
Developer’s Guide
iPlanet TM Application Server

Version6.5

8xx-xxxx-xx

February 2002

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without

limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and

one or more additional patents or pending patent applications in the U.S. and other countries.

This product is distributed under licenses restricting its use, copying distribution, and decompilation. No part of this product may be

reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, iPlanet and the iPlanet logo are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S.

and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The

Apache Software Foundation. All rights reserved.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

__

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier, et

sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à

http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis

et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la

distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque

moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et

licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, iPlanet et le logo iPlanet sont des marques de fabrique ou des marques déposées

de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC

International, Inc. aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture

développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

3

Contents

Preface . 17

Chapter 1 Developing Applications . 23
Application Requirements . 23

About the Application Programming Model . 24

The Presentation Layer . 24

Servlets . 25

JSPs . 25

HTML Pages . 25

Client-Side JavaScript . 25

The Business Logic Layer . 25

Session Beans . 26

Entity Beans . 26

Message Driven Beans . 26

The Data Access Layer . 27

Effective iPlanet Application Guidelines . 27

Presenting Data with Servlets and JSPs . 28

Creating Reusable Application Code . 28

Improving Performance . 29

Scalability Planning . 29

Modularizing Applications . 30

Functional Isolation . 30

Reusable Code . 31

Prepackaged Components . 32

Unique Names . 32

Shared Framework Classes . 32

Session and Security Issues . 33

Chapter 2 Controlling Applications with Servlets . 35
About Servlets . 35

4 iPlanet TM Application Server Developer’s Guide • February 2002

Servlet Data Flow . 36

 Servlet Types . 37

About the Server Engine . 38

Instantiating and Removing Servlets . 38

Request Handling . 38

Allocating Servlet Engine Resources . 39

Dynamically Reloading Servlets at Runtime . 40

Configuring Servlets for Deployment . 40

Locating Servlet Files . 40

Deploying Servlets . 41

Designing Servlets . 41

Choosing a Servlet Type . 42

Create Standard or Non-Standard Servlets . 42

Planning for Servlet Reuse . 42

Creating Servlets . 42

Servlet Files for an iPlanet Application . 43

The Servlet’s Class File . 43

Creating the Class Declaration . 43

Overriding Methods . 44

Accessing Parameters and Storing Data . 46

Handling Sessions and Security . 46

Accessing Business Logic Components . 47

Handling Threading Issues . 49

Delivering Client Results . 50

The Servlet’s Deployment Descriptor . 52

Elements . 53

Changing Configuration Files . 53

iPlanet Application Server Optional Features . 54

Invoking Servlets . 54

Calling a Servlet With a URL . 54

Invoking Specific Application Servlets . 54

Invoking Generic Application Servlets . 55

Calling a Servlet Programmatically . 56

Verifying Servlet Parameters . 57

Chapter 3 Presenting Application Pages with JavaServer Pages . 59
Introducing JSPs . 60

How JSPs Work . 60

Designing JSPs . 61

Choosing a Component . 61

Designing for Ease of Maintenance . 63

Designing for Portability . 63

Handling Exceptions . 63

Contents 5

Creating JSPs . 63

General Syntax . 64

JSP Tags . 64

Escape Characters . 65

Comments . 65

Directives . 66

<%@ page%> . 66

<%@ include%> . 68

<%@ taglib... %> . 69

Example . 69

Scripting Elements . 70

Declarations <%! ... %> . 70

Expressions <%= ... %> . 71

Scriptlets <%...%> . 71

Actions . 71

<jsp:useBean> . 72

<jsp:setProperty> . 74

<jsp:getProperty> . 75

<jsp:include> . 75

<jsp:forward> . 76

<jsp:plugin> . 77

Implicit Objects . 79

Programming Advanced JSPs . 80

Including Other Resources . 81

Using JavaBeans . 83

Accessing Business Objects . 83

Deploying JSPs . 84

Unregistered JSPs . 85

Registered JSPs . 85

Invoking JSPs . 86

Calling a JSP With a URL . 86

Invoking JSPs in a Specific Application . 86

Invoking JSPs in a Generic Application . 87

Invoking a JSP From a Servlet . 88

JSP 1.1 Tag Summary . 88

Directives . 88

Expressions . 89

Scriptlets . 89

Comments . 89

Bean-Related Actions . 89

Other Actions . 90

Modifying Custom Tags for JSP 1.1 . 90

Compiling JSPs: The Command-Line Compiler . 91

6 iPlanet TM Application Server Developer’s Guide • February 2002

Value-added Features . 94

Custom Tag Extensions . 94

Database Query Tag Library . 95

LDAP Tag Library . 99

Conditional Tag Library . 106

Attribute Tag Library . 110

JSP Load Balancing . 111

JSP Page Caching . 112

Chapter 4 Introducing Enterprise JavaBeans . 115
What Enterprise JavaBeans Do . 116

What is an Enterprise JavaBean? . 117

Understanding Client Contracts . 118

Understanding Component Contracts . 119

Understanding JAR File Contracts . 119

Understanding Enterprise Beans . 120

Understanding Session Beans . 121

Understanding Entity Beans . 121

Understanding Message Driven Beans . 122

MDB Properties . 122

EJB Role in an iPlanet Application Server Application . 123

Designing an Object-Oriented Application . 124

Planning Guidelines . 125

Using Session Beans . 125

Using Entity Beans . 126

Planning for Failover Recovery . 127

Working with Databases . 127

Deploying EJBs . 127

Dynamically Reloading EJBs . 127

Using the ejbc Compiler . 128

Using JNDI to Reference an EJB . 130

Chapter 5 Using Session EJBs to Manage Business Rules . 135
Introducing Session EJBs . 135

Session Bean Components . 137

Creating the Remote Interface . 137

Declaring vs. Implementing the Remote Interface . 138

Creating the Class Definition . 138

Session Timeout . 139

Passivation and Activation . 139

Creating the Home Interface . 140

Additional Session Bean Guidelines . 140

Contents 7

Creating Stateless or Stateful Beans . 140

Accessing iPlanet Application Server Functionality . 141

Serializing Handles and References . 141

Managing Transactions . 141

Accessing Databases . 142

Session Bean Failover . 142

How to Configure a Stateful Bean with Failover . 143

How the Failover Process Works . 143

Failover Guidelines . 144

How Often Is the State Saved? . 145

How the State Is Saved . 145

Chapter 6 Building Entity EJBs . 147
Introducing Entity EJBs . 147

How an Entity Bean is Accessed . 149

Entity Bean Components . 149

Creating the Class Definition . 149

Using ejbActivate and ejbPassivate . 151

Using ejbLoad and ejbStore . 151

Using setEntityContext and unsetEntityContext . 153

Using ejbCreate Methods . 153

Using Finder Methods . 154

Declaring vs. Implementing the Remote Interface . 155

Creating the Home Interface . 155

Defining Create Methods . 155

Defining Find Methods . 156

Creating the Remote Interface . 156

Additional Entity Bean Guidelines . 157

Accessing iPlanet Application Server Functionality . 157

Serializing Handles and References . 157

Managing Transactions . 158

Committing a Transaction . 158

Commit Option C . 158

Handling Concurrent Access . 159

Container Managed Persistence . 160

Full J2EE Support . 161

Third Party O/R Mapping Tools . 161

Full Example of a CMP Entity Bean . 162

Using the Lightweight CMP Implementation . 162

Creating the Deployment Descriptors by Hand . 162

ejb-jar Deployment Descriptor . 163

ias-ejb-jar Deployment Descriptor . 163

CMP Bean Deployment Descriptor . 164

8 iPlanet TM Application Server Developer’s Guide • February 2002

Using the Deployment Tool . 174

Chapter 7 Using Message Driven Beans . 179
Introducing Message Driven Beans . 179

How a Message Driven Bean is Accessed . 180

Components of Message Driven Beans . 182

Creating the Class Definition . 183

Message Driven Bean Guidelines . 183

Accessing iPlanet Application Server Functionality . 184

Managing Transactions . 185

Committing a Transaction . 185

Accessing Databases . 185

Using the Deployment Tool . 186

J2EE Specific Deployment Descriptor Fields . 187

Message Driven Bean Specific Parameters . 187

Creating the Deployment Descriptors by Hand . 188

Sample Deployment Descriptor File . 188

Chapter 8 Handling Transactions with EJBs . 191
Understanding the Transaction Model . 191

Specifying Transaction Attributes in an EJB . 192

Using Bean Managed Transactions . 193

Chapter 9 Using JDBC for Database Access . 195
Introducing JDBC . 196

Supported Functionality . 197

Understanding Database Limitations . 198

Understanding the iPlanet Application Server Limitations . 199

Supported Databases . 201

Migrating 6.x DD XML files to 6.5 . 201

To Migrate 6.x Deployment Descriptor XML File . 201

New XML Datasource Descriptors . 202

Local Transactions . 202

Oracle . 202

Sybase . 203

Global Transactions . 204

DB2 . 205

MSSQL . 207

Oracle . 208

Sequelink . 209

Sybase . 210

Using JDBC in Server Applications . 211

Contents 9

Using JDBC in EJBs . 212

Managing Transactions with JDBC or javax.transaction.UserTransaction 212

Specifying Transaction Isolation Level . 212

Using JDBC in Servlets . 213

Handling Connections . 214

Local Connections . 214

Registering a Local Datasource . 214

Global Connections . 215

Registering a Global Datasource . 216

Creating a Global Connection . 217

Container Managed Local Connections . 217

Registering a Container Managed Local Datasource . 218

Working with JDBC Features . 218

Working with Connections . 219

Pooling Connections . 220

Working with ResultSet . 220

Concurrency Support . 221

Updatable Result Set Support . 221

Working with ResultSetMetaData . 222

Working with PreparedStatement . 223

Working with CallableStatement . 223

Handling Batch Updates . 224

Creating Distributed Transactions . 225

Working with RowSet . 226

Using iASRowSet . 227

Using CachedRowSet . 228

Creating a RowSet . 228

Using JNDI for a Database Driver . 228

Chapter 10 Developing and Deploying CORBA-Based Clients . 231
Overview of CORBA Client Support . 231

Scenarios . 232

Stand-Alone Program . 232

Server-to-Server . 233

Architectural Overview . 234

iPlanet Value-Added Features . 235

Naming Services . 235

C++ Client Support . 235

Built-in ORB and Third Party ORB Support . 235

Basic Authentication and EJB Container Integration . 235

Client Side Authentication . 236

Load Balancing . 237

Scalability . 238

10 iPlanet TM Application Server Developer’s Guide • February 2002

High Availability . 238

Minimal Ports Opened in Firewalls . 238

Limitations . 238

Choosing the ORB . 239

RMI/IIOP Client Applications . 239

Developing RMI/IIOP Client Applications . 240

JNDI Lookup for the EJB Home Interface . 240

Client Authentication . 246

Client-Side Load Balancing and Failover . 247

Packaging RMI/IIOP Client Applications . 249

Using the Assembly Tool GUI . 249

Automating Reassembly Using Ant . 249

Using Application Client Container (ACC) . 249

Configuring RMI/IIOP Support . 251

Server Configuration . 251

Client Configuration . 253

Deploying RMI/IIOP Client Applications . 259

Client Deployment . 259

Deployment Tools . 260

Server CLASSPATH Setting (SP2 and Prior) . 260

Configuring RMI/IIOP Applications for ORBIX . 261

References . 261

Configuration Steps . 261

Enabling Security . 263

Running RMI/IIOP Client Applications . 265

Troubleshooting RMI/IIOP Client Applications . 265

Performance Tuning RMI/IIOP . 268

Load Testing Approaches . 268

Recognizing Performance Issues . 268

Basic Tuning Approaches . 268

Enhancing Scalability . 269

Firewall Configuration for RMI/IIOP . 270

Viewing RMI/IIOP Log Messages . 272

Monitoring Logs on Windows . 272

Monitoring Logs on UNIX . 273

Sample RMI/IIOP Applications . 273

Converter Sample Application . 273

Other RMI/IIOP Sample Applications . 274

C++ IIOP Client Applications (Unix Only) . 274

Configuring C++ IIOP Applications for ORBIX . 275

Requirements . 275

References . 275

Preparing for C++ Client Development . 276

Contents 11

Data Type Assumptions and Limitations . 276

Generating the IDL Files . 277

Using J2SE 1.4 rmic 2 . 277

Using the OpenORB JavaToIDL Compiler . 278

Generating CPP Files from IDL Files . 278

Enabling Security for C++ IIOP Applications . 281

Lookup for the EJB Home Interface . 282

Client-Side Load Balancing and Failover . 282

Configuring the IIOP Bridge . 283

Deploying C++ IIOP Client Applications . 284

Client Deployment . 284

Server CLASSPATH Setting (SP2 and Prior) . 285

Performance Tuning IIOP . 285

Basic Tuning Approaches . 285

Enhancing Scalability . 286

Viewing IIOP Log Messages . 287

Sample C++ IIOP Applications . 287

Redeploying the Converter Sample for Use with a C++ Client . 288

Chapter 11 Packaging for Deployment . 291
Overview of Packaging and Deployment . 291

Modules . 292

Applications . 293

Naming Standards . 295

Assembling Modules and Applications . 295

Sample Files . 296

Assembling WAR Modules . 296

Using the Command Line Interface (CLI) . 297

Using the Deployment Tool . 298

Using the Visual Café Plug-in . 300

Assembling EJB JAR Applications . 301

Using the Command Line Interface (CLI) . 302

Using the Deployment Tool . 302

Assembling RMI/IIOP Applications . 305

Deploying Modules and Applications . 306

Deployment by Module . 306

Deployment by Application . 306

Deploying RMI/IIOP Clients . 307

Deploying Static Content . 307

Tools for Deployment . 307

The iasdeploy Command . 307

The iPlanet Deployment Tool . 308

The iPlanet Visual Café Plug-in . 308

12 iPlanet TM Application Server Developer’s Guide • February 2002

General Rules About Deployment . 308

Redeploying an Application or Module . 308

Deploying to an iPlanet Application Server Cluster . 308

Access to Shared Frameworks . 309

Introducing XML DTDs . 309

J2EE Standard Descriptors . 310

Creating Deployment Descriptors . 310

Document Type Definition . 310

The iPlanet Application Server Registry . 311

A Globally Unique Identifier . 311

Web Application XML DTD . 312

Web Application Overview . 312

Web Application XML DTD . 312

Element for Specifying an iPlanet Application Server Web Application 313

EJB XML DTD . 322

EJB JAR File Contents . 322

Specifying Parameter Passing Rules . 322

EJB iPlanet Application Server XML DTD . 323

Elements for Specifying EJB-JAR . 323

Elements for Specifying Enterprise Beans . 323

Elements for Specifying Persistence Manager . 325

Elements for Specifying Pool Manager . 325

Elements for Specifying EJB Reference . 326

Elements for Specifying Resource Reference . 326

Elements for Specifying Role Mapping . 327

Elements for Specifying Role Implementation . 327

RMI/IIOP Client XML DTD . 328

iPlanet Application Server RMI/IIOP Client XML DTD . 328

Elements for Specifying EJB Reference Information . 328

Elements for Specifying Resource Reference Information . 328

Resource XML DTD . 329

Datasource XML DTD . 329

Element for Specifying Datasources . 329

Element for Specifying iPlanet Application Server Resources . 329

Elements for Specifying Resources . 330

Elements for Specifying JDBC Datasources . 330

RMI/IIOP Client Datasource XML DTD . 331

Elements for Specifying Java Client Resources . 331

Elements for Specifying JDBC Settings . 332

Chapter 12 Creating and Managing User Sessions . 333
Introducing Sessions . 333

Sessions and Cookies . 334

Contents 13

Sessions and URL Rewriting . 334

Supported Tags and Attributes . 335

The URL Rewriting Process . 337

The Location Header . 340

Order of the Cookies . 340

Sessions and Security . 341

How to Use Sessions . 341

Creating or Accessing a Session . 342

Examining Session Properties . 342

Binding Data to a Session . 344

Invalidating a Session . 345

Controlling the Session Type . 346

Sharing Sessions in a Distributed Environment . 346

Sharing Sessions with AppLogics . 347

Chapter 13 Writing Secure Applications . 349
iPlanet Application Server Security Goals . 350

iPlanet Application Server Specific Security Features . 350

iPlanet Application Server Security Model . 351

Web Client and URL Authorizations . 352

Web Client Invocation of Enterprise Bean Methods . 352

RMI/IIOP Client Invocation of Enterprise Bean Methods . 353

Security Responsibilities Overview . 353

Application Developer . 353

Application Assembler . 353

Application Deployer . 354

Common Security Terminology . 354

Authentication . 354

Authorization . 355

Role Mapping . 355

Container Security . 355

Programmatic Security . 356

Declarative Security . 356

Application Level Security . 356

Servlet Level Security . 357

EJB Level Security . 357

User Authentication by Servlets . 357

HTTP Basic Authentication . 357

Secure Socket Layer Mutual Authentication . 358

Form-Based Login . 358

Programmatic Login . 358

Form-Based vs. Programmatic Login . 359

The IProgrammaticLogin Interface . 359

14 iPlanet TM Application Server Developer’s Guide • February 2002

The WebProgrammaticLogin Class . 359

The EjbProgrammaticLogin Class . 361

User Authorization by Servlets . 363

Defining Roles . 363

Referencing Security Roles . 363

Defining Method Permissions . 364

Sample Web Application DD . 364

User Authorization by EJBs . 365

Defining Roles . 365

Defining Method Permissions . 366

Security Role References . 367

User Authentication for Single Sign-on . 368

How to Configure for Single Sign-on . 368

Single Sign-on Example . 369

User Authentication for RMI/IIOP Clients . 370

Guide to Security Information . 371

User Information . 371

Security Roles . 371

Web Server to Application Server Component Security . 372

Chapter 14 Taking Advantage of the iPlanet Application Server Features 373
Caching Servlet Results . 373

Using a Startup Class . 375

The IStartupClass Interface . 376

Building the Startup Class . 376

Deploying the Startup Class . 377

How kjs Handles the StartupClass Object . 378

Appendix A Using the Java Message Service . 379
About the JMS API . 379

JMS Messaging Styles . 380

Enabling JMS and Integrating Providers . 382

Using JMS in Applications . 382

JNDI and Application Component Deployment . 382

Connection Factory Proxy . 382

Connection Pooling . 383

User Identity Mapping . 383

About Default Username . 383

About Explicit User ID Map . 384

ConnectionFactoryProxies and Application Created Threads . 385

JMS Features Not Supported . 385

JMS Administration . 385

JMS Object Administration Tools . 386

Contents 15

JNDI Properties for JMS Administration Tools . 386

JMS Object Administration for IBM MQ . 387

Connection Factory Proxy Administration . 387

Creating a Proxy . 388

Deleting a Proxy . 388

Listing Proxy Parameters . 388

User ID Map Administration . 389

Connection Pooling Configuration . 390

Sample Applications . 390

Default JMS Provider . 390

Appendix B Runtime Considerations . 391
Runtime Environments . 391

Standard Module Runtime Environment . 391

Application Runtime Environment . 392

The Classloader Hierarchy . 393

Dynamic Reloading . 398

Enabling Dynamic Reloading . 398

Using Administration Tool . 398

Modifying the Registry . 399

Dynamic Reloading of Servlets and JSPs . 399

Dynamic Reloading of EJBs . 399

Limitations of Dynamic Reloading . 399

Appendix C Sample Deployment Files . 401
Application DD XML Files . 401

Sample Application DD XML File . 401

Web Application DD XML Files . 402

Sample Web Application DD XML File . 402

Sample iPlanet Application Server Web-App DD XML File . 406

EJB-JAR DD XML Files . 407

Sample J2EE EJB-JAR DD XML File . 407

Sample iPlanet Application Server EJB-JAR DD XML File . 421

iPlanet Application Server Client DD XML Files . 423

RMI/IIOP Client DD XML Files . 424

Resource DD XML Files . 425

Glossary 427

Index . 443

16 iPlanet TM Application Server Developer’s Guide • February 2002

17

Preface

The iPlanet Application Server Developer’s Guide describes how to create and run

Java™ 2 Platform, Enterprise Edition (J2EE) applications that follow the new open

Java standards model for Servlets, Enterprise JavaBeans (EJBs), JavaServer Pages

(JSPs), and Java Database Connectivity (JDBC) on the iPlanet Application Server.

This guide is intended for information technology developers in a corporate

enterprise who want to extend client-server applications to a broader audience

through the World Wide Web. In addition to describing programming concepts

and tasks, this guide offers sample code, implementation tips, reference material,

and a glossary.

This preface contains information about the following topics:

• Using the Documentation

• What You Should Already Know

• How This Guide Is Organized

• Documentation Conventions

• Related Information

Using the Documentation
Table 1 lists the tasks and concepts that are described in the iPlanet Application

Server printed manuals and online Release Notes. If you are trying to accomplish a

specific task or learn more about a specific concept, refer to the appropriate guide.

Note that the printed guides are also available as online files in Portable Document

Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs.iplanet.com/docs/manuals/ias.html

18 iPlanet TM Application Server Developer’s Guide • February 2002

Table 1 iPlanet TM Application Server Documentation Roadmap

For information about See the following Shipped with

Late-breaking information about the

software and the documentation
Release Notes Available on the Web

at

http://docs.iplanet.c

om

Installing iPlanet Application Server and

its various components (Web Connector

plug-in, iPlanet Application Server

Administrator), and configuring the

sample applications

Installation Guide iPlanet Application

Server 6.5

Creating iPlanet Application Server 6.5

applications that follow the open Java

standards model (Servlets, EJBs, JSPs,

and JDBC), by performing the following

tasks:

• Creating the presentation and

execution layers of an application

• Placing discrete pieces of business

logic and entities into Enterprise Java

Bean (EJB) components

• Using JDBC to communicate with

databases

• Using iterative testing, debugging,

and application fine-tuning

procedures to generate applications

that execute correctly and quickly

Developer’s Guide iPlanet Application

Server 6.5

Preface 19

Administering one or more application

servers using the iPlanet Application

Server Administrator Tool to perform

the following tasks:

• Monitoring and logging server

activity

• Implementing security for Netscape

Application Server

• Enabling high availability of server

resources

• Configuring web-connector plugin

• Administering database connectivity

• Administering transactions

• Configuring multiple servers

• Administering multiple-server

applications

• Load balancing servers

• Managing distributed data

synchronization

• Setting up iPlanet Application Server

for development

Administrator’s Guide iPlanet Application

Server 6.5

Migrating your applications to the new

iPlanet Application Server 6.5

programming model from the Netscape

Application Server version 2.1,

including a sample migration of an

Online Bank application provided with

iPlanet Application Server

Migration Guide iPlanet Application

Server 6.5

Using the public classes and interfaces,

and their methods in the Netscape

Application Server class library to write

Java applications

Server Foundation
Class Reference (Java)

iPlanet Application

Server 6.5

Using the public classes and interfaces,

and their methods in the Netscape

Application Server class library to write

C++ applications

Server Foundation
Class Reference (C++)

Order separately

Table 1 iPlanet TM Application Server Documentation Roadmap

For information about See the following Shipped with

20 iPlanet TM Application Server Developer’s Guide • February 2002

What You Should Already Know
This guide assumes you are familiar with the following topics:

• J2EE specification

• HTML

• Java programming

• Java APIs as defined in specifications for EJBs, JSPs, and JDBC

• Structured database query languages such as SQL

• Relational database concepts

• Software development processes, including debugging and source code

control

How This Guide Is Organized
The first part of this guide provides an iPlanet Application Server environment

overview for designing programs. This part includes the following topic:

• Chapter 1, “Developing Applications”

The next part describes the programming tasks associated with presentation logic

and page design. This part includes the following topics:

• Chapter 2, “Controlling Applications with Servlets”

• Chapter 3, “Presenting Application Pages with JavaServer Pages”

The next part describes the programming tasks associated with business logic and

data access. This part includes the following topics:

• Chapter 4, “Introducing Enterprise JavaBeans”

• Chapter 5, “Using Session EJBs to Manage Business Rules”

• Chapter 6, “Building Entity EJBs”

• Chapter 7, “Using Message Driven Beans”

• Chapter 8, “Handling Transactions with EJBs”

• Chapter 9, “Using JDBC for Database Access”

• Chapter 10, “Developing and Deploying CORBA-Based Clients”

Preface 21

The next part describes issues that affect all application parts. This part includes

the following topics:

• Chapter 11, “Packaging for Deployment”

• Chapter 12, “Creating and Managing User Sessions”

• Chapter 13, “Writing Secure Applications”

• Chapter 14, “Taking Advantage of the iPlanet Application Server Features”

The appendixes include the following reference material:

• Appendix A, “Using the Java Message Service”

• Appendix B, “Runtime Considerations”

• Appendix C, “Sample Deployment Files”

Finally, a Glossary and Index are provided.

Documentation Conventions
File and directory paths are given in Microsoft Windows format (with backslashes

separating directory names). For Unix versions, the directory paths are the same,

except that forward slashes are used to separate directories.

This guide uses URLs of the form:

http:// server. domain/ path/ file.html

In these URLs, server is the server name where applications are run; domain is your

Internet domain name; path is the server’s directory structure; and file is an

individual filename. Italic items in URLs are placeholders.

This guide uses the following font conventions:

• The monospace font is used for sample code and code listings, API and

language elements (such as function names and class names), file names,

pathnames, directory names, and HTML tags.

• Italic type is used for code variables.

• Italic type is also used for book titles, emphasis, variables and placeholders,

and words used in the literal sense.

• Bold type is used as either a paragraph lead-in or to emphasis words used in

the literal sense.

22 iPlanet TM Application Server Developer’s Guide • February 2002

Related Information
You can find a directory of URLs for the official specifications at

install_dir/ias/docs/index.htm . Additionally, we recommend the following

resources:

Programming with Servlets and JSPs:

Java Servlet Programming, by Jason Hunter, O’Reilly Publishing

Java Threads, 2nd Edition, by Scott Oaks & Henry Wong, O’Reilly Publishing

The web site is http://www.servletcentral.com .

Programming with EJBs:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

The web site is http://www.oreilly.com/catalog/entjbeans2/ .

Programming with JDBC:

Database Programming with JDBC and Java, by George Reese, O’Reilly Publishing

JDBC Database Access With Java: A Tutorial and Annotated Reference (Java Series), by

Graham Hamilton, Rick Cattell, Maydene Fisher

23

Chapter 1

Developing Applications

This chapter summarizes the iPlanet TM Application Server application design

process and offers effective development guidelines.

This chapter contains the following sections:

• Application Requirements

• About the Application Programming Model

• Effective iPlanet Application Guidelines

Application Requirements
When developing an iPlanet Application Server application, start by identifying

the application requirements. Typically, this means developing a distributed

application as a widely deployable application that is fast and secure, and that can

reliably handle additional requests as new users are added.

The iPlanet Application Server meets these needs because it supports the J2EE

APIs as well as a set of pre-existing high performance features. For example, for an

online banking application, you can deliver:

• High performance

• Scalability

• Rapid deployment

• Security

• Rapid deployment of specific features; for example, account transfers, account

reporting, online trades, special offers to qualified customers

About the Application Programming Model

24 iPlanet TM Application Server Developer’s Guide • February 2002

• Management and administration of different types of end users; for example,

individuals, corporations, or internal users

• Internal reporting

• Enterprise Information System (EIS) connectivity; that provides access to

information stored in legacy databases

About the Application Programming Model
A distributed application model allows different individual application areas to

focus on different functional elements, thereby improving performance. For

instance, designing security requirements may affect one or more application

model layers.

In the presentation layer, you may need to check a user’s identity so your

application could present one set of pages for anonymous users and another set for

registered users. Additionally, the application may present a page explaining why

the attempt to use a restricted feature failed and invite the user to become a

member. By the same token, premier customers might have access to some pages

that are denied to regular customers.

In the business logic layer, the application must authenticate login attempts against

known users, as well as test that users meet the criteria for accessing particular

application features.

In the data access layer, the application may need to restrict database access based

on the end user category.

The Presentation Layer
The presentation layer is where the user interface is dynamically generated. An

application may require the following application elements:

• Servlets

• JSPs

• HTML pages

• Client side JavaScript elements

About the Application Programming Model

Chapter 1 Developing Applications 25

Servlets
Servlets handle the application’s presentation logic. Servlets are the page-to-page

navigation dispatchers, and they also provide session management and simple

input validation. Servlets tie business logic elements together.

A servlet developer must understand programming issues related to HTTP

requests, security, internationalization, and web statelessness (such as sessions,

cookies, and time-outs). For an iPlanet Application Server application, servlets

must be written in Java. Servlets are likely to call JSPs, EJBs, and JDBC objects.

Therefore, a servlet developer works closely with the application element

developers.

JSPs
JSPs handle most application display tasks, and they work in conjunction with

servlets to define the application’s presentation screens and page navigation. JSPs

are likely to call EJBs and JDBC objects. The EJBs typically encapsulate business

logic functionality. As such, they carry out calculations and other repetitively

requested tasks. JDBC objects are used to connect to databases, make queries, and

return query results.

HTML Pages
Properly designed HTML pages provide:

• Uniform appearance across different browsers.

• Efficient HTML loading across slow modem connections.

• Dynamically generated page appearances that are servlet or JSP dispatched.

Client-Side JavaScript
Client-side JavaScript can also be used to handle such things as simple input

validation before passing data to the server, or to make the user interface more

exciting. Client-side JavaScript developers work closely with servlet and JSP

developers.

The Business Logic Layer
The business logic layer typically contains deployed entities that encapsulate

business rules and other business functions in:

• Session beans

About the Application Programming Model

26 iPlanet TM Application Server Developer’s Guide • February 2002

• Entity beans

• Message-driven beans

Session Beans
Session beans encapsulate the business processes and rules logic. For example, a

session bean could calculate taxes for a billing invoice. When there are complex

business rules that change frequently (for example, due to new business practices

or new government regulations), an application typically uses more session beans

than entity beans, and session beans may need continual revision.

Session beans are likely to call a full range of JDBC interfaces, as well as other EJBs.

Applications perform better when session beans are stateless. Here’s why: suppose

taxes are calculated in a stateful session bean. The application must access a

specific server where the bean’s state information resides. If the server happens to

be down the application processing is delayed.

For more information, see Chapter 4, “Introducing Enterprise JavaBeans”.

Entity Beans
Entity beans represent persistent objects, such as a database row. Entity beans are

likely to call a full range of JDBC interfaces. However, entity beans typically do not

call other EJBs. The entity bean developer’s role is to design an object-oriented

view of an organization’s business data. Creating this object-oriented view often

means mapping database tables into entity beans. For example, the developer

might translate a customer table, invoice table, and order table into corresponding

customer, invoice, and order objects.

An entity bean developer works with session bean and servlet developers to

ensure that the application provides fast, scalable access to persistent business

data.

For more information, see Chapter 4, “Introducing Enterprise JavaBeans”,

Message Driven Beans
Message Driven Beans are similar to Session and Entity Beans in that they support

the framework provided by an Enterprise JavaBean. However, message-driven

beans are also Java Messaging Service (JMS) listeners and perform tasks based

upon the request it receives from a client in the form of JMS Messages.

Unlike Session and Entity Beans, message-driven beans process message queues

asynchronously, thereby making better use of server resources. The

message-driven bean can handle many client requests simultaneously and

therefore, does not create message queue bottlenecks.

Effective iPlanet Application Guidelines

Chapter 1 Developing Applications 27

For more information, see Chapter 7, “Using Message Driven Beans”.

The Data Access Layer
In the Data Access layer, custom connectors work with the iPlanet TM Application

Server Unified Integration Framework (UIF) to enable communication with legacy

EISs, such as IBM’s CICS.

Connector developers are most likely to use C++ and typically need to understand

issues related to wrapping C++ in Java, such as Java Native Interfaces (JNI), as well

as UIF.

UIF is an API framework, that enables the application server to pass information to

an EIS database. These developers are likely to integrate access to the following

systems:

• CORBA applications

• Mainframe systems

• Third-party security systems

For more information about UIF, see the iPlanet Unified Integration Framework
Developer's Guide and the release notes at the following URL:

http://docs.iplanet.com/docs/manuals/ias.html#uifsp1

Effective iPlanet Application Guidelines
This section lists guidelines to consider when designing and developing an iPlanet
TM Application Server application, and is merely a summary. For more details,

refer to later chapters in this guide.

The guidelines are grouped into the following goals:

• Presenting Data with Servlets and JSPs

• Creating Reusable Application Code

• Improving Performance

• Scalability Planning

• Modularizing Applications

Effective iPlanet Application Guidelines

28 iPlanet TM Application Server Developer’s Guide • February 2002

Presenting Data with Servlets and JSPs
Servlets are often used for presentation logic and serve as central dispatchers of

user input and data presentation. JSPs are used to dynamically generate the

presentation layout. Both servlets and JSPs can be used to conditionally generate

different pages.

If the page layout is its main feature and there is little or no processing involved to

generate the page, it may be easier to use a JSP alone for the interaction.

For example, after an Online Bookstore application authenticates a user, it provides

a boilerplate portal front page for the user to choose one of several tasks, including

a book search, purchase selected items, and so on. Since this portal conducts little

or no processing, it can be implemented solely as a JSP.

Think of JSPs and servlets as opposite sides of the same coin. Each can perform all

the tasks of the other, but each is designed to excel at one task at the expense of the

other. The strength of servlets is in processing and adaptability, and since they are

Java files you can take advantage of integrated development environments while

you are writing them. However, performing HTML output from them involves

many cumbersome println statements. Conversely, JSPs excel at layout tasks

because they are simply HTML files and can be edited with HTML editors, though

performing computational or processing tasks with them can be awkward.

For more information on JSPs, see Chapter 3, “Presenting Application Pages with

JavaServer Pages.”

Creating Reusable Application Code
Aside from using good object-oriented design principles, there are several things to

consider when developing an application to maximize reusability, including the

following tips:

• Use relative paths and URLs so links remain valid if the code tree moves.

• Minimize Java in JSPs; instead, put Java in servlets and helper classes. JSP

designers can revise JSPs without being Java experts.

• Use property files or global classes to store hard-coded strings such as the

datasource names, tables, columns, JNDI objects, or other application

properties.

• Use session beans, rather than servlets and JSPs, to store business rules that are

domain specific or likely to change often, such as input validation.

Effective iPlanet Application Guidelines

Chapter 1 Developing Applications 29

• Use entity beans for persistent objects; using entity beans allows management

of multiple beans per user.

• For maximum flexibility, use Java interfaces rather than Java classes.

• Use UIF-based connectors to access legacy data.

Improving Performance
Here are several tips to improve your application’s performance when it is

deployed on an iPlanet TM Application Server:

• In most cases, deploy servlets and JSPs to the iPlanet TM Application Server

rather than to the iPlanet Web Server. iPlanet TM Application Server is best if

an application is highly transactional, requires failover support to preserve

session data, or accesses legacy data. The iPlanet Web Server is useful if an

application is mostly stateless, read-only, and non-transactional.

• Use entity beans and stateless session beans; design for co-location to avoid

time intensive remote procedure calls.

• When an application is deployed, ensure that the necessary EJBs and JSPs are

replicated and available to load into the same process as the calling servlet.

• When returning multiple information rows, use JDBC RowSet objects when

possible. When committing complex data to a database, use efficient database

features, such as JDBC batch updates or direct SQL operations.

• Follow general programming guidelines for improving Java performance.

Scalability Planning
To plan an application to easily scale as customer demand increases:

• Develop your application so that it stores scaling or serializing information in

HttpSession objects that are configured for distribution.

• Avoid using global variables.

• Design an application to run in a multi-machine server farm environment.

Effective iPlanet Application Guidelines

30 iPlanet TM Application Server Developer’s Guide • February 2002

Modularizing Applications
There are six major factors to keep in mind when modularizing your J2EE

Applications:

• Functional Isolation

• Reusable Code

• Prepackaged Components

• Unique Names

• Shared Framework Classes

• Session and Security Issues

Five packaging samples (A through E) provide examples of the packaging concepts

explained here. For an overview of these samples, see:

http://developer.iplanet.com/appserver/samples/pkging/docs/index.html

For more information about packaging applications, see Chapter 11, “Packaging

for Deployment.”

Functional Isolation
Each module should do one thing and one thing only. For example, in a payroll

system, one enterprise bean should access the 401k accounts while a separate bean

accesses the salary database. This functional isolation of tasks leads to the physical

isolation of business logic into two separate beans. If separate development teams

create these beans, each team should develop its own EJB JAR package.

Scenario 1
Assume that the UI development team works with both of the bean development

teams. In this case, the UI development team should package its servlets, JSPs, and

static files into one WAR file. For example:

payroll system EAR file = payroll EJB jar

+ 401k ejb JAR

+ 1 common war from the UI team

This isolation of functionality within an EAR file does not mean that modules

cannot interact with each other. The beans (in separate EJB JAR files) can call

business methods from each other. This packaging is illustrated in Sample A.

Effective iPlanet Application Guidelines

Chapter 1 Developing Applications 31

Scenario 2
Assume that each bean development team has its own UI development team. If this

is the case, then each web development team should package its servlets, JSPs, and

static files into separate WAR files. For example:

payroll system EAR file = payroll EJB jar

+ 401k ejb JAR

+ 1 payroll UI team's war + 1 401k UI team's war

With this setup, the components in each WAR file can access components from the

other WAR file. This packaging is illustrated in Sample B.

Scenario 3
Assume that each module accesses functions from a shared library. If several

modules access methods from this library, then this library needs to be added to

one (and only one) module of the EAR file. For an example of this, see Sample C.

Packaging Formulas
The following general formulas should be followed when packaging modules and

applications:

Reusable Code
Reusable components are the primary reason for packaging and deploying

modules rather than applications. If the code developed by one team of developers

is a reusable component that may be accessed by several applications (different

EAR files), then that code should be packaged and registered as a module using the

following command:

iasdeploy deploymodule module_name

Table 1-1 Packaging formulas

Type of Development Group Teams in Group Modularizing Scheme

Small workgroup 1 web dev team + 1 ejb dev team 1 EAR = 1 ejb + 1 war

Enterprise workgroup 2 ejb dev teams + 1 web dev

team + 1 component

1 EAR = 2 ejb + 1 war

+ 1 standalone module

Effective iPlanet Application Guidelines

32 iPlanet TM Application Server Developer’s Guide • February 2002

Prepackaged Components
If you do not want to create your application from scratch, you can use

prepackaged components. Today's leading J2EE component vendors offer many

prepackaged components that provide modules for a whole host of services. Their

goal is to provide up to 60% of the standard components needed for an application.

With iPlanet Application Server, you can easily package applications that make use

of these readily available components.

Unique Names
It is important for each module, application, and EJB to have its own unique name.

You may want to establish some naming conventions that will help you ensure that

no two entities are assigned the same name. For example, one way to guarantee

that all modules have unique names is to use the application name as a prefix to the

module name. Using this convention, pkgingWar.war would be an ideal name for

the WAR module in the application pkging.ear .

JNDI lookup names for EJBs must also be unique. Here too, establishing a

consistent naming convention may help. For example, appending the application

name and the module name to the EJB name would be one way to guarantee

unique names. In this case, mycompany.pkging.pkgingEJB.MyEJB would be the

JNDI name for an EJB in the module pkgingEJB.jar , which is packaged in the

application pkging.ear .

Shared Framework Classes
Sometimes several applications need to access a single modular library -- for

example the LDAP SDK, the Cocobase CMP runtime, and so on. In such cases,

including the library in each J2EE application is not a good idea for two reasons:

• Library size: Most framework libraries are large, so including them in an

application increases the size of the packaged application.

• Different versions: Because a separate class loader loads each application,

several copies of the framework classes exist during runtime.

One way to include this library in the iPlanet Application Server runtime

environment is to add it to the System Classpath (in the iasenv.ksh script under

the install_dir/ias/env directory and in the iPlanet Application Server registry on

NT). This way the framework is loaded by the System Classloader. For more

information about the System Classloader, see “The Classloader Hierarchy,” on

page 393.

Effective iPlanet Application Guidelines

Chapter 1 Developing Applications 33

Session and Security Issues
If session sharing is a requirement, all of the components that need to access a

session should be contained in the same application. Session sharing across

application boundaries is not supported in iPlanet Application Server and is a

violation of the J2EE specification.

If an HTTP session needs to be shared between two WAR files in an EAR file, the

session should be marked "distributed" in the Deployment Descriptor. Sample B

illustrates this.

You should not allow unauthorized runtime access to classes, EJBs, and other

resources. A module should only contain classes that are permitted to access other

resources included in the module. In addition, you should use the standard J2EE

declarative security (see Chapter 13, “Writing Secure Applications”) for sensitive

tasks.

Effective iPlanet Application Guidelines

34 iPlanet TM Application Server Developer’s Guide • February 2002

35

Chapter 2

Controlling Applications with Servlets

This chapter describes how to create effective servlets to control application

interactions running on an iPlanet™ Application Server, including standard

servlets. In addition, this chapter describes the iPlanet Application Server features

to use to augment the standards.

This chapter contains the following sections:

• About Servlets

• About the Server Engine

• Designing Servlets

• Creating Servlets

• Invoking Servlets

About Servlets
Servlets, like applets, are reusable Java applications. However, servlets run on an

application server or web server rather than in a web browser.

Servlets supported by the iPlanet Application Server are based on the Java Servlet

Specification v2.2. All relevant specifications are accessible from

install_dir/ias/docs/index.htm , where install_dir is the directory where the

iPlanet Application Server is installed.

Servlets are used for an application’s presentation logic. A servlet acts as an

application’s central dispatcher by processing form input, invoking business logic

components encapsulated in EJBs, and formatting web page output using JSPs.

Servlets control the application flow from one user interaction to the next by

generating content in response to user requests.

About Servlets

36 iPlanet TM Application Server Developer’s Guide • February 2002

The fundamental characteristics are:

• Servlets are created and managed at runtime by the iPlanet Application Server

servlet engine.

• Servlets operate on input data that is encapsulated in a request object.

• Servlets respond to a query with data encapsulated in a response object.

• Servlets call EJBs to perform business logic functions.

• Servlets call JSPs to perform page layout functions.

• Servlets are extensible; use the APIs provided with the iPlanet Application

Server to add functionality.

• Servlets provide user session information persistence between interactions.

• Servlets can be part of an application or they can reside discretely on the

application server so they are available to multiple applications.

• Servlets can be dynamically reloaded while the server is running.

• Servlets are addressable with URLs; buttons on an application’s pages often

point to servlets.

• Servlets can call other servlets.

Several iPlanet Application Server API features enable an application to take

programmatic advantage of specific iPlanet features. For more information, see

“iPlanet Application Server Optional Features,” on page 54.

Servlet Data Flow
When a user clicks a Submit button, information entered in a display page is sent to

a servlet. The servlet processes the incoming data and orchestrates a response by

generating content, often through business logic components, which are EJBs. Once

the content is generated, the servlet creates a response page, usually by forwarding

the content to a JSP. The response is sent back to the client, which sets up the next

user interaction.

The following illustration shows the information flow to and from the servlet, as:

1. Servlet processes the client request

2. Servlet generates content

3. Servlet creates response and either:

About Servlets

Chapter 2 Controlling Applications with Servlets 37

a. Sends it back directly to the client

or

b. Dispatches the task to a JSP

The servlet remains in memory, available to process another request.

 Servlet Types
There are two main servlet types:

• Generic servlets

❍ Extend javax.servlet.GenericServlet .

❍ Are protocol independent; they contain no inherent HTTP support or any

other transport protocol.

• HTTP servlets

❍ Extend javax.servlet.HttpServlet .

❍ Have built-in HTTP protocol support and are more useful in an iPlanet

Application Server environment.

LDAP

Submit

option 1

option 2

Servlet

Submit

option 1

option 2

RDBMS

EJB

Page 1

Page 2

1.

2.

3b.

3a. JSP

About the Server Engine

38 iPlanet TM Application Server Developer’s Guide • February 2002

For both servlet types, implement the constructor method init() and the

destructor method destroy() to initialize or deallocate resources, respectively.

All servlets must implement a service() method, which is responsible for

handling servlet requests. For generic servlets, simply override the service method

to provide routines for handling requests. HTTP servlets provide a service method

that automatically routes the request to another method in the servlet based on

which HTTP transfer method is used. So, for HTTP servlets, override doPost() to

process POST requests, doGet() to process GET requests, and so on.

About the Server Engine
Servlets exist in a Java server process on an iPlanet Application Server and are

managed by the servlet engine. The servlet engine is an internal object that handles

all servlet meta functions. These functions include instantiation, initialization,

destruction, access from other components, and configuration management.

Instantiating and Removing Servlets
After the servlet engine instantiates the servlet, the servlet engine runs its init()

method to perform any necessary initialization. Override this method to perform

an initialize a function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the server engine calls the destroy()

method in the servlet so that the servlet can perform any final tasks and deallocate

resources. Override this method to write log messages or clean up any lingering

connections that won’t be caught in garbage collection.

Request Handling
When a request is made, the iPlanet Application Server hands the incoming data to

the servlet engine. The servlet engine processes the request’s input data, such as

form data, cookies, session information, and URL name-value pairs, into an

HttpServletRequest request object type.

The servlet engine also captures client metadata by encapsulating it in an

HttpServletResponse response object type. The engine then passes both as

parameters to the servlet’s service() method.

About the Server Engine

Chapter 2 Controlling Applications with Servlets 39

In an HTTP servlet, the default service() method routes requests to another

method based on an HTTP transfer method, such as POST, GET, and so on. For

example, HTTP POST requests are sent to the doPost() method, HTTP GET

requests are sent to the doGet() method, and so on. This enables the servlet to

process request data differently, depending on which transfer method is used.

Since the routing takes place in the service method, you generally do not override

service() in an HTTP servlet. Instead, override doGet() , doPost() , and so on,

depending on the request type you expect.

To perform the tasks to answer a request, override the service() method for

generic servlets, and the doGet() or doPost() methods for HTTP servlets. Very

often, this means accessing EJBs to perform business transactions, collating the

information in the request object or in a JDBC ResultSet object, and then passing

the newly generated content to a JSP for formatting and delivery back to the user.

Allocating Servlet Engine Resources
By default, the servlet engine creates a thread for each new request. This is less

resource intensive than instantiating a new servlet copy in memory for each

request. Avoid threading issues, since each thread operates in the same memory

space where variables can overwrite each other.

If a servlet is specifically written as a single thread, the servlet engine creates a pool

of ten servlet instances to be used for incoming requests. If a request arrives when

all instances are busy, it is queued until an instance becomes available. The number

of pool instances is configurable in the Deployment Descriptor (DD), which is an

iPlanet Application Server specific XML file. For more information about

deployment descriptors, see Chapter 11, “Packaging for Deployment.”

For more information on threading issues, see “Handling Threading Issues,” on

page 49.

TIP To enable automatic routing in an HTTP servlet, call

request.getMethod() , which provides the HTTP transfer method.

Since request data is already preprocessed into a name value list in

the iPlanet Application Server, you could simply override the

service() method in an HTTP servlet without losing functionality.

However, this does make the servlet less portable, since it is now

dependent on preprocessed request data.

About the Server Engine

40 iPlanet TM Application Server Developer’s Guide • February 2002

Dynamically Reloading Servlets at Runtime
If no configuration file changes are needed, servlet reloading in an iPlanet

Application Server is done without restarting the server by simply redeploying the

servlet. This can also be achieved by replacing the Servlet class file with a new

classfile in the same directory.

The iPlanet Application Server notices the new component and reloads it at the next

request of the servlet. For more information, see Appendix B, “Runtime

Considerations.”

Configuring Servlets for Deployment
When you configure a servlet for deployment, you actually provide the metadata,

which the application server uses to create the servlet object and use it in the

application framework. For more information about servlet configuration, see

Chapter 11, “Packaging for Deployment.”

Locating Servlet Files
Servlet files and other application files reside in a directory structure location

known to the iPlanet Application Server as AppPath . This variable defines the top

of a logical directory tree for the application. The AppPath variable is similar to the

document path in a web browser. By default, AppPath contains the value

BasePath/APPS, where BasePath is the base iPlanet Application Server directory.

AppPath and BasePath are variables held in the iPlanet Application Server

registry, which is a repository for server and application metadata. For more

information, see “The iPlanet Application Server Registry,” on page 311 and the

Deployment Tool Online Help.

In addition to AppPath and BasePath , the registry has a third variable called

ModulesDirName . This variable corresponds to a directory under AppPath that is

the home for web modules that do not exist as a part of any J2EE application. They

are registered as standalone modules.

Table 2-1 describes important files and servlet locations:

NOTE This feature is turned off by default for a production environment.

Turn it on when needed.

Designing Servlets

Chapter 2 Controlling Applications with Servlets 41

Deploying Servlets
You normally deploy servlets with the rest of an application using the iPlanet

Application Server Deployment Tool. You can also deploy servlets manually for

testing or to update servlets while the server is running. For more information, see

the Deployment Tool Online Help.

Designing Servlets
This section describes basic design decisions to make when planning the servlets

that help make up an application.

Web applications generally follow a request-response paradigm so that a user

normally interacts with a web application by following a directed sequence of

completing and submitting forms. A servlet processes the data provided in each

form, performs business logic functions, and sets up the next interaction.

How you design the application as a whole determines how to design each servlet

by defining the required input and output parameters for each interaction.

Table 2-1 Important Files and Servlet Locations

Location Variable Description

BasePath Top of the iPlanet Application Server tree. All files in this

directory are part of the iPlanet Application Server. Defined by

the registry variable BasePath .

AppPath Top of the application tree. Applications reside in

subdirectories of this location. Defined by the registry variable

AppPath .

ModulesDirName A special directory that contains all J2EE web and EJB modules

that are registered as stand-alone entities (in the Default
application). This directory exists under AppPath. Defined by

the registry variable ModulesDirName . The default value of

this variable in the registry is modules .

AppPath/ appName/* Top of the subtree for the application appName. The appName
directory in turn contains subdirectories for different modules

within the application. For more information, see “Invoking
Servlets,” on page 54.

Creating Servlets

42 iPlanet TM Application Server Developer’s Guide • February 2002

Choosing a Servlet Type
Servlets that extend HttpServlet are much more useful in an HTTP environment,

since that is what they were designed for. We recommend that all iPlanet

Application Server servlets extend HttpServlet rather than GenericServlet to

take advantage of the built-in HTTP support. For more information, see “Servlet

Types,” on page 37.

Create Standard or Non-Standard Servlets
One important decision to make with respect to the servlets in your application is

whether to write them strictly according to the official specifications, which

maximizes their portability, or to utilize the features provided in the iPlanet

Application Server APIs. These APIs can greatly increase the usefulness of servlets

in an iPlanet Application Server framework.

You can also create portable servlets that only take advantage of iPlanet

Application Server features if the servlet runs in an iPlanet Application Server

environment.

For more information on iPlanet Application Server specific APIs, see “iPlanet

Application Server Optional Features,” on page 54.

Planning for Servlet Reuse
Servlets by definition are discrete, reusable applications that run on a server. A

servlet does not necessarily have to be tied to one application. You can create a

servlet library to be used across multiple applications by placing it in the

application named Default .

However, there are disadvantages to using servlets that are not part of a specific

application. In particular, servlets in the Default application are configured

separately from those that are part of a specific application.

Creating Servlets
To create a servlet, perform the following tasks:

• Design the servlet into your application, or, if accessed in a generic way, design

it to access no application data.

Servlet Files for an iPlanet Application

Chapter 2 Controlling Applications with Servlets 43

• Create a class that extends either GenericServlet or HttpServlet , overriding

the appropriate methods so it handles requests.

• Use the iPlanet Application Server Administration Tool to create a web

application Deployment Descriptor (DD) for the servlet.

Servlet Files for an iPlanet Application
The files that make up a servlet include:

• The Servlet’s Class File

• The Servlet’s Deployment Descriptor

• iPlanet Application Server Optional Features

The Servlet’s Class File
This section describes how to write a servlet, including the decisions to make about

an application and the servlet’s place in it.

Creating the Class Declaration
To create a servlet, write a public Java class that includes basic I/O support as well

as the package javax.servlet . The class must extend either GenericServlet or

HttpServlet . Since iPlanet Application Server servlets exist in an HTTP

environment, the latter class is recommended. If the servlet is part of a package,

you must also declare the package name so the class loader can properly locate it.

The following example header shows the HTTP servlet declaration called

myServlet :

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class myServlet extends HttpServlet {
... servlet methods...

}

Servlet Files for an iPlanet Application

44 iPlanet TM Application Server Developer’s Guide • February 2002

Overriding Methods
Next, override one or more methods to provide servlet instructions to perform its

intended task. All processing by a servlet is done on a request-by-request basis and

happens in the service methods, either service() for generic servlets or one of the

doOperation() methods for HTTP servlets. This method accepts incoming requests,

processing them according to the instructions you provide, and directs the output

appropriately. You can create other methods in a servlet as well.

Business logic may involve database access to perform a transaction or passing the

request to an EJB.

Overriding Initialize
Override the class initializer init() to initialize or allocate resources for the servlet

instance’s life, such as a counter. The init() method runs after the servlet is

instantiated but before it accepts any requests. For more information, see the

servlet API specification.

The following example of the init() method initializes a counter by creating a

public integer variable called thisMany :

public class myServlet extends HttpServlet {
int thisMany;

public void init (ServletConfig config) throws ServletException
{

super.init(config);
thisMany = 0;

}
}

Now other servlet methods can access the variable.

Overriding Destroy
Override the class destructor destroy() to write log messages or to release

resources that are not released through garbage collection. The destroy() method

runs just before the servlet itself is deallocated from memory. For more

information, see the servlet API specification.

NOTE All init() methods must call super.init(ServletConfig) to set

their scope. This makes the servlet’s configuration object available to

other servlet methods. If this call is omitted, a 500

SC_INTERNAL_SERVER_ERROR appears in the browser when the

servlet starts up.

Servlet Files for an iPlanet Application

Chapter 2 Controlling Applications with Servlets 45

For example, the destroy() method could write a log message like the following,

based on the example for “Overriding Initialize” above:

out.println("myServlet was accessed " + thisMany " times.\n");

Overriding Service, Get, and Post
When a request is made, the iPlanet Application Server hands the incoming data to

the servlet engine to process the request. The request includes form data, cookies,

session information, and URL name-value pairs, all in a type HttpServletRequest

object called the request object. Client metadata is encapsulated as a type

HttpServletResponse object called the response object. The servlet engine passes

both objects as the servlet’s service() method parameters.

The default service() method in an HTTP servlet routes the request to another

method based on the HTTP transfer method (POST, GET, and so on). For example,

HTTP POST requests are routed to the doPost() method, HTTP GET requests are

routed to the doGet() method, and so on. This enables the servlet to perform

different request data processing depending on the transfer method. Since the

routing takes place in service() , there is no need to generally override service()

in an HTTP servlet. Instead, override doGet() , doPost() , and so on, depending on

the expected request type.

The automatic routing in an HTTP servlet is based simply on a call to

request.getMethod() , which provides the HTTP transfer method. In an iPlanet

Application Server, request data is already preprocessed into a name-value list by

the time the servlet sees the data, so simply overriding the service() method in

an HTTP servlet does not lose any functionality. However, this does make the

servlet less portable, since it is now dependent on preprocessed request data.

Override the service() method (for generic servlets) or the doGet() and/or

doPost() methods (for HTTP servlets) to perform tasks needed to answer the

request. Very often, this means accessing EJBs to perform business transactions,

collating the needed information (in the request object or in a JDBC result set

object), and then passing the newly generated content to a JSP for formatting and

delivery back to the client.

Most operations that involve forms use either a GET or a POST operation, so for

most servlets you override either doGet() or doPost() . Note that implementing

both methods to provide for both input types or simply pass the request object to a

central processing method, as shown in the following example:

public void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
doPost(request, response);

}

Servlet Files for an iPlanet Application

46 iPlanet TM Application Server Developer’s Guide • February 2002

All request-by-request traffic in an HTTP servlet is handled in the appropriate

doOperation() method, including session management, user authentication,

dispatching EJBs and JSPs, and accessing iPlanet Application Server features.

If a servlet intends to call the RequestDispatcher method include() or

forward() , be aware the request information is no longer sent as HTTP POST,

GET, and so on. In other words, if a servlet overrides doPost() , it may not process

anything if another servlet calls it, if the calling servlet happens to receive its data

through HTTP GET. For this reason, be sure to implement routines for all possible

input types, as explained above. RequestDispatcher methods always call

service() .

For more information, see “Calling a Servlet Programmatically,” on page 56.

Accessing Parameters and Storing Data
Incoming data is encapsulated in a request object. For HTTP servlets, the request

object type is HttpServletRequest . For generic servlets, the request object type is

ServletRequest . The request object contains all request parameters, including

your own request values called attributes.

To access all incoming request parameters, use the getParameter() method. For

example:

String username = request.getParameter("username");

Set and retrieve values in a request object using setAttribute() and

getAttribute() , respectively. For example:

request.setAttribute("favoriteDwarf", "Dwalin");

This shows one way to transfer data to a JSP, since JSPs have access to the request

object as an implicit bean. For more information, see “Using JavaBeans,” on

page 83.

Handling Sessions and Security
From a web or application server’s perspective, a web application is a series of

unrelated server hits. There is no automatic recognition if a user has visited the site

before, even if their last interaction were seconds before. A session provides a

context between multiple user interactions by remembering the application state.

Clients identify themselves during each interaction by a cookie, or, in the case of a

cookie-less browser, by placing the session identifier in the URL.

A session object can store objects, such as tabular data, information about the

application’s current state, and information about the current user. Objects bound

to a session are available to other components that use the same session.

Servlet Files for an iPlanet Application

Chapter 2 Controlling Applications with Servlets 47

For more information, see Chapter 12, “Creating and Managing User Sessions.”

After a successful login, you should direct a servlet to establish the user’s identity

in a standard object called a session object that holds information about the current

session, including the user’s login name and whatever additional information to

retain. Application components can then query the session object to obtain user

authentication.

To provide a secure user session for your application, see Chapter 13, “Writing

Secure Applications.”

Accessing Business Logic Components
In the iPlanet Application Server programming model, you implement business

logic, including database or directory transactions and complex calculations, in

EJBs. A request object reference can be passed as an EJB parameter to perform the

specified task.

Store the results from database transactions in JDBC ResultSet objects and pass

object references to other components for formatting and delivery to the client.

Also, store request object results by using the request.setAttribute() method,

or in the session by using the session.putValue() method. Objects stored in the

request object are valid only for the request length, or in other words for this

particular servlet thread. Objects stored in the session persist for the session

duration, which can span many user interactions.

JDBC result sets are not serializable and cannot be distributed among multiple

servers in a cluster. For this reason, do not store result sets in distributed sessions.

For more information, see Chapter 12, “Creating and Managing User Sessions.”

This example shows a servlet accessing an EJB called ShoppingCart . The servlet

creates a cart handle by casting the user’s session ID as a cart after importing the

cart’s remote interface. The cart is stored in the user’s session.

import cart.ShoppingCart;

// Get the user's session and shopping cart
HttpSession session = request.getSession(true);
ShoppingCart cart =

(ShoppingCart)session.getValue(session.getId());

// If the user has no cart, create a new one
if (cart == null) {

String jndiNm = "java:comp/env/ejb/ShoppingCart";
javax.naming.Context initCtx = null;
Object home = null;
try {

Servlet Files for an iPlanet Application

48 iPlanet TM Application Server Developer’s Guide • February 2002

initCtx = new javax.naming.InitialContext(env);
java.util.Properties props = null;
home = initCtx.lookup(jndiNm);
cart = ((IShoppingCartHome) home).create();

}
catch (Exception ex) {
.....
.....
}

}

Access EJBs from servlets by using the Java Naming Directory Interface (JNDI) to

establish a handle, or proxy, to the EJB. Next, refer to the EJB as a regular object;

overhead is managed by the bean’s container.

This example shows JNDI looking up a proxy for the shopping cart:

String jndiNm = "java:comp/env/ejb/ShoppingCart";
javax.naming.Context initCtx;
Object home;

try
{

initCtx = new javax.naming.InitialContext(env);
}
catch (Exception ex)
{

return null;
}
try
{

java.util.Properties props = null;
home = initCtx.lookup(jndiNm);

}
catch(javax.naming.NameNotFoundException e)
{

return null;
}
catch(javax.naming.NamingException e)
{

return null;
}
try
{

IShoppingCart cart = ((IShoppingCartHome) home).create();

}
catch (...) {...}

Servlet Files for an iPlanet Application

Chapter 2 Controlling Applications with Servlets 49

For more information on EJBs, see Chapter 4, “Introducing Enterprise JavaBeans.”

Handling Threading Issues
By default, servlets are not thread-safe. The methods in a single servlet instance are

usually executed numerous times simultaneously (up to the available memory

limit). Each execution occurs in a different thread though only one servlet copy

exists in the servlet engine.

This is efficient system resource usage, but is dangerous because of how Java

manages memory. Because parameters (objects and variables) are passed by

reference, different threads can overwrite the same memory space as a side effect.

To make a servlet (or a block within a servlet) thread-safe, do one of the following:

• Synchronize write access to all instance variables, as in public synchronized

void method() (whole method) or synchronized(this) {...} (block only).

Because synchronizing slows response time considerably, synchronize only

blocks, or make sure that the blocks in the servlet do not need synchronization.

For example, this servlet has a thread-safe block in doGet() and a thread-safe

method called mySafeMethod() :

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class myServlet extends HttpServlet {

public void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
//pre-processing
synchronized (this) {

//code in this block is thread-safe
}
//other processing;
}

public synchronized int mySafeMethod (HttpServletRequest
request)

{
//everything that happens in this method is thread-safe
}

}

Servlet Files for an iPlanet Application

50 iPlanet TM Application Server Developer’s Guide • February 2002

• Use SingleThreadModel to create a single-threaded servlet. In this case, when

a single-threaded servlet is registered with the iPlanet Application Server, the

servlet engine creates a 10 servlet instance pool used for incoming requests (10

copies of the same servlet in memory). The number of servlet instances in the

pool is changed by setting the number-of-singles element in the iPlanet

Application Server specific web application DD to a different number. The

iPlanet Application Server Deployment Tool is used to modify this number in

the iPlanet Application Server specific web application DD. For more

information on the iPlanet Application Server web application DD, see

Chapter 11, “Packaging for Deployment,” the iPlanet Application Server

Deployment Tool, and the Administrator’s Guide. A single-threaded servlet is

slower under load because new requests must wait for a free instance in order

to proceed, but this is not a problem with distributed, load-balanced

applications since the load automatically shifts to a less busy kjs process.

For example, this servlet is completely single-threaded:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class myServlet extends HttpServlet
implements SingleThreadModel {
servlet methods ...

}

Delivering Client Results
The final user interaction activity is to provide a response page to the client. The

response page can be delivered in two ways:

• Creating a Servlet Response Page

• Creating a JSP Response Page

Creating a Servlet Response Page
Generate the output page within a servlet by writing to the output stream. The

recommended way to do this depends on the output type.

Always specify the output MIME type using setContentType() before any output

commences, as in this example:

response.setContentType("text/html");

For textual output, such as plain HTML, create a PrintWriter object and then

write to it using println . For example:

Servlet Files for an iPlanet Application

Chapter 2 Controlling Applications with Servlets 51

PrintWriter output = response.getWriter();
output.println("Hello, World\n");

For binary output, write to the output stream directly by creating a

ServletOutputStream object and then write to it using print() . For example:

ServletOutputStream output = response.getOutputStream();
output.print(binary_data);

Creating a JSP Response Page
Servlets can invoke JSPs in two ways:

• The include() method in the RequestDispatcher interface calls a JSP and

waits for it to return before continuing to process the interaction. The

include() method can be called multiple times within a given servlet.

This example shows a JSP using include() :

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(" JSP_URI");

dispatcher.include(request, response);
... //processing continues

• The forward() method in the RequestDispatcher interface hands the JSP

interaction control. The servlet is no longer involved with the current

interaction’s output after invoking forward() , thus only one call to the

forward() method can be made in a particular servlet.

NOTE A servlet cannot call a JSP from a PrintWriter or

ServletOutputStream object.

NOTE If you use the iPlanet Application Server with the iPlanet Web

Server, do not set the date header in the output stream using

setDateHeader() . This results in a duplicate date field in the

response page’s HTTP header the server returns to the client. This

is because the iPlanet Web Server automatically provides a header

field. Conversely, Microsoft Internet Information Server (IIS) does

not add a date header, so one must be provided.

NOTE You cannot use the forward() method if you have already defined

a PrintWriter or ServletOutputStream object.

Servlet Files for an iPlanet Application

52 iPlanet TM Application Server Developer’s Guide • February 2002

This example shows a JSP using forward() :

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(" JSP_URI");

dispatcher.forward(request, response);

For more information about JSPs, see Chapter 3, “Presenting Application Pages

with JavaServer Pages.”

The Servlet’s Deployment Descriptor
Servlet DDs are created by the iPlanet Application Server Deployment Tool (you

can also create them by hand). These descriptor files are packaged within Web

Application aRchive (.war) files. They contain metadata, plus information that

identifies the servlet and establishes its application role.

The sample applications for iPlanet Application Server contain instructions for

creating servlet DDs. These sample applications are located in the

install_dir/ias/ias-samples directory.

NOTE Identify which JSP to call by specifying a Universal Resource

Identifier (URI). The path is a String describing a path within the

ServletContext scope. There is also a getRequestDispatcher()

method in the request object that takes a String argument

indicating a complete path. For more information about this

method, see the Java Servlet Specification, v2.2, section 8.

NOTE WAR module names identified by the first portion of their filenames

(without the .war extensions) must be unique when deploying to

the Application Server. Using a Java package-like naming scheme

for these module filenames ensures that name collisions do not

occur. The benefits of this naming practice apply not only to the

iPlanet Application Server, but to other J2EE application servers as

well.

Servlet Files for an iPlanet Application

Chapter 2 Controlling Applications with Servlets 53

Elements
The DD for a servlet contains standard J2EE specified elements as well as iPlanet

Application Server specific elements. The servlet DDs convey the elements and

configuration information of a web application between developers, assemblers,

and deployers. For more information about these elements, see Chapter 11,

“Packaging for Deployment.”

Changing Configuration Files
To modify deployment descriptor settings, you can use the Deployment Tool or a

combination of an editor and command line utilities such as Ant to reassemble and

deploy the updated deployment descriptor information.

Using the Deployment Tool
1. Open the EAR, WAR or EJB JAR file.

2. Modify the deployment descriptors.

3. Redeploy the EAR, WAR or EJB JAR module.

4. Restart the application server to pick up the modified deployment descriptor

settings.

Using the Command Line
Refer to the sample applications (in the install_dir/ias/ias-samples directory) for

extensive examples of using Ant-based build.xml files to reassemble applications

and modules from the command line.

1. Edit the appropriate deployment descriptor file (web.xml or ias-web.xml) by

hand.

2. Execute an Ant build command (such as build war) to reassemble the

appropriate EAR, WAR or EJB JAR module.

3. Use the iasdeploy command to deploy the EAR or WAR file or module.

4. Restart the application server to pick up the modified deployment descriptor

settings.

Invoking Servlets

54 iPlanet TM Application Server Developer’s Guide • February 2002

iPlanet Application Server Optional Features
Many additional iPlanet features augment servlets for use in an iPlanet Application

Server environment. These features are not a part of the official specifications,

though some are based on emerging Sun standards and conform to future

standards.

For more information on the iPlanet Application Server features, see Chapter 14,

“Taking Advantage of the iPlanet Application Server Features.”

The iPlanet Application Server provides support for more robust sessions, based

on a previous version model of the iPlanet Application Server. This model uses the

same API as the session model described in the Servlet 2.2 Specification, which is

also supported. For more details on distributable sessions, see Chapter 12,

“Creating and Managing User Sessions.”

Invoking Servlets
Invoke a servlet by either directly addressing it from an application page with a

URL or calling it programmatically from an already running servlet. You can also

Verify servlet parameters. See the following sections:

• Calling a Servlet With a URL

• Calling a Servlet Programmatically

• Verifying Servlet Parameters

Calling a Servlet With a URL
Most times, you call servlets by using URLs embedded as links in the application’s

pages. This section describes how to invoke servlets using standard URLs.

Invoking Specific Application Servlets
The URL request path that leads to a servlet responding to a request has several

sections. Each section has to locate the appropriate servlet. The request object

exposes the following elements when obtaining the request’s URI path:

• Context Path

• Servlet Path

• PathInfo

Invoking Servlets

Chapter 2 Controlling Applications with Servlets 55

For more information on these elements, see the Java Servlet Specification, v2.2,

section 5.4.

Address servlets that are part of a specific application as follows:

http:// server: port/NASApp/ moduleName/ servletName?name=value

Table 2-2 describes each URL section.

For example:

http://www.my-company.com/NASApp/OnlineBookings/directedLogin

Invoking Generic Application Servlets
Address servlets that are part of the generic Default application as follows:

http:// server: port/servlet/ servletName?name=value

Table 2-3 describes each URL section.

Table 2-2 URL Fields for Servlets within a Specific Application

URL element Description

server: port The address and optional web server port number handling the

request.

NASApp Indicates to the web server that this URL is for an iPlanet Application

Server application. The request routes to the iPlanet Application Server

executive server.

moduleName The servlet module name (these names are unique across the server).

The moduleName corresponds to a directory under

AppPath/ applicationName for a module that is registered as part of an

application. It reflects the .war module name that contains the servlets

and JSPs, and its contents are the same as those of the .war module.

servletName The servlet name as configured in the XML file.

Table 2-3 URL Fields for Servlets within a Generic Application

URL element Description

server: port The address and optional web server port number handling the

request.

servlet Indicates to the web server that this URL is for a generic servlet

object.

Invoking Servlets

56 iPlanet TM Application Server Developer’s Guide • February 2002

For example:

http://www.leMort.com/servlet/calcMortgage?rate=8.0&per=360&bal=180000

Calling a Servlet Programmatically
First, identify which servlet to call by specifying a URI. This is normally a path

relative to the current application. For instance, if your servlet is part of an

application with a context root called Office , the URL to a servlet called

ShowSupplies from a browser is as follows:

http:// server: port/NASApp/Office/ShowSupplies?name=value

You can call this servlet programmatically from another servlet in one of two ways,

as described below.

• To include another servlet’s output, use the include() method from the

RequestDispatcher interface. This method calls a servlet by its URI and waits

for it to return before continuing to process the interaction. The include()

method can be called multiple times within a given servlet.

For example:

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/ShowSupplies");

dispatcher.include(request, response);

• To hand interaction control to another servlet, use the RequestDispatcher

interface’s forward() method with the servlet’s URI as a parameter.

servletName The servlet name, as specified in the servlet-name element in the

Web App XML file.

?name=value... Optional servlet name-value parameters.

NOTE All servlets deployed to use the /servlet path must be deployed

with the application name Default . Additionally, the servlet

engine of the web server instance must be deactivated in order to

pass the requests started with /servlet to the iPlanet Application

Server.

Table 2-3 URL Fields for Servlets within a Generic Application

URL element Description

Invoking Servlets

Chapter 2 Controlling Applications with Servlets 57

This example shows a servlet using forward() :

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/ShowSupplies");

dispatcher.forward(request, response);

Verifying Servlet Parameters
You can verify the parameters passed to a servlet. This feature can increase iPlanet

Application Server response time and save development time.

iPlanet Application Server can call a specified class for parameter verification.

Based on the results of the verification, the server can either call the servlet method

or abort the call to the servlet, redirecting the user to an error page. You must

provide the parameter verification class and specify it in the Deployment Tool

during servlet deployment. You can specify which parameters are validated.

The parameter verification code need not be present within the servlet. If more

than one servlet accepts the same parameter, they must both use the same

parameter verification function for that parameter.

NOTE Forwarding a request means the original servlet is no longer

involved with the current interaction output after forward() is

invoked. Therefore, only one forward() call can be made in a

particular servlet.

NOTE Both servlet invoking mechanisms, either programmatic (using

include() or forward()) or from the URL, can use URL patterns

for the servlet specified in the DD XML file or the <servlet-name>

entry. For example, if the XML entry in the web.xml file is:

<servlet-name>Fortune</servlet-name>
<servlet-mapping>
<servlet-name>Fortune</servlet-name>
<url-pattern>/Business</surl-pattern>
</servlet-mapping>

You can access the servlet in either of the following ways:

• http:// server: port/NASApp/ context_root/Fortune

• http:// server: port/NASApp/ context_root/Business

Invoking Servlets

58 iPlanet TM Application Server Developer’s Guide • February 2002

In the IAS Params tab of the servlet descriptor in the Deployment Tool, you can

specify the following for each parameter:

• The name of the parameter

• Whether verification is required

• The class and method to call for verification

• The format of the parameter

• The parameter’s scope

• The error page to display in case of an error

59

Chapter 3

Presenting Application Pages with
JavaServer Pages

This chapter describes how to use JavaServer Pages (JSPs) as page templates in an

iPlanet Application Server web application.

This chapter contains the following sections:

• Introducing JSPs

• How JSPs Work

• Designing JSPs

• Creating JSPs

• Programming Advanced JSPs

• Deploying JSPs

• Invoking JSPs

• JSP 1.1 Tag Summary

• Modifying Custom Tags for JSP 1.1

• Compiling JSPs: The Command-Line Compiler

• Value-added Features

Introducing JSPs

60 iPlanet TM Application Server Developer’s Guide • February 2002

Introducing JSPs
JSPs are browser pages in HTML or XML. They also contain Java code, which

enables them to perform complex processing, conditionalize output, and

communicate with other application objects. JSPs in iPlanet Application Server are

based on the JSP 1.1 specification. This specification is accessible from

install_dir/ias/docs/index.htm ; install_dir is where the iPlanet Application Server

is installed.

In an iPlanet Application Server application, JSPs are the individual pages that

make up an application. You can call a JSP from a servlet to handle the user

interaction output, or, since JSPs have the same application environment access as

any other application component, you can use a JSP as an interaction destination.

How JSPs Work
JSPs are made up of JSP elements and template data. Template data is anything not in

the JSP specification, including text and HTML tags. For example, the minimal JSP

requires no processing by the JSP engine and is a static HTML page.

The iPlanet Application Server compiles JSPs into HTTP servlets the first time they

are called. This makes them available to the application environment as standard

objects and enables them to be called from a client using a URL.

JSPs run inside a Java process on the server. This process, called a JSP engine, is

responsible for interpreting JSP specific tags and performing the actions they

specify in order to generate dynamic content. This content, along with any

template data surrounding it, is assembled into an output page and is returned to

the caller.

The response object contains a calling client reference; this is where a JSP presents

the page it creates. If a JSP is called from a servlet using the RequestDispatcher

interface’s forward() method, forward() provides the response object as a JSP

parameter. If a JSP is invoked directly from a client, the server managing the

relationship with the caller provides the response object.

In either case, the page is automatically returned to the client through the response

object reference without any additional programming.

You can create JSPs that are not part of any particular application. These JSPs are

considered part of a generic application. JSPs can also run in the iPlanet Web

Server and other web servers, but these JSPs have no access to any application data,

therefore their use is limited.

Designing JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 61

JSPs and other application components can be updated at runtime without

restarting the server, making it easy to change an application’s look and feel

without stopping service. For more information, see Appendix B, “Runtime

Considerations.”

Designing JSPs
This section describes decisions to consider when writing JSPs. Since JSPs are

compiled into servlets, servlet design considerations are also relevant to JSPs. For

more information about design considerations for servlets, see Chapter 2,

“Controlling Applications with Servlets.”

A page’s information can loosely be categorized into page layout elements, which

consist of tags and information pertaining to the page structure, and page content

elements, which consist of the actual page information sent to the user.

You can design a page layout with the design as any browser page, interleaving

content elements where needed. For example, one page element might be a

welcome message (for example, “Welcome to our application!”) at the top of the page.

You can personalize this message with a call to the user’s name after authentication

(for example, “Welcome to our application, Mr. Einstein!”).

Since page layout is more or less a straightforward task, the design decisions must

relate to the way the JSP interacts with the application and how it is optimized.

This section contains the following subsections:

• Choosing a Component

• Designing for Ease of Maintenance

• Designing for Portability

• Handling Exceptions

Choosing a Component
The first task is to decide on a JSP or a servlet. If the main feature is the page layout

with little processing involved for page generation, use a JSP alone for the

interaction.

Designing JSPs

62 iPlanet TM Application Server Developer’s Guide • February 2002

Think of JSPs and servlets as opposite sides of the same coin. Each can perform all

the tasks of the other, but each is designed to excel at one task at the expense of the

other. Servlets are strong in processing and adaptability, and since they are Java

files, you can take advantage of integrated development environments while

writing them. However, performing HTML output from them involves many

cumbersome println statements that must be coded by hand. Conversely, JSPs

excel at layout tasks because they are simply HTML files and can be created with

HTML editors, though performing computational or processing tasks with them is

awkward. Choose the right component for the job at hand.

For example, the following component is presented as both a JSP and a servlet for

comparison. This component performs no complex content generation activities,

and works best as a JSP:

JSP:

<html><head><title>Feedback</title></head><body>
<h1>The name you typed is: <% request.getParameter("name"); %>.</h1>
</body></html>

Servlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class myServlet extends HttpServlet {
public void service (HttpServletRequest req,

 HttpServletResponse res)
throws ServletException, IOException

{
response.setContentType("text/html");
PrintWriter output = response.getWriter();
output.println("<html><head><title>Feedback</title></head>"

+ "<body>\n"
+ "<h1>The name you typed is:"
+ req.getParameter("name") + ".</h1>"
+ "</body></html>";

}
}

For more information about servlets, see Chapter 2, “Controlling Applications with

Servlets.”

Creating JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 63

Designing for Ease of Maintenance
Each JSP can call or include any other JSP. For example, you can create a generic

corporate banner, a standard navigation bar, and a left-side column table of

contents, where each element is in a separate JSP and is included for each page

built. The page can be constructed with a JSP functioning as a frameset,

dynamically determining the pages to load into each subframe. A JSP can also be

included when the JSP is compiled into a servlet or when a request arrives.

Designing for Portability
JSPs can be completely portable between different applications and different

servers. A disadvantage is that they have no particular application data

knowledge, but this is only a problem if they require that kind of data.

One possible use for generic JSPs is for portable page elements, such as navigation

bars or corporate headers and footers, which are meant to be included in other

JSPs. You can create a library of reusable generic page elements to use throughout

an application, or even among several applications.

For example, the minimal generic JSP is a static HTML page with no JSP-specific

tags. A slightly less minimal JSP might contain some Java code that operates on

generic data, such as printing the date and time, or that makes a change to the

page’s structure based on a standard value set in the request object.

Handling Exceptions
If an uncaught exception occurs in a JSP file, iPlanet Application Server generates

an exception, usually a 404 or 500 error. To avoid this problem, set the errorPage

attribute of the <%@ page%> tag.

Creating JSPs
JSPs are created in basically the same way as static HTML files are. You can use an

HTML editor to create pages and edit the page layout. You make a page a JSP by

inserting JSP-specific tags into the raw source code where needed.

The following sections describe how to use JSP-specific tags in HTML files to create

JSPs, including JSP elements, directive elements, scripting elements, and action

elements.

Creating JSPs

64 iPlanet TM Application Server Developer’s Guide • February 2002

This section contains the following subsections:

• General Syntax

• Directives

• Scripting Elements

• Actions

• Implicit Objects

General Syntax
JSPs that adhere to the JSP 1.1 specification follow XML syntax for the most part,

which is similar, but stricter than HTML. In other words, tags are demarcated with

< and >, constructs have a start tag (<tag>) and end tag (</tag>), and tags are

case-sensitive, such that <tag> is different from <Tag> or <TAG>.

In general, you insert JSP tags inline in the file where needed, in the same way as

standard HTML tags. For example, if the request contains a parameter name that

contains the user name, a welcome sentence could look like this:

<p>Hello, <%= request.getParameter("name"); %>.</p>

JSP Tags
JSP tags use the<jsp: tag > form, a form taken from XML. Some tags (particularly

scripting tags) have a shortcut use in HTML files, generally starting with <% and

ending with %>.

Empty elements or tag constructs that have nothing between the start and end tags

can be shortened to one tag ending with /> . Some examples:

An include tag with no body:

<jsp:include page="/corporate/banner.jsp"></jsp:include>

A shorter form of an include tag with no body:

<jsp:include page="/corporate/banner.jsp" />

NOTE These shortcuts are not valid for XML files.

Creating JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 65

White space is not usually significant, although you must put a space character

between the opening tag and any attributes. For example, <%= myExpression %>

is valid, but <%=myExpression %> is not.

Escape Characters
Attributes in which difficulty with nested single and double quotes exist use the

following escape characters:

• ‘ is quoted as \‘

• " is quoted as \"

• %> is quoted as %\>

• <% is quoted as <\%

Comments
There are two JSP comment types:

• JSP page comments that document what the page is doing

• Document generated comments sent to the client

JSP Comments
A JSP comment is contained within <%-- and --%> , and can contain anything

except the text --%> . The following example, therefore is incorrect:

<%-- anything but a closing --%> ... --%>

An alternative way to place a comment in a JSP is to use a Java comment. For

example:

<% /** this is a comment ... **/ %>

Generating Comments in Client Output
Use the HTML and XML comment syntax to generate comments to the requesting

client in the response output stream, as shown in the following example:

<!-- comments ... -->

The JSP engine treats comments as uninterpreted template text. If the generated

comment has dynamic data, obtain it through expression syntax, as shown in the

following example:

<!-- comments <%= expression %> more comments ... -->

Creating JSPs

66 iPlanet TM Application Server Developer’s Guide • February 2002

Directives
Use directives to set preferences within a JSP. Each directive has a number of

attributes that affect the behavior or state of the JSP.

<%@directive { attr =" value " }* %>

The valid directives are:

• <%@ page%>

• <%@ include%>

• <%@ taglib... %>

<%@ page%>
The page directive sets the JSP page level preferences.

Syntax
<%@ page language="java"

extends="className"
import="className{,+}"
session="true|false"
buffer="none|sizeInKB"
autoFlush="true|false"
isThreadSafe="true|false"
info="text"
errorPage="jspUrl"
isErrorPage="true|false"
contentType="mimeType{;charset=charset}"

%>

Attributes
Table 3-1 shows the valid attributes.

Table 3-1 JSP page Directives

Attribute Valid Values Description

language java Default: java . Scripting language for this JSP. Currently,

iPlanet Application Server only supports java .

extends valid Java class name Defines a specific superclass for this JSP. This restricts the

JSP engine in many ways and should be avoided if

possible.

Creating JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 67

import comma-separated list

of valid Java class

names

Types and classes available to other methods in this JSP.

This is identical to the import statement in a Java class.

The import directive is also the only directive that can

appear more than once in a JSP file.

session true or false Default: true . Indicates the page must participate in an

HTTP session. If language=java and session=true ,

this option creates an implicit variable called session
which points to or creates a session of type

javax.servlet.http.HttpSession

buffer none or buffer size in

kilobytes

Defines an output buffer. If set to none , all output is

written directly to the output stream (a PrintWriter
object). If a size is provided, then either the buffer is

flushed or an exception is raised when it is filled with

output. The behavior is determined by the autoFlush
attribute.

autoFlush true or false Determines behavior when the output buffer is full. If

true , output is flushed to the output stream when the

buffer is full. If false , an exception is raised when the

buffer is full.

isThreadSafe true or false Default: false . Indicates the thread safety level in the

page. The value determines the JSP engine behavior: if

true , multiple requests are made to the JSP instance

simultaneously, otherwise multiple requests are handled

serially. For the most part, ensure your JSP is thread-safe

regardless of this setting, as this setting has no effect on

shared objects such as sessions or contexts.

info text A string inside the translated page which is obtained from

the page’s Servlet.getServletInfo() method.

errorPage valid URL for a JSP

error page

Error page for this JSP; must be a JSP. Any Throwable
object thrown but not caught by the original page is

forwarded to the error page. The error page has an implicit

variable called exception that contains a reference to the

un-caught exception. Note that if autoFlush=true and

the initial JspWriter contents have been flushed to the

ServletResponse output stream (for example, if part of

the page has already been sent to the client), any

subsequent attempt to invoke an error page may fail.

Table 3-1 JSP page Directives

Attribute Valid Values Description

Creating JSPs

68 iPlanet TM Application Server Developer’s Guide • February 2002

Examples
<%@ page errorpage="errorpg.htm" %>
<%@ page import="java.io.*,javax.naming.*" %>

<%@ include%>
The include directive enables other JSP inclusions (or static pages) when the JSP is

compiled into a servlet. The resource is treated as a part of the JSP.

Another way to include other resources is to use the <jsp:include> action, which

includes resources at request time. For more information on file inclusion, see

“Including Other Resources,” on page 81.

Syntax
<%@ include file="file" %>

Attributes
Table 3-2 shows the valid attribute.

isErrorPage true or false Default: false . Indicates whether the current JSP page is

the possible target of another JSP page’s errorPage . If

true , the implicit variable exception is defined and its

value is a reference to the offending Throwable from the

source JSP page in error.

contentType content type,

optionally with

charset

Default:

text/html;charset=ISO-8859-1
Defines the MIME type and character encoding for the

response. Values are either of the form TYPE or

TYPE;charset=CHARSET

Table 3-2 JSP include Directive

Attribute Valid Values Description

file Valid URL

(absolute) or URI

(relative path)

The file to be included.

Table 3-1 JSP page Directives

Attribute Valid Values Description

Creating JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 69

The file attribute is either relative to the current JSP, or absolute to the application’s

context root. For relative file attributes, the file name should not begin with a slash

(‘/’). For absolute file attributes, the file name should begin with a slash (‘/’).

Example
If who.jsp is in the application MyApp (typically located in

install_dir/ias/APPS/MyApp) and who.jsp contains the following tag:

<%@include file="/add/baz.jsp"%>

then the system tries to include the file baz.jsp from

install_dir/ias/APPS/MyApp/add/baz.jsp .

If baz.jsp contains the following tag:

<%@include file="who.jsp"%>

then the system also includes the file install_dir/ias/APPS/MyApps/add/who.jsp .

<%@ taglib... %>
The tag library directive enables custom tag creation. For more information on

creating custom tags, see “Value-added Features,” on page 94.

Syntax
<%@ taglib uri=" uriToTagLibrary" prefix=" prefixString" %>

Attributes
Table 3-3 shows the valid attributes.

Example
Consider the following JSP file, who.jsp , in the application MyApp, and a

corresponding XML deployment descriptor file with a web application section as

follows:

Table 3-3 JSP <taglib> Directive

Attribute Valid Values Description

uri Valid URI

(relative path)

The URI is either an absolute (from the application’s context root)

or a relative reference to a .tld XML file, describing the tag

library. The URI can be an alias that is unaliased by the <taglib>
entry in the web application JSP descriptor. For more information,

see JSP v1.1 specification section 5.2.

prefix String A custom tag prefix.

Creating JSPs

70 iPlanet TM Application Server Developer’s Guide • February 2002

<taglib>
<taglib-uri> http://www.mytaglib.com/spTags </taglib-uri>
<taglib-location> /who/add/baz.tld</taglib-location>

<taglib>

The JSP file contains the following:

<%@ taglib uri="http://www.mytaglib.com/spTags" prefix="mytags" %>
<mytags:specialTag attribute="value"> ... </mytag:specialTag>

The JSP engine looks inside the web app descriptor to find a matching tag library

location for http://www.mytaglib.com/spTags . The engine locates

/who/add/baz.tld , and therefore looks for an XML file

install_dir/ias/APPS/MyApp/who/add/baz.tld . This is the tag library descriptor

file that describes the tags used in the file.

The URI or tag library location (if the URI is aliased) can also be relative. In this

case, the .tld file is searched for relative to the current directory. For more details,

see JSP v1.1 specification, section 5.2.

Scripting Elements
Scripting elements are made up of the following tags:

• Declarations <%! ... %>

• Expressions <%= ... %>

• Scriptlets <%...%>

There are several implicit objects available to scripts, including the request and

response objects. For more information about implicit objects, see “Implicit

Objects,” on page 79.

Declarations <%! ... %>
The declarations element defines valid variables used throughout the JSP. Declare

anything legal in Java, including methods, as long as the declaration is complete.

Nothing appears in the output stream as a result of a declaration.

Syntax
<%! declaration %>

Example
<%! int i=0; %>
<%! String scriptname="myScript"; %>
<%! private void myMethod () { ... } %>

Creating JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 71

Expressions <%= ... %>
The expressions element evaluates variables. The expression value is substituted

where the expression occurs. The result appears on the output stream.

The result of the expression must be either a String or an expression whose result

can be cast to a String.

Syntax
<%= expression %>

Example
<p>My favorite color is <%= userBean.favColor %>.</p>

Scriptlets <%...%>
The scriptlets element defines code blocks for execution and any legal code can

appear here.

Syntax
<% script %>

Example
<% int balance = request.getAttribute("balance");

if (balance < LIMIT) {
println (UNDERLIMIT_ALERT);

}
String balString = formatAsMoney(balance);

%>
Your current balance is <%= balance %>.

Actions
Actions perform activities, such as including other JSPs or specifying required

plug-ins, creating or loading a Java bean, or setting or retrieving bean properties.

Some actions allow request time expressions as parameters, allowing you to set

values for these attributes dynamically for the request. The attributes that allow

expressions as parameters are the value and name attributes of

<jsp:setProperty> and the page attribute of <jsp:include> and

<jsp:forward> .

Standard actions are described as follows:

• <jsp:useBean> creates or accesses Java beans

Creating JSPs

72 iPlanet TM Application Server Developer’s Guide • February 2002

• <jsp:setProperty> sets bean properties

• <jsp:getProperty> retrieves bean properties

• <jsp:include> includes other JSPs or HTML pages at request time

• <jsp:forward> forwards execution control to another JSP

• <jsp:plugin> dynamically loads browser plugins for special data types

<jsp:useBean>
The <jsp:useBean> action tries to find a Java bean with the given name (id) and

scope . If the bean exists, it is made available, otherwise this action creates it using

the provided name, scope , and type and class information. A variable called name,

specified with the attribute id=" name" , is made available to the JSP so to access the

object if the action succeeds.

<jsp:useBean> can be an empty tag, as in <jsp:useBean ... /> , or it can

contain other actions and close with the end tag </jsp:useBean> . Other actions

that normally appear here are <jsp:setProperty> actions that set properties in

the (possibly newly created) bean. Template text, other scripts or declarations, and

so on are treated normally. Note that the <jsp:useBean> tag body is executed only

once, when the bean is created.

The <jsp:useBean> action must specify a unique id=" name" attribute. If the action

succeeds in creating or accessing an object, this name makes the object available to

scripting tags further down in the JSP.

Syntax
<jsp:useBean id=" name" scope=" scope"

class=" className" |
class=" className" type=" typeName" |
beanName=" beanName" type=" typeName" |
type=" typeName">

// optional body
</jsp:useBean>

Attributes
Table 3-4 shows the valid attributes.

Table 3-4 <jsp:useBean> Attributes

Attribute Description

id Unique identifying object name.

Creating JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 73

Examples
This example shows a bean creation or a bean access that already exists, called

currentUser of type com.iplanet.myApp.User :

<jsp:useBean id="currentUser" class="com.iplanet.myApp.User" />

In this example, the object is present in the session. If so, it is given the local name

wombat with WombatType. A ClassCastException is raised if the object is the

wrong class and an InstantiationException is raised if the object is not defined.

<jsp:useBean id="currentUser"
type="com.iplanet.myApp.User"
scope="session" />

For more information, see “Examples,” on page 74.

scope The object lifecycle is one of the following:

• page : object is valid for this page only, even if the request encompasses more than one

page. The object is not forwarded to other pages.

• request : object is bound to the request object (retrieved with getAttribute(name)
where name is the object’s id), and is available for the life of the request.

• session : object is bound to the session object (retrieved with getValue(name) where

name is the object’s id) and is available wherever the session is available for the session

life. A session must be active for this JSP in order to use this scope .

• application : object is bound to the ServletContext (retrieved with

getAttribute(name) where name is the object’s id) and is available for the application

existence, unless it is specifically destroyed.

class Valid bean classname, used to instantiate the bean if it does not exist. If type is specified,

class must be assignable to type . Both beanName and class cannot be specified for the

same bean.

beanName Valid bean name in the form of, a.b.c (classname) or a/b/c (resource name). Both

beanName and class cannot be specified for the same bean. The beanName attribute can be

an expression, evaluated at request time.

type Defines the bean variable type . This attribute enables the variable type to be distinct from

the implementation class specified. The type is required to be either the class itself, a class

superclass, or an interface implemented by the class specified. If unspecified, the value is the

same as the class attribute value.

Table 3-4 <jsp:useBean> Attributes

Attribute Description

Creating JSPs

74 iPlanet TM Application Server Developer’s Guide • February 2002

<jsp:setProperty>
The <jsp:setProperty> action sets the bean property values. It can be used both

inside and outside of a <jsp:userBean> tag body to set the bean properties. The

property values may be determined with an expression or directly from the request

object.

Syntax
<jsp:setProperty name=" beanName"

property=" propertyName"
param=" requestParameter" | value=" value"

</jsp:setProperty>

Attributes
Table 3-5 shows the valid attributes.

Examples
In this example, the name and permissions properties are set:

<jsp:useBean id="currentUser" class="com.iplanet.myApp.User" >
<jsp:setProperty name="currentUser"

property=" name"
param=" name">

Table 3-5 <jsp:setProperty> Attributes

Attribute Description

name Bean name in which to set a property. The name must be defined previously in the file with

<jsp:useBean> .

property The bean property name whose value is set. The property must be a valid bean property. If

property="*" then the tag iterates over the request object parameters, matching parameter

names and value type(s) to property names and setter method type(s) in the bean, setting each

matched property to the matching parameter value. If a parameter has an empty value, the

corresponding property is not modified. Note that any previous value for the parameter

persists.

param The request object parameter name whose value is given to a bean property. If you omit

param , the request parameter name is assumed to be the same as the bean property name. If

the param is not set in the request object or if it has an empty value, the

<jsp:setProperty> action has no effect. A <jsp:setProperty> action cannot have both

param and value attributes.

value The value to assign to the given property. This attribute can accept an expression as a value;

the expression is evaluated at request time. A <jsp:setProperty> action cannot have both

param and value attributes.

Creating JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 75

<jsp:setProperty name="currentUser"
property=" permissions"
param=" permissions">

</jsp:useBean>

This example sets the property name value to the corresponding request parameter

also called name:

<jsp:setProperty name="myBean" property="name" param="name" />

<jsp:setProperty name="myBean" property="name"
value="<%= request.getParameter(\"name\" %>)" />

<jsp:getProperty>
A <jsp:getProperty> action places the bean property value, converted to a string,

into the output stream.

Syntax
<jsp:getProperty name=" beanName"

property=" propertyName">

Attributes
Table 3-6 shows the valid attributes.

Examples
<jsp:getProperty name="currentUser" property="name" />

<jsp:include>
In the current page, a <jsp:include> action includes the specified page at request

time, preserving the current page context. Using this method, the included page is

written to the output stream.

Table 3-6 <jsp:getProperty> Attributes

Attribute Description

name Bean name from which to retrieve a property. The namemust be defined

previously in the file with <jsp:useBean> .

property The bean property name whose value to retrieve. The property must

be a valid bean property.

Creating JSPs

76 iPlanet TM Application Server Developer’s Guide • February 2002

An additional method for including other resources is the <%@ include%>

directive, which includes the resource at compile time. For more information on

file inclusion, see “Including Other Resources,” on page 81.

Syntax
<jsp:include page=" URI" flush="true|false"/>

Attributes
Table 3-7 shows the valid attributes.

Examples
<jsp:include page="/templates/copyright.html" flush="true" />

<jsp:forward>
The <jsp:forward> action allows the current request to be dispatched at runtime

to a static resource, a JSP page, or a Java servlet in the current page’s context,

terminating the current page’s execution. This action is identical to the

RequestDispatcher interface’s forward() method.

Syntax
<jsp:forward page=" URL" />

Attributes
Table 3-8 shows the valid attributes.

Table 3-7 <jsp:include> Attributes

Attribute Description

page Includes either an absolute or relative page reference. For absolute

references, this field begins with a slash (“/ ”), and is rooted at the

application’s context root. For relative references, this field is relative to the

JSP file performing the include, and may contain an expression to be

evaluated at request time.

flush Determines whether to flush the included page to the output stream.

Table 3-8 <jsp:forward> Attributes

Attribute Description

page Valid URL pointing to the page to include. This attribute may contain, at

request time, an expression to evaluate. The evaluation must be a valid

URL.

Creating JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 77

Examples
<jsp:forward page="/who/handleAlternativeInput.jsp" />

The following element shows how to forward a static page based on a dynamic

condition.

<% String whereTo = "/templates/"+someValue; %>
<jsp:forward page="<%= whereTo %>" />

<jsp:plugin>
The <jsp:plugin> action enables a JSP author to generate HTML that contains the

appropriate browser dependent constructs (object or embed) to instruct the

browser to download (if required) an appropriate Java plug-in and execute an

Applet or JavaBean component. The <jsp:plugin> tag attributes provide the

element presentation configuration data.

The <jsp:plugin> tag is replaced by either the appropriate <object> or <embed>

tag for the requesting user agent and is sent to the response output stream.

There are two related actions that are only valid within a <jsp:plugin> action:

• <jsp:params> sends a parameter block to the Applet or JavaBean component.

Individual parameters are set with:

<jsp:param name=" name" value=" value">

The section ends with </jsp:params> . The names and values are component

dependent.

• <jsp:fallback> indicates the browser content if the plugin cannot be started

(either because object or embed is not supported, or due to some problem).

The tag body is presented to the browser when a failure of the surrounding

<jsp:plugin> occurs. For example:

<jsp:plugin ...>
<jsp:fallback>Plugin could not be
started!</jsp:fallback>

</jsp:plugin>

If the plug-in starts, but the Applet or JavaBean cannot be found or started, a

plug-in specific message is sent to the user, often as a popup window reporting a

ClassNotFoundException .

NOTE If the page output is unbuffered (with <% page buffer="none" %>) and

data has already been written to the output stream, this tag results in a

runtime error.

Creating JSPs

78 iPlanet TM Application Server Developer’s Guide • February 2002

Syntax
<jsp:plugin type="bean|applet"

code=" objectCode"
codebase=" objectCodebase"
{ align=" alignment" }
{ archive=" archiveList" }
{ height=" height" }
{ hspace=" hspace" }
{ jreversion=" jreversion" }
{ name=" componentName" }
{ vspace=" vspace" }
{ width=" width" }
{ nspluginurl=" URL" }
{ iepluginurl=" URL" } >
{ <jsp:params

<jsp:param name=" paramName" value=" paramValue" />
</jsp:params> }

{ <jsp:fallback> fallbackText </jsp:fallback> }
</jsp:plugin>

Attributes
The <jsp:plugin> tag takes most of its attributes from the HTML <applet> and

<object> tags (<applet> is defined in HTML 3.2 and is deprecated, <object> is

defined in HTML 4.01). Refer to the official HTML 4.01 specification where these

tags are described:

http://www.w3.org/TR/REC-html40/

Table 3-9 shows the valid attributes.

Table 3-9 <jsp:plugin> Attributes

Attribute Description

type Identifies the component type, bean or applet .

code As defined by the HTML specification.

codebase As defined by the HTML specification.

align As defined by the HTML specification.

archive As defined by the HTML specification.

height As defined by the HTML specification.

hspace As defined by the HTML specification.

jreversion Identifies the JRE specification version number the component requires

to operate. Default: 1.1

Creating JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 79

Examples
<jsp:plugin type="applet"

code="Tetris.class"
codebase="/html" >

<jsp:params>
<jsp:param name="mode" value="extraHard"/>

</jsp:params>

<jsp:fallback>
<p> unable to load Plugin </p>

</jsp:fallback>
</jsp:plugin>

Implicit Objects
The JSP 1.1 specification defines some objects that are available implicitly for every

JSP. You can refer to them from anywhere in a JSP without previously defining

them (for example, with <jsp:useBean>).

Table 3-10 shows the objects available implicitly for every JSP.

name As defined by the HTML specification.

vspace As defined by the HTML specification.

title As defined by the HTML specification.

width As defined by the HTML specification.

nspluginurl URL where the JRE plug-in can be downloaded for Netscape

Navigator, default is implementation-defined.

iepluginurl URL where the JRE plug-in can be downloaded for Microsoft Internet

Explorer, default is implementation-defined.

Table 3-10 Implicitly Available Objects for Every JSP

Object Description Scope Java type

request The request that triggered

this JSP’s execution.

request protocol dependent subtype of

javax.servlet.ServletRequest , for

example,

javax.servlet.HttpServletRequest

Table 3-9 <jsp:plugin> Attributes (Continued)

Attribute Description

Programming Advanced JSPs

80 iPlanet TM Application Server Developer’s Guide • February 2002

For example, you can refer to the request object with one of the request parameters

as <%= request.getParameter(" param"); %> .

Programming Advanced JSPs
This section provides instructions for using advanced programing techniques and

includes the following subsections:

• Including Other Resources

response The request response (for

example, the page and its

path returned to the

caller).

page protocol dependent subtype of

javax.servlet.ServletResponse , for

example,

javax.servlet.HttpServletResponse

pageContext The JSP page context. page javax.servlet.jsp.PageContext

session The session object (if any)

created for or associated

with the caller.

session javax.servlet.http.HttpSession

application This JSP’s servlet context,

from the servlet’s

configuration object

through

getServletConfig() ,

getContext() .

application javax.servlet.ServletContext

out An object that writes to the

output stream.

page javax.servlet.jsp.JspWriter

config This JSP’s servlet

configuration object

(ServletConfig).

page javax.servlet.ServletConfig

page This page’s class instance

that is processing the

current request.

page java.lang.Object

exception For error pages only, the

uncaught Throwable
exception that caused the

error page to be invoked.

page java.lang.Throwable

Table 3-10 Implicitly Available Objects for Every JSP (Continued)

Object Description Scope Java type

Programming Advanced JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 81

• Using JavaBeans

• Accessing Business Objects

Including Other Resources
An important JSP feature is the ability to dynamically include other page

generating resources or their results at runtime. You can include static HTML page

content or process a separate JSP and include its results in the output page.

For example, corporate headers and footers can be included on each page by

creating page stubs containing just the included elements. Note that it is possible to

include entire pages on a conditional basis, providing more flexibility than simply

inserting flat navigation bars or corporate headers.

There are two ways to include a resource in a JSP:

• the <%@ include%> directive:

<%@ include file=" filename" %>

• the <jsp:include> action:

<jsp:include page=" URI" flush="true|false" />

If you include a resource with the <%@ include%> directive, the resource is

included when the JSP is compiled into a servlet, and is treated as part of the

original JSP. If the included resource is also a JSP, its contents are processed along

with the parent JSP. For more information, see “Directives,” on page 66.

If you include a resource with the <jsp:include> action, the resource is included

when the JSP is called. For more information, see “Actions,” on page 71.

The following example shows how each page portion is a separate resource, while

access is from a single JSP. The source code for this example page shows both

methods for including resources: static resources are included with the

<jsp:include> action, and dynamic resources are included with the

<%@ include%> directive.

Programming Advanced JSPs

82 iPlanet TM Application Server Developer’s Guide • February 2002

afterLogin.jsp
<html><head><title>Sample Corporate Page</title></head><body>

<p align="left"><jsp:include page="corpHead.htm" flush="true" /></p>
<%@ include file="navBar.jsp" %>
<hr size="3">

<table border=0><tr>
<td width="25%"><%@ include file="appToc.jsp" %></td>
<td width="75%"><%@ include file="appToc.jsp" %></td>
</tr></table>

<hr>
<p align="left"><jsp:include page="corpFoot.htm" flush="true" /></p>
</body></html>

corporate header:
corpHead.htm

navigation bar:
navBar.jsp

table of contents:
appToc.jsp

corporate footer:
corpFoot.htm

page content:
welcome.jsp

Programming Advanced JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 83

Using JavaBeans
JSPs support several tags to instantiate and access JavaBeans. Beans perform

computations to obtain a result set and are stored as bean properties. JSPs provide

automatic support for creating beans and for examining their properties.

Beans themselves are separate classes created according to the JavaBean

specification. For information about JavaBeans, see:

http://java.sun.com/beans

It is common in beans to have getter and setter methods to retrieve and set bean

properties. Getter methods are named get Xxx() , where Xxx is a property called

xxx (the first letter is capitalized for the method name). If you have a corresponding

setter called set Xxx() , the setter must be the same parameter type as the getter

return value.

This supports standard JavaBeans, not EJBs. To access EJBs from a JSP, see

“Accessing Business Objects,” on page 83. In the JSP 0.92 specification, the request

and response objects were accessed through “implicit beans.” This support has

changed in the JSP 1.1 specification; several objects, including the request and

response objects, are available implicitly, with varying degrees of scope. For more

information, see “Implicit Objects,” on page 79.

Accessing Business Objects
Because JSPs are compiled into servlets at runtime, they have access to all server

processes, including EJBs. You access beans or servlets in the same way you would

access them from a servlet, as long as the Java code is embedded inside an escape

tag.

The method described here for contacting EJBs is identical to the method used from

servlets. For more information about contacting EJBs, see “Accessing Business

Logic Components,” on page 47.

This example shows a JSP accessing an EJB called ShoppingCart by importing the

cart’s remote interface and creating a cart handle with the user’s session ID:

<%@ import cart.ShoppingCart %>;
...
<% // Get the user's session and shopping cart

ShoppingCart cart =
(ShoppingCart)session.getValue(session.getId());

// If the user has no cart, create a new one
if (cart == null) {

Deploying JSPs

84 iPlanet TM Application Server Developer’s Guide • February 2002

cart = new ShoppingCart();
session.putValue(session.getId(), cart);

} %>
...
<%= cart.getDataAsHTML() %>

This example shows JNDI looking up a proxy, or handle, for the cart:

<% String jndiNm = "java:/comp/ejb/ShoppingCart";
javax.naming.Context initCtx;
Object home;

try {
initCtx = new javax.naming.InitialContext;

} catch (Exception ex) {
return null;

}
try {

java.util.Properties props = null;
home = initCtx.lookup(jndiNm);

}
catch(javax.naming.NameNotFoundException e)
{

return null;
}
catch(javax.naming.NamingException e)
{

return null;
}
try {

IShoppingCart cart = ((IShoppingCartHome) home).create();
...

} catch (...) {...}
%>
...
<%= cart.getDataAsHTML() %>

Deploying JSPs
There are two ways the iPlanet Application Server deploys JSPs, as either

unregistered or registered JSPs.

NOTE You must provide an EJB method to convert raw data to a format

acceptable to the page, such as getDataAsHTML() , as shown above.

Deploying JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 85

Unregistered JSPs
Unregistered JSPs are deployed by copying them to the corresponding directory

structure (applicationName/moduleName), in the AppPath . These JSPs are invoked

using the URL access as follows:

http:// server: port/ AppPrefix/ ModuleName/ JSPFileName

For more information, see “Invoking JSPs,” on page 86.

Registered JSPs
The iPlanet Application Server allows JSPs to be registered with GUIDs, using XML.

This allows JSPs to use iPlanet Application Server value-added features such as

load balancing. This is done using XML files with the <jsp-file> entry as detailed

in the Servlet 2.2 specification.

The following XML files are a deployment descriptor example for a registered JSP.

This is the web.xml file:

<?xml version="1.0" ?>
<!DOCTYPE web-app>
<web-app>

<display-name> An Example Registered JSP File </display-name>
<servlet>

<servlet-name>JSPExample</servlet-name>
<jsp-file>JSPExample.jsp</jsp-file>

</servlet>
<servlet-mapping>

<servlet-name>JSPExample</servlet-name>
<url-pattern>/jspexample</url-pattern>

</servlet-mapping>
</web-app>

This is the ias-web.xml file:

<?xml version="1.0" ?>
<ias-web-app>

<servlet>
<servlet-name>JSPExample</servlet-name>
<guid>{aaaabbbb-A456-161A-8be4-0800203942f2}</guid>

</servlet>
</ias-web-app>

Invoking JSPs

86 iPlanet TM Application Server Developer’s Guide • February 2002

In this example, the JSP is registered with the GUID specified in the ias-MyApp.xml

file. Although this example indicates that the servlet name is JSPExample , it does

not mean that the .jsp extension is required. It is possible for the servlet name to

be JSPExample.jsp instead.

This JSP is accessed from a URL by using one of the following examples:

• http:// server: port/ AppPrefix/ ModuleName/JSPExample

• http:// server: port/ AppPrefix/ ModuleName/JSPExample.jsp (use if the

servlet-name entry in the XML file is JSPExample.jsp)

Invoking JSPs
A JSP is invoked programmatically from a servlet or by addressing it directly from

a client using a URL. You can also include JSPs. For more information, see

“Including Other Resources,” on page 81.

Calling a JSP With a URL
JSPs can be called using URLs embedded as links in the application pages. This

section describes how to invoke JSPs using standard URLs.

Invoking JSPs in a Specific Application
JSPs that are part of a specific application are addressed as follows:

http:// server: port/ AppPrefix/ ModuleName/ jspName?name=value

Table 3-11 shows each URL section.

Table 3-11 URL Sections

URL element Description

server: port Address and optional web server port number handling the request.

AppPrefix Indicates to the web server that the URL is for an iPlanet

Application Server application. The request is routed to the iPlanet

Application Server executive server. Configure this using the

registry entry SSPL_APP_PREFIX.

moduleName The name of the web module (these names are unique across the

server).

jspName The JSP’s file name, including the .jsp extension.

Invoking JSPs

Chapter 3 Presenting Application Pages with JavaServer Pages 87

For example:

http://www.mycompany.com/BookApp/OnlineBookings/directedLogin.jsp

Using a generic application for a JSP has the same requirements and restrictions as

using a generic application for a servlet. There must be an application called

Default with a registered XML file. Any URL request to access a servlet or JSP

with the /servlet/ entry is sent to the generic application Default . For more

information about this requirement, see “Invoking Generic Application Servlets,”

on page 55.

Invoking JSPs in a Generic Application
JSPs that are not part of a specific application are addressed as follows:

http:// server: port/servlet/ jspName?name=value

Table 3-12 shows each URL section.

For example:

http://www.Who.com/servlet/calcMort.jsp?rate=8.0&per=360&bal=180000

?name=value... Optional name=value parameters to the JSP. These are accessible

from the request object.

Table 3-12 URL Sections

URL element Description

server: port Address and optional web server port number handling the request.

servlet Indicates to the web server that the URL is for a generic servlet

object.

jspName The JSP’s name, including the .jsp extension.

?name=value... Optional name=value parameters to the JSP. These are accessible

from the request object.

Table 3-11 URL Sections

URL element Description

JSP 1.1 Tag Summary

88 iPlanet TM Application Server Developer’s Guide • February 2002

Invoking a JSP From a Servlet
A servlet can invoke a JSP in one of two ways:

• The include() method in the RequestDispatcher interface calls a JSP and

waits for it to return before continuing.

• The forward() method in the RequestDispatcher interface hands JSP

interaction control.

For more information about these methods, see “Delivering Client Results,” on

page 50.

For example:

public class ForwardToJSP extends HttpServlet
{

public void service(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException
{

RequestDispatcher rd = req.getRequestDispatcher("/test.jsp");
rd.forward(req, res);

}
}

JSP 1.1 Tag Summary
The following sections summarize the JSP 1.1 tags.

Directives
<%@ page|include|taglib { attr=" value " }* %>

attr: page language="java"
extends=" className"
import=" className{,+}"
session="true|false"
buffer="none| sizeInKB"
autoFlush="true|false"
isThreadSafe="true|false"
info=" text"
errorPage=" jspUrl"
isErrorPage="true|false"
contentType=" mimeType{;charset= charset}"

JSP 1.1 Tag Summary

Chapter 3 Presenting Application Pages with JavaServer Pages 89

include file=" filename"

taglib uri=" uriToTagLibrary"
prefix=" prefixString"

For more information, see “Directives,” on page 66.

Expressions
<%= expression %>

For more information, see “Scripting Elements,” on page 70.

Scriptlets
<% scriptlet %>

For more information, see “Scripting Elements,” on page 70.

Comments
<%-- comment --%> JSP comment, not passed to client

<!-- comment --> standard HTML comment, passed to client

<% /** comment **/ %> Java comment, encapsulated in scriptlet, passed to client

For more information, see “Comments,” on page 65.

Bean-Related Actions
<jsp:useBean id=" name" scope=" scope"

class=" className" |
class=" className" type=" typeName" |
beanName=" beanName" type=" typeName" |
type=" typeName">

// optional body
</jsp:useBean>

<jsp:setProperty name=" beanName"
property=" propertyName"
param=" requestParameter" | value=" value"

</jsp:setProperty>

Modifying Custom Tags for JSP 1.1

90 iPlanet TM Application Server Developer’s Guide • February 2002

<jsp:getProperty name=" beanName"
property=" propertyName">

For more information, see “Actions,” on page 71.

Other Actions
<jsp:include page=" relativeUrl"

flush="true|false" />

<jsp:forward page=" URL" />

<jsp:plugin type="bean|applet"
code=" objectCode"
codebase=" objectCodebase"
{ align=" alignment" }
{ archive=" archiveList" }
{ height=" height" }
{ hspace=" hspace" }
{ jreversion=" jreversion" }
{ name=" componentName" }
{ vspace=" vspace" }
{ width=" width" }
{ nspluginurl=" URL" }
{ iepluginurl=" URL" } >
{ <jsp:params

<jsp:param name=" paramName" value=" paramValue" />
</jsp:params> }

{ <jsp:fallback> fallbackText </jsp:fallback> }
</jsp:plugin>

For more information, see “Actions,” on page 71.

Modifying Custom Tags for JSP 1.1
iPlanet Application Server custom tags may need to be modified for JSP 1.1 for the

following reasons:

• The .tld files do not conform to the DTD at:

http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd

For example, every reference to the prefix attribute must be changed to

shortname .

• The following DOCTYPE element is missing:

Compiling JSPs: The Command-Line Compiler

Chapter 3 Presenting Application Pages with JavaServer Pages 91

<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

These modifications are necessary if you want to use the JSP command-line

compiler. For more information about this compiler, see “Compiling JSPs: The

Command-Line Compiler,” on page 91.

Compiling JSPs: The Command-Line Compiler
As of Service Pack 3, iPlanet Application Server uses the Jasper JSP compiler from

Apache Tomcat 3.2 to compile JSP 1.1 compliant source files into servlets. All of the

features available in this version of Jasper are available in the iPlanet Application

Server environment.

Developers can use the JSP compiler to perform syntax checks of JSP files prior to

deployment. Deployers can also benefit from the JSP compiler by precompiling JSP

files into WAR files before the WAR files are deployed to the application server.

The jspc command line tool is located under install_dir/ias/bin (make sure this

directory is in your path). The format of the jspc command is as follows:

jspc [options] jsp_files

The jsp_files can be one of the following:

The basic options for the jspc command are:

NOTE Jasper has been modified to meet the requirements of iPlanet

Application Server, so you should use only the Jasper version

provided with iPlanet Application Server. Other versions will not

work with iPlanet Application Server.

files One or more JSP files to be compiled.

-webapp dir A directory containing a web application. All JSPs in the

directory and its subdirectories are compiled. You cannot

specify a WAR, JAR, or ZIP file; you must first deploy it to an

open directory structure using iasdeploy .

Compiling JSPs: The Command-Line Compiler

92 iPlanet TM Application Server Developer’s Guide • February 2002

The advanced options for the jspc command are:

-q Enables quiet mode (same as -v0). Only fatal error messages

are displayed.

-d dir Specifies the output directory for the compiled JSPs. Package

directories are automatically generated based on the

directories containing the uncompiled JSPs. The default

top-level directory is the directory from which jspc is

invoked.

-p name Specifies the name of the target package for all specified JSPs,

overriding the default package generation performed by the

-d option.

-c name Specifies the target class name of the first JSP compiled.

Subsequent JSPs are unaffected.

-uribase dir Specifies the URI directory to which compilations are relative.

Applies only to JSP files listed in the command, and not to JSP

files specified with -webapp .

This is the location of each JSP file relative to the uriroot . If

this cannot be determined, the default is / .

-uriroot dir Specifies the root directory against which URI files are

resolved. Applies only to JSP files listed in the command, and

not to JSP files specified with -webapp .

If this option is not specified, all parent directories of the first

JSP page are searched for a WEB-INF subdirectory. The closest

directory to the JSP page that has one is used.

If none of the JSP’s parent directories have a WEB-INF
subdirectory, the directory from which jspc is invoked is

used.

-webinc file Creates partial servlet mappings for the -webapp option,

which can be pasted into a web.xml file.

-webxml file Creates an entire web.xml file for the -webapp option.

-ieplugin class_id Specifies the Java plugin COM class ID for Internet Explorer.

Used by the <jsp:plugin> tags.

Compiling JSPs: The Command-Line Compiler

Chapter 3 Presenting Application Pages with JavaServer Pages 93

When a JSP is compiled, a package is created for it. The package is located in

install_dir/ias/APPS/ appName/ moduleName/WEB-INF/compiled_jsp/ . (If the

code is deployed as an individual module, the moduleName is modules .) The

package name should start with jsp.APPS , which is the default package prefix

name in iPlanet Application Server.

Use the basic options of jspc when compiling the JSP for iPlanet Application

Server. iPlanet Application Server does not use the standard Jasper naming

conventions, so you must specify the generated file name, class name (-c), package

(-p) and directory (-d).

For example, to precompile fortune.jsp to fotune.java , use these commands:

cd install_dir/ias/APPS/fortune/fortune

-v[level] Enables verbose mode. The level is optional; the default is 2.

Possible level values are:

• 0 - fatal error messages only

• 1 - error messages only

• 2 - error and warning messages only

• 3 - error, warning, and informational messages

• 4 - error, warning, informational, and debugging

messages

-dd dir Specifies the literal output directory for the compiled JSPs.

Package directories are not made. The default is the directory

from which jspc is invoked.

-mapped Generates separate write calls for each HTML line and

comments that describe the location of each line in the JSP file.

By default, all adjacent write calls are combined and no

location comments are generated.

-die[code] Causes the JVM to exit and generates an error return code if a

fatal error occurs. If the code is absent or unparsable it defaults

to 1.

-webinc file Creates partial servlet mappings for the -webapp option,

which can be pasted into a web.xml file.

-webxml file Creates an entire web.xml file for the -webapp option.

-ieplugin class_id Specifies the Java plugin COM class ID for Internet Explorer.

Used by the <jsp:plugin> tags.

Value-added Features

94 iPlanet TM Application Server Developer’s Guide • February 2002

jspc -d WEB-INF/compiled_jsp -p jsp.APPS.fortune -c fortune fortune.jsp

The fortune.java file and its respective class are generated in the following

directory:

install_dir/ias/APPS/fortune/fortune/WEB-INF/compiled_jsp/jsp/APPS/fortune

The package name of the fortune.class file is jsp.APPS.fortune , because

fortune is the package name of the JSP and iPlanet Application Server uses

jsp.APPS as a prefix.

Additional documentation for the JSP compiler is on the Jakarta site:

http://jakarta.apache.org/tomcat-4.0/jakarta-tomcat-4.0/jasper/doc/jspc.html

Value-added Features
The following sections summarize the iPlanet value-added features:

• Custom Tag Extensions

• JSP Load Balancing

• JSP Page Caching

Custom Tag Extensions
The JSP 1.1 specification has support for a user defined custom tags protocol.

Although the specification does not mandate any tags, as a value-added feature the

iPlanet Application Server contains custom tags that follow the JSP 1.1 defined tag

extension protocol. For more information, see the JSP 1.1 specification, Chapter 5.

Some tags provide LDAP and database query support, while others provide

support for conditionals inside JSPs because the specification provides no

primitive support.

To support JSP page caching, the iPlanet Application Server ships with a Cache tag

library. For details, see “JSP Page Caching,” on page 112.

NOTE iPlanet Application Server 6.5 supports debugging of the compiled

servlet code using Forte For Java Enterprise Edition 3.0. However,

you cannot debug the uncompiled JSP pages.

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 95

The other tags included with the iPlanet Application Server are for internal use only,

to support converting GXtags. These tags are used in generating JSP 1.1 pages from

JSP 0.92 pages (which supported GX tags), and should not be used externally.

The following tag libraries are introduced by the iPlanet Application Server:

• Query

• LDAP

• Conditional

• Attribute

For examples of the custom tag extensions, see the samples in the

install_dir/ias/ias-samples/iastags/ directory.

Database Query Tag Library
The query tag library supports row set declarative declarations in JSP pages, along

with loops to loop through a result set and a display tag for displaying column

values. The following sections describe the query tag library.

useQuery Tag
The useQuery tag declares a result set to use. The useQuery tag defines what query

is being made and what available fields are for use. If the result set the useQuery

wants to save to is already in the scope , the tag body is skipped, and although the

row set is created it is ignored.

If the result set does not exist, the created row set is exported using the useQuery

tag’s id attribute of the specified scope , which defaults to request . Either the

specified command is used, or a query located in the queryFile is loaded. The

loaded query file name is either the name located in the queryName attribute, or, if

none is specified, the tag’s id attribute value is used. Once the row set is initialized,

it may be executed if the execute tag is specified. Note that you must execute a

query to use the field tag outside of a loop.

If the query is loaded from a file rather than specified in the command attribute, the

file is loaded and cached by the QueryLoader class. The two attributes queryFile

and queryName work in conjunction. The queryFile locates the query file. If the

attribute value is a relative path, it is looked up in the RDBMS.path.query path. If

this variable is not set, the iPlanet Application Server specific GX.path.query

property is used. If the file is not located relative to the JSP, the query file should

look something like the following examples:

Value-added Features

96 iPlanet TM Application Server Developer’s Guide • February 2002

query name1 [using (ODBC, cdx, iplanet)] is select *
from Who, add where :whereClause
/* :whereClause is an example of a bindOnLoad, named parameter */

query name2 is select * from Who, add where Who.x = add.y and
Who.name = :name
/* :name is an example of a named parameter */

A blank line (without spaces, tabs, and so on) separates queries which are named

using the query ... is construct.

Syntax
<rdbm:useQuery id="export_name"
scope="[page|request|session|application]" command="select *
from..."="Who.gxq" queryName="firstQuery"
execute="[true|false]" dataSourceName="jdbc/..."
url="odbc:...">...</rdbm:useQuery>

param Tag
The param tag sets a parameter on a row set. The parameter name can be either an

index or the actual parameter name as saved in the dictionary. Note that

bindOnLoad parameters must exist in the useQuery tag body before any

non-bindOnLoad parameters. The parameter value is either the value stored in the

value attribute or the param tag body contents. Because JSP 1.1 tags don’t generally

nest (<%= ... %> being the notable exception), the only way to bind a parameter to

a value from another query is to place a field tag within the param tag body and

have the param tag use its body as the value, which is why you can place the value

in the tag’s body.

param tags may exist within a useQuery tag, in which case they set the parameters

directly against their parent query, or before a loop tag re-executes the row set, in

which case the parameter is set on the row set that the useQuery tag exported.

Syntax
<rdbm:param query="query-declaration-export-name"
name="name-of-parameter" value="value" bindOnLoad="[true|false]"
type="[String|Int|Double|Float|BigDecimal|Date|Boolean|Time|Timesta
mp"
format="java-format-string for dates">value</rdbm:param>

loop Tag
The loop tag loops through the result set contents. The query attribute is used to

locate the result set or an enclosing useQuery tag. The start attribute is used to

indicate the loops’s starting position. start may either refer to a parameter or to an

attribute, which is looked up using PageContext.findAttribute() , or to a

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 97

constant integer value. The value indicates which record number to start on, or

last , which causes the row set to be scrolled to the end, and then back max rows.

The max attribute is used to indicate the maximum number of records to display. If

execute is specified, then the row set is executed before looping begins.

Syntax
<rdbm:loop id="export_name"
scope="[page|request|session|application]"
query="query-declaration-export-name"
start="[request-parameter-name|request-attribute-name|last|constant
]"
max="integer-maximum-number-of-rows"
execute='{true|false]">...</rdbm:loop>

field Tag
The field tag displays a particular result set column. The query attribute locates

the enclosing useQuery tag or a previous useQuery tag’s exported result set. The

name attribute identifies the column name to display. The format attribute allows

the formatting of strings, numbers, or dates into the appropriate type. The

urlEncode attribute can be used to encode the strings. If the column is null , the

field tag body is output.

Syntax
<rdbm:field query="query-declaration-export-name" name="field name"
format="format for doubles" urlEncode="{false/true}">default
value</rdbm:field>

close Tag
The close tag releases system resources. The resource attribute locates the

exported query resource (result set) and calls close() .

Syntax
<rdbm:close resource=" query-declaration-export-name"/>

execute Tag
The execute tag executes the identified query.

Syntax
<rdbm:execute query=" query-declaration-export-name"/>

Value-added Features

98 iPlanet TM Application Server Developer’s Guide • February 2002

goRecord Tag
The goRecord tag executes the specified query and moves the result set to the

record indicated by the start attribute. start may either refer to a parameter, or

to an attribute, or to a constant. If the start attribute is last , the result set is

moved to the last record.

Syntax
<rdbm:goRecord query="query-declaration-export-name"
execute="{false/true}"
start="[request-parameter-name|request-attribute-name|last|constant
]">
default start</rdbm:goRecord>

Example
The following tags produce the output display at the end of the example.

<HTML>
<BODY>
<%@ taglib prefix="rdbm" uri="rdbmstags6_0.tld" %>
<h2>Now let us see</h2>
<rdbm:useQuery id="a" queryFile="dbms/queries.gxq"

dataSourceName="jdbc/cdx">
</rdbm:useQuery>
<rdbm:useQuery id="b" queryFile="dbms/queries.gxq"

dataSourceName="jdbc/cdx">
</rdbm:useQuery>

<table border=1 cellPadding=3>
<tr><th>name</th><th>phone</th><th>Titles Owned</th></tr>
<rdbm:loop id="loop1" query="a" max="5" execute="true">

<tr>
<td><rdbm:field query="a" name="name"/></td>
<td><rdbm:field query="a" name="phone"/></td>
<td>

<rdbm:param query="b" id="owner" type="Int">
rdbm:field query="a" name="id"/></rdbm:param>

<table border=1 cellPadding=3 width="100%">
<tr><th>title</th><th>price</th><th>artist</th></tr>
<rdbm:loop id="loop2" query="b" max="5"execute="true">
<tr>
<td><rdbm:field query="b" name="title"/></td>
<td><rdbm:field query="b"

format="$#,###.00"name="price"/>
</td>
<td><rdbm:field query="b" name="artist"/></td>
</tr>
</rdbm:loop>

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 99

</table>
</td>
</tr>
</rdbm:loop>
</table>
</td>
</tr>

</rdbm:loop>
</table>
<rdbm:close resource="a"/>
<rdbm:close resource="b"/>
</BODY>
</HTML>

Here are the results:

LDAP Tag Library
One unfortunate aspect of LDAP connections is that they are likely to be

request-specific, that is, the current user may be the only user authenticated to read

the LDAP attributes of that user’s data. Because of this, an additional

LDAPAuthenticate /Authorize tag is required so mappings between current user
and connection to perform LDAP searches are programmable. When the LDAP server

is remote and a general authorization-capable login is not available, the

LDAPAuthenticate tag is used. The following sections describe the LDAP tag

library.

authenticate Tag (also called connection)
The authenticate tag works in the LDAPTagSearch context. The LDAPTagSearch

is either retrieved from the PageContext using findAttribute and the query

attribute name, or by finding a parent useQuery tag and getting its

LDAPTagSearch . The url and password attributes are used for LDAPConnection

Value-added Features

100 iPlanet TM Application Server Developer’s Guide • February 2002

authentication, which the LDAPTagSearch holds onto. If the url attribute has

parameters (that is, if the attribute has :Who values in it after the standard

ldap://server:portNumber/ LDAP URL section), then the authenticate tag

body needs to contain param tags for each parameter. If the password attribute is

unspecified, then the authenticate tag body should contain a password tag as

well. At the end of the tag, the tag attempts to authenticate the LDAPTagSearch .

Syntax
<ldap:[authenticate|connection] query="name of ldap exported query"
url="ldap://..." password="..."> </ldap:[authenticate|connection]>

authorize Tag
The authorize tag works in the LDAPTagSearch context. The LDAPTagSearch is

either retrieved from the PageContext using findAttribute and the query

attribute name, or by finding a parent useQuery tag and getting its

LDAPTagSearch . The dn attribute is used to authorize the LDAPConnection , which

the LDAPTagSearch holds onto. If the dn attribute has parameters (that is, if the

attribute has :Who values in it), then the authorize tag body needs to contain

param tags for each parameter. At the end of the tag, the tag attempts to authorize

the LDAPTagSearch .

Syntax
<ldap:authorize query="name of ldap exported query"
dn="distinguished name for the user to authorize against">
</ldap:authorize>

param Tag
The param tag sets the LDAP URL parameters. LDAP URLs are specified in the url

and dn attributes of the authorize tag and in the url attribute of the field and

useQuery tags.

A URL param is any Java level identifier with a prepended “: ”, similar to the query

parameters in a .gxq file. For example:

ldap://iplanet.com:389/uid=:user,ou=People,dc=iplanet,dc=com

All parameters must be resolved by the end of the field , authenticate ,

authorize , or useQuery tags. Note that 389 is not a tag because it’s before the

LDAP URL DN section and isn’t a Java level identifier.

The param tag body becomes the parameter value as named by the name attribute,

assuming no value is specified in the param tag itself.

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 101

Syntax
<ldap:param name="parameter name in authenticate userDN or query
url" query="name of ldap exported query" value="...">default
value</ldap:param>

password Tag
The password tag sets the authenticate tag password. Like the param tag, the

password tag body becomes the password value, assuming that no value is

specified as a password tag attribute. The password tag is legal only inside the

authenticate tag.

Syntax
<ldap:password query="name of ldap exported query"
value="...">default value</ldap:password>

useQuery Tag
The useQuery tag describes the URL used to search the LDAP repository. At the

end of its body, an LDAPTagSearch is placed into the context at the level indicated

by scope using the name indicated by id . The url property contains the URL of a

query that a loop tag loops through or that a field tag displays. This is because

the loop tag cannot specify parameter mappings except in the body – which is too

late for the loop to determine if there are any results. The field tag can already

specify a URL and doesn’t need to reference a query, though it can.

The URL can also be loaded from a query file. The two attributes queryFile and

queryName work in conjunction. The queryFile locates the query file. If the

attribute value is a relative file specification, the file is searched for in the

LDAP.path.query path. If this variable is not set, then the iPlanet Application

Server specific GX.path.query property is used instead. The file is not located

relative to the JSP. The query file should look something like the following

example:

query name1 is
ldap://directory:389/dc=com?blah

query name2 is
ldap://directory:389/dc=org?blah

A blank line (without spaces, tabs, etc.) separates the queries, which are named

using the query ... is construct.

Value-added Features

102 iPlanet TM Application Server Developer’s Guide • February 2002

Syntax
<ldap:useQuery id="exported LDAPTagSearch"
scope="[page|request|session|application]" url="ldap://...
queryFile="filename for ldap query" queryName="name of the query in
the ldap query file" connection="classname of an LDAPPoolManager"
authorize="distinguished name for the user to authorize
against">...</ldap:useQuery>

loopEntry Tag
The loopEntry tag loops through a series of LDAPEntries resulting from a search

that returns multiple entries. The query attribute points to an exported

LDAPTagSearch (for more information, see “useQuery Tag,” on page 101). The

start and end tags work as specified in the query’s loop tag. If the useVL attribute

is true, then an {id}_contentCount value is exported, which corresponds to the

VirtualListResponse contentCount . On each pass through the loop, the current

LDAPEntry is exported at the scope specified using the id specified. The pre and

jump attributes correspond to the beforeCount and jumpTo parameters in the

VirtualListControl constructor. If the loop is using a VirtualListControl and

if the useVL attribute is set, then a VirtualListControl is used to position the

returned entries window. The actual public draft URL for VirtualList is located

here.

Syntax
<ldap:loop[Entry] id="name of attribute to export loop'd value"
scope="[page|request|session|application]" query="name of ldap
exported query" start="request variable name" max="number"
pre="number of records before jump" jump="value of sort to jump to"
useVL="true/false"> </ldap:loop[Entry]>

loopValue Tag
The loopValue tag loops through a multi-value LDAPEntry attribute or the first

LDAPEntry in an LDAPSearchResults . The query attribute points to an exported

LDAPTagSearch (for more information, see “useQuery Tag,” on page 101). If this is

not specified, then the entry attribute points to an exported entry as specified by a

containing loop tag. One or the other must be specified. It is an error to specify both.

The attribute tag names the multi-value attribute. The start and end tags work

as specified in the query’s loop tag. On each pass through the loop, the current

LDAPAttribute value is exported at the specified scope using the specified id .

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 103

Syntax
<ldap:loopValue id="name of attribute to export loop'd value"
scope="[page|request|session|application]" query="name of ldap
exported query" entry="name of ldap exported entry from loopEntry"
attribute="name of attribute to loop through" start="..." max="...">
</ldap:loopValue>

field Tag
The field tag prints out the value of a single value attribute as specified in the

query , url , or entry attributes, and the attribute attribute. If no value exists, the

field tag body is passed. The field tag body is only evaluated if the url has

parameters (and hence, there are parameter bindings in the body that need to be

evaluated and set), or if the mapped value is null . If the attribute name is DN,

then the distinguished entry name is returned as the field value.

Syntax
<ldap:field query="name of query to use" entry="name of ldap
exported entry from loopEntry" url="ldap://..." attribute ="name of
attribute to display"> </ldap:field>

sort Tag
The sort tag works in conjunction with the useQuery tag, setting a sort order for

the enclosing query. The query attribute identifies the enclosing useQuery tag (or

an exported LDAPTagSearch , if the sort tag occurs outside of the useQuery tag’s

body). The order attribute specifies the sort order, as described by the

LDAPSortKey constructor’s keyDescription parameter. The useQuery tag

supports multiple sorts. Sorts are prioritized in the order specified.

Syntax
<ldap:sort query="name of ldap exported query" order="..."/>

close Tag
The close tag releases resources back to the system. The resource attribute locates

the exported query resource (LDAPTagSearch) and calls close() on it. This call

abandons any executing SearchResults and releases the connection to the

connection pool (or calls disconnect() on the connection, if the connection

doesn’t come from a pool; the connection can come from the authenticate tag).

Syntax
<ldap:close resource="name of ldap exported query"/>

Value-added Features

104 iPlanet TM Application Server Developer’s Guide • February 2002

Example
The following example uses both LDAP and switch tags. It is assumed that the

switch tags are mostly self describing.

<HTML>
<BODY>
<%@ taglib prefix="cond" uri="condtags6_0.tld" %>
<%@ taglib prefix="ldap" uri="ldaptags6_0.tld" %>
<%@ taglib prefix="attr" uri="attribtags6_0.tld" %>

<cond:parameter name="user">
<cond:exists>

<ldap:query id="c" url="ldap://localhost:389/uid=:user,

ou=People,dc=iplanet,dc=com?cn,mailalternateaddress,mail">
<cond:parameter name="password">

<cond:exists>
<ldap:authenticate query="c"

url="ldap://localhost:389/dc=
com??sub?(uid=:user)">

<ldap:param name="user">
<attr:getParameter name="user" />

</ldap:param>
<ldap:password>

<attr:getParameter name="password" />
</ldap:password>

</ldap:authenticate>
</cond:exists>

</cond:parameter>
<ldap:param name="user"><attr:getParameter name="user" />
</ldap:param>

</ldap:query>
<h2>Hello
<ldap:field query="c" attribute="cn">

No Contact Name for <attr:getParameter name="user" /> in LDAP!

</ldap:field></h2>
<p>

Your main email is:
<blockquote>
<ldap:field query="c" attribute="mail"/>
</blockquote>

Your alternate email addresses are as follows:

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 105

<ldap:loopValue id="Who" scope="request" query="c"
attribute="mailalternateaddress">
<attr:get name="foo" scope="request"/>
</ldap:loopValue>

<cond:ldap name="c">
<cond:authenticated>
<p>

Your employee number is:
<ldap:field attribute="employeenumber" query="c">
They removed the employee numbers from ldap -- not good!

</ldap:field>
</cond:authenticated>
<cond:else>
<cond:parameter name="password">
<cond:exists>Your specified password is incorrect. Please
retry!</cond:exists>
<cond:else>To see your employee id, please specify a 'password'
parameter in the url along with your user name!<p></cond:else>

</cond:parameter>
</cond:else>
</cond:ldap>
<p>
<ldap:close resource="c"/>
</cond:exists>
<cond:else>

To see your employee information, please specify a 'user' parameter
in the url!

<p>
</cond:else>
</cond:parameter>
</body></html>
Would produce one of the following results:

Value-added Features

106 iPlanet TM Application Server Developer’s Guide • February 2002

Conditional Tag Library
The cond tag family supports switch and case tags, allowing a special case when a

row set is at the end, when a user is given management-only information types,

when a user has requested high bandwidth content, and so on.

However, for ease of use and better readability, the following equivalents can be

used:

1. <cond:role> ... </cond:role>

2. <cond:rowset name="rowset name"> ... </cond:rowset>

3. <cond:ldap name="ldap connection name"> ... </cond:ldap>

4. <cond:attribute name="attribute name"> ... </cond:attribute>

5. <cond:parameter name="parameter name | $REMOTE_USER$"> ...

</cond:parameter>

6. <cond:else> ... </cond:else>

7. <cond:equals value="..."> ... </cond:equals>

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 107

8. <cond:equalsIgnoreCase value="..."> ... </cond:equalsIgnoreCase>

9. <cond:exists> ... </cond:exists>

10. <cond:notEmpty> ... </cond:notEmpty>

11. <cond:executeNotEmpty> ... </cond:executeNotEmpty>

12. <cond:isLast> ... </cond:isLast>

13. <cond:Connected> ... </cond:connected>

14. <cond:authenticated> ... </cond:authenticated>

Some ways may be more expressive than you really require. For example:

<cond:parameter name="Who"> ... </cond:parameter>

is the same as:

<cond:switch><cond:value><%= request.getParameter("Who")
%></cond:value> ... </cond:switch>

Additionally, one might assume that:

<cond:rowset value="rowset name">
<cond:exists> ... </cond:exists></cond:rowset>

would be the same as:

<cond:rowset value="rowset name">
<cond:case operation="="> ... </cond:case></cond:rowset>

Always consider, if the increased expressiveness is worth the trade-off in possible

user confusion.

The root tags are described next.

switch Tag
The switch tag defaults to a straight value comparison. However, it is more likely

to be used as a RowSet type switch to replace some callbacks that DBRowSet

contains. The switch tag keeps track of whether a particular case statement has

fulfilled the switch statement and only exports its body to the content page.

Syntax
<cond:switch type="[value|role|rowset|ldap|attribute|parameter]"
value="constant value, role name, rowset name, etc."> ...
</cond:switch>

Value-added Features

108 iPlanet TM Application Server Developer’s Guide • February 2002

case Tag
The case tag contains an operation and (possibly) a second operand, and is used to

determine if the case statement fulfills the switch tag. Note that if a case and

switch combination are used where a value is required and no value is specified, a

value is obtained from an enclosing cond:dynamicValue tag. This allows the case

tag to implement only the tag interface, which allows more efficient JSP building.

The case tag body is not evaluated unless the case statement fulfills an as yet

unfulfilled switch statement.

If no operation is specified, the operation is assumed to be else – that is, to fulfill

the switch regardless. If no operation is specified and the switch type is role , the

operation assumes it is equals .

Note that certain case operations make sense only in certain switch types. For

example:

• The isLast and notEmpty tags are useful for both ldap (query or entry) and

RowSet switch types.

• The executeNotEmpty operation makes sense only for RowSet switch types.

• The connected and authenticated operations make sense only for ldap

switch types.

• The “=, <, >” etc. operations make sense only when comparing numerical

values. The switch and case values are converted to doubles (if necessary), and

their values are compared.

• The equals and equalsIgnoreCase operations make sense only when

comparing strings, although equals is called against the switch value equals

method – which might be implemented by an object to compare itself to a

string (the case value, always). notEmpty also makes sense for strings as a

check when a parameter has specified a non-zero length setting.

Syntax
<cond:case
operation="[=|<|>|<=|>=|!=|<>|><|=>|=<|~=|equals|equalsIgnoreCase|e
lse|exists|notEmpty|executeNotEmpty|isLast|connected|authenticated|
{method-name}]"
value="..."></cond:case>

value Tag
The value tag body is evaluated and passed to the value tag’s parent. The parent

implements the IValueContainingTag , which both switch and dynamicValue do.

You can also specify the value in a value tag attribute. But then, if you do that, it is

better to put the value in the switch or case directly.

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 109

Syntax
<cond:value value="blah">default value</cond:value>

Dynamic Value Tag
The dynamicValue tag body should have at least two elements. One is a value tag,

which builds the dynamic interest value. The second is a case tag, whose value

attribute is extracted from the enclosing dynamicValue instance. The

dynamicValue tag does have a value tag, as follows:

<cond:attribute name="Who">
<cond:dynamicValue value="10">

<cond:case operation="<">less than ten</cond:case>
<cond:case operation="=">equal to ten</cond:case>

<cond:case operation=">">greater than ten</cond:case>
</cond:dynamicValue>

</cond:attribute>

There are no machine equivalents to comparison bits in the status register,

therefore the operation performs three (3) times.

Syntax
<cond:dynamicValue value="blah"> ... <cond:value/> ...
<cond:*case*/> ... </cond:dynamicValue>

Example
The following example shows how a switch might be used. The three links at the

end produce the three different output types:

<%@ taglib prefix="cond" uri="condtags6_0.tld" %>

<cond:parameter name="showHeader">
<cond:equalsIgnoreCase value="true">

h2>Now let us see</h2>
</cond:equalsIgnoreCase>
<cond:dynamicValue>

<cond:value value="false"/>
<cond:equalsIgnoreCase>

I'm not showing a header. Nope, not me!
</cond:equalsIgnoreCase>

</cond:dynamicValue>
<cond:else>

showHeader not specified or illegal value
</cond:else>

</cond:parameter>

The possible outputs are as follows:

Value-added Features

110 iPlanet TM Application Server Developer’s Guide • February 2002

Attribute Tag Library
The following sections provide information on the attribute tag library.

getAttribute Tag
The getAttribute tag prints the named attribute’s value, which is retrieved from

the specified scope . If no scope is specified, findAttribute() is used to find the

attribute. If no value is found, the tag body is printed instead. The format is used

as the query:field tag.

Syntax
<attr:getAttribute name="attributeName"
scope="[|page|request|session|application]" format="...">default
value</attr:getAttribute>

setAttribute Tag
The setAttribute tag sets the named attribute’s value in the specified scope . If no

scope is specified, page is assumed. The value is either the value specified in the

value attribute, or if none is specified, the tag body is used.

Syntax
<attr:setAttribute name="attributeName" value="..."
scope="[page|request|session|application]">value</attr:setAttribute
>

getParameter Tag
The getParameter tag prints the named parameter’s value. If no parameter value

exists, the tag body is printed instead. The format attribute is used as the

query:field tag.

Syntax
<attr:getParameter name="parameterName" format="urlEncode">default
value</attr:getParameter>

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 111

Get Remote User Tag
The getRemoteUser tag prints the servlet’s remote user name.

Syntax
<attr:getRemoteUser>default value</attr:getRemoteUser>

Example
For more information, see the examples in “LDAP Tag Library,” on page 99 and

“Conditional Tag Library,” on page 106.

JSP Load Balancing
Servlets can be load balanced because each servlet has a GUID associated with it.

You simply distribute the servlet across all the iPlanet Application Server

instances. However, JSPs are converted by iPlanet Application Server into servlets

at runtime and initially have no individual GUIDs associated with them. This

makes load balancing and failover of JSPs impossible when they are called directly

from the browser (as opposed to being called through a servlet).

iPlanet Application Server 6.5 supports load balancing of JSPs individually. To

obtain load balancing and failover capabilities for JSPs called directly from the

browser, follow these steps:

1. In the XML descriptor, assign a GUID to each JSP you want to load balance.

For details about assigning GUIDs to JSPs, see “Registered JSPs,” on page 85.

2. In iPlanet Application Server, JSPs are run using the system servlets

JSPRunner and JSPRunnerSticky . These servlets are registered at the time of

installation. Use the Administration Tool to make these system servlets

distributed across the servers you want to include in the load balancing.

3. Check the servlet component properties of System_JSPRunner and

System_JSPRunnerSticky . Make sure that all the servers across which JSPs

are to be load balanced are listed correctly.

4. Load balance the JSP just you would a servlet, through the administrative tool.

Distribute the JSPs across the servers you want to include in the load

balancing.

5. Restart the web server.

For details about distributing application components and changing component

properties, see the Administrator’s Guide.

Value-added Features

112 iPlanet TM Application Server Developer’s Guide • February 2002

JSP Page Caching
A new feature called JSP caching aids in compositional JSP development. This

provides functionality to cache JSPs within the Java engine, thereby allowing a

master JSP to include multiple JSPs (for example, a portal page). Each can be

cached using different cache criteria. Think of a portal page containing a window

to view stock quotes, another to view weather information, and so on. The stock

quote window can be cached for 10 minutes, the weather report window for 30

minutes, and so on.

Note that JSP caching is in addition to results caching. A JSP can be composed of

several JSPs, each having separate cache criteria. The composed JSP can be cached

in the KXS using the results caching with a GUID. For more information, see

“Registered JSPs,” on page 85.

JSP caching uses the custom tag library support provided by JSP 1.1. A typical

cacheable JSP page looks like this:

<%@ taglib prefix="ias" uri="CacheLib.tld"%>
<ias:cache>
<ias:criteria timeout="30">
<ias:check class="com.iplanet.server.servlet.test.Checker"/>
<ias:param name="y" value="*" scope="request"/>
</ias:criteria>
</ias:cache>
<%! int i=0; %>
<html>
<body>
<h2>Hello there</h2>
I should be cached.
No? <%= i++ %>
</body>
</html>

The <ias:cache> and </ias:cache> tags delimit the cache constraints. The

<ias:criteria> tag specifies the timeout value and encloses different cache

criteria. Cache criteria are expressed using any or both tags, <ias:check> and

<ias:param> . The tag syntax is as follows:

NOTE If you use your own request object in a JSP (extended from

HttpServletRequest) and use the Jasper JSP compiler, the JSP

caching provided by CacheLib.tld is not supported for that JSP.

Value-added Features

Chapter 3 Presenting Application Pages with JavaServer Pages 113

• <ias:criteria timeout="val" > – specifies the cached element timeout, in

seconds. The cache criteria are specified here before the closing

</ias:criteria>.

• <ias:check class="classname" /> – is one mechanism of specifying cache

criteria. The classname refers to a class that has a method called check , which

has the following signature:

public Boolean check(ServletRequest, Servlet)

This returns a boolean value indicating if the element is to be cached or not.

• <ias:param name="paramName" value="paramValue" scope="request"

/> – is the other mechanism to specify cache criteria.

paramName is the attribute name, passed in either request object (using

setAttribute) or in the URI. This parameter is used as the cache criterion.

Table 3-13 shows the paramValue parameter values, which determine if caching is

performed or not.

The scope identifies the attribute sources to be checked and can be page , request

(default), session , or application .

Example
The following example represents a cached JSP page:

<%@ taglib prefix="ias" uri="CacheLib.tld"%>
<ias:cache>
<ias:criteria timeout="30">
<ias:check class="com.iplanet.server.servlet.test.Checker"/>
<ias:param name="y" value="*" scope="request"/>
</ias:criteria>

Table 3-13 paramValue Parameter Values

Constraint Description

x = ““ x must be present either as a parameter or as an attribute.

x = “v1|...|vk” ,

where vi might be “* ”

x is mapped to one of the strings (parameter/attribute). If

x=* , then the constraint is true of the current request if the

request parameter for x has the same value as was used to

store the cached buffer.

x = “1-u” , where 1
and u are integers.

x is mapped to a value in the range [1,u]

Value-added Features

114 iPlanet TM Application Server Developer’s Guide • February 2002

</ias:cache>
<%! int i=0; %>
<html>
<body>
<h2>Hello there</h2>

I should be cached.

No? <%= i++ %>
</body>
</html>

where Checker is defined as:

package com.iplanet.server.servlet.test;

import com.iplanet.server.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Checker {
String chk = "42";
public Checker()
{

}
public Boolean check(ServletRequest _req, Servlet _serv)
{

HttpServletRequest req = (HttpServletRequest)_req;
String par = req.getParameter("x");
return new Boolean(par == null ? false : par.equals(chk));

}
}

Given the above, a cached element is valid for a request with parameter x=42 and y

equal to the value used to store the element. Note that it is possible to have

multiple sets of <ias:param> and <ias:check> inside an <ias:criteria> block.

Also, it is possible to have multiple <ias:criteria> blocks inside a JSP.

115

Chapter 4

Introducing Enterprise JavaBeans

This chapter describes how Enterprise JavaBeans (EJBs) work in the iPlanet

Application Server application programming model. This chapter begins by

defining an EJB’s role and delivery mechanisms. Next it describes the three EJB

types—entity, session and message-driven beans—and gives details on when to

use them. Finally, the chapter provides a design overview of an object-oriented

iPlanet Application Server application using EJBs to encapsulate business logic.

This chapter contains the following sections:

• What Enterprise JavaBeans Do

• What is an Enterprise JavaBean?

• Understanding Enterprise Beans

• EJB Role in an iPlanet Application Server Application

• Designing an Object-Oriented Application

• Using the ejbc Compiler

• Using JNDI to Reference an EJB

What Enterprise JavaBeans Do

116 iPlanet TM Application Server Developer’s Guide • February 2002

What Enterprise JavaBeans Do
In an iPlanet Application Server, EJBs are the application workhorses. Servlets act

as the application’s central dispatchers and handle the presentation logic. EJBs do

the bulk of the application’s actual data and rules processing, but provide no

presentation or visible user interface services. EJBs enable partitioning of business

logic, rules, and objects into discrete, modular, and scalable units. Each EJB

encapsulates one or more application tasks or objects, including data structures

and operation methods. EJBs take parameters and send back return values.

NOTE • If you know about EJBs and how they are used in an iPlanet

Application Server, jump ahead for specific instructions and

guidelines for developing EJBs for use with an iPlanet

Application Server. See Chapter 6, “Building Entity EJBs,” and

Chapter 12, “Creating and Managing User Sessions.”

• Support for Message-driven beans is a new feature in this

release of iPlanet Applicattion Server, based on the EJB 2.0

specifications. It’s meant for developer use only and not for

production deployments.

Session and Entity beans are based on the EJB 1.1 specifications

and are certified for production deployments. This chapter

describes the properties and procedures associated with

Session and Entity beans, which conform to EJB 1.1

specifications.

What is an Enterprise JavaBean?

Chapter 4 Introducing Enterprise JavaBeans 117

EJBs always work within the context of a container, which serves as a link between

the EJBs and the server that hosts them. The iPlanet Application Server software

environment provides the EJB container. This container provides all standard

container services denoted by the Sun EJB specification and also provides

additional services specific to an iPlanet Application Server.

The container handles remote access, security, concurrency, transaction control,

and database accesses. Because the actual implementation details are part of the

container, and there is a standard prescribed interface between a container and its

EJBs, the bean developer is freed from having to know or handle platform-specific

implementation details. Instead, the bean developer can create generic, task

focused EJBs to be used with any vendor’s products that support the EJB standard.

What is an Enterprise JavaBean?
The EJB architecture is component-based for development and deployment of

object-oriented, distributed, enterprise applications. An EJB is a single component

in an application. Applications written using EJBs are scalable, encapsulate

transactions, and permit secure multi-user access. These applications can be

written once and then deployed on any server that supports EJBs.

The fundamental EJB characteristics are as follows:

• Bean creation and management is handled at runtime by the iPlanet

Application Server provided container.

• Client access mediation is handled by the container and the server where the

bean is deployed, freeing the bean developer from having to process it.

EJB EJB EJB EJB

The iPlanet Application Server Container:

Transactions Persistence Security

iPlanet Application Server Services

(provides low level system support for EJBs)

What is an Enterprise JavaBean?

118 iPlanet TM Application Server Developer’s Guide • February 2002

• Restricting a bean to use standard container services defined by the EJB

specification guarantees that the bean is portable and deployable in any EJB

compliant container.

• Including a bean in, or adding a bean to an application made up of other,

separate bean elements—a composite application—does not require source code

changes or bean recompiling.

• A client’s bean definition view is controlled entirely by the bean developer.

The view is not affected by the container in which the bean runs or the server

where the bean is deployed.

• EJBs can be dynamically reloaded while the iPlanet Application Server is

running.

The EJB specification further states that an enterprise bean establishes three

contracts: client, component, and JAR file.

Understanding Client Contracts
The client contract determines the communication rules between a client and the

EJB container, establishes a uniform application development model that uses

EJBs, and guarantees greater bean reuse. The client contract stipulates how an EJB

object is identified, how its methods are invoked, and how it is created and

destroyed.

The EJB container enables distributed application building using your own

components and components from other suppliers. The iPlanet Application Server

provides high level transaction, state management, multithreading, and resource

pooling wrappers, thereby shielding you from having to know the low-level API

details.

An EJB instance is created and managed at runtime by a container class, but the EJB

itself can be customized at deployment time by editing its environmental

properties. Metadata, such as transaction mode and security attributes, are

separate from the bean itself, and are controlled by the container tools at design

and deployment. At runtime, a client’s bean access is container-controlled by the

server where the EJB is deployed.

The EJB container is also responsible for ensuring that a client can invoke the

specialized business methods the EJB defines. While a bean developer implements

methods inside the bean, the developer must provide a remote interface to the

container that tells the container how clients can call the bean’s methods.

What is an Enterprise JavaBean?

Chapter 4 Introducing Enterprise JavaBeans 119

Finally, the EJB supplies a home interface for the container. The home interface

extends the javax.ejb.EJBHome interface defined in the EJB specification. This

provides a mechanism for clients to create and destroy EJBs. At its most basic, the

home interface defines zero or more create(...) methods for each way to create a

bean. In addition, some EJB types, known as entity beans, must also define finder

methods for each way used to look up a bean or a collection of beans.

Understanding Component Contracts
The component contract establishes the relationship between an EJB and its

container, and is completely transparent to a client. There are several parts to the

component contract for any given bean, as follows:

• Life cycle: For EJB session beans, this includes the javax.ejb.SessionBean

and javax.ejb.SessionSynchronization interface implementations. For EJB

entity beans, this includes the javax.ejb.EntityBean interface

implementation.

• Session context: A container implements the javax.ejb.SessionContext

interface to pass services and information to a session bean instance when the

bean instance is created.

• Entity context: A container implements the javax.ejb.EntityContext

interface to pass services and information to an entity bean when the bean

instance is created.

• Environment: A container implements java.util.Properties and makes

these properties available to its EJBs.

• Services information: A container makes its services available to all of its EJBs.

Finally, you can extend the component contract to provide additional services

specific to an application.

Understanding JAR File Contracts
The standard format used to package an enterprise bean is the EJB-JAR file. This

format is the contract between the bean provider and application assembler, and

between the application assembler and the deployer. With the iPlanet Application

Server you can create a .jar file containing EJBs using the iPlanet Application

Server Deployment Tool. For more information, see the Deployment Tool Online
Help.

Understanding Enterprise Beans

120 iPlanet TM Application Server Developer’s Guide • February 2002

The EJB-JAR file must contain the Deployment Descriptor (DD) as well as all class

files for the following:

• The enterprise bean class.

• The enterprise bean home and remote interface.

• The primary key class for an entity bean.

In addition, the EJB-JAR file must contain the class files for all classes and

interfaces for the enterprise bean class, and the remote and home interfaces to use.

For more information on the EJB-JAR file contents, see Chapter 11, “Packaging for

Deployment.”

Understanding Enterprise Beans
An EJB is an object that represents one of the following:

• A stateless service

• A session with a particular client (which automatically maintains state across

multiple client-invoked methods)

• A persistent entity object (possibly shared among multiple clients)

There are three kinds of EJBs: entity, session and message-driven beans. Each bean

type is used differently in a server application. The following sections describe the

three bean types:

• Understanding Session Beans

• Using Entity Beans

• Understanding Message Driven Beans

NOTE EJB JAR names identified by the first portion of their filenames

(without the .jar extensions) must be unique when deploying to

the Application Server. Use a Java package-like naming scheme for

EAR filenames and EJB names as found in the <ejb-name> portion

of the ejb-jar.xml files; this ensures that name collisions do not

occur. The benefits of this naming practice apply not only to the

iPlanet Application Server, but to other J2EE application servers as

well.

Understanding Enterprise Beans

Chapter 4 Introducing Enterprise JavaBeans 121

Understanding Session Beans
Session EJBs have the following characteristics:

• They execute in relation to a single client.

• Optionally, they handle transaction management according to property

settings.

• Optionally, they update shared data in an underlying database.

• They are relatively short lived.

• They are not guaranteed to survive a server crash, unless you use the iPlanet

Application Server failover support for stateful session beans.

A session bean implements business rules or logic. All functionality for remote

access, security, concurrency, and transactions are provided by the EJB container.

A session EJB is a private resource used only by the client that creates it. For

example, you might create an EJB to simulate an electronic shopping cart. Each

time a user logs in to an application, the application creates the session bean to

hold purchases for that user. Once the user logs out or finishes shopping, the

session bean is removed.

Understanding Entity Beans
Entity EJBs have the following characteristics:

• Data representation in the Enterprise Information System (EIS) resource,

usually a database.

• Bean managed transaction demarcation.

• Container managed transaction demarcation.

• Shared access for all users.

• Exists as long as its data is in a database.

• Transparently survives EJB server crashes.

The server that hosts EJBs and an EJB container provides a scalable runtime

environment for concurrently active entity EJBs. Entity EJBs represent persistent

data.

Understanding Enterprise Beans

122 iPlanet TM Application Server Developer’s Guide • February 2002

Understanding Message Driven Beans
iPlanet Application Server, Enterprise Edition 6.5, provides support for deploying

message-driven beans. This implementation is based on the EJB 2.0 specifications,

and is for developer use only. The message-driven bean infrastructure in this

release has not been tested in a production environment.

Message Driven Beans are similar to Session and Entity Beans in that they support

the framework provided by an Enterprise JavaBean. However, message-driven

beans are also Java Messaging Service (JMS) listeners and perform tasks based

upon the request it receives from a client in the form of JMS Messages.

For more information about JMS, see Appendix A, “Using the Java Message

Service”.

Unlike Session and Entity Beans, message-driven beans process message queues

asynchronously, thereby making better use of server resources. The

message-driven bean can handle many client requests simultaneously and

therefore, does not create message queue bottlenecks.

The most visible difference between message-driven beans and session and entity

beans is that clients do not access message-driven beans through interfaces. Unlike

a session or entity bean, a message-driven bean has only a bean class, which

implements two standard interfaces.

MDB Properties
A message-driven bean has the following attributes:

• A message-driven bean’s instances retain no data or conversational state for a

specific client.

• All instances of a message-driven bean are equivalent, allowing the EJB

container to assign a message to any message-driven bean instance. The

container can pool these instances to allow streams of messages to be

processed concurrently.

• A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some state

across the handling of client messages--for example, a JMS API connection, an

open database connection, or an object reference to an enterprise bean object.

iPlanet Application Server uses the iPlanet Message Queue for Java, 2.0 SP1 as the

messaging middleware application that implements the JMS specifications. You

must install iMQ for Java, 2.0 SP1 before you can use message-driven beans on

iPlanet Application Server.

EJB Role in an iPlanet Application Server Application

Chapter 4 Introducing Enterprise JavaBeans 123

For more information on deploying message-driven bean, seeChapter 7, “Using

Message Driven Beans”.

iMQ for Java, 2.0 SP1 is bundled on the iPlanet Application Server installation CD.

If you don’t have the installation CD, you can download a free, developer edition

from
http://www.iplanet.com/products/iplanet_message_queue/home_message_
queue.html.

EJB Role in an iPlanet Application Server
Application

EJBs do the majority of business logic and data processing in an iPlanet

Application Server application. They function invisibly behind the scenes to make

an application work. Even though EJBs are at the heart of an iPlanet Application

Server application, users are seldom aware of EJBs, nor do they ever interact

directly with them.

When a user invokes an iPlanet Application Server application servlet from a

browser, the servlet invokes one or more EJBs to do the bulk of the application’s

business logic and data processing. For example, the servlet may load a JavaServer

Page (JSP) to the user’s browser to request a user name and password, then pass

the user input to a session bean to validate the input.

Once a valid user name and password combination is accepted, the servlet might

instantiate one or more entity and session beans to execute the application’s

business logic, and then terminate. The beans themselves might instantiate other

entity or session beans to do further business logic and data processing.

For example, suppose a servlet invokes an entity bean that gives a customer service

representative access to a parts database. Access to the parts database might mean

the ability to browse the database, to queue up items for purchase, to place the

customer order (and permanently reduce the number of parts in the database), and

to bill the customer. It might also include the ability to reorder parts when stock is

low or depleted.

Servlet/JSP
User Interface

Servlet
App Dispatcher

EJB
Business Logic DB

Designing an Object-Oriented Application

124 iPlanet TM Application Server Developer’s Guide • February 2002

As part of the customer order process, a servlet creates a session bean that

represents a shopping cart to keep temporary track of items as a customer orders

them. When the order is complete, the shopping cart data is transferred to the

order database, the quantity of each item in the inventory database is reduced, and

the shopping cart session bean is freed.

As this simplified example illustrates, EJBs are invoked by a servlet to handle most

of the application’s business logic and data processing. Entity beans are primarily

used to handle data access using the Java Database Connectivity (JDBC) API.

Session beans provide transient application objects and perform discrete business

tasks.

The challenge when creating an application that uses EJBs is determining how to

break up an application into servlets, JSPs, session beans, and/or entity beans.

Designing an Object-Oriented Application
Partitioning an iPlanet Application Server application’s business logic and data

processing into the most effective set of EJBs is the bulk of your job as a developer.

There are no hard and fast rules for object-oriented design with EJBs, other than

that entity bean instances tend to be long lived, persistent, and shared among

clients, while session bean instances tend to be short lived and used only by a

single client. Therefore, the following sections are mostly high level iPlanet

Application Server specific information to improve application speed, making EJBs

modular, shareable, and maintainable.

With all object-oriented development, you must determine what granularity level

you need for your business logic and data processing. Granularity level refers to

how many pieces you break an application into. A high level of

granularity—where you divide an application into many, smaller, more narrowly

defined EJBs—creates an application that may promote greater EJB sharing and

reuse among different applications at your site. A low level of granularity creates a

more monolithic application that usually executes more quickly.

NOTE Decomposing an application into a moderate to large number of

separate EJBs can create a huge application performance

degradation and more overhead. EJBs, like JavaBeans, are not

simply Java objects. EJBs are higher level entities than Java objects.

They are components with remote call interface semantics, security

semantics, transaction semantics, and properties.

Designing an Object-Oriented Application

Chapter 4 Introducing Enterprise JavaBeans 125

Planning Guidelines
In general, create an iPlanet Application Server application to balance the need for

execution speed with the need for sharing EJBs among applications and clients,

and deploying applications across servers:

• Ask the server administrator to co-locate EJBs with your presentation logic

(servlets and JSPs) on the same server to reduce the number of Remote

Procedure Calls (RPCs) when the application runs.

• Create stateless session beans instead of stateful session beans as much as

possible. If you must create stateful session beans, have the server

administrator turn on sticky load balancing for better performance.

• Create session EJBs that are small, generic, and narrowly task focused. Ideally,

these EJBs encapsulate behavior that is used in many applications.

In addition to these general considerations, decide which parts of an application

are candidates for entity and session beans.

Using Session Beans
Session beans are intended to represent transient objects and processes, such as a

single database record, a document copy for editing, or specialized business objects

for individual clients, such as a shopping cart. These objects are available only to a

single client. Because of this, session beans can maintain client-specific session

information, called the conversational state. Session beans that maintain the

conversational state are called stateful session beans; beans that do not are called

stateless session beans.

When a client is done with the session objects, the objects are released. When

designing an application, designate each temporary, single client object as a

potential session bean. For example, in an online shopping application each

shopping cart is a temporary object. The cart lasts only as long as the customer

selects items for purchase. Once the customer is done and the order is processed,

the cart object is no longer needed and is released.

Like an entity bean, a session bean may access a database through JDBC calls. A

session bean can also provide transaction settings. These transaction settings and

JDBC calls are referenced by the session bean’s container, which is transparent. The

container provided with the iPlanet Application Server handles the JDBC calls and

result sets.

Designing an Object-Oriented Application

126 iPlanet TM Application Server Developer’s Guide • February 2002

For a complete discussion of using session beans to define temporary objects and

rules for single client access in an iPlanet Application Server application, see

Chapter 5, “Using Session EJBs to Manage Business Rules.”

Using Entity Beans
Entity beans commonly represent persistent data. This data is maintained directly

in a database or accessed through an EIS application as an object. A simple

example of an entity bean is one defined to represent a single row in a database

table and where each bean instance represents a specific row. A more complex

example is an entity bean designed to represent complicated views of joined tables

in a database where each bean instance represents the contents of a single shopping

cart.

Unlike session beans, entity bean instances are accessed simultaneously by

multiple clients. The container is responsible for synchronizing the instance state

by transactions in use. This responsibility delegation to the container means that

the bean developer does not need to consider concurrent access methods from

multiple transactions.

An entity bean’s persistence can either be managed by the bean or the container.

When an entity bean manages its own persistence, it’s called Bean Managed

Persistence. When the bean delegates this to the container, it’s called Container

Managed Persistence (CMP).

• Bean Managed Persistence: the bean developer implements persistence code

(such as JDBC calls) directly in the EJB class methods for bean managed

persistence. The possible downside is portability loss, if a proprietary interface

is used, and the risk of tying the bean to a specific database.

• Container Managed Persistence: the container provider uses the Deployment

Tool to implement the container persistence. The container transparently

manages the persistence state. Therefore, you do not need to implement any

data access code in the bean methods. Not only is this method simpler to

implement, but it makes the bean fully portable without any ties to a specific

database.

For a complete discussion of using entity beans to define persistent objects and

business logic in an iPlanet Application Server application, see Chapter 6,

“Building Entity EJBs.”

Designing an Object-Oriented Application

Chapter 4 Introducing Enterprise JavaBeans 127

Planning for Failover Recovery
Failover recovery is a process in which a bean can reinstantiate itself after a server

crash. Both stateless and stateful session beans support failover recovery. The

Deployment Tool is used to set the failover properties for session beans; for a

description of these settings see the Deployment Tool Online Help. For more

information about session bean failover recovery, see Chapter 5, “Using Session

EJBs to Manage Business Rules.”

Entity beans support failover recovery with the caveat that the reference to the

bean is lost after a server crash. To recover an entity bean, you must create a new

reference to it with a finder. For more information, see “Using Finder Methods,” on

page 154.

Working with Databases
In an iPlanet Application Server, the preferred method for working with databases

is through the JDBC API in conjunction with transaction attributes. Use the Java

Naming and Directory Interface (JNDI) to obtain a database connection. JNDI

provides a standard way for applications to find and access database services

independent of JDBC drivers.

For a complete discussion of using entity beans to define persistent objects and

business logic in an iPlanet Application Server application, see Chapter 9, “Using

JDBC for Database Access.”

For a complete description of transaction controls available through session and

entity beans, see Chapter 8, “Handling Transactions with EJBs.”

Deploying EJBs
Deploy EJBs with the rest of an application using the Deployment Tool. For more

information on how to deploy EJBs, see the Deployment Tool Online Help. For

information on property settings made by the Deployment Tool and how they

affect an application, see Chapter 11, “Packaging for Deployment.”

Dynamically Reloading EJBs
EJB reloading in an iPlanet Application Server is done without restarting the server

by simply redeploying the EJB. This can also done by replacing the new EJB

implementation classfile in the same directory.

Using the ejbc Compiler

128 iPlanet TM Application Server Developer’s Guide • February 2002

iPlanet Application Server notices the new component and reloads it at the next

create call on the EJB.

For more information, see Appendix B, “Runtime Considerations”.

Using the ejbc Compiler
iPlanet Application Server includes the ejbc utility, which:

• Checks all EJB classes and interfaces for compliance with the EJB specification

• Generates stubs and skeletons

Stubs and skeletons are required by the EJB container and must be deployed with

the application files. These stubs and skeletons enable remote communication and

allow the container to intercept all bean requests.

The ejbc utility generates the following files:

NOTE • EJB reloading applies only to EJB implementation class.

• The dynamic reloading feature is turned off by default for a

production environment. Turn it on when needed.

Table 4-1 Files generated by the ejbc utility

File Description Required
ejbc Option

_Home_Stub.class OMG JavaIDL 07-59-99

spec conformant Home

Stub class

-iiop

_Remote_Stub.class OMG JavaIDL 07-59-99

spec conformant Remote

Stub class

-iiop

_ejb_RmiCorbaBridge_ Home_Tie.class Home Interface Tie class -iiop

_ejb_RmiCorbaBridge_ Remote_Tie.class OMG JavaIDL 07-59-99

spec conformant Tie class

-iiop

ejb_RmiCorbaBridge_ Remote.class Remote Interface Bridge -iiop

ejb_RmiCorbaBridge_ Home.class Home Bridge -iiop

ejb_fac_ Implementation.class Home Factory

Using the ejbc Compiler

Chapter 4 Introducing Enterprise JavaBeans 129

The ejbc syntax for typical use is as follows:

ejbc options Home Remote Implementation

RMIC (Remote Method Invocation Compiler) mode generates only the IIOP stubs

and skeleton classes, and it skips the rules checking for EJB spec compliance. The

ejbc syntax for RMIC mode is as follows:

ejbc options -rmic Remote

The options can be as follows. If -sl , -sf , or -cmp is not specified, the bean is

compiled as a BMP entity bean.

ejb_home_ Implementation.class Home Skeleton

ejb_kcp_skel_ Remote.class KCP Remote skeleton

ejb_kcp_skel_ Home.class KCP Home skeleton

ejb_kcp_stub_ Remote.class KCP Remote stub

ejb_kcp_stub_ Home.class KCP Home stub

ejb_skel_ Implementation.class Remote Skeleton

ejb_stub_ Remote.class Remote stub

ejb_stub_ Home.class Home stub

Table 4-2 ejbc options

Option Description

-sl Compiles the bean as a stateless session bean.

-sf Compiles the bean as a stateful session bean.

-fo Compiles a stateful session bean to be Highly Available.

-cmp Compiles the bean as a CMP entity bean.

-iiop Generates additional CORBA classes.

-gs Generates Java source files.

-d dir Specifies the output directory.

-help Displays a syntax summary.

-rmic Generates RMIC code.

Table 4-1 Files generated by the ejbc utility

File Description Required
ejbc Option

Using JNDI to Reference an EJB

130 iPlanet TM Application Server Developer’s Guide • February 2002

Using JNDI to Reference an EJB
The JNDI naming scheme for lookups of EJBs is illustrated here with an example

(patterned after the HelloWorld sample that ships with the server). The servlet

source file, GreeterServlet.java , looks up the home of the bean TheGreeter .

The JNDI Lookup in the GreeterServlet.java file looks like this:

initContext = new javax.naming.InitialContext();
String JNDIName = "java:comp/env/ ejb/greeter ";
Object objref = initContext.lookup(JNDIName);
GreeterHome myGreeterHome =

(GreeterHome)PortableRemoteObject.narrow(objref,
GreeterHome.class);

-classpath classpath Sets the classpath.

-cp Deprecated; use -classpath instead.

-javaccp classpath Adds a prefix to the javac classpath.

-debug Runs the ejbc utility in debug mode and prints debugging

information.

NOTE The principles illustrated here are also applicable to EJB lookups

from one EJB to another.

NOTE iPlanet recommends that all references to EJBs be organized in the

ejb subcontext of the application component’s environment (for

example in the java:comp/env/ejb subcontext).

Table 4-2 ejbc options

Option Description

Using JNDI to Reference an EJB

Chapter 4 Introducing Enterprise JavaBeans 131

The ejb-ref entry in the web.xml file of the referencing component looks like this:

<ejb-ref>
<ejb-ref-name> ejb/greeter </ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>samples.helloworld.ejb.GreeterHome</home>
<remote>samples.helloworld.ejb.Greeter</remote>
<ejb-link> TheGreeter </ejb-link>

</ejb-ref>

Two attributes are important in web.xml with respect to JNDI naming:

• The ejb-ref-name attribute defines the lookup string as used in the source file.

• The ejb-link attribute connects this reference to the target enterprise bean.

This is the name defined in the ejb-name attribute of the ejb-jar.xml file of

the target enterprise bean.

According to the J2EE specification, the target bean should be part of an EJB JAR

module that is in the same J2EE application.

When the application is deployed, the references are stored in the registry (in

LDAP) at the following location:

SOFTWARE\iPlanet\Application Server\6.5\J2EE-Module\ module_name\ejb-refs

Figure 4-1 shows the registry entry.

Using JNDI to Reference an EJB

132 iPlanet TM Application Server Developer’s Guide • February 2002

Figure 4-1 EJB reference registry entry

The ejb-ref entry in the ias-web.xml file of the referencing component looks like

this:

<ejb-ref>
<ejb-ref-name> ejb/greeter </ejb-ref-name>
<jndi-name>ejb/ TheGreeter </jndi-name>

</ejb-ref>

Using JNDI to Reference an EJB

Chapter 4 Introducing Enterprise JavaBeans 133

In the ejb-ref section of the iPlanet specific deployment descriptor, ias-web.xml ,

the lookup name (same as the ejb-ref-name attribute in web.xml) is connected to

the JNDI name of the target enterprise bean. The JNDI name of a bean is

ejb/ bean_name. For example, if the bean name (as defined by the ejb-name

attribute in the ejb-jar.xml file of the target bean) is TheGreeter , then the JNDI

name of the deployed bean is ejb/TheGreeter .

Finally, the ejb-jar.xml file of the target enterprise bean looks like this:

<ejb-jar>
<enterprise-beans>
<session>

<display-name>TheGreeter</display-name>
<ejb-name> TheGreeter </ejb-name>
<home>samples.helloworld.ejb.GreeterHome</home>
<remote>samples.helloworld.ejb.Greeter</remote>
<ejb-class>samples.helloworld.ejb.GreeterEJB</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>

</session>
...

</ejb-jar>

The deployment descriptor of the target enterprise bean (the ejb-name attribute) is

the same as the ejb-link attribute of the web.xml file and the JNDI name

(jndi-name in ias-web.xml) of the referencing component. Also, the bean type,

home, and remote interfaces should be the same in the deployment descriptors of

the referencing component and the target bean.

For more information about the web.xml , ias-web.xml , and ejb-jar.xml files, see

Chapter 11, “Packaging for Deployment.”

When the EJB is deployed, all bean lookups are in the following section of the

registry:

SOFTWARE\iPlanet\Application Server\6.5\EJB-Components

Figure 4-2 shows the registry entry.

Using JNDI to Reference an EJB

134 iPlanet TM Application Server Developer’s Guide • February 2002

Figure 4-2 EJB component registry entry

135

Chapter 5

Using Session EJBs to Manage
Business Rules

This chapter describes how to create session EJBs that encapsulate an application’s

business rules and logic. Specifically, this chapter explains how to use session

beans to encapsulate repetitive, time bound, and user-dependent tasks that

represent the transient needs of a single, specific user.

This chapter includes the following sections:

• Introducing Session EJBs

• Session Bean Components

• Additional Session Bean Guidelines

Introducing Session EJBs
Much of a standard, distributed application consists of logical code units that

perform repetitive, time-bound, and user-dependent tasks. These tasks can be

simple or complex, and are often needed in different applications. For example,

banking applications must verify a user’s account ID and balances before

performing any transaction. These tasks define the business rules and logic that

you use to run your business. Such discrete tasks, transient by nature, are

candidates for session EJBs.

Session EJBs are self-contained code units that represent client-specific generic

object instances. These objects are transient in nature, created and freed throughout

an application’s life on an as-needed basis. For example, the shopping cart employed

by many web-based, online shopping applications is a typical session bean. It is

created by the online shopping application only when an item is chosen. When an

Introducing Session EJBs

136 iPlanet TM Application Server Developer’s Guide • February 2002

item selection is completed, the item prices in the cart are calculated, the order is

placed, and the shopping cart object is freed. A user can continue browsing

merchandise in the online catalogue, and if the user decides to place another order,

a new shopping cart is created.

Often, a session bean has no dependencies on or connections to other application

objects. For example, a shopping cart bean might have a data list member for

storing item information, a data member for storing the total cost of items currently

in the cart, and methods for adding, subtracting, reporting, and totaling items. On

the other hand, the shopping cart might not have a live connection to the database

of all available items for purchase.

Session beans can either be stateless or stateful. A stateless session bean

encapsulates a temporary piece of business logic needed by a specific client for a

limited time span. A stateful session bean is transient, but uses a conversational

state to preserve information about its contents and values between client calls. The

conversational state enables the bean’s container to maintain information about the

session bean state and to recreate the state at a later point in program execution

when needed.

The defining characteristics of a session bean have to do with its non-persistent,

independent status within an application. One way to think of a session bean is as a

temporary, logical extension of a client application that runs on the application

server. A session bean:

• Executes for a single client.

• Updates data in an underlying database.

• Is short lived.

Generally, a session bean does not represent shared data in a database, but obtains

a data snapshot. However, a bean can update data. Optionally, a session bean can

also be transaction aware. Its operations can take place in the context of a

transaction managed by the bean.

A client accesses a session bean through the bean’s remote interface, EJBObject .

An EJB object is a remote Java programming language object accessible from the

client through standard Java APIs for remote object calls. The EJB lives in the

container from its creation to its destruction, and the container manages the EJB’s

life cycle and support services. Where an EJB resides or executes is transparent to

the client. Finally, multiple EJBs can be installed in a single container. The

container provides services that allow clients to look up the interfaces of installed

EJB classes through the Java Naming and Directory Interface (JNDI).

Session Bean Components

Chapter 5 Using Session EJBs to Manage Business Rules 137

A client never accesses session bean instances directly. Instead, a client uses the

session bean’s remote interface to access a bean instance. The EJB object class that

implements a session bean’s remote interface is provided by the container. At a

minimum, an EJB object supports all java.ejb.EJBObject interface methods. This

includes methods to obtain the session bean’s home interface, to get the object’s

handle, to test if the object is identical to another object, and to remove the object.

These methods are stipulated by the EJB specification. In addition, most EJB objects

also support specific business logic methods. These methods are at the heart of an

application.

All specifications are accessible from install_dir/ias/docs/index.htm , where

install_dir is the location where the iPlanet Application Server is installed.

Session Bean Components
When programming a session bean, you must provide the following class files:

• Enterprise bean remote interface, extending javax.ejb.EJBObject

• Enterprise bean class definition

• Enterprise bean home interface, extending javax.ejb.EJBHome

• Enterprise bean metadata (Deployment Descriptors (DDs) and other

configuration information)

Creating the Remote Interface
A session bean’s remote interface defines a user’s access to a bean’s methods. All

remote interfaces extend javax.ejb.EJBObject . For example:

import javax.ejb.*;
import java.rmi.*;
public interface MySessionBean extends EJBObject {
// define business method methods here....
}

The remote interface defines the session bean’s business methods that a client calls.

The business methods defined in the remote interface are executed by the bean’s

container at runtime. For each method you define in the remote interface, you must

supply a corresponding method in the bean class itself. The corresponding method

in the bean class must have the same signature.

Session Bean Components

138 iPlanet TM Application Server Developer’s Guide • February 2002

Besides the business methods you define in the remote interface, the EJBObject

interface defines several abstract methods that enable you to retrieve the bean’s

home interface, to retrieve the bean’s handle (a unique identifier), to compare the

bean to another bean to see if it is identical, and to free or remove the bean when it

is no longer needed.

For more information about these built-in methods and how they are used, see the

EJB specification. All specifications are accessible from

install_dir/ias/docs/index.htm , where install_dir is the location where the iPlanet

Application Server is installed.

Declaring vs. Implementing the Remote Interface
A bean class definition must include one matching method definition, including

matching method names, arguments, and return types, for each method defined in

the bean’s remote interface. The EJB specification also permits the bean class to

implement the remote interface directly, but recommends against this practice to

avoid inadvertently passing a direct reference (through this) to a client in

violation of the client-container-EJB protocol intended by the specification.

Creating the Class Definition
For a session bean, the bean class must be defined as public and cannot be

abstract . The bean class must implement the javax.ejb.SessionBean interface.

For example:

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
public class MySessionBean implements SessionBean {
// Session Bean implementation. These methods must always included.
public void ejbActivate() throws RemoteException {
}
public void ejbPassivate() throws RemoteException {
}
public void ejbRemove() throws RemoteException{
}
public void setSessionContext(SessionContext ctx) throws
RemoteException {
}

// other code omitted here....
}

Session Bean Components

Chapter 5 Using Session EJBs to Manage Business Rules 139

The session bean must also implement one or more ejbCreate(...) methods.

There must be one method for each way a client invokes the bean. For example:

public void ejbCreate() {
String[] userinfo = {"User Name", "Encrypted Password"} ;
}

Each ejbCreate(...) method must be declared as public , return void , and be

named ejbCreate . Arguments must be legal Java RMI types. The throws clause

may define application specific exceptions and may include

java.rmi.RemoteException or java.ejb.CreateException .

All useful session beans also implement one or more business methods. These

methods are usually unique to each bean and represent its particular functionality.

For example, if a session bean manages user logins, it might include a unique

function called ValidateLogin() .

Business method names can be anything, but must not conflict with the method

names used in the EJB architecture. Business methods must be declared as public .

Method arguments and return value types must be legal for Java RMI. The throws

clause may define application specific exceptions and must include

java.rmi.RemoteException .

There is one interface implementation permitted in a session bean class definition,

particularly javax.ejb.SessionSynchronization , that enables a session bean

instance to be notified of transaction boundaries and synchronize its state with

those transactions. For more information about this interface, see the EJB

specification. All specifications are accessible from

install_dir/ias/docs/index.htm , where install_dir is the location where the iPlanet

Application Server is installed.

Session Timeout
The container removes inactive session beans after they are inactive for a specified

(or default) time. This timeout value is set in the bean’s deployment descriptor. For

more information, see “EJB XML DTD,” on page 322.

Passivation and Activation
The container passivates session beans after they are inactive for a specified (or

default) time. This timeout value is set in the bean’s deployment descriptor. For

more information, see “EJB XML DTD,” on page 322.

For more information about passivation, see the EJB specification. All

specifications are accessible from install_dir/ias/docs/index.htm , where

install_dir is the location where the iPlanet Application Server is installed.

Additional Session Bean Guidelines

140 iPlanet TM Application Server Developer’s Guide • February 2002

Creating the Home Interface
The home interface defines the methods that enable a client using the application to

create and remove session objects. A home interface always extends

javax.ejb.EJBHome . For example:

import javax.ejb.*;
import java.rmi.*;

public interface MySessionBeanHome extends EJBHome {
MySessionBean create() throws CreateException, RemoteException;

}

As this example illustrates, a session bean’s home interface defines one or more

create methods. Each method must be named create , and must correspond in

number and argument types to an ejbCreate method defined in the session bean

class. The return type for each create method, however, does not match its

corresponding ejbCreate method’s return type. Instead, it must return the session

bean’s remote interface type.

All exceptions defined in the throws clause of an ejbCreate method must be

defined in the throws clause of the matching create method in the remote interface.

In addition, the throws clause in the home interface must always include

javax.ejb.CreateException .

All home interfaces automatically define two remove methods for destroying an

EJB when it is no longer needed.

Additional Session Bean Guidelines
Before deciding which parts of an application you can represent as session beans,

you should know a few more things about session beans. A couple of these things

are related to the EJB specification for session beans, and a couple are specific to the

iPlanet Application Server and its support for session beans.

Creating Stateless or Stateful Beans
The EJB specification describes two state management modes for session beans:

NOTE Do not override these methods.

Additional Session Bean Guidelines

Chapter 5 Using Session EJBs to Manage Business Rules 141

• STATELESS – the bean retains no state information between method calls, so

any bean instance can service any client.

• STATEFUL – the bean retains state information across methods and

transactions, so a specific bean instance must be associated with a single client

at all times.

If you use stateful session beans, co-locate the stateful beans with their clients.

Also, use sticky load balancing to reduce the number of RPCs, especially for session

beans that are passivated and activated frequently or for session beans that use

many resources, such as database connections and handles.

Accessing iPlanet Application Server
Functionality
You can develop session beans that adhere strictly to the EJB specification, you can

develop session beans that take advantage of both the specification and additional,

value-added iPlanet Application Server features, or you can develop session beans

that adhere to the specification in non-iPlanet Application Server environments,

but that take advantage of iPlanet Application Server features if they are available.

Make the choice that is best for your intended deployment scenario.

Serializing Handles and References
The EJB specification indicates that to guarantee serializable bean references, you

should use handles rather than direct references to EJBs.

In the iPlanet Application Server, direct references are also serializable. If you take

advantage of this extension, be aware that not all vendors support it.

Managing Transactions
Many session beans interact with databases. You control bean transactions by

using settings in the bean’s property file. This permits specifying transaction

attributes at bean deployment time.

You can choose between Container Managed Transaction or Bean Managed

Transaction.

If the Container manages the transaction, there is no need to explicitly start,
rollback, or commit transactions in the bean’s database access methods.

Additional Session Bean Guidelines

142 iPlanet TM Application Server Developer’s Guide • February 2002

By moving transaction management to the Container level, you gain the ability to

place all the bean’s activities—even those not directly tied to the database

access—under the same transaction control as your database calls. This guarantees

that all application parts controlled by Container run as part of the same

transaction, and either everything the Container undertakes is committed, or it is

rolled back in a failure case. In effect, a Container managed transactional state

permits synchronizing the application without programming any synchronization

routines.

If the session bean uses Bean Managed Transaction, then you have to explicitly

code the transaction scope in the bean’s methods.

Accessing Databases
Many session beans access and update data. Because session beans are transient, be

careful about how accesses occur. In general, use the JDBC API to make calls, and

always use the transaction and security management methods described in

Chapter 8, “ Handling Transactions with EJBs” to manage the transaction isolation

level and transaction requirements at the bean level.

For details about database accesses, see Chapter 9, “Using JDBC for Database

Access.”

Session Bean Failover
The session bean failover feature allows conversational state recovery for stateful

session beans when an iPlanet Application Server becomes unavailable due to a

service loss. Supporting failover for stateful session beans is an iPlanet Application

Server value-added feature. J2EE programs do not need any modification to

support the iPlanet Application Server failover feature. Failover is handled by the

container and is defined by the deployer in the deployment descriptor.

Imagine a corporate buyer performing online purchasing at an e-commerce web

site. After spending hours shopping, the buyer has hundreds of items in their

shopping cart (a stateful session bean). The system then has an unexpected fatal

problem and the iPlanet Application Server instance becomes unavailable. Without

failover capability, the failure would result in the buyer’s shopping cart becoming

empty; the stateful session bean’s state would be lost. With the failover feature in

place, the buyer is unaware of the system failure; the failover mechanism redirects

the client to a running iPlanet Application Server instance that has the bean’s state

before the failure. The buyer’s shopping cart contains the same selected items as it

did before the failover took place.

Additional Session Bean Guidelines

Chapter 5 Using Session EJBs to Manage Business Rules 143

Notable failover feature support for stateful session beans includes:

• Failover is a value-added feature that supports J2EE programs.

• Failover is transparent to the client; no special APIs are required.

• Failover is handled by the container and configured by the deployer.

• Distributed Store (DSync) is the enabling mechanism for restoring the state

after a system failure.

• Performance impact is minimal for stateful session beans that do not need

failover support.

How to Configure a Stateful Bean with Failover
Configuring a stateful session bean for failover is a combination of configuring the

bean with failover and DSync.

• During installation or runtime, configure the server for DSync.

• During deployment, configure the stateful session bean for failover.

To take advantage of the failover feature, the bean must be configured with both

failover and DSync. The DSync mechanism saves the session bean’s conversational

state during runtime. The failover mechanism allows the container to detect a

system failure and connects to another running iPlanet Application Server instance

that has the saved session bean state.

For more information, see the Administrator’s Guide for details on how to configure

a stateful session bean with failover during deployment and how to configure

DSync during runtime. For more information on configuring DSync during

installation, see the Installation Guide.

How the Failover Process Works
Stateful bean failover is achieved with a combination of smart stubs and a

distributed store. When a bean is deployed as a failover bean, the deployment tool

generates special stubs. On a method invocation, the smart stubs detect failures

and transparently relocate a bean to a new home potentially in a different engine.

The stubs determine if the bean’s reference has become stale by getting a

connection exception from the dead bean. The stubs then do a home look up and

obtain the remote interface. Once the bean is relocated, the stubs retry the method

on the recovered bean. The container guarantees at-most-once semantics when trying

a method.

Additional Session Bean Guidelines

144 iPlanet TM Application Server Developer’s Guide • February 2002

The container uses a distributed store that is based on DSync to maintain the bean

state. The bean state is saved at regular intervals and is automatically reinstated as

part of the recovery process.

For more information on the deployment descriptors used by stateful session beans

for failover, see Chapter 11, “Packaging for Deployment.”

Failover Guidelines
Keep in mind the following guidelines when implementing failover:

• Keep ejbPassivate() and ejbActivate() simple.

• Use obj.remove() to remove a bean, not home.remove(handle) . Association

between a bean and its original home may not be preserved after failover.

• Use judgement by carefully weighing the advantages of bean failover against

the failover process performance cost.

• Remember, session bean state is conversational. Use entity beans for

transactional data.

• The time interval for saving a stateful session bean’s state is configurable using

the Administration Tool (under the EJB tab); the default is 10 seconds.

• If the bean is transactional, timer-based state saving is automatically disabled

during transactions. This ensures transactional data integrity in case of a server

engine failure during the transaction. Transactional database updates are

rolled back by the database if a failure occurs. The state of the recovered bean is

whatever it was at the begining of the failed transaction. However, if the

transaction proceeds smoothly, the bean state is saved when the transaction

completes, and timer-based saving resumes until the next transaction begins.

• If the bean implements the iPlanet Application Server provided

com.netscape.server.ejb.IEBFoStateModification interface, the state

saver can check if the state of the bean is modified or not before it performs the

expensive save operation. This interface defines two methods:

package com.netscape.server.ejb;

public interface IEBFoStateModification {

NOTE Do not configure every stateful bean with failover.

Additional Session Bean Guidelines

Chapter 5 Using Session EJBs to Manage Business Rules 145

/**
** This method is called by the container to check if a bean
** instance is dirty.
**/

boolean isDirty();

/**
** Sometimes the container performs immediate saves. Then it
** calls to reset the dirty state of the modified bean
**/

void setDirty(boolean dirty);

}

The user-supplied bean implementation has a boolean variable that tracks the

modified state of the bean. This variable is consulted prior to any state saving.

How Often Is the State Saved?
A container with failover configured saves the bean state during runtime at regular

intervals. The process for saving the state includes:

• Saving at regular, configurable time intervals.

• Saving on transaction boundaries, if the bean participates in transactions.

The regular time interval is configured in the Administration Tool.

How the State Is Saved
The process for state saving is as follows:

• First, each stateful session bean’s ejbPassivate() method is called.

• Next, the bean’s conversational state is serialized and saved to the distributed

store.

• Finally, the bean’s ejbActivate() method is called.

NOTE Saving a bean state is expensive because of the operations involved.

Additional Session Bean Guidelines

146 iPlanet TM Application Server Developer’s Guide • February 2002

147

Chapter 6

Building Entity EJBs

This chapter describes what an entity EJB is and what entity beans must contain.

This chapter also provides additional guidelines for creating entity beans and for

determining what the entity bean’s needs are in an application.

This chapter contains the following sections:

• Introducing Entity EJBs

• Entity Bean Components

• Additional Entity Bean Guidelines

• Container Managed Persistence

All specifications are accessible from install_dir/ias/docs/index.htm , where

install_dir is the location where the iPlanet Application Server is installed.

Introducing Entity EJBs
The heart of a distributed, multi-user application involves interactions with

datasources which are often transactional, such as a database or an existing legacy

application. In most cases, the external datasource or business object is transparent

to the user, or is shielded or buffered from direct user interactions. These protected,

transactional, and persistent interactions with databases, documents, and other

business objects are candidates for entity EJB encapsulation.

Business EJBs are self-contained, reusable components—with data members,

properties, and methods—that represent generic instances, transactionally aware,

persistent data objects that are shared among clients. Persistence refers to the

creation and bean maintenance throughout the application’s lifetime.

There are two persistence management types, and the iPlanet Application Server

supports both types as listed below.

Introducing Entity EJBs

148 iPlanet TM Application Server Developer’s Guide • February 2002

• Container managed persistence – this is when the container is responsible for

the bean persistence.

• Bean managed persistence – this is when the bean is responsible for their own

persistence.

A developer codes a bean managed entity bean by providing database access

calls—through JDBC and SQL—directly in the bean class methods. Database access

calls must be in the ejbCreate() , ejbRemove() , ejbFind XXX() , ejbLoad() , and

ejbStore() methods. The bean managed persistence advantage is that these beans

can be in any container without requiring the container to generate database calls.

Entity beans rely on the container to manage security, concurrency, transactions,

and other container specific services for the entity objects it manages. Multiple

clients can access an entity object at the same time and the container transparently

handles simultaneous accesses through transactions.

As an application developer, you cannot access the container’s entity bean services

directly, nor do you ever need to. Instead, the container is there to take care of low

level implementation details so you can focus on the larger role the entity bean

plays in an application picture.

Clients access an entity bean through the bean’s remote interface. The object that

implements the remote interface is called the EJB object. Usually, an entity EJB is

shared among multiple clients and represents a single entry point to a data

resource or business object, such as a database. Regardless of which client accesses

an entity object at a given time, each client’s object view is both location

independent and transparent to other clients.

Finally, any number of entity beans can be installed in a container. The container

implements a home interface for each entity bean. The home interface enables a

client to create, look up, and remove entity objects. A client looks up an entity

bean’s home interface through the Java Naming and Directory Interface (JNDI).

An entity bean includes the following attributes:

• Represents data in a database.

• Supports transactions.

• Executes for multiple clients.

• Persists for as long as needed by all clients.

• Transparently survives server crashes.

Generally, an entity bean represents shared data in a database and is transaction

aware. Its operations always take place in the context of transactions managed by

the bean’s container.

Entity Bean Components

Chapter 6 Building Entity EJBs 149

How an Entity Bean is Accessed
A client, such as a browser or servlet, accesses an entity bean through the bean’s

remote interface, EJBObject . An EJB object is a remote Java programming

language object accessible from the client through standard Java APIs for remote

object calls. The EJB lives in the container from its creation to its destruction, and

the container manages the EJB’s life cycle and support services.

A client never accesses an entity bean instance directly. Instead, a client uses the

entity bean’s remote interface to access a bean instance. The EJB object class that

implements an entity bean’s remote interface is provided by the container. At a

minimum, an EJB object supports all methods of the java.ejb.EJBObject

interface. This includes methods to obtain the entity bean’s home interface, to get

the object’s handle, to retrieve the entity’s primary key, to test if the object is

identical to another object, and to remove the object. These methods are stipulated

by the EJB specification. In addition, the remote interface for most EJB objects also

supports specific business logic methods. These are the methods at the heart of a

specific application.

All specifications are accessible from install_dir/ias/docs/index.htm , where

install_dir is the location where the iPlanet Application Server is installed.

Entity Bean Components
When creating an entity bean, you must provide the following class files:

• Enterprise bean class

• Enterprise bean home interface, implementing javax.ejb.EJBHome

• Enterprise bean remote interface, implementing javax.ejb.EJBObject

Creating the Class Definition
For an entity bean, the bean class must be defined as public and cannot be

abstract . The bean class must implement the javax.ejb.EntityBean interface.

For example:

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
public class MyEntityBean implements EntityBean {
// Entity Bean implementation. These methods must always included.

Entity Bean Components

150 iPlanet TM Application Server Developer’s Guide • February 2002

public void ejbActivate() throws RemoteException {
}
public void ejbLoad() throws RemoteException {
}
public void ejbPassivate() throws RemoteException {
}
public void ejbRemove() throws RemoteException{
}
public void ejbStore() throws RemoteException{
}
public void setEntityContext(EntityContext ctx) throws
RemoteException {
}
public void unsetEntityContext() throws RemoteException {
}
// other code omitted here....
}

In addition to these methods, the entity bean class must also define one or more

ejbCreate() methods and the ejbFindByPrimaryKey() finder method.

Optionally, it may define one ejbPostCreate() method for each ejbCreate()

method. It may provide additional, developer defined finder methods that take the

form ejbFind XXX, where XXX represents a unique method name continuation

(for example, ejbFindApplesAndOranges) that does not duplicate any other

method names.

Finally, most useful entity beans also implement one or more business methods.

These methods are usually unique to each bean and represent its particular

functionality. Business method names can be anything, but must not conflict with

the method names used in the EJB architecture. Business methods must be declared

as public . Method arguments and return value types must be Java RMI legal. The

throws clause may define application specific exceptions and may include

java.rmi.RemoteException .

There are two business method types to implement in an entity bean:

• internal ones, which are used by other business methods in the bean, but are

never accessed outside the bean itself

• external ones, which are referenced by the entity bean’s remote interface

The following sections describe the various methods in an entity bean’s class

definition.

The examples in these sections assume the following member variable definitions:

Entity Bean Components

Chapter 6 Building Entity EJBs 151

private transient javax.ejb.EntityContext m_ctx = null;

// These define the state of our bean
private int m_quantity;
private int m_totalSold;

Using ejbActivate and ejbPassivate
When an entity bean instance is needed by a server application, the bean’s

container invokes ejbActivate() to ready a bean instance for use. Similarly, when

an instance is no longer needed, the bean’s container invokes ejbPassivate() to

disassociate the bean from the application.

If, specific application tasks need to be performed when a bean is first made ready

for an application or needs to be performed when a bean is no longer needed,

program those operations within these methods.

Activation is not the same as creating a bean. You can only activate a bean that has

already been created. Similarly, passivation is not the same as removing a bean.

Passivation merely returns a bean instance to the container pool for later use.

ejbRemove() is required to actually terminate a bean instance.

The container passivates entity beans after they are inactive for a specified (or

default) time. This timeout value is set in the bean’s property file. For more

information, see “EJB XML DTD,” on page 322.

For more information about ejbCreate() and ejbRemove() , see “Using ejbCreate

Methods,” on page 153.

For more information about ejbActivate() and ejbPassivate() , see the EJB

specification. All specifications are accessible from

install_dir/ias/docs/index.htm , where install_dir is the location where the iPlanet

Application Server is installed.

Using ejbLoad and ejbStore
An entity bean using Bean Managed Persistence should permit its container to

store the bean state information in a database for synchronization purposes. Use

your implementation of ejbStore() to store state information in the database and

use your implementation of ejbLoad() to retrieve state information from the

database. When the container calls ejbLoad() , it synchronizes the bean state by

loading state information from the database.

If the entity bean uses Container Managed Persistence, then you need not code the

database access layer.

Entity Bean Components

152 iPlanet TM Application Server Developer’s Guide • February 2002

The following example shows ejbLoad() and ejbStore() method definitions that

store and retrieve active data.

public void ejbLoad()
throws java.rmi.RemoteException

{
String itemId;
DatabaseConnection dc = null;
java.sql.Statement stmt = null;
java.sql.ResultSet rs = null;

itemId = (String) m_ctx.getPrimaryKey();

System.out.println("myBean: Loading state for item " + itemId);

String query =
"SELECT s.totalSold, s.quantity " +
" FROM Item s " +
" WHERE s.item_id = " + itemId;

dc = new DatabaseConnection();
dc.createConnection(DatabaseConnection.GLOBALTX);
stmt = dc.createStatement();
rs = stmt.executeQuery(query);

if (rs != null) {
rs.next();
m_totalSold = rs.getInt(1);
m_quantity = rs.getInt(2);

}
}

public void ejbStore()
throws java.rmi.RemoteException

{
String itemId;
itemId = (String) m_ctx.getPrimaryKey();
DatabaseConnection dc = null;
java.sql.Statement stmt1 = null;
java.sql.Statement stmt2 = null;

System.out.println("myBean: Saving state for item = " + itemId);

String upd1 =
"UPDATE Item " +
" SET quantity = " + m_quantity +
" WHERE item_id = " + itemId;

Entity Bean Components

Chapter 6 Building Entity EJBs 153

String upd2 =
"UPDATE Item " +
" SET totalSold = " + m_totalSold +
" WHERE item_id = " + itemId;

dc = new DatabaseConnection();
dc.createConnection(DatabaseConnection.GLOBALTX);
stmt1 = dc.createStatement();
stmt1.executeUpdate(upd1);
stmt1.close();
stmt2 = dc.createStatement();

stmt2.executeUpdate(upd2);
stmt2.close();

}

For more information about bean isolation levels that access transactions

concurrently with other beans, see “Handling Concurrent Access,” on page 159.

Using setEntityContext and unsetEntityContext
A container calls setEntityContext() after it creates an entity bean instance to

provide the bean’s interface to the container. Implement this method, to store the

container reference in an instance variable.

public void setEntityContext(javax.ejb.EntityContext ctx)
{
m_ctx = ctx;
}

Similarly, a container calls unsetEntityContext() to remove the container

reference from the instance. This is the last bean class method a container calls.

After this call, the Java garbage collection mechanism eventually calls finalize()

on the instance to clean it up and dispose it.

public void unsetEntityContext()
{
m_ctx = null;
}

Using ejbCreate Methods
The entity bean must also implement one or more ejbCreate(...) methods.

There must be one method for each way a client is allowed to invoke the bean. For

example:

Entity Bean Components

154 iPlanet TM Application Server Developer’s Guide • February 2002

public integer ejbCreate() {
string[] userinfo = {"User Name", "Encrypted Password"};

}

Each ejbCreate() method must be declared as public , return either the entity’s

primary key type or a collection, and be named ejbCreate . The return type can be

any legal Java RMI type. Any arguments must be legal Java RMI types. The throws

clause, may define application specific exceptions, and may include

java.rmi.RemoteException and/or javax.ejb.CreateException .

For each ejbCreate() method, the entity bean class may define an

ejbPostCreate() method to handle entity services immediately following

creation. Each ejbPostCreate() method must be declared as public , must return

void, and be named ejbPostCreate . The method arguments, if any, must match in

number and argument type of its corresponding ejbCreate method. The throws

clause, may define application specific exceptions, and may include

java.rmi.RemoteException and/or java.ejb.CreateException .

Finally, an entity bean also implements one or more ejbRemove() methods to free

a bean when it is no longer needed.

Using Finder Methods
Because entity beans are persistent, are shared among clients, and may have more

than one instance instantiated at the same time, an entity bean must implement at

least one method, ejbFindByPrimaryKey() , that enables the client and the bean’s

container to locate a specific bean instance. All entity beans must provide a unique

primary key as an identifying signature. Implement the ejbFindByPrimaryKey()

method in the bean’s class to enable a bean to return its primary key to the

container.

The following example shows a definition for FindByPrimaryKey() :

public String ejbFindByPrimaryKey(String key)
throws java.rmi.RemoteException,

javax.ejb.FinderException
{

//System.out.println("@@@ myBean.ejbFindByPrimaryKey key = " +
key);

return key;
}

In some cases, you find a specific entity bean instance based on what the bean does,

based on certain values the instance is working with, or based on other criteria.

These implementation specific finder method names take the form ejbFindXXX ,

where XXX represents a unique continuation of a method name (for example,

ejbFindApplesAndOranges) that does not duplicate any other method names.

Entity Bean Components

Chapter 6 Building Entity EJBs 155

Finder methods must be declared as public , and their arguments and return

values must be legal Java RMI types. Each finder method return type must be the

entity bean’s primary key type or a collection of objects of the same primary key

type. If the return type is a collection, the return type must be one of the following:

• The JDK 1.1 java.util.Enumeration interface

• The Java 2 java.util.Collection interface

The throws clause of a finder method is an application specific exception, and may

include java.rmi.RemoteException and/or javax.ejb.FinderException .

Declaring vs. Implementing the Remote Interface
A bean class definition must include one matching method definition including

matching method names, arguments, and return types, for each method defined in

the bean’s remote interface. The EJB specification permits the bean class to

implement the remote interface’s methods, but recommends against this practice to

avoid inadvertently passing a direct reference (through this) to a client in

violation of the client-container-EJB protocol intended by the specification.

Creating the Home Interface
The home interface defines the methods that enables a client accessing an

application to create and remove entity objects. A home interface always extends

javax.ejb.EJBHome . For example:

import javax.ejb.*;
import java.rmi.*;

public interface MyEntityBeanHome extends EJBHome {
MyEntityBean create() throws CreateException, RemoteException;

}

This example illustrates, an entity bean’s home interface defines one or more create

methods. Usually the home interface also defines one or more find methods

corresponding to the finder methods in the bean class.

Defining Create Methods
Each method must be named create, and must correspond in number and

argument types to an ejbCreate method defined in the entity bean class. The

return type for each create method, however, does not match the corresponding

ejbCreate method’s return type. Instead, it must return the entity bean’s remote

interface type.

Entity Bean Components

156 iPlanet TM Application Server Developer’s Guide • February 2002

All exceptions defined in the throws clause of an ejbCreate method must be

defined in the throws clause of the matching create method in the home interface.

In addition, the throws clause in the home interface must always include

javax.ejb.CreateException .

Defining Find Methods
A home interface can define one or more find methods. Each method must be

named find XXX (for example, findApplesAndOranges), where XXX is a unique

method name continuation. Each finder method must correspond to one of the

finder methods defined in the entity bean class definition.

The number and argument types must also correspond to the finder method

definitions in the bean class. The return type, however, may be different. The

finder method’s return type in the home interface must be the entity bean’s remote

interface type or a collection of interfaces. In addition, the trows clause in the home

interface must always include javax.ejb.FinderException .

Finally, all home interfaces automatically define two remove methods for

destroying an EJB when it is no longer needed.

Creating the Remote Interface
An entity bean’s remote interface defines a user’s access to a bean’s methods. All

remote interfaces extend javax.ejb.EJBObject . For example:

import javax.ejb.*;
import java.rmi.*;
public interface MyEntityBean extends EJBObject {
// define business method methods here....
}

The remote interface defines the entity bean’s business methods that a client calls.

The business methods defined in the remote interface are executed by the bean’s

container at runtime. For each method you define in the remote interface, you must

supply a corresponding method in the bean class. The corresponding method in

the bean class must have the same signature.

NOTE Do not override these methods.

Additional Entity Bean Guidelines

Chapter 6 Building Entity EJBs 157

Besides the business methods you define in the remote interface, the EJBObject

interface defines several abstract methods that enables you to retrieve the bean’s

home interface, to retrieve the bean’s handle, to retrieve the bean’s primary key

which uniquely identifies the bean’s instance, to compare the bean to another bean

to see if it is identical, and to remove the bean when it is no longer needed.

For more information about these built-in methods and how they are used, see the

EJB specification. All specifications are accessible from

install_dir/ias/docs/index.htm , where install_dir is the location where the iPlanet

Application Server is installed.

Additional Entity Bean Guidelines
Before you decide what application parts you can represent as entity beans, you

should consider a few more guidelines. A couple of these are related to the EJB

specification for entity beans, and a couple are specific to the iPlanet Application

Server and its support for entity beans.

Accessing iPlanet Application Server
Functionality
You can develop entity beans that adhere strictly to the EJB specification, you can

develop entity beans that take advantage of both the specification and additional,

value-added iPlanet Application Server features, and you can develop entity beans

that adhere to the specifications in non-iPlanet Application Server environments

but take advantage of the iPlanet Application Server features if they are available.

Make the choice that is best for your intended deployment scenario.

The iPlanet Application Server offers several features through the iPlanet

Application Server container and the iPlanet Application Server APIs that enables

your applications to take programmatic advantage of specific iPlanet Application

Server environment features. You can embed API calls in your entity beans if you

plan on using those beans only in an iPlanet Application Server environment.

Serializing Handles and References
The EJB specification indicates that to guarantee serializable bean references, you

should use handles rather than direct references to EJBs.

Additional Entity Bean Guidelines

158 iPlanet TM Application Server Developer’s Guide • February 2002

The iPlanet Application Server direct references are also serializable. You may

wish to take advantage of this extension, but be aware not all vendors support it.

Managing Transactions
Many entity beans interact with databases. You control bean transactions by using

settings in the bean’s property file. This permits specifying transaction attributes at

bean deployment time.

With entity beans, you can only use Container Managed Transaction.

If the Container manages the transaction, there is no need to explicitly start,
rollback, or commit transactions in the bean’s database access methods.

By moving transaction management to the Container level, you gain the ability to

place all the bean’s activities—even those not directly tied to the database

access—under the same transaction control as your database calls. This guarantees

that all application parts controlled by Container run as part of the same

transaction, and either everything the Container undertakes is committed, or it is

rolled back in a failure case. In effect, a Container managed transactional state

permits synchronizing the application without programming any synchronization

routines.

Committing a Transaction
When a commit occurs, it signals the container that the entity bean has completed

its useful work and should synchronize its state with the underlying datasource.

The container permits the transaction to complete and then returns the bean to the

pool for later reuse. Result sets associated with a committed transaction are no

longer valid. Subsequent requests for the same bean cause the container to issue a

load to synchronize state with the underlying datasource.

Note that transactions begun in the container are implicitly committed. Also, any

participant can rollback a transaction. For more information on transactions, see

Chapter 8, “Handling Transactions with EJBs.”

Commit Option C
Commit option C is supported by the iPlanet Application Server. Commit option C

gets a bean instance from the free pool at the start of a transaction and transitions

the instance back to the free pool at the end of the transaction.

Additional Entity Bean Guidelines

Chapter 6 Building Entity EJBs 159

The lifecycle for every business method invocation under commit option C looks

like this:

ejbActivate-> ejbLoad -> business method -> ejbStore -> ejbPassivate

If there is more than one transactional client concurrently accessing the same entity

EJBObject , the first client gets the ready instance and subsequent concurrent

clients get new instances from the pool.

Handling Concurrent Access
As an entity bean developer, you do not have to be concerned about concurrent

access to an entity bean from multiple transactions. The bean’s container

automatically provides synchronization in these cases. In an iPlanet Application

Server, the container activates one entity bean instance for each simultaneously

occurring transaction that uses the bean. Transaction synchronization is performed

automatically by the underlying database during database access calls.

The iPlanet Application Server EJB container implementation does not provide its

own synchronization mechanism when multiple transactions try to access an entity

bean. It creates a new entity bean instance for every new transaction. The iPlanet

Application Server container delegates the responsibility of the application

synchronization.

You typically perform this synchronization in conjunction with the underlying

database or resource. One approach, when using Bean Managed Persistence,

would be to acquire the corresponding database locks in the ejbLoad() method,

for example by choosing an appropriate isolation level or by using a select for

update clause. The specifics depend on the database being used. For more

information, see the EJB specification as it relates to concurrent access.

The following example ejbLoad() snippet illustrates the select for update

syntax to obtain database locks. This prevents other instances from being loaded at

the same time.

public void ejbLoad() throws java.rmi.RemoteException
{
....
// Get the lock on the corresponding DB table

try {
java.sql.Connection dbConn = ds.getConnection();
String query = "SELECT accountNum, balance FROM accounts "

+ "WHERE customerId = ? FOR UPDATE";
prepStmt = dbConn.prepareStatement(query);
prepStmt.setString(1, m_customerId);
resultSet = prepStmt.executeQuery();

Container Managed Persistence

160 iPlanet TM Application Server Developer’s Guide • February 2002

if ((resultSet != null) && resultSet.next()) {
acctNum = resultSet.getInt(1);
acctBalance = resultSet.getInt(2);

} else {
throw new RemoteException("Database error. "

+ "Couldn't find accout");
}

} catch (java.sql.SQLException e) {
throw new RemoteException("Database error. "

+ "Couldn't load account");
} finally {

try {
if (resultSet != null)

resultSet.close();
if (prepStmt != null)

prepStmt.close();
if (dbConn != null)

dbConn.disconnect();
} catch (java.sql.SQLException e) {
System.out.println("Unexpected exception while "

+ "closing resources"); }
}

}

Container Managed Persistence
An entity bean using container-managed persistence (CMP) defers the

management of its state (or persistence) to the iPlanet Application Server.

Normally, CMP beans persist to a relational database.

Developers use CMP to simplify the work of creating an entity bean. Rather than

write all the JDBC code that is necessary to implement a BMP entity bean, a

developer using CMP simply uses tools to create the bean’s deployment

descriptors. The deployment descriptors contain information that the container

uses to map fields to the bean to columns in a relational database.

For more information on CMP, see Chapter 9.4 of the EJB 1.1 specification.

The iPlanet Application Server provides the following support for CMP entity

beans:

• Full support for the J2EE v 1.2 specification’s CMP model (i.e., EJB 1.1).

• Support for third party O/R mapping tools.

Container Managed Persistence

Chapter 6 Building Entity EJBs 161

• An “out-of-the-box” lightweight implementation of CMP. Lightweight CMP

provides:

❍ A basic object-to-relational (O/R) mapping tool within the iPlanet

Application Server Deployment Tool that creates XML Deployment

Descriptors for each CMP bean.

❍ Support for compound (multi-column) primary keys.

❍ Support for sophisticated custom finder methods.

❍ Standards-based query language (SQL92).

Full J2EE Support
The iPlanet Application Server fully supports the Entity Bean Component Contract

defined in the EJB 1.1 specification. Here are a few items of interest:

• The iPlanet Application Server implements commit option C as defined in the

EJB 1.1 specification.

• The primary key class must be a subclass of java.lang.Object . This is in

accordance with the specification, and ensures portability, but is noted because

a few vendors allow primitive types (such as int) to be listed as the primary

key class.

Third Party O/R Mapping Tools
iPlanet Application Server certifies third party enterprise tool vendors for use. In

general, third-party CMP solutions that fully support the EJB1.1 specification work

with iPlanet Web Server.

For example, Thought, Inc., provides CocoBase Enterprise as a sophisticated O/R

mapping solution for mapping EJBs to relational databases. To use Cocobase, you

build your EJBs using Cocobase’s O/R Mapping Tool, then deploy the beans using

the iPlanet Application Server’s Deployment Tool or the iPlanet Application

Server’s Command Line Interface (CLI).

Several other vendors are currently completing certification. Check the website

(developer.iplanet.com) for current information on certified third party O/R

mapping tools.

Container Managed Persistence

162 iPlanet TM Application Server Developer’s Guide • February 2002

Full Example of a CMP Entity Bean
For a full example of a CMP entity bean, look at the Product sample application

from the J2EE Developer’s Guide, which is available here:

install_dir/ias/ias-samples/j2eeguide/product

Using the Lightweight CMP Implementation
The iPlanet Application Server provides an “out-of-the-box” lightweight CMP

implementation. The implementation includes a mapping tool, found in the iPlanet

Application Server Deployment Tool, and a CMP runtime environment. The CMP

runtime environment creates persistence managers for each CMP bean. The

persistence managers then use information specified in XML deployment

descriptors. The three deployment descriptors used in a CMP bean are:

• ejb-jar.xml - There is one ejb-jar.xml file in each EJB module. This

deployment descriptor is covered in detail in the EJB 1.1 specification.

• ias-ejb-jar.xml - Like the ejb-jar.xml file, there is just one

ias-ejb-jar.xml file per EJB module. To use lightweight CMP, you must set

some properties in this file. For an overview of the DTD, see Chapter 11,

“Packaging for Deployment.”

• property-file-name.xml - Additionally, each CMP Bean has its own deployment

descriptor. The name of the file is specified in the ias-ejb-jar.xml file (by the

properties-file-location element; see Chapter 11, “Packaging for

Deployment,” for details). The contents of this file determine how the reference

implementation’s persistence managers load and store each bean’s state in a

relational database.

There are two ways to generate these files. The following sections cover each

method in detail:

• Creating the Deployment Descriptors by Hand

• Using the Deployment Tool

Creating the Deployment Descriptors by Hand
It’s easiest to understand what’s happening in the iPlanet Application Server’s

Deployment Tool if you know what’s happening behind the scenes, so the manual

steps are explained first.

Container Managed Persistence

Chapter 6 Building Entity EJBs 163

ejb-jar Deployment Descriptor
The ejb-jar.xml file is described in detail in the EJB 1.1 specification. The ejb-jar

deployment descriptor is where important information like the transactional

attributes of the beans and the fields of a bean that are going to be

container-managed are specified. Any J2EE-compliant ejb-jar file is deployable on

the iPlanet Application Server if you provide a corresponding ias-ejb-jar.xml

file.

ias-ejb-jar Deployment Descriptor
The J2EE vendor-specific information for Enterprise JavaBeans is stored in another

deployment descriptor, ias-ejb-jar.xml . The Document Type Definition (DTD)

for this XML-based deployment descriptor is covered in detail in Chapter 11,

“Packaging for Deployment.”

There is some information that is unique to CMP beans that goes in this file,

however, within the <persistence-manager> element:

• The fully qualified class name for the factory class that creates persistence

managers is specified in the <factory-class-name> element. The factory class

name for the reference implementation is

com.netscape.server.ejb.SQLPersistenceManagerFactory .

• The relative path of the CMP bean’s specific property file within the

ejb-jar.xml file is specified in the <properties-file-location> element.

Here’s a code snippet of what the relevant elements of the deployment descriptor

look like:

...
<persistence-manager>

<factory-class-name>
com.netscape.server.ejb.SQLPersistenceManagerFactory

</factory-class-name>
<properties-file-location>

META-INF/MyProduct-ias-cmp.xml
</properties-file-location>

</persistence-manager>
...

Container Managed Persistence

164 iPlanet TM Application Server Developer’s Guide • February 2002

CMP Bean Deployment Descriptor
The file name of the CMP bean-specific deployment descriptor is specified in the

ias-ejb-jar.xml file. In the previous example, the properties file would be

named MyProduct-ias-cmp.xml . The file’s root element is the

<ias-persistence-manager> node, but the rest is a simple bean property file. The

file uses a simple XML format to describe various properties. The DTD file for this

deployment descriptor is located here:

install_dir/ias/dtd/IASPersistence_manager_1_0.dtd

The tags in the xml file follow this basic format:

<bean-property>
<property>

<name></name>
<type></type>
<value></value>
<delimiter></delimiter>

</property>
</bean-property>

Here are descriptions of the subelements of <property> :

The following properties are defined in the lightweight CMP bean’s deployment

descriptor:

• Data Source (dataSource)

• CMP field to RDB column mapping (allFields)

• Persistence operations:

name is one of these valid names: dataSource , allFields ,

findByPrimaryKeySQL , findByPrimaryKeyParms , insertSQL ,

insertParms , deleteSQL , deleteParms , loadSQL , loadParms ,

loadResults , storeSQL , storeParms , or the name of a custom

finder.

Each of these properties is described later in this section.

type is either java.lang.String or java.util.Vector . If Vector is

used as the type, the value is treated as a comma-delimited list.

value is any string.

delimiter is always , (a comma).

Container Managed Persistence

Chapter 6 Building Entity EJBs 165

❍ findByPrimaryKey (findByPrimaryKeySQL and

findByPrimaryKeyParms)

❍ insert (insertSQL and insertParms)

❍ delete (deleteSQL and deleteParms)

❍ load (loadSQL , loadParms , loadResults)

❍ store (storeSQL and storeParms)

❍ custom finders (optional)

Data Source
The first property used in the XML file is the dataSource property. The value of

the dataSource property is the JNDI name of the JDBC data source used as a

persistent store. For example:

...
<bean-property>

<property>
<name>dataSource</name>
<type>java.lang.String</type>
<value>j2eeguide/ProductDB</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

CMP Field to RDB Column Mapping
The allFields property is where the O/R mapping is specified. In the value

element, a bracket-enclosed String maps the CMP fields to database columns. CMP

fields go to the left side of the =, while database columns go to the right of the

expression. A semicolon, ; , must separate the expressions. For example:

...
<bean-property>

<property>
<name>allFields</name>
<type>java.lang.String</type>
<value>

{description=DESCRIPTION;price=PRICE;productId=PRODUCTID;}
</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

Container Managed Persistence

166 iPlanet TM Application Server Developer’s Guide • February 2002

Persistence Operations
Persistence operations consist of three types of properties. These properties follow

the following naming patterns:

• xxxxSQL is an SQL statement for a particular persistence operation (such as

insert). The SQL statement in the xxxxSQL property is used to create a

java.sql.PreparedStatement ; therefore, the SQL statement should conform

to the rules specified for parameterized queries (for example, use ? to signify a

parameter). To understand how to map your CMP fields to SQL datatypes, see

“Mapping Rules,” on page 173.

• xxxxParms is a list of parameters that are sent to the persistence operation. The

first field maps to the first parameter in the SQL statement (denoted by ?), the

second maps to the second, and so on.

• xxxxResults is a list of the fields in the ResultSet that are returned from the

execution of the PreparedStatement .

The xxxx part of the name can be one of the following:

• findByPrimaryKey (findByPrimaryKeySQL and findByPrimaryKeyResults)

• insert (insertSQL and insertParms)

• delete (deleteSQL and deleteParms)

• load (loadSQL , loadParms , loadResults)

• store (storeSQL and storeParms)

• The name of a custom finder

Persistence operation properties vary based on whether their CMP bean has a

single-field primary key or a multi-field primary key. Where there is a difference, it

is noted in the following examples.

findByPrimaryKey
The findByPrimaryKey properties are findByPrimaryKeySQL and

findByPrimaryKeyParms . It is not necessary to provide the

findByPrimaryKeyResults property for the findByPrimaryKey property because

it is already defined in the primary key class. This operation corresponds to the

findByPrimaryKey() method in the EJB’s home interface.

Here is a single-field primary key example:

...
<bean-property>

<property>
<name>findByPrimaryKeySQL</name>

Container Managed Persistence

Chapter 6 Building Entity EJBs 167

<type>java.lang.String</type>
<value>

SELECT PRODUCTID FROM PRODUCT WHERE PRODUCTID = ?
</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>findByPrimaryKeyParms</name>
<type>java.util.Vector</type>
<value>productId</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

Here is a multi-field primary key example:

...
<bean-property>

<property>
<name>findByPrimaryKeySQL</name>
<type>java.lang.String</type>
<value>

SELECT PRODUCTID, DESCRIPTION FROM PRODUCT WHERE PRODUCTID = ? AND DESCRIPTION = ?

</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>findByPrimaryKeyParms</name>
<type>java.util.Vector</type>
<value>productId,description</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

insert
The insert properties are insertSQL and insertParms . Inserts are exactly the same

for single- and multi-field primary keys. This property corresponds to the bean’s

create() method in its home interface.

Container Managed Persistence

168 iPlanet TM Application Server Developer’s Guide • February 2002

...
<bean-property>

<property>
<name>insertSQL</name>
<type>java.lang.String</type>
<value>

INSERT INTO PRODUCT (DESCRIPTION,PRICE,PRODUCTID) VALUES(?,?,?)
</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>insertParms</name>
<type>java.util.Vector</type>
<value>description,price,productId</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

delete
The delete properties are deleteSQL and deleteParms . The delete operation

provides the functionality for the remove() function in the bean’s home interface.

Here is a single-field primary key example:

...
<bean-property>

<property>
<name>deleteSQL</name>
<type>java.lang.String</type>
<value>DELETE FROM PRODUCT WHERE PRODUCTID = ?</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>deleteParms</name>
<type>java.util.Vector</type>
<value>productId</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

Here is a multi-field primary key example:

Container Managed Persistence

Chapter 6 Building Entity EJBs 169

...
<bean-property>

<property>
<name>deleteSQL</name>
<type>java.lang.String</type>
<value>

DELETE FROM PRODUCT WHERE PRODUCTID = ? AND DESCRIPTION = ?
</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>deleteParms</name>
<type>java.util.Vector</type>
<value>productId,description</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

load
The load properties are loadSQL , loadParms , and loadResults . Load operations

are almost identical for single- and multi-field primary keys. There is a minor

difference in the loadSQL property and, consequently, the loadParms property.

Load operations correspond to the EJB’s ejbLoad() method.

Here is a single-field primary key example:

...
<bean-property>

<property>
<name>loadSQL</name>
<type>java.lang.String</type>
<value>

SELECT DESCRIPTION,PRICE,PRODUCTID FROM PRODUCT WHERE PRODUCTID = ?
</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>loadParms</name>
<type>java.lang.String</type>
<value>productId</value>
<delimiter>,</delimiter>

</property>

Container Managed Persistence

170 iPlanet TM Application Server Developer’s Guide • February 2002

</bean-property>
<bean-property>

<property>
<name>loadResults</name>
<type>java.util.Vector</type>
<value>description,price,productId</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

Here is a multi-field primary key example:

...
<bean-property>

<property>
<name>loadSQL</name>
<type>java.lang.String</type>
<value>

SELECT DESCRIPTION,PRICE,PRODUCTID FROM PRODUCT WHERE PRODUCTID = ? AND DESCRIPTION = ?

</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>loadParms</name>
<type>java.util.Vector</type>
<value>productId,description</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>loadResults</name>
<type>java.util.Vector</type>
<value>description,price,productId</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

store
The store properties are storeSQL and storeParms . As with load properties, there

are small differences in the storeSQL and storeParms properties. Make sure you

get the order right in the multi-field primary key. The store operation is performed

when the EJB container calls the ejbStore() method on the bean implementation.

Container Managed Persistence

Chapter 6 Building Entity EJBs 171

Here is a single-field primary key example:

...
<bean-property>

<property>
<name>storeSQL</name>
<type>java.lang.String</type>
<value>

UPDATE PRODUCT SET DESCRIPTION=?,PRICE=? WHERE PRODUCTID = ?
</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>storeParms</name>
<type>java.util.Vector</type>
<value>description,price,productId</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

Here is a multi-field primary key example:

...
<bean-property>

<property>
<name>storeSQL</name>
<type>java.lang.String</type>
<value>

UPDATE PRODUCT SET PRICE=? WHERE PRODUCTID = ? AND DESCRIPTION = ?
</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>storeParms</name>
<type>java.util.Vector</type>
<value>price,productId,description</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

Container Managed Persistence

172 iPlanet TM Application Server Developer’s Guide • February 2002

Custom Finders
Optionally, you can add custom finders to the deployment descriptor. Custom

finder operations follow slightly different rules than other operations:

• For the xxxxSQL property of custom finders, the first argument to the finder

method defined in the home interface maps to the first parameter in the SQL

statement, the second to the second, and so on.

• The xxxxResults property for custom finders maps the columns of the

ResultSet of the SQL statement to the primary key’s fields (for multi-field

primary keys) or to the primary key itself (for single-field primary keys).

For example, suppose the following method is defined in an entity bean’s home

interface:

public Collection findInRange(double low, double high)
throws FinderException, RemoteException;

The name of the property is the name found in the bean’s home interface. In this

example, this operation would have up to three properties in the deployment

descriptor: findInRangeSQL , findInRangeParms , and findInRangeResults

(needed only for a multi-field primary key).

Here are the properties that implement this operation for a single-field primary

key:

...
<bean-property>

<property>
<name>findInRangeSQL</name>
<type>java.lang.String</type>
<value>
SELECT PRODUCTID FROM PRODUCT WHERE PRICE BETWEEN ? AND ?
</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>findInRangeParms</name>
<type>java.lang.Vector</type>
<value>low,high</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

Here are the properties that implement this operation for a multi-field primary key:

Container Managed Persistence

Chapter 6 Building Entity EJBs 173

...
<bean-property>

<property>
<name>findInRangeSQL</name>
<type>java.lang.String</type>
<value>

SELECT PRODUCTID, DESCRIPTION FROM PRODUCT WHERE PRICE BETWEEN ? AND ?

</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>findInRangeParms</name>
<type>java.lang.Vector</type>
<value>low,high</value>
<delimiter>,</delimiter>

</property>
</bean-property>
<bean-property>

<property>
<name>findInRangeResults</name>
<type>java.util.Collection</type>
<value>productid,description</value>
<delimiter>,</delimiter>

</property>
</bean-property>

...

Mapping Rules
Lightweight CMP uses JDBC (specifically, the setter methods of the

PreparedStatement interface) to map CMP fields to columns in a relational

database table. Therefore, standard JDBC mapping rules apply to CMP fields.

For example, to map a java.lang.String to an SQL column, Lightweight CMP

uses the setString method in the PreparedStatement interface. The

documentation for the PreparedStatement interface specifies that setString

maps to a VARCHAR.

Lightweight CMP supports all native Java field types, all the classes that represent

native types (such as Integer), java.lang.String, java.sql.Date, java.sql.Time,

java.sql.Timestamp, and arbitrary serializable objects. Table 6-1 describes the

mappings between bean attributes and table columns.

Container Managed Persistence

174 iPlanet TM Application Server Developer’s Guide • February 2002

Using the Deployment Tool
A simpler way to create the standard ejb-jar deployment descriptors for a CMP

bean is by using the iPlanet Application Server Deployment Tool. This tool’s

extensive built-in help goes into great detail about how to create this deployment

descriptor.

Table 6-1 EJB/JDBC mapping

Java Type JDBC Type JDBC Driver Access Methods

boolean BIT getBoolean() ,

setBoolean()

byte TINYINT getByte() , setByte()

short SMALLINT getShort() , setShort()

int INTEGER getInt() , setInt()

long BIGINT getLong() , setLong()

float FLOAT getFloat() , setFloat()

double DOUBLE getDouble() , setDouble()

byte[] VARBINARY or

LONGVARBINARY(1)
getBytes() , setBytes()

java.lang.String VARCHAR or

LONGVARCHAR(1)
getString() , setString()

java.lang.Boolean BIT getObject() , setObject()

java.lang.Integer INTEGER getObject() , setObject()

java.lang.Long BIGINT getObject() , setObject()

java.lang.Float REAL getObject() , setObject()

java.lang.Double DOUBLE getObject() , setObject()

java.math.BigDecimal NUMERIC getObject() , setObject()

java.sql.Date DATE getDate() , setDate()

java.sql.Time TIME getTime() , setTime()

java.sql.Timestamp TIMESTAMP getTimestamp() ,

setTimestamp()

any serializable class VARBINARY or

LONGVARBINARY(1)
getBytes() , setBytes()

Container Managed Persistence

Chapter 6 Building Entity EJBs 175

Start by either opening an existing EJB Module or creating a new one. For more

information on how to use this tool to create a CMP bean, refer to the help within

the tool. Once the EJB’s class files have been added the EJB Module, you can

right-click on the bean to edit its descriptor, as in Figure 6-1.

Figure 6-1 Selecting a bean in the iPlanet Application Server Deployment Tool

Once you open the deployment descriptor, the changes you make in the user

interface are reflected in the CMP EJB’s section of the ejb-jar.xml deployment

descriptor, its section of the ias-ejb-jar.xml deployment descriptor, and the

CMP bean-specific deployment descriptor. The CMP bean’s mapping information

is saved in a file named ejbname-ias-cmp.xml . For an in-depth description of the

elements of the user interface, refer to the tool’s help.

Container Managed Persistence

176 iPlanet TM Application Server Developer’s Guide • February 2002

Figure 6-2 shows the Lightweight CMP tab.

Figure 6-2 The Lightweight CMP tab

After you have studied the previous section on creating a deployment descriptor

by hand, everything should be familiar to you on the Lightweight CMP tab, with

these exceptions:

• The TABLE text box is an input field for the relational database table that you’ll

be accessing via the specified data source.

Container Managed Persistence

Chapter 6 Building Entity EJBs 177

• You can toggle the Key field for each EJB Attribute. To create a multi-field

primary key, merely set more than one attribute to true ; the change is reflected

in the bean’s corresponding deployment descriptor. (multi-field primary keys

require some other modifications, namely the inclusion of a primary key class

as defined in the EJB 1.1 specification).

• Use the Name, Type, and Value fields for the custom finders. Use these in the

same manner as described in the previous section.

NOTE You can start creating your EJB’s deployment descriptors in the

iPlanet Application Server’s Deployment Tool, save the application

in the tool, edit the files by hand, and then go back into the tool.

However, if you do this, make sure you re-open the EJB Module or

J2EE Application in the tool before you edit the deployment

descriptors, then re-save the application in the tool after you make

the changes. If you fail to do this, your changes in the user interface

are not reflected in the deployment descriptors.

Container Managed Persistence

178 iPlanet TM Application Server Developer’s Guide • February 2002

179

Chapter 7

Using Message Driven Beans

This chapter describes a Message Driven Bean and its properties. This chapter also

provides additional guidelines for creating message- driven beans and deploying

them to iPlanet Application Server.

This chapter contains the following sections:

• Components of Message Driven Beans

• Message Driven Bean Guidelines

• Accessing iPlanet Application Server Functionality

• Using the Deployment Tool

• Creating the Deployment Descriptors by Hand

Introducing Message Driven Beans
iPlanet Application Server uses the iPlanet Message Queue for Java, 2.0 SP1 as the

messaging middleware application that implements the JMS specifications. You

must install iMQ for Java, 2.0 SP1 before you can use message-driven beans on

iPlanet Application Server.

NOTE The message-driven bean functionality in iPlanet Application Server

is meant for developer use only. It has neither been tested or

certified for production environments.

Introducing Message Driven Beans

180 iPlanet TM Application Server Developer’s Guide • February 2002

iMQ for Java, 2.0 SP1 is bundled on the iPlanet Application Server installation CD.

If you don’t have the installation CD, you can download a free, developer edition

from
http://www.iplanet.com/products/iplanet_message_queue/home_message_
queue.html.

How a Message Driven Bean is Accessed
A message-driven bean interfaces with the Java Message Service (JMS). In other

words, a Message Driven Bean is a JMS Listener. JMS middleware and the

message-driven bean’s container jointly control the delivery of messages to JMS

MessageListener objects.

The following steps describe the actions that follow a client request:

1. When the application server boots up, it will load up all deployed

message-driven beans and start up the message listeners.

The application server registers it’s destination specific representative with

JMS, using iPlanet Application Server’s ServerSessionPool .

2. A client, such as a browser, or a servlet, or a stand-alone application sends a

message to the JMS destination.

3. The JMS calls the application server’s callback for the specified destination to

serve the request.

NOTE To use message-driven beans, yopu must first configure a JMS

Provider and set up the message queue object. For detailed

information on setting up and configuring a JMS provider, see

Chapter 11, “Administering Message Driven Beans,” in iPlanet

Application Server Administrator’s Guide.

Introducing Message Driven Beans

Chapter 7 Using Message Driven Beans 181

4. The JMS Session’s MessageListener will be the container for an instance of a

Message Driven Bean.

When a message arrives, the container calls the message-driven bean’s

onMessage method to process the message. The onMessage method normally

casts the message to one of the five JMS message types and handles it in

accordance with the application’s business logic. The onMessage method may

call helper methods, or it may invoke a session or entity bean to process the

information in the message or to store it in a database.

A message may be delivered to a message-driven bean within a transaction

context, so that all operations within the onMessage method are part of a single

transaction. If message processing is rolled back, the message will be resent.

5. iPlanet Application Server takes care of the supported services, such as

transactions, security, etc., and delegates the servicing of the request to the

bean’s business method.

6. The JMS removes the message from the queue and sends an acknowledgement

back to the client if there was a reply-to property in the message.

7. In case of failure, the JMS tries to send the message again.

The following figure shows the request flow path for a deployed bean:

Components of Message Driven Beans

182 iPlanet TM Application Server Developer’s Guide • February 2002

Figure 7-1 Request flow path

The ConnectionConsumer and Session are part of the JMS Provider. The

ServerSessionPool, ServerSession and the Message Listener are part of iPlanet

Application Server.

Components of Message Driven Beans
When creating a message-driven beans, you must provide the following class files:

• Enterprise bean class definition.

Message Driven Bean Guidelines

Chapter 7 Using Message Driven Beans 183

• Enterprise bean metadata (Deployment Descriptors (DDs) and other

configuration information).

Creating the Class Definition
For a message-driven bean, the bean class must be defined as public and cannot

be abstract . The bean class must implement the javax.ejb.MessageDrivenBean

interface. For example:

import javax.jms.*;
import javax.ejb.*;
public class MySessionBean implements MessageDrivenBean,
MessageListener {
// message-driven bean implementation. These methods must always
included.
public void ejbRemove() throws RemoteException{
}
public void setMessageDrivenContext(MessageDrivenContext ctx) throws
RemoteException {
}

// other code omitted here....
}

The message-driven bean must also implement one or more ejbCreate(...)

methods. There must be one method for each way a client invokes the bean. For

example:

public void ejbCreate() {
}

Each ejbCreate (...) method must be declared as public , return void , and be

named ejbCreate . The throws clause may include java.rmi.RemoteException

or java.ejb.CreateException

Message Driven Bean Guidelines
Before deciding which parts of an application you can represent as message-driven

beans, you should know a few more aspects about message-driven beans. A couple

of these are related to the EJB specification for message-driven beans, and a couple

are specific to iPlanet Application Server and its support for message-driven beans.

Accessing iPlanet Application Server Functionality

184 iPlanet TM Application Server Developer’s Guide • February 2002

Accessing iPlanet Application Server
Functionality

This section contains the following topics:

• Managing Transactions

• Committing a Transaction

• Accessing Databases

You can develop message-driven beans that adhere strictly to the EJB specification,

you can develop message-driven beans that take advantage of both the

specification and additional, value-added iPlanet Application Server features, or

you can develop message-driven beans that adhere to the specification in

non-iPlanet Application Server environments, but that take advantage of iPlanet

Application Server features if they are available. Make the choice that is best for

your intended deployment scenario.

The iPlanet Application Server offers several features through the iPlanet

Application Server container, and the iPlanet Application Server APIs enable

applications to take programmatic advantage of specific iPlanet Application Server

environment features. Embed API calls in message-driven beans if you plan on

using those beans only in an iPlanet Application Server environment.

For example, you can trigger a named application event from an EJB using the

IAppEventMgr interface by using the following steps and example:

1. First obtain a com.kivasoft.IContext instance by casting

javax.ejb.SessionContext or javax.ejb.EntityContext to

IServerContext .

2. Next, use the GetAppEventMgr() method in the GXContext class to create an

IAppEventMgr object.

3. Finally, trigger the application event with triggerEvent() .

javax.ejb.SessionContext m_ctx;
....
com.netscape.server.IServerContext sc;
sc = (com.netscape.server.IServerContext) m_ctx;
com.kivasoft.IContext kivaContext = sc.getContext();
IAppEventMgr mgr = com.kivasoft.dlm.GXContext.GetAppEventMgr(ic);
mgr.triggerEvent("eventName");

Accessing iPlanet Application Server Functionality

Chapter 7 Using Message Driven Beans 185

Managing Transactions
Many message-driven beans interact with databases. You control bean transactions

by using settings in the bean’s property file. This permits specifying transaction

attributes at bean deployment time. By having a bean handle transaction

management there is no need to explicitly start, rollback, or commit transactions in

the bean’s database access methods.

By moving transaction management to the container level, you gain the ability to

place all the bean’s activities—even those not directly tied to the database

access—under the same transaction control as your database calls. This guarantees

that all application parts controlled by a message-driven bean run as part of the

same transaction, and either everything the bean undertakes is committed, or it is

rolled back in a failure case. In effect, a container managed transactional state

permits synchronizing the application without programming any synchronization

routines.

Committing a Transaction
When a commit occurs, it signals the container that the message-driven bean has

completed its useful work and tells the container to synchronize its state with the

underlying datasource. The container permits the transaction to complete and then

frees the bean.

Note that transactions from the container are implicitly committed. Also, any

participant can rollback a transaction. For details about transactions, see Chapter 8,

“Handling Transactions with EJBs.”

Accessing Databases
Many message-driven beans access and update data. Because message-driven

beans are transient, be careful about how accesses occur. In general, use the JDBC

API to make calls, and always use the transaction and security management

methods described in Chapter 8, “ Handling Transactions with EJBs” to manage

the transaction isolation level and transaction requirements at the bean level.

For details about database access, see Chapter 9, “Using JDBC for Database

Access.”

Using the Deployment Tool

186 iPlanet TM Application Server Developer’s Guide • February 2002

Using the Deployment Tool
A simpler way to create the standard ejb-jar deployment descriptors for a

message-driven bean is by using the iPlanet Application Server Deployment Tool.

Deploying a message-driven bean is similar to deploying other applications using

the Deploy Tool.

Start by either opening an existing EJB Module or creating a new one. Once the

EJB’s class files have been added to the EJB Module, you can right-click on the bean

to edit its descriptor, as shown in the following figure:

Figure 7-2 Selecting a message-driven bean in Deployment Tool

Using the Deployment Tool

Chapter 7 Using Message Driven Beans 187

You have to provide the following information in the Deploy Tool’s deployment

descriptor dialog box:

J2EE Specific Deployment Descriptor Fields
• Bean Name

• Bean Type (Message Driven Bean)

• Implementation Class Name

• Transaction Management Type (Container managed or Bean Managed)

Message Driven Bean Specific Parameters
• Destination Type (Queue or Topic)

• Destinantion Name

• Durable Name (for Topic subscription only -- optional)

• Topic Subscription Durable (optional)

• Message Selector (optional)

• Acknowledgement Mode (Auto-acknowledge, or

Duplicates-Auto-Acknowledge)

• Max Message Limit

• Security Identity Type (Only Run-as-specified-user allowed)

• Run-As Role Name

NOTE You can start creating your EJB’s deployment descriptors in the

iPlanet Application Server’s Deployment Tool, save the application

in the tool, edit the files by hand, and then go back into the tool.

However, if you do this, make sure you re-open the EJB Module or

J2EE Application in the tool before you edit the deployment

descriptors, then re-save the application in the tool after you make

the changes. If you fail to do this, your changes in the user interface

will not reflected in the deployment descriptors.

Creating the Deployment Descriptors by Hand

188 iPlanet TM Application Server Developer’s Guide • February 2002

• Max Pool Size

• Min Pool Size

• Transaction Manager Type (Local or Global -- if not selected, the Transaction

Manager Type for this module will be used)

Creating the Deployment Descriptors by Hand

Sample Deployment Descriptor File
<ias-mdbs>

<!-- This is an extract from the EJB 2.0 DTD based deployment
descriptor --<&/tt>

 <ejb-jar>

 <enterprise-beans>

 <message-driven>

 <ejb-name>MyMDB1</ejb-name>

 <ejb-class>mycompany.mypackage.MyMDB1</ejb-class>

 <transaction-type>Container</transaction-type>

 <message-driven-destination>

<jms-destination-type>javax.jms.Topic</jms-destination-type>

 </message-driven-destination>

 <security-identity>

 <run-as-specified-identity>

 <role-name>asmith</role-name>

 </run-as-specified-identity>

NOTE There is a security risk here if the user role has administrative

privileges over the data accesses by the message-driven bean.

Any user who authenticates to the message-driven bean will

inherit the privileges of the specified security role.

Creating the Deployment Descriptors by Hand

Chapter 7 Using Message Driven Beans 189

 </security-identity>

 </message-driven>

 </enterprise-beans>

 </ejb-jar>

<!-- This contains all the ias specific deployment information
--<&/tt>

 <ias-ejb-jar>

 <ias-enterprise-bean>

 <ejb-name>MyMDB1</ejb-name>

 <message-driven-descriptor>

 <jms-destination>

 <jndi-name>MyMDB1</jndi-name>

 <jms-topic-subscription>

 <durable>true</durable>

 </jms-topic-subscription>

 </jms-destination>

 <pool>

 <max-pool-size>100</max-pool-size>

 <min-pool-size>10</min-pool-size>

 </pool>

 </message-driven-descriptor>

 </ias-enterprise-bean>

 </ias-ejb-jar>

For more information, refer to the XML DTD (IASEjb_jar_1_1.dtd) for an EJB

JAR file in the iASInstallDir/ias/dtd.

Creating the Deployment Descriptors by Hand

190 iPlanet TM Application Server Developer’s Guide • February 2002

191

Chapter 8

Handling Transactions with EJBs

This chapter describes the transaction support built-in to the EJB programming

model. This chapter contains the following sections:

• Understanding the Transaction Model

• Specifying Transaction Attributes in an EJB

• Using Bean Managed Transactions

Understanding the Transaction Model
One primary EJB advantage is the support they provide for declarative

transactions. In the declarative transaction model, attributes are associated with

beans at deployment time. It is the container’s responsibility, based on the attribute

value, to demarcate and transparently propagate the transactional context. The

container is also responsible, in conjunction with a transaction manager, for

ensuring that all participants in the transaction see a consistent outcome.

Declarative transactions free the programmer from explicitly demarcating

transactions. They facilitate component-based applications where multiple

components, potentially distributed and updating heterogeneous resources, can

participate in a single transaction. The EJB specification also supports programmer

demarcated transactions using javax.transactions.UserTransaction . To

obtain a UserTransaction object, you must perform a JNDI lookup.

It is necessary to understand the distinction between global and local transactions

in order to understand the iPlanet Application Server support for transactions.

Global transactions are managed and coordinated by a transaction manager, and

can span multiple databases and processes. The transaction manager typically uses

the XA protocol to interact with the Enterprise Information System (EIS) or

database. Local transactions are native to a single EIS or database only and are

Specifying Transaction Attributes in an EJB

192 iPlanet TM Application Server Developer’s Guide • February 2002

restricted within a single process. Both local and global transactions are

demarcated using the javax.transaction.UserTransaction interface, which the

client must use, but internally local transactions are implemented with the JDBC

API, which makes them faster than global transactions.

The iPlanet Application Server operates in either global or local transaction mode;

you cannot mix global and local transactions.

The EJB specification requires support for flat (as opposed to nested) transactions. In

this model each transaction is decoupled from and independent of other

transactions in the system. In a flat transaction, you cannot start another

transaction in the same thread until the current transaction ends. Flat transactions

are by far the most prevalent model and are supported by most commercial

database systems. Nested transactions offer a finer granularity of control over

transactions.

Specifying Transaction Attributes in an EJB
Transaction attributes are specified on a bean-wide basis or on a per-method basis

for a bean’s remote interface. If both levels specify attributes, method-specific

values take precedence over bean-wide values. These two should be mixed with

care since some combinations are invalid as documented in the restrictions section.

Transaction attributes are specified as part of the bean’s XML DD file. For more

information, see “EJB iPlanet Application Server XML DTD,” on page 323.

NOTE If your application uses global transactions, configure and enable

the corresponding iPlanet Application Server Resource Managers.

For more information, see the Deployment Tool Online Help and the

Administrator’s Guide.

NOTE Third party drivers are not allowed to participate in transactions.

Using Bean Managed Transactions

Chapter 8 Handling Transactions with EJBs 193

Using Bean Managed Transactions
While it is preferable to use container managed transactions, your application

requirements may necessitate using bean managed transactions. For more

information on managing transactions programmatically, see the Enterprise

JavaBeans Specification, v1.1 for this interface at the following URL:

http://java.sun.com/products/ejb/javadoc-1.1/javax/ejb/EJBContext.html

You can provide a pointer to a bean managed transaction. For example, if you start

a transaction for a stateful session bean, the bean is not passivated (failover is

affected: you see the state before the transaction). However, if you start a

transaction for a stateless session bean, the transaction is rolled back once the

method returns.

Using Bean Managed Transactions

194 iPlanet TM Application Server Developer’s Guide • February 2002

195

Chapter 9

Using JDBC for Database Access

This chapter describes how to use the Java Database Connectivity (JDBC) API for

database accesses with the iPlanet Application Server. This chapter provides high

level JDBC implementation instructions for servlets and EJBs using the iPlanet

Application Server; it also describes the specific iPlanet Application Server

resources affected by JDBC statements when those resources have clear

programming ramifications.

In an iPlanet Application Server, EJBs support database access primarily through

the JDBC API. The iPlanet Application Server supports the entire JDBC 2.0 API, as

well as, many of the emerging JDBC 2.0 extensions, including result set

enhancements, batch updates, distributed transactions, row sets, and Java Naming

and Directory Interface (JNDI) support for datasource name lookups.

While this chapter assumes familiarity with JDBC 2.0, it also describes specific

implementation issues that may have programming ramifications. For example,

the JDBC specification does not make it clear what constitute JDBC resources. In

the specifications, some JDBC statements—such as, any Connection class methods

that close database connections—release resources without specifying exactly what

those resources are.

This chapter contains the following sections:

• Introducing JDBC

• Migrating 6.x DD XML files to 6.5

NOTE Native drivers no longer support container, local, or global

transaction management.

Although native JDBC drivers were deprecated in iPlanet

Application Server 6.0 SP1, support for backward compatibility has

been retained in this release.

Introducing JDBC

196 iPlanet TM Application Server Developer’s Guide • February 2002

• New XML Datasource Descriptors

• Using JDBC in Server Applications

• Handling Connections

• Working with JDBC Features

Introducing JDBC
From a programming perspective, JDBC is a set of Java classes and methods that

allows embedding database calls in server applications. That is all you need to

know in order to start using JDBC in your server application.

More specifically, JDBC is a set of interfaces that every server vendor, such as

iPlanet, must implement according to the JDBC specifications. The iPlanet

Application Server provides a JDBC type 2 driver which supports a variety of

Enterprise Information Systems (EISs) databases. The driver processes the JDBC

statements in your application and routes the SQL arguments they contain to your

database engines.

Introducing JDBC

Chapter 9 Using JDBC for Database Access 197

JDBC lets you write high level, easy-to-use programs that operate seamlessly with

and across many different databases without you knowing most of the low level

database implementation details.

Supported Functionality

The JDBC specification is a broad, database vendor independent set of guidelines.

The guidelines encompass the broadest database functionality range possible in a

simple framework. At a minimum, JDBC assumes the database supports the SQL-2

database access language. The JDBC specification has three parts:

NOTE This section describes the features of native JDBC drivers, which

have been deprecated. For information about third party JDBC

driver features, see the driver vendor’s documentation.

Datasources Datasources

Request

Request

Response

iPlanet Application Server Application

Java
Server
Pages

EJBsJDBC calls

HTML
Page
or
JSP

HTML
Page
or
JSP Servlets

Datasources

Servlets use data
models and query
files to access
datasources
through EJBs and
JDBC RowSet calls

Introducing JDBC

198 iPlanet TM Application Server Developer’s Guide • February 2002

• JDBC 2.0 describes the core database access and functionality that a server

vendor must implement to be JDBC compliant. The iPlanet Application Server

fully meets the compliance standard. From a database vendor’s perspective,

JDBC 2.0 describes a database access model that permits full access to the

standard SQL-2 language, the standard language portions each vendor

supports, and the language extensions each vendor implements.

• JDBC 2.0 describes additional database access and functionality. Primarily,

this functionality involves support for newly defined SQL-3 features, data

types, and mappings. The iPlanet Application Server implementation of JDBC

supports most JDBC feature enhancements, but omits support for the new

SQL-3 data types, such as blobs, clobs, and arrays. Currently, many database

vendors do not fully support them in their relational database management

systems. The iPlanet Application Server JDBC implementation also omits

support for SQL-3 data type mapping.

• JDBC 2.0 Standard Extension API describes advanced support features, many

of which offer improved database performance. The iPlanet Application Server

JDBC implementation currently supports Java Naming and Directory Interface

(JNDI) and row sets.

Understanding Database Limitations
When using JDBC in your server applications, you may encounter situations where

you do not obtain the results you desire or expect. You may think the problem lies

in JDBC or in the iPlanet Application Server JDBC driver implementation.

However, the vast majority of these problems are limitations in your database

engine.

Because JDBC covers the broadest possible database support, it enables you to

attempt operations not every database supports. For example, most database

vendors support most of the SQL-2 language, but no vendor provides fully

unqualified support for all of the SQL-2 standard. Most vendors built SQL-2

support on top of their existing proprietary relational database management

systems, and either those proprietary systems offer features not in SQL-2 or SQL-2

offers features not available in those systems. Most vendors have added non

standard SQL-2 extensions to their SQL implementation to support their

proprietary features. JDBC provides ways to access vendor specific features, but

realize these features may not be available for all databases you use.

This is especially true when you build an application that uses databases from two

or more vendors. As a result, not all vendors fully support all aspects of every

available JDBC class, method, and method arguments. More importantly, a set of

SQL statements embedded as an argument in a JDBC method call may or may not

Introducing JDBC

Chapter 9 Using JDBC for Database Access 199

be supported by the database or databases your server application uses. In order to

maximize JDBC usage, consult your database documentation about which SQL

and JDBC aspects they support. Therefore, first eliminate your database as causing

the problem before calling iPlanet technical support for database problems.

Understanding the iPlanet Application Server
Limitations
Like JDBC, the iPlanet Application Server supports the broadest spectrum of

database engines and features. In some cases, the iPlanet Application Server itself

or the iPlanet Application Server JDBC driver may not fully support a particular

database feature, or it may report incorrect information. If you cannot access a

database feature from your iPlanet Application Server application and you have

eliminated the database as the problem, check this section in the documentation

and the Release Notes to determine if the problem you encounter is a documented

iPlanet Application Server limitation. If not, fully document the problem and

contact iPlanet technical support.

Table 9-1 lists the JDBC features that are not supported, either partially or

completely in the iPlanet Application Server.

NOTE Some JDBC access problems can result if you attempt to access

JDBC features that are either partially supported or not supported

by the iPlanet Application Server JDBC driver. Almost all feature

limitations apply to JDBC 2.0.

Table 9-1 JDBC Feature Limitations

Feature Limitation

Escape sequences Supported only for Oracle databases.

Connection.setTransactionIsolation Works only with isolation levels supported by your

database vendors.

Connection.getTypeMap Type maps are not supported.

Connection.setTypeMap Type maps are not supported.

Connection.cancel Works only with databases that support it.

PreparedStatement.setObject Works only with simple data types.

Introducing JDBC

200 iPlanet TM Application Server Developer’s Guide • February 2002

PreparedStatement.addBatch Works only with supported data manipulation statements

that return a count of records changed.

PreparedStatement.setRef References are not supported.

PreparedStatement.setBlob Blobs are not supported. Use setBinaryStream() instead.

PreparedStatement.setClob Clobs are not supported. Use setBinaryStream() instead.

PreparedStatement.setArray Arrays are not supported. Use setBinaryStream() instead.

PreparedStatement.getMetaData Not supported.

CallableStatement.getObject Works only with scalar types. JDBC 2.0 offers a second

version of this method that includes a map argument. The

map argument is ignored.

CallableStatement.getRef References are not supported.

CallableStatement.getBlob SQL3-style blobs are not supported.

CallableStatement.getClob SQL3-style clobs are not supported.

CallableStatement.getArray Arrays are not supported.

CallableStatement Updatable ResultSet is not supported.

ResultSet.getCursorName Behavior differs depending on database:

For Oracle, if user does not specify a cursor name with

SetCursorName , an empty string is returned.

For Sybase, if the result set is not updatable, a cursor name

is automatically generated by the iPlanet Application

Server. Otherwise an empty string is returned.

For ODBC, Informix, and DB2, the driver returns a cursor

name if none is specified.

ResultSet.getObject Works only with scalar types. JDBC 2.0 offers two other

versions of this method that includes a map argument. The

map argument is ignored.

ResultSet.updateObject Works only with scalar types.

ResultSet.getRef References are not supported.

ResultSet.getBlob SQL3-style blobs are not supported.

ResultSet.getClob SQL-style clobs are not supported.

ResultSet.getArray Arrays are not supported.

ResultSetMetaData.getTableName Returns an empty string for non-ODBC database access.

Table 9-1 JDBC Feature Limitations

Feature Limitation

Migrating 6.x DD XML files to 6.5

Chapter 9 Using JDBC for Database Access 201

For more information about working with ResultSet , ResultSetMetaData , and

PreparedStatement , see the appropriate sections later in this chapter.

Supported Databases
As databases supported by the iPlanet Application Server are constantly being

updated, along with the database vendors’ upgrades, see iPlanet Application Server
Installation Guide or the Release Notes for the most current information.

Migrating 6.x DD XML files to 6.5
iPlanet Application Server 6.5 contains enhancements to the database connection

infrastructure. To take advantage of the new features and to continue to use you

older datasource configuration you will have to migrate to the new datasource

XML DTD.

To Migrate 6.x Deployment Descriptor XML File
1. Choose Tools > Register Datasource.

The datasource registration dialog will appear.

2. Click Open > select the XML file which contains the datasource descriptions.

The Deployment Tool will import the values present in the old XML file and

add default values for the new fields available in 6.5. in the XML file.

3. Accept the default values or modify them for your datasource.

4. Enter the database driver parameters, connection pooling parameters, and

connection sanity parameters.

For detailed explanation of the fields, see Chapter 8, “Administering Database

Connectivity” in iPlanet Application Server Administrator’s Guide.

DatabaseMetaData.getUDTs Not supported.

executeUpdate after a row insertion For DB2, returns 0 instead of 1.

Table 9-1 JDBC Feature Limitations

Feature Limitation

New XML Datasource Descriptors

202 iPlanet TM Application Server Developer’s Guide • February 2002

5. Click Save.

The Deployment Tool will overwrite the datasource deployment descriptors

with the values you have specified, in the file you have opened.

Note: Select Save As to save the updated XML file with another name, and in a

different location.

6. Click Register.

The Deployment Tool will update the datasource deployment descriptors with

the values you have specified. Now your datasource will be able to take

advantage of the new features in iPlanet Application Server 6.5.

New XML Datasource Descriptors
With the change in the transaction manager infrastructure in iPlanet Application

Server 6.5, the datasource descriptors have also been changed. The new descriptors

offer more features and options.

Following are sample XML datasource descriptors for third party drivers:

Local Transactions
The following sample XML files are for databases using iPlanet Application

Server’s IASConnectionPoolDataSource, which wraps around the database specific

Driver Manager.

• Oracle

• Sybase

Oracle
<ias-resource>

 <resource>

 <jndi-name>jdbc/estore/EstoreDB</jndi-name>

 <jdbc>

 <user>estore</user>

 <password>estore</password>

 <URL> jdbc:oracle:thin:@192.18.117.186:1521:orcl</URL>

New XML Datasource Descriptors

Chapter 9 Using JDBC for Database Access 203

 <driver-name>oracle_xa</driver-name>

 <conn-pooling>

 <initialPoolSize>1</initialPoolSize>

 <waitQueueEnabled>true</waitQueueEnabled>

 <reclaimTime>600</reclaimTime>

 <maxPoolSize>30</maxPoolSize>

 <maxIdleTime>120</maxIdleTime>

 <queueLength>30</queueLength>

 <trace>disable</trace>

 <stat>disable</stat>

 <waitTimeInQueue>120</waitTimeInQueue>

 <tableBasedSanity>false</tableBasedSanity>

 <isSanityRequired>true</isSanityRequired>

 <incrementPoolSize>1</incrementPoolSize>

 <minPoolSize>1</minPoolSize>

 </conn-pooling>

 </jdbc>

 </resource>

</ias-resource>

Sybase
<ias-resource>

 <resource>

 <jndi-name>jdbc/estore/EstoreDB</jndi-name>

 <jdbc>

 <URL> jdbc:sybase:Tds:192.138.151.39:4444</URL>

 <user>estore</user>

 <password>estore</password>

 <driver-name>jconnect</driver-name>

 <conn-pooling>

 <initialPoolSize>1</initialPoolSize>

New XML Datasource Descriptors

204 iPlanet TM Application Server Developer’s Guide • February 2002

 <waitQueueEnabled>true</waitQueueEnabled>

 <reclaimTime>600</reclaimTime>

 <maxPoolSize>30</maxPoolSize>

 <maxIdleTime>120</maxIdleTime>

 <queueLength>30</queueLength>

 <trace>disable</trace>

 <stat>disable</stat>

 <waitTimeInQueue>120</waitTimeInQueue>

 <tableBasedSanity>false</tableBasedSanity>

 <isSanityRequired>true</isSanityRequired>

 <incrementPoolSize>1</incrementPoolSize>

 <minPoolSize>1</minPoolSize>

 </conn-pooling>

 </jdbc>

 </resource>

</ias-resource>

Global Transactions
The sample XML files provided below are for database drivers that use driver

provided XADataSource / ConnectionPoolDataSource. (JDBC 2.0 + extensions).

We recommend that you use these XML formats if your application uses both

global and local transactions.

In all the datasource XMLs’, the connection pooling elements (conn-pooling) are

optional. If skipped, default values will be used. For more information, see iPlanet
Application server Administrator’s Guide. XADatasource will be used only when

global transactions are enabled . Please refer to the Administrator’s Guide for more

information on how to use global transactions.

• DB2

• MSSQL

• Oracle

• Sequelink

New XML Datasource Descriptors

Chapter 9 Using JDBC for Database Access 205

• Sybase

DB2
<ias-resource>

 <resource>

 <jndi-name>jdbc/sample</jndi-name>

 <jdbc>

 <dataSourceName>friend</dataSourceName>

 <user>db2inst</user>

 <password>db2inst</password>

 <driver-name>db2_xa</driver-name>

 <databaseName>sample4</databaseName>

 <portNumber>50001</portNumber>

 <conn-pooling>

 <initialPoolSize>1</initialPoolSize>

 <waitQueueEnabled>true</waitQueueEnabled>

 <reclaimTime>600</reclaimTime>

 <maxPoolSize>30</maxPoolSize>

 <maxIdleTime>120</maxIdleTime>

 <queueLength>30</queueLength>

 <trace>disable</trace>

 <stat>disable</stat>

 <waitTimeInQueue>120</waitTimeInQueue>

 <tableBasedSanity>false</tableBasedSanity>

 <isSanityRequired>true</isSanityRequired>

 <incrementPoolSize>1</incrementPoolSize>

 <minPoolSize>1</minPoolSize>

 </conn-pooling>

 </jdbc>

 </resource>

</ias-resource>

New XML Datasource Descriptors

206 iPlanet TM Application Server Developer’s Guide • February 2002

Informix

<ias-resource>

 <resource>

 <jndi-name>jdbc/dshubble</jndi-name>

 <jdbc>

 <user>root</user>

 <datasourceName>rna_tcp</datasourceName>

 <databaseName>jts</databaseName>

 <serverName>rna_tcp</serverName>

 <portNumber>1528</portNumber>

 <ifxIFXHOST>rna</ifxIFXHOST>

 <password>abc123</password>

 <driver-name>ifx</driver-name>

<URL>jdbc:informix-sqli://rna:1528/sample:INFORMIXSERVER=rna_tcp</U
RL>

 <conn-pooling>

 <initialPoolSize>1</initialPoolSize>

 <waitQueueEnabled>true</waitQueueEnabled>

 <reclaimTime>600</reclaimTime>

 <maxPoolSize>30</maxPoolSize>

 <maxIdleTime>120</maxIdleTime>

 <queueLength>30</queueLength>

 <trace>disable</trace>

 <stat>disable</stat>

 <waitTimeInQueue>120</waitTimeInQueue>

 <tableBasedSanity>false</tableBasedSanity>

 <isSanityRequired>true</isSanityRequired>

 <incrementPoolSize>1</incrementPoolSize>

 <minPoolSize>1</minPoolSize>

New XML Datasource Descriptors

Chapter 9 Using JDBC for Database Access 207

 </conn-pooling>

 </jdbc>

 </resource>

</ias-resource>

MSSQL
<ias-resource>

 <resource>

 <jndi-name>jdbc/sample</jndi-name>

 <jdbc>

 <dataSourceName>lancer</dataSourceName>

 <user>sa</user>

 <password></password>

 <driver-name>mssql</driver-name>

 <databaseName>master</databaseName>

 <networkProtocol>Tds</networkProtocol>

 <resourceManagerName>testrm</resourceManagerName>

 <serverName>lancer</serverName>

 <conn-pooling>

 <initialPoolSize>1</initialPoolSize>

 <waitQueueEnabled>true</waitQueueEnabled>

 <reclaimTime>600</reclaimTime>

 <maxPoolSize>30</maxPoolSize>

 <maxIdleTime>120</maxIdleTime>

 <queueLength>30</queueLength>

 <trace>disable</trace>

 <stat>disable</stat>

 <waitTimeInQueue>120</waitTimeInQueue>

 <tableBasedSanity>false</tableBasedSanity>

 <isSanityRequired>true</isSanityRequired>

New XML Datasource Descriptors

208 iPlanet TM Application Server Developer’s Guide • February 2002

 <incrementPoolSize>1</incrementPoolSize>

 <minPoolSize>1</minPoolSize>

 </conn-pooling>

 </jdbc>

 </resource>

</ias-resource>

Oracle
<ias-resource>

 <resource>

 <jndi-name>jdbc/sample</jndi-name>

 <jdbc>

 <URL>jdbc:oracle:oci8:@hubble</URL>

 <user>estore</user>

 <password>estore</password>

 <databaseName>hubble</databaseName>

 <driver-name>oracle_xa</driver-name>

 <conn-pooling>

 <initialPoolSize>1</initialPoolSize>

 <waitQueueEnabled>true</waitQueueEnabled>

 <reclaimTime>600</reclaimTime>

 <maxPoolSize>30</maxPoolSize>

 <maxIdleTime>120</maxIdleTime>

 <queueLength>30</queueLength>

 <trace>disable</trace>

 <stat>disable</stat>

 <waitTimeInQueue>120</waitTimeInQueue>

 <tableBasedSanity>false</tableBasedSanity>

 <isSanityRequired>true</isSanityRequired>

 <incrementPoolSize>1</incrementPoolSize>

 <minPoolSize>1</minPoolSize>

New XML Datasource Descriptors

Chapter 9 Using JDBC for Database Access 209

 </conn-pooling>

 </jdbc>

 </resource>

</ias-resource>

Sequelink

<ias-resource>

 <resource>

 <jndi-name>jdbc/sample</jndi-name>

 <jdbc>

 <datasourceName>mig</datasourceName>

 <user>kdemo</user>

 <password>kdemo</password>

 <driver-name>sequelink</driver-name>

 <databaseName>mig</databaseName>

 <serverName>mig</serverName>

 <portNumber>23003</portNumber>

 <URL>jdbc:sequeliik://mig:23003</URL>

 <conn-pooling>

 <initialPoolSize>1</initialPoolSize>

 <waitQueueEnabled>true</waitQueueEnabled>

 <reclaimTime>600</reclaimTime>

 <maxPoolSize>30</maxPoolSize>

 <maxIdleTime>120</maxIdleTime>

 <queueLength>30</queueLength>

 <trace>disable</trace>

 <stat>disable</stat>

 <waitTimeInQueue>120</waitTimeInQueue>

 <tableBasedSanity>false</tableBasedSanity>

New XML Datasource Descriptors

210 iPlanet TM Application Server Developer’s Guide • February 2002

 <isSanityRequired>true</isSanityRequired>

 <incrementPoolSize>1</incrementPoolSize>

 <minPoolSize>1</minPoolSize>

 </conn-pooling>

 </jdbc>

 </resource>

</ias-resource>

Sybase
<ias-resource>

 <resource>

 <jndi-name>jdbc/sample</jndi-name>

 <jdbc>

 <dataSourceName>prodigy</dataSourceName>

 <user>iplanet</user>

 <password>iplanet</password>

 <driver-name>sybase</driver-name>

 <databaseName>iplanet</databaseName>

 <networkProtocol>Tds</networkProtocol>

 <portNumber>4100</portNumber>

 <serverName>prodigy</serverName>

 <URL>jdbc:sybase:Tds:prodigy:4100</URL>

 <conn-pooling>

 <initialPoolSize>1</initialPoolSize>

 <waitQueueEnabled>true</waitQueueEnabled>

 <reclaimTime>600</reclaimTime>

 <maxPoolSize>30</maxPoolSize>

 <maxIdleTime>120</maxIdleTime>

 <queueLength>30</queueLength>

 <trace>disable</trace>

 <stat>disable</stat>

Using JDBC in Server Applications

Chapter 9 Using JDBC for Database Access 211

 <waitTimeInQueue>120</waitTimeInQueue>

 <tableBasedSanity>false</tableBasedSanity>

 <isSanityRequired>true</isSanityRequired>

 <incrementPoolSize>1</incrementPoolSize>

 <propertyCycle>0</propertyCycle>

 <minPoolSize>1</minPoolSize>

 </conn-pooling>

 </jdbc>

 </resource>

</ias-resource>

Using JDBC in Server Applications
JDBC is part of the iPlanet Application Server runtime environment. This means

JDBC is always available any time you use Java to program an application. In a

typical multi-tiered server application, you use JDBC to access an EIS database

from a client, from the presentation layer, in servlets, and in EJBs.

However, in practice it makes sense—for security and portability reasons—to

restrict database accesses to the middle layers of a multi-tiered server application.

In the iPlanet Application Server programming model, this means placing all JDBC

calls in servlets and EJBs, with the preference being towards EJBs.

There are two reasons for this programming preference:

• Placing all JDBC calls inside EJBs makes your application more modular and

more portable.

• EJBs provide built-in mechanisms for transaction control.

Placing JDBC calls in well designed EJBs frees you from programming explicit

transaction control using JDBC or java.transaction.UserTransaction that

provide low level transaction support under JDBC.

NOTE Always use a globally available datasource to create a global

(bean-wide) connection so that the EJB transaction manager

controls the transaction.

Using JDBC in Server Applications

212 iPlanet TM Application Server Developer’s Guide • February 2002

Using JDBC in EJBs
Placing your JDBC calls in EJBs ensures a high degree of server application

portability. It also frees you from having to manage transaction control with

explicit JDBC calls. Because EJBs are components, use them as building blocks for

many applications with little or no changes, and maintain a common interface to

your EIS database.

Managing Transactions with JDBC or
javax.transaction.UserTransaction
Using the EJB transaction attribute property to manage transactions is

recommended, but not mandatory. There may be times when explicit transaction

management programming using JDBC or

javax.transaction.UserTransaction is appropriate for an application. In these

cases, program the transaction management in the bean yourself. Using an explicit

transaction in an EJB is called a bean managed transactions.

Transactions can be local to a specific method (method-specific) or they can

encompass the entire bean (bean-wide).

There are two steps for creating a bean managed transaction:

1. Set the EJB Transaction Type property to Bean in the bean’s deployment

descriptor.

2. Program the appropriate JDBC or transaction management statements in the

bean, including statements to start the transaction, and to commit or roll it

back.

Do not program explicit transaction handling in EJBs when the Transaction Type

property is not Bean. For more information about handling transactions with

JDBC, see the JDBC 2.0 API specification.

Specifying Transaction Isolation Level
Specify or examine the transaction level for a connection using the

setTransactionIsolation() and getTransactionIsolation() methods,

respectively. Note that you cannot call setTransactionIsolation() during a

transaction.

Table 9-2 defines the transaction isolation levels, as follows:

Using JDBC in Server Applications

Chapter 9 Using JDBC for Database Access 213

Before specifying a bean’s transaction isolation level, verify the level is supported

by your database management system. Not all databases support all isolation

levels. Test your database programmatically by using the method

supportsTransactionIsolationLevel() in java.sql.DatabaseMetaData , as

shown in the following example:

java.sql.DatabaseMetaData db;
if (db.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)
{

Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE);
}

For more information about these isolation levels and what they mean, see the

JDBC 2.0 API specification.

Using JDBC in Servlets
Servlets are at the heart of an iPlanet Application Server application. They stand

between a client interface, such as an HTML page on a browser, the JSP that

generated the HTML, and the EJBs that do the bulk of an application’s work.

The iPlanet Application Server applications use JDBC embedded in EJBs for most

database accesses. This is the preferred method for database accesses using the

iPlanet Application Server because it enables you to take advantage of the

transaction control built-in to EJBs and their containers. Servlets, however, can also

provide database access through JDBC.

Table 9-2 Transaction Isolation Levels

Transaction Isolation Level Description

TRANSACTION_NONE Transactions are not supported. Only used with

Connection.getTransactionIsolation()

TRANSACTION_READ_COMMITTED Dirty reads are prevented; non-repeatable reads and phantom

reads can occur.

TRANSACTION_READ_UNCOMMITTEDDirty reads, non-repeatable reads and phantom reads can occur.

TRANSACTION_REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom

reads can occur.

TRANSACTION_SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are

prevented.

Handling Connections

214 iPlanet TM Application Server Developer’s Guide • February 2002

In some situations, accessing a database directly from a servlet can offer a speed

advantage over accessing a database from EJBs. There is less call overhead, if an

application is spread across servers so that EJBs are accessible only through the

Java Remote Method Interface (RMI). Use direct database service through servlets

sparingly. If providing database access from servlets, restrict access to very short

durations, the transaction is read-only, and take advantage of the JDBC 2.0 RowSet

class.

If access to a database is from a servlet, use the JDBC 2.0 RowSet interface to

interact with the database. A row set is a Java object that encapsulates a set of rows

that have been retrieved from a database or other tabular datasource, such as a

spreadsheet. The RowSet interface provides JavaBean properties that allow a

RowSet instance to be configured to connect to a datasource and retrieve a set of

rows. For more information about working with row sets, see “Working with

RowSet,” on page 226.

Handling Connections
The iPlanet Application Server implements the JDBC 2.0 compliant interface

java.sql.Connection . The connection behavior depends on if it is a local, global

or container managed local connection.

Local Connections
A Connection object is called a local connection if its transaction context is not

managed by an EJB container. The transaction context in a local connection cannot

propagate across processes or datasources; it is local to the current process and to

the current datasource.

The transaction context on this connection type is managed using the

setAutoCommit() , commit() , and rollback() methods.

Registering a Local Datasource
The first step to create a local connection is to register the datasource with the

iPlanet Application Server. Once the datasource is registered, the datasource can be

used to make connections to the listed database using getConnection() .

Register the datasource by creating an XML resource descriptor file that describes

the datasource properties. Next, register the properties with the iPlanet

Application Server using the Administration Tool or the resreg utility. resreg

takes as its argument, the resource descriptor file name describing the datasource.

Handling Connections

Chapter 9 Using JDBC for Database Access 215

For example, to register a datasource called SampleDS which connects to an Oracle

database using the username kdemo, password kdemo, database ksample and

server ksample , create an XML descriptor file like the following, and name it

SampleDS.xml (use the iPlanet Application Server Deployment Tool to create an

XML file):

<ias-resource>
<resource>

<jndi-name>jdbc/SampleDS</jndi-name>
<jdbc>

<database>ksample</database>
<datasource>ksample</datasource>
<username>kdemo</username>
<password>kdemo</password>
<driver-type>ORACLE_OCI</driver-type>

</jdbc>
</resource>

</ias-resource>

Then use this resource descriptor file to register the datasource with the following

command:

resreg SampleDS.xml

For more information about resource descriptor files, see Chapter 11, “Packaging

for Deployment.” For more information about the iPlanet Application Server

Administration Tool, see the Administrator’s Guide.

Global Connections
A Connection object is called a global connection if its transaction context is

managed by the EJB container. The transaction context in a global connection can

be propagated across datasources. The transaction context is managed implicitly

by the EJB container for container managed transactions, or explicitly for bean managed
transactions. For more information about transactions, see Chapter 8, “Handling

Transactions with EJBs.”

Transaction management methods are disabled for global connections, for

example, setAutoCommit() , commit() , and rollback() .

NOTE When run, resreg overwrites existing entries.

Handling Connections

216 iPlanet TM Application Server Developer’s Guide • February 2002

Registering a Global Datasource
The first step in creating a global connection is to register the datasource with the

iPlanet Application Server. Once the datasource is registered, the datasource is

used to make connections to the listed database using getConnection() .

Register the datasource by creating an XML resource descriptor file that describes

the datasource properties. Next, register the properties with the iPlanet

Application Server using the Administration Tool or the resreg utility. resreg

takes as its argument, the resource descriptor file name describing the datasource.

For example, to register a datasource called GlobalSampleDS which connects to an

Oracle database using the username kdemo, password kdemo, database ksample

and server ksample , create a XML descriptor file like the following, and name it

GlobalSampleDS.xml (use the iPlanet Application Server Deployment Tool to

create the XML file):

<ias-resource>
<resource>

<jndi-name>jdbc/ GlobalSampleDS </jndi-name>
<jdbc>

<database>ksample</database>
<datasource>ksample</datasource>
<username>kdemo</username>
<password>kdemo</password>
<driver-type>ORACLE_OCI</driver-type>
<resource-mgr>ksample_rm</resource-mgr>

</jdbc>
</resource>

</ias-resource>

Use the resource descriptor file to register the datasource with the following

command:

resreg GlobalSampleDS.xml

For more information about resource descriptor files, see Chapter 11, “Packaging

for Deployment.” For more information about the iPlanet Application Server

Administration Tool, see the Administrator’s Guide.

NOTE When run, resreg overwrites existing entries.

Handling Connections

Chapter 9 Using JDBC for Database Access 217

Creating a Global Connection
The following program demonstrates how a datasource is looked up and a

connection created from it. As illustrated, the string that is looked up is the same as

specified in the <jndi-name> tag in the resource descriptor file.

InitialContext ctx = null;
String dsName1 = "jdbc/ GlobalSampleDS ";
DataSource ds1 = null;

try
{

ctx = new InitialContext();
ds1 = (DataSource)ctx.lookup(dsName1);

UserTransaction tx = ejbContext.getUserTransaction();

tx.begin();

Connection conn1 = ds1.getConnection();

// use conn1 to do some database work -- note that
conn1.commit(),

// conn1.rollback() and conn1.setAutoCommit() can not used here

tx.commit();

} catch(Exception e) {
e.printStackTrace(System.out);

}

Container Managed Local Connections
A Connection object is considered a container managed local connection when the

transaction context is managed by the EJB container and global transactions are

disabled. With container managed transactions, the transaction context is managed

implicitly by the EJB container and with bean managed transactions the transaction

context is handled explicitly.

Connection object methods setAutoCommit() , commit() , and rollback() are

disabled for this connection type.

For more information on how to enable or disable global transactions in an EJB

container, see the Administrator’s Guide.

Working with JDBC Features

218 iPlanet TM Application Server Developer’s Guide • February 2002

Registering a Container Managed Local Datasource
The container managed local datasource registering process is the same as for the

local and global datasources. For more information, see “Registering a Local

Datasource,” on page 214.

Working with JDBC Features
While this chapter is not a JDBC primer, it does introduce how to use JDBC in EJBs

with the iPlanet Application Server. The following sections describe various JDBC

interfaces and classes that either have special requirements in the iPlanet

Application Server environment, or are new JDBC 2.0 features you are encouraged

to use when developing an iPlanet Application Server application.

For example, “Working with Connections,” on page 219 describes the resources the

iPlanet Application Server releases when a connection is closed because this

information differs among different JDBC implementations. On the other hand,

“Pooling Connections,” on page 220 and “Working with RowSet,” on page 226

offer more extensive coverage because these are new JDBC 2.0 features that offer

increased power, flexibility, and server application speed.

This section covers the following topics:

• Working with Connections

• Pooling Connections

• Working with ResultSet

• Working with ResultSetMetaData

• Working with PreparedStatement

• Working with CallableStatement

• Handling Batch Updates

• Creating Distributed Transactions

• Working with RowSet

• Using JNDI for a Database Driver

Working with JDBC Features

Chapter 9 Using JDBC for Database Access 219

Working with Connections
When opening a JDBC connection, the iPlanet Application Server allocates

connection resources. Call Connection.close() when a connection is no longer

needed, to free the connection resources. Always reestablish connections before

continuing database operations after you call Connection.close() .

Use Connection.isClose() to test whether the connection is closed. This method

returns false if the connection is open, and returns true only after

Connection.close() is called. To determine if a database connection is invalid by

catching the exception that is thrown when a JDBC operation is attempted on a

closed connection.

Finally, opening and closing connections is an expensive operation. If an

application uses several connections, and if connections are frequently opened and

closed, the iPlanet Application Server automatically provides connection pooling.

Connection pooling provides a connection cache that automatically closes when

necessary.

setTransactionIsolation
Not all database vendors support all transaction isolation levels available in JDBC.

The iPlanet Application Server permits specifying any isolation level your database

supports, but throws an exception against values your database does not support.

For more information, see “Specifying Transaction Isolation Level,” on page 212.

getTypeMap, setTypeMap
The iPlanet Application Server Native JDBC driver implementation does not

support type mapping, a new SQL-3 feature that most database vendors do not

support.

cancel
cancel() is supported for all databases that support cancel() .

NOTE Connection pooling is an automatic feature of the iPlanet

Application Server; the API is not exposed.

Working with JDBC Features

220 iPlanet TM Application Server Developer’s Guide • February 2002

Pooling Connections
Two costlier database operations to execute in JDBC are for creating and

destroying database connections. Connection pooling permits a single connection

cache for connection requests. A connection is returned to the pool for later reuse

without actually destroying it. A later call to create a connection merely retrieves

an available connection from the pool.

The iPlanet Application Server automatically provides JDBC connection pooling

wherever you make JDBC calls. The process of pooling database connections

works differently for each connection type.

• For local connections, the database connections are pooled when they are

closed by the application.

• For global connections, the database connections are tied to the thread that

initiated the transaction. These connections are later reused by transactions

that execute on the thread.

• For container managed local connections, the connection.close() method

does not release the connection to the connection pool immediately. When the

transaction that the connection is participating in is finished, the connection is

released back to the connection pool by the iPlanet Application Server.

In each Java engine, each driver (Oracle, Sybase, Informix and DB2) has its own

connection pool. Each connection pool size is according to the application

requirements. For more information on the connection pool settings (such as,

maximum number of connections, connection timeout and so on), see the

Administrator’s Guide.

Working with ResultSet
ResultSet is a class that encapsulates the data returned by a database query. Be

aware of the following behaviors or limitations associated with this class.

NOTE This section describes the functionality of native JDBC drivers. For

more information about the options supported by third party JDBC

drivers, see the driver vendor’s documentation.

Working with JDBC Features

Chapter 9 Using JDBC for Database Access 221

Concurrency Support
The iPlanet Application Server supports concurrency for FORWARD-ONLY

READ-ONLY and for SCROLL-INSENSITIVE READ-ONLY result sets. On callable

statements, the iPlanet Application Server also supports concurrency for

FORWARD-ONLY UPDATABLE result sets.

SCROLL-SENSITIVE concurrency is not supported.

Updatable Result Set Support
In the iPlanet Application Server, creation of updatable result sets is restricted to

queries on a single table. The SELECT query for an updatable result set must

include the FOR UPDATE clause:

SELECT...FOR UPDATE [OF column_name_list]

For Sybase, the select list must include a unique index column. Sybase also permits

calling execute() or executeQuery() to create an updatable result set. However,

the statement must be closed before you can execute any other SQL statements.

To use an updatable result set with Oracle 8, you must wrap the result set query in

a transaction, as follows:

conn.setAutoCommit(false);
ResultSet rs =

stmt.executeQuery("SELECT...FOR UPDATE...");
...
rs.updateRows();
...
conn.commit();

For Microsoft SQL Server, if concurrency for a result set is CONCUR_UPDATABLE, the

SELECTstatement in the execute() or executeQuery() methods must not include

the ORDER BY clause.

NOTE Use join clauses to create read-only result sets against multiple

tables; however, these result sets are not updatable.

Working with JDBC Features

222 iPlanet TM Application Server Developer’s Guide • February 2002

getCursorName
One result set method, getCursorName() , enables the determining of the cursor

name used to fetch a result set. If a cursor name is not specified by the query itself,

different database vendors return different information. The iPlanet Application

Server attempts to handle these differences as transparently as possible. Table 9-3

indicates the cursor name returned by different database vendors if no cursor name

is specified in the initial query.

getObject
The iPlanet Application Server implements this JDBC method and it only works

with scalar data types. JDBC 2.0 adds additional method versions that include a

map argument. The iPlanet Application Server does not implement maps and

ignores map arguments.

getRef, getBlob, getClob, and getArray
References, blobs, clobs, and arrays are new SQL-3 data types. The iPlanet

Application Server does not implement these data objects or their methods.

However, to work with references, blobs, clobs, and arrays use

getBinaryStream() and setBinaryStream() .

Working with ResultSetMetaData
The getTableName() method only returns meaningful information for OBDC

compliant databases. For all other databases, this method returns an empty string.

Table 9-3 Cursor Name

Database Vendor getCursorName Value Returned

Oracle If a cursor name is not specified with setCursorName() , an

empty string is returned.

Sybase If a cursor name is not specified with setCursorName() ,

and the result set is not updatable, a unique cursor name is

automatically generated by the iPlanet Application Server.

Otherwise an empty string is returned.

Informix, DB2, ODBC If a cursor name is not specified with setCursorName() , the

driver automatically generates a unique cursor name.

Working with JDBC Features

Chapter 9 Using JDBC for Database Access 223

Working with PreparedStatement
PreparedStatement is a class that encapsulates a query, update, or insert

statement that is used repeatedly to fetch data. Be aware of the following behaviors

or limitations associated with this class.

setObject
This method may only be used with scalar data types.

addBatch
This method enables ganging of a set of data manipulation statements together to

pass to the database as if it were a single statement. addBatch() only works with

SQL data manipulation statements that return a count of the number of rows

updated or inserted. Contrary to the claims of the JDBC 2.0 specification,

addBatch() does not work with any SQL data definition statements such as

CREATE TABLE.

setRef, setBlob, setClob, setArray
References, blobs, clobs, and arrays are new SQL-3 data types. The iPlanet

Application Server does not implement these data objects or the methods that work

with them. However, to work with references, blobs, clobs, and arrays use

getBinaryStream() and setBinaryStream() .

getMetaData
Not all database systems return complete metadata information. See your database

documentation to determine what kind of metadata your database provides to

clients.

Working with CallableStatement
CallableStatement is a class that encapsulates a database procedure or function

call for databases that support returning result sets from stored procedures. Be

aware of the following limitation associated with this class. The JDBC 2.0

specfication states that callable statements can return an updatable result set. This

feature is not supported in the iPlanet Application Server.

NOTE Use the iPlanet Application Server feature SqlUtil.loadQuery()

to load an iASRowSet with a prepared statement. For more

information, see the SqlUtil class entry in the Foundation Class
Reference (Java).

Working with JDBC Features

224 iPlanet TM Application Server Developer’s Guide • February 2002

getRef, getBlob, getClob, getArray
References, blobs, clobs, and arrays are new SQL-3 data types. The iPlanet

Application Server does not implement these data objects or the methods that work

with them. However, to work with references, blobs, clobs, and arrays use

getBinaryStream() and setBinaryStream() .

Handling Batch Updates
The JDBC 2.0 specification provides a batch update feature to an application to

pass multiple SQL update statements (INSERT, UPDATE, DELETE) in a single

database request. This statement ganging can result in a significant performance

increase when a large number of update statements are pending.

The Statement class includes two new methods for executing batch updates:

• addBatch() permits adding a SQL update statement (INSERT, UPDATE, DELETE)

to a group of statements prior to execution. Only update statements that return

a simple update count can be grouped using this method.

• executeBatch() permits execution of a collection of SQL update statements as

a single database request.

In order to use batch updates, an application must disable auto commit options, as

follows:

...
// turn off autocommit to prevent each statement from commiting
separately
con.setAutoCommit(false);

Statement stmt = con.createStatement();

stmt.addBatch("INSERT INTO employees VALUES(4671, ’James
Williams’)");
stmt.addBatch("INSERT INTO departments VALUES(560, ’Produce’)");
stmt.addBatch("INSERT INTO emp_dept VALUES(4671, 560)");

//submit the batch of updates for execution
int[] updateCounts = stmt.executeBatch();
con.commit();

Call clearBatch() to remove all ganged statements from a batch operation before

executeBatch() is called (for example, because an error is detected).

Working with JDBC Features

Chapter 9 Using JDBC for Database Access 225

Creating Distributed Transactions
The JDBC 2.0 specification provides the capability for handling distributed

transactions. A distributed transaction is a single transaction that applies to

multiple, heterogeneous databases that may reside on separate server machines.

Distributed transaction support is already built-in to the iPlanet Application Server

EJB container. If an EJB does not specify the TX_BEAN_MANAGED transaction

attribute, automatic support for distributed transactions in an application is

enabled.

In servlets and EJBs that specify the TX_BEAN_MANAGED transaction attribute, you

can still use distributed transactions, but you must manage transactions using the

JTS UserTransaction class. For example:

InitialContext ctx = null;
String dsName1 = "jdbc/SampleDS1";
String dsName2 = "jdbc/SampleDS2";
DataSource ds1 = null;
DataSource ds2 = null;

try {
ctx = new InitialContext();
ds1 = (DataSource)ctx.lookup(dsName1);
ds2 = (DataSource)ctx.lookup(dsName2);

} catch(Exception e) {
e.printStackTrace(System.out);

}

UserTransaction tx = ejbContext.getUserTransaction();

tx.begin();

Connection conn1 = ds1.getConnection();
Connection conn2 = ds2.getConnection();

NOTE The JDBC 2.0 specification erroneously implies that batch updates

can include Data Definition Language (DDL) statements, such as,

CREATE TABLE. DDL statements do not return a simple update

count, and cannot be grouped for a batch operation. Also, some

databases do not allow data definition statements in transactions.

Working with JDBC Features

226 iPlanet TM Application Server Developer’s Guide • February 2002

// do some work here

tx.commit();

In this example, ds1 and ds2 must be registered with the iPlanet Application

Server as global datasources. In other words, their datasource properties files must

include a ResourceMgr entry whose value must be configured at install time.

DataBase=ksample
DataSource=ksample
UserName=kdemo
PassWord=kdemo
DriverType=ORACLE_OCI
ResourceMgr=orarm

In this example, orarm must be a valid ResourceMgr entry and must be enabled to

obtain a global connection successfully. In order to be a valid ResourceMgr entry,

an resource manager must be listed the registry in CCS0\RESOURCEMGR, and the

entry itself must have the following properties.

DatabaseType (string key)
IsEnabled (integer type)
Openstring (string type key)
ThreadMode (string type key)

Working with RowSet
A RowSet is an object that encapsulates a set of rows retrieved from a database or

other tabular data store, such as a spreadsheet. To implement a RowSet , a program

must import javax.sql , and implement the RowSet interface. RowSet extends the

java.sql . ResultSet interface, permitting it to act as a JavaBean component.

Because a RowSet is a JavaBean, you can implement RowSet events and set

properties on the RowSet . Furthermore, because RowSet is a ResultSet extension,

you can iterate through a RowSet just as you would iterate through a ResultSet .

To fill a RowSet call the RowSet.execute() method. The execute() method uses

property values to determine the datasource and retrieve data. The actual

properties to set and examine depends upon the implementation of RowSet

invoked.

For more information about the RowSet interface, see the JDBC 2.0 Standard

Extension API Specification.

Working with JDBC Features

Chapter 9 Using JDBC for Database Access 227

Using iASRowSet
The iPlanet Application Server provides a RowSet class called iASRowSet for

convenience. iASRowSet extends ResultSet , therefore call methods are inherited

from the ResultSet object. iASRowSet overrides the getMetaData() and close()

methods of ResultSet . Because iASRowSet is not a driver-level class, it is easier to

use than ResultSet .

The RowSet interface is fully supported except as noted in Table 9-4.

RowSetReader
iASRowSet provides a full RowSetReader class implementation.

RowSetWriter
iASRowSet is read-only, but an interface for this class is provided for future

expansion. At present, its only method, writeData() throws SQLException .

RowSetInternal
This internal class is used by RowSetReader to retrieve information about the

RowSet . It has a single method, getOriginalRow() , which returns the original

ResultSet instead of a single row.

Table 9-4 RowSet Interface Support Exceptions

Method Argument Exception Thrown Reason

setReadOnly() false SQLException iASRowSet is

already read-only.

setType() TYPE_SCROLL_INSENSITIVE SQLException SCROLL_INSENSITIVE

is not supported.

setConcurrency() CONCUR_UPDATABLE SQLException iASRowSet is

read-only.

addRowSetListener() any None Not supported.

removeRowSetListener() any None Not supported.

setNull() any type name Arguments

ignored

Not supported.

setTypeMap() java.util.Map None Map is a JDBC 2.0

feature that is not

currently

supported.

Working with JDBC Features

228 iPlanet TM Application Server Developer’s Guide • February 2002

Using CachedRowSet
The JDBC specification provides a RowSet class called CachedRowSet .

CachedRowSet permits data retrieval from a datasource, then detaches from the

datasource while examining, and modifying the data. A cached row set keeps track

of the original data retrieved and any data changes made by an application. If the

application attempts to update the original datasource, the row set is reconnected

to the datasource, and only those rows that have changed are merged back into the

database.

Creating a RowSet
To create a row set in an the iPlanet Application Server application:

iASRowSet rs = new iASRowSet();

Using JNDI for a Database Driver
All JDBC driver managers, such as the JDBC driver manager implemented in the

iPlanet Application Server, must find and access a JDBC driver by looking up the

driver and a JDBC URL for connecting to the database. However, a JDBC URL may

not only be specific to a particular vendor’s JDBC implementation, but also to a

specific machine and port number. Such hard-coded dependencies make it hard to

write portable applications that can easily be shifted to different JDBC

implementations and machines at a later time.

JDBC 2.0 specifies using JNDI to provide a uniform, platform and JDBC vendor

independent way for an application to find and access remote services over the

network. In place of this hard-coded information, JNDI permits assigning a logical

name to a particular datasource. Once the logical name is established, you need

only modify it a single time to change the deployment and application location.

JDBC 2.0 specifies that all JDBC datasources are registered in the jdbc naming

subcontext of a JNDI namespace, or in one of its child subcontexts. The JNDI

namespace is hierarchical, like a file system’s directory structure, so it is easy to

find and nest references. A datasource is bound to a logical JNDI name. The name

identifies a subcontext, jdbc , of the root context, and a logical name. In order to

change the datasource, just change its entry in the JNDI namespace without having

to modify the application.

For more information about JNDI, see the JDBC 2.0 Standard Extension API.

The rest of this section uses an example of a datasource lookup to describe how to

reference resource factories. The same principle is applicable to all resources (such

as JavaMail references).

Working with JDBC Features

Chapter 9 Using JDBC for Database Access 229

The resource lookup in the application code looks like this:

String dsName = "java:comp/env/ HelloDbDataSource ";
DataSource ds = (javax.sql.DataSource)initContext.lookup(dsName);
Connection conn = ds.getConnection();

The resource being queried is listed in the res-ref-name attribute of the web.xml

file as follows:

<resource-ref>
<description>Datasource Reference</description>
<res-ref-name> HelloDbDataSource </res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

The resource-ref section in the iPlanet specific deployment descriptor,

ias-web.xml , maps the res-ref-name (the name being queried in the application

code) to the JNDI name of the datasource. The JNDI name is the same as the name

of the datasource as defined in the resource file when the resource is registered

with the server.

<resource-ref>
<res-ref-name> HelloDbDataSource </res-ref-name>
<jndi-name> jdbc/hellodb/HelloDbDB </jndi-name>

</resource-ref>

The resource registration file is an XML file that lists the JNDI name of the

datasource and maps it to a driver that has been registered with the iPlanet server.

The JNDI name should be the same as the one listed in the jndi-name attribute of

the resource-ref section of the ias-web.xml file.

<ias-resource>
<resource>

<jndi-name> jdbc/hellodb/HelloDbDB </jndi-name>
<jdbc>

<driver-type>PointBaseDriver</driver-type>
<database-url>

jdbc:pointbase://localhost/iassamples
</database-url>
<username>hellodb</username>
<password>hellodb</password>

</jdbc>
</resource>

</ias-resource>

Working with JDBC Features

230 iPlanet TM Application Server Developer’s Guide • February 2002

For more information about the web.xml , ias-web.xml , and resource XML files,

see Chapter 11, “Packaging for Deployment.”

When the resource is registered, it is entered in the following section of the registry

(in the LDAP namespace):

SOFTWARE\iPlanet\Application Server\6.5\DataSource

Figure 9-1 shows the registry entry.

Figure 9-1 Datasource registry entry

231

Chapter 10

Developing and Deploying
CORBA-Based Clients

This chapter explains how to access to EJBs via the IIOP (RMI or IDL over IIOP)

protocol within an iPlanet Application Server environment.

This chapter contains the following sections:

• Overview of CORBA Client Support

• RMI/IIOP Client Applications

• C++ IIOP Client Applications (Unix Only)

Overview of CORBA Client Support
iPlanet Application Server supports access to EJBs via the IIOP protocol as

specified in the Enterprise JavaBeans Specification, V1.1, and the Enterprise

JavaBeans to CORBA Mapping specification. These clients use JNDI to locate EJBs

and use Java RMI/IIOP to access business methods of remote EJBs, or they use

C++ with IIOP to access business methods of remote EJBs.

The following topics are covered in this overview:

• Scenarios

• Architectural Overview

• iPlanet Value-Added Features

• Limitations

• Choosing the ORB

Overview of CORBA Client Support

232 iPlanet TM Application Server Developer’s Guide • February 2002

Scenarios
The most common scenarios in which CORBA clients are employed are when

either a stand-alone program or another application server acts as a client to EJBs

deployed to iPlanet Application Server.

Stand-Alone Program
In the simplest case, a stand-alone program running on a variety of operating

systems uses IIOP to access business logic housed in back-end EJB components, as

shown in Figure 10-1.

Figure 10-1 Stand-alone program

EJB

EJB Container

iPlanet

Application Server

Java

Program

RMI/IIOP

C++

Program

IIOP

Overview of CORBA Client Support

Chapter 10 Developing and Deploying CORBA-Based Clients 233

Server-to-Server
Web servers, CORBA objects, and even other application servers can use IIOP to

access EJBs housed in an iPlanet Application Server, as shown in Figure 10-2.

Figure 10-2 Server-to-server

EJB

EJB Container

iPlanet
Application Server

RMI/IIOP

Web Server

Application

CORBA Server

Server

EJB

Servlet

Java
CORBA
Object

C++
CORBA
Object

IIOP

Overview of CORBA Client Support

234 iPlanet TM Application Server Developer’s Guide • February 2002

Architectural Overview
CORBA client support in iPlanet Application Server involves a specialized Java

Engine process named the CORBA Executive Server (CXS). The CXS acts as a

bridge between Java or C++ clients using IIOP and EJBs deployed to one or more

Java Engines acting as EJB containers. For every EJB accessed by CORBA clients,

the IIOP Bridge process handles the incoming IIOP-based requests and maps these

requests to internal calls to EJBs housed within the EJB containers, as shown in

Figure 10-3.

Figure 10-3 Architecture

In this release of iPlanet Application Server, you can use the ORB that is bundled as

part of the Application Server, or you can use a third-party ORB (ORBIX 2000).

NOTE The bundled iPlanet ORB will not work with JDK 1.2 or earlier, or

with earlier versions of iPlanet Application Server.

iPlanet Application Server

Java
Client

RMI/IIOP

C++
Client

IIOP Java Engine
(kjs/JVM)

EJB

EJB Container

IIOP
Bridge

(cxs/JVM)

Other
ORB

iPlanet
ORB

Other
ORB

iPlanet
ORB

Other
ORB

RMI/IIOP

Overview of CORBA Client Support

Chapter 10 Developing and Deploying CORBA-Based Clients 235

iPlanet Value-Added Features
iPlanet's implementation of CORBA clients goes beyond the specification by

providing the following value-added features:

• Naming Services

• C++ Client Support

• Built-in ORB and Third Party ORB Support

• Basic Authentication and EJB Container Integration

• Client Side Authentication

• Load Balancing

• Scalability

• High Availability

• Minimal Ports Opened in Firewalls

Naming Services
The CORBA clients use the standard CORBA COS Naming Service to resolve

EJBHome objects. As EJBs are deployed to iPlanet Application Server, they are

automatically and dynamically registered in the naming service.

C++ Client Support
C++ clients using IIOP are supported for Unix systems in this release of iPlanet

Application Server. For more information, see “C++ IIOP Client Applications

(Unix Only),” on page 274.

Built-in ORB and Third Party ORB Support
iPlanet provides a built-in ORB to support IIOP access to EJBs. You can also install

and configure a third party ORB (ORBIX 2000) to use IIOP with iPlanet Application

Server. For more information, see “Choosing the ORB,” on page 239.

Basic Authentication and EJB Container Integration
Although the CORBA standards do not yet define a means of performing basic

authentication between a CORBA client and an EJB server, iPlanet provides such

support in the Application Server. This feature enables the EJB deployer to control

access to EJBs using standard declarative and programmatic controls that apply to

both web and CORBA clients.

Overview of CORBA Client Support

236 iPlanet TM Application Server Developer’s Guide • February 2002

As a CORBA client authenticates to the iPlanet Application Server, the principal

information is automatically propagated to the EJB container for authorization

based on the standard EJB security mechanisms. To trigger collection of the client’s

user name and password, iPlanet provides a client-side callback mechanism that

enables an application to obtain a user name and password through

application-specific means. Once the user name and password information is

collected by the iPlanet CORBA infrastructure, this information is propagated over

IIOP to the Application Server.

Client Side Authentication
If ORBIX 2000 is the ORB used for RMI/IIOP, portable interceptors implement

security by providing hooks, or interception points, which define stages within the

request and reply sequence. Services can use these interception points to query

request and reply data, and to transfer service contexts between clients and servers.

There are two interceptors, one each on the client side and server side. The client

interceptor intercepts the request before it is sent to the server, then checks whether

the Principal class (which implements

com.netscape.ejb.client.IUserPrincipal) is set. If it is set, the interceptor

instantiates the class and calls the setPrincipal method. Inside the setPrincipal

method, userId and password instance variables should be set; you can

implement custom code inside this method for getting the user ID and password.

The client interceptor uses the corresponding accessor methods to retrieve these

values.

Subsequently, these values are stored in the PICurrent object (which is a table of

slots). Separate slots are created in the PICurrent object for storing the user ID and

password. Subsequently, the client interceptor creates the service contexts, one

each for user ID and password, and adds them to the request before sending it. The

user ID and password are stored in the PICurrent object in the first request. For

subsequent requests, they are retrieved from the PICurrent object.

If the Principal class is not set, the request is sent unchanged, and no service

context data is added.

On the server side, upon receipt of the request, the server interceptor is invoked.

The server interceptor checks whether service context data is present in the request.

If it is not present, the request is allowed to proceed further. If service context data

is present, the server interceptor extracts the user ID and password and calls the

login method of the security manager. This method authenticates the user. If

authentication fails, an exception is sent back to the client. If it succeeds, the request

is allowed to proceed further.

Overview of CORBA Client Support

Chapter 10 Developing and Deploying CORBA-Based Clients 237

On both the server and client side, the interceptors must be registered using the

ORBInitializer class for this functionality to take effect. The ORBInitilaizer

class on client side also creates the PICurrent object.

Role mapping is done at the method or bean level for controlling the access. The

EJB container retrieves the role mapping information from the security manager to

authorize access to the method or bean. If the user is authorized, the method is

executed. Otherwise an java.rmi.AccessException is thrown.

Load Balancing
As new IIOP requests arrive at an instance of iPlanet Application Server, the

Application Server load balances these requests against one or more JVMs acting as

EJB containers. Load balancing is implemented in a simple round-robin scheme.

Upon startup, the application server obtains a list of the available EJB container

processes, also known as Java Engines. As home lookup requests arrive from

CORBA clients, the Application Server uses a list of engines to select the target

engine on which an EJB home is hosted. Subsequent lookups for that EJB home,

bean creations on that home, and business method invocations on the created

beans go to the same target engine.

Client-Side Load Balancing
If the built-in iPlanet ORB is used, client applications can rotor through a list of the

available CORBA processes or use round-robin DNS to implement basic,

client-side load balancing.

If ORBIX 2000 is the ORB used, other client-side load balancing options are

available. The naming service defines a repository of names that map to objects. A

name maps to one object only. ORBIX 2000 extends the naming service model to

allow a name to map to a group of objects. An object group is a collection of objects

that can increase or decrease in size dynamically. Each object group has a selection

algorithm. This algorithm is applied when a client resolves the name associated

with the object group. Three algorithms are supported:

• Round-robin selection

• Random selection

NOTE When authentication/authorization fails,

java.rmi.AccessException is thrown to the client.

java.rmi.AccessException is derived from

java.rmi.RemoteException.

Overview of CORBA Client Support

238 iPlanet TM Application Server Developer’s Guide • February 2002

• Active load balancing selection

Object groups provide a way to replicate frequently requested objects and thereby

distribute the request-processing load. The naming service directs client requests to

the various replicated objects according to the object group’s selection algorithm.

The existence of an object group is transparent to the client, which resolves the

object group name in the same way that it resolves any other name.

Scalability
Multiple CORBA processes can be configured for each application server instance.

This feature enables system administrators to configure any number of JVMs

dedicated to handling incoming IIOP requests. Administrators can modify the

number of processing threads available for each CORBA and EJB container process

to suit the expected loads of the system.

High Availability
The following features contribute to high availability:

• Auto Restart of Java Engines: The application server monitors both the Bridge

processes as well as the Java Engines supporting the EJB containers. If a

process fails, administrative services automatically restart the failed process.

• Stateful Session Bean Failover: CORBA clients can take advantage of the

built-in EJB stateful session bean replication feature of iPlanet Application

Server. If a Java Engine housing an EJB container fails, then subsequent

requests to the stateful session bean continue to be processed once the Java

Engine restarts.

• EJB Handle and Object Reference Failover: If a Bridge process fails and is

automatically restarted, the CORBA clients can continue to access EJBs without

interruption.

Minimal Ports Opened in Firewalls
If the built-in iPlanet ORB is used, the Bridge process handles both name service

and business method calls on a common, fixed IP port number. This approach

helps to minimize the number of ports opened in firewalls positioned between

CORBA clients and iPlanet Application Server instances on which Bridge processes

are configured.

Limitations
CORBA client support in iPlanet Application Server has the following limitations:

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 239

• It applies only to accessing EJBs.

• General RMI objects cannot be accessed via RMI/IIOP.

• Transaction propagation from Java RMI/IIOP clients is not supported.

• When you are using JDK 1.3.x on the client side, only primitive data types can

be exchanged.

Choosing the ORB
iPlanet provides a built-in ORB to support IIOP access to EJBs. You can also install

and configure a third party ORB (ORBIX 2000) to use IIOP with iPlanet Application

Server.

If your company uses ORBIX 2000 as its standard ORB, or if you wish to develop

C++ clients that communicate with EJBs, you should configure iPlanet Application

Server to use ORBIX 2000. ORBIX 2000 also offers additional authentication and

load balancing options. For information about installing ORBIX 2000 and

integrating it with iPlanet Application Server, see the Administrator’s Guide.

For more information about configuring RMI/IIOP applications to use ORBIX

2000, see “Configuring RMI/IIOP Applications for ORBIX,” on page 261. For more

information about configuring C++ IIOP applications to use ORBIX 2000, see

“Configuring C++ IIOP Applications for ORBIX,” on page 275.

RMI/IIOP Client Applications
Using RMI/IIOP-based client applications with iPlanet Application Server is very

similar to using clients with other J2EE-certified application servers. With minimal,

if any, changes to the JNDI lookup section of your client, you can reuse your Java

client to work with a variety of J2EE application servers.

The following topics are covered in this section:

• Developing RMI/IIOP Client Applications

• Packaging RMI/IIOP Client Applications

• Configuring RMI/IIOP Support

• Deploying RMI/IIOP Client Applications

• Configuring RMI/IIOP Applications for ORBIX

RMI/IIOP Client Applications

240 iPlanet TM Application Server Developer’s Guide • February 2002

• Running RMI/IIOP Client Applications

• Troubleshooting RMI/IIOP Client Applications

• Performance Tuning RMI/IIOP

• Firewall Configuration for RMI/IIOP

• Viewing RMI/IIOP Log Messages

• Sample RMI/IIOP Applications

Developing RMI/IIOP Client Applications
The following topics are covered in this section:

• JNDI Lookup for the EJB Home Interface

• Client Authentication

• Client-Side Load Balancing and Failover

JNDI Lookup for the EJB Home Interface
One of the first steps in coding an RMI/IIOP client is to perform a lookup of an

EJB’s home interface. In preparation for performing a JNDI lookup of the home

interface, you must first set several environment properties for the

InitialContext . Then you provide a lookup name for the EJB.

The steps and an example are summarized in the following sections.

• Specifying the Naming Factory Class

• Specifying the Target IIOP Bridge

• Specifying the JNDI Name of an EJB

• A JNDI Example

Specifying the Naming Factory Class
According to the RMI/IIOP specification, the client must specify

com.sun.jndi.cosnaming.CNCtxFactory as the value of the

java.naming.factory.initial entry in an instance of a Properties object. This

object is then passed to the JNDI InitialContext constructor prior to looking up

an EJB’s home interface. For example:

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 241

...
Properties env = new Properties();
env.put("java.naming.factory.initial", "com.sun.jndi.cosnaming.CNCtxFactory");
env.put("java.naming.provider.url", "iiop://" + host + ":"+port);
Context initial = new InitialContext(env);
Object objref = initial.lookup("java:comp/env/ejb/MyConverter");
...

Specifying the Target IIOP Bridge
According to the RMI/IIOP specification, your client must set the

java.naming.provider.url property to a value of the following form:

iiop:// server: port

The server identifies the host on which an iPlanet Application Server instance

resides. The port identifies a specific IIOP Bridge process running on the

application server host.

Along with the java.naming.factory.initial property, you can specify the

java.naming.provider.url property either on the command line or in the client

application’s code.

The following is an example of setting the IIOP URL on the Java command line

(this command must be all on one line):

java -Djava.naming.provider.url="iiop://127.0.0.1 :9010"
-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory
j2eeguide.cart.CartClient

In this case, the client application does not need to instantiate a Properties object:

...
public static void main(String[] args) {

Context initial = new InitialContext();
Object objref = initial.lookup("java:comp/env/ejb/MyConverter");
...

}

As an alternative, you can set the IIOP URL within the client application. In the

following example, two command line arguments are passed into the main classes

of the client.

...
public static void main(String[] args) {

String host = args[0];
String port = args[1];
Properties env = new Properties();

env.put("java.naming.factory.initial",

RMI/IIOP Client Applications

242 iPlanet TM Application Server Developer’s Guide • February 2002

"com.sun.jndi.cosnaming.CNCtxFactory");

env.put("java.naming.provider.url", "iiop://" + host +
":"+port);

Context initial = new InitialContext(env);
Object objref = initial.lookup("java:comp/env/ejb/MyConverter");

...
}

Specifying the JNDI Name of an EJB
After creating a new JNDI InitialContext object, your client calls the lookup

method on the InitialContext to locate the EJB’s home interface. The name of the

EJB is provided on the call to lookup . When using RMI/IIOP to access remote EJBs,

the parameter is referred to as the “JNDI name” of the EJB. Depending on how

your client application is packaged, the supported values of the JNDI name vary.

The JNDI Name Without an Application Client Container
When the client is not packaged as part of an Application Client Container (ACC),

you must specify the absolute name of the EJB in the JNDI lookup. iPlanet supports

the following approaches to performing the JNDI lookup outside of an ACC:

initial.lookup("ejb/ ejb-name");

initial.lookup("ejb/ module-name/ ejb-name");

The ejb-name is the name of the EJB as it appears in the <ejb-name> element of the

EJB’s deployment descriptor. For example, here is a lookup using the value

MyConverter:

initial.lookup("ejb/MyConverter");

This lookup requires that the EJB deployment descriptor specify MyConverter as

the <ejb-name> , as follows:

<ejb-jar>
<enterprise-beans>

<session>
<ejb-name>MyConverter</ejb-name>
<home>j2eeguide.converter.ConverterHome</home>
<remote>j2eeguide.converter.Converter</remote>
...

</session>
</enterprise-beans>

</ejb-jar>

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 243

Using only the ejb name in the JNDI lookup on the RMI/IIOP client works

properly as long as only one EJB of this name is registered in the Application

Server. If you have more than one EJB of this name registered, you must qualify the

ejb name with the name of the EJB JAR module in which the EJB of interest exists.

You can do this by including the module name in front of the ejb name in the JNDI

lookup. The EJB JAR module name is the name of the EJB JAR file minus the .jar

extension.

In the Converter sample application, since the EJB JAR module name is

j2eeguide-converterEjb (based on the EJB JAR file name of

j2eeguide-converterEjb.jar), a lookup based on the module name looks like

this:

initial.lookup("ejb/j2eeguide-converterEjb/MyConverter");

The safe approach is to always use the module name qualifier when performing

JNDI lookups from RMI/IIOP clients that do not use Application Client Container

packaging. The only drawback of the module name approach is that the client

becomes aware of additional aspects of the deployment structure of the server side

environment beyond the absolute EJB name.

As of Service Pack 3, you can also use the prefix java:comp/env/ejb/ when

performing lookups via absolute references. For example, the lookup in the

Converter sample could be written as follows:

initial.lookup("java:comp/env/ejb/MyConverter");

Or, with a module name, it could be written as follows:

initial.lookup("java:comp/env/ejb/j2eeguide-converterEjb/MyConverter");

There is no mechanical difference between supplying this prefix and the first two

approaches. You might find the java:comp/env/ejb/ confusing when used in

conjunction with absolute EJB references because this notation is typically used

when you are using indirect EJB references.

The JNDI Name When Using an Application Client Container
If you are using an Application Client Container (ACC) to house the client, the

JNDI name can use the logical name of the EJB as specified in the <ejb-ref-name>

element in the ACC deployment descriptor. This approach to specifying the JNDI

name of an EJB, although dependent on packaging and running the client in the

context of an ACC, is the same approach as used within a servlet or EJB housed

within the Application Server.

As is the case for servlets and EJBs that perform lookups on EJBs, the format of the

lookup must be as follows:

initial.lookup("java:comp/env/ejb/ejb-ref-name");

RMI/IIOP Client Applications

244 iPlanet TM Application Server Developer’s Guide • February 2002

The ejb-ref-name is the value specified in the <ejb-ref-name> element of the ACC

deployment descriptor.

In the following example, since SimpleConverter appears in the <ejb-ref-name>

element of the ACC deployment descriptor, a value of SimpleConverter is used in

the JNDI lookup:

initial.lookup("java:comp/env/ejb/SimpleConverter");

The application-client.xml file looks like this:

<application-client>
<display-name>converter-acc</display-name>
<description>

Currency Converter Application Client Container Sample
</description>
<ejb-ref>

<ejb-ref-name>SimpleConverter</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>j2eeguide.converter.ConverterHome</home>
<remote>j2eeguide.converter.Converter</remote>
<ejb-link>Test</ejb-link>

</ejb-ref>
</application-client>

A benefit of using ACC packaging is that the JNDI names specified in the client

application are indirectly mapped to the absolute JNDI names of the EJBs.

However, this aspect is about the only real benefit of using ACC. See “Using

Application Client Container (ACC)”“Using Application Client Container (ACC),”

on page 249 for more details.

A JNDI Example
The following client program is taken from the Currency Converter application

that is part of the J2EE Developer’s Guide examples bundled in iPlanet Application

Server. See “Sample RMI/IIOP Applications”“Sample RMI/IIOP Applications,”

on page 273 for more information on the RMI/IIOP samples included with the

application server.

package j2eeguide.converter;

import java.util.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

import j2eeguide.converter.Converter;
import j2eeguide.converter.ConverterHome;

public class ConverterClient {

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 245

public static void main(String[] args) {
try {

if (args.length != 2) {
System.out.println("Wrong number of arguments to client");
System.exit(1);

}
String host = args[0];
String port = args[1];
Properties env = new Properties();
env.put("java.naming.factory.initial",

"com.sun.jndi.cosnaming.CNCtxFactory");
env.put("java.naming.provider.url", "iiop://" + host

+ ":"+port);

Context initial = new InitialContext(env);
Object objref = initial.lookup("ejb/MyConverter");

// Alternatively, the module name could be used as a qualifier:.
// Object objref =
// initial.lookup("ejb/j2eeguide-converterEjb/MyConverter");

ConverterHome home
=(ConverterHome)PortableRemoteObject.narrow(objref,
ConverterHome.class);

Converter currencyConverter = home.create();

double amount = currencyConverter.dollarToYen(100.00);

System.out.println(String.valueOf(amount));

amount = currencyConverter.yenToEuro(100.00);

System.out.println(String.valueOf(amount));

}

catch (Exception ex) {
System.err.println("Caught an unexpected exception!");
ex.printStackTrace();

}
}
}

RMI/IIOP Client Applications

246 iPlanet TM Application Server Developer’s Guide • February 2002

Client Authentication
To take advantage of the optional authentication mechanism for RMI/IIOP clients,

you must provide a security principal class that implements the

com.netscape.ejb.client.IUserPrincipal interface. This class is instantiated

once by the client side iPlanet RMI/IIOP infrastructure as the JNDI lookup method

is called. The client side RMI/IIOP infrastructure calls the setPrincipal method

of this interface before the JNDI lookup triggers a call to the remote name services.

The security principal class must be named in the client’s properties and the class

must be present in the client’s CLASSPATH to enable the RMI/IIOP infrastructure

to load the class during execution of the client.

For example, in the Converter sample application, you could add a third property

specifying the security principal class to be instantiated as the JNDI lookup is

performed:

...
Properties env = new Properties();
env.put("java.naming.factory.initial",

"com.sun.jndi.cosnaming.CNCtxFactory");
env.put("java.naming.provider.url", "iiop://" + host + ":"+port);
env.put("com.netscape.ejb.client.PrincipalClass",

"j2eeguide.converter.RmiPrincipal");

Context initial = new InitialContext(env);
Object objref = initial.lookup("ejb/MyConverter");
...

The RmiPrincipal class is the class that you develop that implements the

com.netscape.ejb.client.IUserPrincipal interface.

Sample Principal Class
The IUserPrincipal interface can be implemented in several ways. The simplest

is to pop up a dialog in the setPrincipal callback to capture a user/password pair

and store them in the username and password private string fields. Then,

whenever an EJB invocation occurs from the client, the getUserId and

getPassword methods are used to set the security context propagated by the client.

The IIOP Bridge attempts to authenticate the user and password with the iPlanet

Application Server security manager. If an authentication exception occurs in

Bridge the client side ORB is notified and the setPrincipal method is called to

obtain the correct user/password information. The client side RMI/IIOP

infrastructure retries the request automatically three times, after which an

authentication exception is generated on the client side.

...
import com.netscape.ejb.client.IUserPrincipal;

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 247

public class Principal implements IUserPrincipal {

private String username;
private String password;

public void setPrincipal() {
// Pop up GUI to take user name and password

}

public String getUserId() {
return username;

}

public String getPassword() {
return password;

}
}

Another valid implementation of IUserPrincipal supports multiple user

identities in the same client JVM. This is done by using ThreadLocal variables to

store the user name and password. In this case, the methods in the

IUserPrincipal implementation must to be ThreadLocal aware.

Client-Side Load Balancing and Failover
Although iPlanet Application Server provides server-side load balancing and

failover for RMI/IIOP access, you may consider implementing client side

approaches to further enhance the performance and availability of your

application.

iPlanet ORB Configuration
If you are using the built-in iPlanet ORB, you can configure client-side load

balancing in these ways:

• Manual Selection from the List of Known Bridges

You can create a wrapper class to round-robin through a set of known bridge

host name and port combinations on behalf of the client business application. If

a communication exception occurs for one of the host name and port

combinations, the wrapper class attempts to use the next host name and port

combination in the list.

For example, the following exception is thrown by the underlying client classes

when the remote IIOP Bridge cannot be contacted:

javax.naming.CommunicationException: Cannot connect to ORB. Root
exception is org.omg.CORBA.COMM_FAILURE:

RMI/IIOP Client Applications

248 iPlanet TM Application Server Developer’s Guide • February 2002

Your client wrapper code can catch this exception and select the next available

host_name: port pairing to re-attempt access to the EJB.

• Round Robin DNS

To implement a simple load balancing scheme without making source code

changes to your client, you can leverage the round-robin feature of DNS. In

this approach, you define a single virtual host name representing multiple

physical IP addresses on which IIOP Bridge processes are listening. Assuming

that you configure all of the IIOP Bridge process to listen on a common IIOP

port number, the client application can use a single host_name: IIOP_port
during the JNDI lookup. The DNS server resolves the host name to a different

IP address each time the client is executed.

After developing the client application, you must package your application in

preparation for deployment.

ORBIX Configuration
If ORBIX 2000 is the ORB used, other client-side load balancing options are

available. The naming service defines a repository of names that map to objects. A

name maps to one object only. ORBIX 2000 extends the naming service model to

allow a name to map to a group of objects. An object group is a collection of objects

that can increase or decrease in size dynamically. Each object group has a selection

algorithm. This algorithm is applied when a client resolves the name associated

with the object group. Three algorithms are supported:

• Round-robin selection

• Random selection

• Active load balancing selection

Object groups provide a way to replicate frequently requested objects and thereby

distribute the request-processing load. The naming service directs client requests to

the various replicated objects according to the object group’s selection algorithm.

The existence of an object group is transparent to the client, which resolves the

object group name in the same way that it resolves any other name.

For Unix, you can set the flag ORBIX_LOADBALANCING=true or false in the

iasenv.ksh file, which sets the Java argument as follows:

-DORBIXLoadBalancing=$ORBIX_LOADBALANCING

For Windows, you can set the Java argument in the registry as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\iPlanet\Application
Server\6.5\Java\JavaArgs=-DORBIXLoadBalancing=true

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 249

Packaging RMI/IIOP Client Applications
You can package RMI/IIOP Client Applications in these ways:

• Using the Assembly Tool GUI

• Automating Reassembly Using Ant

• Using Application Client Container (ACC)

Using the Assembly Tool GUI
The iPlanet Application Server Deployment Tool automatically generates a JAR file

containing EJB-specific home and remote interface and stub classes when you

indicate that an EJB is accessible via IIOP. As an alternative to copying individual

class files to the client, this JAR file can be deployed as part of the client

application.

The Deployment Tool does not support packaging of applications to be deployed

as part of an Application Client Container.

Automating Reassembly Using Ant
If you have an interest in a command line means of packaging RMI/IIOP client

applications, it is recommended that you review the Ant-based build.xml files

supplied as part of the sample applications. The build.xml files for

RMI/IIOP-based samples contain an install_client target that can be easily

enhanced to assemble a self-contained client JAR file in much the same manner as

the Deployment Tool creates a JAR file of client-oriented classes.

Using Application Client Container (ACC)
Although iPlanet does not recommend deployment of client applications in

Application Client Containers, this deployment and runtime method is supported

as part of the J2EE specification. This approach is not recommended because, in the

current state of the ACC specification, using ACC introduces additional

complexity with minimal benefit. Furthermore, due to the limited definition of

ACC within the J2EE v1.2, support for ACC varies widely across J2EE application

servers.

If you choose to experiment with ACC on iPlanet Application Server, take the

following deployment steps into consideration:

• The iasacc.jar JAR file supplied as part of iPlanet Application Server must

be in the client’s CLASSPATH. This file can be copied from the following

location to the client environment:

RMI/IIOP Client Applications

250 iPlanet TM Application Server Developer’s Guide • February 2002

install_dir/ias/classes/java/iasacc.jar

Including this file eliminates the need to include the iasclient.jar file in the

client’s environment.

• A J2EE v1.2-compliant EAR file needs to be created. This EAR file must

contain:

❍ The RMI/IIOP client application classes, home and remote interfaces and

stubs.

❍ A J2EE v1.2 XML descriptor file named app-client.xml . For example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application-client PUBLIC '-//Sun Microsystems,
Inc.//DTD J2EE Application Client 1.2//EN'
'http://java.sun.com/j2ee/dtds/application-client_1_2.dtd'>

<application-client>
<display-name>converter-acc</display-name>
<description>
Currency Converter Application Client Container Sample
</description>
<ejb-ref>

<ejb-ref-name>SimpleConverter</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>j2eeguide.converter.ConverterHome</home>
<remote>j2eeguide.converter.Converter</remote>
<ejb-link>Test</ejb-link>

</ejb-ref>
</application-client>

❍ An iPlanet Application Server specific XML descriptor file (typically

named ias-app-client.xml). This descriptor maps EJB references to

absolute EJB names.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ias-java-client-jar PUBLIC '-//Sun Microsystems, Inc.//DTD iAS
Enterprise JavaBeans 1.0//EN'
'http://developer.iplanet.com/appserver/dtds/IASjava_client_jar_1_0.dtd'>

<ias-java-client-jar>
<ejb-ref>

<ejb-ref-name>SimpleConverter</ejb-ref-name>
<jndi-name>ejb/MyConverter</jndi-name>

</ejb-ref>
</ias-java-client-jar>

❍ A J2EE v1.2 XML descriptor file named application.xml .

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 251

For more information about the structure of an RMI/IIOP client EAR file, see

Chapter 11, “Packaging for Deployment.”

To invoke the client through the Application Client Container, use the following

command:

java com.netscape.ejb.client.AppContainer client_ear_file -iasXml ias_xml_file

Configuring RMI/IIOP Support
To enable RMI/IIOP access to EJBs deployed to iPlanet Application Server, you

must configure both the Application Server and client environments, as described

in these sections:

• Server Configuration

• Client Configuration

The following configuration steps are required only once; they do not need to be

repeated as you deploy EJBs and client applications.

Server Configuration
If your installation of iPlanet Application Server does not already have the IIOP

Bridge process configured, you must start the iPlanet Application Server

Administrative tool to add an IIOP Bridge process to the application server

environment.

NOTE EJB JAR names identified by the first portion of their filenames

(without the .jar extensions) must be unique when deploying to

the Application Server. Use a Java package-like naming scheme for

EAR filenames and EJB names as found in the <ejb-name> portion

of the ejb-jar.xml files; this ensures that name collisions do not

occur. The benefits of this naming practice apply not only to the

iPlanet Application Server, but to other J2EE application servers as

well.

RMI/IIOP Client Applications

252 iPlanet TM Application Server Developer’s Guide • February 2002

1. Start the iPlanet Application Server Administration Tool

On UNIX:

install_dir/ias/bin/ksvradmin

On Windows:

Start->Programs->iPlanet Application Server->iAS Administration Tool

2. Connect to your application server instance and double click on the server

name icon to see a list of the processes defined for this instance of the

Application Server. You should see at least one kjs and possibly a single kxs

process (the kxs process is not required for RMI/IIOP access to EJBs). If you

see a cxs process, you already have an IIOP Bridge process defined in your

application server instance. In this case, double click the cxs process entry,

note the IIOP port number, and continue to the next section. If you don’t see a

Bridge process, continue to the next step to define one.

3. Select any of the existing process entries and then select File->New->Process.

4. Select cxs from the pull-down list of process types and enter a port number

(for example, port 10822) that does not conflict with the other port numbers

already in use by the kjs and kxs processes. Take the default IIOP port

number (9010) as long as it does not conflict with other port assignments in

your system environment. Click on OK to instantiate the process.

5. After several seconds, you see the IIOP Bridge process running in the

Application Server environment. This process, along with all of the other

application server processes listed in the Administrative Tool, is automatically

started as the application server is restarted.

6. On UNIX, you can also check for the existence of the IIOP bridge process from

the command line. For example (each command is all on one line):

ps -ef | grep iiop

root 1153 1 0 17:00:15 ? 0:00 /bin/sh /usr/iPlanet/ias6/ias/bin/kjs -cset CCS0
-eng 3 -iiop -DORBinsPort=9010

This output shows an iPlanet Java Engine process started with the -iiop

option. This option informs this instance of the Java Engine to start itself as an

IIOP Bridge process rather than a J2EE web and EJB container process.

Instantiating a cxs process completes the server side configuration for

RMI/IIOP support.

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 253

Client Configuration
To enable a Java application client to access EJBs housed in iPlanet, you must

ensure that a suitable Java 2 environment, the iPlanet ORB, and several JAR files

are available on the client system, as in Figure 10-4.

Figure 10-4 Client configuration

The steps are explained in the following sections:

• Configuring a Java 2 Environment and iPlanet ORB

• Installing RMI/IIOP Client Support Classes

Configuring a Java 2 Environment and iPlanet ORB
A Java 2 environment and the iPlanet ORB must be present on the client to support

communication to remote EJBs via RMI/IIOP. Either the Java 2environment

bundled as part of the iPlanet Application Server or one of the tested variants

described in the section “Using an Existing JDK”“Using an Existing JDK,” on

page 254 must be used on the client. Other Java 2 environments are likely to work

properly, but these environments are not supported by iPlanet.

RMI/IIOP Client Applications

254 iPlanet TM Application Server Developer’s Guide • February 2002

Using the Bundled JDK
Because it is the platform on which iPlanet performs the bulk of its RMI/IIOP

testing, the recommended Java 2 platform for client side RMI/IIOP-based

applications is the Java 2 environment that is bundled as part of the application

server. To use this JVM on the client side, you can simply copy the Java 2

environment from an iPlanet installation to your client environment and set the

PATH appropriately to pick up the appropriate java executable file. Since the

bundled Java 2 environment includes the iPlanet ORB, you do not need to modify

the Java 2 environment after you copy it to the client side.

The bundled Java 2 platform is in the following location on your Application

Server installation:

install_dir/ias/usr/java/

To copy the server’s JVM environment to your client, follow these steps:

1. Navigate to install_dir/ias/usr/ .

2. Copy the entire java/ directory to your client environment. You can zip or tar

the java/ directory, transfer the archive to the client system, and expand it into

a directory of your choice.

3. Set your client’s PATH to include client_side_JVM_directory/java/bin .

4. Execute java -fullversion to ensure that the appropriate JDK (1.3.1) is being

used. On UNIX, execute which java to check your work.

Now that you’ve installed the bundled JDK along with the iPlanet ORB, you need

to install several supporting JAR files in your client environment. Proceed to

“Installing RMI/IIOP Client Support Classes”“Installing RMI/IIOP Client Support

Classes,” on page 257 to install these JAR files.

Using an Existing JDK
Basic testing of several distributions of the Java 2 environment have demonstrated

that, with minor setup steps, you can leverage an existing Java 2 environment in

support of RMI/IIOP clients accessing EJBs housed in iPlanet Application Server.

In these cases, you must copy the iPlanet ORB files from an iPlanet Application

Server environment to the pre-existing JVM on the client system.

The following combinations of operating systems and Java 2 platforms have been

tested with iPlanet Application Server:

• Solaris and JDK 1.3.1

• Linux and Java 1.3.1

• Windows 98, NT, or 2000 and Java 1.3.1

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 255

Other combinations of operating systems and Java 2 platforms may work properly

with RMI/IIOP and iPlanet Application Server, but no testing has been performed

on other combinations. Regardless of the combination chosen, you should ensure

that you test your configuration thoroughly prior to making a determination that it

is suitable for production use.

Solaris and JDK 1.3.1
In this scenario, you have already installed a Java 2 1.2 environment on a Solaris

system and you plan to use this JVM as the platform for your RMI/IIOP client.

In the following instructions, JAVA_HOME is used as the directory in which the JDK

1.3.1 distribution has been installed. For example:

export JAVA_HOME=/usr/java1.3

1. Copy the j2eeorb.jar from an iPlanet Application Server Solaris installation to

your Solaris client system.

Copy the j2eeorb.jar file:

install_dir/ias/usr/java/jre/lib/ext/j2eeorb.jar

to your Solaris client’s JDK installation:

$JAVA_HOME/jre/lib/ext

(To be removed)Ensure that the sparc/ directory containing shared object

files is copied as part of this step. The iPlanet ORB, native serialization files and

other support files are copied to your client in this step.

2. Copy the orb.properties file from your iPlanet installation:

install_dir/ias/usr/java/jre/lib/orb.properties

to your client’s JDK installation:

$JAVA_HOME/jre/lib/

3. Set the PATH to make sure the DLLs can be accessed by the client application:

(to be removed) export
PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/lib/ext/i386:$PATH

Now that you’ve configured the existing JDK to use the iPlanet ORB, you need to

install several supporting JAR files in your client environment. Proceed to

“Installing RMI/IIOP Client Support Classes”“Installing RMI/IIOP Client Support

Classes,” on page 257 to install these JAR files.

RMI/IIOP Client Applications

256 iPlanet TM Application Server Developer’s Guide • February 2002

Linux and Java 1.3.1
In this scenario, you have already installed a JDK 1.3.1 environment on a Linux

system and you plan to use this JVM as the platform for your RMI/IIOP client. The

following approach was tested with RedHat 6.2.

1. Create a directory on the client to hold the iPlanet ORB. For example:

mkdir -p /opt/iplanet/orb

2. Copy the following JAR files from the iPlanet Application Server installation to

your Linux system to an appropriate directory on the client system, for

example, to /opt/iplanet/orb/ .

install_dir/ias/usr/java/jre/lib/ext/j2eeorb.jar

3. Set the environment. For example:

JAVA_HOME=/opt/jdk1.3

PATH=:$JAVA_HOME/bin:$JAVA_HOME/jre/lib/i386:$PATH

CLASSPATH=/opt/iplanet/orb/j2eeorb.jar

LD_LIBRARY_PATH=$JAVA_HOME/jre/lib:$JAVA_HOME/jre/lib/i386

export JAVA_HOME PATH CLASSPATH LD_LIBRARY_PATH

4. You can specify the iPlanet ORB classes as properties on the command line

(this command must be all on one line):

java -Dorg.omg.CORBA.ORBClass=com.netscape.ejb.client.ClientORB
-Dorg.omg.CORBA.ORBSingletonClass=com.sun.corba.ee.internal.corba.ORBSingleton
j2eeguide.converter.ConverterClient ias_host 9010

Now that you’ve configured the existing JDK to use the iPlanet ORB, you need to

install several supporting JAR files in your client environment. Proceed to

“Installing RMI/IIOP Client Support Classes”“Installing RMI/IIOP Client Support

Classes,” on page 257 to install these JAR files.

Windows 98, NT, or 2000 and Java 1.3.1
In this scenario, you have already installed a Java 1.3.1 environment on Windows,

and you plan to use this JVM as the platform for your RMI/IIOP client.

NOTE Due to incompatabilities between the native serialization libraries in

JDK 1.2 and JDK 1.3, if you use JDK 1.3 on the client side, only

values of primitive data types can be exchanged between the client

and server.

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 257

In the following instructions, JAVA_HOME is used as the directory in which the JDK

1.3.1 distribution has been installed. For example:

set JAVA_HOME=c:\JDK1.3.1

1. Copy the j2eeorb.jar from an iPlanet Application Server Windows

installation to your Windows client system.

Copy the j2eeorb.jar file::

install_dir\ias\usr\java\jre\lib\ext\j2eeorb.jar

to your client’s JDK installation:

%JAVA_HOME%\jre\lib\ext

2. Copy the orb.properties file from your iPlanet installation:

install_dir\ias\usr\java\jre\lib\orb.properties

to your client’s JDK installation:

%JAVA_HOME%\jre\lib\

3. Copy native serialization DLLs from your iPlanet installation:

install_dir\ias\usr\java\jre\bin\ioser12.dll

to your client’s JDK installation:

%JAVA_HOME%\jre\bin\

4. Set the PATH to make sure the DLLs can be accessed by the client application:

set PATH=%JAVA_HOME%\bin;%PATH%

Now that you’ve configured the existing JDK to use the iPlanet ORB, you need to

install several supporting JAR files in your client environment. Proceed to

“Installing RMI/IIOP Client Support Classes”“Installing RMI/IIOP Client Support

Classes,” on page 257 to install these JAR files.

Installing RMI/IIOP Client Support Classes
Regardless of the Java 2 platform used on the client side, the client’s CLASSPATH

must include the file iasclient.jar , an iPlanet-specific JAR file containing

several security-related classes supporting iPlanet’s client authentication feature (if

you are using ACC, iasclient.jar is replaced by iasacc.jar). The standard

javax.jar file must also be included in your client CLASSPATH. This file contains

standard Java interfaces for naming services and other Java extensions.

These JAR files can be copied from an iPlanet installation to your client

environment and added to the client’s CLASSPATH. On UNIX, you can find these

files in the following location of an iPlanet Application Server installation:

RMI/IIOP Client Applications

258 iPlanet TM Application Server Developer’s Guide • February 2002

install_dir/ias/classes/java/iasclient.jar

install_dir/ias/classes/java/javax.jar

On Windows, you can find these files in the following location of an iPlanet

Application Server installation:

install_dir/ias/classes/java/iasclient.jar

install_dir/ias/lib/java/javax.jar

Once you’ve copied these supporting files to the client environment, you must

configure the client’s CLASSPATH to include the JAR files.

RMI/IIOP Client Access to EJBs on Same System
If you are experimenting with RMI/IIOP client access using a client that is on the

same machine as the application server, you can take a shortcut to setting up the

PATH and CLASSPATH variables. Simply reference the existing, pre-installed

copies of the javax.jar , iasclient.jar , and the JVM in

install_dir/usr/java/bin/ . For example, to test RMI/IIOP access locally, set the

CLASSPATH variable as follows:

On Windows:

set CLASSPATH=d:\iplanet\ias6\ias\lib\java\javax.jar;
d:\iplanet\ias6\ias\classes\java\iasclient.jar;%CLASSPATH%

(The Windows System PATH environment variable already contains

install_dir/usr/java/bin/ of the bundled JDK, so there is no need to set this again

on Windows.)

You could set the Windows System CLASSPATH to avoid having to manually set

the variable.

On UNIX:

export CLASSPATH=/usr/iplanet/ias6/ias/classes/java/javax.jar:
/usr/iplanet/ias6/ias/classes/java/iasclient.jar:$CLASSPATH

On UNIX, you must also modify the PATH to include the bundled JDK directory:

export PATH=/usr/iplanet/ias6/ias/usr/java/bin:$PATH

RMI/IIOP Client Access to EJBs from a Remote System
If you are using a remote client system, follow these steps to establish the

appropriate PATH and CLASSPATH settings.

On UNIX:

Set your PATH environment variable to include the appropriate Java 2 bin/

directory:

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 259

export PATH= Java2_install_dir/usr/java/bin:$PATH

Set your CLASSPATH to include the standard Java Extension classes and the

iPlanet RMI/IIOP client support JAR:

export CLASSPATH=/opt/rmi-client/iasclient.jar:
/opt/rmi-client/javax.jar:$CLASSPATH

Double check the CLASSPATH to ensure that it is set correctly (your CLASSPATH

may vary from the one shown below):

echo $CLASSPATH

/opt/rmi-client/iasclient.jar:/opt/rmi-client/javax.jar:

On Windows:

Set your PATH environment variable to include the appropriate JDK bin/

directory:

set PATH= Java2_install_dir\usr\java\bin;%PATH%

Set your CLASSPATH to include the standard Java Extension classes (javax.jar)

and the iPlanet client support JAR (iasclient.jar):

set CLASSPATH=d:\rmi-client\javax.jar;d:
\rmi-client\iasclient.jar;%CLASSPATH%

Deploying RMI/IIOP Client Applications
As you develop client applications, you will need to deploy a number of files from

your development environment to the client system. This section addresses the

underlying steps required to deploy an RMI/IIOP-capable client application in the

following sections:

• Client Deployment

• Deployment Tools

• Server CLASSPATH Setting (SP2 and Prior)

Client Deployment
In addition to ensuring that client application classes are available on the client

system, you must ensure that EJB-specific home and remote interfaces and their

corresponding stubs are deployed to the client system. For example, in the

Converter sample application, the following classes must be copied to the client

system:

RMI/IIOP Client Applications

260 iPlanet TM Application Server Developer’s Guide • February 2002

Home and Remote Interface Classes:

ConverterHome.class

Converter.class

EJB-Specific iPlanet Client Stubs:

_Converter_Stub.class

_ConverterHome_Stub.class

Deployment Tools
The Deployment Tool creates a JAR file containing only the home and remote

interfaces and the RMI/IIOP stub classes. The tool does not currently package the

rest of your client application classes and resources.

You can easily automate assembly of your client application via the Java-based Ant

build facility. Refer to the RMI/IIOP sample applications for examples of using

Ant to both package and deploy client applications.

Server CLASSPATH Setting (SP2 and Prior)
This section applies to iPlanet Application Server 6.0 Service Pack 2 (SP2) and

earlier. Service Packs 3 and later do not require the following configuration step. If

you are using SP3 or beyond, skip to the next section, “Running RMI/IIOP Client

Applications.”“Running RMI/IIOP Client Applications,” on page 265.

In iPlanet Application Server Service Pack 2 and earlier, to load EJB classes, the

IIOP Bridge process must be able to access the EJB stubs and home and remote

interfaces via the application server’s CLASSPATH. Before the first execution of an

RMI/IIOP-based Java application client in SP2 or earlier, you must first modify the

CLASSPATH of the application server.

With the advent of iPlanet Application Server 6.0 SP2, registration of EJB-based

applications results in the EJB JAR file being expanded to the application server’s

deployment directory. By default, when a J2EE application such as

j2eeguide-converter.ear is deployed to the application server, the embedded

EJB JAR file, j2eeguideEjb.jar in this example, is expanded to:

install_dir/ias/APPS/j2eeguide-converter/j2eeguide-converterEjb/

When a stand-alone EJB JAR module (or WAR module) is deployed to iPlanet

Application Server, the default expansion location for the stand-alone module is:

install_dir/ias/APPS/modules/j2eeguide-converterEjb/

Prior to running the RMI/IIOP client, you must add the appropriate module

directory to the CLASSPATH of the application server.

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 261

Configuring RMI/IIOP Applications for ORBIX
After you have installed ORBIX 2000 and integrated it with iPlanet Application

Server as described in the Administrator’s Guide, you can choose which ORB

(built-in or ORBIX) to use for each RMI/IIOP client application. This section

describes how to configure an RMI/IIOP client to use ORBIX.

For information about ORBIX and client-side load balancing, see “Client-Side Load

Balancing and Failover.”“Client-Side Load Balancing and Failover,” on page 247.

References
• ORBIX 2000 Programmer’s Guide, Java Edition

http://www.iona.com/docs/orbix2000/1.2.1/pguide_java/html/index.html

• ORBIX 2000 1.2.1 Documentation

http://www.iona.com/docs/orbix2000/1.2.1/index.html

• OpenORB RMI over IIOP

http://www.openorb.org/rmioveriiop.html

• Java 2 SDK 1.4 Download Page

http://java.sun.com/j2se/1.4/index.html

Configuration Steps
The steps are the same for Unix and Windows except for the format of the file

paths. The examples show Unix file paths.

1. Install ORBIX 2000 version 1.2.1. Copy the license file to /etc/opt/iona/ and

install the license. Refer to the Administrator’s Guide and the ORBIX

documentation.

2. Copy the ORBIX domain configuration file from the server ORBIX installation

(where the naming service is running) to another directory, for example:

/etc/opt/iona/domains

This file contains the necessary configuration information to contact the server

ORBIX installation. The client program uses this file to connect to the naming

service.

This is not required if the client and server are run on the same machine. In this

case, the localhost configuration (the default) is used.

RMI/IIOP Client Applications

262 iPlanet TM Application Server Developer’s Guide • February 2002

3. If you are planning to install one of the pre-packaged sample applications,

regenerate the stubs and skeletons using the ejbc utility. For details about

ejbc , see “Using the ejbc Compiler,” on page 128.

4. Install the client application.

5. Copy the stubs (*Stub*.class) pertaining to the application to the client

directory. For example (all on one line):

cp
ias_inst_dir/ias/APPS/j2eeguide-converter/j2eeguide-converterEjb/j2eeguide/converter/
_Converter_Stub.class client_inst_dir/j2eeguide/converter

and (all on one line):

cp
ias_inst_dir/ias/APPS/j2eeguide-converter/j2eeguide-converterEjb/j2eeguide/converter/
_ConverterHome_Stub.class client_inst_dir/j2eeguide/converter

6. Set the classpath. For example (all on one line):

export
CLASSPATH=orbix_inst_dir/orbix_art/1.2/classes/orbix2000.jar: orbix_inst_dir/orbix_art/1.2
/classes/omg.jar: orbix_license_file_path/licenses.txt: server_orbix_config_file_path:
ias_inst_dir/classes/java/javax.jar: ias_inst_dir/ias/classes/java/iasclient.jar

If an iPlanet Application Server installation is not present on the client

machine, copy the javax.jar file from any iPlanet Application Server installation

(version 6.5) to the client machine and include it in the classpath.

7. Set the ORBdomain_name property to the domain name in the server ORBIX

configuration file (see the ORBIX documentation for details about this file).

This can be done in two ways:

❍ Set the ORBdomain_name property at the Java command line when you run

the client.

In this case, the org.omg.CORBA.ORBClass property in the

jdk_inst_dir/jre/lib/orb.properties file must be set to

com.iplanet.ias.iona.clientorb.IONAorb . In addition, the

iasclient.jar file must be included in the classpath as shown in Step 6.

❍ In the client program, pass the ORBdomain_name property (as an array of

strings) to the first parameter in the ORB.init call. This initializes the ORB.

The initialized ORB can be passed to the JNDI calls, or subsequent CORBA

initialization calls can be called on it.

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 263

In this case, the org.omg.CORBA.ORBClass property in the

jdk_inst_dir/jre/lib/orb.properties file must be set to

com.iona.corba.art.artimpl.ORBImpl .

Refer to the JNDI description in the JDK documentation for information about

passing an initialized ORB to JNDI calls.

Usage of the IONAorb class is optional. The IONAorb is derived from

com.iona.corba.art.artimpl.ORBImpl (the ORBIX ORB class), and the

set_parameters method is overloaded. In the set_parameters method, the

ORBnameand ORBdomain_name properties are read and passed to the ORB.init

call.

8. Modify the following property in the orb.properties file, which is available in

the jdk_ inst_dir/jre/lib :

org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.ORBSingleton

9. Run the client.

Enabling Security
To enable security, perform the following steps before invoking the client.

1. Make sure no value is set for the following property. There should be only

blank space after the equal sign.

org.omg.PortableInterceptor.ORBInitializerClass.com.iplanet.ias.iona.
orbinitializers.IONAClientORBInitializerImpl=

2. Set the ORBname property to orbname in the scope in which the

client_interceptor name has been registered. This can be done in two ways:

❍ Set the ORBname property at the Java command line.

In this case, the org.omg.CORBA.ORBClass property must be set to

com.iplanet.ias.iona.clientorb.IONAorb .

NOTE The built-in ORB uses the IIOP URL (which includes the host name

and port number) to connect to the iPlanet Application Server. The

ORBIX ORB does not use this URL for connecting to CXS.

If the built-in ORB is used, the naming service is in-process to CXS.

If the ORBIX ORB is used, it is out-of-process.

ORBIX Java client applications trying to pass User-Defined

serializable objects embedded inside java containers (such as

java.util.vector) receive MARSHALLING exceptions.

RMI/IIOP Client Applications

264 iPlanet TM Application Server Developer’s Guide • February 2002

❍ In the client program, pass the ORBnameproperty (as an array of strings) to

the first parameter in the ORB.init call. This initializes the ORB. The

initialized ORB can be passed to the JNDI calls, or subsequent CORBA

initialization calls can be called on it.

In this case, the org.omg.CORBA.ORBClass property must be set to

com.iona.corba.art.artimpl.ORBImpl .

Refer to the JNDI description in the JDK documentation for information about

passing an initialized ORB to JNDI calls.

Usage of the IONAorb class is optional. The IONAorb is derived from

com.iona.corba.art.artimpl.ORBImpl (the ORBIX ORB class), and the

set_parameters method is overloaded. In the set_parameters method, the

ORBname property is read and passed to the ORB.init call.

3. Add the client interceptor name, iASClientInterceptor , to the

client_binding_list in the ORBIX configuration file at the appropriate

scope. If it is not added at the global scope, set the property ORBname to the

value orbname . Refer to the ORBIX documentation for further details. For

example:

binding:client_binding_list = ["OTS+POA_Coloc", "POA_Coloc",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"iASClientInterceptor+GIOP+IIOP", "OTS+GIOP+IIOP", "GIOP+IIOP",
"OTS+GIOP+IIOP_TLS", "GIOP+IIOP_TLS"];

4. Add portable_interceptor to the orb_plugins list at the appropriate scope.

For example, before the addition:

orb_plugins=["iiop_profile","giop" ,"iiop", "ots"]

and after the addition:

orb_plugins=["iiop_profile","giop" ,"iiop", "ots", "portable_interceptor"]

Interceptor names and portable_interceptor have to be added at the same

scope.

5. For enabling security, the com.netscape.ejb.client.IUserPrincipal

interface must be implemented, and the class file name must be specified in the

property com.netscape.ejb.client.PrincipalClass .

NOTE The "iASClientInterceptor+GIOP+IIOP" entry must be listed

before the "OTS+GIOP+IIOP" entry.

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 265

Running RMI/IIOP Client Applications
If your client is a Java main program, then as long as the client environment is set

appropriately and you are using a compatible JVM, you merely need to execute the

main class. Depending on whether you are passing the IIOP URL components (host

and port number) on the command line or obtaining this information from a

properties file, the exact manner in which you execute the main program will vary.

For example, the ConverterClient sample is executed in the following manner:

java j2eeguide.converter.ConverterClient host_name port

The host_name is the name of the host on which an IIOP Bridge is listening on the

specified port.

Troubleshooting RMI/IIOP Client Applications
When running an RMI/IIOP client, you may encounter error conditions on the

client. To view the IIOP Bridge logs, see “Viewing RMI/IIOP Log

Messages.”“Viewing RMI/IIOP Log Messages,” on page 272. Table 10-1 lists

common symptoms and fixes for common RMI/IIOP configuration problems.

If you are running the RMI/IIOP client application under load and are

experiencing issues, see “Recognizing Performance Issues”“Recognizing

Performance Issues,” on page 268 to understand how to troubleshoot load-related

issues.

NOTE If the org.omg.CORBA.ORBClass property is set to

com.iona.corba.art.artimpl.ORBImpl , the

com.netscape.ejb.client.PrincipalClass property has to be

set in the system properties. Passing it programmatically does not

work.

RMI/IIOP Client Applications

266 iPlanet TM Application Server Developer’s Guide • February 2002

Table 10-1 Troubleshooting

Symptom Probable Cause Corrective Action

The client throws the following exception during

JNDI lookup:

org.omg.CORBA.INITIALIZE: can't
instantiate default ORB
implementation

The client CLASSPATH does not

include the iasclient.jar file.

The client PATH does not pickup

appropriate java command. Either

the JVM bundled with the

application server or a suitable

pre-existing JVM must be used.

Ensure that the

client

configuration

steps were

followed; see

“Client

Configuration.”“

Client

Configuration,”

on page 253.

The client experiences a CORBA communication

failure exception:

javax.naming.CommunicationException:
Cannot connect to ORB. Root
exception is
org.omg.CORBA.COMM_FAILURE:

Connection to the IIOP Bridge fails

because of one of the following

reasons:

• IIOP host and/or port number

are incorrect.

• IIOP Bridge process has not been

started.

• IIOP Bridge process was started,

but has not finished initializing.

• Client machine cannot access the

network.

• Firewall rules do not allow

access to the Application Server

system.

Ensure that the

IIOP Bridge

process is

configured and

started; see

“Server

Configuration.”“

Server

Configuration,”

on page 251.

Ensure that the

client machine

has network

access and that

intermediate

firewalls are not

blocking access.

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 267

a) The client appears to hang and then

experiences an out of memory exception:

Exception in thread "main"
java.lang.OutOfMemoryError.

b) The IIOP Bridge throws one of the following

exceptions repeatedly:

Name Not Found:

[01/May/2001 08:20:14:4] info:
GDS-007: finished a registry load
[01/May/2001 08:20:14:6] info:
PROT-006: new connection established
SendRemoteReq status=0x0
javax.naming.NameNotFoundException:
EjbContext: exception on getHome(),
com.nets
cape.server.eb.UncheckedException:
unchecked exception thrown by impl
com.kivasoft.eb.boot.EBBootstrapImpl
@1fca24a; nested exception is:

Class not Found:

[24/Jan/2001 12:25:52:9] error:
EBFP-unserialize: error during
unserialization of method, exception
= java.lang.ClassNotFoundException:
j2eeguide.confirmer.ejb_stub_Confirm
erHome
java.lang.ClassNotFoundException:
j2eeguide.confirmer.ejb_stub_Confirm
erHome at
java.lang.Throwable.fillInStackTrace
(Native Method)

Class Cast Exceptions

The JNDI name as specified in the

client application is not correct.

OR

(Pre SP3) The expanded EJB JAR

directory has not been added to the

server CLASSPATH or the server

has not been restarted since the EJB

JAR directory was added to the

CLASSPATH.

Correct the JNDI

name used by

the client.

OR

Set application

server’s

CLASSPATH

The client application encounters a naming

communication exception:

javax.naming.CommunicationException

The Directory Server associated

with the Application Server is not

running.

Start the

Directory Server.

Table 10-1 Troubleshooting

Symptom Probable Cause Corrective Action

RMI/IIOP Client Applications

268 iPlanet TM Application Server Developer’s Guide • February 2002

Performance Tuning RMI/IIOP
For deployment environments in which you expect the RMI/IIOP path to support

more than a handful of concurrent users, you should experiment with the tuning

guidelines described in this section. The default configuration of the JVM and the

underlying OS do not yield optimal performance and capacity when you are using

RMI/IIOP.

This section covers the following topics:

• Load Testing Approaches

• Recognizing Performance Issues

• Basic Tuning Approaches

• Enhancing Scalability

Load Testing Approaches
Although there are few commercial load testing tools for RMI/IIOP, you can create

a relatively simple driver for basic load testing. The following Java main program

illustrates one approach to a simple load test client of the Converter EJB.

sample code...

Recognizing Performance Issues
Before exercising your RMI/IIOP client application under load, ensure that you’ve

verified that basic mechanical tests are completed successfully.

As you begin exercising the client application under load, you may experience the

following exceptions on the RMI/IIOP client:

org.omg.CORBA.COMM_FAILURE

java.lang.OutOfMemoryError

java.rmi.UnmarshalException

If you’ve verified that the basic mechanics of your application are working

properly and you experience any one of these exceptions while load testing your

application, see the next section to learn how to tune the RMI/IIOP environment.

Basic Tuning Approaches
You should experiment with the following tuning recommendations in order to

find the best balance for your specific environment.

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 269

Solaris File Descriptor Setting
On Solaris, setting the maximum number of open files property using ulimit has

the biggest impact on your efforts to support the maximum number of RMI/IIOP

clients. The default value for this property is 64 or 1024 depending on whether you

are running Solaris 2.6 or Solaris 8. To increase the hard limit, add the following

command to /etc/system and reboot it once:

set rlim_fd_max = 8192

You can verify this hard limit by using the following command:

ulimit -a -H

Once the above hard limit is set, you can increase the value of this property

explicitly (up to this limit) using the following command:

ulimit -n 8192

You can verify this limit by using the following command:

ulimit -a

For example, with the default ulimit of 64, a simple test driver can support only 25

concurrent clients, but with ulimit set to 8192 , the same test driver can support

120 concurrent clients. The test driver spawned multiple threads, each of which

performed a JNDI lookup and repeatedly called the same business method with a

think (delay) time of 500ms between business method calls, exchanging data of

about 100KB.

These settings apply to both RMI/IIOP clients (on Solaris) and to the IIOP Bridge

installed on a Solaris system. Refer to Solaris documentation for more information

on setting the file descriptor limits.

Java Heap Settings
Apart from tuning file descriptor capacities, you may want to experiment with

different heap settings for both the client and Bridge JVMs. Refer to the JDK 1.3.1

documentation for information about modifying the default heap size.

Enhancing Scalability
Beyond tuning the capacity of a single Bridge process and client systems, you can

improve the scalability of the RMI/IIOP environment by using multiple IIOP

Bridge processes. You may find that configuring multiple Bridge processes on the

same application server instance improves the scalability of your application

deployment. In some cases, you may want to use a number of application server

instances each configured with one or more Bridge processes.

RMI/IIOP Client Applications

270 iPlanet TM Application Server Developer’s Guide • February 2002

In configurations where more than one Bridge process is active, you can partition

the client load by either statically mapping sets of clients to different Bridges or by

implementing your own logic on the client side to load balance against the known

Bridge processes.

Firewall Configuration for RMI/IIOP
If the RMI/IIOP client is communicating through a firewall to the iPlanet

Application Server, you must enable access from the client system to the IIOP port

used by the IIOP Bridge processes. Since the client’s port numbers are assigned

dynamically, you must open up a range of source ports and a single destination

port to allow RMI/IIOP traffic to flow from a client system through a firewall to an

instance of the Application Server.

A snoop-based trace of the IIOP traffic between two systems during a single

execution of the Converter sample application follows. The host swatch is the

RMI/IIOP client, while the host mamba is the destination or Application Server

system. The port number assigned to the IIOP Bridge process is 9010 . Note that the

two dynamically assigned ports (33046 and 33048) are consumed on the

RMI/IIOP client, while only port 9010 is used to communicate with the Bridge

process.

swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Syn Seq=140303570 Len=0
Win=24820
Options=<nop,nop,sackOK,mss 1460>
mamba.red.iplanet.com -> swatch TCP D=33046 S=9010 Syn Ack=140303571
Seq=1229729413 Len=0 Win=8760
Options=<mss 1460>
swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Ack=1229729414 Seq=140303571
Len=0 Win=24820
swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Ack=1229729414 Seq=140303571
Len=236 Win=24820
mamba.red.iplanet.com -> swatch TCP D=33046 S=9010 Ack=140303807 Seq=1229729414
Len=168 Win=8524
swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Ack=1229729582 Seq=140303807
Len=0 Win=24820
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Syn Seq=140990388 Len=0
Win=24820
Options=<nop,nop,sackOK,mss 1460>
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Syn Ack=140990389
Seq=1229731472 Len=0 Win=8760
Options=<mss 1460>
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731473 Seq=140990389
Len=0 Win=24820
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731473 Seq=140990389

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 271

Len=285 Win=24820
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140990674 Seq=1229731473
Len=184 Win=8475
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731657 Seq=140990674
Len=0 Win=24820
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731657 Seq=140990674
Len=132 Win=24820
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140990806 Seq=1229731657
Len=25 Win=8343
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731682 Seq=140990806
Len=0 Win=24820
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731682 Seq=140990806
Len=124 Win=24820
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140990930 Seq=1229731682
Len=0 Win=8219
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140990930 Seq=1229731682
Len=336 Win=8219
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229732018 Seq=140990930
Len=120 Win=24820
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140991050 Seq=1229732018
Len=0 Win=8099
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140991050 Seq=1229732018
Len=32 Win=8099
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229732050 Seq=140991050
Len=120 Win=24820
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140991170 Seq=1229732050
Len=0 Win=7979
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140991170 Seq=1229732050
Len=32 Win=7979
swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Fin Ack=1229729582
Seq=140303807 Len=0 Win=24820
mamba.red.iplanet.com -> swatch TCP D=33046 S=9010 Ack=140303808 Seq=1229729582
Len=0 Win=8524
mamba.red.iplanet.com -> swatch TCP D=33046 S=9010 Fin Ack=140303808
Seq=1229729582 Len=0 Win=8524
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Fin Ack=1229732082
Seq=140991170 Len=0 Win=24820
swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Ack=1229729583 Seq=140303808
Len=0 Win=24820
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140991171 Seq=1229732082
Len=0 Win=7979
mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Fin Ack=140991171
Seq=1229732082 Len=0 Win=7979
swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229732083 Seq=140991171
Len=0 Win=24820

RMI/IIOP Client Applications

272 iPlanet TM Application Server Developer’s Guide • February 2002

Viewing RMI/IIOP Log Messages
Log messages generated by the RMI/IIOP path can be monitored by reviewing the

log file generated by the IIOP Bridge process. Since the IIOP Bridge process is a

form of a Java Engine (kjs), you monitor these logs in the same manner as you

would monitor the Java Engines supporting the web and EJB containers. To view

the appropriate log file, you must identify the Java Engine that is playing the role

of the IIOP Bridge.

Monitoring Logs on Windows
By default, on a Windows installation of iPlanet Application Server, the Java

Engine log files are not automatically displayed during startup of the Application

Server. Most developers find it convenient to enable automatic display of console

log information by performing the following steps:

1. Select Start->Settings->Control Panel.

2. Double click on Services.

3. Find the “iPlanet Application Server 6.5” entry and select it.

4. Click on Startup.

5. Click on “Allow Service to Interact with Desktop” and click on OK.

6. Click on Stop to stop the Application Server.

7. Click on Start to start the Application Server.

As the application server starts, a number of MS DOS output windows appear on

the desktop. A single output window is present for each physical process in the

application server. As the engines start, look for the Java Engines and, in particular,

the engine that specifies the port number defined in the CXS (Bridge) process.

To enable vertical scroll bars in these output windows, follow these steps:

1. Select the MS DOS icon at the upper left of the output window.

2. Select Properties.

3. Select Layout.

4. Set the Screen Buffer Size Height to 200 or as desired.

5. Answer Yes when asked to apply these changes to all invocations of this

window.

RMI/IIOP Client Applications

Chapter 10 Developing and Deploying CORBA-Based Clients 273

Monitoring Logs on UNIX
On UNIX, most developers use the tail -f command to monitor the application

server log files of the process of interest. To monitor the Java Engine logs in this

manner, follow these steps:

1. Navigate to the logs directory:

cd install_dir/ias/logs

2. Execute the tail command on one of the Java Engine (kjs) and the Executive

Service (kxs) processes:

tail -f kjs_2*

You must select the appropriate Java Engine log file to monitor. Java Engines

are numbered according to how they are defined in the Administration Tool.

Although the CXS (Bridge) process is typically the highest numbered Java

Engine log file, double check the port number information within the log file to

confirm which log files is generated by the CXS process.

3. Press Control-C to kill the tail command.

Sample RMI/IIOP Applications
A list of RMI/IIOP-oriented samples is available under the following location of

your web server’s document root or under the installation directory of the

Application Server:

http:// webserver_host/ias-samples/ -> RMI/IIOP

install_dir/ias/ias-samples/index.html -> RMI/IIOP

Converter Sample Application
The Currency Converter sample application from Sun’s J2EE Developer’s Guide has

been bundled with iPlanet Application Server. This sample has been augmented

with detailed setup instructions for deploying the application to iPlanet

Application Server. It is recommended that you follow the detailed setup

instructions for this sample and exercise the Converter sample prior to deploying

other RMI/IIOP-based applications. Currency Converter setup documentation and

source code are available at the following locations:

install_dir/ias/ias-samples/j2eeguide/docs/converter.html

install_dir/ias/ias-samples/j2eeguide/converter/src/

C++ IIOP Client Applications (Unix Only)

274 iPlanet TM Application Server Developer’s Guide • February 2002

Other RMI/IIOP Sample Applications
Many of the J2EE Developer’s Guide samples bundled with iPlanet Application

Server include RMI/IIOP client programs. These are relatively simple samples that

demonstrate various facets of the EJB specification. You can find these samples at:

install_dir/ias/ias-samples/j2eeguide/docs/index.html

C++ IIOP Client Applications (Unix Only)
Using C++ IIOP-based client applications with iPlanet Application Server is very

similar to using these clients with other J2EE-certified application servers. With

minimal, if any, changes to the lookup section of your client, you can reuse your

client to work with a variety of J2EE application servers.

The following topics are covered in this section:

• Configuring C++ IIOP Applications for ORBIX

• Preparing for C++ Client Development

• Data Type Assumptions and Limitations

• Generating the IDL Files

• Generating CPP Files from IDL Files

• Enabling Security for C++ IIOP Applications

• Lookup for the EJB Home Interface

• Client-Side Load Balancing and Failover

• Configuring the IIOP Bridge

• Deploying C++ IIOP Client Applications

• Performance Tuning IIOP

• Viewing IIOP Log Messages

• Sample C++ IIOP Applications

C++ IIOP Client Applications (Unix Only)

Chapter 10 Developing and Deploying CORBA-Based Clients 275

Configuring C++ IIOP Applications for ORBIX
Before you can use a C++ IIOP client with iPlanet Application Server, you must

install ORBIX 2000 and integrate it with iPlanet Application Server as described in

the Administrator’s Guide. This section lists software requirements for ORBIX use

and additional documentation.

Requirements
The software requirements are as follows:

• Solaris 2.6 +

• ORBIX 2000 C++ development kit Version 1.2+

• Sun Workshop 6.2 (C++ 5.2)

• iPlanet Application Server version 6.5

• A Java to IDL compiler (rmic of J2SE 1.3 and below has some problems; use

either rmic of J2SE 1.4 Beta or any other Java to IDL compiler)

• Implementation of the pass-by-value user-defined and Java native complex

types in C++. To ensure that the data types that are passed by value between

the EJB and the C++ client are correctly converted between the different

languages, you must provide C++ implementations of these types; this applies

to both the native Java types and the user-defined types.

References
• OMG IDLto Java Language Mapping

ftp://ftp.omg.org/pub/docs/ptc/00-01-08.pdf

• ORBIX 2000 Programmer’s Reference, C++ Edition

http://www.iona.com/docs/orbix2000/1.2.1/pguide_cpp/html/index.html

• ORBIX 2000 Programmer’s Guide, Java Edition

http://www.iona.com/docs/orbix2000/1.2.1/pguide_java/html/index.html

• ORBIX 2000 1.2.1 Documentation

http://www.iona.com/docs/orbix2000/1.2.1/index.html

• OpenORB RMI over IIOP (has a Java to IDL compiler)

http://www.openorb.org/rmioveriiop.html

C++ IIOP Client Applications (Unix Only)

276 iPlanet TM Application Server Developer’s Guide • February 2002

• Java 2 SDK 1.4 Download Page

http://java.sun.com/j2se/1.4/index.html

Preparing for C++ Client Development
Perform these steps before starting C++ client development:

1. Make sure all the required software is installed; see “Requirements,” on

page 275.

2. Make sure the stubs and skeletons in the EAR file have been generated with

the -iiop option of ejbc . If they have not been, edit the build.xml file to add

-iiop to the ejbc options and regenerate the EAR file.

3. Deploy the EJBs. You can use the J2EE guide samples (for example, the

currency converter and the confirmer) bundled with iPlanet Application

Server.

Data Type Assumptions and Limitations
Only double, int, long, short, float, char, boolean, and byte data type value passing

between the client and server have been tested. It is assumed that all other

standard CORBA datatypes for which there is IDL to Java/C++ language mapping

work. Passing a java.lang.BigDecimal throws a NO_IMPLEMENT exception.

For other data types (such as HashTable or other custom Java classes) that must be

passed by value, you must provide a native C++ implementation or provide a

wrapper over an existing C++ implementation of those classes (such as STL) that

conforms to the IDL generated for the Java classes.

NOTE According to the OMG IDL to Java Language Mapping, the use of

Java package names differing only in case is not supported. Using

class or interface names within the same package that differ only in

case is not supported either. Both of these are treated as errors.

Therefore, deployed beans must not have package names and class

names differing only in case. Since the J2EE guide samples have this

characteristic, you must modify them before deploying them. For an

example of this, see “Redeploying the Converter Sample for Use

with a C++ Client.”“Redeploying the Converter Sample for Use

with a C++ Client,” on page 288.

C++ IIOP Client Applications (Unix Only)

Chapter 10 Developing and Deploying CORBA-Based Clients 277

Generating the IDL Files
You can generate the IDL files in two ways:

• Using J2SE 1.4 rmic 2

• Using the OpenORB JavaToIDL Compiler

Using J2SE 1.4 rmic 2
To use rmic from J2SE 1.4, follow these steps:

1. Create a new directory for C++ client development. For example:

mkdir cppclient
cd cppclient

2. Execute rmic , for example (all on one line):

rmic -classpath ias_inst_dir/ias/APPS/j2eeguide-myconverter/j2eeguide-myconverterEjb:
ias_inst_dir/ias/classes/java/javax.jar -idl j2eeguide.myconfirmer.Confirmer

and (all on one line):

rmic -classpath ias_inst_dir/ias/APPS/j2eeguide-myconverter/j2eeguide-myconverterEjb:
ias_inst_dir/ias/classes/java/javax.jar -idl j2eeguide.myconfirmer.ConfirmerHome

3. Move the IDL files, for example:

mv j2eeguide/myconverter/Converter.idl .
mv j2eeguide/myconverter/ConverterHome.idl .

4. Combine the above two generated IDLs into a single one for convenience. For

example:

a. cat ConverterHome.idl >> Converter.idl

b. Edit Converter.idl and delete all the lines except those declaring the

j2eeguide and myconverter modules, the Converter and

ConverterHome interfaces, and the corresponding #pragma declarations.

c. Add the following lines to the beginning of the IDL file:

#include <omg/orb.idl>
#include "ejb.idl"
#include "_std_java.idl"

Here is the final IDL file output, for comparison:

C++ IIOP Client Applications (Unix Only)

278 iPlanet TM Application Server Developer’s Guide • February 2002

#include <omg/orb.idl>
#include "ejb.idl"
#include "_std_java.idl"
module j2eeguide {

module myconverter {
interface Converter : ::javax::ejb::EJBObject {

double dollarToYen(in double arg0) ;
double yenToEuro(in double arg0) ;

};
#pragma ID Converter
"RMI:j2eeguide.myconverter.Converter:0000000000000000"
interface ConverterHome : ::javax::ejb::EJBHome {

Converter create() raises(::javax::ejb::CreateEx);
};
#pragma ID ConverterHome

"RMI:j2eeguide.myconverter.ConverterHome:0000000000000000"
};

};

5. Copy the supplied _std_java.idl and ejb.idl files to the cppclient

directory.

Using the OpenORB JavaToIDL Compiler
Using the openorb JavaToIdl tool, copy the supplied openorb JAR files

(openorb_rmi-1.0.1.jar and openorb_tools-1.0.1.jar) to the current

directory. For example (all on one line):

java -cp openorb_rmi-1.0.1.jar:openorb_tools-1.0.1.jar: ias_inst_dir/ias/APPS/
j2eeguide-myconverter/j2eeguide-myconverterEjb:
ias_inst_dir/ias/classes/java/javax.jar org.openorb.rmi.compiler.JavaToIdl
j2eeguide.myconverter.Converter

and (all on one line):

java -cp openorb_rmi-1.0.1.jar:openorb_tools-1.0.1.jar: ias_inst_dir/ias/APPS/
j2eeguide-myconverter/j2eeguide-myconverterEjb:
ias_inst_dir/ias/classes/java/javax.jar org.openorb.rmi.compiler.JavaToIdl
j2eeguide.myconverter.ConverterHome

Generating CPP Files from IDL Files
To generate .cpp files from the .idl files, follow these steps:

1. Source the ORBIX environment setup script by executing the following

command:

C++ IIOP Client Applications (Unix Only)

Chapter 10 Developing and Deploying CORBA-Based Clients 279

. orbix_inst_dir/bin/ domain_env

For example:

. /opt/iona/bin/localhost_env

2. Execute the following command (all on one line):

orbix_inst_dir/bin/idlgen cpp_poa_genie.tcl -ns -all -complete Confirmer.idl -I. -I
orbix_inst_dir/orbix_art/1.2/idl

3. Edit the makefile and change the value IT_PRODUCT_DIR to the value

applicable to your installation.

4. Include -I. in CXXFLAGS.

5. Export the PATH to include the workshop6 bin directory at the beginning of

the path.

6. Execute the following command. You will get errors, which you will correct in

later steps.

make -e

7. Change CORBA to ::CORBA in the ejb.hh file, but only in the namespace

javax::rmi::CORBA .

8. Change EJBMetaData to javax::ejb::EJBMetaData .

9. Remove or comment out lines containing EJBMetaDataImpl in the makefile

and in client.cxx to prevent compilation errors.

10. Edit client.cxx in the following ways:

a. Comment out lines registering EJBMetaData, for example:

javax_ejb_EJBMetaDataFactory::_register_with_orb(orb);

b. Delete these lines:

tmp_ref = default_context->resolve_str("IT_GenieDemo");
CosNaming::NamingContext_var demo_context =

CosNaming::NamingContext::_narrow(tmp_ref);
assert(!CORBA::is_nil(demo_context));

c. Delete the generated code with the lookups for Converter , EJBObject ,

and EJBHome, identified by the following comments:

//Exercise interface j2eeguide::myconverter::Converter
//Exercise interface javax::ejb::EJBObject
//Exercise interface javax::ejb::EJBHome

d. Change the following lines:

C++ IIOP Client Applications (Unix Only)

280 iPlanet TM Application Server Developer’s Guide • February 2002

name = default_context->to_name("j2eeguide_myconfirmer_Confirmer");
tmp_ref = demo_context->resolve(name);

to:

name = default_context->to_name("ejb/MyMyConfirmer");
tmp_ref = default_context->resolve(name);

e. Comment out the generated code to call functions (beginning with

call_j2eeguide_) and insert code to call create and the business

methods. For example:

j2eeguide::myconverter::Converter_var converter =
ConverterHome4->create();

CORBA::Double yen = 4000;
CORBA::Double euro = converter->yenToEuro(yen);

11. Edit ejbC.cxx and change CORBA to ::CORBA wherever relevent. For example,

change it in the regular expression syntax:

s/^CORBA/::CORBA/g

s/ CORBA/ ::CORBA/g

s/namespace ::CORBA/namespace CORBA/g

s/\!CORBA/\!::CORBA/g

s/(CORBA/(::CORBA/g

s/ EJBMetaData/::javax::ejb::EJBMetaData/g

s/IT_CONST_CAST(::CORBA/IT_CONST_CAST(CORBA/g

12. Edit ConverterC.cxx file and change the operation name to a name in the

following pattern. The double underscores are literal.

function-name__return-type(pkg1_pkg2_class)__argument-type

The types should be the Java types. For example, if the Java type is int , the IDL

type is long , but the type represented in the operation should be int . You can

refer to the parameters of the _request method in the generated Java stubs (for

example _Converter_Stub.java , which is generated if the -gs option is

provided for ejbc in build.xml) to get the exact operation name. For example:

s/"create"/"create__j2eeguide_myconverter_Converter__void"/g
s/"yenToEuro"/"yenToEuro__double__double"/g
s/"dollorToYen"/"dollorToYen__double__double"/g

13. Execute the make:

make -e client

14. Execute the client:

C++ IIOP Client Applications (Unix Only)

Chapter 10 Developing and Deploying CORBA-Based Clients 281

./client

Enabling Security for C++ IIOP Applications
To enable security, you must link the client application with:

• The libgxorbixclientinterceptor.so library that comes with the iPlanet

Application Server version 6.5.

• The it_portable_interceptor library that comes with ORBIX.

The steps are as follows:

1. Insert the following into the line for CLIENT_LIBS in client’s makefile:

-lit_portable_interceptor -lgxorbixclientinterceptor

2. Insert the path to the location of libgxorbixclientinterceptor.so in the

LDLIBS setting in the makefile. For example:

-L/space/interceptor \

3. Insert the path to the location of libgxorbixclientinterceptor.so in

LD_LIBRARY_PATH . For example:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/space/interceptor

4. Rebuild the client:

make -e client

5. Set the environment variables IAS_RC_USERID and IAS_RC_PASSWORD

either from the shell or programmatically through putenv function, with the

user IDand password corresponding to an LDAP user. If set to null or if not set,

authentication won’t happen, and the user won’t be able to access beans that

are role-mapped. For example:

export IAS_RC_USERID=j2ee
export IAS_RC_PASSWORD=j2ee

6. Enable client interceptors and server interceptors as given in admin guide of

Orbix integration.

7. Execute the client:

./client

C++ IIOP Client Applications (Unix Only)

282 iPlanet TM Application Server Developer’s Guide • February 2002

Lookup for the EJB Home Interface
One of the first steps in coding an IIOP client is to perform a lookup of an EJB’s

home interface. In preparation for performing a lookup of the home interface, you

must set several environment properties. Then you provide a lookup name for the

EJB. The following example shows these steps:

//initialise the orb
global_orb = CORBA::ORB_init(argc, argv);

// Get the naming context for genie demonstrations.
tmp_ref = global_orb->resolve_initial_references("NameService");
CosNaming::NamingContext_var default_context =

CosNaming::NamingContext::_narrow(tmp_ref);
assert(!CORBA::is_nil(default_context));

//lookup the home
name = new CosNaming::Name(2);
name->length(2);
name[0].id = CORBA::string_dup("ejb");
name[0].kind = CORBA::string_dup("");
name[1].id = CORBA::string_dup("MyMyConfirmer");
name[1].kind = CORBA::string_dup("");
tmp_ref = default_context->resolve(name);

j2eeguide::myconfirmer::ConfirmerHome_var
ConfirmerHome=j2eeguide::myconfirmer::ConfirmerHome::_narrow(tmp_ref);

//call create
j2eeguide::myconfirmer::Confirmer_var Confirmer=ConfirmerHome->create();

//call business method
Confirmer->sendNotice(chars);

Client-Side Load Balancing and Failover
Although iPlanet Application Server provides server-side load balancing and

failover for IIOP access, you may consider implementing client side approaches to

further enhance the performance and availability of your application.

The naming service defines a repository of names that map to objects. A name

maps to one object only. ORBIX 2000 extends the naming service model to allow a

name to map to a group of objects. An object group is a collection of objects that can

increase or decrease in size dynamically. Each object group has a selection

algorithm. This algorithm is applied when a client resolves the name associated

with the object group. Three algorithms are supported:

• Round-robin selection

C++ IIOP Client Applications (Unix Only)

Chapter 10 Developing and Deploying CORBA-Based Clients 283

• Random selection

• Active load balancing selection

Object groups provide a way to replicate frequently requested objects and thereby

distribute the request-processing load. The naming service directs client requests to

the various replicated objects according to the object group’s selection algorithm.

The existence of an object group is transparent to the client, which resolves the

object group name in the same way that it resolves any other name.

You can set the flag ORBIX_LOADBALANCING=true or false in the iasenv.ksh file,

which sets the Java argument as follows:

-DORBIXLoadBalancing=$ORBIX_LOADBALANCING

Configuring the IIOP Bridge
If your installation of iPlanet Application Server does not already have the IIOP

Bridge process configured, you must start the iPlanet Application Server

Administrative tool to add an IIOP Bridge process to the application server

environment.

1. Start the iPlanet Application Server Administration Tool:

install_dir/ias/bin/ksvradmin

2. Connect to your application server instance and double click on the server

name icon to see a list of the processes defined for this instance of the

Application Server. You should see at least one kjs and possibly a single kxs

process (the kxs process is not required for IIOP access to EJBs). If you see a

cxs process, you already have an IIOP Bridge process defined in your

application server instance. In this case, double click the cxs process entry,

note the IIOP port number, and continue to the next section. If you don’t see a

Bridge process, continue to the next step to define one.

3. Select any of the existing process entries and then select File->New->Process.

4. Select cxs from the pull-down list of process types and enter a port number

(for example, port 10822) that does not conflict with the other port numbers

already in use by the kjs and kxs processes. Take the default IIOP port

number (9010) as long as it does not conflict with other port assignments in

your system environment. Click on OK to instantiate the process.

C++ IIOP Client Applications (Unix Only)

284 iPlanet TM Application Server Developer’s Guide • February 2002

5. After several seconds, you see the IIOP Bridge process running in the

Application Server environment. This process, along with all of the other

application server processes listed in the Administrative Tool, is automatically

started as the application server is restarted.

6. You can also check for the existence of the IIOP bridge process from the

command line. For example (each command is all on one line):

ps -ef | grep iiop

root 1153 1 0 17:00:15 ? 0:00 /bin/sh /usr/iPlanet/ias6/ias/bin/kjs -cset CCS0
-eng 3 -iiop -DORBinsPort=9010

This output shows an iPlanet Java Engine process started with the -iiop

option. This option informs this instance of the Java Engine to start itself as an

IIOP Bridge process rather than a J2EE web and EJB container process.

Instantiating a cxs process completes the server side configuration for IIOP

support.

Deploying C++ IIOP Client Applications
As you develop client applications, you will need to deploy a number of files from

your development environment to the client system. This section addresses the

underlying steps required to deploy an IIOP-capable client application in the

following sections:

• Client Deployment

• Server CLASSPATH Setting (SP2 and Prior)

Client Deployment
You must ensure that EJB-specific home and remote interfaces and their

corresponding stubs are deployed to the client system. For example, in the

Converter sample application, the following classes must be copied to the client

system:

Home and Remote Interface Classes:

ConverterHome.class

Converter.class

EJB-Specific iPlanet Client Stubs:

_Converter_Stub.class

_ConverterHome_Stub.class

C++ IIOP Client Applications (Unix Only)

Chapter 10 Developing and Deploying CORBA-Based Clients 285

Server CLASSPATH Setting (SP2 and Prior)
This section applies to iPlanet Application Server 6.0 Service Pack 2 (SP2) and

earlier. Service Packs 3 and later do not require the following configuration step. If

you are using SP3 or beyond, skip to the next section.

In iPlanet Application Server Service Pack 2 and earlier, to load EJB classes, the

IIOP Bridge process must be able to access the EJB stubs and home and remote

interfaces via the application server’s CLASSPATH. Before the first execution of

IIOP-based Java application client in SP2 or earlier, you must first modify the

CLASSPATH of the application server.

With the advent of iPlanet Application Server 6.0 SP2, registration of EJB-based

applications results in the EJB JAR file being expanded to the application server’s

deployment directory. By default, when a J2EE application such as

j2eeguide-converter.ear is deployed to the application server, the embedded

EJB JAR file, j2eeguideEjb.jar in this example, is expanded to:

install_dir/ias/APPS/j2eeguide-converter/j2eeguide-converterEjb/

When a stand-alone EJB JAR module (or WAR module) is deployed to iPlanet

Application Server, the default expansion location for the stand-alone module is:

install_dir/ias/APPS/modules/j2eeguide-converterEjb/

Prior to running the C++ IIOP client, you must add the appropriate module

directory to the CLASSPATH of the application server.

Performance Tuning IIOP
For deployment environments in which you expect the IIOP path to support more

than a handful of concurrent users, you should experiment with the tuning

guidelines described in this section. The default configuration of the JVM and the

underlying OS do not yield optimal performance and capacity when you are using

IIOP.

This section covers the following topics:

• Basic Tuning Approaches

• Enhancing Scalability

Basic Tuning Approaches
You should experiment with the following tuning recommendations in order to

find the best balance for your specific environment.

C++ IIOP Client Applications (Unix Only)

286 iPlanet TM Application Server Developer’s Guide • February 2002

Solaris File Descriptor Setting
On Solaris, setting the maximum number of open files property using ulimit has

the biggest impact on your efforts to support the maximum number of IIOP clients.

The default value for this property is 64 or 1024 depending on whether you are

running Solaris 2.6 or Solaris 8. To increase the hard limit, add the following

command to /etc/system and reboot it once:

set rlim_fd_max = 8192

You can verify this hard limit by using the following command:

ulimit -a -H

Once the above hard limit is set, you can increase the value of this property

explicitly (up to this limit) using the following command:

ulimit -n 8192

You can verify this limit by using the following command:

ulimit -a

For example, with the default ulimit of 64, a simple test driver can support only 25

concurrent clients, but with ulimit set to 8192 , the same test driver can support

120 concurrent clients. The test driver spawned multiple threads, each of which

performed a JNDI lookup and repeatedly called the same business method with a

think (delay) time of 500ms between business method calls, exchanging data of

about 100KB.

These settings apply to both IIOP clients (on Solaris) and to the IIOP Bridge

installed on a Solaris system. Refer to Solaris documentation for more information

on setting the file descriptor limits.

Enhancing Scalability
Beyond tuning the capacity of a single Bridge process and client systems, you can

improve the scalability of the IIOP environment by using multiple IIOP Bridge

processes. You may find that configuring multiple Bridge processes on the same

application server instance improves the scalability of your application

deployment. In some cases, you may want to use a number of application server

instances each configured with one or more Bridge processes.

In configurations where more than one Bridge process is active, you can partition

the client load by either statically mapping sets of clients to different Bridges or by

implementing your own logic on the client side to load balance against the known

Bridge processes.

C++ IIOP Client Applications (Unix Only)

Chapter 10 Developing and Deploying CORBA-Based Clients 287

Viewing IIOP Log Messages
Log messages generated by the IIOP path can be monitored by reviewing the log

file generated by the IIOP Bridge process. Since the IIOP Bridge process is a form of

a Java Engine (kjs), you monitor these logs in the same manner as you would

monitor the Java Engines supporting the web and EJB containers. To view the

appropriate log file, you must identify the Java Engine that is playing the role of

the IIOP Bridge.

Most developers use the tail -f command to monitor the application server log

files of the process of interest. To monitor the Java Engine logs in this manner,

follow these steps:

1. Navigate to the logs directory:

cd install_dir/ias/logs

2. Execute the tail command on one of the Java Engine (kjs) and the Executive

Service (kxs) processes:

tail -f kjs_2*

You must select the appropriate Java Engine log file to monitor. Java Engines

are numbered according to how they are defined in the Administration Tool.

Although the CXS (Bridge) process is typically the highest numbered Java

Engine log file, double check the port number information within the log file to

confirm which log files is generated by the CXS process.

3. Press Control-C to kill the tail command.

Sample C++ IIOP Applications
The Currency Converter sample application from Sun’s J2EE Developer’s Guide has

been bundled with iPlanet Application Server. This sample has been augmented

with detailed setup instructions for deploying the application to iPlanet

Application Server. It is recommended that you follow the detailed setup

instructions for this sample and exercise the Converter sample prior to deploying

other IIOP-based applications. Currency Converter setup documentation and

source code are available at the following locations:

install_dir/ias/ias-samples/j2eeguide/docs/converter.html

install_dir/ias/ias-samples/j2eeguide/converter/src/

C++ IIOP Client Applications (Unix Only)

288 iPlanet TM Application Server Developer’s Guide • February 2002

Redeploying the Converter Sample for Use with a C++ Client
Because deployed beans must not have package names and class names differing

only in case, you must follow these steps to redeploy the converter example for use

with a C++ IIOP client. You can use similar steps to redeploy other examples.

1. cd ias_inst_dir/ias/ias-samples/j2eeguide

2. cp -R converter myconverter

3. cd myconverter/src

4. Change package and other names in the build.xml , ejb-jar.xml , web.xml ,

application.xml , and schema/*.xml files as in the following table:

5. Execute this command:

ias_inst_dir/ias/bin/kguidgen

6. Copy the above generated guid, and replace the guid value in the <guid>

section of the ias-ejb-jar.xml file.

7. Execute this command again:

ias_inst_dir/ias/bin/kguidgen

8. Copy the above generated guid and replace the guid value in the <guid>

section of the ias-web.xml file.

9. mv j2eeguide/converter j2eeguide/myconverter

10. cd j2eeguide/myconverter

11. Change all the Java files to reflect the change in package names (for example,

change converter to myconverter) and in ConverterClient.java , change

the lookup name from MyConverter to MyMyConverter .

12. cd ../..

Table 10-2 Changes to XML files for the Converter sample

What to Change Before After

package name converter myconverter

appname, display-name ,

and context-root
j2eeguide-converter j2eeguide-myconverter

ejb-name and ejb-link MyConverter MyMyConverter

C++ IIOP Client Applications (Unix Only)

Chapter 10 Developing and Deploying CORBA-Based Clients 289

13. ias_inst_dir/ias/bin/build

14. cd ../assemble/ear

15. ias_inst_dir/ias/bin/iasdeploy deployapp j2eeguide-myconveter.ear

16. For iPlanet Application Server version 6.0 SP2 and prior versions, perform

these additional steps:

a. Edit the ias_inst_dir/ias/bin/kjs script and add the new directory

ias_inst_dir/ias/APPS/j2eeguide-myconverter/j2eeguide-myconverter

Ejb to the classpath.

b. Restart the iPlanet Application Server.

C++ IIOP Client Applications (Unix Only)

290 iPlanet TM Application Server Developer’s Guide • February 2002

291

Chapter 11

Packaging for Deployment

This chapter describes the contents of iPlanet Application Server modules and how

these modules are packaged separately or together in an application.

For design considerations that affect packaging, see “Modularizing Applications,”

on page 30.

iPlanet Application Server modules and applications include J2EE standard

elements and iPlanet Application Server specific elements. Only iPlanet

Application Server specific elements are described in detail in this chapter.

The following topics are presented in this chapter:

• Overview of Packaging and Deployment

• Assembling Modules and Applications

• Deploying Modules and Applications

• Introducing XML DTDs

• Web Application XML DTD

• EJB XML DTD

• RMI/IIOP Client XML DTD

• Resource XML DTD

Overview of Packaging and Deployment
Application assembly (also known as packaging) is the process of combining

discrete components of an application into a single unit that can be deployed to a

J2EE-compliant application server. A package can be classified either as a module

or as a full-fledged application.

Overview of Packaging and Deployment

292 iPlanet TM Application Server Developer’s Guide • February 2002

Modules
A J2EE module is a collection of one or more J2EE components of the same

container type with two deployment descriptors (DDs) of that type. One DD is

J2EE standard, the other is iPlanet Application Server specific. Types of J2EE

modules are as follows:

• Web Application Archive (WAR): A web application is a collection of servlets,

HTML pages, classes, and other resources that can be bundled and deployed to

several J2EE application servers. A WAR file can consist of the following items:

servlets, JSPs, ulitility classes, static docs, client-side applets, beans, and bean

classes, and deployment descriptors (web.xml and ias-web.xml).

• EJB JAR File: The EJB JAR file is the standard format for packaging enterprise

beans. This file contains the bean classes (home, remote, and implementation),

all of the utility classes, and the deployment descriptors (ejb-jar.xml and

ias-ejb-jar.xml).

• RMI/IIOP Client JAR File: An RMI/IIOP Client is an iPlanet Application

Server specific type of J2EE client. An RMI/IIOP Client supports the standard

J2EE Application Client specifications, and in addition, supports direct access

to the iPlanet Application Server. Its deployment descriptors are

app-client.xml and ias-app-client.xml .

• Resource JAR File: Examples of resources are JDBC datasources, Java Mail, or

JMS. Each iPlanet Application Server resource has a resource XML file.

Package definitions must be used in the source code of all modules so the

classloader can properly locate the classes after the modules have been deployed.

Because the information in a DD is declarative, it can be changed without requiring

modifications to source code. At run time, the J2EE server reads this information

and acts accordingly.

Overview of Packaging and Deployment

Chapter 11 Packaging for Deployment 293

EJB JAR and Web modules can also be packaged as separate .war or .jar files and

deployed separately, outside of any application, as in the following figure.

Applications
A J2EE application is a logical collection of one or more J2EE modules tied together

by application deployment descriptors. Components can be assembled at either the

module or the application level. Components can also be deployed at either the

module or the application level.

EJB

EJB

EJB

EJB
module

Web client
module

(.jar file)

(.war file)

J2EE Modules
(.jar and .war files)

J2EE
Components

Administration
and

Deployment

ias-ejb-jar.xml

iAS DD

ias-web.xml

iAS DD

DD
ejb-jar.xml

DD
web.xmlWEB

Servlet

WEB
JSP

Tools

Overview of Packaging and Deployment

294 iPlanet TM Application Server Developer’s Guide • February 2002

The following diagram illustrates how components are packaged into modules and

then assembled into an iPlanet Application Server application .ear file ready for

deployment.

Each module has an iPlanet Application Server DD and a J2EE DD. The iPlanet

Application Server Deployment Tool uses the DDs to deploy the application

components and to register the resources with the iPlanet Application Server.

An application consists of one or more modules and a J2EE application DD. All

items are packaged, using the Java ARchive (.jar) file format, into one file with an

extension of .ear .

EJB

EJB

EJB

EJB
module

Web client
module

(.jar file)

(.war file)

J2EE Application
(.ear file)

J2EE Modules
(.jar and .war files)

J2EE
Components

Administration
and

Deployment

ias-ejb-jar.xml

iAS DD

ias-web.xml

iAS DD

ias-app-client.xml

iAS DD

DD

RMI/IIOP client
module
(.jar file)

ejb-jar.xml

DD
web.xml

DD

WEB
Servlet

WEB
JSP

iPlanet Application Server File Set

Tools

app-client.xml

application.xml

DD

Assembling Modules and Applications

Chapter 11 Packaging for Deployment 295

Naming Standards
EJB JAR and WAR module names identified by the first portion of their filenames

(without the .war and .jar extensions) must be unique when deployed to the

Application Server. Use a Java package-like naming scheme for module filenames,

EAR filenames, and EJB names as found in the <ejb-name> portion of the

ejb-jar.xml files. The use of this package-like naming scheme ensures that name

collisions do not occur. The benefits of this naming practice apply not only to the

iPlanet Application Server, but to other J2EE application servers as well.

Assembling Modules and Applications
Assembling (or packaging) modules and applications in iPlanet Application Server

conforms to all of the customary J2EE-defined specifications. The only difference is

that when you assemble in iPlanet Application Server, you must include iPlanet

Application Server-specific deployment descriptors (such as ias-web.xml and

ias-ejb-jar.xml) that enhance the functionality of the application server. For

example, iPlanet Application Server provides features such as load balancing

(distributing tasks equally among servers in a cluster) and failover (assigning tasks

to another server of one server fails).

This section covers the following topics:

• Sample Files

• Assembling WAR Modules

• Assembling EJB JAR Applications

• Assembling RMI/IIOP Applications

The iPlanet Application Server provides three methods for packaging a module or

an application. These three tools are listed here and described in greater detail

under each topic.

• CLI Tool: When you use the Command Line Interface as an assembly tool, you

use JAR files and the automated assembly features available through Ant, a

Java-based build tool available through Jakarta Apache:

http://jakarta.apache.org/ant/

• Deployment Tool: You can use the Deployment Tool (DeployTool) provided

with iPlanet Application Server, to both assemble and deploy J2EE

applications and modules.

Assembling Modules and Applications

296 iPlanet TM Application Server Developer’s Guide • February 2002

• Visual Café Plug-in: The iPlanet's Visual Café Plug-in integrates the

WebGain® Visual Café tool with iPlanet Application Server:

http://www.iplanet.com/products/application_server_plug/home_2_1_1aj.html

You can use the Visual Café development features to automate the creation of

iPlanet Application Server-specific DDs, WAR files, and JAR files.

Sample Files
Before assembling the sample J2EE application, you must compile the following

Java sources:

• Servlet (GreeterServlet.java)

• EJBs (GreeterHome.java , GreeterEJB.java , Greeter.java)

• JSP (GreeterView.jsp)

• Static file (HWSample)

All of these files are located here:

http://developer.iplanet.com/docs/articles/packaging/packaging_print.jsp

The compilation process can be automated using the Ant tool. See the Compile

section for the relevant coding information:

http://developer.iplanet.com/docs/articles/packaging/AntCompile.html

See the Ant XML file for the entire Ant build file:

http://developer.iplanet.com/docs/articles/packaging/Ant.xml

Assembling WAR Modules
This section describes procedures for assembling WAR modules in three different

ways:

• Using the Command Line Interface (CLI)

• Using the Deployment Tool

• Using the Visual Café Plug-in

Assembling Modules and Applications

Chapter 11 Packaging for Deployment 297

Using the Command Line Interface (CLI)
To create a WAR module using the CLI, follow these steps:

1. Create a working directory: working_dir/cli .

2. Create two deployment descriptors with these names: web.xml and

ias-web.xml . Examples are here:

http://developer.iplanet.com/docs/articles/packaging/web.xml

http://developer.iplanet.com/docs/articles/packaging/ias-web.xml

3. Move the contents of the WAR file to the directory that you created in step 1.

For more information, see:

http://developer.iplanet.com/docs/articles/packaging/war.html

4. Go to this directory: working_dir/cli/assemble/war .

5. Execute this command:

jar -cvf helloworldWar.war *

This creates the WAR file helloworldWar.war .

http://developer.iplanet.com/docs/articles/packaging/AntCompile.html

TIP The first time, you can create the deployment descriptors using the

deployment tool. The resulting WAR file can be extracted to yield

the deployment descriptors.

TIP The CLI assembly process can be automated using the Ant tool. To

learn more, see the following URL.

Assembling Modules and Applications

298 iPlanet TM Application Server Developer’s Guide • February 2002

Using the Deployment Tool
To assemble a WAR module using the iPlanet Deployment Tool, follow these steps:

1. Use the deployment tool to create a new WAR file called helloworld.war in

this directory: working_dir/deploytool .

2. Use the Deployment Tool Wizard to insert these web files: GreeterView.jsp,

index.html, GreeterServlet.class

3. Resolve the files by clicking on the Resolve button in the lower right portion of

the screen.

4. Click Finish. This creates the war file

working_dir/deploytool/helloworldWar.war .

The descriptors (both web.xml and ias-web.xml) have been created by the

Deployment Tool.

Assembling Modules and Applications

Chapter 11 Packaging for Deployment 299

5. You can now view you WAR module using either the file view:

or the component view:

TIP iPlanet recommends that you use the Deployment Tool to build the

first cycle of packaging even when you are using the CLI method of

assembly.

Assembling Modules and Applications

300 iPlanet TM Application Server Developer’s Guide • February 2002

Using the Visual Café Plug-in
To assemble a WAR module using the iPlanet Visual Café Plug-in, follow these

steps:

1. Download and install the Visual Café Plug-in for iPlanet Application Server:

http://www.iplanet.com/products/application_server_plug/home_2_1_1aj.html

2. Create a new iPlanet Application Server Web Application at

working_dir/visualcafe .

Name this file helloworld.vep .

Assembling Modules and Applications

Chapter 11 Packaging for Deployment 301

3. Insert these web files into the application: GreeterServlet.java ,

GreeterView.jsp , index.html .

4. Add any required helper classes.

5. Compile the source (GreeterServlet.java) and deploy the application. The

deployment descriptors are created when the module is deployed.

Assembling EJB JAR Applications
This section describes procedures for assembling EJB JAR modules in two different

ways:

• Using the Command Line Interface (CLI)

• Using the Deployment Tool

NOTE For more information about the Visual Café Plug-in for iPlanet

Application Server, see the documentation included in the plug-in

download.

Assembling Modules and Applications

302 iPlanet TM Application Server Developer’s Guide • February 2002

Using the Command Line Interface (CLI)
To create a J2EE application using the CLI, follow these steps:

1. Create a working directory with this name: working_dir/cli .

2. Create the deployment descriptor application.xml . An example is here:

http://developer.iplanet.com/docs/articles/packaging/application.xml

3. Move the deployment descriptor, the WAR file, and the EJB JAR file to the

directory that you created in step 1. A list is here:

http://developer.iplanet.com/docs/articles/packaging/app.html

4. Go to your working directory.

5. Execute this command:

jar -cvf helloworld.ear *

This command creates the J2EE application helloworld.ear .

Using the Deployment Tool
To assemble a J2EE application using the iPlanet Deployment Tool, follow these

steps:

1. Use the deployment tool to create a new EAR file called helloworld.ear in this

directory: working_dir/deploytool .

Assembling Modules and Applications

Chapter 11 Packaging for Deployment 303

2. Use the Deployment Tool Wizard to insert the EJB JAR file

helloworldEJB.jar and the WAR file helloworldWAR.war .

3. Resolve the files by clicking on the Resolve button in the lower right portion of

the screen.

4. Remove the path up to the root of the application and click the Update button.

5. Click Finish. This creates the EAR file

working_dir/deploytool/helloworld.ear . The deployment descriptor

(application.xml) has already been created.

Assembling Modules and Applications

304 iPlanet TM Application Server Developer’s Guide • February 2002

6. You can now view your application using the EAR file view:

or the EAR component view:

7. Verify your work using the Verify selection from the File menu.

Assembling Modules and Applications

Chapter 11 Packaging for Deployment 305

Assembling RMI/IIOP Applications
This section provides some brief pointers for assembling RMI/IIOP applications,

but you should first read Chapter 10, “Developing and Deploying CORBA-Based

Clients.”

For an example demonstrating the packaging and deployment of a simple

RMII/IIOP application, see:

http://developer.iplanet.com/appserver/samples/pkging/docs/sampleD.html

RMI/IIOP applications can be divided into two types:

• Simple Clients: These clients do not have the container services provided by

iasacc.jar and they do not have an application xml.

• Application Client Containers: These are J2EE 1.2-compliant clients that

include a deployment descriptor and have access to additional services.

In the iPlanet Application Server, you should keep the following points in mind

while packaging an RMI/IIOP application:

On the Server Side:

• Configure CXS (Corba eXecutive Service) from the iPlanet Application Server

Administration Tool.

• Use the Deployment Tool to generate the RMI/IIOP stubs and skeletons.

On the Client Side:

• Include the required JAR files (iasclient.jar , javax.jar , jms.jar ,

mail.jar , and servlet.jar) in the client class path.

• Include the client-side stubs for the EJB. These are provided by the

Deployment Tool. Include iasacc.jar (ACCs only).

• Include application-client.xml (ACCs only).

TIP iPlanet recommends that you use the Deployment Tool for the first

cycle of packaging even when you are using the CLI method of

assembly.

TIP All files referred to here can be found in iasclient.tar (on Unix)

or iasclient.zip (on NT).

Deploying Modules and Applications

306 iPlanet TM Application Server Developer’s Guide • February 2002

Deploying Modules and Applications
This section describes the different ways to deploy J2EE applications and modules

to the iPlanet Application Server. It covers the following topics:

• Deployment by Module

• Deployment by Application

• Deploying RMI/IIOP Clients

• Deploying Static Content

• Tools for Deployment

• General Rules About Deployment

Deployment by Module
Individual modules can be deployed independently of applications. Module-based

registration and deployment is preferable when shared components need to be

accessed by:

• Other modules

• J2EE Applications

• RMI/IIOP clients (Module-based registration allows shared access to a bean

from an RMI/IIOP client, a servlet, or an EJB.)

To register a module, you execute this command:

iasdeploy deploymodule module_name

Modules can be combined into an EAR file and then deployed as a single module

using the same command. This is similar to deploying the modules of the EAR

independently. The runtime registry and file system implications of module-based

registration are described in Appendix B, “Runtime Considerations.”

For alternative ways to deploy a module, see “Tools for Deployment,” on page 307.

Deployment by Application
To register a J2EE application, you execute this command:

iasdeploy deployapp app_name

Deploying Modules and Applications

Chapter 11 Packaging for Deployment 307

The runtime registry and file system implications of module-based registration are

described in Appendix B, “Runtime Considerations.”

For alternative ways to deploy an application, see “Tools for Deployment,” on

page 307.

Deploying RMI/IIOP Clients
Deploying an RMI/IIOP client is a two-step process:

1. Install the EJB JAR that needs to be accessed by the RMI/IIOP client.

2. Package the necessary client files (as described in “Assembling RMI/IIOP

Applications,” on page 305), create the client code, and then execute the client

from the client machine.

Deploying Static Content
Static content (HTML, images, etc) can be hosted both on the web server and on the

iPlanet Application Server. However, when a WAR is registered, the static content

gets deployed on the application server. All of the packaging samples shipped with

iPlanet Application Server host the static content on the application server.

For example, to access a static file index.html on the application server, use:

http:// server: port/NASApp/< context_root/index.html

Tools for Deployment
This section discusses the various tools that can be used to deploy modules and

applications. The deployment tools include:

• The iasdeploy Command

• The iPlanet Deployment Tool

• The iPlanet Visual Café Plug-in

The iasdeploy Command
The iasdeploy command is a CLI tool that you can use to register and deploy both

modules and applications on local servers. To deploy a module, use this command:

iasdeploy deploymodule module_name

Deploying Modules and Applications

308 iPlanet TM Application Server Developer’s Guide • February 2002

To deploy an application, use this command:

iasdeploy deployapp app_name

The iPlanet Deployment Tool
The iPlanet Deployment Tool can be used to deploy modules and applications to

both local and remote iPlanet Application Server sites. To use this tool, follow these

steps:

1. Open the WAR, JAR, or EAR file that needs to be deployed. Any one of these

can be deployed independently.

2. Select Deploy from the File menu.

3. Click the Register button.

4. Register the deployment targets.

5. Highlight the appropriate server, and click the Deploy button.

The iPlanet Visual Café Plug-in
The iPlanet plug-in to the Visual Café allows you to deploy in an Integrated

Development Environment (IDE) context. Using this tool, assembly and

deployment occur together. For details, see the documentation that is provided

when you download the plug-in.

General Rules About Deployment
There are a few general rules that you should keep in mind when deploying

modules and applications. These are described here.

Redeploying an Application or Module
When an application or module is redeployed, some file system content and some

Application Server registry settings are not overwritten or removed. This can lead

to older settings remaining in effect after a redeployment. To perform a clean

redeployment, remove the application or module before redeploying it.

Deploying to an iPlanet Application Server Cluster
When an application is deployed to a cluster of iPlanet Application Server servers,

it needs to be registered on each server individually. Although the shared

information is stored on LDAP, which is accessed by all the servers in a cluster, the

file system entries must reside on every server.

Introducing XML DTDs

Chapter 11 Packaging for Deployment 309

Access to Shared Frameworks
When J2EE applications and modules use shared framework classes (such as

components and libraries) the classes can be put in the System Classpath rather

than in an application or module. If you package a large, shared library into every

module that uses it, the result is a huge file that takes too long to register with the

server. In addition, several versions of the same class could exist in different

classloaders, which is a waste of resources.

For more information about the system classloader, see Appendix B, “Runtime

Considerations.”

The Cocoon example (part of the XML samples) that ships with iPlanet Application

Server is a good example of the use of frameworks.

Introducing XML DTDs
The Document Type Definition (DTD) defines the XML grammar of a Deployment

Descriptor (DD). There are two DD levels: application level descriptors and

component level descriptors.

The iPlanet Application Server requires DDs to run an application. The DDs are

XML files containing metadata describing the deployment information about the

J2EE modules (such as servlets, JSPs, and EJBs) that make up an application. The

information in each XML file is stored in an iPlanet Application Server internal

registry.

Each application module must have a J2EE DD file. Additionally, each application

component must be associated with a Globally Unique IDentifier, or a GUID.

The following lists the DD types supported by the iPlanet Application Server:

• application DD

• web application DD and an iPlanet Application Server web application DD

• EJB DD and an iPlanet Application Server EJB DD

• application client DD and an iPlanet Application Server RMI/IIOP client DD

• iPlanet Application Server resource DD

Introducing XML DTDs

310 iPlanet TM Application Server Developer’s Guide • February 2002

J2EE Standard Descriptors
The J2EE platform provides packaging and deployment facilities. These facilities

use JAR files as the standard package for components and applications, and

XML-based DDs for customizing parameters. For more information on the J2EE

packaging and deployment process, see Developing Enterprise Applications with

the J2EE, v 1.0, Chapter 7.

The J2EE standard DDs are described in the J2EE specification, v1.1. For more

information on these standard DDs, see the following specifications:

• Java 2 Platform Enterprise Edition Specification, v1.2, Chapter 8, “Application

Assembly and Deployment - J2EE:application XML DTD”

• Java 2 Platform Enterprise Edition Specification, v1.2, Chapter 9, “Application

Clients - J2EE:application-client XML DTD”

• JavaServer Pages Specification, v1.1, Chapter 7, “JSP Pages as XML

Documents”

• JavaServer Pages Specification, v1.1, Chapter 5, “Tag Extensions”

• Java Servlet Specification, v2.2 Chapter 13, “Deployment Descriptor”

• Enterprise JavaBeans Specification, v1.1, Chapter 16, “Deployment Descriptor”

Creating Deployment Descriptors
All DDs for an iPlanet Application Server application are created using the

Deployment Tool. For more information on these procedures, see the Deployment
Tool Online Help.

Document Type Definition
The DTD describes the DD files structure and class properties. Each DD has exactly

one element that completely contains all other elements (or subelements).

The element descriptions found in XML files are presented in a table format. These

element tables have several fields to describe the element’s purpose and setting

parameters. Some elements are hierarchical, meaning the parameters have other

elements (or subelements). If a parameter contains an element, the element

description is found in another table describing the element. Table 11-1 shows the

supported DTD entries.

Introducing XML DTDs

Chapter 11 Packaging for Deployment 311

The iPlanet Application Server Registry
The iPlanet Application Server registry is a collection of application metadata,

organized in a tree, that is continually available in active memory or on a readily

accessible directory server. The process by which the iPlanet Application Server

gains access to servlets, EJBs, and other application resources is called registration,

because it involves placing entries in the iPlanet Application Server registry for

each item.

You can change some information in the registry at runtime using the iPlanet

Application Server Administrator Tool. For more information about the registry

and the Administrator Tool, see the iPlanet Application Server Deployment Tool

Help and the Administrator’s Guide.

A Globally Unique Identifier
A GUID is a 128-bit hexadecimal number assigned to EJBs, servlets, and optionally

to JSPs. They are automatically generated by the Deployment Tool.

GUIDs are guaranteed to be globally unique, which makes them ideal for

identifying components in a large scale heterogeneous system such as an iPlanet

Application Server application.

GUIDs are normally assigned automatically by the Deployment Tool. You can

manually generate a GUIDby using a utility named kguidgen . kguidgen is installed

by default into the directory BasePath/bin . That directory must be listed in your

search path (your PATH environment variable in order to generate a GUID).

To generate a new GUID, simply run kguidgen from a command line or window.

Table 11-1 Document Type Definition

Type Description

Element Element name as it appears in the XML file and an element description.

Sub Elements Lists the elements contained by this element.

Web Application XML DTD

312 iPlanet TM Application Server Developer’s Guide • February 2002

Web Application XML DTD
This section describes a web application, the web application module and the web

application DD. DDs are created using the Deployment Tool. For more

information, see the iPlanet Application Server Deployment Tool Help and the

Administrator’s Guide.

Web Application Overview
Web applications run on web servers and may consist of servlets, JSPs, JSP Tag

libraries, HTML pages, classes and other resources. A web application’s location is

rooted at a specific path within the web server. A web application’s instance must

only be run on one Virtual Machine (VM) at any given time, unless the application

is marked as distributable by its DD. When marked as distributable, the

application may run on more than one VM at any given time and must follow a

more restrictive rule set outlined by the Java Servlet 2.2 specification.

A web application is a composite of the following items:

• Servlets

• JSPs

• Utility Classes

• Static documents (HTML, images, sounds, and so on)

• Client side applets, beans and classes

• Descriptive meta information bundling the above items together

A web application is created by first assembling all needed web components into a

web application module along with its module DD. Next, the web application

module is packaged with all other modules that are used by the J2EE application

along with the application DD into the final web application that is ready for

deployment. For more information on J2EE assembly and deployment, see the J2EE

specification, Chapter 8.

Web Application XML DTD
This section provides the XML DTD for the iPlanet Application Server specific web

application DD. For more information on the standard J2EE application DD, see

the J2EE specification, section 8.4.

Web Application XML DTD

Chapter 11 Packaging for Deployment 313

The web application DD supports element definitions that provide the following

information:

• servlet information

• session information

• EJB reference information

• Resource reference information

• Specifying servlet information

Element for Specifying an iPlanet Application Server Web Application
Table 11-2 shows the <ias-web-app> element and sub elements used with the

iPlanet Application Server web application DD root element.

Elements for Specifying Servlet Configuration Information
Table 11-3 shows the servlet sub element contains configuration information

about a servlet.

Table 11-2 <ias-web-app> Sub Elements

Sub Element Repeat Rule Contains Default Description

servlet zero or more elements none Contains the servlet configuration information.

session-info zero or one elements none Specifies the session information.

ejb-ref zero or more elements none Specifies the absolute JNDI name storage location

of the corresponding J2EE XML ejb-ref entry.

resource-ref zero or more elements none Specifies the absolute JNDI name storage location

of the ejb-link in the corresponding J2EE XML

file ejb-ref entry.

nlsinfo zero or one elements none NLS settings descriptor.

role-mapping zero or

many

elements none LDAP role mapping descriptor.

Table 11-3 servlet Sub Elements

Sub Element Repeat Rule Contains Default Description

servlet-name one and

only one

string none The servlet name. This name must

match the servlet-name parameter in

the J2EE web app XML exactly.

Web Application XML DTD

314 iPlanet TM Application Server Developer’s Guide • February 2002

Elements for Specifying Servlet Characteristics
Table 11-4 shows the servlet-info sub element which is used to describe the

optional characteristics about a servlet.

guid one and

only one

string none A string representing the guid for the

servlet.

servlet-info zero or one elements none Optional servlet characteristics.

validationRequired zero or one boolean “false” Specifies if the input parameter needs to

be validated.

error-handler zero or one string none Describes the servlet error handler.

parameters zero to more elements none Describes all input parameters to be

validated.

param-group zero to more elements none Each parameter group is represented by

an event source name and the associated

parameters.

Table 11-4 servlet-info Sub Elements

Sub Element Repeat Rule Contains Default Description

sticky zero or one boolean “false” If sticky is “true”, the servlet exhibits

session affinity and is only load-balanced

if no session exists. Once a session is

created in a given engine, subsequent

requests for sticky servlets continues to

be routed to the same engine.

encrypt zero or one boolean “false” Optional flag indicating whether

communications to the servlet are

encrypted (“true”) or not (“false”).

caching zero or one elements none Specifies caching criteria for the servlet.

number-of-singles zero or one integer 10 The number of objects in the servlet pool

when SingleThread mode is used.

disable-reload zero or one boolean false This is used to disable reloading of

servlets when dirty. Legal values are

true or false .

Table 11-3 servlet Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description

Web Application XML DTD

Chapter 11 Packaging for Deployment 315

Elements for Specifying Servlet Validation
Table 11-5 shows the validation-required sub element which is used to verify

the input about a servlet should be validated.

Elements for Specifying Servlet Caching
Table 11-6 shows the caching sub element, which is used to describe caching

criteria for the servlet. caching is disabled by not defining the caching element.

server-info zero or

many

elements none Optional server information including

server and load balancing enabling

and/or disabling.

server-ip one and

only one

string none Server IP address.

server-port one and

only one

string none Executive Server’s port number.

sticky-lb zero or

many

boolean servlet
-info
sticky
setting

Sets sticky load balancing. Legal values

are true or false . If set overrides the

setting of the servlet-info .

enable zero or

many

boolean true Specifies if the server is enabled or not.

Legal values are true or false .

Table 11-5 validation-required Sub Elements

Sub Element Repeat Rule Contains Default Description

validation-required one and

only one

boolean false Specifies whether or not the input

parameters should be verified.

Table 11-6 caching Sub Elements

Sub Element Repeat Rule Contains Default Description

cache-timeout one and

only one

integer none Sets the servlet caching

timeout (in seconds). If the

value is 0, caching is

disabled.

Table 11-4 servlet-info Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description

Web Application XML DTD

316 iPlanet TM Application Server Developer’s Guide • February 2002

Examples for Setting Cache Criteria and Cache Option
The following examples provide some common usages and cache criteria element

settings.

Example 1
<cache-criteria>EmployeeCode</cache-criteria>

This means caching is enabled if EmployeeCode is in the input parameter list.

Example 2
<cache-criteria>stock=NSCP</cache-criteria>

This means caching is enabled if the stock input parameter value is NSCP

Example 3
<cache-criteria>*</cache-criteria>

This means caching is enabled whenever the input parameter values are the same

as the cached value.

Example 4
<cache-criteria>dept=sales|marketing|support</cache-criteria>

This means caching is enabled if the dept parameter value is sales, marketing, or

support.

Example 5
<cache-criteria>salary=40000-60000</cache-criteria>

cache-size one and

only one

integer none Sets the cache size. A value

of “0” disables caching.

cache-criteria one and

only one

string where the syntax

is any value of arg in

the input parameter list;

for details, see “Caching

Servlet Results,” on

page 373.

none Criteria expression

containing a string of

comma delimited

descriptors, each descriptor

defining a match with one

of the input parameters to

the servlet.

cache-option one and

only one

String of either

TIMEOUT_CREATE or

TIMEOUT_LASTACCESS

TIMEOUT_
LASTACCESS

Sets the cache timeout

option.

Table 11-6 caching Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description

Web Application XML DTD

Chapter 11 Packaging for Deployment 317

This means caching is enabled when the input parameter value of salary is

between 40000 and 60000 .

Example 6
<cache-option>TIMEOUT_CREATE</cache-option>

This means it takes the cache timeout value from the creation time.

Example 7
<cache-option>TIMEOUT_LASTACCESS</cache-option>

This means it takes the cache timeout based on the last accessed time.

Elements for Specifying Servlet Parameters
Table 11-7 shows the parameters element which is used to describe the input

parameters to be validated.

Elements for Specifying Servlet Sub Parameters
Table 11-8 shows the param sub elements where each parameter is represented by a

name and the rules that are applied to it for validation.

Elements for Specifying Servlet Input Field
Table 11-9 shows the input-field sub elements which is used to detail the input

parameter.

Table 11-7 parameters Sub Elements

Sub Element Repeat Rule Contains Default Description

param zero or more elements none Specifies each parameter by name and the rules

applied to it for validation.

Table 11-8 param Sub Elements

Sub Element Repeat Rule Contains Default Description

param-name one and only one string none Input parameter name.

input-fields one and only one elements none This describes the input parameter details.

Web Application XML DTD

318 iPlanet TM Application Server Developer’s Guide • February 2002

Elements for Specifying Servlet Parameter Groups
Table 11-10 shows the param-group sub elements where each parameter group is

represented by an event source name and the associated parameters.

Elements for Specifying Session Information
Table 11-11 shows the session-info elements which is used to specifies session

information.

Table 11-9 input-field Sub Elements

Sub Element Repeat Rule Contains Default Description

input-required zero or one boolean none Specifies whether the input parameter is

required to exist, that is, whether the

field should be part of the input list.

input-rule zero or one string none Specifies the input rule being applied

for validation on the input parameter.

format zero to one string in

date/time

format

none Specifies the format for date/time to be

applied for validation on the input

parameter.

in-session zero to one string none Specifies if the parameter is in cache

(session) for validation.

param-error-handler zero or one string none Specifies the parameter error handler.

Table 11-10 param-group Sub Elements

Sub Element Repeat Rule Contains Default Description

param-group-name one and

only one

string none Parameter group name.

param-input one or more string none Parameter input name associated with the

parameter group.

Table 11-11 session-info Sub Elements

Sub Element Repeat Rule Contains Default Description

impl one and

only one

string of either

distributed
or lite

none A session can either be a distributed,

fault-tolerant session or a lightweight

local session only.

Web Application XML DTD

Chapter 11 Packaging for Deployment 319

timeout-type zero or one string of either

last-access
or creation

last-
access

Session timeouts are normally measured

in “time since last access.” Alternatively,

an absolute timeout can be specified as

“time since session creation.”

timeout zero or one positive

integer

representing

minutes

30 minutes Number of session timeout minutes

before a timeout. If unspecified, a system

wide default session timeout is used.

This value and the <session-timeout>
value in web.xml are stored in the same

place internally. Changing either value

changes the other value as well.

secure zero or one boolean false Specifies the session can only be visible to

a secure (HTTPS) server.

domain zero or one string name of

the domain

that set the

cookie

none Specifies the application domain used to

set the session domain cookie.

The domain string argument must

contain at least 2 or 3 periods (3

period-domains apply to domains like

acme.co.uk).

If the domain is set to acme.com , then the

session is visible to Who.acme.com ,

bar.asme.com , and so on.

path zero or one String value of

the URL for

the session

cookie starting

with “/ ”.

The URL

thatcreated

the cookie.

Specifies the session cookie path. A

non-existent path implies the same path

as the one set in the cookie is used.

For example, the path /phoenix matches

/phoenix/types/bird.html and

/phoenix/birds.html .

scope zero or one String

identifying the

other

application.

none Grouping name that selects what other

applications can access the session.

For example, if the domain is set to

acme.com , then the session is visible to

Who.acme.com , bar.acme.com , and so

on.

dsync-type zero or one string of either

dsync-local
or dsync-
distributed

none Specifies the DSync session type.

Table 11-11 session-info Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description

Web Application XML DTD

320 iPlanet TM Application Server Developer’s Guide • February 2002

Elements for Specifying EJB Reference Information
Table 11-12 shows the ejb-ref sub elements which are the absolute jndi-name

storage place for the ejb-link in the corresponding J2EE XML file ejb-ref entry.

Elements for Specifying Resource Reference Information
Table 11-13 shows the resource-ref sub elements which are the absolute

jndi-name storage place for the resource-ref in the corresponding J2EE XML file

resource-ref entry.

Elements for Specifying NLS Settings
Table 11-14 shows the nlsinfo sub elements which contains the configuration

information about the application’s NLS settings.

Table 11-12 ejb-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

ejb-ref-name one and only one string none The ejb-link in the corresponding J2EE

XML file ejb-ref entry.

jndi-name one and only one string none The absolute jndi-name .

Table 11-13 resource-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

resource-ref-name one and only one string none The resource-ref name in the

corresponding J2EE XML file

resource-ref entry.

jndi-name one and only one string none The absolute jndi-name .

Table 11-14 nlsinfo Sub Elements

Sub Element Repeat Rule Contains Default Description

locale-charset-map zero or many elements none Contains locale and the

corresponding character set.

default-locale one and only one string none Default locale.

Web Application XML DTD

Chapter 11 Packaging for Deployment 321

Elements for Specifying Locale Character Sets
Table 11-15 shows the locale-charset-map sub elements which contains the

descriptor information for locale and corresponding character sets.

Elements for Specifying Role Mapping
Table 11-16 shows the role-mapping sub elements which contains the descriptor

information for mapping roles to LDAP user, groups, and so on.

Elements for Specifying Role IMPL
Table 11-17 shows the role-impl sub elements which contains the descriptor

information for role implementation.

Table 11-15 locale-charset-map Sub Elements

Sub Element Repeat Rule Contains Default Description

locale one and only one string none Locale name.

charset one and only one string none Default locale.

Table 11-16 role-mapping Sub Elements

Sub Element Repeat Rule Contains Default Description

role-name one and only one string none Role name as referred to in the

<security-role> element.

role-impl one and only one elements none The string used to represent a LDAP group/user

which makes up a particular role-name . A

role-impl could be any number of groups

and/or users.

Table 11-17 role-impl Sub Elements

Sub Element Repeat Rule Contains Default Description

group zero or many string none LDAP specific string that corresponds to a

particular LDAP group.

user zero or many string none LDAP specific string that corresponds to a

particular LDAP user.

EJB XML DTD

322 iPlanet TM Application Server Developer’s Guide • February 2002

EJB XML DTD
This section describes the EJB DTD used by the EJB deployment descriptors. The

DDs are created using the Deployment Tool. For more information on creating

DDs, see the Deployment Tool Online Help.

EJB JAR File Contents
The standard format used to package enterprise beans is the EJB-JAR file. The

format is the contract between the bean provider and application assembler, and

between the application assembler and the deployer.

The EJB-JAR file must contain the DD as well as all class files for the following:

• The enterprise bean class.

• The enterprise helper classes.

• The enterprise bean home and remote interfaces.

• If the bean is an entity bean, the primary key class.

In addition, the EJB-JAR file must contain the class files for all classes and

interfaces that the enterprise bean class, and the remote home interfaces depend

on.

Specifying Parameter Passing Rules
When a servlet or EJB calls another bean that is co-located within the same process,

the iPlanet Application Server does not perform marshalling of all call parameters

by default. This optimization allows the co-located case to execute far more

efficiently than if strict by-value semantics are used. In certain cases, you may

want to ensure that parameters passed to a bean are always passed by value. The

iPlanet Application Server supports the marking of a bean or even a particular

method within a bean as requiring pass-by-value semantics. The parameter

passing method used by the EJB is defined by the pass-by-value element. For

more information, see the pass-by-value element description in the session

(Table 11-20) or entity element (Table 11-21). Because this option decreases

performance by greatly increasing call overhead, the default value is false .

EJB XML DTD

Chapter 11 Packaging for Deployment 323

EJB iPlanet Application Server XML DTD
The following is the iPlanet Application Server specific XML DTD for EJB-JAR

files.

Elements for Specifying EJB-JAR
Table 11-18 shows the ias-ejb-jar element which is the iPlanet Application

Server web application DD root element.

Elements for Specifying Enterprise Beans
Table 11-19 shows the enterprise-beans sub element which contains declarations

for one or more enterprise beans.

Elements for Specifying Session
Table 11-20 shows the session sub element which declares all iPlanet Application

Server specific session bean related deployment information. The ejb-name must
match 1 to 1 with the ejb-name declared in the J2EE XML file.

Table 11-18 ias-ejb-jar Element

Sub Element Repeat Rule Contains Default Description

enterprise-beans one and

only one

element none The enterprise-beans element contains

declarations for one or more enterprise beans.

Table 11-19 enterprise-beans Sub Elements

Sub Element Repeat Rule Contains Default Description

session one or the

other

element none An element that declares all iPlanet Application Server

specific session bean related deployment information

entity one or the

other

element none An element that declares all iPlanet Application Server

specific entity bean related deployment information

Table 11-20 session Sub Elements

Sub Element Repeat Rule Contains Default Description

ejb-name one and

only one

string none The EJB name.

EJB XML DTD

324 iPlanet TM Application Server Developer’s Guide • February 2002

Elements for Specifying Entity
Table 11-21 shows the entity sub element which declares all iPlanet Application

Server specific entity bean related deployment information. The ejb-name must
match 1 to 1 with the ejb-name declared in the J2EE XML file.

guid one and

only one

string none The EJB guid in question.

pass-timeout one and

only one

positive

integer

none Passivation timeout in seconds used by the

container. This value can be changed during

runtime by the Administration Tool.

pass-by-value one and

only one

boolean none If “true”, marshalling of all call parameters to

the EJB are performed. If “false” and the beans

are co-located, strict by-value semantics are

not guaranteed.

session-timeout one and

only one

positive

integer

none The session timeout in minutes.

ejb-ref zero or

more

elements none The absolute jndi-name storage place for the

ejb-link in the corresponding J2EE XML file

ejb-ref entry.

resource-ref zero or

more

elements none The absolute jndi-name storage place for the

resource-ref in the corresponding J2EE

XML file resource-ref entry.

failoverrequired zero or one boolean none Indicates if failover is required.

Table 11-21 entity Sub Elements

Sub Element Repeat Rule Contains Default Description

ejb-name one and

only one

string none The EJB name.

guid one and

only one

string none The EJB guid in question.

pass-timeout one and

only one

positive

integer

none Passivation timeout in seconds used by

the container. This value can be changed

during runtime by the Administration

Tool.

Table 11-20 session Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description

EJB XML DTD

Chapter 11 Packaging for Deployment 325

Elements for Specifying Persistence Manager
Table 11-22 shows the persistence-manager sub element which defines all

persistence manager specific information.

Elements for Specifying Pool Manager
Table 11-23 shows the pool-manager sub element which defines all pool manager

specific information.

pass-by-value one and

only one

boolean none If “true”, marshalling of all call

parameters to the EJB are performed. If

“false” and the beans are co-located, strict

by-value semantics are not guaranteed.

persistence-manager zero or one elements none Specifies persistence information.

pool-manager zero or one elements none Descriptor for cache pool attributes.

ejb-ref zero or

more

elements none The absolute jndi-name storage place

for the ejb-link in the corresponding

J2EE XML file ejb-ref entry.

resource-ref zero or

more

elements none The absolute jndi-name storage place

for the resource-ref in the

corresponding J2EE XML file

resource-ref entry.

failover-required zero or one boolean false Indicates if failover is required.

iiop zero or one boolean false Indicates if a bean is RMI/IIOP Client

enabled.

role-mapping zero or

many

elements none Descriptor that creates role mapping.

Table 11-22 persistence-manager Sub Elements

Sub Element Repeat Rule Contains Default Description

factory-class-name one and

only one

string none Persistence manager name factory

class.

properties-file-location one and

only one

string none Properties file location in a JAR file.

Table 11-21 entity Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description

EJB XML DTD

326 iPlanet TM Application Server Developer’s Guide • February 2002

Elements for Specifying EJB Reference
Table 11-24 shows the ejb-ref sub element which are the absolute jndi-name

storage places for the ejb-link in the corresponding J2EE XML file ejb-ref entry.

Elements for Specifying Resource Reference
Table 11-25 shows the resource-ref sub element which are the absolute

jndi-name storage places for the resource-ref in the corresponding J2EE XML

file resource-ref entry.

Table 11-23 pool-manager Sub Elements

Sub Element Repeat Rule Contains Default Description

commit-option one and

only one

string

value of

COMMIT_

OPTION_C

COMMIT_
OPTION_C

Option C: Between transactions the

Container does not cache a “ready”

instance. For more information, see the

EJB v1.1 specification, section 9.1.10.

ready-pool-timeout one and

only one

positive

integer

infinite Ready pool timeout used by the

container. This value can be changed

during runtime by the Administration

Tool.

ready-pool-maxsize one and

only one

positive

integer

or “0”

for

infinite

infinite Maximum size of the ready cache in

entry numbers. This value can be

changed during runtime by the

Administration Tool.

free-pool-maxsize one and

only one

positive

integer

or “0”

for

infinite

infinite Maximum size of the instance free pool

in entry numbers. This value can be

changed during runtime by the

Administration Tool.

Table 11-24 ejb-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

ejb-ref-name one and only one string none The ejb-link in the corresponding J2EE

XML file ejb-ref entry.

jndi-name one and only one string none The absolute jndi-name .

EJB XML DTD

Chapter 11 Packaging for Deployment 327

Elements for Specifying Role Mapping
Table 11-26 shows the role-mapping sub elements which are the mapping roles

descriptors for the LDAP user, groups, and so on.

Elements for Specifying Role Implementation
Table 11-27 shows the role-impl sub elements which are the role implementation

descriptors.

Table 11-25 resource-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

resource-ref-name one and only one string none The resource-ref name in the

corresponding J2EE XML file

resource-ref entry.

jndi-name one and only one string none The absolute jndi-name .

Table 11-26 role-mapping Sub Elements

Sub Element Repeat Rule Contains Default Description

role-name one and

only one

string none Role name as referred to in the <security-role>
element.

role-impl one and

only one

elements none The string used to represent a LDAP group/user thing

that makes up a particular role-name . A role-impl
could be any number of groups and/or users.

Table 11-27 role-impl Sub Elements

Sub Element Repeat Rule Contains Default Description

group zero or many string none LDAP specific string for a particular LDAP group.

user zero or many string none LDAP specific string for a particular LDAP user.

RMI/IIOP Client XML DTD

328 iPlanet TM Application Server Developer’s Guide • February 2002

RMI/IIOP Client XML DTD
The RMI/IIOP Client is an iPlanet Application Server specific type of J2EE client. A

RMI/IIOP Client supports the standard J2EE Application Client specifications, and

in addition, supports direct access to the iPlanet Application Server. For more

information on RMI/IIOP Clients, refer to Chapter 10, “Developing and Deploying

CORBA-Based Clients.”

A RMI/IIOP Client JAR file contains two DDs that are generated by the

Deployment Tool. One DD is specified by the J2EE application client XML DTD,

that can be found in the J2EE Specification, v1.0 Chapter 9 Application Clients. The

other DD contains the iPlanet Application Server specific RMI/IIOP Client

elements; for more information, see “iPlanet Application Server RMI/IIOP Client

XML DTD,” on page 328.

For a sample RMI/IIOP Client DD file, see “RMI/IIOP Client DD XML Files,” on

page 424.

iPlanet Application Server RMI/IIOP Client XML
DTD
The ias-java-client-jar element is the RMI/IIOP Client’s DD root element.

Elements for Specifying EJB Reference Information
Table 11-28 shows the ejb-ref sub elements which are the absolute jndi-name

storage places for the ejb-link in the corresponding J2EE XML file ejb-ref entry.

Elements for Specifying Resource Reference Information
Table 11-29 shows the resource-ref sub elements which are the absolute

jndi-name storage places for the resource-ref in the corresponding J2EE XML

file resource-ref entry.

Table 11-28 ejb-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

ejb-ref-name one and only one string none The ejb-link in the corresponding J2EE

XML file ejb-ref entry.

jndi-name one and only one string none The absolute jndi-name .

Resource XML DTD

Chapter 11 Packaging for Deployment 329

Resource XML DTD
Each iPlanet Application Server resource has a resource XML file. Examples of

resources are JDBC datasources, Java Mail, or JMS. The XML file contains entries

that are used to register the resource with the iPlanet Application Server. These

entries define the way the iPlanet Application Server connects to the resource.

These files are generated by the Deployment Tool. This section describes the

resource XML file entries. For information on how to generate these files, see the

Deployment Tool Online Help.

Datasource XML DTD
This section describes the XML DTD for the iPlanet Application Server datasource.

Element for Specifying Datasources
Table 11-30 shows the ias-Datasource-jar sub element which is the resource DD

root element.

Element for Specifying iPlanet Application Server Resources
Table 11-31 shows the ias-resource sub element which is the descriptor used for

all resources.

Table 11-29 resource-ref Sub Elements

Sub Element Repeat Rule Contains Default Description

resource-ref-name one and only one string none The resource-ref name in the

corresponding J2EE XML file

resource-ref entry.

jndi-name one and only one string none The absolute jndi-name .

Table 11-30 ias-Datasource-jar Sub Element

Sub Element Repeat Rule Contains Default Description

ias-resource one and only one element none Common element for all resource DDs.

Resource XML DTD

330 iPlanet TM Application Server Developer’s Guide • February 2002

Elements for Specifying Resources
Table 11-32 shows the resource sub elements which are the descriptors used for

all resources.

Elements for Specifying JDBC Datasources
Table 11-33 shows the jdbc sub elements which are the descriptors used for the

JDBC datasource.

Table 11-31 ias-resource Sub Element

Sub Element Repeat Rule Contains Default Description

resource one and only one elements none Common element for all resource DDs.

Table 11-32 resource Sub Elements

Sub Element Repeat Rule Contains Default Description

jndi-name one and only one string none The absolute jndi-name of the resource

factory (for example, jdb/Who).

jdbc one or the other elements none Descriptor for the JDBC datasource.

jms one or the other string none Descriptor for the JMS datasource.

mail one or the other string none Descriptor for the mail datasource.

url one or the other string none Descriptor for the URL datasource.

Table 11-33 jdbc Sub Elements

Sub Element Repeat Rule Contains Default Description

database one and only one string none Database name to connect

to.

datasource one and only one string none Assigned datasource name.

username one and only one string none Valid database user name.

password one and only one string none Valid user name password.

Resource XML DTD

Chapter 11 Packaging for Deployment 331

RMI/IIOP Client Datasource XML DTD
This section describes the XML DTD for an RMI/IIOP Client datasource.

Elements for Specifying Java Client Resources
Table 11-34 shows the ias-javaclient-resource sub elements which are the

RMI/IIOP Client’s datasource XML DD root elements.

driver-type one and only one string field which contains

one of the following:

ORACLE_OCI (Oracle)

DB2_CLI (DB2)

INFORMIX_CLI (Informix)

SYBASE_CTLIB (Sybase)

ODBC (ODBC)

none EIS specific JDBC driver.

resource-mgr zero or one string none If this attribute is set, the

datasource is available for

distributed transactions

through the resource

manager listed.

If this attribute is not

specified, the datasource is

only valid for a local

database.

The value must be a name

you create for a resource

manager under the

RESOURCEMGR key.

Table 11-34 ias-javaclient-resource Sub Elements

Sub Element Repeat Rule Contains Default Description

jdbc one or the other elements none Descriptor for RMI/IIOP Client JDBC settings.

jms one or the other string none Not yet defined.

jndi-name one and only one string none The absolute jndi-name .

Table 11-33 jdbc Sub Elements (Continued)

Sub Element Repeat Rule Contains Default Description

Resource XML DTD

332 iPlanet TM Application Server Developer’s Guide • February 2002

Elements for Specifying JDBC Settings
Table 11-35 shows the jdbc sub elements which are the JDBC settings descriptors.

Table 11-35 jdbc Sub Elements

Sub Element Repeat Rule Contains Default Description

driverClass one and only one elements none Valid driver class.

connectUr1 one and only one string none Valid URL to connect to.

userName one and only one string none Valid user name.

password one and only one string none Valid user name password.

333

Chapter 12

Creating and Managing User
Sessions

This chapter describes how to create and manage a session that allows users and

transaction information to persist between interactions.

This chapter contains the following sections:

• Introducing Sessions

• How to Use Sessions

Introducing Sessions
The term user session refers to a series of user application interactions that are

tracked by the server. Sessions are used for maintaining user specific state,

including persistent objects (like handles to EJBs or database result sets) and

authenticated user identities, among many interactions. For example, a session

could be used to track a validated user login followed by a series of directed

activities for a particular user.

The session itself resides in the server. For each request, the client transmits the

session ID in a cookie or, if the browser does not allow cookies, the server

automatically writes the session ID into the URL.

The iPlanet Application Server supports the servlet standard session interface,

called HttpSession for all session activities. This interface enables you to write

portable, secure servlets.

Additionally, the iPlanet Application Server provides an additional interface,

called HttpSession2 , which provides support for a servlet security framework, as

well as, sharing sessions between servlets and older iPlanet Application Server

components (that is, AppLogics).

Introducing Sessions

334 iPlanet TM Application Server Developer’s Guide • February 2002

Behind the scenes, there are two session styles, distributable and local. The main

difference between them is that distributable sessions, as the name implies, can be

distributed among multiple servers in a cluster, while local sessions are sticky (that

is, bound to an individual server). Sticky load balancing is automatically set for

application servlets configured to use the local session model. You determine

which session style to use in the application configuration file. For more

information about session-related elements in the application configuration file,

see Chapter 11, “Packaging for Deployment.”

Sessions and Cookies
A cookie is a small collection of information that can be transmitted to a calling

browser, which retrieves it on each subsequent call from the browser so that the

server can recognize calls from the same client. A cookie is returned with each call

to the site that created it, unless it expires.

Sessions are maintained automatically by a session cookie that is sent to the client

when the session is first created. The session cookie contains the session ID, which

identifies the client to the browser on each successive interaction. If a client does

not support or allow cookies, the server rewrites the URLs where the session ID

appears in the URLs from that client.

Sessions and URL Rewriting
There are two situations in which the iPlanet Application Server plugin performs

implicit URL rewriting:

• When a response comes back from the iPlanet Application Server; if implicit

URL rewriting has been chosen, the plugin rewrites the URLs in the response

before passing the response on to the client.

• When the request given by a client need not be sent to the iPlanet Application

Server and can be served on the web server side. Such requests may occur in

the middle of a session and the response may need to be rewritten.

This section includes the following topics:

• Supported Tags and Attributes

• The URL Rewriting Process

• The Location Header

• Order of the Cookies

Introducing Sessions

Chapter 12 Creating and Managing User Sessions 335

Supported Tags and Attributes
The following tags and attributes are supported for URL rewriting. All of them are

case insensitive with respect to the plugin.

The following sections provide additional detail about each of the tags.

A
• The URL mentioned in the href attribute of this tag is rewritten with the

cookies.

• The URL can have a query string.

• The URL must be enclosed in double or single quotes.

• The URL must not start with a # character.

• Cookies are rewritten just after the end of the URI. If the URL already has a

query string, it is placed after the cookies.

Table 12-1 Supported tags and attributes for URL rewriting

Tag or Attribute Language Examples

A HTML Sun

 Index

AREA HTML <area shape=circle cords="50,50,25"
href="http://docs.sun.com">

FORM HTML

FRAME HTML

GO WML <go href="/help.wml">

IMG HTML

ONENTERBACKWARD WML <card onenterbackward="/url"> xyz </card>

ONENTERFORWARD WML <card onenterforward="/url"> Hello </card>

ONPICK WML <select>

<option onpick="/a.wml"> A </option>

<option onpick="/b.wml"> B </option>

</select>

ONTIMER WML <card ontimer="/next">

Introducing Sessions

336 iPlanet TM Application Server Developer’s Guide • February 2002

AREA
• The URL mentioned in the href attribute of this tag is rewritten.

• No action is taken for nohref .

• The URL can have a query string.

• The URL must be enclosed within double or single quotes.

FORM
• The cookies are encoded in the form of hidden fields.

• Both POST and GET are handled.

FRAME
• The URL pointed to by the SRC attribute of this tag is rewritten.

• FRAMESET and NOFRAMES are not processed.

• The URL can have a query string.

• The URL must be enclosed within double or single quotes.

GO
• The URL pointed to by the href attribute of this tag is rewritten with the

cookies.

• The URL can have a query string.

• The URL must be enclosed in double or single quotes.

• The URL must not start with a # character.

• Cookies are rewritten just after the end of the URI. If the URL already has a

query string, it is placed after the cookies.

IMG
• The URL pointed to by the SRC attribute of this tag is rewritten.

• The URL can have a query string.

• The URL must be enclosed within double or single quotes.

ONENTERBACKWARD
This is not a tag, but an attribute of WML tags such as CARD and ONEVENT.

• The URL pointed to by ONENTERBACKWARD is rewritten.

• The URL can have a query string.

Introducing Sessions

Chapter 12 Creating and Managing User Sessions 337

• The URL must be enclosed within double or single quotes.

ONENTERFORWARD
This is not a tag, but an attribute of WML tags such as CARD and ONEVENT.

• The URL pointed to by ONENTERFORWARD is rewritten.

• The URL can have a query string.

• The URL must be enclosed within double or single quotes.

ONPICK
This is not a tag, but an attribute of the WML tag OPTION.

• The URL pointed to by ONPICK is rewritten.

• The URL can have a query string.

• The URL must be enclosed within double or single quotes.

ONTIMER
This is not a tag, but an attribute of WML tags such as CARD and ONEVENT.

• The URL pointed to by ONTIMER is rewritten.

• The URL can have a query string.

• The URL must be enclosed within double or single quotes.

The URL Rewriting Process
The URL rewriting process of the plugin happens in two stages:

• Response Header Processing

• Response Body Processing

For requests that are not sent to the iPlanet Application Server, only response body

processing is done.

When the plugin receives a request, it checks if there is a query string. If there is

one, the plugin extracts the iPlanet Application Server cookies that were encoded

in a previous response. These cookies start with the prefix GXHC_. These cookies are

stored in two data structures, referred to here as QueryCookies and FormCookies.

In the former, the cookies are stored in a query string form. In the latter, they are

stored in a format that is suitable for the HTML FORM tag. Currently, the cookies

in QueryCookies are used to rewrite all the tags except FORM.

Introducing Sessions

338 iPlanet TM Application Server Developer’s Guide • February 2002

Here is an example of the cookies in QueryCookies:

GXHC_GX_jst=d1f1943e55096164&gx_session_id_=74cd83f757b5c8f6;

Here is an example of the cookies in FormCookies:

<INPUT NAME=" GXHC_GX_jst" TYPE=HIDDEN VALUE="d1f1943e55096164"
</INPUT><INPUT NAME=" GXHC_ gx_session_id_" TYPE=HIDDEN
VALUE="74cd83f757b5c8f6" </INPUT>

These cookies are extracted and stored, to be used in the rewriting of the

subsequent responses.

Response Header Processing
The response from the iPlanet Application Server comes to the plugin in the HTTP

response format. The plugin first processes the headers of this response using the

following algorithm.

1. The plugin counts the number of Set-Cookie headers in the response and uses

this number to allocate space for a data structure referred to as

ResponseCookies. For each Set-Cookie header in the response, the remaining

steps are performed.

2. If there is a domain attribute, its value is extracted.

3. If the cookie is already present in QueryCookies or FormCookies, one of the

following occurs:

❍ If the incoming cookie has a domain , the cookie in QueryCookies or

FormCookies may have come with its own domain, which was lost when it

was used for URL rewriting. Since it has come (again) with a domain, it is

treated as a new cookie. The flag treatAsNew is set to TRUE and the cookie

is removed from QueryCookies or FormCookies.

❍ If the incoming cookie does not have a domain associated with it, its value

is checked against the value of the same cookie in QueryCookies or

FormCookies.

• If they are same, the new cookie is dropped and treatAsNew is set to

FALSE.

• If they are different, the cookie is removed from QueryCookies or

FormCookies and treatAsNew is set to TRUE.

4. If the cookie is not present in QueryCookies or FormCookies, the cookie is

brand new, and treatAsNew is set to TRUE.

5. If the incoming cookie has a domain , one of the following occurs:

Introducing Sessions

Chapter 12 Creating and Managing User Sessions 339

❍ It is validated using the following rules (from RFC 2109):

• It must start with a dot.

• It must have at least one embedded dot.

If the domain satisfies these rules, the cookie will be used for URL

rewriting, and the domainOK flag is set to TRUE. Otherwise, domainOK is set

to FALSE.

❍ The incoming cookie does not have a domain . The cookie will be used for

URL rewriting, and domainOK is set to TRUE.

6. If domainOK is TRUE and treatAsNew is TRUE, the incoming cookie is either

brand new or an old cookie with a new value. Its name, value, and domain are

added to the data structure ResponseCookies.

When the processing of headers finishes, all the old cookies are in QueryCookies or

FormCookies and all the new ones are in ResponseCookies. The former are ready

to be encoded in the response URLs, but the latter must be converted to such a

format.

Response Body Processing
This stage is reached after the response headers are sent to the client. The body of

the response is parsed. The plugin looks for the tags described in the section

“Supported Tags and Attributes,” on page 335. It performs the following checks for

these tags.

1. The URL is checked to see if it is absolute or relative. Absolute URLs start with

a protocol and look something like this: http://machine.website.com . If the

URL is absolute, the host (machine.website.com) is extracted.

2. The plugin must select cookies from ResponseCookies and convert them to a

form that can be used for URL rewriting, referred to as NewCookies. The

format used for all the tags except FORM is identical to the QueryCookies

format. For FORM, the FormCookies format is used.

3. Each cookie in ResponseCookies is added or not added to NewCookies

according to this decision tree:

❍ If the response URL to be rewritten is absolute, one of the following occurs:

• If the cookie has a domain and it is part of the host name in the

response URL, it is added to NewCookies.

• If the cookie does not have a domain, the host name in the response

URL is compared to the one in the request. If they are the same, the

cookie is added to NewCookies.

Introducing Sessions

340 iPlanet TM Application Server Developer’s Guide • February 2002

❍ If the response URL to be rewritten is relative, one of the following occurs:

• If the cookie does not have a domain, it is added to NewCookies.

• If the cookie has a domain that is part of the host name in the request,

the cookie is added to NewCookies.

4. The cookies in NewCookies are always encoded in the response URL. The

cookies in QueryCookies and FormCookies are also encoded in the response

URL under these conditions:

❍ If the response URL to be rewritten is absolute and the host name in the

response URL matches the host in the request.

❍ If the response URL to be rewritten is relative.

The Location Header
Sometimes a request may be redirected to a different URL by sending back the

HTTP header Location in the response. The URL associated with this header is

also rewritten. The technique used to encode the URL is the same as the one used

in response body processing. However, this rewriting is done as part of response

header processing. By the time the Location header is encountered, all the valid

cookies have been collected in ResponseCookies. If there is a query string in the

URL, it is extracted and saved. The cookies in QueryCookies are added first, if

necessary. Then the cookies selected from ResponseCookies are appended. Finally,

the original query string is appended.

Order of the Cookies
All encoded cookies precede the query string.

The order in which the cookies are encoded in the response URL is dependent on

the order in which they arrive as part of the response. Any new cookie in a

subsequent request is appended to the cookies list. However, if a cookie is

redefined in a subsequent response, it is deleted from its position and added to the

end of the cookies list.

For example, suppose the response for a request comes with these cookies:

Set-Cookie c1=v1
Set-Cookie c2=v2
Set-Cookie c3=v3

The cookies are encoded as follows:

c1=v1&c2=v2&c3=v3

This order is used for all subsequent responses. All new cookies are appended.

How to Use Sessions

Chapter 12 Creating and Managing User Sessions 341

However, suppose c2 is redefined in a subsequent request as follows:

Set-Cookie c2=v22

In this case, the format is changed as follows:

c1=v1&c3=v3&c2=v22

Sessions and Security
The iPlanet Application Server security model is based on an authenticated user

session. Once a session has been created the application user is authenticated (if

used) and logged in to the session. Each interaction step from the servlet that

receives an EJB request, generates content to a JSP to format the output and is

aware the user is properly authenticated.

Additionally, you can specify that a session cookie is only passed on a secured

connection (that is, HTTPS), so the session can only remain active on a secure

channel.

For more information about security, see Chapter 13, “Writing Secure

Applications.”

How to Use Sessions
To use a session, first create a session using the HttpServletRequest method

getSession() . Once the session is established, examine and set its properties

using the provided methods. If desired, set the session to time out after being

inactive for a defined time period or invalidate it manually. You can also bind

objects to the session which store them for use by other components.

This section describes the following topics:

• Creating or Accessing a Session

• Examining Session Properties

• Binding Data to a Session

• Invalidating a Session

• Controlling the Session Type

• Sharing Sessions in a Distributed Environment

• Sharing Sessions with AppLogics

How to Use Sessions

342 iPlanet TM Application Server Developer’s Guide • February 2002

Creating or Accessing a Session
To create a new session or to gain access to an existing session, use the

HttpServletRequest method getSession() , as shown in the following example:

HttpSession mySession = request.getSession();

getSession() returns the valid session object associated with the request,

identified in the session cookie which is encapsulated in the request object. Calling

the method with no arguments, creates a session if one does not already exist

which is associated with the request. Additionally, calling the method with a

Boolean argument creates a session only if the argument is true .

The following example shows the doPost() method from a servlet which only

performs the servlet’s main functions, if the session is present. Note that, the false

parameter to getSession() prevents the servlet from creating a new session if one

does not already exist:

public void doPost (HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException
{

if (HttpSession session = req.getSession (false))
{

// session retrieved, continue with servlet operations
}
else

// no session, return an error page

}
}

For more information about getSession() , see the Java Servlet Specification v2.2.

Examining Session Properties
Once a session ID has been established, use the methods in the HttpSession

interface to examine session properties, and methods in the HttpServletRequest

interface to examine request properties that relate to the session.

NOTE The getSession() method should be called before anything is

written to the response stream. Otherwise the SetCookie string is

placed in the HTTP response body instead of the HTTP header.

How to Use Sessions

Chapter 12 Creating and Managing User Sessions 343

Table 12-2 shows the methods to examine session properties.

For example:

String mySessionID = mySession.getId();
if (mySession.isNew()) {

log.println(currentDate);
log.println("client has not yet joined session " + mySessionID);

}

Table 12-3 shows the methods to inspect request object properties that relate to the

session:

Table 12-2 HttpSession Methods

HttpSession method Description

getCreationTime() Returns the session time in milliseconds since January 1, 1970, 00:00:00

GMT.

getId() Returns the assigned session identifier. An HTTP session’s identifier is a

unique string which is created and maintained by the server.

getLastAccessedTime() Returns the last time the client sent a request carrying the assigned session

identifier (or -1 if its a new session) in milliseconds since January 1, 1970,

00:00:00 GMT.

isNew() Returns a Boolean value indicating if the session is new. Its a new session, if

the server has created it and the client has not sent a request to it. This

means, the client has not acknowledged or joined the session and may not

return the correct session identification information when making its next

request.

Table 12-3 HttpServletRequest Methods

HttpServletRequest Methods Description

getRemoteUser() Gets the requesting user name (HTTP authentication can

provide the information). Returns null if the request has no

user name information.

getRequestedSessionId() Returns the session ID specified with the request. This may

differ from the session ID in the current session if the session

ID given by the client is invalid and a new session was

created. Returns null if the request does not have a session

associated with it.

How to Use Sessions

344 iPlanet TM Application Server Developer’s Guide • February 2002

For example:

if (request.isRequestedSessionIdValid()) {
if (request.isRequestedSessionIdFromCookie()) {

// this session is maintained in a session cookie
}
// any other tasks that require a valid session

} else {
// log an application error

}

Binding Data to a Session
You can bind objects to sessions in order to make them available across multiple

user interactions. The following HttpSession methods provide support for

binding objects to the session object:

isRequestedSessionIdValid() Checks if the request is associated to a currently valid

session. If the session requested is not valid, it is not

returned through the getSession() method.

isRequestedSessionIdFromCookie() Returns true if the request’s session ID provided by the

client is a cookie, or false otherwise.

isRequestedSessionIdFromURL() Returns true if the request’s session ID provided by the

client is a part of a URL, or false otherwise.

Table 12-4 HttpSession Methods

HttpSession Methods Description

getValue() Returns the object bound to a given name in the session or null if there is no such

binding.

getValueNames() Returns an array of names of all values bound to the session.

putValue() Binds the specified object into the session with the given name. Any existing

binding with the same name is overwritten. For an object bound into the session

to be distributed it must implement the serializable interface. Note that the

iPlanet Application Server RowSets and JDBC ResultSets are not

serializable and cannot be distributed.

Table 12-3 HttpServletRequest Methods (Continued)

HttpServletRequest Methods Description

How to Use Sessions

Chapter 12 Creating and Managing User Sessions 345

Binding Notification with HttpSessionBindingListener
Some objects require you to know when they are placed in or removed from, a

session. To obtain this information, implement the HttpSessionBindingListener

interface in those objects. When your application stores or removes data with the

session, the servlet engine checks whether the object being bound or unbound

implements HttpSessionBindingListener . If it does, the iPlanet Application

Server notifies the object under consideration, through the

HttpSessionBindingListener interface, that it is being bound into or unbound

from the session.

Invalidating a Session
Specify the session to invalidate itself automatically after being inactive for a

defined time period. Alternatively, invalidate the session manually with the

HttpSession method invalidate() .

Invalidating a Session Manually
To invalidate a session manually, simply call the following method:

session.invalidate();

All objects bound to the session are removed.

Setting a Session Timeout
Session timeout is set using the ias-specific Deployment Descriptor. For more

information, see the session-info element in Chapter 11, “Packaging for

Deployment.”

removeValue() Unbinds an object in the session with the given name. If there is no object bound

to the given name this method does nothing.

TIP The session API does not provide an explicit session logout API, so

any logout implementation must call the session.invalidate()

API.

Table 12-4 HttpSession Methods (Continued)

HttpSession Methods Description

How to Use Sessions

346 iPlanet TM Application Server Developer’s Guide • February 2002

Controlling the Session Type
iPlanet Application Server provides for types of sessions, lite and distributed :

• The lite session is a fast, single process implementation of HttpSession . It

should be used in all situations where speed is of utmost importance, and

where no distribution of session data is required. This is the simplest form of

HttpSession .

• The distributed session is a robust and scalable implementation of the

HttpSession API. It uses the Application Server’s distribution facilities, thus

enabling failover and load-balancing capabilities. It is somewhat slower than

the lite session because of the overhead of network backup.

To control the session type, set the appropriate elements in the iPlanet Application

Server specific XML file. For more information, see the session-info element in

Chapter 11, “Packaging for Deployment.”

Sharing Sessions in a Distributed Environment
iPlanet Application Server 6.5 allows the sharing of the same session object with

concurrent requests in the same JVM. The following list describes the processes

followed by iPlanet Application Server:

1. Whenever there is a request accessing a session, it will increment a counter.

2. Whenever there is a first mutable access to the session, the Dsync lock will be

triggered, and the locking thread’s reference is stored in the session.

3. The session’s state is refreshed from Dsync just after the lock.

4. Every request while going out will decrement the counter, as well as saving the

session.

5. If the request going out was the one that had originally locked the session, then

it waits for all the others requests to go out before the completion of

servletrunner.execute() .

This request has been streamed out by the time it reaches this wait. The locking

thread needs to wait as it is the only one with the authority to unlock.

6. When all the requests for the session go out, the locking thread will unlock the

session and leave.

How to Use Sessions

Chapter 12 Creating and Managing User Sessions 347

7. In case the session gets invalidated in between, the locking thread is asked to

release the lock immediately, as there is not going to be any requirement for

backend consistency from that point onwards.

Sharing Sessions with AppLogics
Servlet programmers can use the iPlanet Application Server interface,

HttpSession2 to share distributable sessions between AppLogics and servlets.

Sharing sessions is useful when you want to migrate an application from NAS 2.x

to iPlanet Application Server 6.5. HttpSession2 interface adds security and direct

distributable sessions manipulation.

Additionally, if you establish a session in an AppLogic using loginSession() and

you want to access the session from a servlet, you must call the

setSessionVisibility() method in the AppLogic class to instruct the session

cookie to transmit to servlets as well as AppLogics. Additionally, this must be

completed before calling saveSession() .

For example, in an AppLogic:

domain=".mydomain.com";
path="/"; //make entire domain visible
isSecure=true;
if (setSessionVisibility(domain, path, isSecure) == GXE.SUCCESS)

{ // session is now visible to entire domain }

NOTE • For concurrent requests, there is a small overhead as the locking

thread stays in a wait state till all the requests accessing the

session are done with their work.

If you are going to use plenty of concurrent accesses, this

overhead must be taken into account when tuning for

performance improvements.

• When cross referencing objects as attributes, the objects will no

longer hold the cross references when come out of the

distributed session.

This happens because every attribute gets individually

serialized, and stored as a blob. Therefore, all the referenced

objects also go into this blob. While retrieving, the whole object

graph is unserialized independently for each attribute.

How to Use Sessions

348 iPlanet TM Application Server Developer’s Guide • February 2002

For more information about setSessionVisibility() , refer to the AppLogic class

in the Foundation Class Reference (Java). For more information about sharing sessions

between AppLogics and servlets, see the Migration Guide.

349

Chapter 13

Writing Secure Applications

This chapter describes how to write a secure J2EE application for the iPlanet

Application Server with components that perform user authentication, and access

authorization to servlets and EJB business logic.

This chapter contains the following sections:

• iPlanet Application Server Security Goals

• iPlanet Application Server Specific Security Features

• iPlanet Application Server Security Model

• Security Responsibilities Overview

• Common Security Terminology

• Container Security

• Programmatic Security

• Declarative Security

• User Authentication by Servlets

• User Authorization by Servlets

• User Authorization by EJBs

• User Authentication for Single Sign-on

• User Authentication for RMI/IIOP Clients

• Guide to Security Information

• Web Server to Application Server Component Security

iPlanet Application Server Security Goals

350 iPlanet TM Application Server Developer’s Guide • February 2002

iPlanet Application Server Security Goals
In an enterprise computing environment there are many security risks. The iPlanet

Application Server’s goal is to provide highly secure, interoperable, and

distributed component computing based on the J2EE security model. The security

goals for the iPlanet Application Server include:

• Full compliance with the J2EE v1.2 security model (for more information, see

the J2EE specification, v1.2 Chapter 3 Security)

• Full compliance with the EJB v1.1 security model (for more information, see

the Enterprise JavaBean specification v1.1 Chapter 15 Security Management).

This includes EJB role-based authorization.

• Full compliance with the Java Servlet v2.2 security model (for more

information, see the Java Servlet specification, v2.2 Chapter 11 Security). This

includes servlet role-based authorization.

• Support for single signon across all iPlanet Application Server applications.

• Security support for RMI/IIOP Clients.

• Use of LDAP as the backend for security and allows user administration

during runtime.

• Implements declarative iPlanet Application Server specific XML-based role

mapping information.

• The iPlanet Application Server specific XML files with declarative security

created by the iPlanet Application Server Deployment Tool.

• Backwards compatibility with AppLogic security APIs.

iPlanet Application Server Specific Security
Features

The iPlanet Application Server supports the J2EE v1.2 security model, as well as

the following features which are specific to the iPlanet Application Server:

• Single signon across all iPlanet Application Server applications.

• Security for RMI/IIOP Clients.

• iPlanet Application Server specific XML-based role mapping information.

iPlanet Application Server Security Model

Chapter 13 Writing Secure Applications 351

• The GUI-based Deployment Tool is used to build XML files containing the

security information.

• User administration LDAP during runtime.

• LDAP is used as the backend for security.

iPlanet Application Server Security Model
Secure applications require a client to be authenticated as a valid application user

and have authorization to access the EJB business logic. The iPlanet Application

Server supports security for both web and RMI/IIOP clients.

Web clients use a browser and a web server to communicate using HTTP with

servlets running on the iPlanet Application Server. These clients require

communication with servlets and JSPs to extend the web server functionality.

Applications with secure web and EJB containers may enforce the following

security processes for web clients:

• authenticate the caller

• authorize the caller for access to the URL

• authorize the caller for access to the EJB business methods

RMI/IIOP clients communicate over a bridge using RMI/IIOP to directly access

EJBs running on the iPlanet Application Server. RMI/IIOP clients directly invokes

bean methods.

Applications with secure EJB containers may enforce the following security

processes for RMI/IIOP clients:

• authorize the caller for access to the EJB business methods

The following diagram shows the iPlanet Application Server security model.

iPlanet Application Server Security Model

352 iPlanet TM Application Server Developer’s Guide • February 2002

Web Client and URL Authorizations
Secure web containers may have authentication and authorization properties. The

containers support three types of authentication – basic, certificate and form-based.

When a web client requests the main application URL, the web server is

responsible for collecting the user authentication information (for example.

username and password) from the web client and passing it to the iPlanet

Application Server.

The iPlanet Application Server consults the security policies (derived from the

Deployment Descriptor (DD)) associated with the web resource to determine the

security roles used to permit resource access. The web container tests the user

credentials against each role to determine if it can map the user to the role. The

LDAP server, an enterprise-wide directory service for managing information about

users, groups and roles, obtains the user credentials.

Web Client Invocation of Enterprise Bean
Methods
Once the web client has been authenticated and authorized by the web container

and the JSP performs a remote method call to the EJB, the user’s credentials

(gathered during the authentication process) are used to establish a secure

association between the JSP and the bean. A secure EJB container has a DD with

Web Client
Web Server Servlet/

JSP

EJB

iPlanet Application Server

RMI/IIOP

HTTP

RMI/IIOP

.

LDAP
(Browser)

Client

Security Responsibilities Overview

Chapter 13 Writing Secure Applications 353

authorization properties which are used to enforce access control on the bean

method. The EJB container uses role information received from the LDAP server to

decide whether it can map the caller to the role and allow access to the bean

method.

RMI/IIOP Client Invocation of Enterprise Bean
Methods
For RMI/IIOP clients, a secure EJB container consults it’s security policies to

determine if the caller has the authority to access the bean method. This process is

the same for both web and RMI/IIOP clients.

Security Responsibilities Overview
A J2EE platform’s primary goal is to isolate the developer from the security

mechanism details and facilitate a secure application deployment in diverse

environments. This goal is addressed by providing mechanisms for the application

security specification requirements declaratively and outside the application.

Application Developer
The application developer supplies the programmatic security including:

• Specifying security levels.

• Verifies the security permission levels when secure operations are being

accessed.

Application Assembler
The application assembler or application component provider must identify all

security dependencies embedded in a component including:

• All role names used by the components that call isCallerInRole or

isUserInRole .

• References to all external resources accessed by the components.

• References to all intercomponent calls made by the component.

Common Security Terminology

354 iPlanet TM Application Server Developer’s Guide • February 2002

• Recommended that the assembler identify all method calls of each

component’s feature parameters and return values are to be protected for

confidentiality and/or integrity. The Deployment Descriptor (DD) is used for

this purpose.

Application Deployer
The iPlanet Application Server Deployment Tool is used to map the views

provided by the assembler to the policies and mechanisms specific to the

operational environment. The security mechanisms configured by the application

deployer are implemented by the containers on behalf of the components hosted in

the containers.

The application deployer takes all component security views provided by the

assembler and uses them to secure a particular enterprise environment in the

application, including:

• Assigning user groups to security levels.

• Refines the privileges required to access component methods and defines the

correspondence between the security attributes presented by the callers and

the container privileges.

Common Security Terminology
The most common security processes are authentication, authorization, and roll

mapping, the following sections define their terminology.

Authentication
Authentication verifies the user. For example, the user may enter a username and

password in a web browser and if those credentials match the permanent profile

stored in the LDAP server then the user is authenticated. The user is associated

with a security identity for the remainder of the session.

Container Security

Chapter 13 Writing Secure Applications 355

Authorization
Authorization permits a user to perform the desired operations, after being

authenticated. For example, a human resources application may authorize

managers to view personal employee information for all employees, but allow

employees to only view their own personal information.

Role Mapping
A client may be defined in terms of a security role. For example, a company might

use its employee database to generate both a company wide phone book

application and to generate payroll information. Obviously, while all employees

might have access to phone numbers and email addresses, only some employees

would have access to the salary information. Employees with the right to view or

change salaries might be defined as having a special security role.

A role is different from a user group in that a role defines a function in an

application, while a group is a set of users who are related in some way. For

example, members of the groups astronauts, scientists, and (occasionally) politicians
all fit into the role of SpaceShuttlePassenger.

The EJB security model describes roles (as distinguished from user groups) as

being described by an application developer and independent of any particular

domain. Groups are specific to a deployment domain. The deployer’s role is to

map roles into one or more groups.

In the iPlanet Application Server, roles correspond to user groups configured in the

directory server. LDAP groups can contain both users and other groups.

Container Security
The component containers are responsible for providing J2EE application security.

There are two security forms provided by the container:

• Programmatic security

• Declarative security

Container Security

356 iPlanet TM Application Server Developer’s Guide • February 2002

Programmatic Security
Programmatic security is when an EJB or servlet uses method calls to the security

API, as specified by the J2EE security model, to make business logic decisions

based on the caller or remote user’s security role. Programmatic security should

only be used when declarative security alone is insufficient to meet the

application’s security model.

The J2EE specification, v1.2 defines programmatic security as consisting of two

methods of the EJB EJBContext interface and two methods of the servlet

HttpServletRequest interface. The iPlanet Application Server supports these

interfaces as specified in the specification. For more information on programmatic

security, see section 3.3.6 Programmatic Security, in the J2EE Specification,v1.2,

and “Programmatic Login,” on page 358.

Declarative Security
Declarative security is when the security mechanism for an application is declared

and handled externally to the application. DDs are used by the iPlanet Application

Server to describe the J2EE application’s security structure, including security

roles, access control, and authentication requirements.

The DDs for security aware applications, web-app containers, and EJB containers,

have XML tags as security elements to express the application’s security

characteristics. Security characteristics include authentication and authorization.

The iPlanet Application Server supports the DTDs specified by J2EE v1.2 and has

additional security elements included in the DDs.

Declarative security is the application deployer’s responsibility. The XML DDs are

generated by the iPlanet Application Server Deployment Tool. For more

information, see the iPlanet Application Server Deployment Tool and the

Administrator’s Guide.

Application Level Security
The application XML DD contains authorization descriptors for all user roles when

accessing the application’s servlets and EJBs. On the application level, all roles

used by any application container must be listed in this file. These roles are

described by the role-name element in the application XML DD file. The role

names are scoped to the EJB XML DDs (ejb-jar files) and to the servlet XML DDs

(web-war files).

User Authentication by Servlets

Chapter 13 Writing Secure Applications 357

Servlet Level Security
A secure web container authenticates users and authorizes access to the servlet.

Once the user has been authenticated and authorized the servlet passes on user

credentials to an EJB to establish a secure association with the bean.

EJB Level Security
The EJB container is responsible for authorizing access to a bean method by using

the security policy laid out in the EJB XML DD.

User Authentication by Servlets
The three web-based login mechanisms required by the J2EE Specification, v1.2 are

supported by the iPlanet Application Server. These three mechanisms include:

• HTTP Basic Authentication

• Secure Socket Layer Mutual Authentication

• Form-Based Login

• Programmatic Login

The web application DD login-config element describes the authentication

method used, the application’s realm name used by the HTTP basic authentication,

and the form login mechanism’s attributes.

The login-config element syntax is as follows:

<!ELEMENT login-config
(auth-method?,realm-name?,from-login-config?)>

For more information regarding web application DD elements, see Chapter 13,

Deployment Descriptor of the Java Servlet Specification, v2.2.

HTTP Basic Authentication
HTTP basic authentication (RFC2068) is supported by the iPlanet Application

Server. The HTTP basic authentication protocol indicates the HTTP realm by which

access is being negotiated. Because passwords are sent with base64 encoding, this

authentication type is not very secure.

User Authentication by Servlets

358 iPlanet TM Application Server Developer’s Guide • February 2002

Secure Socket Layer Mutual Authentication
Secure Socket Layer (SSL) 3.0 and the means to perform mutual (client/server)

certificate-based authentication is a J2EE Specification, v1.2 requirement. This

security mechanism provides user authentication using HTTPS (HTTP over SSL).

The iPlanet Application Server SSL mutual authentication mechanism (also known

as HTTPS authentication) supports the following cipher suites:

SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

Form-Based Login
The login screen’s look and feel cannot be controlled with the HTTP browser's built

in mechanisms. J2EE introduces the ability to package a standard HTML or

Servlet/JSP based form for logging in. The login form is associated with a web

protection domain (an HTTP realm) and is used to authenticate previously

unauthenticated users.

In order for the authentication to proceed appropriately, the login form action must

always be j_security_check .

The following is an HTML sample showing how to program the form in an HTML

page:

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">
</form>

Programmatic Login
Programmatic login enables a user to log in programmatically in both the web

container and the EJB container. Programmatic login is useful for these reasons:

• It provides user authentication flexibility

• It provides an API for logout

User Authentication by Servlets

Chapter 13 Writing Secure Applications 359

• It is simple and extensible

• It requires fewer method calls than other types of Authentication, for example

form-based, which uses an intermediate servlet

• It provides a common interface across the web and EJB containers

Form-Based vs. Programmatic Login
Suppose a web resource is deployed with security constraints using form-based

authentication. To access any of these resources, the web connector must call

FormAuthServlet , which checks if the user is already logged in. If the user is not,

the login page is displayed to enable authentication.

For programmatic login, web resources are deployed without security constraints.

When a user accesses a web resource, FormAuthServlet is not called. Instead, the

IProgrammaticLogin.login method is called, which authenticates the user

explicitly. If this method fails, an AuthenticationException is thrown, otherwise,

the user is logged in.

The IProgrammaticLogin Interface
The com.iplanet.ias.security.IProgrammaticLogin interface enables a user

in web or EJB container to perform login programmatically. This interface provides

the following methods:

• login

• logout

• isLoggedIn

• loggedUserName

The interface is implemented by two java classes:

• The WebProgrammaticLogin Class

• The EjbProgrammaticLogin Class

Although you can create your own class that implements IProgrammaticLogin ,

this is not recommended. The provided classes save you from having to deal with

the login API directly.

The WebProgrammaticLogin Class
The com.iplanet.ias.security.WebProgrammaticLogin class initializes the

data members for programmatic login using the web container. You can use this

class as is or create a subclass. Its signature is as follows:

User Authentication by Servlets

360 iPlanet TM Application Server Developer’s Guide • February 2002

public class WebProgrammaticLogin extends java.lang.Object
implements IProgrammaticLogin

Its one constructor is as follows:

public WebProgrammaticLogin(
javax.servlet.ServletContext p_ServletContext,
javax.servlet.http.HttpServletRequest p_HttpServletRequest,
javax.servlet.http.HttpServletResponse p_HttpServletResponse)

throws NullValueException

A com.iplanet.ias.security.NullValueException is thrown if any of the

required WebProgrammaticLogin input parameters are null. Its signature is as

follows:

public class NullValueException extends java.lang.Exception

Its one constructor is as follows:

public NullValueException(java.lang.String Msg)

WebProgrammaticLogin methods are described in the following sections.

The login Method
The login method allows a user to log in programmatically. Its signature is as

follows:

public void login(java.lang.String UserName, java.lang.String
Password) throws ProgAuthenticationException, NullValueException

The login method:

• makes sure the user name and password are not null

• checks if another user is logged in

• checks if ServletContext , HttpRequest , or HttpResponse are null

• performs the authentication

A com.iplanet.ias.security.NullValueException is thrown if any of the

required login input parameters are null.

A com.iplanet.ias.security.ProgAuthenticationException is thrown if the

authentication is unsuccessful. Its signature is as follows:

public class ProgAuthenticationException extends
com.netscape.server.servlet.servletrunner.AuthenticationException

Its one constructor is as follows:

public ProgAuthenticationException(java.lang.String Msg)

User Authentication by Servlets

Chapter 13 Writing Secure Applications 361

The logout Method
The logout method allows a user to log out. Its signature is as follows:

public void logout(boolean flag)

What logout does depends on the setting of flag :

• If flag is false , removes the principal attribute from the session (soft logout)

• If flag is true , invalidates the session (deep logout)

The isLoggedIn Method
The isLoggedIn method returns true if a user is already logged in. Its signature is

as follows:

public boolean isLoggedIn()

The loggedUserName Method
The loggedUserName method returns the principal name of the logged user, or null

if no user is logged in. Its signature is as follows:

public java.lang.String loggedUserName()

The EjbProgrammaticLogin Class
The com.iplanet.ias.security.EjbProgrammaticLogin class initializes the

data members for programmatic login using the EJB container. You can use this

class as is or create a subclass. Its signature is as follows:

public class EjbProgrammaticLogin extends java.lang.Object
implements IProgrammaticLogin

Its one constructor is as follows:

public EjbProgrammaticLogin() throws NullValueException

A com.iplanet.ias.security.NullValueException is thrown if the

SecurityContext member variable is null when creation of an

EjbProgrammaticLogin instance is attempted. Its signature is as follows:

public class NullValueException extends java.lang.Exception

Its one constructor is as follows:

public NullValueException(java.lang.String Msg)

EjbProgrammaticLogin methods are described in the following sections.

User Authentication by Servlets

362 iPlanet TM Application Server Developer’s Guide • February 2002

The login Method
The login method allows a user to log in programmatically. Its signature is as

follows:

public void login(java.lang.String userName, java.lang.String
password) throws ProgAuthenticationException, NullValueException

The login method:

• makes sure the user name and password are not null

• checks if another user is logged in

• checks if SecurityContext is null

• performs the authentication

A com.iplanet.ias.security.NullValueException is thrown if any of the

required login input parameters are null.

A com.iplanet.ias.security.ProgAuthenticationException is thrown if the

authentication is unsuccessful. Its signature is as follows:

public class ProgAuthenticationException extends
com.netscape.server.servlet.servletrunner.AuthenticationException

Its one constructor is as follows:

public ProgAuthenticationException(java.lang.String Msg)

The logout Method
The logout method allows a user to log out. Its signature is as follows:

public void logout(boolean flag)

For the EJB container, this method removes the principal name of the logged user

from the SecurityContext regardless of the flag value.

The isLoggedIn Method
The isLoggedIn method returns true if a user is already logged in. Its signature is

as follows:

public boolean isLoggedIn()

The loggedUserName Method
The loggedUserName method returns the principal name of the logged user, or null

if no user is logged in. Its signature is as follows:

public java.lang.String loggedUserName()

User Authorization by Servlets

Chapter 13 Writing Secure Applications 363

User Authorization by Servlets
Servlets can be configured to only permit access to user’s with the appropriate

authorization level. This is done by using the iPlanet Application Server

Deployment Tool to generate DDs for the application .ear and servlet .war files.

Defining Roles
All role names for the entire application are declared in the application XML DD.

The security-role and role-name elements in the application XML DD declare

all role names permitted by the application. These security roles are scoped to the

J2EE web application DD.

The security-role element is a sub element of the application element in the

application XML DD. The syntax for the security-role element is as follows:

<!--
The security-role element defines a security role which is global to
the application. There are two sub elements; the first is a
description of the security role, and the second is the name of the
security role.

<!ELEMENT security-role (description?, role-name)>
The role-name element contains the name of a role.
<!ELEMENT role-name (#PCDATA)>

Referencing Security Roles
For each servlet, the web application DD declares all roles authorized to have

access. The security-rol-ref and role-link elements in the web-app XML DD

links the authorized roles to the application level role name.

The application assembler is responsible for linking all security role references

declared in the security-role-ref elements to the security roles defined in the

security-role elements.

The application assembler links each security role reference to a security role using

the role-link element. The role-link value element must be one of the security

role names defined in a security-role element.

The following DD example shows how to link the security role reference to the

security role.

User Authorization by Servlets

364 iPlanet TM Application Server Developer’s Guide • February 2002

<!ELEMENT security-role-ref (description?, role-name, role-link)>
<!ELEMENT role-link (#PCDATA)>

Defining Method Permissions
On the servlet level, define method permissions using the auth-constraint

element of the web-app XML DD.

The auth-constraint element on the resource collection must be used to indicate

the user roles permitted to the resource collection. The role used here must appear

in a security-role-ref element.

<!ELEMENT auth-constraint (description?, role-name*)>

Sample Web Application DD
The security section of a sample web application DD might look as follows:

<web-app>

<display-name>A Secure Application</display-name>
<security-role>

<role-name>manager</role-name>
</security-role>

<servlet>
<servlet-name>catalog</servlet-name>
<servlet-class>com.mycorp.CatalogServlet</servlet-class>

<init-param>
<param-name>catalog</param-name>
<param-value>Spring</param-value>

</init-param>

<security-role-ref>
<role-name>MGR</role-name> <!-- role name used in code -->
<role-link>manager</role-link>
</security-role-ref>

</servlet>

<servlet-mapping>
<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

<web-resource-collection>
<web-resource-name>SalesInfo</web-resource-name>

User Authorization by EJBs

Chapter 13 Writing Secure Applications 365

<urlpattern>/salesinfo/*</urlpattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

<user-data-constraint>
<transport-guarantee>SECURE</transport-guarantee>
</user-data-constraint>

<auth-constraint>
<role-name>manager</role-name>

</auth-constraint>
</web-resource-collection>

</web-app>

User Authorization by EJBs
EJBs can be configured to only permit access to users with the appropriate

authorization level. This is done by using the iPlanet Application Server

Deployment Tool to generate the DD for the application .ear and EJB .jar files.

EJBs can use programmatic login just as servlets do. For more information, see

“Programmatic Login,” on page 358.

Defining Roles
The deployer assigns the user groups and user accounts defined in the operational

environment, to security roles defined by the application assembler.

The application assembler defines one or more roles in the DD. The application

assembler then assigns the enterprise bean's home and remote interfaces method

groups to the security roles to define the application’s security view.

The application assembler is responsible for defining the following:

• Each security role using a security-role element

• Uses the role-name element to define the security role name

• Optionally, can use the description element to provide a security role

description

User Authorization by EJBs

366 iPlanet TM Application Server Developer’s Guide • February 2002

The security roles defined by the security-role elements are scoped to the

ejb-jar file level and apply to all enterprise beans in the ejb-jar files. (The J2EE

specification does not say a way to define global roles, that is those roles global to

the container).

The following is an example of a security role definition in a DD:

...
<assembly-descriptor>

<security-role>
<description>

This role includes the employees of the enterprise who
are allowed to access the employee self service
application. This role is allowed to access only
her/his information

</desciption>
<role-name>employee<role-name>
</security-role>
<security-role>

<description>
This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self service application. This
role does not have direct access to
sensitive employee and payroll information

</desciption>
<role-name>admin<role-name>
<security-role>

... <assembly-descriptor>

Defining Method Permissions
The application assembler defines the method permissions relation in the DD using

the method permission elements as follows:

Each method-permission element includes a list of one or more security roles and

a list of one or more methods. All listed security roles are allowed to invoke all

listed methods. Each security role in the list is identified by the role-name element,

and each method (or a set of methods, as described below) is identified by the

method element. An optional description can be associated with a

method-permission element using the description element.

The method permissions relation is defined as the union of all method permissions

defined in the individual method permission elements.

A security role or a method may appear in multiple method-permission elements.

User Authorization by EJBs

Chapter 13 Writing Secure Applications 367

The following example illustrates how security roles are assigned method

permissions in the DD.

...
<method-permission>

<role-name>employee</role-name>
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method
</method-permission>
...

There is no interaction here. The Deployment Tool converts these into security

elements.

Security Role References
The bean provider is responsible for declaring in the security-rol-ref elements

of the DD all security role names used in the enterprise bean.

The application assembler is responsible for linking all security role references

declared in the security-role-ref elements to the security roles defined in the

security-role elements. The application assembler links each security role

reference to a security role using the role-link element. The role-link element

value must be one of the security role names defined in a security-role element.

The following DD example shows how to link the Sudety role reference named

payroll to the security role named payroll-department .

User Authentication for Single Sign-on

368 iPlanet TM Application Server Developer’s Guide • February 2002

...
<enterprise-beans>

...
<entity>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>

...
<security-role-ref>
<description>

This role should be assigned to the payroll department’s employees. Members of

this role have access to anyone's payroll record. The role has been linked to the

payroll-department role.

</description>
</security-role-ref>

....
</entity>

...
</enterprise-bean>

User Authentication for Single Sign-on
The single sign-on across applications on the iPlanet Application Server is

supported by the iPlanet Application Server servlets and JSPs. This feature allows

multiple applications that require the same user sign-on information, to share this

information between them, rather than having the user sign-on separately for each

application. These applications are created to authenticate the user one time and

when needed this authentication information is propagated to all other involved

applications.

An example application using the single sign-on scenario could be a consolidated

airline booking service that searches all airlines and provides links to different

airline web sites. Once the user signs on to the consolidated booking service the

user information can be used by each individual airline site without requiring

another sign on.

How to Configure for Single Sign-on
The iPlanet Application Server specific DD for the web container has an element,

called session-info , that has fields to specify the authentication for the servlets

and JSPs within the container. The DD is created by the Deployment Tool. This

section concentrates on how the session-info element’s security fields in the DD

User Authentication for Single Sign-on

Chapter 13 Writing Secure Applications 369

work together to perform the single sign-on authentication. For details on how to

create an the iPlanet Application Server specific web container DD, see the iPlanet

Application Server Deployment Tool and the Administrator’s Guide. For a complete

description of all the session-info fields, refer to Chapter 11, “Packaging for

Deployment.”

Table 13-1 shows the session-info element fields used in the authentication

process:

Single Sign-on Example
Consider two applications hosted on the iPlanet Application Server named

AirlineSearch and AirlineBooking . Both are part of myairlines.com domain

and require users to be authenticated to access resources within these two

applications. AirlineSearch allows the user to search different airlines available

and AirlineBooking allows users to make bookings using the user’s special

preferences, for example, seating, menu, departure times, and so on.

Table 13-1 Security Fields for Single Sign-on

Field Description

domain This field specifies the domain to send back a cookie from the browser. By

default (if the user does not specify a domain), the URL domain that sets the

cookie is assumed to be the domain. The user can set the domain to any

domain that he wishes the cookie to be sent to. The domain must have at least

two periods, and sometimes may have three (for example. .acme.com or

.acme.co.in).

path This field specifies the session cookie’s path; this is the minimum path the URL

must have for the cookie to be sent back from the browser. For example,

setting the path to /phoenix sends the cookie back when either of the

following URLs is accessed:

http://my.Who.com/phoenix/birds.html
or

http://my.Who.com/phoenix/bees.html

The path must begin with a “/ ”. If the path is not set, the default path is

assumed to be the URL setting the cookie.

scope This field specifies a grouping name that “associates” applications sharing the

same user session; that is, signing on to an application automatically allows the

user to access the other applications without signing on to them. The grouped

applications should have the same scope field value in their respective iPlanet

Application Server specific web XML DD files.

User Authentication for RMI/IIOP Clients

370 iPlanet TM Application Server Developer’s Guide • February 2002

The ias-web.xml for both AirlineSearch and AirlineBooking contains the

following:

<session-info>
<path>/iASApp</path>
<scope>AirlineSignon</scope>

</session-info>

Now the user first accesses the services provided by the AirlineSearch

application using the following URL:

http://www.myairlines.com/iASApp/AirlineService/showFlights

showFlights could be a servlet that shows all flights at the time the user requested.

This requires the user to log in. Once the user has seen all flights and decides to

book tickets, and accesses:

http://www.myairlines.com/iASApp/AirlineService/bookFlights

This provides the service to book flights based on the user’s preferences, which

could already be available from the previous accesses and from the sign-on

information provided to the previous AirlineService application.

Since both applications are within the same domain, the domain field is not set in

this example. But this can be extended to share sign-on information among

multiple domains.

User Authentication for RMI/IIOP Clients
Security on a RMI/IIOP client path is integrated into the iPlanet Application Server

security infrastructure. The CXS uses the iPlanet Application Server security

manager to authenticate clients with user information stored in LDAP. Client

credentials are passed from the client, through the bridge to EJBs. A client side

callback initiates client login (with username and password). The object type to be

instantiated to obtain this information is specified through an environment setting

on the client. In case of authentication failure, the client side is setup to retry the

login process. The number of retries is currently hardcoded to three (3).

For more information on elements in the RMI/IIOP client DD, see “RMI/IIOP

Client XML DTD,” on page 328.

Guide to Security Information

Chapter 13 Writing Secure Applications 371

Guide to Security Information
Each information type below is shown with a short description, the location where

the information resides, how to create the information, how to access the

information, and where to look for further information.

• User Information

• Security Roles

User Information
User name, password, and so on.

Location:
Directory Server

How to Create:
Create using Mission Console or programmatically using the LDAP SDK. For more

information, see the iPlanet Application Server Deployment Tool Help and the

Administrator’s Guide.

Security Roles
Role that defines an application function, made up of a number of users and/or

groups. LDAP groups function as roles in the iPlanet Application Server.

Location:
Directory Server

How to Create:
Use the iPlanet Application Server Deployment Tool.

How To Access:
Use isCallerInRole() to test for a user’s role membership.

Web Server to Application Server Component Security

372 iPlanet TM Application Server Developer’s Guide • February 2002

Web Server to Application Server Component
Security

Beginning with iPlanet Application Server 6.0 SP2, developers can selectively

encrypt the traffic between the web servers and the KXS per component. The

encryption is done using 128 bit keys and RSA Bsafe3.0 library. It is recommended

that developers turn on encryption judiciously for those components

(servlets/JSPs) that require high security, such as credit card information gathering

servlets, login servlets, and so on.

To enable encryption of the traffic between these components, you must enable the

application server itself to support encryption. The steps required are:

1. Set CCS0\\SECURITY\\EnableEncryption=D (for Domestic 128 bit, data type

String).

2. Create an entry or value CCS0\\SECURITY\\LogEncryption=1 (data type

integer). If you want to verify the encryption log messages in the KXS logs.

3. Create a key CCS0\\EXTENSIONS\\CRYPTEXT\\CRYPTSVC\\ENGINES\\0 .

4. Re-start the web server and iPlanet Application Server.

For every component that needs encryption enabled, follow these steps:

1. Register the application using j2eeappreg , webappreg , or iasdeploy

(recommended).

2. Set <encrypt>true</encrypt> in the ias-web.xml file for the component

(servlet/JSP) that you wish to encrypt.

To verify that encryption is enabled and working fine, open the KXS logs and

search for messages similar to

[11/Jan/2001 19:58:43:0] info: CRYPT-003: Encrypting 2309 bytes,
keysize = 128 bits

[11/Jan/2001 19:58:43:5] info: NSAPICLI-012: plugin reqstart,
tickct: 1903570535

[11/Jan/2001 19:58:43:5] info: NSAPICLI-009: plugin reqexit:
0s+.12995s. (198114 0537)

[11/Jan/2001 19:58:52:2] info: CRYPT-004: Decrypting 1897 bytes,
keysize = 128 bits

373

Chapter 14

Taking Advantage of the iPlanet
Application Server Features

This chapter describes how to implement the iPlanet™ Application Server features

in your application. The iPlanet Application Server provides many additional

features to augment your servlets for use in an iPlanet Application Server

environment. These features are not a part of the official servlet specification,

though some, like the servlet security paradigm described in Chapter 13, “Writing

Secure Applications,” are based on emerging Sun Microsystems® standards and

conforms to these future standards.

This chapter contains the following sections:

• Caching Servlet Results

• Using a Startup Class

Caching Servlet Results
The iPlanet Application Server has the ability to cache a servlet’s results in order to

make subsequent calls to the same servlet faster. The iPlanet Application Server

caches the request results (for example, a servlet’s execution) for a specific amount

of time. In this way, if another data call occurs the iPlanet Application Server can

return the cached data instead of performing the operation again. For example, if

your servlet returns a stock quote that updates every 5 minutes, you set the cache

to expire after 300 seconds.

Whether to cache results and how to cache them, depends on the data type

involved. For example, it makes no sense to cache the results of a quiz submission

because the input to the servlet is different each time. However, you could cache a

high level report showing demographic data taken from quiz results and updated

once an hour.

Caching Servlet Results

374 iPlanet TM Application Server Developer’s Guide • February 2002

You can define how an iPlanet Application Server servlet handles memory caching

by editing specific fields in the servlet’s configuration file. In this way, you can

create programmatically standard servlets that still take advantage of this valuable

iPlanet Application Server feature.

Table 14-1 shows the caching settings in a servlet configuration file.

For more information on these settings, see “Elements for Specifying Servlet

Caching,” on page 315.

The cache-criteria field sets criteria to determine if servlet results are cached.

This field tests one or more fields in the request. This allows conditionally cache

results based on value or presence of one or more fields. If the tests succeed, the

servlet results are cached.

Table 14-2 shows the cache-criteria field syntax.

Table 14-1 Servlet Cache Settings

Name Type Value

cache-timeout Integer Optional. Elapsed time (in seconds) before the servlet’s

memory cache is released.

cache-size Integer Optional. Servlet memory cache size (in KB).

cache-criteria String Optional. Criteria expression string containing

comma-delimited descriptors. Each descriptor defines a

match with one servlet input parameter.

cache-option String Optional. Sets the cache timeout option to either

TIMEOUT_CREATE or TIMEOUT_LASTACCESS.

Table 14-2 CacheCriteria Field

Syntax Description

arg Tests whether an arg value is in the input parameter list. For example, if the field is set to

"EmployeeCode" , results are cached if a request contains an "EmployeeCode" field.

arg=v Tests whether arg matches v (a string or numeric expression). For example, if the field is

set to "stock=NSCP" , results are cached if the request contains a stock field with the

value NSCP. Assign an asterisk (*) to the argument to cache a new results set when the

servlet runs with a different value. For example, if the criteria is set to

"EmployeeCode=*" , results are cached if the request object contains a field called

"EmployeeCode" and the value is different from the currently cached value.

Using a Startup Class

Chapter 14 Taking Advantage of the iPlanet Application Server Features 375

Using a Startup Class
A startup class is a user-defined class object that is automatically loaded into

memory when the iPlanet Application Server starts up. It performs initialization

tasks within the Application Server environment. The characteristics of a

StartupClass object are:

• It spans through the life of server in which it runs.

• It is notified when the server shuts down.

• It runs within the JVM of a kjs process, so each kjs process owns one instance

of the StartupClass object.

A startup class must meet the following requirements:

• It must be in the package com.iplanet.ias.startup .

• It must be named StartupClass .

• It must implement the interface com.iplanet.ias.startup.IStartupClass .

The following sections describe how to create and use a startup class:

• The IStartupClass Interface

• Building the Startup Class

• Deploying the Startup Class

• How kjs Handles the StartupClass Object

arg=v1|v2 Tests whether an arg matches a list value (v1 , v2 , and so on). For example:

"dept=sales|marketing|support".

arg=n1-n2 Test whether an arg number is within the given range. For example:

"salary=40000-60000".

NOTE Only one StartupClass object can be deployed to an Application

Server instance.

Table 14-2 CacheCriteria Field

Syntax Description

Using a Startup Class

376 iPlanet TM Application Server Developer’s Guide • February 2002

The IStartupClass Interface
The StartupClass class must implement the IStartupClass interface. The

IStartupClass interface defines two methods:

• public void startUp() throws StartupClassException

This method is called to perform activities when kjs starts up (kjs calls the

StartupClass default constructor, which calls this method). This method may

perform any action. It is invoked after the kjs engine establishes all the

relevant contexts, so it can access EJB and JDBC resources.

If an exception occurs, this method throws a

com.iplanet.ias.startup.StartupClassException .

• public void shutDown()

This method should deallocate any resources allocated during startup.

A com.iplanet.ias.startup.StartupClassException is thrown if the startUp

method fails. Its signature is as follows:

public class StartupClassException extends java.lang.Exception

Its one constructor is as follows:

public StartupClassException(java.lang.String msg)

Building the Startup Class
Building the class is supported through Ant (although using Ant is not required).

Building the StartupClass file and any dependent java files in the

install_dir/startup directory is recommended, because the files necessary for

building it are there. Make sure you have done these things first:

• Include install_dir/bin in the Shell’s PATH environment variable.

• Include the path to the JDK in the Shell’s PATH environment variable.

• If you are not building the StartupClass file in the install_dir/startup

directory, copy the StartupClass.java , startup.properties , and

build.xml files from that directory into the build directory you are using.

The following are the build options:

Using a Startup Class

Chapter 14 Taking Advantage of the iPlanet Application Server Features 377

Deploying the Startup Class
Deployment is supported through the iasdeploy tool. There are two kinds of

deployment:

• Local deployment

iasdeploy deploystartup path/startup.jar

For example:

iasdeploy deploystartup /iasroot/ias/startup/classes/startup.jar

• Remote deployment

iasdeploy deploystartup -host server -port port -user userName
-password password path/startup.jar

For example:

iasdeploy deploystartup -host myserver -port 80 -user jjones
-password secret /iasroot/ias/startup/classes/startup.jar

The path can be the following:

build compile Compiles all the java files in the install_dir/startup

directory and places the class files under the classes

subdirectory.

build jar Runs build compile , then jars the class files into the

startup.jar file and places this file under the classes

subdirectory.

build clean_jar Removes the startup.jar file.

build clean Removes the classes subdirectory and its subdirectories.

build deploy Deploys the startup.jar file to install_dir/STARTUPCLASS.

build The default build, which runs build clean , build

compile , build jar , and build deploy in that order.

NOTE The name of the .jar file must be startup.jar .

Using a Startup Class

378 iPlanet TM Application Server Developer’s Guide • February 2002

• The relative path to the startup.jar file from the directory in which

iasdeploy is run

• The absolute path, for example install_dir/startup/classes

Concurrent deployment on multiple machines is not supported by the iasdeploy

tool.

The startup.jar file is deployed to the install_dir/STARTUPCLASS directory.

How kjs Handles the StartupClass Object
For each kjs process that runs in its own JVM, there is one instance of the

StartupClass object.

Inside the run method of com.kivasoft.engine.Engine.java , the StartupClass

object is created by the system class loader after the environment is set up, but

before any other method is performed. The startUp method is performed when

the StartupClass object is created.

If the startUp method executes successfully, kjs runs until it shuts down

normally. At graceful shutdown (with iascontrol stop), kjs calls the shutDown

method of the StartupClass object.

If the startUp method throws a com.iplanet.ias.StartupClassException , kjs

calls the shutDown method, and the StartupClass object is immediately garbage

collected. Then kjs exits.

NOTE If the startup class is deployed to a directory other than

install_dir/STARTUPCLASS, an informational message is generated in

the kjs log when the application server starts up.

NOTE The Deployment Tool does not provide support for assembling

startup class modules.

NOTE Since each kjs process has its own copy of the StartupClass

object, you should design a startup class with caution. It is

recommended that you take care of synchronization issues for

shared resources.

379

Appendix A

Using the Java Message Service

This appendix describes how to use the Java Message Service (JMS) API. The

iPlanet Application Server allows third party JMS provider integration into its Java

environment, and provides two value-added features: connection pooling and user

identity mapping.

This appendix contains the following sections:

• About the JMS API

• Enabling JMS and Integrating Providers

• Using JMS in Applications

• JMS Administration

• Sample Applications

About the JMS API
JMS is a J2EE API which provides a standard set of Java language interfaces to an

Enterprise Messaging System, often referred to as message oriented middleware.

These interfaces are implemented by the JMS provider. The iPlanet Application

Server supports the iPlanet Message Queue and the JMS provider for IBM MQ

Series. For more information about the iPlanet Message Queue, refer to the

following documentation:

http://docs.iplanet.com/docs/manuals/javamq.html

The JMS web page at http://java.sun.com/products/jms/index.html

describes JMS’s purpose as follows:

About the JMS API

380 iPlanet TM Application Server Developer’s Guide • February 2002

Enterprise messaging provides a reliable, flexible service for the asynchronous

exchange of critical business data and events throughout an enterprise. The

JMS API adds to this a common API and provider framework that enables the

development of portable, message based applications in the Java programming

language.

The iPlanet Application Server also includes JMS Connection Pooling and User

Identity Mapping. These are provided through an administrative framework and

the iPlanet Application Server specific code is not required. Applications can use

these features transparently, maintaining component portability.

JMS Messaging Styles
JMS supports two messaging styles:

• Point-to-point: allows two programs to communicate by sending and

receiving messages through a Destination called a Queue.

• Publish/subscribe: allows several messaging programs to communicate

through a Destination called a Topic . Messages are sent by publishing to a

Topic . Messages are received by subscribers.

Regardless of messaging style, the link between applications and the JMS provider

is the connection object. Applications get their connection objects from the

Connection Factories.

In order to maximize portability of an application between JMS providers,

provider specific messaging aspects are encapsulated in administered objects. JMS

administered objects implement one of the following four JMS interfaces, two for

each messaging style:

• Destination

❍ Queue

❍ Topic

• ConnectionFactory

❍ QueueConnectionFactory

❍ TopicConnectionFactory

JMS providers supply classes that implement these interfaces. Administration tools

are used to create and configure administered object class instances, and to

configure them to the deployment requirements. Administrators use the tools to

set provider specific parameters.

About the JMS API

Appendix A Using the Java Message Service 381

This programming model allows JMS programs to be written that are completely

provider independent. Applications look up the administered objects by name

using JNDI.

The following sample looks up its connection factory and destination, and sends a

simple text message to a queue (exception handling has been omitted for clarity):

// Use JNDI to find the connection factory and the destination
Context ctx = new InitialContext();

QueueConnectionFactory factory;

factory = (QueueConnectionFactory) ctx.lookup
("java:comp/env/jms/theFactory");Queue queue = (Queue)
ctx.lookup("java:comp/env/jms/theQueue");

// create a connection, session, sender and the message
QueueConnection conn;
conn = factory.createQueueConnection("myUserName", "myPassword");
QueueSession session = connection.createQueueSession (false,
Session.AUTO_ACKNOWLEDGE);
QueueSender sender = session.createSender(queue);
TextMessage msg = session.createTextMessage();
msg.setText("Hello from a simple Java Message Service Application");

// start up the connection, send the message
connection.start();
sender.send(msg);
connection.stop();

// now close all resources to insure that native resources are
released
sender.close();
session.close();
connection.close();

Note that the application did not hardcode the resource names, but instead used

J2EE resource references, as described in the section on application deployment.

Applications should reference objects in the JMS subcontext directly, since the

iPlanet Application Server deployment manager does not support JMS resource

references.

Enabling JMS and Integrating Providers

382 iPlanet TM Application Server Developer’s Guide • February 2002

Enabling JMS and Integrating Providers
The iPlanet Application Server includes the software to integrate JMS providers,

but it must be enabled. For information about how to integrate a JMS provider with

the iPlanet Application Server, see the following documentation:

install_dir/ias/ias-samples/jms/docs/index.html

Using JMS in Applications
JMS support for the iPlanet Application Server is based entirely on standard J2EE

APIs. Application components using the value-added features are portable with

other J2EE environments. This section discusses some issues that you should

consider when using JMS in applications deployed on the iPlanet Application

Server.

JNDI and Application Component Deployment
JMS objects are stored by the administration tools in the JMS subcontext of the

iPlanet Application Server root JNDI name space. The JMS subcontext does not

support creation of subcontexts of itself. Links to the components application

context are established at application deployment time.

When an InitialContext is created with the default parameters, JMS objects may

be referenced by name beginning with jms/ . Greater flexibility can be achieved by

using J2EE resource references. This was demonstrated in the sample shown on

page 381, where the name looked up for the factory was

java:comp/env/jms/theFactory . In the iPlanet Application Server JMS, JMS

resource references are not supported. JMS objects should be referenced directly.

Connection Factory Proxy
The iPlanet Application Server supports the JMS connection pooling and user

identity maps. The ConnectionFactoryProxy class functions by interposing

between the application and the JMS provider’s connection factory. There are two

proxy classes, one for each messaging style:

• QueueConnectionFactoryProxy

• TopicConnectionFactoryProxy

Using JMS in Applications

Appendix A Using the Java Message Service 383

The APIs presented by the proxy classes are the standard JMS APIs:

QueueConnectionFactory and TopicConnectionFactory . Only administrators

need be concerned with proxies, which are used transparently to the application.

A simple administration program configures ConnectionFactoryProxies . The

proxies handle connection pooling and user ID mapping. JMS operations are

forwarded to a connection obtained by the proxy from a provider factory specified

by the administrator.

Connection Pooling
Setting up a JMS connection is network intensive and therefore expensive.

Connection pooling facilitates the re-use of JMS connections. When pooling is

enabled and an application closes a connection, the proxy returns the connection to

the pool instead of closing the provider connection. When a subsequent application

attempts to create a connection using the same username and password, the proxy

re-uses the connection.

User Identity Mapping
The ConnectionFactoryProxy also provides user identity mapping. JMS

providers do not use the same security infrastructure as the application server and

thus have different user name spaces. User identity mapping provides

administrators flexibility in designing their security infrastructure.

Two mapping forms are provided by the connection factory proxy classes:

• Default username

• Explicit user ID map

As with connection pooling, this functionality is implemented by the proxy classes

within the standard JMS API. When using this user identity mapping, the

deployment depends on the iPlanet Application Server user security mechanisms

to control access to the messaging system.

About Default Username
Default username and password enable multiple application users to share a single

messaging system provider user ID and password.

Using JMS in Applications

384 iPlanet TM Application Server Developer’s Guide • February 2002

When a proxy is created, the administrator may define a default proxy user name

and password. Applications invoking the no argument create connection method

pass these values to the provider factory when creating a connection. For example,

when the application calls:

connection = proxy.createQueueConnection();

If a default user name has been configured, the iPlanet Application Server proxy

implementation obtains its JMS Connection with:

connection = providerFactory.createQueueConnection (defaultUserName,
defaultPassword);

About Explicit User ID Map
An explicit user ID map may also be used. The map contains an entries list, each

referenced by a unique user ID key and containing two values:

• jmsUserName

• jmsPassWord

The administrator creates the map using the jmsuadm tool. The entry values are

used when creating a connection. For example, when an application creates a

connection using the proxy with:

connection = proxy.createQueueConnection(userString,
passWordString);

The iPlanet Application Server proxy looks up the given userString entry in the

map. If it finds an entry, the proxy passes jmsUserName and jmsPassWord values

from the entry to the JMS provider factory, ignoring the application provided

password. That is, the proxy effectively executes:

connection = providerFactory.createConnection (entry.jmsUserName,
entry.jmsPassWord);

If no entry matching userString is found in the user identity map, the application

provided values are passed through to the JMS provider factory

(providerFactory).

JMS Administration

Appendix A Using the Java Message Service 385

ConnectionFactoryProxies and Application
Created Threads
A servlet can create Java threads, but it is not recommended. User created threads

are not known to the JMS connection pooling infrastructure. Applications must not

invoke the create connection or connection close methods from user created

threads. Attempting to do so results in:

javax.jms.IllegalStateException

This is not implemented in JMS beta. In beta, applications that attempt to create or

close connections from application created threads crash KJS.

JMS Features Not Supported
The iPlanet Application Server does not support the JMS XAConnection and server

session pools features described in the JMS specification.

JMS Administration
The JMS API depends on administered objects for portability. Provider specific

deployment aspects are encapsulated in administered objects which allow portable

application code. In the iPlanet Application Server environment JMS

administration consists of four tasks:

• Creating JMS provider factories and destinations

• Creating user ID maps

• Creating ConnectionFactoryProxies

• Modifying the iPlanet Application Server registry connection pooling

parameters

JMS Administration

386 iPlanet TM Application Server Developer’s Guide • February 2002

JMS Object Administration Tools
Each JMS product should include an administration program. This tool creates

objects and binds them to names in the iPlanet Application Server JNDI. This

section describes the Java properties and system paths required to configure a tool

to work with the JMS JNDI context. Consult your provider documentation for how

specific tools are configured. (A script for launching the administration tool for

IBM MQ JMS for the iPlanet Application Server is described in the next section.)

Table A-1 shows the property values used to access the JMS context when creating

the InitialContext .

JNDI Properties for JMS Administration Tools
For the Java classes required to access the JMSContext , include the following three

.jar files in the Java runtime classpath :

• GX_ROOTDIR/classes/java/jms.jar

• GX_ROOTDIR/classes/java/javax.jar

• GX_ROOTDIR/classes/java/kfcjdk11.jar

where GX_ROOTDIR is the iPlanet Application Server installation location, for

example:

/usr/iPlanet/ias6/ias

On Solaris, the following directory must be included in the LD_LIBRARY_PATH:

$GX_ROOTDIR/gxlib

Table A-1 Java Property Names and Values

Java Property Name Property Value

Java.naming.factory.initial com.netscape.server.jndi.ExternalContextFactory

Java.naming.provider.url /jms

JMS Administration

Appendix A Using the Java Message Service 387

JMS Object Administration for IBM MQ
The mqjmsadm script launches the IBM MQ JMS administration program is

included in the iPlanet Application Server. It is located in GX_ROOTDIR/jms/bin .

The administration program is a Java class. mqjmsadm is an interactive command

line program that accepts administrator input or from an input file.

The operation is described in the MQSeries documentation for JMS

Administration. mqjmsadm handles the JNDI configuration automatically, so it is

not necessary to use the -cfg option. For example, a connection factory and queue

could be created with the following mqjmsadm session:

mqjmsadm

The response is:

5648-C60 (c) Copyright IBM Corp. 1999. All Rights Reserved.

Starting MQSeries Classes for Java(tm) Message Service
Administration

Connected to LDAP server on localhost port 389
InitCtx> define q(theQueue) queue(SYSTEM.DEFAULT.LOCAL.QUEUE)
InitCtx> define qcf(theFactory)
InitCtx> display ctx

Contents of InitCtx
a aQueue com.ibm.mq.jms.MQQueue
a theProviderFactorycom.ibm.mq.jms.MQQueueConnectionFactory
2 Object(s)
0 Context(s)
2 Binding(s), 2 Administered
InitCtx> end

The JMS context does not support subcontexts, so using JMSAdmin commands to

manipulate subcontexts generate error messages.

Connection Factory Proxy Administration
Connection factory proxies are created with the jmspadm command (JMS proxy

administrator). This command (shell script for Unix or BAT file for NT) launches a

Java program that creates connection factory proxies with given parameters and

binds them in JNDI. The proxy parameters are set by command line arguments.

The command performs three operations on proxies:

• Creating a proxy

JMS Administration

388 iPlanet TM Application Server Developer’s Guide • February 2002

• Deleting a proxy

• Listing proxy parameters

Creating a Proxy
To create a proxy enter:

jmspadm proxyName factoryName <-p or +p> <-u user password> <-m
userMapNam>

The first two arguments are required:

• JNDI name to be given to the new proxy

• JNDI name for the connection factory to be proxied

Since JMS objects may only be found in the JMS subcontext, if the supplied names

do not begin with jms , string is prepended. For example, the following two

commands have the same result:

• jmspadm theFactory theProviderFactory

• jmspadm jms/theFactory jms/theProviderFactory

Using the provider specific tool, create the factory before running jmspadm , to

make the factory class available. The remaining arguments are optional. They are

used for proxy operation control at runtime. The default settings are:

• Connection pooling is on. Disable connection pooling by using -p .

• No default userid and password . Set them by using -u .

• No identity map. Setting the JNDI name of a user ID map to be used by the

proxy is discussed below.

Deleting a Proxy
The syntax to delete a proxy is:

jmspadm -d proxyName

Listing Proxy Parameters
To list all proxies stored in JNDI use the command: jmspadm -l .

JMS Administration

Appendix A Using the Java Message Service 389

User ID Map Administration
To create a user identity map the administrator must prepare an XML file. Once

this file is ready, use the jmsuadm command. Again there are three variations to the

command:

• jmsuadm mapName mapFileName reads the given file and creates a user ID

map.

• jmsuadm -d mapName deletes the map.

• jmsuadm -l lists the map names.

For security purposes, the map contents cannot be listed. Administrators should

protect the input files carefully.

The input file format is XML. The public name for the DTD is:

-//Sun Microsystems, Inc.//DTD iAS JMS User Identity Map 1.0//EN

The following example input file contains the two JMS users mappings:

<?xml version="1.0" encoding="iso8859-1"?>

<!DOCTYPE jms-user-id-map PUBLIC "-//Sun Microsystems, Inc.//DTD iAS
JMS User Identity Map 1.0//EN" "TODO: fill this in" >

<jms-user-id-map>
<user>

<name>bob</name>
<jms-name>jmsuser</jms-name>
<jms-password>secret</jms-password>

</user>

<user>
<name>nancy</name>
<jms-name>jmsuser2</jms-name>
<jms-password>private</jms-password>

</user>
</jms-user-id-map>

Each user element must contain all of the following three elements as noted in the

above example:

• name

• jms-name

• jms-password

although empty values are allowed:

Sample Applications

390 iPlanet TM Application Server Developer’s Guide • February 2002

<jms-name></jms-name>

Connection Pooling Configuration
Certain parameters for the JMS connection pool are stored in the iPlanet

Application Server registry. If desired, these may be adjusted using the kregedit

program in the iPlanet Application Server bin directory.

The parameters are stored for each registered datasource in the registry path:

SOFTWARE\iPlanet\ApplicationServer\6.5\CCS0\Datasource\

For more information on connection pooling parameters, see chapter eight,

“Administering Database Connectivity”, in iPlanet Application Server
Administrator’s Guide.

Sample Applications
JMS sample applications can be found in the directory:

install_dir/ias/ias-samples/jms

Default JMS Provider
iPlanet Message Queue (iMQ) for Java 2.0 SP1, is the default messaging

middleware for iPlanet Application Server. iMQ for Java 2.0 SP1 is available on the

iPlanet Application Server product CD.

391

Appendix B

Runtime Considerations

This appendix convers the following topics:

• Runtime Environments

• The Classloader Hierarchy

• Dynamic Reloading

Runtime Environments
Whether you register a component as a standalone module or as an application,

registering affects both the file system and the registry. Figure B-1 shows the

standalone module runtime environment. Figure B-2 shows the application

runtime environment.

Standard Module Runtime Environment
The figure below illustrates the environment for module-based deployment. Note

that for file system entries, modules are extracted as follows:

install_dir/ias/APPS/modules/ module_name/ extracted_class

Registry entries are added under this key:

SOFTWARE\iPlanet\Application Server\6.5\J2EE-Module\ module_name

TIP All standalone modules are extracted under the same directory, and

all modules are extracted to the same LDAP location, therefore it is

important that no two modules have the same name.

Runtime Environments

392 iPlanet TM Application Server Developer’s Guide • February 2002

Figure B-1 Standalone Module runtime environment

Application Runtime Environment
The figure below illustrates the environment for application-based deployment.

Note that for file system entries, applications are extracted as follows:

install_dir/ias/APPS/ app_name/ module_name/ extracted_class

For Registry entries, modules within the application are added under this key:

SOFTWARE\iPlanet\Application Server\6.5\J2EE-Module\module_name

Registry: File System:

packagingEJB.jar/war

\SOFTWARE\iPlanet\Application
Server\6.5\J2EE-Module\

install_dir/ias/APPS/
modules/packagingEJB/*

packagingEJB\...

iasdeploy deploymodule packagingModule.ear

The Classloader Hierarchy

Appendix B Runtime Considerations 393

Figure B-2 Application runtime environment

The Classloader Hierarchy
In a Java Virtual Machine (JVM), the class loaders dynamically load a specific java

class file needed for resolving a dependency. For example, when an instance of

java.util.Enumeration needs to be created, one of the classloaders loads the

relevant class into the environment. Class loaders in the iPlanet Application Server

runtime follow a rigid hierarchy that is illustrated in Figure B-3.

Registry: File System:

packagingModule.ear

packagingEJB.jar/war

\SOFTWARE\iPlanet\Application
Server\6.5\J2EE-Application\

install_dir/ias/APPS/
packagingModule/

packagingModule\...

iasdeploy deployapp packagingModule.ear

packagingEJB/*
\SOFTWARE\iPlanet\Application
Server\6.5\J2EE-Module\
packagingEJB\...

The Classloader Hierarchy

394 iPlanet TM Application Server Developer’s Guide • February 2002

Figure B-3 Classloader runtime hierarchy

A delegation design is used to load classes and resources at runtime. In this

delegation design, each instance of a class loader has an associated parent class

loader, which could be either a system class loader or another custom classloader.

When called upon to to find a class or resource, a class loader instance will delegate

the search for the class or resource to its parent class loader before attempting to

find the class or resources itself. If the parent classloader can’t load a class, a

method, called findClass () , is called on the custom class loader.

In effect, the custom class loader is responsible for loading only the classes not

available to the parent. These would presumably be classes that come from a new

type of class repository, i.e from the specified file system or from the network. Each

class loader looks at a different repository for classes. The classloaders and the files

they examine are described in Table B-1.

The Classloader Hierarchy

Appendix B Runtime Considerations 395

NOTE • When Versioning is enabled in iPlanet Application Server, the

J2EE component classes(Servlet/JSP and EJB Implementation

classes) are loaded by WebClassLoader/EjbClassLoader.

Whereas, all other classes(helper classes) are loaded by

ApplicationClassLoader.

If two classes which happen to be in the same package are

loaded by different ClassLoaders and their runtime packages

are different, the JVM considers them to be classes in different

packages.

• Therefore, accessing protected method in helper class from

servlet/JSP/EJB implementaion class will throw

IllegalAccerssError .

• If you want to take advantage of the dynamic reloading of

classes, then make protected methods public.

Table B-1 iPlanet Application Server classloaders

Classloader Description

Bootstrap

Classloader

The Bootstrap Classloader looks for runtime classes in rt.jar
and internationalization classes in i18n.jar .

The Bootstrap Classloader is the parent of Extension and System

Classloaders.

Extension

Classloader

The Installed Extensions Classloader looks for classes in JAR files

in the lib/ext directory of the JRE.

System

Classloader

The System Classpath Classloader looks for classes in JAR files

and directories on paths specified by the system property

java.class.path . To have a class loaded by the System

Classloader, you must include the relevant directory in the class

path. This means either in iasenv.ksh (on Unix), the

environment (on Unix or NT), or in the

\Software\iPlanet\Application
Server\6.5\Java\Classpath registry entry (on NT.)

Module

Classloader

The iPlanet Application Server Module Classloader looks for

classes in all directories under

install_dir/ias/APPS/modules/* . All modules share this

classloader.

The ModuleClassLoader is another instance of the

ApplicationClassLoader

The Classloader Hierarchy

396 iPlanet TM Application Server Developer’s Guide • February 2002

Application

Classloader

Each registered J2EE application is loaded by its own class loader,

which looks for classes under install_dir/ias/APPS/ app_name
and all subdirectories.

This class loader is the parent of the Web/Ejb classloaders in the

application. Similarly, there is a ModuleClassLoader, which is

used to load classes for all registered standalone modules. The

ModuleClassLoader is nothing but another instance of the

ApplicationClassLoader, and for all stanalone modules the same

heirarchy is followed as for an application.

In effect all standalone modules are considered as part of a default

application.

Web

ClassLoader

Each Web-module(WARs) in a J2EE application is assigned one

WebClassLoader. All Web-components i.e Servlet classes and JSP

classes(which direcly or indirectly implements

javax.servlet.Servlet interface) in a web module are

loaded by WebClassLoader. For each standalone web-module, a

WebClassLoader is created and ModuleClassLoader is the parent

for that.

NOTE:

Web-component classes are loaded by WebClassLoader only if

dynamic reloading is enabled. If dynamic reloading is disabled,

then all the classes in an application are loaded by the Application

classloader(ModuleClassLoader for standalone web module).

Ejb

ClassLoader

Each Ejb-Module(JARs) in a J2EE application is assigned one

EjbClassLoader. All EJBcomponents (EJB implementation classes)

in the ejb module are loaded by this classloader. This classloader

has a common parent classloader, which is, the Application

Classloader.

For each standalone Ejb- module, an EjbClassLoader is created

and the ModuleClassLoader is parent for that.

NOTE:

Ejb-component classes are loaded by EjbClassLoader only if

dynamic reloading is enabled. If dynamic reloading is disabled,

then all the classes in an application are loaded by the Application

classloader(ModuleClassLoader for standalone EJB module).

Table B-1 iPlanet Application Server classloaders

Classloader Description

The Classloader Hierarchy

Appendix B Runtime Considerations 397

Possible limitations imposed by the class loader hierarchy are listed here with

suggested work-around solutions:

• Since the iPlanet Application Server ModuleClassloader, which is the class

loader for all independent modules, and the iPlanet Application Server

Application Classloader do not interact with each other, a J2EE application

cannot load J2EE standalone module’s classes (and vice versa). One way to

circumvent this is to include the relevant path to the required class in the

System Classpath, which will then cause it to be loaded by the System

Classloader. For an example of this see the following sample:

http://developer.iplanet.com/appserver/samples/pkging/docs/sampleC.html

One should however note that including the relavant path for the classes in the

System Classpath exposes the classes to all the application deployed under

Application Server which may compromise the Security requirements of the

application.This also prevents classes to be reloadable, because classses in the

System Classpath are loaded by the System classloader.

• Since J2EE specs requires that one applcation should be able to access

components in another application, each J2EE application in iPlanet

Application Server is loaded by its own classloader and two EAR files that are

registered as applications cannot load classes from each other. This ensures

that classes from two applications are loaded in isolation, which prevents two

similarly named classes from different applications from overwriting each

other in the classloader.

• There is only one iPlanet Application Server ApplicationClassloader that is

assigned to load all J2EE standalone modules. This allows two standalone

modules to interact with each other. However, this means that no two classes

in standalone modules should have the same name. For example, if ejb1.jar

attempts to load com.samples.company.DBConnector and war1.war attempts

to load com.samples.company.DBConnector , one will overwrite the other.

TIP Because there is only one application classloader for all standalone

modules, there is a potential security risk if you allow classes from

one module to be accessed by all of the other standalone modules.

Therefore, it is a good idea to include in standalone modules only

reusable components that everyone is allowed to access.

Dynamic Reloading

398 iPlanet TM Application Server Developer’s Guide • February 2002

Dynamic Reloading
Servlets, JSPs, and EJB implementation classes can be dynamically reloaded while the
server is running. This allows you to change module and application code and descriptors
without restarting the server. This is useful in a development environment, because it allows
code changes to be tested quickly.

Dynamic reloading is not recommended for a production environment however, because it
may degrade performance. In addition, whenever a reload is done, the sessions at that
transit time become invalid. The client must restart the session.

When dynamic reloading is disabled, only one Module Classloader or an Application
Classloader are loaded.

Enabling Dynamic Reloading
Dynamic reloading for all classes can be turned on or off using the following two

methods:

• Using Administration Tool

• Modifying the Registry

Using Administration Tool
1. Select the application server instance in the left pane of the Administration

Tool.

2. Click the Enable Dynamic Class Reloading checkbox.

NOTE A resource such as a file that is accessed by a servlet, JSP, or EJB

must be in a directory pointed to by the classloader’s classpath. For

example, the web class loader’s classpath includes these directories:

module_name/WEB-INF/classes
module_name/WEB-INF/compiled_jsp
module_name/WEB-INF/lib

If a servlet accesses a resource, it must be in one of these directories

or it will not be loaded.

Dynamic Reloading

Appendix B Runtime Considerations 399

3. Click Apply

The appropriate changes are made by the Administration Tool in the registry

to enable dynamic class reloading

Modifying the Registry
SYSTEM_JAVA\Versioning\Disable

By default it is set to 1, indicating that dynamic reloading is disabled. A value of 0

enables dynamic reloading.

You can edit the registry using the kregedit tool. For more information, see the

Administrator’s Guide.

Dynamic Reloading of Servlets and JSPs
Dynamic reloading, when enabled, is built into the server for servlets and JSPs.

Changes made while the iPlanet Application Server is running are picked up the

next time a request arrives for that servlet or JSP.

Dynamic Reloading of EJBs
Dynamic reloading, when enabled, is built into the server for EJBs. Changes made

while the iPlanet Application Server is running are picked up the next time a create

request arrives for that EJB.

However, an EJB’s interfaces and helper classes are not dynamically reloadable, so

if you change them, you must restart the server.

If an EJB changes during a session, the EJB Container serializes the states of the EJB

instances involved in the session and deserializes them after recreating the pool of

instances.

Limitations of Dynamic Reloading
If a J2EE component, that is Servlet or Ejb implememntaion class is being referred

to directly from some other class, then the dynamic reloading for the module

which the J2EE component being reffered belongs to would not work. For example

creating a new instance of a Servlet/EJB implementation class from a helper class.

J2EE does not recommend doing so.

Dynamic Reloading

400 iPlanet TM Application Server Developer’s Guide • February 2002

If one J2EE component is accessing a package access member(protected, this case

arises when J2EE component and helper classes happens to be in the same

package) of an helper class and if Dynamic reloading is enabled then

IleegalAccesError occures. In this case Dynamic reloading has to be switched off.

NOTE If you have migrated from iPlanet Application Server 6.0 SPx to 6.5,

you must regenerate the stubs for your EJBs, or dynamic reloading

of the EJB implementation classes won’t work.

401

Appendix C

Sample Deployment Files

This appendix contains sample iPlanet Application Server Deployment Descriptor

(DD) files used for application and component deployment.

This appendix contains the following sample DD XML files:

• Application DD XML Files

• Web Application DD XML Files

• EJB-JAR DD XML Files

• RMI/IIOP Client DD XML Files

• Resource DD XML Files

Application DD XML Files
The application DD gives a top level view of all application contents. There are two

types of application DDs; one is the J2EE application DD and the other is the

iPlanet Application Server application DD. These descriptors are XML files

specified by the DTDs.

The J2EE application DD is described by the J2EE specification, v2.1 Section 8.4

“J2EE:application XML DTD.” The iPlanet Application Server application DD is

described by the iPlanet Application Server web application DTD described in

Chapter 11, “Packaging for Deployment.”

Sample Application DD XML File
This section provides an example of a J2EE application DD XML file. The J2EE

application DD that follows, has a file name of application.xml .

Web Application DD XML Files

402 iPlanet TM Application Server Developer’s Guide • February 2002

<?xml version="1.0"?>

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE
Application 1.2//EN'
'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
<description>Application description</description>
<display-name>estore</display-name>
<module>

<ejb>estoreEjb.jar</ejb>
</module>
<module>

<web>
<web-uri>estore.war</web-uri>
<context-root>estore</context-root>

</web>
</module>
<security-role>

<description>the customer role</description>
<role-name>customer</role-name>

</security-role>
</application>

Web Application DD XML Files
The web application DD conveys the elements and configuration information of a

web application between Developers, Assemblers, and Deployers. These

descriptors are XML files specified by DTDs.

The Web application ARchive (.war) file contains a J2EE web application DD and

an iPlanet Application Server web application DD. The J2EE web application DD is

described by the Java Servlet Specification, v2.2 Chapter 13 “Deployment

Descriptors.” The iPlanet Application Server application DD is described by the

iPlanet Application Server web application DTD described in Chapter 11,

“Packaging for Deployment.”

Sample Web Application DD XML File
This section provides a J2EE web application DD XML file example. The web

application DD that follows, has a file name of web.xml .

Web Application DD XML Files

Appendix C Sample Deployment Files 403

<?xml version="1.0"?>
<!DOCTYPE web-app>

<web-app>
<description>no description</description>
<display-name>DukesPetStoreWebTier</display-name>
<servlet>

<description>no description</description>
<display-name>centralJsp</display-name>
<servlet-name>webTierEntryPoint</servlet-name>
<jsp-file>Main.jsp</jsp-file>
<load-on-startup>-1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>webTierEntryPoint</servlet-name>
<url-pattern>/control/*</url-pattern>

</servlet-mapping>
<session-config>

<session-timeout>54</session-timeout>
</session-config>
<welcome-file-list>

<welcome-file>/index.html</welcome-file>
</welcome-file-list>
<error-page>

<exception-type>java.lang.Exception</exception-type>
<location>/errorpage.jsp</location>

</error-page>
<security-constraint>

<web-resource-collection>
<web-resource-name>MySecureBit0</web-resource-name>
<description>no description</description>
<url-pattern>/control/placeorder</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<description>no description</description>
<role-name>customer</role-name>

</auth-constraint>
<user-data-constraint>

<description>no description</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>
<security-constraint>

<web-resource-collection>
<web-resource-name>MySecureBit1</web-resource-name>

Web Application DD XML Files

404 iPlanet TM Application Server Developer’s Guide • February 2002

<description>no description</description>
<url-pattern>/Main.jsp/signin</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<description>no description</description>
<role-name>customer</role-name>

</auth-constraint>
<user-data-constraint>

<description>no description</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>
<security-constraint>

<web-resource-collection>
<web-resource-name>MySecureBit1</web-resource-name>
<description>no description</description>
<url-pattern>/control/signin</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<description>no description</description>
<role-name>customer</role-name>

</auth-constraint>
<user-data-constraint>

<description>no description</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>
<security-constraint>

<web-resource-collection>
<web-resource-name>MySecureBit0</web-resource-name>
<description>no description</description>
<url-pattern>/Main.jsp/placeorder</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<description>no description</description>
<role-name>customer</role-name>

</auth-constraint>
<user-data-constraint>

<description>no description</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

Web Application DD XML Files

Appendix C Sample Deployment Files 405

</security-constraint>

<login-config>
<auth-method>FORM</auth-method>
<realm-name>default</realm-name>
<form-login-config>

<form-login-page>/estore/login.jsp</form-login-page>
<form-error-page>/estore/error.html</form-error-page>

</form-login-config>
</login-config>

<security-role>
<description>the customer role</description>
<role-name>customer</role-name>

</security-role>

<ejb-ref>
<description>no description</description>
<ejb-ref-name>account</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.sun.estore.account.ejb.AccountHome</home>
<remote>com.sun.estore.account.ejb.Account</remote>

</ejb-ref>
<ejb-ref>

<description>no description</description>
<ejb-ref-name>order</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.sun.estore.order.ejb.OrderHome</home>
<remote>com.sun.estore.order.ejb.Order</remote>

</ejb-ref>
<ejb-ref>

<description>no description</description>
<ejb-ref-name>mailer</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.mail.ejb.MailerHome</home>
<remote>com.sun.estore.mail.ejb.Mailer</remote>

</ejb-ref>
<ejb-ref>

<description>no description</description>
<ejb-ref-name>estorekeeper</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.control.ejb.EStorekeeperHome</home>
<remote>com.sun.estore.control.ejb.EStorekeeper</remote>

</ejb-ref>
<ejb-ref>

<description>no description</description>
<ejb-ref-name>catalog</ejb-ref-name>

Web Application DD XML Files

406 iPlanet TM Application Server Developer’s Guide • February 2002

<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.catalog.ejb.CatalogHome</home>
<remote>com.sun.estore.catalog.ejb.Catalog</remote>

</ejb-ref>
<ejb-ref>

<description>no description</description>
<ejb-ref-name>cart</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.cart.ejb.ShoppingCartHome</home>
<remote>com.sun.estore.cart.ejb.ShoppingCart</remote>

</ejb-ref>
<ejb-ref>

<description>no description</description>
<ejb-ref-name>inventory</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.inventory.ejb.InventoryHome</home>
<remote>com.sun.estore.inventory.ejb.Inventory</remote>

</ejb-ref>
</web-app>

Sample iPlanet Application Server Web-App DD
XML File
This section provides an example of an iPlanet Application Server web application

DD XML file. The iPlanet Application Server web application DD that follows, has

a file name of ias-web.xml .

<?xml version="1.0"?>
<!DOCTYPE web-app>

<ias-web-app>
<servlet>

<servlet-name>webTierEntryPoint</servlet-name>
<guid>{Deadbeef-AB3F-11D2-98C5-000000000000}</guid>

</servlet>

<ejb-ref>
<ejb-ref-name>account</ejb-ref-name>
<jndi-name>ejb/estoreWar/account</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>order</ejb-ref-name>
<jndi-name>ejb/estoreWar/order</jndi-name>

</ejb-ref>
<ejb-ref>

EJB-JAR DD XML Files

Appendix C Sample Deployment Files 407

<ejb-ref-name>mailer</ejb-ref-name>
<jndi-name>ejb/estoreWar/mailer</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>estorekeeper</ejb-ref-name>
<jndi-name>ejb/estoreWar/estorekeeper</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>catalog</ejb-ref-name>
<jndi-name>ejb/estoreWar/catalog</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>cart</ejb-ref-name>
<jndi-name>ejb/estoreWar/cart</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>inventory</ejb-ref-name>
<jndi-name>ejb/estoreWar/inventory</jndi-name>

</ejb-ref>
</ias-web-app>

EJB-JAR DD XML Files
The EJB-JAR file contains a DD in the format defined by the Enterprise JavaBeans

Specification, v1.1 and an iPlanet Application Server EJB DD in the format defined

by Chapter 11, “Packaging for Deployment.”

Sample J2EE EJB-JAR DD XML File
This section provides an example of a J2EE EJB DD XML file. The EJB-JAR DD that

follows, has a file name of ejb-jar.xml .

<?xml version="1.0"?>

<ejb-jar>
<description>no description</description>
<display-name>Ejb1</display-name>
<enterprise-beans>

<session>
<description>no description</description>
<display-name>TheMailer</display-name>
<ejb-name>TheMailer</ejb-name>
<home>com.sun.estore.mail.ejb.MailerHome</home>

EJB-JAR DD XML Files

408 iPlanet TM Application Server Developer’s Guide • February 2002

<remote>com.sun.estore.mail.ejb.Mailer</remote>
<ejb-class>com.sun.estore.mail.ejb.MailerEJB</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<ejb-ref>

<ejb-ref-name>account</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.sun.estore.account.ejb.AccountHome</home>
<remote>com.sun.estore.account.ejb.Account</remote>
<ejb-link>TheAccount</ejb-link>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>order</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.sun.estore.order.ejb.OrderHome</home>
<remote>com.sun.estore.order.ejb.Order</remote>
<ejb-link>TheOrder</ejb-link>

</ejb-ref>
<resource-ref>

<description>description</description>
<res-ref-name>MailSession</res-ref-name>
<res-type>javax.mail.Session</res-type>
<res-auth>Application</res-auth>

</resource-ref>
</session>
<session>

<description>no description</description>
<display-name>TheEstorekeeper</display-name>
<ejb-name>TheEstorekeeper</ejb-name>
<home>com.sun.estore.control.ejb.EStorekeeperHome</home>
<remote>com.sun.estore.control.ejb.EStorekeeper</remote>
<ejb-class>com.sun.estore.control.ejb.EStorekeeperEJB

</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
<env-entry>

<env-entry-name>sendConfirmationMail</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>false</env-entry-value>

</env-entry>
<ejb-ref>

<ejb-ref-name>account</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.sun.estore.account.ejb.AccountHome</home>
<remote>com.sun.estore.account.ejb.Account</remote>
<ejb-link>TheAccount</ejb-link>

</ejb-ref>

EJB-JAR DD XML Files

Appendix C Sample Deployment Files 409

<ejb-ref>
<ejb-ref-name>order</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.sun.estore.order.ejb.OrderHome</home>
<remote>com.sun.estore.order.ejb.Order</remote>
<ejb-link>TheOrder</ejb-link>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>mailer</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.mail.ejb.MailerHome</home>
<remote>com.sun.estore.mail.ejb.Mailer</remote>
<ejb-link>TheMailer</ejb-link>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>catalog</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.catalog.ejb.CatalogHome</home>
<remote>com.sun.estore.catalog.ejb.Catalog</remote>
<ejb-link>TheCatalog</ejb-link>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>cart</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.cart.ejb.ShoppingCartHome</home>
<remote>com.sun.estore.cart.ejb.ShoppingCart</remote>
<ejb-link>TheCart</ejb-link>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>inventory</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.inventory.ejb.InventoryHome

</home>
<remote>com.sun.estore.inventory.ejb.Inventory

</remote>
<ejb-link>TheInventory</ejb-link>

</ejb-ref>
</session>

<entity>
<description>no description</description>
<display-name>TheOrder</display-name>
<ejb-name>TheOrder</ejb-name>
<home>com.sun.estore.order.ejb.OrderHome</home>
<remote>com.sun.estore.order.ejb.Order</remote>
<ejb-class>com.sun.estore.order.ejb.OrderEJB</ejb-class>
<persistence-type>Bean</persistence-type>

EJB-JAR DD XML Files

410 iPlanet TM Application Server Developer’s Guide • February 2002

<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>

<description>description</description>
<res-ref-name>EstoreDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
</entity>
<entity>

<description>no description</description>
<display-name>TheAccount</display-name>
<ejb-name>TheAccount</ejb-name>
<home>com.sun.estore.account.ejb.AccountHome</home>
<remote>com.sun.estore.account.ejb.Account</remote>
<ejb-class>com.sun.estore.account.ejb.AccountEJB

</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>

<description>description</description>
<res-ref-name>EstoreDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
</entity>

<session>
<description>no description</description>
<display-name>TheCart</display-name>
<ejb-name>TheCart</ejb-name>
<home>com.sun.estore.cart.ejb.ShoppingCartHome</home>
<remote>com.sun.estore.cart.ejb.ShoppingCart</remote>
<ejb-class>com.sun.estore.cart.e
<transaction-type>Container</transaction-type>

</session>
<session>

<description>no description</description>
<display-name>TheInventory</display-name>
<ejb-name>TheInventory</ejb-name>
<home>com.sun.estore.inventory.ejb.InventoryHome</home>
<remote>com.sun.estore.inventory.ejb.Inventory</remote>
<ejb-class>com.sun.estore.inventory.ejb.InventoryEJB

</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

EJB-JAR DD XML Files

Appendix C Sample Deployment Files 411

<resource-ref>
<description>description</description>
<res-ref-name>InventoryDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
</session>
<session>

<description>no description</description>
<display-name>TheCatalog</display-name>
<ejb-name>TheCatalog</ejb-name>
<home>com.sun.estore.catalog.ejb.CatalogHome</home>
<remote>com.sun.estore.catalog.ejb.Catalog</remote>
<ejb-class>com.sun.estore.catalog.ejb.CatalogEJB

</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref>

<description>description</description>
<res-ref-name>InventoryDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
</session>

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>TheMailer</ejb-name>
<method-intf>Remote</method-intf>
<method-name>sendOrderConfirmationMail</method-name>
<method-param>int</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheMailer</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getPrimaryKey</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheMailer</ejb-name>
<method-intf>Remote</method-intf>

EJB-JAR DD XML Files

412 iPlanet TM Application Server Developer’s Guide • February 2002

<method-name>getEJBHome</method-name>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheMailer</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getHandle</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheMailer</ejb-name>
<method-intf>Remote</method-intf>
<method-name>isIdentical</method-name>
<method-param>javax.ejb.EJBObject</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getPrimaryKey</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>handleEvent</method-name>
<method-param>com.sun.estore.control.event.EStoreEvent

</method-param>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getShoppingCart</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

EJB-JAR DD XML Files

Appendix C Sample Deployment Files 413

<container-transaction>
<method>

<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getAccount</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getOrder</method-name>
<method-param>int</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getEJBHome</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getHandle</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getOrders</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>isIdentical</method-name>
<method-param>javax.ejb.EJBObject</method-param>

EJB-JAR DD XML Files

414 iPlanet TM Application Server Developer’s Guide • February 2002

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheEstorekeeper</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getCatalog</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheOrder</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getPrimaryKey</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheOrder</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getOrderDetails</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheOrder</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getEJBHome</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheOrder</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getHandle</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheOrder</ejb-name>
<method-intf>Remote</method-intf>

EJB-JAR DD XML Files

Appendix C Sample Deployment Files 415

<method-name>remove</method-name>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheOrder</ejb-name>
<method-intf>Remote</method-intf>
<method-name>isIdentical</method-name>
<method-param>javax.ejb.EJBObject</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheAccount</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getPrimaryKey</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheAccount</ejb-name>
<method-intf>Remote</method-intf>
<method-name>changeContactInformation</method-name>
<method-param>com.sun.estore.util.ContactInformation

</method-param>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheAccount</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getEJBHome</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheAccount</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getHandle</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

EJB-JAR DD XML Files

416 iPlanet TM Application Server Developer’s Guide • February 2002

<container-transaction>
<method>

<ejb-name>TheAccount</ejb-name>
<method-intf>Remote</method-intf>
<method-name>remove</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheAccount</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getAccountDetails</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheAccount</ejb-name>
<method-intf>Remote</method-intf>
<method-name>isIdentical</method-name>
<method-param>javax.ejb.EJBObject</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>updateItemQty</method-name>
<method-param>java.lang.String</method-param>
<method-param>int</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>deleteItem</method-name>
<method-param>java.lang.String</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCart</ejb-name>

EJB-JAR DD XML Files

Appendix C Sample Deployment Files 417

<method-intf>Remote</method-intf>
<method-name>getPrimaryKey</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>empty</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getEJBHome</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getHandle</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>addItem</method-name>
<method-param>java.lang.String</method-param>
<method-param>int</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getItems</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

EJB-JAR DD XML Files

418 iPlanet TM Application Server Developer’s Guide • February 2002

<container-transaction>
<method>

<ejb-name>TheCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>addItem</method-name>
<method-param>java.lang.String</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>isIdentical</method-name>
<method-param>javax.ejb.EJBObject</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheInventory</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getPrimaryKey</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheInventory</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getEJBHome</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheInventory</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getHandle</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheInventory</ejb-name>
<method-intf>Remote</method-intf>
<method-name>updateInventory</method-name>

EJB-JAR DD XML Files

Appendix C Sample Deployment Files 419

<method-param>com.sun.estore.inventory.ejb.
InventoryDetails</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheInventory</ejb-name>
<method-intf>Remote</method-intf>
<method-name>updateQuantity</method-name>
<method-param>java.lang.String</method-param>
<method-param>int</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheInventory</ejb-name>
<method-intf>Remote</method-intf>
<method-name>isIdentical</method-name>
<method-param>javax.ejb.EJBObject</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheInventory</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getInventory</method-name>
<method-param>java.lang.String</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheInventory</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getQuantity</method-name>
<method-param>java.lang.String</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCatalog</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getPrimaryKey</method-name>

EJB-JAR DD XML Files

420 iPlanet TM Application Server Developer’s Guide • February 2002

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCatalog</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getEJBHome</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCatalog</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getHandle</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCatalog</ejb-name>
<method-intf>Remote</method-intf>
<method-name>searchProducts</method-name>
<method-param>java.util.Vector</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCatalog</ejb-name>
<method-intf>Remote</method-intf>
<method-name>findProducts</method-name>
<method-param>com.sun.estore.catalog.ejb.Category

</method-param>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TheCatalog</ejb-name>
<method-intf>Remote</method-intf>
<method-name>isIdentical</method-name>
<method-param>javax.ejb.EJBObject</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

EJB-JAR DD XML Files

Appendix C Sample Deployment Files 421

<container-transaction>
<method>

<ejb-name>TheCatalog</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getAllCategories</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

Sample iPlanet Application Server EJB-JAR DD
XML File
This section provides an example of an iPlanet Application Server EJB-JAR DD

XML file. The following EJB-JAR DD has a file name of ias-ejb-jar.xml .

<ias-ejb-jar>
<enterprise-beans>

<session>
<ejb-name>TheMailer</ejb-name>
<guid>{Deadbabe-AB3F-11D2-98C5-0060B0EF0618}</guid>
<pass-timeout>100</pass-timeout>
<session-timeout>300</session-timeout>
<is-thread-safe>false</is-thread-safe>
<pass-by-value>false</pass-by-value>
<ejb-ref>

<ejb-ref-name>account</ejb-ref-name>
<jndi-name>ejb/estoreEjb/TheAccount</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>order</ejb-ref-name>
<jndi-name>ejb/estoreEjb/TheOrder</jndi-name>

/ejb-ref>
</session>
<session>

<ejb-name>TheEstorekeeper</ejb-name>
<guid>{Deadbabe-AB3F-11D2-98C5-000011112222}</guid>
<pass-timeout>100</pass-timeout>
<session-timeout>300</session-timeout>
<is-thread-safe>false</is-thread-safe>
<pass-by-value>false</pass-by-value>
<ejb-ref>

<ejb-ref-name>account</ejb-ref-name>
<jndi-name>ejb/estoreEjb/TheAccount</jndi-name>

EJB-JAR DD XML Files

422 iPlanet TM Application Server Developer’s Guide • February 2002

</ejb-ref>
<ejb-ref>

<ejb-ref-name>order</ejb-ref-name>
<jndi-name>ejb/estoreEjb/TheOrder</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>mailer</ejb-ref-name>
<jndi-name>ejb/estoreEjb/TheMailer</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>catalog</ejb-ref-name>
<jndi-name>ejb/estoreEjb/TheCatalog</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>cart</ejb-ref-name>
<jndi-name>ejb/estoreEjb/TheCart</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>inventory</ejb-ref-name>
<jndi-name>ejb/estoreEjb/TheInventory</jndi-name>

</ejb-ref>
</session>
<session>

<ejb-name>TheInventory</ejb-name>
<guid>{deadbabe-ab3f-11d2-98c5-999999990002}</guid>
<pass-timeout>100</pass-timeout>
<is-thread-safe>false</is-thread-safe>
<pass-by-value>false</pass-by-value>
<session-timeout>300</session-timeout>

</session>
<session>

<ejb-name>TheCatalog</ejb-name>
<guid>{deadbabe-ab3f-11d2-98c5-999999990003}</guid>
<pass-timeout>100</pass-timeout>
<is-thread-safe>false</is-thread-safe>
<pass-by-value>false</pass-by-value>
<session-timeout>300</session-timeout>

</session>
<session>

<ejb-name>TheCart</ejb-name>
<guid>{deadbabe-ab3f-11d2-98c5-999999990001}</guid>
<pass-timeout>100</pass-timeout>
<is-thread-safe>false</is-thread-safe>
<pass-by-value>false</pass-by-value>
<session-timeout>300</session-timeout>

</session>

iPlanet Application Server Client DD XML Files

Appendix C Sample Deployment Files 423

<entity>
<ejb-name>TheAccount</ejb-name>
<guid>{deadbabe-ab3f-11d2-98c5-999999990000}</guid>
<pass-timeout>100</pass-timeout>
<is-thread-safe>false</is-thread-safe>
<pass-by-value>false</pass-by-value>
<pool-manager>

<commit-option>NO_CACHE_READY_INSTANCE</commit-option>
<Ready-pool-timeout>0</Ready-pool-timeout>
<Ready-pool-maxsize>0</Ready-pool-maxsize>

</pool-manager>
</entity>
<entity>

<ejb-name>TheOrder</ejb-name>
<guid>{deadbabe-ab3f-11d2-98c5-333344445555}</guid>
<pass-timeout>100</pass-timeout>
<is-thread-safe>false</is-thread-safe>
<pass-by-value>false</pass-by-value>
<persistence-manager>

<persistence-manager-factory-class-name>
com.netscape.server.ejb.PersistenceManagerFactory
</persistence-manager-factory-class-name>

<properties-file-location>
EmployeeRecord_pm1.xml
</properties-file-location>
<external-xml-location>
</external-xml-location>

</persistence-manager>
<pool-manager>

<commit-option>NO_CACHE_READY_INSTANCE</commit-option>
<Ready-pool-timeout>0</Ready-pool-timeout>
<Ready-pool-maxsize>0</Ready-pool-maxsize>

</pool-manager>
</entity>

</enterprise-beans>
</ias-ejb-jar>

iPlanet Application Server Client DD XML Files
The following is a sample iPlanet Application Server DD XML file.

<?xml version="1.0" encoding="UTF-8"?>
<ias-application-client>

<ejb-ref>
<ejb-ref-name>External</ejb-ref-name>

RMI/IIOP Client DD XML Files

424 iPlanet TM Application Server Developer’s Guide • February 2002

<jndi-name>ejb/com.sun.cts.tests.appclient.deploy.ejb.ejbref.
Test</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>External1</ejb-ref-name>
<jndi-name>ejb/com.sun.cts.tests.appclient.deploy.ejb.ejbref.

Test1</jndi-name>
</ejb-ref>

</ias-application-client>

RMI/IIOP Client DD XML Files
The following is a sample RMI/IIOP client DD XML file.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application-client PUBLIC ’-//Sun Microsystems, Inc.//DTD
J2EE Application Client 1.2//EN’
’http://java.sun.com/j2ee/dtds/application-client_1_2.dtd’>

<application-client>
<display-name>appclient_ejb_depC_ejbref_client</display-name>
<description>CTS appclient ejbref test</description>
<ejb-ref>

<ejb-ref-name>External</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.cts.tests.appclient.deploy.ejb.ejbref.

TestHome</home>
<remote>com.sun.cts.tests.appclient.deploy.ejb.ejbref.

Test</remote>
<ejb-link>Test</ejb-link>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>External1</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.cts.tests.appclient.deploy.ejb.ejbref.

Test1Home</home>
<remote>com.sun.cts.tests.appclient.deploy.ejb.ejbref.

Test1</remote>
</ejb-ref>

</application-client>

Resource DD XML Files

Appendix C Sample Deployment Files 425

Resource DD XML Files
The following is a sample resource DD XML file.

<ias-resource>
<resource>

<jndi-name>jdbc/SampleSybaseDS1</jndi-name>
<jdbc>

<database>nasqadev</database>
<datasource>SYBFRED</datasource>
<username>aparna</username>
<password>aparnak</password>
<driver-type>SYBASE_CTLIB</driver-type>

</jdbc>
</resource>

</ias-resource>

Resource DD XML Files

426 iPlanet TM Application Server Developer’s Guide • February 2002

427

Glossary

This glossary provides definitions for common terms used to describe the iPlanet

Application Server deployment and development environment. For a glossary of

standard J2EE terms, please see the glossary at:

http://java.sun.com/j2ee/glossary.html

ACL Access Control List, a list of users or groups and their specified permissions.

See component ACL and general ACL.

administration server A process in iPlanet Application Server that handles

administrative tasks.

API Application Programmer Interface, a set of instructions that a computer

program can use to communicate with other software or hardware that is designed

to interpret that API.

applet A small application written in Java that runs in a web browser. Typically,

applets are called by or embedded in web pages to provide special functionality.

By contrast, a servlet is a small application that runs on a server.

application A computer program that performs a task or service for a user. See

web application.

application event A named action that you register with the iPlanet Application

Server registry. The event occurs either when a timer expires or when the event is

called (triggered) from application code at run time. Typical uses for events include

periodic backups, reconciling accounts at the end of the business day, or sending

alert messages.

application server A program that runs an application in a client/server

environment, executing the logic that makes up the application and acting as

middleware between a web browser and a datasource.

428 iPlanet TM Application Server Developer’s Guide • February 2002

application tier A conceptual division of an application:

client tier: The user interface (UI). End users interact with client software (web

browser) to use the application.

server tier: The business logic and presentation logic that make up your application,

defined in the application’s components.

data tier: The data access logic that enables your application to interact with a

datasource.

AppLogic A The iPlanet Application Server-specific class responsible for

completing a well-defined, modular task within a iPlanet Application Server

application. In NAS 2.1, applications used AppLogics to perform actions such as

handling form input, accessing data, or generating data used to populate HTML

templates. This functionality is replaced with servlets and JSPs in iPlanet

Application Server.

AppPath An the iPlanet Application Server registry entry that contains the name

of the directory where application files reside. This entry defines the top of a logical

directory tree for the application, similarly to the document path in a web server.

By default, AppPath contains the value BasePath/APPS, where BasePath is the base

the iPlanet Application Server directory. (BasePath is also a the iPlanet

Application Server variable.)

attribute Attributes are name-value pairs in a request object that can be set by

servlets. Contrast with parameter. More generally, an attribute is a unit of metadata.

authentication The process of verifying a user provided username and

password.

BasePath A the iPlanet Application Server registry entry that contains the

directory where the iPlanet Application Server is installed, including the iPlanet

Application Server subdirectory (other iPlanet products can be installed in

BasePath). For instance, if you install into /usr/local/iPlanet on a UNIX

machine, BasePath is /usr/local/iPlanet/ias . BasePath is a building block for

AppPath .

bean property file A text file containing EJB deployment information. The type

of information is defined in javax.ejb.DeploymentDescripto r .

bean managed transaction See declarative transaction.

Glossary 429

business logic The implementation rules determined by an application's

requirements.

business method Method that performs a single business task, such as querying

a database or authenticating a user, in the course of business logic.

C++ server A process in iPlanet Application Server that runs and manages C++

objects.

cached rowset A CachedRowSet object permits you to retrieve data from a

datasource, then detach from the datasource while you examine and modify the

data. A cached row set keeps track both of the original data retrieved, and any

changes made to the data by your application. If the application attempts to update

the original datasource, the row set is reconnected to the datasource, and only

those rows that have changed are merged back into the database.

callable statement A class that encapsulates a database procedure or function

call for databases that support returning result sets from stored procedures.

class A named set of methods and member variables that define the

characteristics of a particular type of object. The class defines what types of data

and behavior are possible for this type of object. Contrast with interface.

class file A file that contains a compiled class, usually with a .class extension.

See also class name and classpath. Normally referred to in terms of its location in the

file system, as in

.../com/myDomain/myPackage/myClass.

class loader A Java component responsible for loading Java classes, according to

specific rules.

class name The name of a class in the Java Virtual Machine. See class file and

classpath.

classpath The path that identifies a Java class or package, in terms of its

derivation from other classes or packages. See also class file and class name. For

example,

com.myDomain.myPackage.myClass .

client An entity that invokes a resource.

430 iPlanet TM Application Server Developer’s Guide • February 2002

client contract A contract that determines the communication rules between a

client and the EJB container, establishes a uniform development model for

applications that use EJBs, and guarantees greater reuse of beans by standardizing

the relationship with the client. See Enterprise JavaBean (EJB).

cluster A set of hosts running the same server software in tandem with each

other.

co-locate Positioning a component in the same memory space as a related

component in order avoid remote procedure calls and improve performance.

column A field in a database table.

commit Complete a transaction by sending the required commands to the

database. See transaction.

component A servlet, Enterprise JavaBean (EJB), or JavaServer Page (JSP).

component ACL A property in a servlet or EJB configuration file that defines that

defines the users or groups that may execute.

component contract A contract that establishes the relationship between an

Enterprise JavaBean (EJB) and its container. See Enterprise JavaBean (EJB).

configuration The process of providing metadata for a component. Normally,

the configuration for a specific component is kept in a file that is uploaded into the

registry when the component executes.

container A process that executes and provides services for an EJB.

context, server A programmatic view of the state of the server, represented by an

object.

control descriptor A set of Enterprise JavaBean (EJB) configuration entries that

enable you to specify optional individual property overrides for bean methods,

plus EJB transaction and security properties.

cookie A small collection of information that can be transmitted to a calling web

browser, then retrieved on each subsequent call from that browser so the server

can recognize calls from the same client. Cookies are domain specific and can take

advantage of the same web server security features as other data interchange

between your application and the server.

Glossary 431

CORBA Common Object Request Broker Architecture, a standard architecture

definition for object-oriented distributed computing.

data access logic Business logic that involves interacting with a datasource.

database A generic term for Relational Database Management System (RDBMS).

A software package that enables the creation and manipulation of large amounts of

related, organized data.

database connection A database connection is a communication link with a

database or other datasource. Components can create and manipulate several

database connections simultaneously to access data.

datasource A handle to a source of data, such as a database. Datasources are

registered with the iPlanet Application Server and then retrieved

programmatically in order to establish connections and interact with the

datasource. A datasource definition specifies how to connect to the source of data.

declarative security Declaring security properties in the component’s

configuration file and allowing the component’s container (for instance, a bean’s

container or a servlet engine) to manage security implicitly. This type of security

requires no programmatic control. Opposite of programmatic security.

declarative transaction Declaring the transaction’s properties in the bean

property file and allowing the bean’s container to manage the transaction

implicitly. This type of transaction requires no programmatic control. Opposite of

programmatic transaction.

deploy To create a copy of all the files in a project on one or more servers, in such

a way that one or more iPlanet Application Servers and optionally one or more

web servers can run the application.

deployment descriptor An attribute that determines how and where an

Enterprise JavaBean (EJB) is deployed. See Enterprise JavaBean (EJB).

Directory Server An LDAP server that is bundled with iPlanet Application

Server. Every instance of iPlanet Application Server uses Directory Server to store

shared server information, including information about users and groups.

distributable session A user session that is distributable among all servers in a

cluster.

432 iPlanet TM Application Server Developer’s Guide • February 2002

distributed transaction A single transaction that can apply to multiple

heterogeneous databases that may reside on separate servers.

dynamic reloading Updating and reloading a component without restarting the

server. By default, servlet, JavaServer Page (JSP), and Enterprise Java Bean (EJB)

components can be dynamically reloaded.

e-commerce Industry buzzword, a term meaning electronic commerce,

indicating business done over the Internet.

Enterprise JavaBean (EJB) A business logic component for applications in a

multi-tiered, distributed architecture. EJBs conform to the Java EJB standard

specifications, which defines beans in terms of their expected roles. An EJB

encapsulates one or more application tasks or application objects, including data

structures and the methods that operate on them. Typically they also take

parameters and send back return values. EJBs always work within the context of a

container, which serves as a link between the EJBs and the server that hosts them.

See container, session EJB, and entity EJB.

entity EJB An entity Enterprise JavaBean (EJB) relates to physical data, such as a

row in a database. Entity beans are long lived, because they are tied to persistent

data. Entity beans are always transactional and multi-user aware. See session EJB.

executive server Process in iPlanet Application Server that handles executive

functions such as load balancing and process management.

failover recovery A process whereby a bean can transparently survive a server

crash.

finder method Method which enables clients to look up a bean or a collection of

beans in a globally available directory. See Enterprise JavaBean (EJB).

form action handler A specially defined method in a servlet or AppLogic that

performs an action based on a named button on a form.

general ACL A named list in the Directory Server that relates a user or group

with one or more permissions. This list can be defined and accessed arbitrarily to

record any set of permissions.

generic application A collection of globally available components, loosely

organized into an application structure for configuration purposes.

Glossary 433

generic servlet A servlet that extends javax.servlet.GenericServlet . Generic

servlets are protocol independent, meaning that they contain no inherent support

for HTTP or any other transport protocol. Contrast with HTTP servlet.

global database connection A database connection available to multiple

component. Requires a resource manager.

global transaction A transaction that is managed and coordinated by a

transaction manager and can span multiple databases and processes. The

transaction manager typically uses the XA protocol to interact with the database

backends. See local transaction.

group A group of users that are related in some way, maintained by a local

system administrator. See user and role.

GUID 128-bit hexadecimal number, guaranteed to be globally unique, used to

identify components in an iPlanet Application Server application.

home interface A mechanism that defines the methods that enable a client to

create and remove an Enterprise JavaBean (EJB). See Enterprise JavaBean (EJB).

HTML Hypertext Markup Language. A coding markup language used to create

documents that can be displayed by web browsers. Each block of text is

surrounded by codes that indicate the nature of the text.

HTML page A page coded in HTML and intended for display in a web browser.

HTTP A protocol for communicating hypertext documents across the Internet.

HTTP servlet A servlet that extends javax.servlet.HttpServlet . These

servlets have built-in support for the HTTP protocol. Contrast with generic servlet.

IDL Interface Definition Language, a language for describing functional

interfaces for remote procedure calls (RPCs), so that a compiler can generate proxy

and stub code that marshals parameters between machines.

iPlanet Application Server registry A collection of application metadata,

organized in a tree, that is continually available in active memory or on a

readily-accessible Directory Server.

iPlanet Application Server RowSet A RowSet object that incorporates the iPlanet

Application Server extensions. The iASRowSet class is a subclass of ResultSet .

434 iPlanet TM Application Server Developer’s Guide • February 2002

IIOP Internet Inter-ORB Protocol. Transport protocol for RMI clients and servers,

based on CORBA.

inheritance A mechanism in which a subclass automatically includes the method

and variable definitions of its superclass. A programmer can change or add to the

inherited characteristics of a subclass without affecting the superclass.

instance An object that is based on a particular class. Each instance of the class is

a distinct object, with its own variable values and state. However, all instances of a

class share the variable and method definitions specified in that class.

instantiation The process of allocating memory for an object at run time. See

instance.

interface Description of the services provided by an object. An interface defines a

set of functions, called methods, and includes no implementation code. An

interface, like a class, defines the characteristics of a particular type of object.

However, unlike a class, an interface is always abstract. A class is instantiated to

form an object, but an interface is implemented by an object to provide it with a set

of services. Contrast with class.

isolation level (JDBC) Sets the level at which the datasource connection makes

transactional changes visible to calling objects such as ResultSets .

jar file contract A contract that specifies what information must be in the

Enterprise JavaBean (EJB)’s package (.jar file). See Enterprise JavaBean (EJB).

JavaBean A discrete, reusable Java object.

Java server Process in iPlanet Application Server that runs and manages Java

objects.

JavaServer Page (JSP) A text page written using a combination of HTML or XML

tags, JSP tags, and Java code. JSPs combine the layout capabilities of a standard

browser page with the power of a programming language.

JDBC Java Database Connectivity APIs. A standards-based set of classes and

interfaces that enable developers to create data aware components. JDBC

implements methods for connecting to and interacting with datasources in a

platform and vendor independent way.

Glossary 435

JNDI Java Naming and Directory Interface. JNDI provides a uniform, platform

independent way for applications to find and access remote services over a

network. The iPlanet Application Server supports JNDI lookups for datasources

and Enterprise JavaBean (EJB) components.

JTA Java Transaction API. This is an API that allows applications and J2EE

servers to access transactions.

J2EE Java 2 Enterprise Edition. This is an environment for developing and

deploying multi-tiered, Web-based enterprise applications. The J2EE platform

consists of a set of services, application programming interfaces (APIs), and

protocols that provide the functionality for developing these applications.

kas See administration server.

kcs See C++ server.

kjs See Java server.

kxs See executive server.

LDAP Lightweight Directory Access Protocol. LDAP is an open directory access

protocol that runs over TCP/IP. It is scalable to a global size and millions of entries.

Using Directory Server, a provided LDAP server, you can store all of your

enterprise’s information in a single, centralized repository of directory information

that any application server can access through the network.

load balancing A technique for distributing the user load evenly among multiple

servers in a cluster. See sticky load balancing.

local database connection The transaction context in a local connection is not

distributed across processes or across datasources; it is local to the current process

and to the current datasource.

local session A user session that is only visible to one server.

local transaction A transaction that is native to one database and is restricted

within a single process. Local transactions can work against only a single backend.

Local transactions are typically demarcated using JDBC APIs. See global transaction.

436 iPlanet TM Application Server Developer’s Guide • February 2002

memory cache An iPlanet Application Server feature that enables a servlet to

cache its results for a specific duration in order to improve performance.

Subsequent calls to that servlet within the duration are given the cached results so

that the servlet does not have to execute again.

metadata Information about a component, such as its name, and specifications

for its behavior.

package A collection of related classes that are stored in a common directory.

They are often literally packaged together in a Java archive (.jar) file.

parameter Parameters are name value pairs sent from the client, including form

field data, HTTP header information, etc., and encapsulated in a request object.

Contrast with attribute. More generally, an argument to a Java method or database

prepared command.

passivation A method of releasing an EJB’s resources without destroying the

bean. In this way, a bean is made to be persistent, and can be recalled without the

overhead of instantiation. See Enterprise JavaBean (EJB).

permission A set of privileges granted or denied to a user or group. See also ACL.

persistent Refers to the creation and maintenance of a bean throughout the

lifetime of the application. In the iPlanet Application Server, beans are responsible

for their own persistence, called bean managed persistence. Opposite of transient.

pooling Providing a number of preconfigured resources to improve

performance. If a resource is pooled, a component can use an existing instance

from the pool rather than instantiating a new one. In the iPlanet Application

Server, database connections, servlet instances, and Enterprise JavaBean (EJB)

instances can all be pooled.

prepared command A database command (in SQL) that is precompiled to make

repeated execution more efficient. Prepared commands can contain parameters. A

prepared statement contains one or more prepared commands.

prepared statement A class that encapsulates a query, update, or insert statement

that is used repeatedly to fetch data. A prepared statement contains one or more

prepared command.

presentation layout Creating and formatting page content.

Glossary 437

presentation logic Activities that create a page in an application, including

processing a request, generating content in response, and formatting the page for

the client.

primary key class name A variable that specifies the fully qualified class name of

a bean’s primary key. Used for JNDI lookups.

principal This is the identity assigned to an entity as a result of authentication.

process A sequence of execution in an active program. A process is made up of

one or more threads.

programmatic security Controlling security explicitly in code rather than

allowing the component’s container (for instance, a bean’s container or a servlet

engine) to handle it. Opposite of declarative security.

programmatic transaction Controlling a transaction explicitly in code rather than

allowing an Enterprise JavaBean (EJB)’s container to handle it. Opposite of

declarative transaction.

property A single attribute that defines the behavior of an application

component.

registration The process by which the iPlanet Application Server gains access to a

servlet, Enterprise JavaBean (EJB), and other application resource, so named

because it involves placing entries in the iPlanet Application Server registry for

each item.

remote interface Describes how clients can call a Enterprise JavaBean (EJB)’s

methods. See Enterprise JavaBean (EJB).

remote procedure call (RPC) A mechanism for accessing a remote object or

service.

request object An object that contains page and session data produced by a

client, passed as an input parameter to a servlet or JavaServer Page (JSP).

resource manager Object that controls globally available datasources.

response object An object that references the calling client and provides methods

for generating output for the client.

438 iPlanet TM Application Server Developer’s Guide • February 2002

ResultSet An object that implements the java.sql.ResultSet interface.

ResultSets are used to encapsulate a set of rows retrieved from a database or

other source of tabular data.

reusable component A component created so that it can be used in more than

one capacity, for instance, by more than one resource or application.

RMI Remote Method Invocation (RMI), a Java standard set of APIs that enable

developers to write remote interfaces that can pass objects to remote processes.

role A functional grouping of subjects in an application, represented by one or

more groups in a deployed environment. See also user and group.

rollback Cancel a transaction. See transaction.

row One single data record that contains values for each column in a table.

RowSet An object that encapsulates a set of rows retrieved from a database or

other source of tabular data. RowSet extends the java.sql.ResultSet interface,

enabling a ResultSet to act as a JavaBeans component.

security A condition whereby application resources are only used by authorized

clients.

serializable An object is serializable if it can be deconstructed and reconstructed,

which enables it to be stored or distributed among multiple servers.

server A computer or software package that provides a specific kind of service to

client software running on other computers. A server is designed to communicate

with a specific type of client software.

servlet An instance of the Servlet class. A servlet is a reusable application that

runs on a server. In the iPlanet Application Server, a servlet acts as the central

dispatcher for each interaction in your application by performing presentation

logic, invoking business logic, and invoking or performing presentation layout.

servlet engine An internal object that handles all servlet metafunctions.

Collectively, a set of processes that provide services for a servlet, including

instantiation and execution.

servlet runner Part of the servlet engine that invokes a servlet with a request

object and a response object. See servlet engine.

Glossary 439

session cookie A cookie that is returned to the client containing a user session

identifier.

session EJB A session Enterprise JavaBean (EJB) relates to a unit of work, such as

a request for data. Session beans are short lived—the life span of the client request

is the same as the life span of the session bean. Session beans can be stateless or

stateful, and they can be transaction aware. See stateful session EJB, stateless session
EJB, and entity EJB.

session timeout A specified duration after which the iPlanet Application Server

can invalidate a user session. See user session.

SQL Structured Query Language (SQL) is a language commonly used in

relational database applications. SQL2 and SQL3 designate versions of the

language.

state 1. The circumstances or condition of an entity at any given time. 2. A

distributed data storage mechanism which you can use to store the state of an

application using the iPlanet Application Server feature interface IState2.

stateful session EJB An Enterprise JavaBean (EJB) that represents a session with

a particular client and which automatically maintains state across multiple

client-invoked methods.

stateless session EJB An Enterprise JavaBean (EJB) that represents a stateless

service. A stateless session bean is completely transient and encapsulates a

temporary piece of business logic needed by a specific client for a limited time

span.

sticky cookie A cookie that is returned to the client to force it to always connect

to the same executive server process.

sticky load balancing A method of load balancing where an initial client request

is load balanced, but subsequent requests are directed to the same process as the

initial request. See load balancing.

stored procedure A block of statements written in SQL and stored in a database.

You can use stored procedures to perform any type of database operation, such as

modifying, inserting, or deleting records. The use of stored procedures improves

database performance by reducing the amount of information that is sent over a

network.

440 iPlanet TM Application Server Developer’s Guide • February 2002

streaming A technique for managing how data is communicated through HTTP.

When results are streamed, the first portion of the data is available for use

immediately. When results are not streamed, the whole result must be received

before any part of it can be used. Streaming provides a way to allow large amounts

of data to be returned in a more efficient way, increasing the perceived

performance of the application.

system administrator The person who is responsible for installing and

maintaining iPlanet Application Server software and for deploying production

iPlanet Application Server applications.

table A named group of related data in rows and columns in a database.

thread A sequence of execution inside a process. A process may allow many

simultaneous threads, in which case it is multithreaded. If a process executes each

thread sequentially, it is single threaded.

transaction context A transaction’s scope, either local or global. See local
transaction, and global transaction.

transaction manager Object that controls a global transaction, normally using the

XA protocol. See global transaction.

transaction A set of database commands that succeed or fail as a group. All the

commands involved must succeed for the entire transaction to succeed.

transient A resource that is released when it is not being used. Opposite of

persistent.

URI Universal Resource Identifier, describes specific resource at a domain.

Locally described as a subset of a base directory, so that /ham/burger is the base

directory and a URI specifies toppings/cheese.html . A corresponding URL

would be http://domain:port/toppings/cheese.html .

URL Uniform Resource Locator. An address that uniquely identifies an HTML

page or other resource. A web browser uses URLs to specify which pages to

display. A URL describes a transport protocol (for example, HTTP, FTP), a domain

(for example, www.my-domain.com), and optionally a URI.

user A person who uses your application. Programmatically, a user name,

password, and set of attributes that enables an application to recognize a client. See

group and role.

Glossary 441

user interface (UI) The pages that define what a user sees and with which a user

interacts in a web application.

user session A series of user application interactions that are tracked by the

server. Sessions maintain user state, persistent objects, and identity authentication.

versioning See dynamic reloading.

web application A computer program that uses the World Wide Web for

connectivity and User Interface (UI). A user connects to and runs a web application

by using a web browser on any platform. The user interface of the application is the

HTML pages displayed by the browser. The application itself runs on a web server

and/or application server.

web browser Software that is used to view resources on the World Wide Web,

such as web pages coded in HTML or XML.

web connector plug-in An extension to a web server that enables it to

communicate with a iPlanet Application Server.

web server A host that stores and manages HTML pages and web applications.

The web server responds to user requests from web browsers.

XA protocol A database industry standard protocol for distributed transactions.

XML XML, the Extensible Markup Language, uses HTML style tags to identify

the kinds of information used in documents as well as to format documents.

442 iPlanet TM Application Server Developer’s Guide • February 2002

443

Index

A
ACC 242, 243, 249

accessing

business logic 47

databases 160, 184, 211

parameters 46

actions 71

activating an entity bean 151

Application Client Container 242, 243, 249

application model 197

applications

guidelines for creating 27

identifying requirements 23

improving performance 29

partitioning 124

scalability 29

AppPath 40

assembling applications 291

authenticate tag 99

authenticated operation 108

authentication

definition 354

authorization

definition 355

authorize tag 100

B
BasePath 40

batch updates

handling in JDBC 224

bean tags 83

bean, see EJBs

bean-managed persistence 126

BMP 126

build.xml file 376

C
C++ clients 274

cache-criteria field 374

caching element 315

CallableStatement 223

cancel 219

case tag 106, 108

class definition 138, 149

CLASSPATH setting for previous server versions

260, 285

client-side JavaScript 25

close tag 97, 103

CMP 160

bean-specific deployment descriptor 164

deployment descriptors 162, 188

example 162

third party tools 161

using the deployment tool 174, 186

vs. bean-managed persistence 126

CocoBase 161

444 iPlanet TM Application Server Developer’s Guide • February 2002

code re-use 28, 42

command-line JSP compiler 91

comments 65

commit option C 158

compiling JSPs 91

concurrency 221

cond tag family 106

configuration files 52

configuring servlets 40

connected operation 108

connection pooling 220

Connection.isClosed() 219

container managed persistence see CMP

cookies 334

CORBA 231

and firewalls 238

architecture 234

failover 238

limitations 238

load balancing 237

scalability 238

scenarios 232

value-added features 235

CORBA Executive Server 234

CORBA Mapping specification 231

creating

C++ IIOP applications 274

deployment descriptors 310

entity beans 153

JSPs 63

RMI/IIOP applications 239

servlets 42

session beans 139, 183

custom tag extensions 94

custom tags, modifying 90

CXS 234

D
database transactions 141, 185

distributed 225

database vendor limitations 198

databases

accessing from EJBs 127

accessing in servlets via rowsets 214

accessing through

java.transaction.UserTransaction 211

accessing with JDBC 211

connection handling with JDBC 219

connection pooling 220

EJBs as the preferred interface to 211

portability access choices 211

DD, see deployment descriptors

deactivating an entity bean 151

declarations element 70

declaring an EJB remote interface 139, 155

deploying

applications 291

EJBs 127

JSPs 84

redeployment 308

servlets 41

deployment descriptors

about 309

creating 310

examples 401

deployment tool 174, 186, 260

destroy() 38, 44

destroying servlets 38

development team 24

directives 66

distributed transactions 225

DNS 248

DOCTYPE element 90

Document Type Definition, see DTD files

documentation 17

doGet() 38, 45

doPost() 38, 45

DTD files

about 309

application XML 310

basic structure 310

EJB 322

resource 329

RMI/IIOP 328

web application 312

Index 445

dynamic reloading 398

dynamicValue tag 109

E
ejbActivate() 151

ejbc 128

ejbCreate() 139, 150, 153, 183

ejbFindByPrimaryKey() 150, 154

EJBHome 140, 155

ejb-jar file 119, 322

ejb-jar.xml file 163

ejbLoad() 151

EJBObject 136, 137, 156

ejbPassivate() 151

ejbPostCreate() 150

EjbProgrammaticLogin class 361

ejb-ref element 320, 326, 328

EJBs

accessing databases with through JDBC 211

accessing with IIOP 232

client contract 118

CMP 160

component contract 119

container 117

database access from 127

defined 117

deploying 127

DTD file 322

dynamic reloading 398

entity beans 121, 126, 147

failover recovery 127

in iPlanet Application Server applications 123

introduction to 115–127

JNDI lookup of EJB home interface 240

lookup of EJB home interface 282

partitioning guidelines 124

planning guidelines 125

property files 322

purpose of 116

remote interface 136, 137

session beans 121, 125, 135

specification 22

specifying JNDI name 242

stateful vs. stateless 140

transaction isolation level in 212

transactions 191

user authorization 365

using JDBC in 212

using serialization 141, 158

value-added features 141, 157, 184

ejbStore() 151

elements 310

Enterprise JavaBeans, see EJBs

enterprise-beans element 323

entity beans 121, 126, 147

accessing 149, 157

class definition for 149

declaring a remote interface 155

ejbActivate() 151

ejbCreate() 153

ejbLoad() 151

EJBObject 156

ejbPassivate() 151

ejbStore() 151

home interface 155

requirements for 149, 182

value-added features 157

entity element 324

equals operation 108

equalsIgnoreCase operation 108

escape characters 65

exceptions 63

execute tag 97

executeBatch() 224

executeNotEmpty operation 108

expressions element 71

F
failover 247, 282

CORBA 238

failover recovery 127

field tag 97, 103

finder methods 154

446 iPlanet TM Application Server Developer’s Guide • February 2002

firewalls 238, 270

format, of URLs, in manual 21

form-based login 358

vs. programmatic 359

forward action 76

forward() 88

FORWARD-ONLY READ-ONLY result set 221

G
generic servlets 37, 42

getArray() 222

getAttribute tag 110

getBlob() 222

getClob() 222

getCreationTime() 343

getCursorName() 222

getId() 343

getLastAccessedTime() 343

getObject() 222

getParameter tag 110

getProperty action 75

getRef() 222

getRemoteUser tag 111

getRemoteUser() 343

getRequestedSessionId() 343

getTypeMap 219

getValue() 344

getValueNames() 344

goRecord tag 98

GUID (globally unique identifier) 311

H
handling requests 38

heap settings 269

home interface 140, 155

HTTP servlets 37, 42

HttpServletRequest 342

HttpSession 342

HttpSession2 347

I
iasacc.jar file 250

iasclient.jar file 257

ias-Datasource-jar element 329

ias-ejb-jar element 323

ias-ejb-jar.xml file 163

ias-javaclient-resource element 331

ias-resource element 329

iASRowSet class 227

ias-web.xml file 85

ias-web-app element 313

IEBFoStateModification interface 144

IIOP 240, 274

accessing EJBs 232

accessing servers 233

authentication 281

bridge

configuring 283

configuring to use ORBIX 275

deploying applications 284

developing applications 274

examples 287

failover 282

load balancing 282

log messages 287

lookup of EJB home interface 282

performance tuning 285

scalability 286

security 281

server configuration 283

support for 231

implementing a remote interface 139

implicit objects 79

include action 75

include directive 68

include() 88

init() 38, 44

InitialContext 242

Index 447

input-field element 317

instantiating servlets 38

iPlanet Application Server Deployment Tool 174, 186

iPlanet Application Server documentation 17

iPlanet Application Server registry 40, 311

IProgrammaticLogin interface 359

isLast tag 108

isLoggedIn() 361, 362

isNew() 343

isRequestedSessionIdFromCookie() 344

isRequestedSessionIdFromURL() 344

isRequestedSessionIdValid() 344

IStartupClass interface 376

IUserPrincipal interface 246

J
Jakarta 94

Java Database Connectivity, see JDBC

Java Development Kit, see JDK

Java heap settings 269

Java Message Service 379

Java Naming and Directory Interface, see JNDI

java.transaction.UserTransaction 211

managing transactions with 212

JavaScript, client-side 25

javax.jar file 258

JDBC

1.0 support 198

2.0 support 198

application model diagram 197

batch updates 224

concurrency support 221

database support 197

database vendor limitations 198

defined 196

distributed transactions 225

handling database connections 219

iASRowSet class 227

JNDI support in 228

managing transactions with 212

mapping rules 173

restricting databases access with to EJBs 211

result sets

updatable 221

SCROLL-INSENSITIVE READ-ONLY result sets

221

servlet access via rowsets 214

SQL support 197

SQL-2 support 198

transactions, distributed 225

updating in batch mode 224

using in EJBs 211, 212

using in servlets 211, 213–214

using rowset with servlets 214

jdbc element 330, 332

JDK

using bundled 254

versions and operating systems 254

JMS 379

JNDI

example 244

JDBC support for 228

looking up remote interfaces 136

lookup of EJB home interface 240

specifying EJB name 242

using in JDBC 228

jspc command 91

JSPs

about 60

accessing business objects 83

actions 71

advanced programing techniques 80

bean tags 83

command-line compiler 91

comments 65

compared to servlets 28, 61

compiling 91

creating 63

custom tag extensions 94

deploying 84

designing 61

directives 66

dynamic reloading 398

escape characters 65

example 69

exceptions 63

implicit objects 79

448 iPlanet TM Application Server Developer’s Guide • February 2002

including other page generating resources 81

invoking with a URL 86

invoking with include or forward 88

LDAP tag library 99

load balancing 111

modifying custom tags 90

package names 93

page caching 112

portability 63

precompiling 91

registered 85

scripting elements 70

specification 22

standard tags 64

syntax 64

unregistered 85

value-added features 94

L
LDAP tag library 99

load balancing 111, 125, 237, 247, 282

loading bean state information 151

locale-charset-map element 321

log messages

IIOP 287

RMI/IIOP 272

loggedUserName() 361, 362

login

form-based 358

programmatic 358

login() 360, 362

loginSession() 347

logout() 361, 362

loop tag 96

loopEntry tag 102

loopValue tag 102

M
mapping rules, JDBC 173

N
nlsinfo element 320

notEmpty tag 108

NullValueException class 360, 361, 362

O
ORB 235, 253

ORBIX

configuring C++ IIOP clients to use 275

configuring RMI/IIOP clients to use 261

P
package names

for JSPs 93

packaging applications 291

page caching 112

page directive 66

param action 77

param element 317

param tag 96, 100

parameters

passing rules 322

servlet 317

verifying servlet 57

parameters element 317

param-group element 318

params action 77

passivating an entity bean 151

performance

improving 29

of IIOP applications 285

of RMI/IIOP applications 268

persistence, container managed see CMP

persistence-manager element 325

plugin action 77

pooling

database connections 220

Index 449

servlets 39

pool-manager element 325

portability 63

precompiling JSPs 91

prefix attribute 90

PreparedStatement 223

ProgAuthenticationException class 360, 362

programmatic login 358

vs. form-based 359

property files

datasources 328

putValue() 344

R
redeploying applications 308

registered JSPs 85

registry 40, 311

remote interface 136, 137, 155, 156

declaring 139

implementing 139

removeValue() 345

removing servlets 38

request object 38

resource allocation 39

resource element 330

resource XML DTD file 329

resource-ref element 320, 326, 328

response pages 50

restoring bean state information 151

result cache 373

result sets

FORWARD-ONLY READ_ONLY 221

SCROLL-INSENSITIVE READ-ONLY 221

updatable 221

ResultSet 220

ResultSetMetaData 222

reusability 28, 42

rich client, see CORBA

RMI/IIOP 240

accessing EJBs

local 258

remote 258

and firewalls 270

authentication 246

bridge 241

configuring 251

client configuration 253

configuring to use ORBIX 261

deploying applications 259

developing applications 239

DTD file 328

examples 273

failover 247

JNDI example 244

JNDI lookup of EJB home interface 240

load balancing 247

log messages 272

packaging 249

performance tuning 268

running applications 265

scalability 269

server configuration 251

support classes 257

troubleshooting 265

user authentication 370

using the deployment tool 260

role mapping

definition 355

role-impl element 321, 327

role-mapping element 321, 327

round robin DNS 248

rowsets

iASRowSet 227

in servlets 214

rules, mapping, JDBC 173

S
scalability 29, 238, 269, 286

scripting elements 70

scriptlets element 71

security 46

and web server 372

container 355

450 iPlanet TM Application Server Developer’s Guide • February 2002

declarative 356

goals 350

guide to 371

iPlanet Application Server features 350

model 351

programmatic 356

responsibilities overview 353

terminology 354

serialization 158

of bean references 141

service() 38, 45

servlet element 313

servlet-info element 314

servlets

about 35

accessing databases with through JDBC 211

caching results 373

class file 43

compared to JSPs 28, 61

configuration 40

creating 42

deploying 41

designing 41

destroying 38

directory structure 40

dynamic reloading 398

engine 38, 39

execution cycle 36

generic vs. HTTP 37, 42

instantiating 38

invoking from a servlet 56

invoking using a URL 54

pooling 39

removing 38

request handling 38

setting parameters 317

specification 22

standard vs. nonstandard 42

user authentication 357

user authorization 363

using JDBC in 213–214

using rowsets in 214

verifying parameters 57

session beans 121, 140

creation guidelines 140, 183

stateful vs. stateless 136

using 125

value-added features 141, 184

session element 323

SessionBean interface 138

session-info element 318

sessions 46

about 333

and dynamic reloading 398

cookies 334

invalidating 345

security 341

sharing with AppLogics 347

SessionSynchronization interface 139

setAttribute tag 110

setEntityContext() 153

setProperty action 74

setSessionVisibility() 347

setTransactionIsolationLevel 219

setTypeMap 219

single sign-on 368

sort tag 103

specifications 22

SQL, support for in JDBC 198

startup class, using 375

startup.properties file 376

StartupClass.java file 376

stateful session beans 125

stateless session beans 125

Statement class 224

sticky load balancing 125

storing bean state information 151

storing data 46

switch tag 106, 107

syntax of JSPs 64

T
tag library directive 69

taglib directive 69

tags

custom, modifying 90

Index 451

LDAP 99

standard 64

summary of 88

thread safety 49

transaction model 191

transactions 141, 185

distributed 225

isolation level 212

U
unregistered JSPs 85

unsetEntityContext() 153

updates, batch mode 224

URL rewriting 334

URLs, format, in manual 21

useBean action 72

useQuery tag 95, 101

using JNDI 228

V
validation-required element 315

value tag 108

value-added features 373

CORBA 235

for entity beans 157

for JSPs 94

for session beans 141, 184

W
web.xml file 85

WebProgrammaticLogin class 359

452 iPlanet TM Application Server Developer’s Guide • February 2002

	Developer’s Guide
	Contents
	Preface
	Using the Documentation
	What You Should Already Know
	How This Guide Is Organized
	Documentation Conventions
	Related Information

	Developing Applications
	Application Requirements
	About the Application Programming Model
	The Presentation Layer
	Servlets
	JSPs
	HTML Pages
	Client-Side JavaScript

	The Business Logic Layer
	Session Beans
	Entity Beans
	Message Driven Beans

	The Data Access Layer

	Effective iPlanet Application Guidelines
	Presenting Data with Servlets and JSPs
	Creating Reusable Application Code
	Improving Performance
	Scalability Planning
	Modularizing Applications
	Functional Isolation
	Scenario 1
	Scenario 2
	Scenario 3
	Packaging Formulas

	Reusable Code
	Prepackaged Components
	Unique Names
	Shared Framework Classes
	Session and Security Issues

	Controlling Applications with Servlets
	About Servlets
	Servlet Data Flow
	Servlet Types

	About the Server Engine
	Instantiating and Removing Servlets
	Request Handling
	Allocating Servlet Engine Resources
	Dynamically Reloading Servlets at Runtime
	Configuring Servlets for Deployment
	Locating Servlet Files
	Deploying Servlets

	Designing Servlets
	Choosing a Servlet Type
	Create Standard or Non-Standard Servlets
	Planning for Servlet Reuse

	Creating Servlets
	Servlet Files for an iPlanet Application
	The Servlet’s Class File
	Creating the Class Declaration
	Overriding Methods
	Overriding Initialize
	Overriding Destroy
	Overriding Service, Get, and Post

	Accessing Parameters and Storing Data
	Handling Sessions and Security
	Accessing Business Logic Components
	Handling Threading Issues
	Delivering Client Results
	Creating a Servlet Response Page
	Creating a JSP Response Page

	The Servlet’s Deployment Descriptor
	Elements
	Changing Configuration Files
	Using the Deployment Tool
	Using the Command Line

	iPlanet Application Server Optional Features

	Invoking Servlets
	Calling a Servlet With a URL
	Invoking Specific Application Servlets
	Invoking Generic Application Servlets

	Calling a Servlet Programmatically
	Verifying Servlet Parameters

	Presenting Application Pages with JavaServer Pages
	Introducing JSPs
	How JSPs Work
	Designing JSPs
	Choosing a Component
	Designing for Ease of Maintenance
	Designing for Portability
	Handling Exceptions

	Creating JSPs
	General Syntax
	JSP Tags
	Escape Characters
	Comments
	JSP Comments
	Generating Comments in Client Output

	Directives
	<%@�page%>
	Syntax
	Attributes
	Examples

	<%@�include%>
	Syntax
	Attributes
	Example

	<%@�taglib... %>
	Syntax
	Attributes

	Example

	Scripting Elements
	Declarations <%! ... %>
	Syntax
	Example

	Expressions <%= ... %>
	Syntax
	Example

	Scriptlets <%...%>
	Syntax
	Example

	Actions
	<jsp:useBean>
	Syntax
	Attributes
	Examples

	<jsp:setProperty>
	Syntax
	Attributes
	Examples

	<jsp:getProperty>
	Syntax
	Attributes
	Examples

	<jsp:include>
	Syntax
	Attributes
	Examples

	<jsp:forward>
	Syntax
	Attributes
	Examples

	<jsp:plugin>
	Syntax
	Attributes
	Examples

	Implicit Objects

	Programming Advanced JSPs
	Including Other Resources
	afterLogin.jsp

	Using JavaBeans
	Accessing Business Objects

	Deploying JSPs
	Unregistered JSPs
	Registered JSPs

	Invoking JSPs
	Calling a JSP With a URL
	Invoking JSPs in a Specific Application
	Invoking JSPs in a Generic Application

	Invoking a JSP From a Servlet

	JSP 1.1 Tag Summary
	Directives
	Expressions
	Scriptlets
	Comments
	Bean-Related Actions
	Other Actions

	Modifying Custom Tags for JSP 1.1
	Compiling JSPs: The Command-Line Compiler
	Value-added Features
	Custom Tag Extensions
	Database Query Tag Library
	useQuery Tag
	Syntax

	param Tag
	Syntax

	loop Tag
	Syntax

	field Tag
	Syntax

	close Tag
	Syntax

	execute Tag
	Syntax

	goRecord Tag
	Syntax

	Example

	LDAP Tag Library
	authenticate Tag (also called connection)
	Syntax

	authorize Tag
	Syntax

	param Tag
	Syntax

	password Tag
	Syntax

	useQuery Tag
	Syntax

	loopEntry Tag
	Syntax

	loopValue Tag
	Syntax

	field Tag
	Syntax

	sort Tag
	Syntax

	close Tag
	Syntax

	Example

	Conditional Tag Library
	switch Tag
	Syntax

	case Tag
	Syntax

	value Tag
	Syntax

	Dynamic Value Tag
	Syntax

	Example

	Attribute Tag Library
	getAttribute Tag
	Syntax

	setAttribute Tag
	Syntax

	getParameter Tag
	Syntax

	Get Remote User Tag
	Syntax

	Example

	JSP Load Balancing
	JSP Page Caching
	Example

	Introducing Enterprise JavaBeans
	What Enterprise JavaBeans Do
	What is an Enterprise JavaBean?
	Understanding Client Contracts
	Understanding Component Contracts
	Understanding JAR File Contracts

	Understanding Enterprise Beans
	Understanding Session Beans
	Understanding Entity Beans
	Understanding Message Driven Beans
	MDB Properties

	EJB Role in an iPlanet Application Server Application
	Designing an Object-Oriented Application
	Planning Guidelines
	Using Session Beans
	Using Entity Beans
	Planning for Failover Recovery
	Working with Databases
	Deploying EJBs
	Dynamically Reloading EJBs

	Using the ejbc Compiler
	Using JNDI to Reference an EJB

	Using Session EJBs to Manage Business Rules
	Introducing Session EJBs
	Session Bean Components
	Creating the Remote Interface
	Declaring vs. Implementing the Remote Interface

	Creating the Class Definition
	Session Timeout
	Passivation and Activation

	Creating the Home Interface

	Additional Session Bean Guidelines
	Creating Stateless or Stateful Beans
	Accessing iPlanet Application Server Functionality
	Serializing Handles and References
	Managing Transactions
	Accessing Databases
	Session Bean Failover
	How to Configure a Stateful Bean with Failover
	How the Failover Process Works
	Failover Guidelines
	How Often Is the State Saved?
	How the State Is Saved

	Building Entity EJBs
	Introducing Entity EJBs
	How an Entity Bean is Accessed

	Entity Bean Components
	Creating the Class Definition
	Using ejbActivate and ejbPassivate
	Using ejbLoad and ejbStore
	Using setEntityContext and unsetEntityContext
	Using ejbCreate Methods
	Using Finder Methods
	Declaring vs. Implementing the Remote Interface

	Creating the Home Interface
	Defining Create Methods
	Defining Find Methods

	Creating the Remote Interface

	Additional Entity Bean Guidelines
	Accessing iPlanet Application Server Functionality
	Serializing Handles and References
	Managing Transactions
	Committing a Transaction
	Commit Option C

	Handling Concurrent Access

	Container Managed Persistence
	Full J2EE Support
	Third Party O/R Mapping Tools
	Full Example of a CMP Entity Bean
	Using the Lightweight CMP Implementation
	Creating the Deployment Descriptors by Hand
	ejb-jar Deployment Descriptor
	ias-ejb-jar Deployment Descriptor
	CMP Bean Deployment Descriptor
	Data Source
	CMP Field to RDB Column Mapping
	Persistence Operations
	findByPrimaryKey
	insert
	delete
	load
	store
	Custom Finders
	Mapping Rules

	Using the Deployment Tool

	Using Message Driven Beans
	Introducing Message Driven Beans
	How a Message Driven Bean is Accessed

	Components of Message Driven Beans
	Creating the Class Definition

	Message Driven Bean Guidelines
	Accessing iPlanet Application Server Functionality
	Managing Transactions
	Committing a Transaction
	Accessing Databases

	Using the Deployment Tool
	J2EE Specific Deployment Descriptor Fields
	Message Driven Bean Specific Parameters

	Creating the Deployment Descriptors by Hand
	Sample Deployment Descriptor File

	Handling Transactions with EJBs
	Understanding the Transaction Model
	Specifying Transaction Attributes in an EJB
	Using Bean Managed Transactions

	Using JDBC for Database Access
	Introducing JDBC
	Supported Functionality
	Understanding Database Limitations
	Understanding the iPlanet Application Server Limitations
	Supported Databases

	Migrating 6.x DD XML files to 6.5
	To Migrate 6.x Deployment Descriptor XML File

	New XML Datasource Descriptors
	Local Transactions
	Oracle
	Sybase

	Global Transactions
	DB2
	MSSQL
	Oracle
	Sequelink
	Sybase

	Using JDBC in Server Applications
	Using JDBC in EJBs
	Managing Transactions with JDBC or javax.transaction.UserTransaction
	Specifying Transaction Isolation Level

	Using JDBC in Servlets

	Handling Connections
	Local Connections
	Registering a Local Datasource

	Global Connections
	Registering a Global Datasource
	Creating a Global Connection

	Container Managed Local Connections
	Registering a Container Managed Local Datasource

	Working with JDBC Features
	Working with Connections
	setTransactionIsolation
	getTypeMap, setTypeMap
	cancel

	Pooling Connections
	Working with ResultSet
	Concurrency Support
	Updatable Result Set Support
	getCursorName
	getObject
	getRef, getBlob, getClob, and getArray

	Working with ResultSetMetaData
	Working with PreparedStatement
	setObject
	addBatch
	setRef, setBlob, setClob, setArray
	getMetaData

	Working with CallableStatement
	getRef, getBlob, getClob, getArray

	Handling Batch Updates
	Creating Distributed Transactions
	Working with RowSet
	Using iASRowSet
	RowSetReader
	RowSetWriter
	RowSetInternal

	Using CachedRowSet
	Creating a RowSet

	Using JNDI for a Database Driver

	Developing and Deploying CORBA-Based Clients
	Overview of CORBA Client Support
	Scenarios
	Stand-Alone Program
	Server-to-Server

	Architectural Overview
	iPlanet Value-Added Features
	Naming Services
	C++ Client Support
	Built-in ORB and Third Party ORB Support
	Basic Authentication and EJB Container Integration
	Client Side Authentication
	Load Balancing
	Client-Side Load Balancing

	Scalability
	High Availability
	Minimal Ports Opened in Firewalls

	Limitations
	Choosing the ORB

	RMI/IIOP Client Applications
	Developing RMI/IIOP Client Applications
	JNDI Lookup for the EJB Home Interface
	Specifying the Naming Factory Class
	Specifying the Target IIOP Bridge
	Specifying the JNDI Name of an EJB
	The JNDI Name Without an Application Client Container
	The JNDI Name When Using an Application Client Container

	A JNDI Example

	Client Authentication
	Sample Principal Class

	Client-Side Load Balancing and Failover
	iPlanet ORB Configuration
	ORBIX Configuration

	Packaging RMI/IIOP Client Applications
	Using the Assembly Tool GUI
	Automating Reassembly Using Ant
	Using Application Client Container (ACC)

	Configuring RMI/IIOP Support
	Server Configuration
	Client Configuration
	Configuring a Java 2 Environment and iPlanet ORB
	Using the Bundled JDK
	Using an Existing JDK
	Solaris and JDK 1.3.1
	Linux and Java 1.3.1
	Windows 98, NT, or 2000 and Java 1.3.1

	Installing RMI/IIOP Client Support Classes
	RMI/IIOP Client Access to EJBs on Same System
	RMI/IIOP Client Access to EJBs from a Remote System

	Deploying RMI/IIOP Client Applications
	Client Deployment
	Deployment Tools
	Server CLASSPATH Setting (SP2 and Prior)

	Configuring RMI/IIOP Applications for ORBIX
	References
	Configuration Steps
	Enabling Security

	Running RMI/IIOP Client Applications
	Troubleshooting RMI/IIOP Client Applications
	Performance Tuning RMI/IIOP
	Load Testing Approaches
	Recognizing Performance Issues
	Basic Tuning Approaches
	Solaris File Descriptor Setting
	Java Heap Settings

	Enhancing Scalability

	Firewall Configuration for RMI/IIOP
	Viewing RMI/IIOP Log Messages
	Monitoring Logs on Windows
	Monitoring Logs on UNIX

	Sample RMI/IIOP Applications
	Converter Sample Application
	Other RMI/IIOP Sample Applications

	C++ IIOP Client Applications (Unix Only)
	Configuring C++ IIOP Applications for ORBIX
	Requirements
	References

	Preparing for C++ Client Development
	Data Type Assumptions and Limitations
	Generating the IDL Files
	Using J2SE 1.4 rmic 2
	Using the OpenORB JavaToIDL Compiler

	Generating CPP Files from IDL Files
	Enabling Security for C++ IIOP Applications
	Lookup for the EJB Home Interface
	Client-Side Load Balancing and Failover
	Configuring the IIOP Bridge
	Deploying C++ IIOP Client Applications
	Client Deployment
	Server CLASSPATH Setting (SP2 and Prior)

	Performance Tuning IIOP
	Basic Tuning Approaches
	Solaris File Descriptor Setting

	Enhancing Scalability

	Viewing IIOP Log Messages
	Sample C++ IIOP Applications
	Redeploying the Converter Sample for Use with a C++ Client

	Packaging for Deployment
	Overview of Packaging and Deployment
	Modules
	Applications
	Naming Standards

	Assembling Modules and Applications
	Sample Files
	Assembling WAR Modules
	Using the Command Line Interface (CLI)
	Using the Deployment Tool
	Using the Visual Café Plug-in

	Assembling EJB JAR Applications
	Using the Command Line Interface (CLI)
	Using the Deployment Tool

	Assembling RMI/IIOP Applications

	Deploying Modules and Applications
	Deployment by Module
	Deployment by Application
	Deploying RMI/IIOP Clients
	Deploying Static Content
	Tools for Deployment
	The iasdeploy Command
	The iPlanet Deployment Tool
	The iPlanet Visual Café Plug-in

	General Rules About Deployment
	Redeploying an Application or Module
	Deploying to an iPlanet Application Server Cluster
	Access to Shared Frameworks

	Introducing XML DTDs
	J2EE Standard Descriptors
	Creating Deployment Descriptors
	Document Type Definition
	The iPlanet Application Server Registry
	A Globally Unique Identifier

	Web Application XML DTD
	Web Application Overview
	Web Application XML DTD
	Element for Specifying an iPlanet Application Server Web Application
	Elements for Specifying Servlet Configuration Information
	Elements for Specifying Servlet Characteristics
	Elements for Specifying Servlet Validation
	Elements for Specifying Servlet Caching
	Examples for Setting Cache Criteria and Cache Option
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Elements for Specifying Servlet Parameters
	Elements for Specifying Servlet Sub Parameters
	Elements for Specifying Servlet Input Field
	Elements for Specifying Servlet Parameter Groups
	Elements for Specifying Session Information
	Elements for Specifying EJB Reference Information
	Elements for Specifying Resource Reference Information
	Elements for Specifying NLS Settings
	Elements for Specifying Locale Character Sets
	Elements for Specifying Role Mapping
	Elements for Specifying Role IMPL

	EJB XML DTD
	EJB JAR File Contents
	Specifying Parameter Passing Rules
	EJB iPlanet Application Server XML DTD
	Elements for Specifying EJB-JAR
	Elements for Specifying Enterprise Beans
	Elements for Specifying Session
	Elements for Specifying Entity

	Elements for Specifying Persistence Manager
	Elements for Specifying Pool Manager
	Elements for Specifying EJB Reference
	Elements for Specifying Resource Reference
	Elements for Specifying Role Mapping
	Elements for Specifying Role Implementation

	RMI/IIOP Client XML DTD
	iPlanet Application Server RMI/IIOP Client XML DTD
	Elements for Specifying EJB Reference Information
	Elements for Specifying Resource Reference Information

	Resource XML DTD
	Datasource XML DTD
	Element for Specifying Datasources
	Element for Specifying iPlanet Application Server Resources
	Elements for Specifying Resources
	Elements for Specifying JDBC Datasources

	RMI/IIOP Client Datasource XML DTD
	Elements for Specifying Java Client Resources
	Elements for Specifying JDBC Settings

	Creating and Managing User Sessions
	Introducing Sessions
	Sessions and Cookies
	Sessions and URL Rewriting
	Supported Tags and Attributes
	A
	AREA
	FORM
	FRAME
	GO
	IMG
	ONENTERBACKWARD
	ONENTERFORWARD
	ONPICK
	ONTIMER

	The URL Rewriting Process
	Response Header Processing
	Response Body Processing

	The Location Header
	Order of the Cookies

	Sessions and Security

	How to Use Sessions
	Creating or Accessing a Session
	Examining Session Properties
	Binding Data to a Session
	Binding Notification with HttpSessionBindingListener

	Invalidating a Session
	Invalidating a Session Manually
	Setting a Session Timeout

	Controlling the Session Type
	Sharing Sessions in a Distributed Environment
	Sharing Sessions with AppLogics

	Writing Secure Applications
	iPlanet Application Server Security Goals
	iPlanet Application Server Specific Security Features
	iPlanet Application Server Security Model
	Web Client and URL Authorizations
	Web Client Invocation of Enterprise Bean Methods
	RMI/IIOP Client Invocation of Enterprise Bean Methods

	Security Responsibilities Overview
	Application Developer
	Application Assembler
	Application Deployer

	Common Security Terminology
	Authentication
	Authorization
	Role Mapping

	Container Security
	Programmatic Security
	Declarative Security
	Application Level Security
	Servlet Level Security
	EJB Level Security

	User Authentication by Servlets
	HTTP Basic Authentication
	Secure Socket Layer Mutual Authentication
	Form-Based Login
	Programmatic Login
	Form-Based vs. Programmatic Login
	The IProgrammaticLogin Interface
	The WebProgrammaticLogin Class
	The login Method
	The logout Method
	The isLoggedIn Method
	The loggedUserName Method

	The EjbProgrammaticLogin Class
	The login Method
	The logout Method
	The isLoggedIn Method
	The loggedUserName Method

	User Authorization by Servlets
	Defining Roles
	Referencing Security Roles
	Defining Method Permissions

	Sample Web Application DD

	User Authorization by EJBs
	Defining Roles
	Defining Method Permissions
	Security Role References

	User Authentication for Single Sign-on
	How to Configure for Single Sign-on
	Single Sign-on Example

	User Authentication for RMI/IIOP Clients
	Guide to Security Information
	User Information
	Location:
	How to Create:

	Security Roles
	Location:
	How to Create:
	How To Access:

	Web Server to Application Server Component Security

	Taking Advantage of the iPlanet Application Server Features
	Caching Servlet Results
	Using a Startup Class
	The IStartupClass Interface
	Building the Startup Class
	Deploying the Startup Class
	How kjs Handles the StartupClass Object

	Using the Java Message Service
	About the JMS API
	JMS Messaging Styles

	Enabling JMS and Integrating Providers
	Using JMS in Applications
	JNDI and Application Component Deployment
	Connection Factory Proxy
	Connection Pooling
	User Identity Mapping
	About Default Username
	About Explicit User ID Map
	ConnectionFactoryProxies and Application Created Threads
	JMS Features Not Supported

	JMS Administration
	JMS Object Administration Tools
	JNDI Properties for JMS Administration Tools
	JMS Object Administration for IBM MQ
	Connection Factory Proxy Administration
	Creating a Proxy
	Deleting a Proxy
	Listing Proxy Parameters
	User ID Map Administration
	Connection Pooling Configuration

	Sample Applications
	Default JMS Provider

	Runtime Considerations
	Runtime Environments
	Standard Module Runtime Environment
	Application Runtime Environment

	The Classloader Hierarchy
	Dynamic Reloading
	Enabling Dynamic Reloading
	Using Administration Tool
	Modifying the Registry

	Dynamic Reloading of Servlets and JSPs
	Dynamic Reloading of EJBs
	Limitations of Dynamic Reloading

	Sample Deployment Files
	Application DD XML Files
	Sample Application DD XML File

	Web Application DD XML Files
	Sample Web Application DD XML File
	Sample iPlanet Application Server Web-App DD XML File

	EJB-JAR DD XML Files
	Sample J2EE EJB-JAR DD XML File
	Sample iPlanet Application Server EJB-JAR DD XML File

	iPlanet Application Server Client DD XML Files
	RMI/IIOP Client DD XML Files
	Resource DD XML Files

	Glossary
	Index

