
Performance and Tuning Guide
iPlanet™ Application Server

Version6.5

816-2587-10

February 2002

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without

limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and

one or more additional patents or pending patent applications in the U.S. and other countries.

This product is distributed under licenses restricting its use, copying distribution, and decompilation. No part of this product may be

reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, iPlanet and the iPlanet logo are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S.

and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The

Apache Software Foundation. All rights reserved.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

__

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier, et

sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à

http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis

et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la

distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque

moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et

licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, iPlanet et le logo iPlanet sont des marques de fabrique ou des marques déposées

de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC

International, Inc. aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture

développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

3

Contents

Preface . 7

Using the Documentation . 7

About This Guide . 10

What You Should Know . 10

How This Guide is Organized . 10

Documentation Conventions . 11

Chapter 1 About iPlanet Application Server . 13
iPlanet Application Server Components . 13

Web Connector Plugin . 14

Application Server Processes . 14

Directory Server Components . 14

Databases . 14

iPlanet Application Server Process Architecture . 15

Communication Within iPlanet Application Server . 16

iPlanet Application Server Tools . 17

iPlanet Application Server Administration Tool . 17

iPlanet Application Server Deployment Tool . 17

Chapter 2 Understanding Tuning and Sizing . 19
Why Tune iPlanet Application Server? . 19

What Is Application Sizing? . 20

Factors That Affect Sizing . 21

Understanding Operational Requirements . 22

Security . 22

Availability . 22

Performance . 23

Predicting Performance . 23

General Performance Guidelines . 26

Performance Tuning Sequence . 27

4 iPlanet Application Server Performance and Tuning Guide • February 2002

Chapter 3 Tuning Your Application . 29
Java Coding Guidelines . 29

J2EE Programming Guidelines . 30

Chapter 4 Tuning iPlanet Application Server . 33
Optimizing Performance of Server Processes . 33

Tuning iPlanet Application Server Processes . 34

Optimizing KXS Performance . 34

Optimizing KJS Performance . 35

Adjusting the Number of Request Threads . 35

Specifying Maximum Server and Engine Shutdown Time . 36

Performance Tuning RMI/IIOP . 37

Recognizing Performance Issues . 37

Basic Tuning Approaches . 37

Enhancing Scalability . 38

Firewall Configuration for RMI/IIOP . 39

Comparing Distributed and Lite HTTP Sessions . 40

Configuring a Single Backup for Highly Available Sessions . 41

Configuring Dsync Session Management Threads . 41

Load Balancing Options . 42

Load-Balancing Cluster Configuration . 42

Broadcasting and Updating Information . 45

Monitoring Load-Balancing Information . 46

Recommended Load-Balancing Configuration for Clusters . 46

Optimizing Session Size for Clusters . 47

Load Balancing Individual JSPs . 48

Using Sticky Session Load Balancing . 48

Simplify Session Data . 48

Configuring Database Connection Pool . 49

Guidelines for Configuring Connection Pool . 49

Using Statistics to Configure the Connection Pool . 50

Configuring EJB Parameters For Runtime . 51

Caching JSPs and Servlets . 53

Chapter 5 Tuning the Java Runtime System . 57
Using Bound Threads . 57

Managing Memory and Allocation . 58

Tuning the Garbage Collector . 58

Specifying Garbage Collector Setting . 59

Explicit Garbage Collector . 59

Deferred Garbage Collection . 60

Tracing Garbage Collection . 60

Tuning the Java Heap . 61

5

Guidelines for Java Heap Sizing . 61

HotSpot Server VM Tuning Options . 62

Sample heap configuration on Solaris . 63

Sample Heap configuration on Windows . 63

Tuning the Dynamic Compiler . 64

Chapter 6 Tuning the Operating System . 67
Setting Time Wait Interval . 67

Setting TCP Connection Hash Table Size . 68

Binding Processes . 68

Chapter 7 Tuning Database Servers . 71
Tuning Oracle Servers . 71

Tuning Solaris Kernel Parameters . 72

Chapter 8 General Guidelines for Better Performance . 75
Guidelines For Better EJB Performance . 75

Chapter 9 Validating Server Performance . 77
Monitoring iPlanet Application Server . 77

On Solaris . 78

Adding Plots Using iASAT . 78

Using Performance Tuning Tools . 79

Tuning Performance Using OptimizeIt . 79

Tuning Performance Using JProbe . 80

Tuning Performance Using IntroScope . 80

Setting Up SNMP Monitoring . 80

Obtaining Performance Data . 81

Chapter 10 Frequently Asked Questions . 83
Environment Setup . 83

System Tuning . 85

Application Tuning . 88

Index . 91

6 iPlanet Application Server Performance and Tuning Guide • February 2002

7

Preface

This guide is intended for advanced administrators of iPlanet Application Server.

This guide helps you tune iPlanet Application Server for maximum performance

and reliability. It is recommended that you backup your configuration files, before

changing the configuration settings on iPlanet Application Server.

This chapter describes the contents of iPlanet Application Server Installation Guide.

It contains the following sections:

• Using the Documentation

• About This Guide

• What You Should Know

• How This Guide is Organized

• Documentation Conventions

Using the Documentation
The following table lists the tasks and concepts that are described in the iPlanet Application
Server manuals andRelease Notes. If you are trying to accomplish a specific task or learn
more about a specific concept, refer to the appropriate manual.

Using the Documentation

8 iPlanet Application Server Performance and Tuning Guide • February 2002

Note that the printed manuals are also available online in PDF and HTML format, at:
http://docs.iplanet.com/docs/manuals/ias.html

For information about See the following Shipped with

Late-breaking information about the
software and the documentation

Release Notes Available on the
iPlanet Web site, at
http://docs.iplanet.com.

Installing iPlanet Application Server and its
various components (Web Connector
plug-in, iPlanet Application Server
Administrator), and configuring the sample
applications

Installation Guide iPlanet Application
Server 6.5

Creating iPlanet Application Server 6.5
applications that follow the open Java
standards model (Servlets, EJBs, JSPs, and
JDBC), by performing the following tasks:

• Creating the presentation and execution
layers of an application

• Placing discrete pieces of business logic
and entities into Enterprise Java Bean
(EJB) components

• Using JDBC to communicate with
databases

• Using iterative testing, debugging, and
application fine-tuning procedures to
generate applications that execute
correctly and quickly

Developer’s Guide iPlanet Application
Server 6.5

Using the Documentation

Preface 9

Administering one or more application
servers using iPlanet Application Server
Administrator Tool to perform the following
tasks:

• Monitoring and logging server activity

• Implementing security for iPlanet
Application Server

• Enabling high availability of server
resources

• Configuring web-connector plugin

• Administering database connectivity

• Administering transactions

• Configuring multiple servers

• Administering multiple-server
applications

• Load balancing servers

• Managing distributed data
synchronization

• Setting up iPlanet Application Server for
development

Administrator’s Guide iPlanet Application
Server 6.5

Migrating your applications to the new
iPlanet Application Server 6.5 programming
model from the Netscape Application Server
version 2.1, including a sample migration of
an Online Bank application provided with
iPlanet Application Server

Migration Guide iPlanet Application
Server 6.5

Using the public classes and interfaces, and
their methods in the iPlanet Application
Server class library to write Java
applications

Server Foundation
Class Reference (Java)

iPlanet Application
Server 6.5

Using the public classes and interfaces, and
their methods in the iPlanet Application
Server class library to write C++
applications

Server Foundation
Class Reference (C++)

Order separately

For information about See the following Shipped with

About This Guide

10 iPlanet Application Server Performance and Tuning Guide • February 2002

About This Guide
This Performance and Tuning Guide discusses the various features of iPlanet

Application Server and how to tune iPlanet Application Server for maximum

performance and reliability.

This manual is intended for system administrators, network administrators,

evaluators, application server administrators, web developers, and software

developers who want to get an understanding of the various tasks and tools

available for tuning the performance of iPlanet Application Server.

What You Should Know
Before you begin, you should already be familiar with the following topics:

• Application Servers

• Client/Server programming model

• Internet and World Wide Web

• Windows NT/2000 or Solaris™ operating systems

• Java programming and J2EE

How This Guide is Organized
This Guide is organized as follows:

Chapter 1, “About iPlanet Application Server”, gives an overview of iPlanet

Application Server features, and iPlanet Application Server components.

Chapter 2, “Understanding Tuning and Sizing”, provides an insight into sizing,

estimating operational requirements, and tunable parameters.

Chapter 3, “Tuning Your Application”, provides a comprehensive guide to tuning

your applications for maximum performance. Java Coding Guidelines and J2EE

Programming Guidelines are discussed in this chapter.

Chapter 4, “Tuning iPlanet Application Server”, provides a comprehensive guide

to tuning iPlanet Application Server for maximum performance.

Chapter 5, “Tuning the Java Runtime System”, provides an insight into memory

tuning and Garbage Collector settings.

Documentation Conventions

Preface 11

Chapter 6, “Tuning the Operating System”, provides information on Solaris tuning

parameters.

Chapter 7, “Tuning Database Servers”, discusses various database tuning

parameters.

Chapter 8, “General Guidelines for Better Performance”, provides guidelines on

better coding practices that can improve the performance of your application.

Chapter 9, “Validating Server Performance”, provides information on monitoring

and validating server performance after tuning.

Chapter 10, “Frequently Asked Questions”, is a list of most common question

asked regarding iPlanet Application Server tuning.

Documentation Conventions
File and directory paths are given in Windows format (with backslashes separating

directory names). For Unix versions, the directory paths are the same, except

forward slashes are used instead of backslashes to separate directories.

This guide uses URLs of the form: http://server.domain/path/file.html ,

where:

• server is the name of the server where you are running the application.

• domain is your internet domain name.

• path is the directory structure on the server.

• file is an individual filename.

The following table shows the typographic conventions used throughout iPlanet

documentation.

Table 1 Typographic Conventions

Typeface Meaning Examples

Monospaced The names of files, directories, sample

code, and code listings; and HTML tags

Open Hello.html file.

<HEAD1> creates a top level heading.

Italics Book titles, variables, other code

placeholders, words to be emphasized,

and words used in the literal sense

See Chapter 8 of the Performance and
Tuning Guide.

Enter your UserID.

Enter Login in the Name field.

Documentation Conventions

12 iPlanet Application Server Performance and Tuning Guide • February 2002

Bold First appearance of a glossary term in

the text

Templates are page outlines.

Table 1 Typographic Conventions

Typeface Meaning Examples

13

Chapter 1

About iPlanet Application Server

iPlanet™ Application Server provides a reliable, available and scalable web

services deployment platform. Application programmers can focus on

implementing business logic with well-engineered software components and rely

on the services offered by iPlanet Application Server for massive scale deployment.

This chapter includes the following sections:

• iPlanet Application Server Components

• iPlanet Application Server Process Architecture

• Communication Within iPlanet Application Server

• iPlanet Application Server Tools

iPlanet Application Server Components
iPlanet Application Server includes various components that need to interact with

each other for a smooth performance. These components can be tuned for optimum

performance for both production and development environments.

This section describes the following topics:

• Web Connector Plugin

• Application Server Processes

• Directory Server Components

• Databases

iPlanet Application Server Components

14 iPlanet Application Server Performance and Tuning Guide • February 2002

Web Connector Plugin
A dynamically loaded library that plugs into a web server instance. Redirects

incoming HTTP requests to the Executive Server (KXS) processes in an application

server instance.

Application Server Processes
Executive Server (KXS). Redirects incoming HTTP traffic received from Web

Connector Plugin to a Java Server. Manages replication of highly available session

and state data between application server instances.

Java Server (KJS). Contains web and EJB containers.

RMI/IIOP Bridge (CXS). Redirects incoming requests from RMI/IIOP clients to

the EJB container housed in a Java Engine (KJS).

Administrative Server (KAS). Monitors other application server processes and

acts as a server for the administrative and deployment tools.

Directory Server Components
Directory Server Process. Contains user and group information for authentication

and authorization. Acts as a distributed store for the application server’s registry

information.

iPlanet Administration Server. Acts as a contact point for the iPlanet Console

dministration tool. This server need not active fo rthe application server to

function.

Databases
Oracle, Sybase, Informix and DB2, are some of the databases supported by iPlanet

Application Server. Using iPlanet Application Server, you can configure 3rd party

JDBC drivers for databases. You can also configure datasources and transaction

manager for database drivers.

iPlanet Application Server Process Architecture

Chapter 1 About iPlanet Application Server 15

iPlanet Application Server Process Architecture
To achieve maximum performance, you need to understand the basic process

architecture of iPlanet Application Server. A common iPlanet Application Server

deployment scenario is shown below. For the sake of clarity, the figure depicts only

the traffic from one web server instance to iPlanet Application Server and

Directory Server. The web server (or more precisely, the Web-Connector Plugin)

manages the load balancing of requests to all the nodes configured in iPlanet

Application Server cluster, as shown in the figure.

The multi-instance clustering architecture delivers superior horizontal scalability

and high availability through replication of state on other application server

instance nodes. Each instance can be configured with multiple KJS processes (each

KJS process is a JVM instance) to achieve the desired degree of scalability. Each KJS

process can be assigned multiple threads for processing, thereby increases

performance.

The following illustration will help you understand how all the components of

iPlanet Application Server fits together. The illustration shows how the various

parts of iPlanet Application Server’s process architecture are related to one another

and the way they are connected to the web servers, and ultimately, to the users.

Figure 1-1 iPlanet Application Server process architecture

Communication Within iPlanet Application Server

16 iPlanet Application Server Performance and Tuning Guide • February 2002

Communication Within iPlanet Application Server
iPlanet Application Servers are typically deployed together with web servers,

directory servers, and client database applications. In this scenario, inter-process

communication is of a very high level and this makes data integrity and security

issues very important. To ensure smooth and secure communication between

application servers, web servers and the client applications that run on application

servers, security components of the system are frequently separated by firewalls.

The basic component of iPlanet Application Server is the Executive Server (KXS)

which creates the components of the application, manages per-session data, load

monitoring and load balancing functions with other instances of iPlanet

Application Server.

The application code runs in multi-threaded processes created by KXS. There are

two types of processes; the C++ Server (KCS) and the Java Server (KJS).

The system is managed through the Administration Server (KAS). The web server

may be installed on the same machine as iPlanet Application Server, or on a

different machine. In a typical network installation, the web server would be

installed on a separate machine.

The communication between the web server and the application server is through

a plug-in, which resides in the web server. If multiple instances of the application

server have been installed, the plug-in communicates with the application server

instance, that the load balancing mechanism selects. In cases where the web server

does not have a plug-in available, the communication module could be a CGI

application, which establishes connection to iPlanet Application Server. However,

the CGI model is less efficient, and is normally used only as a last resort.

The second method of communication is using OCL (Object Constraint Language),

which uses CORBA to locate the required services and communicate with them

through the application server. This is recommended only for use in an Intranet

because standardized security for IIOP connections is not available.

Inter-process communication between servers, applications and security protocol

occurs in a number of ways. Although it is possible to place a firewall between

iPlanet Application Server instances (an application server instance being a

KXS/KJS/KCS process group), this is not recommended. If such a firewall is

implemented, then it is necessary to implement IGMP (Internet Group

Management Protocol) to allow Internet Protocol (IP) communication across the

firewall.

iPlanet Application Server Tools

Chapter 1 About iPlanet Application Server 17

Although firewalls are not recommended between iPlanet Application Server

instances, the implementation of a fast, dedicated network for IP Multicast traffic

between iPlanet Application Server machines may be advisable in certain

circumstances.

The iPlanet Application Server system is designed for networks running at LAN

speeds. Distributing iPlanet Application Server instances across a WAN (Wide

Area Network) may lead to performance issues. For more information on

configuring firewalls with iPlanet Application Server, refer to Chapter 5, “Securing

iPlanet Application Server”, in iPlanet Application Server Administrator’s Guide.

iPlanet Application Server Tools
The Administrative and Deployment interfaces of iPlanet Application Server are

managed using two tools: the iPlanet Application Server Administration Tool

(iASAT) and the iPlanet Application Server Deployment Tool (iASDT). These tools

are discussed in the following topics

• iPlanet Application Server Administration Tool

• iPlanet Application Server Deployment Tool

iPlanet Application Server Administration Tool
iASAT is a stand-alone Java application with a graphical user interface that allows

you to administer one or more instances of the iPlanet Application Server.

Administration often involves performance-related tasks such as adjusting

database connection threads and changing load-balancing parameters. The

administration tool can run on any platform that is supported by iPlanet

Application Server and allows you to connect to one or more iPlanet Application

Server instances over the network.

Use iPlanet Application Server Administration Tool to tune server processes, EJB

parameters, configure datasources, etc., to enhance the application server’s

performance. This guide will show you how to use the administration tool to tune

the application server.

iPlanet Application Server Deployment Tool
iASDT is a stand-alone Java application with a graphical user interface that allows

you to do the following:

iPlanet Application Server Tools

18 iPlanet Application Server Performance and Tuning Guide • February 2002

• Package J2EE application components into modules

• Assemble the modules into a deployable unit, and

• Deploy the units to one or more iPlanet Application Server operating

environments.

J2EE application components are archived into modules according to the container

that will receive them upon deployment. You can archive J2EE application

components into an EJB JAR module (archived with a .jar extension) or a Web

Application module (archived with a .war extension). Each module will contain a

J2EE descriptor and an iPlanet Application Server specific deployment descriptor,

in XML files.

19

Chapter 2

Understanding Tuning and Sizing

This chapter describes performance tuning tips and techniques. It is a concise

guide to some of the tunable parameters of iPlanet™ Application Server.

This chapter contains the following topics:

• Why Tune iPlanet Application Server?

• What Is Application Sizing?

• Factors That Affect Sizing

• Understanding Operational Requirements

• Predicting Performance

• General Performance Guidelines

• Performance Tuning Sequence

Why Tune iPlanet Application Server?
There are so many variables that influence the performance of an application

server that there is no single configuration that performs optimally at every site.

Even if the system is sized properly, performance can be significantly enhanced by

just a few modifications made to the default deployment.

These modifications can enhance the overall system performance. Certain

modifications have a positive impact on the development environment, but

adversely effect production environments. The reverse is also true.

Before you tune iPlanet Application Server, you need to assess the exact result you

are expecting. This chapter takes you through various tuning and sizing options

that you can adopt to get the best out of your iPlanet Application Server.

What Is Application Sizing?

20 iPlanet Application Server Performance and Tuning Guide • February 2002

The process architecture of iPlanet Application Server is represented in the

following diagram for easy reference:

Figure 2-1 iPlanet Application Server Process Architecture

What Is Application Sizing?
The sizing of a system is meant to forecast the amount and type of hardware

necessary to support a particular user load.

To properly size a system, it is important to understand the characteristics of the

load, the characteristics of the application, and the characteristics of the platform

(operating system and hardware).

This section of the document discusses the details for measuring the load, the

application, the platform, and to estimate the system requirements for the

application servers.

Before we can move on to the methods used to size an application, we need to

understand the factors that affect sizing.

What Is Application Sizing?

Chapter 2 Understanding Tuning and Sizing 21

Factors That Affect Sizing

The following table lists the factors that affect the sizing of an application

Table 2-1 Factors that affect sizing
Factor Description

User load The system load must be proportionate to the hardware

required to handle the load.

Application Design &

Implementation

An application that performs very little work will be able to

handle a lot of users for a given amount of hardware. Often,

this kind of application scales poorly because it spends a large

percentage of its time waiting for shared resources.

Conversely, applications that perform a great deal of

computation tend to require much more hardware per user,

but scale much better.

An application whose threads contend for shared resources is

likely to scale poorly within a single server, spending time

waiting for those shared resources. The optimal solution for

this would be to employ a number of small servers.

An application that contends for shared resources between

servers is likely to scale poorly within a cluster, spending time

waiting for shared resources. The optimal solution for this

would be to employ fewer, large servers.

Hardware Platform Raw processor performance is critical to reducing the amount

of hardware needed. Generally, applications do not include

floating point intensive computation, so internal performance

is usually the most important factor. Response time is highly

dependent on the performance of the processor.

Safety Margins Even with high-speed processors, a server can scale poorly if

shared resources cause significant contention. Usually, cache

design and memory bandwidth play a big role in determining

how much extra performance is achieved as processors are

added to a server.

Understanding Operational Requirements

22 iPlanet Application Server Performance and Tuning Guide • February 2002

Understanding Operational Requirements
As you begin to tune simple deployments, the implementation team can establish

the general layout of the operational environment based on the requirements of

iPlanet Application Server, and your application. This general layout will show the

relative position of the system’s external interfaces. Before the general layout can

be transformed into a more concrete design, implementers need to factor in the

following operational requirements of the new system:

• Security

• Availability

• Performance

Security
If you want to encrypt the communication between the browser and the web

server, you need to consider the following factors:

• Do you need to encrypt the browser to Web server communications for all or

part of the application?

• Will the Web server tier exist in a demilitarized zone (DMZ), separate from the

application server tier and backend enterprise systems?

• Is encryption required between the web servers and application servers?

For information on how to encrypt the communication between Web servers and

iPlanet Application Server, please refer to Chapter 6, “Enabling High Availability

of Server Resources”, in iPlanet Application Server Administrator’s Guide.

Availability
You should consider the following factors to ensure the availability of an

application:

• What are the availability requirements of the application? Is the loss of service

acceptable when a machine becomes unavailable?

• Can the loss of a user’s session information be tolerated?

• What are the possible weak links with respect to the manner in which the

application interacts with other aspects of the environment?

• Can these weak links be reasonably enhanced or are they constants?

• Many companies view a CPU busy rate of 80% as a high-water mark. What is

your company’s standard?

Predicting Performance

Chapter 2 Understanding Tuning and Sizing 23

Performance
You should consider the following factors with regard to performance:

• What are the required response times experienced by the end users for various

interactions with the application?

• What are the perceived steady state and peak user loads?

• What is the average and peak amount of data transferred per Web request?

• What is the expected growth in user load over the next 12 months?

For peak user loads, you need to focus on the number of concurrent sessions being

managed by the application server. We often find that organizations view peak

user load as the total number of possible users rather than the average number of

concurrent users. Given this more realistic view of user loads, you’ll find that the

number of peak users drops dramatically on paper from hundreds of thousands or

even millions to tens of thousands of concurrent users.

Defining these operational requirements will help move you to the next stage in

understanding the deployment environment. Let us assume that the operational

security and availability requirements are such that multiple Web and application

server instances, separated by a set of firewalls, will form the basis of the

environment. Here, you’ll need separate tiers of machines to support the division

between the DMZ and the secure, back-end business systems. You’ll also need to

plan on multiple instances of machines in each tier to enhance the availability of

the application.

Proceeding from these assumptions, the layout of the operational environment is

further refined, though it does not yet address the exact number or size of

machines required by the system. The next step is to develop a basic understanding

of how to predict performance and how to size a system.

Predicting Performance
Given the factors affecting the sizing process and the general layout of the

operational environment, how does one predict either the capacity of a given

combination of hardware, or the minimal hardware required to sustain a specified

capacity? The best way to answer these questions is to take the data gathered from

the discussions in the previous section and plug it into the sizing calculator that is

bundled with iPlanet Application Server.

Predicting Performance

24 iPlanet Application Server Performance and Tuning Guide • February 2002

iPlanet provides you with two calculators to help size applications deployed to

iPlanet Application Server. The first calculator computes the size of a system (i.e.,

the number of CPUs and the number of machines in each tier) based on the factors

described in the above section. The second calculator computes the maximum

capacity of a given hardware configuration.

iPlanet has built these calculators based on a combination of tests, including those

for popular application workflows, and has drawn upon publicly available

benchmark results for RDBMS and processors. Both calculators assume a fully

tuned system.

Apart from using sizing calculators, it is recommended that you develop your own

understanding of application sizing based on the following steps:

1. Determine performance on a single CPU

You need to first determine the largest load that can be sustained with a known

amount of processing power. You can obtain this figure by measuring the

performance of the application on a uniprocessor machine. You can either

leverage the performance numbers of an existing application with similar

processing characteristics or, ideally, use the results of basic performance

testing done during development.

While determining performance on a single CPU, you must begin to tune the

basic environment. As with any performance test, you must ensure that none

of the outlying systems (driver machines, Web servers, database machines,

etc.) throttle the test. Otherwise, your performance numbers may be artificially

low and will adversely impact the sizing results.

2. Determine vertical scalability

You need to know exactly how much additional performance is gained when

you add processors. That is, you are indirectly measuring the amount of shared

resource contention that occurs on the server for this workflow. You can either

obtain this information based on additional load testing of the application on a

multiprocessor system, or leverage existing information from a similar

application that has already been load tested. Running a series of performance

tests on one to four CPUs generally provides a decent sense of the vertical

scalability characteristics of the system.

Based on your sizing estimates, it’s important to exercise the application under

load on systems of the target configuration. While determining the vertical

scalability, ensure that availability requirements are factored into the

configuration. For example, to guarantee that the failure of a single JVM does

not result in a loss of all sessions, perform the vertical scalability tests with at

least two JVMs and configure session replication between the JVMs.

Predicting Performance

Chapter 2 Understanding Tuning and Sizing 25

3. Determine horizontal scalability

You need to know how much additional performance is gained when you add

servers. Again, benchmarking of a cluster of application server systems is

required if information on a similar application is not already available. Ensure

that you take into consideration high-availability requirements and the

attendant session replication configuration as you lay out your horizontal

scalability test environment.

In this case, session replication occurs across application server instances

deployed to multiple machines, in addition to session replication across JVMs

within each application server instance. Running this suite of tests will provide

you with a solid understanding of the performance of the application server.

Using this information, you can develop your own custom sizing equations.

You need to first determine how much load can be sustained with a known

amount of processing power. You can obtain that figure by measuring the

performance for a given application on a uniprocessor for extrapolating on

multiprocessors.

The equation for sizing a basic (single instance installation) High Availablity (HA)

site looks like this:

TotalProcessorCount =(P*(1.0-k) * (ks+P*k*K*(1.0-2.0 * K) +sqrt(4.0
*ks*K*(1.0-K)*(ks+P*k*(1.0-2.0*K)))) / ((ks-P*k*K) * (ks-P*K*K));

where:

• P = Performance (throughput) required at peak load. If a maximum level of

CPU usage is specified, then divide P by that value. For example, if the servers

should never be more than 80% busy for 10,000 users, then P = 10,000/0.80

= 12,500 .

• k= (1-CPU scalabality) / (1+ CPU scalability). CPU scalability is

measured by running the application on servers with different numbers of

CPUs. In this case, CPU scalability is the additional performance gained by

adding a second processor. CPU scalability is dependent on the workflow, the

application server software, the operating system, and the server hardware.

• ks= raw CPU performance. This is required for each unit of throughput (P)

for this application on this hardware. ks is measured on at least one platform

and is extrapolated using the ratio of SPECint_base95 performance on the

new platform, as against the measured platform.

General Performance Guidelines

26 iPlanet Application Server Performance and Tuning Guide • February 2002

• K = (1 - server scalability) . (1+server scalability) - server scalability is

measured by running the application on clusters with different numbers of

servers (or application server instances). In this case, server scalability is the

additional performance gained by adding a second appserver of the same

performance as the first.

This equation estimates the total (minimum) number of processors needed. This

value assumes that the configuration will be optimized. Note that each of these

values is different for different applications. Different equations are used to

identify the optimal number of clusters, the number of application server instances

and the number of processors per server. This value also assumes that the required

peak load must be satisfied with one failed server.

Another method for sizing a single server is to establish a throughput rate required

for the site and decide if the workflow fits one of three basic examples given below:

• An online store implemented with servlets. Commonly accessed pages are

cached.

• An online store implemented with servlets, but there are no commonly

accessed pages. So, caching is disabled.

• An online store implemented with a mix of JSPs, servlets, session and entity

beans. Caching is disabled.

General Performance Guidelines
The following table describes the factors that affect sizing and their impact on an

application’s performance:

Table 2-2 Factors that affect sizing - applying concepts
Concept Applying the Concept Measurement Value Sources

User Load Peak Concurrent

Sessions

Transaction Rate

(RPM, WIPS)

Number of Peak

Concurrent Users /

Period between clicks.

Number of Subscribers

Session time / Period

between sessions.

Performance Tuning Sequence

Chapter 2 Understanding Tuning and Sizing 27

Performance Tuning Sequence
We recommend that you tune iPlanet Application Server and its associated

elements in the following sequence:

• Tuning Your Application

• Tuning iPlanet Application Server

• Tuning the Java Runtime System

• Tuning the Operating System

• Tuning Database Servers

These topics are discuused in detail in the following chapters.

Application

Design and

Implementation

Transaction Rate per

Measure of CPU

performance

RPM per

SPECint_base95

Measured from

benchmarks

Scalability within a

server (additional

performance for

additional CPU)

% % based on curve

fitting from

benchmarks

Scalability within a

cluster (additional

performance for

additional server)

% % based on curve

fitting from

benchmarks

Hardware

platform

Processor performance

(usually integer

performance)

Ratio of

performance of

SPARC®20@40M

hz

SPECint_base95

Scalability (probably

cache design & memory

bandwidth)

% % based on curve

fitting from

benchmarks

Safety Margins High Availability

Requirements.

If yes, size the

system assuming

that 1 server

system is down

Different equations

used if High

Availability is required.

% Busy High Water

Mark

% Usually 80%; you need

to compute the level of

acceptable risk.

Performance Tuning Sequence

28 iPlanet Application Server Performance and Tuning Guide • February 2002

29

Chapter 3

Tuning Your Application

This chapter provides a comprehensive guide to tuning your applications for

maximum performance. The following topics are discussed in this chapter:

• Java Coding Guidelines

• J2EE Programming Guidelines

Java Coding Guidelines
In this section, we will cover issues related to Java coding and performance related

issues. The guidelines laid down in this section are not specific to iPlanet™

Application Server, but are general rules to be followed while coding Java

applications:

• Avoid serialization and deserialization

In Java, serialization and deserialization of objects is a CPU-intensive

procedure and is likely to slow down your application.

• Avoid Arrays

This is a tough recommendation to follow but the use of arrays should be

minimized in Java. One of the primary goals of Java is safety, so many of the

problems that plague programmers in C and C++ are not repeated in Java. A

Java array is guaranteed to be initialized and cannot be accessed outside of its

range.

This range checking comes at the price of having a small amount of memory

overhead on each array as well as verifying the index at run-time. While the

amount of time used is minimal, it is nevertheless a factor when a large

number of arrays are used in code.

• Use StringBuffer.append() instead of the "+" operator

30 iPlanet Application Server Performance and Tuning Guide • February 2002

In Java, strings are immutable i.e. they never change after creation. For

example, the following sequence,

String str = "testing";

str = str + "abc";

is understood by the compiler as:

String str = "testing";

StringBuffer tmp = new StringBuffer(str);

tmp.append("abc");

str = tmp.toString();

Thus, copying is inherently expensive and can become a significant factor in

hindering performance in case it is overused. We recommend that you use

StringBuffer.append() .

• Explicitly assign null value to de-referenced variables

Doing this helps the garbage collector easily identify the parts of memory that

can be safely reclaimed. Java does not prevent you from using excessive

amounts of memory or from cycling through too much memory (e.g., creating

and de-referencing many objects). You can get memory leaks by holding on to

objects without releasing references. This stops the garbage collector from

reclaiming those objects, resulting in increasing amounts of memory being

used. Thus, explicitly dereferencing variables by setting them to null

improves performance.

J2EE Programming Guidelines
The J2EE model defines a framework for application development. It defines the

use of JSPs, servlets and EJBs (in addition to JNDI, JMS, and JTS) in application

architecture. While all parts of the J2EE model have their uses, some issues need to

be kept in mind while designing the architecture. They are:

• Servlet programming guidelines

All applications in iPlanet Application Server are serviced by JSPs or servlets

(which are also entry points to EJBs). In the case of the servlet multithread

model (the default model), a single instance of a servlet is created for each JVM.

All requests for a servlet on that JVM share the same servlet instance. This can

create thread contention. Thus, the use of class variables should be avoided as

it creates synchronization problems.

Chapter 3 Tuning Your Application 31

In addition, the use of the synchronization clause (around code or around

methods) should be avoided as this creates critical sections of code. Only a

single thread can execute in the synchronized block at one time. All others are

blocked and have to await access. This wait queue can be a significant factor

for high performance websites.

• Avoid the use of EJBs

EJBs are very useful in the context of reusable services. However, this

flexibility comes at a cost. This is because the method in which EJBs are

designed to work rather than any quirk in the implementation of a container

(in this case, the container will be iPlanet Application Server). Often, in J2EE

applications, requests to EJBs are routed through servlets.

Servlets need to do a JNDI lookup, get a bean reference and use that reference

to call a bean method. Normally, the reference is cached and used for all

subsequent hits. Due to the levels of direction that need to be executed before

an EJB can be accessed, it is found that EJBs are inherently more expensive than

servlets that perform the same task.

If you need to use EJBs, please follow these steps to improve response time:

❍ Cache EJB references at the servlet. This will avoid the need to do a JNDI

lookup for every request.

❍ The following EJB types are listed in descending order, based on their

performance. The bean-type with the highest performance is at the top:

• Stateless Session Beans

• Stateful Session Beans

• Entity Beans with CMP (Container Managed Persistence)

• Entity Beans with BMP (Bean Managed Persistence)

Stateless session beans are the fastest among EJBs and are almost

comparable to servlets in performance.

❍ Use sticky load balancing in the case of stateful session beans. If sticky load

balancing is not used and a bean reference (that has been stored in session)

gets routed to another iPlanet Application Server, then a cross container

lookup will need to be done to service a request. This can be very

expensive.

❍ Size the container (iPlanet Application Server) based on performance tests.

Configure threads for processes and set time-out values for iPlanet

Application Server. Configure EJB cache for improved performance.

32 iPlanet Application Server Performance and Tuning Guide • February 2002

❍ Try to deploy servlets and JSPs to iPlanet Application Server rather than to

the iPlanet Web Server. Deploy an application to iPlanet Application

Server if:

• An application is highly transactional

• Requires failover support to preserve session data,

• Accesses legacy data.

❍ Deploying an application to iPlanet Web Server is useful if an application

is mostly stateless, read-only, and non-transactional.

❍ Ask the server administrator to co-locate EJBs with your presentation logic

(servlets and JSPs) on the same server to reduce the number of Remote

Procedure Calls (RPCs) when the application runs.

NOTE Decomposing an application into a moderate to large number of

separate EJBs can create a huge application performance

degradation and more overhead. EJBs, like JavaBeans, are not

simply Java objects. EJBs are higher level entities than Java objects.

They are components with remote call interface semantics, security

semantics, transaction semantics, and properties.

33

Chapter 4

Tuning iPlanet Application Server

This chapters provides a comprehensive guide to tuning iPlanet™ Application

Server for maximum performance. The following topics are discussed in this

section:

• Optimizing Performance of Server Processes

• Comparing Distributed and Lite HTTP Sessions

• Configuring a Single Backup for Highly Available Sessions

• Configuring Dsync Session Management Threads

• Load Balancing Options

• Configuring Database Connection Pool

• Configuring EJB Parameters For Runtime

• Caching JSPs and Servlets

Optimizing Performance of Server Processes
The Executive Server (KXS), java engine (KJS), C++ engine (KCS), and RMI/IIOP

bridge process (CXS) form the core of iPlanet Application Server. In this section, we

will discuss how to tune these processes for maximum performance and

scalability.

This section describes the following topics:

• Tuning iPlanet Application Server Processes

• Performance Tuning RMI/IIOP

Optimizing Performance of Server Processes

34 iPlanet Application Server Performance and Tuning Guide • February 2002

Tuning iPlanet Application Server Processes
The Executive Server (KXS), the java engine (KJS) and C++ engine (KCS) process

requests asynchronously by employing a pool of worker threads. These threads

handle user requests for application components. When iPlanet Application Server

receives a request, it assigns the request to a free thread. The thread manages the

system needs of the request. For example, if the request needs to use a system

resource that is currently busy, the thread waits until that resource is free before

allowing the request to use that resource.

You can adjust the number of request threads globally, for all processes used by

that instance of iPlanet Application Server. You can also do this at process level.

The following topics are discussed in this section:

• Optimizing KXS Performance

• Optimizing KJS Performance

• Adjusting the Number of Request Threads

• Specifying Maximum Server and Engine Shutdown Time

Optimizing KXS Performance
The Web Connector Plug-in routes users requests aimed at iPlanet Application

Server applications, to the Executive process (KXS). These requests are logged to

the request queue in the Executive process.

You can perform the following tasks to optimize KXS performance:

• Control the maximum number of threads the Web Connector Plug-in will use

to process requests. This prevents the request queue from receiving more

requests than it can process. On iPlanet Application Server installations, the

number of KXS threads is set to 32 by default. This can be increased all the way

to 128. A setting of 64 threads is sufficient. If the thread count is to be increased,

it is recommended that KXS be bound to at least a single processor to avoid

wasted time in threads acquiring mutex locks.

NOTE Note that the process level setting overrides the server level setting.

You can tune these settings using the iPlanet Application Server

Administration Tool.

Optimizing Performance of Server Processes

Chapter 4 Tuning iPlanet Application Server 35

• Set the maximum number of requests that are logged to the request queue to

control the flow of requests. The maximum number is called the “high

watermark”.

• Set the number of requests in the queue at which logging will resume. This

number is called the “low watermark”.

• Bind KXS to a single processor or a processor set. This should only be done if

requests are queued at KXS when testing loads. This should not be done for

KJS because in iPlanet Application Server, the JDK is optimized for multiple

processors and binding it to a single processor does not buy any performance

benefits. In addition, if binding to a single processor does not improve KXS

performance (as seen by CPU utilization being high on the KXS process), then

you can create a processor set using two processors. KXS should then be bound

to the processor set.

When a server process, such as Executive Server (KXS), Java Server (KJS), C++

Server (KCS) or Corba Executive Server (CXS) fails, the Administrative Server

restarts it. You can set the restart option to either increase or decrease the number

of times that a process is restarted. Fault tolerance and application availability are

increased when all processes are running smoothly.

Optimizing KJS Performance
When you install iPlanet Application Server, the number of KJS threads is set to 32.

This can be increased all the way to 48. A setting of 48 KJS threads is optimal.

Adjusting the Number of Request Threads
The thread pool is by default populated with 8 threads in each process. The

maximum is set to 32 threads. You can specify the minimum and maximum

number of threads that are reserved for requests from applications. The thread

pool is dynamically adjusted between these two values. The minimum thread

value you specify holds at least that many threads in reserve for application

requests. That number is increased up to the maximum thread value that you

specify.

Increasing the number of threads available to a process allows the process to

respond to more application requests simultaneously. You can add and adjust

threads for each process, or you can define the number of threads for all processes

under a server, at the server level.

The optimal setting for these parameters would vary based on the application. For

example, if the request involves significant amount of database processing and the

database server hardware is lightly loaded and can handle increased concurrency,

it is advisable to tweak the pool size up and allow greater number of requests to

Optimizing Performance of Server Processes

36 iPlanet Application Server Performance and Tuning Guide • February 2002

reach the database and improve throughput. In general, a larger thread pool size

appears to benefit, till about 32-48 threads in both KXS and KJS processes. We

recommend that this be fixed, by setting the minimum and maximum pool size to

the same number, initially at 32, and, if necessary experiment with 48 threads. You

can specify all the required parameters in one go, using iASAT.

By default, each process uses the threads assigned to iPlanet Application Server.

For example, if iPlanet Application Server uses a minimum of 8 threads and a

maximum of 64 threads, each individual process uses a minimum of 8 threads and

a maximum of 64 threads.

Specifying Maximum Server and Engine Shutdown Time
You can set the maximum number of engine restarts of the Administration Server

for both iPlanet Application Server and engine processes. For example, if you set

the engine shutdown time to 60 seconds, application tasks being processed are

allowed 60 seconds for completion. No new requests are accepted after this period

has elapsed. Specifying a shutdown value avoids a “hard” shutdown that will

return errors to the client. You can set these values using iPlanet Application

Server Administration Tool.

Maximum Server Shutdown Time. The Maximum Server Shutdown Time is the

maximum time taken to shut down iPlanet Application Server. After this time, any

engines that are still running are killed. The server typically shuts down quickly

unless it is heavily loaded.

Maximum Engine Shutdown Time. The Maximum Engine Shutdown Time is the

maximum time that iPlanet Application Server will wait for an engine to shut

down. After this time, the engine will be killed, and the next engine(s) will be

shutdown.

Switch off all Logging

To reduce the strain on the system owing to continuous input / output operations,

switch of all application logging that will be written to the KJS logs. This action has

a marked improvement on performance.

Set MaxBackups = 1

In a normal application server architecture, a single Sync Backup server will reduce

the amount of intra-cluster communication. For a cluster, set Maxbackups

(maximum number of backups) to 1. Setting it to 0 will mean that there are no

session backups in case the primary becomes unavailable. Setting it to 2 will

increase intra-cluster communication, increasing the load on the server. Therefore,

a setting of 1 is optimal for this parameter.

Optimizing Performance of Server Processes

Chapter 4 Tuning iPlanet Application Server 37

Performance Tuning RMI/IIOP
For deployment environments in which you expect the RMI/IIOP path to support

more than a handful of concurrent users, you should experiment with the tuning

guidelines described in this section. The default configuration of the JVM and the

underlying OS do not yield optimal performance and capacity when you are using

RMI/IIOP.

This section covers the following topics:

• Recognizing Performance Issues

• Basic Tuning Approaches

• Enhancing Scalability

• Firewall Configuration for RMI/IIOP

Recognizing Performance Issues
Before exercising your RMI/IIOP client application under load, ensure you have

verified that basic mechanical tests are completed successfully.

As you begin exercising the client application under load, you may experience the

following exceptions on the RMI/IIOP client:

org.omg.CORBA.COMM_FAILURE

java.lang.OutOfMemoryError

java.rmi.UnmarshalException

If you’ve verified that the basic mechanics of your application are working

properly, and you experience any one of these exceptions while load testing your

application, see the next section to learn how to tune the RMI/IIOP environment.

Basic Tuning Approaches
You should experiment with the following tuning recommendations in order to

find the best balance for your specific environment.

Solaris File Descriptor Setting. On Solaris, setting the maximum number of open

files property using ulimit has the biggest impact on your efforts to support the

maximum number of RMI/IIOP clients. The default value for this property is 64 or

1024 depending on whether you are running Solaris 2.6 or Solaris 8. To increase the

hard limit, add the following command to /etc/system and reboot once:

set rlim_fd_max = 8192

Optimizing Performance of Server Processes

38 iPlanet Application Server Performance and Tuning Guide • February 2002

You can verify this hard limit by using the following command:

ulimit -a -H

Once the above hard limit is set, you can increase the value of this property

explicitly (up to this limit) using the following command:

ulimit -n 8192

You can verify this limit by using the following command:

ulimit -a

For example, with the default ulimit of 64 , a simple test driver can support only 25

concurrent clients, but with ulimit set to 8192 , the same test driver can support 120

concurrent clients. The test driver spawns multiple threads, each of which

performs a JNDI lookup and repeatedly calls the same business method with a

think (delay) time of 500ms between business method calls, exchanging data of

about 100KB.

These settings apply to both RMI/IIOP clients (on Solaris) and to the RMI/IIOP

Bridge installed on a Solaris system. Refer to Solaris documentation for more

information on setting the file descriptor limits.

Java Heap Settings. Apart from tuning file descriptor capacities, you may want to

experiment with different heap settings for both the client and Bridge JVMs. For

more information, see Chapter 5, “Tuning the Java Runtime System”.

Enhancing Scalability
Beyond tuning the capacity of a single Bridge process and client systems, you can

improve the scalability of the RMI/IIOP environment by using multiple RMI/IIOP

Bridge processes. You may find that configuring multiple Bridge processes on the

same application server instance improves the scalability of your application

deployment. In certain cases, you may want to use a number of application server

instances each configured with one or more Bridge processes.

In configurations where more than one Bridge process is active, you can partition

the client load by either statically mapping sets of clients to different Bridges or by

implementing your own logic on the client side to load balance against the known

Bridge processes.

Optimizing Performance of Server Processes

Chapter 4 Tuning iPlanet Application Server 39

Firewall Configuration for RMI/IIOP
If the RMI/IIOP client is communicating through a firewall to the iPlanet

Application Server, you must enable access from the client system to the IIOP port

used by the RMI/IIOP Bridge processes. Since the clients port numbers are

assigned dynamically, you must open up a range of source ports and a single

destination port to allow RMI/IIOP traffic to flow from a client system through a

firewall to an instance of the application server.

A snoop-based trace of the IIOP traffic between two systems during a single

execution of the Converter sample application is given below. The host swatch is

the RMI/IIOP client, while the host Mamba is the destination or application server

system. The port number assigned to the RMI/IIOP Bridge process is 9010. Note

that the two dynamically assigned ports (33046 and 33048) are consumed on the

RMI/IIOP client, while only port 9010 is used to communicate with the Bridge

process:

swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Syn
Seq=140303570 Len=0 Win=24820

Options=<nop,nop,sackOK,mss 1460>

mamba.red.iplanet.com -> swatch TCP D=33046 S=9010 Syn
Ack=140303571 Seq=1229729413 Len=0 Win=8760

Options=<mss 1460>

swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Ack=1229729414
Seq=140303571 Len=0 Win=24820

swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Ack=1229729414
Seq=140303571 Len=236 Win=24820

mamba.red.iplanet.com -> swatch TCP D=33046 S=9010 Ack=140303807
Seq=1229729414 Len=168 Win=8524

swatch -> mamba.red.iplanet.com TCP D=9010 S=33046 Ack=1229729582
Seq=140303807 Len=0 Win=24820

swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Syn
Seq=140990388 Len=0 Win=24820

Options=<nop,nop,sackOK,mss 1460>

mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Syn
Ack=140990389 Seq=1229731472 Len=0 Win=8760

Options=<mss 1460>

swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731473
Seq=140990389 Len=0 Win=24820

Comparing Distributed and Lite HTTP Sessions

40 iPlanet Application Server Performance and Tuning Guide • February 2002

swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731473
Seq=140990389 Len=285 Win=24820

mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140990674
Seq=1229731473 Len=184 Win=8475

swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731657
Seq=140990674 Len=0 Win=24820

swatch -> mamba.red.iplanet.com TCP D=9010 S=33048 Ack=1229731657
Seq=140990674 Len=132 Win=24820

mamba.red.iplanet.com -> swatch TCP D=33048 S=9010 Ack=140990806
Seq=1229731657 Len=25 Win=8343

Comparing Distributed and Lite HTTP Sessions
Distributed Sessions offer improved availability by replicating session data on a

backup iPlanet Application Server node. To acheive this, objects placed into a

Distributed Session must implement the java.lang.Serializable interface.

However, this generates additional network traffic if the session sizes are large and

are written to quite often. Due to queuing effects, JSPs and servlets that access

distributed sessions also suffer a performance loss, the magnitude of which

depends on the amount of HttpSession usage and size. Lite Sessions trade-off

availability for better performance. Session Objects are locally cached in the KJS

process, which serves as a home for all the requests in that session.

Lite Sessions also have the advantage when Java objects are stored in HttpSession .

Since Lite session objects are cached in each KJS process, there is no need to

serialize Java objects over the network. So if a Java object is stored in a Lite

HttpSession, there is no need for that object to implement the

java.lang.Serializable interface.

You can specify the desired session type in ias-web.xml , by editing the

<session-info>/<impl> property.

NOTE Gains of 8-40% have been reported by switching to Lite sessions.

Configuring a Single Backup for Highly Available Sessions

Chapter 4 Tuning iPlanet Application Server 41

Configuring a Single Backup for Highly Available
Sessions

This only applies if you are using the highly available sessions (dsync-distributed)

and have configured a primary and secondary for HttpSession failover. The

registry setting Maxbackups for the cluster should be set to 1. Setting it to 0 will

mean that there are no session backups in case the primary becomes unavailable.

Setting it to 2 will increase intra cluster chatter. A setting of 1 is optimal for this

parameter (and is the default).

You can set this parameter in the following iPlanet Registry key:

Software\iPlanet\Application
Server\6.0\Clusters\<cluster-name>\MaxBackups

Configuring Dsync Session Management
Threads

Dsync is a distributed state synchronization service. The designated Dsync

primary and Backup contain in-memory database of session nodes. As Http

Sessions time-out, or are invalidated, they need to be promptly removed from the

memory database. This removal and book keeping can be done with greater

concurrency by increasing the number of dedicated threads.

Set the following property in the registry. This can solve transient memory growth

problems and make the session node invalidation more efficient. The following

sets the KXS cleaner thread count to 20, in iPlanet Registry:

Software\iPlanet\Application
Server\6.0\CCSO\ENG\0\SyncTimeoutThreadCount=20

To accomplish the same for KJS engine #1, modify the following key in iPlanet

Registry:

Software\iPlanet\Application
Server\6.0\CCSO\ENG\1\SyncTimeoutThreadCount=20

There is another setting to configure the interval at which these threads are

activated:

Software\iPlanet\Application
Server\6.0\CCSO\ENG\<n>\SyncTimerInterval

Load Balancing Options

42 iPlanet Application Server Performance and Tuning Guide • February 2002

This defaults to 60 and this setting is quite adequate.

We recommend that you not rely on HttpSession time-outs to clean up sessions.

Use HttpSession.invalidate() method to clean up and where that is not

possible, set the default HttpSession time-out to be as low as possible in the

deployment environment.

Load Balancing Options
This section describes the following topics:

• Load-Balancing Cluster Configuration

• Broadcasting and Updating Information

• Monitoring Load-Balancing Information

• Recommended Load-Balancing Configuration for Clusters

• Optimizing Session Size for Clusters

• Load Balancing Individual JSPs

• Using Sticky Session Load Balancing

Load-Balancing Cluster Configuration
In the iPlanet Application Server environment, a cluster is defined as a collection of

servers that shares the responsibility for saving state & session information,

performed by the Data Synchronization Service (Dsync).

Dsync, therefore, is the shared resource that constrains the size of any given

cluster. As a general rule, each cluster should run with no more than 4 instances of

iPlanet Application Server. If more servers are required, then use sticky load

balancing from the web server tier to multiple clusters. If state and session

information is not stored in Dsync, there is no limit on the number of servers that

can be run in parallel. Use the iPlanet Application Server Sizing Tool to find an

optimal configuration.

NOTE While this does not improve performance directly, keeping a small

session object store always helps. It also ensures that the KXS and

KJS processes to not leak memory, by cleaning up promptly and

efficiently.

Load Balancing Options

Chapter 4 Tuning iPlanet Application Server 43

We can explore 2 scenarios for load balancing cluster configuration, as follows:

Scenario 1: Two iPlanet Application Server clusters sharing a single LDAP

configuration tree.

In this scenario, all iPlanet Application Servers share the same LDAP configuration

tree. To support sticky load balancing, it is not necessary to turn the sticky load

balancing method on the router.

The following figure illustrates this configuration. In the figure, incoming requests

are represented by sharing configuration LDAP between blue arrows and LDAP

access is represented by red arrows.

Figure 4-1 Two Application servers sharing a single LDAP tree

Recommended Usage:

This configuration is useful when each application only exists in a single cluster.

Benefits of such a scenario include isolation of applications, and simplicity of the

web tier.

Configuration:

During installation of iPlanet Application Server, specify the same LDAP and the

same configuration root for all iPlanet Application Server in all clusters.

Load Balancing Options

44 iPlanet Application Server Performance and Tuning Guide • February 2002

Scenario 2:

iPlanet Application Server clusters assigned to different LDAP configuration trees:

In this scenario, each iPlanet Application Server cluster has a branch in the

configuration tree in LDAP. Each iPlanet Application Server cluster will have at

least one iPlanet Web Server dedicated to it. When a request comes in to a iPlanet

Web Server (since iPlanet Web Server only knows about one iPlanet Application

Server cluster), it will always send requests to iPlanet Application Server in this

cluster. The router is responsible for distributing the load between different iPlanet

Web Servers.

To enable the support for sticky load balancing, the router’s sticky option needs to

be turned on so that subsequent requests will come to the same iPlanet Web Server.

The following figure illustrates this configuration. In the figure, incoming requests

are represented by sharing the configuration LDAP between blue arrows and user

LDAP access is represented by red arrows.

Figure 4-2 Two application servers clusters assigned to separate LDAP tress

Recommended Usage:

Load Balancing Options

Chapter 4 Tuning iPlanet Application Server 45

This configuration is useful when applications require cross-cluster deployment.

Benefits of such a scenario include the ability to use one cluster to promote new

versions of applications, and to support applications that require more processing

power than a single cluster can provide.

Broadcasting and Updating Information
For load balancing to be effective, each server involved in the process must have

the most current information about all the other servers. This means that

information about the factors that affect load balancing must be broadcast to all the

iPlanet Application Server machines, and every iPlanet Application Server

machine must monitor and update this information to make load-balancing

decisions. Broadcasting information too often, results in a high level of network

traffic and could slow down response time. However, if the load-balancing

information is not calculated and updated frequently, then application components

risk not being optimally load balanced because the information iPlanet Application

Server uses to make load-balancing decisions is outdated.

When making decisions about load balancing, you face two major dilemmas:

• How frequently should an iPlanet Application Server server update its

load-balancing information?

• How frequently should every iPlanet Application Server installation broadcast

its load-balancing information?

Update Interval. A minimum value of 5 seconds and a maximum value of 10

seconds is appropriate in most cases. In general, set the Update Intervals criteria

for each server to be twice the response time, under stable conditions, of the most

frequently used application component. For example, on a system where the most

frequently used application component returns requests in 5 seconds, set the

update interval to 10 seconds. Setting it to a more frequent update rate causes the

server to do more work and could even alter load-balancing characteristics. Use

caution with this calculation: if the response time of a heavily used application

component is only 1.5 seconds, do not set the Update Interval to 3 seconds.

NOTE If the response time of a heavily used application component is only

1.5 seconds, do not set the Update Interval to 3 seconds.

Load Balancing Options

46 iPlanet Application Server Performance and Tuning Guide • February 2002

Broadcast Interval. As mentioned earlier, broadcasting load-balancing

information too frequently will not only increase network traffic, it will also

increase the work load of your iPlanet Application Server as all the servers work to

post and gather the information. In general, set the Broadcast Intervals criteria for a

server to be twice the value of its Update Interval.

Set the Update Interval and the Broadcast Interval criteria using the Load

Balancing tool in iPlanet Application Server Administration Tool.

Monitoring Load-Balancing Information
When you set load-balancing criteria, be patient about the fine-tuning process.

Determining the best combination of load balancing criteria takes careful

monitoring of your iPlanet Application Server configuration over a period of time,

during which you must gather statistics about peak load, your mix of request

types, response time averages, bottlenecks, and so on. There is no single load

balancing solution for all iPlanet Application Server users, since every system is

deployed with different parameters and criteria. As with any aspect of iPlanet

Application Server deployment, only you can determine over time the best set of

criteria for improving performance of the iPlanet Application Server system

deployed at your site.

For more information about load balancing and using iASAT to set load-balancing

criteria, see “Balancing User Request Loads” in iPlanet Application Server
Administrator’s Guide.

Recommended Load-Balancing Configuration
for Clusters
During iPlanet Application Server installation, specify the same LDAP for all

iPlanet Application Server in all clusters. Specify the same configuration root for all

iPlanet Application Server in one cluster and different configuration root for

different clusters.

Load Balancing Options

Chapter 4 Tuning iPlanet Application Server 47

Optimizing Session Size for Clusters
Session size, by far, has the largest effect in the performance of an iPlanet

Application Server cluster. After observing large installations of iPlanet

Application Server, we have determined that for maximum performance benefit,

the session size should not be more than 4K. With larger sessions, the system will

continue to work but with degraded performance. The main reason for

performance degradation is the constant communication between the primary and

the hot backups in the system to synchronize session data.

One of the following techniques can be employed in improving session

performance:

• Store only the most important elements in the session.

The application architect needs to determine data that is important and store

only that in the session. Data that need not be distributed should be kept away

from the session.

• Use sticky load balancing for sessions

Sticky load balancing and session distribution are two separate but linked

variables in the same equation and both can be enabled at the same time. With

sticky load balancing, a single client is always directed to the same KJS. This

enables data storage in the JVM memory rather than in the session. Only a key

(for example, to a hashtable or to an array) needs to be stored in a session. As

the amount of data in a session is significantly reduced, there is an

improvement in performance.

In this configuration, if the iPlanet Application Server which is servicing a

client request becomes unavailable, then the request will be routed to another

iPlanet Application Server instance in the cluster. Since the key is available in

the session, the data can be recreated and stored in memory. The request will

now be stuck to the new KJS.

This option is useful if data in session has been accessed and stored from a

secondary source such as an LDAP server.

• Use a separate data store to serialize large session data.

This concept introduces a new variable into the system - a database. The idea

here is to store a large portion of the session in a database and to store only the

primary key in session. The session therefore, is smaller and this improves

performance. This will involve careful planning of the database schema and

proper indexing of the lookups involved to speed up database access.

Load Balancing Options

48 iPlanet Application Server Performance and Tuning Guide • February 2002

Load Balancing Individual JSPs
In iPlanet Application Server, JSPs can be load balanced individually. This is done

by assigning a GUID to a JSP, similar to how GUIDs are assigned to servlets, in the

XML descriptor. (See section on Registered JSPs). By assigning a GUID to a JSP, it

becomes possible to load-balance JSPs just as servlets would, through iPlanet

Application Server Administration Tool.

Using Sticky Session Load Balancing
The best web performance is achieved when the servlets in a Web application are

configured for Sticky load balancing. In this setting, the application server or the

Web-Connector Plugin load balance user sessions. The first user request in a

session is load balanced to the best candidate KJS process or server. From then on,

the same user’s subsequent sessions are sent to the same process. This allows the

attached KJS process to locally cache the session object and offer better

performance. Sticky Load Balancing can be used along with Distributed Sessions.

A servlet or JSP can be configured to be sticky, by setting the

<servlet>/<servlet-info>/<sticky> property to true in ias-web.xml . The

deployment and packaging tools automatically set sticky to true.

Simplify Session Data
It is better not to serialize an object before storing it in session, for the following

reasons:

• The iPlanet Application Server distributed session has been tuned to work

with simple data elements. Large serialized objects are clumsy and have a

marked effect on performance. The data needs to be stored as separate simple

data elements for maximum utilization of the session.

From a Java coding perspective, serialization and deserialization are expensive

operations that should be avoided.

NOTE Performance improvements of 10% or better have been reported in

some tests.

Configuring Database Connection Pool

Chapter 4 Tuning iPlanet Application Server 49

Configuring Database Connection Pool
iPlanet Application Server offers a connection pooling feature, which multiplexes a

few database connection amongst many threads. Connections are tentatively

established for the first use, but are not closed. The already open connections are

reused as long as the application server process is alive.

A connection pool will be created for a unique combination of JDBC datasource

and user. For the same datasource, multiple pools may be created if the application

uses the DataSource.getConnection (user,password) style of getting connections

where user and password changes with different call invocations.

Make sure the size of this pool is slightly greater than the number of worker

threads configured in KJS. Set the CacheInitSlots and CacheMaxConn properties

in the registry for the desired database.

For example, if you are using the bundled native Oracle JDBC Drivers in iPlanet

Application Server, modify the properties under the following key in iPlanet

Registry.

Software\iPlanet\Application Server\6.0\CCS0\DAE2\ORACLE_OCI

This section features the following topics:

• Guidelines for Configuring Connection Pool

• Using Statistics to Configure the Connection Pool

Guidelines for Configuring Connection Pool
Connection Pools in iPlanet Application Server can be configured at various levels:

• In the datasource XML file.

• By modifying the registry.

• Dynamic configuration through the Administration tool.

NOTE The number of connections in pool must be equal to the number of

worker threads in KJS process, if you expect that all threads would

be concurrently processing user requests and would need database

access. The performance benefits will be obvious in a database

access intensive application.

Configuring Database Connection Pool

50 iPlanet Application Server Performance and Tuning Guide • February 2002

For more information on the configurable connection pool parameters, see

iPlanet Application Server Administrator’s Guide.

Follow these common guidelines while configuring connection pool:

• For every database backend use one logical datasource. If multiple logical

datasources are pointing to the same backend, your resources may not be

optimally utilized.

• Keep the reclaim time as high as possible, as it is mainly aimed at reclaiming

the connections which are given to applications which never release the

connection. ******As there is a side effect of reclaiming the connections even if it

is in use after the reclaim time.

• Keep the maxPoolSize to the number of physical connections that you wanted

to make from this datasource.

• Keep the minPoolSize to the average number of concurrent client requests

which involve database access to this datasource.

• Before a connection is given to the application from the pool, it will be checked

for its sanity. The first one is simple sanity, which is based on setAutoCommit ,

and the other one is table based sanity.

In most cases, simple sanity will be good enough. However, with certain JDBC

drivers it is not possible to recognize stale connections with simple sanity.

Therefore, use simple sanity only in cases where the database drivers support

it and make isSanityRequired to false if your database backend is

reasonably failsafe.

• If the application calls DataSource.getConnection (username,password) and

the username and password are different each time, then keep the connection

pool configuration very low.

Using Statistics to Configure the Connection
Pool
 iPlanet Application Server supports a rich set of connection pool statistics, which

can be used to configure the connection pool.

For more information on how to setup and collect statistics, see iPlanet Application
Server Administrator’s Guide.

Some of the general suggestions are:

Configuring EJB Parameters For Runtime

Chapter 4 Tuning iPlanet Application Server 51

• If the Total Connections dropped is not zero, and if the Peek Value for Total

Connections in the Pool has not reached MaxPoolSize , the database backend

will not able to give extra connections.

To avoid this problem, the database backend can be configured for more

number of connections or, the MaxPoolSize can be increased.

• If the Peek Value for Queue Size is not zero, then the number of connection

requests are more than the maxPoolSize and connection requests will get

queued. If the Peak Value for ******Queue Size of more than 5 it is advisable to

increase the maxPoolSize.

• If the number of Cache Misses are more than zero and if the Peek Value for

Total Connections in Pool has not reached maxPoolSize , then minPoolSize

can be increased to a higher value.

Configuring EJB Parameters For Runtime
iPlanet Application Server provides an EJB container that enables you to build

distributed applications using your own EJB components, and components from

other vendors. When you configure iPlanet Application Server for your enterprise,

you must set the EJB container’s declarative parameters. These parameters

determine, for example, session time-out when an EJB is removed after being

inactive for a specified number of seconds. Set these parameters using the iPlanet

Application Server Administration Tool.

You can set the following values:

❍ Default Session Time-out

Default Session Time-out is 14400 seconds. This denotes the time for

which the server can keep a HttpSession object alive, before removing it

due to inactivity. Set this to an acceptable and much lower value. This

applies to stateful session EJBs.

❍ Default Passivation Time-out

Default Passivation Time-out is 60 seconds. If the bean creation rate is very

low and bean size is large, there may be a need to increase this. However,

increasing this value may not impact performance in most scenarios.

Beans are passivated to the file system and if you see excessive file system

activity, there may be excessive passivation activity and possible benefit

from tweaking this parameter. This value must be less than the session

time-out value.

Configuring EJB Parameters For Runtime

52 iPlanet Application Server Performance and Tuning Guide • February 2002

❍ Metadata Cache Size

Meta Data Cache Size is 10 beans. This is a cache of Home Bean handles.

You can make this as large as the number of different types of beans that

exist in your application. Setting it to 50 or 60 should cover most user

applications. Because it caches EJBHome instances, subsequent lookups of

the same Home interface, will just pick up from cache.

❍ Implementation Cache Size

Implementation Cache Size is set at 10 instances. If you expect that N

concurrent user sessions to access a stateful or session bean, make sure this

is set to equal or larger than N. For stateless session beans, there is perhaps

no benefit in setting this larger than the number of KJS threads. The same

applies to Entity beans. This iPlanet Application Server Administration

Tool setting applies to all deployed beans and is thus too coarse a control.

The maximum cache size is in number of EJBs.

❍ Timer Interval

Timer Interval specifies the interval at which Bean implementation pools

are scanned to find candidates for passivation.

You can also specify this interval in the iPlanet Registry key

CCSO\EB\EbInterval .

This parameter determines the entity and stateful session bean clean up

interval. Default value is 10 seconds. It was found under experimental

conditions that setting the Timer Interval to a lower value leads to frequent

pauses in EJB Container, thus affecting the response times. Setting this to a

very high value may lead to increased passivation times.

❍ Failover Save Interval

Failover Save Interval specifies the time interval at which all active stateful

session beans, configured for failover, have their state serialized and

passivated to the Dsync in-memory database. This is an expensive

operation and can impact performance if the bean size is too high or the

save interl is too short.

See iPlanet Application Server Developer’s Guide, for guidelines on how to

configure and use Stateful session Bean failover support.

If the server fails, the last saved state of the EJB can be restored. Data saved

is available to all engines in a cluster. This value is set on a per server basis

and applies to EJBs that were deployed with Failover option enabled (on

the General tab of the Deployment Tool EJB descriptor editor).

Caching JSPs and Servlets

Chapter 4 Tuning iPlanet Application Server 53

Caching JSPs and Servlets
You can specify the number of JSP pages that are cached by each KJS engine for

each iPlanet Application Server instance. Caching JSPs optimizes application

response time.

The cache size is set on a per-page bases. JSP caching aids in the development of

compositional JSPs. This provides the functionality to cache JSPs within the java

engine, thereby making it possible to have a master JSP which includes multiple

JSPs, each of which can be cached using different cache criteria. For example, think

of a portal page, which contains a window to view stock quotes, another to view

weather information, and so on. The stock quote window can be cached for 10

minutes, and the weather report window for 30 minutes, and so on.

Note that caching of JSPs is in addition to result caching, so its possible that a JSP

can be composed of several included JSPs, each of which has a separate cache

criterion. The composed JSP itself can be cached in the KXS using the

result-caching that becomes available as JSPs now have GUIDs (see section on

Registered JSPs in documentation).

Caching of JSPs uses the custom tag library support provided by JSP 1.1. A typical

cache-able JSP page looks as follows:

<%@ taglib prefix="ias" uri="CacheLib.tld"%>

<ias:cache>

<ias:criteria timeout="30">

<ias:check class="com.iplanet.server.servlet.test.Checker"/>

<ias:param name="y" value="*" scope="request"/>

</ias:criteria>

</ias:cache>

<%! int i=0; %>

<html>

<body>

<h2>Hello there</h2>

I should be cached.

No? <%= i++ %>

</body>

</html>

Caching JSPs and Servlets

54 iPlanet Application Server Performance and Tuning Guide • February 2002

The <ias:cache> and </ias:cache> delimit the cache constraints. The

<ias:criteria > tag specifies the time-out value, and encloses different cache

criteria. Cache criteria can be expressed using any or both of the tags,

<ias:check> and <ias:param> . The syntax for these tags is as follows:

<ias:criteria timeout="val" > specifies the timeout for the cached element, in

seconds. The cache criteria are specified within this and the closing

</ias:criteria> <ias:check class="classname" /> This is one of the

mechanisms of specifying a cache criteria. The classname refers to a class that has a

method called "check", which has the following signature:

public Boolean check(HttpServletRequest req)

This returns a boolean indicating whether the element is to be cached or not.

<ias:param name="paramName" value="paramValue" scope="request" /> :

This is another mechanism to specify cache criteria.

paramName is the name of an attribute, passed in either in the request object (using

setAttribute), or in the URI. This is the parameter used as a cache criterion.

paramValue is the value of the parameter, which determines whether caching

should be performed or not. This can be of the following kinds:

Constraint

Meaning

x = ""

x must be present either as a parameter or as an attribute.

x = "v1|...|vk", where vi might be "*"

The constraint is true of the current request if the request parameter for x has the

same value as was used to store the cached buffer.

x = "1-u" , where 1 and u are integers.

x is mapped to a value in the range [1,u]

The scope identifies the source of the attributes that are checked. These can be

page, request (default), session, or application.

The following is an example of a cached JSP page:

<%@ taglib prefix="ias" uri="CacheLib.tld"%>

<ias:cache>

<ias:criteria timeout="30">

<ias:check class="com.iplanet.server.servlet.test.Checker"/>

Caching JSPs and Servlets

Chapter 4 Tuning iPlanet Application Server 55

<ias:param name="y" value="*" scope="request"/>

</ias:criteria>

</ias:cache>

<%! int i=0; %>

<html>

<body>

<h2>Hello there</h2>

I should be cached.

No? <%= i++ %>

</body>

</html>

where Checker is defined as:

package com.iplanet.server.servlet.test;

import javax.servlet.*;

import javax.servlet.http.*;

public class Checker {

String chk = "42";

public Checker()

{

}

public Boolean check(ServletRequest _req)

HttpServletRequest req = (HttpServletRequest)_req;

String par = req.getParameter("x");

return new Boolean(par == null ? false : par.equals(chk));

}

}

Caching JSPs and Servlets

56 iPlanet Application Server Performance and Tuning Guide • February 2002

Given the above, a cached element is valid for a request with parameter x=42 , and

y equal to the value used to store the element. Note that it is possible to have

multiple sets of <ias:param> and <ias:check> inside an <ias:criteria > block.

Also, its possible to have multiple <ias:criteria > blocks inside a JSP.

NOTE * cache-criteria = "*" does not work

* when cache-criteria is properly established (arg="*"), behavior is

inefficient, i.e., the behavior is an update on cache miss, a cache hit,

then an update, then a cache hit.

57

Chapter 5

Tuning the Java Runtime System

You can tune the Java Runtime system by binding the application threads to

Solaris® user level threads. The Solaris operating environment, by default,

supports a two level thread model. Application level Java threads are mapped to

user level Solaris threads, which are multiplexed on a limited pool of light weight

processes (lwps). Often, we need only as many lwps as there are processors on the

system, leading to conserved kernel resources and greater system efficiency. This

helps when there are hundreds of user level threads.

In this chapter, we will discuss the following topic:

• Using Bound Threads

• Managing Memory and Allocation

Using Bound Threads
It is also possible to bind application threads to Solaris lwps , on a 1-1 basis. On

some applications, better performance may be achieved by using the non-default

model, when there are only a limited number of threads and hence few lwps being

created. The JVM can be configured to map Java threads to bound Solaris threads

before the KJS executable command is invoked in the KJS shell script:

_JVM_ARGS="bound_threads"

export _JVM_ARGS

Managing Memory and Allocation

58 iPlanet Application Server Performance and Tuning Guide • February 2002

Managing Memory and Allocation
The efficient running of any tool depends on how well memory and garbage

collection is managed. The topics listed in this section will provide you with the

information you need to optimize on memory and allocation functions.

In this section, we will discuss the following topics:

• Tuning the Garbage Collector

• Specifying Garbage Collector Setting

• Tracing Garbage Collection

• Tuning the Java Heap

• Tuning the Dynamic Compiler

Tuning the Garbage Collector
Newer Java Runtime Environments (JRE) come with a generational object memory

system and sophisticated garbage collection algorithms.

A generational memory system, divides the heap into a few carefully sized

partitions, called generations. The efficiency of a generational memory system is

based on the observation that most objects are short lived. Newly allocated objects

are allocated in the young generation (also referred to as the Eden). Because of the

high mortality rates of newly allocated objects, scavenging or garbage collecting in

the young generation is often very productive, quickly recycling a lot of allocation

space.

Compacting garbage collectors use two semi-spaces in the eden, copying surviving

objects from one young space to the second. Objects that survive multiple young

space collections are tenured, that is, copied to a tenured generation. The tenured

generation is larger and fills up less quickly. So it is garbage collected less

frequently and each collection takes longer than a young space only collection.

Collecting the tenured space is also referred to as doing a full GC.

The frequent young space collections are quick (few milliseconds) and the

occasional full GC takes a relatively longer time (tens of milliseconds to even a few

seconds, depending upon the heap size).

Managing Memory and Allocation

Chapter 5 Tuning the Java Runtime System 59

Other garbage collection algorithms such as the Train algorithm, are incremental,

that is. they chop down the full GC into several incremental pieces. This provides a

high probability of small garbage collection pauses even when full gc kicks in. This

does come with an overhead and is usually not required for enterprise web

applications.

Typically, a third generation, called the permanent generation is also created by the

JVM to store internal objects such as loaded java classes.

Both HotSpot and Solaris JDK sport a generational garbage collection system. Only

HotSpot ships with the incremental Train garbage collector. HotSpot is the default

on both Solaris and NT platforms. In the future, new parallel and concurrent

collectors will be introduced in JDK 1.4.

Both HotSpot and Solaris JDK use thread local object allocation pools for lock-free,

fast, and scalable object allocation. User application level object pooling may have

actually been beneficial when running on earlier generation Java Virtual Machines.

But it might actually slow down the application, on this new generation virtual

machines available with JDK 1.2 onwards. Consider pooling only if the object

construction cost is very high and shows up being significant in the execution

profiles.

Specifying Garbage Collector Setting
The following settings can be used to improve memory utilization by the Garbage

Collector:

• Explicit Garbage Collector

• Deferred Garbage Collection

Explicit Garbage Collector
Memory utilization by the application server can now be controlled by modifying

the behavior of the explicit Garbage Collector. You can enable or disable the

cleaner by modifying the JAVA_GX_ARGS=-DGX.cleaner.enabled key in

iasenv.ksh file on Solaris, and in the registry settings on Windows.

On Solaris, the JAVA_GX_ARGS=-DGX.cleaner.enabled entry is by default set to

no, to improve response time for requests. If you notice an inordinately high usage

of memory by iPlanet Application Server, enable the cleaner by changing the value

to yes, or by commenting out the JAVA_GX_ARGS line.

JAVA_GX_ARGS=-DGX.cleaner.enabled=yes

Managing Memory and Allocation

60 iPlanet Application Server Performance and Tuning Guide • February 2002

Once enabled, the cleaner is invoked every 10 seconds. The cleaner interval can be

controlled by adding the following line to iasenv.ksh file:

JAVA_GX_ARGS=-DGX.cleaner.interval=N where N denotes the time in

milliseconds.

On Windows, the cleaner is enabled by default. To improve performance you can

disable the cleaner or set a longer time interval.

If you want to modify or change the default behavior of the cleaner, it can be done

by adding the following flags to the JavaArgs in the registry under,

SOFTWARE\iPlanet\Application Server\6.0\Java .

-DGX.cleaner.doGC=yes -DGX.cleaner.interval=N

where N denotes the time in milliseconds.

Deferred Garbage Collection
A new switch has been introduced to enable deferred GC for Applogic based

applications that see memory growth. This can be turned on by setting the java

system property useDeferredGC .

On Solaris you can enable this by appending the following JAVA_ARGS in

iasenv.ksh file:

-DuseDeferredGC=true

On Windows, append the following to the JavaArgs entry which can be found in

the registry under SOFTWARE\iPlanet\Application Server\6.0\Java :

-DuseDeferredGC=true

The default value of this property is set as false, since high memory growth has

been reported with a few Applogic based applications. In deferred garbage

collection, the references of the newly created objects are stored temporarily till the

end of execution of the request, to prevent its garbage collection. Therefore at the

end of the request, all the memory is freed at once but it can also lead to transient

(until end of request) memory growth.

Tracing Garbage Collection
Supplying -verbose:gc (sometimes -verbosegc) flag to the JVM will result in an

informative one line message being printed out at every collection. It is useful to

turn this flag on for a couple of reasons.

Managing Memory and Allocation

Chapter 5 Tuning the Java Runtime System 61

• It gives a log of all the garbage collection pauses and their length to detect if

there are unacceptably long pauses.

• It serves as a "heartbeat" of sorts showing that the JVM is alive and well.

Note that it is possible to get normal garbage collection even if the application

logic is deadlocked.

• You can see if the application is leaking Java objects very easily. A memory

leak is suspect if the number of non-garbage objects increases, even after many,

full garbage collections.

Tuning the Java Heap
Now that we know what generational garbage collection is about, it is easy why

heap configuration helps performance.

This section contains the following topics:

• Guidelines for Java Heap Sizing

• HotSpot Server VM Tuning Options

• Sample heap configuration on Solaris

• Sample Heap configuration on Windows

Guidelines for Java Heap Sizing
These are important guidelines for sizing Java heap.

• Determine how much of Java heap you can afford to give each JVM process.

You can do this by first determining what is the amount of system memory

that can be used by the application server node. Then divide it equally between

the number of KJS processes that you wish to configure. Each KJS process is a

JVM process.

The rule of thumb for the ratio of KJS processes to the number of CPUs is one

KJS per CPU. You could experiment with a little more or a little less.

• Set the starting and maximum Java heap size to the size that you have

determined above. The JVM flags, -Xms<size> and -Xmx<size> flags specify

the minimum and maximum heap size. Look at the JVM documentation for

more details.

Managing Memory and Allocation

62 iPlanet Application Server Performance and Tuning Guide • February 2002

Example: -Xms64m -Xmx64m clamps heap size at 64m. Setting the starting heap

size (-Xms) as well as the maximum allowed heap size (-Xmx) to the same value has

a benefit. If the JVM were allowed to start with the default starting heap size, the

heap size expands automatically. However, expansion is a slow process and

during this heap expansion phase there would be frequent garbage collection and

performance will be hampered.

Larger Eden or younger generation spaces increase the spacing between full

garbage collections. But young space collections could take a proportionally longer

time. In general, you could keep the eden size between 0.25 and 0.5 times the

maximum heap size.

HotSpot Server VM Tuning Options
iPlanet Application Server 6.5 loads the 1.3 Hotspot Server VM by default. The

Server mode VM is better suited for server side applications. iPlanet Application

Server starts up with a tuned VM with the following arguments:

-server -Xss512k -Xms128m -Xmx1024m -XX:NewSize=42m
-XX:MaxNewSize=342m

-Xconcurrentio -XX:+DisableExplicitGC

You can increase or decrease the heap sizes based on the physical memory

available.

These options may work well for some applications, whereas it might not for

certain others. It depends on the type of application- whether its I/O bound, or

compute intensive, or memory intensive, etc. You might have to experiment with

the tunable parameters before deciding on the best options.

Table 5-1 gives the VM options and their descriptions.

Table 5-1 HotSpot Server JVM tuning options

VM Option Description

-XX:NewSize=<n> Initial new generation size (in bytes).

-XX:MaxNewSize=<n> Maximum new generation size (in bytes).

-XX:+DisableExplicitGC Disables explicit calls to GC, VM in total control of GC.

-Xconcurrentio Uses LWP based synchronization instead of thread

based synchronization.

-XX:CompileThreshold=<n> ’n’ denotes the number of method calls after which

further optimization is done by the hotspot compiler.

The default value for server mode is 10,000 and 1,500

for client mode.

Managing Memory and Allocation

Chapter 5 Tuning the Java Runtime System 63

Setting the young generation sizes to a constant value will prevent resizing. During

our tests we found that using incremental GC reduces throughput.

For more information on JVM tuning, see

http://java.sun.com/docs/hotspot/index.html.

Sample heap configuration on Solaris
Add the following arguments to the JAVA_ARGS environment variable in the KJS

shell script:

-Xgenconfig:64m,64m,semispaces:64m,512m,markcompact

This creates a 512 MB Java heap, with two 64 MB semi-spaces for the young

generation. We specify that a mark and compact algorithm be used. It is possible to

increase the size of the young generation and the overall heap size. The Solaris JDK

appears to allocate twice the amount as the specified size of each semi space, with

the justification of accounting for object header and other space overheads.

-Xgenconfig is a complex flag to understand and get right. It is not well publicized

and documented except in JVM internal articles.

-Xgenconfig, -Xms, -Xmx flags obviously interact and when specified together

the genconfig setting overrides other settings. However, some range checking

seems to be performed by the JVM to make sure that the minimum and maximum

are consistent with what is specified to genconfig .

Sample Heap configuration on Windows
You can pass arguments to the JVM by setting the following property in iPlanet

Registry:

HKEY_LOCAL_MACHINE\SOFTWARE\iPlanet\Application
Server\6.0\Java\JavaArgs , to the desired string. This is where you set heap

sizing parameters.

-Xms and -Xmx flags should be set as as described in the case of the Solaris JDK.

-Xbatch Disables background compilation

-Xincgc Incremental Garbage Collection.

Table 5-1 HotSpot Server JVM tuning options

VM Option Description

Managing Memory and Allocation

64 iPlanet Application Server Performance and Tuning Guide • February 2002

-XX:NewSize=<size> specifies the initial size, in bytes, of the young object space

where new objects are allocated. The default initial young space size is 2MB.

NewSize must be a multiple of 1024 . Append the letter k or K to indicate kilobytes,

or m or M to indicate megabyte. -XX:NewSize=64m sets the initial size of the

young space to 64mb. Note that a large young space size may result in increased

garbage collection pause times.

-XX:MaxNewSize=<size> specifies the maximum size, in bytes, of the young

object space where new objects are allocated. The initial young space size is 2MB.

MaxNewSize must be a multiple of 1024 , and greater than 2MB. Append the letter k

or K to indicate kilobytes, or m or M to indicate megabytes. The default value for

MaxNewSize is 64 MB. -XX:MaxNewSize=128m allows the young space to expand,

if needed, to 128 MB.

-XX:SurvivorRatio=k sets ratio of eden size to survivor space size. For example

the default ratio of 8 on Windows, with NewSize=64m , results in two semi spaces,

each 4mb in size. Using NewSize and SurvivorRatio it is possible to get the

desired semi-space size.

We recommend that you try this flag as a last resort, as it can disturb quite a few of

the internal sizing calculations.

These HotSpot flags could apply all HotSpot based Java Runtime Environments.

HotSpot based JDK 1.3 is supplied as default on Solaris, Windows and Linux. All

HotSpot performance flags are listed at:

http://java.sun.com/docs/hotspot/VMOptions.htm l.

Tuning the Dynamic Compiler
Both Java HotSpot 1.3 for Windows and Solaris JDK 1.3.1 implement adaptive

dynamic compilation, to detect program hotspots and compile only the hot

program segments for peak performance. You are likely to observe a short ramp

up, when this profile driven compilation takes place at application start up. For this

reason be careful to make benchmark measurements on a warmed-up iPlanet

Application Server.

NOTE We have heard of about up to 30% performance improvements from

a setting such as -Xms256m -Xmx256m -XX:NewSize=128m

-XX:MaxNewSize=128m , compared to the default setting. Setting the

NewSize and MaxNewSize appropriately can have a significant

performance impact.

Managing Memory and Allocation

Chapter 5 Tuning the Java Runtime System 65

Turning off the JIT is expensive. We have measured up to three times hit in

performance on a well tuned system configuration when the JIT is turned off while

using an application. Your mileage may vary, depending on the nature of the

application and system bottlenecks on your hardware and database configuration.

In the following cases, you may wish to turn off the Dynamic Compiler:

• During debugging, to print and examine Java exception stack traces, annotated

with source line numbers.

• To work around some rare Dynamic compiler bugs. In this case there are

hidden JVM arguments with which you can selectively disable compiling a

particular method or all methods in a class. Contact your Sun Java support for

details.

If you do have to turn off the compiler, on Windows, supply -Xint in JavaArgs

property of registry. On Solaris, add -Djava.compiler=none to JAVA_ARGS in the

KJS shell script.

Managing Memory and Allocation

66 iPlanet Application Server Performance and Tuning Guide • February 2002

67

Chapter 6

Tuning the Operating System

There are a couple of Solaris® network performance tuning tricks that do not

directly benefit iPlanet Application Server, but may be useful for other socket

intensive customer applications that run in a data center application suite.

Tuning Solaris TCP/IP settings benefit programs that open and close a lot of

sockets. iPlanet Application Server operates with a small fixed set of connections

and the performance gain may not be as significant on the Application Server

node. iPlanet Web Server and iPlanet Web Servers configured as a Web front-end

to iPlanet Application Server can benefit significantly.

To retain these changes, after rebooting, set ndd variables in the file:
/etc/rc2.d/S69inet.

This chapter discusses the following topics:

• Setting Time Wait Interval

• Setting TCP Connection Hash Table Size

• Binding Processes

Setting Time Wait Interval
After a connection has been closed by both the client and the server, the port

remains unavailable for a certain amount of time, so that a new program does not

inadvertently get packets that were intended for the old program. On Solaris

machines, the default value of tcp_time_wait_interval is 240,000 ms (4

minutes). It is recommended that this be set at 60000 ms (1 minute) or even at

30000 (30 seconds) for better performance in socket communication intensive

programs. The value can be modified and examined on a running system.

/usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

Setting TCP Connection Hash Table Size

68 iPlanet Application Server Performance and Tuning Guide • February 2002

/usr/sbin/ndd -get /dev/tcp tcp_time_wait_interval

Setting TCP Connection Hash Table Size
The connection hash table keeps all the information for active TCP connections

(ndd -get /dev/tcp tcp_conn_hash). This value does not limit the number of

connections, but it can cause connection hashing to take longer. To make lookups

more efficient, set the value to half of the number of concurrent TCP connections

that you expect on the server (netstat -nP tcp|wc -l , gives you a number). It

defaults to 512 . This can only be set in /etc/system and becomes effective at boot

time.

set tcp:tcp_conn_hash_size=8192

Binding Processes
Binding the Application Server processes to one or more processors used to

produce significant performance gains (20%-30%) on earlier versions of iPlanet

Application Server running on Solaris. However with SP2 and later release on

Solaris 8, no significant gains were observed. We therefore do not recommend this

setting.

71

Chapter 7

Tuning Database Servers

In this chapter section, we will discuss how to tune Oracle servers for maximum

performance. We will also discuss how to tune Solaris to work with Oracle.

Tuning Oracle Servers
Oracle tuning is by itself a vast topic, but setting the following parameters correctly

should be sufficient. Please refer to Oracle documentation for detailed information

on each of the tunable configurations. This document is specifically for configuring

oracle initial parameters on the Solaris® platform. These tips have been tested on

Oracle 8.1.6 and later.

The first step is to set certain system shared memory pool parameters in

/etc/system file. The Oracle architecture makes extensive use of shared memory

segments for sharing data among multiple processes and semaphores for handling

locking. The default kernel values may not be sufficient in most of the cases. The

machine needs to be restarted after modifying /etc/system file. Typically these

values should be sufficient, but may require some tweaking based on your system

and resources:

You could use the command, dbassist , to create and tune the database. However,

if the database instance is already created, then you will need to tune the

parameters manually.

An Oracle server can be run in 2 modes - dedicated and shared server mode.

Shared server or multi threaded mode enables many client user processes to share

a small number of server processes.

All oracle initial parameters or tunable parameters are in this file:

$ORACLE_HOME/dbs/init<SID>.ora .

This file is actually a link to $ORACLE_HOME/admin/<SID>/pfile/init<SID>.ora

Tuning Oracle Servers

72 iPlanet Application Server Performance and Tuning Guide • February 2002

The values the installer would have created for the database instance may not be

sufficient most of the time.

Tuning Solaris Kernel Parameters
The following paragraphs describe how to tune Solaris Kernel parameters for

Oracle:

• Make sure that the Solaris kernel has parameters set sufficiently high for

Oracle. The Oracle architecture makes extensive use of shared memory

segments for sharing data among multiple processes and semaphores for

handling locking. Many operating systems, including Solaris, do not by default

offer sufficient shared memory or semaphores for maintaining an Oracle

database. However, you can change kernel parameters in Solaris simply by

editing the /etc/system file and restarting the server.

CAUTION Take a back up of this file before editing the entries.

Table 7-1 Solaris Kernel Parameters for Oracle

Kernel
Parameter

Initial Setting Purpose

SHMMAX 4294967295 Maximum size of a single shared memory segment.

SHMMIN 1 Minimum size of a single shared memory segment.

SHMMNI 100 Maximum number of shared memory segments in

entire system.

SHMSEG 10 Maximum number of shared memory segments one

process can attach.

SEMMNS 2000 Maximum number of semaphores in entire system.

SEMMSL 1000 Maximum number of semaphores per set.

SEMMNI 100 Maximum number of semaphore sets in entire

system.

SEMOPM 100 Maximum number of operations per semop call.

SEMVMX 32767 Maximum value of a semaphore.

Tuning Oracle Servers

Chapter 7 Tuning Database Servers 73

The first four kernel parameters configure shared memory segments. The

recommended settings shown here should be appropriate for almost any Oracle

database implementation. The SHMMAX setting may seem excessive, but there is no

penalty to be paid by setting SHMMAX larger than you actually need.

The last five kernel parameters configure semaphores. Each Oracle instance

requires one semaphore for each process, plus ten extras. Additionally, the largest

instance requires a second semaphore for each process. If you will only be setting

up one database on your server, the upshot is that you will need two semaphores

for each process plus ten extras.

The recommended settings for the first two semaphore kernel parameters, SEMMNS

and SEMMSL, should be appropriate for most Oracle implementations. For systems

with large numbers of concurrent database connections, you may need to increase

these values. The recommended settings shown here for the last three semaphore

kernel parameters should be appropriate for just about any Oracle database

implementation.

In general, if your Solaris kernel already has any of these parameters set larger than

recommended here, you should not reduce the settings. If you do change any

kernel parameter settings in /etc/system , then reboot the server so that the new

settings will take effect.

Add the following lines to the end of your /etc/system file:

set shmsys:shminfo_shmmax=4294967295

set shmsys:shminfo_shmmin=1

set shmsys:shminfo_shmmni=100

set shmsys:shminfo_shmseg=10

set semsys:seminfo_semmns=2000

set semsys:seminfo_semmsl=1000

set semsys:seminfo_semmni=100

set semsys:seminfo_semopm=100

set semsys:seminfo_semvmx=32767

Tuning Oracle Servers

74 iPlanet Application Server Performance and Tuning Guide • February 2002

75

Chapter 8

General Guidelines for Better
Performance

The following general guidelines are designed to elicit better performance:

• Change the multicast server host address and port number in a network to

reduce the updates received and avoid writes to the registry where there are

multiple iPlanet™ Application Server installations in a network which are not

in a single cluster.

• If you are using the native JDBC driver for Oracle, then to enable parsing of

SQL statements during OPARSE call, set the environment variable

IAS_OPARSE_NODEFER in iasenv.ksh file. If this is not set, parsing will be

deferred until oexec .

iPlanet Application Server with Oracle 8.1.6 core dumps if an illegal SQL

statement is passed. Setting this variable can avoid this occurrence. This setting

is only recommended for development environment and not for production

environment. This feature is available from iPlanet Application Server,

Enterprise Edition 6.0, SP3 onwards.

Guidelines For Better EJB Performance
The following guidelines are designed to promote better EJB performance:

• If you don’t need session failover, turn DSync off for your application. In other

words, use lite rather than distributed session if you can, so that DSync doesn’t

have to propagate session changes to other machines.

Guidelines For Better EJB Performance

76 iPlanet Application Server Performance and Tuning Guide • February 2002

• If you need session failover, but don’t need protection for an entire machine

failure, make sure you have multiple KJS process and use Dsync-Local

sessions. Session failover will then be available for all KJS processes inside the

iPlanet Application Server instance. However, session failover across machine

boundaries will not be provided. At least your session information will survive

a KJS crash.

• Make your session small -- about 4KB per user session is a heuristic that has

been around for a long time. However, with iPlanet Application Server it

appears that DSynch processing, not the size of the synch chunks, may be the

performance governor. Therefore, it may be more important to keep the

clusters small (4 instances or less), than it is to keep the user session-sizes

small.

• Keep what you store in a session simple if distributed sessions are used. The

iPlanet Application Server session service was designed for fairly simple

name-value pairs.

• Serialization and deserialization is required to move session info around in a

distributed session environment, so don’t create big, complex objects that are

expensive to marshall around.

• Don’t rely on HttpSession time-outs to clean up sessions. Use the

HttpSession.invalidate() method to manually cleanup where possible.

• Set the HttpSession time-out as low as possible so that the container gets a

chance to clean up an unwanted session sooner.

• If handles to stateful session EJBs are being stored in HttpSessions by

servelets or JSP’s accessing them, then the EJB session timeout should be set

close to the HtttpSession timeout.

The default session time-out is 14400 seconds (4 hours) for stateful session

EJBs. Set this to a more reasonable value. This will prevent KJS memory

growth and avoid unnecessary passivation of EJB instances that are no longer

needed.

• Specifically for JSPs, if your JSPs are not explicitly using HttpSession, you are

creating unnecessary HttpSession objects since a session object is created for

you automatically. To prevent this, add the following JSP page directive to

your JSPs: <%@session=false %> .

77

Chapter 9

Validating Server Performance

You can monitor and validate server performance regularly to ensure that the

methods that you’ve set in place for high performance are being carried out. The

following topics will help you validate iPlanet™ Application Server performance.

In this chapter, we will discuss the following topics:

• Monitoring iPlanet Application Server

• Using Performance Tuning Tools

• Setting Up SNMP Monitoring

• Obtaining Performance Data

Monitoring iPlanet Application Server
Monitoring comes under the serviceability part of RAS (Reliability, Availability

and Serviceability). Service provisioning is not possible unless we know the

dynamic service behavior.

Service providers want to have real time monitoring of application performance, as

experienced by users, accessing externally exposed web services. A data center is

likely to have monitoring consoles with graphical displays and alert systems that

help maintain Service Level Agreements.

Therefore, application and web service containers must provide accurate and

easily accessible performance information to such tools. Such monitoring can be at

various levels, but at the minimum, give a view of the rate at which requests are

being processed in the server complex.

Monitoring should be flexible, that is, it should be possible to turn it on and off in a

running server, without restarts. The data must be well formatted so it can be

coupled with various other higher level monitoring tools.

Monitoring iPlanet Application Server

78 iPlanet Application Server Performance and Tuning Guide • February 2002

Basically, a well-tuned system should show the following performance:

• An even usage of CPU time across all of the servers.

• An even usage of CPU time across all processors in each server.

• An even usage of CPU time across all of the KJS or KCS processes.

• A fairly low percentage of system time (0 - 25%), especially if the workflow is

computationally intensive.

• Full utilization of all processors allocated to the KXS process.

Use the iPlanet Application Server Administration Tool (iASAT) to monitor KXS

and KJS/KCS statistics. Look for requests waiting while the processors are not

completely busy to indicate that the server is not tuned optimally. Check active

database connections in the KJS/KCS engines to help set the appropriate number

of connections for the DB connection pooling.

On Solaris
For a standard installation, it is difficult to observe the amount of processing time

used by each process. However, if you pbind each of the iPlanet Application Server

processes to a separate CPU, mpstat will show the percentage of time each CPU

spends. mpstat will also display the ratio of user time to system time for each of

the processors. proctool (available at http://www.sunfreeware.com) is a very

handy tool that shows resource usage per process. Additionally, it provides a GUI

for binding processes to processors and for changing process priorities.

This section includes the following topic:

• Adding Plots Using iASAT

Adding Plots Using iASAT
To monitor process attributes and validate process performance, you can add plots

using iASAT. These plots help you to chart KJS, KCS and KXS process attributes.

For information on how to configure these plots, and lot process attribute data, see

Chapter 2, “Monitoring Server Activity”, in iPlanet Application Server
Administration Guide.

Using Performance Tuning Tools

Chapter 9 Validating Server Performance 79

Using Performance Tuning Tools
Many commercially available tools can be used to profile the behavior of J2EE

applications running on iPlanet Application Server. Most of these tools rely on the

JVM Profiling Interface (JVMPI) to obtain dynamic information from a running

Java Virtual Machine.

Machine Process, JProbe and OptimizeIt are examples of this class of tools. These

tools are used to profile CPU and Memory utilization, inspect objects, detect

application memory leaks, detect deadlocks, perform code coverage and other

troubleshooting activities, in a development environment. JVMPI adds significant

performance overhead and is not suitable for monitoring and profiling deployed

Applications.

Selective bytecode instrumentation can be used for more targeted and efficient

performance monitoring. While not as informative or powerful, instrumentation

can provide more realistic data. Introscope from Wily Solution is an example of

such technology, integrated into iPlanet Application Server, from Version 6.0, SP3

onwards.

This section lists procedures for using JProbe, OptimizeIt and Introscope with

iPlanet Application Server. We will stick to the Windows version of Application

Server, but these products do exist and work in a similar fashion on Solaris.

This section includes the following topics:

• Tuning Performance Using OptimizeIt

• Tuning Performance Using JProbe

• Tuning Performance Using IntroScope

Tuning Performance Using OptimizeIt
OptimizeIt is a product that you can use to tune iPlanet Application Server

performance. You can download the product from http://www.optimizeit.com. To

use this tool, perform the following tasks:

• Configure the JVM to use the JDK bundled with iPlanet Application Server

(JDK 1.3.1_02 with HotSpot).

• Add com.kivasoft.engine.Engine as the name of the class file to be invoked.

• Add all the entries separated by a semicolon (;) that you find in the classpath

entries in iPlanet Registry, to the classpath in OptimizeIt. You are now ready to

start profiling.

Setting Up SNMP Monitoring

80 iPlanet Application Server Performance and Tuning Guide • February 2002

On Solaris, the steps are very similar to those on Windows NT. However,

OptimizeIt is certified to work only with the Reference JDK 1.2 for Solaris and this

is not bundled with iPlanet Application Server 6.0.

Tuning Performance Using JProbe
JProbe is a third party tool that you can use to tune iPlanet Application Server

performance. To know more about how to install and use Jprobe with iPlanet

Application Server, go to

http://www.jprobe.com/software/support/jprobe/j2ee/iplanet.html .

Tuning Performance Using IntroScope
Introscope needs to instrument all the desired application class files to gather

profile information. This instrumentation can be done statically by hand or

dynamically, by integrating this with iPlanet Application Server internal class

loaders.

We recommend the second approach because it is more seamless and can be

dynamically controlled without changing the deployed bytecodes on disk. To learn

more about Wily Tech’s Introscope, visit http://www.wilytech.com .

Integrated support for Introscope, with dynamic bytecode instrumentation, is

available in iPlanet Application Server, Enterprise Edition 6.0, SP3 and later.

Setting Up SNMP Monitoring
SNMP is a protocol used to exchange data about network activity. With SNMP,

data travels between your application server and a workstation where network

management software is installed. From this workstation, you can remotely

monitor your network and exchange information about network activity between

servers. For example, using an application like HP OpenView, you can monitor

which iPlanet Application Server machines are running, as well as the number and

type of error messages your application servers receive.

Obtaining Performance Data

Chapter 9 Validating Server Performance 81

Your network management workstation exchanges information with the

application servers in your enterprise through two types of agents: the subagent

and the master agent. The subagent gathers information about an application

server and passes that information to the master agent. The master agent

exchanges information between the various subagents and the network

management workstation. The master agent runs on the same host machine as the

subagents with which it communicates.

To know more about how to set up SNMP monitoring, see “Configuring SNMP to

Monitor iPlanet Application Server Using Third-Party Tools”, in iPlanet Application
Server Administrator’s Guide.

Obtaining Performance Data
The web request process flow passes from the load generator to the Web server

front-end, and through the in-process iPlanet Application Server Plugin to the KXS

process and onwards to a target KJS process for execution. The response retraces a

similar path. The trip time can be computed at 4 points.

At the Load Generator. If you are using tools like SilkRunner or another custom

load generation tool, these tools already provide measurement and graphing

methods. These tools measure the actual response time as would be experienced by

real users.

At Web Server. It is possible to configure the iPlanet Web Server to gather

response time profiles. Consult the Web Server Performance tuning and Analysis

Guide.

At iPlanet Application Server Web Plugin. This measures the amount of time

iPlanet Application Server takes to respond to a request. It is measured from the

perspective of the web connector - the time a request is sent out to iPlanet

Application Server till the time a response is received at the Web-Connector

Plugin, executing in the web server.

To get these logs, enable the following key at the iPlanet Web Server server in

iPlanet Registry:

SOFTWARE\iPlanet\Application Server\6.0\CCS0\HTTPAPI\NASRespTime=1.

This will dump timing statistics on the web server’s log files. To extract timing

information, execute a composite shell command that could look similar to:

grep "plugin reports" errors| grep -v Registry| cut -c2-21,64- | cut
-d " " -f1,2,4

Obtaining Performance Data

82 iPlanet Application Server Performance and Tuning Guide • February 2002

A sample output is shown below. The time is measured in milliseconds:

22/Sep/2000:19:36:09 </NASApp/tmf/TMFServlet> 420

22/Sep/2000:19:36:10 </NASApp/tmf/TMFServlet> 600

22/Sep/2000:19:36:16 </NASApp/tmf/TMFServlet> 392

22/Sep/2000:19:36:16 </NASApp/tmf/TMFServlet> 220

22/Sep/2000:19:36:16 </NASApp/tmf/TMFServlet> 428

The KXS logs at the iPlanet Application Server server (located at

<IAS_HOME>/ias/logs/KXS) maintain the reqstart and reqexit times of each

request. The reqexit value provides the processing time of each request. This can

be used to measure the time taken at iPlanet Application Server to execute a servlet

or JSP request.

Setting the following key to 1, in iPlanet Registry, is a useful monitoring trick:

Software\iPlanet\Application Server\6.0\CCS0\REQ\debug=1

You should start to see entries in the KXS log, for example:

[26/Apr/2001 11:48:05:7] info: NSAPICLI-012: plugin reqstart,
tickct:

988310885s 763786us

[04/26/01 11:48:05:768] Request 00 Starting AppLogic

{1A488137-7510-1941-BAE5-080020B90F48} on Engine 0

[04/26/01 11:51:07:504] Request 00 Completing AppLogic

{1A488137-7510-1941-BAE5-080020B90F48} Execution

[26/Apr/2001 11:51:07:5] info: NSAPICLI-009: plugin reqexit: 181s

741781us

Request # starts at 00 and increments

Using data gathered at these probe points, it is possible to accurately determine the

time taken for each leg of the request round trip. If the number of threads

processing requests in any queue along the path is inadequately configured,

queuing delays will dominate the response time. Configure iPlanet Application

Server and iPlanet Web Server as we have suggested in this document, and focus

attention on application performance tuning.

83

Chapter 10

Frequently Asked Questions

Over the years, iPlanet™ system engineers, professional services consultants and

customers have experimented with procedures to optimize the iPlanet Application

Server production environment. The resulting set of thumb rules have been

compiled and reproduced in this chapter.

Frequently Asked Questions (FAQ) related to peformance have been categorized in

the following sections:

• Environment Setup

• System Tuning

• Application Tuning

We welcome your feedback as we continue to refine and expand this FAQ.

Environment Setup
This section deals with issues related to setting up the iPlanet Application Server

environment.

1. How much RAM do I need per iPlanet Application Server CPU, in a typical

production environment?

You will need 1GB of RAM per installed CPU of iPlanet Application Server.

2. How many CPUs are needed for a team of developers, in a typical developer

sandbox installation on Solaris.

A single iPlanet Application Server CPU can support 3-5 developers. If usage

is intense, about 2-3 developers per CPU.

Environment Setup

84 iPlanet Application Server Performance and Tuning Guide • February 2002

3. How much disk space do I need to install iPlanet Application Server?

The distribution is about 150 MB and you should count on three times that

space for installation and operation. You will need about 450 MB of free disk

space initially. After installation, iPlanet Application Server will need about

256 MB of disk for operation.

4. How many processors can a single iPlanet Application Server instance be

expected to utilize efficiently?

As a general rule, each instance should run no more than 8 to 12 processors. A

single iPlanet Application Server instance has only one KXS, but can have

many KJS processes. If the application seems to be constrained by KJS rather

than KXS, you can scale into the 12 processor range. However, if you make

heavy use of a KXS-based service like distributed sesson management (DSync)

and servlet result set caching, KXS will limit scalability to the 8 processor

range. To scale beyond this 8 to 12-processor range, consider installing

multiple iPlanet Application Server instances on the machine.

5. iPlanet Application Server distributed session management (DSync) facility

can have a high overhead. What key decision can I make at installation time to

help lessen the load, distributed session management (DSync) has on the KXS

process?

Elect to have only one DSync backup. This will reduce the amount of DSync

work required to keep the backup’s in-memory session store synchronized

with the master so that it is available to take over in the event of the primary

failing. One DSync backup should be sufficient to assure ongoing session

availability.

6. What can a Java servlet/JSP programmer do to help iPlanet Application

Server’s session management facility to be as efficient as possible?

Look at your use of sessions. The DSync facility, housed in the KXS process,

can put quite a load on your environment. Here are some considerations:

❍ Limit your cluster size to no more than 4 instances. Beyond this size, the

overhead of keeping the distributed session store in synch typically

becomes a performance limiter.

❍ Use sticky load balancing so subsequent processing for a user during a

session always returns to the same KJS where session information is

available locally. This is particularly important for a stateful session.

System Tuning

Chapter 10 Frequently Asked Questions 85

7. How can an administrator help KXS handle session management

housekeeping chores more efficiently?

As sessions timeout, or are invalidated, they need to be promptly removed

from the in-memory session store. This removal can be done with greater

concurrency by increasing the number of threads dedicated to session

management. Adjust the following property in iPlanet Registry to make

session node management more efficient:

SOFTWARE/iPlanet/Application
Server/6.0/Clusters/<machine-name>-NoDsync/SyncTimeoutThreadCount

System Tuning
1. What constitutes a well-tuned iPlanet Application Server system?

A well-tuned system should show:

❍ Uniform CPU time across all servers.

❍ Even usage of CPU time across all processors in each server.

❍ Comparable CPU time across all KJS processes.

❍ A system time of (0-25%) if workflow is computationally intensive.

❍ Utilization of all processors allocated to the KXS process.

2. There is a temptation to install iPlanet Application Server a number of times on

a multiple-CPU machine. Is that the best way to scale?

Install multiple iPlanet Application Server instances on a single machine as a

last resort. This usually complicates the ongoing management. Instead, try

tuning a single iPlanet Application Server instance first by adding additional

KJS (Java VM) processes and tweaking the number of threads available in

iPlanet Application Server process thread pools.

3. How many threads should a KXS process have?

32 threads per KXS process is the default setting. However, you can increase

the number of threads. Increasing the numbering of threads for KXS, however,

does not ensure a dramatic improvement in performance.

A well-tuned system should show:

❍ Uniform CPU time across all servers

❍ Even usage of CPU time across all processors in each server

System Tuning

86 iPlanet Application Server Performance and Tuning Guide • February 2002

❍ Comparable CPU time across all KJS processes

❍ A system time of 0-25%) if workflow is computationally intensive

It is important that all processors allocated to the KXS proces pool are utilized.

When compared with KJS threads, KXS threads don’t perform a lot of work, so

you don’t need as many KXS threads as KJS threads. To increase KXS

performance, you can consider binding (pbind) KXS to a process or a processor

set.

4. When should you consider binding KXS to a processor?

There are benefits especially in a Solaris environment in binding iPlanet

Application Server processes to specific processors or to a processor set. On a

multi-processor machine, always bind KXS to a processor. This will

significantly improve throughput due to overhead associated with using

mutex locks on multiprocessors.

5. When should you consider binding KXS to a processor set (multiple

processes)?

If you still see that KXS is queuing requests, create a a processor set containing

two processors. Bind the KXS to this processor set. Note, going beyond two

processors in a process set for KXS typically doesn’t lead to substantial

improvements in throughput.

6. What should make you want to drop a processor from a process set bound to

KXS?

If KXS is not fulling utilizing the processor set and you see that there are KJS

processes that are starved for power (threads are queuing), take away a

processor from KXS and make it available for a new KJS process that you can

add to your iPlanet Application Server configuration.

7. How many threads should a KJS have?

Try starting at 32 and increasing from there as processor load gets high. 48

seems to be about as large a thread pool as you will want to set for KJS. Going

much beyond that will simply increase context switching resulting in wasted

cycles.

8. When should you consider binding KJS to a processor?

Generally, you shouldn’t bind KJS to processors or processor sets since doing

so has shown to provide no more than a 5% performance increase. In JDK 1.2.2

and and beyond, the VM is already optimized to work well in multi-processor

environments.

System Tuning

Chapter 10 Frequently Asked Questions 87

9. The KJS process is a "home" for the Java VM. How can I tailor things like heap

size for the JVM that KJS hosts?

Arguments that can be supplied to the Solaris JDK may be set via the

JAVA_ARGS shell variable in the iasenv.ksh shell script. Settings with JVM

flags, particularly -Xms and -Xmx flags, specify the starting and maximum

heap size used by each KJS engine. Heap size decisions should be based on

how much memory is available on the system. Set these as large as possible

without starving other applications running on the same server. The default

starting heap size is 8MB.

The heap grows automatically as needed. Starting with a large heap size

avoids frequent garbage collection during growth. To cap the heap growth

size, use the -Xmx flag. The JDK documentation provides more information on

these and other flags.

10. Your application seems to be behaving badly because it takes a long time

between hitting the submit button and seeing the result in my browser. How

can you troubleshoot where the slowdowns may be occurring?

Think about using "clocks" at key points in the request processing cycle:

❍ Clock 1 timestamps at the client (browser or load generation tool like

LoadRunner).

❍ Clock 2 timestamps on the iWS web server at the point where a front-end

thread receives a request.

❍ Clock 3 timestamps on the iWS web server at the point where the back-end

worker thread gets the request.

❍ Clock 4 timestamps when the iPlanet Application Server web connector

actually responds to the request from the back-end worker thread.

❍ Clock 5 timestamps when a request is received by KXS to be sent to a KJS

for processing.

❍ Clock 6 timestamps when KXS receives the request back from KJS.

11. If there is a long delay between Clock 1 and Clock 2, what might you suspect?

The delay could be because of one of the following reasons:

❍ Network congestion.

❍ CPU or NIC too busy on the client side.

❍ TCP stack queuing is occurring at the web server.

Application Tuning

88 iPlanet Application Server Performance and Tuning Guide • February 2002

❍ Requests may be queuing at an intermediary, such as a load balancer or a

firewall.

❍ Misconfiguration of your load generation client.

12. What if you see a delay of greater than two seconds between Clock 2 and Clock

3?

It probably means that all the back-end worker threads are busy and requests

are being queued. You can either increase the number of back-end threads or

decrease the number of front-end threads.

13. If there is a delay of greater than 30 milliseconds between Clock 3 and Clock 4,

what will you have learned?

Well, not much from a corrective action point of view. This indicates that the

web connector isn’t performing as fast as anticipated. Unfortunately, there

aren’t any tuning opportunities here.

14. What if you see elapsed times of greater thand 3 seconds between Clock 4 and

5?

Suspect network buffering at the web server NIC or queuing at the iPlanet

Application Server NIC. You might also check for an under-resourced firewall.

Also, general network congestion can be the problem.

15. What if the Clock 5 and Clock 6 timestamps reveal slower turnaround than

anticipated?

It tells you that the KXS and/or KJS processes need some tuning. Check the

thread pools for KXS and KJS. Also, consider adding additional KJS processes.

Beyond that, you need to consider binding iPlanet Application Server

processes to processors and maybe even to processor sets.

Application Tuning
1. Is their some tweaking you can do as an EJB programmer to help performance

of iPlanet Application Server EJB container?

❍ The default passivation timeout is 60 seconds. Increase this value if the

bean instance creation rate is very low and the bean size is large. You may

see a slight boost in performance as passivation processing is reduced.

❍ Make Meta Data Cache Size as large as the number of different types of

beans that exist in your application. The default, 30, may not be enough to

cache all the home handles.

Application Tuning

Chapter 10 Frequently Asked Questions 89

❍ Set Implementation Cache Size based upon the number of concurrent

user sessions you expect. For example, if each 200 concurrent user sessions

will have a need for one stateful session EJB, set the Implementation

Cache Size to at least 200.

2. What can I check in my Java code that might help me make iPlanet Application

Server perform better?

iPlanet Application Server KJS processes provide the J2EE containers inside

which your Java code runs. The KJS processes host independent Java VMs.

Therefore, you need to follow good Java guidelines to help the VMs perform as

well as possible. Here are some things to check:

❍ Avoid serializing/deserializing. These are expensive operations.

❍ Avoid using lots of arrays since there is overhead to do what Java does for

arrays, namely - initializing them for you and preventing you from

accessing out of range.

❍ Explicitly dereference variables by setting them to null to make garbage

collection more efficient

❍ Don’t use class variables (static members) in servlet classes since they

impose synchronization in the server. By default, all users share a single

copy of the servlet code per web container (JVM).

❍ Avoid using sychronized methods or synchronized blocks in your code.

❍ Carefully consider EJB use. EJBs put a load on a server.

3. For performance reasons, you should use EJBs judiciously in your application;

so, what’s wrong with EJBs?

EJBs are wonderful. After all, they are the component model for server-side

Java. However, all good things come with a price. This is true in any vendor’s

EJB server. There is quite a lot of overhead required to provide access to EJBs

and to host the services that EJB containers provide, such as, security and

transaction management. Here are some thoughts on minimizing performance

degradation when using EJBs:

❍ Cache EJB references at the servlet so you won’t need to do a JNDI lookup

for every request.

❍ Use sticky load balancing so subsequent requests during a session always

return to the same KJS (VM) for processing. The EJB resource can be local

there and expensive calls across machines to get EJB access can be avoided.

❍ Use stateless session EJBs as they are comparable to servlets in

performance.

Application Tuning

90 iPlanet Application Server Performance and Tuning Guide • February 2002

❍ Stateful session and entity beans are much more expensive than stateless

session EJB beans. Entity EJBs are most performance intensive with BMP

being more expensive than CMP for persistence management of entity

EJBs.

4. How much can servlet HTML result caching help the performance of your

application?

Servlet caching can almost double performance for a 1-CPU installation, but

tests have shown only 4% enhancement on a 2-CPU iPlanet Application Server

instance. At 4 CPUs and beyond, the cache doesnt scale as well and we don’t

recommend that you use servlet result caching. Use JSP result caching instead.

JSP result caching is KJS-based rather than KXS-based. You can have multiple

KJS processes per iPlanet Application Server instance so this approach scales

better.

5. How can you make servlet HTML result caching most effective?

You can enhance the possibility for cache hits by increasing the amount of

memory available for storing the cache. This is done in the deployment

descriptor for servlet caching and in the Administration Tool for JSPs.

HTML result caching is handled by KXS for servlets, but that’s one more thing

to ask a probably already overworked KXS to do. HTML result caching can

really enhance throughput.

6. JSP result caching.

This cache is handled by KJS. Unlike KXS processes, you can have multiple

KJS process per iPlanet Application Server instance. So, you can offload KXS

and bring to bear more result caching power by going the JSP result caching

route.

91

Index

A
Adjusting the Number of Request Threads 35

Administration Tool (iASAT) 17

Administrative Server (KAS) 14

Application Design & Implementation 21

Application Design and Implementation 27

B
binding

processes 68

Bound Threads 57

Broadcasting and Updating Information 45

broadcasting NAS information 45, 46

C
cache

size, described 52

size, setting 52

CGI (Common Gateway Interface) 16

cluster 42

clusters

recommended load-balancing configuration 46

session size 47

Common Gateway Interface (CGI) 16

components

iPlanet Application Server 13

CORBA 16

CXS 14

CXS (RMI/IIOP bridge process) 33

D
databases

iPlanet Application Server component 14

declarative parameters, setting for run time 51

Deployment Tool (iASDT) 17

Directory Server Process (slapd) 14

Distributed Sessions 40

Dsync 41, 42

Dynamic Compiler

tuning 64

E
EJBs

containers 51

using 31

Executive Server

kxs 14

92 iPlanet Application Server Performance and Tuning Guide • February 2002

F
failover save interval

setting 52

failover save interval, described 52

firewall configuration

RMI/IIOP 39

format

URLs, in manual 11

G
Garbage Collection

tracing 60

Garbage Collector

tuning 58

H
Hardware Platform 21

Hardware platform 27

heap configuration on Solaris

sample 63

horizontal scalability 25

HttpSession 41

I
iASAT (Administration Tool) 17

iASDT (Deployment Tool) 17

Introscope 80

J
J2EE Programming Guidelines 30

Java Coding Guidelines 29

Java Heap

tuning 61

Java Server (KJS) 14

Jprobe 80

JSP Caching 53

JSPs 48

K
KAS 14, 16

KCS 16, 33

KJS 14, 16, 33

KXS 14, 16, 33

L
Lite Sessions 40

load balancing

broadcasting intervals 45, 46

monitoring 46

update intervals 45

M
master agent 81

maximum engine shutdown time

setting 36

Maximum Server and Engine Shutdown Time

specifying 36

maximum server shutdown time

setting 36

memory and allocation

managing 58

monitoring

using SNMP 80

Monitoring Load-Balancing Information 46

Index 93

N
Netscape Administrative Server 14

O
Object Constraint Language (OCL) 16

OCL (Object Constraint Language) 16

operational requirements 22

OptimizeIt 79

Optimizing KJS Performance 35

Optimizing KXS Performance 34

P
passivation timeout

described 51

setting 51

performance

general guidelines 26

predicting 23

tuning RMI/IIOP 37

performance on a single CPU 24

performance tuning

sequence 27

processes

binding 68

psrinfo 68

R
request threads 34

adjusting 35

RMI/IIOP

firewall configuration 39

scalability 38

tuning 37

RMI/IIOP Bridge (CXS) 14

RMI/IIOP bridge process (CXS) 33

run time

setting EJB container declarative parameters

for 51

S
Safety Margins 21, 27

SEMMNI 72

SEMMNS 72

SEMMSL 72

SEMOPM 72

sequence

performance tuning 27

session timeout

described 51

setting 51

SHMMAX 72

SHMMIN 72

SHMMNI 72

SHMSEG 72

slapd

Directory Server Process 14

SNMP

described 80

monitoring 80

Solaris Kernel parameters

tuning 72

Sticky Session Load Balancing 48

subagent 81

T
TCP Connection Hash Table Size 68

tcp_time_wait_interval 67

thread pool 35

threads

configuring availability 35

specifying minimum and maximum 35

user requests, adjusting number 34

timer interval

94 iPlanet Application Server Performance and Tuning Guide • February 2002

described 52

setting 52

Tuning iPlanet Application Server Processes 34

U
URLs

format, in manual 11

User Load 26

User load 21

V
vertical scalability 24

W
Web Connector Plugin 14

	Performance and Tuning Guide
	Contents
	Preface
	Using the Documentation
	About This Guide
	What You Should Know
	How This Guide is Organized
	Documentation Conventions

	About iPlanet Application Server
	iPlanet Application Server Components
	Web Connector Plugin
	Application Server Processes
	Directory Server Components
	Databases

	iPlanet Application Server Process Architecture
	Communication Within iPlanet Application Server
	iPlanet Application Server Tools
	iPlanet Application Server Administration Tool
	iPlanet Application Server Deployment Tool

	Understanding Tuning and Sizing
	Why Tune iPlanet Application Server?
	What Is Application Sizing?
	Factors That Affect Sizing

	Understanding Operational Requirements
	Security
	Availability
	Performance

	Predicting Performance
	General Performance Guidelines
	Performance Tuning Sequence

	Tuning Your Application
	Java Coding Guidelines
	J2EE Programming Guidelines

	Tuning iPlanet Application Server
	Optimizing Performance of Server Processes
	Tuning iPlanet Application Server Processes
	Optimizing KXS Performance
	Optimizing KJS Performance
	Adjusting the Number of Request Threads
	Specifying Maximum Server and Engine Shutdown Time

	Performance Tuning RMI/IIOP
	Recognizing Performance Issues
	Basic Tuning Approaches
	Enhancing Scalability
	Firewall Configuration for RMI/IIOP

	Comparing Distributed and Lite HTTP Sessions
	Configuring a Single Backup for Highly Available Sessions
	Configuring Dsync Session Management Threads
	Load Balancing Options
	Load-Balancing Cluster Configuration
	Broadcasting and Updating Information
	Monitoring Load-Balancing Information
	Recommended Load-Balancing Configuration for Clusters
	Optimizing Session Size for Clusters
	Load Balancing Individual JSPs
	Using Sticky Session Load Balancing
	Simplify Session Data

	Configuring Database Connection Pool
	Guidelines for Configuring Connection Pool
	Using Statistics to Configure the Connection Pool

	Configuring EJB Parameters For Runtime
	Caching JSPs and Servlets

	Tuning the Java Runtime System
	Using Bound Threads
	Managing Memory and Allocation
	Tuning the Garbage Collector
	Specifying Garbage Collector Setting
	Explicit Garbage Collector
	Deferred Garbage Collection

	Tracing Garbage Collection
	Tuning the Java Heap
	Guidelines for Java Heap Sizing
	HotSpot Server VM Tuning Options
	Sample heap configuration on Solaris
	Sample Heap configuration on Windows

	Tuning the Dynamic Compiler

	Tuning the Operating System
	Setting Time Wait Interval
	Setting TCP Connection Hash Table Size
	Binding Processes

	Tuning Database Servers
	Tuning Oracle Servers
	Tuning Solaris Kernel Parameters

	General Guidelines for Better Performance
	Guidelines For Better EJB Performance

	Validating Server Performance
	Monitoring iPlanet Application Server
	On Solaris
	Adding Plots Using iASAT

	Using Performance Tuning Tools
	Tuning Performance Using OptimizeIt
	Tuning Performance Using JProbe
	Tuning Performance Using IntroScope

	Setting Up SNMP Monitoring
	Obtaining Performance Data

	Frequently Asked Questions
	Environment Setup
	System Tuning
	Application Tuning

	Index

