
appropriate PATH and CLASSPATH settings.

On UNIX:

Set your PATH environment variable to include the appropriate Java 2 bi n/
directory:

export PATH=Java2_install_dir/ usr/j aval bi n: $PATH

iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

Set your CLASSPATH to include the standard Java Extension classes and the
iPlanet RMI/IIOP client support JAR:

export CLASSPATH=/opt/rm-client/iasclient.jar:
/opt/rm-client/javax.jar: $CLASSPATH

Double check the CLASSPATH to ensure that it is set correctly (your CLASSPATH
may vary from the one shown below):

echo $CLASSPATH
[opt/rm-client/iasclient.jar:/opt/rm-client/javax.jar:

On Windows:

Set your PATH environment variable to include the appropriate Java 2 bi n/
directory:

set PATH=Java2_install_dir\ usr\j ava\ bi n; %°ATHY%

Set your CLASSPATH to include the standard Java Extension classes (j avax. j ar)
and the iPlanet client support JAR (i asclient.jar):

set CLASSPATH=d:\rm -client\javax.jar;d:
\rm-client\iasclient.jar; UCLASSPATHY

Deploying RMI/IIOP Client Applications

As you develop client applications, you will need to deploy a number of files from
your development environment to the client system. This section addresses the
underlying steps required to deploy an RMI/110P-capable client application in the
following sections:

« Client Deployment
= Deployment Tools

= Server CLASSPATH Setting (SP2 and Prior)

Client Deployment

In addition to ensuring that client application classes are available on the client
system, you must ensure that EJB-specific home and remote interfaces and their
corresponding stubs are deployed to the client system. For example, in the
Converter sample application, the following classes must be copied to the client
system:

Chapter 9 Developing and Deploying CORBA-Based Clients 235

RMI/IIOP Client Applications

236

Home and Remote Interface Classes:
Convert er Home. cl ass
Converter.cl ass

EJB-Specific iPlanet Client Stubs:
_Converter_Stub. cl ass

_ConverterHone_Stub. cl ass

Deployment Tools

The Deployment Tool creates a JAR file containing only the home and remote
interfaces and the RMI/I10OP stub classes. The tool does not currently package the
rest of your client application classes and resources.

You can easily automate assembly of your client application via the Java-based Ant
build facility. Refer to the RMI/110P sample applications for examples of using Ant
to both package and deploy client applications.

Server CLASSPATH Setting (SP2 and Prior)

This section applies to iPlanet Application Server 6.0 Service Pack 2 (SP2) and
earlier. Service Packs 3 and later do not require the following configuration step. If
you are using SP3 or beyond, skip to the next section, “Running RMI/ZIIOP Client
Applications,” on page 241.

In iPlanet Application Server Service Pack 2 and earlier, to load EJB classes, the
IIOP Bridge process must be able to access the EJB stubs and home and remote
interfaces via the application server’s CLASSPATH. Before the first execution of an
RMI/110P-based Java application client in SP2 or earlier, you must first modify the
CLASSPATH of the application server.

With the advent of iPlanet Application Server 6.0 SP2, registration of EJB-based
applications results in the EJB JAR file being expanded to the application server’s
deployment directory. By default, when a J2EE application such as

j 2eegui de- converter. ear is deployed to the application server, the embedded
EJB JAR file, j 2eegui deEj b. j ar in this example, is expanded to:

install_dir/ i as/ APPS/ j 2eegui de- convert er/j 2eegui de- converterEj b/

When a stand-alone EJB JAR module (or WAR modaule) is deployed to iPlanet
Application Server, the default expansion location for the stand-alone module is:

install_dir/ i as/ APPS/ nodul es/ j 2eegui de- convert er Ej b/

Prior to running the RMI/ZIIOP client, you must add the appropriate module
directory to the CLASSPATH of the application server.

iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

Configuring RMI/IIOP Applications for ORBIX

After you have installed ORBIX 2000 and integrated it with iPlanet Application
Server as described in the Administrator’s Guide, you can choose which ORB
(built-in or ORBIX) to use for each RMI/110P client application. This section
describes how to configure an RMI/110P client to use ORBIX.

For information about ORBIX and client-side load balancing, see “Client-Side Load
Balancing and Failover,” on page 221.

References
= ORBIX 2000 Programmer’s Guide, Java Edition

http://ww.iona. com docs/ or bi x2000/ 1. 2. 1/ pgui de_j ava/ ht m /i ndex. ht m
< ORBIX 2000 1.2.1 Documentation

http://ww. i ona. coni docs/ or bi x2000/ 1. 2. 1/i ndex. ht m
< OpenORB RMI over IIOP

http://ww. openorb. org/rmoveriiop. htn
= Java 2 SDK 1.4 Download Page

http://java. sun.conlj2se/ 1. 4/index. htm

Configuration Steps

The steps are the same for Unix and Windows except for the format of the file
paths. The examples show Unix file paths.

1. Install ORBIX 2000 version 1.2.1. Copy the license file to/ et c/ opt/i ona/ and
install the license. Refer to the Administrator’s Guide and the ORBIX
documentation.

2. Copy the ORBIX domain configuration file from the server ORBIX installation
(where the naming service is running) to another directory, for example:

[etc/opt/ional domai ns

This file contains the necessary configuration information to contact the server
ORBIX installation. The client program uses this file to connect to the naming
service.

This is not required if the client and server are run on the same machine. In this
case, the localhost configuration (the default) is used.

Chapter 9 Developing and Deploying CORBA-Based Clients 237

RMI/IIOP Client Applications

3. Ifyou are planning to install one of the pre-packaged sample applications,
regenerate the stubs and skeletons using the ej bc utility. For details about
ej bc, see “Using the ejbc Compiler,” on page 124.

4. Install the client application.

5. Copy the stubs (* St ub*. cl ass) pertaining to the application to the client
directory. For example (all on one line):

cp
ias_inst_dir/ i as/ APPS/ j 2eegui de- converter/j 2eegui de- converterEj b/j 2eegui de/ converter/
_Converter_Stub. cl ass client_inst_dir/ j 2eegui de/ converter

and (all on one line):

cp
ias_inst_dir/ i as/ APPS/ j 2eegui de- converter/j 2eegui de- converter E b/j 2eegui de/ converter/
_ConverterHome_St ub. cl ass client_inst_dir/ j 2eegui de/ converter

6. Set the classpath. For example (all on one line):

export

CLASSPATH=o0rbix_inst_dir/ or bi x_art/ 1. 2/ cl asses/ or bi x2000. j ar : orbix_inst_dir/ orbi x_art/1.2
/ cl asses/ ong. j ar : orbix_license_file_path/ | i censes. t xt : server_orbix_config_file_path:

ias_inst_dir/ cl asses/ j avalj avax. | ar:ias_inst_dir/ i as/ cl asses/javal/iasclient.jar

If an iPlanet Application Server installation is not present on the client
machine, copy the javax.jar file from any iPlanet Application Server installation
(version 6.0 SP4) to the client machine and include it in the classpath.

7. Set the ORBdonmi n_nane property to the domain name in the server ORBIX
configuration file (see the ORBIX documentation for details about this file).
This can be done in two ways:

o Set the ORBdonai n_nane property at the Java command line when you run
the client.

In this case, the or g. ong. CORBA. ORBC! ass property in the
jdk_inst_dir/jre/lib/orb. properties file must be set to

comipl anet.ias.iona.clientorb. | ONAorb. In addition, the

i asclient.jar file must be included in the classpath as shown in Step 6.

o Inthe client program, pass the ORBdonai n_name property (as an array of
strings) to the first parameter in the ORB. i ni t call. This initializes the ORB.
The initialized ORB can be passed to the JNDI calls, or subsequent CORBA
initialization calls can be called on it.

238 iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

In this case, the or g. ong. CORBA. ORBC! ass property in the
jdk_inst_dir/jre/lib/orb. properties file must be set to
comiona.corba.art.artinpl.ORBI npl.

Refer to the JINDI description in the JDK documentation for information about
passing an initialized ORB to JNDI calls.

Usage of the | ONAor b class is optional. The | ONAor b is derived from

com iona.corba.art.artinpl.ORBl npl (the ORBIX ORB class), and the

set _par anet er s method is overloaded. In the set par anet er s method, the
ORBnarre and ORBdomai n_nane properties are read and passed to the ORB. i ni t
call.

8. Run the client.

NOTE The built-in ORB uses the 11OP URL (which includes the host name
and port number) to connect to the iPlanet Application Server. The
ORBIX ORB does not use this URL for connecting to CXS.

If the built-in ORB is used, the naming service is in-process to CXS.
If the ORBIX ORB is used, it is out-of-process.

Enabling Security
To enable security, perform the following steps before invoking the client.

1. Make sure no value is set for the following property. There should be only
blank space after the equal sign.

org.ong. Portabl el nterceptor.ORBInitializerC ass.comiplanet.ias.iona.
orbinitializers.IONAC i entORBlnitializerlnpl=

2. Set the ORBnane property to or bnane in the scope in which the
client_interceptor name has been registered. This can be done in two ways:

o Set the ORBnane property at the Java command line.

In this case, the or g. ong. CORBA. ORBC! ass property must be set to
comiplanet.ias.iona.clientorb.| ONAorb.

o Inthe client program, pass the ORBnane property (as an array of strings) to
the first parameter in the ORB. i ni t call. This initializes the ORB. The
initialized ORB can be passed to the JNDI calls, or subsequent CORBA
initialization calls can be called on it.

Chapter 9 Developing and Deploying CORBA-Based Clients 239

RMI/IIOP Client Applications

In this case, the or g. ong. CORBA. ORBC! ass property must be set to
comiona.corba.art.artinpl.ORBI npl.

Refer to the JINDI description in the JDK documentation for information about
passing an initialized ORB to JNDI calls.

Usage of the | ONAor b class is optional. The | ONAor b is derived from

com iona.corba.art.artinpl.ORBl npl (the ORBIX ORB class), and the

set _par anet er s method is overloaded. In the set par anet er s method, the
ORBnare property is read and passed to the ORB. i ni t call.

Add the client interceptor name, i ASC i ent | nt er cept or, to the
client_binding_list inthe ORBIX configuration file at the appropriate
scope. If it is not added at the global scope, set the property ORBnane to the
value or bnane. Refer to the ORBIX documentation for further details. For
example:

bi ndi ng: client_binding_list = ["OIS+POA Col oc", "PQA Col oc",
"OTS+TLS_Col oc+PQA Col oc", "TLS_Col oc+PQOA Col oc",

"i ASAientlnterceptor+G OP+l | OP", "OTS+d OP+l | OP", "d OP+l | OP",
"OTS+d OP+l | OP_TLS", "G OP+l I OP_TLS"];

NOTE The"i ASCl i ent | nt er cept or +G OP+I | OP" entry must be listed

before the " OTS+@ OP+1 | OP" entry.

4. Add portabl e_interceptor tothe orb_pl ugi ns list at the appropriate scope.
For example, before the addition:
orb_plugins=["iiop_profile","giop" ,"iiop", "ots"]
and after the addition:

orb_plugins=["iiop_profile","giop" ,"iiop", "ots", "portable_interceptor"]

Interceptor names and port abl e_i nt er cept or have to be added at the same
scope.

5. For enabling security, the com net scape. ej b. cl i ent. | User Pri nci pal

interface must be implemented, and the class file name must be specified in the
property com net scape. ej b. cli ent. Princi pal O ass.

240 iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

NOTE If the or g. ong. CORBA. ORBCI ass property is set to
comiona.corba.art.artinpl.ORBI npl, the
com net scape. ej b. cli ent. Princi pal C ass property has to be
set in the system properties. Passing it programmatically does not
work.

Running RMI/IIOP Client Applications

If your client is a Java mai n program, then as long as the client environment is set
appropriately and you are using a compatible JVM, you merely need to execute the
mai n class. Depending on whether you are passing the IIOP URL components (host
and port number) on the command line or obtaining this information from a
properties file, the exact manner in which you execute the main program will vary.
For example, the ConverterClient sample is executed in the following manner:

java j 2eegui de. converter. Converterd i ent host_name port

The host_name is the name of the host on which an IIOP Bridge is listening on the
specified port.

Troubleshooting RMI/IIOP Client Applications

When running an RMI/Z1IOP client, you may encounter error conditions on the
client. To view the IIOP Bridge logs, see “Viewing RMI/IIOP Log Messages,” on
page 248. Table 9-1 lists common symptoms and fixes for common RMI/110P
configuration problems.

If you are running the RMI/11OP client application under load and are
experiencing issues, see “Recognizing Performance Issues,” on page 244 to
understand how to troubleshoot load-related issues.

Chapter 9 Developing and Deploying CORBA-Based Clients 241

RMI/IIOP Client Applications

Table 9-1 Troubleshooting

Symptom

Probable Cause

Corrective Action

The client throws the following exception during
JNDI lookup:

org. ong. CORBA. | NI TI ALI ZE:
instantiate default ORB
i mpl emrent ati on

can’t

The client experiences a CORBA communication
failure exception:

j avax. nam ng. Communi cat i onExcept i on:
Cannot connect to ORB. Root
exception is

or g. ong. CORBA. COMM _FAI LURE:

The client CLASSPATH does not
include thei ascl i ent.j ar file.

The client PATH does not pickup
appropriate java command. Either
the JVM bundled with the
application server or a suitable
pre-existing JVM must be used.

Connection to the 11OP Bridge fails
because of one of the following
reasons:

= 1IOP host and/or port number
are incorrect.

= |IOP Bridge process has not been
started.

= |IOP Bridge process was started,
but has not finished initializing.

« Client machine cannot access the
network.

= Firewall rules do not allow
access to the Application Server
system.

Ensure that the
client
configuration
steps were
followed; see
“Client
Configuration,”
on page 226.

Ensure that the
IIOP Bridge
process is
configured and
started; see
“Server
Configuration,”
on page 225.

Ensure that the
client machine
has network
access and that
intermediate
firewalls are not
blocking access.

242 iPlanet ™ Application Server Developer's Guide * November 2001

Table 9-1 Troubleshooting

RMI/IIOP Client Applications

Symptom Probable Cause

Corrective Action

a) The client appears to hang and then The JNDI name as specified in the
experiences an out of memory exception: client application is not correct.

Exception in thread "nmain" OR

java.lang. Qut Of MeroryError. (Pre SP3) The expanded EJB JAR

b) The 1HOP Bridge throws one of the following directory has not been added to the

exceptions repeatedly: server CLASSPATH or the server
has not been restarted since the EJB
JAR directory was added to the

[01/ May/ 2001 08:20:14:4] info: CLASSPATH.

GDS- 007: finished a registry |oad

[01/ May/ 2001 08:20:14:6] info:

PROT- 006: new connecti on establ i shed

SendRenot eReq st at us=0x0

j avax. nam ng. NameNot FoundExcepti on:

Ej bCont ext: exception on getHome(),

com nets

cape. server. eb. UncheckedExcepti on:

unchecked exception thrown by i npl

com ki vasoft. eb. boot . EBBoot st r apl npl

@f ca24a; nested exception is:

Name Not Found:

Class not Found:

[24/ Jan/ 2001 12:25:52:9] error:

EBFP- unserialize: error during

unseri al i zati on of method, exception
= java. |l ang. O assNot FoundExcepti on:

j 2eegui de. confirmer.ejb_stub_Confirm
er Home

j ava. | ang. d assNot FoundExcepti on:

j 2eegui de. confirmer.ejb_stub_Confirm
er Hone at

java.lang. Throwabl e. fill I nStackTrace
(Native Met hod)

Class Cast Exceptions

The client application encounters a naming The Directory Server associated
communication exception: with the Application Server is not

. running.
j avax. nam ng. Conmuni cat i onExcepti on 9

Correct the INDI
name used by
the client.

OR

Set application
server’s
CLASSPATH

Start the
Directory Server

Chapter 9 Developing and Deploying CORBA-Based Clients

243

RMI/IIOP Client Applications

244

Performance Tuning RMI/IIOP

For deployment environments in which you expect the RMI/ZIIOP path to support
more than a handful of concurrent users, you should experiment with the tuning
guidelines described in this section. The default configuration of the JVM and the
underlying OS do not yield optimal performance and capacity when you are using
RMI/ZIIOP.

This section covers the following topics:
= Recognizing Performance Issues
= Basic Tuning Approaches

= Enhancing Scalability

Recognizing Performance Issues
Before exercising your RMI/ZIIOP client application under load, ensure that you’ve
verified that basic mechanical tests are completed successfully.

As you begin exercising the client application under load, you may experience the
following exceptions on the RMI/IIOP client:

or g. ong. CORBA. COMW _FAI LURE
j ava. | ang. Qut OF Menor yEr r or
java. rm . Unmar shal Excepti on

If you’ve verified that the basic mechanics of your application are working
properly and you experience any one of these exceptions while load testing your
application, see the next section to learn how to tune the RMI/11OP environment.

Basic Tuning Approaches

You should experiment with the following tuning recommendations in order to
find the best balance for your specific environment.

Solaris File Descriptor Setting

On Solaris, setting the maximum number of open files property using ul i m t has
the biggest impact on your efforts to support the maximum number of RMI/11OP
clients. The default value for this property is 64 or 1024 depending on whether you
are running Solaris 2.6 or Solaris 8. To increase the hard limit, add the following
command to / et ¢/ syst emand reboot it once:

set rlimfd max = 8192

iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

You can verify this hard limit by using the following command:
ulimt -a -H

Once the above hard limit is set, you can increase the value of this property
explicitly (up to this limit) using the following command:

ulimt -n 8192
You can verify this limit by using the following command:
ulimt -a

For example, with the default ulimit of 64, a simple test driver can support only 25
concurrent clients, but with ul i mi t set to 8192, the same test driver can support
120 concurrent clients. The test driver spawned multiple threads, each of which
performed a JNDI lookup and repeatedly called the same business method with a
think (delay) time of 500ms between business method calls, exchanging data of
about 100KB.

These settings apply to both RMI/IIOP clients (on Solaris) and to the 11OP Bridge
installed on a Solaris system. Refer to Solaris documentation for more information
on setting the file descriptor limits.

Java Heap Settings

Apart from tuning file descriptor capacities, you may want to experiment with
different heap settings for both the client and Bridge JVMs. Refer to the JDK
1.2.2_10 documentation for information about modifying the default heap size.

Enhancing Scalability

Beyond tuning the capacity of a single Bridge process and client systems, you can
improve the scalability of the RMIZIIOP environment by using multiple 11OP
Bridge processes. You may find that configuring multiple Bridge processes on the
same application server instance improves the scalability of your application
deployment. In some cases, you may want to use a number of application server
instances each configured with one or more Bridge processes.

In configurations where more than one Bridge process is active, you can partition
the client load by either statically mapping sets of clients to different Bridges or by
implementing your own logic on the client side to load balance against the known
Bridge processes.

Chapter 9 Developing and Deploying CORBA-Based Clients 245

RMI/IIOP Client Applications

Firewall Configuration for RMI/IIOP

If the RMI/110OP client is communicating through a firewall to the iPlanet
Application Server, you must enable access from the client system to the 11OP port
used by the I1OP Bridge processes. Since the client’s port numbers are assigned
dynamically, you must open up a range of source ports and a single destination
port to allow RMI/110P traffic to flow from a client system through a firewall to an
instance of the Application Server.

A snoop-based trace of the IIOP traffic between two systems during a single
execution of the Converter sample application follows. The host swat ch is the
RMI/I1OP client, while the host manba is the destination or Application Server
system. The port number assigned to the IIOP Bridge process is 9010. Note that the
two dynamically assigned ports (33046 and 33048) are consumed on the
RMI/I1OP client, while only port 9010 is used to communicate with the Bridge

process.

swat ch -> nanba. red.ipl anet.com TCP D=9010 S=33046 Syn Seq=140303570 Len=0

W n=24820

Opt i ons=<nop, nop, sackOK, nss 1460>
manba. red. i pl anet.com -> swatch TCP
Seq=1229729413 Len=0 W n=8760

Opti ons=<nss 1460>

swat ch -> nanba. red. i pl anet.com TCP
Len=0 W n=24820

swat ch -> manba. red. i pl anet.com TCP
Len=236 W n=24820

manba. red. i pl anet.com -> swatch TCP
Len=168 W n=8524

swat ch -> nanba. red. i pl anet.com TCP
Len=0 W n=24820

swat ch -> manba. red. i pl anet.com TCP
W n=24820

Opt i ons=<nop, nop, sackOK, nes 1460>
manba. red. i pl anet.com -> swatch TCP
Seq=1229731472 Len=0 W n=8760

Opti ons=<nss 1460>

swat ch -> manba. red. i pl anet.com TCP
Len=0 W n=24820

swat ch -> manba. red. i pl anet.com TCP
Len=285 W n=24820

manba. red. i pl anet.com -> swatch TCP
Len=184 W n=8475

swat ch -> manba. red. i pl anet.com TCP
Len=0 W n=24820

swat ch -> manba. red. i pl anet.com TCP

246

D=33046 S=9010

D=9010 S=33046

D=9010 S=33046

D=33046 S=9010

D=9010 S=33046

D=9010 S=33048

D=33048 S=9010

D=9010 S=33048

D=9010 S=33048

D=33048 S=9010

D=9010 S=33048

D=9010 S=33048

iPlanet ™ Application Server Developer's Guide * November 2001

Syn Ack=140303571

Ack=1229729414 Seq=140303571
Ack=1229729414 Seq=140303571
Ack=140303807 Seq=1229729414
Ack=1229729582 Seq=140303807

Syn Seq=140990388 Len=0

Syn Ack=140990389

Ack=1229731473 Seq=140990389
Ack=1229731473 Seq=140990389
Ack=140990674 Seq=1229731473
Ack=1229731657 Seq=140990674

Ack=1229731657 Seq=140990674

Len=132 W n=24820

manba. red. i pl anet.com -> swatch TCP
Len=25 W n=8343

swat ch -> nanba. red. i pl anet.com TCP
Len=0 W n=24820

swat ch -> manba. red. i pl anet.com TCP
Len=124 W n=24820

manba. red. i pl anet.com -> swatch TCP
Len=0 W n=8219

manba. red. i pl anet.com -> swatch TCP
Len=336 W n=8219

swat ch -> manba. red. i pl anet.com TCP
Len=120 W n=24820

manba. red. i pl anet.com -> swatch TCP
Len=0 W n=8099

manba. red. i pl anet.com -> swatch TCP
Len=32 W n=8099

swat ch -> manba. red. i pl anet.com TCP
Len=120 W n=24820

manba. red. i pl anet.com -> swatch TCP
Len=0 W n=7979

manba. red. i pl anet.com -> swatch TCP
Len=32 W n=7979

swat ch -> manba. red. i pl anet.com TCP
Seq=140303807 Len=0 W n=24820
manba. red. i pl anet.com -> swatch TCP
Len=0 W n=8524

manba. red. i pl anet.com -> swatch TCP
Seq=1229729582 Len=0 W n=8524

swat ch -> manba. red. i pl anet.com TCP
Seq=140991170 Len=0 W n=24820

swat ch -> manba. red. i pl anet.com TCP
Len=0 W n=24820

manba. red. i pl anet.com -> swatch TCP
Len=0 W n=7979

manba. red. i pl anet.com -> swatch TCP
Seq=1229732082 Len=0 W n=7979

swat ch -> manba. red. i pl anet.com TCP
Len=0 W n=24820

D=33048 S=9010

D=9010 S=33048

D=9010 S=33048

D=33048 S=9010

D=33048 S=9010

D=9010 S=33048

D=33048 S=9010

D=33048 S=9010

D=9010 S=33048

D=33048 S=9010

D=33048 S=9010

D=9010 S=33046

D=33046 S=9010

D=33046 S=9010

D=9010 S=33048

D=9010 S=33046

D=33048 S=9010

D=33048 S=9010

D=9010 S=33048

Chapter 9

RMI/IIOP Client Applications

Ack=140990806 Seq=1229731657
Ack=1229731682 Seq=140990806
Ack=1229731682 Seq=140990806
Ack=140990930 Seq=1229731682
Ack=140990930 Seq=1229731682
Ack=1229732018 Seq=140990930
Ack=140991050 Seq=1229732018
Ack=140991050 Seq=1229732018
Ack=1229732050 Seq=140991050
Ack=140991170 Seq=1229732050
Ack=140991170 Seq=1229732050
Fin Ack=1229729582

Ack=140303808 Seq=1229729582
Fi n Ack=140303808

Fin Ack=1229732082

Ack=1229729583 Seq=140303808
Ack=140991171 Seq=1229732082
Fin Ack=140991171

Ack=1229732083 Seq=140991171

Developing and Deploying CORBA-Based Clients

247

RMI/IIOP Client Applications

248

Viewing RMI/IIOP Log Messages

Log messages generated by the RMI/ZIIOP path can be monitored by reviewing the
log file generated by the IIOP Bridge process. Since the 11OP Bridge process is a
form of a Java Engine (kj s), you monitor these logs in the same manner as you
would monitor the Java Engines supporting the web and EJB containers. To view
the appropriate log file, you must identify the Java Engine that is playing the role
of the 11OP Bridge.

Monitoring Logs on Windows

By default, on a Windows installation of iPlanet Application Server, the Java
Engine log files are not automatically displayed during startup of the Application
Server. Most developers find it convenient to enable automatic display of console
log information by performing the following steps:

1. Select Start->Settings->Control Panel.
2. Double click on Services.

3. Find the “iPlanet Application Server 6.0” entry and select it.

4. Click on Startup.

5. Click on “Allow Service to Interact with Desktop” and click on OK.
6. Click on Stop to stop the Application Server.

7. Click on Start to start the Application Server.

As the application server starts, a number of MS DOS output windows appear on
the desktop. A single output window is present for each physical process in the
application server. As the engines start, look for the Java Engines and, in particular,
the engine that specifies the port number defined in the CXS (Bridge) process.

To enable vertical scroll bars in these output windows, follow these steps:
1. Select the MS DOS icon at the upper left of the output window.

2. Select Properties.

Select Layout.

Set the Screen Buffer Size Height to 200 or as desired.

a > w

Answer Yes when asked to apply these changes to all invocations of this
window.

iPlanet ™ Application Server Developer's Guide * November 2001

RMI/IIOP Client Applications

Monitoring Logs on UNIX

On UNIX, most developers use thetai | -f command to monitor the application
server log files of the process of interest. To monitor the Java Engine logs in this
manner, follow these steps:

1. Navigate to the logs directory:
cd install_dir/i as/| ogs

2. Execute thetail command on one of the Java Engine (kj s) and the Executive
Service (kxs) processes:

tail -f kjs_2*

You must select the appropriate Java Engine log file to monitor. Java Engines
are numbered according to how they are defined in the Administration Tool.
Although the CXS (Bridge) process is typically the highest numbered Java
Engine log file, double check the port number information within the log file to
confirm which log files is generated by the CXS process.

3. Press Control-C to kill the t ai | command.

Sample RMI/IIOP Applications

A list of RMI/I110P-oriented samples is available under the following location of
your web server’s document root or under the installation directory of the
Application Server:

ht t p: / / webserver_host/ i as- sanples/ -> RM/11OP
install_dir/ i as/i as- sanpl es/index. htm -> RM/I10OP

Converter Sample Application

The Currency Converter sample application from Sun’s J2EE Developer’s Guide has
been bundled with iPlanet Application Server. This sample has been augmented
with detailed setup instructions for deploying the application to iPlanet
Application Server. It is recommended that you follow the detailed setup
instructions for this sample and exercise the Converter sample prior to deploying
other RMI/110P-based applications. Currency Converter setup documentation and
source code are available at the following locations:

install_dir/ i as/ i as- sanpl es/ j 2eegui de/ docs/ converter. htn

install_dir/ i as/ i as- sanpl es/j 2eegui de/ converter/src/

Chapter 9 Developing and Deploying CORBA-Based Clients 249

C++ IIOP Client Applications (Unix Only)

Other RMI/IIOP Sample Applications

Many of the J2EE Developer’s Guide samples bundled with iPlanet Application
Server include RMI/ZIIOP client programs. These are relatively simple samples that
demonstrate various facets of the EJB specification. You can find these samples at:

install_dir/ i as/ i as- sanpl es/j 2eegui de/ docs/ i ndex. ht m

C++ IIOP Client Applications (Unix Only)

Using C++ IIOP-based client applications with iPlanet Application Server is very
similar to using these clients with other J2EE-certified application servers. With
minimal, if any, changes to the lookup section of your client, you can reuse your
client to work with a variety of J2EE application servers.

250

The following topics are covered in this section:

Configuring C++ 1IOP Applications for ORBIX
Preparing for C++ Client Development

Data Type Assumptions and Limitations
Generating the IDL Files

Generating CPP Files from IDL Files
Enabling Security for C++ IIOP Applications
Lookup for the EJB Home Interface
Client-Side Load Balancing and Failover
Configuring the 110OP Bridge

Deploying C++ IIOP Client Applications
Performance Tuning IIOP

Viewing IIOP Log Messages

Sample C++ IIOP Applications

iPlanet ™ Application Server Developer's Guide * November 2001

C++ |IOP Client Applications (Unix Only)

Configuring C++ IIOP Applications for ORBIX

Before you can use a C++ IIOP client with iPlanet Application Server, you must
install ORBIX 2000 and integrate it with iPlanet Application Server as described in
the Administrator’s Guide. This section lists software requirements for ORBIX use
and additional documentation.

Requirements
The software requirements are as follows;

Solaris 2.6 +

ORBIX 2000 C++ development kit Version 1.2+
Sun Workshop 6.2 (C++ 5.2)

iPlanet Application Server version 6.0 SP4

A Javato IDL compiler (rmic of J2SE 1.3 and below has some problems; use
either rmic of J2SE 1.4 Beta or any other Java to IDL compiler)

Implementation of the pass-by-value user-defined and Java native complex
types in C++. To ensure that the data types that are passed by value between
the EJB and the C++ client are correctly converted between the different
languages, you must provide C++ implementations of these types; this applies
to both the native Java types and the user-defined types.

References

OMG IDLto Java Language Mapping
ftp://ftp.ong. org/ pub/ docs/ pt c/ 00-01- 08. pdf
ORBIX 2000 Programmer’s Reference, C++ Edition

http://ww.iona. com docs/ or bi x2000/ 1. 2. 1/ pgui de_cpp/ ht m /i ndex. ht m
ORBIX 2000 Programmer’s Guide, Java Edition

http://ww.iona. com docs/ or bi x2000/ 1. 2. 1/ pgui de_j ava/ ht m /i ndex. ht m
ORBIX 2000 1.2.1 Documentation

http://ww. i ona. coni docs/ or bi x2000/ 1. 2. 1/i ndex. ht m
OpenORB RMI over IIOP (has a Java to IDL compiler)

http://ww. openorb. org/rmoveriiop. htm

Chapter 9 Developing and Deploying CORBA-Based Clients 251

C++ IIOP Client Applications (Unix Only)

252

= Java 2 SDK 1.4 Download Page
http://java. sun.conij2se/ 1. 4/index. htm

Preparing for C++ Client Development

Perform these steps before starting C++ client development:

1. Make sure all the required software is installed; see “Requirements,” on
page 251.

2. Make sure the stubs and skeletons in the EAR file have been generated with the
-i i op option of ej bc. If they have not been, edit the bui | d. xm file to add
-i i op to the ej bc options and regenerate the EAR file.

3. Deploy the EJBs. You can use the J2EE guide samples (for example, the
currency converter and the confirmer) bundled with iPlanet Application
Server.

NOTE According to the OMG IDL to Java Language Mapping, the use of
Java package names differing only in case is not supported. Using
class or interface names within the same package that differ only in
case is not supported either. Both of these are treated as errors.
Therefore, deployed beans must not have package names and class
names differing only in case. Since the J2EE guide samples have this
characteristic, you must modify them before deploying them. For an
example of this, see “Redeploying the Converter Sample for Use
with a C++ Client,” on page 264.

Data Type Assumptions and Limitations

Only doubl e, i nt, | ong, short, fl oat, char, bool ean, and byt e data type value
passing between the client and server have been tested. It is assumed that all other
standard CORBA datatypes for which there is IDL to Java/C++ language mapping
work. Passing aj ava. | ang. Bi gDeci mal throws a NO_| MPLEMENT exception.

For other data types (such as HashTabl e or other custom Java classes) that must be
passed by value, you must provide a native C++ implementation or provide a
wrapper over an existing C++ implementation of those classes (such as STL) that
conforms to the IDL generated for the Java classes.

iPlanet ™ Application Server Developer's Guide * November 2001

C++ |IOP Client Applications (Unix Only)

Generating the IDL Files

You can generate the IDL files in two ways:

Using J2SE 1.4 rmic 2
Using the OpenORB JavaTolDL Compiler

Using J2SE 1.4 rmic 2
To use r mi ¢ from J2SE 1.4, follow these steps:

1.

2.

Create a new directory for C++ client development. For example:

nmkdi r cppclient
cd cppclient

Execute r mi ¢, for example (all on one line):

rm c -cl asspat h ias_inst_dir/ i as/ APPS/ j 2eegui de- nyconverter/j 2eegui de- nyconvert er Ej b:
ias_inst_dir/ i as/ cl asses/javal/javax.jar -idl j2eeguide.mnmyconfirmer.Confirner

and (all on one line):

rmc -classpath ias_inst_dir/ i as/ APPS/ j 2eegui de- nyconverter/j 2eegui de- nyconvert er Ej b:
ias_inst_dir/ i as/ cl asses/javaljavax.jar -idl j2eeguide.nyconfirner.ConfirnerHone

3.

Move the IDL files, for example:

nv j 2eegui de/ myconverter/ Converter.idl
nv j 2eegui de/ myconverter/ Converter Hone. i dl

Combine the above two generated IDLs into a single one for convenience. For
example:

a. cat ConverterHone.idl >> Converter.idl

b. Edit Converter.idl and delete all the lines except those declaring the
j 2eegui de and myconver t er modules, the Converter and
Convert er Hone interfaces, and the corresponding #pr agma declarations.

c. Add the following lines to the beginning of the IDL file:

#i ncl ude <ong/orb.idl >
#include "ejb.idl"
#include "_std_java.idl"

Here is the final IDL file output, for comparison:

Chapter 9 Developing and Deploying CORBA-Based Clients 253

C++ IIOP Client Applications (Unix Only)

#i ncl ude <ong/orb.idl >
#include "ejb.idl"
#include "_std_java.idl"
nodul e j 2eegui de {
nodul e nyconverter {
interface Converter : ::javax::ejb::EIBObject {
doubl e dol I ar ToYen(in doubl e arg0) ;
doubl e yenToEuro(in doubl e arg0) ;
s
#pragma | D Converter
"RM :j 2eegui de. myconverter. Converter: 0000000000000000"
interface ConverterHone : ::javax::ejb::EIJBHome {
Converter create() raises(::javax::ejb::CreateEx);
s
#pragma | D Convert er Honme
"RM :j 2eegui de. myconverter. Convert er Hone: 0000000000000000"
s
b

5. Copy the supplied _std_j ava.idl andejb.idl filesto the cppclient
directory.

Using the OpenORB JavaTolDL Compiler

Using the openor b JavaTol dl tool, copy the supplied openor b JAR files
(openorb_rmi-1.0.1.jar and openorb_t ool s-1. 0. 1. j ar) to the current
directory. For example (all on one line):

java -cp openorb_rm-1.0.1.jar:openorb_tools-1.0.1.jar:ias_inst_dir/ i as/ APPS/
j 2eegui de- nyconverter/j 2eegui de- nyconverterEj b:

ias_inst_dir/ i as/ cl asses/javal/javax.jar org.openorb.rm .conpiler.JavaTol dl

j 2eegui de. nyconverter. Converter

and (all on one line):

java -cp openorb_rmi-1.0.1.jar:openorb_tool s-1.0.1.jar: ias_inst_dir/ i as/ APPS/
j 2eegui de- nyconverter/j 2eegui de- nyconvert er Ej b:

ias_inst_dir/ i as/ cl asses/javal/javax.jar org.openorb.rm . conpiler.JavaToldl

j 2eegui de. nyconverter. Convert er Home

Generating CPP Files from IDL Files

To generate . cpp files from the . i dI files, follow these steps:

1. Source the ORBIX environment setup script by executing the following
command:

254 iPlanet ™ Application Server Developer's Guide * November 2001

C++ |IOP Client Applications (Unix Only)

orbix_inst_dir/ bi n/ domain_env
For example:

[opt/ional/bin/local host _env

2. Execute the following command (all on one line):
orbix_inst_dir/ bi n/ i dl gen cpp_poa_genie.tcl -ns -all -conmplete Confirner.idl -1. -
orbix_inst_dir/ orbi x_art/ 1. 2/idl
3. Edit the makefile and change the value | T_PRODUCT_DI Rto the value
applicable to your installation.
4. Include-1. in CXXFLAGS.
5. Export the PATH to include the workshop6 bi n directory at the beginning of
the path.
6. Execute the following command. You will get errors, which you will correct in
later steps.
make -e
7. Change CORBA10 : : CORBAin the ej b. hh file, but only in the namespace
javax::rm:: CORBA.
8. Change EJBMet aDat a to j avax: : ej b: : EJBMet aDat a.
9. Remove or comment out lines containing EJBMet aDat al npl in the makefile
and incl i ent. cxx to prevent compilation errors.
10. Editcli ent. cxx in the following ways:

a. Comment out lines registering EJBMetaData, for example:
j avax_ej b_EJBMet aDat aFactory:: _register_wi th_orb(orb);
b. Delete these lines:

tnp_ref = default_context->resolve_str("lT_Geni eDenmp");
CosNani ng: : Nam ngCont ext _var deno_context =

CosNami ng: : Nam ngContext:: _narrow(tnp_ref);
assert (! CORBA: :is_nil (denp_context));

c. Delete the generated code with the lookups for Convert er, EJBObj ect ,
and EJBHone, identified by the following comments:

/1 Exercise interface j2eeguide::nmyconverter::Converter
/] Exercise interface javax::ejb:: EIJBObj ect
// Exercise interface javax::ejb:: EJBHone

d. Change the following lines:

Chapter 9 Developing and Deploying CORBA-Based Clients 255

C++ IIOP Client Applications (Unix Only)

256

name = default_context->to_nanme("j2eegui de_myconfirmer_Confirner");
tnp_ref = denp_context->resol ve(nane);

to:

name = defaul t_context->to_nane("ejb/ MyMyConfirner");
tnp_ref = default_context->resol ve(nane);

e. Comment out the generated code to call functions (beginning with
cal | _j 2eegui de_) and insert code to call cr eat e and the business
methods. For example:

j 2eegqui de: : myconverter:: Converter_var converter =
Convert er Honme4- >create();

CORBA: : Doubl e yen = 4000;

CORBA: : Doubl e euro = converter->yenToEuro(yen);

11. Edit ej bC. cxx and change CORBA to : : CORBA wherever relevent. For example,
change it in the regular expression syntax:

s/ "CORBA/ : : CORBA/ g

s/ CORBA/ ::CORBA/ g

s/ namespace :: CORBA/ namespace CORBA/ g

s/\! CORBA/\!:: CORBA/ g

s/ (CORBA/ (:: CORBA/ g

s/ EJBMetaData/::javax::ejb:: EJBMetaDatal g

s/ | T_CONST_CAST(: : CORBA/ | T_CONST_CAST(CORBA/ g

12. Edit ConverterC.cxx file and change the operation name to a name in the
following pattern. The double underscores are literal.

function-name__return-type(pkgl pkg2_class)__argument-type

The types should be the Java types. For example, if the Java type isi nt , the IDL
type is | ong, but the type represented in the operation should be i nt . You can
refer to the parameters of the _r equest method in the generated Java stubs (for
example _Converter _St ub. j ava, which is generated if the - gs option is

provided for ej bc in bui | d. xm) to get the exact operation name. For example:

s/"create"/"create__j2eegui de_myconverter_Converter__void"/g
s/ "yenToEuro"/"yenToEuro__doubl e__doubl e"/g
s/"dol | or ToYen"/"dol | or ToYen__doubl e__doubl e"/g

13. Execute the make:
make -e client

14. Execute the client:

iPlanet ™ Application Server Developer's Guide * November 2001

C++ |IOP Client Applications (Unix Only)

./client

Enabling Security for C++ [IOP Applications

To enable security, you must link the client application with:

= Thelibgxorbixclientinterceptor. so library that comes with the iPlanet
Application Server version 6.0 SP4.

e Theit_portable_interceptor library that comes with ORBIX.

The steps are as follows:

1. Insert the following into the line for CLIENT_LIBS in client’s makefile:
-lit_portable_interceptor -I|gxorbixclientinterceptor

2. Insert the path to the location of | i bgxor bi xcl i entinterceptor.sointhe
LDLIBS setting in the makefile. For example:

-L/space/interceptor \

3. Insert the path to the location of | i bgxor bi xcl i entinterceptor.soin
LD _LIBRARY_PATH . For example:

export LD LI BRARY_PATH=$LD LI BRARY_PATH: / space/ i nterceptor
4. Rebuild the client;

make -e client

5. Set the environment variables IAS_RC_USERID and IAS_RC_PASSWORD
either from the shell or programmatically through put env function, with the
user IDand password corresponding to an LDAP user. If set to null or if not set,
authentication won’t happen, and the user won’t be able to access beans that
are role-mapped. For example:

export | AS_RC USERI D=j 2ee
export | AS_RC PASSWORD=j 2ee

6. Enable client interceptors and server interceptors as given in admin guide of
Orbix integration.

7. Execute the client:

.lclient

Chapter 9 Developing and Deploying CORBA-Based Clients 257

C++ IIOP Client Applications (Unix Only)

258

Lookup for the EJB Home Interface

One of the first steps in coding an 11OP client is to perform a lookup of an EJB’s
home interface. In preparation for performing a lookup of the home interface, you
must set several environment properties. Then you provide a lookup name for the
EJB. The following example shows these steps:

/linitialise the orb
gl obal _orb = CORBA:: ORB_init(argc, argv);

/1 Get the nami ng context for genie denobnstrations.
tnp_ref = gl obal _orb->resolve_initial_references("NaneService");
CosNami ng: : Nam ngCont ext _var default_context =
CosNami ng: : Nami ngContext:: _narrow(tnp_ref);
assert (! CORBA: :is_nil (default_context));

/11 ookup the hone

name = new CosNani ng: : Name(2);

name- >l engt h(2);

nane[0].id = CORBA: :string_dup("ejb");

nane[0] . ki nd = CORBA: :string_dup("");

nane[1].id = CORBA: :string_dup("M/MConfirner");

name[1] . ki nd = CORBA: :string_dup("");

tnp_ref = defaul t_context->resol ve(nane);

j 2eegui de: : myconfirmer:: Confirmer Home_var

Conf i r mer Hone=j 2eegui de: : nyconfirmer:: ConfirmerHome:: _narromtnp_ref);
/lcall create

j 2eegui de: : myconfirner:: Confirmer_var Confirmer=ConfirmerHone->create();

//call business nethod
Confirner->sendNotice(chars);

Client-Side Load Balancing and Failover

Although iPlanet Application Server provides server-side load balancing and
failover for IIOP access, you may consider implementing client side approaches to
further enhance the performance and availability of your application.

The naming service defines a repository of names that map to objects. A name
maps to one object only. ORBIX 2000 extends the naming service model to allow a
name to map to a group of objects. An object group is a collection of objects that can
increase or decrease in size dynamically. Each object group has a selection
algorithm. This algorithm is applied when a client resolves the name associated
with the object group. Three algorithms are supported:

< Round-robin selection

iPlanet ™ Application Server Developer's Guide * November 2001

C++ |IOP Client Applications (Unix Only)

= Random selection
= Active load balancing selection

Object groups provide a way to replicate frequently requested objects and thereby
distribute the request-processing load. The naming service directs client requests to
the various replicated objects according to the object group’s selection algorithm.
The existence of an object group is transparent to the client, which resolves the
object group name in the same way that it resolves any other name.

You can set the flag ORBI X_LOADBALANCI NG=t r ue or f al se in the i asenv. ksh file,
which sets the Java argument as follows:

- DORBI XLoadBal anci ng=$0RBI X_LOADBALANCI NG

Configuring the IIOP Bridge

If your installation of iPlanet Application Server does not already have the [IOP
Bridge process configured, you must start the iPlanet Application Server
Administrative tool to add an IIOP Bridge process to the application server
environment.

1. Start the iPlanet Application Server Administration Tool:
install_dir/ i as/ bi n/ ksvradmi n

2. Connect to your application server instance and double click on the server
name icon to see a list of the processes defined for this instance of the
Application Server. You should see at least one kj s and possibly a single kxs
process (the kxs process is not required for IIOP access to EJBs). If you see a
cxs process, you already have an 11OP Bridge process defined in your
application server instance. In this case, double click the cxs process entry,
note the 11OP port number, and continue to the next section. If you don’t see a
Bridge process, continue to the next step to define one.

3. Select any of the existing process entries and then select File->New->Process.

4. Select cxs from the pull-down list of process types and enter a port number
(for example, port 10822) that does not conflict with the other port numbers
already in use by the kj s and kxs processes. Take the default IIOP port
number (9010) as long as it does not conflict with other port assignments in
your system environment. Click on OK to instantiate the process.

Chapter 9 Developing and Deploying CORBA-Based Clients 259

C++ IIOP Client Applications (Unix Only)

5. After several seconds, you see the IIOP Bridge process running in the
Application Server environment. This process, along with all of the other
application server processes listed in the Administrative Tool, is automatically
started as the application server is restarted.

6. You can also check for the existence of the IIOP bridge process from the
command line. For example (each command is all on one line):

ps -ef | grep iiop

root 1153 1 0 17:00:15 ? 0:00 /bin/sh /usr/iPlanet/ias6/ias/bin/kjs -cset CCSO
-eng 3 -iiop -DORBi nsPort=9010

This output shows an iPlanet Java Engine process started with the -i i op
option. This option informs this instance of the Java Engine to start itself as an
IIOP Bridge process rather than a J2EE web and EJB container process.

Instantiating a cxs process completes the server side configuration for 11OP
support.

Deploying C++ [IOP Client Applications

As you develop client applications, you will need to deploy a number of files from
your development environment to the client system. This section addresses the
underlying steps required to deploy an 11OP-capable client application in the
following sections:

« Client Deployment
= Server CLASSPATH Setting (SP2 and Prior)

Client Deployment

You must ensure that EJB-specific home and remote interfaces and their
corresponding stubs are deployed to the client system. For example, in the
Converter sample application, the following classes must be copied to the client
system:

Home and Remote Interface Classes:
Converter Hone. cl ass
Converter.cl ass

EJB-Specific iPlanet Client Stubs:

_Converter_Stub. cl ass

_ConverterHone_Stub. cl ass

260 iPlanet ™ Application Server Developer's Guide * November 2001

C++ |IOP Client Applications (Unix Only)

Server CLASSPATH Setting (SP2 and Prior)

This section applies to iPlanet Application Server 6.0 Service Pack 2 (SP2) and
earlier. Service Packs 3 and later do not require the following configuration step. If
you are using SP3 or beyond, skip to the next section.

In iPlanet Application Server Service Pack 2 and earlier, to load EJB classes, the
IIOP Bridge process must be able to access the EJB stubs and home and remote
interfaces via the application server’s CLASSPATH. Before the first execution of
IIOP-based Java application client in SP2 or earlier, you must first modify the
CLASSPATH of the application server.

With the advent of iPlanet Application Server 6.0 SP2, registration of EJB-based
applications results in the EJB JAR file being expanded to the application server’s
deployment directory. By default, when a J2EE application such as

j 2eegui de- convert er . ear is deployed to the application server, the embedded
EJB JAR file, j 2eegui deFj b. j ar in this example, is expanded to:

install_dir/ i as/ APPS/ j 2eegui de- converter/j 2eegui de-converterEj b/

When a stand-alone EJB JAR module (or WAR modaule) is deployed to iPlanet
Application Server, the default expansion location for the stand-alone module is:

install_dir/ i as/ APPS/ nodul es/ j 2eegui de- convert er Ej b/

Prior to running the C++ IIOP client, you must add the appropriate module
directory to the CLASSPATH of the application server.

Performance Tuning [IOP

For deployment environments in which you expect the 11OP path to support more
than a handful of concurrent users, you should experiment with the tuning
guidelines described in this section. The default configuration of the JVM and the
underlying OS do not yield optimal performance and capacity when you are using
11OP.

This section covers the following topics:
= Basic Tuning Approaches

= Enhancing Scalability
Basic Tuning Approaches

You should experiment with the following tuning recommendations in order to
find the best balance for your specific environment.

Chapter 9 Developing and Deploying CORBA-Based Clients 261

C++ IIOP Client Applications (Unix Only)

262

Solaris File Descriptor Setting

On Solaris, setting the maximum number of open files property using ul i m t has
the biggest impact on your efforts to support the maximum number of 11OP clients.
The default value for this property is 64 or 1024 depending on whether you are
running Solaris 2.6 or Solaris 8. To increase the hard limit, add the following
command to / et ¢/ syst emand reboot it once:

set rlimfd _max = 8192
You can verify this hard limit by using the following command:
ulimt -a -H

Once the above hard limit is set, you can increase the value of this property
explicitly (up to this limit) using the following command:

ulimt -n 8192
You can verify this limit by using the following command:
ulimt -a

For example, with the default ulimit of 64, a simple test driver can support only 25
concurrent clients, but with ul i mi t set to 8192, the same test driver can support
120 concurrent clients. The test driver spawned multiple threads, each of which
performed a JNDI lookup and repeatedly called the same business method with a
think (delay) time of 500ms between business method calls, exchanging data of
about 100KB.

These settings apply to both I1OP clients (on Solaris) and to the IIOP Bridge
installed on a Solaris system. Refer to Solaris documentation for more information
on setting the file descriptor limits.

Enhancing Scalability

Beyond tuning the capacity of a single Bridge process and client systems, you can
improve the scalability of the IIOP environment by using multiple I1OP Bridge
processes. You may find that configuring multiple Bridge processes on the same
application server instance improves the scalability of your application
deployment. In some cases, you may want to use a number of application server
instances each configured with one or more Bridge processes.

In configurations where more than one Bridge process is active, you can partition
the client load by either statically mapping sets of clients to different Bridges or by
implementing your own logic on the client side to load balance against the known
Bridge processes.

iPlanet ™ Application Server Developer's Guide * November 2001

C++ |IOP Client Applications (Unix Only)

Viewing IIOP Log Messages

Log messages generated by the I1OP path can be monitored by reviewing the log
file generated by the 11OP Bridge process. Since the I1OP Bridge process is a form of
aJava Engine (kj s), you monitor these logs in the same manner as you would
monitor the Java Engines supporting the web and EJB containers. To view the
appropriate log file, you must identify the Java Engine that is playing the role of
the 11OP Bridge.

Most developers use thetai | -f command to monitor the application server log
files of the process of interest. To monitor the Java Engine logs in this manner,
follow these steps:

1. Navigate to the logs directory:
cd install_dir/i as/| ogs

2. Execute thetai | command on one of the Java Engine (kj s) and the Executive
Service (kxs) processes:

tail -f kjs_2*

You must select the appropriate Java Engine log file to monitor. Java Engines
are numbered according to how they are defined in the Administration Tool.
Although the CXS (Bridge) process is typically the highest numbered Java
Engine log file, double check the port number information within the log file to
confirm which log files is generated by the CXS process.

3. Press Control-C to kill thet ai | command.

Sample C++ IIOP Applications

The Currency Converter sample application from Sun’s J2EE Developer’s Guide has
been bundled with iPlanet Application Server. This sample has been augmented
with detailed setup instructions for deploying the application to iPlanet
Application Server. It is recommended that you follow the detailed setup
instructions for this sample and exercise the Converter sample prior to deploying
other 11OP-based applications. Currency Converter setup documentation and
source code are available at the following locations:

install_dir/ i as/ i as- sanpl es/ j 2eegui de/ docs/ converter. htn

install_dir/ i as/ i as- sanpl es/ j 2eegui de/ converter/src/

Chapter 9 Developing and Deploying CORBA-Based Clients 263

C++ IIOP Client Applications (Unix Only)

264

Redeploying the Converter Sample for Use with a C++ Client

Because deployed beans must not have package names and class hames differing
only in case, you must follow these steps to redeploy the converter example for use
with a C++ IIOP client. You can use similar steps to redeploy other examples.

1. cd ias_inst_dir/i as/i as-sanpl es/j 2eegui de
2. cp -R converter nyconverter
3. c¢d myconverter/src

4. Change package and other names in the bui | d. xm , ej b-j ar. xnl , web. xn ,
application.xm ,and schena/*. xm files as in the following table:

Table 9-2 Changes to XML files for the Converter sample

What to Change Before After

package name converter myconvert er

appnang, di spl ay- nane, j 2eegui de-converter j2eegui de-myconverter
and cont ext - r oot

ej b- nanme and ej b-1i nk MyConvert er MyMyConvert er

5. Execute this command:
ias_inst_dir/ i as/ bi n/ kgui dgen

6. Copy the above generated guid, and replace the guid value in the <gui d>
section of the i as-ej b-j ar. xni file.

7. Execute this command again:
ias_inst_dir/ i as/ bi n/ kgui dgen

8. Copy the above generated guid and replace the guid value in the <gui d>
section of the i as- web. xm file.

9. nv j 2eegui de/ converter j2eegui de/ myconverter
10. cd j 2eegui de/ myconverter

11. Change all the Java files to reflect the change in package names (for example,
change converter tonyconverter)andin Converterdient.java, change
the lookup name from MyConvert er to MyMyConverter.

12. cd .. /..

iPlanet ™ Application Server Developer's Guide * November 2001

13.
14.
15.
16.

C++ |IOP Client Applications (Unix Only)

ias_inst_dir/ i as/ bi n/ bui |l d
cd ../assenbl e/ ear
ias_inst_dir/ i as/ bi n/ i asdepl oy depl oyapp j 2eegui de- nyconvet er. ear

For iPlanet Application Server version 6.0 SP2 and prior versions, perform
these additional steps:

a. Edittheias_inst_dir/ i as/ bi n/ kj s script and add the new directory
ias_inst_dir/ i as/ APPS/ j 2eegui de- nyconverter/j 2eegui de- nyconverter
Ej b to the classpath.

b. Restart the iPlanet Application Server.

Chapter 9 Developing and Deploying CORBA-Based Clients 265

C++ IIOP Client Applications (Unix Only)

266 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 10

Packaging for Deployment

This chapter describes the contents of iPlanet Application Server modules and how
these modules are packaged separately or together in an application.

For design considerations that affect packaging, see “Modularizing Applications,”
on page 29.

iPlanet Application Server modules and applications include J2EE standard
elements and iPlanet Application Server specific elements. Only iPlanet
Application Server specific elements are described in detail in this chapter.

The following topics are presented in this chapter:
= Overview of Packaging and Deployment

= Assembling Modules and Applications

= Deploying Modules and Applications

= Introducing XML DTDs

= Web Application XML DTD

e EIBXMLDTD

< RMI/IIOP Client XML DTD

= Resource XML DTD

Overview of Packaging and Deployment

Application assembly (also known as packaging) is the process of combining
discrete components of an application into a single unit that can be deployed to a
J2EE-compliant application server. A package can be classified either as a module
or as a full-fledged application.

267

Overview of Packaging and Deployment

268

Modules

A J2EE module is a collection of one or more J2EE components of the same
container type with two deployment descriptors (DDs) of that type. One DD is
J2EE standard, the other is iPlanet Application Server specific. Types of J2EE
modules are as follows:

= Web Application Archive (WAR): A web application is a collection of servlets,
HTML pages, classes, and other resources that can be bundled and deployed to
several J2EE application servers. A WAR file can consist of the following items:
servlets, JSPs, ulitility classes, static docs, client-side applets, beans, and bean
classes, and deployment descriptors (web. xml and i as- web. xni).

= EJBJAR File: The EJB JAR file is the standard format for packaging enterprise
beans. This file contains the bean classes (home, remote, and implementation),
all of the utility classes, and the deployment descriptors (ej b-j ar. xnl and
i as-ej b-jar.xm).

< RMI/IIOP Client JAR File: An RMI/ZIIOP Client is an iPlanet Application
Server specific type of J2EE client. An RMI/I1OP Client supports the standard
J2EE Application Client specifications, and in addition, supports direct access
to the iPlanet Application Server. Its deployment descriptors are
app-client.xm andias-app-client.xnl.

= Resource JAR File: Examples of resources are JDBC datasources, Java Mail, or
JMS. Each iPlanet Application Server resource has a resource XML file.

Package definitions must be used in the source code of all modules so the
classloader can properly locate the classes after the modules have been deployed.

Because the information in a DD is declarative, it can be changed without requiring
modifications to source code. At run time, the J2EE server reads this information
and acts accordingly.

iPlanet ™ Application Server Developer's Guide * November 2001

Overview of Packaging and Deployment

EJB JAR and Web modules can also be packaged as separate . war or . j ar filesand
deployed separately, outside of any application, as in the following figure.

J2EE J2EE Modules
Components (;jar and .war files)

EJB
module

(.jar file)

EJB

o~

DD iAS DD
ejb-jar.xml ias-ejb-jar.xml
EJB Administration
v and
- Deployment
Web client Tool
WEB module 0ols
JSP (.war file)
DD iAS DD
WEB webxml | |ias-web.xml
Servlet
Applications

A J2EE application is a logical collection of one or more J2EE modules tied together
by application deployment descriptors. Components can be assembled at either the
module or the application level. Components can also be deployed at either the

module or the application level.

Chapter 10 Packaging for Deployment 269

Overview of Packaging and Deployment

The following diagram illustrates how components are packaged into modules and
then assembled into an iPlanet Application Server application . ear file ready for

deployment.
iPlanet Application Server File Set
J2EE J2EE Modules J2EE Application
Components (;jar and .war files) (-ear file)

EJB
module
(.jar file)

R

EJB

| g
DD iAS DD
ejb-jar.xml ias-ejb-jar.xml

EJB _/
Web client
WEB module
Jsp (.war file) [= | [|Administration
DD and
DD iAS DD application.xml Lt Deployment
WEB web.xml ias-web.xml Tools
Servlet

\/

RMIZIIOP client
module
(.jar file)
[‘ |
DD iAS DD

app-client.xml| |ias-app-client.xml

Each module has an iPlanet Application Server DD and a J2EE DD. The iPlanet
Application Server Deployment Tool uses the DDs to deploy the application
components and to register the resources with the iPlanet Application Server.

An application consists of one or more modules and a J2EE application DD. All
items are packaged, using the Java ARchive (. j ar) file format, into one file with an

extension of . ear.

270 iPlanet ™ Application Server Developer's Guide * November 2001

Assembling Modules and Applications

Naming Standards

EJB JAR and WAR module names identified by the first portion of their filenames
(without the . war and . j ar extensions) must be unique when deployed to the
Application Server. Use a Java package-like naming scheme for module filenames,
EAR filenames, and EJB names as found in the <ej b- name> portion of the

ej b-jar.xm files. The use of this package-like naming scheme ensures that name
collisions do not occur. The benefits of this naming practice apply not only to the
iPlanet Application Server, but to other J2EE application servers as well.

Assembling Modules and Applications

Assembling (or packaging) modules and applications in iPlanet Application Server
conforms to all of the customary J2EE-defined specifications. The only difference is
that when you assemble in iPlanet Application Server, you must include iPlanet
Application Server-specific deployment descriptors (such asi as- web. xm and

i as-ej b-j ar. xm) that enhance the functionality of the application server. For
example, iPlanet Application Server provides features such as load balancing
(distributing tasks equally among servers in a cluster) and failover (assigning tasks
to another server of one server fails).

This section covers the following topics:
= Sample Files

< Assembling WAR Modules

= Assembling EJB JAR Applications

= Assembling RMI/ZIIOP Applications

The iPlanet Application Server provides three methods for packaging a module or
an application. These three tools are listed here and described in greater detail
under each topic.

e CLI Tool: When you use the Command Line Interface as an assembly tool, you
use JAR files and the automated assembly features available through Ant, a
Java-based build tool available through Jakarta Apache:

http://jakarta. apache. org/ant/

= Deployment Tool: You can use the Deployment Tool (DeployTool) provided
with iPlanet Application Server, to both assemble and deploy J2EE
applications and modules.

Chapter 10 Packaging for Deployment 271

Assembling Modules and Applications

= Visual Café Plug-in: The iPlanet's Visual Café Plug-in integrates the
WebGain® Visual Café tool with iPlanet Application Server:

http://wwv i pl anet. com product s/ application_server_plug/hone_2_1 1laj.htm

You can use the Visual Café development features to automate the creation of
iPlanet Application Server-specific DDs, WAR files, and JAR files.

Sample Files

Before assembling the sample J2EE application, you must compile the following
Java sources:

e Servlet (GreeterServlet.java)

e EJBs(GeeterHone.java, GreeterEJB.java, Geeter.java)
e JSP (G eeterViewjsp)

= Static file (*WBanpl e)

All of these files are located here:

http://devel oper.ipl anet. conf docs/ articl es/ packagi ng/ packagi ng_print.jsp

272

The compilation process can be automated using the Ant tool. See the Compile
section for the relevant coding information:

http://devel oper.ipl anet. com docs/ articl es/ packagi ng/ Ant Conpi | e. ht ni
See the Ant XML file for the entire Ant build file:

http://devel oper.ipl anet. conm docs/ articl es/ packagi ng/ Ant . xm

Assembling WAR Modules

This section describes procedures for assembling WAR modules in three different
ways:

« Using the Command Line Interface (CLI)
= Using the Deployment Tool
= Using the Visual Café Plug-in

iPlanet ™ Application Server Developer's Guide * November 2001

Assembling Modules and Applications

Using the Command Line Interface (CLI)
To create a WAR module using the CLI, follow these steps:

1. Create a working directory: working_dir/ cl i .

2. Create two deployment descriptors with these names: web. xml and
i as-web. xm . Examples are here:

http://devel oper.ipl anet. conf docs/articl es/ packagi ng/ web. xm

http://devel oper.ipl anet.conf docs/articl es/ packagi ng/i as-web. xm

TIP The first time, you can create the deployment descriptors using the
deployment tool. The resulting WAR file can be extracted to yield
the deployment descriptors.

3. Move the contents of the WAR file to the directory that you created in step 1.
For more information, see:

http://devel oper.ipl anet.con docs/articl es/ packagi ng/ war . ht i
4. Go to this directory: working_dir/ cl i / assenbl e/ war .
5. Execute this command:

jar -cvf hell oworl dWar. war *

This creates the WAR file hel | owor | dVar . war .

TIP The CLI assembly process can be automated using the Ant tool. To
learn more, see the following URL.

http://devel oper.ipl anet. com docs/ articl es/ packagi ng/ Ant Conpi | e. ht mi

Chapter 10 Packaging for Deployment 273

Assembling Modules and Applications

Using the Deployment Tool
To assemble a WAR module using the iPlanet Deployment Tool, follow these steps:

1. Use the deployment tool to create a new WAR file called hel | owor | d. war in
this directory: working_dir/ depl oyt ool .

2 Hew Al ol isn oo mionbeks

Bl @l Dl L d e GE R]
JFEE Ay A 2

F ol ApphCab e W [aecnory R R P ookt e Browse.
EJ ol Mrsbubed 2

Sl WARaL =23 Candul

2. Use the Deployment Tool Wizard to insert these web files: GreeterView.jsp,
index.html, GreeterServlet.class

BRI~ A BT e

Lok b |7 decnol | |3 %] 12 G5
gl
i D""""'“" e ETEE 0 e By] S e e
Dl'd\'.l'\- o | e N
rales remd
| J:- arb =

3. Resolve the files by clicking on the Resolve button in the lower right portion of
the screen.

4. Click Finish. This creates the war file
working_dir/ depl oyt ool / hel | owor | dWar . war .

The descriptors (both web. xnl and i as- web. xm) have been created by the
Deployment Tool.

274 iPlanet ™ Application Server Developer's Guide * November 2001

5.

You can now view you WAR module using either the file view:

[Plaset Apobedon Gores - Depdoymesd Tod |
e D Wi s b
Disiw 86 (8% k& F W
B JIEE sppimeatnes
1B el Apphratioes
7 2 [rgrod_mgipecia pegdeployioafhelrerockWar, war
=] OredaView mp
P = ER-IE
Ll
= sangles
* = teliowerd
¥ = aavia
Y GresterServid class
_] et el
) sk v
[} irwemx ik

or the component view;

7

& Plasel Spokislen Sorer - Dopkspsend Tosl
Tha [l Wuwss Teol sl
Bl e §s w6
[JIEE spphicasons
W W Apploatong
2 hellowne i

L] Grrester Vs

Y GreelerGeminl

Assembling Modules and Applications

TIP

iPlanet recommends that you use the Deployment Tool to build the

first cycle of packaging even when you are using the CLI method of

assembly.

Chapter 10

Packaging for Deployment

275

Assembling Modules and Applications

Using the Visual Café Plug-in
To assemble a WAR module using the iPlanet Visual Café Plug-in, follow these

steps:
1. Download and install the Visual Café Plug-in for iPlanet Application Server:
http://wwv i pl anet. com product s/ application_server_plug/hone_2_1 laj.htm

2. Create a new iPlanet Application Server Web Application at
working_dir/ vi sual caf e.

Fromct T ersplaiar
B O B &
AT Ermey (T ey | Evippamm
Semplec ghn Esimgpr Apcacaion Bamn

B B &
BT Baphal “ =l -

r:mnuw'-mppt-dw-i or e S tarem

[] comcu | twbwwa | [0 = |2E|m|

Name this file hel | owor | d. vep.

et A
T 2 &l ol

Fila g [hlbﬁ-:l:'nl:l | S I
L [T e —p— = Cwesl j

276 iPlanet ™ Application Server Developer's Guide * November 2001

Assembling Modules and Applications

3. Insert these web files into the application: G eet er Servl et . j ava,
GreeterView jsp,index.htm.

bogii e | oot = & g4l Em]
Filr zormr Il:lmlll-'rruu: i
Pl olpos |aifae= o) =

i m Pyt

D gred]_regl ek ey sdacyaat sl nd s up
D e e ek g oot arwies bnd
D v ik e e e i e '

| HeEfE

4. Add any required helper classes.

5. Compile the source (G eet er Ser vl et . j ava) and deploy the application. The
deployment descriptors are created when the module is deployed.

NOTE For more information about the Visual Café Plug-in for iPlanet
Application Server, see the documentation included in the plug-in
download.

Assembling EJB JAR Applications

This section describes procedures for assembling EJB JAR modules in two different
ways:

= Using the Command Line Interface (CLI)

= Using the Deployment Tool

Chapter 10 Packaging for Deployment 277

Assembling Modules and Applications

Using the Command Line Interface (CLI)
To create a J2EE application using the CLI, follow these steps:

1. Create a working directory with this name: working_dir/ cl i .
2. Create the deployment descriptor appl i cat i on. xm . An example is here:

http://devel oper.ipl anet. com docs/articl es/ packagi ng/ appl i cati on. xni

3. Move the deployment descriptor, the WAR file, and the EJB JAR file to the
directory that you created in step 1. A list is here:

http://devel oper.ipl anet.conm docs/arti cl es/ packagi ng/ app. ht m
4. Go to your working directory.
5. Execute this command:

jar -cvf helloworld.ear *

This command creates the J2EE application hel | owor | d. ear .

Using the Deployment Tool

To assemble a J2EE application using the iPlanet Deployment Tool, follow these
steps:

1. Use the deployment tool to create a new EAR file called helloworld.ear in this
directory: working_dir/ depl oyt ool .

Fgjda J s i Pl rea i Teenr G5B 134
JFEE A juhel Aenay] i
Wl ApebcoSon W] [eciorg veria ke n e a1 e

= B T Mok e

S Wikadil. OH Ll

278 iPlanet ™ Application Server Developer's Guide * November 2001

Assembling Modules and Applications

2. Use the Deployment Tool Wizard to insert the EJB JAR file
hel | owor | dEJB. j ar and the WAR file hel | owor | dWAR. war .

EAH Lrmasiam ot

Sihuc] Mud i
Lok | eyt - @ 8 o Bl
[\ hobrmariiz ' rallaweaIBEB i :

|
:D P I st T v B RrALTI BN L=

£

£

o
[]iIIE
e
I i et T ey il
Phes e | e -
bop || Cancel b mem || P

3. Resolve the files by clicking on the Resolve button in the lower right portion of
the screen.

4. Remove the path up to the root of the application and click the Update button.

5. Click Finish. This creates the EAR file
working_dir/ depl oyt ool / hel | owor | d. ear . The deployment descriptor
(appl i cati on. xnl) has already been created.

Chapter 10 Packaging for Deployment 279

Assembling Modules and Applications
6. You can now view your application using the EAR file view:

& Plasct Appbeoton Sorver - Deplaymost Tead |
Dl=im [o& (6= &ED] @l &
B JIEE fppiseatins
B el Appheatoad
BB EJH Mo dudey
¥ = Dprod_mgiypacka g gl milelvm s E R ju
¥ S META-IMF
] ecjer sl
] et far wmed

ﬂ Opesler & ladid

B, GrestsEIR class

] Cresteriiome chs

o we_far_serngls el o OredeER class
8] a%_home_rsmpler_beloward b GresaEl clas
ﬂ ot _kep skl Drerles chis

) b krp_siod_ GresterHome class

B ox_kcp_rish_Greris clase

) b krcp_nsh_GreserHome cls

] e stod_rmmprlen:_heloworid_sfy_GresterEJB class
ﬂ ot syl Oreder clits

o] oy sty GreserBloms chss

or the EAR component view:

Of=im on (8% (kb F § e

7. Verify your work using the Verify selection from the File menu.

280 iPlanet ™ Application Server Developer's Guide * November 2001

Assembling Modules and Applications

TIP iPlanet recommends that you use the Deployment Tool for the first
cycle of packaging even when you are using the CLI method of
assembly.

Assembling RMI/IIOP Applications

This section provides some brief pointers for assembling RMI/110P applications,
but you should first read Chapter 9, “Developing and Deploying CORBA-Based
Clients.”

For an example demonstrating the packaging and deployment of a simple
RMII/110P application, see:

http://devel oper. i pl anet. conf appserver/ sanpl es/ pkgi ng/ docs/ sanpl eD. ht m
RMI/I110P applications can be divided into two types:

= Simple Clients: These clients do not have the container services provided by
iasacc.jar and they do not have an application xml.

= Application Client Containers: These are J2EE 1.2-compliant clients that
include a deployment descriptor and have access to additional services.

In the iPlanet Application Server, you should keep the following points in mind
while packaging an RMI/IIOP application;

On the Server Side:

= Configure CXS (Corba eXecutive Service) from the iPlanet Application Server
Administration Tool.

= Use the Deployment Tool to generate the RMI/11OP stubs and skeletons.
On the Client Side:

= Include the required JAR files (i ascl i ent.jar,javax.jar,jms.jar,
mai | . jar,and servl et.j ar) in the client class path.

= Include the client-side stubs for the EJB. These are provided by the
Deployment Tool. Include i asacc. j ar (ACCs only).

« Include appl i cation-client.xnm (ACCs only).

TIP All files referred to here can be found ini ascl i ent. tar (on Unix)
oriasclient.zip(onNT).

Chapter 10 Packaging for Deployment 281

Deploying Modules and Applications

Deploying Modules and Applications

282

This section describes the different ways to deploy J2EE applications and modules
to the iPlanet Application Server. It covers the following topics:

< Deployment by Module

= Deployment by Application
= Deploying RMI/ZIIOP Clients
= Deploying Static Content

= Tools for Deployment

= General Rules About Deployment

Deployment by Module

Individual modules can be deployed independently of applications. Module-based
registration and deployment is preferable when shared components need to be
accessed by:

e Other modules
= J2EE Applications

< RMI/IIOP clients (Module-based registration allows shared access to a bean
from an RMI/I1OP client, a servlet, or an EJB.)

To register a module, you execute this command:
i asdepl oy depl oynodul e module_name

Modules can be combined into an EAR file and then deployed as a single module
using the same command. This is similar to deploying the modules of the EAR
independently. The runtime registry and file system implications of module-based
registration are described in Appendix B, “Runtime Considerations.”

For alternative ways to deploy a module, see “Tools for Deployment,” on page 283.

Deployment by Application
To register a J2EE application, you execute this command:

i asdepl oy depl oyapp app_name

iPlanet ™ Application Server Developer's Guide * November 2001

Deploying Modules and Applications

The runtime registry and file system implications of module-based registration are
described in Appendix B, “Runtime Considerations.”

For alternative ways to deploy an application, see “Tools for Deployment,” on
page 283.

Deploying RMI/IIOP Clients

Deploying an RMI/ZIIOP client is a two-step process:
1. Install the EJB JAR that needs to be accessed by the RMI/IIOP client.

2. Package the necessary client files (as described in “Assembling RMI/110P
Applications,” on page 281), create the client code, and then execute the client
from the client machine.

Deploying Static Content

Static content (HTML, images, etc) can be hosted both on the web server and on the
iPlanet Application Server. However, when a WAR is registered, the static content
gets deployed on the application server. All of the packaging samples shipped with
iPlanet Application Server host the static content on the application server.

For example, to access a static filei ndex. ht M on the application server, use:

ht t p: / / server: port/ NASApp/ &l t context_root/ i ndex. ht m

Tools for Deployment

This section discusses the various tools that can be used to deploy modules and
applications. The deployment tools include:

= Theiasdeploy Command
= The iPlanet Deployment Tool
= The iPlanet Visual Café Plug-in

The iasdeploy Command

Thei asdepl oy command is a CLI tool that you can use to register and deploy both
modules and applications on local servers. To deploy a module, use this command:

i asdepl oy depl oynodul e module_name

Chapter 10 Packaging for Deployment 283

Deploying Modules and Applications

284

To deploy an application, use this command:

i asdepl oy depl oyapp app_hame

The iPlanet Deployment Tool

The iPlanet Deployment Tool can be used to deploy modules and applications to
both local and remote iPlanet Application Server sites. To use this tool, follow these
steps:

1. Openthe WAR, JAR, or EAR file that needs to be deployed. Any one of these
can be deployed independently.

Select Deploy from the File menu.
Click the Register button.
Register the deployment targets.

o >~ w DN

Highlight the appropriate server, and click the Deploy button.

The iPlanet Visual Café Plug-in

The iPlanet plug-in to the Visual Café allows you to deploy in an Integrated
Development Environment (IDE) context. Using this tool, assembly and
deployment occur together. For details, see the documentation that is provided
when you download the plug-in.

General Rules About Deployment

There are a few general rules that you should keep in mind when deploying
modules and applications. These are described here.

Redeploying an Application or Module

When an application or module is redeployed, some file system content and some
Application Server registry settings are not overwritten or removed. This can lead
to older settings remaining in effect after a redeployment. To perform a clean
redeployment, remove the application or module before redeploying it.

Deploying to an iPlanet Application Server Cluster

When an application is deployed to a cluster of iPlanet Application Server servers,
it needs to be registered on each server individually. Although the shared
information is stored on LDAP, which is accessed by all the servers in a cluster, the
file system entries must reside on every server.

iPlanet ™ Application Server Developer's Guide * November 2001

Introducing XML DTDs

Access to Shared Frameworks

When J2EE applications and modules use shared framework classes (such as
components and libraries) the classes can be put in the System Classpath rather
than in an application or module. If you package a large, shared library into every
module that uses it, the result is a huge file that takes too long to register with the
server. In addition, several versions of the same class could exist in different
classloaders, which is a waste of resources.

For more information about the system classloader, see Appendix B, “Runtime
Considerations.”

The Cocoon example (part of the XML samples) that ships with iPlanet Application
Server is a good example of the use of frameworks.

Introducing XML DTDs

The Document Type Definition (DTD) defines the XML grammar of a Deployment
Descriptor (DD). There are two DD levels: application level descriptors and
component level descriptors.

The iPlanet Application Server requires DDs to run an application. The DDs are
XML files containing metadata describing the deployment information about the
J2EE modules (such as servlets, JSPs, and EJBs) that make up an application. The
information in each XML file is stored in an iPlanet Application Server internal
registry.

Each application module must have a J2EE DD file. Additionally, each application
component must be associated with a Globally Unique IDentifier, or a GUI D.

The following lists the DD types supported by the iPlanet Application Server:

« application DD

= web application DD and an iPlanet Application Server web application DD
= EJB DD and an iPlanet Application Server EJB DD

= application client DD and an iPlanet Application Server RMI/ZIIOP client DD

= iPlanet Application Server resource DD

Chapter 10 Packaging for Deployment 285

Introducing XML DTDs

J2EE Standard Descriptors

The J2EE platform provides packaging and deployment facilities. These facilities
use JAR files as the standard package for components and applications, and
XML-based DDs for customizing parameters. For more information on the J2EE
packaging and deployment process, see Developing Enterprise Applications with
the J2EE, v 1.0, Chapter 7.

The J2EE standard DDs are described in the J2EE specification, v1.1. For more
information on these standard DDs, see the following specifications:

= Java 2 Platform Enterprise Edition Specification, v1.2, Chapter 8, “Application
Assembly and Deployment - J2EE:application XML DTD”

= Java 2 Platform Enterprise Edition Specification, v1.2, Chapter 9, “Application
Clients - J2EE:application-client XML DTD”

= JavaServer Pages Specification, v1.1, Chapter 7, “JSP Pages as XML
Documents”

= JavaServer Pages Specification, v1.1, Chapter 5, “Tag Extensions”
= Java Servlet Specification, v2.2 Chapter 13, “Deployment Descriptor”

= Enterprise JavaBeans Specification, v1.1, Chapter 16, “Deployment Descriptor”

Creating Deployment Descriptors

All DDs for an iPlanet Application Server application are created using the
Deployment Tool. For more information on these procedures, see the Deployment
Tool Online Help.

Document Type Definition

The DTD describes the DD files structure and class properties. Each DD has exactly
one element that completely contains all other elements (or subelements).

The element descriptions found in XML files are presented in a table format. These
element tables have several fields to describe the element’s purpose and setting
parameters. Some elements are hierarchical, meaning the parameters have other
elements (or subelements). If a parameter contains an element, the element
description is found in another table describing the element. Table 10-1 shows the
supported DTD entries.

286 iPlanet ™ Application Server Developer's Guide * November 2001

Introducing XML DTDs

Table 10-1 Document Type Definition

Type Description

Element Element name as it appears in the XML file and an element description.

Sub Elements Lists the elements contained by this element.

The iPlanet Application Server Registry

The iPlanet Application Server registry is a collection of application metadata,
organized in a tree, that is continually available in active memory or on a readily
accessible directory server. The process by which the iPlanet Application Server
gains access to servlets, EJBs, and other application resources is called registration,
because it involves placing entries in the iPlanet Application Server registry for
each item.

You can change some information in the registry at runtime using the iPlanet
Application Server Administrator Tool. For more information about the registry
and the Administrator Tool, see the iPlanet Application Server Deployment Tool
Help and the Administrator’s Guide.

A Globally Unigue Identifier

A QU Dis a 128-bit hexadecimal number assigned to EJBs, servlets, and optionally
to JSPs. They are automatically generated by the Deployment Tool.

GUI Ds are guaranteed to be globally unique, which makes them ideal for
identifying components in a large scale heterogeneous system such as an iPlanet
Application Server application.

GUI Ds are normally assigned automatically by the Deployment Tool. You can
manually generate a GUI Dby using a utility named kgui dgen. kgui dgen is installed
by default into the directory BasePat h/ bi n. That directory must be listed in your
search path (your PATHenvironment variable in order to generate a GUI D).

To generate a new GUI D, simply run kgui dgen from a command line or window.

Chapter 10 Packaging for Deployment 287

Web Application XML DTD

Web Application XML DTD

288

This section describes a web application, the web application module and the web
application DD. DDs are created using the Deployment Tool. For more
information, see the iPlanet Application Server Deployment Tool Help and the
Administrator’s Guide.

Web Application Overview

Web applications run on web servers and may consist of servlets, JSPs, JSP Tag
libraries, HTML pages, classes and other resources. A web application’s location is
rooted at a specific path within the web server. A web application’s instance must
only be run on one Virtual Machine (VM) at any given time, unless the application
is marked as distributable by its DD. When marked as distributable, the application
may run on more than one VM at any given time and must follow a more
restrictive rule set outlined by the Java Servlet 2.2 specification.

A web application is a composite of the following items:

= Servlets

e JSPs

« Utility Classes

e Static documents (HTML, images, sounds, and so on)

« Client side applets, beans and classes

= Descriptive meta information bundling the above items together

A web application is created by first assembling all needed web components into a
web application module along with its module DD. Next, the web application
module is packaged with all other modules that are used by the J2EE application
along with the application DD into the final web application that is ready for
deployment. For more information on J2EE assembly and deployment, see the J2EE
specification, Chapter 8.

Web Application XML DTD

This section provides the XML DTD for the iPlanet Application Server specific web
application DD. For more information on the standard J2EE application DD, see the
J2EE specification, section 8.4.

iPlanet ™ Application Server Developer's Guide * November 2001

Web Application XML DTD

The web application DD supports element definitions that provide the following
information:

servlet information

session information

EJB reference information
Resource reference information

Specifying servlet information

Element for Specifying an iPlanet Application Server Web Application

Table 10-2 shows the <i as- web- app> element and sub elements used with the
iPlanet Application Server web application DD root element.

Table 10-2 <i as- web- app> Sub Elements

Sub Element

Repeat Rule Contains Default Description

servl et
session-info

ej b-ref

resour ce-ref

nl sinfo

rol e- mappi ng

zeroor more elements none Contains the servlet configuration information.
Zero or one elements none Specifies the session information.
zeroor more elements none Specifies the absolute INDI name storage location

of the corresponding J2EE XML ej b- r ef entry.

zeroor more elements none Specifies the absolute JNDI name storage location

of the ej b- 1 i nk in the corresponding J2EE XML
file ej b-r ef entry.

Zero or one elements none NLS settings descriptor.
Zero or elements none LDAP role mapping descriptor.
many

Elements for Specifying Serviet Configuration Information

Table 10-3 shows the ser vl et sub element contains configuration information
about a servlet.

Table 10-3 servl et Sub Elements

Sub Element

Repeat Rule Contains Default Description

servl et - nanme

one and string none The servlet name. This name must
only one match the ser vl et - nane parameter in
the J2EE web app XML exactly.

Chapter 10 Packaging for Deployment 289

Web Application XML DTD

Table 10-3 servl et Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description
gui d one and string none A string representing the gui d for the
only one servlet.

servlet-info Zero or one elements none Optional servlet characteristics.

val i dati onRequi red zeroor one boolean “false” Specifies if the input parameter needs to
be validated.

error-handl er Z€ero or one string none Describes the servlet error handler.

paraneters zero to more elements none Describes all input parameters to be
validated.

par am gr oup zero to more elements none Each parameter group is represented by

an event source name and the associated
parameters.

Elements for Specifying Serviet Characteristics

Table 10-4 shows the ser vl et - i nf o sub element which is used to describe the
optional characteristics about a servlet.

Table 10-4 servl et -i nf o Sub Elements

Sub Element Repeat Rule

Contains

Default

Description

sticky Zero or one

encrypt Zero or one

cachi ng Z€ero or one

nunber - of - si ngl es zero or one

di sabl e-rel oad Zero or one

boolean

boolean

elements

integer

boolean

“false”

“false”

none

10

fal se

If sti cky is “true”, the servlet exhibits
session affinity and is only load-balanced
if no session exists. Once a session is
created in a given engine, subsequent
requests for st i cky servlets continues to
be routed to the same engine.

Optional flag indicating whether
communications to the servlet are
encrypted (“true”) or not (“false”).

Specifies caching criteria for the servlet.

The number of objects in the servlet pool
when Si ngl eThr ead mode is used.

This is used to disable reloading of
servlets when dirty. Legal values are
trueorfal se.

290

iPlanet ™ Application Server Developer's Guide * November 2001

Table 10-4 servl et -i nf o Sub Elements (Continued)

Web Application XML DTD

Sub Element Repeat Rule Contains Default Description
server-info zero or elements none Optional server information including
many server and load balancing enabling
and/or disabling.
server-ip one and string none Server IP address.
only one
server-port one and string none Executive Server’s port number.
only one
sticky-1b zero or boolean servl et Sets sticky load balancing. Legal values
many -info aretrue orf al se. If set overrides the
sticky settingoftheservlet-info.
setting
enabl e zero or boolean true Specifies if the server is enabled or not.
many Legal values aretrue or f al se.

Table 10-5 val i dati on-required Sub Elements

Elements for Specifying Serviet Validation

Table 10-5 shows the val i dat i on- r equi r ed sub element which is used to verify
the input about a servlet should be validated.

Sub Element Repeat Rule Contains Default Description
val i dati on-required oneand boolean fal se Specifies whether or not the input
only one parameters should be verified.

Elements for Specifying Servlet Caching

Table 10-6 shows the cachi ng sub element, which is used to describe caching
criteria for the servlet. cachi ng is disabled by not defining the caching element.

Table 10-6 cachi ng Sub Elements

Sub Element

Repeat Rule Contains

Default Description

cache-ti nmeout

one and integer
only one

none Sets the servlet caching

timeout (in seconds). If the
value is 0, caching is
disabled.

Chapter 10 Packaging for Deployment 291

Web Application XML DTD

Table 10-6 cachi ng Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description
cache-si ze one and integer none Sets the cache size. A value
only one of “0” disables caching.
cache-criteria oneand string where the syntax none Criteria expression
only one isany value ofarg in containing a string of
the input parameter list; comma delimited
for details, see “Caching descriptors, each descriptor
Servlet Results,” on defining a match with one
page 349. of the input parameters to
the servlet.
cache-option one and String of either TI MEOUT _ Sets the cache timeout

only one TI MEOUT_CREATE or LASTACCESS option.
TI MEQUT_LASTACCESS

Examples for Setting Cache Criteria and Cache Option

The following examples provide some common usages and cache criteria element
settings.

Example 1

<cache-criteria>Enpl oyeeCode</ cache-criteria>

This means caching is enabled if Enpl oyeeCode is in the input parameter list.
Example 2

<cache-criteria>st ock=NSCP</ cache-criteria>

This means caching is enabled if the st ock input parameter value is NSCP
Example 3

<cache-criteria>*</cache-criteria>

This means caching is enabled whenever the input parameter values are the same
as the cached value.

Example 4

<cache-criteria>dept =sal es| mar ket i ng| support </ cache-criteria>

This means caching is enabled if the dept parameter value is sales, marketing, or

support.

Example 5
<cache-criteria>sal ar y=40000- 60000</ cache-criteri a>

292 iPlanet ™ Application Server Developer's Guide + November 2001

Web Application XML DTD

This means caching is enabled when the input parameter value of sal ary is
between 40000 and 60000.

Example 6

<cache-opti on>TlI MEOUT_CREATE</ cache-opti on>

This means it takes the cache timeout value from the creation time.
Example 7

<cache-opti on>TlI MEQUT_LASTACCESS</ cache- opti on>

This means it takes the cache timeout based on the last accessed time.

Elements for Specifying Serviet Parameters

Table 10-7 shows the par anet er s element which is used to describe the input
parameters to be validated.

Table 10-7 par anet er s Sub Elements

Sub Element Repeat Rule Contains Default Description

par am zero or more elements none Specifies each parameter by name and the rules
applied to it for validation.

Elements for Specifying Serviet Sub Parameters

Table 10-8 shows the par amsub elements where each parameter is represented by a
name and the rules that are applied to it for validation.

Table 10-8 par amSub Elements

Sub Element Repeat Rule Contains Default Description
par am namne one and only one string none Input parameter name.
input-fields oneandonlyone elements none This describes the input parameter details.

Elements for Specifying Servlet Input Field

Table 10-9 shows the i nput - f i el d sub elements which is used to detail the input
parameter.

Chapter 10 Packaging for Deployment 293

Web Application XML DTD

Table 10-9 i nput-fi el d Sub Elements

Sub Element Repeat Rule Contains Default Description

i nput -requi red Zero or one boolean none Specifies whether the input parameter is
required to exist, that is, whether the
field should be part of the input list.

input-rule zeroorone string none Specifies the input rule being applied

for validation on the input parameter.

f or mat zero to one string in none Specifies the format for date/time to be
date/time applied for validation on the input
format parameter.

i n-session zero to one string none Specifies if the parameter is in cache

(session) for validation.

paramerror-handl er zeroorone string none Specifies the parameter error handler.

Elements for Specifying Servlet Parameter Groups

Table 10-10 shows the par am gr oup sub elements where each parameter group is
represented by an event source name and the associated parameters.

Table 10-10 par am gr oup Sub Elements

Sub Element Repeat Rule Contains Default Description
par am gr oup- nane one and string none Parameter group name.
only one
par am i nput one or more string none Parameter input name associated with the

parameter group.

Elements for Specifying Session Information

Table 10-11 shows the sessi on- i nf o elements which is used to specifies session
information.

Table 10-11 sessi on-i nf o Sub Elements

Sub Element Repeat Rule Contains Default Description
i mpl one and string of either none A session can either be a distributed,
only one distributed fault-tolerant session or a lightweight
orlite local session only.

294 iPlanet ™ Application Server Developer's Guide * November 2001

Table 10-11 sessi on-i nf o Sub Elements (Continued)

Web Application XML DTD

Sub Element Repeat Rule Contains Default Description
ti meout-type zeroorone string of either | ast- Session timeouts are normally measured
| ast -access access in “time since last access.” Alternatively,
orcreation an absolute timeout can be specified as
“time since session creation.”
ti meout zero orone positive 30 minutes Number of session timeout minutes
integer before a timeout. If unspecified, a system
representing wide default session timeout is used.
minutes . . .
This value and the <sessi on-t i neout >
value inweb. xm are stored in the same
place internally. Changing either value
changes the other value as well.
secure zeroorone boolean fal se Specifies the session can only be visible to
a secure (HTTPS) server.
domai n zero orone string name of none Specifies the application domain used to
the domain set the session domain cookie.
that set the . .
- The domain string argument must
cookie . .
contain at least 2 or 3 periods (3
period-domains apply to domains like
acne. co. uk).
If the domain is setto acne. com then the
session is visible to Who. acne. com
bar . asnme. com and so on.
path zeroorone String value of The URL Specifies the session cookie path. A
the URL for thatcreated non-existent path implies the same path
the session the cookie. as the one set in the cookie is used.
cookie startin .
s g For example, the path / phoeni x matches
with “/ . . .
/ phoeni x/ types/ bird. ht M and
/ phoeni x/ birds. htm .
scope zeroorone String none Grouping name that selects what other
identifying the applications can access the session.
other . ..
. For example, if the domain is set to
application. LT
acne. com then the session is visible to
Who. acnre. com bar . acne. com and so
on.
dsync-type zeroorone string of either none Specifies the DSync session type.

dsync-1 ocal
ordsync-
distributed

Chapter 10 Packaging for Deployment

295

Web Application XML DTD

Elements for Specifying EJB Reference Information

Table 10-12 shows the ej b- r ef sub elements which are the absolute j ndi - nane
storage place for the ej b- 1 i nk in the corresponding J2EE XML file ej b-r ef entry.

Table 10-12 ej b-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

ej b-ref-name oneandonly one string none The ej b- 1 i nk in the corresponding J2EE
XML file e b-r ef entry.

j ndi - nane one and only one string none The absolute j ndi - name.

Elements for Specifying Resource Reference Information

Table 10-13 shows the r esour ce-r ef sub elements which are the absolute
j ndi - nanme storage place for the r esour ce-r ef in the corresponding J2EE XML file
resour ce-ref entry.

Table 10-13 resour ce-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

resource-ref-nanme oneandonlyone string none Ther esour ce-ref nameinthe
corresponding J2EE XML file
resour ce-ref entry.

j ndi - nane one and only one string none The absolute j ndi - nane.

Elements for Specifying NLS Settings

Table 10-14 shows the nl si nf o sub elements which contains the configuration
information about the application’s NLS settings.

Table 10-14 nl si nf o Sub Elements

Sub Element Repeat Rule Contains Default Description

| ocal e-charset-nmap zero or many elements none Contains locale and the
corresponding character set.

default-1ocal e one and only one string none Default locale.

296 iPlanet ™ Application Server Developer's Guide * November 2001

Web Application XML DTD

Elements for Specifying Locale Character Sets

Table 10-15 shows the | ocal e- char set - map sub elements which contains the
descriptor information for locale and corresponding character sets.

Table 10-15 | ocal e- char set - map Sub Elements

Sub Element Repeat Rule Contains Default Description
| ocal e one and only one string none Locale name.
char set one and only one string none Default locale.

Elements for Specifying Role Mapping

Table 10-16 shows the r ol e- mappi ng sub elements which contains the descriptor
information for mapping roles to LDAP user, groups, and so on.

Table 10-16 r ol e- mappi ng Sub Elements

Sub Element Repeat Rule Contains Default Description
rol e- nane one and only one string none Role name as referred to in the
<security-rol e>element.
rol e-i npl one and only one elements none The string used to represent a LDAP group/user

which makes up a particular r ol e- narme. A
rol e-i npl could be any number of groups
and/or users.

Elements for Specifying Role IMPL

Table 10-17 shows the r ol e-i npl sub elements which contains the descriptor
information for role implementation.

Table 10-17 rol e-i npl Sub Elements

Sub Element Repeat Rule Contains Default Description

group Zero or many string none LDAP specific string that corresponds to a
particular LDAP group.

user Zero or many string none LDAP specific string that corresponds to a

particular LDAP user.

Chapter 10 Packaging for Deployment 297

EJB XML DTD

EJB XML DTD

This section describes the EJB DTD used by the EJB deployment descriptors. The
DDs are created using the Deployment Tool. For more information on creating
DDs, see the Deployment Tool Online Help.

EJB JAR File Contents

The standard format used to package enterprise beans is the EJB-JAR file. The
format is the contract between the bean provider and application assembler, and
between the application assembler and the deployer.

The EJB-JAR file must contain the DD as well as all class files for the following:
= The enterprise bean class.

= The enterprise helper classes.

= The enterprise bean home and remote interfaces.

= [fthe bean is an entity bean, the primary key class.

In addition, the EJB-JAR file must contain the class files for all classes and interfaces
that the enterprise bean class, and the remote home interfaces depend on.

Specifying Parameter Passing Rules

When a servlet or EJB calls another bean that is co-located within the same process,
the iPlanet Application Server does not perform marshalling of all call parameters
by default. This optimization allows the co-located case to execute far more
efficiently than if strict by- val ue semantics are used. In certain cases, you may
want to ensure that parameters passed to a bean are always passed by value. The
iPlanet Application Server supports the marking of a bean or even a particular
method within a bean as requiring pass- by- val ue semantics. The parameter
passing method used by the EJB is defined by the pass- by- val ue element. For
more information, see the pass- by- val ue element description in the sessi on
(Table 10-20) or ent i t y element (Table 10-21). Because this option decreases
performance by greatly increasing call overhead, the default value is f al se.

298 iPlanet ™ Application Server Developer's Guide * November 2001

EJB XML DTD

EJB iPlanet Application Server XML DTD

The following is the iPlanet Application Server specific XML DTD for EJB-JAR files.
Elements for Specifying EJB-JAR
Table 10-18 shows the i as- ej b-j ar element which is the iPlanet Application

Server web application DD root element.

Table 10-18 i as-ej b-j ar Element

Sub Element Repeat Rule Contains Default Description
enterpri se-beans oneand element none The ent er pri se- beans element contains
only one declarations for one or more enterprise beans.

Elements for Specifying Enterprise Beans
Table 10-19 shows the ent er pri se- beans sub element which contains declarations
for one or more enterprise beans.

Table 10-19 enter pri se- beans Sub Elements

Sub Element Repeat Rule Contains Default Description

session one or the element none An element that declares all iPlanet Application Server
other specific session bean related deployment information

entity one or the element none An element that declares all iPlanet Application Server
other specific entity bean related deployment information

Elements for Specifying Session

Table 10-20 shows the sessi on sub element which declares all iPlanet Application
Server specific session bean related deployment information. The ej b- name must
match 1 to 1 with the ej b- nanme declared in the J2EE XML file.

Table 10-20 sessi on Sub Elements

Sub Element Repeat Rule Contains Default Description
ej b- nane one and string none The EJB name.
only one

Chapter 10 Packaging for Deployment 299

EJB XML DTD

Table 10-20 sessi on Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description

gui d one and string none The EJB gui d in question.
only one

pass-ti neout one and positive none Passivation timeout in seconds used by the
only one integer container. This value can be changed during

runtime by the Administration Tool.

pass- by-val ue one and boolean none If “true”, marshalling of all call parameters to

only one the EJB are performed. If “false” and the beans

are co-located, strict by- val ue semantics are
not guaranteed.

sessi on-ti meout one and positive none The session timeout in minutes.
only one integer
ej b-ref Zero or elements none The absolute j ndi - nane storage place for the
more ej b-1i nk inthe corresponding J2EE XML file
ej b-ref entry.
resource-ref zero or elements none The absolute j ndi - name storage place for the
more resour ce-r ef in the corresponding J2EE

XML filer esour ce-ref entry.

failoverrequired zeroorone boolean none Indicates if failover is required.

Elements for Specifying Entity

Table 10-21 shows the ent i t y sub element which declares all iPlanet Application
Server specific entity bean related deployment information. The ej b- nane must
match 1 to 1 with the ej b- nanme declared in the J2EE XML file.

Table 10-21 entity Sub Elements

Sub Element Repeat Rule Contains Default Description
ej b- nane one and string none The EJB name.
only one
guid one and string none The EJB gui d in question.
only one
pass-ti neout one and positive none Passivation timeout in seconds used by
only one integer the container. This value can be changed
during runtime by the Administration
Tool.

300 iPlanet ™ Application Server Developer's Guide * November 2001

EJB XML DTD

Table 10-21 entity Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description
pass- by-val ue one and boolean none If “true”, marshalling of all call
only one parameters to the EJB are performed. If

“false” and the beans are co-located, strict
by- val ue semantics are not guaranteed.

persi stence-manager zeroorone elements none Specifies persistence information.

pool - manager zeroorone elements none Descriptor for cache pool attributes.
ej b-ref zero or elements none The absolute j ndi - nane storage place
more for the ej b- | i nk in the corresponding
J2EE XML file ej b-r ef entry.
resource-ref zero or elements none The absolute j ndi - nane storage place
more for the r esour ce-ref inthe

corresponding J2EE XML file
resour ce-ref entry.

failover-required zeroorone boolean fal se Indicates if failover is required.
iiop zeroorone boolean fal se Indicates if a bean is RMI/IIOP Client
enabled.
rol e- mappi ng Zero or elements none Descriptor that creates role mapping.
many

Elements for Specifying Persistence Manager

Table 10-22 shows the per si st ence- manager sub element which defines all
persistence manager specific information.

Table 10-22 per si st ence- manager Sub Elements

Sub Element Repeat Rule Contains Default Description

factory-cl ass- nane one and string none Persistence manager name factory
only one class.

properties-file-location oneand string none Properties file location in a JAR file.
only one

Elements for Specifying Pool Manager

Table 10-23 shows the pool - manager sub element which defines all pool manager

specific information.

Chapter 10 Packaging for Deployment

301

EJB XML DTD

Table 10-23 pool - mranager Sub Elements

Sub Element Repeat Rule Contains Default Description
conmi t-option one and string COW T_ Option C: Between transactions the
only one value of OPTI ON_C Container does not cache a “ready”
COMMIT_ instance. For more information, see the
OPTION_C EJB v1.1 specification, section 9.1.10.
r eady- pool -ti meout oneand positive infinite Ready pool timeout used by the
only one integer container. This value can be changed
during runtime by the Administration
Tool.
r eady- pool - maxsi ze oneand positive infinite Maximum size of the ready cache in
only one integer entry numbers. This value can be
or “0” changed during runtime by the
for Administration Tool.
infinite
free-pool -maxsi ze oneand positive infinite Maximum size of the instance free pool
only one integer in entry numbers. This value can be
or “0” changed during runtime by the
for Administration Tool.
infinite

Elements for Specifying EJB Reference

Table 10-24 shows the ej b- r ef sub element which are the absolute j ndi - nane
storage places for the ej b- | i nk in the corresponding J2EE XML file ej b-r ef entry.

Table 10-24 ej b-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

ej b-ref-name oneandonlyone string none The ej b- | i nk in the corresponding J2EE
XML file ej b-ref entry.

j ndi - name one and only one string none The absolute j ndi - nane.

Elements for Specifying Resource Reference

Table 10-25 shows the r esour ce-r ef sub element which are the absolute
j ndi - name storage places for the r esour ce- r ef in the corresponding J2EE XML
file resour ce-ref entry.

302 iPlanet ™ Application Server Developer's Guide * November 2001

EJB XML DTD

Table 10-25 resour ce-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

resource-ref-name oneandonlyone string none Ther esour ce-ref namein the
corresponding J2EE XML file

resour ce-ref entry.

j ndi - name one and only one string none The absolute j ndi - nane.

Elements for Specifying Role Mapping

Table 10-26 shows the r ol e- mappi ng sub elements which are the mapping roles
descriptors for the LDAP user, groups, and so on.

Table 10-26 r ol e- mappi ng Sub Elements

Sub Element Repeat Rule Contains Default Description

rol e-name oneand string none Role name as referred to in the <security-rol e>
only one element.

role-inpl oneand elements none The string used to represent a LDAP group/user thing
only one that makes up a particularr ol e- nane. Arol e-i npl

could be any number of groups and/or users.

Elements for Specifying Role Implementation

Table 10-27 shows the r ol e-i npl sub elements which are the role implementation
descriptors.

Table 10-27 rol e-i npl Sub Elements

Sub Element Repeat Rule Contains Default Description
group zero or many string none LDAP specific string for a particular LDAP group.
user zero or many string none LDAP specific string for a particular LDAP user.

Chapter 10 Packaging for Deployment 303

RMI/IIOP Client XML DTD

RMI/IIOP Client XML DTD

The RMI/IIOP Client is an iPlanet Application Server specific type of J2EE client. A
RMI/I110OP Client supports the standard J2EE Application Client specifications, and
in addition, supports direct access to the iPlanet Application Server. For more
information on RMI/IIOP Clients, refer to Chapter 9, “Developing and Deploying
CORBA-Based Clients.”

A RMI/IIOP Client JAR file contains two DDs that are generated by the
Deployment Tool. One DD is specified by the J2EE application client XML DTD,
that can be found in the J2EE Specification, v1.0 Chapter 9 Application Clients. The
other DD contains the iPlanet Application Server specific RMIZ1IOP Client
elements; for more information, see “iPlanet Application Server RMI/ZIIOP Client
XML DTD,” on page 304.

For a sample RMI/IIOP Client DD file, see “RMI/IIOP Client DD XML Files,” on
page 400.

iIPlanet Application Server RMI/IIOP Client XML
DTD

Thei as-java-client-jar elementisthe RMIZIIOP Client’s DD root element.

Elements for Specifying EJB Reference Information

Table 10-28 shows the ej b- r ef sub elements which are the absolute j ndi - nane
storage places for the ej b- | i nk in the corresponding J2EE XML file ej b-r ef entry.

Table 10-28 ej b-ref Sub Elements

Sub Element

Repeat Rule Contains Default Description

ej b-ref-name

j ndi - nane

one and only one string none The ej b- 1 i nk in the corresponding J2EE
XML file ej b-ref entry.

one and only one string none The absolute j ndi - nane.

Elements for Specifying Resource Reference Information

Table 10-29 shows the r esour ce-r ef sub elements which are the absolute
j ndi - name storage places for the r esour ce- r ef in the corresponding J2EE XML
file resour ce-ref entry.

304 iPlanet ™ Application Server Developer's Guide * November 2001

Resource XML DTD

Table 10-29 resour ce-ref Sub Elements

Sub Element

Repeat Rule Contains Default Description

resource-ref-name oneandonlyone string none Theresour ce-ref nameinthe

j ndi - nane

corresponding J2EE XML file
resour ce-ref entry.

one and only one string none The absolute j ndi - nane.

Resource XML DTD

Each iPlanet Application Server resource has a resource XML file. Examples of
resources are JDBC datasources, Java Mail, or JIMS. The XML file contains entries
that are used to register the resource with the iPlanet Application Server. These
entries define the way the iPlanet Application Server connects to the resource.
These files are generated by the Deployment Tool. This section describes the
resource XML file entries. For information on how to generate these files, see the
Deployment Tool Online Help.

Datasource XML DTD

This section describes the XML DTD for the iPlanet Application Server datasource.

Element for Specifying Datasources

Table 10-30 shows the i as- Dat asour ce-j ar sub element which is the resource DD
root element.

Table 10-30 i as- Dat asour ce-j ar Sub Element

Sub Element

Repeat Rule Contains Default Description

i as-resource

oneandonlyone element none Common element for all resource DDs.

Element for Specifying iPlanet Application Server Resources

Table 10-31 shows the i as- r esour ce sub element which is the descriptor used for
all resources.

Chapter 10 Packaging for Deployment 305

Resource XML DTD

Table 10-31 i as-resour ce Sub Element

Sub Element Repeat Rule Contains Default Description

resource one and only one elements none Common element for all resource DDs.

Elements for Specifying Resources

Table 10-32 shows the r esour ce sub elements which are the descriptors used for
all resources.

Table 10-32 resour ce Sub Elements

Sub Element Repeat Rule Contains Default Description

j ndi - nane one and only one string none The absolute j ndi - nane of the resource
factory (for example, j db/ Who).

j dbc one or the other elements none Descriptor for the JDBC datasource.

j ms one or the other string none Descriptor for the JMS datasource.

mai | one or the other string none Descriptor for the mail datasource.

url one or the other string none Descriptor for the URL datasource.

Elements for Specifying JDBC Datasources

Table 10-33 shows the j dbc sub elements which are the descriptors used for the
JDBC datasource.

Table 10-33 j dbc Sub Elements

Sub Element Repeat Rule Contains Default Description

dat abase one and only one string none Database name to connect
to.

dat asour ce one and only one string none Assigned datasource name.

user nane one and only one string none Valid database user name.

password one and only one string none Valid user name password.

306 iPlanet ™ Application Server Developer's Guide * November 2001

Resource XML DTD

Table 10-33 j dbc Sub Elements (Continued)

Sub Element

Repeat Rule Contains Default Description

driver-type

resource- ngr

one and only one string field which contains none EIS specific JDBC driver.
one of the following:

ORACLE_OCI (Oracle)
DB2_CLI (DB2)

I NFORM X_CLI (Informix)
SYBASE_CTLI B (Sybase)
ODBC (ODBC)

ZEero or one string none If this attribute is set, the
datasource is available for
distributed transactions
through the resource
manager listed.

If this attribute is not
specified, the datasource is
only valid for a local
database.

The value must be a name
you create for a resource
manager under the
RESOURCEMGR key.

Table 10-34 i

RMI/IIOP Client Datasource XML DTD

This section describes the XML DTD for an RMI/110OP Client datasource.
Elements for Specifying Java Client Resources
Table 10-34 shows the i as-j avacl i ent - r esour ce sub elements which are the

RMI/I1IOP Client’s datasource XML DD root elements.

as-j avacl i ent - r esour ce Sub Elements

Sub Element

Repeat Rule Contains Default Description

j dbc
j s

j ndi - nane

one or the other elements none Descriptor for RMI/110OP Client JDBC settings.
one or the other string none Not yet defined.

one and only one string none The absolute j ndi - nane.

Chapter 10 Packaging for Deployment

307

Resource XML DTD

Elements for Specifying JDBC Settings
Table 10-35 shows the j dbc sub elements which are the JDBC settings descriptors.

Table 10-35 j dbc Sub Elements

Sub Element Repeat Rule Contains Default Description

driverC ass oneandonlyone elements none Valid driver class.
connect Ur 1 one and only one string none Valid URL to connect to.
user Nane one and only one string none Valid user name.
password one and only one string none Valid user name password.

308 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 11

Creating and Managing User
Sessions

This chapter describes how to create and manage a session that allows users and
transaction information to persist between interactions.

This chapter contains the following sections:
= Introducing Sessions

e How to Use Sessions

Introducing Sessions

The term user session refers to a series of user application interactions that are
tracked by the server. Sessions are used for maintaining user specific state,
including persistent objects (like handles to EJBs or database result sets) and
authenticated user identities, among many interactions. For example, a session
could be used to track a validated user login followed by a series of directed
activities for a particular user.

The session itself resides in the server. For each request, the client transmits the
session ID in a cookie or, if the browser does not allow cookies, the server
automatically writes the session ID into the URL.

The iPlanet Application Server supports the servlet standard session interface,
called Ht t pSessi on for all session activities. This interface enables you to write
portable, secure servlets.

Additionally, the iPlanet Application Server provides an additional interface,
called Ht t pSessi on2, which provides support for a servlet security framework, as
well as, sharing sessions between servlets and older iPlanet Application Server
components (that is, AppLogics).

309

Introducing Sessions

Behind the scenes, there are two session styles, distributable and local. The main
difference between them is that distributable sessions, as the name implies, can be
distributed among multiple servers in a cluster, while local sessions are sticky (that
is, bound to an individual server). Sticky load balancing is automatically set for
application servlets configured to use the local session model. You determine
which session style to use in the application configuration file. For more
information about session-related elements in the application configuration file, see
Chapter 10, “Packaging for Deployment.”

Sessions and Cookies

A cookie is a small collection of information that can be transmitted to a calling
browser, which retrieves it on each subsequent call from the browser so that the
server can recognize calls from the same client. A cookie is returned with each call
to the site that created it, unless it expires.

Sessions are maintained automatically by a session cookie that is sent to the client
when the session is first created. The session cookie contains the session ID, which
identifies the client to the browser on each successive interaction. If a client does
not support or allow cookies, the server rewrites the URLs where the session ID
appears in the URLs from that client.

Sessions and URL Rewriting

There are two situations in which the iPlanet Application Server plugin performs
implicit URL rewriting:

= When a response comes back from the iPlanet Application Server; if implicit
URL rewriting has been chosen, the plugin rewrites the URLs in the response
before passing the response on to the client.

= When the request given by a client need not be sent to the iPlanet Application
Server and can be served on the web server side. Such requests may occur in
the middle of a session and the response may need to be rewritten.

This section includes the following topics:
« Supported Tags and Attributes

= The URL Rewriting Process

= The Location Header

« Order of the Cookies

310 iPlanet ™ Application Server Developer's Guide * November 2001

Introducing Sessions

Supported Tags and Attributes

The following tags and attributes are supported for URL rewriting. All of them are
case insensitive with respect to the plugin.

Table 11-1 Supported tags and attributes for URL rewriting

Tag or Attribute Language Examples

A HTML Sun

 | ndex

AREA HTML <area shape=circl e cords="50, 50, 25"
href="http://docs. sun. coni >
FORM HTML
FRAME HTML
GO WML <go href="/hel p. wr ">
IMG HTML
ONENTERBACKWARD WML <card onenterbackward="/url"> xyz </card>
ONENTERFORWARD WML <card onenterforward="/url"> Hello </card>
ONPICK WML <sel ect >
<option onpick="/a.wm "> A </option>
<option onpick="/b.wm "> B </option>
</ sel ect>
ONTIMER WML <card onti mer="/next">

The following sections provide additional detail about each of the tags.

= The URL mentioned in the hr ef attribute of this tag is rewritten with the
cookies.

= The URL can have a query string.
= The URL must be enclosed in double or single quotes.
= The URL must not start with a # character.

= Cookies are rewritten just after the end of the URI. If the URL already has a
query string, it is placed after the cookies.

Chapter 11 Creating and Managing User Sessions 311

Introducing Sessions

AREA
= The URL mentioned in the hr ef attribute of this tag is rewritten.

< No action is taken for nohr ef .
= The URL can have a query string .

= The URL must be enclosed within double or single quotes.

FORM
= The cookies are encoded in the form of hidden fields.

e Both POST and GET are handled.

FRAME
= The URL pointed to by the SRC attribute of this tag is rewritten.

= FRAMESET and NOFRAMES are not processed.
= The URL can have a query string.

= The URL must be enclosed within double or single quotes.

GO
= The URL pointed to by the hr ef attribute of this tag is rewritten with the
cookies.

= The URL can have a query string.
= The URL must be enclosed in double or single quotes.
= The URL must not start with a # character.

= Cookies are rewritten just after the end of the URI. If the URL already has a
query string, it is placed after the cookies.

IMG
= The URL pointed to by the SRC attribute of this tag is rewritten.

= The URL can have a query string.

= The URL must be enclosed within double or single quotes.

ONENTERBACKWARD
This is not a tag, but an attribute of WML tags such as CARD and ONEVENT.

= The URL pointed to by ONENTERBACKWARD is rewritten.
= The URL can have a query string.

312 iPlanet ™ Application Server Developer's Guide * November 2001

Introducing Sessions

= The URL must be enclosed within double or single quotes.

ONENTERFORWARD
This is not a tag, but an attribute of WML tags such as CARD and ONEVENT.

e The URL pointed to by ONENTERFORWARD is rewritten.
= The URL can have a query string.

= The URL must be enclosed within double or single quotes.

ONPICK
This is not a tag, but an attribute of the WML tag OPTION.

= The URL pointed to by ONPICK is rewritten.
= The URL can have a query string.

= The URL must be enclosed within double or single quotes.

ONTIMER
This is not a tag, but an attribute of WML tags such as CARD and ONEVENT.

= The URL pointed to by ONTIMER is rewritten.
= The URL can have a query string.

= The URL must be enclosed within double or single quotes.

The URL Rewriting Process
The URL rewriting process of the plugin happens in two stages:

= Response Header Processing
= Response Body Processing

For requests that are not sent to the iPlanet Application Server, only response body
processing is done.

When the plugin receives a request, it checks if there is a query string. If there is
one, the plugin extracts the iPlanet Application Server cookies that were encoded
in a previous response. These cookies start with the prefix GXHC . These cookies are
stored in two data structures, referred to here as QueryCookies and FormCookies.
In the former, the cookies are stored in a query string form. In the latter, they are
stored in a format that is suitable for the HTML FORM tag. Currently, the cookies
in QueryCookies are used to rewrite all the tags except FORM.

Chapter 11 Creating and Managing User Sessions 313

Introducing Sessions

Here is an example of the cookies in QueryCookies:
GXHC_GX j st =d1f 1943e55096164&anp; gx_sessi on_i d_=74cd83f 757b5c8f 6;
Here is an example of the cookies in FormCookies:

<I NPUT NAME=" GXHC GX_j st" TYPE=HI DDEN VALUE="d1f 1943e55096164"
</ I NPUT><I NPUT NAME=" GXHC_ gx_session_id_" TYPE=H DDEN
VALUE="74cd83f 757b5c8f 6" </ 1 NPUT>

These cookies are extracted and stored, to be used in the rewriting of the
subsequent responses.

Response Header Processing

The response from the iPlanet Application Server comes to the plugin in the HTTP
response format. The plugin first processes the headers of this response using the
following algorithm.

1. The plugin counts the number of Set-Cookie headers in the response and uses
this number to allocate space for a data structure referred to as
ResponseCookies. For each Set-Cookie header in the response, the remaining
steps are performed.

2. Ifthere is a domai n attribute, its value is extracted.

3. Ifthe cookie is already present in QueryCookies or FormCookies, one of the
following occurs:

o Ifthe incoming cookie has a domai n, the cookie in QueryCookies or
FormCookies may have come with its own domain, which was lost when it
was used for URL rewriting. Since it has come (again) with a domain, it is
treated as a new cookie. The flag t r eat AsNew s set to TRUE and the cookie
is removed from QueryCookies or FormCookies.

o Ifthe incoming cookie does not have a donai n associated with it, its value
is checked against the value of the same cookie in QueryCookies or
FormCookies.

« Ifthey are same, the new cookie is dropped and t r eat AsNew is set to
FALSE.

« If they are different, the cookie is removed from QueryCookies or
FormCookies and t r eat AsNew s set to TRUE.

4. If the cookie is not present in QueryCookies or FormCookies, the cookie is
brand new, and t r eat AsNew is set to TRUE.

5. If the incoming cookie has a domai n, one of the following occurs:

314 iPlanet ™ Application Server Developer's Guide * November 2001

Introducing Sessions

o Itisvalidated using the following rules (from RFC 2109):
e |t must start with a dot.
« |t must have at least one embedded dot.

If the donmi n satisfies these rules, the cookie will be used for URL
rewriting, and the domai nOXK flag is set to TRUE. Otherwise, domai nCK is set
to FALSE.

o The incoming cookie does not have a donai n. The cookie will be used for
URL rewriting, and domai nOK is set to TRUE.

If domai nOK is TRUE and t r eat AsNew is TRUE, the incoming cookie is either
brand new or an old cookie with a new value. Its name, value, and domain are
added to the data structure ResponseCookies.

When the processing of headers finishes, all the old cookies are in QueryCookies or
FormCookies and all the new ones are in ResponseCookies. The former are ready
to be encoded in the response URLs, but the latter must be converted to such a
format.

Response Body Processing

This stage is reached after the response headers are sent to the client. The body of
the response is parsed. The plugin looks for the tags described in the section
“Supported Tags and Attributes,” on page 311. It performs the following checks for
these tags.

1.

The URL is checked to see if it is absolute or relative. Absolute URLSs start with
a protocol and look something like this: ht t p: / / machi ne. websi t e. com If the
URL is absolute, the host (machi ne. websi t e. con) is extracted.

The plugin must select cookies from ResponseCookies and convert them to a
form that can be used for URL rewriting, referred to as NewCookies. The
format used for all the tags except FORM is identical to the QueryCookies
format. For FORM, the FormCookies format is used.

Each cookie in ResponseCookies is added or not added to NewCookies
according to this decision tree:

o Ifthe response URL to be rewritten is absolute, one of the following occurs:

« If the cookie has a domain and it is part of the host name in the
response URL, it is added to NewCookies.

« If the cookie does not have a domain, the host name in the response
URL is compared to the one in the request. If they are the same, the
cookie is added to NewCookies.

Chapter 11 Creating and Managing User Sessions 315

Introducing Sessions

o Ifthe response URL to be rewritten is relative, one of the following occurs:
« If the cookie does not have a domain, it is added to NewCookies.

« If the cookie has a domain that is part of the host name in the request,
the cookie is added to NewCookies.

4. The cookies in NewCookies are always encoded in the response URL. The
cookies in QueryCookies and FormCookies are also encoded in the response
URL under these conditions:

o Ifthe response URL to be rewritten is absolute and the host name in the
response URL matches the host in the request.

o Ifthe response URL to be rewritten is relative.

The Location Header

Sometimes a request may be redirected to a different URL by sending back the
HTTP header Locat i on in the response. The URL associated with this header is
also rewritten. The technique used to encode the URL is the same as the one used in
response body processing. However, this rewriting is done as part of response
header processing. By the time the Locat i on header is encountered, all the valid
cookies have been collected in ResponseCookies. If there is a query string in the
URL, it is extracted and saved. The cookies in QueryCookies are added first, if
necessary. Then the cookies selected from ResponseCookies are appended. Finally,
the original query string is appended.

Order of the Cookies
All encoded cookies precede the query string.

The order in which the cookies are encoded in the response URL is dependent on
the order in which they arrive as part of the response. Any new cookie in a
subsequent request is appended to the cookies list. However, if a cookie is
redefined in a subsequent response, it is deleted from its position and added to the
end of the cookies list.

For example, suppose the response for a request comes with these cookies:

Set - Cooki e cl=vl
Set - Cooki e c2=v2
Set - Cooki e ¢3=v3

The cookies are encoded as follows:
cl=vl1&anp; c2=v2&anp; c3=v3

This order is used for all subsequent responses. All new cookies are appended.

316 iPlanet ™ Application Server Developer's Guide * November 2001

How to Use Sessions

However, suppose c2 is redefined in a subsequent request as follows:
Set - Cooki e c2=v22
In this case, the format is changed as follows:

cl=v1&anp; c3=v3&anp; c2=v22

Sessions and Security

The iPlanet Application Server security model is based on an authenticated user
session. Once a session has been created the application user is authenticated (if
used) and logged in to the session. Each interaction step from the servlet that
receives an EJB request, generates content to a JSP to format the output and is
aware the user is properly authenticated.

Additionally, you can specify that a session cookie is only passed on a secured
connection (that is, HTTPS), so the session can only remain active on a secure
channel.

For more information about security, see Chapter 12, “Writing Secure
Applications.”

How to Use Sessions

To use a session, first create a session using the Ht t pSer vl et Request method
get Sessi on() . Once the session is established, examine and set its properties
using the provided methods. If desired, set the session to time out after being
inactive for a defined time period or invalidate it manually. You can also bind
objects to the session which store them for use by other components.

Creating or Accessing a Session

To create a new session or to gain access to an existing session, use the
Ht t pSer vl et Request method get Sessi on(), as shown in the following example:

Ht t pSessi on mySessi on = request. get Session();

Chapter 11 Creating and Managing User Sessions 317

How to Use Sessions

get Sessi on() returns the valid session object associated with the request,
identified in the session cookie which is encapsulated in the request object. Calling
the method with no arguments, creates a session if one does not already exist
which is associated with the request. Additionally, calling the method with a
Boolean argument creates a session only if the argument is t r ue.

The following example shows the doPost () method from a servlet which only
performs the servlet’s main functions, if the session is present. Note that, the f al se
parameter to get Sessi on() prevents the servlet from creating a new session if one
does not already exist:

public void doPost (HttpServletRequest req,
Ht t pSer vl et Response res)
throws Servl et Exception, | CException

{
if (HtpSession session = req. get Session(fal se))
{
/1 session retrieved, continue with servlet operations
}
el se
/1 no session, return an error page
}
}
NOTE The get Sessi on() method should be called before anything is

written to the response stream. Otherwise the Set Cooki e string is
placed in the HTTP response body instead of the HTTP header.

For more information about get Sessi on(), see the Java Servlet Specification v2.2.

Examining Session Properties

Once a session ID has been established, use the methods in the Ht t pSessi on
interface to examine session properties, and methods in the Ht t pSer vl et Request
interface to examine request properties that relate to the session.

Table 11-2 shows the methods to examine session properties.

318 iPlanet ™ Application Server Developer's Guide * November 2001

How to Use Sessions

Table 11-2 Htt pSessi on Methods

Ht t pSessi on method

Description

get Creati onTi ne()

get1d()

get Last AccessedTi ne()

i sNew()

Returns the session time in milliseconds since January 1, 1970, 00:00:00
GMT.

Returns the assigned session identifier. An HTTP session’s identifier is a
unique string which is created and maintained by the server.

Returns the last time the client sent a request carrying the assigned session
identifier (or - 1 if its a new session) in milliseconds since January 1, 1970,
00:00:00 GMT.

Returns a Boolean value indicating if the session is new. Its a new session, if
the server has created it and the client has not sent a request to it. This
means, the client has not acknowledged or joined the session and may not
return the correct session identification information when making its next
request.

For example:

String mySessionl D = nySession.getld();
if (nmySession.isNewm)) {
| og. println(currentDate);
log.println("client has not yet joined session " + nySessionlD);

}

Table 11-3 shows the methods to inspect request object properties that relate to the

session:

Table 11-3 Htt pSer vl et Request Methods

Ht t pSer vl et Request Methods Description

get Renot eUser ()

get Request edSessi onl d()

Gets the requesting user name (HTTP authentication can
provide the information). Returns null if the request has no
user name information.

Returns the session ID specified with the request. This may
differ from the session ID in the current session if the session
ID given by the client is invalid and a new session was
created. Returns null if the request does not have a session
associated with it.

i sSRequest edSessi onl dVal i d() Checks if the request is associated to a currently valid

session. If the session requested is not valid, it is not
returned through the get Sessi on() method.

Chapter 11 Creating and Managing User Sessions 319

How to Use Sessions

Table 11-3 Htt pSer vl et Request Methods (Continued)

Ht t pSer vl et Request Methods Description

i sRequest edSessi onl dFr omCooki e() Returns true if the request’s session ID provided by the

client is a cookie, or false otherwise.

i sRequest edSessi onl dFr omUJRL() Returns true if the request’s session ID provided by the

client is a part of a URL, or false otherwise.

For example:

if (request.isRequestedSessionldVvalid()) {
if (request.isRequestedSessionldFronCookie()) {
// this session is maintained in a session cookie
}
/1 any other tasks that require a valid session
} else {
/1 log an application error

}

Binding Data to a Session

You can bind objects to sessions in order to make them available across multiple

user interactions. The following Ht t pSessi on methods provide support for
binding objects to the session object:

Table 11-4 Htt pSessi on Methods

Ht t pSessi on Methods Description

get Val ue() Returns the object bound to a given name in the session or null if there is no such
binding.

get Val ueNanes() Returns an array of names of all values bound to the session.

put Val ue() Binds the specified object into the session with the given name. Any existing

removeVal ue()

binding with the same name is overwritten. For an object bound into the session
to be distributed it must implement the seri al i zabl e interface. Note that the

iPlanet Application Server RowSet s and JDBC Resul t Set s are not
seri al i zabl e and cannot be distributed.

Unbinds an object in the session with the given name. If there is no object bound

to the given name this method does nothing.

320 iPlanet ™ Application Server Developer's Guide * November 2001

How to Use Sessions

Binding Notification with HttpSessionBindingListener

Some objects require you to know when they are placed in or removed from, a
session. To obtain this information, implement the Ht t pSessi onBi ndi nglLi st ener
interface in those objects. When your application stores or removes data with the
session, the servlet engine checks whether the object being bound or unbound
implements Ht t pSessi onBi ndi ngLi st ener . If it does, the iPlanet Application
Server notifies the object under consideration, through the

Ht t pSessi onBi ndi ngLi st ener interface, that it is being bound into or unbound
from the session.

Invalidating a Session

Specify the session to invalidate itself automatically after being inactive for a
defined time period. Alternatively, invalidate the session manually with the
Ht t pSessi on method i nval i dat e().

TIP The session APl does not provide an explicit session logout API, so
any logout implementation must call the sessi on. i nval i dat e()
API.

Invalidating a Session Manually
To invalidate a session manually, simply call the following method:

session.invalidate();

All objects bound to the session are removed.

Setting a Session Timeout

Session timeout is set using the i as- speci f i ¢ Deployment Descriptor. For more
information, see the sessi on-i nf o element in Chapter 10, “Packaging for
Deployment.”

Controlling the Session Type

iPlanet Application Server provides for types of sessions, | i t e and di st ri but ed:

e Thelite session is a fast, single process implementation of Ht t pSessi on. It
should be used in all situations where speed is of utmost importance, and
where no distribution of session data is required. This is the simplest form of
Ht t pSessi on.

Chapter 11 Creating and Managing User Sessions 321

How to Use Sessions

e Thedi stribut ed session is a robust and scalable implementation of the
Ht t pSessi on API. It uses the Application Server’s distribution facilities, thus
enabling failover and load-balancing capabilities. It is somewhat slower than
the I i t e session because of the overhead of network backup.

To control the session type, set the appropriate elements in the iPlanet Application
Server specific XML file. For more information, see the sessi on-i nf o element in
Chapter 10, “Packaging for Deployment.”

Sharing Sessions with AppLogics

Servlet programmers can use the iPlanet Application Server interface,

Ht t pSessi on2 to share distributable sessions between AppLogics and servlets.
Sharing sessions is useful when you want to migrate an application from NAS 2.x
to iPlanet Application Server 6.0. Ht t pSessi on2 interface adds security and direct
distributable sessions manipulation.

Additionally, if you establish a session in an AppLogic using | ogi nSessi on() and
you want to access the session from a servlet, you must call the

set Sessi onVi si bi | i ty() method in the AppLogi ¢ class to instruct the session
cookie to transmit to servlets as well as AppLogics. Additionally, this must be
completed before calling saveSessi on().

For example, in an AppLogic:

domai n=". nydonai n. cont';

path="/"; //make entire domain visible

i sSecur e=true;

if (setSessionVisibility(donain, path, isSecure) == GXE. SUCCESS)
{ Il session is now visible to entire donmain }

For more information about set Sessi onVi si bi | i ty(), refer to the AppLogi ¢ class
in the Foundation Class Reference (Java). For more information about sharing sessions
between AppLogics and servlets, see the Migration Guide.

322 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 12

Writing Secure Applications

This chapter describes how to write a secure J2EE application for the iPlanet
Application Server with components that perform user authentication, and access
authorization to servlets and EJB business logic.

This chapter contains the following sections:

= iPlanet Application Server Security Goals
= iPlanet Application Server Specific Security Features
= iPlanet Application Server Security Model
= Security Responsibilities Overview

= Common Security Terminology

« Container Security

= Programmatic Security

= Declarative Security

= User Authentication by Servlets

= User Authorization by Servlets

= User Authorization by EJBs

= User Authentication for Single Sign-on

= User Authentication for RMI/Z1IOP Clients
« Guide to Security Information

= Web Server to Application Server Component Security

323

iPlanet Application Server Security Goals

IPlanet Application Server Security Goals

In an enterprise computing environment there are many security risks. The iPlanet
Application Server’s goal is to provide highly secure, interoperable, and
distributed component computing based on the J2EE security model. The security
goals for the iPlanet Application Server include:

= Full compliance with the J2EE v1.2 security model (for more information, see
the J2EE specification, v1.2 Chapter 3 Security)

< Full compliance with the EJB v1.1 security model (for more information, see
the Enterprise JavaBean specification v1.1 Chapter 15 Security Management).
This includes EJB role-based authorization.

= Full compliance with the Java Servlet v2.2 security model (for more
information, see the Java Servlet specification, v2.2 Chapter 11 Security). This
includes servlet role-based authorization.

= Support for single signon across all iPlanet Application Server applications.
= Security support for RMI/ZIIOP Clients.

= Use of LDAP as the backend for security and allows user administration
during runtime.

= Implements declarative iPlanet Application Server specific XML-based role
mapping information.

= The iPlanet Application Server specific XML files with declarative security
created by the iPlanet Application Server Deployment Tool.

= Backwards compatibility with AppLogic security APIs.

IPlanet Application Server Specific Security
Features

The iPlanet Application Server supports the J2EE v1.2 security model, as well as
the following features which are specific to the iPlanet Application Server:

= Single signon across all iPlanet Application Server applications.
= Security for RMI/Z1IOP Clients.

= iPlanet Application Server specific XML-based role mapping information.

324 iPlanet ™ Application Server Developer's Guide * November 2001

iPlanet Application Server Security Model

= The GUI-based Deployment Tool is used to build XML files containing the
security information.

= User administration LDAP during runtime.

< LDAP is used as the backend for security.

IPlanet Application Server Security Model

Secure applications require a client to be authenticated as a valid application user
and have authorization to access the EJB business logic. The iPlanet Application
Server supports security for both web and RMI/IIOP clients.

Web clients use a browser and a web server to communicate using HTTP with
servlets running on the iPlanet Application Server. These clients require
communication with servlets and JSPs to extend the web server functionality.

Applications with secure web and EJB containers may enforce the following
security processes for web clients:

« authenticate the caller
= authorize the caller for access to the URL
= authorize the caller for access to the EJB business methods

RMI/IIOP clients communicate over a bridge using RMIZ110P to directly access
EJBs running on the iPlanet Application Server. RMI/Z11OP clients directly invokes
bean methods.

Applications with secure EJB containers may enforce the following security
processes for RMI/1IOP clients:

« authorize the caller for access to the EJB business methods

The following diagram shows the iPlanet Application Server security model.

Chapter 12 Writing Secure Applications 325

iPlanet Application Server Security Model

326

. HP

Web Client R .
(Browser) | Web Server < Servlet/
Jsp »| LDAP
rRMI/TIOP
Client ¢ — — — — — — — — — — — > EJB
iPlanet Application Server
I |

Web Client and URL Authorizations

Secure web containers may have authentication and authorization properties. The
containers support three types of authentication — basic, certificate and form-based.
When a web client requests the main application URL, the web server is
responsible for collecting the user authentication information (for example.
username and password) from the web client and passing it to the iPlanet
Application Server.

The iPlanet Application Server consults the security policies (derived from the
Deployment Descriptor (DD)) associated with the web resource to determine the
security roles used to permit resource access. The web container tests the user
credentials against each role to determine if it can map the user to the role. The
LDAP server, an enterprise-wide directory service for managing information about
users, groups and roles, obtains the user credentials.

Web Client Invocation of Enterprise Bean
Methods

Once the web client has been authenticated and authorized by the web container
and the JSP performs a remote method call to the EJB, the user’s credentials
(gathered during the authentication process) are used to establish a secure
association between the JSP and the bean. A secure EJB container has a DD with

iPlanet ™ Application Server Developer's Guide * November 2001

Security Responsibilities Overview

authorization properties which are used to enforce access control on the bean
method. The EJB container uses role information received from the LDAP server to
decide whether it can map the caller to the role and allow access to the bean
method.

RMI/IIOP Client Invocation of Enterprise Bean
Methods

For RMI/ZI1IOP clients, a secure EJB container consults it’s security policies to
determine if the caller has the authority to access the bean method. This process is
the same for both web and RMI/1IOP clients.

Security Responsibilities Overview

A J2EE platform’s primary goal is to isolate the developer from the security
mechanism details and facilitate a secure application deployment in diverse
environments. This goal is addressed by providing mechanisms for the application
security specification requirements declaratively and outside the application.

Application Developer

The application developer supplies the programmatic security including:
= Specifying security levels.

= Verifies the security permission levels when secure operations are being
accessed.

Application Assembler

The application assembler or application component provider must identify all
security dependencies embedded in a component including:

= All role names used by the components that call i sCal | er | nRol e or
i sUser | nRol e.

= References to all external resources accessed by the components.

= References to all intercomponent calls made by the component.

Chapter 12 Writing Secure Applications 327

Common Security Terminology

< Recommended that the assembler identify all method calls of each
component’s feature parameters and return values are to be protected for
confidentiality and/or integrity. The Deployment Descriptor (DD) is used for
this purpose.

Application Deployer

The iPlanet Application Server Deployment Tool is used to map the views
provided by the assembler to the policies and mechanisms specific to the
operational environment. The security mechanisms configured by the application
deployer are implemented by the containers on behalf of the components hosted in
the containers.

The application deployer takes all component security views provided by the
assembler and uses them to secure a particular enterprise environment in the
application, including:

= Assigning user groups to security levels.

= Refines the privileges required to access component methods and defines the
correspondence between the security attributes presented by the callers and
the container privileges.

Common Security Terminology

The most common security processes are authentication, authorization, and roll
mapping, the following sections define their terminology.

Authentication

Authentication verifies the user. For example, the user may enter a username and
password in a web browser and if those credentials match the permanent profile
stored in the LDAP server then the user is authenticated. The user is associated
with a security identity for the remainder of the session.

328 iPlanet ™ Application Server Developer's Guide * November 2001

Container Security

Authorization

Authorization permits a user to perform the desired operations, after being
authenticated. For example, a human resources application may authorize
managers to view personal employee information for all employees, but allow
employees to only view their own personal information.

Role Mapping

A client may be defined in terms of a security role. For example, a company might
use its employee database to generate both a company wide phone book
application and to generate payroll information. Obviously, while all employees
might have access to phone numbers and email addresses, only some employees
would have access to the salary information. Employees with the right to view or
change salaries might be defined as having a special security role.

A role is different from a user group in that a role defines a function in an
application, while a group is a set of users who are related in some way. For
example, members of the groups astronauts, scientists, and (occasionally) politicians
all fit into the role of SpaceShuttlePassenger.

The EJB security model describes roles (as distinguished from user groups) as
being described by an application developer and independent of any particular
domain. Groups are specific to a deployment domain. The deployer’s role is to map
roles into one or more groups.

In the iPlanet Application Server, roles correspond to user groups configured in the
directory server. LDAP groups can contain both users and other groups.

Container Security

The component containers are responsible for providing J2EE application security.
There are two security forms provided by the container:

= Programmatic security

= Declarative security

Chapter 12 Writing Secure Applications 329

Container Security

Programmatic Security

Programmatic security is when an EJB or servlet uses method calls to the security
API, as specified by the J2EE security model, to make business logic decisions
based on the caller or remote user’s security role. Programmatic security should
only be used when declarative security alone is insufficient to meet the
application’s security model.

The J2EE specification, v1.2 defines programmatic security as consisting of two
methods of the EJB EJBCont ext interface and two methods of the servlet

Ht t pSer vl et Request interface. The iPlanet Application Server supports these
interfaces as specified in the specification. For more information on programmatic
security, see section 3.3.6 Programmatic Security, in the J2EE Specification,v1.2,
and “Programmatic Login,” on page 332.

Declarative Security

Declarative security is when the security mechanism for an application is declared
and handled externally to the application. DDs are used by the iPlanet Application
Server to describe the J2EE application’s security structure, including security
roles, access control, and authentication requirements.

The DDs for security aware applications, web-app containers, and EJB containers,
have XML tags as security elements to express the application’s security
characteristics. Security characteristics include authentication and authorization.

The iPlanet Application Server supports the DTDs specified by J2EE v1.2 and has
additional security elements included in the DDs.

Declarative security is the application deployer’s responsibility. The XML DDs are
generated by the iPlanet Application Server Deployment Tool. For more
information, see the iPlanet Application Server Deployment Tool and the
Administrator’s Guide.

Application Level Security

The application XML DD contains authorization descriptors for all user roles when
accessing the application’s servlets and EJBs. On the application level, all roles
used by any application container must be listed in this file. These roles are
described by the r ol e- name element in the application XML DD file. The role
names are scoped to the EJB XML DDs (ej b-j ar files) and to the servlet XML DDs
(web- war files).

330 iPlanet ™ Application Server Developer's Guide * November 2001

User Authentication by Servlets

Servlet Level Security

A secure web container authenticates users and authorizes access to the servlet.
Once the user has been authenticated and authorized the servlet passes on user
credentials to an EJB to establish a secure association with the bean.

EJB Level Security

The EJB container is responsible for authorizing access to a bean method by using
the security policy laid out in the EJB XML DD.

User Authentication by Servlets

The three web-based login mechanisms required by the J2EE Specification, v1.2 are
supported by the iPlanet Application Server. These three mechanisms include:

= HTTP Basic Authentication

= Secure Socket Layer Mutual Authentication
< Form-Based Login

= Programmatic Login

The web application DD | ogi n- conf i g element describes the authentication
method used, the application’s realm name used by the HTTP basic authentication,
and the form login mechanism’s attributes.

The | ogi n- confi g element syntax is as follows:

<! ELEMENT | ogi n-config
(aut h- met hod?, real m nane?, from | ogi n-confi g?) >

For more information regarding web application DD elements, see Chapter 13,
Deployment Descriptor of the Java Servlet Specification, v2.2.

HTTP Basic Authentication

HTTP basic authentication (RFC2068) is supported by the iPlanet Application
Server. The HTTP basic authentication protocol indicates the HTTP realm by which
access is being negotiated. Because passwords are sent with base64 encoding, this
authentication type is not very secure.

Chapter 12 Writing Secure Applications 331

User Authentication by Servlets

332

Secure Socket Layer Mutual Authentication

Secure Socket Layer (SSL) 3.0 and the means to perform mutual (client/server)
certificate-based authentication is a J2EE Specification, v1.2 requirement. This
security mechanism provides user authentication using HTTPS (HTTP over SSL).

The iPlanet Application Server SSL mutual authentication mechanism (also known
as HTTPS authentication) supports the following cipher suites:

SSL_RSA EXPORT_W TH_RC4_40_MD5
SSL_RSA EXPORT_W TH_RC2_CBC 40 _MD5
SSL_RSA _EXPORT_W TH_DES40_CBC_SHA
SSL_DH_DSS_EXPORT W TH_DES40_CBC_SHA
SSL_DH_RSA_EXPORT_W TH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT W TH_DES40_CBC_SHA
SSL_DHE_RSA_EXPORT_W TH_DES40_CBC_SHA

Form-Based Login

The login screen’s look and feel cannot be controlled with the HTTP browser's built
in mechanisms. J2EE introduces the ability to package a standard HTML or
Servlet/JSP based form for logging in. The login form is associated with a web
protection domain (an HTTP realm) and is used to authenticate previously
unauthenticated users.

In order for the authentication to proceed appropriately, the login form action must
always bej _security_check.

The following is an HTML sample showing how to program the form in an HTML
page:

<f or m net hod="POST" action="j _security_check">
<i nput type="text" nane="j_usernane">

<i nput type="password" nanme="j_password">
</forne

Programmatic Login

Programmatic login enables a user to log in programmatically in both the web
container and the EJB container. Programmatic login is useful for these reasons:

= It provides user authentication flexibility

= |t provides an API for logout

iPlanet ™ Application Server Developer's Guide * November 2001

User Authentication by Servlets

= Itissimple and extensible

= It requires fewer method calls than other types of Authentication, for example
form-based, which uses an intermediate servlet

= It provides a common interface across the web and EJB containers

Form-Based vs. Programmatic Login

Suppose a web resource is deployed with security constraints using form-based
authentication. To access any of these resources, the web connector must call

For maAut hSer vl et , which checks if the user is already logged in. If the user is not,
the login page is displayed to enable authentication.

For programmatic login, web resources are deployed without security constraints.
When a user accesses a web resource, For mAut hSer vl et is not called. Instead, the
| Programmat i cLogi n. | ogi n method is called, which authenticates the user
explicitly. If this method fails, an Aut hent i cat i onExcept i on is thrown, otherwise,
the user is logged in.

The IProgrammaticLogin Interface

Thecomipl anet.ias. security.|ProgrammaticLogi n interface enables a user
in web or EJB container to perform login programmatically. This interface provides
the following methods:

e login

« | ogout

e islLoggedln

* | oggedUser Name

The interface is implemented by two java classes:
= The WebProgrammaticLogin Class

= The EjbProgrammaticLogin Class

Although you can create your own class that implements | Pr ogr anmat i cLogi n,
this is not recommended. The provided classes save you from having to deal with
the login API directly.

The WebProgrammaticLogin Class

Thecomipl anet.ias. security. WbProgrammati cLogi n class initializes the
data members for programmatic login using the web container. You can use this
class as is or create a subclass. Its signature is as follows:

Chapter 12 Writing Secure Applications 333

User Authentication by Servlets

public class WbProgranmati cLogi n extends java.l ang. Qbj ect
i mpl ements | Progranmati cLogi n

Its one constructor is as follows:

publ i c WebProgrammati cLogi n(
javax. servl et. Servl et Cont ext p_Servl et Cont ext,
javax. servlet. http. HtpServl et Request p_HttpServl et Request,
javax. servlet. http. HtpServl et Response p_Htt pServl et Response)
throws Nul | Val ueExcepti on

Acomiplanet.ias.security.NullVal ueExcepti on is thrown if any of the
required WebPr ogr anmat i cLogi n input parameters are null. Its signature is as
follows:

public class Null Val ueExcepti on extends java.l ang. Excepti on
Its one constructor is as follows:

public Null Val ueException(java.lang. String MsQ)

WebPr ogr ammat i cLogi n methods are described in the following sections.

The login Method

The | ogi n method allows a user to log in programmatically. Its signature is as
follows:

public void login(java.lang. String UserNanme, java.lang.String
Password) throws ProgAuthenticationException, NullVal ueException

The | ogi n method:

= makes sure the user name and password are not null

= checks if another user is logged in

« checks if Ser vl et Cont ext, Ht t pRequest, or Ht t pResponse are null
= performs the authentication

Acomiplanet.ias.security.NullVal ueExcepti on is thrown if any of the
required | ogi n input parameters are null.

Acomiplanet.ias.security.ProgAuthenticati onExcepti on isthrown if the
authentication is unsuccessful. Its signature is as follows:

public class ProgAuthenticati onException extends
com net scape. server.servl et. servl etrunner. Aut henti cati onExcepti on

Its one constructor is as follows:

publ i ¢ ProgAut henticati onException(java.lang. String Msg)

334 iPlanet ™ Application Server Developer's Guide + November 2001

User Authentication by Servlets

The logout Method
The | ogout method allows a user to log out. Its signature is as follows:

public void | ogout(bool ean fl ag)
What | ogout does depends on the setting of f | ag:
< |Ifflagisfal se, removes the principal attribute from the session (soft logout)

= Ifflagistrue, invalidates the session (deep logout)

The isLoggedin Method

The i sLoggedl n method returnst r ue if a user is already logged in. Its signature is
as follows:

publ i ¢ bool ean isLoggedl n()

The loggedUserName Method

Thel oggedUser Nane method returns the principal name of the logged user, or null
if no user is logged in. Its signature is as follows:

public java.lang. String | oggedUser Nane()

The EjbProgrammaticLogin Class

Thecomipl anet.ias. security. E bProgrammati cLogi n class initializes the
data members for programmatic login using the EJB container. You can use this
class as is or create a subclass. Its signature is as follows:

public class Ej bProgranmati cLogi h extends java.l ang. Qbj ect
i mpl ements | Progranmati cLogi n

Its one constructor is as follows:
public Ej bProgrammati cLogin() throws Nul | Val ueExcepti on

Acomiplanet.ias.security.NullVal ueExcepti on isthrown if the
Securi t yCont ext member variable is null when creation of an
Ej bProgrammat i cLogi n instance is attempted. Its signature is as follows;

public class Null Val ueExcepti on extends java.l ang. Excepti on
Its one constructor is as follows:
public Null Val ueException(java.lang. String MsQ)

Ej bProgrammat i cLogi n methods are described in the following sections.

Chapter 12 Writing Secure Applications 335

User Authentication by Servlets

336

The login Method

The | ogi n method allows a user to log in programmatically. Its signature is as
follows:

public void login(java.lang. String userNanme, java.lang.String
password) throws ProgAuthenticati onException, NullVal ueException

The | ogi n method:

= makes sure the user name and password are not null

checks if another user is logged in

checks if Securi t yCont ext is null
= performs the authentication

Acomiplanet.ias.security.NullVal ueExcepti on is thrown if any of the
required | ogi n input parameters are null.

Acomiplanet.ias.security.ProgAuthenticati onExcepti on isthrown if the
authentication is unsuccessful. Its signature is as follows:

public class ProgAuthenticati onException extends
com net scape. server. servl et. servl etrunner. Aut henti cati onExcepti on

Its one constructor is as follows:

publi ¢ ProgAut henticati onException(java.lang. String Msg)
The logout Method

The | ogout method allows a user to log out. Its signature is as follows:
public void | ogout(bool ean fl ag)

For the EJB container, this method removes the principal name of the logged user
from the Securi t yCont ext regardless of the f | ag value.

The isLoggedin Method

The i sLoggedl n method returnst r ue if a user is already logged in. Its signature is
as follows:

publ i ¢ bool ean isLoggedl n()

The loggedUserName Method

The | oggedUser Nane method returns the principal name of the logged user, or null
if no user is logged in. Its signature is as follows:

public java.lang. String | oggedUser Nane()

iPlanet ™ Application Server Developer's Guide * November 2001

User Authorization by Servlets

User Authorization by Servlets

Servlets can be configured to only permit access to user’s with the appropriate
authorization level. This is done by using the iPlanet Application Server
Deployment Tool to generate DDs for the application . ear and servlet . war files.

Defining Roles

All role names for the entire application are declared in the application XML DD.
The security-rol e androl e-name elements in the application XML DD declare
all role names permitted by the application. These security roles are scoped to the
J2EE web application DD.

The securi ty-rol e element is a sub element of the appl i cati on element in the
application XML DD. The syntax for the securi ty-rol e element is as follows:

<l--

The security-role el enent defines a security role which is global to
the application. There are two sub elenents; the first is a
description of the security role, and the second is the nane of the
security role.

<! ELEMENT security-role (description?, role-nane)>
The rol e-nane el enent contains the nane of a role.
<! ELEMENT rol e- nanme (#PCDATA) >

Referencing Security Roles

For each servlet, the web application DD declares all roles authorized to have
access. Thesecurity-rol-ref androl e-1ink elements in the web-app XML DD
links the authorized roles to the application level role name.

The application assembler is responsible for linking all security role references
declared in the security-rol e-ref elements to the security roles defined in the
security-rol e elements.

The application assembler links each security role reference to a security role using
therol e-1i nk element. The r ol e- 1 i nk value element must be one of the security
role names defined in asecurity-rol e element.

The following DD example shows how to link the security role reference to the
security role.

Chapter 12 Writing Secure Applications 337

User Authorization by Servlets

338

<! ELEMENT security-role-ref (description?, role-nane, role-link)>
<! ELEMENT rol e-1ink (#PCDATA) >

Defining Method Permissions

On the servlet level, define method permissions using the aut h- const r ai nt
element of the web-app XML DD.

The aut h- const r ai nt element on the resource collection must be used to indicate
the user roles permitted to the resource collection. The role used here must appear
inasecurity-rol e-ref element.

<! ELEMENT aut h-constrai nt (description?, role-nanme*)>

Sample Web Application DD

The security section of a sample web application DD might look as follows:

<web- app>

<di spl ay- name>A Secure Application</displ ay- nane>
<security-rol e>

<r ol e- name>nmanager </ r ol e- nane>
</security-rol e>

<servl et >
<servl et - nane>cat al og</ servl et - nane>
<servl et-class>com nycor p. Cat al ogServl et </ servl et -cl ass>

<i nit-paranp
<par am nanme>cat al og</ par am name>
<par am val ue>Spri ng</ par am val ue>
</init-paranp

<security-role-ref>
<rol e- nane>MGR</rol e-nane> <!-- role nane used in code -->
<rol e-li nk>manager </rol e-1i nk>
</security-role-ref>

</servlet>

<servl et - mappi ng>
<servl et - nane>cat al og</ servl et - nane>
<url -pattern>/catal og/ *</url -pattern>
</ servl et - mappi ng>

<web-resource-col |l ecti on>
<web- r esour ce- nane>Sal esl nf o</ web- r esour ce- nane>

iPlanet ™ Application Server Developer's Guide * November 2001

User Authorization by EJBs

<url pattern>/sal esi nfo/ *</url pattern>
<ht t p- met hod>GET</ ht t p- met hod>
<ht t p- net hod>PCOST</ ht t p- net hod>

<user - dat a- constrai nt >
<transport - guar ant ee>SECURE</ t r anspor t - guar ant ee>
</ user-dat a-constrai nt>

<aut h-constrai nt >
<r ol e- nanme>nanager </ r ol e- nane>
</ aut h-constrai nt >
</ web-resource-col | ecti on>
</ web- app>

User Authorization by EJBs

EJBs can be configured to only permit access to users with the appropriate
authorization level. This is done by using the iPlanet Application Server
Deployment Tool to generate the DD for the application . ear and EJB . j ar files.

EJBs can use programmatic login just as servlets do. For more information, see
“Programmatic Login,” on page 332.

Defining Roles

The deployer assigns the user groups and user accounts defined in the operational
environment, to security roles defined by the application assembler.

The application assembler defines one or more roles in the DD. The application
assembler then assigns the enterprise bean's home and remote interfaces method
groups to the security roles to define the application’s security view.

The application assembler is responsible for defining the following:
= Each security role using a securi ty-rol e element
= Uses the r ol e- name element to define the security role name

= Optionally, can use the descri pti on element to provide a security role
description

Chapter 12 Writing Secure Applications 339

User Authorization by EJBs

The security roles defined by the securi ty-rol e elements are scoped to the

ej b-j ar file level and apply to all enterprise beans in the ej b-j ar files. (The J2EE
specification does not say a way to define global roles, that is those roles global to
the container).

The following is an example of a security role definition in a DD:

<assenbl y-descri pt or>
<security-rol e>
<descri pti on>
This role includes the enpl oyees of the enterprise who
are allowed to access the enpl oyee self service
application. This role is allowed to access only
her/his information
</ desci pti on>
<r ol e- name>enpl oyee<r ol e- nane>
</security-rol e>
<security-rol e>
<descri ption>
This rol e should be assigned to the personnel
aut hori zed to performadm nistrative functions
for the enpl oyee self service application. This
rol e does not have direct access to
sensitive enployee and payroll information
</ desci pti on>
<r ol e- name>adm n<r ol e- nane>
<security-rol e>
<assenbl y-descri ptor>

Defining Method Permissions

The application assembler defines the method permissions relation in the DD using
the method permission elements as follows:

Each net hod- per i ssi on element includes a list of one or more security roles and
a list of one or more methods. All listed security roles are allowed to invoke all
listed methods. Each security role in the list is identified by the r ol e- nane element,
and each method (or a set of methods, as described below) is identified by the
method element. An optional description can be associated with a

met hod- per nmi ssi on element using the description element.

The method permissions relation is defined as the union of all method permissions
defined in the individual method permission elements.

A security role or a method may appear in multiple met hod- per ni ssi on elements.

340 iPlanet ™ Application Server Developer's Guide * November 2001

User Authorization by EJBs

The following example illustrates how security roles are assigned method
permissions in the DD.

<met hod- per ni ssi on>
<r ol e- name>enpl oyee</rol e- nane>
<met hod>
<ej b- name>Enpl oyeeSer vi ce</ ej b- nane>
<met hod- nane>* </ net hod- nane>
</ met hod>
</ met hod- per m ssi on>

<met hod- per ni ssi on>
<r ol e- nanme>enpl oyee</rol e- nane>
<met hod>
<ej b- name>Aar dvar kPayr ol | </ ej b- nanme>
<met hod- name>f i ndByPri mar yKey</ net hod- nane>
</ met hod>
<met hod>
<ej b- name>Aar dvar kPayr ol | </ ej b- nane>
<met hod- nane>get Enpl oyeel nf o</ et hod- nane>
</ met hod>
<met hod>
<ej b- name>Aar dvar kPayr ol | </ ej b- nanme>
<nmet hod- nane>updat eEnpl oyeel nf o</ net hod- nane>
</ met hod
</ met hod- per m ssi on>

There is no interaction here. The Deployment Tool converts these into security
elements.

Security Role References

The bean provider is responsible for declaring in the securi ty-rol -ref elements
of the DD all security role names used in the enterprise bean.

The application assembler is responsible for linking all security role references
declared inthe security-rol e-ref elements to the security roles defined in the
security-rol e elements. The application assembler links each security role
reference to a security role using the r ol e- 1 i nk element. Therol e- 1 i nk element
value must be one of the security role names defined in asecuri ty-rol e element.

The following DD example shows how to link the Sudety role reference named
payrol | to the security role named payr ol | - depart ment .

Chapter 12 Writing Secure Applications 341

User Authentication for Single Sign-on

<ent erpri se- beans>
<entity>
<ej b- name>Aar dvar kPayr ol | </ ej b- nane>
<ej b-cl ass>com aar dvar k. payrol | . Payrol | Bean</ ej b- cl ass>

<security-rol e-ref>
<descri pti on>

This role should be assigned to the payroll department’s employees. Members of
this role have access to anyone's payroll record. The role has been linked to the
payr ol | - depart nent role.

</ descri ption>
</security-role-ref>

</entity>

</ enterprise-bean>

User Authentication for Single Sign-on

342

The single sign-on across applications on the iPlanet Application Server is
supported by the iPlanet Application Server servlets and JSPs. This feature allows
multiple applications that require the same user sign-on information, to share this
information between them, rather than having the user sign-on separately for each
application. These applications are created to authenticate the user one time and
when needed this authentication information is propagated to all other involved
applications.

An example application using the single sign-on scenario could be a consolidated
airline booking service that searches all airlines and provides links to different
airline web sites. Once the user signs on to the consolidated booking service the
user information can be used by each individual airline site without requiring
another sign on.

How to Configure for Single Sign-on

The iPlanet Application Server specific DD for the web container has an element,
called sessi on-i nf o, that has fields to specify the authentication for the servlets
and JSPs within the container. The DD is created by the Deployment Tool. This
section concentrates on how the sessi on-i nf o element’s security fields in the DD

iPlanet ™ Application Server Developer's Guide * November 2001

User Authentication for Single Sign-on

work together to perform the single sign-on authentication. For details on how to
create an the iPlanet Application Server specific web container DD, see the iPlanet
Application Server Deployment Tool and the Administrator’s Guide. For a complete
description of all the sessi on- i nf o fields, refer to Chapter 10, “Packaging for
Deployment.”

Table 12-1 shows the sessi on- i nf o element fields used in the authentication
process:

Table 12-1 Security Fields for Single Sign-on

Field Description

domai n This field specifies the domain to send back a cookie from the browser. By
default (if the user does not specify a domain), the URL domain that sets the
cookie is assumed to be the domain. The user can set the domain to any
domain that he wishes the cookie to be sent to. The domain must have at least
two periods, and sometimes may have three (for example. . acne. comor
.acne. co.in).

path This field specifies the session cookie’s path; this is the minimum path the URL
must have for the cookie to be sent back from the browser. For example, setting
the path to / phoeni x sends the cookie back when either of the following
URLs is accessed:

http://ny. Wo. cont phoeni x/ bi rds. ht m
or
http:// nmy. Wo. com phoeni x/ bees. ht m

The path must begin with a “/ ”. If the path is not set, the default path is
assumed to be the URL setting the cookie.

scope This field specifies a grouping name that “associates” applications sharing the
same user session; that is, signing on to an application automatically allows the
user to access the other applications without signing on to them. The grouped
applications should have the same scope field value in their respective iPlanet
Application Server specific web XML DD files.

Single Sign-on Example

Consider two applications hosted on the iPlanet Application Server named

Ai rlineSearchandAirlineBooki ng. Both are part of nyai rl i nes. comdomain
and require users to be authenticated to access resources within these two
applications. Ai r | i neSear ch allows the user to search different airlines available
and Ai rl i neBooki ng allows users to make bookings using the user’s special
preferences, for example, seating, menu, departure times, and so on.

Chapter 12 Writing Secure Applications 343

User Authentication for RMI/IIOP Clients

Thei as-web. xml for both Ai rl i neSear ch and Ai rl i neBooki ng contains the
following:

<sessi on-i nf o>
<pat h>/ i ASApp</ pat h>
<scope>Ai r| i neSi gnon</ scope>
</ sessi on-i nf o>

Now the user first accesses the services provided by the Ai rl i neSear ch
application using the following URL.:

http://ww. nyairlines.com i ASApp/ AirlineService/ showFlights

showFl i ght s could be a servlet that shows all flights at the time the user requested.
This requires the user to log in. Once the user has seen all flights and decides to
book tickets, and accesses:

http://ww. nyairlines.com i ASApp/ Ai rlineService/ bookFlights

This provides the service to book flights based on the user’s preferences, which
could already be available from the previous accesses and from the sign-on
information provided to the previous Ai r | i neSer vi ce application.

Since both applications are within the same domain, the domain field is not set in
this example. But this can be extended to share sign-on information among
multiple domains.

User Authentication for RMI/IIOP Clients

344

Security on a RMI/IIOP client path is integrated into the iPlanet Application Server
security infrastructure. The CXS uses the iPlanet Application Server security
manager to authenticate clients with user information stored in LDAP. Client
credentials are passed from the client, through the bridge to EJBs. A client side
callback initiates client login (with username and password). The object type to be
instantiated to obtain this information is specified through an environment setting
on the client. In case of authentication failure, the client side is setup to retry the
login process. The number of retries is currently hardcoded to three (3).

For more information on elements in the RMI/ZIIOP client DD, see “RMI/I1OP
Client XML DTD,” on page 304.

iPlanet ™ Application Server Developer's Guide * November 2001

Guide to Security Information

Guide to Security Information

Each information type below is shown with a short description, the location where
the information resides, how to create the information, how to access the
information, and where to look for further information.

e User Information

= Security Roles

User Information

User name, password, and so on.

Location:
Directory Server

How to Create:

Create using Mission Console or programmatically using the LDAP SDK. For more
information, see the iPlanet Application Server Deployment Tool Help and the
Administrator’s Guide.

Security Roles

Role that defines an application function, made up of a number of users and/or
groups. LDAP groups function as roles in the iPlanet Application Server.

Location:
Directory Server

How to Create:
Use the iPlanet Application Server Deployment Tool.

How To Access:
Usei sCal | erl nRol e() to test for a user’s role membership.

Chapter 12 Writing Secure Applications 345

Web Server to Application Server Component Security

Web Server to Application Server Component
Security

Beginning with iPlanet Application Server 6.0 SP2, developers can selectively
encrypt the traffic between the web servers and the KXS per component. The
encryption is done using 128 bit keys and RSA Bsafe3.0 library. It is recommended
that developers turn on encryption judiciously for those components
(servlets/JSPs) that require high security, such as credit card information gathering
servlets, login servlets, and so on.

To enable encryption of the traffic between these components, you must enable the
application server itself to support encryption. The steps required are:

1. Set CCSO\\ SECURI TY\\ Enabl eEncr ypt i on=D (for Domestic 128 bit, data type
String).

2. Create an entry or value CCSO\ \ SECURI TY\\ LogEncr ypt i on=1 (data type
i nt eger). If you want to verify the encryption log messages in the KXS logs.

3. Create a key CCS0\ \ EXTENSI ONS\ \ CRYPTEXT\ \ CRYPTSVC\ \ ENG NES\ \ O.
4. Re-start the web server and iPlanet Application Server.
For every component that needs encryption enabled, follow these steps:

1. Register the application using j 2eeappr eg, webappr eg, or i asdepl oy
(recommended).

2. Set<encrypt>true</encrypt>intheias-web.xm file for the component
(servlet/JSP) that you wish to encrypt.

To verify that encryption is enabled and working fine, open the KXS logs and
search for messages similar to

[11/Jan/ 2001 19:58:43:0] info: CRYPT-003: Encrypting 2309 bytes,
keysize = 128 bits

[11/Jan/ 2001 19:58:43:5] info: NSAPICLI-012: plugin reqgstart,
tickect: 1903570535

[11/Jan/ 2001 19:58:43:5] info: NSAPICLI-009: plugin regexit:
Os+.12995s. (198114 0537)

[11/Jan/ 2001 19:58:52:2] info: CRYPT-004: Decrypting 1897 bytes,
keysize = 128 bits

346 iPlanet ™ Application Server Developer's Guide * November 2001

Chapter 13

Taking Advantage of the iPlanet
Application Server Features

This chapter describes how to implement the iPlanet Application Server features in
your application. The iPlanet Application Server provides many additional
features to augment your servlets for use in an iPlanet Application Server
environment. These features are not a part of the official servlet specification,
though some, like the servlet security paradigm described in Chapter 12, “Writing
Secure Applications,” are based on emerging Sun Microsystems standards and
conforms to these future standards.

This chapter contains the following sections:
= Accessing the Servlet Engine
= Caching Servlet Results

= Using a Startup Class

Accessing the Servlet Engine

The servlet engine controls all servlet functions, including instantiation,
destruction, service methods, request and response object management, and input
and output. The servlet engine in the iPlanet Application Server is a special class
called an AppLogi c. AppLogi cs are iPlanet Application Server components that
interact with the core server. In previous iPlanet Application Server releases,
AppLogi cs were part of the application model, though for current and future
releases they are solely available to access the iPlanet Application Server internal
features.

347

Accessing the Servlet Engine

348

Each servlet is scoped in an AppLogi c. You can access an AppLogi ¢ instance
controlling a servlet using the get AppLogi c() method in the iPlanet Application
Server feature interface Ht t pSer vl et Request 2. When you do this, you also gain
access to the server context. These activities are necessary to take advantage of
other iPlanet Application Server features, as described in the following sections.

Accessing the Servlet's AppLogic

To access the controlling AppLogi c, cast the request object as an
Ht t pSer vl et Request 2. This interface provides access to the AppLogi ¢ through the
get AppLogi ¢ method, which returns a handle to the superclass.

The following example servlet header shows how to access an AppLogi ¢ instance:

i mport java.io.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i nport com ki vasoft. appl ogic. *;

i mport com ki vasoft.types.*;

i mport com net scape. server. servl et. extension.*;

public class AppLogi cTest extends H tpServlet {

public void service(HttpServl et Request req,
Ht t pSer vl et Response res)
throws Servl et Exception, | COException

Ht t pServl et Request 2 req2 = (Htt pServl et Request 2)req;
AppLogi ¢ al = req2. get AppLogi c();
/lal is now a handle to the superclass

Accessing the Server Context

Some iPlanet Application Server features require an | Cont ext object. | Cont ext
defines a server context view. For more information, see the I Cont ext interface
section in the Foundation Class Reference (Java).

To obtain an | Cont ext from a servlet, the standard servlet context can be cast to
| Ser ver Cont ext and from there, a com ki vasoft. | Cont ext instance can be
obtained, as shown in the following example:

iPlanet ™ Application Server Developer's Guide * November 2001

Caching Servlet Results

Servl et Context ctx = get Servl et Context();

com net scape. server. | Server Cont ext sc;

sc = (com net scape. server. | Server Context) ctx;

com ki vasoft. | Context kivaContext = sc.getContext();

Alternatively, you can access the underlying AppLogic instance from a servlet, as
described in “Accessing the Servlet’s AppLogic,” on page 348, and obtain the
context from the AppLogic’s context member variable, as shown in the following
example:

Ht t pServl et Request 2 req2 = (Htt pServl et Request 2)req;

AppLogi c al = req2. get AppLogi c();

com ki vasoft.| Context kivaContext = al.context;

From an EJB, the standard j avax. ej b. Sessi onCont ext or

javax. ej b. Enti t yCont ext can be castto | Server Cont ext and from there, a
com ki vasoft. | Cont ext instance can be obtained, as shown in the following
example:

j avax. ej b. Sessi onCont ext m ct x;

com net scape. server. | Server Cont ext sc;

sc = (com net scape. server.| ServerContext) mectx; /
com ki vasoft. | Cont ext kivaContext;

ki vaCont ext = sc. get Context();

Caching Servlet Results

The iPlanet Application Server has the ability to cache a servlet’s results in order to
make subsequent calls to the same servlet faster. The iPlanet Application Server
caches the request results (for example, a servlet’s execution) for a specific amount
of time. In this way, if another data call occurs the iPlanet Application Server can
return the cached data instead of performing the operation again. For example, if
your servlet returns a stock quote that updates every 5 minutes, you set the cache
to expire after 300 seconds.

Whether to cache results and how to cache them, depends on the data type
involved. For example, it makes no sense to cache the results of a quiz submission
because the input to the servlet is different each time. However, you could cache a
high level report showing demographic data taken from quiz results and updated
once an hour.

Chapter 13 Taking Advantage of the iPlanet Application Server Features 349

Caching Servlet Results

You can define how an iPlanet Application Server servlet handles memory caching
by editing specific fields in the servlet’s configuration file. In this way, you can
create programmatically standard servlets that still take advantage of this valuable
iPlanet Application Server feature.

Table 13-1 shows the caching settings in a servlet configuration file.

Table 13-1 Servlet Cache Settings

Name Type Value

cache-ti nmeout Integer Optional. Elapsed time (in seconds) before the servlet’s
memory cache is released.

cache-si ze Integer Optional. Servlet memory cache size (in KB).

cache-criteria String Optional. Criteria expression string containing
comma-delimited descriptors. Each descriptor defines a
match with one servlet input parameter.

cache-option String Optional. Sets the cache timeout option to either
TI MEQUT_CREATE or TI MEOQUT_LASTACCESS.

For more information on these settings, see “Elements for Specifying Servlet
Caching,” on page 291.

The cache-criteri a field sets criteria to determine if servlet results are cached.
This field tests one or more fields in the request. This allows conditionally cache
results based on value or presence of one or more fields. If the tests succeed, the
servlet results are cached.

Table 13-2 shows the cache-cri t eri a field syntax.

Table 13-2 CacheCriteri aField

Syntax Description

arg Tests whether an ar g value is in the input parameter list. For example, if the field is set to
" Enpl oyeeCode", results are cached if a request contains an " Enpl oyeeCode" field.

arg=v Tests whether ar g matches v (a string or numeric expression). For example, if the field is set
to " st ock=NSCP", results are cached if the request contains a st ock field with the value
NSCP. Assign an asterisk (*) to the argument to cache a new results set when the servlet
runs with a different value. For example, if the criteria is set to " Enpl oyeeCode=*",
results are cached if the request object contains a field called " Enpl oyeeCode" and the
value is different from the currently cached value.

350 iPlanet ™ Application Server Developer's Guide * November 2001

Using a Startup Class

Table 13-2 CacheCriteri aField

Syntax Description

arg=vl|v2 Tests whether an ar g matches a list value (v1, v2, and so on). For example:
"dept =sal es| mar ket i ng| support".

arg=nl-n2 Test whether an ar g number is within the given range. For example:
"sal ar y=40000- 60000" .

Using a Startup Class

A startup class is a user-defined class object that is automatically loaded into
memory when the iPlanet Application Server starts up. It performs initialization
tasks within the Application Server environment. The characteristics of a

St art upC ass object are:

= |t spans through the life of server in which it runs.
= Itis notified when the server shuts down.

= It runs within the JVM of akj s process, so each kj s process owns one instance
of the St art upd ass object.

A startup class must meet the following requirements:

It must be in the package com i pl anet . i as. start up.

It must be named St art upd ass.

It must implement the interface com i pl anet . i as. startup. | Startupd ass.

NOTE Only one St art upd ass object can be deployed to an Application
Server instance.

The following sections describe how to create and use a startup class:
= The IStartupClass Interface

= Building the Startup Class

= Deploying the Startup Class

< How kjs Handles the StartupClass Object

Chapter 13 Taking Advantage of the iPlanet Application Server Features 351

Using a Startup Class

The IStartupClass Interface

The St art upd ass class must implement the | St art upd ass interface. The
| St art upd ass interface defines two methods:

e public void startUp() throws StartupC assException

This method is called to perform activities when kj s starts up (kj s calls the

St art upd ass default constructor, which calls this method). This method may
perform any action. It is invoked after the kj s engine establishes all the
relevant contexts, so it can access EJB and JDBC resources.

If an exception occurs, this method throws a
comiplanet.ias.startup. Startupd assExcepti on.

e public void shut Down()
This method should deallocate any resources allocated during startup.

Acomiplanet.ias.startup. StartupC assExcepti on isthrown if the start Up
method fails. Its signature is as follows:

public class StartupC assException extends java.l ang. Exception
Its one constructor is as follows:

public Startupd assException(java.lang. String nsg)

Building the Startup Class

Building the class is supported through Ant (although using Ant is not required).
Building the St ar t upd ass file and any dependent java files in the

install_dir/ st ar t up directory is recommended, because the files necessary for
building it are there. Make sure you have done these things first:

= Include install_dir/ bi n in the Shell’s PATH environment variable.
= Include the path to the JDK in the Shell’s PATH environment variable.

= Ifyou are not building the St art upd ass file in the install_dir/ st art up
directory, copy the St art upCl ass. j ava, st art up. properti es, and
bui I d. xnl files from that directory into the build directory you are using.

The following are the build options:

352 iPlanet ™ Application Server Developer's Guide * November 2001

Using a Startup Class

build conpile Compiles all the java files in the install_dir/ st art up
directory and places the class files under the cl asses
subdirectory.

build jar Runs bui | d conpi | e, then jars the class files into the
startup. jar file and places this file under the cl asses
subdirectory.

buil d clean_jar Removesthestartup.jar file.

build cl ean Removes the cl asses subdirectory and its subdirectories.
bui I d depl oy Deploys the st art up. j ar file to install_dir/ STARTUPCLASS.
buil d The default build, which runs bui I d cl ean, bui | d

conpil e,build jar,andbuil d depl oy in that order.

NOTE The name of the . j ar file must be startup.j ar.

Deploying the Startup Class

Deployment is supported through the i asdepl oy tool. There are two kinds of
deployment:

« Local deployment

i asdepl oy depl oystartup path/startup.jar

For example:

i asdepl oy depl oystartup /iasroot/ias/startup/classes/startup.jar
< Remote deployment

i asdepl oy depl oystartup -host server -port port -user userName
- password password path/ startup.jar

For example:

i asdepl oy depl oystartup -host myserver -port 80 -user jjones
-password secret /iasroot/ias/startup/classes/startup.jar

The path can be the following:

Chapter 13 Taking Advantage of the iPlanet Application Server Features 353

Using a Startup Class

= The relative path to the st art up. j ar file from the directory in which
i asdepl oy isrun

= The absolute path, for example install_dir/ st art up/ cl asses

Concurrent deployment on multiple machines is not supported by the i asdepl oy
tool.

The startup.jar file is deployed to the install_dir/ STARTUPCLASS directory.

NOTE If the startup class is deployed to a directory other than
install_dir/ STARTUPCLASS, an informational message is generated in
the kj s log when the application server starts up.

NOTE The Deployment Tool does not provide support for assembling
startup class modules.

How kjs Handles the StartupClass Object

For each kj s process that runs in its own JVM, there is one instance of the
St art upCl ass object.

Inside the r un method of com ki vasoft. engi ne. Engi ne. j ava, the St art upd ass
object is created by the system class loader after the environment is set up, but
before any other method is performed. The st art Up method is performed when
the St art upd ass object is created.

If the st ar t Up method executes successfully, kj s runs until it shuts down
normally. At graceful shutdown (with i ascontrol st op), kj s calls the shut Down
method of the St art upd ass object.

If the st ar t Up method throws acom i pl anet. i as. St artupd assException,kj s
calls the shut Down method, and the St art upd ass object is immediately garbage
collected. Then kj s exits.

NOTE Since each kj s process has its own copy of the St art upd ass
object, you should design a startup class with caution. It is
recommended that you take care of synchronization issues for
shared resources.

354 iPlanet ™ Application Server Developer's Guide + November 2001

Appendix A

Using the Java Message Service

This appendix describes how to use the Java Message Service (JMS) API. The
iPlanet Application Server allows third party JMS provider integration into its Java
environment, and provides two value-added features: connection pooling and user
identity mapping.

This appendix contains the following sections:

= About the IMS API

= Enabling JMS and Integrating Providers

= Using JMS in Applications

= JMS Administration

= Sample Applications

= JMS Future in the iPlanet Application Server

About the JMS API

JMS is a J2EE API which provides a standard set of Java language interfaces to an
Enterprise Messaging System, often referred to as message oriented middleware.
These interfaces are implemented by the JMS provider. The iPlanet Application
Server supports the iPlanet Message Queue and the JMS provider for IBM MQ
Series. For more information about the iPlanet Message Queue, refer to the
following documentation:

http://docs.ipl anet. conf docs/ manual s/ j avang. ht m

The JMS web page at htt p: //j ava. sun. coml product s/ j ns/ i ndex. ht n
describes JMS’s purpose as follows:

355

About the IMS API

Enterprise messaging provides a reliable, flexible service for the asynchronous
exchange of critical business data and events throughout an enterprise. The
JMS API adds to this a common API and provider framework that enables the
development of portable, message based applications in the Java programming
language.

The iPlanet Application Server also includes JMS Connection Pooling and User
Identity Mapping. These are provided through an administrative framework and
the iPlanet Application Server specific code is not required. Applications can use
these features transparently, maintaining component portability.

JMS Messaging Styles

JMS supports two messaging styles:

= Point-to-point: allows two programs to communicate by sending and
receiving messages through a Dest i nat i on called a Queue.

= Publish/subscribe: allows several messaging programs to communicate
through a Dest i nat i on called a Topi c. Messages are sent by publishing to a
Topi c. Messages are received by subscribers.

Regardless of messaging style, the link between applications and the JMS provider
is the connection object. Applications get their connection objects from the
Connection Factories.

In order to maximize portability of an application between JMS providers,
provider specific messaging aspects are encapsulated in administered objects. JMS
administered objects implement one of the following four JMS interfaces, two for
each messaging style:

e Destination
o Queue
o Topic
= ConnectionFactory
o QueueConnecti onFactory
o Topi cConnecti onFact ory

JMS providers supply classes that implement these interfaces. Administration tools
are used to create and configure administered object class instances, and to
configure them to the deployment requirements. Administrators use the tools to
set provider specific parameters.

356 iPlanet ™ Application Server Developer's Guide * November 2001

About the IMS API

This programming model allows JMS programs to be written that are completely
provider independent. Applications look up the administered objects by name
using JNDI.

The following sample looks up its connection factory and destination, and sends a
simple text message to a queue (exception handling has been omitted for clarity):

/1 Use JNDI to find the connection factory and the destination
Context ctx = new I nitial Context()

QueueConnecti onFactory factory;

factory = (QueueConnectionFactory) ctx.| ookup
("java: conp/ env/jns/theFactory"); Queue queue = (Queue)
ctx. | ookup("j ava: conp/ env/j ns/t heQueue");

/1 create a connection, session, sender and the nmessage
QueueConnecti on conn;

conn = factory. creat eQueueConnecti on("nmyUser Nane", "myPassword");
QueueSessi on session = connection. creat eQueueSessi on (fal se,

Sessi on. AUTO_ACKNOW_EDGE) ;

QueueSender sender = session. createSender (queue);

Text Message nsg = session. creat eText Message() ;

nsg. set Text("Hello froma sinple Java Message Service Application");

/'l start up the connection, send the nessage
connection.start();

sender . send(nsQ) ;

connecti on. stop();

// now close all resources to insure that native resources are
rel eased

sender. cl ose();

session. cl ose();

connecti on. cl ose();

Note that the application did not hardcode the resource names, but instead used
J2EE resource references, as described in the section on application deployment.
Applications should reference objects in the JMS subcontext directly, since the
iPlanet Application Server deployment manager does not support JMS resource
references.

Appendix A Using the Java Message Service 357

Enabling JMS and Integrating Providers

Enabling JMS and Integrating Providers

The iPlanet Application Server includes the software to integrate JMS providers,
but it must be enabled. For information about how to integrate a JMS provider with
the iPlanet Application Server, see the following documentation:

install_dir/ i as/ i as- sanpl es/j ns/ docs/i ndex. ht m

Using JMS in Applications

358

JMS support for the iPlanet Application Server is based entirely on standard J2EE
APIs. Application components using the value-added features are portable with
other J2EE environments. This section discusses some issues that you should
consider when using JMS in applications deployed on the iPlanet Application
Server.

JNDI and Application Component Deployment

JMS objects are stored by the administration tools in the JMS subcontext of the
iPlanet Application Server root JINDI name space. The JMS subcontext does not
support creation of subcontexts of itself. Links to the components application
context are established at application deployment time.

When an | ni ti al Cont ext is created with the default parameters, JMS objects may
be referenced by name beginning with j ns/ . Greater flexibility can be achieved by
using J2EE resource references. This was demonstrated in the sample shown on
page 357, where the name looked up for the factory was

j ava: conp/ env/j ms/ t heFact ory. In the iPlanet Application Server JMS, IMS
resource references are not supported. JMS objects should be referenced directly.

Connection Factory Proxy

The iPlanet Application Server supports the JMS connection pooling and user
identity maps. The Connect i onFact or yPr oxy class functions by interposing
between the application and the JMS provider’s connection factory. There are two
proxy classes, one for each messaging style:

* QeueConnecti onFact or yPr oxy

= Topi cConnect i onFact or yPr oxy

iPlanet ™ Application Server Developer's Guide * November 2001

Using JMS in Applications

The APIs presented by the proxy classes are the standard JMS APIs:
QueueConnect i onFact ory and Topi cConnect i onFact ory. Only administrators
need be concerned with proxies, which are used transparently to the application.

A simple administration program configures Connect i onFact or yPr oxi es. The
proxies handle connection pooling and user ID mapping. JMS operations are
forwarded to a connection obtained by the proxy from a provider factory specified
by the administrator.

Connection Pooling

Setting up a JMS connection is network intensive and therefore expensive.
Connection pooling facilitates the re-use of JMS connections. When pooling is
enabled and an application closes a connection, the proxy returns the connection to
the pool instead of closing the provider connection. When a subsequent application
attempts to create a connection using the same username and password, the proxy
re-uses the connection.

User Identity Mapping

The Connect i onFact or yPr oxy also provides user identity mapping. JMS
providers do not use the same security infrastructure as the application server and
thus have different user name spaces. User identity mapping provides
administrators flexibility in designing their security infrastructure.

Two mapping forms are provided by the connection factory proxy classes:
= Default username
= Explicit user ID map

As with connection pooling, this functionality is implemented by the proxy classes
within the standard JMS API. When using this user identity mapping, the
deployment depends on the iPlanet Application Server user security mechanisms
to control access to the messaging system.

About Default Username

Default username and password enable multiple application users to share a single
messaging system provider user ID and password.

Appendix A Using the Java Message Service 359

Using JMS in Applications

360

When a proxy is created, the administrator may define a default proxy user name

and password. Applications invoking the no argument create connection method

pass these values to the provider factory when creating a connection. For example,
when the application calls:

connecti on = proxy.creat eQueueConnection();

If a default user name has been configured, the iPlanet Application Server proxy
implementation obtains its IMS Connection with:

connecti on = provi der Fact ory. creat eQueueConnecti on (def aul t User Nane,
def aul t Passwor d) ;

About Explicit User ID Map

An explicit user ID map may also be used. The map contains an entries list, each
referenced by a unique user ID key and containing two values:

e jnsUser Nane
e jnsPassWrd

The administrator creates the map using the j nsuadmtool. The entry values are
used when creating a connection. For example, when an application creates a
connection using the proxy with:

connecti on = proxy.creat eQueueConnection(userString,
passWordStri ng);

The iPlanet Application Server proxy looks up the given user St ri ng entry in the
map. If it finds an entry, the proxy passes j msUser Name and j nsPassWor d values
from the entry to the JMS provider factory, ignoring the application provided
password. That is, the proxy effectively executes:

connecti on = providerFactory. createConnection (entry.jnsUser Nane,
entry.j nsPassWrd);

If no entry matching user St ri ng is found in the user identity map, the application
provided values are passed through to the JMS provider factory
(pr ovi der Fact ory).

iPlanet ™ Application Server Developer's Guide * November 2001

JMS Administration

ConnectionFactoryProxies and Application
Created Threads

A servlet can create Java threads, but it is not recommended. User created threads
are not known to the JMS connection pooling infrastructure. Applications must not
invoke the create connection or connection close methods from user created
threads. Attempting to do so results in:

javax.jns. |11 egal Stat eException

This is not implemented in JMS beta. In beta, applications that attempt to create or
close connections from application created threads crash KJS.

JMS Features Not Supported

The iPlanet Application Server does not support the JMS XAConnect i on and server
session pools features described in the JMS specification.

JMS Administration

The JMS API depends on administered objects for portability. Provider specific
deployment aspects are encapsulated in administered objects which allow portable
application code. In the iPlanet Application Server environment JMS
administration consists of four tasks:

= Creating JMS provider factories and destinations
= Creating user ID maps
= Creating Connect i onFact or yPr oxi es

= Modifying the iPlanet Application Server registry connection pooling
parameters

Appendix A Using the Java Message Service 361

JMS Administration

JMS Object Administration Tools

Each JMS product should include an administration program. This tool creates
objects and binds them to names in the iPlanet Application Server JNDI. This
section describes the Java properties and system paths required to configure a tool
to work with the JMS JNDI context. Consult your provider documentation for how
specific tools are configured. (A script for launching the administration tool for
IBM MQ JMS for the iPlanet Application Server is described in the next section.)

Table A-1 shows the property values used to access the JMS context when creating
the I nitial Context.

Table A-1 Java Property Names and Values

Java Property Name Property Value
Java. nam ng. factory.initial com net scape. server. j ndi . Ext er nal Cont ext Factory
Java. nam ng. provi der. url /s

JNDI Properties for IMS Administration Tools

For the Java classes required to access the JMsCont ext , include the following three
. j ar files in the Java runtime cl asspat h:

 GX_ROOIDI R/ cl asses/javaljms.jar
e GX_ROOIDI R/ cl asses/javaljavax.jar
e GX_ROOIDI R/ cl asses/ javal kfcj dk11.jar

where GX_ROOTDI Ris the iPlanet Application Server installation location, for
example:

[usr/iPlanet/ias6/ias
On Solaris, the following directory must be included in the LD LI BRARY_PATH:
$GX_ROOTDI R/ gxl i b

362 iPlanet ™ Application Server Developer's Guide * November 2001

JMS Administration

JMS Object Administration for IBM MQ

The ngj nsadmscript launches the IBM MQ JMS administration program is
included in the iPlanet Application Server. It is located in GX_ROOTDI R/ j ns/ bi n.
The administration program is a Java class. ngj nsadmis an interactive command
line program that accepts administrator input or from an input file.

The operation is described in the MQSeries documentation for JMS
Administration. ngj nrsadmhandles the JINDI configuration automatically, so it is
not necessary to use the - cf g option. For example, a connection factory and queue
could be created with the following ngj nsadm session:

nmgj nsadm
The response is:

5648- C60 (c) Copyright IBM Corp. 1999. Al Rights Reserved.

Starting MX®eries C asses for Java(tn) Message Service
Admi ni stration

Connected to LDAP server on |ocal host port 389

InitC x> define g(theQueue) queue(SYSTEM DEFAULT. LOCAL. QUEUE)
InitC x> define qcf(theFactory)

InitC x> display ctx

Contents of InitCtx
a aQueue comibm ng.jms. MQueue

a theProviderFactorycomibm ng.j ms. MQueueConnect i onFact ory
2 bject(s)

0 Context(s)

2 Binding(s), 2 Adm nistered

I nitC x> end

The JMS context does not support subcontexts, so using JMSAdni n commands to
manipulate subcontexts generate error messages.

Connection Factory Proxy Administration

Connection factory proxies are created with the j nspadmcommand (JMS proxy
administrator). This command (shell script for Unix or BAT file for NT) launches a
Java program that creates connection factory proxies with given parameters and
binds them in JNDI. The proxy parameters are set by command line arguments.

The command performs three operations on proxies:

« Creating a proxy

Appendix A Using the Java Message Service 363

JMS Administration

« Deleting a proxy

= Listing proxy parameters

Creating a Proxy

To create a proxy enter:

j mspadm proxyNane factoryName <-p or +p> <-u user password> <-m
user MapNan®

The first two arguments are required:
< JNDI name to be given to the new proxy
= JNDI name for the connection factory to be proxied

Since JMS objects may only be found in the JMS subcontext, if the supplied names
do not begin with j ns, string is prepended. For example, the following two
commands have the same result:

e jmepadm t heFactory theProviderFactory
e jmspadm jns/theFactory jns/theProviderFactory

Using the provider specific tool, create the factory before running j nspadm to
make the factory class available. The remaining arguments are optional. They are
used for proxy operation control at runtime. The default settings are:

= Connection pooling is on. Disable connection pooling by using - p.
= No default useri d and passwor d. Set them by using - u.

= No identity map. Setting the JNDI name of a user ID map to be used by the
proxy is discussed below.

Deleting a Proxy

The syntax to delete a proxy is:

j mspadm -d proxyName

Listing Proxy Parameters

To list all proxies stored in JNDI use the command: j nspadm -1 .

364 iPlanet ™ Application Server Developer's Guide * November 2001

JMS Administration

User ID Map Administration

To create a user identity map the administrator must prepare an XML file. Once
this file is ready, use the j rsuadmcommand. Again there are three variations to the
command:

e jmsuadm mapName mapFi | eNane reads the given file and creates a user ID
map.

e jmsuadm -d mapName deletes the map.
e jmsuadm -1 lists the map names.

For security purposes, the map contents cannot be listed. Administrators should
protect the input files carefully.

The input file format is XML. The public name for the DTD is:

-//Sun M crosystens, Inc.//DID i AS JMS User ldentity Map 1.0//EN
The following example input file contains the two JMS users mappings:

<?xm version="1.0" encodi ng="i so8859-1"?>

<I DOCTYPE j ms-user-id-map PUBLIC "-//Sun M crosystens, Inc.//DIDiAS
JMS User ldentity Map 1.0//EN" "TODO fill this in" >

<j ns-user-i d- map>
<user>
<nanme>bob</ nane>
<j ms- name>j nsuser </ j ns- nane>
<j ms- passwor d>secr et </ j ms- passwor d>
</ user>

<user>
<nanme>nancy</ name>
<j ms- name>j nsuser 2</ j ns- name>
<j ms- passwor d>pri vat e</j ns- passwor d>
</ user>
</jms-user-id-nmp>

Each user element must contain all of the following three elements as noted in the
above example:

* nane
e jnB-nane
® jms-password

although empty values are allowed:

Appendix A Using the Java Message Service 365

Sample Applications

<j ms- nane></j ms- name>

Connection Pooling Configuration

Certain parameters for the JMS connection pool are stored in the iPlanet
Application Server registry. If desired, these may be adjusted using the kr egedi t
program in the iPlanet Application Server bin directory.

The parameters are stored in the key:
SOFTWARE\ i Pl anet\ Appl i cati onServer\ 6. 0\ CCSO\ POOLS\ JMSConnect i onPool

Table A-2 shows the parameter names and default values:

Table A-2 Parameter Names and Default Values for Connection Pooling

Parameter Default Value Description

MaxPool Si ze 20 Maximum number of pooled JMS connections
St eadyPool Si ze 10 Number of steady state connections

MaxWai t 32 seconds Time client waits for a connection
UnusedMaxLi fe 300 seconds Time unused connections are deleted
DebugLevel 1 0-turns off logging

1-logs callback messages
2-logs all messages
(see the KIS log file)

Monitorlnterval 60 Time between messages

Connections are deleted when closed if the number of connections in the pool is
between St eadyPool Si ze and MaxPool Si ze. Connections are kept in the pool up
to UnusedMaxLi f e, when the number of open connections is less than

St eadyPool Si ze.

Sample Applications

JMS sample applications can be found in the directory:

install_dir/ i as/ i as- sanpl es/j ns

366 iPlanet ™ Application Server Developer's Guide * November 2001

JMS Future in the iPlanet Application Server

JMS Future in the iPlanet Application Server

The following topics cover future JMS releases and how they apply to the iPlanet
Application Server.

Default JMS Provider

A future J2EE standard will require that the environment include a JMS provider.

Message Driven Enterprise Java Beans

J2EE and the iPlanet Application Server do not currently support application
components that receive scalable messages. A future release of J2EE will include
support for “Message Driven Enterprise JavaBeans,” which are activated in
response to the receipt of IMS messages. The application framework allows for
scalable message receipt.

Using JMS in distributed transactions

The iPlanet Application Server does not currently support JMS resources in global
transactions.

Appendix A Using the Java Message Service 367

JMS Future in the iPlanet Application Server

368 iPlanet ™ Application Server Developer's Guide * November 2001

Appendix B

Runtime Considerations

This appendix convers the following topics:
= Runtime Environments
= The Classloader Hierarchy

= Dynamic Reloading

Runtime Environments

Whether you register a component as a module or as an application, registering
affects both the file system and the registry. Figure B-1 shows the module runtime
environment. Figure B-2 shows the application runtime environment.

Module Runtime Environment

The figure below illustrates the environment for module-based deployment. Note
that for file system entries, modules are extracted as follows:

install_dir/ i as/ APPS/ nodul es/ module_name/ extracted class
Registry entries are added under this key:

SOFTWARE\ i Pl anet\ Appl i cati on Server\ 6. 0\ J2EE- Modul e\ module_name

TIP All modules are extracted under the same directory, and all modules
are extracted to the same LDAP location, therefore it is important
that no two modules have the same name.

369

Runtime Environments

370

Figure B-1 Module runtime environment

packagingModule.ear

packagingEJB.jar

i asdepl oy depl oynodul g packagi nghbdul e. ear

Registry:

\ SOFTWARE\ i Pl anet\ Appl i cation
Server\ 6. 0\ J2EE- Modul e\
packagi ngEJB\ . ..

File System:

install _dir/ias/APPS/
nodul es/ packagi ngeEJB/ *

Application Runtime Environment

The figure below illustrates the environment for application-based deployment.
Note that for file system entries, applications are extracted as follows:

install_dir/ i as/ APPS/ app_name/ module_name/ extracted_class

For Registry entries, modules within the application are added under this key:

SOFTWAREN\IiPlanet\Application Server\6.0\J2EE-Module\module_name

iPlanet ™ Application Server Developer's Guide * November 2001

Figure B-2 Application runtime environment

The Classloader Hierarchy

packagingModule.ear

packagingEJB.jar

i asdepl oy depl oyapp

packagi nghbdul e. ear

v

A

Registry:

\ SOFTWARE\ i Pl anet\ Appl i cati on
Server\ 6. 0\ J2EE- Appl | cat i on\
packagi nghbdul e\ . ..

\ SOFTWARE\ i Pl anet\ Appl i cati on
Server\ 6. 0\ J2EE- Modul e\
packagi ngEJB\. ..

File System:

install _dir/ias/ APPS/
packagi nghodul e/
packagi ngEJB/ *

The Classloader Hierarchy

In a Java Virtual Machine (JVM), the class loaders dynamically load a specific java

class file needed for resolving a dependency. For example, when an instance of
java. util.Enuneration needs to be created, one of the classloaders loads the

relevant class into the environment. Class loaders in the iPlanet Application Server
runtime follow a rigid hierarchy that is illustrated in Figure B-3.

Appendix B Runtime Considerations

371

The Classloader Hierarchy

372

Figure B-3 Classloader runtime hierarchy

Bootstrap
Classloader

v

Extension
Classloader

v

System
Classloader
I |

v y v

Module Application 1 Application 2
Classloader Classloader Classloader

For Java 1.2, a delegation design is used to load classes. In the delegation design, a
custom class loader delegates class loading to its parent. A class loader parent can
be either the Bootstrap Classloader or another custom class loader. If the parent
classloader can’t load a class, a new method, called fi ndd ass(), is called on the
classloader subclass. In effect, the custom classloader is responsible for loading
only the classes not available to the parent. These would presumably be classes that
come from a new type of class repository. Each class loader looks at a different
repository for classes. The classloaders and the files they examine are described in
Table B-1.

Table B-1 iPlanet Application Server classloaders

Classloader Description

Bootstrap The Bootstrap Classloader looks for runtime classesinrt. j ar and
internationalization classes ini 18n. j ar.

Extension The Installed Extensions Classloader looks for classes in JAR files in the
I i b/ ext directory of the JRE.

iPlanet ™ Application Server Developer's Guide * November 2001

The Classloader Hierarchy

Table B-1 iPlanet Application Server classloaders

Classloader Description

System The System Classpath Classloader looks for classes in JAR files on paths

specified by the system property j ava. cl ass. pat h. To have a class
loaded by the System Classloader, you must include the relevant
directory in the class path. This means either in KJS (on Unix), the
environment (on Unix or NT), or in the

\ Sof tware\i Pl anet\ Appl i cation

Server\ 6. 0\ Java\ d asspat h registry entry (on NT.)

Module The iPlanet Application Server Module Classloader looks for classes in all

directories under install_dir/ i as/ APPS/ nodul es/ *. All modules share
this classloader.

Application Each registered J2EE application is loaded by its own class loader, which

looks for classes under install_dir/ i as/ APPS/ app_name and all
subdirectories.

Possible limitations imposed by the class loader hierarchy are listed here with
suggested work-around solutions:

http://devel oper.

Since the iPlanet Application Server Module Classloader and the iPlanet
Application Server Application Classloader do not interact with each other, a
J2EE application cannot load J2EE module classes (and vice versa). One way to
circumvent this is to include the relevant path to the required class in the
System Classpath, which will then cause it to be loaded by the System
Classloader. For an example of this see the following sample:

i pl anet. com appserver/ sanpl es/ pkgi ng/ docs/ sanpl eC. ht i

Since each J2EE application in iPlanet Application Server is loaded by its own
classloader, two EAR files that are registered as applications cannot load
classes from each other. This ensures that classes from two applications are
loaded in isolation, which prevents two similarly named classes from different
applications from overwriting each other in the classloader.

There is only one iPlanet Application Server module classloader that loads all
J2EE standalone modules. This allows two modules to interact with each other.
However, this means that no two classes in a module should have the same
name. For example, if ej bl. j ar attempts to load

com sanpl es. conpany. DBConnect or and war 1. war attempts to load

com sanpl es. conpany. DBConnect or, one will overwrite the other.

Appendix B Runtime Considerations 373

Dynamic Reloading

TIP Because there is only one classloader for all standalone modules,
there is a potential security risk if you allow classes from one
module to be accessed by all of the other standalone modules.
Therefore, it is a good idea to include in standalone modules only
reusable components that everyone is allowed to access.

NOTE A resource such as a file that is accessed by a servlet, JSP, or EJB
must be in a directory pointed to by the classloader’s classpath. For
example, the web class loader’s classpath includes these directories:

module_name/ VEEB- | NF/ cl asses
module_name/ VEEB- | NF/ conpi | ed_j sp
module_name/ VEB- | NF/ | i b

If a servlet accesses a resource, it must be in one of these directories
or it will not be loaded properly.

Dynamic Reloading

Servlets, JSPs, and EJBs can be dynamically reloaded while the server isrunning. This
allows you to change module and application code and descriptors without restarting the
server. Thisis useful in a development environment, because it allows code changes to be
tested quickly.

Dynamic reloading is hot recommended for a production environment, however, because it
may degrade performance. In addition, whenever areload is done, the sessions at that transit
time become invalid. The client must restart the session.

Enabling Dynamic Reloading

Dynamic reloading for all classes can be turned on or off using the following
registry entry:

SYSTEM JAVA\ Ver si oni ng\ Di sabl e

By default it is set to 1, indicating that dynamic reloading is disabled. A value of 0
enables dynamic reloading.

You can edit the registry using the kr egedi t tool. For more information, see the
Administrator’s Guide.

374 iPlanet ™ Application Server Developer's Guide * November 2001

Dynamic Reloading

Dynamic Reloading of Servlets and JSPs

Dynamic reloading, when enabled, is built into the server for servlets and JSPs.
Changes made while the iPlanet Application Server is running are picked up the
next time a request arrives for that servlet or JSP.

Dynamic Reloading of EJBs

Dynamic reloading, when enabled, is built into the server for EJBs. Changes made
while the iPlanet Application Server is running are picked up the next time a
request arrives for that EJB.

However, an EJB’s interfaces and helper classes are not dynamically reloadable, so
if you change them, you must restart the server.

If an EJB changes during a session, the EJB Container serializes the states of the EJB
instances involved in the session and deserializes them after recreating the pool of
instances.

NOTE If you have migrated from iPlanet Application Server 6.0 SP2 to SP3
or SP4, you must regenerate the stubs for your EJBs, or dynamic
reloading of the EJB implementation classes won’t work. If you
don’t regenerate the stubs, only servlets and JSPs are dynamically
reloaded.

Appendix B Runtime Considerations 375

Dynamic Reloading

376 iPlanet ™ Application Server Developer's Guide * November 2001

Appendix C

Sample Deployment Files

This appendix contains sample iPlanet Application Server Deployment Descriptor
(DD) files used for application and component deployment.

This appendix contains the following sample DD XML files:
= Application DD XML Files

= Web Application DD XML Files

= EJB-JAR DD XML Files

< RMI/IIOP Client DD XML Files

= Resource DD XML Files

Application DD XML Files

The application DD gives a top level view of all application contents. There are two
types of application DDs; one is the J2EE application DD and the other is the
iPlanet Application Server application DD. These descriptors are XML files
specified by the DTDs.

The J2EE application DD is described by the J2EE specification, v2.1 Section 8.4
“J2EE:application XML DTD.” The iPlanet Application Server application DD is
described by the iPlanet Application Server web application DTD described in
Chapter 10, “Packaging for Deployment.”

Sample Application DD XML File

This section provides an example of a J2EE application DD XML file. The J2EE
application DD that follows, has a file name of appl i cati on. xm .

377

Web Application DD XML Files

<?xm version="1.0"7?>

<I DOCTYPE application PUBLIC '-//Sun M crosystens, Inc.//DID J2EE
Application 1.2//EN
"http://java. sun. conij2ee/dtds/application_1_2.dtd >

<appl i cation>
<descri pti on>Application description</description>
<di spl ay- name>est or e</ di spl ay- nane>
<modul e>
<ej b>estoreEj b.jar</ejb>
</ modul e>
<nmodul e>
<web>
<web- uri >est or e. war </ web- uri >
<cont ext - r oot >est or e</ cont ext - r oot >
</ web>
</ modul e>
<security-rol e>
<descri ption>the custoner rol e</description>
<r ol e- name>cust oner </ r ol e- nane>
</security-rol e>
</ appl i cation>

Web Application DD XML Files

378

The web application DD conveys the elements and configuration information of a
web application between Developers, Assemblers, and Deployers. These
descriptors are XML files specified by DTDs.

The Web application ARchive (. war) file contains a J2EE web application DD and
an iPlanet Application Server web application DD. The J2EE web application DD is
described by the Java Servlet Specification, v2.2 Chapter 13 “Deployment
Descriptors.” The iPlanet Application Server application DD is described by the
iPlanet Application Server web application DTD described in Chapter 10,
“Packaging for Deployment.”

Sample Web Application DD XML File

This section provides a J2EE web application DD XML file example. The web
application DD that follows, has a file name of web. xn .

iPlanet ™ Application Server Developer's Guide * November 2001

Web Application DD XML Files

<?xm version="1.0"7?>
<! DOCTYPE web- app>

<web- app>
<descri pti on>no description</description>
<di spl ay- name>DukesPet St or eVebTi er </ di spl ay- nanme>
<servl et >
<descri pti on>no descri ption</description>
<di spl ay- nane>cent r al Jsp</ di spl ay- nane>
<servl et - name>webTi er Ent r yPoi nt </ servl et - nane>
<jsp-file>Main.jsp</jsp-file>
<l oad-on- st artup>-1</| oad- on-start up>
</servlet>
<servl et - mappi ng>
<servl et - name>webTi er Ent r yPoi nt </ servl et - nane>
<url-pattern>/control/*</url-pattern>
</ servl et - nappi ng>
<sessi on- confi g>
<sessi on-ti meout >54</ sessi on-ti meout >
</ sessi on-confi g>
<wel cone-file-list>
<wel cone-fil e>/index. htm </ wel cone-file>
</wel cone-file-list>
<error-page>
<excepti on-type>j ava. | ang. Excepti on</ excepti on-type>
<l ocati on>/ errorpage. jsp</|ocation>
</ error-page>
<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- nane>MySecur eBi t 0</ web- r esour ce- nane>
<descri pti on>no descri ption</description>
<url -pattern>/control/placeorder</url-pattern>
<ht t p- net hod>PCOST</ ht t p- net hod>
<ht t p- net hod>GET</ ht t p- met hod>
</ web-resource-col | ecti on>
<aut h- const r ai nt >
<descri pti on>no descri ption</description>
<r ol e- name>cust oner </ r ol e- nane>
</ aut h-constrai nt >
<user-data-constraint>
<descri pti on>no description</description>
<transport - guar ant ee>NONE</ t r anspor t - guar ant ee>
</ user-dat a- constrai nt >
</ security-constraint>
<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- nane>MySecur eBi t 1</ web- r esour ce- nane>

Appendix C Sample Deployment Files 379

Web Application DD XML Files

<descri pti on>no descri ption</description>
<url -pattern>/Min.jsp/signin</url-pattern>
<ht t p- net hod>PCOST</ ht t p- net hod>
<ht t p- net hod>GET</ ht t p- met hod>
</ web-resource-col | ecti on>
<aut h-constrai nt >
<descri pti on>no description</description>
<r ol e- name>cust oner </ r ol e- nane>
</ aut h-constrai nt >
<user-data-constraint>
<descri pti on>no description</description>
<transport - guar ant ee>NONE</ t r anspor t - guar ant ee>
</ user-dat a- constrai nt>

</ security-constraint>
<security-constraint>

<web-resource-col |l ecti on>

<web- r esour ce- nane>MySecur eBi t 1</ web- r esour ce- nane>

<descri pti on>no descri ption</description>
<url -pattern>/control/signin</url-pattern>
<ht t p- net hod>POST</ ht t p- met hod>
<ht t p- net hod>GET</ ht t p- met hod>
</ web-resource-col | ecti on>
<aut h-constrai nt >
<descri pti on>no descri ption</description>
<r ol e- name>cust oner </ r ol e- nane>
</ aut h-constrai nt >
<user-data-constraint>
<descri pti on>no description</description>
<transport - guar ant ee>NONE</ t r anspor t - guar ant ee>
</ user-dat a- constrai nt >

</ security-constraint>
<security-constraint>

<web-resource-col |l ecti on>

<web-r esour ce- nane>MySecur eBi t 0</ web- r esour ce- nane>

<descri pti on>no description</description>
<url - pattern>/Min.jsp/placeorder</url-pattern>
<ht t p- net hod>POST</ ht t p- met hod>
<ht t p- met hod>GET</ ht t p- met hod>
</ web-resource-col | ecti on>
<aut h-constrai nt >
<descri pti on>no description</description>
<rol e- nane>cust oner </ r ol e- nane>
</ aut h-constrai nt>
<user - dat a- constrai nt >
<descri pti on>no description</description>
<transport - guar ant ee>NONE</ t r anspor t - guar ant ee>
</ user-dat a- constrai nt>

380 iPlanet ™ Application Server Developer's Guide * November 2001

Web Application DD XML Files

</ security-constraint>

<l ogi n-confi g>
<aut h- met hod>FORM/ aut h- net hod>
<r eal m nane>def aul t </ r eal m nane>
<form| ogi n- confi g>
<f orm | ogi n- page>/ estore/ | ogi n. j sp</form| ogi n- page>
<formerror-page>/estore/error.htm </formerror-page>
</ forml ogi n-config>
</l ogi n-config>

<security-rol e>
<descri ption>the custoner rol e</description>
<r ol e- name>cust oner </ r ol e- nane>
</security-rol e>

<ej b-ref>
<descri pti on>no description</description>
<ej b-ref - name>account </ ej b-r ef - nanme>
<ej b-ref-type>Entity</ejb-ref-type>
<home>com sun. est or e. account . ej b. Account Hone</ hone>
<renot e>com sun. est ore. account . ej b. Account </ r enot e>
</ejb-ref>
<ej b-ref>
<descri pti on>no descri ption</description>
<ej b-ref - name>or der </ ej b-r ef - name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com sun. est or e. or der. ej b. Or der Hone</ honme>
<renot e>com sun. estore. order. ej b. O der </ renot e>
</ejb-ref>
<ej b-ref>
<descri pti on>no descri ption</description>
<ej b-ref-name>mai | er </ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ejb-ref-type>
<home>com sun. estore. nai | . ej b. Mai | er Hone</ honme>
<renpt e>com sun. estore. mai |l . ej b. Mai | er </ r enot e>
</ejb-ref>
<ej b-ref>
<descri pti on>no description</description>
<ej b-ref - nanme>est or ekeeper </ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ejb-ref-type>
<home>com sun. est ore. control . ej b. ESt or ekeeper Home</ hone>
<r enot e>com sun. estore. control . ej b. ESt or ekeeper </ r enot e>
</ejb-ref>
<ej b-ref>
<descri pti on>no description</description>
<ej b-ref - nane>cat al og</ ej b-r ef - nane>

Appendix C Sample Deployment Files

381

Web Application DD XML Files

<ej b-ref-type>Sessi on</ej b-ref-type>
<home>com sun. est or e. cat al og. ej b. Cat al ogHone</ horme>
<renot e>com sun. est ore. cat al og. ej b. Cat al og</ r enot e>
</ejb-ref>
<ej b-ref>
<descri pti on>no descri ption</description>
<ej b-ref - name>cart </ ej b-ref - nane>
<ej b-ref-type>Sessi on</ej b-ref-type>
<home>com sun. estore. cart. ej b. Shoppi ngCar t Home</ hone>
<renot e>com sun. estore. cart. ej b. Shoppi ngCart </ renot e>
</ejb-ref>
<ej b-ref>
<descri pti on>no description</description>
<ej b-ref - name>i nvent ory</ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ejb-ref-type>
<home>com sun. estore. i nventory. ejb. | nvent or yHone</ hone>
<renot e>com sun. estore. i nventory.ejb.lnventory</renote>
</ejb-ref>
</ web- app>

Sample iPlanet Application Server Web-App DD
XML File

This section provides an example of an iPlanet Application Server web application
DD XML file. The iPlanet Application Server web application DD that follows, has
a file name of i as- web. xni .

<?xm version="1.0"7?>
<! DOCTYPE web- app>

<i as-web- app>
<servl et >
<servl et - name>webTi er Ent r yPoi nt </ ser vl et - name>
<gui d>{ Deadbeef - AB3F- 11D2- 98C5- 000000000000} </ gui d>
</servlet>

<ej b-ref>

<ej b-ref - name>account </ ej b-r ef - nane>

<j ndi - name>ej b/ est or eWar/ account </ j ndi - nane>
</ejb-ref>
<ej b-ref>

<ej b-ref - nane>or der </ ej b-r ef - nane>

<j ndi - name>ej b/ est or eVar/ or der </ j ndi - nane>
</ejb-ref>
<ej b-ref>

382 iPlanet ™ Application Server Developer's Guide * November 2001

EJB-JAR DD XML Files

<ej b-ref-name>mai | er </ ej b-r ef - name>

<j ndi - nanme>ej b/ est or eVr / mai | er </ j ndi - nane>
</ejb-ref>
<ej b-ref>

<ej b-ref - nane>est or ekeeper </ ej b-r ef - nane>

<j ndi - nanme>ej b/ est or eWar / est or ekeeper </ j ndi - nanme>
</ejb-ref>
<ejb-ref>

<ej b-ref - nane>cat al og</ ej b-r ef - nane>

<j ndi - nane>ej b/ est or e\Wr/ cat al og</j ndi - nane>
</ ejb-ref>
<ej b-ref>

<ej b-ref-name>cart </ ej b-ref - nane>

<j ndi - nane>ej b/ est or eVr/ cart </ j ndi - name>
</ejb-ref>
<ej b-ref>

<ej b-ref - nanme>i nvent ory</ ej b-r ef - nane>

<j ndi - name>ej b/ est or eWar /i nvent ory</j ndi - name>
</ejb-ref>

</i as-web- app>

EJB-JAR DD XML Files

The EJB-JAR file contains a DD in the format defined by the Enterprise JavaBeans
Specification, v1.1 and an iPlanet Application Server EJB DD in the format defined
by Chapter 10, “Packaging for Deployment.”

Sample J2EE EJB-JAR DD XML File

This section provides an example of a J2EE EJB DD XML file. The EJB-JAR DD that
follows, has a file name of ej b-j ar. xni .

<?xm version="1.0"7?>

<ej b-jar>

<descri ption>no description</description>

<di spl ay- name>Ej b1</ di spl ay- nane>

<ent erpri se- beans>

<sessi on>

<descri pti on>no description</description>
<di spl ay- name>TheMai | er </ di spl ay- nane>
<ej b- name>TheMai | er </ ej b- nane>
<home>com sun. estore. mai | . ej b. Mai | er Hoe</ honme>

Appendix C Sample Deployment Files 383

EJB-JAR DD XML Files

<renot e>com sun. estore. mai |l . ej b. Mai | er </ r enot e>
<ej b-cl ass>com sun. estore. mai |l . ej b. Mai | er EJB</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Contai ner</transacti on-type>
<ej b-ref>
<ej b-ref - name>account </ ej b-r ef - nane>
<ej b-ref-type>Entity</ejb-ref-type>
<home>com sun. est or e. account . ej b. Account Hone</ horme>
<renot e>com sun. est ore. account. ej b. Account </ r enot e>
<ej b-li nk>TheAccount </ ej b-1i nk>
</ejb-ref>
<ej b-ref>
<ej b-ref - name>or der </ ej b-r ef - name>
<ej b-ref-type>Entity</ejb-ref-type>
<home>com sun. est or e. or der. ej b. Or der Hone</ home>
<renot e>com sun. estore. order. ej b. O der </ renot e>
<ej b-1i nk>TheOrder </ ej b-1i nk>
</ejb-ref>
<resource-ref>
<descri pti on>descri ption</description>
<res-ref-name>Mai | Sessi on</res-ref-name>
<res-type>j avax. nai |l . Sessi on</res-type>
<res-aut h>Appli cati on</res-aut h>
</resource-ref>

</ sessi on>
<sessi on>

<descri pti on>no description</description>
<di spl ay- name>TheEst or ekeeper </ di spl ay- nane>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<home>com sun. est ore. control . ej b. ESt or ekeeper Home</ hone>
<renot e>com sun. estore. control . ej b. ESt or ekeeper </ r enot e>
<ej b-cl ass>com sun. estore. control . ej b. ESt or ekeeper EJB
</ ej b-cl ass>
<sessi on-type>St at ef ul </ sessi on-type>
<transaction-type>Contai ner</transacti on-type>
<env-entry>
<env-entry-nane>sendConfirmati onMil </ env-entry-nane>
<env-entry-type>java.lang. String</env-entry-type>
<env-entry-val ue>fal se</ env-entry-val ue>
</env-entry>
<ej b-ref>
<ej b-ref - name>account </ ej b-r ef - nanme>
<ej b-ref-type>Entity</ejb-ref-type>
<home>com sun. est or e. account . ej b. Account Hone</ horme>
<renot e>com sun. est ore. account . ej b. Account </ r enot e>
<ej b-li nk>TheAccount </ ej b-1i nk>
</ejb-ref>

384 iPlanet ™ Application Server Developer's Guide * November 2001

EJB-JAR DD XML Files

<ej b-ref>
<ej b-ref - name>or der </ ej b-r ef - name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com sun. est or e. or der. ej b. Or der Hone</ honme>
<renot e>com sun. estore. order. ej b. O der </renot e>
<ej b-1i nk>TheOr der </ ej b-1i nk>
</ejb-ref>
<ej b-ref>
<ej b-ref-name>mai | er </ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ejb-ref-type>
<home>com sun. estore. nai | . ej b. Mai | er Home</ honme>
<renot e>com sun. estore. mai |l . ej b. Mai | er </ r enot e>
<ej b-li nk>TheMi | er </ ej b-1i nk>
</ejb-ref>
<ej b-ref>
<ej b-ref - nane>cat al og</ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ejb-ref-type>
<home>com sun. est or e. cat al og. ej b. Cat al ogHone</ horme>
<renot e>com sun. est ore. cat al og. ej b. Cat al og</ r enot e>
<ej b-1i nk>TheCat al og</ ej b- i nk>
</ejb-ref>
<ej b-ref>
<ej b-ref-nane>cart </ ej b-ref - nane>
<ej b-ref-type>Sessi on</ej b-ref-type>
<home>com sun. estore. cart. ej b. Shoppi ngCart Home</ hone>
<renpt e>com sun. estore. cart.ej b. Shoppi ngCart </ renot e>
<ej b-li nk>TheCart </ ej b-1i nk>
</ejb-ref>
<ej b-ref>
<ej b-ref - name>i nvent ory</ ej b-ref - nane>
<ej b-ref-type>Sessi on</ej b-ref-type>
<home>com sun. estore.inventory.ejb. | nvent oryHone
</ home>
<renot e>com sun. estore.inventory.ejb.lnventory
</ renot e>
<ej b-1'i nk>Thel nvent ory</ ej b- | i nk>
</ejb-ref>
</ sessi on>

<entity>
<descri pti on>no description</description>
<di spl ay- name>TheOr der </ di spl ay- name>
<ej b- name>TheOr der </ ej b- name>
<home>com sun. est or e. or der. ej b. Or der Horre</ hone>
<renot e>com sun. estore. order. ej b. O der </ renot e>
<ej b-cl ass>com sun. estore. order. ej b. Order EJB</ ej b-cl ass>
<per si st ence-t ype>Bean</ per si st ence-type>

Appendix C Sample Deployment Files 385

EJB-JAR DD XML Files

<pri mkey-cl ass>j ava. | ang. | nt eger</ pri m key-cl ass>
<r eentrant >Fal se</reentrant >
<resource-ref>
<descri pti on>descri ption</descripti on>
<res-ref-name>Est or eDat aSour ce</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res-aut h>Appl i cati on</res-aut h>
</resource-ref>
</entity>
<entity>
<descri pti on>no description</description>
<di spl ay- name>TheAccount </ di spl ay- nane>
<ej b- name>TheAccount </ ej b- nane>
<home>com sun. est or e. account . ej b. Account Hone</ horme>
<renot e>com sun. est ore. account. ej b. Account </ r enot e>
<ej b-cl ass>com sun. estore. account . ej b. Account EJB
</ ej b-cl ass>
<persi st ence-t ype>Bean</ persi st ence-type>
<pri mkey-cl ass>j ava. |l ang. String</pri mkey-cl ass>
<r eentrant >Fal se</reentrant >
<resource-ref>
<descri pti on>descri ption</descripti on>
<res-ref - name>Est or eDat aSour ce</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res-aut h>Appl i cati on</res-aut h>
</resource-ref>
</entity>

<sessi on>
<descri pti on>no descri ption</description>
<di spl ay- name>TheCar t </ di spl ay- nane>
<ej b- name>TheCart </ ej b- nanme>
<home>com sun. estore. cart. ej b. Shoppi ngCar t Home</ hone>
<renot e>com sun. estore. cart. ej b. Shoppi ngCart </ renot e>
<ej b-cl ass>com sun. estore.cart. e
<transacti on-type>Cont ai ner</transacti on-type>
</ sessi on>
<sessi on>
<descri pti on>no description</description>
<di spl ay- nane>Thel nvent or y</ di spl ay- nane>
<ej b- name>Thel nvent or y</ ej b- nane>

<home>com sun. estore.inventory. ejb. | nvent or yHone</ horme>
<renpt e>com sun. estore. i nventory.ejb. | nventory</renote>

<ej b-cl ass>com sun. estore. i nventory.ejb. | nventoryEJB
</ ej b-cl ass>

<sessi on-type>St at el ess</ sessi on-type>

<transacti on-type>Contai ner</transacti on-type>

386 iPlanet ™ Application Server Developer's Guide * November 2001

EJB-JAR DD XML Files

<resource-ref>
<descri pti on>descri ption</description>
<res-ref-nanme>l nvent or yDat aSour ce</r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res-aut h>Appli cati on</res-aut h>
</resource-ref>
</ sessi on>
<sessi on>
<descri pti on>no description</description>
<di spl ay- nane>TheCat al og</ di spl ay- nane>
<ej b- name>TheCat al og</ ej b- nane>
<home>com sun. est or e. cat al og. ej b. Cat al ogHone</ horme>
<renot e>com sun. est ore. cat al og. ej b. Cat al og</ r enot e>
<ej b-cl ass>com sun. est ore. cat al og. ej b. Cat al ogEJB
</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Contai ner</transacti on-type>
<resource-ref>
<descri pti on>descri ption</description>
<res-ref-name>l nvent or yDat aSour ce</res-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res-aut h>Appl i cati on</res-aut h>
</resource-ref>
</ sessi on>
</ enterprise-beans>
<assenbl y-descri pt or>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheMai | er </ ej b- nane>
<met hod- i nt f >Renot e</ met hod-i ntf >
<met hod- nane>sendOr der Confi r mati onMai | </ met hod- nanme>
<net hod- par an®i nt </ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheMi | er </ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- nane>get Pri mar yKey</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheMai | er </ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >

Appendix C Sample Deployment Files 387

EJB-JAR DD XML Files

<met hod- name>get EJBHone</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheMni | er </ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf>
<met hod- nane>get Handl e</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheMai | er </ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- name>i sl dent i cal </ met hod- nane>
<met hod- par anpj avax. ej b. EJBCbj ect </ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf>
<met hod- name>get Pri mar yKey</ net hod- name>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- name>handl eEvent </ met hod- nane>
<met hod- par am>com sun. est ore. control . event . ESt or eEvent
</ met hod- par an»
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf >
<met hod- name>get Shoppi ngCart </ met hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>

388 iPlanet ™ Application Server Developer's Guide * November 2001

EJB-JAR DD XML Files

<cont ai ner-transacti on>
<net hod>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- nane>get Account </ met hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ contai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf >
<met hod- nane>get Or der </ et hod- nane>
<net hod- par an®i nt </ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- nane>get EJBHone</ nmet hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<met hod- i nt f >Renot e</ net hod- i nt f >
<met hod- nane>get Handl e</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheEst or ekeeper </ ej b- nanme>
<net hod- i nt f >Renot e</ net hod-i ntf >
<met hod- nane>get Or der s</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<met hod- i nt f >Renot e</ net hod- i nt f >
<met hod- name>i sl denti cal </ met hod- nane>
<met hod- par anpj avax. ej b. EJBObj ect </ net hod- par an®

Appendix C Sample Deployment Files

389

EJB-JAR DD XML Files

</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<met hod- i nt f >Renpot e</ net hod-i ntf>
<met hod- name>get Cat al og</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheOr der </ ej b- nanme>
<met hod- i nt f >Renot e</ net hod-i ntf >
<met hod- nane>get Pri mar yKey</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheOr der </ ej b- nanme>
<met hod- i nt f >Renot e</ net hod-i ntf >
<met hod- nanme>get Or der Det ai | s</ met hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheOr der </ ej b- name>
<mnet hod- i nt f >Renot e</ net hod-i ntf>
<met hod- name>get EJBHone</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheOr der </ ej b- name>
<met hod- i nt f >Renot e</ net hod-i ntf >
<net hod- nane>get Handl e</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheOr der </ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i ntf >

390 iPlanet ™ Application Server Developer's Guide * November 2001

EJB-JAR DD XML Files

<net hod- name>r enove</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheOr der </ ej b- name>
<net hod- i nt f >Renot e</ net hod-i ntf>
<met hod- name>i sl denti cal </ met hod- nane>
<met hod- par anpj avax. ej b. EJBObj ect </ net hod- par an®
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheAccount </ ej b- nane>
<met hod- i nt f >Renot e</ net hod- i nt f >
<met hod- name>get Pri mar yKey</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheAccount </ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf>
<met hod- name>changeCont act | nf or mat i on</ et hod- nane>
<met hod- par am>com sun. estore. util. Contact| nfornation
</ net hod- par an»
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheAccount </] b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- name>get EJBHone</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheAccount </ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf >
<met hod- nane>get Handl e</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>

Appendix C Sample Deployment Files

391

EJB-JAR DD XML Files

<cont ai ner-transacti on>
<net hod>
<ej b- name>TheAccount </] b- nane>
<met hod- i nt f >Renot e</ net hod-i ntf >
<net hod- name>r enove</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheAccount </ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i ntf>
<met hod- nane>get Account Det ai | s</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheAccount </ ej b- nane>
<met hod- i nt f >Renpt e</ net hod-i ntf>
<net hod- name>i sl denti cal </ net hod- nane>
<nmet hod- par anpj avax. ej b. EJBObj ect </ net hod- par an®
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheCar t </ €] b- name>
<met hod- i nt f >Renot e</ net hod-i ntf >
<met hod- name>updat el t entt y</ net hod- name>
<met hod- par anpj ava. | ang. St ri ng</ met hod- par an»
<net hod- par an®i nt </ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheCart </ ej b- nanme>
<met hod- i nt f >Renot e</ net hod-i ntf >
<net hod- nanme>del et el t enx/ net hod- nane>
<net hod- par anpj ava. | ang. St ri ng</ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheCar t </ ej b- name>

392 iPlanet ™ Application Server Developer's Guide * November 2001

EJB-JAR DD XML Files

<net hod- i nt f >Renot e</ net hod-i ntf >
<met hod- name>get Pri mar yKey</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheCart </ ej b- nanme>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- nane>enpt y</ net hod- name>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheCar t </ ej b- name>
<met hod- i nt f >Renot e</ net hod- i nt f >
<met hod- name>get EJBHone</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheCart </ ej b- nanme>
<net hod- i nt f >Renot e</ net hod-i ntf>
<met hod- nane>get Handl e</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheCart </ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- name>addl t enx/ net hod- name>
<net hod- par anpj ava. | ang. St ri ng</ net hod- par an»
<net hod- par an®i nt </ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheCart </ ej b- nanme>
<net hod- i nt f >Renot e</ net hod-i ntf >
<met hod- name>get | t ens</ met hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>

Appendix C Sample Deployment Files

393

EJB-JAR DD XML Files

<cont ai ner-transacti on>
<net hod>
<ej b- name>TheCar t </ €] b- name>
<net hod-i nt f >Renot e</ net hod-i ntf>
<net hod- name>addl t enx/ et hod- nane>

<met hod- par anpj ava. | ang. St ri ng</ met hod- par an»

</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheCart </ ej b- nanme>
<met hod- i nt f >Renpot e</ net hod-i ntf>
<met hod- nane>i sl denti cal </ et hod- nane>

<met hod- par anpj avax. ej b. EJBObj ect </ net hod- par an®

</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>Thel nvent or y</ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- nane>get Pri mar yKey</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>Thel nvent or y</ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf >
<met hod- name>get EJBHone</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>
<cont ai ner-transacti on>
<net hod>
<ej b- name>Thel nvent or y</ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf >
<net hod- nane>get Handl e</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>Thel nvent or y</ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >

<met hod- nane>updat el nvent or y</ met hod- nane>

394 iPlanet ™ Application Server Developer's Guide * November 2001

EJB-JAR DD XML Files

<met hod- par am>com sun. estore.i nventory.ejb
I nvent or yDet ai | s</ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>Thel nvent or y</ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- nane>updat eQuant i t y</ met hod- nanme>
<nmet hod- par anpj ava. | ang. St ri ng</ net hod- par an»
<net hod- par an®i nt </ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>Thel nvent or y</ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf >
<met hod- nane>i sl denti cal </ met hod- nane>
<net hod- par anpj avax. ej b. EJBObj ect </ net hod- par an®
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>Thel nvent or y</ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<nmet hod- nane>get | nvent or y</ net hod- nanme>
<met hod- par anpj ava. | ang. St ri ng</ met hod- par an»
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>Thel nvent or y</ ej b- nane>
<net hod- i nt f >Renot e</ net hod-i ntf >
<met hod- nane>get Quant it y</ met hod- nane>
<nmet hod- par anpj ava. | ang. St ri ng</ net hod- par an»
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheCat al og</ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- nane>get Pri mar yKey</ net hod- nane>

Appendix C Sample Deployment Files

395

EJB-JAR DD XML Files

</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheCat al og</ ej b- nane>
<met hod- i nt f >Renpot e</ net hod-i ntf>
<met hod- name>get EJBHone</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheCat al og</ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i ntf >
<nmet hod- nane>get Handl e</ net hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheCat al og</ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i ntf >
<met hod- nane>sear chPr oduct s</ net hod- nane>
<met hod- par anpj ava. uti | . Vect or </ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<net hod>
<ej b- name>TheCat al og</ ej b- nane>
<met hod- i nt f >Renpot e</ net hod-i ntf>
<net hod- name>f i ndPr oduct s</ net hod- nanme>
<met hod- par am>com sun. est or e. cat al 0og. ej b. Cat egory
</ met hod- par an»
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
<cont ai ner-transacti on>
<met hod>
<ej b- name>TheCat al og</ ej b- nane>
<met hod- i nt f >Renpot e</ net hod-i ntf>
<met hod- nane>i sl denti cal </ met hod- nane>
<met hod- par anpj avax. ej b. EJBCbj ect </ net hod- par an>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>

396 iPlanet ™ Application Server Developer's Guide * November 2001

EJB-JAR DD XML Files

<cont ai ner-transacti on>
<net hod>
<ej b- name>TheCat al og</ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- nane>get Al | Cat egor i es</ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ contai ner-transacti on>
</ assenbl y-descri ptor>
</ejb-jar>

Sample iPlanet Application Server EJB-JAR DD
XML File

This section provides an example of an iPlanet Application Server EJB-JAR DD
XML file. The following EJB-JAR DD has a file name of i as-ej b-j ar. xm .

<i as-ejb-jar>
<enterpri se-beans>
<sessi on>
<ej b- name>TheMni | er </ ej b- nane>
<gui d>{ Deadbabe- AB3F- 11D2- 98C5- 0060BOEF0618} </ gui d>
<pass-ti nmeout >100</ pass-ti nmeout >
<sessi on-ti meout >300</ sessi on-ti meout >
<i s-thread-saf e>f al se</is-thread-saf e>
<pass- by-val ue>f al se</ pass- by-val ue>
<ej b-ref>
<ej b-ref - nane>account </ ej b-r ef - nane>
<j ndi - nane>ej b/ est or eEj b/ TheAccount </ j ndi - name>
</ejb-ref>
<ej b-ref>
<ej b-ref - name>or der </ ej b-r ef - name>
<j ndi - name>ej b/ est or eEj b/ TheOr der </ j ndi - nane>
/ejb-ref>
</ sessi on>
<sessi on>
<ej b- name>TheEst or ekeeper </ ej b- nane>
<gui d>{ Deadbabe- AB3F- 11D2- 98C5- 000011112222} </ gui d>
<pass-ti meout >100</ pass-ti neout >
<sessi on-ti meout >300</ sessi on-ti meout >
<i s-t hread- saf e>fal se</i s-thread-saf e>
<pass- by- val ue>f al se</ pass- by-val ue>
<ej b-ref>
<ej b-ref - name>account </ ej b-r ef - nane>
<j ndi - name>ej b/ est or eEj b/ TheAccount </ j ndi - nane>

Appendix C Sample Deployment Files 397

EJB-JAR DD XML Files

</ejb-ref>
<ej b-ref>
<ej b-ref - nane>or der </ ej b-r ef - nane>
<j ndi - nane>ej b/ est or eEj b/ TheOr der </ j ndi - nane>
</ejb-ref>
<ejb-ref>
<ej b-ref-name>mai | er </ ej b-r ef - name>
<j ndi - name>ej b/ est or eEj b/ TheMi | er </ j ndi - nane>

</ejb-ref>
<ej b-ref>
<ej b-ref - nane>cat al og</ ej b-r ef - nane>
<j ndi - name>ej b/ est or eEj b/ TheCat al og</ j ndi - nane>

</ejb-ref>
<ej b-ref>
<ej b-ref-nane>cart </ ej b-ref - nane>
<j ndi - nane>ej b/ est or eEj b/ TheCart </ j ndi - nanme>

</ejb-ref>
<ej b-ref>

<ej b-ref - name>i nvent ory</ ej b-ref - nane>

<j ndi - nanme>ej b/ est or eEj b/ Thel nvent or y</ j ndi - name>
</ejb-ref>

</ sessi on>
<sessi on>

<ej b- name>Thel nvent or y</ ej b- nane>

<gui d>{ deadbabe- ab3f - 11d2- 98c5- 999999990002} </ gui d>
<pass-ti meout >100</ pass-ti meout >

<i s-thread-saf e>fal se</is-thread-saf e>

<pass- by- val ue>f al se</ pass- by-val ue>

<sessi on-ti meout >300</ sessi on-ti meout >

</ sessi on>
<sessi on>

<ej b- name>TheCat al og</ ej b- nane>

<gui d>{ deadbabe- ab3f - 11d2- 98c5- 999999990003} </ gui d>
<pass-ti nmeout >100</ pass-ti nmeout >

<i s-thread- saf e>fal se</is-thread-saf e>

<pass- by-val ue>f al se</ pass- by-val ue>

<sessi on-ti meout >300</ sessi on-ti neout >

</ sessi on>
<sessi on>

<ej b- name>TheCar t </ e b- name>

<gui d>{ deadbabe- ab3f - 11d2- 98c5- 999999990001} </ gui d>
<pass-ti nmeout >100</ pass-ti neout >

<i s-thread-saf e>f al se</is-thread-saf e>

<pass- by-val ue>f al se</ pass- by-val ue>

<sessi on-ti meout >300</ sessi on-ti meout >

</ sessi on>

398 iPlanet ™ Application Server Developer's Guide * November 2001

iPlanet Application Server Client DD XML Files

<entity>
<ej b- name>TheAccount </ ej b- nane>
<gui d>{ deadbabe- ab3f - 11d2- 98c5- 999999990000} </ gui d>
<pass-ti nmeout >100</ pass-ti nmeout >
<i s-thread-saf e>fal se</is-thread-saf e>
<pass- by-val ue>f al se</ pass- by-val ue>
<pool - manager >
<commi t - opt i on>NO_CACHE_READY_| NSTANCE</ conmi t - opti on>
<Ready- pool - ti meout >0</ Ready- pool - ti nmeout >
<Ready- pool - maxsi ze>0</ Ready- pool - naxsi ze>
</ pool - manager >
</entity>
<entity>
<ej b- name>TheOr der </ ej b- nanme>
<gui d>{ deadbabe- ab3f - 11d2- 98c5- 333344445555} </ gui d>
<pass-ti nmeout >100</ pass-ti nmeout >
<i s-t hread- saf e>fal se</i s-thread-saf e>
<pass- by-val ue>f al se</ pass- by-val ue>
<per si st ence- manager >
<per si st ence- nanager - f act ory- cl ass- nane>
com net scape. server. ej b. Per si st enceManager Fact ory
</ per si st ence- manager - f act ory- cl ass- nanme>
<properties-file-location>
Enpl oyeeRecor d_pmil. xm
</properties-file-location>
<ext ernal -xm -1 ocati on>
</ external -xnl -1 ocation>
</ per si st ence- manager >
<pool - nanager >
<commi t - opt i on>NO_CACHE_READY_| NSTANCE</ conmi t - opti on>
<Ready- pool - t i meout >0</ Ready- pool - ti neout >
<Ready- pool - maxsi ze>0</ Ready- pool - maxsi ze>
</ pool - manager >
</entity>
</ enterprise-beans>
</ias-ejb-jar>

IPlanet Application Server Client DD XML Files

The following is a sample iPlanet Application Server DD XML file.

<?xm version="1.0" encodi ng="UTF-8""?>
<i as-application-client>
<ej b-ref>
<ej b-ref - name>Ext er nal </ ej b-r ef - name>

Appendix C Sample Deployment Files 399

RMI/IIOP Client DD XML Files

<j ndi - name>ej b/ com sun. cts. tests. appclient.depl oy. ejb. ej bref.
Test </j ndi - name>
</ejb-ref>
<ej b-ref>
<ej b-ref - name>Ext er nal 1</ ej b-r ef - nane>
<j ndi - name>ej b/ com sun. cts. tests. appclient. depl oy. ejb. ej bref.
Test 1</ j ndi - nanme>
</ejb-ref>
</ias-application-client>

RMI/IIOP Client DD XML Files

The following is a sample RMI/IIOP client DD XML file.
<?xm version="1.0" encodi ng="UTF-8"?>

<IDOCTYPE application-client PUBLIC '-//Sun Microsystems, Inc.//[DTD
J2EE Application Client 1.2//EN’
'http://java.sun.com/j2ee/dtds/application-client_1_2.dtd’>

<application-client>
<display-name>appclient_ejb_depC_ejbref_client</display-name>
<description>CTS appclient ejbref test</description>
<ejb-ref>
<ejb-ref-name>External</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.cts.tests.appclient.deploy.ejb.ejbref.
TestHome</home>
<remote>com.sun.cts.tests.appclient.deploy.ejb.ejbref.
Test</remote>
<ejb-link>Test</ejb-link>
</ejb-ref>
<ejb-ref>
<ejb-ref-name>Externall</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.cts.tests.appclient.deploy.ejb.ejbref.
TestlHome</home>
<remote>com.sun.cts.tests.appclient.deploy.ejb.ejbref.
Testl</remote>
</ejb-ref>
</application-client>

400 iPlanet ™ Application Server Developer's Guide * November 2001

Resource DD XML Files

Resource DD XML Files

The following is a sample resource DD XML file.

<i as-resource>
<r esour ce>
<j ndi - name>j dbc/ Sanpl eSybaseDS1</ j ndi - nanme>
<j dbc>
<dat abase>nasqadev</ dat abase>
<dat asour ce>SYBFRED</ dat asour ce>
<user name>apar na</ user nane>
<passwor d>apar nak</ passwor d>
<driver-type>SYBASE_CTLI B</dri ver-type>
</ j dbc>
</ resource>
</ias-resource>

Appendix C Sample Deployment Files 401

Resource DD XML Files

402 iPlanet ™ Application Server Developer's Guide * November 2001

Glossary

This glossary provides definitions for common terms used to describe the iPlanet
Application Server deployment and development environment. For a glossary of
standard J2EE terms, please see the glossary at:

http://java. sun. conij 2ee/ gl ossary. ht m

ACL Access Control List, a list of users or groups and their specified permissions.
See component ACL and general ACL.

administration server A process in iPlanet Application Server that handles
administrative tasks.

APl Application Programmer Interface, a set of instructions that a computer
program can use to communicate with other software or hardware that is designed
to interpret that API.

applet A small application written in Java that runs in a web browser. Typically,
applets are called by or embedded in web pages to provide special functionality.
By contrast, a servlet is a small application that runs on a server.

application A computer program that performs a task or service for a user. See
web application.

application event A named action that you register with the iPlanet Application
Server registry. The event occurs either when a timer expires or when the event is
called (triggered) from application code at run time. Typical uses for events include
periodic backups, reconciling accounts at the end of the business day, or sending
alert messages.

application server A program that runs an application in a client/server

environment, executing the logic that makes up the application and acting as
middleware between a web browser and a datasource.

403

404

application tier A conceptual division of an application:

client tier: The user interface (Ul). End users interact with client software (web
browser) to use the application.

server tier: The business logic and presentation logic that make up your application,
defined in the application’s components.

data tier: The data access logic that enables your application to interact with a
datasource.

AppLogic A The iPlanet Application Server-specific class responsible for
completing a well-defined, modular task within a iPlanet Application Server
application. In NAS 2.1, applications used AppLogics to perform actions such as
handling form input, accessing data, or generating data used to populate HTML
templates. This functionality is replaced with servlets and JSPs in iPlanet
Application Server.

AppPath An the iPlanet Application Server registry entry that contains the name
of the directory where application files reside. This entry defines the top of a logical
directory tree for the application, similarly to the document path in a web server.
By default, AppPat h contains the value BasePath/ APPS, where BasePath is the base
the iPlanet Application Server directory. (BasePat h is also a the iPlanet
Application Server variable.)

attribute Attributes are name-value pairs in a request object that can be set by
servlets. Contrast with parameter. More generally, an attribute is a unit of metadata.

authentication The process of verifying a user provided username and
password.

BasePath A the iPlanet Application Server registry entry that contains the
directory where the iPlanet Application Server is installed, including the iPlanet
Application Server subdirectory (other iPlanet products can be installed in
BasePat h). For instance, if you install into/ usr/ 1 ocal /i Pl anet on a UNIX
machine, BasePat h is/ usr/ | ocal /i Pl anet /i as. BasePat h is a building block for

AppPat h.

bean property file A text file containing EJB deployment information. The type
of information is defined in j avax. ej b. Depl oynment Descri pt or .

bean managed transaction See declarative transaction.

iPlanet ™ Application Server Developer's Guide * November 2001

business logic The implementation rules determined by an application’s
requirements.

business method Method that performs a single business task, such as querying
a database or authenticating a user, in the course of business logic.

C++ server A process in iPlanet Application Server that runs and manages C++
objects.

cached rowset A CachedRowSet object permits you to retrieve data from a
datasource, then detach from the datasource while you examine and modify the
data. A cached row set keeps track both of the original data retrieved, and any
changes made to the data by your application. If the application attempts to update
the original datasource, the row set is reconnected to the datasource, and only
those rows that have changed are merged back into the database.

callable statement A class that encapsulates a database procedure or function
call for databases that support returning result sets from stored procedures.

class A named set of methods and member variables that define the
characteristics of a particular type of object. The class defines what types of data
and behavior are possible for this type of object. Contrast with interface.

class file A file that contains a compiled class, usually with a . cl ass extension.
See also class name and classpath. Normally referred to in terms of its location in the
file system, as in

.../ com nyDomai n/ myPackage/ myd ass.

class loader A Java component responsible for loading Java classes, according to
specific rules.

class name The name of a class in the Java Virtual Machine. See class file and
classpath.

classpath The path that identifies a Java class or package, in terms of its

derivation from other classes or packages. See also class file and class name. For
example,

com nyDomai n. nyPackage. myCl ass.

client An entity that invokes a resource.

Glossary 405

406

client contract A contract that determines the communication rules between a
client and the EJB container, establishes a uniform development model for
applications that use EJBs, and guarantees greater reuse of beans by standardizing
the relationship with the client. See Enterprise JavaBean (EJB).

cluster A set of hosts running the same server software in tandem with each
other.

co-locate Positioning a component in the same memory space as a related
component in order avoid remote procedure calls and improve performance.

column A field in a database table.

commit Complete a transaction by sending the required commands to the
database. See transaction.

component A servlet, Enterprise JavaBean (EJB), or JavaServer Page (JSP).

component ACL A property in a servlet or EJB configuration file that defines that
defines the users or groups that may execute.

component contract A contract that establishes the relationship between an
Enterprise JavaBean (EJB) and its container. See Enterprise JavaBean (EJB).

configuration The process of providing metadata for a component. Normally,
the configuration for a specific component is kept in a file that is uploaded into the
registry when the component executes.

container A process that executes and provides services for an EJB.

context, server A programmatic view of the state of the server, represented by an
object.

control descriptor A set of Enterprise JavaBean (EJB) configuration entries that
enable you to specify optional individual property overrides for bean methods,
plus EJB transaction and security properties.

cookie A small collection of information that can be transmitted to a calling web
browser, then retrieved on each subsequent call from that browser so the server
can recognize calls from the same client. Cookies are domain specific and can take
advantage of the same web server security features as other data interchange
between your application and the server.

iPlanet ™ Application Server Developer's Guide * November 2001

CORBA Common Object Request Broker Architecture, a standard architecture
definition for object-oriented distributed computing.

data access logic Business logic that involves interacting with a datasource.

database A generic term for Relational Database Management System (RDBMS).
A software package that enables the creation and manipulation of large amounts of
related, organized data.

database connection A database connection is a communication link with a
database or other datasource. Components can create and manipulate several
database connections simultaneously to access data.

datasource A handle to a source of data, such as a database. Datasources are
registered with the iPlanet Application Server and then retrieved
programmatically in order to establish connections and interact with the
datasource. A datasource definition specifies how to connect to the source of data.

declarative security Declaring security properties in the component’s
configuration file and allowing the component’s container (for instance, a bean’s
container or a servlet engine) to manage security implicitly. This type of security
requires no programmatic control. Opposite of programmatic security.

declarative transaction Declaring the transaction’s properties in the bean
property file and allowing the bean’s container to manage the transaction
implicitly. This type of transaction requires no programmatic control. Opposite of
programmatic transaction.

deploy To create a copy of all the files in a project on one or more servers, in such
a way that one or more iPlanet Application Servers and optionally one or more
web servers can run the application.

deployment descriptor An attribute that determines how and where an
Enterprise JavaBean (EJB) is deployed. See Enterprise JavaBean (EJB).

Directory Server An LDAP server that is bundled with iPlanet Application
Server. Every instance of iPlanet Application Server uses Directory Server to store
shared server information, including information about users and groups.

distributable session A user session that is distributable among all servers in a
cluster.

Glossary 407

408

distributed transaction A single transaction that can apply to multiple
heterogeneous databases that may reside on separate servers.

dynamic reloading Updating and reloading a component without restarting the
server. By default, servlet, JavaServer Page (JSP), and Enterprise Java Bean (EJB)
components can be dynamically reloaded.

e-commerce Industry buzzword, a term meaning electronic commerce,
indicating business done over the Internet.

Enterprise JavaBean (EJB) A business logic component for applications in a
multi-tiered, distributed architecture. EJBs conform to the Java EJB standard
specifications, which defines beans in terms of their expected roles. An EJB
encapsulates one or more application tasks or application objects, including data
structures and the methods that operate on them. Typically they also take
parameters and send back return values. EJBs always work within the context of a
container, which serves as a link between the EJBs and the server that hosts them.
See container, session EJB, and entity EJB.

entity EJB An entity Enterprise JavaBean (EJB) relates to physical data, such as a
row in a database. Entity beans are long lived, because they are tied to persistent
data. Entity beans are always transactional and multi-user aware. See session EJB.

executive server Process in iPlanet Application Server that handles executive
functions such as load balancing and process management.

failover recovery A process whereby a bean can transparently survive a server
crash.

finder method Method which enables clients to look up a bean or a collection of
beans in a globally available directory. See Enterprise JavaBean (EJB).

form action handler A specially defined method in a servlet or AppLogic that
performs an action based on a named button on a form.

general ACL A named list in the Directory Server that relates a user or group
with one or more permissions. This list can be defined and accessed arbitrarily to
record any set of permissions.

generic application A collection of globally available components, loosely
organized into an application structure for configuration purposes.

iPlanet ™ Application Server Developer's Guide * November 2001

generic servlet A servlet that extends j avax. servl et. Generi cSer vl et . Generic
servlets are protocol independent, meaning that they contain no inherent support
for HTTP or any other transport protocol. Contrast with HTTP servlet.

global database connection A database connection available to multiple
component. Requires a resource manager.

global transaction A transaction that is managed and coordinated by a
transaction manager and can span multiple databases and processes. The
transaction manager typically uses the XA protocol to interact with the database
backends. See local transaction.

group A group of users that are related in some way, maintained by a local
system administrator. See user and role.

GUID 128-bit hexadecimal number, guaranteed to be globally unique, used to
identify components in an iPlanet Application Server application.

home interface A mechanism that defines the methods that enable a client to
create and remove an Enterprise JavaBean (EJB). See Enterprise JavaBean (EJB).

HTML Hypertext Markup Language. A coding markup language used to create
documents that can be displayed by web browsers. Each block of text is
surrounded by codes that indicate the nature of the text.

HTML page A page coded in HTML and intended for display in a web browser.

HTTP A protocol for communicating hypertext documents across the Internet.

HTTP servlet A servlet that extends j avax. servl et. Htt pServl et. These
servlets have built-in support for the HTTP protocol. Contrast with generic servlet.

IDL Interface Definition Language, a language for describing functional
interfaces for remote procedure calls (RPCs), so that a compiler can generate proxy
and stub code that marshals parameters between machines.

iPlanet Application Server registry A collection of application metadata,
organized in a tree, that is continually available in active memory or on a
readily-accessible Directory Server.

iPlanet Application Server RowSet A RowSet object that incorporates the iPlanet
Application Server extensions. The i ASRowSet class is a subclass of Resul t Set .

Glossary 409

410

IIOP Internet Inter-ORB Protocol. Transport protocol for RMI clients and servers,
based on CORBA.

inheritance A mechanism in which a subclass automatically includes the method
and variable definitions of its superclass. A programmer can change or add to the
inherited characteristics of a subclass without affecting the superclass.

instance An object that is based on a particular class. Each instance of the class is
a distinct object, with its own variable values and state. However, all instances of a
class share the variable and method definitions specified in that class.

instantiation The process of allocating memory for an object at run time. See
instance.

interface Description of the services provided by an object. An interface defines a
set of functions, called methods, and includes no implementation code. An
interface, like a class, defines the characteristics of a particular type of object.
However, unlike a class, an interface is always abstract. A class is instantiated to
form an object, but an interface is implemented by an object to provide it with a set
of services. Contrast with class.

isolation level (JDBC) Sets the level at which the datasource connection makes
transactional changes visible to calling objects such as Resul t Set s.

jar file contract A contract that specifies what information must be in the
Enterprise JavaBean (EJB)’s package (. j ar file). See Enterprise JavaBean (EJB).

JavaBean A discrete, reusable Java object.

Java server Process in iPlanet Application Server that runs and manages Java
objects.

JavaServer Page (JSP) A text page written using a combination of HTML or XML
tags, JSP tags, and Java code. JSPs combine the layout capabilities of a standard
browser page with the power of a programming language.

JDBC Java Database Connectivity APIs. A standards-based set of classes and
interfaces that enable developers to create data aware components. JDBC
implements methods for connecting to and interacting with datasources in a
platform and vendor independent way.

iPlanet ™ Application Server Developer's Guide * November 2001

JNDI Java Naming and Directory Interface. JNDI provides a uniform, platform
independent way for applications to find and access remote services over a
network. The iPlanet Application Server supports JNDI lookups for datasources
and Enterprise JavaBean (EJB) components.

JTA Java Transaction API. This is an API that allows applications and J2EE
servers to access transactions.

J2EE Java 2 Enterprise Edition. This is an environment for developing and
deploying multi-tiered, Web-based enterprise applications. The J2EE platform
consists of a set of services, application programming interfaces (APIs), and
protocols that provide the functionality for developing these applications.

kas See administration server.

kcs See C++ server.

kjs See Java server.

kxs See executive server.

LDAP Lightweight Directory Access Protocol. LDAP is an open directory access
protocol that runs over TCP/IP. It is scalable to a global size and millions of entries.
Using Directory Server, a provided LDAP server, you can store all of your
enterprise’s information in a single, centralized repository of directory information

that any application server can access through the network.

load balancing A technique for distributing the user load evenly among multiple
servers in a cluster. See sticky load balancing.

local database connection The transaction context in a local connection is not
distributed across processes or across datasources; it is local to the current process
and to the current datasource.

local session A user session that is only visible to one server.

local transaction A transaction that is native to one database and is restricted

within a single process. Local transactions can work against only a single backend.
Local transactions are typically demarcated using JDBC APIs. See global transaction.

Glossary 411

412

memory cache An iPlanet Application Server feature that enables a servlet to
cache its results for a specific duration in order to improve performance.
Subsequent calls to that servlet within the duration are given the cached results so
that the servlet does not have to execute again.

metadata Information about a component, such as its name, and specifications
for its behavior.

package A collection of related classes that are stored in a common directory.
They are often literally packaged together in a Java archive (. j ar) file.

parameter Parameters are name value pairs sent from the client, including form
field data, HTTP header information, etc., and encapsulated in a request object.
Contrast with attribute. More generally, an argument to a Java method or database
prepared command.

passivation A method of releasing an EJB’s resources without destroying the
bean. In this way, a bean is made to be persistent, and can be recalled without the
overhead of instantiation. See Enterprise JavaBean (EJB).

permission A set of privileges granted or denied to a user or group. See also ACL.

persistent Refers to the creation and maintenance of a bean throughout the
lifetime of the application. In the iPlanet Application Server, beans are responsible
for their own persistence, called bean managed persistence. Opposite of transient.

pooling Providing a number of preconfigured resources to improve
performance. If a resource is pooled, a component can use an existing instance
from the pool rather than instantiating a new one. In the iPlanet Application
Server, database connections, servlet instances, and Enterprise JavaBean (EJB)
instances can all be pooled.

prepared command A database command (in SQL) that is precompiled to make
repeated execution more efficient. Prepared commands can contain parameters. A
prepared statement contains one or more prepared commands.

prepared statement A class that encapsulates a query, update, or insert statement
that is used repeatedly to fetch data. A prepared statement contains one or more
prepared command.

presentation layout Creating and formatting page content.

iPlanet ™ Application Server Developer's Guide * November 2001

presentation logic Activities that create a page in an application, including
processing a request, generating content in response, and formatting the page for
the client.

primary key class name A variable that specifies the fully qualified class name of
a bean’s primary key. Used for JNDI lookups.

principal This is the identity assigned to an entity as a result of authentication.

process A sequence of execution in an active program. A process is made up of
one or more threads.

programmatic security Controlling security explicitly in code rather than
allowing the component’s container (for instance, a bean’s container or a servlet
engine) to handle it. Opposite of declarative security.

programmatic transaction Controlling a transaction explicitly in code rather than
allowing an Enterprise JavaBean (EJB)’s container to handle it. Opposite of
declarative transaction.

property A single attribute that defines the behavior of an application
component.

registration The process by which the iPlanet Application Server gains access to a
servlet, Enterprise JavaBean (EJB), and other application resource, so named
because it involves placing entries in the iPlanet Application Server registry for
each item.

remote interface Describes how clients can call a Enterprise JavaBean (EJB)’s
methods. See Enterprise JavaBean (EJB).

remote procedure call (RPC) A mechanism for accessing a remote object or
service.

request object An object that contains page and session data produced by a
client, passed as an input parameter to a servlet or JavaServer Page (JSP).

resource manager Object that controls globally available datasources.

response object An object that references the calling client and provides methods
for generating output for the client.

Glossary 413

414

ResultSet An object that implements the j ava. sql . Resul t Set interface.
Resul t Set s are used to encapsulate a set of rows retrieved from a database or
other source of tabular data.

reusable component A component created so that it can be used in more than
one capacity, for instance, by more than one resource or application.

RMI Remote Method Invocation (RMI), a Java standard set of APls that enable
developers to write remote interfaces that can pass objects to remote processes.

role A functional grouping of subjects in an application, represented by one or
more groups in a deployed environment. See also user and group.

rollback Cancel a transaction. See transaction.
row One single data record that contains values for each column in a table.

RowSet An object that encapsulates a set of rows retrieved from a database or
other source of tabular data. RowSet extends the j ava. sqgl . Resul t Set interface,
enabling a Resul t Set to act as a JavaBeans component.

security A condition whereby application resources are only used by authorized
clients.

serializable An object is serializable if it can be deconstructed and reconstructed,
which enables it to be stored or distributed among multiple servers.

server A computer or software package that provides a specific kind of service to
client software running on other computers. A server is designed to communicate
with a specific type of client software.

servlet An instance of the Ser vl et class. A servlet is a reusable application that
runs on a server. In the iPlanet Application Server, a servlet acts as the central
dispatcher for each interaction in your application by performing presentation
logic, invoking business logic, and invoking or performing presentation layout.

servlet engine An internal object that handles all servlet metafunctions.
Collectively, a set of processes that provide services for a servlet, including
instantiation and execution.

servlet runner Part of the servlet engine that invokes a servlet with a request
object and a response object. See servlet engine.

iPlanet ™ Application Server Developer's Guide * November 2001

session cookie A cookie that is returned to the client containing a user session
identifier.

session EJB A session Enterprise JavaBean (EJB) relates to a unit of work, such as
a request for data. Session beans are short lived—the life span of the client request
is the same as the life span of the session bean. Session beans can be stateless or
stateful, and they can be transaction aware. See stateful session EJB, stateless session
EJB, and entity EJB.

session timeout A specified duration after which the iPlanet Application Server
can invalidate a user session. See user session.

SQL Structured Query Language (SQL) is a language commonly used in
relational database applications. SQL2 and SQL3 designate versions of the
language.

state 1. The circumstances or condition of an entity at any given time. 2. A
distributed data storage mechanism which you can use to store the state of an
application using the iPlanet Application Server feature interface IState2.

stateful session EJB An Enterprise JavaBean (EJB) that represents a session with
a particular client and which automatically maintains state across multiple
client-invoked methods.

stateless session EJB An Enterprise JavaBean (EJB) that represents a stateless
service. A stateless session bean is completely transient and encapsulates a
temporary piece of business logic needed by a specific client for a limited time
span.

sticky cookie A cookie that is returned to the client to force it to always connect
to the same executive server process.

sticky load balancing A method of load balancing where an initial client request
is load balanced, but subsequent requests are directed to the same process as the
initial request. See load balancing.

stored procedure A block of statements written in SQL and stored in a database.
You can use stored procedures to perform any type of database operation, such as
modifying, inserting, or deleting records. The use of stored procedures improves
database performance by reducing the amount of information that is sent over a
network.

Glossary 415

416

streaming A technique for managing how data is communicated through HTTP.
When results are streamed, the first portion of the data is available for use
immediately. When results are not streamed, the whole result must be received
before any part of it can be used. Streaming provides a way to allow large amounts
of data to be returned in a more efficient way, increasing the perceived
performance of the application.

system administrator The person who is responsible for installing and
maintaining iPlanet Application Server software and for deploying production
iPlanet Application Server applications.

table A named group of related data in rows and columns in a database.

thread A sequence of execution inside a process. A process may allow many
simultaneous threads, in which case it is multithreaded. If a process executes each
thread sequentially, it is single threaded.

transaction context A transaction’s scope, either local or global. See local
transaction, and global transaction.

transaction manager Object that controls a global transaction, normally using the
XA protocol. See global transaction.

transaction A set of database commands that succeed or fail as a group. All the
commands involved must succeed for the entire transaction to succeed.

transient A resource that is released when it is not being used. Opposite of
persistent.

URI Universal Resource Identifier, describes specific resource at a domain.
Locally described as a subset of a base directory, so that/ hant bur ger is the base
directory and a URI specifies t oppi ngs/ cheese. ht nl . A corresponding URL
would be htt p: // domai n: port/toppi ngs/ cheese. htm .

URL Uniform Resource Locator. An address that uniquely identifies an HTML
page or other resource. A web browser uses URLS to specify which pages to
display. A URL describes a transport protocol (for example, HTTP, FTP), a domain
(for example, www. my- domai n. com), and optionally a URI.

user A person who uses your application. Programmatically, a user name,
password, and set of attributes that enables an application to recognize a client. See
group and role.

iPlanet ™ Application Server Developer's Guide * November 2001

user interface (Ul) The pages that define what a user sees and with which a user
interacts in a web application.

user session A series of user application interactions that are tracked by the
server. Sessions maintain user state, persistent objects, and identity authentication.

versioning See dynamic reloading.

web application A computer program that uses the World Wide Web for
connectivity and User Interface (Ul). A user connects to and runs a web application
by using a web browser on any platform. The user interface of the application is the
HTML pages displayed by the browser. The application itself runs on a web server
and/or application server.

web browser Software that is used to view resources on the World Wide Web,
such as web pages coded in HTML or XML.

web connector plug-in An extension to a web server that enables it to
communicate with a iPlanet Application Server.

web server A host that stores and manages HTML pages and web applications.
The web server responds to user requests from web browsers.

XA protocol A database industry standard protocol for distributed transactions.

XML XML, the Extensible Markup Language, uses HTML style tags to identify
the kinds of information used in documents as well as to format documents.

Glossary 417

418 iPlanet ™ Application Server Developer's Guide * November 2001

A

ACC 216, 217, 223
accessing
business logic 45
databases 156, 185
parameters 44
actions 69
activating an entity bean 147
Application Client Container 216, 217, 223
application model 180
applications
guidelines for creating 27
identifying requirements 23
improving performance 28
partitioning 120
scalability 29
AppPath 38
assembling applications 267
authenticate tag 98
authenticated operation 106

authentication
definition 328

authorization
definition 329

authorize tag 98

B

BasePath 38

Index

batch updates
handling in JDBC 198

bean tags 81

bean, see EJBs

bean-managed persistence 122
BMP 122

build.xml file 352

C

C++ clients 250
cache-criteria field 350
caching element 291
CallableStatement 197
cancel 193
case tag 104, 106
class definition 134, 145
CLASSPATH setting for previous server versions
236, 261
client-side JavaScript 25
close tag 95, 101
CMP 156
bean-specific deployment descriptor 160
deployment descriptors 158
example 158
third party tools 157
using the deployment tool 170
vs. bean-managed persistence 122
CocoBase 157

419

code re-use 28, 40
command-line JSP compiler 89
comments 63
commit option C 154
compiling JSPs 89
concurrency 194
cond tag family 104
configuration files 50
configuring servlets 38
connected operation 106
connection pooling 194
Connection.isClosed() 193
container managed persistence see CMP
cookies 310
CORBA 205

and firewalls 212

architecture 208

failover 212

limitations 212

load balancing 211

scalability 212

scenarios 206

value-added features 208
CORBA Executive Server 208
CORBA Mapping specification 205
creating

C++ 1IOP applications 250

deployment descriptors 286

entity beans 149

JSPs 61

RMI/11OP applications 213

servlets 40

session beans 135
custom tag extensions 92
custom tags, modifying 88
CXS 208

D

database transactions 138, 154
committing in entity beans 138
distributed 199

database vendor limitations 181
databases
accessing from EJBs 123
accessing in servlets via rowsets 188
accessing through
java.transaction.UserTransaction 185
accessing with JDBC 185
connection handling with JDBC 193
connection pooling 194
EJBs as the preferred interface to 185
portability access choices 185
supported 184
DB2 185
DD, see deployment descriptors
deactivating an entity bean 147
declarations element 68
declaring an EJB remote interface 135, 151
deploying
applications 267
EJBs 123
JSPs 82
redeployment 284
servlets 39
deployment descriptors
about 285
creating 286
examples 377
deployment tool 170, 236
destroy() 36, 42
destroying servlets 36
development team 24
directives 64
distributed transactions 199
DNS 221
DOCTYPE element 88
Document Type Definition, see DTD files
documentation 17
doGet() 36, 43
doPost() 36, 43
DTD files
about 285
application XML 286
basic structure 286
EJB 298

420 iPlanet ™ Application Server Developer's Guide « November 2001

resource 305

RMI/IIOP 304

web application 288
dynamic reloading 374
dynamicValue tag 107

E

ejbActivate() 147
ejbc 124
ejbCreate() 135, 146, 149
ejbFindByPrimaryKey() 146, 150
EJBHome 136, 151
ejb-jar file 117, 298
ejb-jar.xml file 159
ejbLoad() 147
EJBObject 132, 133, 152
ejbPassivate() 147
ejbPostCreate() 146
EjbProgrammaticLogin class 335
ejb-ref element 296, 302, 304
EJBs
accessing databases with through JDBC 185
accessing with 11OP 206
client contract 115
CMP 156
component contract 116
container 114
database access from 123
defined 115
deploying 123
DTD file 298
dynamic reloading 374
entity beans 118, 122, 143
failover recovery 123
in iPlanet Application Server applications 119
introduction to 113-123
JNDI lookup of EJB home interface 214
lookup of EJB home interface 258
partitioning guidelines 120
planning guidelines 121
property files 298
purpose of 114

remote interface 132, 133
session beans 118, 121, 131
specification 22
specifying INDI name 216
stateful vs. stateless 136
transaction isolation level in 186
transactions 175
user authorization 339
using JDBC in 186
using serialization 138, 153
value-added features 137, 153
ejbStore() 147
elements 286
Enterprise JavaBeans, see EJBs
enterprise-beans element 299
entity beans 118, 122, 143
accessing 145, 153
class definition for 145
declaring a remote interface 151
ejbActivate() 147
ejbCreate() 149
ejbLoad() 147
EJBObject 152
ejbPassivate() 147
ejbStore() 147
home interface 151
requirements for 145
value-added features 153
entity element 300
equals operation 106
equalslignoreCase operation 106
escape characters 63
exceptions 61
execute tag 95
executeBatch() 198
executeNotEmpty operation 106
expressions element 69

F

failover 221, 258
CORBA 212

failover recovery 123

Index

421

field tag 95, 101

finder methods 150

firewalls 212, 246

format, of URLs, in manual 21

form-based login 332
Vs. programmatic 333

forward action 74
forward() 86

FORWARD-ONLY READ-ONLY result set 194

G

generic servlets 35, 40
getAppLogic() 348
getArray() 196
getAttribute tag 108
getBlob() 196

getClob() 196
getCreationTime() 319
getCursorName() 195
getld() 319
getLastAccessedTime() 319
getObject() 196
getParameter tag 109
getProperty action 73
getRef() 196
getRemoteUser tag 109
getRemoteUser() 319
getRequestedSessionld() 319
getTypeMap 193
getValue() 320
getValueNames() 320
goRecord tag 96

GUID (globally unique identifier) 287

H

handling requests 36
heap settings 245

home interface 136, 151
HTTP servlets 35, 40
HttpServletRequest 317
HttpServletRequest2 348
HttpSession 318
HttpSession2 322

iasacc.jar file 223
iasclient.jar file 233
ias-Datasource-jar element 305
ias-ejb-jar element 299
ias-ejb-jar.xml file 159
ias-javaclient-resource element 307
ias-resource element 305
iASRowSet class 200
ias-web.xml file 83
ias-web-app element 289
IContext 348
IEBFoStateModification interface 141
I1OP 214, 250
accessing EJBs 206
accessing servers 207
authentication 257
bridge
configuring 259
configuring to use ORBIX 251
deploying applications 260
developing applications 250
examples 263
failover 258
load balancing 258
log messages 263
lookup of EJB home interface 258
performance tuning 261
scalability 262
security 257
server configuration 259
support for 205
implementing a remote interface 135
implicit objects 77

422 iPlanet ™ Application Server Developer's Guide * November 2001

include action 73

include directive 66

include() 86

Informix 184

init() 36, 42

InitialContext 216

input-field element 293

instantiating servlets 36

iPlanet Application Server Deployment Tool 170
iPlanet Application Server documentation 17
iPlanet Application Server registry 38, 287
IProgrammaticLogin interface 333
IServerContext 348

isLast tag 106

isLoggedIn() 335, 336

isNew() 319
isRequestedSessionldFromCookie() 320
isRequestedSessionldFromURL() 320
isRequestedSessionldValid() 319
IStartupClass interface 352

IUserPrincipal interface 220

J

Jakarta 92
Java Database Connectivity, see JDBC
Java Development Kit, see JDK
Java heap settings 245
Java Message Service 355
Java Naming and Directory Interface, see INDI
java.transaction.UserTransaction 185
managing transactions with 186
JavaScript, client-side 25
javax.jar file 234
JDBC
1.0 support 181
2.0 support 181
application model diagram 180
batch updates 198
concurrency support 194
database support 181

database vendor limitations 181
databases supported 184
defined 180
distributed transactions 199
handling database connections 193
iASRowsSet class 200
JNDI support in 202
managing transactions with 186
mapping rules 169
restricting databases access with to EJBs 185
result sets

updatable 195

SCROLL-INSENSITIVE READ-ONLY result sets

194
servlet access via rowsets 188
SQL support 181
SQL-2 support 181
transactions, distributed 199
updating in batch mode 198
using in EJBs 185, 186
using in servlets 185, 187-188
using rowset with servlets 188
jdbc element 306, 308
JDK
using bundled 228
versions and operating systems 228
JMS 355
JNDI
example 218
JDBC support for 202
looking up remote interfaces 132
lookup of EJB home interface 214
specifying EJB name 216
using in JDBC 202
jspc command 89
JSPs
about 58
accessing business objects 81
actions 69
advanced programing techniques 78
bean tags 81
command-line compiler 89
comments 63
compared to servlets 27, 59
compiling 89
creating 61

Index

423

custom tag extensions 92
deploying 82

designing 59

directives 64

dynamic reloading 374
escape characters 63
example 67

exceptions 61

implicit objects 77
including other page generating resources 79
invoking with a URL 84
invoking with include or forward 86
LDAP tag library 97

load balancing 109
modifying custom tags 88
package names 91

page caching 110
portability 61
precompiling 89
registered 83

scripting elements 68
specification 22

standard tags 62

syntax 62

unregistered 83
value-added features 92

L

LDAP tag library 97
load balancing 109, 121, 211, 221, 258
loading bean state information 147
locale-charset-map element 297
log messages

I1OP 263

RMI/1IOP 248
loggedUserName() 335, 336
login

form-based 332

programmatic 332
login() 334, 336
loginSession() 322
logout() 335, 336

loop tag 94
loopEntry tag 100
loopValue tag 100

M

mapping rules, JDBC 169
Microsoft SQLServer 184

N

nisinfo element 296
notEmpty tag 106
NullValueException class 334, 335, 336

O

ODBC 185
Oracle 184
ORB 209, 227
ORBIX

configuring C++ IIOP clients to use 251
configuring RMI/ZI1IOP clients to use 237

P

package names
for JSPs 91

packaging applications 267
page caching 110
page directive 64
param action 75
param element 293
param tag 94, 98
parameters
passing rules 298

424 iPlanet ™ Application Server Developer's Guide * November 2001

servlet 293

verifying servlet 55
parameters element 293
param-group element 294
params action 75
passivating an entity bean 147
performance

improving 28

of 11OP applications 261

of RMI/ZIIOP applications 244
persistence, container managed see CMP
persistence-manager element 301
plugin action 75
pooling

database connections 194

servlets 37

pool-manager element 301

portability 61

precompiling JSPs 89

prefix attribute 88

PreparedStatement 196
ProgAuthenticationException class 334, 336

programmatic login 332
vs. form-based 333

property files
datasources 304

putValue() 320

R

redeploying applications 284

registered JSPs 83

registry 38, 287

remote interface 132, 133, 151, 152
declaring 135
implementing 135

removeValue() 320

removing servlets 36

request object 36

resource allocation 37

resource element 306

resource XML DTD file 305
resource-ref element 296, 302, 304
response pages 48
restoring bean state information 147
result cache 349
result sets
FORWARD-ONLY READ_ONLY 194
SCROLL-INSENSITIVE READ-ONLY 194
updatable 195
ResultSet 194
ResultSetMetaData 196
reusability 28, 40
rich client, see CORBA
RMI/ZIIOP 214
accessing EJBs
local 234
remote 234
and firewalls 246
authentication 219
bridge 214
configuring 225
client configuration 226
configuring to use ORBIX 237
deploying applications 235
developing applications 213
DTD file 304
examples 249
failover 221
JNDI example 218
JNDI lookup of EJB home interface 214
load balancing 221
log messages 248
packaging 222
performance tuning 244
running applications 241
scalability 245
server configuration 225
support classes 233
troubleshooting 241
user authentication 344
using the deployment tool 236
role mapping
definition 329
role-impl element 297, 303
role-mapping element 297, 303

Index

425

round robin DNS 221
rowsets

iASRowSet 200

in servlets 188
rules, mapping, JDBC 169

S

scalability 29, 212, 245, 262
scripting elements 68
scriptlets element 69
security 44
and web server 346
container 329
declarative 330
goals 324
guide to 345
iPlanet Application Server features 324
model 325
programmatic 330
responsibilities overview 327
terminology 328
serialization 153
of bean references 138
service() 36, 43
servlet element 289
servlet-info element 290
servlets
about 33
accessing databases with through JDBC 185
caching results 349
class file 41
compared to JSPs 27, 59
configuration 38
creating 40
deploying 39
designing 39
destroying 36
directory structure 38
dynamic reloading 374
engine 36, 37, 347
execution cycle 34
generic vs. HTTP 35, 40

instantiating 36
invoking from a servlet 54
invoking using a URL 52
pooling 37
removing 36
request handling 36
setting parameters 293
specification 22
standard vs. nonstandard 40
user authentication 331
user authorization 337
using JDBC in 187-188
using rowsets in 188
verifying parameters 55
session beans 118, 136
creation guidelines 136
stateful vs. stateless 132
using 121
value-added features 137
session element 299
SessionBean interface 134
session-info element 294
sessions 44
about 309
and dynamic reloading 374
cookies 310
invalidating 321
security 317
sharing with AppLogics 322
SessionSynchronization interface 135
setAttribute tag 108
setEntityContext() 149
setProperty action 72
setSessionVisibility() 322
setTransactionlsolationLevel 193
setTypeMap 193
single sign-on 342
sort tag 101
specifications 22
SQL, support for in JDBC 181
startup class, using 351
startup.properties file 352
StartupClass.java file 352
stateful session beans 121

426 iPlanet ™ Application Server Developer's Guide * November 2001

stateless session beans 121
Statement class 198

sticky load balancing 121

storing bean state information 147
storing data 44

switch tag 104, 105

Sybase 184

syntax of JSPs 62

T

tag library directive 67
taglib directive 67
tags
custom, modifying 88
LDAP 97
standard 62
summary of 86
thread safety 47
transaction model 175
transactions 138, 154
committing in entity beans 138
distributed 199
isolation level 186

TX_BEAN_MANAGED 186

U

unregistered JSPs 83
unsetEntityContext() 149
updates, batch mode 198
URL rewriting 310

URLSs, format, in manual 21
useBean action 70
useQuery tag 93, 99

using JNDI 202

\Y

validation-required element 291
value tag 107
value-added features 347
CORBA 208
for entity beans 153
for JSPs 92
for session beans 137

W

web.xml file 83
WebProgrammaticLogin class 333

Index

427

428 iPlanet ™ Application Server Developer's Guide * November 2001

	Developer’s Guide
	Contents
	Preface
	Using the Documentation
	What You Should Already Know
	How This Guide Is Organized
	Documentation Conventions
	Related Information

	Developing Applications
	Application Requirements
	About the Application Programming Model
	The Presentation Layer
	Servlets
	JSPs
	HTML Pages
	Client-Side JavaScript

	The Business Logic Layer
	Session Beans
	Entity Beans

	The Data Access Layer

	Effective iPlanet Application Guidelines
	Presenting Data with Servlets and JSPs
	Creating Reusable Application Code
	Improving Performance
	Scalability Planning
	Modularizing Applications
	Functional Isolation
	Scenario 1
	Scenario 2
	Scenario 3
	Packaging Formulas

	Reusable Code
	Prepackaged Components
	Unique Names
	Shared Framework Classes
	Session and Security Issues

	Controlling Applications with Servlets
	About Servlets
	Servlet Data Flow
	Servlet Types

	About the Server Engine
	Instantiating and Removing Servlets
	Request Handling
	Allocating Servlet Engine Resources
	Dynamically Reloading Servlets at Runtime
	Configuring Servlets for Deployment
	Locating Servlet Files
	Deploying Servlets

	Designing Servlets
	Choosing a Servlet Type
	Create Standard or Non-Standard Servlets
	Planning for Servlet Reuse

	Creating Servlets
	Servlet Files for an iPlanet Application
	The Servlet’s Class File
	Creating the Class Declaration
	Overriding Methods
	Overriding Initialize
	Overriding Destroy
	Overriding Service, Get, and Post

	Accessing Parameters and Storing Data
	Handling Sessions and Security
	Accessing Business Logic Components
	Handling Threading Issues
	Delivering Client Results
	Creating a Servlet Response Page
	Creating a JSP Response Page

	The Servlet’s Deployment Descriptor
	Elements
	Changing Configuration Files
	Using the Deployment Tool
	Using the Command Line

	iPlanet Application Server Optional Features

	Invoking Servlets
	Calling a Servlet With a URL
	Invoking Specific Application Servlets
	Invoking Generic Application Servlets

	Calling a Servlet Programmatically
	Verifying Servlet Parameters

	Presenting Application Pages with JavaServer Pages
	Introducing JSPs
	How JSPs Work
	Designing JSPs
	Choosing a Component
	Designing for Ease of Maintenance
	Designing for Portability
	Handling Exceptions

	Creating JSPs
	General Syntax
	JSP Tags
	Escape Characters
	Comments
	JSP Comments
	Generating Comments in Client Output

	Directives
	<%@�page%>
	Syntax
	Attributes
	Examples

	<%@�include%>
	Syntax
	Attributes
	Example

	<%@�taglib... %>
	Syntax
	Attributes

	Example

	Scripting Elements
	Declarations <%! ... %>
	Syntax
	Example

	Expressions <%= ... %>
	Syntax
	Example

	Scriptlets <%...%>
	Syntax
	Example

	Actions
	<jsp:useBean>
	Syntax
	Attributes
	Examples

	<jsp:setProperty>
	Syntax
	Attributes
	Examples

	<jsp:getProperty>
	Syntax
	Attributes
	Examples

	<jsp:include>
	Syntax
	Attributes
	Examples

	<jsp:forward>
	Syntax
	Attributes
	Examples

	<jsp:plugin>
	Syntax
	Attributes
	Examples

	Implicit Objects

	Programming Advanced JSPs
	Including Other Resources
	afterLogin.jsp

	Using JavaBeans
	Accessing Business Objects

	Deploying JSPs
	Unregistered JSPs
	Registered JSPs

	Invoking JSPs
	Calling a JSP With a URL
	Invoking JSPs in a Specific Application
	Invoking JSPs in a Generic Application

	Invoking a JSP From a Servlet

	JSP 1.1 Tag Summary
	Directives
	Expressions
	Scriptlets
	Comments
	Bean-Related Actions
	Other Actions

	Modifying Custom Tags for JSP 1.1
	Compiling JSPs: The Command-Line Compiler
	Value-added Features
	Custom Tag Extensions
	Database Query Tag Library
	useQuery Tag
	Syntax

	param Tag
	Syntax

	loop Tag
	Syntax

	field Tag
	Syntax

	close Tag
	Syntax

	execute Tag
	Syntax

	goRecord Tag
	Syntax

	Example

	LDAP Tag Library
	authenticate Tag (also called connection)
	Syntax

	authorize Tag
	Syntax

	param Tag
	Syntax

	password Tag
	Syntax

	useQuery Tag
	Syntax

	loopEntry Tag
	Syntax

	loopValue Tag
	Syntax

	field Tag
	Syntax

	sort Tag
	Syntax

	close Tag
	Syntax

	Example

	Conditional Tag Library
	switch Tag
	Syntax

	case Tag
	Syntax

	value Tag
	Syntax

	Dynamic Value Tag
	Syntax

	Example

	Attribute Tag Library
	getAttribute Tag
	Syntax

	setAttribute Tag
	Syntax

	getParameter Tag
	Syntax

	Get Remote User Tag
	Syntax

	Example

	JSP Load Balancing
	JSP Page Caching
	Example

	Introducing Enterprise JavaBeans
	What Enterprise JavaBeans Do
	What is an Enterprise JavaBean?
	Understanding Client Contracts
	Understanding Component Contracts
	Understanding JAR File Contracts

	Session Beans and Entity Beans
	Understanding Session Beans
	Understanding Entity Beans

	EJB Role in an iPlanet Application Server Application
	Designing an Object-Oriented Application
	Planning Guidelines
	Using Session Beans
	Using Entity Beans
	Planning for Failover Recovery
	Working with Databases
	Deploying EJBs
	Dynamically Reloading EJBs

	Using the ejbc Compiler
	Using JNDI to Reference an EJB

	Using Session EJBs to Manage Business Rules
	Introducing Session EJBs
	Session Bean Components
	Creating the Remote Interface
	Declaring vs. Implementing the Remote Interface

	Creating the Class Definition
	Session Timeout
	Passivation and Activation

	Creating the Home Interface

	Additional Session Bean Guidelines
	Creating Stateless or Stateful Beans
	Accessing iPlanet Application Server Functionality
	Serializing Handles and References
	Managing Transactions
	Committing a Transaction
	Accessing Databases
	Session Bean Failover
	How to Configure a Stateful Bean with Failover
	How the Failover Process Works
	Failover Guidelines
	How Often Is the State Saved?
	How the State Is Saved

	Building Entity EJBs
	Introducing Entity EJBs
	How an Entity Bean is Accessed

	Entity Bean Components
	Creating the Class Definition
	Using ejbActivate and ejbPassivate
	Using ejbLoad and ejbStore
	Using setEntityContext and unsetEntityContext
	Using ejbCreate Methods
	Using Finder Methods
	Declaring vs. Implementing the Remote Interface

	Creating the Home Interface
	Defining Create Methods
	Defining Find Methods

	Creating the Remote Interface

	Additional Entity Bean Guidelines
	Accessing iPlanet Application Server Functionality
	Serializing Handles and References
	Managing Transactions
	Committing a Transaction
	Commit Option C

	Handling Concurrent Access
	Accessing Databases

	Container Managed Persistence
	Full J2EE Support
	Third Party O/R Mapping Tools
	Full Example of a CMP Entity Bean
	Using the Lightweight CMP Implementation
	Creating the Deployment Descriptors by Hand
	ejb-jar Deployment Descriptor
	ias-ejb-jar Deployment Descriptor
	CMP Bean Deployment Descriptor
	Data Source
	CMP Field to RDB Column Mapping
	Persistence Operations
	findByPrimaryKey
	insert
	delete
	load
	store
	Custom Finders
	Mapping Rules

	Using the Deployment Tool

	Handling Transactions with EJBs
	Understanding the Transaction Model
	Specifying Transaction Attributes in an EJB
	Using Bean Managed Transactions

	Using JDBC for Database Access
	Introducing JDBC
	Supported Functionality
	Understanding Database Limitations
	Understanding the iPlanet Application Server Limitations
	Supported Databases

	Using JDBC in Server Applications
	Using JDBC in EJBs
	Managing Transactions with JDBC or javax.transaction.UserTransaction
	Specifying Transaction Isolation Level

	Using JDBC in Servlets

	Handling Connections
	Local Connections
	Registering a Local Datasource

	Global Connections
	Using Resource Managers
	Registering a Global Datasource
	Creating a Global Connection

	Container Managed Local Connections
	Registering a Container Managed Local Datasource

	Working with JDBC Features
	Working with Connections
	setTransactionIsolation
	getTypeMap, setTypeMap
	cancel

	Pooling Connections
	Working with ResultSet
	Concurrency Support
	Updatable Result Set Support
	getCursorName
	getObject
	getRef, getBlob, getClob, and getArray

	Working with ResultSetMetaData
	Working with PreparedStatement
	setObject
	addBatch
	setRef, setBlob, setClob, setArray
	getMetaData

	Working with CallableStatement
	getRef, getBlob, getClob, getArray

	Handling Batch Updates
	Creating Distributed Transactions
	Working with RowSet
	Using iASRowSet
	RowSetReader
	RowSetWriter
	RowSetInternal

	Using CachedRowSet
	Creating a RowSet

	Using JNDI for a Database Driver

	Developing and Deploying CORBA-Based Clients
	Overview of CORBA Client Support
	Scenarios
	Stand-Alone Program
	Server-to-Server

	Architectural Overview
	iPlanet Value-Added Features
	Naming Services
	C++ Client Support
	Built-in ORB and Third Party ORB Support
	Basic Authentication and EJB Container Integration
	Client Side Authentication
	Load Balancing
	Client-Side Load Balancing

	Scalability
	High Availability
	Minimal Ports Opened in Firewalls

	Limitations
	Choosing the ORB

	RMI/IIOP Client Applications
	Developing RMI/IIOP Client Applications
	JNDI Lookup for the EJB Home Interface
	Specifying the Naming Factory Class
	Specifying the Target IIOP Bridge
	Specifying the JNDI Name of an EJB
	The JNDI Name Without an Application Client Container
	The JNDI Name When Using an Application Client Container

	A JNDI Example

	Client Authentication
	Sample Principal Class

	Client-Side Load Balancing and Failover
	iPlanet ORB Configuration
	ORBIX Configuration

	Packaging RMI/IIOP Client Applications
	Using the Assembly Tool GUI
	Automating Reassembly Using Ant
	Using Application Client Container (ACC)

	Configuring RMI/IIOP Support
	Server Configuration
	Client Configuration
	Configuring a Java 2 Environment and iPlanet ORB
	Using the Bundled JDK
	Using an Existing JDK
	Solaris and Java 2 1.2
	Solaris or Linux and Java 1.3 (Primitive Data Types Only)
	Windows 98, NT, or 2000 and Java 2 1.2
	Windows 98, NT, or 2000 and Java 2 1.3 (Primitive Data Types Only)

	Installing RMI/IIOP Client Support Classes
	RMI/IIOP Client Access to EJBs on Same System
	RMI/IIOP Client Access to EJBs from a Remote System

	Deploying RMI/IIOP Client Applications
	Client Deployment
	Deployment Tools
	Server CLASSPATH Setting (SP2 and Prior)

	Configuring RMI/IIOP Applications for ORBIX
	References
	Configuration Steps
	Enabling Security

	Running RMI/IIOP Client Applications
	Troubleshooting RMI/IIOP Client Applications
	Performance Tuning RMI/IIOP
	Recognizing Performance Issues
	Basic Tuning Approaches
	Solaris File Descriptor Setting
	Java Heap Settings

	Enhancing Scalability

	Firewall Configuration for RMI/IIOP
	Viewing RMI/IIOP Log Messages
	Monitoring Logs on Windows
	Monitoring Logs on UNIX

	Sample RMI/IIOP Applications
	Converter Sample Application
	Other RMI/IIOP Sample Applications

	C++ IIOP Client Applications (Unix Only)
	Configuring C++ IIOP Applications for ORBIX
	Requirements
	References

	Preparing for C++ Client Development
	Data Type Assumptions and Limitations
	Generating the IDL Files
	Using J2SE 1.4 rmic 2
	Using the OpenORB JavaToIDL Compiler

	Generating CPP Files from IDL Files
	Enabling Security for C++ IIOP Applications
	Lookup for the EJB Home Interface
	Client-Side Load Balancing and Failover
	Configuring the IIOP Bridge
	Deploying C++ IIOP Client Applications
	Client Deployment
	Server CLASSPATH Setting (SP2 and Prior)

	Performance Tuning IIOP
	Basic Tuning Approaches
	Solaris File Descriptor Setting

	Enhancing Scalability

	Viewing IIOP Log Messages
	Sample C++ IIOP Applications
	Redeploying the Converter Sample for Use with a C++ Client

	Packaging for Deployment
	Overview of Packaging and Deployment
	Modules
	Applications
	Naming Standards

	Assembling Modules and Applications
	Sample Files
	Assembling WAR Modules
	Using the Command Line Interface (CLI)
	Using the Deployment Tool
	Using the Visual Café Plug-in

	Assembling EJB JAR Applications
	Using the Command Line Interface (CLI)
	Using the Deployment Tool

	Assembling RMI/IIOP Applications

	Deploying Modules and Applications
	Deployment by Module
	Deployment by Application
	Deploying RMI/IIOP Clients
	Deploying Static Content
	Tools for Deployment
	The iasdeploy Command
	The iPlanet Deployment Tool
	The iPlanet Visual Café Plug-in

	General Rules About Deployment
	Redeploying an Application or Module
	Deploying to an iPlanet Application Server Cluster
	Access to Shared Frameworks

	Introducing XML DTDs
	J2EE Standard Descriptors
	Creating Deployment Descriptors
	Document Type Definition
	The iPlanet Application Server Registry
	A Globally Unique Identifier

	Web Application XML DTD
	Web Application Overview
	Web Application XML DTD
	Element for Specifying an iPlanet Application Server Web Application
	Elements for Specifying Servlet Configuration Information
	Elements for Specifying Servlet Characteristics
	Elements for Specifying Servlet Validation
	Elements for Specifying Servlet Caching
	Examples for Setting Cache Criteria and Cache Option
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Elements for Specifying Servlet Parameters
	Elements for Specifying Servlet Sub Parameters
	Elements for Specifying Servlet Input Field
	Elements for Specifying Servlet Parameter Groups
	Elements for Specifying Session Information
	Elements for Specifying EJB Reference Information
	Elements for Specifying Resource Reference Information
	Elements for Specifying NLS Settings
	Elements for Specifying Locale Character Sets
	Elements for Specifying Role Mapping
	Elements for Specifying Role IMPL

	EJB XML DTD
	EJB JAR File Contents
	Specifying Parameter Passing Rules
	EJB iPlanet Application Server XML DTD
	Elements for Specifying EJB-JAR
	Elements for Specifying Enterprise Beans
	Elements for Specifying Session
	Elements for Specifying Entity

	Elements for Specifying Persistence Manager
	Elements for Specifying Pool Manager
	Elements for Specifying EJB Reference
	Elements for Specifying Resource Reference
	Elements for Specifying Role Mapping
	Elements for Specifying Role Implementation

	RMI/IIOP Client XML DTD
	iPlanet Application Server RMI/IIOP Client XML DTD
	Elements for Specifying EJB Reference Information
	Elements for Specifying Resource Reference Information

	Resource XML DTD
	Datasource XML DTD
	Element for Specifying Datasources
	Element for Specifying iPlanet Application Server Resources
	Elements for Specifying Resources
	Elements for Specifying JDBC Datasources

	RMI/IIOP Client Datasource XML DTD
	Elements for Specifying Java Client Resources
	Elements for Specifying JDBC Settings

	Creating and Managing User Sessions
	Introducing Sessions
	Sessions and Cookies
	Sessions and URL Rewriting
	Supported Tags and Attributes
	A
	AREA
	FORM
	FRAME
	GO
	IMG
	ONENTERBACKWARD
	ONENTERFORWARD
	ONPICK
	ONTIMER

	The URL Rewriting Process
	Response Header Processing
	Response Body Processing

	The Location Header
	Order of the Cookies

	Sessions and Security

	How to Use Sessions
	Creating or Accessing a Session
	Examining Session Properties
	Binding Data to a Session
	Binding Notification with HttpSessionBindingListener

	Invalidating a Session
	Invalidating a Session Manually
	Setting a Session Timeout

	Controlling the Session Type
	Sharing Sessions with AppLogics

	Writing Secure Applications
	iPlanet Application Server Security Goals
	iPlanet Application Server Specific Security Features
	iPlanet Application Server Security Model
	Web Client and URL Authorizations
	Web Client Invocation of Enterprise Bean Methods
	RMI/IIOP Client Invocation of Enterprise Bean Methods

	Security Responsibilities Overview
	Application Developer
	Application Assembler
	Application Deployer

	Common Security Terminology
	Authentication
	Authorization
	Role Mapping

	Container Security
	Programmatic Security
	Declarative Security
	Application Level Security
	Servlet Level Security
	EJB Level Security

	User Authentication by Servlets
	HTTP Basic Authentication
	Secure Socket Layer Mutual Authentication
	Form-Based Login
	Programmatic Login
	Form-Based vs. Programmatic Login
	The IProgrammaticLogin Interface
	The WebProgrammaticLogin Class
	The login Method
	The logout Method
	The isLoggedIn Method
	The loggedUserName Method

	The EjbProgrammaticLogin Class
	The login Method
	The logout Method
	The isLoggedIn Method
	The loggedUserName Method

	User Authorization by Servlets
	Defining Roles
	Referencing Security Roles
	Defining Method Permissions

	Sample Web Application DD

	User Authorization by EJBs
	Defining Roles
	Defining Method Permissions
	Security Role References

	User Authentication for Single Sign-on
	How to Configure for Single Sign-on
	Single Sign-on Example

	User Authentication for RMI/IIOP Clients
	Guide to Security Information
	User Information
	Location:
	How to Create:

	Security Roles
	Location:
	How to Create:
	How To Access:

	Web Server to Application Server Component Security

	Taking Advantage of the iPlanet Application Server Features
	Accessing the Servlet Engine
	Accessing the Servlet’s AppLogic
	Accessing the Server Context

	Caching Servlet Results
	Using a Startup Class
	The IStartupClass Interface
	Building the Startup Class
	Deploying the Startup Class
	How kjs Handles the StartupClass Object

	Using the Java Message Service
	About the JMS API
	JMS Messaging Styles

	Enabling JMS and Integrating Providers
	Using JMS in Applications
	JNDI and Application Component Deployment
	Connection Factory Proxy
	Connection Pooling
	User Identity Mapping
	About Default Username
	About Explicit User ID Map
	ConnectionFactoryProxies and Application Created Threads
	JMS Features Not Supported

	JMS Administration
	JMS Object Administration Tools
	JNDI Properties for JMS Administration Tools
	JMS Object Administration for IBM MQ
	Connection Factory Proxy Administration
	Creating a Proxy
	Deleting a Proxy
	Listing Proxy Parameters
	User ID Map Administration
	Connection Pooling Configuration

	Sample Applications
	JMS Future in the iPlanet Application Server
	Default JMS Provider
	Message Driven Enterprise Java Beans
	Using JMS in distributed transactions

	Runtime Considerations
	Runtime Environments
	Module Runtime Environment
	Application Runtime Environment

	The Classloader Hierarchy
	Dynamic Reloading
	Enabling Dynamic Reloading
	Dynamic Reloading of Servlets and JSPs
	Dynamic Reloading of EJBs

	Sample Deployment Files
	Application DD XML Files
	Sample Application DD XML File

	Web Application DD XML Files
	Sample Web Application DD XML File
	Sample iPlanet Application Server Web-App DD XML File

	EJB-JAR DD XML Files
	Sample J2EE EJB-JAR DD XML File
	Sample iPlanet Application Server EJB-JAR DD XML File

	iPlanet Application Server Client DD XML Files
	RMI/IIOP Client DD XML Files
	Resource DD XML Files

	Glossary
	Index

