
Programmer’s Guide (C++)
iPlanet™ Application Server

Version6.5

806-4793-01

February 2002

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights

reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In

particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents

listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the

U.S. and other countries.

This product is distributed under licenses restricting its use, copying distribution, and decompilation. No part of

this product may be reproduced in any form by any means without prior written authorization of Sun and its

licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, iPlanet and the iPlanet logo are trademarks or registered

trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon

architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company,

Ltd.

This product includes software developed by Apache Software Foundation (http://www.apache.org/).

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and

Conditions

. __

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous

droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce

produit. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des

brevets américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les

applications de brevet en attente dans les Etats - Unis et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent

l’utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être

reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de

ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par

un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, iPlanet et le logo iPlanet sont des marques de fabrique ou

des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées

de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont

basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open

Company, Ltd.

3

Contents

Preface . 11
Using the Documentation . 11

About This Guide . 14

What You Should Already Know . 14

How This Guide Is Organized . 14

Naming Conventions . 15

Documentation Conventions . 15

Related Information . 16

Chapter 1 Introduction to Applications . 17
About iPlanet Application Server Applications . 17

Applications as Part of a Three-Tiered Environment . 18

Example Three-Tiered Application . 19

Introduction to the iPlanet Application Server Foundation Class Library . 20

Introduction to Interfaces and COM . 21

What Is COM? . 21

Benefits of COM . 22

How to Use COM . 22

What Is an Interface? . 23

Benefits of Using Interfaces . 23

Chapter 2 Designing Applications . 25
Parts of an iPlanet Application Server Application . 25

AppLogic Objects . 26

HTML Pages . 26

Templates . 27

Query Files . 27

Other Code . 27

Questions to Ask Before You Start . 27

Designing the Components of the Application . 29

4 iPlanet Application Server Programmer’s Guide (C++) • February 2000

User Interface Design . 29

Combining or Splitting Application Components . 30

Designing an AppLogic Base Class . 34

Designing a Login AppLogic Object . 35

Designing Local, Distributed, and Global AppLogic Objects . 36

Chapter 3 Application Development Techniques . 37
Your Development Environment . 37

Accessing Libraries . 38

Using Interfaces . 39

How to Reference Objects Through Interfaces . 39

How to Implement Interfaces . 40

Getting Information About Interfaces . 43

Instantiating Objects . 43

Declaring and Defining Methods . 44

Reference Counting . 45

Working with Data . 47

Managing Memory Buffers . 47

Using Spin Locks . 48

Using Critical Sections . 50

Working with Strings . 51

Working with IGXValList Objects . 52

Working with GUIDs . 53

Working with Binary Large Objects (BLOBs) . 54

Working with Dates and Times . 55

Exporting Classes . 56

Using Events . 57

The Application Events API . 58

Creating a New Application Event . 58

Using an Application Event . 59

Using Cookies . 60

Sending a Cookie . 60

Referencing a Cookie . 60

Chapter 4 Writing Server-Side Application Code . 61
What Is An AppLogic Object? . 61

Introduction to Writing AppLogic Objects . 62

Parts of a Typical AppLogic Object . 62

Steps for Writing AppLogic Objects . 65

Header File . 65

Source File . 66

Performing the Main Task in an AppLogic Object . 68

5

Calling an AppLogic From Code . 68

Requests, AppLogic Names, and GUIDs . 70

Passing Parameters to AppLogic Objects . 71

Passing Parameters To AppLogic From An HTML Page . 71

Passing Parameters to AppLogic From Code . 76

Returning Results From an AppLogic Object . 79

Types of Results . 79

Using the Return Value of Execute() . 79

Returning HTML Results . 81

Streaming Results . 83

Returning Output Parameters in an IGXValList Object . 85

Caching AppLogic Results to Improve Performance . 86

How to Cache Results . 87

Using Cache Criteria . 88

How To Specify Caching Criteria . 89

How to Change Caching Criteria . 94

How to Remove Cached Results . 94

How to Stop Caching . 95

Chapter 5 Working with Databases . 97
Introduction to Working with Databases . 98

Supported Databases . 98

Summary of Database Interaction . 98

About Database Connections . 99

Opening a Database Connection . 99

Closing a Database Connection . 100

Getting Information About Columns or Fields . 101

Inserting Records in a Database . 103

Updating Records in a Database . 104

Deleting Records From a Database . 106

Using Pass-Through Database Commands . 108

Using Prepared Database Commands . 109

Using Parameters in Database Commands . 110

Parts of Syntax in Which Parameters are Not Allowed . 113

Using Parameters in a Flat Query . 114

Using Parameters in an INSERT, UPDATE, or DELETE Command . 114

Using Stored Procedures . 115

Getting the Return Value of a Stored Function . 115

Creating a Stored Procedure . 116

Running a Stored Procedure . 117

Supported Stored Procedure Operations . 119

Sample Stored Procedure . 120

Using Triggers . 122

6 iPlanet Application Server Programmer’s Guide (C++) • February 2000

Creating a Trigger . 122

Disabling and Enabling Triggers . 123

Deleting a Trigger . 124

Using Sequences . 124

Creating a New Sequence . 124

Using An Existing Sequence . 126

Deleting a Sequence . 127

Managing Database Transactions . 127

Setting Up a Transaction . 128

Committing a Transaction . 130

Rolling Back aTransaction . 131

Chapter 6 Querying a Database . 133
Introduction to Queries . 133

Types of Queries . 133

Using Flat Queries . 134

Writing Flat Queries . 134

Running Flat Queries . 146

Getting Data From a Flat Query’s Result Set . 148

Using Hierarchical Queries . 149

Writing Hierarchical Queries . 151

Running Hierarchical Queries . 158

Getting Data From a Hierarchical Query’s Result Set . 158

Buffering Result Sets From Queries . 159

Creating Database Reports . 163

Types of Reports . 164

Creating Tabular Reports . 165

Creating Grouped Reports . 165

Running Reports . 166

Sample Reports . 167

Working with Query Files . 178

Writing a Flat Query in a Query File . 178

Running a Flat Query in a Query File . 179

Writing a Hierarchical Query In a Query File . 179

Running a Hierarchical Query in a Query File . 181

Running Asynchronous Queries . 183

Chapter 7 Working with Templates . 187
What are Templates? . 187

What is a GXML Template? . 188

What is an HTML Template? . 188

How to Write a GXML Template . 190

7

Converting HTML Templates to GXML Templates . 191

How to Write an HTML Template . 191

Calling an AppLogic Object From an HTML Page . 192

GX Markup Tag Syntax . 193

TextBlock . 194

TagAttributes . 194

Using the Cell Attribute in a GX Markup Tag . 199

Using the Tile Attribute in a GX Markup Tag . 203

Using the Replace Attribute in a GX Markup Tag . 205

Using the Include Attribute in a GX Markup Tag . 206

Creating a User-Defined Tag . 207

Using a Template Map . 207

Using Your Own Template Map Class for Special Processing . 210

Constructing a Hierarchical Result Set with GXTemplateDataBasic . 212

Improving Performance When Using GXTemplateDataBasic . 215

Using Conditionals in an HTML Template . 219

Example HTML Template . 220

Example GXML Template . 223

Chapter 8 Managing Session and State Information . 225
What is a Session? . 225

Why Use Sessions? . 226

How Sessions Work . 226

Starting a Session . 228

Setting the Session’s Visibility . 230

Using an Existing Session . 230

Removing a Session and Its Related Data . 232

Example AppLogic Using Sessions . 232

Using Custom Sessions . 234

Assigning Your Own Session IDs . 240

Viewing the Number of Active Sessions . 245

Using the State Layer . 246

Adding a Node to a State Tree . 250

Storing Data in an Existing Node in a State Tree . 251

Chapter 9 Writing Secure Applications . 253
Introduction to iPlanet Application Server Security . 253

About User Authentication . 254

About Role Authentication . 255

About Access Control List Authorization . 256

Providing Application Security in Code . 257

Secure Sessions . 258

8 iPlanet Application Server Programmer’s Guide (C++) • February 2000

Starting a Secured Session . 258

Checking a User’s Authorization . 259

Stopping a Secured Session . 260

Writing a Login AppLogic Object . 261

Prompting for ID and Password . 264

Writing Login Attempts to the Event Log . 265

Validating Input to AppLogic Objects . 265

Secure Caching . 266

Chapter 10 Integrating Applications with Email . 269
Introduction to Email in iPlanet Application Server Applications . 269

Security in Email . 270

Receiving Email . 270

Sending Email . 272

Chapter 11 Running and Debugging Applications . 275
Getting Ready to Run an Application . 275

Compiling Applications . 276

Placing Files on the iPlanet Application Server . 280

Placing Files on the Web Server (HTML Client) . 282

Registering Code And Security Information . 282

Saving and Restoring Registry Configurations . 288

Debugging with Third-Party Tools . 289

Debugging with MSVC (Version 4.2 or Higher) . 290

Chapter 12 Sample Code Walkthrough . 293
About the Online Bank Sample Application . 293

AppLogic Objects in Online Bank . 295

The Online Bank Base AppLogic . 297

// required calls to GXDllLockInc() and GXDllLockDec(). 297

Detailed Walk Through of Funds Transfer Functionality . 303

CustomerMenu.html . 303

OBShowTransferPage AppLogic . 304

Transfer.html . 311

OBTransfer AppLogic . 313

Other Code . 319

Online Bank Registration File . 320

Appendix A Implementation Tips . 323
System Configuration Tips . 323

Memory Management Tips . 324

Database and Query Tips . 324

9

HTML Tips . 325

Session Tips . 325

Tips for Calling an Applogic From Another Applogic . 325

Streaming Tips . 325

Glossary . . 331

Index . 347

10 iPlanet Application Server Programmer’s Guide (C++) • February 2000

11

Preface

This manual is intended for application developers who will be programming

server-side or client-side code, or both. It provides conceptual sections that will

prove useful to anyone working with iPlanet Application Server. It contains an

overview of useful iPlanet Application Server concepts, application design

principles, and detailed information about developing iPlanet Application Server

applications in C++.

This preface describes the iAS documentation set and illustrates what you can

expect to find in this Programmer’s Guide.

This preface contains the following sections:

• Using the Documentation

• About This Guide

• What You Should Already Know

• How This Guide Is Organized

• Naming Conventions

• Documentation Conventions

• Related Information

Using the Documentation
The following table lists the tasks and concepts that are described in the iPlanet Application
Server manuals andRelease Notes. If you are trying to accomplish a specific task or learn
more about a specific concept, refer to the appropriate manual.

Using the Documentation

12 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Note that the printed manuals are also available online in PDF and HTML format, at:
http://docs.iplanet.com/docs/manuals/ias.html

For information about See the following Shipped with

Late-breaking information about the
software and the documentation

Release Notes Available on the Web,
at
http://docs.iplanet.com

Installing iPlanet Application Server and its
various components (Web Connector
plug-in, iPlanet Application Server
Administrator), and configuring the sample
applications

Installation Guide iPlanet Application
Server 6.5

Creating iPlanet Application Server 6.5
applications that follow the open Java
standards model (Servlets, EJBs, JSPs, and
JDBC), by performing the following tasks:

• Creating the presentation and execution
layers of an application

• Placing discrete pieces of business logic
and entities into Enterprise Java Bean
(EJB) components

• Using JDBC to communicate with
databases

• Using iterative testing, debugging, and
application fine-tuning procedures to
generate applications that execute
correctly and quickly

Developer’s Guide iPlanet Application
Server 6.5

Using the Documentation

Preface 13

Administering one or more application
servers using iPlanet Application Server
Administrator Tool to perform the following
tasks:

• Monitoring and logging server activity

• Implementing security for iPlanet
Application Server

• Enabling high availability of server
resources

• Configuring web-connector plugin

• Administering database connectivity

• Administering transactions

• Configuring multiple servers

• Administering multiple-server
applications

• Load balancing servers

• Managing distributed data
synchronization

• Setting up iPlanet Application Server for
development

Administrator’s Guide iPlanet Application
Server 6.5

Migrating your applications to the new
iPlanet Application Server 6.5 programming
model from the Netscape Application Server
version 2.1, including a sample migration of
an Online Bank application provided with
iPlanet Application Server

Migration Guide iPlanet Application
Server 6.5

Using the public classes and interfaces, and
their methods in the iPlanet Application
Server class library to write Java
applications

Server Foundation
Class Reference (Java)

iPlanet Application
Server 6.5

Using the public classes and interfaces, and
their methods in the iPlanet Application
Server class library to write C++
applications

Server Foundation
Class Reference (C++)

Order separately

For information about See the following Shipped with

About This Guide

14 iPlanet Application Server Programmer’s Guide (C++) • February 2002

About This Guide
This guide describes how to create applications intended to run on iPlanet

Application Server.

This guide is intended for information technology developers in the corporate

enterprise who want to extend client-server applications to a broader audience

through the World Wide Web. In addition to describing programming concepts

and tasks, this guide offers sample code, implementation tips, and reference

material that includes a glossary.

What You Should Already Know
This guide assumes you are familiar with the following topics:

• the Java 2 Platform, Enterprise Edition (J2EE) specification

• the Internet and World Wide Web

• Hypertext Markup Language (HTML)

• C++ programming

• C++ APIs as defined in specifications for Enterprise JavaBeans, JavaServer

Pages, and JDBC

• structured database query languages such as SQL

• relational database concepts

• software development processes, including debugging and source code control

How This Guide Is Organized
This guide is organized into twelve chapters and an appendix.

• Chapter 1, “Introduction to Applications”

• Chapter 2, “Designing Applications”

• Chapter 3, “Application Development Techniques”

• Chapter 4, “Writing Server-Side Appication Code”

• Chapter 5, “Working with Databases”

Naming Conventions

Preface 15

• Chapter 6, “Querying a Database”

• Chapter 7, “Working with Templates”

• Chapter 8, “Managing Session and State Information”

• Chapter 9, “Writing Secure Applications”

• Chapter 10, “Integrating Applications with Email”

• Chapter 11, “Running and Debugging Applications”

• Chapter 12, “Sample Code Walkthrough”

• Chapter 13, “Writing Secure Applications”

• Appendix A, “Implementation Tips”

Finally, a Glossary and Index are provided.

Naming Conventions

Documentation Conventions
File and directory paths are given in Windows format (with backslashes separating

directory names). For Unix versions, the directory paths are the same, except that

slashes are used instead of backslashes to separate directories.

This guide uses URLs of the form:

Item Convention

Class name “GX” prefix, followed by mixed case with initial

uppercase. For example, GXTemplateMapBasic class.

Interface name “IGX” prefix, followed by mixed case with initial

uppercase. For example, IGXPreparedQuery.

Method name Mixed case with initial uppercase. For example,

GetLogin().

Parameters Mixed case with initial lowercase. For example,

myQuery.

Variables Mixed case with initial lowercase. For example, myVar.

Related Information

16 iPlanet Application Server Programmer’s Guide (C++) • February 2002

http://server.domain/path/file.html

In these URLs, server is the name of server on which you run your application;

domain is your Internet domain name; path is the directory structure on the server;

and file is an individual filename. Italic items in URLs are placeholders.

This guide uses the following font conventions:

• The monospace font is used for sample code and code listings, API and

language elements (such as function names and class names), file names,

pathnames, directory names, and HTML tags.

• Italic type is used for book titles, emphasis, variables and placeholders, and

words used in the literal sense.

Related Information
Specifications related to the iAS programming model are provided in the directory

installdir/ias/docs/, where installdir refers to the directory in which you installed

iAS. You can find a directory of all iAS-related documentation at

installdir/ias/docs/index.htm.

17

Chapter 1

Introduction to Applications

This chapter provides an overview of iPlanet Application Server applications.

The following topics are included in this chapter:

• About iPlanet Application Server Applications

• Introduction to the iPlanet Application Server Foundation Class Library

• Introduction to Interfaces and COM

About iPlanet Application Server Applications
The cross-platform and universal access nature of the Internet and Intranet is

enabling corporations to deliver online services to large numbers of users with ease

and speed. Some examples of business services include travel, banking, online

shopping, and stock trading services. iPlanet Application Server makes it possible

for corporations to build, deploy, and manage applications that drive these

on-demand, transaction-based services.

A key distinguishing feature between traditional client/server applications and

iPlanet Application Server applications is the two-tier versus multi-tier model. In

the two-tier client/server model, complex business and presentation code reside

on the client. The client code needs to be configured and maintained on individual

clients that often run different operating systems.

In the multi-tier model, iPlanet Application Server is the middle tier. Business code

is stored and processed on iPlanet Application Server rather than on clients. An

application is deployed and managed in a single location, and is accessible to large

numbers of heterogeneous clients.

About iPlanet Application Server Applications

18 iPlanet Application Server Programmer’s Guide • February 2002

The iPlanet Application Server software is shipped with several sample

applications which you can look at to get a more detailed overview. For example,

the Online Bank sample application provides online banking and customer

management. Customers using Web browsers can log in to Online Bank over the

Internet, view account information, and move funds between accounts. Bank

employees can use Online Bank to display information about customers, add new

customers, and update or delete existing customer data.

Applications as Part of a Three-Tiered
Environment
iPlanet Application Server applications run in a distributed, three-tiered

environment. This means that an iPlanet Application Server system might consist

of several computers running multiple copies of iPlanet Application Server

software, along with multiple database servers and Web servers. Your application

code can be distributed among the iPlanet Application Servers and on client

machines. Overall, the machines and software involved are divided into three

layers, or tiers.

The following illustration shows iPlanet Application Server application code in the

three-tiered environment:

Client Tier Code
The first tier is the client, or user interface, tier. End users interact with client

software in order to use the application. The software providing the user interface

can be either a Web browser displaying HTML pages or a client application

installed on desktop PCs.

Web browser

Web server

iPlanet Application Server
stores and runs server
application objects

Database

Clients run Java
applications and C++
applications

About iPlanet Application Server Applications

Chapter 1 Introduction to Applications 19

Middle Tier Code
The middle tier is iPlanet Application Server itself. This tier consists of server

machines running both iPlanet Application Server software and your server-side

application code. You write this portion of the application code using the iPlanet

Application Server Foundation Class Library.

The iPlanet Application Server handles requests from clients by running the

appropriate application code, then returns the results to the clients. The means of

communication between the client tier and iPlanet Application Server is the

Internet or an Intranet. In the case of HTML clients, a Web server also stands

between the client and iPlanet Application Server. The Web server passes requests

and responses back and forth between HTML clients and iPlanet Application

Server.

Database Tier Code
The third tier is the database tier. This tier consists of one or more database servers,

which can be from different vendors. The database tier stores the information that

forms the basis of the application. For example, in the Online Bank sample

application, a database is used to keep track of customer information, account

information, and transactions.

The code in the database tier can be created in a variety of database applications,

and is therefore outside the scope of this documentation. You will need to write

code in the server tier, using the iPlanet Application Server Foundation Class

Library, to interact with the database tier. For more information, see “Working

with Databases” on page 97.

Example Three-Tiered Application
As mentioned earlier, the Online Bank sample application, which is shipped with

iPlanet Application Server, provides online banking and customer management.

Online Bank is a good example of a three-tiered iPlanet Application Server

application. The following discussion describes a typical user session with this

application.

The User Logs In
If the client tier strategy used in Online Bank consists of HTML pages displayed in

Web browsers, a bank customer can log in to the application from home, or

wherever they have access to the Web. To begin working with the application, the

user opens a Web browser and requests URL of the first HTML page in the

application, the login page.

Introduction to the iPlanet Application Server Foundation Class Library

20 iPlanet Application Server Programmer’s Guide • February 2002

The Server Responds By Accessing The Database
After typing a user ID and password, the user clicks the Login button. This causes

an action request to be sent to iPlanet Application Server (if the clients are Web

browsers, the request is first sent to the Web server, which forwards it to iPlanet

Application Server). The iPlanet Application Server handles requests by running

the appropriate application code.

In this case, the code needed is that which logs in the user. In order to validate the

user’s password, the application accesses the database tier, where information

about users is stored.

The Server Returns Results
After looking up the user’s ID and password in the database, the application can

validate the user and send a response back to the client tier. In a Web browser

application, the server sends an HTML page containing the main menu of the

application back to the user’s Web browser (assuming the user was validated

successfully).

The User Continues Using the Application
The user might next ask for the current balance in their checking account, which

the iPlanet Application Server handles by querying the database, formatting the

data into a report, and sending the report back to the user. This cycle of request,

query, and response is repeated many times as the customer makes other selections

and navigates through the application. Requests come in from the client tier and

are processed in the server tier, often by accessing the database tier. Responses are

then sent back from the server to the client.

Introduction to the iPlanet Application Server
Foundation Class Library

A library is a set of predefined interfaces and class declarations that can be used in

object-oriented programs. The iPlanet Application Server Foundation Class

Library is designed for building server-side code as part of iPlanet Application

Server applications. The class library is stored in the iPlanet Application Server

installation directory, and is copied to your disk when you install iPlanet

Application Server.

Introduction to Interfaces and COM

Chapter 1 Introduction to Applications 21

The classes and interfaces in the iPlanet Application Server Foundation Class

Library define many types of objects you can include in iPlanet Application Server

applications. Each object provides a specific type of functionality that is commonly

needed. The following list shows some of the major types of objects and

functionality you can include in your application by using the iPlanet Application

Server Foundation Class Library:

• AppLogic objects

• Data connections

• Queries and other database commands

• Dynamic reports

• Electronic mailboxes

• User sessions and session-related data

• Security

This is just a partial list. For complete information about the iPlanet Application

Server Foundation Class Library, see the iPlanet Application Server Foundation

Class Reference.

Introduction to Interfaces and COM
The iPlanet Application Server programming API is based on interfaces and the

Component Object Model (COM). This section provides an overview of the

concepts involved in such a programming model. You do not need to read this

section if you are already familiar with these concepts.

What Is COM?
The Component Object Model (COM) is a specification that provides a standard

way for objects and their clients to interact. COM specifies only how objects

interact, not how applications are structured internally or how they are

implemented.

The fundamental mechanism which COM defines for this purpose is called an

interface. An interface is a description of the services provided by an object. Clients

wishing to use a COM object need only know what interface the object supports.

For more information about interfaces, see “What Is an Interface?” on page 23.

Introduction to Interfaces and COM

22 iPlanet Application Server Programmer’s Guide • February 2002

Benefits of COM
The purpose of COM is to promote software interoperability. Applications are

made up of objects that can easily cooperate with one another, even when the

objects are:

• Written in different programming languages

• Running on different machines under different operating systems

• Used by different client applications.

Unlike other object-oriented programming techniques, the COM standard does not

depend on what type of client is attempting to use a particular software object, nor

does it depend on which programming language is used to implement the object.

COM provides a standard framework through which all software objects can

interact.

COM provides a more productive way to design, implement, distribute, and reuse

software. By reusing components, developers are free to spend more time on the

functionality that is specific to their business situation.

How to Use COM
You use the Component Object Model to create reusable software components.

These components must adhere to the COM standard and use interfaces to define

their expected behavior to clients, but you can implement the internal behavior of

components in any way you wish.

At the minimum, every COM object provides two basic operations:

• Find out which interfaces an object supports by calling the QueryInterface()

method. For more information, see “Getting Information About Interfaces” on

page 43.

• Control the object's lifetime by calling the reference counting methods

AddRef() and Release(). For more information, see “Reference Counting” on

page 45.

All three of these methods are defined in the IUnknown interface, which is the base

interface from which all COM interfaces inherit.

Introduction to Interfaces and COM

Chapter 1 Introduction to Applications 23

What Is an Interface?
The objects in iPlanet Application Server applications interact through interfaces.

An interface is a description of the services provided by an object. An interface is

like a contract between an object and its user (the code that wishes to interact with

it). The contract describes a set of expected behavior. Code that wishes to use an

object need only know what interface the object supports, and does not need to

know anything about the internal implementation of the object.

An interface defines a set of functions, called methods. The interface includes no

implementation code. It only describes the parameters and return types of its

methods. The code for the methods is written separately, in a class, which is said to

implement the interface. Typically, the interfaces and their implementations are

written by different groups of people.

How is an interface different from a class? A class is a set of data and functions

(member variables and methods) that define the characteristics of one type of

object. An object is an instantiation of a class. An interface, like a class, defines the

characteristics of a particular type of object. However, unlike a class, an interface is

always abstract. A class can be instantiated to form an object, but an interface can

not be instantiated, because it has no implementation code to determine what to do

when each method is called.

Every interface has a name that serves as an identifier you can refer to in code. By

convention, the name of each interface begins with a capital I, such as IGXQuery.

Benefits of Using Interfaces
Interfaces provide a level of abstraction that enables objects to interoperate more

easily. The code which wants to use the object needs to know how to connect to the

object and call its methods. The object needs to expose its services to any code that

wishes to connect. The interface provides the connection that allows the code to

access the object, and allows the object to expose its services.

When using an interface-based programming model, you can modify the internal

implementation of an object at will. As long as it continues to implement the same

interface, the code that uses that object does not require any rewriting or

recompilation.

Introduction to Interfaces and COM

24 iPlanet Application Server Programmer’s Guide • February 2002

25

Chapter 2

Designing Applications

This chapter describes the various parts of the iPlanet Application Server

application, as well as important elements of the development process, including

choosing a programming language.

The following topics are included in this chapter:

• Parts of an iPlanet Application Server Application

• Questions to Ask Before You Start

• Designing the Components of the Application

Parts of an iPlanet Application Server Application
An iPlanet Application Server application is made up of several components,

which fall into three categories:

• Database tier

• Client tier

• Server tier

Database Tier
The foundation of any iPlanet Application Server application is the database. It is

vital that the database portion of the application be designed so that it lends itself

to working with the application code.

Client Tier
Assuming the application uses HTML as its client strategy, then the user interface

is made up of HTML Pages, which are stored in the server tier.Server Tier

Parts of an iPlanet Application Server Application

26 iPlanet Application Server Programmer’s Guide • February 2002

The following application components reside in the server tier. Not all of these

components are used in every application.

• AppLogic Objects

• HTML Pages

• Templates

• Query Files

• Other Code

The rest of this section gives a brief description of the client- and server-tier

application components. The database tier is outside the scope of this

documentation.

AppLogic Objects
An AppLogic object is a set of programming instructions that accomplish a

well-defined, modular task within the application. AppLogic objects run on the

iPlanet Application Server and are managed and hosted by it. Typically, an

application includes several to many AppLogics, which can be deployed across

many servers. These AppLogics provide some or all of the procedural, or logic,

portion of the application.

Each AppLogic object is derived, directly or indirectly, from the GXAppLogic class

in the iPlanet Application Server Foundation Class Library. AppLogics can be

written in Java or C++. In this manual, it is assumed that you are using C++.

For more information about AppLogics, see Chapter 4, “Writing Server-Side

Application Code

HTML Pages
HTML pages are used to provide the user interface for Web-browser based

applications. An HTML page might include the following items:

• Input fields for the user to provide information.

• A Submit button for the user to request action.

• An AppLogic call (not visible to the user) that tells iPlanet Application Server

which AppLogic object to run to perform the requested action when the user

clicks a Submit button.

Questions to Ask Before You Start

Chapter 2 Designing Applications 27

• If the page was generated dynamically using an HTML template, it will also

contain live data.

Templates
A template is a text file that can be merged with dynamic data to produce

formatted output. Templates include special GX markup tags, which specify how

to merge the data with the page.

For more information, see , “Working with Templates.”

Query Files
A query file is a file with a .gxq extension that contains the specifications for one or

more database commands, such as queries or any other SQL command. Query files

are generated automatically when you use the Query Designer to build queries.

You can also write query files yourself using any text editor.

For more information, see “Working with Query Files” on page 178 of , “Working

with Query Files.”

Other Code
In addition to AppLogic objects, your application can include other code to

perform various tasks. For example, you might have a file that contains helper

functions such as data conversions that are specific to your application. You can

also subclass from classes in the iPlanet Application Server Foundation Class

Library if you want to modify or add to the default behavior provided.

Questions to Ask Before You Start
During the planning phase of the project, it is advisable to ask the following

questions and make the following decisions. Make sure everyone concerned with

the project is in agreement about the decisions that have been made.

• What is the purpose of the application? What result is desired when people

start using it?

• How many users are expected?.

Questions to Ask Before You Start

28 iPlanet Application Server Programmer’s Guide • February 2002

• Will the users be anonymous, or closely tracked and secured? A website that

gives travel tips probably has thousands of anonymous users. In contrast, an

online banking application probably requires users to log in to a secured

session before accessing certain parts of the application, such as the screen that

is used to transfer funds between accounts.

• Will you use iPlanet Application Server sessions to track the users? Which

types of sessions, secure or non-secured? The answers to these questions affect

how you use sessions and manage users. Even if security is not an issue, you

might use sessions for other purposes, such as to record a user’s preferences as

they move through the application. If you want to require the user to log in,

sessions provide the best security mechanism.

• If using secured sessions, you must decide which AppLogic objects in the

application are accessible to all users, and which are accessible only to users

who have logged in with a password. A single application is likely to contain

both secured and unsecured AppLogics. For example, the login screen is, of

necessity, available to any user, as are the AppLogics that display it and handle

the user’s login request.

• Is there an existing application that will be replaced or augmented by the

iPlanet Application Server application? Which features of that application are

to be kept, and which discarded? Will the legacy code be incorporated into the

application? These answers lead into decisions about whether to code the

application in C++ or use Java native calls.

• Are there any particular features that are desired in the application in order to

showcase a company’s products or promote a certain development approach?

These features are in addition to those that are dictated by the practical

purpose of the application.

• What strategy will you use to keep track of the parts of the application? A

pictorial flowchart is useful for visualizing the HTML templates, AppLogics,

and other components of an application. Once development is underway, a

good source control system is advisable if the application is of any size or if

several developers are involved.

• Lastly, and most importantly: What components, such as AppLogics and

templates, are needed in the application? Considerations such as reusability

and time available for development should be weighed when answering this

question. These considerations are addressed in detail in “Designing the

Components of the Application” on page 29.

Designing the Components of the Application

Chapter 2 Designing Applications 29

Designing the Components of the Application
This section describes some of the considerations and techniques you can use when

deciding how to design the various components in an application.

User Interface Design
It is advisable to design the user interface of the application first. If your

development team includes interface (UI) specialists, be sure to include them early

in the design process. Changes they make to the screens can have major effects on

how the application must be designed. For example, the use of frames in a Web

browser can have a profound effect on the business logic layout of an application.

HTML Interface Design
In an HTML-based application, you need to inform the UI designer of which GX

tags and database fields will be available for them to use in the HTML pages and

templates. GX tags are placeholders for the dynamic data that is merged with the

templates at runtime to create live HTML pages. These are the basics of

communication between the code and the templates. As long as the database fields

and GX tags match what is expected in the code, the UI expert can design the

appearance and other features of the UI with a free hand.

Impact of Caching on the User Interface
The capability of iPlanet Application Server to cache AppLogic results can

dramatically improve performance. A cache is a fast-access area in the computer’s

memory. The first time an AppLogic runs, it can store its results in the cache. When

the iPlanet Application Server receives additional requests for the same AppLogic,

instead of running the AppLogic again, the iPlanet Application Server returns the

results directly from the cache.

Each AppLogic has one result cache. The cache can contain multiple results, which

are produced by running the AppLogic with different input parameter values.

When you set up caching in code, you specify which input parameters are

significant in deciding when to cache a result. For example, you might want to

cache sales reports for certain products and not others, so you would use the input

parameter containing the product code to control caching.

Designing the Components of the Application

30 iPlanet Application Server Programmer’s Guide • February 2002

Plan on caching early in the design process, because its use affects how you design

the client side of the application. All the criteria needed for caching must be present

in the input parameters of the AppLogic request. For example, when the clients are

Web browsers, this means the caching criteria must be present as fields on an

HTML form, or as arguments in the URL that calls the AppLogic.

For more information, see “Caching AppLogic Results to Improve Performance,”

on page 86 of Chapter 4, “Writing Server-Side Application Code

Combining or Splitting Application Components
When designing your application, you will find that there are certain approaches

that can help you find the optimum way to divide up the functionality. You will

need to make some decisions about the size and number of AppLogics, templates,

and other components in the application.

The application will fall somewhere on a continuum from a very large number of

components, each of which performs an extremely limited task, to a very small

number of components, each of which can perform many tasks. Where exactly the

application falls in this spectrum depends on your development needs and goals.

The following considerations affect your decision to combine or split application

components:

• Redundancy

• Reusability

• Caching

• Performance

Redundancy
If you use a flowchart to represent a user’s navigation through an application, you

will find it helpful in making decisions about combining functionality. Flowcharts

are especially useful for spotting redundant code or screens.

For example, if the flowchart shows two screens that are almost identical in an

HTML-based application, it may be advisable to combine the functionality. You

could write one AppLogic object that uses different templates depending on

runtime conditions. You could also write one HTML template which can vary its

output. The template could be populated with different data, or could contain

conditional portions of HTML.

Designing the Components of the Application

Chapter 2 Designing Applications 31

Similarly, a flowchart can help you spot redundant AppLogics. Deciding when to

group functionality into one AppLogic, and when to split one AppLogic into

several, is an important design decision. By grouping similar functionality into one

AppLogic that takes slightly different actions, perhaps depending on an input

parameter, you reduce the amount of coding and development time. By using

fewer AppLogics, you produce a simpler design and a more sleek deployment

profile.

For example, consider an application that allows the user to work with employee

records. The user can either add a new employee or modify the data that is already

stored for an existing employee. The forms displayed to the user for both

operations are similar, with fields for the employee name, address, and so on. The

only difference between the two screens is that in the case of modifying data, the

fields are already filled in with the existing data, and the screen prompts and action

button are labeled Modify instead of Add.

If you drew a flowchart of this application, as shown in the following illustration, it

would be apparent that the HTML templates and AppLogics required by these two

operations are redundant:

More efficiently, you could write a single AppLogic to be executed in response to

the main menu, and a single HTML template using conditional GX markup tags to

produce slightly different screens. The AppLogic would take an input parameter to

indicate whether the user wanted to display the Add Employee screen or the

Modify Employee screen. This new design would look like the following

illustration:

Main Menu

AppLogic to
display Modify
Employee screen

AppLogic to
display New
Employee screen

Modify
Employee
Screen

New
Employee
Screen

AppLogic to
update existing
employee record

AppLogic to
insert new
employee record

New

Modify

Designing the Components of the Application

32 iPlanet Application Server Programmer’s Guide • February 2002

Alternatively, if updating a record and inserting a new record involve radically

different business logic, you might keep separate AppLogics for inserting and

updating records. A new employee is likely to require more business rules or

processes. However, you could still combine the screen display AppLogic and the

HTML templates.

Reusability
If a particular task is performed repeatedly and is called from several parts of the

application, it is preferable to divide this code into a separate, reusable component.

For example, suppose your application contains a Main Menu screen which is

displayed after each user-selected operation is complete. Rather than write code to

display the Main Menu at the end of every AppLogic in the application, it is

preferable to create a Main Menu AppLogic that performs only the single task of

displaying this screen. The other AppLogics can then call the Main Menu

AppLogic whenever it is necessary to display the Main Menu.

You can also reuse a component in several applications. If you consider this when

designing the first application in a suite, it will make the task of developing the

subsequent applications easier. For example, you might want to create separate

HTML templates that contain standard look-and-feel elements of the user interface.

The HTML template SuccessMessage.html in the Online Bank sample application

is an example of a reusable component. This template is called throughout the

application code whenever it is necessary to display an informational message to

the user.

Caching
For the purposes of caching AppLogic results, it is best to keep functionality in

separate AppLogics. If you group too much functionality into too few AppLogics,

you might encounter more difficulty in caching results. Because caching results can

greatly increase performance, it is important to consider caching during the

application design phase.

Main Menu

AppLogic to
display the
requested screen

Employee
Input
Screen

AppLogic to
insert or update
employee record

New

Modify

Input
parameter

Designing the Components of the Application

Chapter 2 Designing Applications 33

When an AppLogic performs one task and returns one type of result, it is relatively

simple to set up the caching criteria. If the AppLogic is capable of returning

multiple types of results, the caching criteria can become complex. It is likely your

cache criteria will require more input parameters to the AppLogic, and it may be

difficult to predict exactly how caching will occur.

For reasons of resource usage, it is advisable not to keep too much data in a single

AppLogic cache. Therefore, caching five or six types of results in one cache for a

multi-purpose AppLogic might have a negative impact. In addition, the iPlanet

Application Server keeps a least-recently-used list of the cached items, and if too

many items are cached, some might be removed from the end of the list.

For more information, see Chapter 4, “Writing Server-Side Application Code of

Chapter 4, “Writing Server-Side Application Code

Deployment and Partitioning
Deployment and partitioning considerations affect the desired granularity of code.

For example, if the task of displaying the Main Menu is performed from many

parts of your code, you might want to put that functionality into a single

AppLogic, not only for reusability, but also so that you can distribute the code to

every machine in the installation. In this way, the code will have maximum

availability and the performance of the application will be improved.

In the Online Bank sample application, the AppLogic objects OBLogin,

ShowMenuPage, and OBLogout are good candidates for widespread distribution

of this kind.

Performance
Increasing the number of AppLogics does not have a significant negative effect on

application performance. The iPlanet Application Server can quickly find the

correct AppLogic for any given request, even if there are many AppLogics in the

application. As noted earlier, increasing the number of AppLogics can actually

improve performance by making the code more readily available and improving

the ease of caching.

At a Glance
The following table summarizes the reasons for combining functionality into fewer

components or splitting it into more components:

Designing the Components of the Application

34 iPlanet Application Server Programmer’s Guide • February 2002

Designing an AppLogic Base Class
Instead of collapsing functionality into fewer AppLogics, another strategy to

reduce redundant coding is to create a custom AppLogic base class, derived from

the GXAppLogic class in the iPlanet Application Server Foundation Class Library.

The custom base class contains helper methods to perform the routine tasks that

are specific to your application. Derive all the other AppLogics in the application

from this base class, rather than directly from the GXAppLogic class. This will give

you a head start and reduce repetitive coding.

The following list shows a few of the tasks you might perform in a custom

AppLogic base class:

• Check input parameters.

For more information, see “Validating Input to AppLogic Objects,” on page

265 of Chapter 9, “Writing Secure Applications

• Provide standard, application-specific data conversion helper functions.

• Verify the session ID.

For more information, see Chapter 8, “Managing Session and State Information

• Set up part of the template map.

For more information, see “Using a Template Map” on page 207 of , “Working

with Templates.”

• Produce common presentation elements, such as corporate banners.

Goal Action

Reduce redundant code or templates Combine

Make best use of limited development time Combine

Reuse components within application or throughout suite of

applications

Split

Maximize granularity for caching AppLogic results Split

Increase availability of components when application is

deployed

Split

Optimize performance Split

Designing the Components of the Application

Chapter 2 Designing Applications 35

• Provide debugging helper functions, such as to log the current date and time

and the last executed AppLogic.

The Online Bank sample application uses a customized AppLogic base class called

OBBaseAppLogic. This class contains methods to create a user session, initiate

contact with the database, handle certain types of errors, and show a success

message to the user. For more information, see “The Online Bank Base AppLogic,”

on page 297 of Chapter 12, “Sample Code Walkthrough

Designing a Login AppLogic Object
A typical way to design a secured application is to write one AppLogic object that

is the main entry point to the application. This AppLogic responds to the user’s

first request. The AppLogic gathers and authenticates the user’s login ID and

password. If the user is authorized to run the application, the login AppLogic

creates a session and assigns a session ID to the user’s session with the application.

The user then continues to make requests and run other AppLogics in the

application. Each subsequent AppLogic checks for the session ID and user’s

authorization level before proceeding with its main task, as shown in the following

illustration:

The Online Bank sample application includes a login AppLogic, OBLogin, which

checks the user’s password, looks the user up in a database, creates a user session

and stores information about the user in it, then displays the appropriate menu

depending on the type of user.

[1] Login request

[3] Response

[4] Next request

[6] Response

iPlanet Application Server

Client

Login

[2] Creates session

Session ID
and other
session
data

[5] Checks session ID

Second AppLogic

Designing the Components of the Application

36 iPlanet Application Server Programmer’s Guide • February 2002

Designing Local, Distributed, and Global
AppLogic Objects
When your application is ready for production use, the system administrator who

deploys your application can specify the extent to which each AppLogic object is

distributed by assigning one of the following types to the AppLogic:

• A local AppLogic is an AppLogic instance that runs on a particular iPlanet

Application Server machine and does not participate in load balancing.

• A distributed AppLogic can run on any iPlanet Application Server machines

that you and the system administrator specify, such as the machines in a

cluster at a single company office. Each iPlanet Application Server might store

a copy of the same AppLogic code, and the choice of which server runs the

AppLogic at any particular time is made by the load balancing module of

iPlanet Application Server.

• A global AppLogic can run on any iPlanet Application Server machine in the

system, as determined by the load balancing module.

When designing an application, consider which AppLogics should be assigned to

each category. These categories do not affect how you write the AppLogic code,

but you need to communicate with the system administrator about which

categories to use when the application is deployed.

37

Chapter 3

Application Development Techniques

This chapter describes your application development tools (code editor, compiler,

debugger, and so on), as well as the iPlanet Application Builder and sample

applications.

The following topics are included in this chapter:

• Your Development Environment

• Accessing Libraries

• Using Interfaces

• Instantiating Objects

• Declaring and Defining Methods

• Reference Counting

• Working with Data

• Exporting Classes

• Using Events

• Using Cookies

Your Development Environment
Your development environment includes the following components:

• Your application development tools (code editor, compiler, debugger, and so

on).

Accessing Libraries

38 iPlanet Application Server Programmer’s Guide • February 2002

• The iPlanet Application Builder and sample applications that you installed

using the iPlanet Application Server installation procedure, described on the

product CD.

If you are using iPlanet Application Builder, the application files are automatically

placed in appropriate directories. If you are not using the iPlanet Application

Builder, you should create a separate directory (<Code>$APP_ROOTDIR) to

contain the files that belong to each application or project. The following table

shows the suggested locations for these directories:

Accessing Libraries
To use classes from a particular file in one of the libraries, include that file at the

start of your AppLogic code. You include a file by using the #include statement.

Any code module can contain one or more #include statements to gain access to

code in other files.

When writing AppLogic objects, you will be working with the files in the iPlanet

Application Server Foundation Class Library. These files are located in

$IAS/include, where $IAS is the directory in which iPlanet Application Builder is

installed. Typically, you will need at least the following files:

#include <gxutil.h>

#include <gxapplogic.h>

#include <gxidl.h>

Component Unix Windows NT

Source files (.cpp) <Code>$APP_ROOTDIR <Code>$APP_ROOTDIR

header files (.h) <Code>$APP_ROOTDIR <Code>$APP_ROOTDIR

makefile <Code>$APP_ROOTDIR <Code>$APP_ROOTDIR

html templates

(.html)

<Code>$APP_ROOTDIR/te

mplates

<Code>$APP_ROOTDIR\te

mplates

html graphics

 (.gif, .jpeg)

<Code>$APP_ROOTDIR/i

mages

<Code>$APP_ROOTDIR\i

mages

registration file

(.gxr)

<Code>$APP_ROOTDIR <Code>$APP_ROOTDIR

Using Interfaces

Chapter 3 Application Development Techniques 39

Example
When you write an AppLogic object, you make it a subclass of the GXAppLogic

class. This class is in the file gxapplogic.h. Before you can reference the

GXAppLogic class to derive the subclass, you must include the GXAppLogic

class’s file. The following example code shows how to include the file

gxapplogic.h:

#include <gxapplogic.h>

// . . .

class MyAppLogic : public GXAppLogic

// . . .

}

Using Interfaces
You can use the interfaces in the iPlanet Application Server Foundation Class

Library in either of the following ways:

• Create a reference to the interface, in order to interact with an object that

supports that interface. For example, to interact with a query object, you need

to reference the IGXQuery interface.

• Create a class that implements an interface, in order to write your own custom

behavior for a particular type of object. For example, to implement a session ID

object that creates session IDs in a way that is unique to your application, you

implement the IGXSessionIDGen interface.

How to Reference Objects Through Interfaces
Once an interface is implemented in a class, and the class is instantiated into an

object, calling code access the object through a pointer to the object’s interface. This

is the only way calling code can access an object: through its clearly-defined

contract, the interface. When calling code accesses an object, it uses the interface

pointer to access the methods in the interface. This use of interface pointers hides

the internal implementation from calling code.

For example, the following code shows how to access an object through an

interface pointer:

// Declare pointer variable

Using Interfaces

40 iPlanet Application Server Programmer’s Guide • February 2002

IGXQuery *pqry;

// Get pointer to an IGXQuery interface by calling

// CreateQuery(), which returns such a pointer

HRESULT hr = CreateQuery(&pqry);

// Use the pointer to call SetTables(), which is

// a method of the IGXQuery interface

pqry->SetTables("customers, orders");

How to Implement Interfaces
When you implement an interface, you write a class that contains code to perform

the behavior that is defined in the interface. The class declaration statement is

similar to subclassing except that in place of the superclass name, you put the

interface name. For example:

class MySession : public IGXSession2 {

// code to implement the interface

}

The class inherits from the interface it wishes to implement, declares whatever

variables are necessary for maintaining the object state, and overrides all the

member functions of the interface.

For example, the IGXSession2 interface in the iPlanet Application Server

Foundation Class Library contains the SetSessionData() and SaveSession()

methods. The interface defines the parameters and return types for these methods.

You can create a class to implement IGXSession2 and write code to make these

methods work in any way you choose. You can even create several different classes

that implement the interface in very different ways. Calling code accesses the

objects instantiated from these classes only through their interfaces, and know

nothing else about the objects. Therefore, different implementations can be used

interchangeably.

Using Interfaces

Chapter 3 Application Development Techniques 41

When implementing an interface, you must provide an implementation for every

method in the interface. However, the implementation can be simply a return
statement. When working with interfaces provided by iPlanet, you can implement

some methods so that they simply call the iPlanet version of the same method. To

do this, make an instance of the original interface and use it to call the original

method versions.

For example, suppose you implement the IGXSession2 interface in order to

perform some special processing during a single method. For the other methods in

the interface, you would simply call the original method as shown in the sample

code below.

The following code appears in the header file:

class AcmeSession : public IGXSession

{

// Pointer to IGXSession instance to delegate to

private:

IGXSession2 *original;

public:

AcmeSession(IGXSession2 *orig)

{

original = orig;

if (original)

original->AddRef();

}

~AcmeSession()

{

if (original)

original->Release();

}

// ...

STDMETHOD(GetSessionData) (IGXValList **ppSessionData);

long GetShoppingCartItemCount();

// ...

// Additional code ...

Using Interfaces

42 iPlanet Application Server Programmer’s Guide • February 2002

// ...

The following code appears in the source file:

// You are making no changes to this method

// so call the original version

STDMETHODIMP

AcmeSession::GetSessionData(IGXValList **ppSessionData)

{

 if (!original)

 return GXE_FAIL;

 return original->GetSessionData(ppSessionData);

}

// You are customizing this method

long AcmeSession::GetShoppingCartItemCount()

{

long count = 0;

IGXValList *data = NULL;

if (GetSessionData(&data) == NOERROR &&

data)

{

data->GetValInt("cart_item_count", &count);

data->Release();

}

return count;

}

Instantiating Objects

Chapter 3 Application Development Techniques 43

Getting Information About Interfaces
You can find out whether an object is capable of providing particular services by

calling the QueryInterface() method, which is provided by all interfaces in the

libraries. QueryInterface() tells whether a given object implements a given

interface (and, therefore, provides the services you need). QueryInterface() takes

as a parameter the unique identifier of the interface in which you are interested. If

the object implements that interface, it returns a pointer to the interface. Your code

then uses this pointer to interact with the object.

If QueryInterface() successfully obtains the interface pointer, it automatically calls

AddRef() to increment the reference count on the object. Therefore, for every

successful QueryInterface() call, your calling code must make a corresponding

single Release() call, through the returned pointer, in order to match the implicit

AddRef() call made by QueryInterface(). Otherwise, a memory leak can occur.

Example
The following code shows how to query an interface:

HRESULT hr;

// Make sure the result set supports the IGXTemplateData

// interface (it always should)

IGXTemplateData *pTD=NULL;

if(((hr=pHRset->QueryInterface(IID_IGXTemplateData,
(LPVOID *)&pTD))==GXE_SUCCESS)&&pTD) {

// Everything is fine, so continue; release when done

// ...

pTD->Release();

}

Instantiating Objects
Instantiation is the process of allocating an object to memory at runtime. An object

is an instance of a class. The class defines the characteristics of a type of object.

When an application runs, one or more objects can be instantiated, or created, from

each class in the application. In an iPlanet Application Server application, most

access to objects is accomplished through interfaces.

To instantiate an object

Declaring and Defining Methods

44 iPlanet Application Server Programmer’s Guide • February 2002

1. Declare a variable to refer to the object. For example:

IGXSession2 *pSess=NULL;

In this example, the variable pSess is declared using the IGXSession2 interface

to specify that the variable will reference an object implemented from that

interface. In step 2, you create the instance.

2. Instantiate the object by calling the appropriate method. For example, in the

following code, the GetSession() method is used to retrieve an instance of a

session object.

HRESULT hr;

hr=GetSession(0, OB_APPNAME, NULL, &pSess);

Calling the special instantiation and object retrieval methods and functions in

the iPlanet Application Server Foundation Class Library takes the place of the

new keyword. These methods and functions, such as GetSession(), perform

extra tasks above and beyond what is accomplished with the new keyword.

The new functionality is performed in the iPlanet Application Server method

code and takes place automatically.

Declaring and Defining Methods
Methods often return HRESULT, a 32-bit result code that equals zero (NOERROR)

for success or non-zero for error conditions. In your AppLogic, if you create a

virtual method that returns HRESULT, you must use the following macros for

cross-platform portability:

• STDMETHOD macro for the method declaration in the header file (.h).

• STDMETHODIMP macro for the method definition in the source code file

(.cpp).

For example, in the OBLogin.h file in the Online Bank sample application, the

following STDMETHOD command declares the OBLogin AppLogic’s Execute()

method:

class OBLogin : public OBBaseAppLogic

{

// ...

STDMETHOD(Execute) ();

}

Reference Counting

Chapter 3 Application Development Techniques 45

In addition, in the source file OBLogin.cpp, the following STDMETHODIMP

command defines the Execute() method:

STDMETHODIMP

OBLogin::Execute()

{

// ...

}

Reference Counting
It is necessary to free objects when they are no longer in use, just as you must free

memory. The code that is using an object is responsible for freeing the object when

it is no longer needed. The mechanism that calling code uses to accomplish this is

called reference counting.

You perform reference counting by using AddRef() and Release(), which are

provided by all interfaces in the libraries. The AddRef() and Release() methods are

defined in the IGXObject interface, from which all the other interfaces inherit.

You can use these two methods to increment and decrement the count of references

to any iPlanet Application Server object that your code uses. When you call

AddRef(), you are informing an object that you are using it. When you call

Release(), you are informing the object that you are finished using it. The object

keeps track of how many other code modules are using it, and when the count

drops to zero, the object deletes itself from memory.

Reference counting provides lifecycle control over objects to ensure proper

housekeeping and avoid memory leaks. Each object contains an internal reference

counter that tracks the number of other objects relying on it at runtime. When the

reference count is decremented to zero (0), the object is deleted.

Unless otherwise noted, methods in the iPlanet Application Server Foundation

Class Library that return objects automatically increment the reference count on

these objects on behalf of your calling code. However, you must explicitly

decrement the reference count in your AppLogic, using the object’s Release()

method, when a pointer to the instance is no longer needed.

For example, the following code shows how to release a query object. The

CreateQuery() method returns a query object and performs one implicit AddRef().

The caller is responsible for the matching Release() call for that implicit AddRef()

call.

Reference Counting

46 iPlanet Application Server Programmer’s Guide • February 2002

HRESULT hr;

IGXQuery *pQ=NULL;

if(((hr=CreateQuery(&pQ))==GXE_SUCCESS)&&pQ) {

// Set up the query

pQ->SetTables("OBAccount, OBTransaction,
OBTransactionType");

// Use the query ...

pQ->Release();

}

In the following example, housekeeping for reference counters is performed in the

destructor method.

MyAppLogic::~MyAppLogic() {

if (m_pProps)

m_pProps->Release();

if (m_pConn)

m_pConn->Release();

if (m_pQuery1)

m_pQuery1->Release();

if (m_pHierQuery)

m_pHierQuery->Release();

GXDllLockDec(); // Update count of references to the

// AppLogic library

};

In more advanced applications, you may need to explicitly increment the reference

count in your AppLogic using the object’s AddRef() method. You might want to

do this in order to ensure that the object is valid when using the object for a long

time.

Even if you are extremely careful about reference counting, it is likely that some

memory will not be released properly. Over time, such memory leaks will consume

the available resources on your machine. Therefore, when using C++, it is

advisable to use a tool capable of memory use analysis, such as Purify by Pure

Atria.

Working with Data

Chapter 3 Application Development Techniques 47

Working with Data
When developing applications, you need to work with data of various types. This

section describes the techniques provided to allow you to access and modify data.

Manipulation of data will arise routinely throughout an application, such as when

preparing data to pass into a function call, dealing with the return value from a

function call, or dealing with the data returned by a database query.

iPlanet Application Server applications can include the usual data types such as

integers and strings. The libraries also provide some special types of data, such as

globally unique identifiers (GUIDs), data objects such as IGXValList objects, and

mechanisms such as memory buffer management and spin locks.

Managing Memory Buffers
The iPlanet Application Server Foundation Class Library provides the IGXBuffer

interface to manipulate memory blocks. The IGXBuffer interface represents a block

of memory that multiple objects can share, allowing the multiple users of an

IGXBuffer object to control the lifetime of the memory block by using reference

counting.

Several methods return IGXBuffer objects, such as GetFields() in the IGXQuery

interface. These methods automatically create the IGXBuffer object and return it.

You can then use the methods in the IGXBuffer interface to access the data in the

buffer after it is returned from the method call.

Other methods take IGXBuffer objects as parameters. Before calling such a method,

you must create the buffer and place the appropriate data in it.

To create an IGXBuffer object

1. Call the function.

2. You must first specify the size of the memory block by calling Alloc() before

calling any of the other methods in the IGXBuffer interface.

Examples
The first example calls a method that returns a buffer, and then uses the buffered

data.

IGXBuffer *buff = NULL;

HRESULT hr = pQuery->GetFields(&buff);

if(hr==NOERROR && buff) {

Working with Data

48 iPlanet Application Server Programmer’s Guide • February 2002

// ... work with buff, such as using GetAddress()

// and GetSize()

buff->Release();

}

The following code allocates a buffer object and uses it to temporarily store a

string. It then passes the buffer as a parameter to the Put() method in the

GXTemplateMapBasic class.

LPSTR pOutput=NULL;

pOutput=GXGetValListString(m_pValIn, "OUTPUTMESSAGE");

IGXBuffer *pBuffOutput=NULL;

if(pOutput) {

 pBuffOutput=GXCreateBufferFromString(pOutput);

 pTM->Put("OUTPUTMESSAGE", pBuffOutput);

 }

Using Spin Locks
Use spin locks to ensure synchronous access to shared resources such as a counter

variable used by several threads. Use spin locks for only short processes consisting

of just one or several brief operations. Extensive or careless use of spin locks (such

as for longer processes like memory allocation or ODBC calls) can reduce

AppLogic performance. For longer processes, use critical sections instead. For

more information, see “Using Critical Sections” on page 50.

Using a Spin Lock for General Operations
To use a spin lock, call the following functions in the following order:

1. Call the GXSYNC_INIT() function to initialize a synchronization variable (of

type GXSYNCVAR) to be used to synchronize access to shared resources, via a

spin lock, in subsequent operations.

2. Call the GXSYNC_LOCK() function to acquire exclusive access to the shared

resource(s) that the specified spin lock protects. While your code owns the spin

lock, other code cannot acquire it.

3. Perform the brief process or operations.

Working with Data

Chapter 3 Application Development Techniques 49

4. Call the GXSYNC_UNLOCK() function to release a spin lock that was

acquired in a preceding GXSYNC_LOCK() call. Releasing the spin lock allows

other code to acquire it.

5. Call the GXSYNC_DESTROY() function to remove a spin lock that is no longer

needed. Calling GXSYNC_DESTROY() releases the system resources allocated

for the spin lock. Subsequent calls to the spin lock are invalid. To use the spin

lock again, you must subsequently initialize the spin lock using

GXSYNC_INIT().

Example
The following code shows how to use a spin lock to perform the simple operation

of incrementing a counter. In the class MyClass, the following member variables

are declared:

int counter;

GXSYNCVAR sync;

The following code appears in the constructor method:

GXSYNC_INIT(&sync);

counter = 0;

The following code appears in the destructor method:

GXSYNC_DESTROY(&sync);

The following code appears in a method in the class:

void MyClass::method() {

// ...

GXSYNC_LOCK(&sync);

counter++;

GXSYNC_UNLOCK(&sync);

// ...

}

Incrementing and Decrementing Variables
Alternatively, if you want to increment or decrement a variable using a spin lock,

call the following functions in the following order:

Working with Data

50 iPlanet Application Server Programmer’s Guide • February 2002

1. Call the GXSYNC_INIT() function to initialize a synchronization variable (of

type GXSYNCVAR) to be used to synchronize access to shared resources, via a

spin lock, in subsequent operations.

2. Call one of the following functions:

❍ GXSYNC_INC() function to increment a variable by one (1), using a spin

lock to ensure synchronized access to it.

❍ GXSYNC_DEC() function to decrement a variable by one (1), using a spin

lock to ensure synchronized access to it.

3. Call the GXSYNC_DESTROY() function to destroy a spin lock that is no longer

needed. Calling GXSYNC_DESTROY() releases the system resources allocated

for the spin lock. Subsequent calls to the spin lock are invalid. To use the spin

lock again, you must subsequently initialize the spin lock using

GXSYNC_INIT().

GXSYNC_INC() and GXSYNC_DEC() call GXSYNC_LOCK() automatically

before changing the variable, and call GXSYNC_UNLOCK() automatically after

changing the variable.

Using Critical Sections
In multithreaded programming, use critical sections in your code to ensure

synchronization when multiple threads can manipulate the same object.

To use a critical section

1. Call the GXInitCriticalSection() function to initialize a critical section object (of

type GXCRIT_SECTION) to be used in subsequent operations to synchronize

thread access to a particular process.

2. Call the GXEnterCriticalSection() function to obtain exclusive thread access to

a shared resource before performing any operations on the protected resource.

GXEnterCriticalSection() blocks until the thread is granted ownership.

3. Run the protected operations on the thread.

4. Call the GXLeaveCriticalSection() function to release exclusive thread access

to shared resources after completing operations on the protected resource.

Releasing ownership allows other threads to acquire the critical section.

Working with Data

Chapter 3 Application Development Techniques 51

5. Call the GXDeleteCriticalSection() function to destroy a critical section object

that is no longer needed, which releases the system resources allocated for the

critical section object. Subsequent calls to the critical section are invalid. To use

the critical section again, you must subsequently initialize the critical section

using GXInitCriticalSection().

Example
The following code implements a class that uses a critical section.

class MyClass {

GXCRIT_SECTION myCS;

public:MyClass() {

GXInitCriticalSection(&myCS);

}

~MyClass() {

GXDeleteCriticalSection(&myCS);

}

void method() {

// ...

GXEnterCriticalSection(&myCS);

// ...

// Perform long, protected operation here.

// ...

GXLeaveCriticalSection(&myCS);

}

Working with Strings
When calling methods that return strings through out parameters, the caller is

usually responsible for allocating the memory buffer for the string and for passing

in the size of the buffer. The methods and functions called will fill the buffer with

the string value. For example:

char buff[200];

buff[0]=’\0’;

HRESULT hr;

Working with Data

52 iPlanet Application Server Programmer’s Guide • February 2002

hr = m_pValIn->GetValString("PHONE", buff, sizeof(buff));

if (hr==NOERROR)

printf("Phone number is %s\n", buff);

Numerous methods and functions in the libraries provide ways to specify and

retrieve string values. For more information, see the relevant class, interface, or

function description in the <Italic>iPlanet Application Server Foundation Class

Reference.

Working with IGXValList Objects
An IGXValList object is an unordered list of named values. IGXValList objects are

supported by the IGXValList interface. You use the GXCreateValList() function to

create an IGXValList object, and you use the following commands to manipulate

IGXValList objects:

• the SetVal() methods in the IGXValList interface to specify values in an

IGXValList object

• the GetVal() methods in the IGXValList interface to retrieve values from an

IGXValList object

The following example shows how to create an IGXValList object, populate it with

database connection properties, and then pass it as a parameter to

CreateDataConn():

m_pProps = GXCreateValList();

GXSetValListString(m_pProps, "DSN", "ksample");

GXSetValListString(m_pProps, "DB", "ksample");

GXSetValListString(m_pProps, "USER", "kdemo");

GXSetValListString(m_pProps, "PSWD", "kdemo");

// Create a database connection using properties

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, m_pProps,

m_pContext, &m_pConn);

IGXValList *pList=GXCreateValList();

if(pList) {

Working with Data

Chapter 3 Application Development Techniques 53

// Specify database connection properties

GXSetValListString(pList, "DSN", OB_DSN);

GXSetValListString(pList, "DB", "");

GXSetValListString(pList, "USER", OB_USER);

GXSetValListString(pList, "PSWD", OB_PASSWORD);

// Create a database connection using properties

hr=CreateDataConn(0, GX_DA_DRIVER_DEFAULT, pList,
m_pContext, ppConn);

// Release the list

pList->Release();

}

Working with GUIDs
Each registered AppLogic has a Globally Unique Identifier (GUID) associated with

it. A GUID is a 128-bit hexadecimal number and has an associated GUID struct.

You can use the following commands to manipulate GUID structs:

• GXGetValListGUID() and GXSetValListGUID() functions

• GXGUIDToString() and GXStringToGUID() functions

• GXGUID_EQUAL macro

When passing a GUID to a macro, such as GXDLM_DECLARE or

GXDLM_IMPLEMENT, you pass in a GUID struct. This format is shown in the

following code example, taken from the source file OBLogin.cpp:

//

// Set the GUID for OBLogin to

// {C1B5E720-6153-11D1-A1AE-006008293C54}

//

GUID OBLoginGUID =

{ 0xC1B5E720, 0x6153, 0x11D1, { 0xA1, 0xAE, 0x00, 0x60, 0x08, 0x29,
0x3C, 0x54 } };

Working with Data

54 iPlanet Application Server Programmer’s Guide • February 2002

The following code is from a header file and shows how the GUID is passed to the

GXDLM_DECLARE macro. OBLogin is the name of the AppLogic class associated

with the GUID struct stored in OBLoginGUID.

extern GUID OBLoginGUID;

GXDLM_DECLARE(OBLogin, OBLoginGUID);

Note that the string version of the GUID is embedded in the comments (for

readability purposes only) and that the GUID struct is what gets parsed. However,

in some cases, the string version of the GUID is passed, such as with the

NewRequest() method.

For more information about GUIDs, see “Requests, AppLogic Names, and GUIDs”

on page 70 of , “Writing Server-Side Application Code.”

Working with Binary Large Objects (BLOBs)
A binary large object (BLOB) is a large block of bits that can be stored in a database.

A BLOB is useful for storing any large piece of data, such as pictures or sounds,

that do not need to be interpreted by the database. Use the following methods for

manipulating BLOB data in your AppLogic:

• SetValueBinary() or SetValueBinaryPiece() in the IGXTable interface for

inserting or updating BLOB values in a table

• GetValueBinary() or GetValueBinaryPiece() in the IGXResultSet interface for

retrieving BLOB values returned in a result set

• GetValBLOB() or SetValBLOB() in the IGXValList interface for retrieving or

assigning BLOB values in an IGXValList object

Example
The following code retrieves a BLOB value from a database.

HRESULT hr;

IGXQuery *pQuery = NULL;

IGXResultSet *pRS = NULL;

CreateQuery(&pQuery);

pQuery->SetTables("blobtable");

pQuery->SetFields("blobcol");

hr = pConn->ExecuteQuery(0, pQuery, NULL, NULL, &pRS);

Working with Data

Chapter 3 Application Development Techniques 55

ULONG nRows;

hr = pRS->GetRowNumber(&nRows);

LPBYTE pBlobChunk = NULL;

ULONG expectSize, gotSize;

expectSize = 65535;

pBlobChunk = new LPBYTE[65536];

hr = pRS->GetValueBinaryPiece(1, expectSize, &pBlobChunk,

65536);

pRS->GetValueSize(1, &gotSize);

if (gotSize == expectSize)

fprintf(stderr, "got a full chunk, size = %d\n", gotSize);

else

fprintf(stderr, "got a partial chunk, size = %d\n", gotSize);

pRS->Release();

Working with Dates and Times
Date and time values are implemented as a GXDATETIME struct. You can use the

GXGetCurrentDateTime() function to obtain the system time.

The following example shows how to retrieve and print the current system time:

GXDATETIME curtime;

GXGetCurrentDateTime(&curtime);

printf("Time is [%02d/%02d/%02d %02d:%02d:%02d:%01d]\n",

curtime.month,

curtime.day,

curtime.year-1900,

curtime.hour,

Exporting Classes

56 iPlanet Application Server Programmer’s Guide • February 2002

curtime.minute,

curtime.second,

curtime.fraction/100);

Exporting Classes
In order for your classes to be loaded properly at runtime, you must export some

specific functions. iPlanet Application Server expects to find these exported

functions when it loads your shared library at runtime. The exported functions are

required to fully initialize the shared library and to create instances from the

classes in it.

To export a class

1. In a header file (.h), call the GXDLM_DECLARE macro to associate a class in a

dynamically loadable, shared library module (DLM) with an already declared

GUID struct.

2. In a source file (.cpp) that is associated with the header file, call the

GXDLM_IMPLEMENT_BEGIN macro to begin a block of one or more

GXDLM_IMPLEMENT calls.

3. Call the GXDLM_IMPLEMENT macro to establish to the iPlanet Application

Server the entry point in a dynamically loadable, shared library module (DLM)

for one exported class.

4. Call the GXDLM_IMPLEMENT_END macro to end a block of one or more of

GXDLM_IMPLEMENT calls.

The following example shows how these macros are used. The following code

fragment appears in the header file:

extern GUID OBLoginGUID;

class OBLogin : public OBBaseAppLogic

{

// ...

}

GXDLM_DECLARE(OBLogin, OBLoginGUID);

The following code fragment appears in the source file:

// {C1B5E720-6153-11D1-A1AE-006008293C54}

Using Events

Chapter 3 Application Development Techniques 57

//

GUID OBLoginGUID =

{ 0xC1B5E720, 0x6153, 0x11D1, { 0xA1, 0xAE, 0x00, 0x60,

0x08, 0x29, 0x3C, 0x54 } };

// ...

GXDLM_IMPLEMENT_BEGIN();

GXDLM_IMPLEMENT(OBLogin, OBLoginGUID);

GXDLM_IMPLEMENT_END();

Using Events
In an iPlanet Application Server environment, you can create and use named

events. The term event is widely used to refer to user actions, such as mouse clicks,

that trigger code. However, the events described in this section are not caused by

users. Rather, an event is a named action that you register with the iPlanet

Application Server. The event occurs either when a timer expires or when the event

is activated from application code at runtime.

Events are stored persistently in the iPlanet Application Server, and are removed

only when your application explicitly deletes them. Typical uses for events include

periodic backups, reconciling accounts at the end of the business day, or sending

alert messages. For example, you can set up an event that sends an email to alert

your company’s buyer when inventory levels drop below a certain level.

Each event has a name, a timer (optional), and one or more actions to take when the

event is triggered. Application events have the following characteristics:

• Each event can cause the execution of one or more actions, which can include

sending email or running an Applogic.

• Actions can be synchronous or asynchronous with the calling environment.

• Multiple actions can be configured to execute concurrently with one another,

or serially, one after the other.

• Multiple actions are executed in a specific order (the order in which they are

registered).

• Request data can be passed to an application event in an IValList object.

Using Events

58 iPlanet Application Server Programmer’s Guide • February 2002

You can set up events to occur at specific times or at intervals, such as every hour

or once a week. You can also trigger an event by calling the event by name from

code. When an event’s timer goes off or it is called from code, the associated action

occurs.

The Application Events API
iAS uses two interfaces to support events:

• The IGXAppEventMgr interface manages application events. This interface

defines methods for creating, registering, triggering, enabling, disabling,

enumerating, and deleting events.

• The IGXAppEventObj interface represents the defined events an application

supports. This interface defines methods not only for getting or setting

attributes of an event, but also for adding, deleting, or enumerating actions of

the event.

For more details, see the entries for these interfaces in the iPlanet Application Server
Foundation Class Reference.

Creating a New Application Event
To access an IGXAppEventMgr object, use the C++ helper function

GXContextGetAppEventMgr():

HRESULT GXContextGetAppEventMgr(
IGXContext *pContext
IGXAppEventMgr **ppAppEventMgr);

The pContext parameter is a pointer to an IContext object, which provides access to

iPlanet Application Server services. Specify a value of m_pContext.

The ppAppEventMgr is a pointer to the returned manager object.

After creating the IGXAppEventMgr object, you can create an application event

(an instance of IGXAppEventObj) by calling CreateEvent() on the

IGXAppEventMgr object.

You must then register the event, or make iAS aware of it, by calling

RegisterEvent() . Further, you must also instruct iAS to enable the event for

access by calling EnableEvent() . Once the event is registered and enabled, you

can trigger it by hand using TriggerEvent() .

Using Events

Chapter 3 Application Development Techniques 59

Using an Application Event
You can perform any of the following tasks with an event by using the associated

methods in the IAppEventMgr object:

Within the event object itself, you can set and examine the event’s attributes as well

as define actions for the event. Use the methods in the IAppEventObj interface:

For more details about these methods, see the iPlanet Application Server Foundation
Class Reference.

Method Task

Using Events Creates an empty application event object.

Using Events Removes a registered event from iAS.

Using Events Temporarily isables a registered event.

Using Events Enables a registered event.

Using Events Enumerates through the list of registered events.

Using Events Retrieves the IGXAppEventObj for a registered event.

Using Events Registers a named event for use in applications.

Using Events Triggers a registered event.

Method Description

Using Events Appends an action to an ordered list of actions.

Using Events Deletes all actions added to this IGXAppEventObj.

Using Events Enumerates the actions added to this

IGXAppEventObj.

Using Events Retrieves the list of attributes of an IGXAppEventObj.

Using Events Retrieves the name of the IGXAppEventObj.

Using Events Sets a list of attribute values for the IGXAppEventObj.

Using Cookies

60 iPlanet Application Server Programmer’s Guide • February 2002

Using Cookies
Cookies are a mechanism that Web applications can use to store information on the

client (Web browser) side of the application. Cookies are variables that your

application sends to the browser to be stored there for a specified length of time.

Each time a Web browser requests an HTML page in your application, the cookies

from that browser are sent to the application.

Cookies are domain-specific and can take advantage of the same Web server

security features as other data interchange between your application and the

server. Thus, cookies are useful for privately exchanging data between your

application and the Web browser.

Some browsers do not support cookies, but they are supported by all versions of

Netscape Navigator and by Microsoft Internet Explorer version 2.0 and later.

Sending a Cookie
To send a cookie, call SetVariable(). For example:

SetVariable("preference", "green");

Referencing a Cookie
Whenever an AppLogic is executed, all cookies stored in the Web browser are sent

to the AppLogic as part of the AppLogic’s input parameters. The iPlanet

Application Server receives the cookies as part of the AppLogic request, along with

other input parameters for the AppLogic. When iPlanet Application Server runs

the AppLogic, it passes all the input parameters to the AppLogic, including the

cookies. The input parameters are passed in the input IGXValList object.

Therefore, to reference a cookie from AppLogic code, use the AppLogic’s

m_pValIn variable, which refers to the input IGXValList. The name of the

parameter is the same as the name you specified when you called SetVariable() to

send the cookie to the Web browser. For more information about m_pValIn, see

“Passing Parameters to AppLogic Objects” on page 71 of , “Writing Server-Side

Application Code.”

61

Chapter 4

Writing Server-Side Application Code

This chapter describes AppLogic objects, which are a set of programming

instructions that accomplish a well-defined, modular task within an application.

The following topics are included in this chapter:

• What Is An AppLogic Object?

• Introduction to Writing AppLogic Objects

• Steps for Writing AppLogic Objects

• Performing the Main Task in an AppLogic Object

• Calling an AppLogic From Code

• Requests, AppLogic Names, and GUIDs

• Passing Parameters to AppLogic Objects

• Returning Results From an AppLogic Object

• Caching AppLogic Results to Improve Performance

What Is An AppLogic Object?
AppLogic objects run on the iPlanet Application Server and are managed and

hosted by it. Typically, an application includes several to many AppLogics, which

can be deployed across many servers. These AppLogics provide some or all of the

procedural, or logic, portion of the application.

Each AppLogic object is derived, directly or indirectly, from the GXAppLogic class

in the iPlanet Application Server Foundation Class Library. AppLogic source files

are stored in files with the .cpp extension.

Introduction to Writing AppLogic Objects

62 iPlanet Application Server Programmer’s Guide • February 2002

AppLogics perform the tasks in the server side of the application. For example,

some of the AppLogic objects in the Online Bank sample application perform the

following tasks:

• Display a menu page.

• Retrieve and display the current balance in a customer’s account.

• Retrieve and display transactions.

• Transfer funds from one account to another.

When writing AppLogic objects, you can use the classes and interfaces provided in

the iPlanet Application Server Foundation Class Library. This class library

provides the specialized functionality you need to write AppLogic objects for

iPlanet Application Server applications.

Introduction to Writing AppLogic Objects
To write an AppLogic object,use one of the following techniques:

• Use the iPlanet Application Builder to create an AppLogic visually. This tool

provides a framework that gives you a head start on the most commonly-used

types of AppLogic.

For more information, see iPlanet Application Builder User’s Guide.

• If you are not using the AppLogic Designer, you can use your favorite code

editor to write the AppLogic, using and call the iPlanet Application Server

Foundation Class Library when necessary. You can also use a code editor to

modify an AppLogic that was produced by a development tool or imported

into your project. The rest of this chapter describes how to write AppLogic

objects without using the AppLogic Designer.

Parts of a Typical AppLogic Object
The following skeleton code shows the syntax of a typical AppLogic object.

First, the AppLogic can use one or more #include statements to gain access to

code in other files.

#include <file.h>

Introduction to Writing AppLogic Objects

Chapter 4 Writing Server-Side Application Code 63

After the #include statements, the body of the AppLogic begins with a subclass

declaration. All AppLogics are derived, directly or indirectly, from the

GXAppLogic class.

class NewAppLogicName : public GXAppLogic {

The main task of the AppLogic is specified in code that overrides the Execute()

method, which is inherited from the GXAppLogic superclass.

STDMETHODIMP

NewAppLogicName::Execute() {

The code within the Execute() method can perform any desired task. In this

skeleton example, it is not possible to show all the typical tasks.

// AppLogic code

// . . .

The final task of a typical AppLogic is to send a response back to the calling entity.

The result can be any type of data, and it can be sent to any calling entity, including

another AppLogic. There are several alternative techniques available, such as using

the EvalTemplate() or EvalOutput() method to stream data back to the client. In

the following code, methodCall is a placeholder for a method call, where result is

a success code that indicates to the iPlanet Application Server system if the request

was processed correctly. You use ValOut or streaming or

EvalTemplate()/EvalOutput() to return application specific results.

result = MethodCall(params);

return result;

}

}

For more information, see “Returning Results From an AppLogic Object,” on page

79.

Example
The following example code shows a simplified version of the OBShowMenuPage

AppLogic in the Online Bank sample application. This AppLogic displays a main

menu in an HTML page.

The following code is in the header file:

// Declare an indirect subclass of AppLogic: OBShowMenuPage

// uses OBBaseAppLogic, which is derived from AppLogic

Introduction to Writing AppLogic Objects

64 iPlanet Application Server Programmer’s Guide • February 2002

class OBShowMenuPage : public OBBaseAppLogic

{

// ...

};

The following code is in the source file:

// Include header files

#include <stdio.h>

#include <gxplat.h>

#include <gxutil.h>

#include <gxagent.h>

#include <gxdlm.h>

#include "ShowMenuPage.h"

#include "gxval.h"

#include "common.h"

// ...

// ...

// Override Execute() method

STDMETHODIMP

OBShowMenuPage::Execute()

{

HRESULT hr=GXE_SUCCESS;

if(!IsSessionValid())

return HandleOBSessionError();

OBSession *pSession=NULL;

if(((hr=GetOBSession(&pSession))==GXE_SUCCESS)&&pSession) {

ULONG userType=pSession->GetUserType();

if(userType==OB_USERTYPE_CUSTOMER)

// Return results for user type customer

Steps for Writing AppLogic Objects

Chapter 4 Writing Server-Side Application Code 65

EvalTemplate("GXApp/COnlineBank/templates/

CustomerMenu.html", (IGXHierQuery*)NULL, NULL,

NULL, NULL);

else if(userType==OB_USERTYPE_REP)

// Return results for user type representative of bank

EvalTemplate("GXApp/COnlineBank/templates/

RepMenu.html", (IGXHierQuery*)NULL, NULL, NULL,

NULL);

pSession->Release();

}

else

Result("<HTML>Call to getOBSession() failed

in Login</HTML>");

return GXE_SUCCESS;

}

Steps for Writing AppLogic Objects
This section provides an overview of the process of writing an AppLogic object. It

assumes that you are familiar with using the code editor on your development

platform.

To write AppLogic using the iPlanet Application Builder, follow the general steps

defined in the rest of this section. It uses examples from the OBLogin AppLogic in

the Online Bank sample application, which is described in greater detail in What Is

An AppLogic Object?“What Is An AppLogic Object?,” on page 61 of Chapter 4,

“Writing Server-Side Application Code.”

Header File
These instructions use examples from the header file OBLogin.h.

1. In the header file, include the other necessary header files:

Steps for Writing AppLogic Objects

66 iPlanet Application Server Programmer’s Guide • February 2002

#include <stdio.h> // standard I/O routines

#include <gxapplogic.h> // KIVA AppLogic base class

#include "BaseAppLogic.h" // AppLogic base class for this

// application

2. Declare the GUID variable for the AppLogic (a unique GUID is associated with

each AppLogic):

extern GUID OBLoginGUID;

3. Subclass from the application’s AppLogic base class, which is derived from

GXAppLogic:

class OBLogin : public OBBaseAppLogic

{

4. Define the constructor and destructor methods, then declare the Execute()

method using the STDMETHOD macro:

public:

OBLogin();

virtual ~OBLogin();

STDMETHOD(Execute) ();

};

5. Associate the AppLogic with its GUID variable using the GXDLM_DECLARE

macro:

GXDLM_DECLARE(OBLogin, OBLoginGUID);

Source File
These instructions use examples from the source file OBLogin.cpp.

1. In the source file, include the necessary header file(s):

#include "OBLogin.h"

#include "gxval.h"

#include "common.h"

2. Create a GUID for the AppLogic using the kguidgen utility, as described in

“Getting Ready to Run an Application“Getting Ready to Run an Application,”

on page 275 of Chapter 11, “Running and Debugging Applications

Steps for Writing AppLogic Objects

Chapter 4 Writing Server-Side Application Code 67

3. Paste the generated GUID for the AppLogic into the source file (.cpp). Note

that the text version is embedded in the comments (for readability purposes

only) and that the GUID struct is what gets parsed.

//

// {C1B5E720-6153-11D1-A1AE-006008293C54}

//

GUID OBLoginGUID =

{ 0xC1B5E720, 0x6153, 0x11D1, { 0xA1, 0xAE, 0x00, 0x60,

0x08, 0x29, 0x3C, 0x54 } };

4. In the source file, establish to the iPlanet Application Server the entry point in a

dynamically loadable, shared library module using the

GXDLM_IMPLEMENT_BEGIN, GXDLM_IMPLEMENT, and

GXDLM_IMPLEMENT_END macros. These macros define certain exported

functions which the iPlanet Application Server expects to find when it loads

the AppLogic at runtime. The macros are needed in order to fully initialize and

create instances of the AppLogic.

GXDLM_IMPLEMENT_BEGIN();

GXDLM_IMPLEMENT(COBLogin, OBLoginGUID);

GXDLM_IMPLEMENT_END();

OBLogin::OBLogin() {

GXDllLockInc(); // Update count of refs to applogic lib

};

OBLogin::~OBLogin() {

GXDllLockDec(); // Update count of refs to applogic lib

};

It is advisable to use the GXDllLockInc() function at the beginning of the

constructor method and the GXDllLockDec() function at the end of the

destructor method.

5. Override the Execute() method with your own code. The STDMETHODIMP

macro specifies that this execute method has a return type value of virtual
HRESULT.

STDMETHODIMP

OBLogin::Execute()

{

Performing the Main Task in an AppLogic Object

68 iPlanet Application Server Programmer’s Guide • February 2002

// Overriding code

}

Performing the Main Task in an AppLogic Object
To write code that performs the main task of an AppLogic object, override the

AppLogic’s Execute() method. The Execute() method is inherited from the

GXAppLogic class, from which you derived the AppLogic. iPlanet Application

Server automatically calls Execute() when a request comes in for the AppLogic.

You can write code in Execute() to perform any desired task. A typical AppLogic’s

Execute() method might contain code to perform the following tasks:

• Check input parameters.

For more information, see “Validating Input to AppLogic Objects,” on page

265 of “Writing Secure Applications,” Chapter 9.

• Query a database to retrieve data requested by the user.

For more information, see Chapter 5, “Working with Databases

• Return results.

For more information, see “Returning Results From an AppLogic Object” on

page 79.

Calling an AppLogicFrom Code
In addition to being executed by iPlanet Application Server in response to user

requests, AppLogic objects can be called by other AppLogic objects or by other

code. The called AppLogic returns results to the calling code, as shown in the

following illustration.

Call

Return

AppLogicAppLogic

Calling an AppLogic From Code

Chapter 4 Writing Server-Side Application Code 69

AppLogic objects can call each other whether they are running on the same iPlanet

Application Server or on different iPlanet Application Servers. In your AppLogic

code, you do not specify the location of the called AppLogic. This allows you to

change the partitioning and location of AppLogic objects and redeploy an

application without having to modify AppLogic code.

In some cases, the user might submit a request that runs an AppLogic, which calls

another AppLogic, which calls another one, and so on. The input parameters are

passed down the chain automatically by iPlanet Application Server, and the results

from the called AppLogics are passed back up the chain until they reach the end

user. You can modify the input parameters or intercept the results at any point if

desired, but typically, the parameters and results are passed along as shown in the

following illustration.

To call an AppLogic from another AppLogic, use the NewRequest() method. For

server-side code, this method is in the GXAppLogic class. For client-side code, it is

in the IGXConnection interface. In the NewRequest() call, specify the name or

globally unique identifier (GUID) of the AppLogic you want to call. The name or

GUID is assigned when you register the AppLogic with iPlanet Application Server.

For more information about registration, see “Registering Code And Security

Information” on page 282 of , “Running and Debugging Applications.”

iPlanet Application Server uses the arguments of the NewRequest() method to

construct an AppLogic request, which it then processes by executing the AppLogic.

For more information, see “Requests, AppLogic Names, and GUIDs” on page 70.

You can pass parameters to and from the called AppLogic by using IGXValList

objects. For more information, see “Passing Parameters to AppLogic From Code”

on page 76.

Example
The following code calls an AppLogic by GUID:

hr = NewRequest("{E5CA1000-6EEE-11cf-96FD-0020AFED9A65}",

m_pValIn, m_pValOut, 0);

The following code shows how to call the same AppLogic by name. In this code, it

is assumed that you have registered the AppLogic with the name

CShowMenuPage.

User

In Params

AppLogic 1

Result

AppLogic 3AppLogic 2

Requests, AppLogic Names, and GUIDs

70 iPlanet Application Server Programmer’s Guide • February 2002

hr = NewRequest("AppLogic CShowMenuPage",

m_pValIn, m_pValOut, 0);

Requests, AppLogic Names, and GUIDs
When an AppLogic object is called, whether from a user or from code, a message

called a request is sent to iPlanet Application Server. In response to the request,

iPlanet Application Server runs the AppLogic. Requests from users and from

within program code can use either of the following techniques to identify the

proper AppLogic to handle the request:

• unique AppLogic name

• globally unique identifier (GUID)

The following illustration shows how AppLogics are called.

Every AppLogic has a unique name and a unique GUID. The GUID is a 128-bit

hexadecimal number in the following format:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

For example:

{C1B5E720-6153-11D1-A1AE-006008293C54}

When an AppLogic is registered with iPlanet Application Server, a unique GUID

and a name are assigned to the AppLogic.You can register AppLogics and assign

names to them using the technique described in “Registering Code And Security

Information” on page 282 of , “Running and Debugging Applications.”

Client

Name or GUID

Name or GUID

AppLogic

Passing Parameters to AppLogic Objects

Chapter 4 Writing Server-Side Application Code 71

Passing Parameters to AppLogic Objects
When iPlanet Application Server processes a request to run an AppLogic object, it

checks the request to see whether it contains any parameters, and it passes the

parameters to the AppLogic. For example, the parameters may be values the user

has supplied from input fields on a form. AppLogic objects can also call an

AppLogic and pass parameters to it, setting up the parameters in code.

iPlanet Application Server passes parameters in the form of IGXValList objects. An

IGXValList object is an unordered collection of named parameters. Each parameter

has a data type and value. To pass parameters to an AppLogic, iPlanet Application

Server constructs an IGXValList object based on the names and values it finds in

the request, as shown in the following illustration.

Passing Parameters To AppLogic From An
HTML Page
The following illustration and list summarize the steps you follow and the

sequence of events that occurs when you pass parameters to an AppLogic object

from an HTML page.

Request for AppLogic

color green

name Smith

...,GUID,...

color=green,

name=smith,...

AppLogic

Passing Parameters to AppLogic Objects

72 iPlanet Application Server Programmer’s Guide • February 2002

To pass parameters to AppLogic from an HTML
page
1. Create an HTML form and write an AppLogic object to handle the input from

the form. The form typically includes the following items:

❍ One or more named controls that accept input, either as typed text or

selected values, such as radio buttons and single- or multiple-selection list

boxes. If a user selects several items from a multiple-selection list box, the

value of the field is returned as a semicolon-delimited list.

❍ A Submit button that the user clicks after filling out the form.

❍ The URL that specifies which AppLogic to run when the user clicks the

Submit button.

For more information about how to code this URL, see “Calling an AppLogic

Object From an HTML Page” on page 192 of , “Writing Server-Side

Application Code.”

2. The user runs the application and fills out the form. When the user clicks

Submit, a request is issued that includes the input field names, data values, and

AppLogic name or GUID from the form. The Web server passes this request to

iPlanet Application Server.

[1] HTML page [2] Request for
AppLogic

iPlanet Application Server

[3] Input ValList

[4] Pass input params to the
AppLogic

[5] Reference input params
through the ValList passed in

...,GUID,...

color=green,

name=Smith,...

color green

name Smith

Color:
green

Name:
Smith

submit

Called AppLogic

Passing Parameters to AppLogic Objects

Chapter 4 Writing Server-Side Application Code 73

3. iPlanet Application Server instantiates an IGXValList object and populates it

with the data values from the form. Each value in the list is named after one of

the input fields on the form. The input parameters might also include cookies,

if any are currently stored in the Web browser for this application.

4. iPlanet Application Server then instantiates the AppLogic, sets the AppLogic’s

m_pValIn member variable to the IGXValList object that contains the

AppLogic’s input parameters, and then calls the Execute() method of the

AppLogic.

5. The AppLogic can get the parameter values by referencing m_pValIn and

using the GetVal**() methods of the IGXValList interface.

Example
In the Online Bank sample application, an employee of the bank can use the Find

Customer form to get information about a given customer. This form is presented

as an HTML page with input fields into which the employee types the search

criteria, such as the customer’s last name:

<!-- Preliminary HTML tags ... -->

<FORM method="POST" action="/cgi-bin/gx.cgi/

AppLogic+FindCust">

<H2>Search for Customer</H2>

<H5>Please enter search criteria:</H5>

<TABLE BORDER=0 COLS=2 WIDTH=100% BGCOLOR=#CCCC80>

<TR>

<TD>Last Name</TD><TD><INPUT TYPE="TEXT" NAME="lastName"

SIZE=30 VALUE=""></TD>

</TR>

<TR>

<TD>First Name</TD><TD><INPUT TYPE="TEXT"

NAME="firstName" SIZE=30 VALUE=""></TD>

</TR>

<!-- Other criteria fields ... -->

</TABLE>

Passing Parameters to AppLogic Objects

74 iPlanet Application Server Programmer’s Guide • February 2002

<input type="submit" name="go" value="Search">

</FORM>

<!-- Closing HTML tags ... -->

When the employee clicks the form’s Search button, a request is sent to the Web

server. The request includes the name of the FindCust AppLogic, which is

designed to process this form. The names of fields from the form and the data the

bank employee typed in each field are also included in the request.

The Web server forwards the request to the iPlanet Application Server, which

places the input data in an IGXValList object. iPlanet Application Server then runs

the FindCust AppLogic, setting the AppLogic’s m_pValIn parameter to the

IGXValList object that contains the AppLogic’s parameters.

The AppLogic’s Execute() method contains code to get the parameter values out of

the IGXValList object. For example, the following code places the data value from

the LastName field on the form into a variable named pLastName.

LPSTR pLastName=NULL;

pLastName=GXGetValListString(m_pValIn, "lastName");

After using the parameter values to look up the requested customer data from the

bank’s database, the AppLogic returns an HTML page to display the results.

Uploading Files From a Web Browser
By using AppLogic input parameters, you can send a text or binary file from a Web

browser to an application running on the iPlanet Application Server. You can also

upload files in Microsoft Internet Information Server (MS IIS). This feature is useful

for applications which could benefit from the submission of files of data. The file is

passed in the input IGXValList object, just like any other parameters coming from

the HTML page.

For example, in a Human Resource management application, a form could prompt

the user to attach a resume file along with other information such as the job for

which they are applying. The AppLogic receiving the submitted resume could

store the resume and other information in a database.

For applications that use the file upload feature to work, file uploading must be

supported by the Web server to which the iPlanet Application Server is connected.

Example
The following example HTML code uploads the user’s file when the user clicks the

Send File button. The file name of the user’s file becomes the value of the variable

userFile .

Passing Parameters to AppLogic Objects

Chapter 4 Writing Server-Side Application Code 75

<FORM ENCTYPE="multipart/form-data"
ACTION="/cgi-bin/gx.cgi/GUIDGX-{0F6D8100-6E1F-11cf-96FD-0020AFED9A6
5}" METHOD=POST>

Send this file: <INPUT NAME="userFile" TYPE="file">

<INPUT TYPE="submit" VALUE="Send File">

</FORM>

The following example code handles the submission of the file and processes its

contents. This code would appear as part of the AppLogic corresponding to the

GUID {0F6D8100-6E1F-11cf-96FD-0020AFED9A65} .

StreamResult("<HTML><HEAD><TITLE>File Submit</TITLE>

</HEAD>");

StreamResult("<BODY BGCOLOR=#FFFFFF>");

StreamResult("<H2>File Info</H2>");

char tmp[1024];

tmp[0] = '\0';

m_pValIn->GetValString("userFile_file", tmp, sizeof(tmp));

StreamResult("
File name: ");

StreamResult(tmp);

tmp[0] = '\0';

m_pValIn->GetValString("userFile_type", tmp, sizeof(tmp));

StreamResult("
File type: ");

StreamResult(tmp);

tmp[0] = '\0';

m_pValIn->GetValString("userFile_size", tmp, sizeof(tmp));

StreamResult("
File size: ");

StreamResult(tmp);

int bufferSize = atoi(tmp) + 16;

char *buffer = new char[bufferSize];

buffer[0] = '\0';

m_pValIn->GetValBLOB("userFile", (LPBYTE) buffer,

bufferSize);

StreamResult("<H2>File Content:</H2><PRE>");

Passing Parameters to AppLogic Objects

76 iPlanet Application Server Programmer’s Guide • February 2002

StreamResult(buffer);

delete [] buffer;

StreamResult("</PRE></BODY></HTML>");

return 0;

Passing Parameters to AppLogic From Code
You can pass parameters to an AppLogic object when you call it from another

AppLogic or from other code. To call an AppLogic from code, construct an

IGXValList object in code, populate it with the desired parameter values, and pass

the IGXValList object when you call the AppLogic. You can also return output

parameters from the called AppLogic in another IGXValList object.

The following illustration and list summarize the steps you follow and the

sequence of events that occurs when you pass parameters to an AppLogic from

code. In the following discussion, the use of output parameters is also described.

To pass parameters to an AppLogic from code
1. Instantiate two IGXValList objects. Populate one IGXValList object with the

parameters you want to pass to the AppLogic. The second IGXValList object is

for the parameters that will be returned from the called AppLogic. To set up

these objects, use the following methods:

❍ To instantiate the IGXValList objects, use the GXCreateValList() function.

For example:

m_pParamsTo = GXCreateValList();

Out Params

In Params

[1] Create in and
out ValLists and
set in parameters

Calling AppLogic

[2] Call the
other AppLogic

Called AppLogic

[3] Reference in
parameters

[4] Set out
parameters, then
return

[5] After called
AppLogic returns,
can reference its out
params

Passing Parameters to AppLogic Objects

Chapter 4 Writing Server-Side Application Code 77

m_pParamsReturned = GXCreateValList();

❍ To populate the first IGXValList object with parameters you want to pass

to the AppLogic, use the SetVal**() methods of the IGXValList interface.

With each call to any of these methods, you specify a parameter name and

its value. For example, the following line specifies a string parameter

named stateVal and sets it to the value Oklahoma:

GXSetValListString(m_pParamsTo, "stateVal","Oklahoma");

2. Call the AppLogic using the NewRequest() method from the GXAppLogic

class. This method issues a request that includes the AppLogic name or GUID

and the input and output IGXValList objects. For example:

NewRequest(calledGUID, paramsTo, paramsReturned, 0);

In response to the request, iPlanet Application Server instantiates the called

AppLogic and sets its m_pValIn and m_pValOut member variables to the

IGXValList objects specified by the calling code. In the previous example,

m_pValIn is paramsTo and m_pValOut is paramsReturned.

3. The AppLogic can obtain its input parameter values by referencing m_pValIn

with theGetVal**() methods from the IGXValList interface, as appropriate. For

example, the called AppLogic could use the following code to get the value of

the stateVal input parameter:

LPSTR state=GXGetValListString(m_pValIn, "stateVal");

4. If desired, you can return output parameters from the called AppLogic by

filling the output IGXValList object with values. To do so, use the m_pValOut

member variable to reference the output IGXValList object, and call the

SetVal**() methods of the IGXValList interface. The called AppLogic uses the

same techniques to set up its output IGXValList object as the calling code used

to set up the input IGXValList object. For example, the called AppLogic could

use the following code to set the value of the Pop output parameter:

m_pValOut->SetValString("Pop", result);

5. After the AppLogic is finished running, the calling code can use its second

IGXValList object to reference the parameters that were passed back from the

called AppLogic. For example:

paramsReturned->GetValString("Pop", population,

sizeof(population));

Passing Parameters to AppLogic Objects

78 iPlanet Application Server Programmer’s Guide • February 2002

Example
The following code shows part of an AppLogic that receives the name of a state as

a parameter. The state comes from a field named StateField in a form that is filled

out by the user. The AppLogic passes the state name to another AppLogic, which

returns the population of that state. The called AppLogic passes the population out

in a parameter named Pop.

// Get input parameter.

char state[128];

m_pValIn->GetValString("StateField", state, sizeof(state));

// Set up parameter to pass to other AppLogic.

IGXValList *paramsTo;

paramsTo = GXCreateValList();

paramsTo->SetValString("st", state);

// Set up IGXValList to receive result from other AppLogic.

IGXValList *paramsReturned;

paramsReturned = GXCreateValList();

// Call other AppLogic.

HRESULT hr;

hr = NewRequest("{E5CA1000-6EEE-11cf-96fd-0020AFED9A65}",

paramsTo, paramsReturned, 0);

if (hr == NOERROR)

{

// Get value from IGXValList returned by

// other AppLogic.

char population[128];

paramsReturned->GetValString("Pop", population,

sizeof(population));

// ...

}

The following code shows how the called AppLogic references the state name that

is passed in to it, and how it returns the Pop parameter to the calling AppLogic:

m_pValIn->GetValString("st", state, sizeof(state));

Returning Results From an AppLogic Object

Chapter 4 Writing Server-Side Application Code 79

// ...

m_pValOut->SetValString("Pop", result);

Returning Results From an AppLogic Object
The final task an AppLogic object typically performs is returning its results. iPlanet

Application Server directs the AppLogic results to the entity that called the

AppLogic, whether it is a Web browser or another AppLogic.

For example, in response to a user request from a Web browser, an AppLogic

might be called to look up data and merge it with an HTML template to create an

HTML report. The report is the result of the AppLogic, and iPlanet Application

Server sends the report back to the Web browser so the user can view it.

Types of Results
The techniques for returning AppLogic results fall into the following categories:

• The return value of the Execute() method. It is advisable for every AppLogic to

return this type of result to indicate success or failure. For more information,

see “Using the Return Value of Execute()” on page 79.

• HTML pages. You should return HTML only when all clients are Web

browsers and you want to create special HTML-specific output effects. For

more information, see “Returning HTML Results” on page 81.

• Output parameters in an IGXValList object. You can return this type of result

when the AppLogic is called from another AppLogic. For more information,

see “Returning Output Parameters in an IGXValList Object” on page 85.

Using the Return Value of Execute()
The return statement stops execution of a method or function and returns a value

indicating either a successful completion of the task or an error. For example, the

following statement indicates success:

return GXE_SUCCESS;

A nonzero value indicates failure.

Returning Results From an AppLogic Object

80 iPlanet Application Server Programmer’s Guide • February 2002

In an iPlanet Application Server application, you use the return statement in each

AppLogic when you override its Execute() method (unless the Execute() method

has been modified to return a data type other than int). Inside Execute(), the

return statement is commonly combined with a method call, such as

EvalTemplate() or EvalOutput(), that returns results to the entity that called the

AppLogic.

The iPlanet Application Server Foundation Class Library provides several such

methods. By combining a method call with the return statement, you can

accomplish two objectives: you can send output such as an HTML report from the

AppLogic, and you can return the numeric code that indicates success or failure.

For example, the following code uses EvalTemplate() to send a

dynamically-generated HTML page back to the entity that called the AppLogic.

When EvalTemplate() is finished, it returns a code indicating success or failure.

This code is, in turn, used as the argument to the return statement.

return EvalTemplate("GXApp/COnlineBank/templates/

CustomerMenu.html",(IGXHierQuery*)NULL, NULL, NULL, NULL);

If a single method call is not enough to return all the output from the AppLogic,

you can use several method calls before the return statement. For example, the

following code uses streaming to return an HTML result in three parts:

StreamResultHeader(header);

StreamResult(body1);

StreamResult(body2);

return 0;

The streaming methods return data as it becomes available, instead of waiting for

all the data to be ready before sending output to the user. For more information

about streaming, see “Streaming Results” on page 83.

The method calls need not occur immediately before the return statement as they

do in the previous example. They can be separated by additional lines of code. For

example, you might want to return the results in several portions from several

points in the AppLogic code.

Application-specific return values, such as error values or messages, should be

returned using the AppLogic’s m_pValOut variable, output streaming, or

EvalTemplate() or EvalOutput().

Returning Results From an AppLogic Object

Chapter 4 Writing Server-Side Application Code 81

Returning HTML Results
You can explicitly return HTML when all clients are Web browsers. The advantage

of forcing HTML results, rather than using the client-independent programming

model, varies from application to application. If you wish to use particular features

of HTML and are certain that all clients will be Web browsers for the life of the

AppLogic, you can return HTML results using one of the following techniques:

• Merge the result set from a hierarchical query with an HTML template to

produce a dynamically generated HTML page. For example, use this technique

to return a database report or a dynamically populated form.

For more information, see “Returning Results Using an HTML Template” on

page 81.

• If the HTML result is not complicated or you prefer not to use an HTML

template, you can construct and return HTML results programmatically. In

most cases, it is preferable to use HTML templates because they are easier to

maintain.

For more information, see “Returning HTML Results Without a Template” on

page 83.

You can also combine these two techniques to stream several portions of HTML in

succession. When results are streamed, the first portion of the data is available for

use immediately. This increases the perceived performance of the application. For

example, although the AppLogic may process and return a lengthy query result,

the AppLogic can use streaming to send back a report header, which is displayed

quickly to the user. For more information, see “Streaming Results” on page 83.

Returning Results Using an HTML Template
To return HTML that is merged with dynamic data, use an HTML template. An

HTML template is an HTML page that contains placeholders where data is to be

merged with the template. For more information, see , “Working with Templates.”

The dynamic data is obtained from one of the following sources:

• A hierarchical query, which retrieves data from a database. For more

information, see “Using Hierarchical Queries” on page 149 of , “Types of

Queries.”

• A template data object, in which you have placed the data programmatically.

For more information, see “Constructing a Hierarchical Result Set with

GXTemplateDataBasic” on page 212 of , “Working with Templates.”

• To return an HTML page from an AppLogic, use EvalTemplate().

Returning Results From an AppLogic Object

82 iPlanet Application Server Programmer’s Guide • February 2002

• This technique merges an HTML template with a hierarchical result set, then

uses HTTP streaming to return the results to the calling entity, which is usually

a Web browser.

You can return additional results after EvalTemplate() has finished streaming its

results. To do so, call StreamResult() after calling EvalTemplate(). For more

information, see “Streaming Results” on page 83.

Example
The following code, from the ShowMenuPage AppLogic in the Online Bank

sample application, uses EvalTemplate() to return an output HTML page using the

HTML template CustomerMenu.html.

EvalTemplate("GXApp/COnlineBank/templates/CustomerMenu.html",

(IGXHierQuery*)NULL, NULL, NULL, NULL);

CAUTION The SaveSession() method in the GXAppLogic class performs some

processing of HTTP headers, which must be sent before the HTTP

body. The EvalTemplate() method streams an HTTP body.

Therefore, if your application uses sessions and also streams HTML

results to a Web browser, be sure to call SaveSession() before calling

EvalTemplate() and StreamResult().

[1] HTML page [2] Request for
AppLogic

iPlanet Application Server

[3] Input ValList

[4] Pass input params to the
AppLogic

[5] Reference input params
through the ValList passed in

...,GUID,...

color=green,

name=Smith,...

color green

name Smith

Color:
green

Name:
Smith

submit

Called AppLogic

Returning Results From an AppLogic Object

Chapter 4 Writing Server-Side Application Code 83

Returning HTML Results Without a Template
An AppLogic can return HTML that is constructed programmatically, without

using an HTML template. In most cases, it is preferable to use HTML templates,

because they are easier to maintain.

To prepare HTML output programmatically, set the value of a string variable to the

HTML string, and return that variable using Result() or StreamResult(). For

example, the following code is from the Logout AppLogic in the Online Bank

sample application:

return Result("<HTML><BODY>Thanks for using the Online

Bank.</BODY></HTML>");

You can also construct the HTML result in two parts, an HTTP header and HTTP

body, and return the two parts sequentially. Use StreamResultHeader() to return

the header and StreamResult() to return the body. For example:

StreamResultHeader(headerStr)

StreamResult(bodyStr);

Streaming Results
Streaming is a technique for managing how data is returned to the user. When

results are streamed, the first portion of the data is available for use immediately.

When results are not streamed, the whole result must be prepared before any part

of it can be sent to the client. Streaming provides a way to return large amounts of

data in a more timely manner.

In an iPlanet Application Server application, you can use streaming to return either

HTML or client-independent results.

Methods That Affect Streaming
The following list summarizes the methods in the libraries that perform streaming.

For details about these methods, see the iPlanet Application Server Foundation Class
Reference.

The following methods affect the streaming of header information:

• The SaveSession() method in the GXAppLogic class performs some processing

of HTTP headers, which must be sent before the HTTP body. Therefore, if your

application uses sessions and also streams HTML results to a Web browser, be

sure to call SaveSession() before calling any streaming methods, including

EvalTemplate() or EvalOutput().

Returning Results From an AppLogic Object

84 iPlanet Application Server Programmer’s Guide • February 2002

For more information about SaveSession(), see “Starting a Session” on

page 228 of , “Managing Session and State Information.”

• The SetVariable() method sets the value of a variable and streams the variable

out in an HTTP header. This method supports HTTP cookies. Call

SetVariable() before calling any HTTP body streaming methods, such as

EvalTemplate() or EvalOutput().

For more information about SetVariable(), see “Using Cookies” on page 60 of ,

“Application Development Techniques.”

• The StreamResultHeader() method is used to explicitly stream an HTTP

header to a Web browser. To use this method, construct the data you want to

pass as a stream header and pass it to StreamResultHeader() as a parameter.

For more information, see the iPlanet Application Server Foundation Class

Reference.

The following methods stream body information:

• The EvalTemplate() method merges data with a template. As soon as a

segment of the output page is finished, EvalTemplate() streams it to the

waiting client.

For more information about EvalTemplate(), see “Returning Results Using an

HTML Template” on page 81.

• The StreamResult() method is used to explicitly stream an HTTP body to a

Web browser. To use this method, construct the data you want to pass as a

stream body and pass it to StreamResult() as a parameter.

For more information, see the iPlanet Application Server Foundation Class

Reference.

HTTP Header and Body Components
Streamed HTML results are communicated using the Hypertext Transfer Protocol

(HTTP), which is the protocol used for communicating hypertext documents across

the Internet and the World Wide Web. The HTTP protocol specifies the order in

which data must be passed. If your AppLogic calls HTTP methods out of order, the

AppLogic violates the protocol and causes a runtime error at the Web browser.

The HTTP protocol divides data into two categories: header and body. A

discussion of the requirements for HTTP headers and bodies is outside the scope of

iPlanet Application Server documentation. For more information, refer to the

literature on the HTTP protocol.

Returning Results From an AppLogic Object

Chapter 4 Writing Server-Side Application Code 85

When streaming HTML, be sure to stream header data before body data. You can

stream the header or body in several parts, using several method calls, as long as

all the header calls occur before the body calls. For example:

StreamResultHeader(startHeader);

StreamResultHeader(finishHeader);

StreamResult(bodyStart);

StreamResult(bodyMiddle);

StreamResult(bodyEnd);

Returning Output Parameters in an IGXValList
Object
AppLogic objects that are called by other AppLogics or by other code can return

one or more output parameters in an IGXValList object. To return output

parameters, populate the AppLogic’s output IGXValList object with the values you

want to return. Use the AppLogic’s m_pValOut member variable to refer to the

output IGXValList object, and use the SetVal**() methods of the IGXValList

interface to populate the list. With each call to one of these methods, you name an

item in the list and set its value.

For more information, see “Passing Parameters to AppLogic From Code” on

page 76.

Caching AppLogic Results to Improve Performance

86 iPlanet Application Server Programmer’s Guide • February 2002

Example
The following code returns the product of two numbers in an output IGXValList

object.

int product = a * b;

m_pValOut->SetValInt("answer", product);

return 0;

Caching AppLogic Results to Improve
Performance

Results from AppLogic objects can be cached. A cache is a fast-access area in the

computer’s memory. Caching improves performance when AppLogics perform

time-consuming operations, such as lengthy database queries and report

generation. Only streamed results, such as reports, can be cached, not other results

such as output parameters. For example, output from EvalOutput() or

EvalTemplate() can be cached.

The first time an AppLogic runs, it can store its results in the cache. When the

iPlanet Application Server receives additional requests for the same AppLogic,

instead of running the time-consuming operations again, the iPlanet Application

Server returns the results directly from the cache. The following illustration shows

how caching works.

Caching AppLogic Results to Improve Performance

Chapter 4 Writing Server-Side Application Code 87

When the most up-to-date results are needed, it is necessary to run AppLogics

every time they are requested, rather than using cached results. However, it is

often appropriate to cache and reuse results. For example, sales reports that are

generated daily can be cached for 24 hours. Stock market price quotes can be

provided on a 15-minute delay basis, with results cached between each update.

Each AppLogic has one result cache. The cache can contain multiple results, which

are produced by running the AppLogic with different input parameter values. For

example, an AppLogic might produce a report that shows the order history for a

product. The AppLogic would accept the name of the product as an input

parameter from the user. The same AppLogic might, therefore, produce several

different reports for different products, and some or all of these reports can be

cached.

How to Cache Results
To specify that you want the results from an AppLogic to be cached, call the

SetCacheCriteria() method. The parameters to SetCacheCriteria() define the

conditions of the caching, such as how long cache results are kept, size of cache,

and which input parameter values are significant in controlling when results are

cached.

 AppLogic
 . . . {- - - -
 - - - -}. . .

Database

Cache

Request 1 Request 2 Request 3

Result Result Result

Caching AppLogic Results to Improve Performance

88 iPlanet Application Server Programmer’s Guide • February 2002

The SetCacheCriteria() method also clears the cache of any existing results.

Therefore, before calling SetCacheCriteria(), call IsCached() to avoid accidentally

discarding the current contents of the cache. For example:

if (!IsCached())

{

SetCacheCriteria(3600, 1, "");

}

IGXHierQuery *hqry;

// ...create and define hierarchical query here...

LPSTR templateName;

// ...assign template name here...

// Run template report.

//

EvalTemplate(templateName, hqry, NULL, NULL, NULL);

hqry->Release();

delete [] templateName;

return 0;

Using Cache Criteria
When you call SetCacheCriteria() to start caching, you specify the names and,

optionally, the relevant values of certain AppLogic input parameters. You can

specify criteria for some or all of the AppLogic’s parameters. The criteria set limits

on which parameters and which values are significant to iPlanet Application

Server when the server determines whether to cache a particular AppLogic result.

Each time an AppLogic runs with caching enabled, iPlanet Application Server

checks to see whether the AppLogic’s input parameters match the criteria in the

SetCacheCriteria() call. If so, iPlanet Application Server places the AppLogic’s

results in a cache. The cache also stores the values of the relevant parameters.

Each cached result is the output from running the AppLogic with a certain set of

parameter values that fall within the criteria specified for that cache. For example,

an EmployeeReport AppLogic might cache different reports for employees in

different company departments, as shown in the following illustration.

Caching AppLogic Results to Improve Performance

Chapter 4 Writing Server-Side Application Code 89

How To Specify Caching Criteria
iPlanet Application Server provides several types of criteria that you can use to

specify the conditions under which you want caching to occur. Use any of the

following formats in the caching criteria parameter of SetCacheCriteria():

• Parameter Name

• Matching Value

• List of Values

• Range of Values

• List of Several Criteria

Caching AppLogic Results to Improve Performance

90 iPlanet Application Server Programmer’s Guide • February 2002

Parameter Name
Use this to cache multiple results for every value of the specified parameter. For

example:

SetCacheCriteria(3600,1,"Department");

Alternatively, you can also use the following syntax:

SetCacheCriteria(3600,1,"Department=*");

iPlanet Application Server caches a new result every time the AppLogic runs with

a different value for the Department parameter.

Matching Value
Use this to cache a single result for a given value of a parameter. For example:

SetCacheCriteria(3600,1,"Department=Operations");

iPlanet Application Server caches only one result from this AppLogic, when the

Department parameter is Operations.

List of Values
Use this to cache multiple results for several distinct values of a single parameter.

For example:

SetCacheCriteria(3600,1,

"Department=Research | Engineering");

iPlanet Application Server caches a maximum of two results from this AppLogic,

one for Research and one for Engineering.

Range of Values
Use this to cache multiple results for a continuum of values of a single parameter.

For example:

SetCacheCriteria(3600,1,"Salary=40000-60000");

iPlanet Application Server caches results from this AppLogic whenever the Salary

parameter contains a new value between 40000 and 60000, inclusive.

List of Several Criteria
Use this to cache multiple results using the values of several parameters, up to the

total number of parameters accepted by the AppLogic. The list can contain any

combination of the previously described types of criteria, separated by commas.

iPlanet Application Server caches results when all the criteria in the list are met. For

example:

Caching AppLogic Results to Improve Performance

Chapter 4 Writing Server-Side Application Code 91

SetCacheCriteria(3600,1,

"Department=Sales,Salary=40000-60000");

iPlanet Application Server caches results from this AppLogic whenever the

Department parameter is Sales and the Salary parameter contains a new value

between 40000 and 60000, inclusive.

Example
The following code is part of an AppLogic called EmployeeReport. The caching

criteria supplied in the SetCacheCriteria() call specify that, if the AppLogic’s

Department parameter is either Sales or Publications, the AppLogic’s results are to

be cached. The value of the Department parameter is stored along with the cached

results.

SetCacheCriteria(3600,1,

"Department=Sales | Publications");

If this AppLogic runs once with a Department parameter value of “Sales”, the

results are cached, along with the parameter name and value, as shown in the

following illustration.

Now suppose the iPlanet Application Server receives another request to run this

same AppLogic, but this time the value of Department is “Publications.” iPlanet

Application Server checks to see whether the value of Department in the request

matches the value of Department in the cached result, as shown in the following

illustration:

Caching AppLogic Results to Improve Performance

92 iPlanet Application Server Programmer’s Guide • February 2002

Because the values do not match, the iPlanet Application Server runs the AppLogic

again. Because the parameter name and value match the criteria in the

SetCacheCriteria() call, iPlanet Application Server creates a new entry in the

AppLogic’s cache and stores the AppLogic’s results. iPlanet Application Server

also stores the current value (Publications) of the Department parameter. As a

result, now two cached results exist for this AppLogic, as shown in the following

illustration.

The next time iPlanet Application Server receives a request to run EmployeeReport

with a Department parameter of Sales or Publications, it uses the cached results for

the appropriate department.

Caching AppLogic Results to Improve Performance

Chapter 4 Writing Server-Side Application Code 93

Keep in mind that the Department parameter can have other values besides Sales

and Publications, or might be omitted entirely if it is an optional parameter. The

AppLogic might also have other parameters. None of these other values or

parameters have any bearing on caching, because the cache criteria make no

reference to them. Only those parameters and values that are specified in the

SetCacheCriteria() call, and no others, are used to identify the various cached

results for an AppLogic.

For example, suppose an AppLogic request specifies “Engineering” for the

Department parameter. The AppLogic runs without caching its results, because

this value of the Department parameter does not fall within the caching criteria, as

shown in the following illustration.

Caching AppLogic Results to Improve Performance

94 iPlanet Application Server Programmer’s Guide • February 2002

How to Change Caching Criteria
To change caching criteria, call SetCacheCriteria() again. Each subsequent call to

SetCacheCriteria() supersedes the criteria set in the previous call. If the criteria are

changed in the call, the contents of the AppLogic’s result cache are discarded, and

the new criteria replace the old criteria for subsequent executions of that AppLogic.

For example, suppose your mail-order business puts a certain sweater on sale for a

week. In anticipation of increased user interest in the sale item, you could change

the cache criteria so that requests for information about that sweater are cached.

How to Remove Cached Results
You can remove some or all of the current contents of the cache without changing

the cache criteria. To remove some specific cached results, call

RemoveCachedResult(). For example, the following code removes a cached result

for a given AppLogic. The first parameter specifies which AppLogic’s results are to

be removed, and the second gives the criteria that tell which particular results to

remove:

hr = RemoveCachedResult(guid, m_pValIn);

To clear the cache of all results, call RemoveAllCachedResults(). For example:

hr = RemoveAllCachedResults(guid);

Example
The following code removes cached results for a given AppLogic.

// Get the input parameter that tells which AppLogic's

// cache is to be flushed

guid = GXGetValListString(m_pValIn, "applogic");

// Get the input parameter that gives the criteria used

// in selecting which result(s) to flush from the cache

LPSTR specific = GXGetValListString(m_pValIn, "specific");

if (specific)

// If result criteria were passed in, flush the

// corresponding results from the cache

Caching AppLogic Results to Improve Performance

Chapter 4 Writing Server-Side Application Code 95

hr = RemoveCachedResult(guid, m_pValIn);

else

{

// If no specific cache criteria were passed in,

// either delete the cache or remove all entries,

// depending on value of the "delete" parameter

LPSTR del = GXGetValListString(m_pValIn, "delete");

if (del)

hr = DeleteCache(guid);

else

hr = RemoveAllCachedResults(guid);

}

How to Stop Caching
To stop caching results, call DeleteCache(). For example:

hr = DeleteCache(guid);

When this method is called, the current contents of the AppLogic’s result cache, if

any, are deleted. Unless the AppLogic makes a subsequent call to

SetCacheCriteria(), no further results are cached for this AppLogic.

You can also stop caching temporarily by calling SkipCache(). The AppLogic

results are not cached this time the AppLogic runs, but the cache is not cleared, and

when the AppLogic runs again in the future, it will continue to cache results.

Caching AppLogic Results to Improve Performance

96 iPlanet Application Server Programmer’s Guide • February 2002

97

Chapter 5

Working with Databases

This chapter describes iPlanet Application Server’s interaction with databases,

which are used for a wide variety of purposes, such as storing information about

users or customers, tracking inventory levels, and recording sales or banking

transactions.

The following topics are included in this chapter:

• Introduction to Working with Databases

• About Database Connections

• Getting Information About Columns or Fields

• Inserting Records in a Database

• Updating Records in a Database

• Deleting Records From a Database

• Using Pass-Through Database Commands

• Using Prepared Database Commands

• Using Parameters in Database Commands

• Using Stored Procedures

• Using Triggers

• Using Sequences

• Managing Database Transactions

Introduction to Working with Databases

98 iPlanet Application Server Programmer’s Guide • February 2002

Introduction to Working with Databases
iPlanet Application Server applications typically interact with databases. For

example, an application might perform a database query to retrieve data for a

report.

In addition to querying for data, you can perform several other types of database

commands. The following list summarizes the operations you can include in an

iPlanet Application Server application:

• Queries

• INSERT

• UPDATE

• DELETE

• Any other database command supported by the database server (through the

SetSQL() method)

Supported Databases
iPlanet Application Server supports the following databases:

• Oracle

• Sybase

• Informix CLI

• Microsoft SQL Server

• DB2

• ODBC 1.0 and ODBC 2.0 compliant databases

Summary of Database Interaction
The following list summarizes the steps involved in adding database interaction to

an iPlanet Application Server application:

To add database interaction to an iPlanet Application Server application

1. Check the user’s security level to see whether they have access to the tables and

other database objects that the application will reference.

About Database Connections

Chapter 5 Working with Databases 99

For more information, see , “Writing Secure Applications.”

2. Open a database connection.

For more information, see “Opening a Database Connection” on page 99.

3. Write the database command (an insert, update, delete, or query operation).

Several sections in this chapter describe in detail how to write database

commands.

4. Run the command.

5. Retrieve and process the results of the command (if any).

About Database Connections
A database connection is a communication link with a database or other data

source. Your code can create and manipulate several database connections

simultaneously to access data.

Each database connection is represented by a database connection object, which is

an instance of the IGXDataConn interface. Each I GXDataConn object contains

information such as the user name, password, and any other parameters that are

necessary to establish the connection to a particular database.

Opening a Database Connection
Before running a query or another database command, you must open a

connection to a data source. To do this, call the CreateDataConn() method in the

GXAppLogic class. This method instantiates a data connection object. The

connection parameters are placed in an IGXValList which is then passed as a

parameter to CreateDataConn() . For example:

IGXValList *loginParams;

loginParams = GXCreateValList();

loginParams->SetValString("DSN", "salesDB");

loginParams->SetValString("DB", "salesDB");

loginParams->SetValString("USER", "steve");

loginParams->SetValString("PSWD", "pass7878");

About Database Connections

100 iPlanet Application Server Programmer’s Guide • February 2002

IGXDataConn *conn;

CreateDataConn(0,GX_DA_DRIVER_ODBC,

loginParams, NULL, &conn);

In this example, the connection uses the following connection parameters:

• Type of driver is ODBC.

• Data source name is salesDB .

• Database name is also salesDB .

• User name is steve .

• Password is pass7878 .

Specifying Connection Parameters
In the CreateDataConn() method call, the AppLogic specifies which data access

driver should be used and lists the connection parameters required by that type of

driver. In the example given earlier, the ODBC data access driver is specified. This

type of driver requires connection parameters, such as a data source name, user

name, and password.

One of the connection parameters is the name of a data source. Before using an

ODBC connection, you must use the ODBC administration utility, supplied with

your database software, to define and name a data source.

For more information about how to do this, refer to your ODBC documentation.

Closing a Database Connection
It is not necessary to close a connection object. The Data Access Engine service of

iPlanet Application Server manages these connections for you. It will perform any

shutdown and cleanup that is necessary.

If you are opening many connections simultaneously, you might want to close one

or more of them explicitly in order to free up the connection for others who might

be waiting to use it. You can explicitly close a database connection by using

Release() . For example:

IGXDataConn *conn1;

HRESULT hr = CreateDataConn(0,GX_DA_DRIVER_ODBC,

 loginParams1, NULL, &conn1);

Getting Information About Columns or Fields

Chapter 5 Working with Databases 101

IGXDataConn *conn2;

HRESULT hr = CreateDataConn(0,GX_DA_DRIVER_ODBC,

 loginParams2, NULL, &conn2);

IGXDataConn *conn3;

HRESULT hr = CreateDataConn(0,GX_DA_DRIVER_ODBC,

 loginParams3, NULL, &conn3);

// ...

// Code using the three connections...

// Finished using connection 1

conn1->Release();

// Continue using connections 2 and 3...

// Release them also when finished.

Getting Information About Columns or Fields
When you are working with databases, you often need to refer to columns in a

database table or fields in a result set. If you do not know the names of the columns

or fields, use one of the following methods:

• For a table, use the GetColumnByOrd() method in the IGXTable interface.

• For a flat result set, use the GetColumnByOrd() method in the IGXResultSet

interface.

• For a hierarchical result set, use the GetColumnByOrd() method in the

IGXHierResultSet interface.

Each of these methods returns one column object at a time. The column object

describes the name, data type, size, and other properties of a column. You can use a

loop and an incrementing counter to retrieve all the available columns in a table or

result set.

Alternatively, to walk through all the available columns, call EnumColumns()

inside a loop to iterate through all the columns in a table or all the fields in a result

set’s row structure. To find out how many columns or fields there are, call

GetNumColumns() . Before the start of the loop, call EnumColumnReset() so that

you start at the first column.

Getting Information About Columns or Fields

102 iPlanet Application Server Programmer’s Guide • February 2002

Once you have retrieved a column object, you can get more information about it by

using the following methods in the IGXColumn interface: GetName() ,

GetNullsAllowed() , GetPrecision() , GetScale() , GetSize() , and

GetType() . For more information about these methods, see the iPlanet

Application Server Foundation Class Reference.

Example
The following code enumerates columns and constructs a segment of HTML that

displays the name and type code of all columns in a database table:

hr = table->EnumColumnReset();

while (TRUE)

{

IGXColumn *column = NULL;

hr = table->EnumColumns(&column);

if (hr == NOERROR &&

column)

{

char buffer[256];

buffer[0] = '\0';

column->GetName(buffer, sizeof(buffer));

StreamResult("Column Name = ");

StreamResult(buffer);

StreamResult(", ");

DWORD type;

type = 0;

column->GetType(&type);

sprintf(buffer, "Column Type = %d", type);

StreamResult(buffer);

StreamResult("
");

column->Release();

}

else

{

Inserting Records in a Database

Chapter 5 Working with Databases 103

// No more columns, exit loop.

//

break;

}

}

Inserting Records in a Database
You can write code to insert records, or rows, into tables. To do so, write an

INSERT command. An INSERT command is a database command that adds a new

row to an existing table.

You can use two techniques to write an INSERT command programmatically:

• Use a series of method calls to write the command. The rest of this section

describes how to use this technique.

• Write a SQL INSERT statement and pass it to the SetSQL() method. Use this

technique only if you are very familiar with SQL syntax. With this technique,

you can allow part of the INSERT command to be set through runtime

parameters. For more information, see “Using Pass-Through Database

Commands” on page 108.

To insert a row by calling a series of methods

1. Open a connection to a data source.

2. Get a table in the database by calling GetTable() .

3. Create a temporary buffer for data by calling AllocRow() .

4. Set the values of columns by calling the SetValue**() methods of the IGXTable

interface. You must refer to columns by their ordinal position in the table,

using GetColumnOrdinal() if necessary.

5. Add the row to the database by calling AddRow() .

Example
The following code, from the Transfer AppLogic in the Online Bank sample

application, adds a row to the OBTransaction table for a new transaction:

// Get table

IGXTable *pTable=NULL;

Updating Records in a Database

104 iPlanet Application Server Programmer’s Guide • February 2002

hr=pConn->GetTable("OBTransaction",

&pTable))==GXE_SUCCESS)&&pTable);

// Look up the column ordinals for the table

ULONG transTypeCol=0; pTable->GetColumnOrdinal("transType",

&transTypeCol);

ULONG postDateCol=0; pTable->GetColumnOrdinal("postDate",

&postDateCol);

ULONG acctNumCol=0; pTable->GetColumnOrdinal("acctNum",

&acctNumCol);

ULONG amountCol=0; pTable->GetColumnOrdinal("amount",

&amountCol);

// Allocate a new row for the withdrawal

pTable->AllocRow();

// Set values in the row

pTable->SetValueString(acctNumCol, pFromAcct);

pTable->SetValueInt(transTypeCol, OB_TRANSTYPE_WITHDRAWAL);

pTable->SetValueDateString(postDateCol, dateStr);

pTable->SetValueDouble(amountCol, amount*-1.0);

// Perform the insert

pTable->AddRow(0, pTx);

Updating Records in a Database
You can write code to modify records, or rows, in tables. To do so, write an

UPDATE command. An UPDATE command is a database command that changes

the values of one or more columns in one or more existing rows in a table.

You can use two techniques to write an UPDATE command programmatically:

Updating Records in a Database

Chapter 5 Working with Databases 105

• Use a series of method calls to write the command. The rest of this section

describes how to use this technique.

• Write a SQL UPDATE statement and pass it to the SetSQL() method. Use

this technique only if you are very familiar with SQL syntax. With this

technique, you can allow part of the UPDATE command to be set through

runtime parameters. For more information, see “Using Pass-Through Database

Commands” on page 108.

To update table rows by calling a series of methods

1. Open a connection to a data source.

2. Get a table in the database by calling GetTable() .

3. Create a temporary buffer for data by calling AllocRow() .

4. Set the values of the columns you want to modify by calling SetValue**()

methods of the IGXTable interface. You can refer to columns by name or by

column number.

5. Specify which row(s) to update and actually update them by calling

UpdateRow() . Use the same syntax as a SQL WHERE clause to specify which

row(s) to update.

For more information about SQL syntax, see your SQL documentation.

Example
The following code changes the value of the region column from West to East,

where the current region is West:

// Create a connection

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

Deleting Records From a Database

106 iPlanet Application Server Programmer’s Guide • February 2002

// Get a table

IGXTable *table = NULL;

hr = conn->GetTable("employees", &table);

// Allocate the row

hr = table->AllocRow();

// Set the new values in the row

ULONG col;

table->GetColumnOrdinal("region", &col);

table->SetValueString(col, "East");

// Perform the update

table->UpdateRow(0, "region='West'", NULL);

// Release resources

table->Release();

conn->Release();

conn_params->Release();

Deleting Records From a Database
You can write code to delete records, or rows, from tables. To do so, write a

DELETE command. A DELETE command is a database command that removes

one or more existing rows from a table.

You can use two techniques to write a DELETE command programmatically:

• Use a series of method calls to write the command. The rest of this section

describes how to use this technique.

• Write a SQL DELETE statement and pass it to the SetSQL() method. Use this

technique only if you are very familiar with SQL syntax. For more information,

see “Using Pass-Through Database Commands” on page 108.

To delete rows by calling a series of methods

Deleting Records From a Database

Chapter 5 Working with Databases 107

1. Open a connection to a data source.

2. Get a table in the database by calling GetTable() .

3. Specify which row(s) to delete and actually remove them by calling

DeleteRow() . Use the same syntax as a SQL WHERE clause to specify which

row(s) to delete.

For more information about SQL syntax, see your SQL documentation.

Example
The following code deletes all rows that contain data about sales employees whose

last name is Smith:

// Create a connection

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

// Get the table

IGXTable *table = NULL;

hr = conn->GetTable("employees", &table);

// Perform the delete

table->DeleteRow(0, "lastname='Smith'", NULL);

// Release resources used

table->Release();

conn->Release();

conn_params->Release();

Using Pass-Through Database Commands

108 iPlanet Application Server Programmer’s Guide • February 2002

Using Pass-Through Database Commands
A pass-through database command is a statement you write using SQL syntax and

pass directly to the database. Use pass-through commands anytime you want to

send literal SQL or database server-specific commands to the database. Use this

technique only if you are familiar with SQL syntax.

To write a pass-through command

1. Instantiate an IGXQuery interface object.

Query objects are used for all types of pass-through database commands, not

just queries.

2. Write a SQL statement and pass it as a parameter to a SetSQL() method call.

The statement must not contain a statement termination character at the end.

For example, commands passed to Oracle databases must not contain

semicolons (;).

The statement must comply with the requirements of the database driver. For

more information about this syntax, refer to your driver or SQL

documentation.

To run a pass-through command

1. Open a connection to a data source.

2. If necessary, declare a variable to refer to the output from the command. For

example, if the command is a query, you will need a way to refer to the result

set:

IGXResultSet *rs;

3. Call the ExecuteQuery() method in the IGXDataConn interface . This

method runs all types of database commands that are specified using

SetSQL() , not just queries. For example:

HRESULT hr = conn->ExecuteQuery(0, qry, NULL, NULL, &rs);

Examples
The following code passes a flat query (SELECT statement) to SetSQL() :

// Set the sql string

char sqlStr[400];

sprintf(sqlStr, "SELECT * FROM OBUser, OBCustomer WHERE
OBUser.userName = OBCustomer.userName AND OBCustomer.ssn = '%s'",
pSsn);

Using Prepared Database Commands

Chapter 5 Working with Databases 109

// Pass to SetSQL()

pQuery->SetSQL(sqlStr);

The following code passes an INSERT command to SetSQL():

pUserQuery->SetSQL("INSERT INTO OBUser(userName, password,

userType, eMail) VALUES (:userName, :password, :userType,

:eMail)");

The following code passes an UPDATE command to SetSQL():

pUserQuery->SetSQL("UPDATE OBUser SET password = :password,

eMail = :eMail WHERE userName = :userName");

The following code passes a DELETE command to SetSQL():

pQuery->SetSQL("DELETE FROM OBUser WHERE userName =

:userName");

Using Prepared Database Commands
When you run a database command, the database engine performs certain routine

tasks such as determining efficient paths to the data referenced in the command.

These tasks become repetitive when running the same command multiple times.

A prepared command is a database command that is compiled by the database. By

preparing the command, you specify that the database need only perform these

compilation tasks once for the command. The state of the command is saved after

these tasks are done. From this point on, whenever the command runs, it has a

head start. Without prepared commands, the database engine must recompile each

command every time you run it, which is less efficient.

The iPlanet Application Server supports prepared commands through the

IGXPreparedQuery interface.

To run a prepared database command

Before preparing a database command, you must write it using the techniques

described elsewhere in this chapter. Then perform the following steps:

1. Open a connection to a data source.

Using Parameters in Database Commands

110 iPlanet Application Server Programmer’s Guide • February 2002

2. Pre-compile the command by declaring a variable of type IGXPreparedQuery

and calling the PrepareQuery() method in the IGXDataConn interface. This

method prepares all types of database commands, not just queries. For

example:

IGXPreparedQuery *pPQuery=NULL;

hr=pConn->PrepareQuery(0, pQuery, NULL, NULL, &pPQuery);

3. If the command contains parameters, instantiate an IGXValList object and use

SetValString() to set the parameter values you want to pass into the

command. For example:

IGXValList *pList=GXCreateValList();

GXSetValListString(pList, ":userName", pUserName);

4. Run the command by calling the prepared query object’s Execute()

method. Pass the IGXValList object, if any, as a parameter. For example:

IGXResultSet *pRset=NULL;

hr=pPQuery->Execute(0, pList, NULL, NULL, &pRset);

pRset->Release();

Note that, when Sybase prepared statements are executed, either an empty result

set is returned (through the Execute() method of IGXCallableStmt) or a null

pointer for a result set is returned. The application writer is required to test for both

cases. This behavior is different from that of other databases in that they return an

empty result set.

Also, when using prepared queries with the Sybase native driver, problems might

be experienced when inserting a column of type money. The money type is not

supported by the Sybase native driver. As a workaround, use a fixed insert

statement with the method ExecuteQuery() .

Using Parameters in Database Commands
When you are writing a database command, you can use parameter markers

instead of values for parts of the command. This technique is useful for making

commands more flexible and reusable.

For example, a static INSERT command is of limited usefulness. More typically,

you use parameters to set up a prepared INSERT, then run the command in a loop,

passing in a different IGXValList object each time.

Using Parameters in Database Commands

Chapter 5 Working with Databases 111

You can use parameters in flat queries, query files, or SQL commands that you pass

to SetSQL() . You cannot use parameters when using method calls such as

AddRow() and DeleteRow() to specify INSERT, UPDATE, or DELETE

commands.

Before you run a database command that contains parameters, you must first

prepare it, as described in “Using Prepared Database Commands” on page 109.

Then, when you run the command, you pass an IGXValList object to it. Each item

in the list corresponds to one of the parameters. iPlanet Application Server replaces

each parameter name with a value from the I GXValList object.

To place a parameter in a database command, use one of the following types of

parameter markers:

• A question mark (?). When you use this technique, the names (also called keys)

of the items in the I GXValList object must consist of numbers, which can

optionally be preceded by colons ("1", "2", or ":1", ":2", etc.). When you run the

command, iPlanet Application Server substitutes values into the command in

the order in which they are numbered in the I GXValList object.

• A name or number preceded by a colon (":1", ":2", ":city", ":max", etc.). When

you run the command, iPlanet Application Server matches the parameter

names to the names of the items in the I GXValList object. This technique gives

you more control over the order in which the parameters appear in the

command. Even if you use numbers in this technique, they need not appear in

order in the command.

You can include up to 1,024 parameters in a single database command, unless your

database software allows fewer parameters than this.

Examples
Suppose the code for a DELETE command contains the following line:

deleteCmd->SetSQL("DELETE FROM products WHERE color = :1");

The following I GXValList object sets the parameter value to be passed into the

command:

IGXValList *pList=GXCreateValList();

GXSetValListString(pList, ":1", "green");

The same IGXValList object could be used for the following DELETE command:

deleteCmd->SetSQL("DELETE FROM products WHERE color = ?");

Using Parameters in Database Commands

112 iPlanet Application Server Programmer’s Guide • February 2002

The next example uses code from the OBLogin AppLogic in the Online Bank

sample application. It shows a prepared flat query with two parameters. The

parameter values for the query are obtained from input parameters, which are

passed into the AppLogic from user input on the login form.

// Get input parameters

LPSTR userName=GXGetValListString(m_pValIn, "userName");

LPSTR password=GXGetValListString(m_pValIn, "password");

// Write query

IGXQuery *pQuery=NULL;

hr=CreateQuery(&pQuery);

pQuery->SetTables("OBUser, OBCustomer");

pQuery->SetFields("OBUser.userName, userType, ssn, lastName,

firstName");

pQuery->SetWhere("OBUser.userName *= OBCustomer.userName AND

OBUser.userName= :userName AND password= :password");

// Prepare the query

IGXPreparedQuery *pPrepQuery=NULL;

hr=pConn->PrepareQuery(0, pQuery, NULL, NULL,

&pPrepQuery);

IGXValList *pList=GXCreateValList();

GXSetValListString(pList, ":userName", userName);

GXSetValListString(pList, ":password", password);

// Run the query

IGXResultSet *pResultSet=NULL;

hr=pPrepQuery->Execute(0, pList, NULL, NULL,

&pResultSet);

Using Parameters in Database Commands

Chapter 5 Working with Databases 113

Parts of Syntax in Which Parameters are Not
Allowed
You cannot use parameters in a hierarchical query that is written using method

calls. That is, none of the flat queries that make up the hierarchical query can

contain parameters. However, you can use parameters in a hierarchical query that

is written in a query file (.gxq).

Outside of hierarchical queries, you can use parameters to replace any single word

or value in a database command, except for the following parts of SQL command

syntax:

• Field name in a SELECT list.

• Operand of a unary + or - operation.

• Argument of a SET operation.

• Both expressions in a comparison predicate. Only one expression in a

comparison can be a parameter.

• Both operands of a binary operator. Only one operand can be a parameter.

• Both the first and second operands of a BETWEEN operation. Either the first or

second operand can be a parameter, but not both.

• Both the first and third operands of a BETWEEN operation. Either the first or

third operand can be a parameter, but not both.

• Both the expression and the first value of an IN operation. Either the

expression or the first value can be a parameter, but not both.

For more information about the items referred to in this list, see your SQL

documentation.

Using Parameters in Database Commands

114 iPlanet Application Server Programmer’s Guide • February 2002

Using Parameters in a Flat Query
iPlanet Application Server provides three techniques for writing flat queries:

• Write the query in SQL and pass it to the SetSQL() method.

• Use a series of method calls to set up the query clauses.

• Write the query in a query file.

You can use parameters no matter which technique you use to write the query.

However, if the flat query is to be included in a hierarchical query, it cannot

contain parameters.

For more information about hierarchical queries, see , “Types of Queries.”

Example
The following code shows a flat query with one parameter, :1, which is a

placeholder for a minimum salary value:

IGXQuery *qry;

CreateQuery(&qry);

qry->SetTables("employee");

qry->SetFields("empSalary, empName");

qry->SetWhere("empSalary > :1");

Using Parameters in an INSERT, UPDATE, or
DELETE Command
iPlanet Application Server provides two techniques for writing INSERT, UPDATE,

and DELETE commands:

• Write the command in SQL and pass it to the SetSQL() method. This is the

only technique in which you can use parameters.

For more information, see “Using Pass-Through Database Commands” on

page 108.

• Use a series of method calls. You cannot use parameters with this technique.

Examples
The following code shows an INSERT command with four parameters for the

values to be placed in a new row:

Using Stored Procedures

Chapter 5 Working with Databases 115

pUserQuery->SetSQL("INSERT INTO OBUser(userName, password,

userType, eMail) VALUES (:userName, :password, :userType,

:eMail)");

The following code shows an UPDATE command with three parameters:

pUserQuery->SetSQL("UPDATE OBUser SET password = :password,

eMail = :eMail WHERE userName = :userName");

The following code shows a DELETE command with a parameter for the user

name:

pQuery->SetSQL("DELETE FROM OBUser WHERE userName =

:userName");

Using Stored Procedures
A stored procedure is a block of statements written in SQL or programmatic SQL

and stored in a database. You can use stored procedures to perform any type of

database operation, such as modifying, inserting, or deleting records. The use of

stored procedures improves database performance by reducing the amount of

information that is sent over a network.

AppLogics can call stored procedures by using the IGXCallableStmt interface.

The I GXCallableStmt interface provides a standard way to call stored procedures

in any database server. Methods in the I GXCallableStmt interface let you

• execute a stored procedure

• pass parameter values to the stored procedure, if required

• retrieve values of the stored procedure’s out parameters and return value, if

any

Getting the Return Value of a Stored Function
Some stored procedures are functions with return values, and others are

procedures with no return value. You run these two types of stored procedures

using slightly different syntax with the SetSQL() method. When the stored

procedure is a function, you can use the following syntax to get the return value of

the function:

q->SetSQL("{:ret = call func(:arg1, :arg2, ...)}");

Using Stored Procedures

116 iPlanet Application Server Programmer’s Guide • February 2002

When the stored procedure is not a function, or when you do not care about the

return value, omit the :ret = portion of the syntax. If the return value syntax is

used, the space between the return-value parameter and the equal sign is required.

Be careful to use this syntax only with functions. If the stored procedure is not

defined as a function in the database, and has no return value, a runtime error

occurs.

Creating a Stored Procedure
To write a stored procedure and store it in your database, you can use the

techniques supported by your database software. You can also write the stored

procedure from code in your application.

To create a stored procedure in code

1. Open a connection to the data source. For example:

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,
&conn);

2. Write a stored procedure and store it in the database using SetSQL() . For

example:

LPSTR myStoreP;

myStoreP =

"create procedure myProc1 "

"(v1land in int, v2pop out int)"

" as"

" begin"

" select COUNTIES.POP into v2pop from COUNTIES"

Using Stored Procedures

Chapter 5 Working with Databases 117

" where COUNTIES.LAND = v1land;"

" end;";

IGXQuery *qry = NULL;

hr = CreateQuery(&qry);

qry->SetSQL(myStoreP);

// Run the query to store the procedure in the database

IGXResultSet *rs = NULL;

hr = conn->ExecuteQuery(0, qry, NULL, NULL, &rs);

Running a Stored Procedure
After writing and storing a procedure in the database, you can run it using the

following steps:

To run a stored procedure

1. Open a connection to the data source. For example:

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,
&conn);

2. Write a pass-through database command that calls the stored procedure. In the

SQL statement, use the following syntax:

❍ The call keyword to call the stored procedure.

❍ The :ret keyword to get the stored function’s return value, if needed.

Using Stored Procedures

118 iPlanet Application Server Programmer’s Guide • February 2002

❍ If the stored procedure accepts parameters, use the following conventions:

When accessing a stored procedure on Sybase or MS SQL Server, input

parameter names specified in the call must be prefixed with the

ampersand (&) character, for example, ¶m1. Other database drivers

accept the ampersand, as well as, the colon (:) character. For all database

drivers, input/output and output parameter names are prefixed with the

colon (:) character, for example, :param2.

The following is an example of how you call a stored procedure:

IGXQuery *qry = NULL;

hr = CreateQuery(&qry);

qry->SetSQL("{:ret = call myFunction(¶m1)}");

3. Prepare a callable statement. For example:

IGXCallableStmt *s;

HRESULT hr = conn->PrepareCall(0, qry, null, null, &s);

4. If the stored procedure requires parameters, set up an IGXValList object with

the parameters. If the stored procedure is a function, you must set the

return-value parameter :ret to some initial value in this IGXValList object.

For example:

IGXValList *params;

params = GXCreateValList();

params->SetValInt(":ret", 9999);

params->SetValInt("¶m1", 20);

5. To execute the stored procedure, run the callable statement object’s

Execute() method. For example:

IGXResultSet *rs = NULL;

hr = s->Execute(0, params, NULL, NULL, &rs);

6. If the stored procedure’s output parameters are of interest to you, use the

GetParams() method to retrieve them. For example:

IGXValList *paramsOut = NULL;

hr = s->GetParams(0, ¶msOut);

For Informix stored procedures, output parameters are returned in the result

set that Execute() returns.

7. Free the resources used. For example:

Using Stored Procedures

Chapter 5 Working with Databases 119

qry->Release();

s->Release();

params->Release();

paramsOut->Release();

resultSetOut->Release();

Supported Stored Procedure Operations
Different databases provide different support for stored procedure operations,

such as retrieving output parameters, and getting the return value of a stored

function. Similarly, the iPlanet Application Server supports some of these

operations differently for different databases.

The following table lists some of the common operations and indicates if the

operation is supported for each database. If an operation is not supported, either

the database does not provide the support or the iPlanet Application Server does

not.

Note that the following types of DB2 stored procedures cannot be executed:

• Where OUT parameters come before all IN parameters

Operation Oracle Informix DB2 Sybase & MS
SQL Server

Retrieve output parameters

using GetParams()

Yes No Yes Yes

Retrieve output parameters

through a result set returned

by Execute()

No Yes Yes Yes

Retrieve multiple result sets No No No No

Retrieve a single return value

from a stored function

Yes No No No

Get the stored procedure’s

code execution status

Yes Yes Yes Yes

Get the error code returned by

the stored procedure

Yes Yes Yes Yes

Using Stored Procedures

120 iPlanet Application Server Programmer’s Guide • February 2002

• Where INOUT parameters come before OUT parameters

The stored procedures need to pass parameters in the correct sequence. To

preserve preexisting stored procedures, write wrapper stored procedures that take

these parameters in the correct order. Note that this parameter sequence problem is

not seen with MS SQL server, but can happen with the other ODBC-compliant data

sources.

Sample Stored Procedure
The following code writes and runs a stored procedure:

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

LPSTR myStoreP;

myStoreP =

"create procedure myProc1 "

"(v1land in int, v2pop out int)"

" as"

" begin"

" select COUNTIES.POP into v2pop from COUNTIES"

" where COUNTIES.LAND = v1land;"

" end;";

IGXQuery *qry = NULL;

Using Stored Procedures

Chapter 5 Working with Databases 121

hr = CreateQuery(&qry);

qry->SetSQL(myStoreP);

// Run qry to store the procedure in the database

IGXResultSet *rs = NULL;

hr = conn->ExecuteQuery(0, qry, NULL, NULL, &rs);

rs->Release();

qry->Release();

conn->Release();

conn_params->Release();

// Now write a new query to run the stored procedure

IGXQuery *qry = NULL;

hr = CreateQuery(&qry);

qry->SetSQL("{:ret = call myFunction(¶m1)}");

IGXCallableStmt *s = NULL;

hr = conn->PrepareCall(0, qry, NULL, NULL, &s);

// Set up parameters for the stored procedure

IGXValList *params;

params = GXCreateValList();

params->SetValInt(":ret", 9999);

params->SetValInt("¶m1", 20);

// Run the stored procedure

IGXResultSet *rs = NULL;

hr = s->Execute(0, params, NULL, NULL, &rs);

// This output vallist contains the output values.

IGXValList *paramsOut = NULL;

Using Triggers

122 iPlanet Application Server Programmer’s Guide • February 2002

hr = s->GetParams(0, ¶msOut);// More code to use the results of
the procedure ...

qry->Release();

s->Release();

params->Release();

paramsOut->Release();

resultSetOut->Release();

Using Triggers
A trigger is a stored block of SQL or programmatic SQL statements with the

following characteristics:

• It is associated with a table.

• It runs in response to an INSERT, UPDATE, or DELETE operation.

• It runs only under certain specified conditions.

For example, you can set a trigger that runs whenever an UPDATE command is

executed in a particular table, with the additional condition that the data being

written into a certain field is NULL. If the user attempts to insert a NULL value in

the field, the trigger runs and displays an error message or takes other remedial

action.

Creating a Trigger
For each trigger, you specify the following characteristics:

• The database table with which it is associated

• The name of the trigger

• The condition that determines when the trigger is executed

• Which type of command activates the trigger (INSERT, UPDATE, or DELETE)

• What action occurs when the trigger is activated (specified in SQL)

To create a trigger

1. Open a connection to a data source. For example:

Using Triggers

Chapter 5 Working with Databases 123

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

2. Set up the trigger by calling CreateTrigger() . For example:

hr = conn->CreateTrigger("employees", "ProcessNew",

 "FOR EACH ROW WHEN(title='Director')",

 "AFTER INSERT", sqlString);

3. If your database requires it, call EnableTrigger() . For example:

conn->EnableTrigger("employees", "ProcessNew");

Disabling and Enabling Triggers
To temporarily stop the trigger from executing, call DisableTrigger() . To

re-enable the trigger, call EnableTrigger() . For example:

conn->DisableTrigger("employees", "ProcessNew");

// Perform tasks without risk of executing the trigger.

// ...

conn->EnableTrigger("employees", "ProcessNew");

conn->Release();

In some cases the enable and disable commands might enable or disable all triggers

that are defined on a certain table, not just the named trigger. For example, Oracle

databases behave in this manner.

Using Sequences

124 iPlanet Application Server Programmer’s Guide • February 2002

Deleting a Trigger
To remove a trigger from the database permanently, call DropTrigger(). For

example:

conn->DropTrigger("employees", "ProcessNew");

Using Sequences
A sequence is a sequential number generator which exists in a database. Some

database vendors refer to a sequence as a serial, identity, or autoincrement.

A sequence is useful for generating transaction-safe numbers for database

transaction applications. A single application can use several sequences to generate

incremental numbers for various purposes. In some cases, you use sequences to

generate numbers that are guaranteed to be unique, rather than being concerned

with the order of the numbers as such.

For example, you might have an online catalog application through which

customers can purchase products. When customers access the application for the

first time, you assign each customer a unique, incremental ID number. You can use

a sequence to generate this number. In addition, you might want to generate a

unique, incremental purchase order number for each customer order. You would

create another sequence to generate this number.

iPlanet Application Server supports creating and using sequences with

applications through the following parts of the iPlanet Application Server

Foundation Class Library:

• IGXSequence interface

• Sequence methods in the IGXDataConn interface

Creating a New Sequence
For each sequence, you specify the following characteristics:

• A name

• The corresponding column in the database (if the database implements

sequences as autoincrement fields, rather than as separate objects)

• Starting value

Using Sequences

Chapter 5 Working with Databases 125

• Increment interval

• Additional database-specific options, if any

To create a new sequence

1. Open a connection to the data source. For example:

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

2. Set up the sequence by calling CreateSequence() . For example:

IGXSequenceMgr *seqmgr;

hr = conn->QueryInterface(IID_IGXSequenceMgr,

(LPVOID *) &seqmgr);

IGXSequence *seq = NULL;

hr = seqmgr->CreateSequence("mySeq", "orders.ID", 100, 1,

NULL, &seq);

In databases that do not support autoincrement fields, the second parameter to

CreateSequence() is null. For example, in an Oracle database, a sequence is

implemented as an object rather than as a field in a table.

3. To start the sequence, call GetNext() . For example:

DWORD seqVal = 0;

hr = seq->GetNext(&seqVal);

4. Use the sequence number to perform the task for which you created it. For

example, use the sequence in an INSERT statement:

IGXQuery *qry;

CreateQuery(&qry);

Using Sequences

126 iPlanet Application Server Programmer’s Guide • February 2002

char tmp[512];

sprintf(tmp, "INSERT into orders (ID) values (%d), (cust)"

"values (%s)",

seqVal,

custName);

qry->SetSQL(tmp);

Using An Existing Sequence
After setting up a sequence, you can get access to it as follows.

To use an existing sequence

1. Open a connection to the data source. For example:

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

2. Retrieve a reference to the sequence by calling GetSequence() in the

IGXSequenceMgr interface. For example:

IGXSequenceMgr *seqmgr;

hr = conn->QueryInterface(IID_IGXSequenceMgr,

(LPVOID *) &seqmgr);

IGXSequence *seq = NULL;

hr = seqmgr->GetSequence("mySeq", "orders.ID", &seq);

3. If you need to find out the current value of the sequence for any reason, call

GetCurrent() . For example:

Managing Database Transactions

Chapter 5 Working with Databases 127

int seqVal = seq->GetCurrent();

4. To generate the next number in the sequence, call GetNext(). For example:

int seqVal = seq->GetNext();

5. Use the sequence number to perform the task for which you created it. For

example, use the sequence in an INSERT statement:

IGXQuery *qry;

CreateQuery(&qry);

char tmp[512];

sprintf(tmp, "INSERT into orders (ID) values (%d), (cust)"

"values (%s)",

seqVal,

custName);

qry->SetSQL(tmp);

Deleting a Sequence
To permanently remove a sequence from the database, call the Drop() method in

the IGXSequence interface. However, you should exercise caution when using this

method. If the database implements the sequence as a field in a table, the call to

Drop() will delete the entire table, not just the sequence field. If the database

implements the sequence as an object, as does Oracle for example, the call to

Drop() deletes only the sequence object.

Typically, once you start a sequence there is no reason to delete it. The sequence is

normally used to create a permanent, unique numbering system for data in a

database. However, you might use Drop() if you are using the sequence

mechanism to generate unique sequential numbers for some short-lived

programmatic purpose.

Managing Database Transactions
A database transaction is a set of database commands that succeed or fail as a

group. The necessity of grouping commands into a transaction is determined by

business logic. For example, when a bank customer moves money from a savings

account to a checking account, two operations are involved:

Managing Database Transactions

128 iPlanet Application Server Programmer’s Guide • February 2002

• Deduct the money from the savings account.

• Add the money to the checking account.

If one of these operations is performed without the other, the transaction is not

complete and the accounts will not balance. Both operations must succeed for the

entire transaction to be correct.

An iPlanet Application Server application can process several transactions

simultaneously. Each transaction works with one or more different database

connection objects. Each transaction is made up of several method calls, each of

which runs a database command. Each method call is associated with its own

connection object, so that the transaction can include commands on more than one

database.

Transactions are supported through the IGXTrans interface.

Setting Up a Transaction
A transaction is represented by a transaction object, which is passed to several

database commands. The commands in a transaction are united by the fact that

they all have the same transaction object as a parameter.

To group several database commands into a transaction

1. Open one or more connections to data sources.

2. Instantiate a transaction object. For example:

IGXTrans *pTx=NULL;

hr=CreateTrans(&pTx);

3. Start the transaction by calling Begin() . For example:

pTx->Begin();

4. Call the methods that are involved in the transaction. To identify which

transaction the commands belong to, you pass the transaction object as a

parameter to each method. For example:

// Set up an INSERT command ...

// Then call AddRow()

pTable->AddRow(0, pTx);

// Set up another INSERT command ...

// Then call AddRow()

Managing Database Transactions

Chapter 5 Working with Databases 129

pTable->AddRow(0, pTx);

5. To make the changes to the database permanent, call Commit() . For example:

pTx->Commit(0, NULL);

pTx->Release();

Example
The following code, from the Transfer AppLogic in the Online Bank sample

application, sets up a transaction that transfers funds between accounts. The first

command in the transaction withdraws funds from one account, and the second

commands adds the funds to another account.

// Create a transaction

IGXTrans *pTx=NULL;

hr=CreateTrans(&pTx);

pTx->Begin();

// Allocate a new row for the withdrawal half of the

// transaction

pTable->AllocRow();

pTable->SetValueString(acctNumCol, pFromAcct);

pTable->SetValueInt(transTypeCol, OB_TRANSTYPE_WITHDRAWAL);

pTable->SetValueDateString(postDateCol, dateStr);

pTable->SetValueDouble(amountCol, amount*-1.0);

// Add the row using the transaction

if(pTable->AddRow(0, pTx)==GXE_SUCCESS) {

// Allocate a new row for the deposit half of the

//transaction

pTable->AllocRow();

pTable->SetValueString(acctNumCol, pToAcct);

pTable->SetValueInt(transTypeCol, OB_TRANSTYPE_DEPOSIT);

pTable->SetValueDateString(postDateCol, dateStr);

pTable->SetValueDouble(amountCol, amount);

Managing Database Transactions

130 iPlanet Application Server Programmer’s Guide • February 2002

// Add the second row using the transaction

if(pTable->AddRow(0, pTx)==GXE_SUCCESS)

// If both commands succeeded, commit all changes

pTx->Commit(0, NULL);

else {

// If the deposit command failed, roll back

pTx->Rollback();

HandleOBSystemError("Could not insert transaction");

}

else {

// If the withdrawal command failed, roll back

pTx->Rollback();

HandleOBSystemError("Could not insert transaction");

}

pTx->Release();

Committing a Transaction
When a transaction is committed, all the database commands in the transaction are

finalized and changes are saved in the database. The transaction overwrites or

deletes the data that was in the database previously and was affected by the

commands in the transaction.

To commit a transaction, call the Commit() method. For example:

IGXTrans *trx;

CreateTrans(&trx);

// ... series of data operations ...

trx->Commit(0, NULL);

trx->Release();

Managing Database Transactions

Chapter 5 Working with Databases 131

Rolling Back aTransaction
When a transaction is rolled back, all the database commands in the transaction are

discarded, and any changes are abandoned. The actual data stored in the database

remains unchanged by any of the commands in the transaction.

If a database server is interrupted in the middle of a transaction, such as by a

power outage, all uncompleted transactions are automatically rolled back by the

database engine. You can also roll back a transaction programmatically if you want

to abandon the changes that were proposed by the commands in the transaction.

To roll back a transaction, call the Rollback() method.

Example
The following code rolls back a transaction if a test condition is not met:

IGXTrans *trx;

CreateTrans(&trx);

// ... series of data operations ...

if (testCondition == 0)

trx->Commit(0, NULL);

else

trx->Rollback();

trx->Release();

Managing Database Transactions

132 iPlanet Application Server Programmer’s Guide • February 2002

133

Chapter 6

Querying a Database

This chapter describes queries, which are statements that specify a set of data to be

retrieved from a database.

The following topics are included in this chapter:

• Introduction to Queries

• Using Flat Queries

• Using Hierarchical Queries

• Buffering Result Sets From Queries

• Creating Database Reports

• Working with Query Files

• Running Asynchronous Queries

Introduction to Queries
The data that a query retrieves from a database is called a result set.

Typically, the results of a query are displayed in a report. Queries can also be used

to dynamically populate forms. For example, you can dynamically populate a list

box with selections, such as city names, based on one of the user’s previous

selections, such as a state name.

Types of Queries
iPlanet Application Server applications can contain two types of queries:

Using Flat Queries

134 iPlanet Application Server Programmer’s Guide (C++) • February 2002

• Flat queries provide tabular result sets.

• Hierarchical queries combine the result sets from several flat queries in a tree

structure.

For more information, see “Using Hierarchical Queries” on page 149.

Using Flat Queries
A flat query is the simplest type of query. It is called flat because its result set is not

divided into levels or groups, but is simply a raw listing of data values in a tabular

format. Every row contains values from the same set of tables and columns in a

single database. Relational database users know this type of query as a simple

SELECT statement.

You can use an individual flat query to retrieve a flat result set. You can also place

one or more flat queries inside a hierarchical query when you want to merge the

query’s result set with a template to create dynamic output, such as a report.

A flat query is an instance of the IGXQuery interface, and its result set is an

instance of the IGXResultSet interface. Flat queries are handled by the Data Access

Engine service of iPlanet Application Server.

For more information about the Data Access Engine, see the Administration and

Deployment Guide.

Writing Flat Queries
You can use iPlanet Application Builder to create queries quickly, without writing

code. For more information, see the .

Alternatively, this section describes how to write queries programmatically if you

prefer to write the code yourself. You can use any of the following techniques to

write a flat query programmatically:

• Use a series of method calls to write the query. The rest of this section describes

how to write a query using this technique.

CustID CustName

00345
00670
01499
01760

Allendale, I
Beauchamp,B
Smith, C
Wallaby, A

Using Flat Queries

Chapter 6 Querying a Database 135

• Write your own query file.

For more information, see “Working with Query Files” on page 178.

• Write a SQL SELECT statement and pass it to the SetSQL() method. Use this

technique only if you are very familiar with SQL syntax.

For more information, see , “Working with Databases.”

Writing a Flat Query with Method Calls
You can specify the clauses of a flat query by calling a series of methods designed

for that purpose. The query-writing methods are easy to understand if you are

familiar with Structured Query Language (SQL), which is a commonly used

language for accessing information in relational database management systems.

The method calls correspond very closely to the SELECT, FROM, WHERE, ORDER

BY, GROUP BY, and HAVING clauses of a SQL SELECT statement.

When using method calls to write a flat query, you can specify aliases or

parameters. An alias provides a more meaningful alternate name for a table,

column, or field, and is especially useful in the case of a calculated field.

Parameters provide a technique for dynamically modifying the query itself at

runtime.

For more information, see “Sample Multi-Child Hierarchical Query” on page 157

and “Using Parameters in Database Commands” on page 110 of , “Working with

Databases.”

To write a flat query using method calls:

1. Instantiate the flat query. For example:

IGXQuery *pQuery=NULL;

hr = CreateQuery(&pQuery);

2. Select tables or views. This step corresponds to the FROM clause in SQL. For

example:

pQuery->SetTables("OBAccountType, OBAccount, OBCustomer");

For more information, see “Specifying Tables” on page 137.

3. Select columns. This step corresponds to the SELECT clause in SQL. For

example:

pQuery->SetFields("OBAccountType.acctDesc as

OBAccountType_acctDesc, OBAccount.acctNum as

OBAccount_acctNum, OBAccount.balance as

Using Flat Queries

136 iPlanet Application Server Programmer’s Guide (C++) • February 2002

OBAccount_balance, OBCustomer.custName as cust");

For more information, see “Specifying Columns and Computed Fields” on

page 137.

Optional Steps
1. Put conditions on row retrieval. This step corresponds to the WHERE clause in

SQL. For example:

char tmpStr[300];

sprintf(tmpStr, "OBAccountType.acctType = OBAccount.acctType

and OBCustomer.ssn = OBAccount.ssn and (OBCustomer.ssn =

'%s')", pSsn);

pQuery->SetWhere(tmpStr);

For more information, see “Specifying Conditions on Row Retrieval” on

page 139.

2. Specify row sorting in the result set. This step corresponds to the ORDER BY

clause in SQL. For example:

pQuery->SetOrderBy("OBAccount.acctNum asc");

For more information, see “Sorting Data” on page 139.

3. Summarize the data by creating aggregate rows. This step corresponds to the

GROUP BY clause in SQL. For example:

pQuery->SetGroupBy("cust");

For more information, see “Summarizing Data” on page 140.

4. Put conditions on aggregate rows. This step corresponds to the HAVING

clause in SQL. For example:

pQuery->SetHaving("OBAccount_balance > 100");

For more information, see “Specifying Conditions on Aggregate Rows” on

page 144.

Example Query Using Methods to Set Clauses
The following code shows a flat query that retrieves product information. The code

first instantiates the query, then sets up the query clauses.

IGXQuery *qry;

HRESULT hr = CreateQuery(&qry);

qry->SetTables("invoices, products");

Using Flat Queries

Chapter 6 Querying a Database 137

qry->SetFields("invID, invDate, invProd");

qry->SetWhere("invProd=prodName and prodPrice > 10");

qry->SetOrderBy("invProd");

Specifying Tables
To specify which database tables or views contain the data you want to retrieve,

use the SetTables() method. Every query must contain a call to SetTables(). For

example, the following code specifies two tables, invoices and customers.

pQry->SetTables("invoices, customers");

If you call SetTables() more than once in the same query, each subsequent call

replaces the settings specified in the previous call. To add more tables to a query,

list all of them in a single SetTables() call.

You can use the same table several times in a query by using aliases. For example,

you might want to use a table containing customer data to obtain both a Bill To

address and a Ship To address. Specify an alias name each time you repeat the

same table name. For example:

pQry->SetTables("customers, customers as cust2");

The information in the SetTables() call corresponds to the FROM clause of a

SQL SELECT statement. For more information about the FROM clause, refer to

your SQL documentation.

Specifying Columns and Computed Fields
To specify which database columns contain the data you want to retrieve, use the

SetFields() method. This method call includes a comma-separated list of the

columns and computed fields you want to appear in the query’s result set. Any

column name you use in this method’s parameter list must belong to a column in

one of the tables you specified in the SetTables() call. If any of the columns

contains a BLOB data type, that column must come last in the list.

If the query does not include a call to SetFields() , then the result set includes all

fields in the tables listed in the SetTables() call. If you call SetFields() more

than once in the same query, each subsequent call replaces the settings specified in

the previous call. To add more columns and computed fields to a query, list all of

them in a single SetFields() call.

The information in the SetFields() call corresponds to the SELECT clause of a

SQL SELECT statement. For more information about the SELECT clause, refer to

your SQL documentation.

Using Flat Queries

138 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Specifying Columns
To retrieve data from a column in the database, list the column name in the

SetFields() method call. For example, the following code lists three column

names.

pQry->SetFields("invID, invDate, invProd");

You can include columns from more than one table in a single SetFields() call.

For example, the following code lists columns from two tables, invoices and

customers.

pQry->SetFields("invoices.invDate, customers.custName");

To specify that you want to retrieve all columns from all the tables listed in the

SetTables() call, use the asterisk (*). For example:

pQry->SetFields("*");

You can specify an alias name for a column. The alias name becomes the name for

the corresponding column in the result set. For more information, see “Using

Aliases in a Query” on page 145.

Specifying Computed Fields
A computed field is a field in a result set that contains the result of an expression,

rather than a value taken directly from a database column. You can specify two

types of computed fields:

• Use a mathematical expression to combine the values from several database

columns. You can use any mathematical expression allowed by SQL syntax.

For example, the following code specifies a computed field that multiplies the

values in the ProdPrice and ProdQty columns.

pQry->SetFields("ProdID, ProdPrice * ProdQty as Total");

• Use an aggregate function to summarize the values for a particular column

over a group of rows. If you are planning to use a GROUP BY clause in the

query, you typically specify one or more computed fields using aggregate

functions. The aggregate functions available depend on your database server,

but those typically supported are Min(), Max(), Count(), Avg(),

Sum(), First(), and Last() . For example, the following code uses the

Sum() function to create a computed column with the total of all values in the

salary field.

pQryCTY->SetFields("city, Sum(salary) as TotalSalaries");

For more information about the GROUP BY clause and for an example of how

aggregate functions work, see “Summarizing Data” on page 140.

Using Flat Queries

Chapter 6 Querying a Database 139

In the previous examples, the computed fields are given the aliases Total and

TotalSalaries. It is advisable to specify an alias name for every computed field. This

ensures that the result set contains a meaningful name for the computed field.

However, if you do not specify an alias, you must refer to the field by its ordinal

number (position) when subsequently processing data in the result set.

For more information, see “Using Aliases in a Query” on page 145.

Specifying Conditions on Row Retrieval
To specify conditions that must be met by the rows in the database, use the

SetWhere() method. For example, rather than retrieving information about all

customers, the following code retrieves only information about customers in a

certain city.

pQry->SetWhere("City='Bombay'");

If you call SetWhere() more than once in the same query, each subsequent call

replaces the settings specified in the previous call. To add more conditions to a

query, list all of them in a single SetWhere() call, separating each condition with

AND or OR. For example:

pQry->SetWhere("City='Bombay' AND Sector='Northwest'");

The information in the SetWhere() call corresponds to the WHERE clause of a

SQL SELECT statement. Use the SQL WHERE syntax to specify conditions. The

method call can include any valid SQL syntax, including nested SELECT

statements. For more information about the WHERE clause, refer to your SQL

documentation.

Sorting Data
To change the order of the rows retrieved by the query, use the SetOrderBy()

method. In most reports, the data is organized in a particular sequence. This

sequence is determined by a sort key, which is a group of one or more column

names. Use SetOrderBy() to list the columns and computed fields that you want

to use as a sort key.

For example, in a sales report, the data might be sorted alphabetically by city.

Within each city, the local customers might be sorted by customer ID. For each

customer, in turn, the invoices might be sorted by invoice number. The following

code shows how to specify the sort key for this sales report.

pQry->SetOrderBy("CityName,CustomerID,InvoiceNum");

The sorted data would look something like the following:

Atlanta, Customer01, Inv01

Using Flat Queries

140 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Atlanta, Customer01, Inv02

Atlanta, Customer04, Inv16

Bombay, Customer03, Inv20

Bombay, Customer03, Inv23

Bombay, Customer10, Inv05

Any column name or alias you use in the parameter list of SetOrderBy() must

belong to one of the columns or computed fields you specified in the SetFields()

call.

You can sort any column in either ascending (1-100, A-Z) or descending (100-1,

Z-A) order. Ascending order is the default. To sort in descending order, add the

keyword Desc after the column name. For example, the following code sorts rows

from a weather database so that the data for the hottest days appears first.

pQry->SetOrderBy("Temperature Desc");

If you do not call SetOrderBy() , the order of the returned rows is unpredictable.

If you call SetOrderBy() more than once in the same query, each subsequent call

replaces the settings specified in the previous call. To add more columns to a sort

key, list all of them in a comma-separated list in a single SetOrderBy() call.

The information in the SetOrderBy() call corresponds to the ORDER BY clause

of a SQL SELECT statement. For more information about the ORDER BY clause,

refer to your SQL documentation.

You can use parameters in this method call to allow parts of the clause to be set

when the query runs. For more information, see “Using Parameters in Database

Commands” on page 110 of , “Working with Databases.”

Summarizing Data
Data can be summarized into aggregate rows. An aggregate row is a single row in

a result set that combines the data from a group of database rows. These rows have

one or more column values in common.

For example, suppose a customer places several orders over a period of months. In

the database, the customer orders table contains one row for each of these orders.

In each of these rows, the column CustName has the same value. You can

summarize all the rows for a particular customer and create one aggregate row that

contains the total number and average dollar amount of all that customer’s orders.

Using Flat Queries

Chapter 6 Querying a Database 141

Example Rows Before Summarizing

Example Code to Summarize These Rows
pQry->SetFields("CustName, Count(OrderID) as Orders,

Avg(OrderTotal) as AverageAmt");

pQry->SetGroupBy("CustName");

Example Aggregate Rows After Summarizing

You can also use aggregate rows to eliminate duplicates. If you do not include any

computed fields when you set up the aggregate row, the row will not contain

summary data, such as the number of orders and average amount in the previous

example. Instead, the row contains only the values in the columns that are the same

in several rows, such as the customer names in the previous example.

To summarize rows

1. In the query’s SetFields() call, specify one or more columns to define the

groups of rows. These are the columns that have common values in several

rows, such as CustName in the example earlier in this section. For more

information, see “Specifying Columns” on page 138.

CustName OrderID OrderTotal

Customer1 Order01 200

Customer1 Order20 400

Customer2 Order55 100

Customer2 Order60 300

Customer2 Order75 200

CustName Orders AverageAmt

Customer1 2 300

Customer2 3 200

Using Flat Queries

142 iPlanet Application Server Programmer’s Guide (C++) • February 2002

2. In the same SetFields() call, you typically specify one or more computed

fields using aggregate functions, such as Orders and AverageAmt in the

example earlier in this section. This step is optional if you only want to

eliminate duplicates, not create summary data. For more information about

computed fields, see “Specifying Computed Fields” on page 138.

3. Call the SetGroupBy() method, and list all the column names you specified

in step 1. That is, list the column names from the database table, but not the

computed field aliases.

If you call SetGroupBy() more than once in the same query, each subsequent call

replaces the settings specified in the previous call. To add more columns to the

GROUP BY clause, list all of them in a comma-separated list in a single

SetGroupBy() call.

The information in the SetGroupBy() call corresponds to the GROUP BY clause

of a SQL SELECT statement. For more information about the GROUP BY clause,

refer to your SQL documentation.

You can use parameters in this method call to allow parts of the clause to be set

when the query runs. For more information, see , “Working with Databases.”

Example
The following code constructs a query with aggregate rows to show the number of

invoices submitted by each sales representative. The query returns one aggregate

row for each sales representative. The code then constructs a segment of HTML to

display the aggregate rows.

// Open connection

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

Using Flat Queries

Chapter 6 Querying a Database 143

// Write query

IGXQuery *qry;

CreateQuery(&qry);

qry->SetTables("invoices");

// Use COUNT() aggregate expression in SetFields()

// and GroupBy() to create aggregate rows

qry->SetFields("salesRep, COUNT(invoiceID) as numInvoices");

qry->SetGroupBy("salesRep");

// Run query

IGXResultSet *rs = NULL;

hr = conn->ExecuteQuery(0, qry, NULL, NULL, &rs);

// Construct report

StreamResult("Sales Report<p>");

ULONG col_salesRep;

rs->GetColumnOrdinal("salesRep", &col_salesRep);

ULONG col_numInvoices;

rs->GetColumnOrdinal("numInvoices", &col_numInvoices);

do

{

char buffer[512];

rs->GetValueString(col_salesRep, buffer, sizeof(buffer));

StreamResult(buffer);

StreamResult(" ");

int numInvoices;

rs->GetValueInt(col_numInvoices, &numInvoices);

sprintf(buffer, "%d", numInvoices);

StreamResult(buffer);

StreamResult("
");

Using Flat Queries

144 iPlanet Application Server Programmer’s Guide (C++) • February 2002

} while (rs->FetchNext() == NOERROR);

// Release resources

rs->Release();

qry->Release();

conn->Release();

conn_params->Release();

Specifying Conditions on Aggregate Rows
You can impose two kinds of conditions as part of a query:

• Conditions on the rows retrieved from the database. These conditions are

specified in the SetWhere() method. See “Specifying Conditions on Row

Retrieval” on page 139.

• Conditions on aggregate rows. These conditions are specified in the

SetHaving() method, which is described in this section.

When a query runs, it follows the steps described in the following illustration and

list.

1. The query first retrieves rows from the database as specified in the SELECT

and FROM clauses. Only rows that meet the conditions in the WHERE clause

are retrieved at this point.

Using Flat Queries

Chapter 6 Querying a Database 145

2. If the query includes a GROUP BY clause, the query’s result set contains

aggregate rows. Each aggregate row summarizes the data in several of the

rows from the database. For information about how to create aggregate rows,

see “Summarizing Data” on page 140.

3. The query finally applies the conditions in the HAVING clause to the

aggregate rows.

To specify conditions on aggregate rows, use the SetHaving() method. This

method can refer to any fields in the aggregate rows to set up criteria. Before you

call SetHaving() , you must call SetGroupBy() to create the aggregate rows.

For example:

pQry->SetFields("CustName, Avg(OrderTotal) as AverageAmt");

pQry->SetGroupBy("CustName");

pQry->SetHaving("AverageAmt > 1000");

If you call SetHaving() more than once in the same query, each subsequent call

replaces the settings specified in the previous call. To add more conditions on

aggregate rows, list all of them in a comma-separated list in a single

SetHaving() call.

The information in the SetHaving() call corresponds to the HAVING clause of a

SQL SELECT statement. Use the SQL HAVING syntax to specify conditions. The

method call can include any valid SQL syntax, including nested SELECT

statements. For more information about the HAVING clause, refer to your SQL

documentation.

Using Aliases in a Query
An alias is an alternate name. You can specify aliases when writing a flat query. To

specify an alias, use the following syntax:

sourceName as aliasName

You can define two types of aliases:

• A table alias, which is specified in the SetTables() call, provides an alternate

name for a database table. This technique is useful when you want to use the

same table more than once in a query, or when you need to refer to two tables

that have the same name but belong to different users within a database. You

can use a table alias elsewhere in the same query to refer to the table.

Using Flat Queries

146 iPlanet Application Server Programmer’s Guide (C++) • February 2002

• A field alias, which is specified in the SetFields() call, provides an alternate

name for a database column or computed field in the result set. You can not

use these aliases elsewhere in the same query. However, field aliases are useful

in other ways. For example, if you do not use an alias for a computed field, you

must refer to the field by ordinal number, which is less convenient. You can

also use a field alias in the join expression of a hierarchical query.

Example
The following code gives aliases to two tables owned by different database users.

pQry->SetTables("jim.accounts as Jim, ann.accounts as Ann");

The following code specifies that you can use prodID, which is an alias, instead of

using the longer field name invoiceProductID.

pQry->SetFields("invoiceProductID as prodID");

Aliases are especially useful when you specify a formula or expression in the

SetFields() method. For example, in the following code, Total is an alias.

pQry->SetFields("invoiceID,

invoiceCount * prodPrice as Total");

Each row in the result set from this query contains two fields, invoiceID and Total.

The Total field contains the result of the computation invoiceCount * prodPrice.

Running Flat Queries
To run a flat query, call the ExecuteQuery() method in the IGXDataConn

interface. You can run a flat query multiple times. Each time you call

ExecuteQuery() , the query returns a new result set object, which might contain

different data if the contents of the database have changed.

To run a flat query

1. Open a connection to a data source. For example:

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

Using Flat Queries

Chapter 6 Querying a Database 147

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

2. Declare a variable to hold the output result set object. For example:

IGXResultSet *rs = NULL;

3. Call the ExecuteQuery()method in the IGXDataConn interface. For example:

hr = conn->ExecuteQuery(0, qry, NULL, NULL, &rs);

Example
The following code opens a connection, writes a query, and runs the query, with

the results being retrieved in a result set called rs.

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

IGXQuery *qry;

CreateQuery(&qry);

qry->SetTables("author");

qry->SetFields("first_name, last_name");

IGXResultSet *rs = NULL;

hr = conn->ExecuteQuery(0, qry, NULL, NULL, &rs);

Using Flat Queries

148 iPlanet Application Server Programmer’s Guide (C++) • February 2002

// Use resultset here. When done, release the objects

rs->Close(0);

rs->Release();

qry->Release();

conn->Release();

Getting Data From a Flat Query’s Result Set
When a flat query runs, it returns rows of data in an instance of IGXResultSet

interface. In order to use the data from a flat query, you need to iterate through the

rows in the result set and retrieve data from each row. To move from row to row,

use the FetchNext() method. To retrieve data from a particular row, use the

GetValue**() methods in the IGXResultSet interface.

When you are finished using a result set, release it by calling Release(). This

method releases the database connection so that it is available for use by other

application code. Do not release the result set or close the database connection until

you are finished using the result set. Just because the query has run and returned a

result set interface, that doesn’t mean all the data is there. Typically the result set is

buffered, and live database cursors may still be open. Therefore, when you reach

the last row in the buffer, the result set object still needs the connection to get the

next batch of rows into the buffer.

Example
The following code, from the OBShowTransferPage AppLogic in the Online Bank

sample application, copies data from rows in a result set into a template map.

char pAcctDesc[200];

char pAcctNum[200];

// Pull the column ordinals for the account description and

// accout num

ULONG acctDescCol=0;

pRset->GetColumnOrdinal("OBAccountType_acctDesc",

&acctDescCol);

ULONG acctNumCol=0;

pRset->GetColumnOrdinal("OBAccount_acctNum", &acctNumCol);

char tmpStr[300];

Using Hierarchical Queries

Chapter 6 Querying a Database 149

do {

pRset->GetValueString(acctDescCol, pAcctDesc, 200);

pRset->GetValueString(acctNumCol, pAcctNum, 200);

sprintf(tmpStr, "acctDesc=%s;acctNum=%s", pAcctDesc,

pAcctNum);

pAcctsTempDB->RowAppend(tmpStr);

pAcctsTempDB2->RowAppend(tmpStr);

} while(pRset->FetchNext()==GXE_SUCCESS);

Using Hierarchical Queries
A hierarchical query is a query that combines one or more flat queries to generate a

result set with multiple nested levels of data. A hierarchical query returns data

similarly to a database join or nested query, although its output is actually a

collection of separate, flat results sets that are related to each other in specified

ways. The hierarchical query object in an iPlanet Application Server application is

designed to be merged with a template by the Template Engine to produce

dynamic output.

Each of the flat queries in a hierarchical query retrieves a different set of data and

can even use a different database connection. The flat queries are related to each

other in a series of nested levels that compose the hierarchical query.

The outer level of information is called the parent level of information, and the

query that retrieves this information is called the parent query. The inner level of

information is called the child level of information, and the query that retrieves this

information is called the child query. This parent-child relationship can be

repeated for any number of levels, as shown in the following illustration:

Using Hierarchical Queries

150 iPlanet Application Server Programmer’s Guide (C++) • February 2002

The parent level of information determines the grouping of information in its child

levels. Each child query is run multiple times, once for each row in the parent

query’s result set, as shown in the following illustration.

Using Hierarchical Queries

Chapter 6 Querying a Database 151

Hierarchical queries are used in conjunction with HTML templates to create

reports. If the desired output is a tabular report, the hierarchical query contains

only one flat query. If the desired output is a grouped report, the hierarchical query

contains two or more flat queries. For more information, see “Types of Reports” on

page 164.

A hierarchical query is an instance of the IGXHierQuery interface, and its result set

is an instance of the IGXHierResultSet interface. For more information, see the

iPlanet Application Server Foundation Class Reference.

Example
The following report shows the results of a hierarchical query that contains two flat

queries, one for city data and one for employee data. The outer-level rows show

city summary data, taken from the result set of the parent query. The inner-level

rows show individual employee data. Each set of employee data represents the

result set of the child query being run once for the corresponding row from the city

query.

Berkeley 1000

 Isaac 300

 Ken 700

Paris 600

 Steve 300

 Tim 300

The two levels in this example, without data, can be abstractly pictured as follows.

Writing Hierarchical Queries
You can use iPlanet Application Builder to create queries quickly, without coding.

For more information, see User’s Guide. This section describes how to write

hierarchical queries programmatically. Use these techniques if you prefer to write

the code yourself.

You can use two techniques to write a hierarchical query programmatically:

Parent query: city SUM(salary)

Child query: name salary

Using Hierarchical Queries

152 iPlanet Application Server Programmer’s Guide (C++) • February 2002

• Use a series of method calls to write the query. This section describes how to

write a hierarchical query this way.

• Write a query file.

For more information, see “Working with Query Files” on page 178.

To write a hierarchical query using a series of method calls

1. Write the flat queries that you plan to use in the hierarchical query. For every

level of data in a hierarchical query, you need to define one flat query. Each

query can have a different database connection.

For more information, see “Writing Flat Queries” on page 134.

2. Instantiate a hierarchical query object. For example:

IGXHierQuery *pHq=NULL;

hr=CreateHierQuery(&pHq);

3. Construct the hierarchical query by using the AddQuery() method to place the

flat queries in relation to each other. Each query you add, except the first, is a

child query. There is no practical limit to the number of nested parent-child

levels. For example, in the following code, SelCustAccts is the parent and

SelAcctTrans is the child:

pHq->AddQuery(pQuery, pConn, "SelCustAccts", "", "");

pHq->AddQuery(pQ, pConn, "SelAcctTrans", "SelCustAccts",

"SelAcctTrans.OBAccount.acctNum =

'SelCustAccts.OBAccount_acctNum'");

In the AddQuery() call, you list the flat query object that you are adding, its

database connection, and its name. In the case of a child query, you also specify the

name of its parent query and a join expression that shows how the two queries are

related. In this example, the two queries are joined on the acctNum fields. For more

information, see “Joins in Hierarchical Queries” on page 153.

Typically, each parent query has a single child query, so each AddQuery() call

represents a new level of nesting. For an example of this type of hierarchical query,

see “Example Two-Level Hierarchical Query” on page 155.

A parent query can also have several child queries, as shown in the following

illustration:

Using Hierarchical Queries

Chapter 6 Querying a Database 153

In a multi-child hierarchical query, several AddQuery() calls refer to the same

parent query. The result is parallel subreports whose results are displayed one

after the other. For an example of this type of hierarchical query, see “Sample

Multi-Child Hierarchical Query” on page 157.

Joins in Hierarchical Queries
In an iPlanet Application Server application, join syntax is used to connect the flat

queries that make up a hierarchical query. The join is specified for every flat query

in the hierarchical query except the first, which is the outermost parent query. You

specify the join in the last parameter of the AddQuery() method.

When you write a join expression, you are specifying a relationship between a field

in the child query and a field in the parent query. A join expression uses the

following syntax:

"child.table.col = [']parent.colOrAlias[']"

The single quotes in the parent portion of the syntax are required only if the field is

a String or Date/Time data type. For example:

hq->AddQuery(qryEMP, conn, "EMP", "CTY",

"EMP.employees.city = 'CTY.city'");

The following illustration shows an example of joins in a three-level hierarchical

query:

Using Hierarchical Queries

154 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Avoid queries with more than two or three joins, as this will degrade performance.

To improve performance, consider denormalizing the database. Denormalization

results in duplicate data in the database, but simplifies queries and improves

performance.

Multi-Field Joins
A join expression can set up relationships among multiple fields. This is useful

when you cannot set up a unique relationship using a single field.

For example, suppose your database contains information about products from

several vendors. Each product has an ID number which is unique for that vendor,

but which might be the same as an ID number used by a different vendor for a

totally different product. The database might contain the following rows:

In this case, you need to use both the vendor name and product ID to make a

unique join expression.

Sample Hierarchical Query with Multi-field Join
Suppose you have a database with two tables, one for authors (first_name,

last_name) and one for books (name, author_first, author_last). You want to

construct a report that shows the titles of novels grouped by author. For example:

Bill Smith

 No Road Ahead

Sandra Smith

 Sunshine in May

VendorID ProductID Description

Vendor01 prod1111 Sweater

Vendor02 prod1111 Hard disk

cust.ID

Inter-query joins in a hierarchical query

Query A Query B Query C

employee.name
employee.city

cust.city
cust.name

order.custID
order.ID
order.total

Using Hierarchical Queries

Chapter 6 Querying a Database 155

James Worthington

 King of Hearts

 After the Supper

You need a hierarchical query object with two query levels, one for author

information and the other for book information. The relationship between the two

queries involves multiple fields. Both the first name and last name of the author

must be matched, because two authors might have the same last name. The

following code shows how to construct a hierarchical query to produce this report:

IGXQuery *qryAuth;

CreateQuery(&qryAuth);

qryAuth->SetTables("author");

qryAuth->SetFields("first_name, last_name");

IGXQuery *qryBook;

CreateQuery(&qryBook);

qryBook->SetTables("book");

qryBook->SetFields("name, author_first, author_last");

IGXHierQuery *hqry;

CreateHierQuery(&hqry);

hqry->AddQuery(qryAuth, conn, "AUTHOR", "", "");

hqry->AddQuery(qryBook, conn, "BOOK", "AUTHOR",

"BOOK.author_firstname = 'AUTHOR.first_name'

and

BOOK.author_lastname = 'AUTHOR.last_name'");

Example Two-Level Hierarchical Query
The following report shows salary figures for employees in various cities. The total

salary amount for each city is shown as summary data next to each city name:

Berkeley 100

 Isaac 30

 Ken 70

Using Hierarchical Queries

156 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Paris 60

 Steve 30

 Kim 30

The following code produces the report above:

// Begin by defining two flat queries, one for city

// information and the other for employee information.

// The example assumes the database contains an employeee

// table with columns called name, salary, and city.

IGXQuery *qryCTY;

CreateQuery(&qryCTY);

qryCTY->SetTables("employee");

qryCTY->SetFields("city, SUM(salary) as salarysum");

qryCTY->SetGroupBy("city");

IGXQuery *qryEMP;

CreateQuery(&qryEMP);

qryEMP->SetTables("employee");

qryEMP->SetFields("name, salary, city");

// Next, the code instantiates a hierarchical query object.

IGXHierQuery *hqry;

CreateHierQuery(&hqry);

// The following code adds the first flat query to the

// hierarchical query. The flat query is given the name CTY.

hqry->AddQuery(qryCTY, conn, "CTY", "", "");

// The following code adds the second flat query. This flat

// query is given the name EMP in the third parameter to

// AddQuery(). The next parameter specifies that the EMP

// query is a child of the CTY query. That is, results from

Using Hierarchical Queries

Chapter 6 Querying a Database 157

// the EMP query are grouped and nested within results from

// the CTY query. The last parameter specifies that the two

// flat queries are joined by their city fields.

hqry->AddQuery(qryEMP, conn, "EMP", "CTY",

"EMP.employees.city = 'CTY.city'");

Sample Multi-Child Hierarchical Query
In the following code, the CITY query has two child queries, OFFICE and EMP:

hqry->AddQuery(qryCTY, conn, "CITY", "", "");

hqry->AddQuery(qryOFC, conn, "OFFICE", "CITY",

"OFFICE.cities.city = 'CITY.city'");

hqry->AddQuery(qryEMP, conn, "EMP", "CITY",

"EMP.employee.city = 'CITY.city'");

This query can be used to generate the following type of report. Under each row

from the CITY query, the results of the OFFICE query are printed, followed by the

results of the EMP query. The two child queries, OFFICE and EMP, are parallel, not

grouped or joined to each other. Therefore, the report shows all the offices in a city,

followed by all the employees in that city, regardless of which office they work in.

San Francisco

 Financial District Office

 Haight Office

 Anderson, M

 Chen, S

 Myers, P

San Jose

 Santa Clara Street Office

 Bellows, R

 Franklin, M

Using Hierarchical Queries

158 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Running Hierarchical Queries
Typically, hierarchical queries are constructed in order to be merged with

templates, and they are run automatically when you call EvalTemplate() or

EvalOutput() to merge the data. You can also run a hierarchical query in a

standalone fashion by calling the Execute() method in the IGXHierQuery

interface. When you call a hierarchical query in this manner, a hierarchical result

set is returned.

To run a hierarchical query without merging it with a template

1. Declare a variable to hold the output result set object. For example:

IGXHierResultSet *rs = NULL;

2. Call the . For example:

HRESULT hr = hqry->Execute(0, 0, NULL, &rs);

Getting Data From a Hierarchical Query’s Result
Set
To use the data in a hierarchical query’s result set, you typically call

EvalOutput() or EvalTemplate() to merge the data with a template.

However, when you do not wish to return results to the client but instead need to

access data in a hierarchical result set programmatically, you can use the methods

in the IGXHierResultSet interface.

When you are finished using a result set, release it by calling Release() . This

method releases the database connection so that it is available for use by other

application code. Do not release the result set or close the database connection until

you are finished using the result set. Just because the query has run and returned a

result set interface, that doesn’t mean all the data is there. Typically the result set is

buffered, and live database cursors may still be open. Therefore, when you reach

the last row in the buffer, the result set object still needs the connection to get the

next batch of rows into the buffer.

Example
The following code example shows processing a hierarchical result set and

retrieving fixed length values in the result set rows:

STDMETHODIMP

TestGxq::TestResultSetProcessing(IGXHierQuery *pHierQuery)

Buffering Result Sets From Queries

Chapter 6 Querying a Database 159

{

HRESULT hr = GXE_SUCCESS;

char cityName[300];

cityName[0] = '\0';

double population = 0;

ULONG rowNumber = 0;

IGXHierResultSet *hrs = NULL;

hr = pHierQuery->Execute(0, 0, NULL, &hrs);

if ((hr == GXE_SUCCESS) && hrs &&

(hrs->GetRowNumber("cityQuery", &rowNumber)==GXE_SUCCESS)

&&

rowNumber) {

hrs->GetValue("cityQuery", "NAME", cityName, 300);

hrs->GetValue("cityQuery", "POP", (LPSTR) &population,

sizeof(population));

}

cout << "City Name: " << cityName << endl;

cout << "Population: " << population << endl;

return hr;

}

Buffering Result Sets From Queries
You can retrieve result sets from flat or hierarchical queries into a memory buffer.

This technique offers the following advantages:

• Backward (as well as forward) movement through the rows.

• Multiple passes through the rows, such as to perform two-pass calculations.

The buffer exists only within the scope of the code that created it. For example, if an

AppLogic uses a buffer, the buffer lasts only as long as the AppLogic runs, and is

deallocated when the AppLogic returns.

Buffering Result Sets From Queries

160 iPlanet Application Server Programmer’s Guide (C++) • February 2002

To buffer a result set, you pass a buffering flag and a set of buffer parameters when

you run a query using any of the following techniques:

• When calling the ExecuteQuery() method in the IGXDataConn interface to run

a flat query.

• When calling the Execute() method in the IGXPreparedQuery interface to run

a prepared query.

• When calling the Execute() method in the IGXHierQuery interface to run a

hierarchical query.

Avoid buffering too many rows, because buffering can use large amounts of virtual

memory. To keep control of the buffer size, use buffer parameters, as described in

the next section.

Setting Buffer Parameters
You can customize buffering by setting the following optional parameters:

• Initial number of rows in buffer (RS_INIT_ROWS). The default is 10.

• Maximum number of rows in buffer (RS_MAX_ROWS). The default is 100.

• Maximum size of the buffer in bytes (RS_MAX_SIZE). The default is 12,800.

By specifying a maximum number of rows or byte size for the buffer, you conserve

memory space. However, this does not limit your access to the data returned by the

query.

For example, you might have a maximum buffer size of 100 rows, but the query

might actually return 200 rows. The buffer stores 100 rows to begin with, but if you

attempt to access the 101st row by calling FetchNext() , iPlanet Application

Server adds another row to the buffer and returns an informational message to let

you know that the buffer has been exceeded.

The same holds true if you call MoveTo() and specify any row number greater

than the buffer size. iPlanet Application Server adds the necessary number of rows

to the buffer.

If you specify both RS_MAX_ROWS and RS_MAX_SIZE, the actual limit is the smaller

of the two settings, that is, whichever is exceeded first.

To buffer a result set

1. Define an IGXValList object that contains an item with the name

RS_BUFFERING and the value TRUE. For example:

IGXValList *props;

Buffering Result Sets From Queries

Chapter 6 Querying a Database 161

props = GXCreateValList();

props->SetValString("RS_BUFFERING", "TRUE");

2. To set the initial size of the buffer, add an item with the name RS_INIT_ROWS

and a value that indicates the initial number of rows. For example:

props->SetValInt("RS_INIT_ROWS", 50);

3. To set the maximum number of rows you want to include in the buffer, add an

item with the name RS_MAX_ROWS. For example:

props->SetValInt("RS_MAX_ROWS", 100);

4. To set the maximum size of the buffer in bytes, use an item named

RS_MAX_SIZE. For example:

props->SetValInt("RS_MAX_SIZE", 500000);

5. Declare a variable to hold the results of the query. For example, the following

code is for a flat query:

IGXResultSet *prs;

6. Pass the IGXValList object when you run the query. In addition, pass

GX_DA_RS_BUFFERING as the flags parameter. The exact text to use for this

flag varies depending on the type of query you are running. For example, the

following code runs a flat query with buffering:

HRESULT hr = conn->ExecuteQuery(GX_DA_RS_BUFFERING, qry,

null, props, &prs);

The following code runs a prepared query with buffering:

HRESULT hr = pqry->Execute(GX_DA_RS_BUFFERING, cmdIn,

null, null, &prs);

Example
The following code shows how to define properties for buffering the result set of a

flat query.

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

Buffering Result Sets From Queries

162 iPlanet Application Server Programmer’s Guide (C++) • February 2002

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

IGXValList *props;

props = GXCreateValList();

// Turn on result set buffer.

props->SetValString("RS_BUFFERING", "TRUE");

// Specify the maximum number of rows to buffer.

props->SetValInt("RS_MAX_ROWS", 50);

IGXQuery *qry;

CreateQuery(&qry);

// . . . define query properties . . .

// Execute query with result set buffer.

IGXResultSet *rs = NULL;

hr = conn->ExecuteQuery(GX_DA_RS_BUFFERING, qry, NULL,

props, &rs);

// Use resultset here. When done, release objects.

rs->Close(0);

rs->Release();

qry->Release();

props->Release();

conn->Release();

conn_params->Release();

Creating Database Reports

Chapter 6 Querying a Database 163

Creating Database Reports
A report is a formatted presentation of data. In an iPlanet Application Server

application, a report is an HTML page presented to the user in response to a

request for information. In order to create a report, an iPlanet Application Server

application combines the following elements:

• A hierarchical result set, which comes from either a hierarchical query or an

instance of the GXTemplateDataBasic class.

• An HTML template to format and present the data. The HTML template can

include images, applets, input fields, buttons, hyperlinks, and any other HTML

features. The template also contains special GX markup tags that specify where

to merge data from the hierarchical query.

• An AppLogic object that specifies the hierarchical query and runs the report.

When the AppLogic runs the report, it specifies which HTML template to use.

The following illustration and list summarize the typical sequence of events in an

iPlanet Application Server reporting application.

1. A user requests a report by submitting a form in a Web browser. The request is

routed through the Web server to iPlanet Application Server.

2. iPlanet Application Server checks to see whether the report has already been

created and cached as a result of a previous request for the same report. If so,

iPlanet Application Server returns the cached report, which is routed back

through the Web server to the user’s Web browser.

[1] Request

Web browser

Web Server

[2]

iPlanet Application Server

Cached

Yes

[3] [4] Create dynamic
report

Result
cache

No
Template
engine

AppLogic

Creating Database Reports

164 iPlanet Application Server Programmer’s Guide (C++) • February 2002

3. If the report is not cached, iPlanet Application Server runs the AppLogic

identified in the request.

4. The AppLogic calls iPlanet Application Server’s Template Engine service,

which runs the query (unless you are using a GXTemplateDataBasic object),

merges the data with the specified HTML template, and streams the resulting

dynamically-generated HTML page to the user’s Web browser.

Types of Reports
iPlanet Application Server applications can create both tabular and grouped

reports. Tabular reports, sometimes called listings, simply print all the records

retrieved from the database. Grouped reports can show the records in logical

groups, such as sales grouped by geographic region, with summary data for each

group.

Tabular reports and grouped reports both obtain their data from hierarchical

queries, but the hierarchical query for a tabular report contains only a single flat

query with no join expression. The hierarchical query object is used for tabular

reports, even though the data in tabular reports does not appear to be hierarchical.

This is because the EvalTemplate() method, which you use to run reports,

requires a hierarchical query as a parameter.

Sample Tabular Report

Sample Grouped Report

Isaac 300 Berkeley

Julie 300 Paris

Ken 700 Berkeley

Steve 200 Paris

Berkeley 1000

Isaac 300

Ken 700

Paris 500

Creating Database Reports

Chapter 6 Querying a Database 165

Creating Tabular Reports
To create a tabular report, use the following techniques:

• Write a flat query.

For more information, see “Writing Flat Queries” on page 134.

• Place the flat query in a hierarchical query object, and do not specify a join

expression.

For more information about how to construct a hierarchical query, see “Writing

Hierarchical Queries” on page 151.

• Write an HTML template that uses a single level of GX tile and cell markup

tags. These tags refer to the fields in the hierarchical query’s result set, and

when the report runs they are dynamically replaced with values in the result

set.

For more information, see , “Working with Templates.”

• To add standard headers and footers to the report, you can use the GX include

tag in the HTML template.

For more information, see “GX Markup Tag Syntax” on page 193 of , “Types of

Queries.”

Creating Grouped Reports
To create a grouped report, you need:

• A hierarchical query or a GXTemplateDataBasic object. Both of these provide

data in a hierarchical result set.

• An HTML template. The HTML template contains text and tags that format the

data from the hierarchical result set.

For example, in a report that shows sales generated by employees in various cities,

one query is required for city data and another query is required for employee

data. The two queries are combined into one hierarchical query, and the results are

merged with the HTML template to create the output report.

Julie 300

Steve 200

Creating Database Reports

166 iPlanet Application Server Programmer’s Guide (C++) • February 2002

To create a grouped report, use the following techniques:

• Write a hierarchical query or a GXTemplateDataBasic object.

For more information, see “Writing Hierarchical Queries” on page 151 or

“Constructing a Hierarchical Result Set with GXTemplateDataBasic” on

page 212 of , “Creating Grouped Reports.”

• Write an HTML template that uses several nested levels of GX tile and cell

markup tags. These tags refer to fields in the hierarchical result set.

For more information, see , “Working with Templates.”

• To add standard headers and footers to the report, you can use the GX include

tag in the HTML template.

For more information, see “GX Markup Tag Syntax” on page 193 of , “Working

with Templates.”

Running Reports
Running a report means dynamically creating a new version of the report with

current data.

When you run a report, iPlanet Application Server performs the following tasks:

1. If a hierarchical query is used, iPlanet Application Server runs the report’s

query to get current data from a database. This step might be skipped if you

are caching results, because the iPlanet Application Server will first check to

see whether a cached result is available before incurring the overhead of

running a query. For more information, see , “Writing Server-Side Application

Code.”

2. iPlanet Application Server then merges the data with an HTML template that

specifies the report’s appearance.

3. Finally, iPlanet Application Server returns the merged HTML page to the user.

To run a report

You run both tabular and grouped reports using the same technique:

• Call EvalTemplate() . Pass the hierarchical query object (or

GXTemplateDataBasic object) and the HTML template file name to

EvalTemplate() as parameters.

Creating Database Reports

Chapter 6 Querying a Database 167

Sample Reports
This section provides annotated examples that show how to work with reports in

an iPlanet Application Server application. The examples illustrate how to perform

the following tasks:

• Sample Tabular Report

• Sample Grouped Report

• Sample Three-Level Grouped Report

For more complete examples, see the demo applications supplied with your iPlanet

Application Server package.

Sample Tabular Report
This example application retrieves data about the salaries of employees and

provides the data in a tabular report. The application consists of an AppLogic

called TabRept, and an HTML template called tabrept.html.

Tabrept AppLogic Output
The TabRept AppLogic creates a report that looks like the following:

Isaac 300

Ken 700

Steve 300

Vasu 300

Tabrept AppLogic Code
The following AppLogic generates the employee salary report. The example

assumes the data source is an employee table which has name and salary columns.

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "salesDB");

conn_params->SetValString("DB", "salesDB");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

Creating Database Reports

168 iPlanet Application Server Programmer’s Guide (C++) • February 2002

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

// Create a flat query to retrieve employee data.

IGXQuery *qry;

CreateQuery(&qry);

qry->SetTables("emp");

qry->SetFields("name, salary");

// Create a hierarchical query to contain the employee

// query so that it can be passed to EvalTemplate().

IGXHierQuery *hqry;

CreateHierQuery(&hqry);

// The query is added to the hierarchical query under

// the name EMP.

hqry->AddQuery(qry, conn, "EMP", "", "");

// Call EvalTemplate to merge the data from the

// hierarchical query with the template and return

// the resulting report HTML page.

EvalTemplate("GXApp/EmpTrack/Templates/tabrept.html",

hqry, NULL, NULL, NULL);

hqry->Release();

qry->Release();

conn->Release();

conn_params->Release();

Creating Database Reports

Chapter 6 Querying a Database 169

HTML Template tabrept.html
The following HTML template formats the data in this example report. The

template contains a tile tag to repeat a set of data for each employee. In this

example, comments are provided before each GX markup tag. For information

about the other tags in the template, refer to your HTML documentation.

<HTML>

<BODY>

<!-- The following GX tag sets up a loop that repeats for each
employee. The type=tile attribute specifies that this is a looping
marker. The id=EMP attribute specifies that the loop repeats for
each row of the result set from the EMP query.

-->

%gx type=tile id=EMP%

<!-- The following GX tags display the name and salary for each
employee. The type=cell attribute specifies that the body text of
each marker is to be replaced with a dynamic data value. The
id=EMP.name and id=EMP.salary attributes specify the fields in the
result set that contain the dynamic values.

-->

 %gx type=cell id=EMP.name%%/gx%

 %gx type=cell id=EMP.salary%%/gx%

%/gx%

</BODY>

</HTML>

Sample Grouped Report
This example application retrieves data about the salaries of employees in various

cities and presents that data in a grouped report. The application consists of an

AppLogic called DoReport and an HTML template called report.html.

DoReport AppLogic Output
The DoReport AppLogic creates a report that looks like the following:

Berkeley 1000

 Isaac 300

 Ken 700

Creating Database Reports

170 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Paris 600

 Steve 300

 Kim 300

DoReport AppLogic Code
The following AppLogic generates the city-employee summary report. The

example assumes the data source is an employee table which has name, city, and

salary columns.

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "emp");

conn_params->SetValString("DB", "emp");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

// Begin by defining two flat queries, one for city

// information and the other for employee information.

// The example assumes the database contains an employeee

// table with columns called name, salary, and city.

IGXQuery *qryCTY;

CreateQuery(&qryCTY);

qryCTY->SetTables("employee");

qryCTY->SetFields("city, SUM(salary) as salarysum");

qryCTY->SetGroupBy("city");

IGXQuery *qryEMP;

CreateQuery(&qryEMP);

qryEMP->SetTables("employee");

Creating Database Reports

Chapter 6 Querying a Database 171

qryEMP->SetFields("name, salary, city");

// Next, the code instantiates a hierarchical query object.

IGXHierQuery *hqry;

CreateHierQuery(&hqry);

// The following code adds the first flat query to the

// hierarchical query. The flat query is given the name CTY.

hqry->AddQuery(qryCTY, conn, "CTY", "", "");

// The following code adds the second flat query. This flat

// query is given the name EMP in the third parameter to

// AddQuery(). The next parameter specifies that the EMP

// query is a child of the CTY query. That is, results from

// the EMP query are grouped and nested within results from

// the CTY query. The last parameter specifies that the two

// flat queries are joined by their city fields.

hqry->AddQuery(qryEMP, conn, "EMP", "CTY",

"EMP.employees.city = 'CTY.city'");

// Call EvalTemplate to merge the data from the

// hierarchical query with the template and return

// the resulting report HTML page.

EvalTemplate("GXApp/EmpTrack/Templates/report.html",

hqry, NULL, NULL, NULL);

hqry->Release();

qryCTY->Release();

qryEMP->Release();

conn->Release();

conn_params->Release();

Creating Database Reports

172 iPlanet Application Server Programmer’s Guide (C++) • February 2002

HTML Template report.html
The following HTML template, report.html, formats the data in this example

report. The template contains two nested tile tags, one to loop over the cities and

the other to loop over the employees within each city. In this example, comments

are provided before each GX markup tag. For information about the other tags in

the template, refer to your HTML documentation.

<HTML>

<BODY>

<!-- The following GX tag sets up a loop that repeats for each city.
The type=tile attribute specifies that this is a looping marker. The
id=CTY attribute specifies that the loop repeats for each row of the
result set from the CTY query.

-->

%gx type=tile id=CTY%

<!-- The following GX tags display the name and total salary figure
for each city. The type=cell attribute specifies that the body text
of each marker is to be replaced with a dynamic data value. The
id=CTY.city and id=CTY.sumsalary attributes specify the fields in
the result set that contain the dynamic values.

-->

%gx type=cell id=CTY.city%%/gx%

%gx type=cell id=CTY.sumsalary%%/gx%

<!-- The following GX tags set up a loop that prints the name and
salary of each employee. The tags are similar to those used to print
the city data.

-->

 %gx type=tile id=EMP%

 %gx type=cell id=EMP.name%%/gx%

 %gx type=cell id=EMP.salary%%/gx%

 %/gx%

%/gx%

</BODY>

</HTML>

Creating Database Reports

Chapter 6 Querying a Database 173

Sample Three-Level Grouped Report
This example retrieves data about the populations of cities from various continents.

The report in this example has three levels of nested data. The application consists

of one AppLogic called Cities, and an HTML template called cityrept.html.

Cities AppLogic Output
The Cities AppLogic creates a report that looks like the following:

Asia

 China

 Bejing 300

 Shanghai 700

 Japan

 Tokyo 250

 Osaka 250

Europe

 France

 Paris 300

 Nice 300

 Spain

 Madrid 200

Cities AppLogic Code
To generate the three-level hierarchical report, the AppLogic uses a hierarchical

query that consists of three flat queries: one each for continent, country, and city

information.

Abstractly, without data, the hierarchical query for this example can be pictured as

follows.

continent

 country

 city population

The following example code assumes that the database contains the following

tables:

• The continents table has a field called name.

Creating Database Reports

174 iPlanet Application Server Programmer’s Guide (C++) • February 2002

• The countries table has name and continent fields.

• The cities table has city and pop fields.

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "geo");

conn_params->SetValString("DB", "geo");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

// Specify the three flat queries.

//

IGXQuery *qryCONTINENT;

CreateQuery(&qryCONTINENT);

qryCONTINENT->SetTables("continents");

qryCONTINENT->SetFields("name");

IGXQuery *qryCOUNTRY;

CreateQuery(&qryCOUNTRY);

qryCOUNTRY->SetTables("countries");

qryCOUNTRY->SetFields("name");

IGXQuery *qryCTY;

CreateQuery(&qryCTY);

qryCTY->SetTables("cities");

qryCTY->SetFields("city, pop");

Creating Database Reports

Chapter 6 Querying a Database 175

// Next, the code instantiates a hierarchical query object.

IGXHierQuery *hqry;

CreateHierQuery(&hqry);

// Add the first flat query to the hierarchical query,

// and name the query CONTINENT.

hqry->AddQuery(qryCONTINENT, conn, "CONTINENT", "", "");

// Add the second flat query to the hierarchical query,

// and name the query COUNTRY. The fourth paramter

// specifies that the COUNTRY query's parent query is

// CONTINENT so that the data for each country is nested

// within the data for the corresponding continent.

// The last parameter is a join expression. This expression

// specifies that the result sets of the COUNTRY and

// CONTINENT queries are joined on the continent name.

// This means that the value of the continent field in

// the COUNTRY query's result set matches the value of the

// name field in the result set of the parent query,

// CONTINENT.

hqry->AddQuery(qryCOUNTRY, conn, "COUNTRY", "CONTINENT",

"COUNTRY.countries.continent = 'CONTINENT.name'");

// Add the second flat query to the hierarchical query,

// and name the query CITY. The fourth parameter specifies

// that the CITY query's parent query is COUNTRY. The result

// sets of the CITY and COUNTRY queries are joined on the

// country name. This means that the value of the country

// field in the CITY query's result set matches the value of

// the name field in the result set of the parent query,

// COUNTRY.

Creating Database Reports

176 iPlanet Application Server Programmer’s Guide (C++) • February 2002

hqry->AddQuery(qryCTY, conn, "CITY", "COUNTRY",

"CITY.cities.country = 'COUNTRY.name'");

// Call EvalTemplate to merge the data from the

// hierarchical query with the template and return

// the resulting report HTML page.

EvalTemplate("GXApp/EmpTrack/Templates/cityrept.html",

hqry, NULL, NULL, NULL);

hqry->Release();

qryCTY->Release();

qryCOUNTRY->Release();

qryCONTINENT->Release();

conn->Release();

conn_params->Release();

HTML Template cityrept.html
The following HTML template, cityrept.html, formats the data in this example

report. The template contains three nested tile tags: one to loop over the

continents, another to loop over the countries, and a third to loop over the cities

within each country. In this example, comments are provided before each GX

markup tag. For information about the other tags in the template, refer to your

HTML documentation.

<HTML>

<BODY>

<!-- The following GX tag sets up a loop that repeats for each
continent. The type=tile attribute specifies that this is a looping
marker. The id=CONTINENT attribute specifies that the loop repeats
for each row of the result set from the CONTINENT query.

-->

%gx type=tile id=CONTINENT%

Creating Database Reports

Chapter 6 Querying a Database 177

<!-- The following GX tag displays the name of each continent. The
type=cell attribute specifies that the body text of each marker is
to be replaced with a dynamic data value. The id=CONTINENT.name
attribute specifies the field in the result set that contains the
dynamic value.

-->

%gx type=cell id=CONTINENT.name%%/gx%

<!-- The following GX tags sets up a loop that repeats for each
country within each continent. The tags are similar to those used
for the CONTINENT query.

-->

 %gx type=tile id=COUNTRY%

 %gx type=cell id=COUNTRY.name%%/gx%

<!-- The following GX tags sets up a loop that repeats for each city
within each country. The tags are similar to those used for the
CONTINENT and COUNTRY queries.

-->

 %gx type=tile id=CITY%

 %gx type=cell id=CITY.city%%/gx%

 %gx type=cell id=CITY.pop%%/gx%

 %/gx%

 %/gx%

%/gx%

</BODY>

</HTML>

Working with Query Files

178 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Working with Query Files
A query file is a file is a file with a .gxq extension that contains the specifications for

one or more queries. Each query in the file can be flat or hierarchical. Query files

are generated automatically when you use iPlanet Application Builder to build

queries.

You can also write query files yourself using any text editor. This technique is

useful for running SQL SELECT statements that you already have on hand before

you begin programming for iPlanet Application Server. You can also write new

queries in a query file if you prefer this to using the iPlanet Application Builder or

the query-writing method calls provided in the iPlanet Application Server

Foundation Class Library.

Writing a Flat Query in a Query File
The specification for a flat query in a query file begins with the following lines:

/* optional comments */

query queryName using (driverCode, DSN, UserName) is

After these lines, write a SQL SELECT statement (compliant with ANSI SQL89).

The statement can include parameters, but do not type any statement terminators.

These characters vary depending on your database. For example, the SQL Server

statement terminator is GO.

Example
The following lines, from the SelCustTrans.gxq file in the Online Bank sample

application, specify a flat query named SelCustAccts .

query SelCustAccts using (ODBC, ksample, kdemo) is

select OBAccountType.acctDesc as OBAccountType_acctDesc

/* DATATYPE_STRING */,

 OBAccount.acctNum as OBAccount_acctNum

/* DATATYPE_STRING */,

 OBAccount.balance as OBAccount_balance /* DATATYPE_LONG */

from OBAccount /* (157, 2) */,

 OBAccountType /* (329, 19) */,

 OBCustomer /* (15, 5) */

Working with Query Files

Chapter 6 Querying a Database 179

where OBAccountType.acctType = OBAccount.acctType

 and OBCustomer.ssn = OBAccount.ssn

 and (OBCustomer.userName = ':userName'

/* DATATYPE_STRING */)

order by OBAccount.acctNum asc

Running a Flat Query in a Query File
To run a flat query in a query file, you specify the file name and query name, load

the file, then run it like any other flat query.

To run a flat query in a query file

1. Declare a variable of type IGXQuery. For example:

IGXQuery *qry;

2. If the query requires parameters, set up an IGXValList object with the

parameter values to be passed to LoadQuery() .

For more information, see , “Working with Databases.”

3. Load the query file into the query object by calling LoadQuery() . For

example:

LoadQuery("queryFile", query1, 0, params, &qry);

4. Open a connection to the data source that corresponds to the query you want

to run.

5. Declare a variable to reference the output from the query. For example:

IGXResultSet *rs;

6. Call the ExecuteQuery() method in the IGXDataConn interface. For

example:

HR = conn->ExecuteQuery(0, qry, NULL, NULL, &rs);

Writing a Hierarchical Query In a Query File
The specification for a hierarchical query in a query file contains several SQL

SELECT statements (compliant with ANSI SQL89) with the following additions:

• Each flat query is preceded by the following line:

Working with Query Files

180 iPlanet Application Server Programmer’s Guide (C++) • February 2002

query queryName using (driverCode, DSN, UserName) is

• For a child query, append the following line after the SQL SELECT statement:

join currentQueryName to parent parentName where

currentQueryName.table.column =

[']parentName.colOrAlias[']

For more information about the syntax in the where clause, see “Joins in

Hierarchical Queries” on page 153.

In a query file, do not type any statement terminators. These characters vary

depending on your database. For example, the SQL Server statement terminator is

GO.

Example
The following lines, from the SelCustTrans.gxq file in the Online Bank sample

application, specify a hierarchical query.

/* SelCustAccts: */

query SelCustAccts using (ODBC, ksample, kdemo) is

select OBAccountType.acctDesc as OBAccountType_acctDesc,

OBAccount.acctNum as OBAccount_acctNum ,

OBAccount.balance as OBAccount_balance

from OBAccount, OBAccountType, OBCustomer

where OBAccountType.acctType = OBAccount.acctType

and OBCustomer.ssn = OBAccount.ssn

and (OBCustomer.userName = ':userName')

order by OBAccount.acctNum asc

/* SelAcctTrans: */

query SelAcctTrans using (ODBC, ksample, kdemo) is

select OBAccount.acctNum as OBAccount_acctNum,

OBTransaction.postDate as OBTransaction_postDate,

OBTransactionType.transDesc as

OBTransactionType_transDesc,

OBTransaction.amount as OBTransaction_amount

from OBAccount ,

Working with Query Files

Chapter 6 Querying a Database 181

OBTransaction,

OBTransactionType

where OBTransactionType.transType = OBTransaction.transType

and OBAccount.acctNum = OBTransaction.acctNum

order by OBTransaction.postDate desc

/* Join expression */

join SelAcctTrans to parent SelCustAccts

where SelAcctTrans.OBAccount.acctNum =

'SelCustAccts.OBAccount_acctNum'

Running a Hierarchical Query in a Query File
To run a hierarchical query in a query file, you specify a set of database connections

that are needed by the queries in the file. To do so, you use an instance of the

IGXDataConnSet interface. Then you load the file and run it like any other

hierarchical query.

To run a hierarchical query file

1. Declare a pointer variable of type IGXHierQuery. For example:

IGXHierQuery *hqry;

2. Declare a pointer variable of type IGXDataConnSet and create a connection set

for the connections used by all the queries in the file. For example:

IGXDataConnSet *connSet;

CreateDataConnSet(0, &connSet);

3. Populate the connection set by calling the AddConn() method from the

IGXDataConnSet interface. Each call to AddConn() specifies a query name

and the connection to be used for that query. For example:

connSet->AddConn("COUNTIES", conn1);

connSet->AddConn("STATES", conn2);

4. If the hierarchical query requires parameters, set up an IGXValList object with

the parameter values to be passed to LoadHierQuery() .

For more information, see , “Working with Databases.”

Working with Query Files

182 iPlanet Application Server Programmer’s Guide (C++) • February 2002

5. Load the query file into the hierarchical query object by calling

LoadHierQuery() . For example:

LoadHierQuery("queryFile", connSet, 0, params, &hqry);

6. Declare a variable to reference the output from the query. For example:

IGXHierResultSet *hrs;

7. Run the hierarchical query by calling Execute() on the hierarchical query

object. For example:

hr = hqry->Execute(0, 0, NULL, &hrs);

Alternatively, if you want to send the output to the end user, call

EvalOutput() or EvalTemplate() . For example:

EvalOutput("templateReport", hqry, NULL, NULL, NULL);

Example
The following code shows how to use a query file to run a hierarchical query.

IGXValList *conn_params;

conn_params = GXCreateValList();

conn_params->SetValString("DSN", "geo");

conn_params->SetValString("DB", "geo");

conn_params->SetValString("USER", "steve");

conn_params->SetValString("PSWD", "pass7878");

IGXDataConn *conn = NULL;

HRESULT hr;

hr = CreateDataConn(0, GX_DA_DRIVER_ODBC, conn_params, NULL,

&conn);

IGXDataConnSet *connSet;

CreateDataConnSet(&connSet);

connSet->AddConn("COUNTIES", conn);

connSet->AddConn("STATES", conn);

IGXValList *params;

params = GXCreateValList();

Running Asynchronous Queries

Chapter 6 Querying a Database 183

params->SetValString("pop", "100000");

IGXHierQuery *hqry = NULL;

hr = LoadHierQuery("file.gxq", connSet, 0, params, &hqry);

// Call EvalTemplate to merge the data from the

// hierarchical query with the template and return

// the resulting report HTML page.

EvalTemplate("states_report.html", hqry, NULL, NULL, NULL);

hqry->Release();

Running Asynchronous Queries
You can run queries asynchronously so that your application can do other work

while the database server is processing the query. Your application can detect

when the query is finished so it can process the result set. The iPlanet Application

Server supports asynchronous queries through the IGXOrder interface.

To run asynchronous queries

1. Create the query or queries that you want to run asynchronously.

2. Execute each query, passing the GX_DA_EXEC_ASYNC constant to

ExecuteQuery() . For example:

IGXResultSet *rs0;

hr = conn0->ExecuteQuery(GX_DA_EXEC_ASYNC,

qry0, NULL, NULL, &rs0);

IGXResultSet *rs1;

hr = conn1->ExecuteQuery(GX_DA_EXEC_ASYNC,

qry1, NULL, NULL, &rs1);

3. Declare and allocate an array of IGXOrder pointers, with one array element for

each query. For example:

IGXOrder *orders[2];

Running Asynchronous Queries

184 iPlanet Application Server Programmer’s Guide (C++) • February 2002

4. Call GetOrder() in the IGXResultSet interface for each result set and assign

the result of each call to an element in the array. For example:

hr = rs0->GetOrder(&orders[0]);

hr = rs1->GetOrder(&orders[1]);

5. Call GXWaitForOrder() to wait for an order to come back, indicating that

one of the queries has finished its result set. For example:

hr = GXWaitForOrder(orders, 2, &nOrder, m_pContext, 7200);

6. Process the result set. If desired, use the array index to determine which result

set is finished and perform processing that is specific to that query. For

example:

if (nOrder == 0) {

// . . . process result set rs0 . . .

7. }Release the resources used. For example:

orders[0]->Release();

8. Reset the array element that was just processed to null. For example:

orders[0] = NULL;

Example
The following code uses IGXOrder to track the progress of several asynchronous

flat query commands.

HRESULT hr;

// Define the flat queries

IGXResultSet *rs0;

hr = conn0->ExecuteQuery(GX_DA_EXEC_ASYNC,

qry0, NULL, NULL, &rs0);

IGXResultSet *rs1;

hr = conn1->ExecuteQuery(GX_DA_EXEC_ASYNC,

qry1, NULL, NULL, &rs1);

IGXOrder orders[2];

hr = rs0->GetOrder(&orders[0]);

hr = rs1->GetOrder(&orders[1]);

while(orders[0] != NULL || orders[1] != NULL) {

Running Asynchronous Queries

Chapter 6 Querying a Database 185

int nOrder;

hr = GXWaitForOrder(orders, 2, &nOrder, m_pContext, 7200);

if (nOrder == 0) {

// . . . process result set rs0 . . .

}

else if (nOrder == 1) {

// . . . process result set rs1 . . .

}

else

//. . . break & return error condition on waitOrders()

orders[0]->Release();

orders[1]->Release();

}

Running Asynchronous Queries

186 iPlanet Application Server Programmer’s Guide (C++) • February 2002

187

Chapter 7

Working with Templates

This chapter describes templates, which are text files that can be merged with

dynamic data to produce formatted output.

The following topics are included in this chapter:

• What are Templates?

• How to Write a GXML Template

• How to Write an HTML Template

• Calling an AppLogic Object From an HTML Page

• GX Markup Tag Syntax

• Using a Template Map

• Constructing a Hierarchical Result Set with GXTemplateDataBasic

• Using Conditionals in an HTML Template

• Example HTML Template

• Example GXML Template

What are Templates?
Your application can include two types of templates, depending on the types of

results being returned from the AppLogic objects in the application:

• GXML templates are used to return self-describing, formatted data to other

AppLogics. GXML templates are used only when you are using the

EvalOutput() method to return client-independent results.

What are Templates?

188 iPlanet Application Server Programmer’s Guide (C++) • February 2002

• HTML templates are used to return HTML pages to Web browsers. HTML

templates are used when you are using the EvalTemplate() method to

explicitly return HTML results, or when you are using EvalOutput() to

return client-independent results and the client happens to be a Web browser.

What is a GXML Template?
A GXML template is a definition for a dynamically-generated set of output data.

GXML templates are made up of special GX markup tags that specify how

dynamic data is to be sent back to the client.

AppLogics use GXML templates in conjunction with the EvalOutput() method

to return client-independent results. Data retrieved from a database or other data

source at runtime is sent back to the client in a self-describing stream of output.

This self-describing data stream is created according to the specifications in the

GXML template. The client receiving these results then processes the output and

puts it to use in reports, calculations, UI controls, or any desired task.

What is an HTML Template?
An HTML template is a definition for a dynamically-generated HTML page.

HTML templates are similar to HTML pages, but they also include special GX

markup tags that are specific to iPlanet Application Server applications. The GX

markup tags in the template specify how dynamic data is merged with the page.

Dynamic data is the added feature that makes a page an HTML template rather

than just an ordinary, static HTML page.

AppLogic objects use HTML templates to format their output and present

dynamically generated HTML pages to a Web browser. Data retrieved from a

database or other data source at runtime is merged with the HTML template to

create one of the following types of output:

• The data can be displayed in the HTML page to present a database report. For

example, a customer might request a report of currently available products and

prices.

• The data can be used to dynamically modify the HTML page itself, changing

the HTML tags, images, sounds, applets, or other features. For example, you

might dynamically change which commands or AppLogic objects the user can

choose from next by modifying the returned URL.

What are Templates?

Chapter 7 Working with Templates 189

An HTML template can contain static elements, such as introductory text and

logos. Its GX markup tags provide the placeholders in which a variety of data

values can be used.

HTML templates provide a modular technique for designing HTML pages.

AppLogics can share the same HTML templates, and the templates can easily be

updated or translated and localized without affecting application code and

business rules.

Example: Report
In a sales support application, a user’s request for customer sales data causes an

AppLogic to get the latest data from the database. The AppLogic merges the data

with an HTML template and returns a sales report to the user. The sales report is an

HTML page with standard headings, graphics, and other elements merged with

the dynamic sales data.

Example: Dynamically Modified HTML Tag
An AppLogic queries a geographic database to create a report about the countries

of the world. The data includes country names and populations. The country name

is used to dynamically modify the filename in an HTML tag inside a loop, so

that a different illustration is displayed for each country.

Example: Dynamically Populated Form
A chain of hardware stores has an online inquiry application in which users can get

information about store locations. The user types a home address into a form, then

submits the form. The application looks up the stores in the customer’s home town,

then uses an HTML template to create a form that contains a list box with the street

addresses of the selected stores. The user can then select one store and submit a

request for more information about that store.

Parts of an HTML Template
Like any HTML page, an HTML template can include features implemented using

the normal HTML markup tags, such as the following:

• Text and graphics

• Interactive features such as buttons and hyperlinks

• Calls to applets

By using the GX markup tags, an HTML template can also include the following:

• Dynamically populated data fields.

How to Write a GXML Template

190 iPlanet Application Server Programmer’s Guide (C++) • February 2002

For more information, see “Using the Cell Attribute in a GX Markup Tag” on

page 199.

• Dynamically modified HTML tags.

For more information, see “Using the Replace Attribute in a GX Markup Tag”

on page 205.

• Placeholders for function calls or other data.

For more information, see “Using a Template Map” on page 207.

Runtime Behavior of HTML Templates
The following illustration and list summarize how an HTML template is typically

used at runtime.

1. A user makes a request through a Web browser.

2. In response to the request, an AppLogic runs. The AppLogic specifies a query

and passes the query and the name of an HTML template file to iPlanet

Application Server’s Template Engine.

3. The Template Engine queries the database and retrieves dynamic data.

4. The Template Engine merges the data with the HTML template and streams

the resulting dynamically-generated HTML page to the Web browser.

How to Write a GXML Template
To create a GXML template, you can use either of the following techniques:

Web browser

iPlanet Application Server

[2] AppLogic

Template
engine

[3] Database

[4] Template

How to Write an HTML Template

Chapter 7 Working with Templates 191

• Use the khtml2gxml tool to convert an existing HTML template into a GXML

template. For more information, see “Converting HTML Templates to GXML

Templates” on page 191.

• Write the GXML file yourself, using any text editor. To do so, you need to

understand the GX markup tags. For more information, see “GX Markup Tag

Syntax” on page 193.

By convention, GXML templates are kept in one of the following directories:

• [HTTPDIR]/GXApp/ProjectName/Templates, where [HTTPDIR] is the

document root directory of your HTTP server and ProjectName is the name of

your application or package.

• [GXINSTALL]/Apps/ProjectName/Templates, where [GXINSTALL] is the

directory in which your iPlanet Application Server software is installed.

In addition, administrators can specify a search path for templates. For more

information, see the Administration and Deployment Guide.

Converting HTML Templates to GXML
Templates
You can convert an existing HTML template into a GXML template by using the

command-line utility khtml2gxml . This tool removes all HTML from the

template, leaving only the GX markup tags.

To convert HTML to GXML

Type the following command at the command line prompt:

khtml2gxml filename.html

A new GXML template file, filename.gxml , is created.

How to Write an HTML Template
To write HTML templates, you can use iPlanet Application Builder. This tool gives

you a head start on creating some commonly-used types of templates.

You can also code the HTML tags yourself, using any text editor or HTML

authoring tool. In either case, you need to understand the GX markup tags.

For more information, see “GX Markup Tag Syntax” on page 193.

Calling an AppLogic Object From an HTML Page

192 iPlanet Application Server Programmer’s Guide (C++) • February 2002

By convention, HTML templates are kept in one of the following directories:

• [HTTPDIR]/GXApp/ProjectName/Templates, where [HTTPDIR] is the

document root directory of your HTTP server and ProjectName is the name of

your application or package.

• [GXINSTALL]/Apps/ProjectName/Templates, where [GXINSTALL] is the

directory in which your iPlanet Application Server software is installed.

Calling an AppLogicObject From an HTML Page
When a user makes an action request from a Web browser, such as by clicking a

button on an HTML page, iPlanet Application Server runs the appropriate

AppLogic object to handle the request. To create an HTML page that calls an

AppLogic, you embed a special URL link in the HTML page. For example, the URL

can be activated through a hyperlink or a button. Use the normal HTML technique

for linking to a URL, and use a URL with one of the following syntaxes:

To call the AppLogic using a GUID, use the following syntax (all on one line):

[http://www.company.com]/cgi-bin/gx.cgi/

GUIDGX-{E5CA1000-6EEE-11cf-96FD-0020AFED9A65}[?]

[param=value[¶mN=valueN] ...]

To call an AppLogic by name, use the following syntax (all on one line):

[http://www.company.com]/cgi-bin/gx.cgi/AppLogicName[?]

[param=value[¶mN=valueN] ...]

• The URL prefix (http://www.company.com) is required if the URL is used in

a hyperlink.

• The code cgi-bin/gx.cgi runs the gx.cgi program, which forwards the

request to the iPlanet Application Server. The server loads and runs the

AppLogic registered with the given name or GUID. If you are using a Netscape

Web connector, such as NSAPI or ISAPI, the connector automatically

intercepts any gx.cgi requests. Thus you can write your application with a CGI

environment and deploy in an NSAPI environment.

• In the first syntax, the GUIDGX- prefix indicates that a GUID is the next part of

the URL.

• In the first syntax, the last part of the URL, between and including the brace

characters { }, is the GUID that identifies which AppLogic to run.

GX Markup Tag Syntax

Chapter 7 Working with Templates 193

• The question mark is required if parameters are included in the URL.

• You can optionally specify one or more named parameters at the end of the

URL.

Use these special URLs throughout your application’s HTML interface, wherever

you want to run an AppLogic in response to a user clicking a button or other

control.

Examples
The following HTML form, from the Online Bank sample application, runs the

FindCust AppLogic. The AppLogic request is coded in the action attribute. When

the user clicks the Search button, the Web browser forwards this request to the

Web server. The Web server, in turn, sends the request to iPlanet Application

Server. If an AppLogic has been compiled and registered with this name before the

request is received, iPlanet Application Server runs that AppLogic.

<FORM method="POST" action="/cgi-bin/gx.cgi/AppLogic+FindCust">

<!-- Body of HTML form here -->

<input type="submit" name="go" value="Search">

The following portion of an HTML page shows how to call an AppLogic from a

hyperlink:

Add New Customer

GX Markup Tag Syntax
The GX markup tag is a matched tag. Every opening marker, %gx%, must be

matched by a closing marker, %/gx%. The syntax of the GX markup tag is as

follows:

%gx {TagAttributes} %

[textBlock]

%/gx%

You can also use angle brackets instead of percent signs, as follows:

<gx {TagAttributes} >

GX Markup Tag Syntax

194 iPlanet Application Server Programmer’s Guide (C++) • February 2002

[textBlock]

</gx>

TextBlock
The TextBlock portion of a GX markup tag can include the following:

• Plain text

• HTML tags

• Nested GX markup tags

For example, in the following GX markup tag, the second line is the text block,

including both a nested GX markup tag and an HTML tag (
):

%gx type=tile id=CONTINENT%

%gx type=cell id=CONTINENT.NAME%%/gx%

%/gx%

In the following GX markup tag, the second line is the text block, including both

plain text and an HTML tag ():

%gx type=replace id=CONTINENT.NAME value=PlaceHolder%

Selected Continent:

%/gx%

TagAttributes
The TagAttributes portion of a GX markup tag can be a combination of the

following items:

• type=TypeCode

• id=Name

• visible={True | False}

• min=MinVal

• max=MaxVal

• value=ReplaceVal

GX Markup Tag Syntax

Chapter 7 Working with Templates 195

The rest of this section describes each item in more detail. You can specify these

items in any order within the GX markup tag.

type=TypeCode
Required. Indicates what action is to be performed for this tag when an AppLogic

merges data with the template. The TypeCode is one of the following:

• Cell

• Tile

• Replace

• Include

• User-Defined Tag

Cell
Replaces the entire GX marker, from %gx% to %/gx%, with a dynamic data value.

Used with the id attribute, which specifies a field in the result set that contains the

dynamic value to be used. For example:

%gx type=cell id=CTY.sumsales%%/gx%

For a more detailed example, see “Using the Cell Attribute in a GX Markup Tag”

on page 199.

Tile
Repeats the TextBlock . The tile tag can be used in two ways: repeating a fixed

number of times, or repeating for each row in a result set. When you use nested

tile tags along with a hierarchical query, the result is a grouped master-detail

report.

To repeat the TextBlock a specified number of times, use the min attribute to set

the number. Do not use the id attribute. For example:

%gx type=tile min=5% . . . %/gx%

To repeat the TextBlock for every row in a query’s result set, use the id attribute

to specify the name of the query. A query is given a name when you add a flat

query to a hierarchical query, or when you name a query in a query file. For more

information about using the id attribute in this way, see “Meaning Of id when

Type is Tile” on page 197.

You can also use the max attribute, which specifies a limit on how many times the

tile can be repeated. This is useful for limiting the length of the generated HTML

page if the size of the result set is potentially large. For example:

GX Markup Tag Syntax

196 iPlanet Application Server Programmer’s Guide (C++) • February 2002

%gx type=tile id=COUNTRY max=1000% . . . %/gx%

For more detailed examples of both techniques, see “Using the Tile Attribute in a

GX Markup Tag” on page 203.

Replace
Searches TextBlock for a string and substitutes a dynamic data value for that

string. Used with the value attribute, which specifies the search string, and with

the id attribute, which specifies where to find the replacement value. For example:

%gx type=replace id=CUST.name value=CustName%

Dear CustName: %/gx%

For a more detailed example, see “Using the Replace Attribute in a GX Markup

Tag” on page 205.

Include
Replaces TextBlock with HTML output created by evaluating another template.

Used with the id attribute, which specifies the path of the template. For example:

%gx type=include

id="GXApp/OnlineBooks/Templates/header1.html"%

For a more detailed example, see “Using the Include Attribute in a GX Markup

Tag” on page 206.

Do not specify the same template name as the current template. A template cannot

include itself.

User-Defined Tag
Performs a user-defined action. For example, you could write the following GX

markup tag:

%gx type=trigger name=Clock arg1=hello%%/gx%

To use this type of tag, you must write a customized template map class. When the

Template Engine encounters an unknown type of GX tag, it calls the template

map’s Get() method and passes it the unknown tag. For example, the trigger tag

shown above results in the following string being passed to Get() :

trigger:name="Clock";arg1="hello"

The Get() method in your template map subclass must be able to parse and

respond to this string.

For more information about implementing a custom GX markup tag, see “Creating

a User-Defined Tag” on page 207.

GX Markup Tag Syntax

Chapter 7 Working with Templates 197

id=Name
The meaning of the id attribute varies depending on the value of the type

attribute. The id attribute is required in all GX markup tags, except when the min

attribute is used to repeat a tile a specified number of times.

Meaning Of id when Type is Tile
When the type attribute is tile , the id attribute specifies the name of a query. The

marker’s TextBlock repeats for the number of rows in the query’s result set. For an

example, see “Using the Tile Attribute in a GX Markup Tag” on page 203.

The value you can use in the id attribute is set when a query is added to a

hierarchical query, or when you name a query in a query file. For example,

suppose the AppLogic contains the following code, which adds a query named

CTY to a hierarchical query:

pHq->AddQuery(pQuery, pConn, "CTY", "", "");

The HTML template that displays data from this query can use the name CTY in

the id attribute of a tile tag. For example

%gx type=tile id=CTY%

This is how tile tags are normally implemented. However, if you are using the

min attribute to control the number of times the tile repeats, you do not use the id

attribute.

Meaning of id when Type is Cell or Replace
When the type attribute is cell or replace , the id attribute specifies a field in the

result set. The field contains the data value to be displayed. If the AppLogic is

using a hierarchical query, the field is specified using dot notation. A query name

(derived in the same way as that used with the tile tag) comes before the dot, and

a column name or alias comes after the dot. For example:

%gx type=cell id=CTY.sumsales%%/gx%

For a more detailed example, see “Using the Cell Attribute in a GX Markup Tag”

on page 199.

The id attribute in a cell tag can include a format string to specify a numeric or

character format.

For more information, see “Formatting Data in a Cell Tag” on page 200.

If the data specified in the id attribute is not found in the result set, the static text, if

any, in the TextBlock is displayed instead of the dynamic data that would have

replaced it. For example, in the following tile tag, the text Customer name here

appears if the custName field is not found or is empty:

GX Markup Tag Syntax

198 iPlanet Application Server Programmer’s Guide (C++) • February 2002

%gx type=tile id=CUST%

%gx type=cell id=CUST.custName%Customer name here

%/gx%

%/gx%

Meaning of id when Type is Include
When the type attribute is include , the id attribute specifies the path of an HTML

template. You can use a literal path enclosed in double quotes or a field in a result

set. For example:

%gx type=include

id="GXApp/OnlineBooks/Templates/header1.html"%

For a more detailed example, see “Using the Include Attribute in a GX Markup

Tag” on page 206.

visible={True | False}
Optional. Determines whether the portion of the page enclosed by the GX markup

tag appears in the final HTML page that results when an AppLogic merges data

with the template. Default is True . Set to False to hide a marked-off portion of the

page, including nested GX tags and dynamic data.

min=MinVal
Optional. Use only when the type attribute is tile . Specifies the smallest number

of times the tile can be repeated when an AppLogic merges data with the

template. When used alone, specifies a static number of times for the tile to

repeat. Default is 0.

max=MaxVal
Optional. Use only when the type attribute is tile . Specifies the greatest number

of times the tile can be repeated. Default is 232. For an example, see “Using the

Tile Attribute in a GX Markup Tag” on page 203.

value=ReplaceVal
Required when the type attribute is replace . Specifies a string to search for in

TextBlock . This string is replaced with dynamic data when an AppLogic merges

data with the template. For an example, see “Using the Replace Attribute in a GX

Markup Tag” on page 205.

GX Markup Tag Syntax

Chapter 7 Working with Templates 199

Using the Cell Attribute in a GX Markup Tag
The cell type of GX markup tag is the lowest-level building block in a report-style

HTML template. Each cell tag, including any TextBlock , is replaced by a single

value from one row of data from the database. For example, suppose you want to

generate a dynamic sales letter from a customer database. Your HTML template

could include the following cell tag:

Dear %gx type=cell id=CustName%

Customer name here %/gx%,

Thank you for buying the SmartSurf 2000 Web robot . . .

When an AppLogic merges data with this template, the entire text from %gx% to

%/gx%, including Customer name here, is replaced with a customer name from

the database field CustName. For example:

Dear M. Smith,

Thank you for buying the SmartSurf 2000 Web robot . . .

Using Cell with Tile
The cell tag is commonly used in combination with the tile tag, which causes the

cell to repeat for a group of data rows. The following example contains both tile

and cell tags. The cell tag is a placeholder for the individual continent name. The

tile tag causes the cell tag to be repeated for all the continents in the database.

%gx type=tile id=CONTINENT%

%gx type=cell id=CONTINENT.NAME%%/gx%

%/gx%

Remember that all text inside the cell tag is deleted and replaced with dynamic

data. Take care that the cell tag does not contain text you want to appear in the

finished HTML page. In the previous example, the HTML tag
 is outside the

cell tag, so it is passed through without change. If the
 were accidentally

placed before the %/gx% that marks the end of the cell tag, the
 would be

deleted.

When an AppLogic merges data with this HTML template, text like the following

replaces the GX tags:

AFRICA

ANTARCTICA

ASIA

AUSTRALIA

GX Markup Tag Syntax

200 iPlanet Application Server Programmer’s Guide (C++) • February 2002

EUROPE

N_AMERICA

OCEANIA

S_AMERICA

You can include several cell tags within one tile tag. For example, the following

tags print two fields, the county name and number of customers, for each county in

a state. Because the max attribute is set, the tag will not generate entries for more

than 100 counties in a single state.

%gx type=tile id=DETAILS MAX=100%

%gx type=cell id=DETAILS.COUNTYNAM%%/gx%

%gx type=cell id=DETAILS.CUSTS%%/gx%

%/gx%

When an AppLogic merges data with this HTML template, text like the following

replaces the tags:

San Mateo 100

Santa Clara 300

Sonoma 400

Formatting Data in a Cell Tag
You can include a format specification in the id attribute of a cell tag. To do so,

place the attribute value in quotes, place a comma after the data field name, and

call the format() function. You use this function to specify a format string, which

determines how the data appears in the HTML output page.

For example, the following cell tag specifies that the sales figure is to start with a

dollar sign, include a thousands separator, and show two digits to the right of the

decimal point:

%gx type=cell id="CTY.sumsales, format($0,000.00)"%%/gx%

The argument to the format() function is a format string. This string is made up of

ordinary text, such as the dollar sign, and special characters that influence how

data is presented. The following tables describe the special characters you can use

in a format string. The set of characters you can use varies depending on the type of

data. You cannot mix characters from the different types in a single format string.

GX Markup Tag Syntax

Chapter 7 Working with Templates 201

Numeric Format Characters

Character Meaning Example
Data

Example
String

Example
Result

Unfilled digit placeholder.

Replaced by numeric digits

in the data.

If the data to format has

fewer digits than the format

string, the empty places are

not filled. The output can be

shorter than the format

string.

679.649

700

#####.##

$#,###.00

679.64

$700.00

0 Zero-filled digit placeholder.

Replaced by numeric digits

in the data.

If the data to format has

fewer digits than the format

string, the empty places are

filled with zeros. The output

is always at least as long as

the format string.

When placed to right of

decimal point, indicates

precision. Data is rounded if

necessary.

679.649

679.649

700

0000.00

00###

$000.00

0679.65

00679

$700.00

, Thousands separator.

A separator character will

appear between every three

digits to the left of the

decimal point in the output

data.

1234 0,000 1,234

. Decimal separator.

A decimal point character

will appear between the

whole and fractional parts of

the output data.

679.649

700

000.00

$#,###.00

679.65

$700.00

; Separates a pair of formats.

The first format is used for

positive numbers, the second

for negative numbers.

23

-66

##;(##)

##;(##)

23

(66)

GX Markup Tag Syntax

202 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Date/Time Format Characters

Literals

such as $ +

- () and

space

characters

Any character in the format

string that is not a special

character will appear in the

output data exactly as typed.

If using parentheses, always

use matched pairs.

5552365

69100

123

###-####

$0,000

0 0 0

555-2365

$69,100

1 2 3

Character Meaning Example
Data

Example String Example
Result

D Day of the month,

with no leading zero.

1/1/2020 M-D-YY 1-1-20

DD Day of the month,

with leading zero.

1/1/2020 MM-DD-YY 01-01-20

DDD Day of the week,

abbreviated.

7/4/1996 DDD Thu

DDDD Full day of the week. 7/4/1996 DDDD Thursday

M Number of the month,

with no leading zero.

1/1/2020 M-D-YY 1-1-20

MM Number of the month,

with leading zero.

1/1/2020 MM-DD-YY 01-01-20

MMM Name of the month,

abbreviated.

1/1/2020 MMM Jan

MMMM Full name of the

month.

1/1/2020 MMMM January

Y Number of the day in

the year (1-366).

1/1/2020 Y 1

YY Last 2 digits of the

year.

1/1/2020 M-D-YY 1-1-20

YYY or

YYYY

All 4 digits of the year. 1/1/2020 M-D-YYYY 1-1-2020

Character Meaning Example
Data

Example
String

Example
Result

GX Markup Tag Syntax

Chapter 7 Working with Templates 203

Using the Tile Attribute in a GX Markup Tag
The tile type of GX markup tag can be used to repeat portions of an HTML

template in two ways:

• Repeating for Each Row in a Result Set

• Repeating a Specified Number of Times

h Hour from 1-12, with

no leading zero.

8:05 pm h:mm 8:05

hh Hour from 1-12, with

leading zero.

8:05 pm hh:mm 08:05

H Hour from 1-24, with

no leading zero.

8:05 pm H:mm 20:05

HH Hour from 1-24, with

leading zero.

3:00 am HH:mm 03:00

m Minute, with no

leading zero.

3:09 am h:m 3:9

mm Minute, with leading

zero.

3:09 am h:mm 3:09

s Seconds, with no

leading zero.

3:09 am h:m:s 3:9:0

ss Seconds, with leading

zero.

5:07:02 am hh:mm:ss 05:07:02

AM/PM Adds letters AM or

PM after the

date/time data to

indicate morning or

afternoon/evening

hours.

5:07:02 am h:mm AM/PM 5:07 AM

Literals

such as / -

: and space

characters

Any character in the

format string that is

not a special character

will appear in the

output data exactly as

typed.

1/1/2020

8:05 am

m-d-yy

h:m:s

1-1-20

8:5:0

Character Meaning Example
Data

Example String Example
Result

GX Markup Tag Syntax

204 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Repeating for Each Row in a Result Set
The tile tag is typically used to nest levels of data in an HTML template for a

grouped report. There is no practical limit to the levels of nesting. Each tile tag

specifies a group of data rows. The text block nested in the tile tag is repeated

once for each row in the group. The group of data rows is the result set from one of

the queries in a hierarchical query object.

In a grouped report, the tile tag is used in combination with the cell tag. The

tile tag specifies the repeating, and the cell tag specifies what data value to

display for each repetition.

The following example shows two levels of nested tags:

%gx type=tile id=CONTINENT%

- %gx type=cell id=CONTINENT.NAME%%/gx%

%gx type=tile id=COUNTRY%

--- %gx type=cell id=COUNTRY.NAME%%/gx%

%/gx%

%/gx%

When an AppLogic merges data with this HTML template, text like the following

replaces the tags:

- ASIA

--- China

--- Japan

- EUROPE

--- France

--- Germany

- N_AMERICA

--- Canada

--- Mexico

Repeating a Specified Number of Times
You can use the min attribute to repeat a tile a specified number of times. For

example, the following example repeats a decorative graphic five times:

%gx type=tile min=5%

GX Markup Tag Syntax

Chapter 7 Working with Templates 205

%/gx%

When an AppLogic merges data with this HTML template, text like the following

replaces the tags:

Using the Replace Attribute in a GX Markup Tag
The replace type of GX markup tag is used to dynamically modify part of the text

block immediately following the GX tag. You can use the replace tag to

dynamically modify HTML tags. Each replace tag specifies a string to search for

in the text block and a field from which to retrieve the dynamic replacement value.

The field referred to in a replace tag can be either a database field or a template

map field. For more information about template maps, see “Using a Template

Map” on page 207.

The following example uses the replace tag to modify an illustration. The HTML

tag specifies the filename of an illustration:

%gx type=replace id=CONTINENT.NAME value=PlaceHolder%

%/gx%

To make this tag more interesting, consider what happens if it is placed inside a

tile tag. In the following example, the illustration is repeated for each data row in

the CONTINENT query’s result set. The HTML tag is displayed once for

each data row. The GX replace tag dynamically changes the filename each time

the text repeats, so that a different illustration is displayed for each continent.

%gx type=tile id=CONTINENT%

%gx type=replace id=CONTINENT.NAME value=PlaceHolder%

%/gx%

%/gx%

GX Markup Tag Syntax

206 iPlanet Application Server Programmer’s Guide (C++) • February 2002

When an AppLogic merges data with this HTML template, text like the following

replaces the tags:

Using the Include Attribute in a GX Markup Tag
The include type of GX markup tag is used to insert output from another template

into the current template. For example, you can use the include tag to add

commonly-used elements such as headers and footers. You can maintain a library

of reusable HTML templates for such tasks to avoid repetitive HTML coding.

Each include tag specifies the pathname of an external template. The included

template is merged with the same result set being used for the calling template.

The following examples use the include tag to insert a header. In the first example,

a literal path is given for the template file:

%gx type=include

id="/GXApp/OnlineBooks/Templates/header1.html"%

Text block to be replaced by output from header1.html

%/gx%

In the second example, a field from a result set is used to create a dynamic path for

the template file.

%gx type=include id=CUSTOMER.Preferred_Header%

Text block to be replaced by output from a template

%/gx%

When an AppLogic merges data with the HTML template that contains one of

these tags, the tag is replaced with the output from the included template. The

effect is that the AppLogic merges data with several HTML templates using one

result set.

Using a Template Map

Chapter 7 Working with Templates 207

Creating a User-Defined Tag
Instead of using one of the predefined types of GX markup tag, such as tile or

include, you can use the GX markup syntax to write your own customized tag. Use

the type attribute to give the tag a name, and follow it with other attributes that

you name and define. For example, you could write the following GX markup tag:

%gx type=trigger name=Clock arg1=hello%Default text%/gx%

To use this type of tag, you must write a customized template map class (that is,

subclass the GXTemplateMapBasic class and override the Get() method). When

the Template Engine encounters an unknown type of GX tag, it calls the template

map’s Get() method and passes the tag attributes in the following format:

userDefinedType:attr1="val1";attr2="val2"

For example, the trigger tag shown above results in the following string being

passed to Get() :

trigger:name="Clock";arg1="hello"

The code you write when you override Get() in your subclass must be able to

parse and respond to this string. In the simplest case, your Get() method can

return a null string, in which case the system defaults to using the text block of the

gx tag. In the above example, if Get() returns a null string, the system replaces

the gx tags with Default text .

For more information about subclassing GXTemplateMapBasic, see “Using Your

Own Template Map Class for Special Processing” on page 210.

Using a Template Map
A template map is an object that maps fields in a template to the data used to

replace those fields. Template maps are instances of the GXTemplateMapBasic

class.

A template map is useful when the template uses data from:

• Multiple data sources with different column names

• A data source whose schema changes over time

• Dynamic calculations made at runtime

• Memory-based data sources defined using an implementation of

theIGXTemplateData interface, such as the GXTemplateDataBasic class in the

iPlanet Application Server Foundation Class Library.

Using a Template Map

208 iPlanet Application Server Programmer’s Guide (C++) • February 2002

A template map is useful when the template refers to fields in a particular

database, and you want to use the same template with data from another database

in which the field names are different. Typically, this occurs when you move from

a test database to a production database.

With a template map, you can assign values to special placeholders that will be

evaluated at runtime. For example, you can use a placeholder to indicate where

you want the current date to appear. You can use these placeholders anywhere you

would use database field names inside a GX markup tag. These placeholders need

not be preceded by the dollar sign.

You can also use a template map to link column names in a table to field names

that you have used in a template. A template map allows your application to use

the same template file with data from different data sources.

For example, an application might obtain invoice information from several

accounting databases with slight variations in the name of the invoice number

column (such as invNum, InvoiceNumber, invId, and so on). With a template map,

you can simply change the links between table columns and template fields

without rewriting your queries.

To ensure that the template map works, the two database schemas must be the

same except for the field names. Also, each field name that is to be mapped must be

preceded by a dollar sign ($) in the template.

A single template map can contain values for both placeholders and fields. When

data is merged with a template, iPlanet Application Server uses the template map

to find the meaning of each field name or placeholder in the template. For example,

the following lines from an HTML template contain a placeholder, CURDATE, and a

field name, CUST.custname .

%gx type=cell id=CURDATE%%/gx%

Dear %gx type=cell id=$CUST.custname% :

To construct a template map

1. Instantiate an object from the GXTemplateMapBasic class. For example:

GXTemplateMapBasic *map;

map = GXCreateTemplateMapBasic();

Use the Put() method to specify the field name pairs or placeholder and

value pairs. The first item in each pair is the field name or placeholder used in

the HTML template. For example:

IGXBuffer *buffer;

buffer = GXCreateBufferFromString(curr_time):

Using a Template Map

Chapter 7 Working with Templates 209

map.put("CURTIME", buffer);

You can place the Put() method call inside a loop to construct the template

map iteratively. For example, you could use this technique to read the map

from a file line by line.

2. Pass the template map to EvalTemplate() or EvalOutput() . For example:

result = EvalTemplate("template.html", data, map);

Example
The following code constructs a template map for the following three items in an

HTML template called template.html:

• The placeholder LOGIN is mapped to the value of the login parameter, which

is one of the AppLogic’s input parameters.

• The placeholder CURTIME is mapped to a function call which evaluates the

current time at the moment the HTML template is merged with data.

• The database field name STATES.state is mapped to the new field name

ST.name . In the HTML template, the original field name is preceded by a dollar

sign ($STATES.state).

char login[256];

m_pValIn->GetValString("login", login, sizeof(login));

GXTemplateMapBasic *map;

map = GXCreateTemplateMapBasic();

IGXBuffer *buffer;

buffer = GXCreateBufferFromString(login):

map.put("LOGIN", buffer);

buffer->Release();

buffer = GXCreateBufferFromString(curr_time):

map.put("CURTIME", buffer);

buffer->Release();

buffer = GXCreateBufferFromString("ST.name"):

map.put("$STATES", buffer);

buffer->Release();

HRESULT hr;

result = EvalTemplate("template.html", data, map);

Using a Template Map

210 iPlanet Application Server Programmer’s Guide (C++) • February 2002

map->Release();

The following lines from the HTML template show how these mapped items

appear in the template:

User %gx type=cell id=LOGIN%%/gx%

accessed the system at %gx type=cell id=CURTIME%%/gx%

from the following state:

%gx type=cell id=$STATES.state%%/gx%

Using Your Own Template Map Class for
Special Processing
A template map is an object instantiated from any class that implements the

IGXTemplateMap interface. The iPlanet Application Server Foundation Class

Library provides one such class, called the GXTemplateMapBasic class. You can

also implement your own template mapping class.

The simplest technique for implementing your own template mapping class is to

subclass GXTemplateMapBasic and override the Get() method. By doing so, you

gain the opportunity to run your own code as part of the template generation

process. This is a useful technique for providing special template map processing

that is specific to your application.

For example, you can perform the following types of special processing:

• Filter data from the database before allowing the Template Engine to merge the

data with the template. This technique is illustrated in the example code later

in this section.

• Perform special character formatting.

• Add counters.

• Insert large, dynamically generated HTML fragments into an output HTML

page.

• Evaluate placeholders multiple times per template. The default

implementation of Get() in the GXTemplateMapBasic class evaluates the

placeholders just once for the entire template.

Using a Template Map

Chapter 7 Working with Templates 211

Suppose the placeholder CURTIME is mapped to a function that returns the

current time. When you set the time by calling Put() in the

GXTemplateMapBasic class, the time is calculated once, and if CURTIME

appears in several places in the template, the same time is printed in each

place. Instead, you might want to re-evaluate the placeholder each time it is

encountered in the template, so you can implement the Get() method in your

template map subclass to recalculate CURTIME every time it is called.

Example
The following example from an include file (templatemap.h) shows deriving a

template map class (MyTemplateMap) from the GXTemplateMapBasic class. It also

declares two overloaded versions of the Put() method.

The syntax of the first Put() method is identical to the Put() method in the

parent GXTemplateMapBasic class. The syntax of the second Put() method

accepts a string parameter (LPSTR) instead of the IGXBuffer object.

class MyTemplateMap : public GXTemplateMapBasic {

public:

 MyTemplateMap();

 virtual ~MyTemplateMap();

 STDMETHOD(Put) (LPSTR szKey, IGXBuffer *pBuff);

 STDMETHOD(Put) (LPSTR szKey, LPSTR szValue);

};

The following sample code, from a program file (templatemap.cpp), shows the

definitions of the Put() methods in the MyTemplateMap class. The first version

merely calls the Put() method in the parent GXTemplateMapBasic class. The

second version copies the szValue string parameter to a newly-created IGXBuffer,

then calls the first version of the Put() method.

MyTemplateMap::MyTemplateMap()

{

}

MyTemplateMap::~MyTemplateMap()

{

}

// Adds a mapping to a template map

STDMETHODIMP

Constructing a Hierarchical Result Set with GXTemplateDataBasic

212 iPlanet Application Server Programmer’s Guide (C++) • February 2002

MyTemplateMap::Put(LPSTR szKey, IGXBuffer *pBuff)

{

 return GXTemplateMapBasic::Put(szKey, pBuff);

}

// Adds a mapping to a template map

STDMETHODIMP

MyTemplateMap::Put(LPSTR szKey, LPSTR szValue)

{

if (!szKey || !szValue) return GXE_INVALID_ARG;

// Create an IGXBuffer object

IGXBuffer *pBuff = GXCreateBufferFromString(szValue);

if (!pBuff) return GXE_ERROR;

// Call the first Put() version

hr = Put(szKey, pBuff);

pBuff->Release();

}

return hr;

}

Constructing a Hierarchical Result Set with
GXTemplateDataBasic

Normally, you use EvalTemplate() or EvalOutput() with the result set from a

hierarchical query. You pass a hierarchical query object and the path to a template

as parameters to the method, which then runs the query and merges the

hierarchical result set with the template automatically.

However, you can bypass this automatic procedure and construct a hierarchical

result set programmatically, rather than running a query to get the result set. In

this way, you can pass data that is from a source other than a database.

For example, the AppLogic might display a list of numbers generated from a

formula, or it might display a list of processors available on the server machine and

their CPU loads.

Constructing a Hierarchical Result Set with GXTemplateDataBasic

Chapter 7 Working with Templates 213

To implement a hierarchical result set

1. Create an instance of the GXTemplateDataBasic class for the first parent level

of data in the hierarchy.

2. Create another instance of GXTemplateDataBasic for a group of data at the

child level.

3. Call the child GXTemplateDataBasic object’s RowAppend() method one or

more times to specify the data in the first group.

4. Call the parent GXTemplateDataBasic object’s RowAppend() method to add a

row for the child GXTemplateDataBasic object.

5. Call the parent GXTemplateDataBasic object’s GroupAppend() method to add

the child group of data.

6. Repeat Step 2 through Step 5 for each group of data in the result set.

7. After constructing the GXTemplateDataBasic object, pass it to

EvalTemplate() or EvalOutput() instead of passing in the name of a

hierarchical query. Each of these methods provides an alternative syntax for

this purpose.

Examples
The following code constructs a flat result set with a single level of data:

GXTemplateDataBasic *tdbSalesRev;

tdbSalesRev = GXCreateTemplateDataBasic("salesOffices");

tdbSalesRev->RowAppend("office=New York;revenue=150M");

tdbSalesRev->RowAppend("office=Hong Kong;revenue=130M");

tdbSalesRev->RowAppend("office=Singapore;revenue=105M");

// Use tdbSalesRev, like with EvalTemplate...

tdbSalesRev->Release();

The following code constructs a hierarchical result set with two child levels of data,

one for Asia and one for Europe:

/* Create Data Object */

GXTemplateDataBasic *tdbContinents;

tdbContinents = GXCreateTemplateDataBasic("continents");

/* Create the Asia group */

GXTemplateDataBasic *tdbAsia;

Constructing a Hierarchical Result Set with GXTemplateDataBasic

214 iPlanet Application Server Programmer’s Guide (C++) • February 2002

tdbAsia = GXCreateTemplateDataBasic("countries");

tdbAsia->RowAppend("country=China;currency=yuan");

tdbAsia->RowAppend("country=Japan;currency=yen");

tdbAsia->RowAppend("country=South Korea;currency=won");

tdbContinents->RowAppend("name=Asia");

/* Link child records to continents group */

tdbContinents->GroupAppend(tdbAsia);

/* Create the Europe group */

GXTemplateDataBasic *tdbEurope;

tdbEurope = GXCreateTemplateDataBasic("countries");

tdbEurope->RowAppend("country=France;currency=franc");

tdbEurope->RowAppend("country=Germany;

currency=deutsche mark");

tdbEurope->RowAppend("country=Italy;currency=lire");

tdbContinents->RowAppend("name=Europe");

/* Link child records to continents group */

tdbContinents->GroupAppend(tdbEurope);

EvalTemplate("salesByContinent.html", tdbContinents,

NULL, NULL, NULL);

tdbContinents->Release();

tdbEurope->Release();

tdbAsia->Release();

Constructing a Hierarchical Result Set with GXTemplateDataBasic

Chapter 7 Working with Templates 215

Improving Performance When Using
GXTemplateDataBasic
If you are using an I GXTemplateData object, such as GXTemplateDataBasic , as the

source of data for a call to EvalTemplate() or EvalOutput(), you can increase

the perceived performance of the call by using the following technique. Instead of

populating the I GXTemplateData object by calling RowAppend() repeatedly,

implement the I GXTemplateData interface yourself and call EvalTemplate() or

EvalOutput() much earlier in the AppLogic code. In this way, the Template

Engine can call the IGXTemplateData object as it needs data and return results as

they are available, keeping the user waiting much less time for a response.

The Template Engine service of iPlanet Application Server automatically calls the

MoveNext() method in the I GXTemplateData interface each time it needs a new

row of data; for example, when it has completed one pass in a tile tag and is ready

to start the next iteration of that tile. If you have implemented your own

MoveNext() method, you can use that code to retrieve data as needed. This takes

the place of calling RowAppend() repeatedly to populate the IGXTemplateData

object all at once. After MoveNext() is called, Get() is called to retrieve the values

in that row.

For example, the following code shows how the AppLogic code looks when you

use RowAppend() :

// Populate the in-memory template data. The number

// of calls to RowAppend() is unlimited. Meanwhile,

// the user is waiting for an unknown length of time

// until the full template data set is populated.

//

GXTemplateDataBasic *td;

td = new GXTemplateDataBasic("offices");

td->RowAppend("office=New York;revenue=150");

td->RowAppend("office=Hong Kong;revenue=130");

// ... add more records here.

// Pass the finished data set to EvalTemplate().

HRESULT hr;

Constructing a Hierarchical Result Set with GXTemplateDataBasic

216 iPlanet Application Server Programmer’s Guide (C++) • February 2002

hr = EvalTemplate("salesReportByOffice.html",

(IGXTemplateData *) td, NULL, NULL, NULL);

td->Release();

return hr;

Now suppose you create your own implementation of the I GXTemplateData

interface or subclass from the GXTemplateDataBasic class . The following code is

in the header file:

class MyTemplateDataBasic : public GXTemplateDataBasic

{

public:

MyTemplateDataBasic(LPSTR group) :

GXTemplateDataBasic(group)

{

// Prepare the retrieval of the offices records here.

// We don't have to get all the data yet, just

// the first record data.

}

STDMETHOD(IsEmpty) (

LPSTR group,

BOOL *empty

);

STDMETHOD(MoveNext) (

LPSTR group

);

STDMETHOD(GetValue) (

LPSTR szExpr,

IGXBuffer **ppBuff

);

};

The following code is in the source file:

Constructing a Hierarchical Result Set with GXTemplateDataBasic

Chapter 7 Working with Templates 217

STDMETHODIMP

MyTemplateDataBasic::GetValue(LPSTR field,

IGXBuffer **ppBuff)

{

if (strcmp(field, "offices.office") == 0)

{

IGXBuffer *office;

// ... retrieve current office field value here.

*ppBuff = office;

return NOERROR;

}

if (strcmp(field, "offices.revenue") == 0)

{

IGXBuffer *revenue;

// ... retrieve current revenue field value here.

*ppBuff = revenue;

return NOERROR;

}

return GXTemplateDataBasic::GetValue(field, ppBuff);

}

STDMETHODIMP

MyTemplateDataBasic::IsEmpty(LPSTR group, BOOL *empty)

{

if (strcmp(group, "offices") == 0)

{

boolean isOfficeRecordSetEmpty;

// ... determine if the data set is empty.

*empty = isOfficeRecordSetEmpty;

return NOERROR;

}

return GXTemplateDataBasic::IsEmpty(group, empty);

Constructing a Hierarchical Result Set with GXTemplateDataBasic

218 iPlanet Application Server Programmer’s Guide (C++) • February 2002

}

STDMETHODIMP

MyTemplateDataBasic::MoveNext(LPSTR group)

{

if (strcmp(group, "offices") == 0)

{

HRESULT noMoreRecords;

// Move to next record in offices data set here.

// This is where we can dynamically compute

// the next record.

//

// Return NOERROR (0) if next record is available.

// Return non-zero if no more records.

return noMoreRecords;

}

return GXTemplateDataBasic::MoveNext(group);

}

The following code shows how the AppLogic looks when you let the Template

Engine retrieve the data through MoveNext() :

// Use our own GXTemplateDataBasic subclass, which is

// smart enough to dynamically retrieve office records

// when called back by the template engine. This allows

// data to be streamed back to the user as it becomes

// available, instead of waiting for the entire

// data set to be created first in memory.

//

MyTemplateDataBasic *td;

td = new MyTemplateDataBasic("offices");

// MyTemplateDataBasic retrieves office records

Using Conditionals in an HTML Template

Chapter 7 Working with Templates 219

// as necessary, so we do not prepopulate it here.

// Pass the MyTemplateDataBasic object to EvalTemplate().

HRESULT hr;

hr = EvalTemplate("salesReportByOffice.html",

(IGXTemplateData *) td, NULL, NULL, NULL);

td->Release();

return hr;

Using Conditionals in an HTML Template
You can vary the output from a template depending on specified conditions. For

example, in order to have different content depending on the user's browser, you

could use the following tags in your template:

text for all browsers.

text for all browsers.

%gx type=cell id=netscapeOnly%

text for netscape browser only.

text for netscape browser only.

%/gx%

text for all browsers.

%gx type=cell id=microsoftOnly%

text for internet explorer browser only.

<blink>you're using

MS!</blink>

text for internet explorer browser only.

%/gx%

text for all browsers.

text for all browsers.

In your AppLogic, set up a template map with values for the keys used in your

conditional tag. You might want to put this code is in your application base class or

a helper function.

Example HTML Template

220 iPlanet Application Server Programmer’s Guide (C++) • February 2002

BOOL isNetscapeBrowser;

BOOL isMicrosoftBrowser;

// ... Compute browser type here, not shown ...

// Populate template map.

//

GXTemplateMapBasic *m;

m = new GXTemplateMapBasic();

IGXBuffer *buff;

buff = GXCreateBufferFromString("");

m->Put("netscapeOnly", isNetscapeBrowser ? NULL : buff);

m->Put("microsoftOnly", isMicrosoftBrowser ? NULL : buff);

buff->Release();

// ... Use map here, such as with EvalTemplate, not shown ...

m->Release();

Provide values for the boolean variables by consulting the input parameters in

your AppLogic’s input ValList.

Example HTML Template
Several example applications are shipped with iPlanet Application Server

software, and the HTML templates used by these applications are available for you

to view. The following example presents one of those templates with explanatory

comments:

This example application displays a report on states in a given geographic region.

For each state in the region, an illustration of the state flag and population figures

for each county are displayed.

HTML Template for Region & States Report
This template contains two nested tile tags, one to loop over the states and

another to loop over the counties within each state. In this example, comments are

provided before each GX markup tag. For information about the other tags in the

template, refer to your HTML documentation.

<HTML>

<HEAD>

Example HTML Template

Chapter 7 Working with Templates 221

<TITLE>Region And States Report</TITLE>

</HEAD>

<BODY BACKGROUND="/GXApp/Demo/States/Backgrounds

/logo30pctbkglight.gif">

<H3>Region And States Report</H3>

<TABLE BORDER=1>

<TR>

<TH COLSPAN=2>Counties by State</TH>

</TR>

The following GX tag sets up a loop that repeats for each state. The type=tile

attribute specifies that this is a looping marker. The id=STATES attribute specifies

that the loop will repeat for each row of the result set from the STATES query. The

MAX=50 attribute specifies that the loop can repeat no more than 50 times.

%gx type=tile id=STATES MAX=50%

<TR>

<TD ALIGN=CENTER>

The following GX tag displays the name of a state at the beginning of each tile

repetition. The type=cell attribute specifies that the text block of this marker is

replaced with a dynamic data value. The id=STATES.STATE attribute specifies the

field in the result set that contains the dynamic value. The text block “Name of a

state” is acting as a comment within the tag. When an AppLogic merges data with

this template, the comment is replaced with dynamic data.

%gx type=cell id=STATES.STATE%Name of a state%/gx%

</TD>

<TD ALIGN=RIGHT>

The following GX tag dynamically updates the filename of the illustration so that a

different state flag is displayed for each state. The type=replace attribute specifies

that a value in the text block is to be replaced dynamically. The id=STATES.STATE

attribute specifies the field in the result set that contains the dynamic value. The

value=ABBR attribute specifies the placeholder string that is to be replaced in the

text block.

%gx type=replace id=STATES.STATE value=ABBR%

<IMG SRC="/GXApp/Demo/States/Images/ABBR.gif"

Example HTML Template

222 iPlanet Application Server Programmer’s Guide (C++) • February 2002

 width=100 height=60>

%/gx%

</TD>

</TR>

<TR ALIGN=RIGHT>

<TD>County</TD>

<TD>Population</TD>

</TR>

The following GX tag sets up a loop that will repeat for each county in a state. The

type=tile attribute specifies that this is a looping marker. The id=DETAILS

attribute specifies that the loop will repeat for each row in the result set from the

DETAILS query. The MAX=100 attribute specifies that the loop can repeat no more

than 100 times. This prevents the report from getting too long if a state has an

unusually large number of counties.

%gx type=tile id=DETAILS MAX=100%

<TR ALIGN=RIGHT>

The following GX tags display the name and population of each county in the state.

The type=cell attribute specifies that the text block of each marker is to be

replaced with a dynamic data value. The id=DETAILS.COUNTYNAM and

id=DETAILS.POP attributes specify the fields in the result set that contain the

dynamic values. The text block strings Name of a county and Its population

are acting as comments within the cell tags.

<TD>%gx type=cell id=DETAILS.COUNTYNAM%

Name of a county%/gx%</TD>

<TD>%gx type=cell id=DETAILS.POP%

Its population

%/gx%</TD>

</TR>

%/gx%

%/gx%

</TABLE>

</BODY>

</HTML>

Example GXML Template

Chapter 7 Working with Templates 223

Example GXML Template
The following GXML template formats an output data stream containing the best

game statistics for a sports application:

<gx type=tile id="DETAIL" max=10>

<gx type=cell id="DETAIL.player">

</gx>

<gx type=cell id="DETAIL.games">

</gx>

<gx type=cell id="DETAIL.fstr">

</gx>

<gx type=cell id="DETAIL.mstr">

</gx>

</gx>

Example GXML Template

224 iPlanet Application Server Programmer’s Guide (C++) • February 2002

225

Chapter 8

Managing Session and State
Information

This chapter describes sessions, which are made up of a continuous series of

interactions between a user and an iPlanet Application Server application.

The following topics are included in this chapter:

• What is a Session?

• Starting a Session

• Using an Existing Session

• Removing a Session and Its Related Data

• Example AppLogic Using Sessions

• Using Custom Sessions

• Viewing the Number of Active Sessions

• Using the State Layer

What is a Session?
The term session is widely used to refer to a Web browser session, but in this

manual, the term session refers more specifically to a series of user interactions that

are tracked by an iPlanet Application Server application. The user’s session with a

Web browser or other client software might start before the iPlanet Application

Server application begins tracking the user, and could continue after the

application stops tracking the user.

What is a Session?

226 iPlanet Application Server Programmer’s Guide • February 2002

Why Use Sessions?
You need not implement sessions if your application has no need to keep track of

users or session-related data. Sessions are useful when you want to store

information about each user’s interaction with the application. For example:

• Increase security by requiring the user to log in to a secured session before

running certain portions of the application.

• Record a history of which pages the user has visited during the session.

• In an online shopping application, keep track of items in the user’s shopping

cart.

How Sessions Work
Each session that you track in an application has a session ID, which is typically

assigned automatically by the iPlanet Application Server. The session ID enables

the application to keep track of the session. Each time the user submits an action

from the client, the session ID accompanies the request.

Instead of using the automatically-generated session IDs, you can take control of

the session ID mechanism. For more information, see “Assigning Your Own

Session IDs” on page 240.

Each session is associated with a set of data, such as the contents of the user’s

shopping cart. The session data is stored in an IGXValList object. As the session

continues, this data is updated as needed by the AppLogics in the application. By

using the session ID, the application is able to match up the correct data with the

user session every time an AppLogic in the application needs to access the session

data.

A session can also have security information associated with it. Often, the first

screen in an application is a login screen. When the user clicks the Login button, an

AppLogic verifies the user’s security level, then starts a secured session. For more

information about using sessions to secure an application, see “Secure Sessions” on

page 258 of , “Writing Secure Applications.”

Avoid storing too much data in a session. Every time you save or retrieve the

session-related data, the whole IGXValList object is involved. This can impact the

performance of the application.

For each session, you can determine whether the session data is made available

locally, within a cluster, or throughout the enterprise. You can also specify a

timeout value. There are three different styles of timeout:

What is a Session?

Chapter 8 Managing Session and State Information 227

• Destroy the session if the user does not interact with the application for a given

number of seconds. This style of timeout is the default.

• Destroy the session a given number of seconds from the time the session was

created.

• Destroy the session at a given date and time, specified in seconds.

For more details about how to specify distribution and timeouts, see the entry for

CreateSession() in the iPlanet Application Server Foundation Class Reference.

Sessions and the iPlanet Application Server Foundation Class
Library
The following parts of the iPlanet Application Server Foundation Class Library

support sessions:

• IGXSession2 interface

• GXSession2 class

• IGXSessionIDGen interface

• Session-related functions in the GXAppLogic class

To track session information, the AppLogic code uses an instance of the

IGXSession2 interface. Each time an AppLogic in the application is executed

during the session, the AppLogic instantiates the IGXSession2 interface, as shown

in the following illustration. This instance is a view of the actual session

information. The session ID ensures that all these IGXSession2 instances in fact

point to the same data.

Client

State layer

Request 2

Request 3

iPlanet Application Server

Session
data
ValList

Request 1

iPlanet Application Server 2

IGXSession2
instance

IGXSession2
instance

IGXSession2
instance

AppLogic

AppLogic

AppLogic

Starting a Session

228 iPlanet Application Server Programmer’s Guide • February 2002

Example
Suppose an iPlanet Application Server application is distributed to many

machines. A user logs in through the login screen of the application. In response,

an AppLogic runs on the iPlanet Application Server. This AppLogic creates a

session, using an instance of IGXSession2, and creates the session ID. The

AppLogic then sets some session-related data, and displays a main menu page to

the user.

The user selects an action from the menu page. In response, another AppLogic is

executed on one of the iPlanet Application Servers. This AppLogic could execute

on any of the machines to which the application is distributed, depending on how

load balancing has been configured for that application. The AppLogic retrieves

the session that was created earlier, returning it in another instance of IGXSession2.

Through this instance, the AppLogic can get the session data, which is the same

data that was set earlier. The AppLogic manipulates the session data, saves it, and

returns the next page to the user.

As the user continues with the application, the AppLogics in the application access

the session as needed. Eventually, the user is finished with the application and logs

off. In response, an AppLogic explicitly destroys the session that was created for

this user. An instance of IGXSession2 is used to access the session, then the actual

session data and the session ID are deleted, not just the IGXSession2 instance.

At this point, the session has ended, even though the user's session with their client

software might still be active.

Starting a Session
You can start the user session at any point in the application. You can track all

users from the moment they begin using the application. However, it is not

necessary to track all users all the time, and doing so may be wasteful of system

resources. It often makes sense to start a session only in response to a particular

user action. For example:

• The user browses through an online catalog looking at items available for sale.

The first time the user asks to purchase an item, the purchasing AppLogic

starts the user session to begin tracking which items the user wishes to buy.

• An application might display information about a company, with different

types of information available to different users. When a user requests to see

sensitive information, such as employee records, the application requires a

password from the user, then starts a secured session.

To start a session

Starting a Session

Chapter 8 Managing Session and State Information 229

1. Call CreateSession() to create an IGXSession2 instance that refers to the

session data for this application session. In the parameter list of

CreateSession(), you can specify the session timeout, distribution level, and

name of the application with which the session is associated. For example:

hr = CreateSession(GXSESSION_DISTRIB,/* distributed */

0, /* no timeout, will be explicitly killed */

"sessiontest", /* appname */

NULL, /* not generating the sessionid */

NULL, /* not generating the sessionid */

&m_pSession); /* sess obj ref returned here */

2. Use the GetSessionData() method to gain access to the IGXValList object

that stores the data for this session. For example:

hr = m_pSession->GetSessionData(&m_pVL);

3. Use the methods of the IGXValList interface to retrieve or modify the data in

the IGXValList object returned by GetSessionData() . For example:

GXSetValListInt(m_pVL, "execcounter", counter);

4. If you made changes, call SetSessionData() to update the session data. For

example:

hr = SetSessionData(m_pVL);

5. If you want the session to be available to other application components

(servlets, for example), you must call SetSessionVisibility() before going on to

the next step. See “Setting the Session’s Visibility”Setting the Session’s

Visibility below for details. For example:

hr = SetSessionVisibility("netscape.com", "/NASApp/myApp", true);

6. Call SaveSession() in the GXAppLogic class to save the new data. For

example:

hr = SaveSession(NULL);

If you call SetSessionData() several times before calling SaveSession() ,

only the value from the last SetSessionData() call is saved.

Using an Existing Session

230 iPlanet Application Server Programmer’s Guide • February 2002

The method called SaveSession() exists in both the IGXSession2 interface and

the GXAppLogic class. The method in the GXAppLogic class is a wrapper that

calls the method in the interface, and performs some tasks that ensure that the

session is accessible to future AppLogics. The SaveSession() method in the

interface saves session data only. Therefore, be sure to call SaveSession() in the

GXAppLogic class at least once after a session is created.

Setting the Session’s Visibility
Since sessions are transmitted in a cookie, they are only available within the same

URL name space where they were created, which disables their use by servlets, as

servlets use a different URL addressing scheme.

The method signature for setSessionVisibility() is as follows:

HRESULT SetSessionVisibility(
LPSTR domain,
LPSTR path,
BOOL isSecure)

domain. The domain in which the session is visible.

path. The path to which this session must be visible.

isSecure. If TRUE, the session is visible only to secure servers (HTTPS).

If you call SetSessionVisibility() before SaveSession() , you can control the

attributes of the session cookie to allow it to be transmitted to other name spaces,

particularly for servlets. By default, the session is visible only to the URL that

created the cookie. Use the path parameter to specify different URLs that will be

visible. For example, the path /phoenix would match "/phoenixbird" and

"/phoenix/bird.html". To make the entire server root visible, specify a path of "/",

the most general value possible.

You must be part of the domain to set the domain. For example, if the domain is set

to .netscape.com, then the session is visible to foo.netscape.com, bar.netscape.com,

and so on. Domains must have at least two periods (.) in them.

Using an Existing Session
Once you have created and saved a session, you will need to gain access to the

session data repeatedly as the user continues to interact with the application.

Using an Existing Session

Chapter 8 Managing Session and State Information 231

To gain access to an ongoing user session

1. Call GetSession() . Use the return value of GetSession() to check

whether a session has already been created. If no session exists, this method

will return null. For example:

IGXSession2 *m_pSession;

hr = GetSession(0, /* flags */

 "sessiontest", /* appname */

 NULL, /* session id gen */

 &m_pSession); /* sess object ref returned here */

2. Use the GetSessionData() method to gain access to the IGXValList object

that stores the data for this session. This method retrieves the contents that

were last saved in the distributed store with SaveSession() .

hr = m_pSession->GetSessionData(&m_pVL);

3. Use the methods of the IGXValList interface to retrieve and set the data in

the IGXValList object returned by GetSessionData(). For example:

GXSetValListInt(m_pVL, "execcounter", counter);

4. If you have changed the data, call SetSessionData() to update the session

data. For example:

hr = SetSessionData(m_pVL);

5. Call SetSessionVisibility() to change or set any visibility settings, if

necessary. For more information, see “Setting the Session’s Visibility” on

page 230Setting the Session’s Visibility . For example:

hr = SetSessionVisibility("netscape.com", "/NASApp/myApp",
true);

6. Call SaveSession() to save the new data. For example:

hr = SaveSession(NULL);

If you call SetSessionData() several times before calling SaveSession() ,

only the value from the last SetSessionData() call is saved.

Removing a Session and Its Related Data

232 iPlanet Application Server Programmer’s Guide • February 2002

Removing a Session and Its Related Data
If you set a timeout for the session when you create it, you need not delete the

session explicitly. It will be deleted automatically when its timer expires, that is,

when the user has not interacted with the session for a given length of time.

However, in order to increase security and conserve system resources, you might

want to delete a session as soon as possible after the user is finished with it. For

example, if your application includes a Logout button, you can delete the session

when the user clicks that button.

To destroy a session

To remove a session and its related data, call DestroySession() . For example:

HRESULT hr;

hr = DestroySession(NULL);

Example AppLogic Using Sessions
The following AppLogic code uses a session to count the number of times this

AppLogic executes. This code demonstrates how to create a session, access an

existing session, retrieve and update session data, and destroy a session.

STDMETHODIMP

ExecCounter::Execute()

{

HRESULT hr;

CHAR SessID[128];

CHAR AppName[128];

ULONG Timeout;

DWORD Flags;

CHAR msg[512];

// If the session is already underway, get the session

hr = GetSession(0, /* flags */

"sessiontest", /* appname */

NULL, /* session id gen */

&m_pSession); /* sess object ref returned here */

Example AppLogic Using Sessions

Chapter 8 Managing Session and State Information 233

// If there is no existing session, create a new one

if (hr != GXE_SUCCESS)

hr = CreateSession(GXSESSION_DISTRIB,

/* not local,not limited to cluster */

0, /* no timeout, will be explicitly killed */

"sessiontest", /* appname */

NULL, /* I'm not generating the sessionid */

NULL, /* I'm not generating the sessionid */

&m_pSession); /* sess obj ref returned here */

// Retrieve session data

hr = m_pSession->GetSessionData(&m_pVL);

// Update the count of AppLogic executions

LONG counter = GXGetValListInt(m_pVL, "execcounter");

if (counter != 0)

counter++;

else

counter = 1;

if (counter % 10)

{

// On executions 1-9, set and save the new data

GXSetValListInt(m_pVL, "execcounter", counter);

m_pSession->SetSessionData(&m_pVL);

hr = SetSessionVisibility("mysite.com", "/myApp", false);

hr = SaveSession(NULL);

}

else

// Destroy the session every 10 times

{

Using Custom Sessions

234 iPlanet Application Server Programmer’s Guide • February 2002

hr = DestroySession(NULL);

Log("session destroyed");

}

return 0;

}

Using Custom Sessions
You can customize sessions to track application-specific information in each

session, such as shopping cart contents, multiple database logins, pages visited,

and so on. To do so, declare a subclass of the GXSession2 class. In your subclass,

you can define simple accessor methods to read and write information in the

IGXValList object associated with each session.

To create a custom session class:

1. Subclass the GXSession2 class.

2. In your AppLogic, implement the CreateSession() and GetSession()

methods to use the custom class instead of GXSession2.

3. Pass in the IGXSession2 interface in the subclass constructor.

4. Implement other methods as necessary to perform the custom processing you

desire.

Example
This example declares a customized session class, MySession, and an AppLogic

that uses the custom class.

The following code is from the header file:

// Define my own session class that inherits from GXSession2.

class MySession : public GXSession2

{

public:

// Constructor and destructor

MySession(IGXSession2 *pSess);

virtual ~MySession();

// Declare two custom methods in this subclass

Using Custom Sessions

Chapter 8 Managing Session and State Information 235

public:

LONG IncCounter();

LONG GetCounter();

};

// AppLogic that keeps track of a counter but uses its own

// session class

class MySessionExecCounter : public GXAppLogic

{

// ... constructor, destructor, and Execute() methods

// ...

public:

// In order to use my own session class, I define and

// use these methods to get and create sessions

STDMETHOD(GetSession) (

DWORD dwFlags,

LPSTR pAppName,

IGXSessionIDGen *pIDGen

);

STDMETHOD(CreateSession) (

DWORD dwFlags,

ULONG dwTimeout,

LPSTR pAppName,

LPSTR pSessionID,

IGXSessionIDGen *pIDGen

);

// I can also define simpler versions of GetSession and

// CreateSession if some of the arguments are well-

// known for my application, such as appname, timeout

STDMETHOD(GetSession) (

);

Using Custom Sessions

236 iPlanet Application Server Programmer’s Guide • February 2002

STDMETHOD(CreateSession) (

);

};

The following code is from the .cpp file, showing the implementation of the custom

class and the AppLogic that uses it:

MySession::MySession(IGXSession2 *pSess) :

 GXSession2(pSess)

{

}// Implementation of the custom method IncCounter()

// to count the number of executions of the session AppLogic.

LONG MySession::IncCounter()

{

IGXValList *pVL;

LONG Counter = -1;

GetSessionData(&pVL);

if (pVL)

{

counter = GXGetValListInt(pVL, "execcounter");

if (counter != 0)

counter++;

else

counter = 1;

// The counter is stored in the session data GXValList

// in an item named "execcounter"

GXSetValListInt(pVL, "execcounter", counter);

SetSessionData(pVL);

pVL->Release();

}

return counter;

}

Using Custom Sessions

Chapter 8 Managing Session and State Information 237

// Implementation of the custom method GetCounter()

// to retrieve the counter.

LONG

MySession::GetCounter()

{

IGXValList *pVL;

LONG counter = -1;

GetSessionData(&pVL);

if (pVL)

{

counter = GXGetValListInt(pVL, "execcounter");

if (!counter)

counter = -1;

pVL->Release();

}

return counter;

}

// Implementation of the AppLogic that uses the custom

// session class. This AppLogic counts how often it executes.

// ...

// constructor and destructor here ...

// Simple version of my GetSession, which calls the

// more complex version of my GetSession.

STDMETHODIMP

MySessionExecCounter::GetSession()

{

return GetSession(0, "sessiontest", NULL);

}

Using Custom Sessions

238 iPlanet Application Server Programmer’s Guide • February 2002

// Simple version of my CreateSession calls the more complex

// version of my CreateSession.

STDMETHODIMP

MySessionExecCounter::CreateSession()

{

return CreateSession(GXSESSION_DISTRIB, 0,

"sessiontest", NULL, NULL);

}

// Complex version of my GetSession.

STDMETHODIMP

MySessionExecCounter::GetSession(DWORD dwFlags,

LPSTR pAppName, IGXSessionIDGen *pIDGen)

{

HRESULT hr;

IGXSession2 *pSession = NULL;

hr = GXAppLogic::GetSession(dwFlags, pAppName, pIDGen,

&pSession);

// Here is where the custom class MySession is used.

m_pSession = new MySession(pSession);

pSession->Release();

}

// Complex version of my CreateSession.

STDMETHODIMP

MySessionExecCounter::CreateSession(DWORD dwFlags,

 ULONG dwTimeout, LPSTR pAppName, LPSTR pSessionID,

IGXSessionIDGen *pIDGen)

Using Custom Sessions

Chapter 8 Managing Session and State Information 239

{

HRESULT hr;

IGXSession2 *pSession = NULL;

hr = GXAgent::CreateSession(dwFlags, dwTimeout,

 pAppName, pSessionID, pIDGen, &pSession);

// Here is where the custom class MySession is used.

m_pSession = new MySession(pSession);

pSession->Release();

}

STDMETHODIMP

// Main task of the AppLogic. Gets or creates the session,

// then updates the counter using custom methods from the

// custom session class.

MySessionExecCounter::Execute()

{

HRESULT hr;

CHAR SessID[128];

CHAR AppName[128];

ULONG Timeout;

DWORD Flags;

CHAR msg[512];

// Check whether a session already exists

hr = GetSession();

// If no session exists, create one

if (hr != GXE_SUCCESS)

{

hr = CreateSession();

Using Custom Sessions

240 iPlanet Application Server Programmer’s Guide • February 2002

}

// Update the counter to indicate the AppLogic just

// executed one more time. Uses the IncCounter() method

// from the custom session class.

LONG counter = m_pSession->IncCounter();

SaveSession(NULL);

// Display result

sprintf(msg, "<HTML> <BODY> Applogic execution count = %d

</BODY></HTML>", counter);

return Result(msg);

}

Assigning Your Own Session IDs
Normally, iPlanet Application Server automatically generates a unique ID for each

session as it is created. In most situations, you will find this automatic mechanism

serves your needs. However, if you prefer to assign the session IDs yourself, you

can do so using one of the following techniques:

• Implement the IGXSessionIDGen interface. This technique is illustrated in the

code example below. Or,

• Generate IDs using some programmatic mechanism, then pass the generated

IDs whenever you call CreateSession().

Morphing Session IDs
You can change the session ID each time it is passed between the client and the

iPlanet Application Server. This is called morphing the session ID. A continuously

changing session ID helps to avoid unauthorized access to the session.

To morph the session ID, implement the GenerateVariantID() and MapToBaseID()

methods in the IGXSessionIDGen interface. Every time you call SaveSession(),

iPlanet Application Server automatically calls GenerateVariantID() to create a

morphed ID to be sent out to the browser. Every time you call GetSession(), iPlanet

Application Server automatically calls MapToBaseID() in order to match the

morphed ID to the original ID and find the correct existing session.

Using Custom Sessions

Chapter 8 Managing Session and State Information 241

Example
This example shows a customized session ID generation class, MySessIDGen,

which generates and morphs session IDs.

The following code is from the header file:

// Class that implements the IGXSessionIDGen interface

class MySessIDGen : public IGXSessionIDGen

{

// ...

// Below are the three IGXSessionIDGen methods of interest

// in custom session ID generation and morphing.

public:

STDMETHOD(GenerateSessID) (

/* [in] */ DWORD dwFlags,

/* [in] */ ULONG nSessID,

/* [out] */ LPSTR SessID

);

STDMETHOD(GenerateVariantID) (

/* [in] */ LPCSTR pBaseID,

/* [in] */ DWORD dwFlags,

/* [in] */ ULONG nVariantID,

/* [out] */ LPSTR pVariantID

);

STDMETHOD(MapToBaseID) (

/* [in] */ LPCSTR pVariantID,

/* [in] */ DWORD dwFlags,

/* [in] */ ULONG nBaseID,

/* [out] */ LPSTR pBaseID

);

};

Using Custom Sessions

242 iPlanet Application Server Programmer’s Guide • February 2002

The following code is from the .cpp file, showing the implementation of the custom

class and an AppLogic object that uses it:

// IGXSessionIDGen methods

// GenerateSessID() creates unique session IDs

STDMETHODIMP

MySessIDGen::GenerateSessID(DWORD dwFlags, ULONG nSessID,

LPSTR pSessID)

{

if (!pSessID)

return GXE_INVALID_ARG;

// Simple scheme: just use a high resolution counter

// as the id. This example is Solaris-specific.

// The base session id is "<counter>"

WORD64 HiResCounter;

HiResCounter = gethrtime();

CHAR id[64];

sprintf(id, "%lld", HiResCounter);

strncpy(pSessID, id, nSessID);

pSessID[nSessID-1] = '\0';

return NOERROR;

}

// GenerateVariantID() creates the morphed ID to be passed

// to the Web browser. The variant session id for

// "<counter>" will be "<newcounter>.<counter>"

STDMETHODIMP

MySessIDGen::GenerateVariantID(LPCSTR pBaseID, DWORD dwFlags,

ULONG nVariantID, LPSTR pVariantID)

{

if (!pBaseID || !pVariantID ||

nVariantID <= GXStrLen(pBaseID))

Using Custom Sessions

Chapter 8 Managing Session and State Information 243

return GXE_INVALID_ARG;

CHAR id[64];

WORD64 HiResCounter;

HiResCounter = gethrtime();

sprintf(id, "%lld.%s", HiResCounter, pBaseID);

strncpy(pVariantID, id, nVariantID);

pVariantID[nVariantID-1] = '\0';

return NOERROR;

}

// MapToBaseID() finds the original session ID to correspond

// to the morphed one which is passed back from the Web

// browser

STDMETHODIMP

MySessIDGen::MapToBaseID(LPCSTR pVariantID, DWORD dwFlags,

 ULONG nBaseID, LPSTR pBaseID)

{

if (!pVariantID || !pBaseID)

return GXE_INVALID_ARG;

int founddot = 0;

LPSTR p = strchr(pVariantID, '.');

if (!p)

p = pVariantID;

else

{*p++ = '\0';

founddot = 1;

}

CHAR id[64];

sprintf(id, "%s", p);

strncpy(pBaseID, id, nBaseID);

pBaseID[nBaseID-1] = '\0';

Using Custom Sessions

244 iPlanet Application Server Programmer’s Guide • February 2002

If (founddot) *--p = '.';

return NOERROR;

}

// AppLogic that uses the custom ID generation class. This

// AppLogic maintains a count of the number of times it has

// executed.

IDGenExecCounter::IDGenExecCounter() {

//...

STDMETHODIMP

IDGenExecCounter::Execute()

{

// Check whether there is already a session.

// The custom session ID generation class is passed in the

// third parameter to GetSession().

hr = GetSession(0, /* flags */

"sessiontest", /* appname */

m_pIDGen, /* session id gen */

 &m_pSession); /* sess object reference */

/* returned here */

// If there is no existing session, create one.

if (hr != GXE_SUCCESS)

{

// The custom session ID generation class is passed in the

// third parameter to CreateSession().

hr = CreateSession(GXSESSION_DISTRIB,

 0, /* no timeout */

 "sessiontest", /* appname */

 NULL, /* sessionid */

Viewing the Number of Active Sessions

Chapter 8 Managing Session and State Information 245

 m_pIDGen, /* session id gen */

 &m_pSession); /* sess object reference */

/* returned here */

}

m_pSession->GetSessionData(&m_pVL);

// Increment the execution counter

LONG counter = GXGetValListInt(m_pVL, "execcounter");

if (counter != 0)

counter++;

else

counter = 1;

GXSetValListInt(m_pVL, "execcounter", counter);

m_pSession->SetSessionData(m_pVL);

SaveSession(NULL);

// Display result

sprintf(msg, "<HTML> <BODY> Applogic execution count = %d
</BODY></HTML>", counter);

return Result(msg);

}

Viewing the Number of Active Sessions
You can programmatically retrieve the current number of active sessions in the

server. This could be used to write this number to a log along with a date in order

to map application usage, for example, or to display on an application

management screen.

To view the number of active sessions at a given instant, you use the method

GXContextGetSessionCount() from the class GXContext .

Using the State Layer

246 iPlanet Application Server Programmer’s Guide • February 2002

Context is a member of the AppLogic class; it's available thru "m_pContext"

member variable in C++ AppLogics. You can pass it directly to

GXContextGetSessionCount() . The prototype is as follows:

GXContextGetSessionCount(
IGXContext *pContext,
DWORD dwFlags,
LPSTR pAppName,
ULONG *pCount);

pContext . Pointer to the current server context object

dwFlags . Currently not used

pAppName . Application's name

pCount . Where count is returned

For more information, see the section on the GXContext class in the Foundation
Class Reference.

Using the State Layer
The state layer is a distributed data storage mechanism which you can use to store

the state of an application. The application state is a collection of application

variables whose scope is global within the application. In contrast, a session is a

collection of application variables whose scope is a user session.

Information in the state layer can be organized in a hierarchical structure, or tree,

as shown in the following illustration:

Each node on a tree consists of the following:

• An IGXValList object containing data for that node.

Sales Application

User1 User2 User3

Users

Prod1 Prod2 Prod3

Products

Using the State Layer

Chapter 8 Managing Session and State Information 247

• Characteristics of the node itself. The characteristics you can specify for each

node include whether its contents expire after a specified time and whether it is

distributed enterprise-wide, within a cluster, or local to one process.

Each application running in an iPlanet Application Server system can have its own

state tree. The application data is accessible to any code in the application, no

matter which server or machine that code happens to be running on, because the

state is distributed. The state data is accessible as long as the code is within the

scope of distribution that you specified when setting up the state node (from one

process up to enterprise-wide). iPlanet Application Server takes care of

synchronizing access to data in the state layer so that read and write conflicts do

not occur when several distributed processes are trying to work with the same

data.

For example, iPlanet Application Server uses the state layer to store session-related

data. Each session has one node in the tree structure. The session nodes are

grouped under the application that those users are using, as shown in the

following illustration:

By storing session data in the state layer, multiple iPlanet Application Servers can

access the same session data, depending on the scope of distribution specified

when the session was created.

The state layer is preferable to using global application variables when you need

distributed data. Unlike the state layer, a global variable is bound to a particular

process on one machine. In a load-balanced installation, the next time the user

invokes the same AppLogic, the AppLogic might run on a different machine and

would not have access to the same value of the global variable.

The iPlanet Application Server supports creating and using the state layer through

the following parts of the iPlanet Application Server Foundation Class Library:

• IGXState2 interface . Each node on the state tree is an instance of this

interface, which provides methods for creating and deleting nodes and getting

the name and other characteristics of a node.

• The GetStateTreeRoot() method in the GXAppLogic class . This returns an

IGXState2 instance which is the starting point for navigating a given state tree.

Applications root node

Application nodes App1 App2

User session nodes User1 User2 User3

MyApps

Using the State Layer

248 iPlanet Application Server Programmer’s Guide • February 2002

Example
The following AppLogic code updates the information in a state node:

STDMETHODIMP

SetState::Execute()

{

HRESULT hr;

CHAR msg[256];

// Get the state tree. Its name is "grammy" and it

// should be a distributed tree.

// This state tree is available to any AppLogic in any

// session belonging to the "grammy" application.

hr = GetStateTreeRoot(GXSTATE_DISTRIB,

"grammy", &m_pStateRoot);

IGXState2 *pState = NOERROR;

hr = m_pStateRoot->GetStateChild("Best Female Vocal",

&pState);

if (hr != NOERROR || !pState)

{

// the "grammy/Best Female Vocal" state node

// doesn't exist; let's create it

hr = m_pStateRoot->CreateStateChild("Best Female

 Vocal", /* name */

120, /* timeout in secs */

GXSTATE_DISTRIB, /* flags */

&pState); /* return node pointer */

}

if (hr == NOERROR && pState)

// the "grammy/Best Female Vocal" state node

// exists; get the data.

{

IGXValList *pVL = NULL;

Using the State Layer

Chapter 8 Managing Session and State Information 249

pState->GetStateContents(&pVL);

GXSetValListString(pVL, "winner",

"Whitney Houston");

GXSetValListString(pVL, "runner up",

"Barbara Streisand");

pState->SaveState(0);

pVL->Release();

sprintf(msg, "<HTML> <BODY> SetState applogic set

this info in the \"grammy/Best Female Vocal\" state

node: winner-Whitney Houston, runner up-Barbara

Streisand </BODY></HTML>");

}

pState->Release();

}

return Result(msg);

}

The following AppLogic code gets information from an existing state node:

STDMETHODIMP

GetState::Execute()

{

HRESULT hr;

CHAR msg[256];

// get the state tree

hr = GetStateTreeRoot(GXSTATE_DISTRIB,

"grammy", &m_pStateRoot);

IGXState2 *pState = NOERROR;

hr = m_pStateRoot->GetStateChild("Best Female Vocal",

&pState);

IGXValList *pVL = NULL;

pState->GetStateContents(&pVL);

LPSTR w, r;

Using the State Layer

250 iPlanet Application Server Programmer’s Guide • February 2002

w = GXGetValListString(pVL, "winner");

r = GXGetValListString(pVL, "runner up");

sprintf(msg, "<HTML> <BODY> GetState applogic got this

info in the \"grammy/Best Female Vocal\" state node:

winner-%s, runner up-%s </BODY></HTML>", w, r);

pVL->Release();

}

pState->Release();

return Result(msg);

Adding a Node to a State Tree
When you create a new state node, you specify its characteristics, including a

timeout value. There are three different styles of timeout:

• Destroy the node if it is not accessed for a given number of seconds. This style

of timeout is the default.

• Destroy the node a given number of seconds from the time the node was

created.

• Destroy the node at a given date and time, specified in seconds.

You can assign a non-zero timeout value only to child nodes that are leaf nodes.

Parent nodes can only have a timeout value of 0.

For more details about how to specify timeouts, see the entry for

CreateStateChild() in the iPlanet Application Server Foundation Class

Reference.

To add a node to a state tree

1. If you already have data to store in the new node, place the data in an

IGXValList object. For example:

IValList val = GX.CreateValList();

val.setValString("winner", "Whitney Houston");

val.setValString("runner up", "Barbara Streisand");

IGXValList *pVL = GXCreateValList();

pVL->SetValString("winner", "Whitney Houston");

Using the State Layer

Chapter 8 Managing Session and State Information 251

pVL->SetValString("runnerup", "Barbara Streisand");

2. Call GetStateTreeRoot() for the tree to which you want to add a node. For

example, the following code gets the root node for the Grammy tree:

hr = GetStateTreeRoot(GXSTATE_DISTRIB,

"grammy", &m_pStateRoot);

3. Call GetStateChild() to traverse to the next node.

hr = m_pStateRoot->GetStateChild("Best Female Vocal",

&pState);

4. If necessary, repeat Step 3 until you reach the node under which you want to

place a new node.

5. Call CreateStateChild() to set up the name, timeout, and other

characteristics of the new node.

hr = m_pStateRoot->CreateStateChild("Best Female Vocal",

120, /* timeout in secs */

GXSTATE_DISTRIB, /* flags */

&pState); /* return node pointer */

6. If you have data for the node, call SetStateContents() to store the data in

the new node.

hr = pState->SetStateContents(pVL);

child.setStateContents(val);

7. Save the data in the distributed store.

pState->SaveState(0);

If you call SetStateContents() several times before calling SaveState() ,

only the value from the last SetStateContents() call is saved.

Storing Data in an Existing Node in a State Tree
After you have created a state node, you can access it and update the values in it

by using the following procedure:

To store data in a node

1. Call GetStateTreeRoot() .

hr = GetStateTreeRoot(GXSTATE_DISTRIB,

Using the State Layer

252 iPlanet Application Server Programmer’s Guide • February 2002

"grammy", &m_pStateRoot);

2. Call GetStateChild() to traverse to the next node in the hierarchy.

hr = m_pStateRoot->GetStateChild("Best Female Vocal",

&pState);

3. If necessary, repeat Step 2 until you have traversed to the node in which you

want to store the data.

4. Call GetStateContents() to retrieve a reference to the session data, and

modify the values. For example:

IGXValList *pVL = NULL;

pState->GetStateContents(&pVL);

GXSetValListString(pVL, "winner",

"Whitney Houston");

GXSetValListString(pVL, "runner up",

"Barbara Streisand");

5. Call SaveState() to replace the old values with the new. For example:

pState->SaveState(0);

Deleting a Node From a State Tree
When you no longer need a state node, you can delete it by using the procedure

described in this section. You can delete a parent node only after deleting its child

nodes.

To delete a node

1. Call GetStateTreeRoot().

hr = GetStateTreeRoot(GXSTATE_DISTRIB,

"grammy", &m_pStateRoot);

2. Call GetStateChild() to traverse to the next node.

hr = m_pStateRoot->GetStateChild("Best Female Vocal",

&pState);

3. If necessary, repeat Step 2 until you reach the parent of the node you want to

delete. (Don’t traverse to the node you want to delete. Stay on its parent.)

4. Call DeleteStateChild().

pState->DeleteStateChild("Streisand");

253

Chapter 9

Writing Secure Applications

This chapter describes how to implement iPlanet Application Server security

features.

The following topics are included in this chapter:

• Introduction to iPlanet Application Server Security

• Providing Application Security in Code

• Secure Sessions

• Writing a Login AppLogic Object

• Validating Input to AppLogic Objects

• Secure Caching

Introduction to iPlanet Application Server Security
During the testing phase and initial deployment of your application, you are

responsible for implementing application security by performing the following

steps:

1. Register security information, such as users and access control lists, with

iPlanet Application Server. To register security information, edit the .gxr file,

as described in , “Running and Debugging Applications.”

2. In your application code, implement secured sessions. When you start a

secured session, iPlanet Application Server uses the security information,

which you previously registered, to ensure that unauthorized users are not

granted access to sensitive portions of code. For more information, see “Secure

Sessions” on page 258.

The iPlanet Application Server offers application security in the following ways:

Introduction to iPlanet Application Server Security

254 iPlanet Application Server Programmer’s Guide • February 2002

• Authentication by user

• Authentication by roles

• Access Control List authorization

• AppLogic access authorization

The rest of this section explains the differences between users and roles, the type of

security each provides, and how they are used with Access Control Lists.

About User Authentication
User-based security allows access to an application by authenticating a user’s

username and password. You must set up each user of the application with a

username and password. A user is anyone who will be accessing the application,

including developers, special user-types, administrators, and so on.

Once a user is logged into the system, his or her access to specific AppLogic objects

can be managed programmatically by code in each AppLogic. Alternatively, users

can be managed by explicitly mapping them to the AppLogic objects to which they

have access. This is a more tedious approach to application security, but it might be

useful when first deploying and testing the application.

When you install an iPlanet Application Server, two default usernames and

passwords are stored in the registry, kdemo/kdemo for sample application users,

and the administrator username and password you specify during install.

How the iPlanet Application Server Stores Users
The information you specify for each user you create is stored in the local registry,

which is managed by the Global Directory Service (GDS). The local registry is not

held in a database, but rather a local file system that is typically cached in active

memory. The information held in the registry is shared between all iPlanet

Application Servers when you have multiple servers supporting an application.

Because each user is stored in the local registry, this level of application security is

most useful for applications where the number of expected users is limited. For

example, for an Internet online shopping with potentially tens of thousands of

customers, the local registry is not the best place to manage those users. Instead,

you should use roles. For more information about roles, see , “Writing Secure

Applications.”

Introduction to iPlanet Application Server Security

Chapter 9 Writing Secure Applications 255

About Role Authentication
Role security is based on the type of user accessing an application, and not directly

on the user’s exact identity. A role is based on the usage characteristic of a group of

users, such as Application_Admin, Application_Vendor, or Application_Employee

roles.

In contrast to security based on strict user identity, where an iPlanet Application

Server authenticates a user by their username and password, role security only

authenticates the existence of a role and the permissions of that role. Role security

does not authenticate the individual user.

You must manage how users are authenticated and determine what role a user has.

This is typically done by referencing a database table that would keep track of

actual user-identity information. You are responsible, in this case, for managing

and accessing the user records in the database.

For example, you could construct a database table that stores the user’s username

and password, obtained from a login screen, along with other pertinent

information, such as credit card numbers, shipping address, and so on. Along with

this information is the user’s role, assigned the first time the user logs in. When the

user logs in, the application can verify the user and their password, and link this

information with their role for further use within the application. For first-time

users, the application can quickly create a new record and add that user to the

database.

As the user traverses through the application, certain AppLogic objects might

require a secure login. Before putting the user session into secured mode, your

code would obtain the user’s role from the database table, also verifying that the

user is valid.

You determine the roles for your application. For example, if the application is for

purchasing products over the Web, and a user entered through the publicly

available access page, that user’s role might be Public_User. This role might change

later, if, for example, the application determines that the user is actually a vendor

or a partner. The updating and assignment of roles is under application logic

control and, as long as the role is defined with the iPlanet Application Server, the

user obtains the appropriate privileges.

Introduction to iPlanet Application Server Security

256 iPlanet Application Server Programmer’s Guide • February 2002

How the iPlanet Application Server Stores Roles
A role and a user are stored and verified by the iPlanet Application Server in the

same way, using the local registry. Implementing role security requires less

administration maintenance than explicit user security because the system

administrator does not have to make updates for every user. Mapping users to

roles is the responsibility of the application developer and is done in the database

through application code. In addition, the number of roles you create for an

application is typically much less than the number of users that use the application.

Role security is the most scalable way to provide security. It requires more

planning from the application developer to create the user database table. Once the

database table is created, however, all further maintenance of users is handled by

the application. Role security is a must for Intranet and Internet applications with a

large number of users where tracking the actual users in a database table is

required for scalability.

About Access Control List Authorization
The Access Control List, or ACL, allows you to set specific permissions for users

and roles. A permission relates to an action the user is allowed to perform, such as

a read or write.

The iPlanet Application Server comes with default permissions, but you can also

create your own application specific permissions and ACLs. You name the ACL

when you create it, so you can later refer to the ACL in code.

For example, a segment of an AppLogic object might perform a read action. Before

this segment of code is executed, the application developer can request iPlanet

Application Server to verify that the current user or role has read permissions.

iPlanet Application Server checks the local registry to verify that the current ACL

name has this user as a member and that the user has read permission.

If a user does not have a certain permission, the application developer can proceed

to the next logical step for either exiting the user from the application, allowing

them to re-login, or directing them to a different part of the application.

About Groups
Rather than adding individual users and roles as members to the ACL, it is

recommended that you create groups to which users and roles belong and add

only groups to the ACL. This is especially useful if you are using individual

user-based security rather than role-based security.

Providing Application Security in Code

Chapter 9 Writing Secure Applications 257

This saves the maintenance of updating users and roles in the ACL when users and

roles change. For example, if you have created users for an Intranet application,

and a user leaves the company, you only need to remove that user from the

appropriate group or groups, as opposed to removing the user from the groups

and any ACLs.

Providing Application Security in Code
Before users gain access to your application, they must pass through several types

of security tests that are provided by the Web server and the iPlanet Application

Server. The Web server provides security between the Web browser and the iPlanet

Application Server. The iPlanet Application Server itself provides features, such as

event logging and user groups, that you can use to ensure that the server is secure.

Once a user has access to an iPlanet Application Server, controlling access to the

applications must be done at the application level. You can use several techniques

to ensure that users running AppLogics do not gain unauthorized access or

perform intentional or unintentional harmful actions:

• Use secure sessions.

For more information, see “Secure Sessions” on page 258.

• Make a single AppLogic the only valid entry point to the application.

For more information, see “Writing a Login AppLogic Object” on page 261.

• Verify all incoming AppLogic parameters, especially from forms filled out by

users.

For more information, see “Validating Input to AppLogic Objects” on

page 265.

• Make sure that unauthorized users cannot access cached AppLogic results.

For more information, see “Secure Caching” on page 266.

• Implement referrer checking or history checking so that the only users who can

run the AppLogic are either those viewing or submitting from a certain HTML

page, or those who have viewed a certain HTML page sometime during their

session.

For more information, see , “Managing Session and State Information.”

Secure Sessions

258 iPlanet Application Server Programmer’s Guide • February 2002

Secure Sessions
You can set up user IDs and groups and specify their security permissions, by

registering them through a .gxr file passed to the kreg utility. In code, you can

refer to this security information to make sessions secure. In order to make use of

the security features of iPlanet Application Server, your application must include

sessions.

This section describes how to make sessions secure. Before reading this section, it

would be advisable to have an understanding of sessions themselves. For more

information about creating and using sessions, see , “Managing Session and State

Information.”

In applications with a large number of users, such as an Internet online catalog,

normally you do not set up a user ID for each user. Instead, the users’ individual

records are kept in a database and, as part of each record, a user ID is assigned.

Each user ID can be used for multiple actual end users. In an application with a

large user base, the user IDs normally represent groups of users, or roles, rather

than individual users.

Before using secure sessions, you must register the security information with the

iPlanet Application Server. For more information, see , “Running and Debugging

Applications.”

Starting a Secured Session
To make a session secure, call LoginSession() (after calling CreateSession()

or GetSession()) and pass in one of the user IDs that has already been set up and

registered. The LoginSession() call puts the session into secured mode. If this

method returns successfully, the iPlanet Application Server begins to automatically

check whether the user is authorized to run each AppLogic as it is requested

during the user’s session.

Example
The following code starts a secured session:

// Get login parameters

m_pValIn->GetValString("NAME", bufferName, sizeof(bufferName);

m_pValIn->GetValString("PASSWORD", bufferpw, sizeof(bufferpw);

IGXSession2 *mySess = NULL;

Secure Sessions

Chapter 9 Writing Secure Applications 259

HRESULT hr;

hr = GetSession(0, NULL, NULL, &mySess);

if (hr != NOERROR || !mySess)

// If no session, create one

hr = CreateSession(0, 60000, NULL, NULL, NULL, &mySess);

// Here, lookup user NAME/PASSWORD in database

// and see what role the user has. The database

// should have a user table which tracks all the

// users of the online shop application.

//

LPSTR role;

role = /* Database lookup here. */ "Shop_Customer";

// The role might be Shop_Customer, Shop_Admin,

// Shop_Accounting, or Shop_Supplier

//

// Setup the session with that role. Future requests

// to AppLogics in this session will now operate under

// the right role.

//

LoginSession(role, "");

SaveSession(NULL);

if (mySess)

mySess->Release();

Checking a User’s Authorization
To check access to other resources, such as databases and files, use the

IsAuthorized() method. Unlike AppLogics, iPlanet Application Server does not

automatically check access to these resources.

Secure Sessions

260 iPlanet Application Server Programmer’s Guide • February 2002

Example
The following code checks to see whether the currently logged-in user is

authorized to perform some of the more advanced operations, and returns the

appropriate main menu page:

DWORD auth_result = 0;

if ((IsAuthorized("Shop_Inventory", "READ", &auth_result)

== NOERROR &&

auth_result == (DWORD) GXACL_ALLOWED) ||

(IsAuthorized("Shop_Daily_Forecast", "READ",

&auth_result) == NOERROR

&&

auth_result == (DWORD) GXACL_ALLOWED) ||

(IsAuthorized("Shop_Weekly_Forecast", "READ",

&auth_result) == NOERROR

&&

auth_result == (DWORD) GXACL_ALLOWED))

// If the user is authorized, return this menu

return EvalOutput("kivaapp/shop/mainmenu_advanced",

(IGXTemplateData *) NULL,

(IGXTemplateMap *) NULL, NULL, NULL);

// If the user is not authorized, return a different menu

return EvalOutput("kivaapp/shop/mainmenu_regular",

(IGXTemplateData *) NULL,

(IGXTemplateMap *) NULL, NULL, NULL);

Stopping a Secured Session
When the user exits the application, or exits the secured portion of it, you can

remove the security enforcement on the session by calling LogoutSession() . For

example:

Writing a Login AppLogic Object

Chapter 9 Writing Secure Applications 261

LogoutSession(0);

After this method call, iPlanet Application Server stops validating the user for each

AppLogic. In your AppLogic code, perform all security operations between a

LoginSession() call and its corresponding LogoutSession() call.

Writing a Login AppLogicObject
To secure an application, the you can write an authentication AppLogic through

which all users access the application. This AppLogic could use any combination of

the following techniques:

• Prompting for ID and Password

• Writing Login Attempts to the Event Log

• Starting a Secured Session

Example
The following code is the login AppLogic from the Online Bank sample

application:

HRESULT hr=GXE_SUCCESS;

OBSession *pSession=NULL;

(hr=GetOBSession(&pSession);

LPSTR userName=GXGetValListString(m_pValIn, "userName");

LPSTR password=GXGetValListString(m_pValIn, "password");

// Validate the username and password

if(ValidateString(userName, "User Name", TRUE, 10,

 FALSE)&& ValidateString(password, "Password", TRUE,

10, FALSE)) {

// Validate existence of user in database

 // Get database connection

 IGXDataConn *pConn=NULL;

 hr=GetOBDataConn(&pConn);

Writing a Login AppLogic Object

262 iPlanet Application Server Programmer’s Guide • February 2002

 // Create a query

 IGXQuery *pQuery=NULL;

hr=CreateQuery(&pQuery);

pQuery->SetTables("OBUser, OBCustomer");

pQuery->SetFields("OBUser.userName, userType, ssn,

lastName, firstName");

pQuery->SetWhere("OBUser.userName *=

OBCustomer.userName AND OBUser.userName= :userName AND

password= :password");

IGXPreparedQuery *pPrepQuery=NULL;

hr=pConn->PrepareQuery(0, pQuery, NULL, NULL,

&pPrepQuery);

IGXValList *pList=GXCreateValList();

GXSetValListString(pList, ":userName", userName);

GXSetValListString(pList, ":password", password);

IGXResultSet *pResultSet=NULL;

hr=pPrepQuery->Execute(0, pList, NULL, NULL,

&pResultSet);

ULONG count=0;

pResultSet->RowCount(&count);

if(count) {

// Save login criteria in the session

pSession->SetUserName(userName);

pSession->SetPassword(password);

// Determine what type of user this is and bring

// up page

ULONG ord=0;

pResultSet->GetColumnOrdinal("userType", &ord);

ULONG userType=0;

Writing a Login AppLogic Object

Chapter 9 Writing Secure Applications 263

pResultSet->GetValueInt(ord, &userType);

pSession->SetUserType(userType);

// Save session before streaming. This is because the

// session is initally transmitted as a cookie and

// needs to go in the http header

SaveSession(NULL);

ord=0;

pResultSet->GetColumnOrdinal("ssn", &ord);

char ssn[50];

pResultSet->GetValueString(ord, ssn, 50);

pSession->SetSSN(ssn);

pSession->SaveSession();

// Show the correct menu page

NewRequest("AppLogic CShowMenuPage", m_pValIn,

m_pValOut, 0);

}

else

{

Result("<HTML><BODY>Incorrect user name and password.

</BODY></HTML>");

pResultSet->Release();

}

else

{

Result(NULL);

pSession->Release();

}

pList->Release();

Writing a Login AppLogic Object

264 iPlanet Application Server Programmer’s Guide • February 2002

pPrepQuery->Release();

pQuery->Release();

pConn->Release();

pSession->Release();

return GXE_SUCCESS;

Prompting for ID and Password
The login AppLogic can prompt the user for a login ID and password, then verify

that the entries are valid. If the login ID and password are invalid, the user is not

granted access to the application. In addition, valid logins can be assigned access

levels based on business rules.

For example, suppose an employee is accessing a human resources application to

change existing employee data and add new employees. It is crucial that this

sensitive employee data is accessible only to authorized personnel in the human

resources department.

A second employee is using another application to maintain the company’s supply

of office products such as paper, pens, and diskettes. To avoid unnecessary orders

being made, it is important that only authorized personnel access this application.

Because the company does not want all employees to have access to all

applications, the applications must verify who is attempting to gain access and

admit only those users who are authorized. Therefore, the login AppLogics of

these applications prompt all users for IDs and passwords, and do not allow them

to continue using the application until valid IDs and passwords are given.

If the user did not type a user ID and password, you can return from the AppLogic

at that point, displaying a prompt that asks the user to type the required

information. The login AppLogic will not continue executing until the correct

user ID and password are supplied. Once they are, the login AppLogic can create a

session and call LoginSession() .

For more information about securing user sessions, see , “Writing Secure

Applications.”

You can save the user’s login ID and password as part of the session data. At any

point in AppLogic code, you can refer to the user ID and password for other

operations, such as logging into a database.

Validating Input to AppLogic Objects

Chapter 9 Writing Secure Applications 265

You can also use the user security information to choose from several alternatives

in code. For example, the AppLogic might choose from several HTML templates to

format reports differently for different users.

Writing Login Attempts to the Event Log
The login AppLogic can record all login attempts in the event log by using the

Log() method. The iPlanet Application Server system administrator can then

view the log to monitor who is attempting to use the application.

For example, suppose the system administrator is monitoring the iPlanet

Application Server event log and notices an attempted security breach. The system

administrator could take the login AppLogic off line for a period of time. Without

the login AppLogic, there is no access to the application.

Validating Input to AppLogic Objects
An application should always validate the incoming parameters to an AppLogic.

Don’t trust the input coming from the user. HTML forms, in particular, cannot

adequately enforce the type and range of input. Be sure to check for the following

cases:

• Although your HTML input form might provide a drop-down SELECT list, the

value sent by the Web browser during a request might not necessarily be a

value from your selection list.

• Your HTML input form might specify the maximum length for input control

fields, but the Web browser might send more characters than are specified. For

example, your AppLogic might receive a user name 4000 characters long.

• Check for special characters that might be embedded in the incoming input.

• Check ranges when converting strings to numbers.

Example
The following code, from the BaseAppLogic in the Online Bank sample

application, validates an input social security number (SSN). The BaseAppLogic

also contains several other methods to validate input such as phone numbers and

other strings.

STDMETHODIMP_(BOOL)

Secure Caching

266 iPlanet Application Server Programmer’s Guide • February 2002

OBBaseAppLogic::ValidateSSNString(LPSTR pTestString, LPSTR pName,
BOOL isRequired)

{

if(!((pTestString)&&(strlen(pTestString)))) {

if(isRequired) {

char tmpStr[50];

sprintf(tmpStr, "%s is a required field.", pName);

HandleOBValidationError(tmpStr);

return FALSE;

}

}

else if(strlen(pTestString)!=9) {

char tmpStr[50];

sprintf(tmpStr, "%s must be of format ###-##-####",

pName);

HandleOBValidationError(tmpStr);

return FALSE;

}

return TRUE;

}

Secure Caching
If your AppLogic is used in an environment in which high security is of critical

importance, make sure that you attach security information to all cached AppLogic

results. If an AppLogic caches its results, subsequent requests for the same

AppLogic will cause iPlanet Application Server to check for cached results first to

avoid running the AppLogic unnecessarily. Because the security checking code is

in the AppLogic, which might not run, subsequent unauthorized users might be

able to get the cached results.

Secure Caching

Chapter 9 Writing Secure Applications 267

To make sure caching is secure, include security information as part of the cache

criteria. For example, the criteria could include the user ID and password

parameters or other security information, such as the session ID. If the incoming

request contains a user ID and password that match those stored with the cached

results, then the user is authorized to get the results and the cache can be used.

iPlanet Application Server passes the session ID in the input IGXValList object. The

name uses the following syntax:

gx_session_id_ appName

where appName is the name of the application that you passed in the call to

GetSession() or that was registered using the kreg utility. For example, the

input IGXValList object for AppLogics in an application called Catalog might be an

item with the following name:

gx_session_id_Catalog

The cache criteria for AppLogics in this application might look like the following

example:

SetCacheCriteria(3600, 1, "gx_session_id_Catalog");

For more information about cache criteria, see , “Writing Server-Side Application

Code.”

Secure Caching

268 iPlanet Application Server Programmer’s Guide • February 2002

269

Chapter 10

Integrating Applications with Email

This chapter describes how to write applications that both send and receive

electronic mail (email).

The following topics are included in this chapter:

• Introduction to Email in iPlanet Application Server Applications

• Receiving Email

• Sending Email

Introduction to Email in iPlanet Application Server
Applications

The iPlanet Application Server Foundation Class Library supports email through

the IGXMailBox interface.

In order for email applications to work, you must have access to one or both of the

following types of email servers:

• SMTP server if you want to send email. Not required if you only want to

receive email.

• POP server if you want to receive email. Not required if you only want to send

email.

Receiving Email

270 iPlanet Solar System Server Administrator’s Guide • February 2002

Security in Email
Security is often a concern when sending or receiving email. If the application

generates and sends email using user input to set the address or content, then there

is a risk of propagating inappropriate messages or mailing to incorrect recipients.

Be sure to validate all user input before incorporating it in email.

Receiving Email
To receive email, your application must have access to a POP server.

Before retrieving messages, you can use RetrieveCount() to see how many

messages are waiting in the specified inbox on the mail server. By checking first,

you can avoid attempting to retrieve messages if the mailbox is empty. You can

also use this technique when you need to know how many messages are waiting in

order to construct a loop that will iterate through them one by one.

To retrieve messages, call Retrieve(). Depending on the parameters you pass to

this method, you can customize the retrieval process in the following ways:

• Retrieve all messages

• Retrieve only unread messages

• Delete messages from the mail server as they are retrieved

Only those messages received before the last call to Open() will be retrieved. You

can not open a mailbox session, leave it open, and continuously receive emails.

Instead, you must open a new session each time you want to retrieve new email.

After retrieving messages, you can return the mailbox to its original state by calling

RetrieveReset(). This method undeletes and unmarks any messages that were

affected by the previous Retrieve() call.

To receive email

3. Create an instance of IGXMailbox by calling CreateMailbox(). In this call, you

specify valid user information and the name of the POP server you want to

access. For example:

hr = pMMBox->CreateMailbox("smtp", NULL, NULL,

"sid@blm.com", (IGXObject **)&pMbox);

4. Open a session on your POP server by calling Open() with the OPEN_RECV

flag. For example:

Receiving Email

Chapter 10 Integrating Applications with Email 271

hr = pMBox->Open(OPEN_RECV);

5. To find out whether you have messages, call RetrieveCount(). For example:

LONG res;

res = pMbox->RetrieveCount();

6. To retrieve messages, instantiate an IGXValList object to contain the email

messages, then call Retrieve(). For example, the following code retrieves the

latest unread messages and does not delete them from the mailbox:

IGXValList *msgs = NULL;

hr = pMbox->Retrieve(TRUE, FALSE, &msgs);

Only the messages received before the call to Open() are retrieved.

7. To undo changes, call RetrieveReset(). For example:

8. hr = pMbox->RetrieveReset();

9. To close the session, call Close(). For example:

pMBox->Close();

You can have only one mail server session open at a time. For example, suppose

you open a session with the OPEN_RECV flag, then want to send email. You must

first close the existing session, then open another one with the OPEN_SEND flag.

Example
The following code retrieves email:

LONG res;

pMMbox->CreateMailbox("smtp","sdas","sdas",

NULL, (IGXObject **)&pMbox);

pMbox->Open(OPEN_RECV);

if ((res=pMbox->RetrieveCount()) > 0) {

IGXValList *msgs = NULL;

printf("Mailbox has %d messages\n", res);

hr = pMbox->Retrieve(FALSE, FALSE, &msgs);

CHAR msgno[16];

msgs->ResetPosition();

Sending Email

272 iPlanet Solar System Server Administrator’s Guide • February 2002

while (msgs->GetNextKey(msgno, 16) == NOERROR) {

GXVAL val;

hr = msgs->GetValByRef(msgno, &val);

printf(Msg %s:\"%s"\n", msgno, val.u.pstrVal);

}

msgs->Release();

pMbox->Close();

pMbox->Release();

Sending Email
To send email, your application must have access to an SMTP server. Construct the

email address and message separately, then use the Send() method to send the

email out through the server.

You can send email to a single recipient or to a group of recipients. To send email

to a group, use one of the following techniques:

• Pass the email addresses to Send() as an array.

• Use a loop to send a series of messages one at a time.

You can populate an address array dynamically using the results of a query, in

which each row returned by the query is one email address. Use a loop to iterate

through the rows in the query’s result set and assign the data to successive

elements of the array.

For example, this multiple-recipient technique would be useful for sending email

to all customers to notify them of changes on your Web site.

To send email

1. Create an instance of IGXMailbox by calling CreateMailbox(). In this call, you

specify valid user information and the name of the POP server you want to

access. For example:

hr = pMMBox->CreateMailbox("smtp", NULL, NULL,

"sid@blm.com", (IGXObject **)&pMbox);

2. Open a session on your SMTP server by calling Open() with the OPEN_SEND

flag. For example:

Sending Email

Chapter 10 Integrating Applications with Email 273

hr = pMBox->Open(OPEN_SEND);

3. To send the message, call Send(). Pass a single email address or an array of

addresses to this method, along with the text of the message. For example:

4. pMbox->Send(ppTo, "Testing, please ignore");

5. To close the session, call Close(). For example:

pMBox->Close();

You can have only one mail server session open at a time. For example,

suppose you open a session with the OPEN_SEND flag, then want to retrieve

your email. You must first close the existing session, then open another one

with the OPEN_RECV flag.

Example
The following code sends email:

LONG res;

LPSTR ppTo[2];

pMMbox->CreateMailbox("smtp","sdas","sdas",

NULL, (IGXObject **)&pMbox);

pMbox->Open(OPEN_SEND);

ppTo[0] = "sdas@kello.com";

ppTo[1] = NULL;

pMbox->Send(ppTo, "Testing, please ignore");

pMbox->Close();

pMbox->Release();

Sending Email

274 iPlanet Solar System Server Administrator’s Guide • February 2002

275

Chapter 11

Running and Debugging Applications

This chapter describes how to set up a test version of your application, as well as

how to use the debugging tools in your C++ development toolkit.

The following topics are included in this chapter:

• Getting Ready to Run an Application

• Debugging with Third-Party Tools

Getting Ready to Run an Application
Before you can execute the AppLogic objects in your application, you must set up a

test version of your application. This involves copying your application files to the

appropriate locations and registering the AppLogics, other code modules, and

security information needed in the application. For the purposes of testing, you

will probably set up the application on a single iPlanet Application Server.

This manual does not describe application deployment in detail. In general, the

procedure for setting up an application for testing is similar to that for deploying

production applications. This section describes only those procedures that are

specific to setting up an application for testing.

Alternatively, if you are using iPlanet Application Builder, you can deploy

applications using its deployment feature. This procedure is described in User’s

Guide.

Getting Ready to Run an Application

276 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Compiling Applications
This section assumes that you are already familiar with creating makefiles and

compiling source files on your development platform. It also assumes that you

have already installed the entire Calhoops sample application on your

development system using the iPlanet Application Server installation procedure

described on the product CD.

This section lists relevant libraries to link to and describes creating a makefile for

your AppLogic, using examples of makefiles from the Calhoops sample

application for the Sun Solaris, Hewlett-Packard HP-UX, and Microsoft Windows

NT platforms.

Setting the GX_ROOTDIR Environment Variable
Before compiling, you need to set the $GX_ROOTDIR environment variable to

point to the root directory for the iPlanet Application Builder. For instructions on

how to do this, see the system documentation for your particular development

platform.

Creating a Makefile
Use your C++ application development tools to generate the makefile for your

project. The following examples show the makefile for the Calhoops sample

application on the Sun Solaris, Hewlett-Packard HP-UX, and Microsoft Windows

NT platforms.

Sun Solaris
#

Sample makefile for C, C++ applogics

Run 'make debuggable' or simply 'make'

to build shared library with debug info.

Run 'make release' to build optimized shared library

#

OBJS = calhoops.o # list of all object files to be generated

SHO = libcalhoops.so # name of shared object file to generate

DEBUG = -g

debuggable := TARGET = debuggable

release := TARGET = release

release := DEBUG = -O

Getting Ready to Run an Application

Chapter 11 Running and Debugging Applications 277

debuggable: all

release: all

PLATFORM = SOLARIS

CC = cc

CPP = CC

GX_ROOT = $$GX_ROOTDIR

LIBDIR = $(GX_ROOT)/gxlib

INCDIR = $(GX_ROOT)/include

INCLUDES = -I. -I$(INCDIR)

CPPFLAGS = -KPIC -mt -DUNIX -DGXPUBLIC_BUILD -D$(PLATFORM) $(DEBUG)
$(INCLUDES)

CFLAGS = -KPIC -mt -DUNIX -DGXPUBLIC_BUILD -D$(PLATFORM) $(DEBUG)
$(INCLUDES)

SHOFLAGS = -G -Bsymbolic -mt -z text -L $(LIBDIR)

.SUFFIXES :

.SUFFIXES : .c .h .cpp .s .o

.cpp.o:

$(CPP) $(CPPFLAGS) -c $<

.c.o:

$(CC) $(CFLAGS) -c $<

.s.o:

$(CPP) $(CPPFLAGS) -c $<

all : install

install: $(SHO)

[-d $(LIBDIR)] && cp $(SHO) $(LIBDIR)

$(SHO): $(OBJS)

$(CPP) $(SHOFLAGS) -o $(SHO) $(OBJS) -lgxagent -lgxidl -lgxutil

clean :

@rm -f $(OBJS)

clobber : clean

@rm -f $(SHO) $(LIBDIR)/$(SHO)

Getting Ready to Run an Application

278 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Hewlett-Packard HP-UX
#

Sample makefile for C, C++ applogics

Run 'make debuggable' or simply 'make'

to build shared library with debug info.

Run 'make release' to build optimized shared library

#

OBJS = calhoops.o # list of all object files to be generated

SHO = libcalhoops.sl # name of shared object file to generate

DEBUG = -g

debuggable := TARGET = debuggable

release := TARGET = release

release := DEBUG = -O

debuggable: all

release: all

PLATFORM = HPUX

CC = cc

CPP = CC

GX_ROOT = $$GX_ROOTDIR

LIBDIR = $(GX_ROOT)/gxlib

INCDIR = $(GX_ROOT)/include

INCLUDES = -I. -I$(INCDIR)

CPPFLAGS = +Z +a1 -DUNIX -D$(PLATFORM) -DGXPUBLIC_BUILD $(DEBUG)
$(INCLUDES)

CFLAGS = +Z -Ae -DUNIX -D$(PLATFORM) -DGXPUBLIC_BUILD $(DEBUG)
$(INCLUDES)

SHOFLAGS = -b -q -Wl,+s,+b:,+vshlibunsats $(CPPFLAGS) -L $(LIBDIR)

.SUFFIXES :

.SUFFIXES : .c .h .cpp .s .o

.cpp.o:

 $(CPP) $(CPPFLAGS) -c $<

.c.o:

Getting Ready to Run an Application

Chapter 11 Running and Debugging Applications 279

$(CC) $(CFLAGS) -c $<

.s.o:

$(CPP) $(CPPFLAGS) -c $<

all : install

install: $(SHO)

[-d $(LIBDIR)] && cp $(SHO) $(LIBDIR)

$(SHO): $(OBJS)

$(CPP) $(SHOFLAGS) -o $(SHO) $(OBJS) -lgxagent -lgxidl -lgxutil

clean :

@rm -f $(OBJS)

clobber : clean

@rm -f $(SHO) $(LIBDIR)/$(SHO)

Microsoft Windows NT
PROJECT=calhoops.dll

PROJECT_OBJS=calhoops.obj

##

KIVA_ROOT=C:\KIVA\KDS

MYCFLAGS=

MYLFLAGS=

CC_FLAGS =$(MYCFLAGS) /c /nologo /MTd /W3 /GX -DWIN32 -DWINDOWS

-D_WINDOWS $(MYCFLAGS)

CC_FLAGS_REL=/Ox

CC_FLAGS_DBG=/Od /Zi /Gm -DDEBUG -D_DEBUG

LINK_FLAGS =$(MYLFLAGS) /MAP /subsystem:windows /dll
/incremental:no

LINK_FLAGS_REL=

LINK_FLAGS_DBG=/DEBUG:FULL /DEBUGTYPE:BOTH

INCLUDE=$(KIVA_ROOT)\include;$(INCLUDE)

LIB =$(KIVA_ROOT)\lib\c;$(LIB)

LIBS=gxagent.lib gxutil.lib gxidl.lib kernel32.lib user32.lib
uuid.lib

Getting Ready to Run an Application

280 iPlanet Application Server Programmer’s Guide (C++) • February 2002

!if "$(DEBUG)" == "YES"

CC_FLAGS=$(CC_FLAGS) $(CC_FLAGS_DBG)

LINK_FLAGS=$(LINK_FLAGS) $(LINK_FLAGS_DBG)

!else

CC_FLAGS=$(CC_FLAGS) $(CC_FLAGS_REL)

LINK_FLAGS=$(LINK_FLAGS) $(LINK_FLAGS_REL)

!endif

CC=CL

LINK=LINK

.SUFFIXES: .cpp

.cpp.obj:

$(CC) $(CC_FLAGS) $<

all: project

project: $(PROJECT_OBJS)

$(LINK) $(LINK_FLAGS) $(PROJECT_OBJS) /OUT:$(PROJECT) $(LIBS)

clean:

del *.obj

del *.map

del *.dll

del *.pdb

Placing Files on the iPlanet Application Server
This section uses the following abbreviations to refer to directories on your file

system:

• $GX_ROOTDIR is the root directory where you installed the iPlanet

Application Builder.

• $APP_ROOTDIR is the root directory where you store AppLogic files for a

specific application or project. We recommend that you make this a

subdirectory under the GXApp directory:

❍ Unix: $GX_ROOTDIR/APPS/GXApp/<Italic>AppName

❍ Windows: $GX_ROOTDIR\APPS\GXApp\<Italic>AppName

Getting Ready to Run an Application

Chapter 11 Running and Debugging Applications 281

When placing shared libraries and HTML template files (for HTML-based clients)

on your iPlanet Application Server, consider storing them in the following

locations, where $GX_ROOTDIR is the Netscape Application Server root

installation directory:

For example, the Calhoops sample application shared library files might be stored

in the following locations:

CAUTION If you reinstall or uninstall the iPlanet Application Builder, this directory

might be overwritten by the installation program. Be sure to move or copy

these files to a different location before reinstalling or uninstalling your

software.

Component Suggested Location

Sun Solaris

shared library files $GX_ROOTDIR/gxli

b/*.so .

html templates (.html) $APP_ROOTDIR/templates

Hewlett-Packard HP-UX

shared library files $GX_ROOTDIR/gxlib/*.sl

html templates (.html) $APP_ROOTDIR/templates

Microsoft Windows NT

shared library files $GX_ROOTDIR\bin*.dll

html templates (.html) $APP_ROOTDIR\templates

Platform Shared Library File

Sun Solaris $GX_ROOTDIR/gxlib/libcalhoops.so

Hewlett-Packard HP-UX $GX_ROOTDIR/gxlib/libcalhoops.sl

Microsoft Windows NT $GX_ROOTDIR\bin\calhoops.dll

Getting Ready to Run an Application

282 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Placing Files on the Web Server (HTML Client)
When placing web pages and graphics files on your Web server, consider storing

them in the following locations, where <Code>$WS_DOCROOTDIR is the

document root directory of the web server:

For example, the query selection form for the Calhoops sample application

(index.html) might be in the following path:

<Code>$WS_DOCROOTDIR/GXApp/CCalhoops/index.html

Registering Code And Security Information
Before you can execute your application, you must set up a test version. As one of

the steps in this procedure, you must register certain application items with the

iPlanet Application Server. When setting up an application for testing, you might

need to register any of the following types of items with the iPlanet Application

Server:

• AppLogic objects

• Other code modules

• Users

• User groups

• Access control lists (ACLs)

By registering users, user groups, and ACLs, you can set up security for the

application. During testing and initial deployment, you must define these items

yourself if your application includes security features, such as calls to

LoginSession(). During production deployment, the system administrator can also

manage the security information, using the iPlanet Application Server

Administrator tools.

Component Sample Location

html pages (.html) <Code>$WS_DOCROOTDIR/GXApp/<Italic>AppNa
me

html graphics (.gif, .jpeg) <Code>$WS_DOCROOTDIR/GXApp/<Italic>AppNa
me

Getting Ready to Run an Application

Chapter 11 Running and Debugging Applications 283

Using Utilities to Register Application Information
The iPlanet Application Server maintains a record of registered application items

in local registry storage. You can use the kreg utility to populate the registry. To do

so, edit one or more files with a .gxr extension. These files are the input to kreg.

To register code or security information using utilities

6. For an AppLogic object or other code module, you must generate a unique

GUID. To do so, run the kguidgen utility from a command line or window by

typing the following command:

kguidgen

This utility returns a random, unique GUID which you can copy and paste.

7. Add lines to the .gxr file for the items you want to register. The syntax for each

type of item is given later in this section. Each item uses four lines.

❍ Make sure you assign a unique name to the item. Unlike the GUIDs, which

are sure to be unique since they are generated automatically, there is a

possibility for duplicates when you assign names yourself. For example,

prefix the names of your AppLogics with the application name to reduce

the possibility of name collisions.

❍ For an AppLogic object or other code module, paste in the GUID that was

generated by kguidgen.

8. Run the kreg utility from a command line or window using the following

syntax:

kreg fileName.gxr

For example:

kreg OnlineBank.gxr

AppLogic .gxr Syntax
The entry in a .gxr file to register an AppLogic object uses the following syntax (the

portion from AppLogic to group is all on one line):

AppLogic name [:type= c][:enable=y|n][:encrypt=y|n]

[:lb=y|n][: descr [: AppName; group ;...]]

GUID [: server ;...[acl= user ,[!]EXECUTE;...]]

Blank line

Path to AppLogic

Getting Ready to Run an Application

284 iPlanet Application Server Programmer’s Guide (C++) • February 2002

The items in the syntax are as follows:

• name: Name of the AppLogic object.

• :type= c : Optional letter c to indicate that the AppLogic object is written in

C++.

• :enable=y|n : Optional flag to indicate whether the AppLogic is enabled.

• :encrypt=y|n : Optional flag to indicate whether the communications to the

AppLogic are encrypted.

• :lb=y|n : Optional flag to indicate whether sticky load balancing is set.

• : descr : Optional description of the AppLogic, which will appear in the

Application Administrator.

• : AppName; group ;... : Optional semicolon-separated list of groups to which

the AppLogic belongs. The first group should be the name of the application.

• Globally unique identifier (GUID) that was generated by kguidgen.

• : server ;... : Optional semicolon-separated list of server descriptions. Each

server description uses the following syntax:

<SERVER_IP_ADDR>:<SERVER_IP_PORT>[=<SERVER_FLAGS>]

SERVER_IP_ADDR is a decimal-dotted IP address, such as 192.23.43.15.

SERVER_IP_PORT is the Executive Server port number, in decimal.

SERVER_FLAGS is an optional decimal number. The flags, in hexadecimal, are

0x8000000 to set sticky load balancing and 0x00000001 to set the enable flag.

Note that you can turn these on using the lb and enable flags on the first line.

• acl= user ,[!]EXECUTE;... : Optional semicolon-separated list of access

control list (ACL) entries, to specify which users can execute the AppLogic.

Each ACL entry uses the following syntax:

user,[!]permission

User is the name of a User or UserGroup, as specified by the system

administrator. Permission is an operation name. For AppLogics, EXECUTE is

the only operation that is checked automatically by the system. An exclamation

point in front of EXECUTE means the user or user group can not run the

AppLogic.

• Path to AppLogic object. For cross-platform compatibility, you can omit the

extension of the file (such as .dll or .so) and, on UNIX platforms, you can

also omit the lib prefix of the file. For increased portability, it is advisable to

use relative paths in the .gxr file.

Getting Ready to Run an Application

Chapter 11 Running and Debugging Applications 285

• (Optional) Comments. Each line can end with a comment preceded by the

vertical bar character |.

Example
The following lines show the .gxr file entry for an AppLogic object (the portion

from AppLogic to digibanker is all on one line):

AppLogic CalculateBalancesLogic:Updates account balance

:lb=y:type=c::digibanker

{e248ecd0-9bfd-bc32-00a024d1709f}

|Blank

libbanking

Code Module .gxr Syntax
The entry in a .gxr file to register a code module (that is not an AppLogic object or

an iPlanet Extension) uses the following syntax:

Module name [:type= c][: descr [: AppName; group ;...]]

GUID

Blank line

Path to code module

The items in the syntax are as follows:

• name: Name of the module.

• :type= c : Optional letter c to indicate that the module is written in C++.

• : descr : Optional description which will appear in the Application

Administrator.

• : AppName; group ;... : Optional semicolon-separated list of groups to which

the module belongs. The first group should be the name of the application.

• Globally unique identifier (GUID) that was generated by kguidgen.

• Relative path to the code module. For cross-platform compatibility, you can

omit the extension of the file (such as .dll or .so). For increased portability, it is

advisable to use relative paths in the .gxr file.

• (Optional) Comments. Each line can end with a comment preceded by the

vertical bar character |.

Getting Ready to Run an Application

286 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Example
The following lines show the .gxr file entry for a code module:

Module DigiBank CICS Integration:type = c

{e248ecd0-9bfd-bc32-00a024d1709f}

|Blank

digicics

User .gxr Syntax
The entry in a .gxr file to register a user has the following syntax:

User name

Password

[group ;...]

Blank line

The items in the syntax are as follows:

• name: Name of the user.

• Password : The user’s password.

• group ;... : Optional semicolon-separated list of groups to which the user

belongs. These groups are defined elsewhere in the .gxr file, using the syntax

described later in this section.

• (Optional) Comments. Each line can end with a comment preceded by the

vertical bar character |.

Example
The following lines show the .gxr file entry for a user:

User DigiBankAdmin

tiger

DigiBankUsers;DigiBankAdministrators

| Blank

User Group .gxr Syntax
The entry in a .gxr file to register a user group has the following syntax:

UserGroup name

Getting Ready to Run an Application

Chapter 11 Running and Debugging Applications 287

Blank line

Blank line

Blank line

The items in the syntax are as follows:

• name: Name of the user group.

• (Optional) Comments. Each line can end with a comment preceded by the

vertical bar character |.

Example
The following lines show the .gxr file entry for a user group:

UserGroup DigiBank Users

| Blank

| Blank

| Blank

ACL .gxr Syntax
The entry in a .gxr file to register a named access control list (ACL) uses the

following syntax:

ACL name

[user ,[!] permission ;...]

Blank line

Blank line

The items in the syntax are as follows:

• name: Name of the ACL.

• user ,[!] permission ;... : Optional semicolon-separated list of ACL entries,

to specify which users can perform operations. Each ACL entry uses the

following syntax:

user,[!]permission

User is the name of a user or user group, as specified by the system

administrator. Permission is an operation name, such as EXECUTE, READ, or

WRITE . An exclamation point in front of the permission means the user or

user group can not perform that operation.

Getting Ready to Run an Application

288 iPlanet Application Server Programmer’s Guide (C++) • February 2002

• (Optional) Comments. Each line can end with a comment preceded by the

vertical bar character |.

Example
The following lines show the .gxr file entry for an ACL:

ACL DigiBank.monthlyforecast

DigiBankAdmin,ADMIN;DigiBankPartner,!READ

| Blank

| Blank

Saving and Restoring Registry Configurations
As described in the previous section, the iPlanet Application Server maintains a

record of registered application items in local registry storage. You can save and

restore snapshots of the registry by using the kreg utility. You might want to do

this for the following reasons:

• Back up registry settings.

• More easily bring up secondary, replicated servers.

• More easily bring up replicated engines or control sets.

• Save, replicate, and manually synchronize registry information about users,

user groups, ACLs, AppLogics, and iPlanet Extensions across multiple

machines.

• Debug administration settings.

• Remotely view and debug a configuration.

• Allow various groups in your organization to swap between saved

configurations, especially if certain registry configurations are required for

certain tests, such as load balancing, partitioning, and stress testing.

• Replicate AppLogic information to the Web server tier. This supports better

AppLogic load balancing from the Web server. It also allows encryption of

AppLogic requests on a per-AppLogic basis between a Web server and

Executive Server.

To Save the Registry
To save a snapshot of the current registry settings, run the kreg utility from a

command line or window using the following syntax:

Debugging with Third-Party Tools

Chapter 11 Running and Debugging Applications 289

kreg -save fileName key1 [key2...]

The fileName is the file in which the registry settings are saved. The key is the path

to a registry key, starting from the root key. For example:

kreg -save mytest.data SOFTWARE\KIVA\Enterprise\2.0\CCS0\DAE

To Restore the Registry
To save a snapshot of the current registry settings, run the kreg utility from a

command line or window using the following syntax:

kreg -load fileName [fileName2...]

The fileName is the file in which the registry settings were saved. For example:

kreg -load mytest.data

Debugging with Third-Party Tools
You can test and debug AppLogic objects using the debugging tools in your C++

development toolkit. The tools available vary depending on the machine and

operating system you are using. iPlanet Application Builder integrates with several

debugging tools.

The following steps give a general outline of the debugging process. Specific

procedures for each debugging tool follow.

General steps to debug AppLogic
1. Compile the AppLogic using the debug option.

For example, in many compilers, the -g flag enables the debug option.

2. Start your debugging tool.

For example, on Microsoft Windows NT, you might use msdev. On UNIX, you

might use dbx.

1. Determine the process ID of the C++ Server process you want to debug.

For example, on Microsoft Windows NT, use the Task Manager. On UNIX, use

the ps command.

2. Using this process ID, attach to the C++ Server process from within your

debugging tool.

For example, if you are using msdev on Microsoft Windows NT, use the

menus. If you are using dbx on UNIX, use the command attach PID.

Debugging with Third-Party Tools

290 iPlanet Application Server Programmer’s Guide (C++) • February 2002

Note: The AppLogic you are trying to debug may not yet be loaded into the

C++ Server. Most debugging tools will still allow you to set the breakpoint in

the AppLogic before it has been loaded. If not, execute the AppLogic once so

that it is loaded.

3. Set a breakpoint in your AppLogic.

For example, the beginning of the Execute() method is often a logical place for

a breakpoint.

4. Execute your AppLogic.

5. At the breakpoint, begin stepping through your AppLogic code.

Debugging with MSVC (Version 4.2 or Higher)
To debug code using Microsoft Visual C++, in addition to any projects that you use

to build your AppLogic code, you must create a project of type "Console

Application" that contains no code files at all, but simply specifies the C++ Server

.EXE file of your Netscape Application Server installation as its executable. After

invoking your AppLogic once, you will be able to open its source files in the

MSVC's editor and set breakpoints in these files.

Create the Project
1. File – New– Project Workspace.

2. Console Application; any name you like; Location can be any directory, but it

will be convenient to use the root directory of your AppLogic tree.

Set Up the Project
1. Build – Settings (Alt-F7)

2. Select the "Win32 Debug" configuration.

3. Go to the Debug tab.

4. In "Category", select General.

5. As "Executable for debug session" supply the path to the C++ Server .EXE file

in your Runtime Environment.

6. "Program arguments": -debug (may not be necessary).

7. In "Category", select Additional DLLs.

8. In the Modules list, add one or more DLLs from your AppLogic and check the

boxes to the left of their names.

Debugging with Third-Party Tools

Chapter 11 Running and Debugging Applications 291

Run the Project
1. Start the Netscape Application Builder Runtime Environment and shut down

the C engine once initialization is complete.

2. Build – Debug – Go or F5 key.

3. "One or more files are out of date ...?": choose No.

4. "One or more breakpoints cannot be set": choose OK.

5. "First-chance exception": choose OK.

6. Debug – Go or F5.

7. "Pass exception on to the program being debugged?": choose Yes.

8. Repeat steps 5-7 once more.

9. File – Open and open one or more source files from the additional DLLs you

specified in "Set up" above.

10. Set breakpoints in these files, as needed.

11. Bring up a suitable form in a Web browser or somehow cause your AppLogic

to execute, and debug normally.

Debugging with Third-Party Tools

292 iPlanet Application Server Programmer’s Guide (C++) • February 2002

293

Chapter 12

Sample Code Walkthrough

The following code samples are included in this chapter:

• About the Online Bank Sample Application

• The Online Bank Base AppLogic

• Detailed Walk Through of Funds Transfer Functionality

• Online Bank Registration File

About the Online Bank Sample Application
The Online Bank sample application, which is shipped with the iPlanet

Application Server, provides online banking and customer management. In this

application, the user interface is HTML pages displayed in Web browsers.

Customers can log in to the application over the Internet, view account

information, and move funds between accounts. Representatives of the bank can

display information about customers, add new customers, and update or delete

existing customer data.

You should have already installed the Online Bank sample application on your

development system using the iPlanet Application Server installation procedure

described on the product CD. If you followed the instructions found there, you

should find these files in your sample directory.

The illustration on the following page summarizes the design of Online Bank. The

application consists of fourteen AppLogic objects, twelve HTML templates, and

assorted additional code modules, including a custom session class.

About the Online Bank Sample Application

294 iPlanet Application Server Programmer’s Guide • February 2002

ShowMenuPage

Login

CustomerMenu.html
RepMenu.html

ShowFindCust ShowNewCust

FindCust.html NewCust.html

FindCust CreateCust

ListCusts.html

ShowCustPage

Cust.html

ShowBalancesPage ShowTransPage ShowTransferPage

Balances.html Trans.html Transfer.html

Transfer

UpdateCust

Online Bank Sample
Application

Login.html

SuccessMessage.html ValidationError.html

SessionBaseAppLogic Logout
class

About the Online Bank Sample Application

Chapter 12 Sample Code Walkthrough 295

The following sequence describes a typical user session with Online Bank:

12. The user navigates their Web browser to the first HTML page of the

application, COBLogin.html.

13. When the user clicks the Login button, a request to run the OBLogin AppLogic

is sent to iPlanet Application Server. If the user’s login information is not valid,

the ValidationError.html page is displayed.

14. If the user’s login information is valid, the OBLogin AppLogic creates a session

for the user. A session is an object that is used to store information about a

user’s interaction with an application. In the Online Bank sample application,

the session stores information about the user, such as user name and type. The

OBLogin AppLogic then calls the OBShowMenuPage AppLogic.

15. The OBShowMenuPage AppLogic displays the appropriate menu, depending

on the type of user. For example, if the user is a customer, the AppLogic

displays CustomerMenu.html.

16. The CustomerMenu.html page contains several hyperlinks. Each hyperlink is

coded to call a different AppLogic. When the user clicks one of the hyperlinks,

the corresponding AppLogic is executed on the iPlanet Application Server. For

example, if the user clicks Show Balances, the OBShowBalancesPage AppLogic

is executed.

17. The OBShowBalancesPage AppLogic queries a database to get the customer’s

account information.

18. The result set of this query is merged with an HTML template, Balances.html,

which specifies how to format the data into an output page. After the

customer’s account information is merged with the template, the resulting

HTML page is displayed in the user’s Web browser.

19. The user can continue to use hyperlinks to view other HTML pages and

execute other AppLogics in the application.

20. Eventually, the user clicks the Logout hyperlink, which causes the OBLogout

AppLogic to execute. This AppLogic destroys the user’s session object and

displays a farewell message to the user.

AppLogic Objects in Online Bank
The following list summarizes each AppLogic object in Online Bank:

About the Online Bank Sample Application

296 iPlanet Application Server Programmer’s Guide • February 2002

• OBBaseAppLogic is the base AppLogic class for the Online Bank application.

It contains methods to create a user session, initiate contact with the database,

handle certain types of errors, and show a success message to the user.

• OBLogin logs the user in, starts a session, and calls the ShowMenuPage

AppLogic.

• OBShowMenuPage displays the appropriate menu page depending on the

type of user. The possible menus are CustomerMenu.html, for bank customers,

and RepMenu.html, for employees of the bank.

• OBShowBalancesPage, called from the CustomerMenu, runs a query to get

the customer’s account information from a database. It then displays the

results in the page Balances.html.

• OBShowTransPage, called from the CustomerMenu, generates a report of

transactions for the customer’s accounts.

• OBShowTransferPage, called from the CustomerMenu, displays a page in

which the customer can transfer funds from one account to another. The page

displayed is Transfer.html.

• OBTransfer, called from the Transfer page, stores the funds transfer in a

transaction table. The Online Bank application is written under the assumption

that the database will perform a batch update of account balances on a periodic

basis, based on entries in this table.

• OBShowFindCust, called from the RepMenu, displays a page in which a bank

employee can enter search criteria to find one or more customers in the

database. The page displayed is FindCust.html.

• OBFindCust, called from the FindCust page, looks up a list of customers that

match the search criteria, and displays the results in ListCusts.html.

• OBShowCustPage, called from the ListCusts page, displays detail information

about a particular customer. The detail page is Cust.html. The bank employee

can make changes to the customer data in this page.

• OBUpdateCust, called from the Cust page, changes the customer data in the

database. It then calls OBShowCustPage to redisplay the customer page,

showing the new data.

• OBLogout destroys the user session and displays a farewell message to the

user.

The Online Bank Base AppLogic

Chapter 12 Sample Code Walkthrough 297

The Online Bank Base AppLogic
The AppLogic base class for the Online Bank application, OBBaseAppLogic,

contains methods to create a user session, initiate contact with the database, handle

certain types of errors, show a success message to the user, and perform data

validation and formatting. Below is an abbreviated listing of the code from this

class.

// ... #include statements

// ...

// Constructor and destructor methods. These contain the

// required calls to GXDllLockInc() and
GXDllLockDec().

OBBaseAppLogic::OBBaseAppLogic()

{

// Update count of references to the AppLogic library

GXDllLockInc();

m_pSession=NULL;

}

OBBaseAppLogic:: ~OBBaseAppLogic()

{

if(m_pSession) {

m_pSession->Release();

m_pSession=NULL;

}

// Update count of references to the AppLogic library

GXDllLockDec();

}

// **

//* GetOBSession(): Return a reference to this

// application's session object

// required calls to GXDllLockInc() and GXDllLockDec().

298 iPlanet Application Server Programmer’s Guide • February 2002

// **

STDMETHODIMP

OBBaseAppLogic::GetOBSession(OBSession **ppSession)

{

// See if there is already a session

if(!m_pSession) {

// Get the session

IGXSession2 *pSess=NULL;

if(((hr=GetSession(0, OB_APPNAME, NULL, &pSess))

==GXE_SUCCESS)&&pSess) {

m_pSession=new OBSession(pSess);

pSess->Release();

}

// If Session has not been created yet, instantiate

// it

else if(((hr=CreateSession(GXSESSION_DISTRIB, 600,

OB_APPNAME, NULL, NULL, &pSess))==GXE_SUCCESS)

&&pSess) {

m_pSession=new OBSession(pSess);

pSess->Release();

}

}

// If we now have a session, return it

if(m_pSession) {

*ppSession=m_pSession;

m_pSession->AddRef();

}

return hr;

}

// **

// required calls to GXDllLockInc() and GXDllLockDec().

Chapter 12 Sample Code Walkthrough 299

//* GetOBDataConn(): Return a reference to the Online

// Bank's default database

// **

STDMETHODIMP

OBBaseAppLogic::GetOBDataConn(IGXDataConn **ppConn)

{

HRESULT hr=GXE_SUCCESS;

// Create a ValList for the connection parameters

// ...

// Attempt to create the connection

hr=CreateDataConn(0, GX_DA_DRIVER_DEFAULT, pList,

m_pContext, ppConn);

// We're done with the list

pList->Release();

}

return hr;

}

// **

// Error handling methods

// **

STDMETHODIMP

OBBaseAppLogic::HandleOBSessionError()

{

return StreamResult("<HTML><BODY> You must re-log in to

perform this action </BODY></HTML>");

}

STDMETHODIMP

OBBaseAppLogic::HandleOBSystemError(LPSTR pMessage)

{

// ... Displays message, logs the occurrence, and

// required calls to GXDllLockInc() and GXDllLockDec().

300 iPlanet Application Server Programmer’s Guide • February 2002

// returns -1

}

STDMETHODIMP

OBBaseAppLogic::HandleOBValidationError(LPSTR pMessage)

{

// ... Displays message, using ValidationError.html

// ... logs the occurrence, and returns -1

}

STDMETHODIMP_(BOOL)

OBBaseAppLogic::IsSessionValid()

{

HRESULT hr=GXE_SUCCESS;

BOOL ret=FALSE;

// There must be a user name in the session

OBSession *pSess=NULL;

if(((hr=GetOBSession(&pSess))==GXE_SUCCESS)&&pSess) {

LPSTR pName=NULL;

if((pName=pSess->GetUserName())) {

ret=TRUE;

delete [] pName;

}

pSess->Release();

}

return ret;

}

// **

// ShowSuccessMessage()

// **

// required calls to GXDllLockInc() and GXDllLockDec().

Chapter 12 Sample Code Walkthrough 301

STDMETHODIMP

OBBaseAppLogic::ShowSuccessMessage(LPSTR pMessage)

{

// ... Displays message, using SuccessMessage.html

}

// **

// Validation methods

// **

STDMETHODIMP_(BOOL)

OBBaseAppLogic::ValidateString(LPSTR pTestString,

LPSTR pName, BOOL isRequired, UINT len,

BOOL useExactLength)

{

// ... Tests a string

}

STDMETHODIMP_(BOOL)

OBBaseAppLogic::ValidateSSNString(LPSTR pTestString,

LPSTR pName, BOOL isRequired)

{

// ... Tests a Social Security number

}

STDMETHODIMP_(BOOL)

OBBaseAppLogic::ValidatePhoneString(LPSTR pTestString,

LPSTR pName, BOOL isRequired)

{

// ... Tests a phone number

}

// required calls to GXDllLockInc() and GXDllLockDec().

302 iPlanet Application Server Programmer’s Guide • February 2002

STDMETHODIMP_(BOOL)

OBBaseAppLogic::ValidateZipString(LPSTR pTestString,

LPSTR pName, BOOL isRequired)

{

// ... Tests a ZIP code

}

STDMETHODIMP_(LPSTR)

OBBaseAppLogic::FormatSSNString(LPSTR pS)

{

// ... Formats data as a Social Security number

}

STDMETHODIMP_(LPSTR)

OBBaseAppLogic::FormatPhoneString(LPSTR pS)

{

// ... Formats data as a phone number

}

STDMETHODIMP_(LPSTR)

OBBaseAppLogic::FormatZipString(LPSTR pS)

{

// ... Formats data as a ZIP code

}

STDMETHODIMP_(LPSTR)

OBBaseAppLogic::GetDigitString(LPSTR pSource)

{

// ... Formats data

}

Detailed Walk Through of Funds Transfer Functionality

Chapter 12 Sample Code Walkthrough 303

Detailed Walk Through of Funds Transfer
Functionality

This section walks through the code and templates involved in a transfer of funds

between customer accounts. The following application components are presented

with comments:

• CustomerMenu.html

• OBShowTransferPage AppLogic

• Transfer.html

• OBTransfer AppLogic

• Other Code

CustomerMenu.html
After a customer logs in, the first page they see is the CustomerMenu HTML page.

This page displays a list of hyperlinks which a customer of the bank can use to

display various other pages in the application. The page begins with a standard

heading.

<html>

<head>

<title>Customer Menu</title>

</head>

<body>

<h2>Welcome!</h2>

<h4>What would you like to do today?</h4>

<p><a

The following lines define four hyperlinks, allowing the user to choose between

four AppLogic objects: CShowBalancesPage, CShowTransPage,

CShowTransferPage, and COBLogout. For the purposes of a funds transfer, the

user will click the hyperlink that runs the OBShowTransferPage AppLogic.

Detailed Walk Through of Funds Transfer Functionality

304 iPlanet Application Server Programmer’s Guide • February 2002

The names used in HTML pages are the names under which the AppLogic objects

are registered in the Online Bank Registration File, not necessarily the names with

which the AppLogic classes are declared in code.

href="/cgi-bin/gx.cgi/AppLogic+ CShowBalancesPage">View

Balances

</p>

<p>View Transactions
</p>

<p> Transfer between
Accounts </p>

<p> Log out </p>

</body>

</html>

OBShowTransferPage AppLogic
The OBShowTransferPage AppLogic displays a page in which the customer can

transfer funds from one account to another. The page displayed is Transfer.html.

Header File (ShowTransferPage.h)
The header file for the OBShowTransferPage AppLogic does the following:

• Includes C++ and iPlanet Application Builder header files.

• Declares the AppLogic object OBShowTransferPage, which is subclassed from

the OBBaseAppLogic class.

NOTE The names used in HTML pages are the names under which the

AppLogic objects are registered in the Online Bank Registration

File, not necessarily the names with which the AppLogic classes are

declared in code.

Detailed Walk Through of Funds Transfer Functionality

Chapter 12 Sample Code Walkthrough 305

The OBShowTransferPage AppLogic includes this header file at the beginning of

its source file.

First, in the following code, the header file includes other header files needed for

the AppLogic:

#ifndef __SHOWTRANSFERPAGE_H__

#define __SHOWTRANSFERPAGE_H__

#include <stdio.h>

#include <gxplat.h>

#include <gxutil.h>

#include <gxapplogic.h>

#include <gxdlm.h>

#include "BaseAppLogic.h"

Next, the header file declares the variable that will contain the GUID that uniquely

identifies the AppLogic object in the iPlanet Application Server system.

extern GUID OBShowTransferPageGUID;

Next, the header file subclasses the OBShowTransferPage class from the

OBBaseAppLogic class and declares its constructor, destructor, and Execute()

methods. Note that the constructor and destructor methods in this subclass do not

contain the required calls to GXDllLockInc() and GXDllLockDec(). These calls are

made in the superclass, OBBaseAppLogic.

class OBShowTransferPage : public OBBaseAppLogic

{public:

OBShowTransferPage();

virtual ~OBShowTransferPage();

STDMETHOD(Execute) ();

};

Finally, the header file associates the OBShowTransferPage AppLogic with its

corresponding GUID.

GXDLM_DECLARE(OBShowTransferPage, OBShowTransferPageGUID);

#endif /* __SHOWTRANSFERPAGE_H__ */

Source File (ShowTransferPage.cpp)
The source file begins by including the header files it needs, including

ShowTransferPage.h.

Detailed Walk Through of Funds Transfer Functionality

306 iPlanet Application Server Programmer’s Guide • February 2002

#include <stdio.h>

#include <gxplat.h>

#include <gxutil.h>

#include <gxagent.h>

#include <gxdlm.h>

#include "ShowTransferPage.h"

#include "gxval.h"

#include "common.h"

Next, the source file defines the GUID for the AppLogic that was declared in the

header file. You must use the kguidgen utility to generate a unique GUID for each

AppLogic, then paste it into the .cpp file. In addition, you must create a registration

file (.gxr), using a text editor, and paste the GUID information into the .gxr file as

well. For more information, see “Getting Ready to Run an Application” on

page 275 of , “Running and Debugging Applications.”

// {23F1E8F0-6388-11D1-A1AF-006008293C54}

//

GUID OBShowTransferPageGUID =

{ 0x23F1E8F0, 0x6388, 0x11D1, { 0xA1, 0xAF, 0x00, 0x60, 0x08, 0x29,
0x3C, 0x54 } };

///

The code next defines constructor and destructor methods for the class.

OBShowTransferPage::OBShowTransferPage() {

};

OBShowTransferPage::~OBShowTransferPage() {

};

The code next begins implementation of the Execute() method, using the

STMETHODIMP macro. For more information about this macro, see the iPlanet

Application Server Foundation Class Reference.

STDMETHODIMP

OBShowTransferPage::Execute()

{

Detailed Walk Through of Funds Transfer Functionality

Chapter 12 Sample Code Walkthrough 307

The code next declares and initializes the variable hr , which is used throughout the

code for return values of calls to methods and functions.

HRESULT hr=GXE_SUCCESS;

The code next checks for a valid user session, using the method IsSessionValid()

from the OBBaseAppLogic class. If the user logged in properly through the

OBLogin AppLogic, this validation should return successfully.

if(!IsSessionValid())

return HandleOBSessionError();

The code next opens a connection to a database, using the method

GetOBDataConn() from the OBBaseAppLogic class.

// Create the data connection

IGXDataConn *pConn=NULL;

if(((hr=GetOBDataConn(&pConn))==GXE_SUCCESS)&&pConn) {

The code next retrieves the session data to get information about the user. The

user’s Social Security number is retrieved.

// Pull the session

OBSession *pSession=NULL;

if(((hr=GetOBSession(&pSession))==GXE_SUCCESS)&&pSession) {

LPSTR pSsn=NULL;

// Get the social security number

if((pSsn=pSession->GetSSN())) {

If the number was retrieved successfully, the code sets up parameters for the query

which will retrieve information about the user’s accounts. In this AppLogic, the

query is stored in a query file.

// Create a vallist for loadQuery parameters

IGXValList *pList=GXCreateValList();

if(pList) {

GXSetValListString(pList, "ssn", pSsn);

If the parameters were set up successfully, the code loads the query and runs it.

IGXQuery *pQuery=NULL;

if(((hr=LoadQuery("GXApp/OnlineBank/queries/

SelCustAccts.gxq", "SelCustAccts", 0, pList,

Detailed Walk Through of Funds Transfer Functionality

308 iPlanet Application Server Programmer’s Guide • February 2002

&pQuery))==GXE_SUCCESS)&&pQuery) {

// Execute the query

IGXResultSet *pRset=NULL;

if(((hr=pConn->ExecuteQuery(0, pQuery, NULL,

NULL, &pRset))==GXE_SUCCESS)&&pRset) {

If the query successfully retrieved some data, the code places the data into two

template data objects. Each object contains the same data. The two template data

objects are needed because the template that will be merged with the data has to

display the same information twice (once under “Transfer from account” and again

under “Transfer to account”).

ULONG numRows=0;

if(((hr=pRset->RowCount(&numRows))==GXE_SUCCESS)&&numRows) {

// Fill up 2 template data basics with results

// from the same query to avoid running the same database

// query twice

GXTemplateDataBasic *pAcctsTempDB =

GXCreateTemplateDataBasic("SelCustAccts");

GXTemplateDataBasic *pAcctsTempDB2 =

GXCreateTemplateDataBasic("SelCustAccts2");

if(pAcctsTempDB&&pAcctsTempDB2) {

char pAcctDesc[200];

char pAcctNum[200];

// Pull the column ordinals for the account

// description and account num

ULONG acctDescCol=0; pRset->GetColumnOrdinal(

"OBAccountType_acctDesc", &acctDescCol);

ULONG acctNumCol=0; pRset->GetColumnOrdinal(

"OBAccount_acctNum", &acctNumCol);

char tmpStr[300];

Detailed Walk Through of Funds Transfer Functionality

Chapter 12 Sample Code Walkthrough 309

The code uses a loop to copy the data from the result set into the template data

objects.

do {

pRset->GetValueString(acctDescCol, pAcctDesc, 200);

pRset->GetValueString(acctNumCol, pAcctNum, 200);

sprintf(tmpStr, "acctDesc=%s;acctNum=%s", pAcctDesc,

pAcctNum);

pAcctsTempDB->RowAppend(tmpStr);

pAcctsTempDB2->RowAppend(tmpStr);

} while(pRset->FetchNext()==GXE_SUCCESS);

Since the data is expected to be hierarchical, an empty template data object is

created to act as parent to the other two.

GXTemplateDataBasic *pParent=NULL;

if((pParent=GXCreateTemplateDataBasic("Parent"))) {

// One dummy row, to contain the child groups

pParent->RowAppend("Dummy=dummy");

Then the template data objects that contain the data are added to the parent.

// Add the first template data object to the set

pParent->GroupAppend(pAcctsTempDB);

// Add the second template data object to the set

pParent->GroupAppend(pAcctsTempDB2);

The code merges the template data objects with the template Transfer.html to

display a page in which the user can set up the transaction.

if(EvalTemplate("GXApp/COnlineBank/templates/

Transfer.html", pParent, NULL, NULL,

NULL)!=GXE_SUCCESS)

// If unsuccessful...

Result("<HTML><BODY>Unable to evaluate template.

</BODY></HTML>");

pParent->Release();

Detailed Walk Through of Funds Transfer Functionality

310 iPlanet Application Server Programmer’s Guide • February 2002

}

}

// Release the template data basics, if applicable

if(pAcctsTempDB)

pAcctsTempDB->Release();

if(pAcctsTempDB2)

pAcctsTempDB2->Release();

If the account data query failed, the code displays an error message, using the

HandleOBSystemError() method declared in the BaseAppLogic class.

}

else

HandleOBSystemError("Could not retrieve account data");

pRset->Release();

Next, the code releases the objects used.

}

pQuery->Release();

}

pList->Release();

}

delete [] pSsn;

}

pSession->Release();

}

pConn->Release();

}

else

// If data connection failed, return error

HandleOBSystemError("Could not create data connection");

Finally, the code sets the return value of the Execute() method.

return GXE_SUCCESS;

}

Detailed Walk Through of Funds Transfer Functionality

Chapter 12 Sample Code Walkthrough 311

Transfer.html
Transfer.html is a page in which the customer can transfer funds from one account

to another. The OBShowTransferPage AppLogic uses this template to return

results.

<html>

<head>

<title>Account Transfer</title>

</head>

<body>

The following line is a hyperlink that runs the ShowMenuPage AppLogic,

returning the user to the main menu.

The names used in HTML pages are the names under which the AppLogic objects

are registered in the Online Bank Registration File, not necessarily the names with

which the AppLogic classes are declared in code.

<p>Back to Main
Menu

</p>

<h2>Account Transfer</h2>

The following line sets the action of this page to run the Transfer AppLogic. This

action will occur when the user clicks the Transfer button, coded later in the page.

<form action="/cgi-bin/gx.cgi/AppLogic+ CTransfer" method="POST">

The following lines contain GX markup tags, which merge the user’s own account

information with the page.

%gx type=tile id=Parent MAX=100%

 <p>Which account would you like to transfer from?

NOTE The names used in HTML pages are the names under which the

AppLogic objects are registered in the Online Bank Registration

File, not necessarily the names with which AppLogic classes are

declared in code.

Detailed Walk Through of Funds Transfer Functionality

312 iPlanet Application Server Programmer’s Guide • February 2002

 %gx type=tile id=SelCustAccts MAX=100%

 <input type="radio" name="fromAcct"

 value="%gx type=cell id="SelCustAccts.acctNum"%%/gx%">

 %gx type=cell id="SelCustAccts.acctDesc"%%/gx%: %gx type=cell
id="SelCustAccts.acctNum"%%/gx%

 %/gx%

 </p>

The following lines repeat the user’s account information, so the user can choose

the destination account:

<p>Which account would you like to transfer to?

 %gx type=tile id=SelCustAccts2 MAX=100%

 <input type="radio" name="toAcct" value="%gx type=cell

id="SelCustAccts2.acctNum"%%/gx%">

 %gx type=cell id="SelCustAccts2.acctDesc"%%/gx%:

%gx type=cell id="SelCustAccts2.acctNum"%%/gx%

 %/gx%

 </p>

 %/gx%

The following lines set up the field where the user tells how much money to

transfer between the two accounts selected above:

<p>How much would you like to transfer?

 <input type="text" name="amount" size="20" value="0.00">

</p>

Finally, the template specifies the Transfer button, which sets off the page action

specified earlier, running the Transfer AppLogic.

<p><input type="submit" value="Transfer" name="transfer"></p>

</form>

</body>

</html>

Detailed Walk Through of Funds Transfer Functionality

Chapter 12 Sample Code Walkthrough 313

OBTransfer AppLogic
The OBTransfer AppLogic stores the funds transfer in a transaction table. The

Online Bank application is written under the assumption that the database will

perform a batch update of account balances on a periodic basis, based on entries in

this table.

Header File (Transfer.h)
The header file for the OBTransfer AppLogic does the following:

• Includes C++ and iPlanet Application Builder header files.

• Declares the AppLogic object OBTransfer, which is subclassed from the

OBBaseAppLogic class.

The OBTransfer AppLogic includes this header file at the beginning of its source

file.

First, in the following code, the header file includes other header files:

#ifndef __TRANSFER_H__

#define __TRANSFER_H__

#include <stdio.h>

#include <gxplat.h>

#include <gxutil.h>

#include <gxapplogic.h>

#include <gxdlm.h>

#include "BaseAppLogic.h"

Next, the header file declares the variable that will contain the GUID that uniquely

identifies the AppLogic object in the iPlanet Application Server system.

extern GUID OBTransferGUID;

Next, the header file subclasses the OBTransfer class from the OBBaseAppLogic

class and declares its constructor, destructor, and Execute() methods. Note that the

constructor and destructor methods in this subclass do not contain the required

calls to GXDllLockInc() and GXDllLockDec(). These calls are made in the

superclass, OBBaseAppLogic.

class OBTransfer : public OBBaseAppLogic

{

public:

Detailed Walk Through of Funds Transfer Functionality

314 iPlanet Application Server Programmer’s Guide • February 2002

OBTransfer();

virtual ~OBTransfer();

STDMETHOD(Execute) ();

};

Finally, the header file associates the OBTransfer AppLogic with its corresponding

GUID.

GXDLM_DECLARE(OBTransfer, OBTransferGUID);

#endif /* __TRANSFER_H__ */

Source File (Transfer.cpp)
The source file begins by including the header files it needs, including Transfer.h.

#include <stdio.h>

#include <gxplat.h>

#include <gxutil.h>

#include <gxagent.h>

#include <gxdlm.h>

#include "Transfer.h"

#include "gxval.h"

#include "common.h"

Next, the source file defines the GUID for the AppLogic that was declared in the

header file. You must use the kguidgen utility to generate a unique GUID for each

AppLogic, then paste it into the .cpp file. In addition, you must create a registration

file (.gxr), using a text editor, and paste the GUID information into the .gxr file as

well. For more information, see “Getting Ready to Run an Application” on

page 275 of , “Running and Debugging Applications.”

// {2754DA40-638C-11D1-A1AF-006008293C54}

//

GUID OBTransferGUID =

{ 0x2754DA40, 0x638C, 0x11D1, { 0xA1, 0xAF, 0x00, 0x60, 0x08, 0x29,
0x3C, 0x54 } };

///

The code next defines constructor and destructor methods for the class.

OBTransfer::OBTransfer() {

Detailed Walk Through of Funds Transfer Functionality

Chapter 12 Sample Code Walkthrough 315

};

OBTransfer::~OBTransfer() {

};

The code next begins implementation of the Execute() method, using the

STMETHODIMP macro. For more information about this macro, see the iPlanet

Application Server Foundation Class Reference.

STDMETHODIMP

OBTransfer::Execute()

{

The code next declares and initializes the variable hr , which is used throughout the

code for return values of calls to methods and functions.

HRESULT hr=GXE_SUCCESS;

The code next checks for a valid user session, using the method IsSessionValid()

from the OBBaseAppLogic class. If the user logged in properly through the

OBLogin AppLogic, this validation should return successfully.

if(!IsSessionValid())

return HandleOBSessionError();

The code next retrieves the input data which the user specified in the page

Transfer.html.

// Get parms from the input form

LPSTR pFromAcct=NULL;

LPSTR pToAcct=NULL;

LPSTR pAmountString=NULL;

pFromAcct=GXGetValListString(m_pValIn, "fromAcct");

pToAcct=GXGetValListString(m_pValIn, "toAcct");

pAmountString=GXGetValListString(m_pValIn, "amount");

// Convert amount to double

double amount=0.0;

if(pAmountString)

amount=atof(pAmountString);

Detailed Walk Through of Funds Transfer Functionality

316 iPlanet Application Server Programmer’s Guide • February 2002

The code next performs some tests on the input. This is always advisable when

data comes in from outside the application, such as from end users.

// Validate input

if((!pFromAcct)||(!pToAcct))

return HandleOBValidationError("You must specify both an

account to transfer from and an account to transfer

to.");

else if(!strcmp(pFromAcct, pToAcct))

return HandleOBValidationError("You may not transfer into

the account from which you are transferring.");

// Check the amount

if(amount<=0.0)

return HandleOBValidationError("You must enter a positive

non-zero amount of money to transfer.");

The code then retrieves the current date and time, so that it can time-stamp the

transaction.

// Get the current date time

GXDATETIME dt;

GXGetCurrentDateTime(&dt);

char dateStr[50];

sprintf(dateStr, "%d-%d-%d %d:%d:%d", dt.year, dt.month,

dt.day, dt.hour, dt.minute, dt.second);

Log(dateStr);

The code next opens a connection to a database, using the method

GetOBDataConn() from the OBBaseAppLogic class.

// Create the data connection

IGXDataConn *pConn=NULL;

if(((hr=GetOBDataConn(&pConn))==GXE_SUCCESS)&&pConn) {

The code next accesses the database to retrieve a handle to the OBTransactions

table, and gets the ordinal numbers of the columns in the database. The column

ordinals are required in later method calls.

Detailed Walk Through of Funds Transfer Functionality

Chapter 12 Sample Code Walkthrough 317

IGXTable *pTable=NULL;

if(((hr=pConn->GetTable("OBTransaction", &pTable))

==GXE_SUCCESS)&&pTable) {

// Look up the column ordinals for the table

ULONG transTypeCol=0; pTable->GetColumnOrdinal(

"transType", &transTypeCol);

ULONG postDateCol=0; pTable->GetColumnOrdinal("postDate",

&postDateCol);

ULONG acctNumCol=0; pTable->GetColumnOrdinal("acctNum",

&acctNumCol);

ULONG amountCol=0; pTable->GetColumnOrdinal("amount",

&amountCol);

The code then starts a transaction. This ensures that both parts of the funds transfer

are executed together.

IGXTrans *pTx=NULL;

if(((hr=CreateTrans(&pTx))==GXE_SUCCESS)&&pTx) {

pTx->Begin();

The code then performs an INSERT command to add a row for the withdrawal

portion of the transaction.

// Create a new row for the withdrawal half of the

// transaction

pTable->AllocRow();

pTable->SetValueString(acctNumCol, pFromAcct);

pTable->SetValueInt(transTypeCol, OB_TRANSTYPE_WITHDRAWAL);

pTable->SetValueDateString(postDateCol, dateStr);

pTable->SetValueDouble(amountCol, amount*-1.0);

// Add the row using the transaction

if(pTable->AddRow(0, pTx)==GXE_SUCCESS) {

The code then performs another INSERT command for the deposit portion of the

transfer.

Detailed Walk Through of Funds Transfer Functionality

318 iPlanet Application Server Programmer’s Guide • February 2002

pTable->AllocRow();

pTable->SetValueString(acctNumCol, pToAcct);

pTable->SetValueInt(transTypeCol, OB_TRANSTYPE_DEPOSIT);

pTable->SetValueDateString(postDateCol, dateStr);

pTable->SetValueDouble(amountCol, amount);

// Add the row using the transaction

if(pTable->AddRow(0, pTx)==GXE_SUCCESS) {

If both INSERT commands were performed successfully, the code commits the

transaction.

pTx->Commit(0, NULL);

ShowSuccessMessage("Your transfer has been completed");

}

If either INSERT command failed, the code rolls back the transaction.

else {

pTx->Rollback();

HandleOBSystemError("Could not insert transaction");

}

}

else {

pTx->Rollback();

HandleOBSystemError("Could not insert transaction");

}

The remainder of the code handles any earlier failures in creating objects, getting

connections, and so on.

pTx->Release();

}

else

HandleOBSystemError("Could not start transaction");

pTable->Release();

}

Detailed Walk Through of Funds Transfer Functionality

Chapter 12 Sample Code Walkthrough 319

else

HandleOBSystemError("Could not access table

OBTransaction");

pConn->Release();

}

else

HandleOBSystemError("Could not create data connection");

Finally, the code sets the return value of Execute().

return GXE_SUCCESS;

}

Other Code
The code in the file applogics.cpp establishes to the iPlanet Application Server the

entry point in a dynamically loadable, shared library module (DLM) for each

AppLogic object in the Online Bank application, including OBShowTransferPage

and OBTransfer.

GXDLM_IMPLEMENT_BEGIN();

GXDLM_IMPLEMENT(OBLogin, OBLoginGUID);

GXDLM_IMPLEMENT(OBShowMenuPage, OBShowMenuPageGUID);

GXDLM_IMPLEMENT(OBShowBalancesPage, OBShowBalancesPageGUID);

GXDLM_IMPLEMENT(OBShowTransPage, OBShowTransPageGUID);

GXDLM_IMPLEMENT(OBShowTransferPage, OBShowTransferPageGUID);

GXDLM_IMPLEMENT(OBLogout, OBLogoutGUID);

GXDLM_IMPLEMENT(OBTransfer, OBTransferGUID);

GXDLM_IMPLEMENT(OBShowNewCustPage, OBShowNewCustPageGUID);

GXDLM_IMPLEMENT(OBShowFindCustPage, OBShowFindCustPageGUID);

GXDLM_IMPLEMENT(OBFindCust, OBFindCustGUID);

GXDLM_IMPLEMENT(OBShowCustPage, OBShowCustPageGUID);

GXDLM_IMPLEMENT(OBCreateCust, OBCreateCustGUID);

GXDLM_IMPLEMENT(OBUpdateCust, OBUpdateCustGUID);

GXDLM_IMPLEMENT_END();

Online Bank Registration File

320 iPlanet Application Server Programmer’s Guide • February 2002

For more information, see the description of the GXDLM_IMPLEMENT,

GXDLM_IMPLEMENT_BEGIN, and GXDLM_IMPLEMENT_END macros in the

iPlanet Application Server Foundation Class Reference.

Online Bank Registration File
The Online Bank registration file (COnlineBank.gxr) contains the GUIDs for the

AppLogics in the Online Bank sample application. Blank lines, where they occur,

are significant. The names given to AppLogics in the .gxr file do not necessarily

have to match the class names with which the AppLogic classes are declared in

code.

For more information about .gxr files, see “Getting Ready to Run an Application”

on page 275 of , “Running and Debugging Applications.”

AppLogic COBLogin::COnlineBank

{C1B5E720-6153-11D1-A1AE-006008293C54}

COnlineBank

AppLogic CShowMenuPage::COnlineBank

{C8899CE0-61DC-11D1-A1AE-006008293C54}

COnlineBank

AppLogic CShowBalancesPage::COnlineBank

{5AE8CE70-62D0-11D1-A1AF-006008293C54}

COnlineBank

AppLogic CShowTransPage::COnlineBank

{B10DF490-62E7-11D1-A1AF-006008293C54}

COnlineBank

AppLogic CShowTransferPage::COnlineBank

{23F1E8F0-6388-11D1-A1AF-006008293C54}

Online Bank Registration File

Chapter 12 Sample Code Walkthrough 321

COnlineBank

AppLogic COBLogout::COnlineBank

{0C598E40-6389-11D1-A1AF-006008293C54}

COnlineBank

AppLogic CTransfer::COnlineBank

{2754DA40-638C-11D1-A1AF-006008293C54}

COnlineBank

AppLogic CShowNewCustPage::COnlineBank

{C6C91850-64F0-11D1-A1AF-006008293C54}

COnlineBank

AppLogic CShowFindCustPage::COnlineBank

{092043B0-64F2-11D1-A1AF-006008293C54}

COnlineBank

AppLogic CFindCust::COnlineBank

{9962F0B0-64F3-11D1-A1AF-006008293C54}

COnlineBank

AppLogic CShowCustPage::COnlineBank

{769F1300-64FC-11D1-A1AF-006008293C54}

COnlineBank

AppLogic CCreateCust::COnlineBank

{C9103DF0-6549-11D1-A1AF-006008293C54}

COnlineBank

AppLogic CUpdateCust::COnlineBank

{951550D0-655D-11D1-A1AF-006008293C54}

Online Bank Registration File

322 iPlanet Application Server Programmer’s Guide • February 2002

COnlineBank

323

Appendix A

Implementation Tips

This appendix includes the following tips:

• System Configuration Tips

• Memory Management Tips

• Database and Query Tips

• HTML Tips

• Session Tips

• Tips for Calling an Applogic From Another Applogic

• Streaming Tips

System Configuration Tips
Install the Web server, the iPlanet Application Server, and the database on

different machines so that they will not have to compete for resources. The two

servers use Web Connector to communicate.

When using the Web Connector, remember that the CGI variables or NSAPI/ISAPI

variables are set on the machine where Web Connector is running, not on the

iPlanet Application Server machine. When changing the configuration of Web

Connector, make sure to update the registry on the correct machine.

Memory Management Tips

324 iPlanet Application Server Programmer’s Guide • February 2002

Memory Management Tips
When resources are no longer needed, you must explicitly free them by calling the

Release() method. However, even if you are extremely careful about reference

counting, it is likely that some memory will not be released properly. Over time,

such memory leaks will consume the available resources on your machine.

Therefore, when using C++, it is advisable to use a tool capable of memory use

analysis, such as Purify 4.1 by Pure Atria.

Database and Query Tips
To improve database performance:

• Design the database schema carefully.

• Tune the database cache sizes and the number of connections.

Query files are easier to maintain than queries written in code using method calls.

You can use the Query Designer to set up queries visually, and let the Query

Designer automatically generate the query file. You can also write query files using

a text editor.

Avoid queries with more than two or three joins, as this will degrade performance.

To improve performance, consider denormalizing the database. Denormalization

results in duplicate data in the database, but simplifies queries and improves

performance in the database.

Use the caching capabilities of iPlanet Application Server to improve performance.

Plan on caching early in the design process, because its use affects how you design

the client side of the application. All the criteria needed for caching must be present

in the input parameters of the request. For example, when the clients are Web

browsers, this means the caching criteria must be present as fields on an HTML

form, or as arguments in the URL that calls the AppLogic.

When you are finished using a result set, release it by calling Release() . This

method releases the database connection so that it is available for use by other

application code. Do not release the result set or close the database connection until

you are finished using the result set. Just because the query has run and returned a

result set interface, that doesn’t mean all the data is there. Typically the result set is

buffered, and live database cursors may still be open. Therefore, when you reach

the last row in the buffer, the result set object still needs the connection to get the

next batch of rows into the buffer.

HTML Tips

Appendix A Implementation Tips 325

HTML Tips
To improve the performance of any application with Web browser clients, always

use the NSAPI/ISAPI plugin.

Avoid building HTML strings in code, because this is difficult to maintain and

update. Keep the HTML in files and templates. HTML designers can then improve

and enhance your application’s Web browser presentation without having to edit

business logic code.

Session Tips
Avoid storing too much data in a session. Every time you save or retrieve the

session-related data, the whole IGXValList object is involved. This can impact the

performance of the application.

Tips for Calling an Applogic From Another
Applogic

By using the NewRequest() method, an AppLogic can call another AppLogic.

Usually, this involves a distributed process-to-process communication. This is

slower than an in-process local procedure call, but has the added benefits of

allowing AppLogic location transparency, load balancing, more support for

partitioning, and result caching. For truly fine-grained, often-called operations,

however, the remote communication costs are not worth the benefits.

Streaming Tips
The SaveSession() method in the GXAppLogic class performs some processing of

HTTP headers, which must be sent before the HTTP body. Therefore, if your

application uses sessions, and also streams HTML results to a Web browser, be

sure to call SaveSession() before calling any streaming methods, including

EvalTemplate() or EvalOutput().

Streaming Tips

326 iPlanet Application Server Programmer’s Guide • February 2002

The method called SaveSession() exists in both the IGXSession2 interface and the

GXAppLogic class. The method in the GXAppLogic class is a wrapper that calls the

method in the interface, and performs some tasks that ensure that the session is

accessible to future AppLogics. The SaveSession() method in the interface saves

session data only. Therefore, be sure to call SaveSession() in the GXAppLogic class

at least once after a session is created.

Streaming Results from EvalTemplate() or EvalOutput() Using
IGXTemplateData
If you are using an IGXTemplateData object rather than a database query as the

source of data for a call to EvalTemplate() or EvalOutput(), you can increase the

perceived performance of the call by using the following technique. Instead of

populating the IGXTemplateData object by calling RowAppend() repeatedly,

implement the IGXTemplateData interface yourself and call EvalTemplate() or

EvalOutput() much earlier in the AppLogic code. In this way, the Template Engine

can call the IGXTemplateData object as it needs data and return results as they are

available, keeping the user waiting much less time for a response.

The Template Engine calls the MoveNext() method in the IGXTemplateData

interface each time it needs a new row of data; for example, when it has completed

one pass in a tile tag and is ready to start the next iteration of that tile. If you have

implemented your own MoveNext() method, you can use that code to retrieve

data as needed. This takes the place of calling RowAppend() repeatedly to

populate the IGXTemplateData object all at once. After MoveNext() is called,

Get() is called to retrieve the values in that row.

For example, the following code shows how the AppLogic code looks when you

use RowAppend():

// Populate the in-memory template data. The number

// of calls to RowAppend() is unlimited. Meanwhile,

// the user is waiting for an unknown length of time

// until the full template data set is populated.

//

GXTemplateDataBasic *td;

td = new GXTemplateDataBasic("offices");

td->RowAppend("office=New York;revenue=150");

td->RowAppend("office=Hong Kong;revenue=130");

// ... add more records here.

Streaming Tips

Appendix A Implementation Tips 327

// Pass the finished data set to EvalTemplate().

HRESULT hr;

hr = EvalTemplate("salesReportByOffice.html",

(IGXTemplateData *) td, NULL, NULL, NULL);

td->Release();

return hr;

Now suppose you create your own implementation of the IGXTemplateData

interface or subclass from the GXTemplateDataBasic class. The following code is in

the header file:

class MyTemplateDataBasic : public GXTemplateDataBasic

{

public:

MyTemplateDataBasic(LPSTR group) :

GXTemplateDataBasic(group)

{

// Prepare the retrieval of the offices records here.

// We don't have to get all the data yet, just

// the first record data.

}

STDMETHOD(IsEmpty) (

LPSTR group,

BOOL *empty

);

STDMETHOD(MoveNext) (

LPSTR group

);

STDMETHOD(GetValue) (

LPSTR szExpr,

IGXBuffer **ppBuff

);

Streaming Tips

328 iPlanet Application Server Programmer’s Guide • February 2002

};

The following code is in the source file:

STDMETHODIMP

MyTemplateDataBasic::GetValue(LPSTR field,

IGXBuffer **ppBuff)

{

if (strcmp(field, "offices.office") == 0)

{

IGXBuffer *office;

// ... retrieve current office field value here.

*ppBuff = office;

return NOERROR;

}

if (strcmp(field, "offices.revenue") == 0)

{

IGXBuffer *revenue;

// ... retrieve current revenue field value here.

*ppBuff = revenue;

return NOERROR;

}

return GXTemplateDataBasic::GetValue(field, ppBuff);

}

STDMETHODIMP

MyTemplateDataBasic::IsEmpty(LPSTR group, BOOL *empty)

{

if (strcmp(group, "offices") == 0)

{

boolean isOfficeRecordSetEmpty;

// ... determine if the data set is empty.

*empty = isOfficeRecordSetEmpty;

Streaming Tips

Appendix A Implementation Tips 329

return NOERROR;

}

return GXTemplateDataBasic::IsEmpty(group, empty);

}

STDMETHODIMP

MyTemplateDataBasic::MoveNext(LPSTR group)

{

if (strcmp(group, "offices") == 0)

{

HRESULT noMoreRecords;

// Move to next record in offices data set here.

// This is where we can dynamically compute

// the next record.

//

// Return NOERROR (0) if next record is available.

// Return non-zero if no more records.

return noMoreRecords;

}

return GXTemplateDataBasic::MoveNext(group);

}

The following code shows how the AppLogic code looks when you let the

Template Engine retrieve the data through MoveNext():

// Use our own GXTemplateDataBasic subclass, which is

// smart enough to dynamically retrieve office records

// when called back by the template engine. This allows

// data to be streamed back to the user as it becomes

// available, instead of waiting for the entire

// data set to be created first in memory.

//

MyTemplateDataBasic *td;

Streaming Tips

330 iPlanet Application Server Programmer’s Guide • February 2002

td = new MyTemplateDataBasic("offices");

// MyTemplateDataBasic retrieves office records

// as necessary, so we do not prepopulate it here.

// Pass the MyTemplateDataBasic object to EvalTemplate().

HRESULT hr;

hr = EvalTemplate("salesReportByOffice.html",

(IGXTemplateData *) td, NULL, NULL, NULL);

td->Release();

return hr;

331

Glossary

administrator See system administrator.

aggregate expression An expression in a query that summarizes values from one

database column across several rows. You can use aggregate expressions to specify

computed fields. The aggregate functions available depend on your database

server, but those typically supported are Min() , Max() , Count() , Avg() ,

Sum() , First() , and Last() .

alias An alternate name. In a query, an alias is a name given to a database table,

column, or computed field.

API See application programming interface (API).

applet An applet is a small application written in Java that runs in a web

browser. Typically, applets are called by web pages to provide special

functionality.

application flow The perceived progress of activity from page to page in a

browser-oriented application.

application programming interface (API) A set of instructions that a computer

program can use to communicate with other software or hardware that is designed

to interpret that API. In an iPlanetApplication Server application, the API consists

of the iPlanet Application Server Foundation Class Library. Computer programs

can use this API to communicate with iPlanetApplication Server.

application server A program that runs an application in a client/server

environment, executing the logic that makes up the application and acting as

middleware between a browser (client) and a data source (server).

332 iPlanet Application Server Programmer’s Guide • February 2002

AppLogic object A special Java class responsible for completing a well-defined,

modular task within a iPlanet Application Server application. Use AppLogics to

perform actions such as handling form input, accessing data, or generating data

used to populate HTML templates.

banded report See grouped report.

base class See also superclass. A class from which another class is derived.

base session resource The class defined to handle the iPlanet Application Server

application session variables.

binary large object (BLOB) A large block of bits that can be stored in a database.

A BLOB is useful for storing any large piece of data, such as pictures or sounds,

that does not need to be interpreted by the database.

BLOB See binary large object (BLOB).

browser See web browser.

browser events Actions that occur on the browser page, such as passing the

cursor over a particular component, that can trigger actions specified by JavaScript

objects on the page.

build project Compile all source files in the project that have been edited since

the last time they were compiled.

business logic The implementation rules determined by an application's

requirements and processed by AppLogics on the iPlanet Application Server.

cache See result cache.

cell tag A type of GX markup tag that displays a dynamic data value.

child query A flat query that represents an inner level of data in a hierarchical

query. Each child query is nested relative to another flat query, which is its parent

query. Every flat query in a hierarchical query is a child query, except the

outermost.

class A named set of methods and member variables that define the

characteristics of a particular type of object. The class defines what types of data

and behavior are possible for this type of object.

Glossary 333

clean project Remove all object files from the project, leaving only source.

client A computer or application that contacts and obtains data from a server on

another computer. A client program is designed to work with one specific type of

server.

column A field in a database row.

compile To translate source code written by a programmer into object code that

can run on a computer. A compiler is a program that performs this translation.

component Reusable objects that you can place on a page or template to perform

a certain task. For example, an ImageLink component uses a GIF or JPG image as

an anchor for an HTML hypertext link. The behavior and appearance of

components are determined by their properties.

Component Object Model (COM) A specification that provides a standard way

for objects and their clients to interact. COM specifies only how objects interact, not

how applications are structured internally or how they are implemented.

computed field A field in a query that displays the result of an expression rather

than stored data. The database engine recalculates the value each time it runs the

query.

connection A database connection is a communication link with a database or

other data source. AppLogics can create and manipulate several database

connections simultaneously to access data.

connection validation Guarantees that an IDataConn can be built for a set of

named connections listed for an AppLogic.

constructor A method that instantiates a class.

cookie A variable that your application can send to a web browser to be stored

there for a specified length of time. Each time a web browser views an HTML page

in your application, the cookies from that browser are sent to the application.

Cookies are domain-specific and can take advantage of the same web server

security features as other data interchange between your application and the

server. Thus, cookies are useful for privately exchanging data between your

application and the web browser.

custom property editor A dialog box that helps you determine the correct value

for a complex property definition.

334 iPlanet Application Server Programmer’s Guide • February 2002

database forms wizard A wizard that produces an HTML page with a data input

form, a data model to establish database table relationships, a query based on the

data model, an AppLogic to process the query, an HTML template to display the

results of the query, and an optional search form to enable user-initiated database

queries.

data-bound properties Properties that enable components to be bound to a data

set in an AppLogic.

data connection A logical connection between an application and a relational

database.

data expression An expression containing one or more columns of data, which

consist of a data set and a data field, with an optional display format.

data field One column of data in a data set.

data model An entity relationship (ER) diagram that specifies the data source

tables and relationships used in your application.

data set A user-populated data source for the iPlanet Application Server

template engine.

data source A collection of data electronically stored within a relational database,

legacy system, or object database.

default A value that is automatically assigned by the application when the user

or programmer does not specify a value.

DELETE query A statement that specifies which data to delete from a database.

deploy Create a copy of all the files in a project on one or more servers, in such a

way that one or more iPlanet Application Servers and (optionally) one or more web

servers can run the application.

design-time The behavior (in the test server) or appearance (in the iPlanet

Application Builder windows) of an object when the application is being

developed.

detail record The result of a secondary query, based on a master record.

display format See format mask.

Glossary 335

distributed computing A collection of computers linked together. Such systems

can exist on a local area network (LAN), a wide area network (WAN), or the

Internet. Distributed systems make several types of advanced computing systems

possible, including client/server, multi-tier, and partitioned applications.

DLM See dynamically loadable module (DLM).

dockable window A window, such as the Project or Properties window, that has

the ability to “snap into place” against the workspace border. When a window is

attached in this way, it cannot be overlapped by other windows.

download project Copying application files from a server back to a development

machine. Note that this does not re-create the development environment if the files

were filtered during development.

drag and drop Clicking an object, holding the mouse button down while moving

the cursor and the object to a destination (dragging), and then releasing the button

to insert the object at the destination (dropping).

dynamically loadable module (DLM) A binary executable file that can be loaded

while an application is running. In Windows NT or Win95 systems, DLM is

another name for a Dynamic-Link Library (DLL). In UNIX systems, DLMs are

implemented as ELF shared libraries.

Editor Beans Java objects which generate and maintain components.

enable (AppLogic) Enable the application server to run registered AppLogics.

ER diagram Describes the attributes of database entities and the relationships

among them.

event Named actions that you register with the iPlanetApplication Server. The

event occurs either when a timer expires or when the event is called from

application code at run time. Typical uses for events include periodic backups,

reconciling accounts at the end of the business day, or sending alert messages.

event handler JavaScript object on an HTML page or template that handles a

browser event at run time.

execute server Part of the iPlanetiPlanet Application Server that handles

executive functions such as load balancing and process management.

336 iPlanet Application Server Programmer’s Guide • February 2002

field The smallest identifiable part of a table in a database. A field is the

intersection of a row and a column.

Also, a unit of data in a result set. Each field in a result set has a name, which

corresponds to either a database column or an expression. Each field contains a

single data value.

filtering Removing development-oriented information from files while

deploying.

flat query A query that produces a result set that is not divided into levels or

groups. The result set of a flat query is like a table.

floating toolbar The state of a toolbar when it appears unattached in the center of

the workspace, as opposed to being docked along the workspace borders. Floating

toolbars have title bars to identify them.

format mask A mask applied to data to specifically tailor its format for display.

Options include numeric formats (integer, percentage), and custom date formats.

Also known as display format.

generated code JavaScript code generated by Editor Beans which should not be

edited.

globally unique identifier (GUID) A unique number that identifies an

AppLogic object and is used to request that iPlanetApplication Server runs that

AppLogic object.

group A set of rows in a result set that have one or more field values in common.

grouped report A report that shows records in logical groups, such as sales

grouped by geographic region, and can show summary data for each group.

GUID See globally unique identifier (GUID).

GX markup tag A special type of syntax used in templates to indicate where

dynamic data is to be merged with the template. A GX tag is made up of two tags,

<GX ...> and </GX>, and the text between them. Some GX tags are represented

with % rather than < or >, as in %GX TYPE="cell" ...% %/GX%. This is equivalent

to <GX TYPE="cell" ...> </GX> at run time.

.gxm file A file that keeps track of all files belonging to a project. Also called a

project file.

Glossary 337

GXML template A definition for a dynamically generated set of output data.

Data retrieved from a database or other data source at run time is sent back to the

client in a self-describing stream of output.

.gxr file A file containing information that allows .java files and other files in a

project to be registered with the iPlanet Application Server. Also called a

registration.

handle The verticle strip on the left side of a toolbar by which you can drag the

toolbar.

hierarchical query A query that combines several flat queries to construct a

result set with multiple nested levels of data.

HTML See Hypertext Markup Language (HTML).

HTML page A page coded in HTML and intended for display in a web browser.

Many HTML pages are view-only images and text, but HTML pages can also form

the interface of a web application. A user can type data in an HTML page, then

click a button on the page to submit the data. The web application manipulates the

data and sends a response to the user on another HTML page.

HTML template A definition for a dynamically generated HTML page.

AppLogic uses HTML templates to present dynamic data. Data retrieved from a

database, or otherwise generated dynamically, is merged with the template to

create a database report or other type of HTML page, which is displayed to the

user. Contrast with HTML page.

HTTP See Hypertext Transport Protocol (HTTP).

hyperlink A word or phrase that the user can click to display another page in an

online document.

Hypertext Markup Language (HTML) The coding language used to create

documents that can be displayed by web browsers. Each block of text is

surrounded by codes that indicate the nature of the text, such as heading, body

paragraph, or list item. Additional codes are used to create hyperlinks and call

applets or AppLogic objects. HTML codes are surrounded by angle brackets < >.

Hypertext Transport Protocol (HTTP) The protocol for communicating

hypertext documents across the Internet and the World Wide Web. HTTP provides

a structure for communication between HTTP clients and HTTP servers.

338 iPlanet Application Server Programmer’s Guide • February 2002

image URL Source code for an image. The URL can be relative (local server) or

absolute (local or remote server). The URL can be determined dynamically if the

component that requires it is in a template.

include tag A type of GX markup tag that displays HTML output created by

evaluating another template.

inheritance A mechanism in which a subclass automatically includes the method

and variable definitions of its superclass. A programmer can change or add to the

inherited characteristics of a subclass without affecting the superclass.

input validation The set of rules which defines a valIn.

input wizard A wizard that produces a static HTML page containing an input

form, an AppLogic to process the form, an HTML template to display the results,

and optionally a query to retrieve data from a data source.

INSERT query A statement that specifies which data to add to a database.

instance An object that is based on a particular class. Each instance of the class is

a distinct object, with its own variable values and state. However, all instances of a

class share the variable and method definitions specified in that class.

instantiation The process of allocating an object to memory at run time.

interface Description of the services provided by an object. An interface defines a

set of functions, called methods, and includes no implementation code. An

interface, like a class, defines the characteristics of a particular type of object.

However, unlike a class, an interface is always abstract. A class can be instantiated

to form an object, but an interface can not be instantiated.

JavaScript A language that can run as a script in an HTML page, allowing screen

actions outside the scope of HTML, including responses to browser events.

Java server Part of the iPlanet Application Server that runs and manages Java

objects.

layout view An HTML editor window display that shows the HTML page

similarly to how it appears in a browser at runtime.

Glossary 339

link URL A target for a hypertext link. These include static pages, AppLogics,

and other web sites. The URL can be relative (local server) or absolute (local or

remote server). The URL can be determined dynamically if the component that

requires it is in a template.

listing See tabular report.

load balancing A technique for distributing the user load evenly among identical

AppLogic objects distributed across several computers running iPlanetApplication

Server.

login wizard A wizard that produces a static HTML page containing a login

form, an AppLogic to verify a user name and password, and an HTML template to

display the results of a successful login.

master record The primary target of a query.

member A variable or method declared in a class.

member variable A variable with the following characteristics:

The variable is declared inside a class declaration.

A member variable specifies a piece of data that can be stored by an object

instantiated from that class.

method A function with the following characteristics:

The method is declared inside a class or interface.

A method specifies an action that can be performed by an object instantiated from

that class.

metadata Represents information that is passed into the run time’s BaseResource

constructor.

iPlanet Application Server Foundation Class Library A set of interfaces and

classes provided by iPlanet that can be used to develop object-oriented

iPlanetApplication Server applications. The classes in the iPlanet Application

Server Foundation Class Library define many types of objects you can include in

iPlanetApplication Server applications, such as AppLogic objects, data

connections, queries, and result sets.

object A programmed entity with the following characteristics:

340 iPlanet Application Server Programmer’s Guide • February 2002

An object embodies both data and behavior.

Objects come into existence at run time through the process of instantiation.

Each object is based on a definition, which is called a class.

Many parts of an iPlanetApplication Server application, such as AppLogic objects,

queries, and result sets, are objects.

object-oriented programming A method for writing programs using classes, not

algorithms, as the fundamental building blocks. At run time, the classes give rise to

objects, which perform the tasks of the application.

ODBC Open Database Connectivity (ODBC)

online application server A server that stores, manages, and executes dynamic

Internet and intranet applications. An online application server is specifically

designed to run such applications quickly and efficiently. iPlanetApplication

Server is an online application server.

Open Database Connectivity (ODBC) A standard protocol used by many

database vendors to provide an interface to outside applications.

iPlanetApplication Server applications can interact with databases that comply

with ODBC 1.0 and 2.0.

outline view An HTML editor window display that shows the structural

relationships between HTML tags on the page.

override To write new code that replaces the default code of an inherited

method.

palette A window containing components that you can drag and drop into

HTML files to create pages and templates.

palette tabs Individual sections of the palette that contain similar elements.

parameter The data passed between methods, AppLogic objects, and other

program code.

A placeholder for dynamic data that is passed into a prepared database command

at run time.

Glossary 341

parent query A flat query that represents an outer level of data in a hierarchical

query. Each parent query is nested outside another flat query, which is its child

query. Every flat query in a hierarchical query is a parent query, except the

innermost.

prepared command A database command (INSERT, UPDATE, DELETE, or

query) that is precompiled to make repeated execution more efficient. Prepared

commands can contain parameters.

presentation logic The process of generating output for an iPlanet Application

Server application.

project A collection of related files that, when deployed, constitute a web

application.

project file See .gxm file.

project map A window that displays file dependencies. A project map is useful

for visually representing the page flow of an application.

project window A directory listing of files in a project. Files can be grouped by

folder or listed alphabetically.

properties window A window showing the properties for a selected object.

property Name-value pairs that indicate how an object behaves or appears. For

example, a Name property might contain a name that identifies the object to other

objects, while a Background Color property defines a background color for the

object.

property definition Value associated with a given property that, together with

the other properties for a given object, determines the object's appearance and/or

behavior.

query A statement that specifies which data to retrieve from a database.

Typically, the results of a query are displayed in a report.

query file A query file is a file that contains the specification for a flat or

hierarchical query. Query files are useful for running legacy SQL SELECT

statements. You can also use query files to write new queries.

rebuild project Remove all object files (clean project) and compile all source files

in the project.

342 iPlanet Application Server Programmer’s Guide • February 2002

register (AppLogic) Register the Java methods that make up an AppLogic with

the Java Virtual Machine running on the application server.

registered servers Servers registered to iPlanet Application Builder for the

purpose of deployment. You can not deploy to a server until it is registered.

registration The process of informing iPlanetApplication Server of the existence

of an AppLogic object, code module, or security information.

registry file See .gxr file.

relationship A named connection between data source tables.

replace tag A type of GX markup tag that substitutes a dynamic data value for a

specified string.

report A formatted presentation of data. In an iPlanetApplication Server

application, a report is an HTML page presented to the user in response to a

request for information. AppLogic objects create reports by combining hierarchical

result sets and HTML templates.

request A message from a client to a server, asking for data or another service.

In an iPlanetApplication Server application, a request is a message that causes an

AppLogic object to run on the iPlanetApplication Server. A request uses a unique

name or globally unique identifier (GUID) to identify the proper AppLogic object

to handle the request. The request can include parameters to be passed to the

AppLogic object. Requests can come from clients, AppLogic objects, or other code.

result cache Storage in iPlanetApplication Server that holds the output from an

AppLogic object so that the output can be accessed repeatedly without the

necessity of running the AppLogic object again.

results wizard A wizard that produces an AppLogic to retrieve data, optionally

accessing a query to retrieve data from a data source, and an HTML template to

display the results.

result set A set of data records returned by a query. A record is a set of fields.

Each field in the record has a name, which corresponds to either a database column

or an expression, and each field contains a single data value.

row A record in a database table. Each row is made up of several columns.

Glossary 343

runtime The behavior (in the server) or appearance (in a browser) of an object

when the application runs.

select distinct (query) A query type that retrieves only the unique instances of

the requested target search items.

SELECT query A statement that specifies which data to retrieve from a database,

as specified by your data model.

sequence A sequential number generator which exists in a database. Some

database vendors refer to a sequence as a serial, identity, or autoincrement. A

sequence is useful for generating transaction-safe numbers for database transaction

applications.

server A computer or software package that provides a specific kind of service to

client software running on other computers. A server is designed to communicate

with a specific type of client software.

session A continuous series of interactions between a user and an iPlanet

Application Server application.

session accessors Any method that starts with set and takes a String or starts

with "get".

session validation The set of rules that guarantees that the application is in a

valid state to perform the functionality of a specific AppLogic.

session variables Used by many AppLogics in an application to store and access

data that is shared throughout the application.

source view An HTML editor window display that shows the source code for the

page.

SQL See Structured Query Language (SQL).

standard query A query that produces a result set that is not divided into levels

or groups. The result set of a standard query is like a table.

state A distributed data storage mechanism which you can use to store the state

of an application. The application state is a collection of application variables

whose scope is global within the application. Information in the state layer can be

organized in a hierarchical structure, or tree.

344 iPlanet Application Server Programmer’s Guide • February 2002

stored procedure A block of statements written in SQL or programmatic SQL

and stored in a database. You can use stored procedures to perform any type of

database operation, such as modifying, inserting, or deleting records. The use of

stored procedures improves database performance by reducing the amount of

information that is sent over a network.

streaming A technique for managing how data is communicated via HTTP.

When results are streamed, the first portion of the data is available for use

immediately. When results are not streamed, the whole result must be received

before any part of it can be used. Streaming provides a way to allow large amounts

of data to be returned in a more useful way, increasing the perceived performance

of the application.

Structured Query Language (SQL) A language commonly used in relational

database applications. In an iPlanetApplication Server application, you can specify

SQL SELECT, INSERT, UPDATE, and DELETE commands.

subclass A class that is derived from and is a special case of another class, called

a base class or superclass.

superclass A class from which another class, called a subclass, is derived. See also

base class.

system administrator The person who is responsible for installing and

maintaining iPlanetApplication Server software and for deploying production

iPlanetApplication Server applications.

table A named group of related data in rows and columns in a database.

tabular report A report, sometimes called a listing, that prints all the records

retrieved from the database.

tag See GX markup tag or HTML.

target window Name of the window or frame that displays the results of a

hypertext link.

template See GXML template or HTML template.

template engine The part of the server responsible for taking HTML template

files and merging them with the data from an AppLogic.

Glossary 345

template map An object that maps fields in a template to the data used to replace

those fields. With a template map, you can assign values to special placeholders

that will be evaluated at run time. You can also use a template map to link column

names in a table to field names that you have used in a template. A template map

allows your application to use the same template file with data from different data

sources.

test server A version of the iPlanet Application Server that runs in debugging

mode for local testing purposes.

tile tag A type of GX markup tag which repeats the tags and text nested within it.

Tile can be used in two ways: repeating a fixed number of times, or repeating for

each row in a result set.

tooltip A word or phrase that appears whenever you briefly place the mouse

over a toolbar button. Tool tips are useful reminders of a button’s purpose.

transaction A set of database commands that succeed or fail as a group. All the

commands involved must succeed for the entire transaction to be correct.

trigger A trigger is a stored block of SQL or PL/SQL statements that is associated

with a table, runs in response to an INSERT, UPDATE, or DELETE operation, and

runs only under certain specified conditions.

Uniform Resource Locator (URL) An address that uniquely identifies an HTML

page or other resource. web browsers use URLs to specify which pages to display.

update query A statement that specifies which data to modify within a database.

URL See Uniform Resource Locator (URL).

user A person who runs a computer application.

user validation Validation written by the user.

validation A method for ensuring that the contents of a form field are within

certain parameters. If a user enters data outside the parameters, a dialog box

appears notifying them of the error and what to do to correct it.

valIn An argument to an AppLogic.

valOut The return values from internal AppLogic calls.

346 iPlanet Application Server Programmer’s Guide • February 2002

variable A named storage location for data that can be modified while a program

is running. Each variable has a unique name that identifies it within its scope. Each

variable can contain a certain type of data.

Web See World Wide Web.

web application A computer program that uses the World Wide Web for

connectivity and user interface. A user connects to and runs a web application by

using a web browser on any platform. The user interface of the application is the

HTML pages displayed by the browser. The application itself runs on a server,

connected to the browser through the World Wide Web.

web browser Software that is used to view resources on the World Wide Web,

such as web pages coded in HTML.

web page See HTML page.

web server A computer that stores and manages HTML pages and web

applications. The web server responds to user requests from web browsers.

wizard A code generator that provides a framework for creating the most

commonly-used types of application development components.

World Wide Web A network of many computers linked together by their ability

to understand the HyperText Transfer Protocol (HTTP). Two types of computers

make up the Web: clients and servers. Clients are computers with web browsers

installed on them. Servers are computers that store and manage the information

requested by the clients.

workspace The main window of iPlanet Application Builder. The workspace

contains the windows, toolbars, and dialog boxes that constitute the user interface.

347

Index

SYMBOLS
$APP_ROOTDIR, 38

: (colon), 111

:ret, 115

. (decimal separator), 201

(digit placeholder, unfilled), 201

0 (digit placeholder, zero-filled), 201

$ (dollar sign), 208

% (GX markup tag delimiter), 193

< > (GX markup tag delimiter), 193

.gxq files. See query files.

#include, 38, 62

$+- (literals), 202

() (parentheses), 202

? (question mark), 111

; (semi-colon), 201

, (thousands separator), 201

A
access control lists (ACLs)

creating, 284

registering, 282, 287

AddConn(), 181

AddQuery(), 152

AddRef(), 22, 45

AddRow(), 103

aggregate functions, 138

aliases, in a query, 145

Alloc(), 47

AllocRow(), 103, 105

applications, Netscape Application Server

described, 17

designing, 25

parts of, 25

running, 275

state management, 246

testing, 275

tiers, 25

applications,Netscape Application Server

compiling, 276

AppLogic Designer, 62

AppLogic objects

See also GXAppLogic class; distributed AppLogic

objects

base class, 34

calling each other, 68

calling from an HTML page, 192

calling from code, 68

combining functionality, 30, 32

custom base class, 34

designing, 36

distributed, 36

example, 63

executing automatically, 57

global, 36

local, 36

main task, 68

names, 70

parts of, 62

passing parameters, 71, 76

348 iPlanet Solar System Server Administrator’s Guide • August 1999

registering, 282

returning results, 79

reusing, 32

validating input, 265

writing, 62, 65

asynchronous queries, 148, 183

attributes, in GX markup tags, 194

autoincrement, in database, 124

Avg(), 138

B
backups, automatic, 57

base AppLogic class

described, 34

example, 297

Begin(), 128

Binary Large Objects (BLOBs), 54

buffers

memory, 47

result sets, 159

strings, 51

C
caching

clearing the cache, 94

criteria, 88, 89

described, 86

design impact, 29, 32

example, 91

reports, 166

security in, 266

stopping, 95

cell tag

described, 195

formatting data, 200

specifying a field in the result set, 197

using, 199

with tile tags, 199

child query, 149, 153

class libraries, 20

Class Library, Netscape Application Server

Foundation

accessing, 38

described, 20

client applications

in client tier, 18

Close(), 271

closing database connections, 100

colon (:), 111

columns, 101

COM (Component Object Model)

benefits, 22

described, 21

using, 22

combining application components, 30

commands, database

DELETE, 106

INSERT, 103

parameters in, 110

pass-through, 108

prepared, 109

queries, 133

SELECT, 135

setSQL(), 108

stored procedures, 115

UPDATE, 104

Commit(), 130

compiling applications, 276

Component Object Model (COM). See COM.

computed fields, 137

configuration

database, 324

servers, 323

Web Connector, 323

connections, database

closing, 100

described, 99

opening, 99

parameters, 100

constructor, 234

controls

populating dynamically, 189

conventions, 15

cookies

Index 349

described, 60

referencing, 60

sending, 60

Count(), 138

.cpp files. See source files.

CreateDataConn(), 99

CreateMailbox(), 270

CreateSequence(), 125

CreateSession(), 229

morphing session ID, 240

CreateStateChild(), 251

CreateTrigger(), 123

critical sections, 50

D
data

querying for, 133

returning in an IGXValList, 85

databases

connections, 99, 333

deleting records, 106

design impact on UI, 29

inserting records, 103

overview, 98

pass-through commands, 108

prepared commands, 109

querying, 133

sequences, 124

stored procedures, 115

in three-tier environment, 19

transactions, 127

triggers, 122, 345

updating records, 104

date/time format characters, 202

dates, 55

DB2, 98

debugging, 289

decimal separator (.), 201

declaring AppLogic objects, 66

DELETE statement

described, 106

example, 111

parameters in, 114

triggers, 122

DeleteCache(), 95

DeleteRow(), 107

DeleteStateChild(), 252

deployment

design impact, 33

for testing, 275

descending sort order, 140

designing applications, 25

checklist, 27

DestroySession(), 232

development environment, 37

digit placeholder, unfilled (#), 201

digit placeholder, zero-filled (0), 201

DisableTrigger(), 123

distributed AppLogic objects, 36

distribution

applications, 275

dollar sign ($), 208

Drop(), 127

DropTrigger(), 124

E
email

automated, 57

receiving, 270

required servers, 269, 272

security, 270

sending, 272

EnableTrigger(), 123

encrypting communications, 284

EvalTemplate(), 81

running reports, 166

streaming, 84

events

described, 57

examples

aggregate rows, 141, 142

aliases, 146

AppLogic base class, 297

350 iPlanet Solar System Server Administrator’s Guide • August 1999

AppLogic object, 63

AppLogic output parameters, 86

asynchronous query, 184

BLOB, 54

buffers, 48

cache criteria, 90

cache flushing, 94

caching, 88, 91

calling AppLogic from HTML, 193

calling AppLogic objects, 69

column information, 102

connection, opening, 99

critical section, 51

custom template map class, 211

date and time, 55

DELETE statement, 115

deleting records, 107

email, getting, 271

email, sending, 273

EvalTemplate(), 82

flat query, 136

GROUP BY, 142

grouped report, 169

GUID, 54

GXDLM_DECLARE, 54

GXDLM_IMPLEMENT, 56, 319

.gxr file, 285, 286, 287, 288

.gxr file, Online Bank, 320

GXTemplateDataBasic, 213

hierarchical query, 151

hierarchical query, multi-field join, 154

hierarchical result set, 213

HTML templates, 220

IGXValList, 52

include tag, 206

including header files, 39

INSERT statement, 114

inserting records, 103

interface, implementing, 40

iterating a flat result set, 148

iterating a hierarchical result set, 158

logging in a session, 258

login AppLogic, 261

morphing session IDs, 241

multi-child hierarchical query, 157

nested GX tags, 204

parameters in database commands, 111

parameters in flat queries, 114

passing parameters to AppLogic, 73, 78

pass-through database commands, 108

query file, 178, 180, 182

QueryInterface(), 43

replace tag, 205

result set buffering, 161

running a flat query, 147

sessions, 228, 232

sessions, custom, 234

spin lock, 49

state layer, 248

stored procedure, 120

tabular reports, 167

template mapping, 209

template mapping class, 211

three-tiered application, 19

transactions, 129

two-level hierarchical query, 155

UPDATE statement, 115

updating records, 105

uploading files, 74

user authorization check, 260

validating input, 265

Execute()

AppLogic object, 63, 68

prepared query, 110

query files, 182

return value, 80

running hierarchical query, 158

ExecuteQuery()

asynchronous queries, 183

flat queries, 146

pass-through command, 108

query file, 179

exporting classes, 56

F
FetchNext()

iterating result set, 148

used with buffer, 160

files

query files, 178

Index 351

uploading from IIS, 74

uploading from Web browser, 74

First(), 138

flat queries

aliases, 145

conditions on rows, 144

described, 134

parameters in, 114

query files, 178

row retrieval, 139

running, 146

sorting data, 139

tables in, 137

writing, 134, 135

flowcharts, 30

FROM clause, 137

G
GenerateVariantID(), 240

Get(), 207, 210

GetColumnOrdinal(), 103

GetCurrent(), 126

GetName(), 102

GetNext(), 125, 127

GetNullsAllowed(), 102

GetNumColumns(), 101

GetOrder(), 184

GetParams(), 118

GetPrecision(), 102

GetScale(), 102

GetSequence(), 126

GetSession(), 231

GetSessionData(), 229, 231

GetSize(), 102

GetStateChild(), 251

GetStateTreeRoot(), 251

GetTable(), 103, 105, 107

GetType(), 102

GetVal**(), 77

GetValBLOB(), 54

GetValueBinary(), 54

GetValueBinaryPiece(), 54

global AppLogic objects, 36

graphics, directory, 38

GROUP BY clause, 142

GroupAppend(), 213

grouped reports

creating, 165

described, 164

example, 169

groups

creating, 284, 286

registering, 282, 286

GUID (Globally Unique Identifier)

declaring, 66

described, 70

functions to manipulate, 53

generating, 283

GX tags

attributes, 204

cell, 195, 197, 199

delimiter (%), 193

described, 188

design impact, 29

include, 196, 198, 206

modifying, 205

nesting levels, 204

replace, 196, 197, 198, 205

syntax, 193

text, 193

tile, 195, 197, 198, 203

user-defined, 207

visibility, 198

GX_DA_EXEC_ASYNC, 183

GX_DA_RS_BUFFERING, 161

GX_ROOTDIR, 276

gx_session_id_appName, 267

GXAppLogic class, 34, 61

GXCreateBuffer(), 47

GXCreateValList(), 52, 76

GXCRIT_SECTION, 50

GXDATETIME struct, 55

GXDeleteCriticalSection(), 51

GXDllLockDec(), 67

352 iPlanet Solar System Server Administrator’s Guide • August 1999

GXDllLockInc(), 67

GXDLM_DECLARE, 53, 56, 66

GXDLM_IMPLEMENT, 56, 67

GXDLM_IMPLEMENT_BEGIN, 56, 67

GXDLM_IMPLEMENT_END, 56, 67

GXEnterCriticalSection(), 50

GXGetCurrentDateTime(), 55

GXGetValListGUID(), 53

GXGUID_EQUAL, 53

GXGUIDToString(), 53

GXInitCriticalSection(), 50

GXLeaveCriticalSection(), 50

GXML templates

described, 188

writing, 190

.gxq files. See query files.

.gxr files

ACL syntax, 287

AppLogic syntax, 283

described, 283

directory, 38

group syntax, 286

module syntax, 285

user syntax, 286

GXSession2 class, 234

GXSetValListGUID(), 53

GXStringToGUID(), 53

GXSYNC_DEC(), 50

GXSYNC_DESTROY(), 49

GXSYNC_INC(), 50

GXSYNC_INIT(), 48

GXSYNC_LOCK(), 48

GXSYNC_UNLOCK(), 49

GXSYNCVAR, 48

GXTemplateDataBasic class, 163, 213

performance, 215

GXTemplateMapBasic class, 207, 210

GXWaitForOrder(), 184

H
HAVING clause, 145

header files

AppLogic objects, 65

including, 38

writing, 65

headers, HTTP, 84

hierarchical queries

described, 149

joins, 153

query files, 179

writing, 151

HRESULT, 44

HTML clients

designing, 29

HTML pages

as forms, 73

calling AppLogic from, 192

cookies, 60

page visibility, 198

passing parameters to AppLogic, 71

HTML results, 81, 83

HTML templates

conditional, 219

described, 188

grouped report examples, 172

parts of, 189

report examples, 220

returning results with, 81

runtime behavior, 190

tabular report example, 169

template mapping, 208

three-level grouped report, 176

writing, 191

HTML. See HTML pages; GX tags; HTML templates.

HTTP (HyperText Transfer Protocol), 84

HTTPStreamResult(), 83

I
id attribute, 197

identity numbers, in database, 124

Index 353

IGXBuffer interface, 47

IGXCallableStmt interface, 115

IGXColumn interface, 102

IGXDataConn interface, 99

IGXDataConnSet interface, 181

IGXHierQuery interface, 151

IGXHierResultSet interface, 151

IGXMailBox interface, 269

IGXObject interface

AddRef(), 45

QueryInterface(), 43

Release(), 45

IGXOrder interface, 183

IGXPreparedQuery interface, 109

IGXQuery interface, 134

IGXResultSet interface, 134, 148

IGXSequence interface, 124

IGXSequenceMgr interface, 126

IGXSession2 interface, 227

IGXSessionIDGen interface, 227, 240

IGXState2 interface, 247

IGXTemplateMap interface, 210

IGXTrans interface, 128

IGXValList interface, 52

getting parameter values, 74

instantiating, 76

passing parameters, 71

returning data values, 85

IIS, Internet Information Server, 74

#include, 38, 62

include tag, 196, 198, 206

Informix, 98

INSERT statement

described, 103

parameters in, 114

triggers, 122

instantiating

interfaces, 39

objects, 43

interfaces

benefits, 23

defined, 338

described, 21

implementing, 40

instantiating, 39

referencing, 39

Internet applications, 17

Internet Information Server (MS IIS), 74

Intranet applications, 17

ISAPI, 325

IsAuthorized(), 259

IsCached(), 88

IUnknown interface, 22, 45

J
joins

described, 153

multi-field, 154

performance impact, 154

K
kguidgen utility, 283

khtml2gxml utility, 191

kreg utility

registering application components, 283

saving and restoring registry, 288

L
Last(), 138

literals ($+-), 202

LoadHierQuery(), 182

LoadQuery(), 179

local AppLogic objects, 36

Log(), 265

login AppLogic object, 35

login ID, 35

LoginSession(), 258

LogoutSession(), 260

354 iPlanet Solar System Server Administrator’s Guide • August 1999

M
m_pValIn, 77

m_pValOut, 77, 85

makefiles, 276

MapToBaseID(), 240

max attribute, 198

Max(), 138

memory

managing, 47

reference counting, 45

messages, email, 270

messages. See requests

methods

declaring, 44

in interfaces, 23

Microsoft Internet Information Server (MS IIS), 74

Microsoft SQL Server, 98

Microsoft Visual C++, 290

min attribute, 198

Min(), 138

morphing session IDs, 240

MoveTo(), 160

MSVC, 290

N
new, 44

NewRequest(), 69

NSAPI, 325

numeric format characters, 201

O
objects, instantiating, 43

ODBC, 98

Online Bank, 293

Open(), 270

Oracle, 98

ORDER BY clause, 140

output parameters, 85

P
parameters

in database commands, 110, 114

example, 73, 78

in flat queries, 114

passing to AppLogic, 71, 76

where not allowed, 113

parent query, 149, 153

parentheses (), 202

pass-through database commands, 108

password security, 264

performance

AppLogic calling AppLogic, 325

AppLogic objects, 33

caching, 29, 86

database connections, 100

databases, 324

NSAPI/ISAPI plugin, 325

prepared commands, 109

queries, 324

result sets, 148, 158

sessions, 226

streaming, 83, 215, 326

placeholders in templates, 208

prepared database commands, 109

PrepareQuery(), 110

Put(), 208

Q
queries

aliases in, 145

asynchronous, 148, 183

described, 133, 134, 149

field information, 146

flat queries, 134

hierarchical queries, 149

Index 355

result sets, 133, 140, 148

types of, 133

writing, 145

query files

described, 178

running, 179, 181

writing, 178, 179

QueryInterface(), 22, 43

question mark (?), 111

R
records

deleting, 106

inserting, 103

updating, 104

redundant code, reducing, 30, 34

reference counting, 45

registering AppLogic objects, 282

registry, saving and restoring, 288

Release(), 22, 45

RemoveAllCachedResults(), 94

RemoveCachedResult(), 94

replace tag

described, 196, 205

id attribute in, 197

reports

creating, 165

described, 163

parallel subreports, 153

running, 166

types of, 164

requests, 70

result sets

buffering, 159

columns or fields, 101

described, 133

getting data, 148

hierarchical, implementing

programmatically, 213

iterating, flat, 148

iterating, hierarchical, 158

Result(), 83

results, AppLogic

overview, 79

returning HTML, 81

streaming, 80, 83

types of, 79

:ret, 115

Retrieve(), 270

RetrieveCount(), 270

RetrieveReset(), 270

return statement, 79

reusable application components, 32

reverse sort order, 140

Rollback(), 131

row retrieval, 139, 144

RowAppend(), 213

RS_BUFFERING, 160

RS_INIT_ROWS, 160

RS_MAX_ROWS, 160

RS_MAX_SIZE, 160

running AppLogic objects, 68, 192

S
SaveSession(), 229, 231

and EvalTemplate(), 82

streaming, 83

SaveState(), 252

security

AppLogic objects, 257

cache, 266

email, 270

IDs, 264

login AppLogic, 35

overview, 253

registering users, groups, and ACLs, 282

sessions, 258

SELECT statement

in code, 135

in query file, 178

semi-colon separator (;), 201

Send(), 272

sequences

356 iPlanet Solar System Server Administrator’s Guide • August 1999

accessing, 126

creating, 124

deleting, 127

described, 124

serial numbers, in database, 124

sessions

accessing, 230

customizing, 234

deleting, 232

described, 225

generating IDs, 240

starting, 228

SetCacheCriteria(), 87

SetFields(), 137

SetGroupBy(), 142

SetHaving(), 144

SetOrderBy(), 139

SetSessionData(), 229, 231

setSessionVisibility(), 229

SetSQL(), 108

SetStateContents(), 251

SetTables(), 137

SetValBLOB(), 54

SetValueBinary(), 54

SetValueBinaryPiece(), 54

SetVariable(), 60

streaming, 84

SetWhere(), 139

SkipCache(), 95

sorting data

descending order, 140

described, 139

source control, 28

source files, 66

AppLogic objects, 66

directory, 38

spin locks, 48

splitting application components, 30

SQL

DELETE, 106

INSERT, 103

SELECT, 135, 178

UPDATE, 105

state layer

adding node, 250

deleting node, 252

described, 246

example, 248

storing data in node, 251

STDMETHOD, 44, 66

STDMETHODIMP, 44, 67

sticky load balancing, 284

stored procedures

creating, 116

described, 115

running, 117

streaming results, 80, 83

StreamResult(), 83

StreamResultHeader(), 83

strings, 51

Sum(), 138

summarizing data, 140

Sybase, 98

syntax conventions, 15

T
tabular reports

creating, 165

described, 164

example, 167

Template Designer, 191

template maps

constructing, 208

custom TemplateMapBasic class, 210

described, 207

templates

See also HTML templates; GXML templates.

combining functionality, 30

described, 187

designing, 29

directory, 38, 191, 192

reusing, 32

thousands separator (,), 201

tiers

client tier, 18, 25

database tier, 19, 25

Index 357

described, 18

example, 19

server tier, 19, 26

tile tag

described, 195

specifying repeats, 198

specifying the name of a query, 197

tiles

described, 203

timers. See events

times, 55

transactions, database

committing, 130

described, 127

rolling back, 131

setting up, 128

triggers

creating, 122

deleting, 124

described, 122

enabling and disabling, 123

type attribute, 195

typographical conventions, 15

U
unfilled digit placeholder (#), 201

UPDATE statement

described, 104

example, 105

parameters in, 114

triggers, 122

UpdateRow(), 105

updating records, 104

uploading files from Web browsers, 74

user interface

in client tier, 18

design, 29

dynamically populating controls, 189

HTML client example, 303

templates, 187

user-defined GX markup tags, 207

users

described, 254

registering, 282, 286

V
value attribute, 198

visible attribute, 198

W
walkthroughs

HTML client, 303

Online Bank application, 293

Web browsers, 18

cookies, 60

HTML pages, 26

performance tuning, 325

returning results to, 81

uploading files, 74

WHERE clause, 139

working with data

Binary Large Objects (BLOBs), 54

dates, 55

GUIDs, 53

IGXValList objects, 52

memory buffers, 47

strings, 51

times, 55

Z
zero-filled digit placeholder (0), 201

358 iPlanet Solar System Server Administrator’s Guide • August 1999

	Programmer’s Guide (C++)
	Using the Documentation
	About This Guide
	What You Should Already Know
	How This Guide Is Organized
	Naming Conventions
	Documentation Conventions
	Related Information

	Introduction to Applications
	About iPlanet Application Server Applications
	Applications as Part of a Three-Tiered Environment
	Client Tier Code
	Middle Tier Code
	Database Tier Code

	Example Three-Tiered Application

	Introduction to the iPlanet Application Server Foundation Class Library
	Introduction to Interfaces and COM
	What Is COM?
	Benefits of COM
	How to Use COM
	What Is an Interface?
	Benefits of Using Interfaces

	Designing Applications
	Parts of an iPlanet Application Server Application
	AppLogic Objects
	HTML Pages
	Templates
	Query Files
	Other Code

	Questions to Ask Before You Start
	Designing the Components of the Application
	User Interface Design
	HTML Interface Design
	Impact of Caching on the User Interface

	Combining or Splitting Application Components
	Redundancy
	Reusability
	Caching
	Deployment and Partitioning
	Performance
	At a Glance

	Designing an AppLogic Base Class
	Designing a Login AppLogic Object
	Designing Local, Distributed, and Global AppLogic Objects

	Application Development Techniques
	Your Development Environment
	Accessing Libraries
	Using Interfaces
	How to Reference Objects Through Interfaces
	How to Implement Interfaces
	Getting Information About Interfaces

	Instantiating Objects
	Declaring and Defining Methods
	Reference Counting
	Working with Data
	Managing Memory Buffers
	Using Spin Locks
	Using a Spin Lock for General Operations
	Incrementing and Decrementing Variables

	Using Critical Sections
	Working with Strings
	Working with IGXValList Objects
	Working with GUIDs
	Working with Binary Large Objects (BLOBs)
	Working with Dates and Times

	Exporting Classes
	Using Events
	The Application Events API
	Creating a New Application Event
	Using an Application Event

	Using Cookies
	Sending a Cookie
	Referencing a Cookie

	Writing Server-Side Application Code
	What Is An AppLogic Object?
	Introduction to Writing AppLogic Objects
	Parts of a Typical AppLogic Object

	Steps for Writing AppLogic Objects
	Header File
	Source File

	Performing the Main Task in an AppLogic Object
	Calling an AppLogic From Code
	Requests, AppLogic Names, and GUIDs
	Passing Parameters to AppLogic Objects
	Passing Parameters To AppLogic From An HTML Page
	To pass parameters to AppLogic from an HTML page
	Uploading Files From a Web Browser

	Passing Parameters to AppLogic From Code
	To pass parameters to an AppLogic from code

	Returning Results From an AppLogic Object
	Types of Results
	Using the Return Value of Execute(�)
	Returning HTML Results
	Returning Results Using an HTML Template
	Returning HTML Results Without a Template

	Streaming Results
	Returning Output Parameters in an IGXValList Object

	Caching AppLogic Results to Improve Performance
	How to Cache Results
	Using Cache Criteria
	How To Specify Caching Criteria
	How to Change Caching Criteria
	How to Remove Cached Results
	How to Stop Caching

	Working with Databases
	Introduction to Working with Databases
	Supported Databases
	Summary of Database Interaction

	About Database Connections
	Opening a Database Connection
	Specifying Connection Parameters

	Closing a Database Connection

	Getting Information About Columns or Fields�
	Inserting Records in a Database
	Updating Records in a Database
	Deleting Records From a Database
	Using Pass-Through Database Commands
	Using Prepared Database Commands
	Using Parameters in Database Commands
	Parts of Syntax in Which Parameters are Not Allowed
	Using Parameters in a Flat Query
	Using Parameters in an INSERT, UPDATE, or DELETE Command

	Using Stored Procedures
	Getting the Return Value of a Stored Function
	Creating a Stored Procedure
	Running a Stored Procedure
	Supported Stored Procedure Operations
	Sample Stored Procedure

	Using Triggers
	Creating a Trigger
	Disabling and Enabling Triggers
	Deleting a Trigger

	Using Sequences
	Creating a New Sequence
	Using An Existing Sequence
	Deleting a Sequence

	Managing Database Transactions
	Setting Up a Transaction
	Committing a Transaction
	Rolling Back aTransaction

	Querying a Database
	Introduction to Queries
	Types of Queries

	Using Flat Queries
	Writing Flat Queries
	Writing a Flat Query with Method Calls
	Specifying Tables
	Specifying Columns and Computed Fields
	Specifying Conditions on Row Retrieval
	Sorting Data
	Summarizing Data
	Specifying Conditions on Aggregate Rows
	Using Aliases in a Query

	Running Flat Queries
	Getting Data From a Flat Query’s Result Set

	Using Hierarchical Queries
	Writing Hierarchical Queries
	Joins in Hierarchical Queries
	Multi-Field Joins
	Example Two-Level Hierarchical Query
	Sample Multi-Child Hierarchical Query

	Running Hierarchical Queries
	Getting Data From a Hierarchical Query’s Result Set

	Buffering Result Sets From Queries
	Setting Buffer Parameters

	Creating Database Reports
	Types of Reports
	Creating Tabular Reports
	Creating Grouped Reports
	Running Reports
	Sample Reports
	Sample Tabular Report
	Sample Grouped Report
	Sample Three-Level Grouped Report

	Working with Query Files
	Writing a Flat Query in a Query File
	Running a Flat Query in a Query File
	Writing a Hierarchical Query In a Query File
	Running a Hierarchical Query in a Query File

	Running Asynchronous Queries

	Working with Templates
	What are Templates?
	What is a GXML Template?
	What is an HTML Template?
	Parts of an HTML Template
	Runtime Behavior of HTML Templates

	How to Write a GXML Template
	Converting HTML Templates to GXML Templates

	How to Write an HTML Template
	Calling an AppLogic Object From an HTML Page
	GX Markup Tag Syntax
	TextBlock
	TagAttributes
	type=TypeCode
	id=Name
	visible={True | False}
	min=MinVal
	max=MaxVal
	value=ReplaceVal

	Using the Cell Attribute in a GX Markup Tag
	Using Cell with Tile
	Formatting Data in a Cell Tag

	Using the Tile Attribute in a GX Markup Tag
	Repeating for Each Row in a Result Set
	Repeating a Specified Number of Times

	Using the Replace Attribute in a GX Markup Tag
	Using the Include Attribute in a GX Markup Tag
	Creating a User-Defined Tag

	Using a Template Map
	Using Your Own Template Map Class for Special Processing

	Constructing a Hierarchical Result Set with GXTemplateDataBasic
	Improving Performance When Using GXTemplateDataBasic

	Using Conditionals in an HTML Template
	Example HTML Template
	Example GXML Template

	Managing Session and State Information
	What is a Session?
	Why Use Sessions?
	How Sessions Work
	Sessions and the iPlanet Application Server Foundation Class Library

	Starting a Session
	Setting the Session’s Visibility

	Using an Existing Session
	Removing a Session and Its Related Data
	Example AppLogic Using Sessions
	Using Custom Sessions
	Assigning Your Own Session IDs
	Morphing Session IDs

	Viewing the Number of Active Sessions
	Using the State Layer
	Adding a Node to a State Tree
	Storing Data in an Existing Node in a State Tree

	Writing Secure Applications
	Introduction to iPlanet Application Server Security
	About User Authentication
	How the iPlanet Application Server Stores Users

	About Role Authentication
	How the iPlanet Application Server Stores Roles

	About Access Control List Authorization
	About Groups

	Providing Application Security in Code
	Secure Sessions
	Starting a Secured Session
	Checking a User’s Authorization
	Stopping a Secured Session

	Writing a Login AppLogic Object
	Prompting for ID and Password
	Writing Login Attempts to the Event Log

	Validating Input to AppLogic Objects
	Secure Caching

	Integrating Applications with Email
	Introduction to Email in iPlanet Application Server Applications
	Security in Email

	Receiving Email
	Sending Email

	Running and Debugging Applications
	Getting Ready to Run an Application
	Compiling Applications
	Setting the GX_ROOTDIR Environment Variable
	Creating a Makefile

	Placing Files on the iPlanet Application Server
	Placing Files on the Web Server (HTML Client)
	Registering Code And Security Information
	Using Utilities to Register Application Information
	AppLogic .gxr Syntax
	Code Module .gxr Syntax
	User .gxr Syntax
	User Group .gxr Syntax
	ACL .gxr Syntax

	Saving and Restoring Registry Configurations
	To Save the Registry
	To Restore the Registry

	Debugging with Third-Party Tools
	Debugging with MSVC (Version 4.2 or Higher)

	Sample Code Walkthrough
	About the Online Bank Sample Application
	AppLogic Objects in Online Bank

	The Online Bank Base AppLogic
	// required calls to GXDllLockInc() and GXDllLockDec().
	Detailed Walk Through of Funds Transfer Functionality
	CustomerMenu.html
	OBShowTransferPage AppLogic
	Transfer.html
	OBTransfer AppLogic
	Other Code

	Online Bank Registration File

	Appendix�A
	System Configuration Tips
	Memory Management Tips
	Database and Query Tips
	HTML Tips
	Session Tips
	Tips for Calling an Applogic From Another Applogic
	Streaming Tips
	Streaming Results from EvalTemplate(�) or EvalOutput(�) Using IGXTemplateData

