
Backbone Integration Guide
iPlanet™ Integration Server

Version 3.0

August 2001

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, iPlanet and the iPlanet logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S.
and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The
Apache Software Foundation. All rights reserved.

Federal Acquisitions: Commercial Software – Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, iPlanet et le logo iPlanet sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC
International, Inc. aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Ce produit inclut des logiciels développés par Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The
Apache Software Foundation. Tous droits réservés.

Acquisitions Fédérales: progiciel – Les organisations gouvernementales sont sujettes aux conditions et termes standards d'utilisation.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

List of Figures . 9

List of Tables . 11

List of Code Examples . 13

List of Procedures . 15

Preface . 17
Product Name Change . 18
Audience for This Guide . 18
Organization of This Guide . 18
Text Conventions . 20
Other Documentation Resources . 20

iPlanet Integration Server Documentation . 21
Online Help . 21
Documentation Roadmap . 21

iIS Example Programs . 22
Viewing and Searching PDF Files . 23

Chapter 1 Introduction . 25
Working with the iIS Use Cases . 25
Using the iIS Example Application . 27

Example Application Stylesheets . 28
Understanding XSL Stylesheets and XSL Transformations . 28

Writing XSL Transformations . 30
Using Inbound and Outbound Stylesheets . 31

Inbound Transformations . 32
Outbound Transformations . 32

Developing Stylesheets with the iIS Workshops . 33

4 iPlanet Integration Server • Backbone Integration Guide • August 2001

Developing iIS Stylesheets: General Guidelines . 35
Including Required Declarations and Processing Instructions . 36
Specifying the XML Output Type . 36
Creating Elements and Attributes . 37

Elements . 37
Attributes . 38

Including Default Templates . 39
Overriding the Default for Text Nodes . 40

Combining Stylesheets . 41
Importing Subordinate Stylesheets . 41
Including External Stylesheets . 41

Reusing Templates . 42
Performing Common iIS Stylesheet Transformations . 43

Handling Process Attributes in Stylesheets . 43
Generating Process Attributes . 43
Transforming Process Attribute Lists . 45
Transforming Process Attribute Values . 46
Transmitting Application Documents as Process Attributes . 47

Supplying Activity Information to Applications . 48
Sending Messages to Applications . 49

Specifying the Message Type . 50
Communicating With Non-Partner Applications . 53

Transport Headers . 54
Accessing Transport Headers . 54
Specifying Transport Headers . 54

Communicating Between Applications Without A Process Definition . 55
Creating an Inbound Stylesheet . 56
Configuring an Independent Proxy . 57
Omitting iIS Process Management Functions . 57

Chapter 2 Service Requestor Use Case . 59
Use Case Summary . 59
Starting the iIS Process . 61

Configuration Notes . 62
Adding Listeners . 62

Step 1: Generating the Document Element . 62
Step 2: Instructing the Engine to Start the Process . 63
Step 3: Passing Process Attributes to the Engine . 64
Command Document Example . 65

5

Transforming State Information . 66
Step 1: Generating the Document Element . 67
Step 2: Generating the Application Command . 67
Step 3: Creating the Message Content . 68
Step 4: Generating Values for the Application . 70
Generated Document Examples . 71

State Document . 71
Command Document . 72
Application Document . 72

Chapter 3 Synchronous Service Provider Use Case . 73
Use Case Summary . 74
Communicating Synchronously With a Service Provider . 76

Configuration Note . 77
Step 1: Generating the Document Element . 77
Step 2: Generating a Message to the Application . 77
Step 3: Providing the Message Content . 78
Step 4: Sending Process Attribute Values . 79

Handling Redundant Values . 80
Generated Document Examples . 81

State Document . 81
Command Document . 82
Application Document . 84

Receiving Synchronous Notification of Completion . 84
Step 1: Generating the Document Element . 85
Step 2: Sending a Command to the Engine . 85
Step 3: Returning Updated Process Attribute Values . 86
Command Document Example . 86

Chapter 4 Asynchronous Service Provider Use Case . 89
Use Case Summary . 89
Communicating Asynchronously With a Service Provider . 93

Configuration Notes . 94
Configuring a Sender . 94
Configuring a Listener . 94

Step 1: Generating the Document Element . 95
Step 2: Generating a Message to the Application . 95
Step 3: Providing Identifying Information . 96
Step 4: Sending Process Attribute Values . 98
Step 5: (HTTP Sessions) Receiving Acknowledgment . 99

6 iPlanet Integration Server • Backbone Integration Guide • August 2001

Communicating Asynchronously With a Service Provider (continued)
Generated Document Examples . 100

State Document . 100
Command Document . 102
Application Document . 104

Receiving Asynchronous Notification of Completion . 104
HTTP Sessions . 104
Step 1: Generating the Document Element . 105
Step 2: Sending a Command to the Engine . 105
Step 3: Identifying the Completed Activity to the Proxy . 106
Step 4: Returning Updated Process Attribute Values . 108
Step 5: (HTTP Sessions) Acknowledging the Completion Message . 108
Command Document Example . 109

Chapter 5 Service Requestor Authentication Use Case . 113
Use Case Summary . 113
Authenticating a Service Requestor with a Proxy . 116

Authentication Message Flow . 116
Enabling Authentication . 117
Step 1: Configuring the Proxy for Authentication . 118

Setting Session Parameters . 118
Step 2: Creating a User Validation . 119
Step 3: Mapping Application Users to iIS Users . 119
Step 4: Submitting Authentication Information . 120

Sending a User Name and Password . 120
Sending an Authentication Document . 120
Creating an Authentication Document . 121
Example Authentication Document . 121

Chapter 6 Service Provider Authentication Use Case . 123
Use Case Summary . 123
Authenticating a Proxy with a Service Provider . 126

Authentication Message Flow . 126
Enabling Authentication . 128

Configuring the Service Provider for Authentication . 128
Basic Authentication . 129
FusionXML Authentication . 129

Providing User Information to the Proxy . 130

7

Chapter 7 Proxy Recovery Use Case . 131
Use Case Summary . 131
Submitting a Recovered Activity to a Service Provider . 133

Submitting the Activity . 134
Generated Document Examples . 135

State Document . 135
Command Document . 137
Application Document . 137

Receiving Notification of Completion From the Application . 138
Alternative Processing: Aborting the Recovered Activity . 138

Altering the Document Flow . 139
Generated Document Examples . 140

State Document . 140
Command Document . 140
Application Document . 140

Chapter 8 Application Recovery Use Case . 141
Use Case Summary . 141
Notifying the Proxy of Application Recovery . 144

Generated Command Document Example . 145
Submitting Activities to a Recovered Application . 146
Receiving Notification of Completion From the Application . 146

Chapter 9 Independent Proxy Use Case . 147
Use Case Summary . 147
Transferring Data Between Applications . 149
Creating a Stylesheet for Data Transformation . 149

Step 1: Overriding the Default for Text Nodes . 150
Step 2: Generating the Command Document Element . 151
Step 3: Generating the Command to Send a Message . 152

Communicating with Multiple Applications . 153
Step 4: Specifying the Target Application Location . 153
Step 5: Generating a Message to the Target Application . 153
Step 6: Generating the Target Application Document Element . 154
Step 7: Specifying the Message Content . 156
Sample Documents and Stylesheet . 157

Initiating Application Document . 158
Inbound Stylesheet . 159
Command Document . 160
Target Application Document . 160

Configuring an Independent Proxy . 161

8 iPlanet Integration Server • Backbone Integration Guide • August 2001

Chapter 10 Independent Proxy Authentication Use Case . 163
Use Case Summary . 163
Authenticating an Application to an Independent Proxy . 165

Authentication Message Flow . 166
Enabling Authentication . 167

Submitting Authentication Information . 167
Configuring the Proxy for Authentication . 168

Step 1: Specify the Proxy As Independent . 168
Step 2: Specify That the Proxy Require Authentication . 168
Step 3: Specify the Authentication Values . 169

Authenticating a Proxy To a Target Application . 169

Appendix A Transforming Proxy Documents . 171
Proxy Document Processing . 171

XSL Stylesheets for the Proxy . 172
Service Requestor Application . 173
Service Provider Application . 177

Appendix B Proxy Document Element Hierarchies . 183
Command Document Element Hierarchy . 183
State Document Hierarchy . 185
Authentication Document Hierarchy . 186

Index . 187

9

List of Figures

Figure 1-1 Applying an Inbound Stylesheet . 29

Figure 1-2 XML/XSL Plan Workshop . 34

Figure 1-3 XML/XSL Workshop . 35

Figure A-1 Generating Command Documents . 172

Figure A-2 iIS Order Entry Service Requestor Sends in New Order . 174

Figure A-3 iIS StartAndVerify Application Processes Credit Check . 178

Figure B-1 Command Document Hierarchy . 184

Figure B-2 State Document Element Hierarchy . 185

Figure B-3 Authentication Document Element Hierarchy . 186

10 iPlanet Integration Server • Backbone Integration Guide • August 2001

11

List of Tables

Table 1-1 iIS Use Cases . 26

Table 1-2 Information Provided for iIS Use Cases . 27

Table 2-1 Overview of Service Requestor Use Case . 59

Table 3-1 Overview of Synchronous Service Provider Use Case . 74

Table 4-1 Overview of Asynchronous Service Provider Use Case . 89

Table 5-1 Overview of Service Requestor Authentication Use Case . 113

Table 6-1 Overview of Service Provider Authentication Use Case . 123

Table 6-2 FNscript Commands for Providing User Information . 130

Table 7-1 Overview of Proxy Recovery Use Case . 131

Table 8-1 Overview of Application Recovery Use Case . 141

Table 9-1 Overview of Independent Proxy Use Case . 147

Table 10-1 Overview of Independent Proxy with Authentication Use Case 163

12 iPlanet Integration Server • Backbone Integration Guide • August 2001

13

List of Code Examples

Command Document, Service Requestor Use Case . 65

State Document, Service Requestor Use Case . 71

State Document, Synchronous Service Provider Use Case . 81

Command Document, Synchronous Service Provider Use Case . 83

Command Document Example, Synchronous Service Provider Use Case . 87

State Document, Asynchronous Service Provider Use Case . 101

Command Document, Asynchronous Service Provider Use Case . 102

Command Document Example, Asynchronous Service Provider Use Case . 110

State Document, Proxy Recovery Use Case . 136

Independent Proxy, Initiating Application Document . 158

Independent Proxy, Inbound Stylesheet . 159

Independent Proxy, Command Document . 160

14 iPlanet Integration Server • Backbone Integration Guide • August 2001

15

List of Procedures

To copy the documentation to a client or server . 23

To view and search the documentation . 23

To copy text nodes selectively to the results document . 40

To transmit an application document as a process attribute . 47

To supply activity information to an application . 48

To generate these commands . 67

To copy text nodes selectively to the results document . 150

To generate these commands . 152

16 iPlanet Integration Server • Backbone Integration Guide • August 2001

17

Preface

The iIS Backbone is an enterprise application integration product that enables
communication between applications distributed across different systems. iIS
enables platform-independent automation and control of business processes
through the use of an iIS process engine. iIS also can integrate applications directly,
without coordinating activities through a process engine.

The iIS Backbone Integration Guide describes how to use iIS to integrate applications.
Integrated applications exchange XML (Extensible Markup Language) messages
among themselves and iIS application proxies. The manual explains how to write
XSL (Extensible Stylesheet Language) stylesheets, using XSLT (Extensible
Stylesheet Language Transformations) to transform XML documents. In this way,
an application or an application proxy can send documents that the recipient can
understand and act upon. The information is presented in a series of use cases that
represent the most common scenarios in an iIS enterprise application.

The manual also provides introductory information about XSLT and the basic
transformations used with iIS. Finally, the manual helps you perform tasks related
to integrating applications, including proxy configuration and application design
considerations.

This preface contains the following sections:

• “Product Name Change” on page 18

• “Audience for This Guide” on page 18

• “Organization of This Guide” on page 18

• “Text Conventions” on page 20

• “Other Documentation Resources” on page 20

• “iIS Example Programs” on page 22

• “Viewing and Searching PDF Files” on page 23

Product Name Change

18 iPlanet Integration Server • Backbone Integration Guide • August 2001

Product Name Change
Forte Fusion has been renamed the iPlanet Integration Server. You will see full
references to this name, as well as the abbreviation iIS.

Audience for This Guide
This book is intended primarily for users who write XSL stylesheets, and
secondarily for application developers and iIS system administrators. It assumes
familiarity with iIS (including process management concepts and iPlanet UDS
system management concepts, as well as the HTTP protocol, XML, and XSL/XSLT.
You also should be familiar with the iIS proxy documents and their XML
vocabulary and structure. For information about proxy document XML, see the iIS
Backbone online Help. For a list of related sources of information, see “Other
Documentation Resources” on page 20.

If you are new to iIS or want to familarize yourself with the components of iIS and
how they interact in an iIS system, refer to the iIS Conceptual Overview.

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “Introduction” Provides an overview of the use cases
presented in this manual, XSL stylesheets,
the iIS example application, and XSLT
transformations

Chapter 2, “Service Requestor Use Case” Describes how to enable a service requestor
application to start an iIS process

Chapter 3, “Synchronous Service Provider
Use Case”

Describes how to enable an iIS proxy to
request that a partner application perform
an activity; in this case, the proxy waits for
a response from the application

Chapter 4, “Asynchronous Service
Provider Use Case”

Describes a similar scenario to Chapter 3,
“Synchronous Service Provider Use Case”,
except that the application responds to the
proxy during a subsequent HTTP session

Organization of This Guide

Preface 19

Chapter 5, “Service Requestor
Authentication Use Case”

Describes how to enable a partner
application to authenticate itself to a proxy
when attempting to start an iIS process

Chapter 6, “Service Provider
Authentication Use Case”

Describes how to enable a proxy to
authenticate itself to a service provider
application when requesting that the
application perform an activity

Chapter 7, “Proxy Recovery Use Case” Describes how to reestablish the flow of
message between a proxy and a partner
application after the proxy has failed and
recovered

Chapter 8, “Application Recovery Use
Case”

Describes how to reestablish the flow of
message between a proxy and a partner
application after the application has failed
and recovered

Chapter 9, “Independent Proxy Use Case” Describes how to use an independent
proxy to transmit XML documents between
applications without being connected to an
iIS process engine

Chapter 10, “Independent Proxy
Authentication Use Case”

Describes how to enable an application to
authenticate itself to an independent proxy

Appendix A, “Transforming Proxy
Documents”

Explains how messaging works within the
proxy according to the proxy’s function in
an iIS application system

Appendix B, “Proxy Document Element
Hierarchies”

Diagrams illustrating the element hierarchy
and vocabulary of iIS proxy documents

Chapter Description

Text Conventions

20 iPlanet Integration Server • Backbone Integration Guide • August 2001

Text Conventions
This section provides information about the conventions used in this document.

Other Documentation Resources
In addition to this guide, there are additional documentation resources, which are
listed in the following sections. The documentation for all iIS products can be
found on the iIS CD. Be sure to read “Viewing and Searching PDF Files” on page 23
to learn how to view and search the documentation on the iIS CD.

iIS documentation can also be found online at
http://docs.iplanet.com/docs/manuals/iis.html.

The titles of the iIS documentation are listed in the following section.

Format Description

italics Italicized text is used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URLs.

ALL CAPS Text in all capitals represents environment variables
(FORTE_ROOT) or acronyms (iIS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase
text exactly as shown.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

Other Documentation Resources

Preface 21

iPlanet Integration Server Documentation
iIS Adapter Development Guide

iIS Backbone Integration Guide

iIS Backbone System Guide

iIS Conceptual Overview

iIS Installation Guide

iIS Process Client Programming Guide

iIS Process Development Guide

iIS Process System Guide

Online Help
When you are using an iIS development application, press the F1 key or use the
Help menu to display online help. The help files are also available at the following
location in your iIS distribution: FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as FNscript or Cscript, type help from the
script shell for a description of all commands, or help <command> for help on a
specific command.

Documentation Roadmap
A roadmap to the iIS documentation can be found in the iIS Conceptual Overview
manual.

iIS Example Programs

22 iPlanet Integration Server • Backbone Integration Guide • August 2001

iIS Example Programs
iIS example programs are shipped with the iIS product and installed in two
locations, one for process development (using the process engine) and one for
application integration (using the iIS backbone).

Process Development Examples Process development examples are installed at
the following location:

FORTE_ROOT/install/examples/conductr

The PDF file, c_examp.pdf, describes how to install and run the examples in this
directory. The Appendix to the iIS Process Development Guide also describes how to
install and run the examples.

Application Integration Examples Process integration examples are installed at
the following location:

FORTE_ROOT/install/examples/fusion

Each example has its own sub-directory, which contains a README file that
explains how to install and run the example.

Viewing and Searching PDF Files

Preface 23

Viewing and Searching PDF Files
You can view and search iIS documentation PDF files directly from the
documentation CD-ROM, store them locally on your computer, or store them on a
server for multiuser network access.

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or
server hard disk.

You can specify any convenient location for the doc directory; the location is
not dependent on the iIS distribution. You may want to consolidate your iIS
documentation with the documentation for your iPlanet UDS distribution.

2. Set up a directory structure that keeps the iisdoc.pdf and the iis directory in
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file iisdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search >
Query.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat
Reader with Search is recommended and is available as a free
download from http://www.adobe.com. If you do not use Acrobat
Reader with Search, you can only view and print files; you cannot
search across the collection of files.

NOTE To uninstall the documentation, delete the doc directory.

Viewing and Searching PDF Files

24 iPlanet Integration Server • Backbone Integration Guide • August 2001

3. Enter the word or text string you are looking for in the Find Results Containing
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text.
If more than one document from the collection contains the desired text, they
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to
navigate through the search results, as shown in the following table:

To return to the iisdoc.pdf file, click the Homepage bookmark at the top of
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the
iisdoc.pdf home page or select Edit > Search > Results.

NOTE For details on how to expand or limit a search query using
wild-card characters and operators, see the Adobe Acrobat
Help.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

25

Chapter 1

Introduction

This chapter provides an overview of the tasks and concepts involved in using
Extensible Markup Language (XML) and Extensible Stylesheet Language (XSL) to
integrate applications into an iIS application. The chapter also discusses how to use
this manual and related tools for this purpose.

This chapter covers the following topics:

• the iIS use cases presented in the following chapters

• the sample application included with your iPlanet UDS installation

• XSL stylesheets and XSL transformations

• general guidelines for writing XSL stylesheets

• handling common iIS integration tasks in your XSL stylesheets

Working with the iIS Use Cases
Each of the following chapters of this manual describes an iIS use case—a scenario
that represents a typical interaction between an application and the iIS backbone.
Taken together, these cases present most of the typical situations that require XSL
stylesheets while using iIS.

Working with the iIS Use Cases

26 iPlanet Integration Server • Backbone Integration Guide • August 2001

The following table lists the use cases presented in this manual:

For each case, the chapter provides a description of the case and procedures for
enabling its successful completion. These procedures describe how to write any
required inbound or outbound stylesheets, as well as other actions you must take,
for example, configuring a proxy with FNscript commands or defining iIS process
attributes.

Table 1-1 iIS Use Cases

Chapter Use Case

Chapter 2, “Service Requestor Use Case” service requestor starts process

Chapter 3, “Synchronous Service Provider Use
Case”

service provider with synchronous
processing

Chapter 4, “Asynchronous Service Provider Use
Case”

service provider with asynchronous
processing

Chapter 5, “Service Requestor Authentication Use
Case”

service requestor with FusionXML
authentication

Chapter 6, “Service Provider Authentication Use
Case”

service provider with FusionXML
authentication

Chapter 7, “Proxy Recovery Use Case” proxy fails and recovers

Chapter 8, “Application Recovery Use Case” application fails and recovers

Chapter 9, “Independent Proxy Use Case” applications exchange XML
documents through independent
proxy without an iIS process engine

Chapter 10, “Independent Proxy Authentication
Use Case”

independent proxy requires
authentication from application (or
must provide authentication to
application)

Using the iIS Example Application

Chapter 1 Introduction 27

The following table describes the information provided about each use case:

For a general overview of the iIS processing involved in the service requestor and
service provider use cases, see Appendix A, “Transforming Proxy Documents.”

Using the iIS Example Application
Your iIS installation includes an example application based on an iPlanet UDS
TOOL adapter. The example represents an electronic customer order processing
system, with activities such as placing an order, verifying credit, and shipping the
order.

You can find the example application in the following directory of your iIS
installation:

//FORTE_ROOT/install/examples/Fusion/toolcon

For information about installing and running the application, see the readme.htm
file included with the application.

Wherever possible, the use cases in this manual follow the example application.
When the application does not cover the scenario presented by a use case, the case
conceptually extends the example. Some examples from the application have been
modified slightly for the sake of brevity or clarity.

Table 1-2 Information Provided for iIS Use Cases

Use Case Information Description

description a brief description of the use case

expected outcome the actions that constitute the successful completion of the case,
for example, an iIS process is started or an application performs
an activity

actors the iIS components and applications that take part in the case

proxy document flow the flow of proxy documents required for the case

required stylesheets the XSL stylesheets you write to enable the case to be completed
successfully

other integrator tasks any additional actions you must perform, for example,
configuring a proxy

Understanding XSL Stylesheets and XSL Transformations

28 iPlanet Integration Server • Backbone Integration Guide • August 2001

Example Application Stylesheets
The example application uses two XSL stylesheets:

• orderin.xsl, an inbound stylesheet that transforms application documents into
command documents

• orderout.xsl, an outbound stylesheet that transforms state documents into
command documents and application documents

These stylesheets have been written to provide examples of a wide range of
transformations required in integrating applications with iIS. They are not meant
to be taken as guides to writing stylesheets for an actual order processing system.

Also, in the example application, all proxies share one set of stylesheets. This
implementation works in the example, because each of the activities uses the same
XML vocabulary and structure.

In actual practice, each activity might be a different type of application, for
example a legacy mainframe application or a third-party packaged application,
with its own XML vocabulary and structure. In such a real-world context, each
proxy probably would have its own set of stylesheets.

Understanding XSL Stylesheets and XSL
Transformations

An XSL stylesheet is an XML document that contains templates for transforming a
source document into a results document. In an iIS enterprise application, each
application proxy has two associated stylesheets:

• an inbound stylesheet that transforms an application document into a
command document

A command document instructs the proxy’s command processor to send
instructions to the iIS process engine, to send messages to applications, or both.
The inbound stylesheet contains the rules that specify the commands and
messages to send.

NOTE The stylesheet nopein.xsl is included as an example of an inbound
stylesheet for use with independent proxies.

Understanding XSL Stylesheets and XSL Transformations

Chapter 1 Introduction 29

• an outbound stylesheet that transforms a state document into command
documents and application documents

A state document is produced by a proxy and is based on information from the
process engine about the state of a process or activity. The outbound stylesheet
contains rules that specify how to generate a command document with further
commands to the engine, messages to applications, or both.

Figure 1-1 shows how a proxy applies an inbound stylesheet to an application
document.

Figure 1-1 Applying an Inbound Stylesheet

A proxy can have one stylesheet that provides both inbound and outbound
transformations, although this is generally not good practice.

NOTE The flow is reversed for outbound stylesheets, that is, the stylesheet
is applied to a state document, which is transformed into a
command document that can produce an application document.

Proxy

XSL
Processor Command

Document

Command
Processor

Inbound
stylesheet rules

XSL
Stylesheets

Instructions
to engine

Application
Document

Understanding XSL Stylesheets and XSL Transformations

30 iPlanet Integration Server • Backbone Integration Guide • August 2001

The following sections provide:

• an overview of the kinds of transformations your XSL stylesheets should
contain

• an introduction to the XML/XSL workshops that iIS provides for developing,
testing, and debugging stylesheets and for managing collections of stylesheets
and sample XML documents

For more information about proxy documents, see the iIS Backbone System Guide
and the iIS Backbone online help.

Writing XSL Transformations
XSL stylesheets produce results documents by matching patterns in a source XML
document. For each pattern that your stylesheet matches, you provide a template
that describes how to render that pattern in the results document. To achieve this
transformation, you include an xsl:template element with the following format:

The value of the “match” attribute is the pattern you want to match in the source
document. This value can be as simple as an element name, or it can be a
complicated pattern that matches particular values somewhere in the source
document.

Between the start and end tags of the xsl:template element, you use other XSL
elements to specify a template for rendering the item in the results document. The
following example matches an element called MsgDoc in the source document and
transforms it into an “FNCommand” element in a resulting command document:

<xsl:template match="SourcePattern">
do something with the source document pattern that was matched

</xsl:template>

<xsl:template match="MsgDoc">
<xsl:element name="FNCommand"/>

</xsl:template>

Understanding XSL Stylesheets and XSL Transformations

Chapter 1 Introduction 31

While this template is very simple, you can use XSLT to specify more complex
templates. For example, the following template finds an element named Att in an
application document and transforms it into an FNProcessAttribute element
(that corresponds to an iIS process attribute). The template also creates a Name
attribute for the new element; the value of this attribute is the value of the AttName
element in the source document.

In addition to creating elements and attributes with different names, your
templates can apply functions to recompute source values, copy sections of the
source tree directly into the results tree, or specify more complex actions. Thus,
your XSL stylesheets can provide a wide range of transformations that might be
needed in the fulfillment of your business process.

Using Inbound and Outbound Stylesheets
A proxy is usually configured with two stylesheets:

• Outbound stylesheets specify the rules applying to state documents produced
by the iIS process engine.

• Inbound stylesheets specify the rules applying to documents sent by the
application to the proxy.

The same stylesheets can apply in both directions, if appropriate.

<xsl:template match="Att">
<xsl:element name="FNProcessAttribute">
<xsl:attribute name="Name">

<xsl:value-of select="AttName"/>
</xsl:attribute>

</xsl:element>
</xsl:template>

NOTE An independent proxy—a proxy that is does not communicate with
a process engine—requires only an inbound stylesheet.

Understanding XSL Stylesheets and XSL Transformations

32 iPlanet Integration Server • Backbone Integration Guide • August 2001

The following sections provide a brief overview of the kinds of transformations
that inbound and outbound stylesheets might contain. For examples of iIS
stylesheets, see the files orderin.xsl and orderout.xsl in the
FORTE_ROOT/install/examples/fusion/toolcon directory. These files are part
of the TOOL adapter example application.

Inbound Transformations
An inbound stylesheet provides templates for transforming an application
document into a command document that tells the proxy what actions to take.
These actions generally result in instructions to the iIS engine, responses to the
application, or both.

For example, the following stylesheet instruction matches the NewOrder element in
the application source document; it then creates a template for an FNCndCommand
element in the resulting command document. Using a Command attribute, this
element directs the engine to create an instance of FNOrdersProcess:

In the above example, the <FNCndCommand…> tag by itself has the same effect as the
<XSL:element> tag shown previously; it creates a new element in the results
document.

Outbound Transformations
After a proxy has instructed the process engine to perform an activity, the engine
sends a state document to the proxy describing the current state of the activity. An
outbound stylesheet transforms this state information into a command document.

<xsl:template match="NewOrder">
<FNCndCommand Command="CreateProcess"

ProcessName="FNOrdersProcess">
. . .

</FNCndCommand>
</xsl:template>

Understanding XSL Stylesheets and XSL Transformations

Chapter 1 Introduction 33

Also, you might need to communicate process attribute values to an application.
The following template matches an FNProcessAttribute element and transforms
it and the information contained in its Name and Type attributes back into Att,
AttName, and AttType elements that are part of the application’s XML vocabulary.
The template also places the value of the FNProcessAttribute into an AttValue
element:

In the above example, the “@” indicates an XML attribute. The line
“<xsl:value-of select="text()|*">” copies the textual content of the
AttValue element to the results document.

Developing Stylesheets with the iIS Workshops
iIS provides two graphical workshops that you can use to create, test, and manage
the stylesheets you want to use with an iIS backbone:

• The XML/XSL Plan Workshop lets you define collections of XML source
documents and XSL stylesheets to use for testing and debugging.

Source documents can be actual application documents or documents that you
create for testing purposes. You can create documents directly in the workshop
or import existing files. You also can register stylesheets with iIS backbones
directly from this workshop.

</xsl:template>
<xsl:template match="FNProcessAttribute">

<Att>
<AttName>

<xsl:value-of select="@Name">
</AttName>
<AttType>

<xsl:value-of select="@Type">
</AttType>
<AttValue>

<xsl:value-of select="text()|*">
</AttValue>

</Att>

Understanding XSL Stylesheets and XSL Transformations

34 iPlanet Integration Server • Backbone Integration Guide • August 2001

Figure 1-2 shows an XML/XSL Plan with an XML source document and two
XSL stylesheets:

Figure 1-2 XML/XSL Plan Workshop

• From the XML/XSL Plan Workshop, you can open the XML/XSL Workshop.
This second workshop lets you edit and debug your XML source documents
and XSL stylesheets.

You can validate source documents and stylesheets to ensure that they are
well-formed, and process source documents against a stylesheet to generate an
XML results document. The workshop debugger makes it easy to find and fix
any errors in your stylesheets before you register them. For ease in debugging,
you can simultaneously display your XML input, XML output, and the
associated XSL stylesheet.

Developing iIS Stylesheets: General Guidelines

Chapter 1 Introduction 35

Figure 1-3 shows the XML/XSL Workshop with an XML source document,
XSL stylesheet, and XML results document:

Figure 1-3 XML/XSL Workshop

For information about using the XML/XSL Plan Workshop and the XML/XSL
Workshop, see the iIS Backbone online help.

Developing iIS Stylesheets: General Guidelines
The following sections provide some general guidelines for writing XSL stylesheets
for an iIS enterprise application. For more information about iIS XSL support, see
the iIS Backbone online help.

Developing iIS Stylesheets: General Guidelines

36 iPlanet Integration Server • Backbone Integration Guide • August 2001

Including Required Declarations and
Processing Instructions
The proxy’s XSL processor expects the XML declaration and the XSL stylesheet
element, containing the XSL namespace declaration, as the first two lines of all
stylesheets. The last line of the stylesheet must be the close tag for the stylesheet
element.

Include the following declarations in all your iIS stylesheets:

You can use <xsl:transform> and </xsl:transform> interchangeably with the
xsl:stylesheet start and end tags.

When you create your stylesheets in the iIS XML/XSL Workshop, the required
items are added automatically.

Specifying the XML Output Type
When you process an XML source document with an XSL stylesheet, the results
document can be any of several types—HTML, plain text, or XML. All iIS
documents must have XML as their type so that the proxy can process them.

To specify that your results documents be XML documents, include the following
instruction in each of your stylesheets:

<xsl:output method="xml" indent="yes"/>

The indent attribute specifies that the lines of the results document be indented to
reflect the document’s XML hierarchy. Although the proxy does not require
indentation to process the document, you can read an indented document more
easily in the XML/XSL Workshop or other XML editor.

<?xml version="1.0"?>
<xsl:stylesheet

http://www.w3.org/1999/XSL/Transform" version="1.0">
. . .
</xsl:stylesheet>

Developing iIS Stylesheets: General Guidelines

Chapter 1 Introduction 37

Creating Elements and Attributes
Many of your applications, as well as iIS itself, have distinct XML vocabularies.
Thus an element or attribute in one vocabulary may have a different name in
another vocabulary. Also, one application may store certain values as elements,
and another application may store those values as attributes.

Many of the transformations you must write, therefore, involve creating new XML
elements and attributes in the results document. For example, iIS uses an
FNProcessAttribute element to indicate a data value. However, an application
may use an element called Att to represent a data value. Thus, when you send a
message from the proxy to the partner application, you must transform each
FNProcessAttribute element into an Att element, so that the client can process
the value.

This section describes how to create elements and attributes.

For more information about working with process attributes, see “Handling
Process Attributes in Stylesheets” on page 43.

Elements
Use either of the following methods in your XSL stylesheets to create elements in
your results document:

Literal result element Include the element in the stylesheet as you want it to
appear in the results document. The XSL processor copies it to the results
document as a literal result element.

To create an element called WorkType in an application document, include the
following line in your outbound stylesheet:

<WorkType/>

xsl:element Use the xsl:element element, specifying the new element name as
the value of the Name attribute.

NOTE An XML attribute is a value attached to an element. An iIS process
attribute is a value defined as part of a process definition. While
XML attributes and process attributes can be transformed into each
other in an iIS application, there is no inherent relationship between
the two entities.

Developing iIS Stylesheets: General Guidelines

38 iPlanet Integration Server • Backbone Integration Guide • August 2001

To create the WorkType element using xsl:element, include the following lines in
your outbound stylesheet:

The two methods are functionally identical, and which one you use is strictly a
matter of personal preference. While xsl:element is more verbose, it can make the
stylesheet easier to read.

Attributes
Similarly as for elements, there are two methods to create attributes in results
documents:

Literal result element Specify the attribute name and value as literal result
elements.

To create the WorkOrder element with a WorkType attribute whose value is “New
Work,” include the following lines in your outbound stylesheet:

<WorkOrder WorkType="NewWork"/>

xsl:attribute Use the xsl:attribute element to create the new attribute.

The xsl:attribute element has a required name attribute that specifies the name
of the attribute to create. You specify the attribute value as text (with whitespace
being significant) within the xsl:attribute element start and end tags.

To create the WorkType attribute, with a value of “NewWork,” as shown in the
previous example, include the following lines in your outbound stylesheet:

<xsl:attribute name="WorkType">NewWork</xsl:attribute>

Again, this alternative is more verbose, but it makes the stylesheet more readable.
Also, you must use this method if you are creating new attributes for existing
elements.

<xsl:element name="WorkType">
</xsl:element>

Developing iIS Stylesheets: General Guidelines

Chapter 1 Introduction 39

Including Default Templates
As part of its standard implementation, XSLT provides default templates to ensure
that all elements of a source XML document are processed by a stylesheet. Even
though the iIS XSL processor observes these defaults, it is good practice to include
explicitly the two most important default templates in all your stylesheets. Doing
so helps with debugging, and it also ensures that the stylesheets are portable to
other XSL processors.

The first of these defaults matches the root element of the source document, then
recursively processes all its children, that is, all the nodes of the source document:

Because the root element is always matched, this template ensures that all child
nodes of the root element are processed, even when there are no explicit matches in
the stylesheet.

The other default rule you should include processes all text nodes of the source
document. This rule is useful to ensure that all data values that are stored in the
source document as text are copied to the results document, even if there are not
specific matches on the elements that contain these values.

<xsl:template match="/">
<xsl:apply-templates/>

<xsl:template>

NOTE There are situations where you do not want all text nodes to be
copies to the results document. For information about overriding the
default behavior, see the next section, “Overriding the Default for
Text Nodes.”

Developing iIS Stylesheets: General Guidelines

40 iPlanet Integration Server • Backbone Integration Guide • August 2001

The default rule for text nodes concatenates the values of all text nodes and copies
them to the results document:

Overriding the Default for Text Nodes
You often do not want all text nodes copied to the results document. Rather, you
only want the text that your stylesheet explicitly matches.

For example, if your application document contains multiple customer orders, the
default rule for text nodes might cause the data from all orders to be copied to the
results document. However, you might only want to process only selected orders
and ignore the others.

➤ To copy text nodes selectively to the results document

1. Include the following template in place of the usual default for text nodes:

<xsl:template match="text()"/>

This “empty” template matches any text node. However, rather than
performing some action on the match, as the default template does, it simply
ends (with the “/”), doing nothing.

Thus, rather than copying the text to the results document, as the default rule
does, the template simply ignores the match.

2. Include templates in your stylesheet to match the specific text you want to
appear in the results document.

<xsl:template match="text()|@*">
<xsl:value-of "."/>

</xsl:template>

NOTE The “@*” in the above template, indicating a match for any attribute
node, is shown for compliance with the XSLT Recommendation.
Because attributes technically are not child nodes, however, they are
never implicitly matched by the first default template shown above.
Therefore, you can omit the match for attributes, and include the
match for text nodes only.

Developing iIS Stylesheets: General Guidelines

Chapter 1 Introduction 41

Combining Stylesheets
If some of your stylesheets repeat the same transformations, you can create one or
more stylesheets with common transformations, then use these stylesheets as part
of the stylesheets you write for specific proxies.

XSLT provides two elements for using a stylesheet within another stylesheet:

• xsl:import

• xsl:include

The following subsections describe how to use these elements.

Importing Subordinate Stylesheets
To import a stylesheet as a subordinate of your main stylesheet, use the following
element:

<xsl:import href="imported_stylesheet"/>

where imported_stylesheet is an absolute pathname or a pathname relative to
the current stylesheet.

You must place the xsl:import tag at the top level of the stylesheet (as a child of
the root element), immediately after the xsl:stylesheet declaration.

When there are conflicting templates between the main stylesheet and the
imported stylesheet, the templates in the main stylesheet always take precedence.
If you import multiple stylesheets, each new import overrides the earlier imports,
with the importing stylesheet having the highest precedence of all.

Including External Stylesheets
To include external stylesheets without concern for precedence, use the following
element:

<xsl:include href="included_stylesheet"/>

where included_stylesheet is an absolute pathname or a pathname relative to
your main stylesheet.

The templates in an included stylesheet are evaluated as though they were part of
the main stylesheet. Where there are conflicting templates, the normal rules of
priority apply. For information about template conflict resolution, see the XSLT
Recommendation at http://www.w3.org/TR/xslt#conflict.

The iIS processor resolves conflicts by using the template that occurs last in the
stylesheet.

Developing iIS Stylesheets: General Guidelines

42 iPlanet Integration Server • Backbone Integration Guide • August 2001

The xsl:include element must be at the top level of the main stylesheet (as a child
of the root element). While there are no restrictions on where in the stylesheet you
place the xsl:include element, it is good practice to put it right after the
xsl:stylesheet element for readability.

Reusing Templates
In addition to reusing entire stylesheets, you can name individual templates and
reuse them later in a stylesheet. For example, you might create a template that
sends a specific message to an application, then invoke this template when
different elements in the application document are matched.

To name a template, include a name value in the “name” attribute of the
xsl:template element. The following example creates a template named
“AppMsg” that sends a message to an application:

To invoke this template, use the xsl:call-template element within any desired
xsl:template element:

<xsl:template name="AppMsg"/>
<FNAplCommand Command="SendMessage" Method="Post">

<FNMessage>
lengthy message goes here...
</FNMessage>

</FNAplCommand>
</xsl:template>

<xsl:template match="MsgDoc">
<xsl:call-template name="AppMsg"/>

</xsl:template>

Performing Common iIS Stylesheet Transformations

Chapter 1 Introduction 43

Performing Common iIS Stylesheet
Transformations

A primary task involved in integrating your applications with iIS is to write the
XSL stylesheets that transform your proxy documents. For example, you must
transform an application document containing a new customer order into a
command document to start an iIS process. For each use case in this manual,
detailed procedures are provided for writing the specific XSL transformations
required for the successful completion of the scenario.

There are a number of transformations, however, that are common to many of the
stylesheets you write as part of an iIS enterprise application. The following sections
provide instructions for including some of these transformations in your
stylesheets.

Handling Process Attributes in Stylesheets
When you create an iIS process definition, you define process attributes to hold
values that are used by the applications in the process. In an iIS enterprise
application, both inbound and outbound stylesheets often need to manipulate iIS
process attributes:

• Inbound stylesheets take values from an application document (or supply
values themselves) and place them into iIS process attributes.

• Outbound stylesheets retrieve process attribute values from state documents
and can send them to an application.

The following sections describe how your stylesheets can generate and retrieve
process attributes. For more information about creating process attributes in iIS,
see the iIS Process Development Guide.

Generating Process Attributes
Inbound stylesheets often need to generate iIS process attributes so that processes
can be started and activities completed. To declare process attributes, include the
following elements in an inbound stylesheet:

• FNProcessAttributeList to define a list of process attributes

• FNProcessAttribute to define a process attribute

The FNProcessAttribute element has required Name and Type attributes to
specify the process attribute name and data type.

Performing Common iIS Stylesheet Transformations

44 iPlanet Integration Server • Backbone Integration Guide • August 2001

For iIS to use any process attributes you generate through a stylesheet, the process
attribute must have been created as part of the iIS process definition, and the
names and data types must match those you specify in the Name and Type
attributes of the FNProcessAttribute element. iIS ignores any process attributes
created by a stylesheet if the process attributes are not known to the process
engine.

For an application to return an updated value for a process attribute, the process
attribute must have been defined with a lock type of Write or WriteQueue in the
iIS process definition. For information about lock types, see the iIS Process
Development Guide.

Process Attribute Creation Example
The following example matches the Customer element in an application document,
then creates a list with two process attributes based on values found in the
application document:

• The CustName process attribute derives its value from the CustomerName child
of the Customer element.

• The CustID process attribute derives its value from the CustomerID attribute
of the Customer element.

A stylesheet not only can create a process attribute, but also can set its value, rather
than obtaining the value from the application. The following example creates a
process attribute called OrderStatus, and supplies a value of “New Order”:

<xsl:template match="Customer">
<FNProcessAttributeList>

<FNProcessAttribute Name="CustName" Type="TextData">
<xsl:value-of select="CustomerName">

</FNProcessAttribute>
<FNProcessAttribute Name="CustID" Type="TextData">

<xsl:value-of select="@CustomerID">
</FNProcessAttribute>

</FNProcessAttributeList>
</xsl:template>

<FNProcessAttribute Name="OrderStatus" Type="TextData">
New Order

</FNProcessAttribute>

Performing Common iIS Stylesheet Transformations

Chapter 1 Introduction 45

Transforming Process Attribute Lists
The state document for an activity also contains the current values for any process
attributes specified in the application dictionary entry for the activity. The process
attribute list has the following structure:

You often need to provide these values to the application, for example, when
requesting a service provider to start an activity. To do so, your outbound
stylesheet must transform the process attribute list in the state document into a
vocabulary and structure that the application understands.

In the example application, the process attribute list is transformed into an element
called Atts in the application document. Each process attribute corresponds to a
child element called Att. Finally, the name, data type, and value of each process
attribute correspond to the AttName, AttType, and AttValue child elements of the
Att element.

Your outbound stylesheet must provide two templates to perform these
transformations:

• a template to transform the FNProcessAttributeList element into the Atts
element

• a template to transform each FNProcessAttribute element and its attributes
into an Att element and its child elements

Process attribute list To transform a process attribute list for an application
document, include a template like the following in an outbound stylesheet:

<FNProcessAttributeList>
<FNProcessAttribute Name="proc_att_name" Type="data_type">
attribute_value

</FNProcessAttribute>
additional process attributes...

</FNProcessAttributeList>

<xsl:template match="FNProcessAttributeList">
<Atts>
<xsl:apply-templates/>

</Atts>
</xsl:template>

Performing Common iIS Stylesheet Transformations

46 iPlanet Integration Server • Backbone Integration Guide • August 2001

Process attributes To transform a process attribute for an application document,
include a template like the following in an outbound stylesheet:

Transformation Notes
In the above template:

• The values of the newly generated AttName and AttType elements are
supplied by copying the values of the FNProcessAttribute element’s Name
and Type attributes.

• To place the process attribute value into the AttValue element, the template
copies any text nodes found within the FNProcessAttribute element.

Transforming Process Attribute Values
Application document elements or attributes and their corresponding iIS process
attributes might have different data formats as well as different names. Also,
applications within the same process might represent names differently, or use
different units of measurement or currency.

For example, customer John Smith might be known to one application as follows:

<CustomerName>
<FirstName>John </FirstName>
<LastName>Smith</LastName>

</CustomerName>

However, the corresponding iIS process attribute might represent customer John
Smith as follows:

<CustName>John Smith</CustName>

<xsl:template match="FNProcessAttribute">
<Att>

<AttName>
<xsl:value-of select="@Name">

</AttName>
<AttType>

<xsl:value-of select="@Type">
</AttType>
<AttValue>

<xsl:value-of select="text()|*">
</AttValue>

</Att>
</xsl:template>

Performing Common iIS Stylesheet Transformations

Chapter 1 Introduction 47

Thus, when your inbound stylesheet generates the process attribute, it also must
change the way the value is represented. When the outbound stylesheet sends the
process attribute value back to the application, it also must change its
representation back to what the application understands.

XSLT, through XPath, provides a wide variety of functions for manipulating
character and numerical data. In the following example shown here, when you
generate the CustName element, you also must use a concatenation function to
combine the first and last names of the customer.

To accomplish this task, use a template like the following:

To transform the customer name in the opposite direction, apply another XPath
string function that deconstructs the single name value into first and last names.

For information on the full set of functions available, see the XPath
recommendation at http://www.w3c.org.

Transmitting Application Documents as Process Attributes
You might want the application document that initiates an iIS process to be
transmitted as an iIS process attribute to additional applications in the process. In
this way, each application can share a business object, such as a customer order or
employee record.

➤ To transmit an application document as a process attribute

1. In your iIS process definition, declare a process attribute of type XmlData to
hold the application document.

For greatest run-time efficiency, create a read-only process attribute to hold the
application document. That is, do not modify the original document as it
moves through the process (in much the same way that you would pass an
original paper document such as a purchase order unchanged through a
manual process).

2. In your inbound stylesheet that processes the application document, generate
the process attribute defined in Step 1.

<FNProcessAttribute Name="CustName" Type="TextData">
<xsl:value-of select="concat(FirstName,LastName)">

</FNProcessAttribute>

Performing Common iIS Stylesheet Transformations

48 iPlanet Integration Server • Backbone Integration Guide • August 2001

3. Use an xsl:copy-of element to match the root element of the application
document, then copy all its children (that is, the entire document) into the
process attribute you created in Step 2.

The following stylesheet transformations perform Step 2 and Step 3:

If you want subsequent applications in the process to modify parts of the original
document, for example, order status or completion date, create individual iIS
process attributes with Write or WriteQueue locks. To pass the information as an
XML document, create the process attribute with the XmlData data type.

Supplying Activity Information to Applications
The iIS process engine generates a state document with information about an
activity who state has changed to ACTIVE. This information is contained in an
FNIdentity element, each attribute of which specifies information about the
activity, for example, the process ID or activity name.

For a complete description of the FNIdentity element and its attributes, see the iIS
Backbone online help. For information about activity states, see the iIS Process
Development Guide.

Your outbound stylesheets can retrieve the value of an FNIdentity attribute from
the state document, then present it in a format that is meaningful to the application.

➤ To supply activity information to an application

1. Include a template that matches the value of the desired attribute of the
FNIdentity element.

2. Create a new element that the application understands.

3. Copy the value of the attribute into the new element.

<FNProcessAttribute Name="CustOrder" Type="XMLData">
<xsl:copy-of select="/">

</FNProcessAttribute>

Performing Common iIS Stylesheet Transformations

Chapter 1 Introduction 49

The following example matches the ProcessID attribute of the FNIdentity
element and passes its value to the partner application as the order confirmation
number:

Specifically, the template in this example uses an XPath location path to match the
desired value in the state document. This location path specifies an FNIdentity
element that is a child of a FNCndState element with a State attribute (indicated by
“@State”) whose value is “ProcessStarted.” The xsl:value-of element copies
the value of the ProcessID attribute into the new Cfnumber element.

For more information about the structure and vocabulary of state documents, see
the iIS Backbone online help.

After you create the elements you want, you then can pass them to an application
as described in the following section, “Sending Messages to Applications.”

Sending Messages to Applications
Both inbound and outbound stylesheets can specify that messages be sent to
applications. An inbound stylesheet might generate a message to let the
application know that the application document has been received. An outbound
stylesheet might generate a message based on the state of an activity, for example,
that the activity has been started.

Your stylesheets thus need to include rules for generating such messages. You use
the following elements in your stylesheets to generate messages to applications:

• FNAplCommand to specify how to send the message

• FNMessage to indicate the start and end of the message

Whatever you include between the start and end tags of the FNMessage
element is sent as the body of the message.

<xsl:template match="FNCndState[@State=’ProcessStarted’]/FNIdentity">
<Cfnumber>

<xsl:value-of select="@ProcessID"/>
</Cfnumber>

</xsl:template>

Performing Common iIS Stylesheet Transformations

50 iPlanet Integration Server • Backbone Integration Guide • August 2001

Specifying the Message Type
Use the Command attribute of the FNAplCommand element to specify how to send
the message to the application. This attribute can take either of these values:

• SendResponse to send an HTTP message in response to the application’s
message

• SendMessage to send a new HTTP message and wait for a response

When you use SendMessage, specify either of the following HTTP methods for
sending the message content:

• Get appends the contents of the message to the URL used to contact the
application.

• Post includes the contents of the message in the body of the HTTP message, so
that it is not visible as part of the URL.

Post is the more secure method. However, the application must be capable of
receiving messages sent with the Post method.

For the complete syntax of the FNAplCommand element, see the iIS Backbone online
help.

JMS Considerations
Proxies configured for JMS also use the FNAplCommand to generate messages to
applications, but be aware of the following special considerations:

• If you use SendResponse to respond to an incoming JMS message, then the
body of the XML must be empty.

• The method (Get or Post) must be specified, even though it is ignored by
proxies configured for JMS.

Completing a Roundtrip Communication
The HTTP communication protocol that iIS uses is a request/response protocol. That
is, when an HTTP client sends a request to an HTTP server, the server must
respond to the client in some way, even if only to acknowledge receipt of the
request.

Performing Common iIS Stylesheet Transformations

Chapter 1 Introduction 51

For example, when you enter a URL into a Web browser (an HTTP client), the Web
server (HTTP server) responds by displaying the page. If the server cannot find the
page, it must send a message to this effect to the browser.

HTTP messages can have two parts:

• a header containing metadata about the message, such as the recipient’s name
and location

• a message body with the contents of the message, such as the customer order

Every HTTP message has a header; the body is optional. You often use an HTTP
header with no body, known as an empty message, when you have no information to
transmit, but you simply need to complete an HTTP communication cycle.

In iIS, when a partner application sends an application document to the proxy, the
proxy must complete the communication in either of these ways:

• The outbound stylesheet generates an FNAplCommand element whose
Command attribute has a value of “SendMessage.” The FNAplCommand element
contains an FNMessage element that contains an application document to send
to the application.

• The inbound stylesheet generates a response in the form of an empty
FNAplCommand element whose Command attribute has a value of
“SendResponse.” In this case, the proxy sends a message header only, with no
message content.

When the proxy generates such a response, any subsequent message from the
application, for example a message that the activity has been performed,
constitutes the beginning of a new roundtrip communication. To complete this
communication, your inbound stylesheet must have another template to
generate a response to this second application document. (This response also
could be in the form of an empty FNAplCommand element.)

For an example of this message-response cycle, see Chapter 4, “Asynchronous
Service Provider Use Case.”

For more information about the HTTP protocol, see the HTTP specification at
http://www.w3.org/Protocols/.

NOTE JMS is inherently an asynchronous communication protocol. This
section on round-trip communication applies only to proxies
configured for HTTP.

Performing Common iIS Stylesheet Transformations

52 iPlanet Integration Server • Backbone Integration Guide • August 2001

Message Examples
The following examples show templates you can include in stylesheets to send
messages to applications. The examples assume you have a proxy configured for
HTTP communication. The differences for proxies configured for JMS
communication are called out in notes.

The first example, from an inbound stylesheet, matches the NewOrder element in
the application document, then sends a simple SendResponse message to let the
application know the order has been received. Because the message has no content,
this purpose is implied and would need to be embedded in the application itself.

The second example, from an outbound stylesheet:

• matches an activity, indicated by the FNCndState element, whose state is
specified as “ProcessStarted” in the state document sent by the iIS process
engine

• generates a command to send an application document to the partner
application

• generates the application document

NOTE If you use SendResponse to respond to an incoming JMS message,
then the XML body must be blank. JMS is an asynchronous protocol,
and does not expect a response.

<xsl:template match="NewOrder">
<FNAplCommand Command="SendResponse"/>

</xsl:template>

NOTE If your proxy is configured to use JMS, you must still specify the
Method attribute, even though the attribute is ignored.

Performing Common iIS Stylesheet Transformations

Chapter 1 Introduction 53

Communicating With Non-Partner Applications
When a stylesheet causes a message to be sent to an application, the message is sent
to the proxy’s partner application by default. However, you might want the proxy
to send a message to another application as well. For example, you might want a
shipping application to be notified when each new order has been placed.

To send a message to an application other than a proxy’s partner, use the following
elements, which are children of the FNAplCommand element:

• FNDestination in your stylesheet to specify the address of the alternate
application

• FNMessage to embed the message

For example:

You can specify multiple FNDestinations elements with the SendMessage
command. The additional destinations can be used for failover purposes only. If
you want to implement a round-robin selection of destinations, you must configure
the proxy for multiple partners using the AddAplUrl FNscript commands. For
more information, refer to the FNscript Command Appendix in the iIS Backbone
System Guide.

<xsl:template match="FNCndState[@State=’ProcessStarted’]">
<FNAplCommand Command="SendMessage" Method="Post">
<FNMessage>

<OrderConfirmation>
OrderEntered

</OrderConfirmation>
</FNMessage>

</FNAplCommand>
</xsl:template>

<FNAplCommand Command="SendMessage" Method="Post">
<FNDestination Address="canis.dogstar.com:120"/>
<FNMessage>
<OrderConfirmation>

order number 123 placed on 3/3/00
</OrderConfirmation>

</FNMessage>
</FNAplCommand>

Performing Common iIS Stylesheet Transformations

54 iPlanet Integration Server • Backbone Integration Guide • August 2001

Transport Headers
iIS allows access to transport headers from within XSL stylesheets. Typically, you
should not need to access transport headers—application information is stored in
the message, not the header. However, some protocols place application
information in the header that needs to be available to the iIS system. For example,
you may need access to the SOAPAction header or the JMSType header.

Accessing Transport Headers
An iIS proxy makes headers available as XSLT parameters to a rule invocation. The
parameters can be accessed by prefixing the header name with the appropriate
protocol (either HTTP_ or JMS_). The following example illustrate how you can
access information from transport headers.

Specifying Transport Headers
The FNAplCommand contains the FNHeader element that allows you to define
headers for a protocol that can be added to a message. The format of the FNHeader
element is:

<FNHeader
Protocol=”ProtocolName”
Name=”HeaderName”
Value=”HeaderValue”
Quoted=”0 | 1”

/>

For the Quoted attribute, specify 1 to place the header in quotes. If you do not
specify this attribute, or specify 0, then the header is not placed in quotes.

. . .
<xsl:param name="HTTP_SOAPAction" select="default-value"/>
<xsl:param name="JMS_JMSType" select="default-value"/>
. . .
<xsl:template match="SomeRandomPlace">
<MySoapActionRequest>

<xsl:value-of select="$HTTP_SOAPAction"/>
</MySoapActionRequest>

</xsl:template>

Communicating Between Applications Without A Process Definition

Chapter 1 Introduction 55

The following example defines the SOAPAction header:

Communicating Between Applications Without A
Process Definition

In some relatively simple integration scenarios, you might want applications to
communicate with each other through an iIS backbone, but not use the process
management capabilities that the iIS process engine provides. For example, you
might want a personnel application to provide new employee information to other
applications, such as a defect tracking system. You can use iIS for this purpose
without having to define an iIS process or run a process engine.

A proxy that functions without interacting with an iIS process engine is called an
independent proxy. An independent proxy:

• operates as a server (or client/server) because the partner application is
responsible for initiating work

• receives an application document from its partner application document

• uses an inbound stylesheet to generate a command document that sends an
application document to one or more target applications

Because an independent proxy never receives a state document from an iIS
process engine, it does not require an outbound stylesheet. Rather, the inbound
stylesheet generates the commands to communicate with the target
application, as described in the next section. For an example of a stylesheet that
an independent proxy could use, see nopein.xsl in the TOOL adapter example
program directory.

<FNAplCommand Command="SendMessage" Method="Post">
<FNHeader Protocol="http"
Name="SOAPAction"
Value="urn:DoMySoapThing"
Quoted=”1”

/>
<FNMessage>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
. . .
</FNAplCommand

Communicating Between Applications Without A Process Definition

56 iPlanet Integration Server • Backbone Integration Guide • August 2001

Creating an Inbound Stylesheet
The inbound stylesheet for an independent proxy must match a pattern in the
source document, for example, the document element that defines an employee
record. The stylesheet then must generate the following elements in the command
document:

• FNCommand to indicate a command document

• FNAplCommand to specify that a command should be sent to an application

• FNDestination to specify the URL of any target application other than the
default partner configured for the proxy

If there is more than one target application, the stylesheet must provide an
appropriate match that generates an FNDestination element for each target
application.

• FNMessage to encapsulate the application document

Any information between the FNMessage start and end tags becomes the
application document that is sent to the target application.

With multiple target applications, you typically need multiple FNMessage
elements (one to correspond to each FNAplCommand element) to create the
appropriate application document tailored to each application’s information
needs and XML structure and vocabulary. An FNAplCommand message is also
needed for responding to the original request.

For more information about using these elements, see “Performing Common iIS
Stylesheet Transformations” on page 43 and the iIS Backbone online help.

For use cases involving independent proxies, see Chapter 9, “Independent Proxy
Use Case” and Chapter 10, “Independent Proxy Authentication Use Case.”

Communicating Between Applications Without A Process Definition

Chapter 1 Introduction 57

Configuring an Independent Proxy
When you configure an independent proxy, use the UseProcessEngine command
and set process engine usage to off.

If the proxy requires HTTP user authentication from the requestor application, use
the following FNScript commands:

• For the SetAuthentication command, set the Scheme parameter to Basic and
the Server parameter to Local.

• Use the SetCredentials command to specify the user name and password the
proxy expects from the application.

• Use SetPort to configure the port.

For more information about configuring proxies and specifying user
authentication, see the iIS Backbone System Guide.

Omitting iIS Process Management Functions
Use independent proxies for situations that have simple application integration
requirements. Without a connection to an iIS process engine, an iIS application
cannot make use of various process management features:

• Because there is no process definition, you cannot specify the timing of tasks.

• You cannot use iIS process attributes to store values that are shared by
different applications.

Your stylesheet is responsible for each value that you send between
applications. You also cannot store and transmit application documents as
XmlData process attributes.

• You have limited HTTP user authentication functions:

❍ You must use Basic authentication, which lets the independent proxy
require a user name and password when the requestor application initiates
a session. Using an iIS process definition allows FusionXML
authentication, for specifying additional user information.

❍ You cannot make use of such iIS user identification features as User
Validations, User Profiles, and Roles.

Communicating Between Applications Without A Process Definition

58 iPlanet Integration Server • Backbone Integration Guide • August 2001

• Without an iIS process engine, the proxy has no way to maintain state
information about the current status of an activity. Thus, if the proxy or
application fails, there is no way to recover information about which tasks are
current or completed.

If your iIS enterprise application is complex enough to require some number of
these features, you should redesign it to use an iIS process engine.

59

Chapter 2

Service Requestor Use Case

This chapter describes the XSL stylesheets you need to write and related
integration tasks you need to perform to enable a service requestor application to
initiate an iIS process.

If the proxy requires authentication from the service requestor before creating the
process, there are additional tasks you must perform. After you read this chapter,
see Chapter 5, “Service Requestor Authentication Use Case.”

For more information about the way in which iIS processes requests from service
requestors, see Appendix A, “Transforming Proxy Documents.”

Use Case Summary
The following table provides an overview of this use case:

Table 2-1 Overview of Service Requestor Use Case

Use Case Information Description

description A service requestor application attempts to initiate an iIS
process.

expected outcome The application’s proxy instructs the process engine to start the
process, and the proxy notifies the application that the process
has been started.

actors • service requestor application

• application proxy

• iIS process engine

Use Case Summary

60 iPlanet Integration Server • Backbone Integration Guide • August 2001

proxy document flow 1. Service requestor sends application document to proxy.

2. Proxy sends command document to engine to start the
process.

3. Proxy creates state document based on information from
engine about process.

4. Proxy generates command document that includes message
for application that request was received.

5. Proxy sends application document to service requestor.

Table 2-1 Overview of Service Requestor Use Case (Continued)

Use Case Information Description

Service Requestor

Proxy

 url

Application
Document

 url

Command
Document

 url

State
Document
(ProcStarted)

 url

Command
Document

(CreateProcess)

 url

Application
Document

1

2

3

4

5

Starting the iIS Process

Chapter 2 Service Requestor Use Case 61

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion.

Starting the iIS Process
Each iIS process has one application, called the service requestor, that initiates the
process. In the example application, the order entry application is the service
requestor.

When a service requestor sends an application document to its proxy, the proxy
must generate a command document to the iIS process engine. The command
document:

• contains the FNCommand document element to identify itself as a command
document

• instructs the engine to start the process

• passes any required process attributes (and possibly other process attributes)
to the engine

required stylesheets inbound stylesheet to transform application document into
command document to start process (Step 2)

outbound stylesheet to:

• transform state document into command document to notify
application (Step 4)

• transform message embedded in command document into
application document containing notification (Step 5)

other integration tasks • ensure that any iIS process attributes referred to in the
inbound command document are part of the process
definition

• use the AddListener FNscript command to configure a
proxy as a listener (HTTP server or JMS listener)

• you can also use the SetPort FNscript command to
configure the proxy as an HTTP server

Table 2-1 Overview of Service Requestor Use Case (Continued)

Use Case Information Description

Starting the iIS Process

62 iPlanet Integration Server • Backbone Integration Guide • August 2001

The proxy’s inbound stylesheet must contain the rules that cause this command
document to be generated correctly. The following subsections describe how to
include these rules in your inbound stylesheet.

The following steps assume that any user is authorized to start a process. For
information about how to allow only authorized users to create a process, see
Chapter 5, “Service Requestor Authentication Use Case.”

Configuration Notes
For proxies configured to use JMS, use the SetProtocol Name=JMS Fusion Script
command to specify information for connecting to a JMS provider application.

Adding Listeners
To enable the proxy to receive requests from the partner application, configure the
client as a listener (HTTP server or JMS listener) using the AddListener Fusion
Script command. When issuing this command specify the protocol you are using
for messaging (HTTP or JMS) and other information specific to the protocol.

If you specify HTTP, then you specify the port at which the proxy should receive
messages from an application.

If you specify JMS, then you specify the messaging model (point-to-point or
publish/subscribe) and other optional information for JMS messaging (JMS
message selectors, acknowledgement mode, and durable messaging behavior).

You can also use the SetPort command to configure an HTTP listener.

For more information about configuring proxies, including documentation on
Fusion Script commands, see the iIS Backbone System Guide.

Step 1: Generating the Document Element
An application proxy identifies a command document using the FNCommand
element as its document element. The first task your inbound stylesheet must
perform is to generate this document element.

Starting the iIS Process

Chapter 2 Service Requestor Use Case 63

To generate the FNCommand document element, include the following template in
your inbound stylesheet:

Transformation Notes
In the above template:

• The match could also have been on the document element of the application
document. It is good practice, however, to match the root element, because this
match is guaranteed to be successful.

• The xsl:apply-templates element ensures that the XSLT processor processes
all children of the root element of the application document. Without the
xsl:apply-templates element, the XSLT processor would complete its work,
and the FNCommand element would be generated as an empty element.

Step 2: Instructing the Engine to Start the
Process
Your inbound stylesheet next must generate a command to the iIS process engine
to start the process. This command is contained in the FNCndCommand element,
which has two attributes:

• Command tells the engine what action to take, in this case, to start a process.

• ProcessName tells the engine the name of the process to start.

<xsl:template match="/">
<FNCommand>
<xsl:apply-templates/>

</FNCommand>
</xsl:template>

Starting the iIS Process

64 iPlanet Integration Server • Backbone Integration Guide • August 2001

To generate the appropriate FNCndCommand element and attributes, include a
template similar to the following in your inbound stylesheet:

Transformation Notes
In the above template:

• The xsl:apply-templates element continues the recursive processing begun
in “Step 1: Generating the Document Element” on page 62. Thus, the
FNCndCommand element is generated within its parent FNCommand element, and
the elements you create in the next step become children of FNCndCommand.

• The stylesheet supplies both the command for the engine and the name of the
process to start. Thus, the application does not need to have knowledge of this
information.

Step 3: Passing Process Attributes to the Engine
The next step in starting the process is to supply the iIS process engine with values
for the required process attributes. This task is accomplished by:

• creating a process attribute list, indicated by an FNProcessAttributeList
element

• creating each process attribute, indicated by an FNProcessAttribute element

• copying the appropriate values from the application document

For procedures for creating process attributes, see “Generating Process Attributes”
on page 43.

Your process definition can contain process attributes of type XmlData that contain
well-formed XML documents as their values. In the example application, the entire
application document is passed as the value of the StartingMessage process
attribute. You also could pass part of the application document as a process
attribute in addition t, or instead of, the entire application document.

<xsl:template match="NewOrder">
<FNCndCommand Command="CreateProcess"

ProcessName="FNOrdersProcess">
<xsl:apply-templates/>

</FNCndCommand>
</xsl:template>

Starting the iIS Process

Chapter 2 Service Requestor Use Case 65

For information on including an application document in a process attribute, see
“Transmitting Application Documents as Process Attributes” on page 47.

Command Document Example
The following command document, generated from the service requestor’s
application document, is created by the preceding steps.

Code Example 2-1 Command Document, Service Requestor Use Case

<FNCommand>

<FNCndCommand Command="CreateProcess"
ProcessName="FNOrdersProcess">

<FNProcessAttributeList>
 <FNProcessAttribute Name="Billee"

Type="TextData">Jack</FNProcessAttribut
e>

<FNProcessAttribute Name="Shippee"
Type="TextData">Jill</FNProcessAttribut

e>
<FNProcessAttribute Name="ItemCount"

Type="TextData">12</FNProcessAttribute>
<FNProcessAttribute Name="OrderID"

Type="TextData">555</FNProcessAttribute
>

<FNProcessAttribute Name="StartingMessage" Type="XmlData">

<MsgDoc>
<NewOrder>

<Atts>
<Att>

<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue>Jack</AttValue>

</Att>
<Att>

<AttName>Shippee</AttName>
<AttType>TextData</AttType>
<AttValue>Jill</AttValue>

</Att>
<Att>

<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue>12</AttValue>

</Att>
<Att>

<AttName>OrderID</AttName>
<AttType>TextData</AttType>
<AttValue>555</AttValue>

Transforming State Information

66 iPlanet Integration Server • Backbone Integration Guide • August 2001

Document Notes
In the above command document:

• The application document is sent to the engine as a process attribute of type
XmlData. This step is somewhat redundant in this case and is shown for
example purposes only. The information about the order that the engine
actually uses is contained in the other process attributes, which contain the
same information as the application document.

• The CDATA sections shown in the actual XML that is generated when you run
the example application are omitted here for the sake of simplicity. CDATA
sections allow you to include characters that are generally processed as XML
markup, such as “<” or “>”, without having the processor replace them with
entities, such as “<” or “>”.

Transforming State Information
When the process engine notifies the proxy that the process was started, the proxy
generates a state document that contains:

• the state (“ProcessStarted”) of the new process

• the process name and ID

• the current value of the process attributes used by the process

</Att>
<Atts>

</NewOrder>
</MsgDoc>

</FNProcessAttribute>
</FNProcessAttributeList>

</FNCndCommand>
</FNCommand>

Code Example 2-1 Command Document, Service Requestor Use Case (Continued)

Transforming State Information

Chapter 2 Service Requestor Use Case 67

The proxy’s outbound stylesheet must include templates that cause the following
actions to take place:

• The proxy generates a command document with a command to send the
application a message.

• The proxy generates the application document containing the appropriate
message.

The following subsections describes how to include these rules in your outbound
stylesheet.

Step 1: Generating the Document Element
The first step the outbound stylesheet must perform is to generate the
FNCommand element that designates a command document. The template for this
task in the outbound stylesheet is the same as in the inbound stylesheet.

For instructions for generating the document element for a command document,
see “Step 1: Generating the Document Element” on page 62.

Step 2: Generating the Application Command
The next step your outbound stylesheet must perform is to generate the commands
to send a message to the application.

➤ To generate these commands

1. Create a template that matches a FNCndState element in the state document
whose State attribute has a value of “ProcessStarted.”

2. Generate an FNAplCommand element whose Command attribute has a value of
“SendMessage” and whose Method attribute specifies the HTTP method (Get
or Post).

3. Generate an FNMessage element to hold the message to the application.

NOTE If your proxy is configured to use JMS, you must still specify an
HTTP method, even though this method is ignored when using
JMS.

Transforming State Information

68 iPlanet Integration Server • Backbone Integration Guide • August 2001

To generate the appropriate FNAplCommand element and attributes, include a
template like the following in your outbound stylesheet

Transformation Notes
In the above template:

• The full /FNState/FNCndState[@State=’ProcessStarted’] location path is
used for example purposes only. The parent (FNState) element is not
necessary, because the source document contains no other FNCndState
elements with different parents (that is, the FNCndState element always
appears as a child of the FNState element in a state document).

For more information about specifying location paths, see the iIS Backbone
online Help and the XPath Recommendation at http://www.w3.org.

• The xsl:apply-templates element ensures that the message content (to be
generated by the template in the next section) is placed within the FNMessage
element.

For more information about sending messages to applications, see “Sending
Messages to Applications” on page 49.

Step 3: Creating the Message Content
After you create the FNMessage element, you create its contents. Whatever is
contained between the start and end tags of the FNMessage element is returned as
an application document to the service requestor.

<xsl:template
match="/FNState/FNCndState[@State=’ProcessStarted’]">
<FNAplCommand Command="SendMessage" Method="Post">

<FNMessage>
. . . rules to generate message content (Step 3)

</FNMessage>
</FNAplCommand>

</xsl:template>

Transforming State Information

Chapter 2 Service Requestor Use Case 69

The outbound application document can contain whatever information the
application expects. In the example application, the application document contains:

• an OrderEntered element, which indicates in the application’s XML
vocabulary that the order was placed successfully

• a confirmation number, which is generated from the value of the Process ID

For a template that generates the confirmation number, see the next section,
“Step 4: Generating Values for the Application.”

To generate the OrderEntered element, include the following transformations
within the template from the previous step:

Transformation Notes
In the above template:

• The transformation is a continuation of the one shown in the previous section,
“Step 2: Generating the Application Command.” The templates are broken out
here for illustration purposes, but your stylesheet would contain only one
FNMessage element to generate this application document.

• The xsl:apply-templates element ensures that the confirmation number
element (shown in the next section) is created as a child of the OrderEntered
element.

<FNMessage>
<OrderEntered>

<xsl:apply-templates/>
</OrderEntered>

</FNMessage>

NOTE FNMessage was created in

There is a cross reference marker next to the end-of-paragraph
marker in the above paragraph. This note is not in the Integration
PDF file.

Transforming State Information

70 iPlanet Integration Server • Backbone Integration Guide • August 2001

Step 4: Generating Values for the Application
The final step in creating the application document is to pass back to the
application any information it needs. You do so by transforming values in the state
document, which might have no meaning to the application in their present form,
into a different form that the application can understand.

In the example application, the Process ID is transformed into a confirmation
number required by the order entry application. Whereas the Process ID itself is
meaningless to the application, it provides a unique value that can be transformed
easily into the value of an element, the confirmation number, that is meaningful to
the application.

To generate the confirmation number, your outbound stylesheet must:

• Match the the FNIdentity child of the relevant FNCndState element

• create the Cfnumber element

• copy the Process ID as the value of the Cfnumber element

To accomplish these tasks, include a template like the following in your outbound
stylesheet:

Transformation Notes
In the above template:

• The template matches the FNIdentity child element of an FNCndState
element whose State attribute has a value of “ProcessStarted.” The
FNIdentity element conveys identifying process information in the state
document.

• The xsl:value-of element selects the value of the ProcessID attribute of the
FNIdentity element and copies this value to the results document as the
text-node child of the Cfnumber element.

For more information about extracting values from FNIdentity attributes, see
“Supplying Activity Information to Applications” on page 48.

<xsl:template
match="FNCndState[@State=’ProcessStarted’]/FNIdentity">
<Cfnumber>

<xsl:value-of select="@ProcessID">
</Cfnumber>

</xsl:template>

Transforming State Information

Chapter 2 Service Requestor Use Case 71

Generated Document Examples
The following sections provide examples of the XML documents that a proxy
generates when an iIS process starts.

State Document
A proxy generates a state document similar to the following after the process
engine informs it that a process has been started.

In the following example state document, note the following:

• FNState is the document element

• FNCndState is the state of the process

• FNProcessAttributeList is the application dictionary process attribute list

• “StartingMessage” is an FNProcessAttribute

• MsgDoc is the original service requestor application document

Code Example 2-2 State Document, Service Requestor Use Case

<?xml version="1.0"?>

<FNState>
<FNCndState State="ProcessStarted">

<FNIdentity
ProcessID="52"
ProcessName="FNOrdersProcess"/>

<FNProcessAttributeList>
<FNProcessAttribute Name="StartingMessage"

Type="TextData">
<MsgDoc>
<NewOrder>
<Atts>
<Att>
<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[fred]]></AttValue>

</Att>
<Att>

<AttName>Shippee</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[fred]]></AttValue>

</Att>
<Att>

<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[20]]></AttValue>

Transforming State Information

72 iPlanet Integration Server • Backbone Integration Guide • August 2001

Command Document
The following command document is generated from the above state document by
the transformations described in this chapter.

Application Document
The lines between the start and end tags of the FNMessage element in the above
command document make up the application document that is sent to the service
requestor as the response to its initial message.

</Att>
<Att>

<AttName>OrderID</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[15]]></AttValue>

</Att>
</Atts>
</NewOrder>

</MsgDoc>
</FNProcessAttribute>

</FNProcessAttributeList>
</FNCndState>

</FNState>

<FNCommand>
<FNAplCommand Command="SendMessage" Method="Post">
<FNMessage>
<OrderEntered>
<Cfnumber>
1234
</Cfnumber>
</OrderEntered>
</FNMessage>
</FNAplCommand>
</FNCommand>

Code Example 2-2 State Document, Service Requestor Use Case (Continued)

73

Chapter 3

Synchronous Service Provider
Use Case

This chapter describes the XSL stylesheets and related integration tasks that enable
a proxy to initiate a synchronous session with a service provider application. In this
case, the proxy initiates an HTTP session by sending a request for work to a service
provider, and the service provider performs the work and returns a notice of
completion during the same HTTP session. (Because the Java Message Service is
inherently asynchronous, this chapter only discusses synchronous sessions
configured to use HTTP for communication.)

If the proxy and service provider communicate asynchronously, that is, the proxy
sends a request during one HTTP session, and the service provider responds send
notice of completion of work during a later session, then you must perform
additional tasks. For more information about asynchronous service providers, read
this chapter, then see Chapter 4, “Asynchronous Service Provider Use Case.”

If the service provider requires authentication from the proxy before performing
the activity, then you must perform additional tasks, also. For more information
about enabling authentication for a service provider proxy, read this chapter (and
Chapter 4 if applicable), then see Chapter 6, “Service Provider Authentication Use
Case.”

For information about the iIS processing involved in requesting a service provider
to perform an activity, see Appendix A, “Transforming Proxy Documents.”

The service provider application (or its adapter) determines whether synchronous
or asynchronous communication takes place with the partner proxy.

Use Case Summary

74 iPlanet Integration Server • Backbone Integration Guide • August 2001

Use Case Summary
The following table provides an overview of this use case:

Table 3-1 Overview of Synchronous Service Provider Use Case

Use Case Information Description

description A proxy offers an ACTIVE activity to a service provider and
waits for the service provider to send notification of completion
of wok before the process can proceed.

expected outcome The proxy sends a message to the application instructing it to
start the activity; the application completes the activity and
notifies the proxy

actors • iIS process engine

• application proxy

• service provider application

proxy document flow 1. Proxy generates an “ActivityStarted” state document
based on a call from the engine that the activity has entered
the ACTIVE state.

2. Proxy generates command document with request for
service provider.

3. Proxy sends HTTP request to service provider with
application document in the message.

4. Service provider sends application document to proxy with
message that activity was performed.

5. Proxy generates command document to notify engine that
activity is complete.

Use Case Summary

Chapter 3 Synchronous Service Provider Use Case 75

proxy document flow
(continued)

required stylesheets outbound stylesheet to:

• transform state document into command document that
sends request to service provider (Step 2)

• generate application document containing request to service
provider (Step 3)

inbound stylesheet to transform application document into
command document to notify engine that application
performed the activity (Step 5)

other integrator tasks • use application codes in the iIS application dictionary that
the application understands

• use the AddAplUrl FNscript command to configure the
proxy as an HTTP client

Table 3-1 Overview of Synchronous Service Provider Use Case (Continued)

Use Case Information Description

Proxy

 url

Application
Document

 url

Command
Document

 url

Application
Document

4

2

3
Service Provider

 url

State
Document

(ActivityStarted)

1
 url

Command
Document
(CmpltActvty)

5

Communicating Synchronously With a Service Provider

76 iPlanet Integration Server • Backbone Integration Guide • August 2001

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion.

Communicating Synchronously With
a Service Provider

After a service requestor has started an iIS process, the engine offers subsequent
activities in the process to service provider applications. In the example
application, after an order is placed, the engine asks the credit verification service
to provide a credit check.

The process cannot proceed until the credit verification application has responded
to its proxy with the results of the credit check. The proxy sends the request to the
application as an HTTP request, and the service provider returns an
acknowledgment of completion (or possibly inability to complete the activity) as
the response for the HTTP request. The type of communication, in which the
process waits for the application to respond before proceeding, is known as
synchronous communication.

Because the request to the service provider and the application’s response take
place within the context of the same HTTP request/response session, your
outbound stylesheet does not need to provide the application with identifying
information about the activity, and the application does not need to return the
identifying information to the proxy.

When the activity enters the ACTIVE state, the proxy generates a state document
that:

• indicates that the proxy has started the activity

• contains the current value of any process attributes specified in the activity’s
application dictionary item

• contains identifying information about the activity, such as the unique process
ID and activity ID that the engine generates, as well as the process name,
activity name, and application code

The proxy uses the state document to generate a command document that:

• contains the FNCommand document element to identify itself as a command
document

• sends a message to the application to perform the activity

• sends the application any values it needs to complete the activity

Communicating Synchronously With a Service Provider

Chapter 3 Synchronous Service Provider Use Case 77

The proxy’s outbound stylesheet must contain the rules that cause this command
document to be generated correctly. The following subsections describe how to
include these rules in your outbound stylesheet.

Configuration Note
To submit requests to the service provider, configure the proxy as an HTTP client.
To accomplish this task, issue the AddAplURL FNscript command, specifying the
application’s network address to which requests should be sent.

For information about configuring proxies as clients and servers, see the iIS
Backbone System Guide.

Step 1: Generating the Document Element
A proxy identifies a command document using the FNCommand element as its
document element. The first task your outbound stylesheet must perform is to
generate the document element for the command document.

For instructions for creating the FNCommand document element, see “Step 1:
Generating the Document Element” on page 62.

Step 2: Generating a Message to the Application
The proxy next must construct an application document to ask the application to
perform the activity. To accomplish this task, your outbound stylesheet needs rules
to:

• identify the started activity in the state document

• generate a command to send a message to the application

• create the FNMessage element whose content becomes the application
document that is sent to the application

• generate the document element and any top-level child elements for the
application document, so that the message is meaningful to the application

After you have created this application document structure, you can generate the
content of the application document, as shown in the subsequent two sections.

Communicating Synchronously With a Service Provider

78 iPlanet Integration Server • Backbone Integration Guide • August 2001

To send a request to the service provider application, include a template like the
following in your inbound stylesheet:

Transformation Notes
In the above template:

• WorkRoot and NewWork are shown as examples of a document element and
top-level element, respectively, that an application might understand as
indicating a new request from a proxy.

• The xsl:apply-templates element ensures that the child elements from the
state document are processed to generate the content of the message, as shown
in the next sections.

Step 3: Providing the Message Content
After you construct the application document, your stylesheet must include
whatever information the application needs to perform the activity. In the example
application, the service provider requires:

• the application code, which identifies the activity to the application

The application code is defined in the application dictionary entry for the
application when the iIS process is defined. Thus the application should
understand this value when it retrieves it from the application document.

• the list of process attributes, in a form that the application understands
(described in “Step 4: Sending Process Attribute Values” on page 79)

The application code value is included as one of the attributes of the FNIdentity
element in the state document that the proxy generates for the activity.

<xsl:template match="FNCndState[@State=’ActivityStarted’]">
<FNAplCommand Command="SendMessage" Method="Post"/>
<FNMessage>
<WorkRoot>
<NewWork>
<xsl:apply-templates/>
</NewWork>
</WorkRoot>
</FNMessage>
</FNAplCommand>
</xsl:template>

Communicating Synchronously With a Service Provider

Chapter 3 Synchronous Service Provider Use Case 79

To include the application code in the message to the application, include the
following template in your outbound stylesheet:

Transformation Notes
The xsl:apply-templates element shown in the previous step ensures that the
WorkType element is generated as a child of the NewWork element.

Step 4: Sending Process Attribute Values
You also must send the application the values of any process attributes that it uses.
The state document that the proxy generates for the active activity contains an
FNProcessAttributeList element containing FNProcessAttribute child
elements. Each of the FNProcessAttribute elements corresponds to a process
attribute in the application dictionary entry for the activity.

To send the process attribute values to the service provider application, your
outbound stylesheet must transform these FNProcessAttributeList element and
FNProcessAttribute elements in the state document into a form that the
application can understand.

In the example application, values for two process attributes are sent to the
CreditCheck service provider application:

• the original service requestor application document

This document is the value of the StartingMessage process attribute, whose
type is XmlData. This process attribute is transformed into an element called
Order.

• a process attribute called CreditApproved, which holds the result of the credit
check

This process attribute is passed to the service provider as an element called
CreditApproved. The process attribute is passed with a default value of “No,”
and the application passes back an actual value (which also might be “No”)
when it responds to the proxy after performing the credit check.

<xsl:template match="FNIdentity">
<WorkType>
<xsl:value-of select="@ActivityAppCode" />
</WorkType>
</xsl:template>

Communicating Synchronously With a Service Provider

80 iPlanet Integration Server • Backbone Integration Guide • August 2001

For information on how the result value from the credit check is passed back to
the proxy, see “Receiving Synchronous Notification of Completion” on
page 84.

For an example of a template that retrieves a value from a process attribute, see
“Transforming Process Attribute Lists” on page 45. For an example of the
transformations used to send such an application document to an application, see
“Transmitting Application Documents as Process Attributes” on page 47.

Handling Redundant Values
In the example application, the information about the contents of the order is sent
to the CreditCheck service provider application by simply passing the original
application document. This method works fine in the example application, because
the CreditCheck application (and the other service providers) uses the same XML
vocabulary as the service requestor application.

In actual practice, your applications are likely to have different elements that
correspond to iIS process attributes. Thus, the outbound stylesheets for some
proxies might need to generate individual elements to hold certain values, even
though those values are embedded within the original service requestor
application document.

NOTE Because the service provider might send back a different value for
this process attribute, it must have a lock type of Write or
WriteQueue in the iIS process definition. For information about
creating process attributes and specifying lock types, see the iIS
Process Development Guide.

Communicating Synchronously With a Service Provider

Chapter 3 Synchronous Service Provider Use Case 81

Generated Document Examples
The following sections provide examples of the XML documents that a proxy
generates when the activity for a service provider application enters the ACTIVE
state.

State Document
A proxy generates a state document like the following after the iIS process engine
informs it that an activity has entered the ACTIVE state.

In the following example state document, note the following:

• FNState is the state document element

• FNCndStateState is the state of the started activity

• FNIdentity contains process/activity information

• FNProcessAttributeList is the process attribute list from the application
dictionary

• “StartingMessage” is an FNProcessAttribute

• MsgDoc is the service requestor application document

Code Example 3-1 State Document, Synchronous Service Provider
Use Case

<?xml version="1.0"?>
<FNState>

<FNCndState State="ActivityStarted">
<FNIdentity

ProcessID="52"
ProcessName="FNOrdersProcess"
ActivityID="5"
ActivityName="CreditCheck"
ActivityAppCode="CreditCheck"/>

<FNProcessAttributeList>
<FNProcessAttribute

Name="CreditApproved"
Type="TextData">
No

</FNProcessAttribute>
<FNProcessAttribute

Name="StartingMessage"
Type="XmlData">
<MsgDoc>

<NewOrder>
<Atts>
<Att>

Communicating Synchronously With a Service Provider

82 iPlanet Integration Server • Backbone Integration Guide • August 2001

Command Document
The following table shows the entire command document that is generated by the
preceding steps.

In the following example command document, note the following:

• FNMessage contains the application document

• OrderEntered is the document element of the application document

• WorkRoot is the top-level element of the application document

• WorkType holds the value of application code

• SPAtts is the service provider value list

<AttName>Billee</AttName>
<AttType>XmlData</AttType>
<AttValue><![CDATA[fred]]></AttValue>

</Att>
<Att>

<AttName>Shippee</AttName>
<AttType>XmlData</AttType>
<AttValue><![CDATA[fred]]></AttValue>

</Att>
<Att>

<AttName>ItemCount</AttName>
<AttType>XmlData</AttType>
<AttValue><![CDATA[20]]></AttValue>

</Att>
<Att>

<AttName>OrderID</AttName>
<AttType>XmlData</AttType>
<AttValue><![CDATA[15]]></AttValue>

</Att>
</Atts>

</NewOrder>
</MsgDoc>

</FNProcessAttribute>
<FNProcessAttribute

Name="Status"
Type="TextData">
Invoiced

</FNProcessAttribute>
</FNProcessAttributeList>

</FNCndState>
</FNState>

Code Example 3-1 State Document, Synchronous Service Provider
Use Case (Continued)

Communicating Synchronously With a Service Provider

Chapter 3 Synchronous Service Provider Use Case 83

• Each SPAtt contains service provider elements

• MsgDoc holds the service requestor application document

Code Example 3-2 Command Document, Synchronous Service Provider
Use Case

<FNCommand>
<FNAplCommand Command="SendMessage" Method="Post">
<FNMessage>

<OrderEntered>
<WorkRoot>

<NewWork>
<WorkType>CreditCheck</WorkType>
<SPAtts>
<SPAtt>
<SPAttName>Order</SPAttName>
<SPAttType>XmlData</SPAttType>
<SPAttValue>
<MsgDoc>
<NewOrder>
<Atts>
<Att>
<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue>Jack</AttValue>

</Att>
<Att>
<AttName>Shippee</AttName>
<AttType>TextData</AttType>
<AttValue>Jill</AttValue>

</Att>
<Att>
<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue>12</AttValue>

</Att>
<Att>
<AttName>OrderID</AttName>
<AttType>TextData</AttType>
<AttValue>555</AttValue>

</Att>
</Atts>

</NewOrder>
</MsgDoc>

</SPAttValue>
</SPAtt>
<SPAtt>
<SPAttName>CreditApproved</SPAttName>
<SPAttType>TextData</SPAttType>
<SPAttValue>No</SPAttValue>

</SPAtt>
</SPAtts>

</NewWork>
</WorkRoot>

Receiving Synchronous Notification of Completion

84 iPlanet Integration Server • Backbone Integration Guide • August 2001

Application Document
The lines between the start and end tags of the FNMessage element in the above
command document make up the application document that is sent to the service
provider to perform the activity.

The actual command document that the example application generates has been
modified slightly here to differentiate more clearly between the values from the
service requestor (the Atts and Att elements in the original service requestor
application document) and the values understood by the service provider (the
SPAtts and SPAtt elements).

Receiving Synchronous Notification of
Completion

After the service provider performs its activity, it sends an application document as
an HTTP response to inform the proxy that the activity has been completed. This
application document also contains the current values of any process attributes
changed by the activity.

The proxy uses this application document to generate a command document that:

• contains the FNCommand document element to identify itself as a command
document

• sends a command to the iIS process engine to complete the activity

• returns values for any process attributes that were changed by the service
provider

The proxy’s inbound stylesheet must contain the rules that cause this command
document to be generated correctly. The following subsections describe how to
include these rules in your inbound stylesheet.

</OrderEntered>
</FNMessage>

</FNAplCommand>
</FNCommand>

Code Example 3-2 Command Document, Synchronous Service Provider
Use Case (Continued)

Receiving Synchronous Notification of Completion

Chapter 3 Synchronous Service Provider Use Case 85

Step 1: Generating the Document Element
An application proxy identifies a command document by the FNCommand element
as its document element. The first specific task your inbound stylesheet must
perform is to generate the document element for the command document.

For instructions for creating the FNCommand document element, see “Step 1:
Generating the Document Element” on page 62.

Step 2: Sending a Command to the Engine
The command document next must instruct the engine to complete the activity. In
the example application, the inbound stylesheet performs this task by matching the
WorkCompleted element in the application document and transforming it into a
CompleteActivity command.

To instruct the engine to complete the activity, include a template like the
following in your inbound stylesheet:

Transformation Notes
In the above template:

• The “WorkCompleted” element from the application document indicates that
the activity was successfully completed. If the application potentially could
report some other result, you would need a template to match the result and
generate the appropriate FNCndCommand Command attribute, such as
“Rollback Activity” or “AbortActivity.”

• The xsl:apply-templates element ensures that the process attribute list, to be
generated by the next step, is placed within the start and end tags of the
FNCndCommand element.

<xsl:template match="WorkCompleted">
<FNCndCommand Command="CompleteActivity">
<xsl:apply-templates/>

</FNCndCommand>
</xsl:template>

Receiving Synchronous Notification of Completion

86 iPlanet Integration Server • Backbone Integration Guide • August 2001

Step 3: Returning Updated Process
Attribute Values
The final task the command document performs is to return the current values for
any process attributes that were affected by the application. To accomplish this
task, your inbound stylesheet must:

• construct an FNProcessAttributeList element

• construct an FNProcessAttribute element with the appropriate Name and
Type attributes for each corresponding Att element (and its child elements) in
the application document

• retrieve the current values from the application document

For information about transforming application document values into command
document process attribute lists, see “Generating Process Attributes” on page 43.

Command Document Example
The following table shows the entire command document that is generated by the
preceding steps.

In the following example command document, note the following:

• FNProcessAttributeList contains the process attribute list

• The FNProcessAttribute with the name “Starting Message” contains the
application document

• MsgDoc is the document element of the application document

• The FNProcessAttribute with the name “Credit Approved” contains the
updated process attribute value (credit is approved)

Receiving Synchronous Notification of Completion

Chapter 3 Synchronous Service Provider Use Case 87

Code Example 3-3 Command Document Example, Synchronous Service Provider
Use Case

<FNCommand>
<FNCndCommand Command="CompleteActivity">
<FNProcessAttributeList>

<FNProcessAttribute Name="StartingMessage"
Type="XmlData">

<MsgDoc>
<NewOrder>
<Atts>
<Att>
<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue>Jack</AttValue>

</Att>
<Att>
<AttName>Shippee</AttName>
<AttType>TextData</AttType>
<AttValue>Jill</AttValue>

</Att>
<Att>
<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue>12</AttValue>

</Att>
<Att>
<AttName>OrderID</AttName>
<AttType>TextData</AttType>
<AttValue>555</AttValue>

</Att>
</Atts>

</NewOrder>
</MsgDoc>

</FNProcessAttribute>
<FNProcessAttribute Name="CreditApproved"

Type="TextData">
Yes
</FNProcessAttribute>

</FNProcessAttributeList>
</FNCndCommand>

</FNCommand>

Receiving Synchronous Notification of Completion

88 iPlanet Integration Server • Backbone Integration Guide • August 2001

Document Notes
In the above command document:

• Because there is no FNIdentity element to identify the process and activity,
the proxy assumes that the document refers to the current process and activity.

For information about command documents for asynchronous
communication, see Chapter 4, “Asynchronous Service Provider Use Case.”

• The CreditApproved process element contains the result of the application’s
credit check. This process attribute must have been defined in the application
dictionary as writable.

89

Chapter 4

Asynchronous Service Provider
Use Case

This chapter describes the XSL stylesheets and related integration tasks that enable
a proxy to communicate asynchronously with a service provider application.

For basic information about submitting activities to service providers, see
Chapter 3, “Synchronous Service Provider Use Case.”

The service provider application (or its adapter) determines whether synchronous
or asynchronous communication takes place with the partner proxy. For
asynchronous communication, proxies can be configured to use either HTTP or the
Java Message Service (JMS).

Use Case Summary
The following table provides an overview of this use case:

Table 4-1 Overview of Asynchronous Service Provider Use Case

Use Case Information Description

description A proxy offers an ACTIVE activity to a service provider, which
returns the disposition of the request to the proxy at a later time,
during a separate session.

expected outcome The proxy sends a message to the application instructing it to
start the activity; the application confirms receipt of the request,
then performs the activity and notifies the proxy at a later time
that it has completed the activity.

Use Case Summary

90 iPlanet Integration Server • Backbone Integration Guide • August 2001

actors involved • the iIS process engine

• the application proxy

• the service provider application

proxy document flow 1. Proxy generates an “ActivityStarted” state document
based on a call from the engine that the activity has entered
the ACTIVE state.

2. Proxy generates command document with request for
service provider.

3. Proxy sends request to service provider as application
document, which includes identifying information about the
activity.

4. (HTTP sessions) Service provider acknowledges receipt of
application document.

5. At some later point, service provider sends application
document to proxy with completion message and
information to identify the completed activity.

6. Proxy generates command document to notify engine that
activity is complete.

7. (HTTP sessions) Proxy generates response to application to
complete HTTP message/response communication

Table 4-1 Overview of Asynchronous Service Provider Use Case (Continued)

Use Case Information Description

Use Case Summary

Chapter 4 Asynchronous Service Provider Use Case 91

Table 4-1 Overview of Asynchronous Service Provider Use Case (Continued)

Use Case Information Description

Proxy

 url

Application
Document

(with FNIdentity
info)

 url

Command
Document

 url

State
Document

(ActvtyStarted)

1

2

3

Service Provider

 url

Application
Document

(with FNIdentity
info)

5

 url

ack
msg

7

 url

Command
Document
(CmpltActvty)

6

 url

ack
msg

4

Use Case Summary

92 iPlanet Integration Server • Backbone Integration Guide • August 2001

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion. The
example applies to proxies configured to use either HTTP or JMS messaging,
calling out implementation differences between the communication protocols.

stylesheets required outbound stylesheet to:

• transform state document into command document that
sends request and identifying information to service
provider (Step 2)

• generate application document containing request to service
provider (Step 3)

• send acknowledgement to application’s completion message
(Step 7)

inbound stylesheet to:

• receive (and ignore) notification that request from proxy was
received (Step 4)

• transform subsequent application document into command
document to notify engine that application performed the
activity and identify the activity completed (Step 6)

Other integrator tasks • use the AddAplUrl FNscript command to configure proxies
as a sender (HTTP client or JMS sender)

• use the AddListener FNscript command to configure
proxies as a listener (HTTP server or JMS listener)

• you can also use the SetPort FNscript command to
configure the proxy as an HTTP server

• provide process definition with application codes that the
application understands

• ensure that the partner application can store and return
identifying information about the activity

Table 4-1 Overview of Asynchronous Service Provider Use Case (Continued)

Use Case Information Description

Communicating Asynchronously With a Service Provider

Chapter 4 Asynchronous Service Provider Use Case 93

Communicating Asynchronously With a
Service Provider

In some iIS processes, a proxy might send an activity to a service provider as a
request during one session, and the service provider responds with notice of
completion of work during a separate session. Such behavior, in which other
requests and responses intervene between the time the proxy sends the activity and
the time the application sends notification of complication, is known as
asynchronous communication.

For example, an order fulfillment process like the iIS example application might
include a service provider application that generates customer invoices. This
application might receive requests from the proxy, then hold them and generate
the invoices in batch mode at the end of the day. When the application notifies the
proxy that an invoice has been generated, it must be able to identify the order to
which the invoice refers.

When the service provider activity enters the ACTIVE state, the proxy generates a
state document that:

• indicates that the proxy has started the activity

• contains the current value of any process attributes specified in the activity’s
application dictionary item

• contains identifying information about the activity, such as the process ID and
activity ID, as well as the process name, activity name, and application code

Using the outbound stylesheet, the proxy uses the state document to generate a
command document that:

• contains the FNCommand document element to identify itself as a command
document

• sends a message to the application to perform the activity

• sends the application any process attribute values it needs to complete the
activity

• sends the application the identifying information from the FNIdentity
element

When the application later responds that it has completed the activity, it
returns any updated process attribute values, as well as the identifying
information, so that the proxy knows which activity has been completed.

Communicating Asynchronously With a Service Provider

94 iPlanet Integration Server • Backbone Integration Guide • August 2001

The proxy’s outbound stylesheet must contain the rules that cause this command
document to be generated correctly. The following subsections describes how to
include these rules in your outbound stylesheet.

Also, your inbound stylesheet might need a template to process an intermediate
application document that the service provider sends to acknowledge the proxy’s
request, before it responds with notification that the activity is completed. For
information about writing this template, see “Step 5: (HTTP Sessions) Receiving
Acknowledgment” on page 99.

Configuration Notes
For asynchronous communication, a proxy must submit requests to the service
provider during one session and receive acknowledgements during a separate
session. Thus, you must configure the proxy as both a sender and listener (HTTP
client/JMS sender and HTTP server/JMS listener).

For proxies configured to use JMS, use the SetProtocol Name=JMS Fusion Script
command to specify information for connecting to a JMS provider application.

Configuring a Sender
Use the AddAplURL Fusion Script command to configure the proxy as an HTTP
client or JMS sender. When issuing this command, for proxies configured for
HTTP, specify the application’s network address to which requests should be sent.
For proxies configured for JMS, specify the messaging model (point-to-point or
publish/subscribe) and other optional information for JMS messaging (such as JMS
priority, persistence, and other JMS specifications).

Configuring a Listener
Use the AddListener Fusion Script command to configure the proxy as an HTTP
server or JMS listener. When issuing this command specify the protocol you are
using for messaging (HTTP or JMS).

If you specify HTTP, then you specify the port at which the proxy should receive
messages from an application.

If specify JMS, then you specify the messaging model (point-to-point or
publish/subscribe) and other optional information for JMS messaging (JMS
message selectors, acknowledgement mode, and durable messaging behavior).

You can also use the SetPort command to configure an HTTP listener.

For more information about configuring proxies, see the iIS Backbone System Guide.

Communicating Asynchronously With a Service Provider

Chapter 4 Asynchronous Service Provider Use Case 95

Step 1: Generating the Document Element
An application proxy identifies a command document by using the FNCommand
element as its document element. The first specific task your inbound stylesheet
must perform is to generate the document element for the command document.

For instructions for creating the FNCommand document element, see “Step 1:
Generating the Document Element” on page 62.

Step 2: Generating a Message to the Application
The proxy next must construct an application document to ask the application to
perform the activity. To accomplish this task, your outbound stylesheet needs rules
to:

• match the started activity in the state document

• generate a command to send a message to the application

• create the FNMessage element, whose content is the application document that
is sent to the application

• generate the document element and any top-level child elements for the
application document, so that the message is meaningful to the application

After you have created this application document structure, you can generate the
content of the application document, as shown in subsequent sections.

To send a request to the service provider application, include a template similar to
the following in your inbound stylesheet:

<xsl:template match="FNCndState[@State=’ActivityStarted’]">
<FNAplCommand Command="SendMessage" Method="Post">
<FNMessage>

<WorkRoot>
<NewWork>

<xsl:apply-templates/>
</NewWork>

</WorkRoot>
</FNMessage>

</FNAplCommand>
</xsl:template>

Communicating Asynchronously With a Service Provider

96 iPlanet Integration Server • Backbone Integration Guide • August 2001

Transformation Notes
In the above template:

• WorkRoot and NewWork are shown as examples of elements that an application
might understand as indicating a new request from a proxy.

• The xsl:apply-templates element ensures that the child elements from the
state document, that is, the activity information and process attributes, are
processed to generate the content of the message, as shown in the next sections.

• If your proxy is configured to use JMS, you must still specify an HTTP method
for the FNAplCommand even though this method is ignored when using JMS.

Step 3: Providing Identifying Information
After you construct the application document, your stylesheet must generate its
content. In the case of asynchronous processing, the application document must
include the process ID and activity ID from the state document. These two values
together uniquely identify the activity to the iIS process engine. The application
must store these values until it performs the activity, and it then must return them
later to the proxy to identify the activity that was performed.

The application also can include the application code, which is included in the state
document. This value, which identifies the activity for the application to perform,
is defined in the application dictionary entry when the iIS process is defined.

You also must provide the application with any process attributes it requires, in a
form that the application understands. For information about transforming process
attributes, see “Step 4: Sending Process Attribute Values” on page 98.

The application code, process ID, and activity ID are contained in the state
document as values of attributes of the FNIdentity element. The service provider
uses the application code to determine what activity to perform. For more
information about passing the application code to the service provider, see “Step 3:
Providing the Message Content” on page 78.

In most cases, however, the application does not use the process ID and activity ID
as it does the application code, but simply stores these values as a string to pass
back to the proxy after performing the activity. Because the application does not
care about the contents of this string, the simplest method is pass the entire
FNIdentity element to the application, even though it contains redundant or
unnecessary information, such as the ActivityName attribute.

Communicating Asynchronously With a Service Provider

Chapter 4 Asynchronous Service Provider Use Case 97

Depending on the application, your outbound stylesheet might be able simply to
copy the FNIdentity element as it appears in the state document. Or you might
need to place the FNIdentity element inside an element that is part of the
application’s vocabulary, for example, an “AddtlInfo” element that the
application uses to store external information.

To summarize the transformations you must include in your outbound stylesheet:

1. Match the FNIdentity element in the state document.

2. Transform the value of the application code attribute into an element that the
application can use.

3. Pass the entire FNIdentity element to the application, possibly placing it
inside an element that is part of the application’s XML vocabulary.

To provide this information in the message to the application, include a template
like the following in your outbound stylesheet:

Transformation Notes
In the above templates:

• The xsl:copy-of element copies the FNIdentity element and everything
below it in the source document tree, which in this case are the attributes of
FNIdentity.

• The “.” expression indicates the current node in the source document, that is,
the point at which the match in the xsl:template element occurred (which in
this case is FNIdentity).

• If you pass the FNIdentity element to the application without placing it
within another element, you can omit the <AddtlInfo> and </AddtlInfo>
lines.

<xsl:template match="FNIdentity">
<WorkType>
<xsl:value-of select="@ActivityAppCode"/>

</WorkType>
<AddtlInfo>
<xsl:copy-of select="."/>

</AddtlInfo>
</xsl:template>

Communicating Asynchronously With a Service Provider

98 iPlanet Integration Server • Backbone Integration Guide • August 2001

Step 4: Sending Process Attribute Values
You also must send the application the values of any process attributes that it uses.
The state document that the proxy generates for the active activity contains an
FNProcessAttributeList element containing FNProcessAttribute child
elements. Each of these FNProcessAttribute elements corresponds to a process
attribute in the application dictionary entry for the activity.

To send the process attribute values to the service provider application, your
outbound stylesheet must transform the FNProcessAttributeList element and
FNProcessAttribute elements in the state document into a form that the
application understands.

This process is identical for synchronous and asynchronous activities. In the
example application (which contains no asynchronous activities), values for two
process attributes are sent to the CreditCheck service provider application:

• the original service requestor application document

This document is the value of the StartingMessage process attribute, whose
type is XmlData. This process attribute is transformed into an element called
Order.

• a process attribute called Status, which holds the current status of the order

When the billing application notifies the proxy that it has performed its
activity, the application document it sends back changes the status of the order
to “Invoiced.”

For information on how the result value from the credit check is passed back to
the proxy, see “Step 4: Returning Updated Process Attribute Values” on
page 108.

For an example of a template that retrieves a value from a process attribute, see
“Transforming Process Attribute Lists” on page 45. For an example of the
transformations used to send an entire application document as a single value, see
“Transmitting Application Documents as Process Attributes” on page 47.

NOTE Any process attribute for which the service provider might send
back an updated value must be specified with a lock type of Write
or WriteQueue in the iIS process definition. For information about
creating process attributes, see the iIS Process Development Guide.

Communicating Asynchronously With a Service Provider

Chapter 4 Asynchronous Service Provider Use Case 99

Step 5: (HTTP Sessions) Receiving
Acknowledgment
Because every HTTP request requires a response, the service provider must
acknowledge that it has received the proxy’s request to perform the activity. This
response is necessary because the application does not send the disposition of the
activity until some later time, at which point a new request/response cycle is
initiated.

The service provider can respond in either of two ways to the proxy’s request to
perform the activity:

• send only an HTTP header to complete the cycle

In this case, there is no message content for your inbound stylesheet to process.

• send an application document containing the acknowledgment

To avoid any unnecessary or possibly confusing processing of the application
document, it is good practice to use an empty template to ensure that the proxy
ignores this message. This template must match whatever application
document element specifies the acknowledgment.

You include this template in your inbound stylesheet for the application’s
proxy, because the communication is going from the application to the proxy.

To ensure that the proxy ignores the acknowledgment message, include a template
like the following in your inbound stylesheet:

<xsl:template match="WorkStatus[@Status=’Received’]"/>

NOTE This second request/response cycle must be completed by a
subsequent acknowledgment by the proxy. For information about
handling the application document received after the activity is
performed, see “Receiving Asynchronous Notification of
Completion” on page 104.

Communicating Asynchronously With a Service Provider

100 iPlanet Integration Server • Backbone Integration Guide • August 2001

Transformation Notes
In the above template:

• The inbound stylesheet matches the WorkStatus element whose Status
attribute has a value of “Received,” then instructs the XSL processor to ignore
it.

• This example is an arbitrary representation of how an application might send
the acknowledgment of the proxy’s request. The actual template your inbound
stylesheet uses depends, of course, on the XML your application uses to
represent the acknowledgment.

Generated Document Examples
The following sections provide examples of the XML documents that a proxy
generates when the activity for a service provider application enters the ACTIVE
state.

State Document
A proxy generates a state document like the following after the iIS process engine
informs it that an activity has entered the ACTIVE state.

In the following example state document, note the following:

• FNState is the state document element

• FNCndStateState is the state of the started activity

• FNIdentity contains process/activity information

• FNProcessAttributeList is the process attribute list from the application
dictinary

• The "Status" FNProcessAttribute contains the current value from the
previous activity

• “StartingMessage” is an FNProcessAttribute

• MsgDoc is the service requestor application document

Communicating Asynchronously With a Service Provider

Chapter 4 Asynchronous Service Provider Use Case 101

Code Example 4-1 State Document, Asynchronous Service Provider
Use Case

<?xml version="1.0"?>
<FNState>

<FNCndState State="ActivityStarted">
<FNIdentity

ProcessID="52"
ProcessName="FNOrdersProcess"
ActivityID="5"
ActivityName="OrderVerification"
ActivityAppCode="OrderVerification"/>

<FNProcessAttributeList>
<FNProcessAttribute Name="Status" Type="TextData">

CreditVerified
</FNProcessAttribute>
<FNProcessAttribute Name="StartingMessage"

Type="TextData">
<MsgDoc>
<NewOrder>
<Atts>
<Att>
<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[fred]]></AttValue>

</Att>
<Att>
<AttName>Shippee</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[fred]]></AttValue>

</Att>
<Att>
<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[20]]></AttValue>

</Att>
<Att>
<AttName>OrderID</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[15]]></AttValue>

</Att>
</Atts>

</NewOrder>
</MsgDoc>

</FNProcessAttribute>
</FNProcessAttributeList>

</FNCndState>
</FNState>

Communicating Asynchronously With a Service Provider

102 iPlanet Integration Server • Backbone Integration Guide • August 2001

Document Notes
The above state document is identical to the one shown in the synchronous
example in Chapter 3, “Synchronous Service Provider Use Case.” The engine
always provides the same information about the activity, and the proxy includes
this information in the state document, whether the activity is synchronous or
asynchronous.

Command Document
The following table shows the entire command document that is generated by the
preceding steps.

In the following example command document, note the following:

• FNMessage contains the application document

• OrderEntered is the document element of the application document

• WorkRoot is the top-level element of the application document

• WorkType holds the value of application code

• SPAtts is the service provider value list

• AddtlInfo holds a copy of FNIdentity from the state document

• Each SPAtt contains service provider elements

• MsgDoc holds the service requestor application document

Code Example 4-2 Command Document, Asynchronous Service
Provider Use Case

<FNCommand>
<FNAplCommand Command="SendMessage" Method="Post">

<FNMessage>
<OrderEntered>

<WorkRoot>
<NewWork>

<WorkType>CreditCheck</WorkType>
<AddtlInfo>

<FNIdentity
ProcessID="52"
ProcessName="FNOrdersProcess"
ActivityID="5"
ActivityName="BillPreparation"
ActivityAppCode="SendInvoice"/>

</AddtlInfo>
<SPAtts>

<SPAtt>

Communicating Asynchronously With a Service Provider

Chapter 4 Asynchronous Service Provider Use Case 103

Document Notes
The above command document is largely the same as that shown on page 82 for a
synchronous service provider activity, except that the asynchronous version adds
the AddtlInfo element to hold the FNIdentity element and its attributes.

<SPAttName>Order</SPAttName>
<SPAttType>XmlData</SPAttType>
<SPAttValue>
<MsgDoc>
<NewOrder>
<Atts>
<Att>
<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue>Jack</AttValue>

</Att>
<Att>
<AttName>Shippee</AttName>
<AttType>TextData</AttType>
<AttValue>Jill</AttValue>

</Att>
<Att>
<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue>12</AttValue>

</Att>
<Att>
<AttName>OrderID</AttName>
<AttType>TextData</AttType>
<AttValue>555</AttValue>

</Att>
</Atts>

</NewOrder>
</MsgDoc>

</SPAtt>
<SPAtt>
<SPAttName>Invoiced</SPAttName>
<SPAttType>TextData</SPAttType>
<SPAttValue>No</SPAttValue>

</SPAtt>
</SPAtts>

</NewWork>
</WorkRoot>

</OrderEntered>
</FNMessage>

</FNAplCommand>
</FNCommand>

Code Example 4-2 Command Document, Asynchronous Service
Provider Use Case (Continued)

Receiving Asynchronous Notification of Completion

104 iPlanet Integration Server • Backbone Integration Guide • August 2001

Application Document
The lines between the start and end tags of the FNMessage element in the above
command document make up the application document that is sent to the service
provider to request that it perform the activity.

In this application document:

• The values from the service requestor (the Atts and Att elements in the
original service requestor application document) are distinguished from the
values understood by the service provider (the SPAtts and SPAtt elements).

• The FNIdentity elements and attributes (contained within the AddtlInfo
element) are included to identify the activity for asynchronous processing.

• The service provider might return another application document to
acknowledge the proxy’s request. For information on handling such a
document, see “Step 5: (HTTP Sessions) Receiving Acknowledgment” on
page 99.

Receiving Asynchronous Notification of
Completion

After an asynchronous service provider performs the activity requested, it returns
an application document to its proxy. This document contains:

• a message that the activity was performed

• information to identify the activity performed

The proxy transforms this application document into a command document that
tells the iIS process engine to complete the activity. The proxy’s inbound stylesheet
must contain the rules that cause this command document to be generated
correctly.

HTTP Sessions
For HTTP sessions, because the application document begins a new HTTP
request/response cycle, the command document must contain an instruction to
send a response to the application, thus completing the cycle.

The following subsections describes how to include the necessary templates in
your inbound stylesheet to accomplish these tasks.

Receiving Asynchronous Notification of Completion

Chapter 4 Asynchronous Service Provider Use Case 105

Step 1: Generating the Document Element
An application proxy identifies a command document by using the FNCommand
element as its document element. The first specific task your inbound stylesheet
must perform is to generate the document element for the command document.

For instructions for creating the FNCommand document element, see “Step 1:
Generating the Document Element” on page 62.

Step 2: Sending a Command to the Engine
The command document next must instruct the engine to complete the activity. In
the example application, the inbound stylesheet performs this task by matching the
WorkCompleted element in the application document and transforming it into a
CompleteActivity command.

To instruct the engine to complete the activity, include a template like the
following in your inbound stylesheet. Refer to page 108 for information on
acknowledgement.

NOTE Although the service provider activities in the example application
are all synchronous, the command to the engine is the same for
asynchronous activities. The only difference in the command
document is the FNIdentity element, as described in “Step 3:
Identifying the Completed Activity to the Proxy” on page 106.

<xsl:template match="WorkCompleted">
<FNCndCommand Command="CompleteActivity">
<xsl:apply-templates/>

</FNCndCommand>
acknowledgment to application
</xsl:template>

Receiving Asynchronous Notification of Completion

106 iPlanet Integration Server • Backbone Integration Guide • August 2001

Transformation Notes
In the above template:

• The “WorkCompleted” element from the application document indicates that
the activity was successfully completed. If the application reported some other
result, you would need a template that matched the result and generated the
appropriate FNCndCommand Command attribute, such as “RollbackActivity”
or “AbortActivity.”

• The xsl:apply-templates element ensures that the FNIdentity element and
the process attribute list, which are generated by the templates shown in the
next two sections, respectively, are placed within the start and end tags of the
FNCndCommand element.

• The xsl:template element that matches the completed activity contains both
the FNCndCommand element to send the completion command to the engine and
the FNAplCommand element to send acknowledgment of completion to the
application.

For more information about acknowledging the completion of the activity, see
“Step 5: (HTTP Sessions) Acknowledging the Completion Message” on
page 108.

Step 3: Identifying the Completed
Activity to the Proxy
The next task your inbound stylesheet must perform is to return the process ID and
activity ID to the proxy, so that the proxy knows which activity to complete.
Assuming that your outbound stylesheet passed the entire FNIdentity element as
described in “Step 3: Providing Identifying Information” on page 96, your inbound
stylesheet can retrieve this information from the application document in either of
two ways.

FNIdentity as child element If the FNIdentity element was passed inside
another element, provide a template that matches that element, then copies into the
command document the FNIdentity element inside of the parent element.

Receiving Asynchronous Notification of Completion

Chapter 4 Asynchronous Service Provider Use Case 107

To retrieve the FNIdentity element from inside another element, include a
template similar to the following in your inbound stylesheet:

FNIdentity by itself If the FNIdentity element was passed on its own, provide a
template that matches it and copies it into the command document.

To retrieve the FNIdentity element directly from the application document,
include the following template in your inbound stylesheet:

Transformation Notes
In the above templates:

• Because the xsl:copy-of element is by definition recursive, copying the entire
segment of the source node tree from the point of the match, there is no need
for an xsl:apply-templates element to ensure that any children of the
FNIdentity element are copied.

• The “.” expression in the second template above indicates that the copying
should start at the point where the match was found, that is, at the FNIdentity
element itself.

• The proxy only requires the process ID and activity ID attributes to identify the
activity to complete. However, because the proxy ignores the additional
information, it is simpler to return the entire FNIdentity element than to
attempt to extract the two attributes from it.

<xsl:template match="AddtlInfo">
<xsl:copy-of select="FNIdentity"/>

</xsl:template>

<xsl:template match="FNIdentity">
<xsl:copy-of select="."/>

</xsl:template>

Receiving Asynchronous Notification of Completion

108 iPlanet Integration Server • Backbone Integration Guide • August 2001

Step 4: Returning Updated Process
Attribute Values
The final task the command document performs is to return the current values for
any process attributes that were affected by the application. In the example
application, the billing service provider returns an updated value of the Status
process attribute to indicate that it has sent an invoice for this order.

To return process attribute values to the proxy, your inbound stylesheet must:

• construct an FNProcessAttributeList element

• construct an FNProcessAttribute element with the appropriate Name and
Type attributes for each corresponding element (and its child elements) in the
application document

• retrieve the current values from the application document

For information about transforming application document values into command
document process attribute lists, see “Generating Process Attributes” on page 43.

Step 5: (HTTP Sessions) Acknowledging the
Completion Message
When the service provider sends the application document containing the
completion information, it initiates a new HTTP request/response cycle. Therefore,
the command document that the proxy generates must send a message back to the
application to complete the cycle.

The simplest way to accomplish this task is to generate an empty response message
to the application. You can place this message within the template that matches the
completed activity in the application document, as shown in “Step 2: Sending a
Command to the Engine” on page 105. Because you are generating the command to
the engine and the command to the application as a result of matching the same
element in the application document, your stylesheet only needs one template to
accomplish both tasks.

NOTE The application also returns the original service requestor
application document as the value of the StartingMessage process
attribute. However, the application does not change the value of this
process attribute.

Receiving Asynchronous Notification of Completion

Chapter 4 Asynchronous Service Provider Use Case 109

To generate a response to the service provider, include the following element in
your inbound stylesheet within the template that matches the completed activity in
the application document:

<FNAplCommand Command="SendResponse"/>

Transformation Notes
In the above template:

• The empty FNAplCommand element causes an HTTP message to be sent with a
header and no content. This communication is sufficient to complete the
request/response cycle.

• The empty FNAplCommand is an acceptable response to an incoming JMS
message (although not required when using JMS). This means you can use the
same template to handle incoming HTTP and JMS messages.

• For the complete template of which the application command is part, see “Step
2: Sending a Command to the Engine” on page 105.

Command Document Example
The following command document is generated by the preceding steps. In this
command document, note the following:

• FNCndCommand specifies the CompleteActivity command to the process
engine

• FNIdentity is the element returned by the application

• FNProcessAttributeList contains the process attribute list

• The FNProcessAttribute with the name “Starting Message” contains the
application document

• MsgDoc is the document element of the application document

• The FNProcessAttribute with the name “Status” contains the updated
process attribute value (the order has been invoiced)

• The FNAplCmd “Send Response” sends an empty response

Receiving Asynchronous Notification of Completion

110 iPlanet Integration Server • Backbone Integration Guide • August 2001

Code Example 4-3 Command Document Example, Asynchronous Service
Provider Use Case

<FNCommand>
<FNCndCommand Command="CompleteActivity">

<FNIdentity
ProcessID="52"
ProcessName="FNOrdersProcess"
ActivityID="5"
ActivityName="BillPreparation"
ActivityAppCode="SendInvoice"/>

<FNProcessAttributeList>
<FNProcessAttribute Name="StartingMessage"

Type="XmlData">
<MsgDoc>

<NewOrder>
<Atts>

<Att>
<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue>Jack</AttValue>

</Att>
<Att>

<AttName>Shippee</AttName>
<AttType>TextData</AttType>
<AttValue>Jill</AttValue>

</Att>
<Att>

<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue>12</AttValue>

</Att>
<Att>

<AttName>OrderID</AttName>
<AttType>TextData</AttType>
<AttValue>555</AttValue>

</Att>
</Atts>

</NewOrder>
</MsgDoc>

</FNProcessAttribute>
<FNProcessAttribute Name="Status"

Type="TextData">
Invoiced

</FNProcessAttribute>
</FNProcessAttributeList>

</FNCndCommand>
<FNAplCommand Command="SendResponse"/>

</FNCommand>

Receiving Asynchronous Notification of Completion

Chapter 4 Asynchronous Service Provider Use Case 111

Document Notes
In the above document:

• There are two children of the FNCommand document element—the
FNCndCommand element to send the CompleteActivity instruction to the
engine, and the FNAplCommand to send the empty response to the service
provider.

• The entire FNIdentity element is copied directly from the application
document. The proxy ignores any attributes it does not need.

• The value of the Status process attribute is changed to “Invoiced” to reflect
the status of the order as returned by the billing application.

Receiving Asynchronous Notification of Completion

112 iPlanet Integration Server • Backbone Integration Guide • August 2001

113

Chapter 5

Service Requestor Authentication
Use Case

This chapter describes how to enable a service requestor application to authenticate
itself to a proxy (configured for HTTP) to initiate an iIS process. The chapter
discusses the authentication documents you might need to write and related
integration tasks you need to perform. Authentication discussed in this chapter
applies only to proxies configured for HTTP communication.

For basic information about submitting a request to a proxy to create an iIS process,
see Chapter 2, “Service Requestor Use Case.”

For general information about authentication in an iIS enterprise application
(including authentication for proxies configured for JMS), see the iIS Backbone
System Guide.

Use Case Summary
The following table provides an overview of this use case:

Table 5-1 Overview of Service Requestor Authentication Use Case

Use Case
Information

Description

description A service requestor application attempts to initiate an iIS process
with a proxy that requires authentication.

expected outcome The application’s proxy accepts the application’s authentication,
instructs the iIS engine to start the process, and notifies the
application that the process has been started.

Use Case Summary

114 iPlanet Integration Server • Backbone Integration Guide • August 2001

actors involved • the service requestor application

• the application proxy

• the iIS process engine

proxy document
and message flow

1. Service requestor sends application document to proxy.

2. Proxy responds with message containing HTTP 401
Unauthorized error and WWW-Authenticate header
specifying the type of authentication it requires (Basic or
FusionXML).

3. Service requestor resends application document with
authorization header containing authentication information
(either user name/password combination or XML
authentication document).

4. Proxy submits the authentication information to the iIS engine
as a user profi.le.

5. After the engine validates the user profile, the proxy submits a
command document to create the process.

6. Proxy creates state document based on information received
from engine about the process.

7. Proxy generates command document that includes message for
application that request was received.

8. Proxy sends:

• application document to service requestor

• HTTP cookie to service requestor to authenticate it for rest of
current session

Table 5-1 Overview of Service Requestor Authentication Use Case (Continued)

Use Case
Information

Description

Use Case Summary

Chapter 5 Service Requestor Authentication Use Case 115

inbound stylesheet to transform application document into
command document to start process (Step 5)

outbound stylesheet to:

• transform state document into command document to notify
application (Step 6)

• generate application document containing notification (Step 8)

No stylesheets are required to process an authentication document
(for FusionXML authentication), because you create this document
using iIS’s XML structure and vocabulary.

Table 5-1 Overview of Service Requestor Authentication Use Case (Continued)

Use Case
Information

Description

Service Requestor

Proxy

 url

Application
Document

 url

Command
Document

 url

State
Document

(ProcessCreated)

 url

Command
Document

(CreateProcess)

5

6

7

8

Attribute 1
Attribute 2

WWW-Authenticate

401 Unauthorized

2

 url

Application
Document

3

Authorization Header

Cookie

Authentication
Info
4

 url

Application
Document

1

Authenticating a Service Requestor with a Proxy

116 iPlanet Integration Server • Backbone Integration Guide • August 2001

The remainder of this chapter describes this use case in more detail and provides
procedures for writing authentication documents and performing the tasks
required for authentication.

Authenticating a Service Requestor with a Proxy
When a service requestor sends its proxy a request to start an iIS process, the proxy
may require authentication from the service requestor before instructing the iIS
process engine to create the process.

Authentication Message Flow
The following flow of documents and messages takes place when a service
requestor attempts to start an iIS process with a proxy that requires authentication:

1. The service requestor sends an application document to the proxy.

2. The proxy rejects the document, and returns a “401 Unauthorized” error
message with a WWW-Authenticate header specifying the authentication type
(Basic or FusionXML).

3. The service requestor resubmits the application document with the
appropriate iIS user information included in the authorization header of the
HTTP message.

The specific information you supply depends on whether the proxy requires
Basic or FusionXML authentication. For information about supplying user
validation information, see “Step 4: Submitting Authentication Information”
on page 120.

Other integration
tasks

• use the SetAuthentication FNscript command to configure
the proxy to require authentication and to specify the type of
authentication

• create an iIS user validation against which to authentication the
user information submitted by the service requestor

Table 5-1 Overview of Service Requestor Authentication Use Case (Continued)

Use Case
Information

Description

Authenticating a Service Requestor with a Proxy

Chapter 5 Service Requestor Authentication Use Case 117

4. The proxy submits this user information to the iIS process engine, which
validates it against the user validation you specified when you created the iIS
process definition.

For more information about iIS user validations, see the iIS Process Development
Guide.

5. If the engine validates the user information that the proxy submitted on behalf
of the service requestor, the proxy:

❍ creates an HTTP session for the service requestor

❍ sends a cookie to the service requestor, so that the application is authorized
for subsequent requests during the current HTTP session

6. The proxy now can submit a command document to the engine requesting that
it create the process for the service requestor.

When the proxy accepts the application document from the service requestor, the
procedure for creating the process and notifying the application is the same as
described in Chapter 2, “Service Requestor Use Case.”

Enabling Authentication
To enable the service requestor to be authenticated and the process created, you
must take the following steps:

1. Configure the proxy to require authentication, and specify the type of
configuration required.

2. Create an iIS user validation against which to validate the user information
that the proxy submits.

3. Map your service requestor application users to users recognized by the iIS
user validation.

4. Configure the proxy with the proper identification corresponding to the iIS
user validation.

The following sections describe how to perform these tasks.

NOTE You could submit the user information with the application
document from the beginning and bypass Step 2 and Step 3.
However, it is good practice for security reasons not to send the
authorization information until the proxy requests it.

Authenticating a Service Requestor with a Proxy

118 iPlanet Integration Server • Backbone Integration Guide • August 2001

Step 1: Configuring the Proxy for Authentication
To require authentication from a service requestor, you must configure its proxy
for the type of authentication desired. To do so, issue the SetAuthentication
FNScript command as follows:

fnscript> SetAuthentication Basic

With Basic authentication, the service requestor sends a user name and password
combination to the proxy. For information about supplying this information, see
“Sending a User Name and Password” on page 120.

fnscript> SetAuthentication FusionXML

With FusionXML authentication, the service requestor sends an XML
authentication document with additional user information, for example, an iIS user
profile or role. For more information about creating authentication documents, see
“Sending an Authentication Document” on page 120.

Setting Session Parameters
You also can use the following FNscript commands to specify how the proxy
handles user sessions:

For more information about proxy configuration, see the iIS Backbone System Guide.

Command Description

SetSessionMaximum specifies how many concurrent
sessions the proxy accepts from the
service requestor

SetSessionTimeout specifies how long the proxy waits
for a response from a service
requestor

SetAuthentication Server=Local | Process Engine specifies the source of the user
authentication information

Authenticating a Service Requestor with a Proxy

Chapter 5 Service Requestor Authentication Use Case 119

Step 2: Creating a User Validation
When you define an iIS process, you create a user validation to authorize
connections to the process engine. The user validation examines information about
the user to determine whether or not the user is authorized to connect to an iIS
engine. Any application that attempts to start a session with the engine is verified
by the user validation.

If the service requestor’s proxy is configured to require authentication from its
partner application, then the proxy passes any user information that the
application submits to it (through either a user/password combination or an
authentication document) to the engine to verify against the user validation.

For information about submitting application user information to the proxy, see
“Step 4: Submitting Authentication Information” on page 120.

For information about defining iIS user validations, roles, and user profiles, see the
iIS Process Development Guide and the online Help for the appropriate Workshops.

Step 3: Mapping Application Users to iIS Users
For either Basic or FusionXML authentication, the proxy takes the information the
application supplies and submits it to the iIS process engine for validation. Neither
the proxy nor the engine has any knowledge of the application user. Therefore,
your application must be able to map its users to an iIS user recognized by the user
validation defined for the engine.

The simplest way for an application to supply the correct user information to the
proxy is for it to map all valid users to a small set of iIS users, or even a single iIS
user. For example, you might create an iIS user called OrderClerk. When both
Mary Smith and Joe Young connect to the service requestor application, the
application passes the OrderClerk user name and password to the proxy to
authenticate against the user validation for the process.

If you are using FusionXML authentication to specify additional information, the
same concept applies to user roles and profiles. That is, the application must map
each of its authorized users to an iIS role or profile as required by the user
validation for the engine.

For example, the iIS process that the example iIS application uses contains a role
called ProcessCreator. If the example application required FusionXML
authentication, then the StartAndVerify service requestor application would need
to pass this role name each time an application user attempted to start a session
with the proxy.

Authenticating a Service Requestor with a Proxy

120 iPlanet Integration Server • Backbone Integration Guide • August 2001

Step 4: Submitting Authentication Information
When a proxy that requires authentication returns a 401 Unauthorized message,
you must resubmit the service requestor application document with the
appropriate authorization information in the message header. The type of
authorization you specified using the FNscript proxy configuration command
SetAuthentication determines the information you must include:

• For Basic authentication, include a user name:password string.

• For FusionXML authentication, include a string containing an XML
authentication document.

The following subsections describe how to use each of these methods.

For information about configuring proxies, see “Step 1: Configuring the Proxy for
Authentication” on page 118.

Sending a User Name and Password
If the proxy uses Basic authentication, include the following string in the
authorization header for the application document:

Authorization: basic base64(name:password)

where name and password are an iIS user name and password accepted by the user
validation for the iIS process.

For example, assume that user name “OrderClerk” and password “$$clerk##” are a
valid iIS user name and password for this process. When the service requestor is
prompted by the proxy to submit authentication, you would include the following
string in the HTTP message header:

Authorization: basic base64(‘orderclerk:$$clerk##’)

The name and password are encoded with Base64 and sent to the proxy, which
submits the information to the engine. If the iIS engine validates this user name
and password, the proxy processes the command document instructing the engine
to create the process.

Sending an Authentication Document
If the proxy uses FusionXML as its authentication type, then the service requestor
submits an authentication document in its response to the proxy’s
WWW-Authenticate message. The authentication document can contain additional
iIS user information beyond the name and password, such as roles and user
profiles.

Authenticating a Service Requestor with a Proxy

Chapter 5 Service Requestor Authentication Use Case 121

To send an authentication document to a proxy, include the following string in the
authorization header for the application document:

Authorization: FusionXML base64(XML_authentication_document)

where XML_authentication_document is a string containing an XML document. For
information about specifying the contents of this document, see the following
section, “Creating an Authentication Document.”

If the iIS engine validates the contents of the authentication document to the proxy,
the proxy then submits the command document instructing the engine to create the
process.

Creating an Authentication Document
An authentication document is an XML document that uses a specific structure and
vocabulary. For information about the format of an authentication document, see
Appendix B, “Proxy Document Element Hierarchies” and the iIS Backbone online
Help.

The FNAuthenticate element is required, because it is the document element that
identifies the string as an authentication document. Although, strictly speaking, all
other elements are optional, you must include all values required by the iIS user
validation, for example, a user profile or role.

When you create the document, you use the XML structure and vocabulary that iIS
understands, so no transformations are required. There are no stylesheets
associated with authentication documents, and the proxy’s XSL processor never
processes them.

Example Authentication Document
The following example shows an authentication document that a service requestor
might submit to a proxy:. It specifies user information for an iIS user profile and
lists iIS roles from the proxy configuration.

<FNAuthenticate>
<FNUserProfile Name="FNProxyProfile"/>
<FNUser Name="ProxyUser"

Password="pxy$usr"
OtherInfo="telesales">

<FNRoleList>
<FNRole Name="ProcessCreator"/>
<FNRole Name="OrderTaker"/>

</FNRoleList>
</FNAuthenticate>

Authenticating a Service Requestor with a Proxy

122 iPlanet Integration Server • Backbone Integration Guide • August 2001

123

Chapter 6

Service Provider Authentication
Use Case

This chapter describes the integration tasks required to enable a proxy (configured
for HTTP) to authenticate itself with a service provider application. Authentication
discussed in this chapter applies only to proxies configured for HTTP
communication.

For information about the basic tasks and stylesheets required when a proxy
submits an activity to a service provider, see Chapter 3, “Synchronous Service
Provider Use Case” or Chapter 4, “Asynchronous Service Provider Use Case.”

For general information about authentication in an iIS enterprise application
(including authentication for proxies configured for JMS), see the iIS Backbone
System Guide.

Use Case Summary
The following table provides an overview of this use case:

Table 6-1 Overview of Service Provider Authentication Use Case

Use Case Information Description

description A proxy submits a request to perform an activity to a service
provider application that requires authentication.

expected outcome The application accepts the proxy’s authentication, performs the
activity, and notifies the proxy when it is completed.

Use Case Summary

124 iPlanet Integration Server • Backbone Integration Guide • August 2001

actors involved • the application proxy

• the service requestor application

(the iIS process engine is not involved in the authentication
process, only in submitting the activity to the proxy, then
completing it when notified by the proxy)

proxy document and
message flow

1. Proxy generates an “ActivityStarted” state document
based on a call from the engine that the activity has entered the
ACTIVE state.

2. Proxy generates command document with request for service
provider.

3. Proxy sends request to service provider as application
document.

4. Service provider responds with message containing HTTP 401
Unauthorized error and WWW-Authenticate header
specifying the type of authentication it requires (Basic or
FusionXML).

5. Proxy resends application document with authorization
header containing authentication information (either user
name/password combination or XML authentication
document).

6. Service provider performs activity and sends application
document to proxy with message that activity was performed.

7. Proxy generates command document to notify engine that
activity is complete

Table 6-1 Overview of Service Provider Authentication Use Case (Continued)

Use Case Information Description

Use Case Summary

Chapter 6 Service Provider Authentication Use Case 125

stylesheets required outbound stylesheet to:

• transform state document into command document that sends
request to service provider (Step 2)

• generate application document containing request to service
provider (Step 3)

inbound stylesheet to transform application document into
command document to notify engine that application performed
the activity (Step 7)

No stylesheets are required for the proxy to create an
authentication document, because the proxy already knows the
required XML structure and vocabulary.

Table 6-1 Overview of Service Provider Authentication Use Case (Continued)

Use Case Information Description

Proxy

 url

Command
Document

 url

State
Document

(ActivityStarted) url

Command
Document
(CmpltActvty)

7

1

2

 url

Application
Document

3

 url

Application
Document

5

Authorization Header

 url

Application
Document

6

Service Provider

Attribute 1
Attribute 2

WWW-Authenticate

401 Unauthorized

4

Authenticating a Proxy with a Service Provider

126 iPlanet Integration Server • Backbone Integration Guide • August 2001

The remainder of this chapter describes this use case in more detail and provides
procedures for performing the tasks required for authentication.

Authenticating a Proxy with a Service Provider
When a proxy sends a service provider application a request to perform an activity,
the application may require authentication from the proxy before accepting the
request and performing the activity.

Authentication Message Flow
The following flow of documents and messages takes place when a proxy sends a
request to a service provider that requires authentication:

1. The proxy sends an application document to the service requestor.

2. The service requestor rejects the document, and returns a message with:

❍ a “401 Unauthorized” error in the message body

❍ A WWW-Authenticate header message specifying the type of
authentication (Basic or FusionXML) that the service provider requires
from the proxy.

Other integration
tasks

• use FNscript commands to provide the proxy with the
authentication information to submit to the service provider

• configure your application to tell proxy what type of
authentication is required

• if you are using FusionXML authentication, make sure your
partner application knows how to interpret the proxy’s
authentication document

Table 6-1 Overview of Service Provider Authentication Use Case (Continued)

Use Case Information Description

Authenticating a Proxy with a Service Provider

Chapter 6 Service Provider Authentication Use Case 127

3. The proxy resubmits the application document with the appropriate
application user information included in the HTTP message header.

The specific information the proxy supplies depends on the type of
authentication that the application specifies:

❍ For Basic authentication, the proxy returns a string containing a user name
and password.

❍ For FusionXML authentication, the proxy returns a string containing an
XML authentication document containing additional user information.

You must ensure that the proxy is configured to know the information to
submit. For information about configuring a proxy with application
authentication information, see “Providing User Information to the Proxy” on
page 130.

4. The service provider validates the proxy’s user information; if the information
is accepted, the service provider:

❍ creates a session for the proxy

❍ performs the activity

❍ returns an application document to the proxy indicating completion

5. The proxy generates a command document to notify the iIS engine that the
activity was completed.

From the point at which the service provider accepts the proxy’s application
document (Step 4), the procedure for performing the activity and sending the
required notifications is the same as any for any service provider application.

For information about sending synchronous requests to a services provider, see
Chapter 3, “Synchronous Service Provider Use Case.” For information about
sending asynchronous requests, see Chapter 4, “Asynchronous Service Provider
Use Case.”

Configuring the Service Provider for Authentication

128 iPlanet Integration Server • Backbone Integration Guide • August 2001

Enabling Authentication
To enable the service provider to authenticate the proxy and complete the activity,
take the following steps:

1. Configure your partner application to require authentication and to specify the
type of configuration required.

2. Configure the proxy with the authentication information for the service
provider.

The following sections describe how to perform these tasks.

For more information about proxy configuration and session authentication, see
the iIS Backbone System Guide.

Configuring the Service Provider for
Authentication

To require that a proxy authenticate itself with a service provider application, the
application must be configured to inform the proxy what kind of authentication is
required. The specific procedures you need to follow depend, of course, on the
type of your application.

You specify the authentication type in the WWW-Authenticate header of the 401
Unauthorized error message that the application sends in response to the original
application document. To accomplish this task, specify either basic or FusionXML
authentication in the message header, as shown in the following examples (where
backbonename and proxyname represent the iIS Backbone and service provider’s
partner proxy).

Configuring the Service Provider for Authentication

Chapter 6 Service Provider Authentication Use Case 129

Basic Authentication
Basic authentication instructs the proxy to send the application a user name and
password. The proxy sends the name and password of the user you specify when
you configure the proxy, as described in “Providing User Information to the
Proxy” on page 130. To specify basic authentication, include the following string in
the message header (where backbonename and proxyname represent the iIS backbone
and service provider’s partner proxy):

WWW-Authenticate: basic realm="backbonename:proxyname"

The user name and password are encoded with Base64 and embedded as an
authorization header in the HTTP message containing the application document
requesting the application to perform the activity. For information about the
format of this message header, see “Sending a User Name and Password” on
page 120.

FusionXML Authentication
FusionXML authentication instructs the proxy to send the application an XML
authentication document with additional information, for example, a user profile
or role. The authentication document is encoded with Base64 and embedded as a
string in the authorization header of the HTTP message containing the application
document that requests the application to perform the activity. To specify
FusionXML authentication, include the following string in the message header
(where backbonename and proxyname represent the iIS backbone and service
provider’s partner proxy):

WWW-Authenticate: FusionXML realm="backbonename:proxyname"

The proxy constructs the authentication document based on the application user
information you supply when you configure the proxy, as described in the
following section, “Providing User Information to the Proxy.”

NOTE Your application must be capable of interpreting the authentication
document. For information on the authentication document XML
structure and vocabulary, see Appendix B, “Proxy Document
Element Hierarchies” and the iIS Backbone online Help.

Providing User Information to the Proxy

130 iPlanet Integration Server • Backbone Integration Guide • August 2001

Providing User Information to the Proxy
For either Basic or FusionXML authentication, the proxy must know what
application user information to pass to the service provider when requested. The
proxy can only send the information about which it knows, so be sure that you
configure values for all items that the service provider expects.

You use FNscript commands to provide application user information to the proxy.
The following table shows the relevant commands:

For more information about proxy configuration, see the iIS Backbone System Guide.

Table 6-2 FNscript Commands for Providing User Information

Command Description

SetAplSession username
[password [, otherinfo]]

Specifies the name of a user authorized to
connect to the service provider application; may
contain an optional password and “otherinfo”
string with information meaningful to the
application, for example, a department or
manager name.

AddAplRole rolename Specifies the name of a user role that the
application requires for access.

For example, a CreditCheck application might
only allow access to proxies that connect with the
role of CreditManager.

SetAplProfile profilename Specifies the name of a user proflle required by
the application for access.

131

Chapter 7

Proxy Recovery Use Case

This chapter describes the XSL stylesheets and related integration tasks required to
submit activities to a service provider application after its proxy has failed and
recovered.

The chapter also presents an alternative scenario in which the recovered activities
are aborted.

For information about the basic tasks and stylesheets required for a proxy to
submit a request to a service provider, see Chapter 3, “Synchronous Service
Provider Use Case.” If the proxy and application communicate asynchronously,
also see Chapter 4, “Asynchronous Service Provider Use Case.”

If you are running an independent proxy, you cannot use the recovery methods
that iIS provides. A proxy must be connected to a running iIS process engine to be
able to recover activities after proxy or application failure.

Use Case Summary
The following table provides an overview of this use case:

Table 7-1 Overview of Proxy Recovery Use Case

Use Case Information Description

description A service provider proxy fails then recovers during an iIS
process.

expected outcome Upon recovery, the proxy retrieves all ACTIVE activities from
the engine and submits them to the partner application as
though they were new activities.

Use Case Summary

132 iPlanet Integration Server • Backbone Integration Guide • August 2001

actors • application proxy

• iIS process engine

• service provider application

proxy document flow 1. After it recovers, the proxy generates an
“ActivityExists” state document for each activity in the
ACTIVE state.

2. Proxy generates command document with request to service
provider for each activity.

3. Proxy sends application document to service provider to
perform activity.

4. Service provider sends application document to proxy with
disposition of activity.

5. Proxy generates command document to notify engine to
complete activity

.

Table 7-1 Overview of Proxy Recovery Use Case (Continued)

Use Case Information Description

Proxy

 url

Application
Document

 url

Command
Document

 url

State
Document
(ActivityExists)

 url

Command
Document
(CmpltActvty)

 url

Application
Document

4

5

1

2

3
Service Provider

Submitting a Recovered Activity to a Service Provider

Chapter 7 Proxy Recovery Use Case 133

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion.

Submitting a Recovered Activity to a
Service Provider

If a proxy for a service provider fails during an iIS process, the following actions
occur:

1. The backbone manager restarts the proxy.

2. The proxy reconnects to the iIS process engine.

3. The proxy retrieves a list of ACTIVE activities from the engine.

4. The proxy generates a state document for each activity with a value of
“ActivityExists” for the State attribute of the FNCndState element.

The proxy, however, has no way of knowing whether or not any of these activities
were sent to the service provider before the failure. Therefore, your outbound
stylesheet must contain rules for processing these recovered activities and
handling them according to the partner application’s business logic.

required stylesheets outbound stylesheet to:

• transform state document into command document to send
request to service provider (Step 2)

• generate application document containing request to service
provider (Step 3)

inbound stylesheet to send command document to engine to
complete the activity (Step 5)

other integrator tasks • provide your partner application with the logic to handle
possibly duplicate activities

NOTE For an alternative scenario in which the activity is aborted rather
than submitted to the application, see “Alternative Processing:
Aborting the Recovered Activity” on page 138.

Table 7-1 Overview of Proxy Recovery Use Case (Continued)

Use Case Information Description

Submitting a Recovered Activity to a Service Provider

134 iPlanet Integration Server • Backbone Integration Guide • August 2001

The simplest way to handle a recovered activity is to send the service provider an
application document with a request to perform the activity. In essence, you are
treating the activity like any other activity that has entered the ACTIVE state,
without regard for whether the activity might already have been sent to the service
provider.

The option is generally preferred for situations where it is acceptable for the
application to perform the activity twice, or where the application can determine
how to handle duplicate requests. For example, if the activity involved adding
records to a database, the database itself would reject any duplicate records.

Submitting the Activity
To send an ACTIVE activity to a service provider after a proxy recovers, your
outbound stylesheet must:

• locate the activity in the state document by matching an FNCndState element
whose State attribute has a value of “ActivityExists”

• generate a command document that sends an application document requesting
the service provider to perform the activity

To accomplish these tasks, include a template like the following in your outbound
stylesheet. In this template:

• The FNAplCommand “SendMessage” sends the application document

• FNMessage contains the application document

• WorkRoot is the document element for the application document

• NewWork is the top-level element lin the application document

<xsl:template match="FNCndState[@State=’ActivityExists’]">
<FNAplCommand Command="SendMessage" Method="Post"/>

<FNMessage>
<WorkRoot>

<NewWork>
<xsl:apply-templates/>

</NewWork>
</WorkRoot>

</FNMessage>
</FNAplCommand>

</xsl:template>

Submitting a Recovered Activity to a Service Provider

Chapter 7 Proxy Recovery Use Case 135

The procedure for submitting the activity to the service provider is similar to that
for handling a newly ACTIVE activity. The only difference is that for the recovered
activity your stylesheet must match an FNCndState State attribute value of
“ActivityExists,” as shown in the above template, rather than
“ActivityStarted,” as for new activities.

Synchronous and Asynchronous Activities
Because you are handling the recovered activity like a new activity, you should
treat the recovered activity as synchronous or asynchronous according to the usual
processing for this proxy and application. That is, apply your usual rules for
including or omitting information from the FNIdentity element to identify the
activity.

For the complete procedure required to generate the command document and
application document to a synchronous service provider, see “Communicating
Synchronously With a Service Provider” on page 76.

For the complete procedure required to generate the command document and
application document to an asynchronous service provider, see “Communicating
Asynchronously With a Service Provider” on page 93.

Generated Document Examples
The following sections describe the XML documents that are generated when a
service provider proxy recovers from failure.

State Document
A proxy that has recovered from failure generates a state document like the
following for each activity that the iIS process engine informs it is in the ACTIVE
state.

NOTE The only difference between a state document for an activity in the
ActivityExists state and a state document for an activity in the
ActivityStarted state is the value of the State attribute of the
FNCndState element.

Submitting a Recovered Activity to a Service Provider

136 iPlanet Integration Server • Backbone Integration Guide • August 2001

In the following example state document, note the following:

• FNState is the state document element

• FNCndStateState is the state of the activity

• FNIdentity contains process/activity information

• FNProcessAttributeList is the process attribute list from the application
dictionary

• The FNProcessAttribute “Status” contains the value from the previous
activity (credit has been verified)

• “StartingMessage” is an FNProcessAttribute

• MsgDoc is the service requestor application document

Code Example 7-1 State Document, Proxy Recovery Use Case

<?xml version="1.0"?>

<FNState>
<FNCndState State="ActivityExists">

<FNIdentity
ProcessID="52"
ProcessName="FNOrdersProcess"
ActivityID="5"
ActivityName="BillPreparation"
ActivityAppCode="Billing"/>

<FNProcessAttributeList>
<FNProcessAttribute Name="Status" Type="TextData">

CreditVerified
</FNProcessAttribute>
<FNProcessAttribute Name="StartingMessage"

Type="TextData">
<MsgDoc>

<NewOrder>
<Atts>

<Att>
<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[fred]]></AttValue>

</Att>
<Att>

<AttName>Shippee</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[fred]]></AttValue>

</Att>
<Att>

<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue><![CDATA[20]]></AttValue>

Submitting a Recovered Activity to a Service Provider

Chapter 7 Proxy Recovery Use Case 137

Document Notes
In the above document, the value of the Status process attribute is
CreditVerified, because that was the last activity that updated the Status value.

Command Document
The command document that the proxy generates to send a recovery activity to a
service provider is identical to the document generated for a newly ACTIVE
activity. For an example of such a command document, see “Command
Document” on page 102.

Application Document
The application document in this case also is identical to the application document
generated for a newly ACTIVE activity. For a discussion of this application
document, see “Application Document” on page 104.

</Att>
<Att>
<AttName>OrderID</AttName>
<AttType>TextData</AttType>

<AttValue><![CDATA[15]]></AttValue>
</Att>

</Atts>
</NewOrder>

</MsgDoc>
</FNProcessAttribute>

</FNProcessAttributeList>
</FNCndState>

</FNState>

Code Example 7-1 State Document, Proxy Recovery Use Case (Continued)

Receiving Notification of Completion From the Application

138 iPlanet Integration Server • Backbone Integration Guide • August 2001

Receiving Notification of Completion
From the Application

When the application notifies the proxy that it has performed the activity, the
proxy uses the inbound stylesheet to generate a command document as it would
for any other completed activity. Whether or not the proxy treats the activity as
synchronous or asynchronous depends on how the activity was submitted to the
service provider.

For the steps required to generate the command document based on an
asynchronous response from the application, see “Receiving Synchronous
Notification of Completion” on page 84.

For the steps required to generate the command document based on an
asynchronous response from the application, see “Receiving Asynchronous
Notification of Completion” on page 104.

Alternative Processing: Aborting the
Recovered Activity

If a process is interrupted because a proxy fails, you might need to abort or rollback
the activity, or even abort the process, without submitting the activity to the
application. Such a situation might exist, for example, in a manufacturing process
in which timing is critical.

In such a case, your outbound stylesheet needs a rule to generate a command
document to instruct the engine to abort the activity or process, rather than
generating an application document.

To accomplish this task, your outbound stylesheet needs rules to:

1. Generate the FNCommand document element for command documents.

2. Find an activity in the state document whose State attribute has a value of
“ActivityExists.”

3. Generate a command to the engine to abort the process or activity.

4. If the proxy processes activities asynchronously, include the identity of the
activity, as specified by the FNIdentity element in the state document.

Alternative Processing: Aborting the Recovered Activity

Chapter 7 Proxy Recovery Use Case 139

To accomplish these tasks, include a template like the following in your outbound
stylesheet:

Transformation Notes
In the above template:

• To roll back the activity or abort the entire process, substitute
“RollbackActivity” or “AbortProcess,” respectively, for the value of the
Command attribute.

• If the proxy processes activities synchronously, omit the FNIdentity
information.

Altering the Document Flow
This processing option implements an alternative flow of proxy documents. In this
case, the documents flow from the iIS process engine to the proxy, then back to the
engine, without involving the partner application.

Also, although templates to generate commands to the engine usually are placed in
inbound stylesheets, the above template is in the proxy’s outbound stylesheet. The
reason for this difference is that the source document is an outbound state
document, rather than an inbound application document.

<xsl:template match="FNCndState[@State=’ActivityExists’]">
<FNCommand>
<FNCndCommand Command="AbortActivity"/>

<xsl:copy-of select="FNIdentity"/>
</FNCndCommand>

</FNCommand>
</xsl:template>

Alternative Processing: Aborting the Recovered Activity

140 iPlanet Integration Server • Backbone Integration Guide • August 2001

Generated Document Examples
The following sections provide examples of the XML documents that a proxy
generates for the preceding scenario.

State Document
For an example of a state document that a proxy generates for a recovered activity,
see “State Document” on page 135.

Command Document
The following command document is generated by the preceding steps.

Document Notes
In the above document, the value of the Command attribute depends on the template
you specify in your outbound stylesheet.

Application Document
There is no application document generated for this variation of the use case. The
proxy transforms the state document into a command document that sends a
command back to the iIS process engine, rather than to the application.

<FNCommand>
<FNCndCommand Command="AbortActivity">

<FNIdentity
ProcessID="52"
ProcessName="Replication"
ActivityID="5"
ActivityName="Cloning"
ActivityAppCode="CloneDNA"/>

</FNCndCommand>
</FNCommand>

141

Chapter 8

Application Recovery Use Case

This chapter describes the XSL stylesheets you need to write and related
integration tasks you need to perform to submit activities to a service provider
application that has failed and recovered.

For information about the basic tasks and stylesheets required for a proxy to
submit a request to a service provider, see Chapter 3, “Synchronous Service
Provider Use Case.” If the proxy and application communicate asynchronously,
also see Chapter 4, “Asynchronous Service Provider Use Case.”

If you are running an independent proxy, you cannot use the recovery methods
that iIS provides. A proxy must be connected to a running iIS process engine to be
able to recover activities after proxy or application failure.

Use Case Summary
The following table provides an overview of this use case:

Table 8-1 Overview of Application Recovery Use Case

Use Case Information Description

description A service provider application fails during and recovers during an
iIS process.

expected outcome When the application notifies the proxy that it has recovered, the
proxy retrieves all ACTIVE activities and submits them to the
partner application.

actors • service requestor application

• application proxy

• iIS process engine

Use Case Summary

142 iPlanet Integration Server • Backbone Integration Guide • August 2001

proxy document
flow

1. Upon recovery, service provider sends application document
to notify proxy that it is available again.

2. Proxy generates a “ListActivities” command document
to retrieve all ACTIVE activities.

3. Proxy generates an “ActivityExists” state document for
each activity in the ACTIVE state.

4. Proxy generates command document with request to service
provider for each activity.

5. Proxy sends application document with request for each
activity to service provider.

6. Service provider sends application document to proxy with
disposition of activity.

7. Proxy generates command document to notify engine that
activity was performed.

Table 8-1 Overview of Application Recovery Use Case (Continued)

Use Case Information Description

Use Case Summary

Chapter 8 Application Recovery Use Case 143

required stylesheets inbound stylesheet to:

• transform recovery notification from application into request
to list ACTIVE activities (Step 2)

• transform application document into command document to
notify engine that application performed the activity (Step 7)

outbound stylesheet to:

• transform state document into command document that sends
request to service provider (Step 4)

• generate application document containing request to service
provider (Step 5)

Table 8-1 Overview of Application Recovery Use Case (Continued)

Use Case Information Description

 url

Command
Document

(CompleteActivity)

 url

Application
Document

6

7

Proxy

 url

Application
Document

 url

Command
Document

 url

State
Document
(ActivityExists)

 url

Command
Document
(ListActivities)

 url

Application
Document

1

2

3

4

5

Service Provider

Proxy

Notifying the Proxy of Application Recovery

144 iPlanet Integration Server • Backbone Integration Guide • August 2001

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion.

Notifying the Proxy of Application Recovery
A service provider application that has failed must notify its proxy when it
becomes available again, so that it can continue to receive requests to perform
work. The form of this notification depends on the application; it might be as
simple as an application document with a single element, for example:

The proxy’s inbound stylesheet should include two templates. The first template:

• matches the application document root element

• creates the FNCndCommand element in the command document

• causes all children of the root element in the application document to be
processed

other integrator
tasks

Configure the proxy for the service provider as an HTTP server.
For details about configuring proxies, see the iIS Backbone System
Guide.

Provide your partner application with the logic to:

• notify the proxy that the application has recovered

• handle possibly duplicate activities resubmitted by the proxy

<MsgDoc>
<AppRecovered>

</MsgDoc>

Table 8-1 Overview of Application Recovery Use Case (Continued)

Use Case Information Description

Notifying the Proxy of Application Recovery

Chapter 8 Application Recovery Use Case 145

The second template:

• matches the application’s recovery notification

• transforms this notification into a command document to list all currently
ACTIVE activities for the proxy

The stylesheet also should include a template that:

To accomplish these tasks, include the first template shown below, and a template
like the second, in your inbound stylesheet:

Generated Command Document Example
The following command document is generated by the preceding template.

<xsl:template match="/">
<FNCommand>
<FNCndCommand>

<xsl:apply-templates/>
</FNCndCommand>

</xsl:template>

<xsl:template match="AppRecovered">
<FNCndCommand Command="ListActivities"/>

</xsl:template>

<FNCommand>
<FNCndCommand Command="ListActivities"/>

</FNCommand>

Submitting Activities to a Recovered Application

146 iPlanet Integration Server • Backbone Integration Guide • August 2001

Submitting Activities to a Recovered Application
When the proxy receives the command document with the “ListActivities”
command, it checks its list of ACTIVE activities. For each activity on the list, it
generates a state document with a State attribute value of “ActivityExists.”

Your outbound stylesheet now can generate command documents from these state
documents to submit these activities to the recovered service provider application,
just as it would if the proxy had failed and recovered.

For information about submitting recovered activities to a service provider, see
“Submitting a Recovered Activity to a Service Provider” on page 133.

Receiving Notification of Completion
From the Application

When the application notifies the proxy that it has performed the activity, the
proxy uses the inbound stylesheet to generate a command document as it would
for any other completed activity. Whether or not the proxy treats the activity as
synchronous or asynchronous depends on how the activity was submitted to the
service provider.

For the steps required to generate the command document based on an
asynchronous response from the application, see “Receiving Synchronous
Notification of Completion” on page 84.

For the steps required to generate the command document based on an
asynchronous response from the application, see “Receiving Asynchronous
Notification of Completion” on page 104.

147

Chapter 9

Independent Proxy Use Case

This chapter describes the XSL stylesheets you need to write any related
integration tasks you need to perform to enable an application to send information
in the form of XML documents to another application through an independent iIS
proxy. An independent proxy is one that is not connected to an iIS process engine.

If the proxy requires user authentication from the requestor application, there are
additional tasks you must perform. After you read this chapter, see Chapter 10,
“Independent Proxy Authentication Use Case.”

Use Case Summary
The following table provides an overview of this use case:

Table 9-1 Overview of Independent Proxy Use Case

Use Case Information Description

description An application sends XML data to another application through
an iIS proxy that is not connected to a running iIS process
engine.

expected outcome The proxy receives an application document from the initiating
application and uses the inbound stylesheet to transform the
document into another application document, which it
transmits to a target application.

actors • initiating application

• application proxy

• target application

Use Case Summary

148 iPlanet Integration Server • Backbone Integration Guide • August 2001

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheet required for its successful completion.

proxy document flow 1. Initiating application sends application document to proxy.

2. Proxy generates command document with message for
target application.

3. Proxy sends message as application document to target
application.

required stylesheets inbound stylesheet to transform application document into
command document that generates message containing
application document for target application

No outbound stylesheet is required because, without an iIS
process engine, there is no state document generated.

other integration tasks Set the UseProcessEngine FNscript command to off to
specify that the proxy is not connected to an iIS process engine.

Table 9-1 Overview of Independent Proxy Use Case (Continued)

Use Case Information Description

Initiating Application

Proxy

 url

Application
Document

 url

Command
Document

 url

Application
Document

1

2

3

Transferring Data Between Applications

Chapter 9 Independent Proxy Use Case 149

Transferring Data Between Applications
You can use an iIS proxy to enable applications to share data by transforming XML
documents. For such simple data transformations, the proxy—known as an
independent proxy—need not be connected to an iIS process engine.

Independent proxies always involve client-server applications, that is, a client
application performs some work, then sends data to a server.

For example, you might have an online registration page for visitors to a trade
show. When a new visitor registers, you might want to send some of the
information to an application that prints a badge for the visitor. You would not
need to create an iIS process definition to perform such a simple transfer of data.

To transfer data between applications through an independent proxy:

• Create an inbound stylesheet to transform the initiating application’s
application document into a command document containing an application
document for the target application.

• Configure the proxy to specify that it is not connected to an iIS engine.

The rest of this chapter describes how to create such a stylesheet and configure an
independent proxy.

For general information about using independent proxies, see “Communicating
Between Applications Without A Process Definition” on page 55.

Creating a Stylesheet for Data Transformation
To transfer data between applications through an independent proxy, create an
XSL stylesheet that performs the following functions:

• includes a template that overrides the default action, which is to copy all text
nodes to the results document

• creates the FNCommand document element to identify itself as a command
document

• creates the FNAplCommand element to send a message to the target application

NOTE The following steps assume that any user is authorized to connect to
the proxy and the applications involved. For information about how
to allow only authorized users to create connections, see Chapter 10,
“Independent Proxy Authentication Use Case.”

Creating a Stylesheet for Data Transformation

150 iPlanet Integration Server • Backbone Integration Guide • August 2001

• creates the FNDestination element to specify the location of the target
application

• creates the FNMessage element that encompasses the application document to
be sent to the target application

• creates a document element for the target application document

• transforms any relevant data from the initiating application document into the
appropriate format within the application document for the target application

The following sections describe how to create a stylesheet that performs these
functions.

Because you are transforming the inbound application document, an independent
proxy uses only an inbound stylesheet to generate the application document for the
target application. There is no outbound stylesheet because, in the absence of an iIS
process engine, there is no state document to transform into a command document
to the application.

Step 1: Overriding the Default for Text Nodes
By default, the iIS XSL processor concatenates the values of all text nodes and
copies them to the results document. This behavior occurs even if you do not
explicitly include the default template that causes it. When transforming data
between applications, however, this behavior is generally undesirable. Rather, you
want to specify which text nodes from the initiating application document are
copied to the target application document.

For example, the printer application may have no need of personal visitor
information, such as a home address, that is part of the visitor record in the
registration application. You only want to transmit information about the visitor
that the printer application needs to print a badge.

➤ To copy text nodes selectively to the results document

1. Include templates in your stylesheet to match the specific text you want to
appear in the results document.

For an example of such templates, see “Step 7: Specifying the Message
Content” on page 156.

Creating a Stylesheet for Data Transformation

Chapter 9 Independent Proxy Use Case 151

2. In your inbound stylesheet, include the following template in place of the
usual default for text nodes:

<xsl:template match="text()"/>

This “empty” template matches any text node. However, rather than
performing some action on the match, as the default template does, it simply
ends (with the “/”), doing nothing.

Step 2: Generating the Command
Document Element
The proxy identifies a command document by using the FNCommand element as
its document element. The first task your inbound stylesheet must perform is to
generate this document element.

To generate the FNCommand document element, include the following template
in your inbound stylesheet:

Transformation Notes
In the above template:

• The xsl:apply-templates element ensures that the XSL processor processes
all children of the document element of the application document. Without the
xsl:apply-templates element, the XSL processor would complete its work
after it created the FNCommand element, generating it as an empty element.

<xsl:template match="RegDoc">
<FNCommand>
<xsl:apply-templates/>

</FNCommand>
</xsl:template>

Creating a Stylesheet for Data Transformation

152 iPlanet Integration Server • Backbone Integration Guide • August 2001

Step 3: Generating the Command to
Send a Message
The next step your outbound stylesheet must perform is to generate the commands
to send a message to the application.

➤ To generate these commands

• Create a template that matches the Registrant document element in the
initiating application document.

• Generate an FNAplCommand element whose Command attribute has a value of
“SendMessage” and whose Method attribute specifies the HTTP method (Get
or Post).

For more information about specifying values for the Command and Method
attributes of the FNAplCommand element, see the iIS Backbone online Help.

To generate the appropriate FNAplCommand element and attributes, include a
template similar to the following in your outbound stylesheet:

Transformation Notes
The above template includes an xsl:apply-templates element to ensure that the
following information, to be specified later, is placed within the FNAplCommand
element:

• optionally, the target application location information (generated by the
template in the next section, “Step 4: Specifying the Target Application
Location”)

• the FNMessage element that holds the target application document (generated
by the template in “Step 5: Generating a Message to the Target Application” on
page 153)

• the target application document itself (generated by the templates in “Step 7:
Specifying the Message Content” on page 156)

<xsl:template match="Registrant">
<FNAplCommand command="SendMessage" method="Post">

<xsl:apply-templates/>
</FNAplCommand>

</xsl:template>

Creating a Stylesheet for Data Transformation

Chapter 9 Independent Proxy Use Case 153

Communicating with Multiple Applications
You can specify that an application send messages to multiple target applications.
To do so, include one FNAplCommand element for each target application; each
FNAplCommand must contain the appropriate location information and content
transformations, as described in the following sections.

Step 4: Specifying the Target Application
Location
The next task the stylesheet can perform is to specify the location to which to send
the message. You accomplish this task by including an FNDestination element
within the FNAplCommand element.

To specify the location of the target application, include a template like the
following in your inbound stylesheet:

Step 5: Generating a Message to the
Target Application
The next step is to generate an FNMessage element to hold the target application
document. The FNMessage element is a child of the FNAplCommand element, located
at the same level in the hierarchy as the FNDestination element created in “Step 4:
Specifying the Target Application Location.”

<xsl:template match="Registrant">
<FNAplCommand command="SendMessage" method="Post">
<FNDestination address="badger.acmecorp.com:4500"/>
<xsl:apply-templates/>

</FNAplCommand>

NOTE FNAplCommand was created in “Step 3: Generating the Command
to Send a Message” on page 152

Creating a Stylesheet for Data Transformation

154 iPlanet Integration Server • Backbone Integration Guide • August 2001

To create the FNMessage element, include the following template in your inbound
stylesheet:

Step 6: Generating the Target Application
Document Element
The next step is to generate the document element that informs the defect tracking
application that it is receiving a new user record. You accomplish this task by
generating a NewUser element within the template that matches the Registrant
element—which is the document element of the initiating application
document—as shown in the previous section.

<xsl:template match="Registrant">
<FNAplCommand command="SendMessage" method="Post">

<FNDestination address="badger.acmecorp.com:4500"/>
<FNMessage>

...application document for target application
</FNMessage>

</FNAplCommand>

NOTE • FNAplCommand was created in “Step 3: Generating the
Command to Send a Message” on page 152

• FNDestination was created in “Step 4: Specifying the Target
Application Location” on page 153

• For the content of FNMessage, refer to “Step 7: Specifying the
Message Content” on page 156

Creating a Stylesheet for Data Transformation

Chapter 9 Independent Proxy Use Case 155

To generate the document element for the target application document, including a
template like the following in your inbound stylesheet:

For information on specifying the message content, refer to “Step 7: Specifying the
Message Content” on page 156

<xsl:template match="Registrant">
<FNAplCommand command="SendMessage" method="Post">
<FNDestination address="badger.acmecorp.com:4500"/>
<FNMessage>

<NewBadge>
<xsl:apply-templates/>

</NewBadge>
</FNMessage>

</FNAplCommand>

NOTE In the preceding example:

• FNAplCommand was created in “Step 3: Generating the
Command to Send a Message” on page 152

• FNDestination was created in “Step 4: Specifying the Target
Application Location” on page 153

• FNMessage was created in “Step 5: Generating a Message to the
Target Application” on page 153

Creating a Stylesheet for Data Transformation

156 iPlanet Integration Server • Backbone Integration Guide • August 2001

Step 7: Specifying the Message Content
After you create the FNMessage element, you create its contents, which become the
application document sent to the target application.

The application document contains whatever information the application expects.
In the example used in this chapter, assume that the target application—the badge
printing application—requires the following information to set up a new user:

• visitor name

• visitor number

• company name

• job title

The XSL stylesheet must contain the appropriate transformations to render this
information in a format that is usable by the target application.

To generate the appropriate data, include templates similar to the following in the
inbound stylesheet:

<xsl:template match="RegName">

<BadgeName>
<xsl:value-of select=’concat(First," ",Last)’/>

</BadgeName>
<xsl:template match="RegNumber">
<BadgeNumber>

<xsl:value-of select="."/>
</BadgeNumber>

</xsl:template>

<xsl:template match="Company">
<Employer>

<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="JobTitle">
<Position>

<xsl:value-of select="."/>
</Position>

</xsl:template>

Creating a Stylesheet for Data Transformation

Chapter 9 Independent Proxy Use Case 157

Transformation Notes
In the above templates:

• The xsl:apply-templates element in the template that matches Registrant
(shown in “Step 6: Generating the Target Application Document Element” on
page 154) ensures that all its children elements are processed; the results of any
matches are placed within the NewBadge document element in the target
application document.

• The value of the BadgeName element is generated by matching the
RegistrantName element in the source document, then uses the “concat”
function to create a string consisting of the First child element, a blank, and the
Last child element.

Concatenation is an example of the many XPath functions that are available for
manipulating string and numerical data. For detailed information about XPath
functions, see the XPath specification at http://www.w3.org/TR/xpath.html.

• To create the BadgeNumber element, the stylesheet matches the VisitorNumber
element in the source document. The “.” in the xsl-value-of transformation
specifies that the value of the BadgeNumber element should be the value of the
current element, which is VisitorNumber.

The same logic applies to creating Employer from Company and Position from
JobTitle.

Sample Documents and Stylesheet
The following sections provide examples of:

• an application document from an initiating application

• the inbound stylesheet to transform this XML document

• the command document the proxy generates, including the application
document sent to the target application

Creating a Stylesheet for Data Transformation

158 iPlanet Integration Server • Backbone Integration Guide • August 2001

Initiating Application Document
The following XML document provides an example of a new employee record that
a personnel application might create.

Code Example 9-1 Independent Proxy, Initiating Application Document

<?xml version="1.0"?>
<RegDoc>
<Registrant>

<RegName>
<First>Frank</First>
<Middle>X.</Middle>
<Last>Jones</Last>

</RegName>
<RegNumber>10203045</RegNumber>
<HomeAddress>

<HStreet>6666 South Milagro Boulevard</HStreet>
<HCity>San Arnaldo</HCity>
<HState>WY</HState>
<HZip>74949-2423</HZip>

</RegAddress>
<Company>Superior Products</Company>
<WorkAddress>

<WStreet>1000 Superior Way</WStreet>
<WCity>Superior</WCity>
<WState>WY</WState>
<WZip>74801-2003</WZip>

</WorkAddress>
<JobTitle>Customer Support Representative</JobTitle>

</Registrant>
</RegDoc>

Creating a Stylesheet for Data Transformation

Chapter 9 Independent Proxy Use Case 159

Inbound Stylesheet
The following XSL stylesheet provides the transformations described in this
chapter to transmit application documents between an initiating application and a
target application.

Code Example 9-2 Independent Proxy, Inbound Stylesheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"/>
<xsl:output method="xml" indent="yes"/>

<xsl:template match="text()"/>

<xsl:template match="/">
<xsl:apply-templates/>

<xsl:template>

<xsl:template match="RegDoc">
<FNCommand>
<xsl:apply-templates/>

</FNCommand>
</xsl:template>

<xsl:template match="Registrant">
<FNAplCommand command="SendMessage" method="Post">
<FNDestination address="bugs.acmecorp.com:4500"/>
<FNMessage>

<NewBadge>
<xsl:apply-templates/>

</NewBadge>
</FNMessage>

</FNAplCommand>
</xsl:template>

<xsl:template match="RegName">
<BadgeName>
<xsl:value-of select=’concat(First," ",Last)’/>

</BadgeName>
</xsl:template>

<xsl:template match="RegNumber">
<BadgeNumber>
<xsl:value-of select="."/>

</BadgeNumber>
</xsl:template>

<xsl:template match="Company">
<Employer>
<xsl:value-of select="."/>

</Employer>
</xsl:template>

Creating a Stylesheet for Data Transformation

160 iPlanet Integration Server • Backbone Integration Guide • August 2001

Command Document
The proxy generates the following command document based on the XSL
stylesheet shown in this chapter.

Target Application Document
The lines between the start and end tags of the FNMessage element in the above
command document make up the application document that is sent to the target
application. The application document begins and ends with the start and end tags,
respectively, of the NewUser document element.

<xsl:template match="JobTitle">
<Position>

<xsl:value-of select="."/>
</Position>

</xsl:template>

</xsl:stylesheet>

Code Example 9-3 Independent Proxy, Command Document

<?xml version="1.0"?>
<FNCommand>
<FNAplCommand Command="SendMessage" Method="Post">

<FNDestination address="badger.acmecorp.com:4500"/>
<FNMessage>

<NewBadge>
<BadgeName>Frank Jones</BadgeName>
<BadgeNumber>10203045</BadgeNumber>
<Employer>Superior Products</Employer>
<Position>Customer Support Representative</Position>

</NewBadge>
</FNMessage>

</FNAplCommand>
</FNCommand>

Code Example 9-2 Independent Proxy, Inbound Stylesheet (Continued)

Configuring an Independent Proxy

Chapter 9 Independent Proxy Use Case 161

Configuring an Independent Proxy
To configure a proxy to function as an independent proxy, issue the following
FNscript command:

UseProcessEngine off

Issue this command in addition to any normal configuration commands.

You can issue this command even if the proxy has been configured previously to
use an iIS process engine (with the SetCEngine command). In this way, you can
override the use of the engine, and use the proxy for test purposes.

For more information about configuring an independent proxy, see the iIS Backbone
System Guide.

NOTE Independent proxy always refers to the proxy whose partner
application is the initiating application, not the target application.

Configuring an Independent Proxy

162 iPlanet Integration Server • Backbone Integration Guide • August 2001

163

Chapter 10

Independent Proxy Authentication
Use Case

This chapter describes the integration tasks required to enable an independent
proxy—a proxy that is not connected to a running process engine—to require user
authentication from its partner application. It also describes how to require
authentication from the proxy by a target application. Authentication discussed in
this chapter applies only to proxies configured for HTTP communication.

For information about the basic tasks and stylesheets required when using an
independent proxy, see Chapter 9, “Independent Proxy Use Case.”

For general information about using independent proxies, see “Communicating
Between Applications Without A Process Definition” on page 55.

For general information about authentication in an iIS enterprise application
(including authentication for proxies configured for JMS), see the iIS Backbone
System Guide.

Use Case Summary
The following table provides an overview of this use case:

Table 10-1 Overview of Independent Proxy with Authentication Use Case

Use Case Information Description

description An independent proxy requires authentication from its partner
application.

expected outcome The proxy accepts the initiating application’s authentication and
transforms its application document into a message for the target
application.

Use Case Summary

164 iPlanet Integration Server • Backbone Integration Guide • August 2001

actors involved • the application proxy

• the initiating application

proxy document and
message flow

1. Initiating application attempts to send XML application
document to its proxy.

2. Proxy responds with message containing HTTP 401
Unauthorized error and WWW-Authenticate header
requesting Basic authentication.

3. Application resends application document with authorization
header containing user name/password combination.

4. Proxy verifies authentication information against data in
configuration file.

5. Proxy accepts initiating application document and uses
inbound stylesheet to generate command document to send
message to target application

6. Proxy sends application document to target application.

Table 10-1 Overview of Independent Proxy with Authentication Use Case (Continued)

Use Case Information Description

Proxy

 url

Application
Document

6

 url

Application
Document

3

Authorization Header

 url

Application
Document

1
Attribute 1
Attribute 2

WWW-Authenticate

401 Unauthorized

2

Initiating Application

 url

Command
Document

5

Configuration
File

4

Authenticating an Application to an Independent Proxy

Chapter 10 Independent Proxy Authentication Use Case 165

The remainder of this chapter describes this use case in more detail and provides
procedures for performing the tasks required for authentication.

Authenticating an Application to an
Independent Proxy

You can use an iIS proxy—known as an independent proxy—to transmit XML data
between two applications without being connected to a process engine. As part of
this process, you might want to require the initiating application to authenticate
itself with the proxy, so that only authorized users can submit data to the target
application.

stylesheets required inbound stylesheet to:

• transform initiating application document into command
document that sends message to target application (Step 5)

• transform relevant data in initiating application document
into application document usable by target
application(Step 6)

Other integration
tasks

• use UseProcessEngine FNscript command specify that
proxy is independent

• use SetAuthentication FNscript command to specify
authentication type

• use SetCredentials FNscript command to specify user
name and password against which the proxy validates
authentication information sent by initiating application

NOTE Alternatively, the target application can request authentication from
the proxy before accepting the data from the initiating application.
For information about such a configuration, see “Authenticating a
Proxy To a Target Application” on page 169.

Table 10-1 Overview of Independent Proxy with Authentication Use Case (Continued)

Use Case Information Description

Authenticating an Application to an Independent Proxy

166 iPlanet Integration Server • Backbone Integration Guide • August 2001

Authentication Message Flow
The following flow of documents and messages takes place when an initiating
application sends a request to a proxy that requires authentication:

1. The initiating application sends an application document to the proxy.

2. The proxy rejects the document, and returns a message with:

❍ a “401 Unauthorized” error in the message body

❍ A WWW-Authenticate header message specifying that the proxy requires
Basic authentication

3. The application resubmits the application document with the user name and
password encoded in the HTTP Authentication message header.

4. The proxy validates the application’s user information against the values in its
configuration file; if the information is accepted, the proxy:

❍ creates an HTTP session for the application

❍ accepts the application document from the initiating application

❍ sends a cookie to the application, so that the application is authorized for
subsequent requests during the current HTTP session

You must ensure that the proxy is configured with the information against
which to validate this user name and password. For information about
configuring a proxy with application authentication information, see
“Configuring the Proxy for Authentication” on page 168.

From this point, the procedure for transmitting the XML to the target application is
the same as described in Chapter 9, “Independent Proxy Use Case.”

NOTE You could submit the user information with the application
document from the beginning and bypass Step 2 and Step 3.
However, it is good practice for security reasons not to send the
authorization information until the proxy requests it. An HTTP
client always be prepared for a 401 response.

Submitting Authentication Information

Chapter 10 Independent Proxy Authentication Use Case 167

Enabling Authentication
To enable the initiating application to be authenticated and the application
document accepted, take the following steps:

1. Enable the application to send the authentication information when requested
by the proxy.

2. Configure the proxy to require Basic authentication, and provide the proxy
with the authentication information to use for validation.

The following sections describe how to perform these tasks.

Submitting Authentication Information
When a proxy that requires authentication returns a 401 Unauthorized message,
you must resubmit the initiating application document with the appropriate
authorization information in the message header. Independent proxies only
support Basic authentication, for which you include a user name:password string in
the authorization header of the application document as follows:

Authorization: basic base64(username:password)

where username and password correspond to the values with which you configured
the proxy with the SetCredentials FNscript command, as described in “Step 3:
Specify the Authentication Values” on page 169.

For example, assume that user name “personnel” and password “$$entry##” are a
valid user name and password known to the proxy. When the proxy prompts the
initiating application to submit authentication, you would include the following
string in the HTTP message header:

Authorization: basic cGVyc29ubmVsOiQkzw50cnkjIw==

The name and password are encoded with Base64 and sent to the proxy, which
validates them against the information in the proxy’s configuration file. If the
proxy validates this user name and password, it processes the initiating application
document.

Configuring the Proxy for Authentication

168 iPlanet Integration Server • Backbone Integration Guide • August 2001

Configuring the Proxy for Authentication
For an independent proxy to authenticate an initiating application document, the
proxy must:

• be configured as independent

• require Basic authentication on the local server

• know the authentication values to validate

The following subsections describe the FNscript commands you use to accomplish
these tasks. For more information about any of these commands, and for additional
information about configuring proxies, see the iIS Backbone System Guide.

Step 1: Specify the Proxy As Independent
To specify that a proxy not require connection to a running process engine, issue
the following FNscript command:

UseProcessEngine off

Even if a proxy has been configured with a process engine (with the SetCEngine
command), you can use the above command to specify that the proxy does not
need to be connected to that engine. This situation is useful, for example, if you
simply want to test the proxy without running the full iIS application.

Step 2: Specify That the Proxy Require
Authentication
To specify that the proxy require authentication from its partner application, issue
the following FNscript command:

SetAuthentication Scheme=Basic Server=Local

Basic authentication specifies that only a user name and password are required for
authentication. Local authentication specifies that the authentication information is
stored in the proxy’s configuration file on the local server, rather than in a
UserValidation associated with a engine.

Authenticating a Proxy To a Target Application

Chapter 10 Independent Proxy Authentication Use Case 169

Step 3: Specify the Authentication Values
To specify the values against which the proxy should validate the user name and
password that the application supplies, issue the following FNscript command:

SetCredentials user=username password=password

where username and password represent the authentication values expected from
the application. These values are stored in encrypted form in the proxy’s
configuration file and validated at run time.

Authenticating a Proxy To a Target Application
Rather than having the initiating application authenticate itself to the independent
proxy, you might configure your iIS application so that the proxy must
authenticate itself to the target application before the target application accepts any
data. In such a case, you configure the proxy in the same manner as that described
in “Configuring the Proxy for Authentication” on page 168.

However, you must configure your target application to request authentication
when the proxy attempts to transmit the target application document. To
accomplish this task, code your target application to send a 401 Unauthorized
message to the proxy, along with the following WWW-Authenticate message
header:

WWW-Authenticate: basic realm="backbonename:proxyname"

where backbonename is the name of the iIS Backbone and proxyname is the name of
the independent proxy. When the proxy receives the request for authentication, it
resends the target application document with the appropriate authorization header
as described in “Submitting Authentication Information” on page 167, supplying
the user name and password that was specified with the SetAplSession FNscript
command.

NOTE You could configure your iIS application so that both the
independent proxy and the target application require
authentication. However, they would both need to accept the same
user name and password, because you can only configure the proxy
with one set of authorization information.

Authenticating a Proxy To a Target Application

170 iPlanet Integration Server • Backbone Integration Guide • August 2001

171

Appendix A

Transforming Proxy Documents

This appendix illustrates how the iIS proxy:

• transforms inbound and outbound proxy documents according to its XSL
stylesheets

• can function as an HTTP server or client within the iIS enterprise application

• can function as a JMS listener or sender within the iIS enterprise application

To understand how XSL transformations occur, see Chapter 1, “Introduction.” For
procedures describing how to develop the stylesheets required, see the chapters in
this manual for the relevant use cases.

For an overview of proxy documents, including management of HTTP sessions
and JMS sessions, see the iIS Backbone System Guide.

Proxy Document Processing
All XML documents contain patterns consisting of elements, attributes, text data,
and instructions. Elements identify the type of content and can be followed by
attributes (name-value pairs). iIS allows its applications to send XML documents
without restrictions on form or content.

The proxy has an internal XSL processor to manage transformation of incoming
and outgoing documents.

Proxy Document Processing

172 iPlanet Integration Server • Backbone Integration Guide • August 2001

XSL Stylesheets for the Proxy
iIS application proxies refer to their configured XSL stylesheets to translate
between the XML understood by the application (or adapter) and that understood
by the proxy. For example, the result of applying an XSL stylesheet to an
application document is a command document. Command documents are internal
to the proxy and drive the proxy’s interaction with its partners (the iIS process
engine and the application).

Through transformation, XML documents arriving from the application
(application documents) result in command documents that determine operations
performed by the process engine. Events arriving from the engine are converted
into state documents and result in command documents that determine the XML
sent to the application.

Figure A-1 illustrates a proxy taking an application document and inbound XSL
stylesheets as input, and generating a command document as the output:

Figure A-1 Generating Command Documents

Proxy

XSL
Processor Command

Document

Command
Processor

Inbound
stylesheet rules

XSL
Stylesheets

Instructions
to engine

Application
Document

Proxy Document Processing

Appendix A Transforming Proxy Documents 173

A proxy configured for HTTP sessions can present itself to its application as an
HTTP server, HTTP client, or both. When configured for JMS sessions, the proxy
can present itself as a JMS listener, JMS sender , or both.

The following sections explain typical message processing according to the proxy’s
function in the iIS system. The scenario illustrates the process definition in the iIS
TOOL adapter example.

For an overview of proxy document types and concepts, see the iIS Backbone System
Guide.

Service Requestor Application
Service requestor applications send requests to the proxy. The proxy can act as an
HTTP server, processing service requestor HTTP requests and sending back
responses. It can also act as a JMS listener processing service requests. The
processing of proxy documents results in the specified actions being performed by
the iIS process engine and the application, typically initiating a business process or
starting/completing a business activity.

Figure A-2 shows an order processing flow in which a Web client initiates a new
order by forwarding an XML representation of the order to its proxy. The proxy’s
XSL processor uses its inbound stylesheets to identify certain patterns in the order
and determine which business process instance to create. The proxy also sets initial
values for iIS process attributes, based on the XML representation of the order.

Figure A-2 illustrates the order processing flow described subsequently in
numbered steps. Step numbers are indicated by circled numbers on the diagram:

Proxy Document Processing

174 iPlanet Integration Server • Backbone Integration Guide • August 2001

Figure A-2 iIS Order Entry Service Requestor Sends in New Order

NOTE This is an example of one possible message flow; many variations
are possible in an actual system.

Proxy

iIS
Process
Engine

Interface

XSL
Processor

Command
Processor

 url

XML
Data

Engine
response

Request to
engine

Engine Commands

Service Requestor
Application

Application
doc

Application
doc

5 4

2 7

81

3

6
Application Commands

Proxy Document Processing

Appendix A Transforming Proxy Documents 175

1. The service requestor application sends a request to the proxy. The request
contains an application document to place a new order:

2. The proxy forwards the document to its XSL processor.

3. The XSL processor applies the inbound stylesheets:

The XSL processor then generates a command document to start the process
instance and send a response to the application:

<PlaceOrder>
<ShipTo>
Beelzebub

</ShipTo>
</PlaceOrder>

<?xml version="1.0">
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:template match="PlaceOrder"/>
<FNComment>Create a new process</FNComment>
<FNCommand>

<FNCndCommand Command="CreateProcess"
ProcessName="OrderEntry">

<xsl:apply-templates/>
</FNCndCommand>
<FNComment>SendResponse applies to HTTP

sessions</FNComment>
<FNAplCommand Action="SendResponse"/>

</FNCommand>
</xsl:template>

</xsl:stylesheet>

<FNCommand>
<FNCndCommand Command="CreateProcess"

ProcessName="OrderEntry">
<FNProcessAttributeList>

<FNProcessAttribute Name="Shipto"
Type="TextData">

Beelzebub
</FNProcessAttribute>

Proxy Document Processing

176 iPlanet Integration Server • Backbone Integration Guide • August 2001

4. The command processor interprets the command document and invokes the
CreateProcess command.

5. The process engine returns the CreateProcess status, which indicates that it
has started the process instance. The proxy represents this information in a
state document

6. The XSL processor applies the outbound stylesheet to translate this output for
the response message:

</FNProcessAttributeList>
</FNCndCommand>
<FNComment>SendResponse applies to HTTP

sessions</FNComment>
<FNAplCommand Command="SendResponse"/>

</FNCommand>

<FNCndState State="ProcessStarted">
<FNIdentity ProcessName="OrderEntry"

ProcessID="1234"/>
</FNCndState>

<xsl:template match=
"/FNState/FNCndState[@State=’ProcessStarted’]">

<FNComment>HTTP sessions use SendResponse</FNComment>
<FNComment>JMS sessions use SendMessage</FNComment>
<FNAplCommand Command="SendResponse">

<FNMessage>
<OrderEntered>

<xsl:apply-templates/>
</OrderEntered>

</FNMessage>
</FNAplCommand>

</xsl:template>
<xsl:template match=

"FNCndState[@State=’ProcessStarted’]/FNIdentity">
<Cfnumber>

<xsl:value-of select="@ProcessID"/>
</Cfnumber>

</xsl:template>

Proxy Document Processing

Appendix A Transforming Proxy Documents 177

7. The command processor continues processing the inbound application
document. It finds the <FNAplCommand> and sends an outbound response
document regarding the process status.

8. The application receives the XML confirmation message, which uses the
ProcessID for confirmation:

After the iIS process engine starts the process, the first activity in this example
is a credit check. The ensuing steps are described in the following section.

Service Provider Application
When a proxy acts as an HTTP client or JMS listener, it creates application
documents that are sent to the application’s URL, and takes action based on the
response. The first document is sent when the iIS process engine informs the proxy
that it can start a business activity. The proxy starts the activity and sends a
message describing the request to the application.

In the credit check application example, the proxy’s session parameters are
configured to identify it to the engine as the credit check application (the subscriber
to work events involving credit checking). The process engine presents the proxy
with each request for a customer credit check. The proxy builds an XML state
document based on this information, forwarding each message to the XSL
processor. The XSL processor generates an application command document to be
sent to the application.

In the original command document, the tags specify process attributes, such as the
customer number and the amount. The service provider’s response document
includes a tag that indicates either approval or rejection. The XSL processor
handles this response, which instructs the process engine interface to pass the
activity completion status (approved or not) to the engine by invoking the
CompleteActivity method.

Figure A-3 shows how the CreditCheck proxy might process a request for a credit
check.

<Order>...
<Conf>
1234

</Conf>
</Order>

Proxy Document Processing

178 iPlanet Integration Server • Backbone Integration Guide • August 2001

Figure A-3 iIS StartAndVerify Application Processes Credit Check

Proxy

iIS
Process
Engine

Interface

XSL
Processor

Command
Processor

 url

XML
Data

Engine
request

Response to
engine

Application Command doc

Service Provider
Application

Application
doc

Application
doc

1 8

6 3

45

2

7
 Command document

Proxy Document Processing

Appendix A Transforming Proxy Documents 179

1. The process engine starts the activity in response to the READY event. The
proxy then generates an ActivityStarted state document, which provides the
parameters needed to perform the credit check:

2. The XSL processor checks its outbound XSL stylesheet and applies the rules
that match. In this example, the first relevant rule specifies that when an
activity with a value of ActivityStarted is received, the proxy should notify the
application to process the new work:

<FNState>
<FNCndState State="ActivityStarted">
<FNIdentity ProcessID="920"

ActivityID="2"
ActivityName="CreditCheck"
ActivityAppCode="Perform Credit Check"/>

<FNProcessAttributeList>
<FNProcessAttribute Name="Billee"

Type="TextData">
B_1

</FNProcessAttribute>
<FNProcessAttribute Name="ItemCount"

Type="TextData">
100

</FNProcessAttribute>
<FNProcessAttribute Name="CreditApproved"

Type="TextData">
No

</FNProcessAttribute>
</FNProcessAttributeList>

</FNCndState>
</FNState>

<xsl:template match="FNCndState/[@State=’ActivityStarted’]"/>
<FNAplCommand Command="SendMessage"

Method="Post">
<FNMessage>
<WorkRoot>

<NewWork>
<xsl:apply-templates/>

</NewWork>
</WorkRoot>

</FNMessage>
</FNAplCommand>
</xsl:template>

Proxy Document Processing

180 iPlanet Integration Server • Backbone Integration Guide • August 2001

The XSL processor applies the rules and generates a command document with
the application command. The process ID and activity ID are required in this
scenario only if the interaction between the proxy and the application is
asynchronous. The iIS process attributes are transformed into the application’s
vocabulary.

3. The command processor builds an outbound application document from the
command document.

4. The application document transmits the request and the application performs
the credit check.

5. The application responds with a message to disapprove the credit.

<FNCommand>
<FNAplCommand Command="SendMessage"

Method="Post">
<FNMessage>

<WorkRoot>
<NewWork>

<ProcessID>920</ProcessID>
<ActivityID>2</ActivityID>
<WorkType>CreditCheck</WorkType>
<Atts>

<Att>
<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue>B_1</AttValue>

</Att>
<Att>

<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue>100</AttValue>

</Att>
<Att>

<AttName>CreditApproved</AttName>
<AttType>TextData</AttType>
<AttValue>No</AttValue>

</Att>
</Atts>

</NewWork>
</WorkRoot>

</FNMessage>
</FNAplCommand>

</FNCommand>

Proxy Document Processing

Appendix A Transforming Proxy Documents 181

6. The incoming application document is forwarded to the XSL processor. In this
example, the customer is tagged as a poor credit risk (“Deadbeat”).

7. The XSL processor applies its inbound stylesheet, and generates a
CompleteActivity command document:

<WorkRoot>
<WorkCompleted>

<ProcessID>920</ProcessID>
<ActivityID>2</ActivityID>
<Atts>

<Att>
<AttName>Billee</AttName>
<AttType>TextData</AttType>
<AttValue>B_1</AttValue>

</Att>
<Att>

<AttName>ItemCount</AttName>
<AttType>TextData</AttType>
<AttValue>100</AttValue>

</Att>
<Att>

<AttName>CreditApproved</AttName>
<AttType>TextData</AttType>
<AttValue>Deadbeat</AttValue>

</Att>
</Atts>

</WorkCompleted>
</WorkRoot>

<FNCommand>
<FNCndCommand Command="CompleteActivity">
<FNIdentity ProcessID="920"

ActivityID="3"/>
<FNProcessAttributeList>

<FNProcessAttribute Name="Billee"
Type="TextData">

B_1
</FNProcessAttribute>
<FNProcessAttribute Name="ItemCount"

Type="TextData">
100

</FNProcessAttribute>
<FNProcessAttribute Name="CreditApproved"

Type="TextData">
Deadbeat

</FNProcessAttribute>

Proxy Document Processing

182 iPlanet Integration Server • Backbone Integration Guide • August 2001

8. The proxy engine interface interprets the command document and performs
the specified CompleteActivity API request to the process engine.

</FNProcessAttributeList>
</FNCndCommand>

</FNCommand>

183

Appendix B

Proxy Document Element Hierarchies

This appendix provides diagrams showing the XML hierarchies for command
documents, state documents, and authentication documents, including element
attributes.

Command Document Element Hierarchy
Figure B-1 illustrates the hierarchy of elements that the proxy uses to construct
command documents:

Command Document Element Hierarchy

184 iPlanet Integration Server • Backbone Integration Guide • August 2001

Figure B-1 Command Document Hierarchy

You need to be familiar with the command document hierarchy so that:

• your inbound stylesheets can transform application documents into command
documents

• your outbound stylesheets can transform state documents into command
documents

For detailed information about the command document elements and attributes,
see the iIS Backbone online help.

FNCommand

ProcessID
ActivityID

ProcessName
ActivityName

ActivityAppCode

FNIdentity

Name
Type

FNProcessAttribute

Command (to engine)
Recovery (level)

FNCndCommand

Command (send msg
to application)

Method (Get or Post)

FNAplCommand

Address
Query

FNDestination
FNProcessAttributeList FNMessage

FNComment FNNoProcessing

FNHeader

State Document Hierarchy

Appendix B Proxy Document Element Hierarchies 185

State Document Hierarchy
Figure B-2 illustrates the hierarchy of elements that the proxy uses to construct
state documents:

Figure B-2 State Document Element Hierarchy

You need to be familiar with the state document hierarchy so that your outbound
stylesheets can transform state documents into command documents.

For detailed information about the state document elements and attributes, see the
iIS Backbone online help.

FNState

ProcessID
ActivityID

ProcessName
ActivityName

ActivityAppCode

FNIdentity

State (activity state
change info)

FNCndState

Name
Type

FNProcessAttribute

FNProcessAttributeList

Authentication Document Hierarchy

186 iPlanet Integration Server • Backbone Integration Guide • August 2001

Authentication Document Hierarchy
Figure B-3 illustrates the hierarchy of elements used to construct authentication
documents:

Figure B-3 Authentication Document Element Hierarchy

Authentication documents apply only to proxies configured to communicate using
HTTP. Authentication documents (and authentication in general) are optional, and
all child elements within the documents are optional. Any values you provide are
placed in the appropriate fields of the user profile used by the proxy.

Proxies create authentication documents when an application asks the proxy to
authenticate itself. You create authentication documents when an application must
authenticate itself to a proxy.

You need to be familiar with the authentication document hierarchy so that you
can create authentication documents when required by a proxy. You do not need to
write stylesheets to transform authentication documents, because you construct
them using the above vocabulary and structure, which the proxy already
understands.

For more information on authentication documents, see the iIS Backbone System
Guide. For detailed information about authentication document elements and
attributes, see the iIS Backbone online help.

FNAuthentication

Name
Password
OtherInfo

FNUser

Name

FNUserProfile

Name

FNRole

FNRoleList

187

Index

A
activity information, supplying to applications 48
applications

independent proxies, using 55, 147
non-partner 53
recovery use case 141

C
command documents

described 172
element hierarchy 183

E
element hierarchy

authentication documents 186
command documents 183
state documents 185

H
Headers

accessing transport headers 54

hierarchy of elements
authentication documents 186
command documents 183
state documents 185

HTTP
messages 51
messages, examples 52
methods, Get and Post 50

I
iIS

example application 27
message processing 171
stylesheet examples 27

independent proxy use cases
with session authentication 147
without session authentication 163

M
messages

examples 52
HTTP 51
type, specifying 50

Section P

188 iPlanet Integration Server • Backbone Integration Guide • August 2001

P
PDF files, viewing and searching 23
process attributes

and application documents 47
handling in stylesheets 43
transforming lists of 45
transforming values of 46

proxies
HTTP client functioning 177
HTTP server functioning 173
independent 55
independent, session authentication 163
independent, use case 147
recovery, use case 131

proxy documents
hierarchy diagrams 183
processing 171

R
recovery

application use case 141
proxy use case 131

S
sending messages to applications 49
service provider use cases

asynchronous 89
session authentication 123
synchronous 74

service requestor use cases
application 59
session authentication 113

session authentication, HTTP
for independent proxies 57, 163
service provider application 126
service requestor application 116

stylesheets, See XSL stylesheets

T
templates

default 39
reusing 42

Transport headers
accessing 54

U
use cases

application recovery 141
asynchronous service provider 89
independent proxy 147
independent proxy with session

authentication 163
overview 25
proxy recovery 131
service provider with session authentication 123
service requestor 59
service requestor with session authentication 113
synchronous service provider 74

X
XML documents, processing 171
XML output type 36
XML/XSL Workshop 33
XSL stylesheets

activity information for applications 48
application documents as process attributes 47
attributes, creating in results document 38
creating 33
declarations required 36
default, overriding for text nodes 40
in example application 27
guidelines, iIS-related 35
inbound 32, 173
for independent proxies 55
message type 50
messages, sending to applications 49
outbound 32, 179

Section X

Index 189

XSL stylesheets (continued)
process attribute lists, transforming 45
process attribute values, transforming 46
process attributes, handling 43
processing instructions 36
templates, default 39
templates, reusing 42
XML output type 36

XSL transformations
about 28
inbound 32
outbound 32

Section X

190 iPlanet Integration Server • Backbone Integration Guide • August 2001

	Contents
	List of Figures
	List of Tables
	List of Code Examples
	List of Procedures
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Other Documentation Resources
	iPlanet Integration Server Documentation
	Online Help
	Documentation Roadmap

	iIS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation

	1 Introduction
	Working with the iIS Use Cases
	Using the iIS Example Application
	Example Application Stylesheets

	Understanding XSL Stylesheets and XSL Transformations
	Writing XSL Transformations
	Using Inbound and Outbound Stylesheets
	Inbound Transformations
	Outbound Transformations

	Developing Stylesheets with the iIS Workshops

	Developing iIS Stylesheets: General Guidelines
	Including Required Declarations and Processing Instructions
	Specifying the XML Output Type
	Creating Elements and Attributes
	Elements
	Attributes

	Including Default Templates
	Overriding the Default for Text Nodes
	To copy text nodes selectively to the results document

	Combining Stylesheets
	Importing Subordinate Stylesheets
	Including External Stylesheets

	Reusing Templates

	Performing Common iIS Stylesheet Transformations
	Handling Process Attributes in Stylesheets
	Generating Process Attributes
	Transforming Process Attribute Lists
	Transforming Process Attribute Values
	Transmitting Application Documents as Process Attributes
	To transmit an application document as a process attribute

	Supplying Activity Information to Applications
	To supply activity information to an application

	Sending Messages to Applications
	Specifying the Message Type
	Communicating With Non-Partner Applications

	Transport Headers
	Accessing Transport Headers
	Specifying Transport Headers

	Communicating Between Applications Without A Process Definition
	Creating an Inbound Stylesheet
	Configuring an Independent Proxy
	Omitting iIS Process Management Functions

	2 Service Requestor Use Case
	Use Case Summary
	Starting the iIS Process
	Configuration Notes
	Adding Listeners

	Step 1: Generating the Document Element
	Step 2: Instructing the Engine to Start the Process
	Step 3: Passing Process Attributes to the Engine
	Command Document Example

	Transforming State Information
	Step 1: Generating the Document Element
	Step 2: Generating the Application Command
	To generate these commands

	Step 3: Creating the Message Content
	Step 4: Generating Values for the Application
	Generated Document Examples
	State Document
	Command Document
	Application Document

	3 Synchronous Service Provider Use Case
	Use Case Summary
	Communicating Synchronously With a Service Provider
	Configuration Note
	Step 1: Generating the Document Element
	Step 2: Generating a Message to the Application
	Step 3: Providing the Message Content
	Step 4: Sending Process Attribute Values
	Handling Redundant Values

	Generated Document Examples
	State Document
	Command Document
	Application Document

	Receiving Synchronous Notification of Completion
	Step 1: Generating the Document Element
	Step 2: Sending a Command to the Engine
	Step 3: Returning Updated Process Attribute Values
	Command Document Example

	4 Asynchronous Service Provider Use Case
	Use Case Summary
	Communicating Asynchronously With a Service Provider
	Configuration Notes
	Configuring a Sender
	Configuring a Listener

	Step 1: Generating the Document Element
	Step 2: Generating a Message to the Application
	Step 3: Providing Identifying Information
	Step 4: Sending Process Attribute Values
	Step 5: (HTTP Sessions) Receiving Acknowledgment
	Generated Document Examples
	State Document
	Command Document
	Application Document

	Receiving Asynchronous Notification of Completion
	HTTP Sessions
	Step 1: Generating the Document Element
	Step 2: Sending a Command to the Engine
	Step 3: Identifying the Completed Activity to the Proxy
	Step 4: Returning Updated Process Attribute Values
	Step 5: (HTTP Sessions) Acknowledging the Completion Message
	Command Document Example

	5 Service Requestor Authentication Use Case
	Use Case Summary
	Authenticating a Service Requestor with a Proxy
	Authentication Message Flow
	Enabling Authentication
	Step 1: Configuring the Proxy for Authentication
	Setting Session Parameters

	Step 2: Creating a User Validation
	Step 3: Mapping Application Users to iIS Users
	Step 4: Submitting Authentication Information
	Sending a User Name and Password
	Sending an Authentication Document
	Creating an Authentication Document
	Example Authentication Document

	6 Service Provider Authentication Use Case
	Use Case Summary
	Authenticating a Proxy with a Service Provider
	Authentication Message Flow
	Enabling Authentication

	Configuring the Service Provider for Authentication
	Basic Authentication
	FusionXML Authentication

	Providing User Information to the Proxy

	7 Proxy Recovery Use Case
	Use Case Summary
	Submitting a Recovered Activity to a Service Provider
	Submitting the Activity
	Generated Document Examples
	State Document
	Command Document
	Application Document

	Receiving Notification of Completion From the Application
	Alternative Processing: Aborting the Recovered Activity
	Altering the Document Flow
	Generated Document Examples
	State Document
	Command Document
	Application Document

	8 Application Recovery Use Case
	Use Case Summary
	Notifying the Proxy of Application Recovery
	Generated Command Document Example

	Submitting Activities to a Recovered Application
	Receiving Notification of Completion From the Application

	9 Independent Proxy Use Case
	Use Case Summary
	Transferring Data Between Applications
	Creating a Stylesheet for Data Transformation
	Step 1: Overriding the Default for Text Nodes
	To copy text nodes selectively to the results document

	Step 2: Generating the Command Document Element
	Step 3: Generating the Command to Send a Message
	To generate these commands
	Communicating with Multiple Applications

	Step 4: Specifying the Target Application Location
	Step 5: Generating a Message to the Target Application
	Step 6: Generating the Target Application Document Element
	Step 7: Specifying the Message Content
	Sample Documents and Stylesheet
	Initiating Application Document
	Inbound Stylesheet
	Command Document
	Target Application Document

	Configuring an Independent Proxy

	10 Independent Proxy Authentication Use Case
	Use Case Summary
	Authenticating an Application to an Independent Proxy
	Authentication Message Flow
	Enabling Authentication

	Submitting Authentication Information
	Configuring the Proxy for Authentication
	Step 1: Specify the Proxy As Independent
	Step 2: Specify That the Proxy Require Authentication
	Step 3: Specify the Authentication Values

	Authenticating a Proxy To a Target Application

	A Transforming Proxy Documents
	Proxy Document Processing
	XSL Stylesheets for the Proxy
	Service Requestor Application
	Service Provider Application

	B Proxy Document Element Hierarchies
	Command Document Element Hierarchy
	State Document Hierarchy
	Authentication Document Hierarchy

	Index
	A
	C
	E
	H
	I
	M
	P
	R
	S
	T
	U
	X

