
Process System Guide
iPlanet™ Integration Server

Version 3.0

August 2001



Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this 
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed 
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other 
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and 
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written 
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, iPlanet and the iPlanet logo are trademarks or registered trademarks of Sun 
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. 
and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The 
Apache Software Foundation. All rights reserved. 

Federal Acquisitions: Commercial Software – Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND 
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE 
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE 
LEGALLY INVALID.

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans 
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets 
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en 
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la 
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque 
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et 
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, iPlanet et le logo iPlanet sont des marques de fabrique ou des marques déposées de Sun 
Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC 
International, Inc. aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture 
développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Ce produit inclut des logiciels développés par Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The 
Apache Software Foundation. Tous droits réservés. 

Acquisitions Fédérales: progiciel – Les organisations gouvernementales sont sujettes aux conditions et termes standards d'utilisation.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES 
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y 
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE 
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.



3

Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Product Name Change  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Audience for This Guide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Organization of This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Text Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Syntax Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Other Documentation Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

iPlanet Integration Server Documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Online Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Documentation Roadmap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

iIS Example Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Viewing and Searching PDF Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Chapter 1  Introduction: iIS Process Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
What Is an iIS Process Engine? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Multiple Engine Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
iIS Process Engine Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Minimal Engine Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Failover Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Full Configuration: Failover and Load Balancing Combined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

What Does an iIS Process Engine Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
iIS Process Management Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

Setting up and Maintaining an iIS System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
Setting Up an iPlanet UDS Runtime Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Installing iIS Process Management Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Setting Up and Maintaining Central Development Repositories . . . . . . . . . . . . . . . . . . . . . . . . .  38



4 iPlanet Integration Server • Process System Guide • August 2001

iIS Process Management Tasks (continued)
Managing iIS Process Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Managing Registration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Managing Process Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

iIS Process Management Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
iIS Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
Conductor Script Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Custom System Management Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Repository Management Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Dump/Restore Facilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

Chapter 2  Setting Up an iIS Process Management System . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Preparation: Setting up an iPlanet UDS Runtime Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
iIS Process System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

iIS Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
iIS Process System Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

Compiled and Interpreted Engine Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
iIS Process System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

Setting Up an iIS Process System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
iIS Process System Setup Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
The iIS Installation Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Central Server Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Engine Server Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58
Development Client Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59
Runtime Client Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

Configuring and Starting Your iIS Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60
Maintaining an iIS Process System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

Adding New Nodes to an iIS System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
Moving an iIS Engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62
Creating a New iIS Repository Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62
Moving an iIS Repository Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62
Creating a Private iIS Repository  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
Upgrading an iIS System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
Uninstalling an iIS System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

Chapter 3  The iIS Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Starting the iIS Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

Using the cconsole Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67



5

The iIS Console Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68
Main Viewing Panel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Menu Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Mouse Popup Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Online Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Setting Password Protection for iIS Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71
Exiting iIS Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

Using iIS Console Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
Using the Mouse  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
Window Refresh Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
Filtering iIS Console Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74
Specifying Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74
Example Filter Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

Sorting iIS Console Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76
Using List Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

iIS Console Main Window Command Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
Environment Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
View Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79
Engine Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79
Monitor Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80
Help Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

Chapter 4  Managing Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Production Engines Versus Development Engines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
Configuring an Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Engine Component Partitioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85
Engine Startup Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88
Engine Configuration File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
Customizing Engine Database Schema  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
How to Configure a New Engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Duplicating an Engine Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104
Deleting an Engine Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

Starting an Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
Governor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
Engine Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

Primary Engine Unit Startup Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108
Database Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
How to Start an Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110



6 iPlanet Integration Server • Process System Guide • August 2001

Reconfiguring an Engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
How to Reconfigure an Engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
How to Dynamically Modify Database Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
How to Tune Process Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

Monitoring and Changing Engine States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117
Monitoring Engines and Engine Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118

Monitoring the Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
Monitoring Engine Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

Changing Engine States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Changing Engine Unit States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
About Recovering State Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Shutting Down Engine Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

Managing an Engine Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
Database Management Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

Growth of the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Failure of the Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Recovering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

Dumping and Restoring Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126
Dumping Database Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126
Restoring Database Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131
Dump/Restore Environment Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

Chapter 5  Managing Registrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
About Registration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137

What Does Registration Do?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139
Registration in Production Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
What Does Unregistration Do?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
Engine Registration Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
About Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

Registering iIS Distributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144
Registration Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Performing Registrations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Upgrading Registrations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147
Unregistering iIS Distributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147

Registering Aliases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
Unregistering Aliases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150

Viewing Registrations for an Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150
Unregistering a Distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151
Monitoring Instances of a Registered Process Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

Performing Application Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153
Monolithic Upgrades  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154
Rolling Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155



7

Chapter 6  Managing Process Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

Engine Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158
Disrupted Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159
Explicitly Suspended Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161
Explicitly Terminated Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161

Activity States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
Activity Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165

Process Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
Process Instance Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166
Process Instance Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167

Activity Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
Activity Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168
Activity Termination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171

Process Instance Termination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
Completed Process Instances  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
Aborted Process Instances  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173

Monitoring and Managing Engine Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
Monitoring the State of a Session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174
Managing Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176

Suspending or Terminating Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176
Sending and Broadcasting Messages to Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177

Monitoring and Managing Process Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Managing Process Instances  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181

Checking the Status of a Process Instance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181
Aborting a Process Instance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184

Managing Activity Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Checking the Status of an Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Changing the State of an Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186

Managing Activity Queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188
Checking the Status of an Activity Queue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188
Reprioritizing a Queued Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

Managing Timer Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
Checking the Status of a Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
Changing the Timer State and Expiration Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192

Managing Process Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193
Checking the Value and Lock State of a Process Attribute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193
Changing a Process Attribute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
Removing a Process Attribute Lock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195

Checking for Bottlenecks in Process Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196
Analyzing Process Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197

History Log Schema  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198
State Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198



8 iPlanet Integration Server • Process System Guide • August 2001

Monitoring and Managing Two-Phase Commit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199
Managing Two-Phase Commit Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202

Chapter 7  Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203
Process Engine Alarms Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205

Monitoring Alarms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206
Viewing Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

Engine Log Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210
iIS Console Trace Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212

Messages and Message Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212
Specifying Message Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213
iIS Message Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214

Using the iIS Console Trace Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215
Setting Message Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215
Special Example: Write Client Messages to Trace Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

iIS Console Engine Event Filter Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
Engine Event Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
Using the iIS Console Engine Event Filter Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218

Displaying All Engine Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
Displaying Process Instance Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
Filtering Engine Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

Performance Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221
Viewing Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222
Logging Performance Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

Chapter 8  Using the Conductor Script Utility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227

Conductor Script Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
Starting Conductor Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228

Using the Cscript Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229
Working with Conductor Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230

General Conductor Script Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231
Writing and Executing Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232

Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232
Operating System and File Management Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233

Managing iIS Process Engines with Conductor Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
Starting an Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235

Starting Individual Engine Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236
Example Manual Startup Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238



9

Managing iIS Process Engines with Conductor Script (continued)
Monitoring Engines and Engine Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239

Monitoring the Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239
Monitoring Individual Engine Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240

Changing Engine States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242
Changing Engine Unit States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242
Shutting Down Engine Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243

Managing Registrations with Conductor Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243
Making iIS Library Distributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243
Registering iIS Library Distributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246
Unregistering iIS Library Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247

Managing Process Execution with Conductor Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249
Monitoring and Managing Engine Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
Monitoring and Managing Process Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252

Managing Process Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
Managing Activity Instances  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
Managing Activity Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253
Managing Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
Managing Process Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
Checking for Bottlenecks in Process Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255

Monitoring and Managing Two-Phase Commit Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258
Monitoring Two-Phase Commit Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258
Managing Two-Phase Commit Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259

Appendix A  Conductor Script Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Conductor Script Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261

Environment Mode Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263
Engine Mode Commands: Engine Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264
Engine Mode Commands: Process Execution Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  266
Component Mode Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271

Generic component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272
Engine Unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272

Conductor Script Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273
AbortActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273
AbortAllProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274
AbortProcess  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274
BroadcastMessage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
CommitTransaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
CompleteActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276
ConsultActivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276
CreateActivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278



10 iPlanet Integration Server • Process System Guide • August 2001

Conductor Script Commands (continued)
CreateFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279

Event Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279
Object Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280
Object Instance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280
Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281

DelegateActivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281
DeleteFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283
FindDBService  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283
FindEngine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284
FindGovernor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284
FindNode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285
FindParentEngine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285
FindPrimary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285
FindUnit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  286
FlushLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  286
IIOPServer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287
ListActivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287
ListActivityQueues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287
ListConductorDistributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
ListEngines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
ListFilters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
ListProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289

Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290
ListRegistrations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290
ListSessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
ListTimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
ListTransactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
MakeConductorDistribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  292
ModLogFlags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  292
ReadyActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  293
RegisterAlias  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  294
RegisterAssignmentRules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  294
RegisterProcessDefinition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295
RegisterUserProfile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295
RegisterValidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296
RemoveReadLock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297



11

Conductor Script Commands (continued)
RemoveWriteLock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297
RollbackActivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  298
RollbackTransaction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  298
SendMessage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299
SetAttributeValue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300
SetPassword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300
SetPrimary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301
SetQueuedActivityPriority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301
SetState  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302
SetTimer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302
SetTimerDeadline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303
SetTimerElapsed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304
ShowActivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304
ShowActivityQueue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305
ShowConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306
ShowEngine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306
ShowLogFlags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
ShowProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
ShowSession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  308
ShowStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309
ShowTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
Shutdown  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  314
StartActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  314
StartDBService  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
StartEngine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
StartGovernor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  316
StartTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
StartUnit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
StopTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  319
SuspendAllSessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  319
SuspendSession  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320
TerminateAllSessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320
TerminateSession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  321
Uninstall  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  321
UnRegisterAlias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322
UnRegisterAssignmentRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322
UnRegisterProcessDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  323
UnRegisterUserProfile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  324
WaitForStartup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  324



12 iPlanet Integration Server • Process System Guide • August 2001

Appendix B  Engine Database Schema  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  327
Database Tables by Category  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  327
Alphabetical Listing of Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329
Database Schema Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331

Current State Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332
Registration Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346
History Log Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347

State Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  359



13

List of Figures

Figure 1-1  An iIS Process Management System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Figure 1-2  Minimal Engine Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Figure 1-3  Engine Configuration with Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Figure 1-4  Engine Configuration with Both Failover and Load Balancing . . . . . . . . . . . . . . . . . . .  35

Figure 1-5  Engine Manager Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

Figure 2-1  Components of an iIS Process System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Figure 2-2  iIS Process System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

Figure 3-1  iIS Console Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

Figure 3-2  iIS Console Browser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

Figure 4-1  Engine Configuration with both Failover and Load Balancing . . . . . . . . . . . . . . . . . . .  86

Figure 4-2  Typical Engine Partitioning Scheme  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

Figure 5-1  Registration Steps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

Figure 5-2  Subprocess Activity References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

Figure 6-1  Activity State Transitions—from Creation to Termination . . . . . . . . . . . . . . . . . . . . . .  164

Figure 6-2  Process Execution Objects: Properties and Relationships . . . . . . . . . . . . . . . . . . . . . . .  180

Figure 6-3  Client Applications Change Both iIS Process State and Application Data . . . . . . . . .  200

Figure 7-1  Specifying iPlanet UDS Message Output Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213

Figure A-1  Hierarchy of Conductor Script Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  262



14 iPlanet Integration Server • Process System Guide • August 2001



15

List of Procedures

To copy the documentation to a client or server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

To view and search the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Before you invoke the setccomp script, you must do the following . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

To set up an iIS process system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55

To add a new node to an iIS system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

To create a new iIS Repository Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

To move an iIS Repository Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

To create a private iIS Repository on a development node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

To start the iIS Console on Windows or Windows NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

To start the iIS Console on UNIX, OpenVMS, or Windows NT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

To set a password for iIS Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

To turn automatic refresh off or on  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

To set the automatic refresh interval  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

To force an immediate refresh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

To configure a new engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96

To duplicate an engine configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

To delete an engine configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

To start an engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

To start individual engine components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

To reconfigure an engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

To modify database logging for an engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

To check the engine runtime configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118

To monitor individual engine components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

To change the state of an engine unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122

To put the primary engine unit on STANDBY and the backup unit ONLINE . . . . . . . . . . . . . . . . . .  122

To use the Dump/Restore application to dump database tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

To preserve custom engine database schema changes when upgrading iIS . . . . . . . . . . . . . . . . . . . .  132



16 iPlanet Integration Server • Process System Guide • August 2001

To use the Dump/Restore application to restore database tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

To transfer iIS library distributions to a production environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

To register one or more distributions using the iIS Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146

To unregister a process definition, assignment rule dictionary, or user profile  . . . . . . . . . . . . . . . . .  148

To register an alias using the iIS Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149

To unregister an alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150

To view the registrations for a given engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

To unregister a registered distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

To monitor instances of a registered process definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

To perform a monolithic upgrade  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154

To perform a rolling upgrade  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155

To obtain state information about a session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174

To suspend a session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176

To terminate a session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177

To send a message to an active session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177

To broadcast a message to all sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179

To check the current execution status of a process instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181

To abort a process instance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184

To change the state of an activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187

To view the contents of an activity queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188

To reprioritize a queued activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

To change the state and expiration time of a timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192

To change the value of a process attribute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195

To remove a process attribute lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195

To find a process bottleneck  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196

To register an engine with the alarm service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206

To unregister an engine from the Alarm service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207

To filter alarms in the Process Engine Alarms window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207

To search for an alarm in the Process Engine Alarms window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

To get detailed information about an alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209

To remove an alarm from the Alarm window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209

To view an engine component log file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

To open the iIS Console Trace window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

To set message filters for a selected engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216

To set the engine tracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

To open the Engine Event Filter window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218

To view all engine events for the selected engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219



List of Procedures 17

To view all engine events for an existing process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219

To view all engine events for the next process instance of a specific process definition . . . . . . . . . .  220

To specify a custom filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

To view performance indicators for an engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223

To log performance information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

To stop logging performance information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

To start Conductor Script on Windows or Windows NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228

To start Conductor Script on UNIX, OpenVMS, or Windows NT  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229

To start an engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235

To start an engine where delays might be involved  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236

To start an individual engine component (governor, database service, or engine unit)  . . . . . . . . . .  236

To check the engine runtime configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239

To monitor individual engine components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240

To change the state of an engine unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242

To make an iIS library distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244

To register an iIS distribution with an engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246

To unregister an iIS distribution from an engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248

To obtain state information about a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250

To suspend or terminate a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250

To send a message to one or more sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250

To check the status of a process instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252

To abort a process instance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252

To check the status of an activity instance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252

To change the state of an activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253

To list the contents of an activity queue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253

To reprioritize an activity in a queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253

To check the status of a timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254

To change the state of a timer or change its expiration time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254

To check the value or lock state of a process attribute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254

To change the value of a process attribute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255

To remove an attribute lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255

To find a process bottleneck  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255

To resolve transactions after a client or engine failure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260



18 iPlanet Integration Server • Process System Guide • August 2001



19

Preface

The iIS Process System Guide describes how to manage a process system, one of the 
two subsystems that comprise iIS. The guide provides the system management 
principles and concepts upon which a process system is based, and describes how 
to perform process system management tasks.

This preface contains the following sections:

• “Product Name Change” on page 19

• “Audience for This Guide” on page 20

• “Organization of This Guide” on page 20

• “Text Conventions” on page 21

• “Other Documentation Resources” on page 22

• “iIS Example Programs” on page 24

• “Viewing and Searching PDF Files” on page 24

Product Name Change
Forte Fusion has been renamed the iPlanet Integration Server. You will see full 
references to the new name, as well as the abbreviation iIS.



Audience for This Guide

20 iPlanet Integration Server • Process System Guide • August 2001

Audience for This Guide
This book assumes familiarity with the basic concepts underlying an iIS process 
system. A discussion of these concepts and a description of iIS process system 
components, the functions they perform, and how they interact with an iIS 
Backbone can be found in the iIS Conceptual Overview. Additionally, information 
about creating and defining business process for use within an iIS process system 
can be found in the first two chapters of the iIS Process Development Guide.

Because an iIS system is built and distributed in an iPlanet UDS environment, it is 
helpful to understand iPlanet UDS system management concepts. For details, see 
the iPlanet UDS System Management Guide.

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “Introduction: iIS 
Process Management”

Provides a brief introduction to the iIS process engine 
and process system management.

Chapter 2, “Setting Up an iIS 
Process Management System”

Describes the components of an iIS process system 
and how to distribute them among the different 
nodes in your environment.

Chapter 3, “The iIS Console” Introduces the iIS Console, an interactive system 
management tool.

Chapter 4, “Managing Engines” Explains how to configure, start up, and manage an 
iIS process engine and its components.

Chapter 5, “Managing 
Registrations”

Describes the registration process by which process 
definitions and other development components are 
made available for execution by a running engine.

Chapter 6, “Managing Process 
Execution”

Explains how an engine executes process definitions 
and how to monitor and make adjustments to process 
execution.

Chapter 7, “Troubleshooting” Explains tools and techniques used for diagnosing 
problems in process execution.



Text Conventions

Preface 21

Text Conventions
This section provides information about the conventions used in this document.

Chapter 8, “Using the Conductor 
Script Utility”

Explains how to perform iIS system management 
tasks using Conductor Script commands.

Appendix A, “Conductor Script 
Commands”

Provides a command reference for Conductor Script, 
a command line tool for process system management.

Appendix B, “Engine Database 
Schema”

Provides a reference for the iIS process engine 
database schema. 

Format Description

italics Italicized text is used to designate a document title, for 
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you 
enter on the command line, directory, file, or path names, 
error message text, class names, method names (including all 
elements in the signature), package names, reserved words, 
and URLs.

ALL CAPS Text in all capitals represents environment variables 
(FORTE_ROOT) or acronyms (iIS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase 
text exactly as shown.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A 
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S 
means press the Esc key, release it, then press the S key.

Chapter Description



Other Documentation Resources

22 iPlanet Integration Server • Process System Guide • August 2001

Syntax Statements
Syntax statements that describe usage of TOOL methods and script commands use 
the following conventions:

Other Documentation Resources
In addition to this guide, there are additional documentation resources, which are 
listed in the following sections. The documentation for all iIS products can be 
found on the iIS CD. Be sure to read “Viewing and Searching PDF Files” on page 24 
to learn how to view and search the documentation on the iIS CD.

iIS documentation can also be found online at 
http://docs.iplanet.com/docs/manuals/iis.html. 

The titles of the iIS documentation are listed in the following section.

Format Description

parentheses ( ) Parentheses enclose a parameter list.

comma , Commas separate items in a parameter list. 

vertical bars | Vertical bars indicate a mutually exclusive choice between items. See 
braces and brackets, below.

brackets[] Square brackets to indicate optional values in a syntax statement.

braces { } Braces indicate a required clause. When a list of items separated by 
vertical bars is enclosed in braces, you must enter one of the items from 
the list. Do not enter the braces or vertical bars.

ellipsis … The item preceding an ellipsis may be repeated one or more times. 
When a clause in braces is followed by an ellipsis, you can use the clause 
one or more times. When a clause in brackets is followed by an ellipsis, 
you can use the clause zero or more times. 



Other Documentation Resources

Preface 23

iPlanet Integration Server Documentation
iIS Adapter Development Guide

iIS Backbone Integration Guide

iIS Backbone System Guide

iIS Conceptual Overview

iIS Installation Guide

iIS Process Client Programming Guide

iIS Process Development Guide

iIS Process System Guide

Online Help
When you are using an iIS development application, press the F1 key or use the 
Help menu to display online help. The help files are also available at the following 
location in your iIS distribution: FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as FNscript or Cscript, type help from the 
script shell for a description of all commands, or help <command> for help on a 
specific command.

Documentation Roadmap
A roadmap to the iIS documentation can be found in the iIS Conceptual Overview 
manual.



iIS Example Programs

24 iPlanet Integration Server • Process System Guide • August 2001

iIS Example Programs
iIS example programs are shipped with the iIS product and installed in two 
locations, one for process development (using the process engine) and one for 
application integration (using the iIS backbone).

Process Development Examples Process development examples are installed at 
the following location:

FORTE_ROOT/install/examples/conductr

The PDF file, c_examp.pdf, describes how to install and run the examples in this 
directory. The Appendix to the iIS Process Development Guide also describes how to 
install and run the examples.

Application Integration Examples Process integration examples are installed at 
the following location:

FORTE_ROOT/install/examples/fusion

Each example has its own sub-directory, which contains a README file that 
explains how to install and run the example.

Viewing and Searching PDF Files
You can view and search iIS documentation PDF files directly from the 
documentation CD-ROM, store them locally on your computer, or store them on a 
server for multiuser network access.

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or 
server hard disk.

You can specify any convenient location for the doc directory; the location is 
not dependent on the iIS distribution. You may want to consolidate your iIS 
documentation with the documentation for your iPlanet UDS distribution.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat 
Reader with Search is recommended and is available as a free 
download from http://www.adobe.com. If you do not use Acrobat 
Reader with Search, you can only view and print files; you cannot 
search across the collection of files.



Viewing and Searching PDF Files

Preface 25

2. Set up a directory structure that keeps the iisdoc.pdf and the iis directory in 
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file iisdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search > 
Query.

3. Enter the word or text string you are looking for in the Find Results Containing 
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text. 
If more than one document from the collection contains the desired text, they 
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the 
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted. 

NOTE To uninstall the documentation, delete the doc directory.

NOTE For details on how to expand or limit a search query using 
wild-card characters and operators, see the Adobe Acrobat 
Help.



Viewing and Searching PDF Files

26 iPlanet Integration Server • Process System Guide • August 2001

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to 
navigate through the search results, as shown in the following table:

To return to the iisdoc.pdf file, click the Homepage bookmark at the top of 
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the 
iisdoc.pdf home page or select Edit > Search > Results.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]



27

Chapter 1

Introduction: iIS Process
Management

iIS process system management is largely devoted to managing iIS process engines 
and the functions they perform.

This chapter provides a high level description of what an iIS process engine is and 
what it does. It describes the relationship of the engine to other parts of the iIS 
system and describes its component parts.

This chapter also discusses the tasks required of system managers and the tools 
they use to perform these tasks.

What Is an iIS Process Engine?
An iIS process engine is the heart of an iIS system, shown in Figure 1-1 on page 30, 
reproduced from the iIS Process Development Guide.

The engine controls and manages business processes from beginning to end, 
coordinating the work of the different resources that perform the activities defined 
in each process instance.

At each stage of a process’s execution, the engine evaluates whether an activity is 
ready to be performed and, if so, assigns that activity to the appropriate resources. 
When an activity is completed, the engine routes the work to the next activity or set 
of activities.

The engine knows how to manage the flow of a process because it is programmed 
to control and track that process. The program that the engine executes is an iIS 
process definition. The process definition is created in the iIS Process Definition 
Workshop and is then registered with the engine. For information on process 
definitions, see the iIS Process Development Guide.



What Is an iIS Process Engine?

28 iPlanet Integration Server • Process System Guide • August 2001

Once a process definition has been registered with the engine, an iIS process client 
application (or an application proxy—see Figure 1-1 on page 30) can open a session 
with the engine and create an instance of the process. The client application or 
proxy provides any data required to start the process instance, and then the engine 
takes over. It assigns activities directly to engine sessions or to queues where they 
can be accessed. Client applications—or applications interacting with the engine 
through proxies—perform the work required of each activity using whatever 
application services, enterprise data, or desktop applications necessary, and then 
notify the engine that the activity has been completed. For information on client 
applications, see the iIS Process Client Programming Guide. For information about 
proxies, see the iIS Backbone System Guide.

The relationship of the engine to iIS process client applications, on the one hand, 
and to the process development workshops, on the other, is illustrated in 
Figure 1-1 on page 30. Client applications maintain sessions with an iIS process 
engine to initiate a business process or perform its activities in it. The engine can 
service a very large number of sessions and manage many instances of many 
different process definitions. As process definitions (as well as assignment rule 
dictionaries, user profiles, and a validation) are created or modified in the iIS 
development environment, they can be registered with the engine, and become the 
basis for further process execution.

The engine is thus central to an iIS system, implementing business processes that 
require the performance of many activities by many resources.



What Is an iIS Process Engine?

Chapter 1 Introduction: iIS Process Management 29

Multiple Engine Systems
An iIS system does not need to be limited to a single engine. It can have any 
number of engines. For example, one engine might be used for testing and another 
used for production. (see “Production Engines Versus Development Engines” on 
page 83.)

In other cases, organizational considerations or heavy load conditions might 
require multiple production engines. While engines can communicate with one 
another—a processes definition that executes on one engine can be invoked as a 
subprocess by a process definition executing on another—each engine operates 
independently. A single instance of a process definition executes on only one 
engine.

In most cases, different process definitions would be executed on different engines. 
For example, one process might execute on one engine while a subprocess it 
invokes might execute on another. If the same process definition is executed on 
more than one engine (to handle the workload of a large number of client users) 
then client users would normally be divided up between the engines, each user 
logging in to only one of the engines.

Multiple engines can run in a single iPlanet UDS environment, or can be spread 
across a number of connected iPlanet UDS environments. However, there is no 
mechanism by which one engine can fail over to another. iIS uses a different 
mechanism to handle engine failover (see “Failover Configuration” on page 33).



What Is an iIS Process Engine?

30 iPlanet Integration Server • Process System Guide • August 2001

Figure 1-1 An iIS Process Management System

Engine
Database

Central
Development

Repository

Application
Services

Organization
DatabaseProcess Engines

Registration

System Management
Tools

Process Develpment
Workshops

Engine
DatabaseEnterprise

Databases

TOOL

Client Applications

C++

CORBA/IIOP

ActiveX

JAVA



iIS Process Engine Components

Chapter 1 Introduction: iIS Process Management 31

iIS Process Engine Components
As mentioned earlier in this chapter, an iIS process engine is the heart of an iIS 
system and has been designed to support mission-critical production application 
systems. The iIS process engine maintains performance under heavy and/or 
increasing loads and provides automatic recovery in case of unanticipated system 
failure.

To support both failover and load balancing, the iIS process engine is engineered as 
a set of interacting application components. These applications work together to 
provide engine failover protection and the flexibility to handle increasing loads. An 
iIS engine generally consists of the following application components:

• two engine units

• an engine governor

• a number of database access services

An iIS engine also includes a database that provides storage for persistent state 
information.

The various engine components are described below in relation to their role in 
providing failover and load balancing capability. A minimal engine configuration 
is discussed first, followed by failover and load balancing configurations. To create 
these configurations, see “Configuring an Engine” on page 85.

Minimal Engine Configuration
An iIS process engine consists minimally of three components—an engine unit, a 
database service, and a database—as shown in Figure 1-2. In this configuration, the 
engine provides basic functions without failover or load balancing capabilities.



iIS Process Engine Components

32 iPlanet Integration Server • Process System Guide • August 2001

Figure 1-2 Minimal Engine Configuration

Engine Unit The engine unit is an application that performs all the basic iIS 
engine functions (see “What Does an iIS Process Engine Do?” on page 36). The 
engine unit is a single iPlanet UDS server partition containing a number of 
manager objects (see Figure 1-5 on page 37). The engine unit, in performing its 
work, tracks the state of each process, activity, timer, process attribute lock, and 
session that it creates in the course of process execution. In a typical production 
situation, the engine unit maintains state information on tens of thousands to 
millions of objects. It is critical that this state information be kept in a persistent 
form should the engine unit fail and need to be recovered. For this reason, the 
engine unit writes all current state information to the engine database (described 
below).

Database Service The database service is an application that manages the engine 
unit’s database access. The database service is a single iPlanet UDS server partition 
that maintains communication channels with the engine unit, opens a session with 
the engine database, and writes and retrieves state information as required by the 
engine unit. The database service is a single–threaded application, and can handle 
only one request to the database at a time. (To see how to overcome this limitation, 
see “Full Configuration: Failover and Load Balancing Combined” on page 35.)

Engine Database The engine database provides persistent storage for state 
information maintained by the engine. It also stores registration information 
regarding all process definitions, assignment rule libraries, user profiles, and 
validations that can be executed by the engine. In addition, the engine database can 
be used to log historical information for tracking process execution over time. The 

iIS Process Engine

Client Applications

Primary
Engine

Unit

Engine
Database

Database
Service



iIS Process Engine Components

Chapter 1 Introduction: iIS Process Management 33

engine database is not supplied by the iIS product and must be set up 
independently; however, the engine unit can create all required database tables at 
startup time. The iIS process engine supports all relational database systems 
supported by iPlanet UDS (for example, Sybase, Oracle, Informix, and so on).

Failover Configuration
To provide for failover in case the engine unit fails (for whatever reason), a backup 
engine unit and governor are added to the iIS process engine configuration, as 
illustrated in Figure 1-3.

Figure 1-3 Engine Configuration with Failover

Backup Engine Unit The backup engine unit, a replicate of the engine unit 
partition, has a unique name that distinguishes it from the primary engine unit. 
The primary and backup engine units are partners. The backup engine unit runs in 
a standby state when the primary engine unit is on line. The two partners know 
about each other through an open communication channel. If the primary engine 
unit fails, the backup engine unit comes on line. In that case, the database service 

iIS Process Engine

Backup
Engine
Unit

Governor

Primary
Engine

Unit

Engine
Database

Database
Service

Client Applications



iIS Process Engine Components

34 iPlanet Integration Server • Process System Guide • August 2001

opens a channel to the backup unit, which takes over by recovering all the 
persistent state information stored in the engine database. The new primary engine 
unit starts process execution at the point where the old primary engine unit left it. 
Client sessions with the engine are maintained throughout this failover transition.

Governor The governor is an application that assists in deciding when failover 
should occur. The governor maintains an open communication channel with both 
the primary and backup engine units. It uses these channels to determine if a 
closing of the communication channel between primary and backup engine units is 
due to engine unit failure or network failure. For example, if the communication 
channel between the primary and backup engine units closes, but the governor’s 
communication channel with the primary engine unit remains open, the governor 
assumes the primary engine unit is still online. However, if neither the governor 
nor backup engine unit can communicate with the primary engine unit, the 
governor assumes the primary engine unit has failed, and places the backup engine 
unit online, making it the new primary engine unit.

(If the primary engine unit has not failed, but cannot communicate with either the 
governor or backup engine unit, the primary engine unit will drop into STANDBY 
state, since it has no way of knowing the state of its partner.)

NOTE Failover (and recovery of state information) is not instantaneous. In 
a production system, the state information stored in the engine 
database can be quite extensive. It includes information on the state 
of every process instance, the state of every activity and timer in 
each process instance, the values of process attributes and their lock 
states, the state of routers and triggers for each activity instance, 
session activity lists, queue lists, and so on. Accordingly, the amount 
of time for failover to occur is dependent on the amount of state 
information in the database and the speed of database access.



iIS Process Engine Components

Chapter 1 Introduction: iIS Process Management 35

Full Configuration: Failover and Load 
Balancing Combined
To deal with heavy loads on the engine and overcome the potential bottleneck of a 
single database service, additional database services can be added to the failover 
engine configuration, as illustrated in Figure 1-4.

With a heavily loaded engine, large numbers of state changes need to be written to 
the engine database simultaneously. Database access is likely to be a performance 
problem. To accommodate large loads, database access is shared among a set of 
database service components (which may be running on different nodes) using a 
database service router in the primary engine unit.

Each service is assigned a unique name and allocated a priority (depending, 
perhaps, on its host node—see “Engine Component Partitioning” on page 85). 
When the engine unit needs to access the database, the router provides it the 
highest priority database access service available. If there are a number of services 
of equal priority available, the router chooses a database service on a round-robin 
basis, thus sharing the load among all available services.

Figure 1-4 Engine Configuration with Both Failover and Load Balancing

iIS Process
Engine

Backup
Engine

Unit

Governor

Primary
Engine

Unit
Router

Engine
Database

Database
ServicesDatabase

ServicesDatabase
Services

Client Applications



What Does an iIS Process Engine Do?

36 iPlanet Integration Server • Process System Guide • August 2001

What Does an iIS Process Engine Do?
As suggested in “What Is an iIS Process Engine?” on page 27, an iIS process engine 
performs a number of different functions in support of an iIS system. These include 
the following.

Managing sessions The engine opens, suspends, and closes sessions. When 
opening a session, the engine first validates a user’s logon against an 
organizational database. For more information on sessions, see “Engine Sessions” 
on page 158.

Executing processes The engine creates instances of a process and manages their 
execution from start to finish. During each process’ execution, a succession of 
activities is performed by applications that have opened sessions with the engine. 
The engine manages and tracks these activities through to their final completion.

Registering distributions Process definitions, assignment rule dictionaries, user 
profiles, and a validation constitute the process logic components executed by the 
engine during process execution. Registration lets you change these components 
dynamically as business processes and organizational structures change.

Maintaining an engine history database The engine can maintain a history of 
each process execution, writing all changes of state to an engine history database. 
The history can include changes of state in activities, process attributes, timers, and 
so on.

While process execution is the key engine function, managing sessions, registering 
definitions, and maintaining the history database are all necessary to support 
process execution.

To provide these functions, the iIS engine is internally structured around a number 
of manager objects, as shown in Figure 1-5:

• Session Manager—maintains engine sessions

• Process Manager—works closely with the Timer Manager and Access Manger 
to execute iIS process definitions

• Registration Manager—keeps track of the names and versions of registered 
process definitions

• History Manager—writes current state and history log information to the 
engine database.



iIS Process Management Tasks

Chapter 1 Introduction: iIS Process Management 37

Figure 1-5 Engine Manager Objects

iIS Process Management Tasks
iIS process management tasks can be grouped into four broad categories:

• setting up and maintaining an iIS process system

• managing iIS process engines

• managing registration of process definitions

• managing process execution

Each of these categories is discussed briefly below and treated in detail in the 
corresponding chapter of this system management guide.

Setting up and Maintaining an iIS System
Setting up a new iIS process management system—whether used for development, 
testing, production, or a combination of the three—involves a number of basic 
tasks, described below.

        Engine Unit
Engine
Object

Session
Manager

Process
Manager

Timer
Manager

Access
Manager Database

Service

History
Manager

Registration
Manager



iIS Process Management Tasks

38 iPlanet Integration Server • Process System Guide • August 2001

Setting Up an iPlanet UDS Runtime Environment
An iIS process management system runs in an iPlanet UDS software environment. 
Both the development and production capabilities of iIS (both process 
development and process execution) use the distributed runtime services provided 
by an iPlanet UDS environment. A functioning iPlanet UDS environment is the 
technical infrastructure underlying an iIS process management system.

Installing iIS Process Management Software
iIS process management system software consists of a number of client and server 
software modules required to support nodes that perform a number of different 
functions. The functionally different types of nodes in an iIS process system are the 
following:

• nodes that support iIS process engine components

• nodes that support process development

• nodes that support client application development or client application 
execution in a production environment

Before installing iIS process system software, you must first determine which 
nodes in your iPlanet UDS environment are used for each of these purposes and to 
install the corresponding system software on each.

When upgrading iIS process system software, especially in production 
environments, you might have to migrate data from existing iIS process engine 
databases to new ones. See “Upgrading an iIS System” on page 63.

Setting Up and Maintaining Central Development Repositories
In iIS development environments, the code created in the process development 
workshops is stored in a modified iPlanet UDS central development repository. As 
an iIS system manager, you may be called on to create iIS central development 
repositories and start a Repository Server for each. (Developers can also use private 
iIS repositories.)

Central development repositories require maintenance, such as backing them up 
periodically, compacting them regularly, and implementing usage patterns among 
your development staff that improves performance.

For more information on managing central development repositories, see the 
iPlanet UDS System Management Guide.



iIS Process Management Tasks

Chapter 1 Introduction: iIS Process Management 39

Managing iIS Process Engines
Care must be taken to make sure that each iIS process engine is set up and 
performing properly. Managing engines consists of the following tasks:

• configuring engines

• starting up and shutting down engine components

• monitoring and changing the state of an engine

• reconfiguring an engine to accommodate increased load, improve 
performance, or recover from failure

• managing engine databases

Managing Registration
An iIS process engine executes process logic created in the process development 
workshops: process definitions, assignment rule dictionaries, and a user profile. 
These software components need to be registered with the engine so they can be 
dynamically loaded by the engine and used in process execution.

As a system manager, you have to regularly register new or updated process 
definitions (or assignment rule dictionaries or a user profile) with an engine, and 
possibly unregister them when they become obsolete.

Managing Process Execution
In executing process definitions, the engine creates instances of each process 
definition and coordinates their execution from start to finish. During process 
execution, a succession of activities specified by the process definition is performed 
by client application that have opened sessions with the engine. The engine 
manages and tracks these activities through to their final completion, ensuring that 
they are performed in proper sequence.



iIS Process Management Tools

40 iPlanet Integration Server • Process System Guide • August 2001

Managing process execution involves monitoring the activity of the engine and 
making administrative adjustments when necessary. The specific tasks include:

• monitoring engine sessions, and suspending or terminating sessions when 
necessary

• monitoring the number of process instances being executed by an engine at 
any time

• monitoring execution of individual processes, looking for bottlenecks or 
failures, and aborting or resetting particular process activities, as necessary

• providing historical analysis of process execution activity

iIS Process Management Tools
iIS includes two system management tools: the iIS Console and its command line 
counterpart, Conductor Script. These tools provide an interface to system 
management agents in the iPlanet UDS runtime environment and in the iIS process 
engine for managing engines and process execution.

iPlanet UDS also provides a separate set of command-line tools for managing 
development repositories.

This section briefly describes the iIS process management tools.

iIS Console
The iIS Console application provides a graphical user interface for performing 
most of the system management tasks discussed in “iIS Process Management 
Tasks” on page 37. You use the iIS Console to manage iIS engines (including 
registering process definitions, and so on), manage individual process instances, 
and monitor overall process execution activity.

Most system management procedures explained in this guide assume that you are 
using the iIS Console. For an introduction to the iIS Console, see Chapter 3, “The 
iIS Console.”



iIS Process Management Tools

Chapter 1 Introduction: iIS Process Management 41

Conductor Script Utility
The Conductor Script utility is the functional equivalent of the iIS Console 
application, but with a command-line interface. You can perform any of the 
functions using Conductor Script commands that you can perform in the iIS 
Console, but you can also incorporate these functions into scripts for execution at 
specified times.

For more information on the Conductor Script utility, see Chapter 8, “Using the 
Conductor Script Utility.”

Custom System Management Tools
In an iPlanet UDS development environment you can use the iPlanet UDS 
development workshops to write your own system management tools exercising 
the same system management agents utilized by the iIS Console and the Conductor 
Script utility. These custom tools allow you to automate regular system 
management tasks or respond automatically to particular state conditions in an 
engine.

Repository Management Tools
iPlanet UDS provides several command-line tools for creating (rpcreate), copying 
(rpcopy), starting (rpstart), stopping (rpstop), and compacting (rpclean) central 
development repositories and Repository Servers.

For more information on repository management tools, see the iPlanet UDS System 
Management Guide.

Dump/Restore Facilities
iIS provides facilities for dumping the information in an engine database to an 
ASCII file. These facilities—a Dump/Restore graphical user interface application 
and an equivalent command-line utility—are used to restore an engine database in 
iIS upgrades in which the engine database schema is changed. For more 
information on the Dump/Restore utilities, see “Dumping and Restoring Data” on 
page 126. 



iIS Process Management Tools

42 iPlanet Integration Server • Process System Guide • August 2001



43

Chapter 2

Setting Up an iIS Process
Management System

Setting up an iIS process management system—whether for development, testing, 
production, or a combination of the three—is the first task you must perform as an 
iIS process system manager.

System setup involves determining which nodes in your environment support the 
different components of your iIS process system, and then installing the 
appropriate iIS software on each of these nodes.

Since iIS runs on top of a functioning iPlanet UDS environment, you may have to 
set up an iPlanet UDS environment before setting up your iIS process system.

This chapter explains how to set up an iIS process system, and covers the following 
topics:

• setting up an iPlanet UDS runtime environment

• components of an iIS process system

• setting up an iIS process system

• maintaining an iIS process system

For information on how to configure and start an iIS process engine, refer to 
Chapter 4, “Managing Engines.”



Preparation: Setting up an iPlanet UDS Runtime Environment

44 iPlanet Integration Server • Process System Guide • August 2001

Preparation: Setting up an iPlanet UDS 
Runtime Environment

An iIS process system runs in an iPlanet UDS software environment. Both the 
development and runtime capabilities of iIS (process development and process 
execution) use the distributed runtime services provided by an iPlanet UDS 
environment. A functioning iPlanet UDS runtime system (including a central 
development repository for iIS process development) is the technical infrastructure 
underlying an iIS process system.

Consequently, you must have a functioning iPlanet UDS environment before 
setting up an iIS process system. This section introduces some of the important 
considerations for setting up an iPlanet UDS environment. For detailed 
information on how to set up an iPlanet UDS environment, consult the iPlanet UDS 
System Management Guide. 

iPlanet UDS system software is designed to be environment independent. 
Nevertheless, iPlanet UDS software has critical dependencies on the specific 
versions of operating systems, window systems, networking systems, runtime 
libraries, and database management systems used at your site. One of the most 
important aspects of properly setting up an iPlanet UDS environment is to make 
sure that the physical environment (hardware and software) meets iPlanet UDS 
system requirements. For more information on these requirements, see the iPlanet 
UDS System Installation Guide.

While iPlanet UDS system software is usually installed in an existing network 
configuration, you should consider how to best use the available resources, 
depending on the type of environment you are setting up.

If the environment is principally an iPlanet UDS or iIS development environment, 
then the locations of your central development repositories (Repository Servers) 
and Environment Manager service are key considerations. 

If the environment is principally a production environment for mission-critical 
applications, then the availability and locations of vital application resources (such 
as database management systems and C program libraries) and the speed and 
reliability of servers are some key considerations. These considerations might also 
influence where you place the Environment Manager service.

In general, when setting up an iPlanet UDS environment, you first install iPlanet 
UDS on a node that plays the role of a central server. Typically, this node hosts the 
Environment Manager service and the Repository Server and often serves as a 
central distribution node for installing iIS on other nodes in your environment. 
After you install iPlanet UDS on your central server, you install iPlanet UDS on 
other nodes in the environment. 



iIS Process System Components

Chapter 2 Setting Up an iIS Process Management System 45

The iPlanet UDS installation program creates an iPlanet UDS directory structure 
and source files on your target node, sets a number of environment variables used 
by iPlanet UDS at startup time, and creates startup scripts for starting the 
appropriate system management service—the Environment Manager or Node 
Manager—for your target node.

Setting up an iIS process system, in turn, depends upon the iPlanet UDS system 
management services provided in an iPlanet UDS environment.

iIS Process System Components
An iIS process system consists of both development and runtime components, as 
illustrated in Figure 2-1, and described in the iIS Process Development Guide.

The system includes one or more iIS process engines, which are accessed by a 
number of iIS process client applications. An engine controls and manages the flow 
of business processes, coordinating the work of the different client applications 
that perform the activities that make up these processes. The client applications 
perform activities directly or by invoking other application services in a distributed 
application.

An iIS process engine executes process definitions created by developers using a 
set of graphically-based process development workshops. These workshops store 
information in a central development repository. When development of a process 
definition is complete, the process definition is dynamically registered with an 
engine, which can then execute the process on behalf of a number of applications. 
These applications can be client applications that directly call the engine, or 
applications that are integrated using the iIS backbone.



iIS Process System Components

46 iPlanet Integration Server • Process System Guide • August 2001

Figure 2-1 Components of an iIS Process System

The components of an iIS process system, shown in Figure 2-1, are implemented 
through a number of software modules running on various nodes in your 
computing environment. Some of the components are provided by iIS system 
software (iIS process engine components, process development workshops, and 
system management tools). Some must be developed on site and require iIS system 
software (process definitions and iIS process client applications). Others must be 
developed on-site using other software products (organization database).

Engine
Database

Central
Development

Repository

Application
Services

Organization
DatabaseiIS Process Engines

Registration

System Management
Tools

Process Develpment
Workshops

Engine
DatabaseEnterprise

Databases

TOOL

Client Applications

C++

CORBA/IIOP

ActiveX

JAVA

Database
Service

Primary
Engine

Unit

Governor

Backup

Database
ServiceDatabase

Service



iIS Process System Software

Chapter 2 Setting Up an iIS Process Management System 47

To set up an iIS process system, install the iIS system software modules that 
support development on your development nodes. Then install the iIS runtime 
modules on the nodes on which you will be executing your distributed enterprise 
applications.

iIS Backbone
If you are integrating applications with the iIS Backbone, also install the iIS 
runtime. For more information, refer to the iIS Installation Guide. For management 
functions specific to the iIS Backbone, refer to the iIS Backbone System Guide.

iIS Process System Software
iIS process system software consists of a number of software modules that 
provide—or are used to develop and manage—many of the iIS process system 
components illustrated in Figure 2-1 on page 46. These modules, organized by 
functional category, are described in the following table. The table also indicates 
which system software modules are marked for use as compiled partitions.

Table 2-1 Process System Software Modules

Software Module Category Description

WFEngineUnit

(compiled)

Engine 
component

The server application that performs all the 
basic iIS engine functions (see “What Does an 
iIS Process Engine Do?” on page 36). Consists 
of a single iPlanet UDS server partition. 
Needed on engine server nodes.

WFGovernor

(compiled)

Engine 
component

The server application that assists in deciding 
when failover of an engine unit should occur 
(see “Governor” on page 105). Consists of a 
single iPlanet UDS server partition. Needed on 
engine server nodes.

WFDatabaseSvc

(compiled)

Engine 
component

The server application that manages the 
engine unit’s database access (see “Database 
Service” on page 109). Consists of a single 
iPlanet UDS server partition. Needed on 
engine server nodes.



iIS Process System Software

48 iPlanet Integration Server • Process System Guide • August 2001

WFLibrary

(compiled)

Process 
development 

A library distribution that supports the 
process development workshops. Needed in 
iIS process development repository and on 
process development nodes.

WFModel

(compiled)

Process 
development 

A library distribution that provides repository 
schema definitions used to create code in the 
process development workshops. Needed in 
iIS process development repository and on 
process development nodes.

WFAccessServiceObj

(compiled)

Process 
development 

A library distribution that provides code used 
in the process development workshops for 
accessing iPlanet UDS service objects from 
within activity and router methods. Needed in 
iIS process development repository and on 
engine server nodes.

WFClientLibrary

(compiled)

TOOL client 
application 
development

A library distribution that provides the API for 
process client applications written in the 
iPlanet UDS TOOL language. Needed in client 
application development repository, on TOOL 
client application development nodes, and on 
runtime nodes running client applications.

WFProcMgrLibrary TOOL client 
application 
development

A library distribution that provides the limited 
process management API for process client 
applications written in the iPlanet UDS TOOL 
language. Optionally used in client application 
development repository, on TOOL client 
application development nodes, and on 
runtime nodes running such client 
applications.

WFAdminLibrary TOOL client 
application 
development

A library distribution that provides the limited 
process execution monitoring API for process 
client applications written in the iPlanet UDS 
TOOL language. Optionally used in client 
application development repository, on TOOL 
client application development nodes, and on 
runtime nodes running such client 
applications.

Table 2-1 Process System Software Modules (Continued)

Software Module Category Description



iIS Process System Software

Chapter 2 Setting Up an iIS Process Management System 49

WFClientAPI

(compiled)

C++ client 
application 
development

A DLL required to write process client 
application code in C++. Needed on C++ client 
application development nodes, and on 
runtime nodes running C++ client 
applications.

WFCORBAapi

(compiled)

Java/IIOP 
client 
application 
development

A server application (CORBA interface 
service) required to execute process client 
application code written in JAVA/IIOP. 
Needed on at least one server node in the iIS 
environment, normally the central server or an 
engine server.

WFConsole System 
Management

A GUI client application for performing iIS 
process management system tasks. For details, 
see Chapter 3, “The iIS Console.”

WFScript System 
Management

A command-line client application for 
scripting iIS system management tasks. For 
details, see Chapter 8, “Using the Conductor 
Script Utility.”

WFDrWind Engine 
Database 
Dump/Restore
application

A graphical user interface application used for 
dumping engine database tables to a file and 
for restoring data to an engine database. For 
details, see “Dumping and Restoring Data” on 
page 126.

WFDrDump Engine 
Database 
Dump utility

A standalone program that dumps the engine 
state and history data to files. For details, see 
“Dumping Database Tables” on page 126.

WFDrRest Engine 
Database 
Restore utility

A standalone program that restores the data 
from files generated using WFDrDump to an 
engine database. For details, see “Restoring 
Database Tables” on page 131.

OFCustomIF

(compiled)

System A library distribution that provides “interface 
glue” between a client application, engine, and 
user profile. Needed in iIS development 
repositories, on engine server nodes, and on 
process client application development nodes.

WFCustomIF

(compiled)

System Extension of OFCustomIF.

Table 2-1 Process System Software Modules (Continued)

Software Module Category Description



iIS Process System Software

50 iPlanet Integration Server • Process System Guide • August 2001

Compiled and Interpreted Engine Components
There is a script for alternating between the use of compiled or interpreted engine 
components. This is useful if exceptions occur when you are running an engine in 
compiled mode; you can switch to interpreted mode to obtain trace back on 
exceptions. The platform-specific script, which is installed in 
FORTE_ROOT/install/bin, is the following:

Syntax:

setccomp.sh TRUE | FALSE

TRUE specifies compiled partitions; FALSE specifies interpreted partitions.

WFEnvDefinition

(compiled)

System A library distribution that provides 
underlying system management support for 
accessing iIS process engines and performing 
registration of process definitions. Needed on 
all nodes.

WFEnvAgent

(compiled)

System An application that supports generation and 
deployment of library distributions for 
registration of process definitions, assignment 
rule dictionaries, and user profiles. Needed on 
central server node.

en_us.cat System A message catalog used in translating all 
language strings in the product.

WFSeed.btx
WFSeed.btd

Development 
workshops

A base development repository that contains 
all the class definitions needed to create 
process definitions or TOOL client 
applications. Needed on repository server 
nodes.

Script Name Platforms Types of Script

setccomp.sh All UNIX Bourne-shell

setccomp.bat MS Windows NT MS-DOS batch file

setccomp.com Alpha VMS, VAX/VMS VMS command procedure

Table 2-1 Process System Software Modules (Continued)

Software Module Category Description



iIS Process System Software

Chapter 2 Setting Up an iIS Process Management System 51

➤ Before you invoke the setccomp script, you must do the following

1. Set the FORTE_ROOT environment variable to point to a valid iIS installation.

2. Install the following iIS library distributions in the iPlanet UDS development 
environment:

❍ WFGovernor

❍ WFEngineUnit

❍ WFDatabaseSvc

3. Start the iPlanet UDS Environment Manager on the server node where you 
invoke the script.

iIS Process System Configuration
Setting up an iIS process system involves a bit of system design work. You must 
decide in advance, for example, which nodes in your computing environment host 
the various iIS process system components shown in Figure 2-1 on page 46.

In particular, you must decide which node or nodes in your environment support 
the following functions:

• running iIS process engine components

• developing process definitions 

• developing iIS process client applications

• hosting iIS system management tools

• running the iIS central development Repository Server

• running iIS process client applications

All but the last of these functions require iIS process system software. In setting up 
an iIS process management system, these are the components that are the focus of 
attention. 

For purposes of discussion, an example iIS process system configuration is shown 
in Figure 2-2 on page 53. Seven distinct kinds of iIS nodes are shown:

Central server The iPlanet UDS central server node in your environment. It hosts 
the iPlanet UDS Environment Manager (including Name Service) and one or more 
unique iIS services (such as the WFEnvAgent service).



iIS Process System Software

52 iPlanet Integration Server • Process System Guide • August 2001

Repository server A server node (runs an iPlanet UDS Node Manager) that hosts 
the iIS central development repository and repository service.

Engine server A server node (runs an iPlanet UDS Node Manager) that hosts one 
or more engine components of one or more engines. One of the engine servers 
typically hosts an engine database. (Putting the engine database and the engine 
server on separate nodes is generally not recommended for performance reasons.)

Process development A node on which process developers (using the process 
development workshops) create the process definitions that are executed by iIS 
process engines.

Client application development A node on which client application developers 
create the process client applications that communicate with the iIS engine and 
perform the activities specified in process definitions.

System management A node used by a system manager to manage an iIS process 
system.

Runtime client A node that runs an iIS process client application, but which 
cannot be used for development.

While conceptually it is easier to think of each of these nodes as distinct, in reality 
there is no reason why some of the functions described could not be combined and 
performed on a single node. (In fact, you could run the whole system on a single 
node.) 

For example, process development and client application development could both 
be performed on the same client node, or each could be performed on an engine 
server node that supports a windowing system. Deciding where these components 
are installed depends principally on who performs the various iIS development 
and system management tasks.

Also, the central server, which plays a unique role in an iIS system, can both host 
the central development repository and serve as an engine server node, supporting 
one or more iIS process engine components. Application servers in your iIS process 
system can also host iIS engine components. Choosing which components to install 
on which servers depends on the resources available on each server and the 
requirements of each component.



iIS Process System Software

Chapter 2 Setting Up an iIS Process Management System 53

Figure 2-2 iIS Process System Configuration 

You do not have to decide at iIS installation time exactly which engine components 
to assign to each server node because all component partitions are installed on each 
server node that supports an engine. You select which components to start on any 
node when you configure each engine (see “Configuring an Engine” on page 85).

Enterprise
Database

Client Application
Development

System Management
Tools

Conductor
Console

Runtime Applications

Engine Server

Engine
Components

Application Servers

Application
Services

Repository Server

Repository
Service

Central Server

Environment
Manager

Process Development

Process
Development
Workshops

Client API

Engine
Database

Central
Development

Repository



iIS Process System Software

54 iPlanet Integration Server • Process System Guide • August 2001

For the purpose of system setup, the primary considerations are that the iIS process 
engine is the workhorse of your iIS process system and that it accesses a potentially 
very large database. Your engine server node or nodes should therefore be a very 
high performance server with plenty of available memory. If you are unsure at this 
point how to configure your iIS engine, designate all likely nodes as engine server 
nodes. This approach gives you the most flexibility later on.

Another design issue concerns the iIS development repository. You might want iIS 
developers to use an existing iPlanet UDS repository, or you might prefer to create 
one or more central development repositories for exclusive use by iIS developers. 
In addition, you might decide that the repository server needed to support iIS 
development should reside on a server other than the central server node hosting 
the Environment Manager, as shown in Figure 2-1 on page 46.

In any case, before beginning your iIS setup procedure, fill in a table similar to the 
one that follows:

iIS Function Node type: Server/Client Node Names

Central server Server

Repository server Server

Engine servers Server

Process development Client or server

Client application 
development

Client or server

System management Client or server

Runtime client application Client or server



Setting Up an iIS Process System

Chapter 2 Setting Up an iIS Process Management System 55

Setting Up an iIS Process System
After you have decided how to configure your iIS process system (and filled out 
the table in the previous section), you are ready to set up your system.

To set up an iIS process system, run the platform-specific iIS installation program 
on each node requiring iIS process system software. The software components 
installed by the program depend on whether the target node is a central server 
node, engine server node, client development node (process development or client 
application development), or runtime client.

Because the iIS installation program depends on services provided by an iPlanet 
UDS runtime system, you must set up a functioning iPlanet UDS runtime 
environment if you do not already have one at your site. (See “Preparation: Setting 
up an iPlanet UDS Runtime Environment” on page 44.)

iIS Process System Setup Procedure
The following general procedure should be followed in setting up an iIS process 
system. 

➤ To set up an iIS process system

1. Make sure that you have a functioning iPlanet UDS environment that includes 
all the server and client nodes required to support your iIS process system.

2. Run the iIS installation program on your iPlanet UDS central server node.

3. Run the iIS installation program on all iIS engine server nodes.

4. Run the iIS installation program on all iIS client nodes (process development 
and/or client application development nodes). 

5. On all development nodes, set the FORTE_REPOSNAME environment 
variable to the name of your iIS Repository Server. (You can use the iPlanet 
UDS Control Panel—see the iPlanet UDS System Management Guide for more 
information.)

6. Configure and start your iIS process engine or engines. (See Chapter 4, 
“Managing Engines.”)



Setting Up an iIS Process System

56 iPlanet Integration Server • Process System Guide • August 2001

7. After process client applications have been developed, run the iIS installation 
program on all runtime client nodes (those nodes that support an iIS process 
client application but do not support development).

8. In sites developing or running process client applications using the 
CORBA/IIOP interface to the iIS engine, start the CORBA/IIOP interface 
service using the IIOPServer Conductor Script command (see “IIOPServer” on 
page 287).

This setup procedure creates a functioning iIS process system in which developers 
can create process definitions and register them with an iIS engine and then 
develop process client applications and use them to perform the activities of an 
executing process instance.

The iIS Installation Program
The setup procedure described in the previous section makes extensive use of the 
iIS installation program. The iIS installation program has four main installation 
options: central server node, engine server node, development client node, and 
runtime client node. Each installs, by default, the iIS system software appropriate 
for that type of node, and provides customizing options (such as installing iIS 
process management tools), as well.

This section describes what the installation program does on each of the following 
four node types:

• central server

• engine server

• client development (process development or client application development)

• runtime client

For platform-specific information and installation program details, see the iIS 
Installation Guide.

CAUTION An iIS process system can only function in the iPlanet UDS 
environment in which it has been set up. For example, you cannot 
change the name of your iPlanet UDS environment—even if the 
physical environment remains the same—and still have a 
functioning iIS process system.



Setting Up an iIS Process System

Chapter 2 Setting Up an iIS Process Management System 57

Central Server Installation
On a central server node—the first node to be installed in an iIS system—the iIS 
installation program performs the operations described in the following table:

Operation Software Module FORTE_ROOT 
directory

Prepares node as the central distribution 
node for all distributions.

All application 
distributions
All library distributions

appdist

Loads distributions into environment 
repository to enable deployment by 
iPlanet UDS system management agents.

All server application 
distributions
All library distributions

——

Transfers iIS repository files to node. WFSeed.btx
WFSeed.btd

install/respos
cpy

Creates iIS repository server. repos

Installs engine components. WFEngineUnit
WFGovernor
WFDatabaseSvc

userapp

Installs process development libraries. WFLibrary
WFModel
WFAccessServiceObj

userapp

Installs iIS TOOL client development 
libraries.

WFClientLibrary 
WFProcMgrLibrary
WFAdminLibrary

userapp

Installs iIS C++ client development DLL. WFClientAPI userapp

Installs CORBA/IIOP interface service. WFCORBAapi userapp

Installs iIS process management client 
applications.

WFConsole
WFScript

userapp

Installs iIS system libraries. OFCustomIF
WFCustomIF
WFEnvDefinition

userapp

Installs registration support service. WFEnvAgent userapp

Installs message catalog file en_us.cat install/nls/co
nductr

Installs Dump/Restore facilities WFDrWind
WFDrDump
WFDrRest

userapp



Setting Up an iIS Process System

58 iPlanet Integration Server • Process System Guide • August 2001

Engine Server Installation
On an engine server node, which must be installed after the central server node, the 
iIS installation program performs the operations described in the following table:

Operation Software Module FORTE_ROOT 
directory

Transfers iIS repository files to node. WFSeed.btx
WFSeed.btd

install/resposcpy

Installs engine components. WFEngineUnit
WFGovernor
WFDatabaseSvc

userapp

Installs process development libraries. WFLibrary
WFModel
WFAccessServiceObj

userapp

Installs iIS TOOL client development 
libraries.

WFClientLibrary 
WFProcMgrLibrary
WFAdminLibrary

userapp

Installs iIS C++ client development 
DLL.

WFClientAPI userapp

Installs iIS system management client 
applications.

WFConsole
WFScript

userapp

Installs iIS system libraries. OFCustomIF
WFCustomIF
WFEnvDefinition

userapp

Installs message catalog file en_us.cat install/nls/conductr

Installs Dump/Restore facilities WFDrWind
WFDrDump
WFDrRest

userapp



Setting Up an iIS Process System

Chapter 2 Setting Up an iIS Process Management System 59

Development Client Installation
A development client node can be used for either process development or client 
application development. On a development client node, which must be installed 
after the central server node, the iIS installation program performs the operations 
described in the following table:

Operation Software Module FORTE_ROOT 
directory

Transfers iIS repository files to node. WFSeed.btx
WFSeed.btd

install/resposcpy

Installs process development libraries. WFLibrary
WFModel
WFAccessServiceObj

userapp

Installs iIS TOOL client development 
libraries.

WFClientLibrary 
WFProcMgrLibrary
WFAdminLibrary

userapp

Installs iIS C++ client development DLL. WFClientAPI userapp

Installs iIS process management client 
applications.

WFConsole
WFScript

userapp

Installs iIS system libraries. OFCustomIF
WFCustomIF
WFEnvDefinition

userapp

Installs message catalog file en_us.cat install/nls/conductr



Setting Up an iIS Process System

60 iPlanet Integration Server • Process System Guide • August 2001

Runtime Client Installation
On a runtime client node, which must be installed after the central server node, the 
iIS installation program performs the operations described in the following table:

Configuring and Starting Your iIS Engines
When your iIS process system software is installed on the various nodes in your 
environment (including an iIS central development repository), an iIS application 
system designer can begin implementing the various design elements, process 
developers can begin creating process definitions, and client application 
developers can begin writing iIS client applications.

However, before long it will be necessary to have a test engine running in your 
environment. Configuring and starting an iIS process engine requires familiarity 
with iIS process management tools (see Chapter 3, “The iIS Console”) and is 
described fully in Chapter 4, “Managing Engines.” 

Operation Software Module FORTE_ROOT 
directory

Installs iIS TOOL client libraries. WFClientLibrary 
WFProcMgrLibrary
WFAdminLibrary

userapp

Installs iIS C++ client development DLL. WFClientAPI userapp

Installs iIS process management client 
applications.

WFConsole
WFScript

userapp

Installs iIS system libraries. OFCustomIF
WFCustomIF
WFEnvDefinition

userapp

Installs message catalog file en_us.cat install/nls/conductr



Maintaining an iIS Process System

Chapter 2 Setting Up an iIS Process Management System 61

Maintaining an iIS Process System
Once your iIS process system is set up and functional (including configuration and 
startup of engines, as discussed in Chapter 4, “Managing Engines”), there are 
relatively few maintenance tasks that you need to perform. 

Most maintenance concerns the databases in the system. For example, you need to 
regularly back up the central development repository as well as compact it from 
time to time (see the iPlanet UDS System Management Guide for more information). 
Also the engine database must be monitored to make sure you do not run out of 
disk space.

Other maintenance tasks might include the following: 

• adding new nodes to an iIS system

• moving an iIS process engine

• creating a new iIS Repository Server

• moving an iIS Repository Server

• creating a private iIS repository 

• uninstalling an iIS system

Each of these are discussed briefly below.

Adding New Nodes to an iIS System

➤ To add a new node to an iIS system

1. Decide which function the new node is to perform in your iIS system.

2. Run the iIS installation program and choose the appropriate installation 
option.



Maintaining an iIS Process System

62 iPlanet Integration Server • Process System Guide • August 2001

3. Choose default or custom installation, depending on the components you want 
to install on the node.

Moving an iIS Engine
Moving an iIS engine or engine component is straightforward. You move the 
engine or engine component to a different engine server node by reconfiguring the 
engine as described in “Configuring an Engine” on page 85. If the target node is 
not presently an engine server node, install iIS system software on the target node 
using the instructions in “Adding New Nodes to an iIS System” on page 61.

Creating a New iIS Repository Server

➤ To create a new iIS Repository Server

1. Decide which node is to host the new repository server.

2. Run the iIS installation program and choose the Engine Server option.

3. Choose Custom Installation.

4. Check Create iIS Repository and clear all other options.

5. Click OK and follow the screen questions and instructions.

Moving an iIS Repository Server

➤ To move an iIS Repository Server

1. Select a server node to host the relocated repository server.

2. Shut down the current Repository Server.

NOTE If you know the application or library distributions required for the 
new node (see Table 2-1 on page 47), you can install them using 
iPlanet UDS system management services rather than the iIS 
installation program. The distributions can be installed on the new 
node using Escript or the iPlanet UDS Environment Console, 
depending on whether the new node is a client or server, as 
described in the iPlanet UDS System Management Guide.



Maintaining an iIS Process System

Chapter 2 Setting Up an iIS Process Management System 63

3. Move the two iIS repository files (reposname.btx and reposname.btd) from 
FORTE_ROOT/repos on the original Repository Server node to the same 
location on the target node.

4. Modify the iPlanet UDS startup script on the server to include the rpstart 
command needed to start the iIS repository server (see the iPlanet UDS System 
Management Guide).

Creating a Private iIS Repository

➤ To create a private iIS Repository on a development node

1. Copy the two repository seed files (wfseed.btx and wfseed.btd) from 
FORTE_ROOT/resposcpy to FORTE_ROOT/repos.

2. Rename the two files to correspond to the name of your iIS private repository.

You might have to modify the files to provide read/write access.

3. Edit the iPlanet UDS Distributed or iPlanet UDS Standalone system icons that 
start iIS.

Set the -fr flag in the icon’s command line to reference the new private 
repository. For more information, refer to instructions about starting the 
process development environment in the iIS Process Development Guide.

Upgrading an iIS System
Upgrading an iIS system is generally straightforward: You install the new version 
of iIS system software over the older version. Engine configuration files can be 
used with the new version, though you might want to reconfigure engines to make 
use of new engine configuration options. 

The situation in which you must exercise caution, however, is if you have state or 
history information in your engine database that you need to preserve across the 
upgrade. If the engine database schema changes from the older version to the 
newer version of iIS, you must migrate that data from the older database schema to 
the new one. iIS provides Dump/Restore facilities to use for this purpose. See 
“Dumping and Restoring Data” on page 126, and be sure to check all release notes.



Maintaining an iIS Process System

64 iPlanet Integration Server • Process System Guide • August 2001

Uninstalling an iIS System
Because iIS server software is installed using iPlanet UDS system management 
services, the iPlanet UDS environment repository has a record of all engine 
components installed on servers in your environment. To uninstall an iIS system, 
first use iPlanet UDS system management tools (Environment Console or Escript) 
to uninstall these components from the environment.

In addition, uninstalling an iIS system requires removing the various iIS system 
software components from the various nodes on which they have been installed. 
The components—application partitions and libraries—are installed in a standard 
iPlanet UDS location on each node: FORTE_ROOT/userapp/distribution_ID, 
where distribution_ID is the name of the software module. (For the names of the 
software modules installed on each type of node, see “The iIS Installation 
Program” on page 56.)

To revert a repository to a non-iIS development repository, you need to delete all 
the libraries imported by the iIS installer. After deleting the WFLibrary distribution 
from FORTE_ROOT/userapp, the iIS-specific buttons and menus are removed 
from the Repository Workshop, and no longer appear on startup.



65

Chapter 3

The iIS Console

This chapter describes the iIS Console, the iIS product’s window-based tool for 
performing iIS process management tasks.

This chapter assumes that you have set up an iIS process management system and 
have installed iIS process management applications (iIS Console and Conductor 
Script) on at least one node in your environment.

This chapter covers the following topics:

• overview of the iIS Console

• starting the iIS Console

• using the iIS Console window

• navigating to other iIS Console windows

• summary of menu commands

Overview
The iIS Console is the main system management application for performing iIS 
process management tasks. The iIS Console has a graphical user interface, as 
opposed to Conductor Script, which has a command line interface.

NOTE Neither the iIS Console or Conductor Script can be used to perform 
backbone system management tasks. For information on backbone 
system management, refer to the iIS Backbone System Guide.



Overview

66 iPlanet Integration Server • Process System Guide • August 2001

The iIS Console is used for the following four general kinds of iIS process 
management tasks:

• configure and manage process engines

The iIS Console provides a set of windows that let you configure a new iIS 
engine, start and view the status of an already configured engine, and 
reconfigure an existing engine, if necessary.

• manage registration

You can register a number of process logic components created in the iIS 
process development workshops with one or more iIS engines. When these 
software components are registered, they can be dynamically loaded by an 
engine and used in process execution.

• manage process execution

Using the iIS Console, you can monitor the activity of an engine and make 
administrative adjustments when necessary. You can monitor engine sessions 
and send messages to client applications, and you can monitor the engine’s 
execution of individual processes.

• monitor alarms and diagnostic messages

You can monitor high priority events (alarms) from within the iIS Console, as 
well as view diagnostic messages generated by engine components. All these 
alarms and messages are useful in troubleshooting problems in engine 
performance and process execution.

The iIS Console connects to and communicates with the executing iPlanet UDS 
Environment Manager and any active Node Managers in your iPlanet UDS 
environment. It gives you access to iIS engine agents: objects that control engine 
components and provide information about process execution.

NOTE The Conductor Script command line utility is functionally 
equivalent to the iIS Console. However, all procedural instructions 
in this guide assume you are using the iIS Console. For information 
on Conductor Script, see Appendix A, “Conductor Script 
Commands.”



Starting the iIS Console

Chapter 3 The iIS Console 67

Starting the iIS Console
You can start the iIS Console on any node in your iPlanet UDS environment where 
it has been installed.

➤ To start the iIS Console on Windows or Windows NT

1. Double-click the iIS Console icon.

2. Enter a valid password if one is requested (see “Setting Password Protection 
for iIS Console” on page 71).

➤ To start the iIS Console on UNIX, OpenVMS, or Windows NT

1. Use the cconsole command (see “Using the cconsole Command” below for 
information).

2. Enter a valid password if one is requested (see “Setting Password Protection 
for iIS Console” on page 71).

When the iIS Console starts, it opens the iIS Console main window shown in 
Figure 3-1 on page 69. 

Using the cconsole Command
As mentioned above, you start the iIS Console on command-line-based operating 
systems by executing the cconsole command.

The syntax of the cconsole command for most platforms:

cconsole [-fl log_flags][-fm memory_flags]

The syntax of the cconsole command for OpenVMS:

VFORTE CCONSOLE
[/LOGGER=log_flags]
[/MEMORY=memory_flags]

As in all iPlanet UDS command line specifications, if you use a name that includes 
a space, you should enclose the name in double quotation marks.



The iIS Console Main Window

68 iPlanet Integration Server • Process System Guide • August 2001

The following table describes the command line flags for the cconsole command.

The iIS Console Main Window
The iIS Console main window is a view of configured iIS process engines in your 
active environment. In the main window, you can initiate all system management 
tasks you want to perform in your iIS process system. You can use the main 
window to manage engines, registrations, and process execution in your 
environment. You can also add password protected access to iIS Console.

The iIS Console main window consists of two areas: the main viewing panel and 
the menu bar.

Flag Description

-fl log_flags
/LOGGER=log_flags

Specifies the log flags to use for the iIS Console session. See the 
iPlanet UDS System Management Guide for information about 
the syntax for specifying log flags. Overrides the 
FORTE_LOGGER_SETUP environment variable setting. On 
UNIX, you must specify the log flags in double quotes.

-fm memory_flags
/MEMORY=
memory_flags

Specifies the memory flags to use for the iIS Console session. 
See the iPlanet UDS System Management Guide for syntax 
information. Overrides defaults appropriate for the operating 
system. On UNIX, you must specify the memory flags in 
double quotes.



The iIS Console Main Window

Chapter 3 The iIS Console 69

Figure 3-1 iIS Console Main Window

Main Viewing Panel
The main viewing panel displays all configured engines in an iPlanet UDS 
environment. Engines are shown with icons representing the state of each engine:

Most tasks you perform using the iIS Console are initiated by first selecting an 
engine from the main viewing panel and then selecting the desired operation from 
the appropriate menu.

Off Engine is configured but has not been started.

Transition Engine is in the process of starting up or shutting down.

Online Engine has fully started and is online.

Error state Engine has encountered an exception while attempting to start.

Active 

Main 
viewing
panel

Engines

Menu bar

Popup menu

environment



The iIS Console Main Window

70 iPlanet Integration Server • Process System Guide • August 2001

Menu Bar
The iIS Console menu bar provides all the commands you can execute from the 
main window. The menus are summarized below, and a full list of the commands 
is provided at the end of this chapter.

The main window menus are:

Environment menu Provides environment-wide iIS Console commands (such as 
for registrations), or general commands such as opening a window to see alerts 
being generated from iIS process engines.

View menu Provides commands for setting refresh properties of the window.

Engine menu Provides engine management commands for configuring, starting 
up, viewing the status of, deleting, performing logging and trace functions, and 
shutting down an iIS engine.

Monitor menu Provides commands for monitoring and managing processes 
being executed by an iIS engine, verifying registrations, and charting performance.

Help menu Provides online Help for the iIS Console.

Mouse Popup Menu 
iIS Console windows support a popup menu activated by the right mouse button. 
The popup menu depends upon the item selected in the window. In the case of the 
main window, the popup menu includes the following subset of commands from 
the menu bar:

Engine menu Reconfigure, Delete, Start, Logging, Trace, Event Trace, Status, 
Shut Down

Monitor menu Sessions, Processes Summary, Processes Resident, Activity 
Queues, Activities Resident, Registrations, Performance

Online Help
Online Help is available from iIS Console. 

• To display the Help Topics window, choose Help > Help Topics.

• To display help for the current window, press the F1 or Help key (depending 
on your operating system platform).



The iIS Console Main Window

Chapter 3 The iIS Console 71

Setting Password Protection for iIS Console
You can restrict access to iIS Console by setting password protection for your active 
iIS environment. A password is then required to open iIS Console, as well as any 
other system management tools, such as Conductor Script and the iPlanet UDS 
Environment Console.

Once you set a password, other users cannot open iIS Console (or Conductor Script 
or the iPlanet UDS Environment Console) in your active environment without 
using the password.

➤ To set a password for iIS Console

1. Choose Environment > Set Password. The Enter Password window displays.

2. Enter a password and then enter it again in the Verification password field.

3. Click OK to set the password.

You can also use this window to change password protection for an environment 
by first entering the current password in the Password field and then entering the 
new password. If you want to remove password protection, enter the current 
password in the Password field, then enter nothing for the New password and 
click OK.

Exiting iIS Console
To exit the iIS Console, choose Environment > Exit.



Using iIS Console Windows

72 iPlanet Integration Server • Process System Guide • August 2001

Using iIS Console Windows
The iIS Console is a graphical system application developed in iPlanet UDS whose 
windows behave in accordance with your host window system. If you use 
graphical applications in your host window system, the Console will be familiar.

Using the Mouse
The iIS Console behaves like any standard application in your window 
system—mouse clicks select objects, double-clicks open objects, and click-and-drag 
operations move or copy objects. If your mouse has more than one button, you use 
the left-most button for these operations (or, if your mouse is configured 
specifically for left-handed use, the right-most button).

The iIS Console also uses the right-most button to present popup menu commands 
as an alternative to using the menu bar. The popup menu choices presented by 
right-clicking depend on which, if any, items are selected in the active window.

Window Refresh Behavior
Many iIS Console windows display lists that are maintained by the engine and are 
in a constant state of change. iIS Console lets you determine if and how often 
window displays are refreshed to correspond to information maintained by the 
engine. Each display window has a default automatic refresh time interval setting.

You can turn automatic refresh off or on, set the automatic refresh interval, or force 
an immediate refresh.

➤ To turn automatic refresh off or on

1. Enable the Automatic Refresh toggle in the bottom right of the window.



Using iIS Console Windows

Chapter 3 The iIS Console 73

➤ To set the automatic refresh interval

1. Choose View > Set Refresh Interval. The Refresh Interval window displays 
with the default time interval setting:

2. Enter a new time interval in milliseconds.

A time interval of zero turns off automatic refresh.

3. Click OK.

➤ To force an immediate refresh

1. Choose View > Refresh Now.

Filtering iIS Console Lists
Many iIS Console windows provide lists you can filter using commands available 
on the View menu and in the right mouse button popup menu. This section 
describes techniques used to perform these filtering operations.

For example, suppose you select an engine and then choose Monitor > Sessions to 
display a list of sessions for that engine. You can filter the list displayed or find 
sessions that meet certain criteria using the Filter and Find commands.

Selecting Filter from the View menu or the mouse menu displays a window in 
which you can write an expression for filtering the session list. The expression 
must be of the form:

Column_name <operator> value



Using iIS Console Windows

74 iPlanet Integration Server • Process System Guide • August 2001

Operators
You can build filter expressions that use both comparison and logical operators. 
The comparison operators are listed in the following table:

You can use a number of logical operators to join several filter expressions. The 
logical operators are listed in the following table:

Specifying Values
In a filter expression you specify the value of an object’s state or status. These are 
expressed as case-sensitive string values and should be enclosed in double quotes:

Comparison Operator Description

= equal to

<> not equal to

< less than

> greater than

<= less than or equal to 

>= greater than or equal to

Logical Operator Description

and logical and

or logical or

not logical not

Object State/Status Value

Session Active

Session Suspended

Activity PENDING



Using iIS Console Windows

Chapter 3 The iIS Console 75

Example Filter Expression
In the session list example, suppose you enter the following expression in the Filter 
window:

 

Activity READY

Activity ACTIVE

Activity COMPLETED

Activity ABORTED

Timer ON

Timer OFF

Object State/Status Value



Using iIS Console Windows

76 iPlanet Integration Server • Process System Guide • August 2001

The resulting session list would then be the following:

Sorting iIS Console Lists
The iIS Console lets you sort sessions, activities, and process instances by name, 
version, primary attribute value, primary attribute name, ID, or creation time.

1. From the Monitor menu select the type of information you want to sort. For 
example, if you want to sort process instances, choose Monitor > Processes 
Resident.

2. In the Processes Resident window that opens, choose View > Sort.

3. Select the item to sort by, and indicate ascending or descending order. 

NOTE Choose Clear to revert to the default list.



Using iIS Console Windows

Chapter 3 The iIS Console 77

4. If you select a text field, you can also specify that case-sensitivity apply to the 
displayed text by checking Case Sensitive Text Comparison.

5. Click OK.

Using List Views
The iIS Console provides iPlanet UDS list views in the main window and the 
Engine Status window so you can browse engines and engine components. 

You might be familiar with list views as the file directory display mechanism in 
your host window system. iPlanet UDS list views behave like the File Manager 
application in Microsoft Windows. This program displays hierarchical information 
successively indented from left to right. To select an element in a list view, you 
click it. To open an element to get a list of sub-elements, you double-click the 
element, then either press Enter while it is selected or click its expansion box.

The expansion box lets you open or close the list of elements “below” the current 
element in the hierarchy. If the expansion box displays a + (plus), click the box to 
open the list. If the expansion arrow displays a – (minus), click the box to close the 
list.

Figure 3-2 iIS Console Browser

NOTE The items you can sort by varies according to the monitor window 
whose items you are sorting. 

On Windows platforms, you can also specify an ascending sort by 
clicking a column name. For a descending sort, press Control while 
clicking the column name.

Expansion box



iIS Console Main Window Command Summary

78 iPlanet Integration Server • Process System Guide • August 2001

iIS Console Main Window Command Summary
The following tables summarize the commands available from the iIS Console 
main window.

Environment Menu

Command Description See…

Alarms… Lets you view all alarms received from the 
selected engine.

page 208

Registrations… Provides submenus for registering (and 
unregistering) process definitions, assignment 
rules, user validations, and user profiles with 
one or more engines.

page 144

Aliases… Provides submenus for registering (and 
unregistering) aliases with one or more 
engines. Aliases are used in specifying 
subprocess activities.

page 148

Set Password… Opens a password entry window where you 
can set password protection for opening iIS 
Console in your active environment. Once you 
set a password, other users cannot open the iIS 
Console (or Conductor Script) in that 
environment without using the password.

page 71

Print… Prints the iIS Console main window. —

Print Setup… Displays the Page Setup window for the 
window system.

—

Exit Closes the iIS Console and all open windows. page 71



iIS Console Main Window Command Summary

Chapter 3 The iIS Console 79

View Menu

Engine Menu

Command Description See…

Refresh Now Forces an immediate refresh of the engine list 
in the main viewing panel.

page 72

Set Refresh Interval… Opens a Refresh Interval window where you 
can set the time interval between automatic 
refreshes of the window display.

page 72

Window List… Displays a list of open windows from which 
you can select a window to bring to the 
foreground.

—

Command Description See…

New… Opens a new engine configuration window in which you 
specify the component partitioning and static properties 
of a new engine.

page 85

Reconfigure… Opens an engine configuration window for the selected 
engine in which you can modify the component 
partitioning and startup properties as specified in the 
engine configuration file.

page 113

Duplicate… Creates a duplicate of the selected engine. A duplicated 
engine contains the same configuration as the original 
engine.

page 104

Delete Lets you delete an engine configuration for the selected 
engine.

page 104

Start… Opens an engine startup window in which you can start 
the selected engine or any of its components.

page 105

Logging… Opens a dynamic database reconfiguration window in 
which you can dynamically change which database 
tables are being logged (current state or history log or 
both) as well as change the history log volume. The 
changes you make in this window do no change the 
startup configuration.

page 115



iIS Console Main Window Command Summary

80 iPlanet Integration Server • Process System Guide • August 2001

Monitor Menu

Trace… Opens an engine trace window in which you display 
messages, of the type you specify, generated by the 
various engine components.

page 212

Event Trace… Opens the engine event filter window which lets you 
select the type of filter to use for displaying engine events 
as well as a filter time interval.

page 217

Status… Opens an engine status window in which you can view 
the status of the selected engine or any of its components. 
You can also change the state of engine units.

page 117

Shut Down Shuts down the selected engine and all its components. page 124

Command Description See…

Sessions… Opens the engine sessions window, which displays the 
list of active sessions for the selected engine. You can 
monitor and manage sessions from this window.

page 173

Processes 
Summary…

Opens the processes summary window, which displays 
the list of all process definitions for the selected engine 
and the number of instances of each. You can open a 
named process definition to get a list of the process 
instances, displaying information about each.

page 221

Processes 
Resident…

Opens the engine process instances window, which 
displays the list of all process instances for the selected 
engine. You can sort this list by process name, primary 
process attribute, process_id, or creation time. You can 
open a listed process instance to get information about 
its activities, attributes, timers, and so on.

page 179

Activity 
Queues…

Opens the engine activity queues window, which 
displays the list of all activity queues for the selected 
engine. Activity queues are always resident in the 
engine. You can open a listed queue to get a list of 
activities in the queue, and so on.

page 179

Command Description See…



iIS Console Main Window Command Summary

Chapter 3 The iIS Console 81

Help Menu

Activities 
Resident…

Opens the engine activity instances window, which 
displays the list of all activity instances for the selected 
engine. You can sort this list by activity name, activity 
ID, activity state, and process name. You can open a 
listed activity instance to get information about its type, 
description, sessions whose activity list it is on, process 
attributes, timer links, and so on.

page 179

Registrations… Opens the engine registrations window, which displays 
the list of process definitions, assignment rules, user 
profiles, user validation, and aliases currently registered 
with the selected engine. This window can be the launch 
point for monitoring and managing execution of 
processes registered with the engine—for example, you 
can monitor the status of all process instances of a given 
named process. You can also deregister a registered item 
from the selected engine.

page 150

Performance… Opens the performance window, which displays 
histograms of four agent data types (instruments) that 
characterize the performance of the selected engine.

page 221

Command Description See…

Contents Opens the Help Topics window that lets you navigate 
the iIS process management online help system.

page 70

About iIS… Displays information about the iIS product. —

Command Description See…



iIS Console Main Window Command Summary

82 iPlanet Integration Server • Process System Guide • August 2001



83

Chapter 4

Managing Engines

This chapter describes how to manage iIS process engines. It covers the following 
topics:

• configuring an engine

• starting an engine

• monitoring and changing the state of an engine

• reconfiguring an engine to accommodate increased load, improve 
performance, or recover from failure

• managing an engine database

Production Engines Versus 
Development Engines

Engine use in production environments can differ significantly for use in 
development environments. In a development environment, the engine is used 
principally for testing and debugging purposes, while in a production 
environment, the engine must support mission-critical operations.

These different use requirements translate into differences in the way you are 
likely to configure and manage an engine. The table below summarizes some of the 
issues.

Production Engine Development Engine

Multiple engines might be needed for 
organizational reasons or to handle 
heavy production loads.

A single engine is normally sufficient for 
testing purposes.



Production Engines Versus Development Engines

84 iPlanet Integration Server • Process System Guide • August 2001

Keep these issues in mind when configuring an engine. In most situations, you 
have to configure and manage at least one development engine and one 
production engine.

State information is needed for recovery: 
current state logging to the engine 
database is always turned on.

State information does not need to be 
stored in the engine database: current 
state logging can be turned off.

Backup engine unit and governor is 
needed for failover.

Failover is not critical: a minimal engine 
configuration is adequate.

A number of database services are 
normally required to meet engine 
performance (database access) 
requirements.

A single database service is normally 
adequate.

Historical process execution information 
is needed to analyze and improve system 
performance: logging of historical state 
information is normally turned on.

Current process execution information is 
more important than historical 
information: history logging can be 
turned off.

Engine is rarely cold started: registration 
and history information would be lost.

Engine is often cold started: registration 
information is purged, allowing for a 
clean engine state.

Application upgrades need to be 
performed without interrupting process 
execution.

Engine can be shut down and cold started 
to perform application upgrades.

Resource limitations need to be 
monitored to ensure engine performance 
and stability: memory, disk space, and 
cpu utilization.

Resource limitations rarely are of concern 
in development environments.

NOTE Do not use the same engine for both development and production.

Production Engine Development Engine



Configuring an Engine

Chapter 4 Managing Engines 85

Configuring an Engine
An iIS process system can have any number of engines. For example, one engine 
might be used for testing and another used for production. In other cases, 
organizational considerations or heavy load conditions might require a number of 
production engines. While engines can communicate with one another—a process 
executing on one engine can be invoked from a process executing on 
another—each engine operates independently. One engine, for example, cannot fail 
over to another engine.

Each engine is composed of a number of engine components—engine units, 
governor, and database services (see Chapter 1, “Introduction: iIS Process 
Management”). For each engine to function independently, its components must 
each be identified with the engine and have a unique name, provided at startup 
time.

Each engine requires two levels of configuration:

• engine component partitioning 

Specify which computer nodes in your environment will host the different 
engine components—engine units, governor, and database services.

• engine startup properties

Specify a number of startup properties required by the various engine 
components.

The two levels of configuration are considered separately, below.

Engine Component Partitioning
An engine that is fully configured for failover and load balancing includes all the 
engine components shown in Figure 4-1, described on page 35.



Configuring an Engine

86 iPlanet Integration Server • Process System Guide • August 2001

Figure 4-1 Engine Configuration with both Failover and Load Balancing

During installation, you decided which nodes in your iPlanet UDS environment 
(engine servers) would have engine components installed on them. You must also 
determine your engine component partitioning: which engine components (if any) 
will run on each engine server.

The partitioning scheme that provides the highest failover reliability and the 
highest performance depends on a number of different factors. These factors 
include the power and reliability of your servers, the bandwidth of your network, 
the normal load on the iIS process engine, and how this load is distributed over a 
typical work day. Since these factors vary from site to site, only some very general 
guidelines are discussed here.

Primary Engine Unit It is recommended that you assign the primary engine unit 
to a fast, reliable server node. The primary engine unit in a production situation 
normally maintains sessions with hundreds of clients, maintains state information 
on tens of thousands to millions of objects, and performs all the computations 
required of an engine.

Backup Engine Unit It is recommended that you assign the backup engine unit 
to a capable server node also, but a different one from the node on which the 
primary engine unit runs (to provide backup should the primary server fail). This 
node could be a less powerful computer if you are willing to accept a possible 
decrease in performance for your backup unit.

iIS Process
Engine

Backup
Engine

Unit

Governor

Primary
Engine

Unit
Router

Engine
Database

Database
ServicesDatabase

ServicesDatabase
Services

Client Applications



Configuring an Engine

Chapter 4 Managing Engines 87

Governor The governor does not do much processing and does not require a 
high performance server. It is recommended that you not assign it to the same 
server as either the primary or backup engine unit, because it would then not be 
able to distinguish between failure of the primary engine unit and a break in the 
network link between the engine units. 

Database Services The number and placement of database services depends on 
load conditions. You must have enough database services running to prevent 
database access requests from backing up in the database service router (see 
“Viewing Performance Indicators” on page 222). In general, assign high priority 
database services to a very capable server node, probably the same as the one on 
which the database manager resides. If your database system provides network 
access to the database, such as ORACLE’s SQL*Net, then lower priority database 
services can be assigned to under-utilized servers, where resources are available to 
help carry heavy loads on the engine. (If your database system does not provide 
network access to the database, then your database services must reside on the 
same node as your database manager.)

A typical configuration is illustrated in Figure 4-2 on page 88.

In this illustration the database services on Server4 are used in a round-robin 
fashion unless the load on the engine is too heavy for them to carry it. In that case 
the database service on Server1 is used. The database service on Server3 will be 
used to handle peak loads, but will get less work than the service on Server1.

You did not have to decide at iIS installation time exactly which engine 
components would be assigned to each server node because all component 
partitions are installed on each server node that supports an engine. Instead, you 
must select which components to start on which nodes when you configure each 
engine. 

For example, you can designate a default set of database services that are started at 
engine startup time. Subsequently, however, you can start up additional database 
services on designated nodes, as needed, to accommodate increasing load on the 
engine.

The location of the primary and backup engine units is best determined in advance, 
before startup time, and should not change because the shared library files 
corresponding to process definitions registered with the engine are needed on all 
the nodes on which the engine units are located. For this reason, moving the engine 
units from one node to another can take a long time.

Your default engine component partitioning scheme is stored in an engine 
configuration file, allowing you to design your basic engine component 
partitioning scheme in advance and consistently start up your engine the same way 
every time.



Configuring an Engine

88 iPlanet Integration Server • Process System Guide • August 2001

Figure 4-2 Typical Engine Partitioning Scheme

Engine Startup Properties
Before you start an engine, you must specify a number of startup properties. These 
properties are stored in the engine configuration file. The startup properties are the 
following:

Clients

Server 3

Backup
Engine

Unit

Database
Service

Server 1

Governor

Database
Service

Server 2

Primary Engine Unit

Engine
Database

Server 4

Database
Services

Priority=9

Priority=8

Priority=10

Router



Configuring an Engine

Chapter 4 Managing Engines 89

Engine name An alpha-numeric name used to identify the engine in a given 
environment.

Environment An alpha-numeric name that specifies the iPlanet UDS 
environment in which the engine resides.

Database Configuration Properties Properties needed to access the engine 
database. These properties include:

• database type

• database name

• user name

• user password

Database Logging Settings These settings specify whether state information is 
logged and which history information tables are updated by the engine.

Process Engine Components A minimal engine configuration contains an engine 
unit component and a database service component. An engine configured for 
failover also contains a Governor component.

Memory Settings These settings specify the object memory heap size allocated to 
the various engine components (governor, database services, and engine units). 
Included here is also a setting to limit the number of console monitor windows that 
can be open at any time.

Stack Size These settings specify the memory size of each thread started for the 
process engine components. Default values vary for each platform. Typically, you 
do not need to override the default values. For information on setting stack size in 
an iPlanet UDS environment, refer to the discussion on FORTE_STACK_SIZE in 
the iPlanet UDS System Management Guide.

Process Execution Options These settings specify how an engine manages 
process execution. By setting these options appropriately, you can ensure that 
memory resources do not become overtaxed during process execution, and thereby 
avoid engine performance degradation or possible failure. 

Engine Recovery Options These options specify the behavior of the engine 
during recovery from an engine failure. They determine how long an engine waits 
for client sessions to reconnect, and the action to take if the client sessions do not 
reconnect after the timeout period expires.



Configuring an Engine

90 iPlanet Integration Server • Process System Guide • August 2001

Engine Configuration File
The engine component partitioning and engine startup properties are stored in an 
engine configuration file in the following location on the central server node in 
your environment:

FORTE_ROOT/sysdata/conductr/clN/environment/engine_name.cfg

A sample configuration file is reproduced below:

Path Element Description

environment Name of the iPlanet UDS environment in which engine 
resides.

engine_name Name of the iIS engine. 

FILE_VERSION = 2.0
GOVERNOR = Server4
UNITS = Server1:Primero:P,Server3:Secundo:B
DBSERVICES = Server2:DBService1:10,Server4:DBService2:9,…
DATABASE_TYPE = ORACLE
DATABASE_NAME = @oracle_Server2
DATABASE_USER_NAME = wftester
DATABASE_USER_PASSWORD = *#@$!!
LOGGING= ON,STATE,LOG,LOG_ACTIVITIES,LOG_ATTRIBUTES,LOG_LOCKS,…
GOVERNOR_MEMORY_FLAG = n:2000,x:10000,…
DBSERVICE_MEMORY_FLAG = n:2000,x:10000,…
UNIT_MEMORY_FLAG = n:10000,m:30000,…
GOVERNOR_STACK_SIZE = 48000
DBSERVICE_STACK_SIZE = 96000
UNIT_STACK_SIZE = 96000
UNIT_RECOVER_CURSOR_SIZE = 123
DATABASE_PROC_SEGMENT_SIZE = 256
DATABASE_SESS_SEGMENT_SIZE = 256
UNIT_MAX-SESSION_NUMBER = 300
UNIT_MAX-PROCESS_NUMBER = 0
UNIT_IN_MEMORY_PROCESS_LIMIT = 1000
UNIT_SWAPOUT_INTERVAL = 10000
MONITOR_DISPLAY_LIMIT = 10
UNIT_SESSION_RECONNECT_LIMIT = 600000
UNIT_SESSION_RECONNECT_ACTION = 2048
UNIT_SNS_RATIO = 70



Configuring an Engine

Chapter 4 Managing Engines 91

The engine properties specified in the configuration file are described in the 
following table:

Table 4-1 Process Engine Configuration Properties 

Property Type of 
value

Description

FILE_VERSION string Internal use. Do not modify.

GOVERNOR string Specifies the node on which governor 
component runs.

UNITS string For each engine unit, specifies the node on 
which the unit runs, unit name, and preferred 
priority (P=primary unit, B=backup unit, or 
N=no preference). String contains entries, 
separated by commas, in the form 
[NODE_NAME:UNIT_NAME:P/B/N][,…].

DBSERVICES string For each database service, specifies the node on 
which the service runs, service name, and 
priority (integer—positive or negative). String 
contains entries, separated by commas, in the 
form 
[NODE_NAME:SERVICE_NAME:PRIORITY][,
…].

DATABASE_TYPE string Database type. Can have the following values: 
ORACLE, SYBASE, …(any database system 
supported by iPlanet UDS).

DATABASE_NAME string Name of database.

DATABASE_USER_NAME string Database logon user name.

DATABASE_USER_PASSWORD string Database logon password. The password is 
encrypted.

LOGGING string Specifies which tables (current state and history 
log) are enabled and which object state changes 
are recorded if the history log is enabled. String 
contains any of the following entries, separated 
by commas, that are enabled: 
[STATE] [,LOG] [,LOG_ACTIVITIES] 
[,LOG_ATTRIBUTES] [,LOG_LOCKS] 
[,LOG_PROCESSES] [,LOG_SESSIONS] 
[,LOG_TIMERS]



Configuring an Engine

92 iPlanet Integration Server • Process System Guide • August 2001

GOVERNOR_MEMORY_FLAG string Specifies memory options. Uses the same 
syntax as the -fm flag used on iPlanet UDS 
partitions. Default values are n:2048,x:16384,….

DBSERVICE_MEMORY_FLAG string Specifies memory options. Uses the same 
syntax as the -fm flag used on iPlanet UDS 
partitions. Default values are n:2048,x:16384,….

UNIT_MEMORY_FLAG string Specifies memory options. Uses the same 
syntax as the -fm flag used on iPlanet UDS 
partitions. Default values are n:2048,x:16384,….

GOVERNOR_STACK_SIZE
DBSERVICE_STACK_SIZE
UNIT_STACK_SIZE

integer Specifies the memory size for each thread 
started for the process engine components. 
Default values vary for each platform. For 
information on setting stack size in an 
iPlanet UDS environment, refer to the 
discussion on FORTE_STACK_SIZE in the 
iPlanet UDS System Management Guide.

UNIT_RECOVER_CURSOR_SIZE string Specifies number of process instances to be 
recovered at one time in the event of engine 
unit failure.

DATABASE_PROC_SEGMENT_SIZE integer Specifies segment size for storing text-based 
process attributes. Default value is 255 bytes.

DATABASE_SESS_SEGMENT_SIZE integer Specifies segment size for storing text-based 
session attributes (associated with a session’s 
user profile). Default value is 255 bytes.

UNIT_MAX_SESSION_NUMBER integer Specifies number of concurrent sessions 
supported by the engine. Default value is 300.

UNIT_MAX_PROCESS_NUMBER integer Specifies the number of concurrent process 
instances supported by the engine. Default 
value is 0 (no maximum).

UNIT_IN_MEMORY_PROCESS_LIMIT integer Specifies the number of process instances 
retained in memory. Default value is 1000.

UNIT_SWAPOUT_INTERVAL integer Specifies the time interval (in milliseconds) at 
which the engine checks the number of process 
instances resident in memory and swaps out 
dormant process instances. Default value is 
10000.

Table 4-1 Process Engine Configuration Properties  (Continued)

Property Type of 
value

Description



Configuring an Engine

Chapter 4 Managing Engines 93

Customizing Engine Database Schema
iIS provides a default database schema that it uses to create an engine database. 
This default schema can be used in a development environment without 
modification. However, for deployed applications, you can modify the database 
schema according to your own database requirements. Typically, you modify the 
schema to add table space qualifiers or other database-specific qualifiers to the 
CreateTable and CreateIndex statements.

MONITOR_DISPLAY_LIMIT integer Specifies the maximum number of Cconsole 
monitor displays that can be simultaneously 
open by all Cconsole sessions monitoring the 
engine. This limit affects the Sessions, Processes 
Resident and Activities Resident monitor 
windows. The number of these windows that 
are open affects the performance of the engine.

UNIT_SESSION_RECONNECT_LIMIT integer During engine recovery, specifies the time (in 
milliseconds) that an engine waits for clients to 
reconnect to a session. Default value is 60000 
milliseconds (10 minutes).

UNIT_SESSION_RECONNECT_ACTION integer During engine recovery, specifies the action to 
take (suspend or terminate) for client sessions 
that fail to reconnect before the specified 
timeout period 
(UNIT_SESSION_RECONNECT_LIMIT). 
Default value specifies to suspend sessions that 
do not reconnect.

UNIT_SNS_RATIO integer Specifies the ratio of swapable to non-swapable 
processes for the process engine. Processes that 
are not marked as recoverable (either through 
the process definition or by a process client 
calling CreateProcess) cannot be swapped out 
of memory by the engine. Adjust the default 
value only if you are having performance 
problems with the process engine.

Table 4-1 Process Engine Configuration Properties  (Continued)

Property Type of 
value

Description



Configuring an Engine

94 iPlanet Integration Server • Process System Guide • August 2001

When you configure a new engine, the default engine schema is specified by the 
following file on the central server node in your environment:

FORTE_ROOT/sysdata/conductr/clN/environment/engine_name.dbs

The database schema file uses XML to define SQL statements for the schema. When 
you perform a cold start on an engine, iIS uses the specification in this file to create 
the engine database. 

If you want to modify the default schema, before performing a cold start on an 
engine, edit this file according to your needs.

Path Element Description

environment Name of the iPlanet UDS environment in which engine 
resides.

engine_name Name of the iIS engine. 

CAUTION When modifying an engine database schema, do not change any 
basic table definitions or index definitions, and do not change any 
column names or column data types. You should only modify 
information specific to a database or site, such as the table space 
qualifiers. Otherwise, the engine may not start. Examine the engine 
log file (at FORTE_ROOT/log) to determine the cause of startup 
failure.



Configuring an Engine

Chapter 4 Managing Engines 95

The following example shows how to modify the create index statement for the 
WFHActivity table to include a table space qualifier.

How to Configure a New Engine
The easiest way to configure a new engine is to use the iIS Console to create a new 
engine configuration file and place it in the proper directory location on your 
central server node. (You can also create a new configuration file by directly 
entering the information in “Engine Configuration File” on page 90 into the file.) 

Code Example 4-1 Generated Definition (Oracle)

<FNCreateIndexStatement>
create unique index wfk_act on WFHActivity (

processid,
id)

</FNCreateIndexStatement>

Code Example 4-2 Modified Definition

<FNCreateIndexStatement>
create unique index wfk_act on WFHActivity (

processid,
id)
TABLESPACE my_ProcessEngine_Index

</FNCreateIndexStatement>



Configuring an Engine

96 iPlanet Integration Server • Process System Guide • August 2001

➤ To configure a new engine

1. Choose Engine > New. The Configure New Engine window displays:

2. Enter a name for the new engine in the Engine name field.

The name can be case-sensitive and of any length, but have no spaces.

3. Click the Database tab to display the database properties dialog:



Configuring an Engine

Chapter 4 Managing Engines 97

4. Enter the database configuration properties.

For information on the Database Connection fields, refer to the iIS online help. 
The Text Attribute Segment Size fields allows you to specify the segment 
length for process attributes and user profile information for a session.

5. Click the Logging tab to display the logging properties dialog:

Property Description

Process attribute segment 
size

Specifies segment size for storing text-based process 
attributes. Default value is 255 bytes.

User profile attribute 
segment size

Specifies segment size for storing text-based session 
attributes (associated with a session’s user profile). 
Default value is 255 bytes.



Configuring an Engine

98 iPlanet Integration Server • Process System Guide • August 2001

6. Specify the engine database tables (Current state and/or History log) for which 
you want to log information. If you write to history log tables, specify the 
information to log. 

Current state This setting determines whether the engine writes information 
about the current state of all sessions, processes, and process components to 
the current state tables (see Appendix B, “Engine Database Schema”). You 
cannot recover an engine or support failover of an engine unit unless you 
enable the Current state option.

History log This setting determines which information, if any, the engine 
logs about each state change in sessions, processes, and process components to 
the history log tables (see Appendix B, “Engine Database Schema”). The 
history log tables are used for obtaining historical information about process 
execution. The history log can grow quite large, so set logging selectively. You 
may have to monitor, back up, and flush the history log tables on a regular 
basis. For more information, see “Managing an Engine Database” on page 124.

NOTE The registration tables are always enabled for registering 
process definitions, assignment rule dictionaries, user profiles, a 
validation, and aliases. Therefore, no option for the registration 
table appears in the dialog.



Configuring an Engine

Chapter 4 Managing Engines 99

7. Select the Components tab.

The Component Partitioning dialog is displayed.

8. Specify the engine component partitioning.

When assigning a component to a node, be sure that the node is an engine 
server node (that is, that engine components were installed on the node during 
iIS installation). The Node drop list shows all server nodes (whether online or 
not) defined in the iPlanet UDS environment.

The order in which you specify components is not important.

Governor To provide failover for an engine, you need to include a governor 
in the configuration. The governor does not accept a name or priority 
(indicated by “N/A” in the table).

Engine Unit You can specify one or two engine units in your 
configuration—to provide failover, you need two units (a primary and a 
backup). For each engine unit, you must provide a name and indicate whether 
it is the primary unit (P), backup unit (B), or not specified (N). In the last case 
the governor decides which is primary and which is backup. For failover to 
work, the engine units must be put on separate nodes and cannot be on the 
node hosting the governor.

Database Service You can specify as many database services as you need (at 
least one) to balance the maximum load on your engine database access. For 
each database service, you must provide a unique name and indicate its 
priority. A priority is simply an integer (positive or negative from 1 to 10), with 



Configuring an Engine

100 iPlanet Integration Server • Process System Guide • August 2001

a higher numeric value signifying a higher priority. It is suggested that you 
decide on a sensible set of priorities. A default priority of “1” is used if you do 
not specify a priority. The engine distributes the database access load based on 
this priority. See “Full Configuration: Failover and Load Balancing Combined” 
on page 35.

Database services must be placed on the node where your database manager 
resides, unless your database system provides network access to the database, 
such as ORACLE’s SQL*Net. If your database system provides network access 
to the database, then lower priority database services can be assigned to 
under-utilized servers where resources are available to help carry heavy loads 
on the engine. Any node that hosts a database service must be specified in the 
iPlanet UDS environment definition as supporting a database resource 
manager (otherwise, a database service will not be installed on the node).

9. Click the Options tab to display the Options dialog:



Configuring an Engine

Chapter 4 Managing Engines 101

10. Specify memory options for the governor, database service, and engine unit 
memory flags if you want to override the default values.

The settings you are most likely to change are the minimum and maximum 
memory allocation for engine units. The minimum allocation specifies the 
default size of the object memory heap and the maximum allocation sets the 
upper limit to which the iPlanet UDS memory manager can expand the object 
memory heap. The default values might prove insufficient for engines that are 
processing thousands of process instances, each with many activities, 
attributes (and locks), timers, sessions, and so forth.

To specify memory options, use the following syntax:

memory_option {: | =} number [, memory_option {: | =} number]

Do not include any spaces.

For example, n:4096, x:16384 specifies both maximum and minimum sizes of 
the iPlanet UDS memory heap. The n and x memory options are described in 
the following table (a page is 1024 bytes of memory). 

For more information about the iPlanet UDS memory manager and other 
memory options, see the iPlanet UDS System Management Guide.

Memory Option Description

n Minimum number of pages managed by the memory manager. 
The value specifies the absolute minimum number of pages that 
will be allocated to the memory heap. Range is 1024 to 4194304 
(32384 on WIndows 3.1). Must be less than the x memory option. 
The default value is 2048.

x Maximum number of pages managed by the memory manager. 
The value specifies the absolute maximum number of pages that 
can be allocated to the memory heap. Range is 1024 to 4194304 
(32384 on Windows 3.1). Must be greater than the n memory 
option. The default value is 16384.



Configuring an Engine

102 iPlanet Integration Server • Process System Guide • August 2001

11. Specify how many monitor windows can be open at any time.

The Monitor Display Limit option (default value of 10), indicates how many iIS 
Console monitor windows can be open at any time. This limit applies to 
Sessions, Processes Resident and Activities Resident monitor windows and 
affects all iIS Consoles monitoring the engine. The number of monitor 
windows open affects the performance of an engine.

12. Specify the recover cursor size.

You can set the number of process instances to be recovered at one time in the 
event of engine unit failure. The default is 100 process instances at a time. The 
cursor size controls how many rows are accessed from the engine database. 
Lowering the number of instances (by lowering the cursor size) reduces the 
amount of memory needed for recovery; the trade off is a slower recovery. If 
your resources permit, you can increase the number for maximum efficiency.

13. Specify process execution options.

You can set a number of configuration options that affect how an engine 
manages process execution. By setting these options appropriately, you can 
ensure that memory resources do not become overtaxed during process 
execution, and thereby avoid engine performance degradation or possible 
failure.

NOTE If you attempt to open additional windows beyond the limit, an 
error message is displayed.

NOTE If the engine unit fails to recover due to an out-of-memory error, 
you can lower the cursor size. Another option is to increase the 
maximum memory allocation for DB services or engine units as 
your resources permit.



Configuring an Engine

Chapter 4 Managing Engines 103

The process execution options are the following:

For information about how to use these configuration options, see “How to 
Tune Process Execution” on page 116.

14. Specify engine recovery behavior.

If an engine goes down, and then recovers, you can specify how long the 
engine waits for clients to reconnect and the behavior of the engine in the event 
the client does not reconnect before the timeout period.

By default, an engine waits 10 minutes (600000 milliseconds) for a client to 
reconnect. You can modify this value from the Options tab. If a client fails to 
reconnect to the engine after the timeout period, by default, the engine 
suspends the session. You can change the default behavior, and specify that the 
engine terminates the session.

15. When you have finished configuring your engine, click the Create button to 
create the configuration file.

The engine configuration file is saved to a standard location on the central 
server (see “Engine Configuration File” on page 90).

Process Execution 
Option

Description

Maximum number of 
sessions

The maximum number of concurrent sessions supported 
by the engine. Attempts to open additional sessions will 
raise an exception. The default value is 300.

Maximum number of 
processes

The maximum number of concurrent process instance 
executions supported by the engine. Attempts to 
instantiate additional process instances will raise an 
exception. The default value is 0 (no maximum)

Memory-resident 
process limit

The number of process instances retained in memory. 
When the number of memory-resident process instances 
exceeds this limit, the engine swaps out dormant process 
instances, allowing for execution of newly activated 
process instances. The default value is 1000.

Swap-out interval The time interval (in milliseconds) at which the engine 
checks the number of process instances resident in 
memory and swaps out dormant process instances. The 
default value is 10,000 milliseconds.



Configuring an Engine

104 iPlanet Integration Server • Process System Guide • August 2001

Duplicating an Engine Configuration
If you have multiple engines that need to be configured similarly, or want to add 
an engine with a configuration similar to an existing engine, you can duplicate an 
engine configuration. After creating a duplicate engine you can reconfigure the 
new engine to make any necessary adjustments.

You can do this from the iIS Console main window.

➤ To duplicate an engine configuration

1. From the iIS Console main window, select the engine you want to duplicate.

2. Choose Engine > Duplicate.

3. Enter a new name for the duplicate engine.

The name can be case-sensitive and of any length, but have no spaces.

The duplicate engine shows up in the engine list in the iIS Console main window. 
You can reconfigure the engine to make any necessary adjustments (see “How to 
Reconfigure an Engine” on page 113).

Deleting an Engine Configuration
You can delete an engine from the list of configured engines in your environment 
by deleting the corresponding engine configuration file. You can do this from the 
iIS Console main window.

➤ To delete an engine configuration

1. Select an engine from the engine list in the iIS Console main window.

2. Choose Engine > Delete.

You can also delete the configuration file manually. Its location is shown in 
“Engine Configuration File” on page 90.



Starting an Engine

Chapter 4 Managing Engines 105

Starting an Engine
To start an engine, you start each of its components—engine units, governor, and 
database services. These components are applications, each consisting of a single 
server partition that must establish communication channels with other 
components.

As each of these partitions starts, it registers itself with the iPlanet UDS Name 
Service and then looks in the Name Service registry for the names of other 
components with which it must establish a communication channel. The 
components can start in any order: they simply wait for the other components that 
they connect to. When all necessary communication channels are established, the 
primary engine unit can log on to its database and perform the operations that 
bring it online.

Each of the engine components and its start characteristics are discussed in more 
detail below. This background information is followed by instructions on how to 
start the engine using the iIS Console. For information on starting engines using 
Conductor Script, see “Starting an Engine” on page 235.

Governor
When the governor starts, it does not try to connect to anything, but enters a state 
in which it is not connected to any engine units and waits for engine units to make 
contact. When the engine units start up, the governor determines which unit is to 
be primary and which is to be backup. There are three cases:

• If the first engine unit is marked as preferred primary, then the governor sets it 
as the primary unit. 

• If the first engine unit is marked as preferred backup, then the governor sets it 
as the backup unit. 

• If no engine unit is marked as preferred primary, then the governor sets the 
first to start as primary unit. 

If the governor starts up after the engine units and they have independently 
established which is primary and which is backup, the governor accepts these 
settings.



Starting an Engine

106 iPlanet Integration Server • Process System Guide • August 2001

The governor has four internal states, depending on its connections with the engine 
units:

As the governor changes state (that is, as engine units start up and shut down), it 
determines which engine unit is primary based on the state of the engine units 
before the change occurred. For example, in going from BOTH to E2, the governor 
will make EngineUnit2 primary if that unit had been the backup before the state 
change (a normal failover scenario). In going back, from E2 to BOTH, however, it 
will retain EngineUnit2 as primary, even if that engine unit is marked as the 
preferred backup. (You can override the Governor to return EngineUnit1 to 
primary—see “Changing Engine States” on page 122.)

Engine Unit
When an engine unit starts, it attempts to connect to both the governor and its 
partner engine. It waits for a timeout period and exits if no connection is 
forthcoming. (If the engine configuration file specifies no engine unit partner, the 
engine unit can start up standalone, without requiring a governor or partner.)

If an engine unit starts after the governor has started, the engine unit connects to 
the governor. The governor determines if the engine unit is primary or backup, 
depending on the engine’s preferred designation or whether the engine is the first 
unit to start (in which case it becomes the primary unit). If the engine unit is 
primary, it attempts to come online. If the engine unit is backup, it enters a standby 
state in which it does not attempt to come online.

Governor state Description

IDLE Not connected to any engine units

E1 Connected only to the first engine unit to start up 
(EngineUnit1)

BOTH Connected to both engine units

E2 Connected only to the second engine unit to start up 
(EngineUnit2)



Starting an Engine

Chapter 4 Managing Engines 107

If an engine unit starts before the governor, but after its partner has started, then it 
must negotiate with its partner to establish which unit is to become primary. If one 
unit has been marked as the preferred primary, then that unit becomes primary. If 
neither unit has been marked as the preferred primary, then the negotiation 
randomly determines which of the two becomes primary. If the governor starts up 
in the middle of this negotiation, the governor takes over and decides the issue. If 
the governor starts up after the negotiation is complete, the governor accepts the 
negotiated decision.

When an engine unit starts, it goes through an internal, transitional state 
(EMBRYONIC), then assumes one of two persistent states, ONLINE or STANDBY, 
depending on whether it is designated as the primary or backup engine unit. The 
STANDBY state is assumed immediately upon startup; however, the ONLINE 
state is achieved only after the engine unit has passed through a number of startup 
phases, such as logging on to the engine database and performing registrations 
with the Name Service. The startup phases are described in more detail below.

As a system manager you can override the state of an engine unit after it has 
started. For example, you can set the primary engine to a STANDBY state, and then 
set its partner to an ONLINE state, making the partner the new primary engine 
unit. The engine unit states are described below.

Engine unit state Description

EMBRYONIC Internal, transitional startup state.

ONLINE Normal state of the primary engine unit. It is running, 
connected to the engine database, and can accept client 
sessions.

STANDBY Normal state of the backup engine unit. It is running, but is 
not connected to the engine database and cannot accept client 
sessions.



Starting an Engine

108 iPlanet Integration Server • Process System Guide • August 2001

Primary Engine Unit Startup Phases
The primary engine unit must perform a number of startup operations to come 
fully online. These operations depend on whether the primary engine unit is 
recovering from failure, is restarting an engine on an existing database, or is 
starting up for the first time (cold start). The primary engine unit startup phases are 
documented in the following table to assist you in diagnosing problems in engine 
startup (the phases are listed in sequential order):

Startup Phase Description Phase #

REMOVE_PRIMARY Removes any existing “primary” 
registration in the Name Service. 
This phase not included in a cold 
start.

51

CREATE_ENGINE Instantiates an engine object. 52

ATTACH_HISTORY_MANAGER Beginning of the database logon 
phase.

53

INIT_HISTORY_DB Database logon phase, in which a 
router is created and registered 
with the Name Service, a 
communication channel with a 
database service is opened, and a 
database service logon to the 
database is successfully completed.

54

HISTORY_INITIALIZED Completion of the database logon 
phase.

55

COLD_DELETE For a cold start, deletes any 
existing database tables.

56

COLD_CREATE For a cold start, creates the 
required database schema (tables).

57

RECOVER_OBJECTS Recovers all current state objects 
from the database and places them 
in engine state memory. This phase 
not included in a cold start.

61

REGISTER_PRIMARY Places a “primary” registration in 
the Name Service. This allows all 
other objects to locate the primary 
engine unit.

62

INFORM_GOVERNOR Communicates to governor that 
state has changed to online.

63



Starting an Engine

Chapter 4 Managing Engines 109

Database Service
When a database service starts, it attempts to connect to the primary engine unit. If 
the primary engine unit is not online, the database service continues waiting for it 
indefinitely.

When the primary engine unit starts up, the database service opens a 
communication channel to the engine’s database service router object and becomes 
available for use. The database service first asks the router for the name of the 
database along with the username and password to use for logging on (provided to 
the engine unit in the engine unit configuration file). It then logs on to the given 
database using the username and password provided.

When you start a database service, you specify a component name and a priority 
for it. A priority is simply an integer (positive or negative), with a higher numeric 
value signifying a higher priority. It is suggested that you decide on a sensible set 
of priorities. A default priority of “1” is used if you do not specify a priority.

When a database service starts, it may (or may not) establish a communication 
channel with a router, and it may (or may not) log on to the engine database 
successfully. The database service, therefore, can assume the states shown in the 
following table. If a database service detects a failure in the communication 
channel to the primary engine unit, it logs off the database and reconnects to a new 
primary unit when its router comes online.

New database services can be started at any time, and they automatically become 
available to the primary engine unit when they connect.

INFORM_PARTNER Communicates to partner that state 
has changed to online.

64

STARTUP_COMPLETE Completion of startup operations. 
Engine unit now online.

65

Database service state Description

RouterChannel=OPEN/CLOSED Communication channel with the database 
service router is open or closed.

DatabaseState=TRUE/FALSE Database logon is successful or unsuccessful.

Startup Phase Description Phase #



Starting an Engine

110 iPlanet Integration Server • Process System Guide • August 2001

How to Start an Engine
You can start engine components from a centralized location using the iIS Console 
(see Chapter 3, “The iIS Console”). The iIS Console uses iPlanet UDS system 
management agents to start the partitions corresponding to each of the engine 
components, as specified in the engine configuration file. 

➤ To start an engine

1. Select an engine in the iIS Console main window.

2. Choose Engine > Start. The Start Engine window displays:



Starting an Engine

Chapter 4 Managing Engines 111

3. Select a startup option.

A number of options are available for creating new engine database tables 
when starting an engine (see “Managing an Engine Database” on page 124):

Startup Option Description

warm No new database tables are created during the primary engine 
unit startup process. All information stored in the existing 
database will be recovered. This option cannot be used the first 
time an engine is started. 

Note: If you need to maintain data between iIS releases, or dump 
and restore data for other reasons, you can use the 
Dump/Restore utility. For details, see “Dumping and Restoring 
Data” on page 126.

cold All new database tables (current state, registration, and history 
log) are created during the primary engine unit startup process. 
The cold option should always be used the first time an engine is 
started. If used in subsequent engine starts, however, the cold 
option will cause deletion of the existing engine database before 
creation of a new one—all current state information, registration, 
and history log data will be lost.

newLog New history log database tables are created during the primary 
engine unit startup process. All history log information stored in 
an existing database will be lost.

newState New current state database tables are created during the primary 
engine unit startup process. All current state information stored 
in an existing database will be lost.

newState 
newLog

New current state and history log database tables are created 
during the primary engine unit startup process. All current state 
and history log information stored in an existing database will be 
lost.

newState 
newRegistration

New current state and registration database tables are created 
during the primary engine unit startup process. All current state 
and registration information stored in an existing database will 
be lost.

CAUTION Be careful when specifying startup options. All options other 
than “warm” can result in loss of data. You are asked to confirm 
a cold start.



Starting an Engine

112 iPlanet Integration Server • Process System Guide • August 2001

4. Disable the engine components you do not want to start.

By default, all components specified in your configuration file are enabled.

5. Click Start.

The governor, engine units, and database services are started, in that order.

If the primary engine unit remains offline, then the engine has not started 
successfully. A typical reason for startup failure is that the database service has 
failed to open a session with the engine database. 

Ultimately, you may have to check engine component log files. The log file for each 
component is written in the FORTE_ROOT/log directory of the node on which the 
component is executing. This is not necessarily the node on which you are running 
iIS Console.

Once an engine component has come online, you can access the log file directly 
from within iIS Console, as described in “Engine Log Files” on page 210.

➤ To start individual engine components

1. In the iIS Console main window, select the engine whose components you 
want to start.

2. Choose Engine > Start. The Start Engine window displays (see previous page).

3. Deselect the engine components you do not want to start.

Examine the state icon of any component you want to start to ensure it is not 
already online.

4. Click Start.

If an engine component is already running, you get an error message.

NOTE The engine might take some time to start. To check the status of the 
engine, use the Engine > Status command as explained in 
“Monitoring Engines and Engine Components” on page 118. For a 
quick indication of status, check the status indicator in the Start 
Engine window (see indicator states in “Main Viewing Panel” on 
page 69).



Reconfiguring an Engine

Chapter 4 Managing Engines 113

Reconfiguring an Engine
An engine’s component partitioning and startup properties are stored in its engine 
configuration file, which is read at engine startup time. To reconfigure an engine 
you modify the configuration file and restart the engine. Some limited 
reconfiguration, such as modifying the logging of historical state information, can 
be performed dynamically: you do not have to restart the engine (see “How to 
Dynamically Modify Database Logging” on page 115).

Most reconfiguration involves modifying engine component partitioning to 
accommodate changing load on an engine or component failure. For example, if 
the load on your engine increases, you might have to start up additional database 
services, or if a primary engine unit fails (say, the server blows up), you might have 
to start up an additional engine unit to serve as backup to the failover primary.

In these cases, you must modify your engine configuration file, in the first case to 
include additional database services, and in the second case to put an engine unit 
on a different server node.

How to Reconfigure an Engine
You can statically reconfigure an engine whether or not it is currently ONLINE, 
either by editing the engine configuration file manually or by using the iIS Console 
as follows:

➤ To reconfigure an engine

1. Select an engine in the iIS Console main window.



Reconfiguring an Engine

114 iPlanet Integration Server • Process System Guide • August 2001

2. Choose Engine > Reconfigure. The Reconfigure Engine window displays:

3. Select the appropriate tab to modify the property or properties you want to 
change.

4. When you have finished reconfiguring your engine, click Save.

The modified information is written to the engine configuration file.

5. Restart your engine for reconfiguration changes to take effect.



Reconfiguring an Engine

Chapter 4 Managing Engines 115

How to Dynamically Modify Database Logging
To change the logging configuration of your engine, normally to reduce or increase 
the amount of historical state information being logged to your engine database, 
you do not have to restart the engine.

➤ To modify database logging for an engine

1. Select an engine in the iIS Console main window.

2. Choose Engine > Logging. The Logging window displays:

3. Enable (or disable) the database tables to enable (or disable) logging.

4. Click Apply.

The changes you make are implemented immediately; however, they are not 
written to your engine configuration file. To make changes that will be saved to 
the engine configuration file, see “How to Reconfigure an Engine” on page 113.



Reconfiguring an Engine

116 iPlanet Integration Server • Process System Guide • August 2001

How to Tune Process Execution
The performance of an engine depends on available system resources, such as 
memory. For example, if engine memory resources become overtaxed, engine 
performance can degrade, and an engine can even fail.

It is hard to know in advance the memory resources required under production 
loads. Memory requirements depend upon the number of sessions being 
supported and the number and complexity of concurrently executing process 
instances—the number of activities, timers, process attributes, and so forth. Hence, 
to prevent failure, it is necessary to monitor the performance of the engine under 
production loads, and to reconfigure it when performance begins to degrade.

A number of configuration options are available for tuning process execution, as 
described in Step 13 on page 102:

• Maximum Number of Sessions

• Maximum Number of Processes

• Memory-resident Process Limit

• Swap-out Interval

For example, you can use the first two options to limit the number of concurrent 
sessions or process instances that the engine supports. While this can keep process 
execution within resource limits, it also limits the load that an engine can support.

A more sophisticated approach is to use the engine’s advanced process 
management capabilities. These capabilities allow the engine to swap out dormant 
process instances in order to reuse the memory space they occupy. When these 
process instances are subsequently needed, they are swapped back into memory, 
replacing other process instances that are not currently being used.

In other words, only the most recently needed process instances are kept resident 
in memory. By swapping process instances out of and back into memory, the 
engine can support process execution loads that would otherwise exceed available 
memory resources and cause the engine to fail. Of course, there is overhead 
involved in this kind of process execution management, so in some cases, 
performance can be impacted. 

The engine’s mechanism for managing process execution depends on the values of 
two engine configuration options: the Memory-resident Process Limit and the 
Swap-out Interval. As process execution proceeds, the engine checks that the 
number of process instances resident in memory does not exceed the 
Memory-resident Process Limit. If it does, the engine swaps out the least recently 



Monitoring and Changing Engine States

Chapter 4 Managing Engines 117

used process instances (and all their associated activities, timers, and process 
attributes), until it brings the number of memory-resident process instances back 
within the limit. The engine performs these checks periodically, as specified by the 
value of the Swap-out Interval.

When a swapped-out process instance is subsequently needed, for example, to 
change the state of an activity, to handle an expired timer, to evaluate an 
assignment role, and so forth, the engine finds the process instance in the engine 
database’s current state tables and swaps it back into memory. 

In general, you want the value of the Swap-out Interval to be short enough so that, 
under heavy load conditions, the number of process instances in memory cannot 
grow to a point where the available memory resources are exceeded. However, if 
you make the interval too short, the engine is incurring excessive overhead, 
swapping more process instances out of and into memory than is needed. 
Similarly, the value of the Memory-resident Process Limit must be set in 
accordance with the memory required by executing process instances (which 
depends on their complexity), the available memory resources, and the value of the 
Swap-out Interval.

Despite the difficulty of determining the optimum values of each of these 
configuration options, the combination provides great flexibility in tuning an 
engine to process the heaviest loads, with the greatest performance, and with the 
least risk of failure.

Monitoring and Changing Engine States
After you have started an engine, you should verify that it has started successfully 
and monitor it periodically. In some situations, you may want to dynamically 
change the state of engine components.

This section starts by describing how to monitor engines and engine components 
with the iIS Console, followed by details on how to change engine states. For 
information on how to perform these operations using Conductor Script, see 
“Managing iIS Process Engines with Conductor Script” on page 235.

NOTE The evaluation of role-based assignment rules—as compared to 
assignment rules that involve process attributes or linked 
activities—does not require that the corresponding process instance 
be resident in memory. Hence, much less swapping is generally 
involved in executing process instances that employ only role-based 
assignment rules.



Monitoring and Changing Engine States

118 iPlanet Integration Server • Process System Guide • August 2001

Monitoring Engines and Engine Components
You can get status information about the engine as a whole as well as about each of 
the individual engine component in the iIS Console (see Chapter 3, “The iIS 
Console”). iIS Console uses iPlanet UDS system management agents to gather data 
from engine components. Each agent has a set of instruments that report relevant 
information.

Monitoring the Engine
Typically, you want to know which engine components are running. 

➤ To check the engine runtime configuration

1. Select a running engine in the iIS Console main window.

2. Choose Engine > Status. The Engine Status window displays:



Monitoring and Changing Engine States

Chapter 4 Managing Engines 119

The window provides information about the runtime state of the engine and 
engine component partitions. Partitions that are running (even if not fully 
functional) are shown with a warm-up state icon. For more detail on the functional 
state of a component, you can select that component (governor, unit, or DBservice) 
in the list view on the left, and the appropriate status display will appear on the 
right.

Monitoring Engine Components
You can get status information about individual engine components in the Engine 
Status window. Selecting an engine component in this window provides more 
information about the functional status of a component than is displayed in the 
Engine Status window if only the engine has been selected.

➤ To monitor individual engine components

1. Choose Engine > Status to display the Engine Status window.

2. In the list view on the left-hand side of the window, select the component to 
monitor: governor, engine unit, or database service.

NOTE The Broadcast button lets you send a message to all open sessions. 
The message can be picked up by client applications or application 
proxies that have opened sessions with the engine (see “Sending 
and Broadcasting Messages to Sessions” on page 177).



Monitoring and Changing Engine States

120 iPlanet Integration Server • Process System Guide • August 2001

The right side of the window provides information about the status of the engine 
component. For example, status information contained on a primary engine unit is 
shown below.

Engine unit In the case of an engine unit the following information is provided:

Property Description

governor channel 
state

whether the communication channel to the governor is open or 
closed

partner channel state whether the communication channel to the partner engine unit is 
open or closed

engine unit state whether the engine is in ONLINE or STANDBY state or offline

engine unit startup 
phase

the startup phase of a primary engine unit (see “Primary Engine 
Unit Startup Phases” on page 108)

start time the time at which the engine unit partition started

node the node on which this engine unit is running

active memory the size of the object memory heap currently used by the engine 
unit partition

allocated memory the amount of active memory currently allocated to objects 
created by the engine unit partition



Monitoring and Changing Engine States

Chapter 4 Managing Engines 121

Governor In the case of a governor the following information is provided:

Database service In the case of a database service the following information is 
provided:

peak allocated 
memory

the amount of allocated memory remaining after the most recent 
memory reclamation (probably the best measure of active 
memory utilization)

Property Description

governor state the status of the governor’s connections with engine units (IDLE, 
E1, BOTH, E2) as described in “Governor” on page 105

start time the time at which the governor partition started up

node the node on which this governor is running

active memory the size of the object memory heap currently used by the engine 
unit partition

allocated memory the amount of active memory currently allocated to objects 
created by the engine unit partition

peak allocated 
memory

the amount of allocated memory remaining after the most recent 
memory reclamation (probably the best measure of active 
memory utilization)

Property Description

router channel state whether the communication channel to the engine unit router is 
open or closed

database state whether the database service is connected to the database or not

transactions 
processed

the number of completed database transactions since the start 
time of the database service

start time the time at which the database service partition started up

node the node on which this database service is running

active memory the size of the object memory heap currently used by the engine 
unit partition

Property Description



Monitoring and Changing Engine States

122 iPlanet Integration Server • Process System Guide • August 2001

Changing Engine States
You can change the state of an engine, which usually involves changing the state of 
one or both engine units or shutting down one or more engine components. You 
can use the iIS Console to perform many of these tasks (see Chapter 3, “The iIS 
Console”). The iIS Console uses iPlanet UDS system management agents to control 
engine components. 

Changing Engine Unit States
You might want to change the state of an engine unit for a number of reasons. For 
example, you might want to suspend all client sessions with a primary engine unit 
(change its state from ONLINE to STANDBY) so you can perform administrative 
functions on the engine database. Or you might want to place a primary engine 
unit in STANDBY state so you can make its partner primary. When an engine goes 
back to ONLINE from STANDBY, it recovers state information from the database.

➤ To change the state of an engine unit

1. Select a running engine in the iIS Console main window.

2. Choose Engine > Status. The Engine Status window displays.

3. In the list view, select the engine unit whose state you want to change.

4. Click the Set State button to display the Set Engine Unit State window.

5. Click the radio button corresponding to the new engine unit state: ONLINE or 
STANDBY.

6. Click the Set button.

➤ To put the primary engine unit on STANDBY and the backup unit ONLINE

1. Select the running engine in the iIS Console main window.

2. Choose Engine > Status. The Engine Status window displays.

allocated memory the amount of active memory currently allocated to objects 
created by the engine unit partition

peak allocated 
memory

the amount of allocated memory remaining after the most recent 
memory reclamation (probably the best measure of active 
memory utilization)

Property Description



Monitoring and Changing Engine States

Chapter 4 Managing Engines 123

3. Click the Set Primary button in the Engine Status window. The primary unit 
now becomes the backup unit, and the backup becomes the online unit.

About Recovering State Information
In a production system, placing a backup unit online requires recovering state 
information from the engine database. State information includes the state of every 
process instance, the state of every activity and timer within each process instance, 
the values of process attributes and their lock states, the state of routers and 
triggers for each activity instance, session activity lists, queue lists, and so on. 

Accordingly, recovery of state information is not instantaneous. It takes an amount 
of time proportional to the amount of state information in the engine database, and 
inversely proportional to the speed of database access. The amount of state 
information available for a given process instance is determined by the process 
recovery level specified in the process definition or by the client application. 

The recovery level is really a performance parameter that specifies how much state 
information about a process instance is stored persistently in the engine database. 
The less state information stored in the database, the higher the level of engine 
performance in executing that process instance, but the lower the level of recovery 
possible when a backup engine unit comes on line. 

Recovery levels are specified on a per process basis (not per engine). There are 
three options.

None No state information is written to the engine database so none can be 
recovered—the process instance is therefore terminated when an engine fails and a 
backup unit comes on line.

Process only Minimal information is written to the engine database—only 
enough to recreate the process instance from its start. When an engine fails and a 
backup unit comes on line, all state information is lost and the process instance is 
recreated from start and executed anew.

Full recovery All state information for a process instance is written to the engine 
database. When an engine fails and a backup unit comes on line, state information 
is recovered as needed to proceed with process execution, that is, to evaluate 
assignment rules, change an activity state, and so on.

NOTE Writing of data to the engine database also depends on the logging 
properties of the engine configuration (see “How to Configure a 
New Engine” on page 95). 



Managing an Engine Database

124 iPlanet Integration Server • Process System Guide • August 2001

For more details on recovery levels, see the iIS Process Development Guide and the 
iIS Process Client Programming Guide.

Shutting Down Engine Components
You can shut down an individual component by clicking the Shutdown button in 
the component status display of the Engine Status window, or you can shut down 
all running engine components by clicking the Shutdown command in the engine 
status display. 

Managing an Engine Database
The iIS engine database consists of three categories of tables:

Current State These tables maintain state information about all objects created in 
process execution so that the engine state can be recovered in case of engine failure. 
The tables contain current state information on all sessions, process instances, 
activities, process attributes, timers, and so on.

Registration These tables maintain state information about all library 
distributions and aliases (see “About Aliases” on page 143) registered with the 
engine. This information can be recovered in case of engine failure.

History Log These tables maintain historical information about the most 
important objects created in process execution (sessions, process instances, 
activities, timers, attributes, and attribute locks). This information can be used in 
managing process execution, analyzing historical trends, and reporting on business 
throughput. The log also includes information about engine startup, alarms, and 
registration that can be used for troubleshooting purposes.

Database Management Issues
There are a number of management issues to consider regarding your iIS engine 
database. These issues include growth of the database, failure of the database, and 
recovering your data. Each is discussed below.



Managing an Engine Database

Chapter 4 Managing Engines 125

Growth of the Database 
As with any of the enterprise databases used by your workflow application, the 
engine database can grow in size. The current state tables grow and shrink in 
proportion to the number of sessions, process instances, activities, process 
attributes, and timers that exist at any one time. The registration tables are typically 
quite small, but grow in proportion to the number of distributions or aliases you 
register with the engine. 

The history log, however, because it accumulates historical data, can grow quite 
large as time goes on, eventually reaching your database storage limit. You must 
therefore establish a set of procedures for monitoring and limiting the growth of 
the history log. The following suggestions might prove useful:

• Log only the minimum historical data that you will need for process execution 
analysis.

See “How to Dynamically Modify Database Logging” on page 115 for history 
logging options.

• Maintain an archive history log database. 

When rows in your history log tables are sufficiently aged, you can delete them 
from the engine database and transfer them to an archive database. For 
example, if your system does not make use of long-running process instances, 
you might want to periodically transfer all rows in your history log that 
correspond to process instances that terminated more than two months ago.

Failure of the Database
For any number of reasons, the engine database might fail. If the engine cannot 
access the database (that is, it cannot write to the database), then it raises an 
exception and transitions to STANDBY state in which it stops process execution. 
Engine exceptions are written to the primary engine unit’s log file and to the iIS 
Console Alarms window. See Chapter 7, “Troubleshooting,” for more information 
on exceptions.

Recovering Data
When starting an engine, you can choose to recover or lose any existing current 
state, registration, or history log database tables, as long as you are not starting the 
engine for the first time. The various startup options are described in “How to Start 
an Engine” on page 110. When you recover the current state tables you also recover 
the registration tables.



Managing an Engine Database

126 iPlanet Integration Server • Process System Guide • August 2001

Dumping and Restoring Data
The iIS Dump/Restore facility makes it possible to dump the data in an engine 
database to an ASCII file, and then, subsequently, to restore the data to the existing 
database or to a new engine database. It is used primarily to accommodate changes 
in database schema from one release of iIS to the next sequential release. However, 
you can also use it to back up a database, troubleshoot problems, or move data 
from one database system to another.

To dump or restore data for a particular engine database, the following conditions 
must be met:

• The iPlanet UDS Environment Manager must be running.

• The engine and database must have been configured, that is, the engine 
configuration file must exist.

• The engine must be shut down.

The Dump/Restore facility has two interfaces: a graphical user interface 
application and a command line utility. Both require information that you provide 
directly or by setting a number of environment variables—see “Dump/Restore 
Environment Variables” on page 136.)

Dumping Database Tables
The following sections describe how to write the data in an engine database to an 
ASCII file. You can use either the Dump/Restore application or its command-line 
equivalent.



Managing an Engine Database

Chapter 4 Managing Engines 127

Using the Dump/Restore Application
The following procedure shows how to use the Dump/Restore application.

➤ To use the Dump/Restore application to dump database tables

1. Start the Dump/Restore application.

❍ on Windows or Windows NT: double-click the Dump/Restore icon.

❍ on UNIX, OpenVMS, or Windows NT: enter the following:

The iIS Dump/Restore window appears.

ftexec -fnict -fcons 
-fi bt:\$FORTE_ROOT\userapp\wfdrdump\c20\wfdrdu0



Managing an Engine Database

128 iPlanet Integration Server • Process System Guide • August 2001

2. Configure a data file in which to dump the data.

a. Click the Configure Files tab.

b. In the Directory name field, specify the directory into which the data file 
will be written.

The directory must already exist; the Dump/Restore application will not 
create a new directory.

c. In the Data file name field, enter the name of the data file.

d. Click the Set Configuration button.



Managing an Engine Database

Chapter 4 Managing Engines 129

3. Specify the engine database from which to dump the data.

a. Click the Configure Database tab.

b. In the Engine name field, enter the name of the engine whose data you 
want to dump.

When you exit the field, the Database type, Database name, User name, 
and User password fields will automatically be filled in from the engine 
configuration file.

c. Click the Open Connection button.

The status bar at the bottom of the window displays a “Database 
Connected” message.



Managing an Engine Database

130 iPlanet Integration Server • Process System Guide • August 2001

4. Dump the data.

a. Click the Dump Tables tab.

b. Select the category of tables you want to dump.

By default, all categories are selected. Disable any category you do not 
want to dump. 

c. Click the Dump Tables button.

d. Click OK in the Information dialog that is displayed.

While the dump is in progress, the status bar at the bottom of the window 
displays a “Dumping Tables” message. When the dump is complete, the 
status bar displays a “Completed Dumping Tables” message.

Using the Dump Command-line Utility
The Dump/Restore facility’s DrDump command writes data in the engine database 
into an ASCII file. 

Syntax for drdump command:

drdump -e engine_name [-d directory_name] [-v data_file_name] 
[-t registration|state|history]



Managing an Engine Database

Chapter 4 Managing Engines 131

As in all iPlanet UDS command line specifications, if you use a name that includes 
a space, you should enclose the name in double quotation marks.

The following table describes the command line flags for the DrDump command:

If you have set the environment variables described in “Dump/Restore 
Environment Variables” on page 136, then you do not need to supply values for the 
command line flags.

Restoring Database Tables
The following sections describe how to retrieve data which has been written to an 
ASCII file and restore it to an engine database. To restore data to an engine 
database, the engine must have been cold started. Cold starting an engine creates 
empty database tables that correspond to the engine database schema.

You can use either the Dump/Restore application or its command-line equivalent.

Flag Description

-e engine_name The name of the iIS engine in the current environment. This 
flag is required.

-d directory_name The directory in which to place the data files. The default 
value is the root directory.

-v data_file_name The name of the data file. The default value is dumprest.log.

-t 
registration|state|
history

The category of tables to dump. Valid values are 
REGISTRATION, STATE, HISTORY. The default is all 
categories. To specify a combination of two categories, use a 
colon (:) between categories. For example: 

-t registration:state

Alternatively, you can enter the -t flag for each category. For 
example:

-e myEngine -t registration -t state 

NOTE If you are upgrading to a new release and have customized your 
process engine database schema, be sure to read the following 
section, “Preserving Engine Database Schema Customizations.”



Managing an Engine Database

132 iPlanet Integration Server • Process System Guide • August 2001

Preserving Engine Database Schema Customizations
If you are upgrading to a new release of iIS, the database schema for the process 
engine may have changed. If, in the previous release, you modified a process 
engine database schema to conform to your own specific requirements, as 
explained in “Customizing Engine Database Schema” on page 93, then you must 
perform the following procedure to preserve your modifications before restoring 
the database tables.

➤ To preserve custom engine database schema changes when upgrading iIS

1. Rename your current engine.dbs file as follows:

a. Navigate to FORTE_ROOT/sysdata/conductr/cln/envname/engine.dbs 

envname is the name of your environment
engine is the name of your process engine

b. Rename engine.dbs to engine.old.

2. Start CConsole and reconfigure the process engine as follows:

a. In CConsole, select the process engine

b. Select Reconfigure, and then click Save

3. Compare the newly generated engine.dbs with engine.old created in Step 1 
of this procedure and make the following modifications:

Modify engine.dbs, based on the modifications from engine..old.

4. Cold start the iIS process engine you are upgrading.

Cold starting an engine creates empty database tables corresponding to the 
engine database schema.

5. Shut down the engine.

NOTE If you are not upgrading to a new release, or if the database schema 
did not change during the upgrade, then the following procedure is 
not necessary.



Managing an Engine Database

Chapter 4 Managing Engines 133

Using the Dump/Restore Application
The following procedure shows how to restore database tables that were 
previously written to an ASCII file, as explained in “Dumping Database Tables” on 
page 126.

➤ To use the Dump/Restore application to restore database tables

1. Start the Dump/Restore application.

Follow the instructions under “Dumping Database Tables” on page 126.

2. Configure a data file from which to retrieve the data.

a. Click on the Configure Files tab.

b. In the Directory Name field, specify the directory in which the data file is 
to be found.

c. In the Data File Name field, enter the name of the data file.

d. Click the Set Configuration button.

3. Specify the engine database in which to restore the data:

a. Click the Configure Database tab.

b. In the Engine name field, enter the name of the iIS engine whose data you 
want to restore.

When you leave the field, the Database type, Database name, User name, 
and User password fields will automatically be filled in from the engine 
configuration file.

c. Click the Open Connection button.

The status bar at the bottom of the window will display a “Database 
Connected” message.



Managing an Engine Database

134 iPlanet Integration Server • Process System Guide • August 2001

4. Restore the data.

a. Click the Restore Tables tab.

b. Select the categories of tables you want to restore. By default, all categories 
are selected. Disable any category you do not want to restore. 

c. Click the Restore Tables button. 

d. Click OK in the Information dialog that is displayed.

When tables have been successfully restored, the status bar displays the 
“Completed Restoring Tables” message.



Managing an Engine Database

Chapter 4 Managing Engines 135

Using the Restore Command-line Utility
The Dump/Restore facility’s DrRestore command retrieves data which has been 
dumped to an ASCII file and restores it into an engine database. 

Syntax for drrest command:

drrest -e engine_name [-d directory_name] [-v data_file_name] 
[-t registration|state|history]

As in all iPlanet UDS command line specifications, if you use a name that includes 
a space, you should enclose the name in double quotation marks.

The following table describes the command line flags for the DrRestore command: 

If you have set the environment variables described in “Dump/Restore 
Environment Variables” on page 136, then you do not need to supply values for the 
command line flags.

Flag Description

-e engine_name The name of the iIS engine in the current environment. This 
flag is required.

-d directory_name The directory in which to place the dump files. The default 
value is the root directory.

-v data_file_name The name of the data file. The default value is dumprest.log.

-t 
registration|state|
history

The category of tables to dump. Valid values are 
REGISTRATION, STATE, HISTORY. The default is all 
categories. To specify a combination of two categories, use a 
colon (:) between categories. For example: 

-t registration:state 

Alternatively, you can enter the -t flag for each category. For 
example:

-e myEngine -t registration -t state 



Managing an Engine Database

136 iPlanet Integration Server • Process System Guide • August 2001

Dump/Restore Environment Variables
iIS provides a set of environment variables for use with the Dump/Restore facility. 
You can set these variables to provide values for both the Dump/Restore 
application and the command-line utility.

Variable Description

WFDR_ENGINE The name of the iIS engine.

WFDR_DIRECTORY The directory in which to place the dump files. The default 
value is the directory in which the application resides.

WFDR_DATAFILE The default name for the data file. The default value is 
dumprest.log

WFDR_TABLETYPES The category of tables stored in the database. Valid values 
are REGISTRATION, STATE, HISTORY. To specify more 
than one category of tables, separate the categories with a 
colon. For example: WFDR_TABLETYPE=registration:state



137

Chapter 5

Managing Registrations

Registration is the procedure by which programmatic information about processes, 
users, and so on, created in the process development workshops, is made available 
to a running iIS process engine, so it can be dynamically loaded and used in 
process execution. The programmatic information usually consists of programs 
(shared libraries) created in the iIS process development workshops, but can also 
be logical references to executing processes, called aliases.

This chapter describes how to manage iIS process engine registrations. It covers the 
following topics:

• overview of registration concepts

• how to register iIS library distributions

• how to register an alias

• how to perform application upgrades

About Registration
The iIS process engine’s principal function is to execute process definitions created 
in the iIS process development workshops. A process definition is a program that 
specifies how the engine coordinates the various client applications and resources 
that perform the work needed to complete a business process. 

Most businesses are not static, but rather are dynamic: they want to create new 
business processes or modify existing ones. The organizational structure might 
also change, impacting how work gets assigned. To provide the flexibility 
businesses require, the engine can dynamically load and execute new and revised 
process definitions, assignment rules, and other programmatic information. 



About Registration

138 iPlanet Integration Server • Process System Guide • August 2001

Registration is the procedure by which process logic created in the iIS process 
development workshops is made available to a running engine (see “What Does 
Registration Do?” below).

The entities that get registered with an iIS engine (described in detail in the iIS 
Process Development Guide) include the following.

user profiles Defined in the User Profile Workshop, a user profile is logic that 
specifies a user information template. The engine uses this template to build 
individual user profiles for each engine session. These user profiles are evaluated 
by assignment rules in determining which users can perform activities.

validations Defined in the Validation Workshop, a validation contains a 
ValidateUser method that the engine uses to validate a user (say, against an 
organization database) before opening a session with the engine.

assignment rule dictionaries Developed in the Assignment Rule Workshop, an 
assignment rule dictionary is a set of rules used by the engine to assign activities to 
users or other resources.

process definitions Developed in the Process Definition Workshop, a process 
definition is executed by the engine for each instance of the corresponding process. 
The engine manages and controls the process instance from creation through 
termination.

aliases Used in the Process Definition Workshop to specify subprocesses, an alias 
is a logical reference to an executing process that provides the flexibility to execute 
the process on any engine.

Registration capability is provided by the iIS process development workshops. 
These workshops let application system designers and process developers test 
their work by registering it with a test engine. 

Registration capability is also provided by iIS process management tools (iIS 
Console and Conductor Script). These tools let system managers register process 
definitions, assignment rules, user profiles, validations, and aliases with 
production engines in production environments.



About Registration

Chapter 5 Managing Registrations 139

What Does Registration Do?
The entity actually registered when you register a process definition, assignment 
rule, user profile, or user validation is a library. (Aliases are not libraries and this 
section does not apply to them—see “About Aliases” on page 143.)

A library (often referred to as a shared library) is code that can be loaded into 
memory at runtime, and then referenced by any number of executing programs. A 
library distribution is the set of distribution files used to install one or more 
libraries on any particular node. 

In the case of iIS engine registration, library distributions are installed on the nodes 
hosting iIS engine units so the libraries can be dynamically loaded and executed by 
the engine unit or units running on the node.

iIS library distributions are generated automatically when a developer selects the 
File > Distribute command in the Process Definition, Assignment Rule, User 
Profile, and Validation workshops. Code in the central development repository is 
extracted and made into library distribution files, which are then placed in a 
standard location on the central server node. 

A special registration service (WFEnvAgent) running on the central server node 
keeps track of the iIS library distributions (process definitions, assignment rule 
dictionaries, user profiles, and validations) that have been made from the process 
development workshops or Conductor Script. Whenever an iIS library distribution 
is made, its compatibility level is augmented to distinguish it from any previously 
generated distributions.

After a library distribution has been made and it is located on the central server 
node, you, as a system manager, can use the iIS Console or Conductor Script to 
register the library with any number of engines. (iIS process developers can also 
register iIS library distributions for test purposes using a Register option of the File 
> Distribute command in the process development workshops.)

Registration consists of two steps, illustrated in Figure 5-1, both transparent to the 
user performing the operation.

NOTE You can also generate library distributions using the 
MakeConductorDistribution Conductor Script command, if you 
have access to the central repository where development code 
resides. (iIS Console does not provide this capability.)



About Registration

140 iPlanet Integration Server • Process System Guide • August 2001

Figure 5-1 Registration Steps

• Installing library distribution files on the nodes hosting the target engine (more 
specifically, hosting the target engine units).

This step is performed by iPlanet UDS system management agents. The highest 
compatibility level library distribution residing on the central server node is 
installed on the nodes hosting both the primary and backup engine units. For 
details of how iPlanet UDS deploys library distributions see the iPlanet UDS 
System Management Guide.

• Placing an entry in the registration table of the target engine’s database.

This step is performed by iIS engine unit agents and requires that the target 
engine be ONLINE.

Engine Server

Backup
Engine

Unit

Central Server

Environment
Manager

Repository
Server

Engine Server

Primary
Engine

Unit

Engine
Database

Central
Repository

2

1Process
Development
Workshops

Install distribution on engine nodes

Place entry in
registration table



About Registration

Chapter 5 Managing Registrations 141

If at some point you have to move an engine unit to a new node, you do not have to 
manually re-register (reinstall) all the libraries on the new node. When an engine 
unit first comes on line, if the registered libraries are not currently installed on the 
host node, iPlanet UDS automatically installs them. This operation, however, 
might take some time.

Registration in Production Environments
At a production site removed from a development environment, registration can 
only be performed using iIS process management tools. In a production 
environment it is more likely that registrations will be batched, rather than 
performed one at a time as in a development environment. It is also more likely 
that library distributions will be registered with a number of engines, rather than a 
single test engine.

Before performing registrations in such situations, however, you have to first 
transfer iIS library distributions to the production environment. Use the following 
steps:

➤ To transfer iIS library distributions to a production environment

1. Make sure that developers have generated all relevant iIS library distributions 
using either the File > Distribute command in the process development 
workshops or the MakeConductorDistribution Conductor Script command.

2. Copy the iIS library distributions located on the central server node in the 
development environment to your distribution medium.

The distributions are found in the following directory:

FORTE_ROOT/appdist/environment_ID/distribution_ID 

where, environment_ID is the name of the active iPlanet UDS development 
environment. Copy the contents of the distribution_ID directory and the 
required cl# directory structure beneath it. For information on the structure of 
library distributions, see the iPlanet UDS System Management Guide.

3. Transfer the iIS library distributions from your distribution medium to the 
central server node in the production environment.

The distributions should be placed in the 
FORTE_ROOT/appdist/environment_ID/
directory, where, environment_ID is the name of the active iPlanet UDS 
production environment.



About Registration

142 iPlanet Integration Server • Process System Guide • August 2001

4. Follow the instructions for registering iIS distributions in “Registering iIS 
Distributions” on page 144.

What Does Unregistration Do?
Unregistering process definitions, assignment rules, user profiles, or a validation 
does not reverse the entire registration process, just the last step of the process: it 
removes the registration entry from an engine’s registration database table. It does 
not remove the shared library files installed on the engine server node, nor does it 
delete the library distribution from the environment repository (where they are 
placed in order to be installed on engine server nodes). You can delete a library 
distribution from the environment repository using the Conductor Script 
Uninstall command (see “Uninstall” on page 321).

Engine Registration Manager
Each engine has a Registration Manager that tracks library distributions registered 
with the engine. The manager ensures that all engine references to a library are to 
the most current registered version of the library. 

For example, if you register a new version of a process definition with an engine, 
all subsequent instances of that process definition created by that engine are based 
on the new version. Process instances based on the older version, however, 
continue to execute to completion (process termination). When instances of the 
older version no longer exist, the engine registration manager automatically 
unregisters the old process definition.

When you register a new version of an assignment rule dictionary with an engine 
that has an older version already registered, the new versions of assignment rules 
are retroactively applied to all existing offered and queued activities. Offered 
activities are offered again to sessions based on the new rules, and access to 
activities in queues becomes governed by the new rules. The engine registration 
manager automatically unregisters the old versions of any assignment rules 
included in the new assignment rule dictionary.

Unregistering a library distribution removes the corresponding entry from the 
registration database table but does not delete the library files from the engine 
unit’s host server node.



About Registration

Chapter 5 Managing Registrations 143

About Aliases
An alias is a reference to a process definition registered with an engine. It is used 
by developers when defining a Subprocess activity in a process definition so they 
do not have to hard code the process name and host engine represented by the 
Subprocess activity. Aliases provide the flexibility to move subprocess execution to 
different engines at runtime.

An alias is a logical name that is evaluated by the engine during process execution. 
It references a particular process definition executed by a particular engine. An 
alias must be registered with every engine executing a process definition 
containing the alias (that is, containing a Subprocess activity referencing the alias).

For example, suppose engine1 is executing a process1 that includes a Subprocess 
activity1, as shown in Figure 5-2.

Figure 5-2 Subprocess Activity References

The Subprocess activity1 is actually a process3 that executes on engine 3. Suppose 
also that engine2 is executing a process2 that includes a Subprocess activity2. The 
Subprocess activity2 is also process3, which executes on engine3.

Engine 1

Engine 2

Process 1

Process 2

Subprocess
activity 1

Subprocess
activity 2

Engine 3

Process 3



Registering iIS Distributions

144 iPlanet Integration Server • Process System Guide • August 2001

If process1 and process2 hard-code the reference to process3 on engine3, then 
process3 could not be moved to another engine without modifying both process1 
and process2 in the Process Definition Workshop, creating the respective library 
distributions, and re-registering the process definitions with both engine1 and 
engine2. However, if process1 and process2 use an alias to reference process3 on 
engine3, then process3 could be moved to another engine by simply registering a 
new version of the alias with both engine1 and engine2. 

To register an alias, specify the alias name (same as the process name) and the 
name of the engine executing the process definition. See “Registering Aliases” on 
page 148.

Registering iIS Distributions
Process definitions, assignment rule dictionaries, user profiles, and validations are 
all registered using the same procedure. Each of these types of library distributions, 
however, has unique registration characteristics, as described briefly below:

User Profile A user profile must be registered with every engine. The user profile 
is used along with the validation to authenticate users who attempt to open 
sessions with the engine. The user profile is also used by assignment rules in 
determining who has permission to perform activities. You can register more than 
one user profile with each engine, but this is normally done only for upgrade 
purposes. Each user profile registered with an engine must be uniquely named. 
(An upgraded validation and upgraded assignment rule dictionary, consistent 
with the upgraded user profile, must also be registered—see “Performing 
Application Upgrades” on page 153). You cannot register an upgraded user profile 
of the same name as a previously registered user profile.

Validation One, and only one, validation can be registered with an engine, which 
allows the engine to open sessions with client applications. Unlike process 
definitions, assignment rule dictionaries, and user profiles, there can be only one 
validation registered with an engine at any time. Subsequent registrations replace 
the existing validation with a new one (implicitly unregistering the old one).

Assignment Rule Dictionary If a process definition references an assignment 
rule, the dictionary that contains that assignment rule must be registered. 
Generally, designers group assignment rules into dictionaries containing more 
than one assignment rule and then generate library distributions containing all the 
assignment rules in the dictionary. When you register an assignment rule 
dictionary with an engine, you have registered all the assignment rules contained 
in the dictionary. The engine uses only the most recently registered assignment 
rule, retroactively applying it to all existing activities.



Registering iIS Distributions

Chapter 5 Managing Registrations 145

Process Definition A process definition must be registered with every engine 
that can execute that process definition. Upgraded process definitions can be 
registered without unregistering the old versions: the old process definitions are 
used for existing process instances and the upgraded versions are used for all 
process instances started after the new definition is registered.

Registration Order
The distributions you register with an engine can be registered in any order with 
one exception: the user profile supplier of a validation or assignment rule 
dictionary must be registered before the validation or assignment rule dictionary is 
registered.

Since design elements are created before the process definitions that use them, it is 
normal for a user profile, validation, and assignment rule dictionary to be 
registered in that order, before process definitions are registered. However, in the 
course of development, assignment rules can change, or new ones may be 
developed, and these assignment rules can be registered at any time (if their user 
profile supplier does not change).

Performing Registrations
To register an iIS distribution, the library distribution must have been made and 
must reside on the central server node. The nodes hosting the target engine (or 
engines) must be online, and the primary engine unit of each target engine must be 
in ONLINE state.

As you perform registrations, iIS writes a log of registration operations. The log file 
is stored on the central server node in the following location: 
FORTE_ROOT/sysdata/conductr/cl0/environment_name/engine_name.log

NOTE After registration of an iIS distribution has taken place, subsequent 
relocation of an engine unit to another node is not a 
problem—library distributions required by the engine unit are 
installed automatically (from the central server node) when the 
engine unit first comes on line.

You can register one or more distributions with one or more 
engines, all at the same time. 



Registering iIS Distributions

146 iPlanet Integration Server • Process System Guide • August 2001

➤ To register one or more distributions using the iIS Console

1. Choose Environment > Registrations> New. The Register Distributions 
window displays:

2. To filter the list of distributions available for registration, select Process 
Definitions, Assignment Rule Dictionaries, User Profiles, or Validation from 
the Distributions drop list.

3. In the Distribution selection list, select the distribution (or distributions) to 
register.

4. In the Engine selection list, select the engine (or engines) with which you want 
to register the specified distributions. All ONLINE engines are displayed.

5. Click OK to perform the registrations.

Distribution selection list

Distributions drop list

Engine selection list



Registering iIS Distributions

Chapter 5 Managing Registrations 147

Upgrading Registrations
Sometimes you must register a new version (upgrade a registration) of one of these 
library distributions. How you upgrade a registration depends on the upgrade 
registration characteristics of the distribution type, as summarized in the following 
table:

Unregistering iIS Distributions
At times you might want to unregister a distribution from one or more engines, 
normally because those engines no longer use the process definitions they contain. 
(You might also have to unregister a distribution because for some reason you 
want to re-register it.) Cold starting an engine unregisters all registrations; 
however, if you want to be more selective, use the procedure described in this 
section.

Distribution Type Registration Characteristics

User profile Cannot register upgraded versions of the same name unless 
you first unregister the older version, cold start the engine, or 
rename the upgraded version.

Validation Can register upgraded versions of the same name. Engine 
supports only the most recent version—automatically 
unregisters earlier version.

Assignment rule 
dictionary

Can register upgraded versions of the same name. Engine 
supports only the most recent version, retroactively applying 
it to all existing activities.

Process definition Can register upgraded versions of the same name. Engine 
supports multiple versions. Engine unregisters older versions 
no longer being used.

NOTE You cannot explicitly unregister a validation. This is because the 
engine maintains only one validation—registering a new validation 
implicitly unregisters the previous one.

You can unregister only one registered distribution at a time.



Registering Aliases

148 iPlanet Integration Server • Process System Guide • August 2001

➤ To unregister a process definition, assignment rule dictionary, or user profile

1. Choose Environment > Registration > Unregister. The Unregister Distribution 
window displays:

2. In the Distribution field, enter the name of the process definition, assignment 
rule dictionary, or user profile to unregister.

3. From the Type drop list, select the distribution type.

4. In the Engine selection list, select the engine (or engines) from which you want 
to unregister the specified process definition, assignment rule dictionary, or 
user profile. All running engines are displayed.

5. Click OK to perform the unregister operation.

Registering Aliases
An alias must be registered with every engine executing a process definition that 
references the alias. Generally, developers provide you with a list of aliases used in 
their process definitions, and the subprocesses these aliases specify. You then have 
to register these aliases with the appropriate engines, as explained below.

NOTE You cannot unregister a validation. The validation is deleted 
when a new validation is registered.

Type drop list

Engine selection list



Registering Aliases

Chapter 5 Managing Registrations 149

Unlike process definitions, assignment rule dictionaries, user profiles, and the 
validation, aliases do not involve library distributions. In registering an alias, you 
are simply making an entry in an engine’s registration table. You can register only 
one alias at a time, but you can register it with more than one engine. The 
registration process is the same for both new and modified versions of an alias.

To register an alias, the nodes hosting the target engine (or engines) must be online, 
and the primary engine unit of each target engine must be in the ONLINE state.

➤ To register an alias using the iIS Console

1. Choose Environment > Aliases > New. The Register Alias window displays:

2. In the Alias name field, enter the name of the alias, as supplied to you by 
developers.

The alias name is the same as the process name of the subprocess.

3. In the Engine name field, enter the name of the engine the alias is referencing. 

This is the name of the engine with which the specified process definition is 
registered and on which it will be executed. (The engine where the actual 
subprocess resides.)

4. Select the engines with which to register the specified alias.

5. Click OK.

Engine selection list



Viewing Registrations for an Engine

150 iPlanet Integration Server • Process System Guide • August 2001

Unregistering Aliases
At times you might want to unregister an alias from one or more engines, normally 
because those engines are no longer using it. You can unregister only one alias at a 
time.

➤ To unregister an alias

1. Choose Environment > Aliases > Unregister. The Unregister Alias window 
displays:

2. In the Alias name field, enter the name of the alias you want to unregister.

3. Select the engines from which to unregister the specified alias.

4. Click OK.

Viewing Registrations for an Engine
The registration procedures described in the previous sections let you perform 
registration and unregistration of iIS distributions on an environment-wide basis, 
that is, for multiple engines within an environment. However, iIS Console lets you 
view registration status only for individual engines.

For any engine, you can view the user profiles, validation, assignment rule 
dictionaries, process definitions, and aliases that are registered with that engine. 
You can also unregister any distribution registered with the engine. In the case of 
process definitions, you can monitor all instances of a registered process definition.

Engine selection list



Viewing Registrations for an Engine

Chapter 5 Managing Registrations 151

➤ To view the registrations for a given engine

1. Select a running engine in the iIS Console main window.

2. Choose Monitor > Registrations, or choose Registrations from the popup 
menu.

The Registrations window displays:

3. Click a tab to view a particular type of registered distribution.

4. Check that the window’s refresh options are appropriately set.

Unregistering a Distribution 
From the Registrations window, you can unregister any distribution currently 
registered with an engine, except a validation. As with the environment-wide 
registration facilities, you can only unregister one distribution at a time.

➤ To unregister a registered distribution

1. Select a running engine in the iIS Console main window.

2. Choose Monitor > Registrations, or choose Registrations from the popup 
menu.

The Registrations window displays.



Viewing Registrations for an Engine

152 iPlanet Integration Server • Process System Guide • August 2001

3. Click a tab to open it to view a particular type of registered distribution.

The menu bar changes depending on the type of registration you are viewing. 
For example, if you are viewing assignment rule distributions, you see the File, 
View, and Assignment Rule menus. In the next step, the menu that changes is 
referred to as the TabName menu.

4. Select the item to unregister and choose TabName > Unregister.

Monitoring Instances of a Registered Process 
Definition
From the Registrations window, you can monitor instances of any registered 
process definition. 

➤ To monitor instances of a registered process definition

1. Select a running engine whose process instances you want to monitor in the iIS 
Console main window.

2. Choose Monitor > Registrations.

The Registrations window displays with the Process Definitions tab open.

3. Select the registered process definition whose instances you want to monitor.

NOTE You cannot unregister a validation. A validation is 
automatically deleted when a new validation is registered.

NOTE You can also monitor instances of a registered process definition 
using the Monitor > Processes Resident command of iIS Console. 
However in this approach you get a list of all executing process 
instances in an engine, so you have to filter the resulting list by 
process name. In the procedure below you start with a list of only 
those process instances that correspond to a given registered process 
definition.



Performing Application Upgrades

Chapter 5 Managing Registrations 153

4. Right-click and choose Process Definition > Open from the popup menu.

The Processes Resident window displays:

By selecting a process instance in the window and opening it (double-click or 
use the mouse popup menu), you can get the process instance’s activity list, 
timer list, process attribute list, and so on. From these lists, in turn, you can get 
information about the state of any activity, timer, or process attribute.

Performing Application Upgrades
If the process logic of a business process application changes, you might need to 
upgrade process definitions, assignment rule dictionaries, user profiles, and 
validations—and even client applications or application proxies—depending on 
the type of change involved.

While properly specifying the upgrade of an iIS enterprise application is the 
responsibility of an application system designer, it is helpful for a system manager 
to understand the issues involved.

Under normal conditions, upgrading consists of registering new or updated 
process definitions to accommodate changes in the business process. This type of 
upgrade is straightforward.

In some situations, the new or updated process definitions might be based on new 
or modified assignment rules. In that case a new or modified assignment rule 
dictionary might have to be registered as well. (In some cases, you only have to 
register new or modified assignment rule dictionaries because the process 
definitions do not change.)



Performing Application Upgrades

154 iPlanet Integration Server • Process System Guide • August 2001

However, sometimes an upgrade involves a new or modified extended user 
profile. If this is the case, then the user profile, the validation and the assignment 
rule dictionaries that depend upon it, and client applications that reference it might 
all need to be upgraded. This type of upgrade has a broader impact, especially if 
you cannot shut down your engine to perform the upgrade. 

Monolithic Upgrades
In a monolithic upgrade, your developers create an upgraded user profile and 
validation, upgraded assignment rule dictionaries, and upgraded client 
applications that are not compatible with the earlier versions. You must shut down 
your business process application to perform the upgrade.

➤ To perform a monolithic upgrade

1. All client applications and application proxies must close their sessions with 
the engine and shut down.

2. Unregister current assignment rule dictionaries and the user profile.

The validation does not need to be unregistered (in fact, it cannot be). Do not 
unregister process definitions.

3. Deploy each upgraded client application to all nodes supporting that client 
application.

4. Register the upgraded user profile, validation, and assignment rule 
dictionaries.

5. Register upgraded process definitions, if an upgrade is necessary.

6. Users can then start their upgraded client applications, open sessions with the 
engine, and resume work.



Performing Application Upgrades

Chapter 5 Managing Registrations 155

Rolling Upgrades
Rolling upgrades must be used in production situations where work cannot be 
interrupted and client applications cannot be upgraded monolithically. In a rolling 
upgrade, the changeover from an earlier version to an upgraded version takes 
placed gradually. It requires that the engine simultaneously support client 
applications based on the earlier user profile as well as on the updated user profile.

To support differing versions of a user profile, designers create upgraded versions 
of the validation and the assignment rules that can accommodate both the new and 
old user profiles. Client application developers can then create new client 
applications based on the new user profile.

➤ To perform a rolling upgrade

1. Register the upgraded user profile, validation, and assignment rule 
dictionaries.

2. Deploy each upgraded client application to nodes supporting that client 
application.

3. When they choose to upgrade, users close sessions with the engine, shut down 
their old client applications, start up their new, upgraded client applications, 
open sessions with the engine, and resume work.



Performing Application Upgrades

156 iPlanet Integration Server • Process System Guide • August 2001



157

Chapter 6

Managing Process Execution

The main function of an iIS process engine is to coordinate the work done by a 
variety of users (or application components) in performing the activities that 
comprise a business process. The engine does this by executing iIS process 
definitions that have been registered with the engine. 

Managing process execution in an iIS system involves monitoring various aspects 
of process execution and making administrative adjustments if necessary.

This chapter first discusses the iIS process execution life cycle—from process 
creation to process termination—and then describes how to monitor and manage 
this process execution. The specific tasks covered include:

• monitoring and managing engine sessions

• monitoring and managing process execution

• providing historical analysis of process execution activity

• monitoring and managing two-phase commit transactions

Introduction
An iIS process engine creates instances of various process definitions and executes 
them from start to finish. During process execution, a succession of activities 
specified by the process definition are performed by client applications—or 
applications accessed through proxies—that have opened sessions with the engine. 
The engine manages and tracks these activities to their final completion, ensuring 
that they are performed in proper sequence.

This section discusses two topics basic to understanding process execution: engine 
sessions and activity states. More detailed information about process execution is 
provided in “Process Execution” on page 165.



Introduction

158 iPlanet Integration Server • Process System Guide • August 2001

Engine Sessions
An iIS process engine generally coordinates the work of a number of applications 
that perform various activities that comprise a business process. To manage this 
process flow, the engine needs to maintain sessions with each of the applications 
involved. Consequently, the first order of business of a client application or 
application proxy is to establish a session with any engines managing activities to 
be performed by the corresponding application. 

When a client application attempts to open a session with an engine, the engine 
must verify the authenticity of the application or user. This validation is performed 
by the engine using logon information provided by the application or user and 
validation code in the validation registered with the engine. This validation code 
normally compares information provided by the user with information stored in an 
organization database.

The session is the mechanism for all communication between a client application 
and the engine. It is used by the engine to offer activities in a process to different 
applications or users and to notify them about changes in the status of these 
activities. It is used by the client application to accept activities to perform and 
notify the engine when work on an activity is complete.

A session can have the following states:

NOTE In the remainder of this chapter—unless explicitly stated—the term 
“client application” applies to client applications developed using 
iIS process client APIs, and also to application proxies used to 
integrate existing applications through backbone system capabilities 
provided by iIS. The application proxy interacts with an engine in 
the same way a client application does.

Session state Description

ACTIVE A session to which the engine can assign 
activities and post events.

SUSPENDED A session previously active, but now dormant. 
This state can result from a lost connection 
between client application and engine, or from 
explicit action by a system manager or client 
application user. The engine cannot assign 
new activities to a suspended session or post 
events to it.



Introduction

Chapter 6 Managing Process Execution 159

An ACTIVE or SUSPENDED session can be terminated by an application or user, 
or by a system manager. A RECONNECTION_IN_PROGRESS session can be 
suspended or terminated by a system manager. A session that has been terminated 
is deleted from the engine and the engine’s current state database table.

Disrupted Sessions
A session is a two-way communication between client application and engine. Both 
the client application and the engine maintain an object representing the session. 
The state of the engine object determines the state of the session. The client 
application’s session object uses code in the client API to restore the connection 
when a temporary disruption occurs. (A temporary disruption can be due to 
network interruptions or engine failure.)

The client session object tests the connection to the engine at regular intervals (refer 
to the iIS online help for the WFSession.SetPingInterval). When the client session 
object detects a disruption in the connection between the client application and the 
engine, it automatically attempts to restore the connection. If the client session 
object is unsuccessful in restoring the connection within a specified auto reconnect 
timeout period, it notifies the client application that the connection has been 
permanently lost. The auto reconnect timeout period is configured in a client 
application using the WFSession methods SetRetry and SetPingInterval.

Network failure The engine does not know about a network interruption until it 
touches an engine session object, for example, to post an event or assign an activity. 
If the engine finds the session disrupted, the engine suspends or terminates the 
session, depending on the value of the session’s disconnect action property (set 
using the control parameter to WFEngine.OpenSession or WFSession.SetControl).

Engine failure When a primary engine unit fails, all active sessions are 
automatically set to RECONNECTION_IN_PROGRESS. During recovery, sessions 
remain in this state for a specified timeout period (set in the engine’s configuration), 
waiting for the client sessions to reconnect. During this period, a system 
administrator can suspend or terminate these sessions.

RECONNECTION_IN_PROGRESS During engine recovery, a previously active 
session that is waiting to be restored to active 
during the engine recovery.

Session state Description



Introduction

160 iPlanet Integration Server • Process System Guide • August 2001

If the client session reconnects to the engine during the timeout period, the sessions 
are restored depending on the value of the session’s reconnect action property (set 
using the control parameter to WFEngine.OpenSession or WFSession.SetControl). 
If the client session fails to reconnect, the sessions are suspended or terminated, 
according to the specification in the engine configuration.

If failover occurs (the partner engine unit comes ONLINE) within the auto 
reconnect timeout period, the client attempts to restore the sessions according to 
the value of the session’s reconnect action property. 

If the reconnect action property is set to RECONNECT_ALLOWED, then the 
session is restored to ACTIVE state. If the reconnect action property is set to 
RECONNECT_PROHIBITED, the session is not restored.

Session disconnect and reconnect parameters are summarized in the table below.

When the client API auto-reconnect mechanism attempts to restore a suspended 
session to an ACTIVE state, it passes the user name, password, and session name to 
the engine that was used in establishing the original session. (The client API stores 
this information.) The engine uses this information to confirm which suspended 
session should be restored to ACTIVE and whether the reconnection is allowed.

Session Property Value Description

disconnect action SUSPEND Engine suspends session if it finds a 
disruption in the connection between 
it and the client application.

TERMINATE Engine terminates session if it finds a 
disruption in the connection between 
it and the client application.

reconnect action RECONNECT_ALLOWED Allows client API code or a client 
application to restore a suspended 
session to ACTIVE state.

RECONNECT_PROHIBITED Prohibits client API code or a client 
application from restoring a 
suspended session to ACTIVE state. 
A new session must be created to 
replace the suspended session.



Introduction

Chapter 6 Managing Process Execution 161

If a connection is permanently lost, the client API code notifies the client 
application that its connection has been permanently lost. The client application 
must explicitly reopen its session to restore it to ACTIVE state. Its ability to restore 
a suspended session to an ACTIVE state depends—just as with the auto-reconnect 
mechanism—on the value of the session’s reconnectAction property set when the 
session was first opened. 

Explicitly Suspended Sessions
When a system manager explicitly suspends one or more sessions or changes the 
state of a primary engine unit from ONLINE to STANDBY, all affected sessions are 
automatically suspended and their corresponding client applications notified 
through an event. If the engine unit (or its partner) is subsequently restored to 
ONLINE state, the sessions are not automatically restored to ACTIVE state. After 
sessions are explicitly suspended, the corresponding client applications must 
explicitly reopen their sessions or create new sessions, depending on the values of 
the reconnectAction property set when each session was originally opened. 

The effect of suspending a session on any activities a client application is 
performing (that is, on ACTIVE activities) depends on the suspendAction property 
set by the client application when it accepts the activity. For more information, see 
the description of the WFActivity method StartActivity in the iIS Process Client 
Programming Guide.

Explicitly Terminated Sessions
When a system manager explicitly terminates one or more sessions, all such 
sessions are automatically terminated and their corresponding client applications 
are notified through an event. Termination ends sessions and deletes them from 
the engine and the engine’s current state database table. After sessions are 
terminated, the corresponding client applications must explicitly open new 
sessions. 

NOTE Terminating a session on any activities a client application is 
performing (that is, on ACTIVE activities) aborts the activities. If an 
activity does not have an OnAbort router to accommodate an 
ABORTED state (see “Activity States” below), the engine aborts the 
process instance. You should therefore undertake the termination of 
sessions with caution.



Introduction

162 iPlanet Integration Server • Process System Guide • August 2001

Activity States
During process execution the engine manages a succession of activities through a 
number of states, from creation to deletion. While there are a number of activity 
types, each with its own properties and behavior (see “Activity Types” on 
page 165), as a general rule, the engine takes each activity through a succession of 
states shown in the following table and illustrated in Figure 6-1 on page 164. (For 
more detailed information on engine operations within each state and on 
transitions between states, see “Activity Execution” on page 168.)

Activity state Description

PENDING An activity is normally created and placed in PENDING state when 
the router method of a completed (or aborted) activity or of an 
expired timer names the new activity. The activity remains in the 
pending state until all trigger conditions are met, at which time the 
engine performs any work specified by a Ready method in the 
process definition and then places the activity in READY state. 

READY When an activity is placed in READY state, it is made available to 
client sessions based on assignment rules specified for the activity in 
the process definition. Depending on the type of activity, the engine 
either offers it to each session whose user profile matches one or 
more of the activity’s assignment rules (offered activity), places the 
activity in a queue (queued activity), or places it directly in ACTIVE 
state (automatic activity). When offered to a session, the activity is 
placed on the session’s activity list (a list of offered activities 
maintained by the engine for each session) and is then available to 
the session’s client application. When placed in a queue, the activity 
is available to any session whose user profile matches one or more of 
the activity’s assignment rules.



Introduction

Chapter 6 Managing Process Execution 163

ACTIVE When a client application accepts an offered activity or takes it off a 
queue, it is placed in ACTIVE state. The engine performs any work 
specified by an OnActive method in the process definition and then 
provides the client application with process attribute data needed to 
perform the activity. The client application is responsible for 
performing the work associated with the activity. When the client 
determines that the work is complete, it informs the engine, which 
removes the activity from the session’s activity list and places the 
activity in a COMPLETED state. When the client aborts the activity, it 
informs the engine, which removes the activity from the session’s 
activity list and places the activity in an ABORTED state.

COMPLETED The COMPLETED state signifies successful completion of an activity. 
The engine performs any additional work specified by the 
OnComplete method in the process definition, and then executes the 
activity’s OnComplete router methods. Once any successor activities 
specified in the routers are created, the engine deletes the 
COMPLETED activity from memory.

ABORTED The ABORTED state signifies unsuccessful completion of an activity. 
The engine performs any additional work specified by the OnAbort 
method in the process definition, and then executes the activity’s 
OnAbort router methods. Once any successor activities specified in 
the routers are created, the engine deletes the ABORTED activity 
from memory. If the process definition does not provide OnAbort 
routers and the activity is aborted from ACTIVE state, the engine will 
abort the process instance.

Activity state Description



Introduction

164 iPlanet Integration Server • Process System Guide • August 2001

Figure 6-1 Activity State Transitions—from Creation to Termination

PENDING

READY

ACTIVE

ABORTED

COMPLETED

Activity referenced by router of another activity

Ready method finishes

Client accepts activity

Client completes or aborts activity

Engine activates timer controls, if any.

Engine offers activity to sessions/queues
(offered or queued activity).

Engine activates timer controls, if any.

Engine executes Trigger method.

If Trigger method returns TRUE, Engine executes Ready
method, if any.

Engine activates timer controls, if any.

Engine executes OnActive* method, if any.

Client (or engine) performs activity.

Engine activates timer controls, if any.

Engine executes OnComplete method, if any.

Engine executes OnComplete router methods.

Engine executes OnAbort method, if any.

Engine executes OnAbort router methods.

Activity State Process Execution Step

* If an OnActive method returns TRUE, execution contines normally.
   If an OnActive method returns FALSE, then the activity is aborted.



Process Execution

Chapter 6 Managing Process Execution 165

Activity Types
A process definition can include a number of different activity types, each of which 
passes through the various activity states in a different fashion. The table below 
summarizes the different types of activities. For more information on activities, see 
the iIS Process Development Guide.

Process Execution
This section discusses how an engine executes an iIS process definition. Each 
process executes through a life cycle consisting of process instance creation, 
process instance execution, and process instance termination. Each of the six 
activity types—First, Offered, Queued, Subprocess, Automatic, and Last—plays a 
specific role in the overall life cycle.

Process instance creation Process creation involves the creation of a First 
activity. 

Activity type Description

First Specialized activity: the first activity in a process definition. 
Automatically placed in COMPLETED state, bypassing the PENDING, 
READY, and ACTIVE states.

Offered An activity performed by client applications. Offered to sessions based 
on assignment rules and accepted by a client application from its work 
list. Passes through all states.

Queued An activity performed by client applications. Placed on a queue and 
accepted by a client application. Passes through all states.

Subprocess Represents a separate process executed by an engine. Passes directly 
from PENDING to ACTIVE state, bypassing the READY state.

Automatic An activity performed directly by the engine. Not assigned to sessions. 
Passes through all states.

Last Specialized activity: the last activity in a process definition. Passes 
directly from PENDING to a COMPLETED state, bypassing the 
intermediate states.



Process Execution

166 iPlanet Integration Server • Process System Guide • August 2001

Process instance execution Process execution involves creation of any number of 
activities, including one or more Offered activities (which are offered to and 
performed by client applications), Queued activities (which are placed on a queue 
and performed by client applications—but not, in this case, by applications 
integrated through proxies), Subprocess activities (which create an instance of 
another process), and Automatic activities (which are performed by the engine 
rather than client applications). 

Process instance termination Process termination involves the completion of a 
Last activity. 

The different activity types are discussed in the context of each stage of the 
execution life cycle, explained in more detail in the sections below.

Process Instance Creation
The engine creates a new instance of a process in three situations:

• A client application requests a new instance of a process

The request must provide the name of a process definition registered with the 
engine. The engine invokes the assignment rules for process creation to 
determine if the user making the request is authorized to create an instance of 
the process. If so, a First activity is created. A First activity passes automatically 
through the PENDING, READY, and ACTIVE states, and is placed directly 
into a COMPLETED state. Its OnComplete router methods, if any, are 
executed, and process execution proceeds.

• A Subprocess activity becomes ACTIVE

A Subprocess activity specifies a process and engine name. If the specified 
process is registered with the specified engine and all the required data can be 
located, the specified engine creates a new instance of the process. As in the 
previous case, a First activity is created, and process execution then proceeds. 

• An engine recovers current state

During a failover scenario, or whenever a backup engine unit comes online, the 
engine needs to recover current state information from the engine database. In 
this situation, process instances that were active when the engine went off line 
are recreated and restored to their former states.



Process Execution

Chapter 6 Managing Process Execution 167

Process Instance Execution
Process execution consists of the sequential creation, execution, and termination of 
the activities specified in a process definition. When an activity is created, it 
remains in a PENDING state until its trigger conditions are fulfilled. In general, the 
activity then passes through READY and ACTIVE states, as shown in Figure 6-1 on 
page 164, to a COMPLETED state. When the activity is completed, its router 
methods are executed and succeeding activities are created, continuing the process 
execution process.

The activity creation, execution, and termination stages are each discussed below.

Activity Creation
The engine creates an instance of an activity in the following situations:

• A new process is created—the engine creates a First activity, passes it through 
PENDING, READY, and ACTIVE states, and places it directly into a 
COMPLETED state.

• A completed activity’s router points to an activity and the router method 
returns TRUE.

• An aborted activity’s router points to an activity and the router method returns 
TRUE.

• An expired timer’s router points to an activity and the router method returns 
TRUE.

In the last three cases, the engine creates an activity, and places in a PENDING 
state. However, if the target activity already exists in a PENDING state, a new 
instance is not created. (If the activity already exists in a READY or ACTIVE state, a 
new instance is created and placed in a PENDING state.)

The engine executes the trigger method of a PENDING activity in the following 
situations:

• The activity is first created

• The router method of a router pointing to the activity returns TRUE

• A process attribute for the process instance changes value 



Process Execution

168 iPlanet Integration Server • Process System Guide • August 2001

Activity Execution
As a general rule, activity execution consists of taking each activity through the 
series of states described in “Activity States” on page 162. In each state, the engine 
performs a number of operations before the activity transitions to the next state. As 
each state transition takes place, the new state is written into memory and logged 
in the state database tables. The engine activates any timer controls referenced by 
the new state and executes one or more activity methods that may be defined for 
that state in the process definition, as shown in Figure 6-1 on page 164. When 
executing activity methods, the engine applies the process attribute locks specified 
for those methods in their respective attribute access lists, as defined in the process 
definition.

Despite these general rules, activity execution also depends to some degree on the 
type of activity being executed. The four types of activities that require work to be 
performed—Offered, Queued, Subprocess, and Automatic—are all executed 
somewhat differently by an iIS process engine. Execution of each activity type is 
discussed separately below.

Offered Activities

Transition to READY State When the trigger conditions are met, the engine 
performs any work specified in the Ready method (if one exists in the process 
definition) and places the activity in a READY state. 

READY State Handling When an Offered activity is placed in a READY state, 
the engine offers the activity to sessions (that is, offers it to clients) based on the 
activity’s assignment rules. 

During assignment, the engine searches for eligible sessions. The engine offers the 
activity to sessions based on the activity’s assignment rules (for example, to each 
session for which the session’s user profile matches at least one of the activity’s 
assignment rules). The engine continues assignment until all active sessions have 
been examined.

When an Offered activity is assigned to a session, it is placed on an activity list 
maintained by the engine for that session—the session activity list.



Process Execution

Chapter 6 Managing Process Execution 169

Session assignment takes place in any of the following situations:

• An offered activity is placed in a READY state for the first time.

• An offered activity is rolled back from an ACTIVE state to a READY state—can 
occur if a client application rolls the activity back to READY state (discards any 
work performed on the activity), if a system manager rolls the activity back to 
READY state in order to force it to be reassigned, or if the activity is being 
performed by a session that is suspended and the client has set the 
suspendAction property to REMOVE (that is, remove the activity from the 
session’s activity list if the session is suspended).

• A new session is opened (or reverts from SUSPENDED to ACTIVE)—the 
engine examines the list of READY Offered activities and assigns them to the 
newly active session based on each activity’s assignment rules.

Transition to ACTIVE State The engine places an Offered, READY activity in an 
ACTIVE state when a client application accepts the corresponding work item. The 
engine removes the activity from all sessions to which it is assigned except the one 
which accepts the corresponding work item. 

The engine provides the client application with the associated application 
dictionary item (a reference to the application or service needed to perform the 
activity, a description of the work to be performed, and any required process 
attribute data). The engine ensures that any required process attributes are locked 
so that no other session can access them during performance of the activity. 

ACTIVE State Handling The engine performs any work specified in the 
OnActive method (if one exists in the process definition). 

The client application that accepted the activity is responsible for completing the 
work associated with the activity. When the client determines that the work is 
complete, it informs the engine, which removes the activity from the session’s 
activity list and places the activity in a COMPLETED state.

The client can abort work by requesting that the engine place the activity in an 
ABORTED state, or the client can also reset the activity to READY state (discarding 
any work performed on the activity, including changes in attribute values). 

Queued Activities

Transition to READY State When the trigger conditions are met, the engine 
performs any work specified in the Ready method (if one exists in the process 
definition) and places the activity in READY state. 



Process Execution

170 iPlanet Integration Server • Process System Guide • August 2001

READY State Handling When a Queued activity is placed in a READY state, the 
activity is placed in a queue named after the queued activity and containing 
activities with the same name from multiple process instances. Client applications 
access the queue, and accept the highest priority activity on the queue. The priority 
ordering of activities in a queue can depend on the value of a queue prioritizing 
process attribute. If so, the queue is dynamically reordered whenever an activity is 
added to the queue and whenever the prioritizing process attribute changes value.

Transition to ACTIVE State The engine places a queued, READY activity in an 
ACTIVE state when a client application accepts the activity, then removes the 
activity from the top of the queue. When a client application accepts an activity, the 
engine evaluates the corresponding session against the activity’s assignment rule 
to confirm that the client application is eligible to perform the activity.

The engine provides the client application with the associated application 
dictionary item (a reference to the application or service needed to perform the 
activity, a description of the work to be performed, and any required process 
attribute data). The engine ensures that any required process attributes are locked 
so that no other session can access it during performance of the activity. 

ACTIVE State Handling The engine performs any work specified in the 
OnActive method (if one exists in the process definition). 

The client application that accepted the activity is responsible for completing the 
work associated with the activity. When the client determines that the work is 
complete, it informs the engine, which removes the activity from the session’s 
activity list and places the activity in a COMPLETED state.

The client can abort work by requesting that the engine place the activity in an 
ABORTED state, or the client can also reset the activity to a READY state 
(discarding any work performed on the activity, including changes in attribute 
values). 

Subprocess Activities

Transition to READY State In this case the activity skips READY state and is 
placed directly in an ACTIVE state.

READY State Handling A subprocess activity passes directly from a READY to 
an ACTIVE state without being assigned to sessions.

Transition to ACTIVE State In the case of a subprocess activity, the engine 
places the activity directly in an ACTIVE state from a PENDING state. It skips a 
READY state altogether. 



Process Execution

Chapter 6 Managing Process Execution 171

ACTIVE State Handling The engine performs any work specified in the 
OnActive method (if one exists in the process definition). 

An active subprocess activity is handled differently depending on whether the 
subprocess activity is synchronous or asynchronous.

• Synchronous—waits for completion of the new process:

If the subprocess activity is synchronous and if the new process is successfully 
created, the subprocess activity remains in an ACTIVE state (in the parent 
process), awaiting completion of the subprocess. If the subprocess fails to 
complete for any reason, the subprocess activity is placed in an ABORTED 
state.

• Asynchronous—does not wait for completion of the new process:

If the subprocess activity is asynchronous and if the new process is successfully 
created, the subprocess activity is placed in a COMPLETED state (in the parent 
process). If the subprocess is not successfully created, the subprocess activity is 
placed in an ABORTED state.

Automatic Activities

Transition to READY State When the trigger conditions are met, the engine 
performs any work specified in the Ready method (if one exists in the process 
definition) and places the activity in a READY state. 

READY State Handling An automatic activity passes directly from a READY to 
an ACTIVE state without being assigned to sessions.

Transition to ACTIVE State In the case of an automatic activity, the engine 
places the activity directly in an ACTIVE state from a READY state without 
assigning it to sessions because the work of the activity is invoked or performed by 
the engine rather than by a client application.

ACTIVE State Handling The engine performs the automatic activity’s OnActive 
method when the activity is placed in an ACTIVE state. The work performed by 
the activity is invoked or coded in the OnActive method within the process 
definition. When the OnActive method is fully executed and returns TRUE, the 
activity is placed in a COMPLETED state.

Activity Termination
Activity termination occurs when the engine places an activity in either a 
COMPLETED state or an ABORTED state.



Process Execution

172 iPlanet Integration Server • Process System Guide • August 2001

Completed Activities
When an engine places an activity in a COMPLETED state, the engine performs the 
following actions:

• executes the activity’s OnComplete method, if one is specified in the process 
definition

• executes the activity’s OnComplete router methods

• checks for a process stall condition—when no other activities are in an ACTIVE 
or READY state (that is, all are either COMPLETED or PENDING) and no 
timers are active—and aborts the process instance if a stall condition is 
detected

• deletes the COMPLETED activity from state information

In the case of a Last activity, however, instead of performing the above actions, the 
engine places the process directly in a COMPLETED state.

Aborted Activities
When an engine places an activity in an ABORTED state, the engine performs the 
following actions:

• executes the activity’s OnAbort method, if one is specified in the process 
definition

• executes the activity’s OnAbort router methods—if none are specified, the 
engine will, by default, abort the process instance

• checks for a process stall condition (no other activities are in an ACTIVE or 
READY state—that is, all are either COMPLETED or PENDING—and no 
timers are active) and aborts the process instance if a stall condition is detected

• deletes the ABORTED activity from state information

In the case of First and Last activities, however, the activities cannot reach an 
ABORTED state, since they proceed directly to a COMPLETED state.



Monitoring and Managing Engine Sessions

Chapter 6 Managing Process Execution 173

Process Instance Termination
Process termination occurs when the engine places a process instance in either a 
COMPLETED state or an ABORTED state.

Completed Process Instances
An engine completes a process instance when the Last activity reaches a 
COMPLETED state.

Aborted Process Instances
An engine aborts a process instance in the following situations:

• the process instance is stalled—no activities are in an ACTIVE or READY state 
(that is, all are either COMPLETED or PENDING) and no timers are active.

• an ACTIVE activity (including a Subprocess activity) is placed in an ABORTED 
state and has no OnAbort router method specified.

• a system manager requests that a process be aborted.

• an exception is thrown on an activity method.

When a process instance is aborted, any uncompleted activities in the process are 
aborted, all process timers are stopped, and all process attribute updates are 
discarded.

Monitoring and Managing Engine Sessions
Since the engine is coordinating work being performed by client applications that 
have sessions with the engine, one dimension of system management concerns the 
number and state of such sessions.

This section describes how to perform the following tasks:

• Monitor the state of a session

• Manage one or more sessions

NOTE This section uses mouse popup menu commands to describe how to 
perform various operations. You can also use other methods of 
accessing commands, as described in Chapter 3, “The iIS Console.”



Monitoring and Managing Engine Sessions

174 iPlanet Integration Server • Process System Guide • August 2001

Monitoring the State of a Session
Often you want to know information about a particular session, such as its state, its 
creation time, the list of activities assigned to the session, or information about any 
such assigned activities that are in ACTIVE state.

➤ To obtain state information about a session

1. Open the iIS Console and select the engine to monitor.

2. Choose Monitor > Sessions, or choose Sessions from the popup menu.

This opens the list of current sessions.

For each session in the list, the window displays an ID, the user who opened 
the session, the state of the session, and the number of items on the session’s 
activity list.



Monitoring and Managing Engine Sessions

Chapter 6 Managing Process Execution 175

3. To get more information about a session, select it, and choose Session > Open 
from the popup menu.

An activity list for the session is displayed.

For each activity in the list, the dialog displays the activity ID, the process 
name and process instance ID in which it was created, and its current state.

NOTE To get more information about a given activity, such as how 
long the activity has been in the present state, and information 
about the corresponding process instance (process attributes, 
activities, timers, and so on), see “Checking the Status of an 
Activity” on page 185.



Monitoring and Managing Engine Sessions

176 iPlanet Integration Server • Process System Guide • August 2001

Managing Sessions
Session management consists of suspending or terminating sessions, or sending a 
message to one or more sessions (that is, the corresponding client applications).

Suspending or Terminating Sessions
On occasion you might find it necessary to suspend or terminate one or more active 
sessions. Suspending a session posts a SessionSuspended event, and terminating 
the session posts a SessionTerminated event. These events allow the client 
application to handle the state change gracefully.

For the impact of suspending a session, see “Explicitly Suspended Sessions” on 
page 161. For the impact of terminating a session, see “Explicitly Terminated 
Sessions” on page 161.

➤ To suspend a session

1. Choose Monitor > Sessions to display the Sessions window with the list of 
current sessions for the engine.

2. Select the session to suspend.

3. Choose Session’Name’ > Suspend from the popup menu.

You will be asked to confirm the suspension.

NOTE A session that has in-progress two-phase commit operations can be 
suspended, but cannot be terminated. For more information, see 
“Monitoring and Managing Two-Phase Commit” on page 199.

NOTE To suspend all sessions, choose Session > Suspend all.



Monitoring and Managing Engine Sessions

Chapter 6 Managing Process Execution 177

➤ To terminate a session

1. Choose Monitor > Sessions to display the Sessions window with the list of 
current sessions for the engine.

2. Select the session to terminate.

3. Right-click and choose Session’Name’ > Terminate from the popup menu.

You will be asked to confirm the termination.

Sending and Broadcasting Messages to Sessions
You can send an informational message to any active session or broadcast the same 
message to all active sessions. A client application can watch for messages posted 
to its corresponding engine session.

➤ To send a message to an active session

1. Choose Monitor > Sessions to open the list of current sessions for the engine.

NOTE To terminate all sessions, choose Session > Terminate all.



Monitoring and Managing Engine Sessions

178 iPlanet Integration Server • Process System Guide • August 2001

2. Open the session of interest.

3. Click Send Message. The Send Message window displays:

4. Type the message in the Message field.

5. Select the urgency: Informational or Critical.

6. Click Send.



Monitoring and Managing Process Execution

Chapter 6 Managing Process Execution 179

➤ To broadcast a message to all sessions

1. Choose Monitor > Sessions to open the list of current sessions.

2. Right-click and choose Session > Broadcast from the popup menu. The 
Broadcast Message window displays.

3. Type the message in the Message field.

4. Select the urgency: Informational or Critical.

5. Click Send.

Monitoring and Managing Process Execution
As described in “Process Execution” on page 165, an iIS process engine executes 
process instances by creating a succession of activities, moving them through a 
number of states, checking timers, and locking, modifying, and unlocking process 
attributes.

The engine maintains information about all registered process definitions and the 
process instances corresponding to each. For each process instance, it maintains 
information about activities, timers, and process attributes (and locks placed on 
each process attribute). The information provided about these objects and their 
relationship to one another are illustrated in Figure 6-2:



Monitoring and Managing Process Execution

180 iPlanet Integration Server • Process System Guide • August 2001

Figure 6-2 Process Execution Objects: Properties and Relationships

Using the iIS Console, you can display lists of these objects and filter them 
according to specific criteria. You can also open and view the properties (or state) 
of any specific process instance, activity instance, timer instance, or process 
attribute. In addition, There are a number of situations where you might want to 
intervene in process execution to resolve problems.

This section describes a number of common process execution monitoring and 
management tasks you might perform:

process instance Checking the execution status of a process instance and possibly 
aborting it.

activity Checking the status of an activity instance and possibly changing its 
state.

Value
Lock state

Process Attribute

Activity list
Session id

Session name
User

Status
Transaction id

Session

Creation time
Process id
Activity list
Attribute list

Timer list

Process Instance

Process id
Timer name
Timer state

Expiration time
Parent activities

Timer Instance

TimerLink list
Activity state
Activity name

Type
Asignment list

Process id
Attribute list

Activity Instance



Monitoring and Managing Process Execution

Chapter 6 Managing Process Execution 181

activity queue Checking the status of an activity queue and possibly 
reprioritizing an activity within the queue (for queued activities only).

timer Checking the status of a timer instance and resetting it or changing its state.

process attribute Checking the value and lock state of a process attribute and 
possibly changing its value and removing a lock.

In addition, you typically check for bottlenecks in process execution and diagnose 
their cause.

Managing Process Instances
This section describes how to check the execution status of a process instance and 
possibly abort it.

Checking the Status of a Process Instance
Suppose you want to find out the current execution status of a given process 
instance: which of its activities are in PENDING, READY, or ACTIVE state; how 
long they have been in those states; the values of important process attributes; and 
the state of process timers.

➤ To check the current execution status of a process instance

1. Select the engine executing the process in the iIS Console main window.

The engine must be running.

2. Choose Monitor > Processes Summary. The Processes Summary window 
displays, showing the list of process definitions, by name, for which there is at 
least one active process instance being executed by the engine.

For each process instance, the window displays the process name, the version 
of the process definition, and the number of process instances being executed.



Monitoring and Managing Process Execution

182 iPlanet Integration Server • Process System Guide • August 2001

3. Select the process name you want to view instances of and choose Processes > 
Open Instances of.

This opens the Processes Resident window, displaying the list of process 
instances being executed by the engine for the selected process name.

 

For each process instance the window displays the process name, the version 
of process definition, the value of the primary process attribute, the primary 
process attribute name, the process instance ID, and the process instance 
creation time.

4. Search for a process instance by process attribute value, creator, or creation 
time.

You can use the Filter or Sort commands, available from the View menu, to 
help find specific process instances. For more information, refer to “Filtering 
iIS Console Lists” on page 73 and “Sorting iIS Console Lists” on page 76.

NOTE You can open the Processes Resident window more directly by 
choosing Monitor > Processes Resident, however the instances 
displayed correspond to all process definitions rather than to a 
single one.



Monitoring and Managing Process Execution

Chapter 6 Managing Process Execution 183

5. Select a process instance and choose Process > Open Instance.

The Process Instance property inspector is displayed.

By selecting the appropriate tab, you can get the process instance’s activity list, 
timer list, process attribute list, and other information. From these lists, in turn, 
you can get information about the state of any activity (see “Checking the 
Status of an Activity” on page 185), timer (see “Checking the Status of a Timer” 
on page 191), or process attribute (see “Checking the Value and Lock State of a 
Process Attribute” on page 193).



Monitoring and Managing Process Execution

184 iPlanet Integration Server • Process System Guide • August 2001

Aborting a Process Instance
If you want to stop execution of a process instance, you can abort that process 
instance. This aborts all uncompleted activities, stops all timers, and discards all 
process attribute updates.

➤ To abort a process instance

1. Open the property sheet of the process instance you want to abort.

See Step 1 through Step 5 under “Checking the Status of a Process Instance” on 
page 181.

2. Click the Abort Process button.

NOTE You can abort all process instances displayed in a Processes 
Resident window by choosing Process > Abort All. If an error is 
encountered you are asked if you want to continue aborting the 
remaining processes or stop the operation.



Monitoring and Managing Process Execution

Chapter 6 Managing Process Execution 185

Managing Activity Instances
This section describes how to check the status of an activity and change its state.

Checking the Status of an Activity
1. Select the activity in any window that contains an activity list:

❍ Process Instance property inspector

❍ Session property inspector

❍ Activities Resident window

❍ Activity Queues window

An example activity list (the Activities tab of a Process Instance property 
inspector) is shown below.



Monitoring and Managing Process Execution

186 iPlanet Integration Server • Process System Guide • August 2001

2. Choose Activities > Open.

The Activity property inspector displays:

The property inspector consists of a number of tabs: the Info tab displays the 
basic properties of the activity, and additional tabs provide information such 
as the sessions to which the activity is assigned, the current value of process 
attributes, and information about timers linked to the activity.

For example, if you click the Process Attributes tab, you get information about 
the current values of the process attributes for the process instance in which the 
activity was created.

Changing the State of an Activity 
You can make the following state changes for an activity:

• from PENDING to READY

You might do this because one of the trigger conditions cannot be met for some 
reason, but you want the activity to go to the READY state anyway.

NOTE You can click the Process button on the Activity property inspector 
to display the Process Instance property inspector.



Monitoring and Managing Process Execution

Chapter 6 Managing Process Execution 187

• from ACTIVE to READY

You might do this because the person working on an activity cannot complete 
it and you want it to be reoffered to other users. All process attributes are 
unlocked and rolled back to the values they had when the activity was first 
offered.

• from PENDING or READY to ABORTED

You might do this because some condition has arisen that precludes the 
completion of the activity and you want the OnAbort routing, if any, to take 
place. If there are no OnAbort routers or if all OnAbort routers return FALSE, 
the activity is simply aborted and any locked process attributes are unlocked.

• from ACTIVE to ABORTED

You might do this because some condition has arisen that precludes the 
completion of the activity and you want the OnAbort routing, if any, to take 
place. If there are no OnAbort routers or if all OnAbort routers return FALSE, 
not only is the activity itself aborted, but the whole process instance is aborted.

You cannot abort an ACTIVE synchronous subprocess activity—the activity is 
waiting for a subprocess to either complete or abort.

➤ To change the state of an activity

1. Open the property inspector for the activity whose state you want to change.

See Step 1 and Step 2 under “Checking the Status of an Activity” on page 185.

2. Click the Set State button.

The Set Activity State window displays, with the current state filled in.

CAUTION Use caution when aborting an ACTIVE activity.



Monitoring and Managing Process Execution

188 iPlanet Integration Server • Process System Guide • August 2001

3. From the New state drop list, select the new state of the activity.

4. Click the Set button.

Managing Activity Queues
This section describes how to check the status of an activity queue and how to 
reprioritize an activity within the queue. Activity queues only apply to queued 
activities.

Checking the Status of an Activity Queue
Occasionally you might need to check the queues that store queued activities until 
users are ready to work on them. You can display a list of activity queues and open 
a queue to display the contents of the queue. Doing so might tell you, for example, 
that a particular activity is not being performed because it remains at the bottom of 
a queue. 

➤ To view the contents of an activity queue

1. Select the engine maintaining the activity queue in the iIS Console main 
window.

The engine must be running.

2. Choose Monitor > Activity Queues. The Activity Queues window displays, 
showing the list of queues in the engine:

For each queue, the window displays the process name and queue name 
(which is the same as the name of the queued activity), the number of activities 
in the queue, and/or the number of sessions waiting for an activity to be 
placed in the queue.



Monitoring and Managing Process Execution

Chapter 6 Managing Process Execution 189

3. Select a queue.

4. Choose Queue > Open. The Activity Queues window displays, showing the 
list of activities in the queue.

For each activity in the queue, the window displays the activity name, activity 
ID, activity state, prioritizing value (value of the queue prioritizing process 
attribute), and process ID.

If you want more information about an activity in the queue, you can open the 
activity property inspector by selecting the activity and choosing Activity > Open 
(see “Checking the Status of an Activity” on page 185). If you want to change the 
position of an activity in the queue, see “Reprioritizing a Queued Activity,” below.

Reprioritizing a Queued Activity
If a queued activity is not making it to the top of an activity queue because the 
value of its queue prioritizing process attribute always places it toward the bottom 
of its queue, you can change the value of the process attribute to reprioritize the 
activity in the queue. You must be careful when performing this operation, 
however, since other process logic might also depend on the value of the process 
attribute.

➤ To reprioritize a queued activity

1. Open the Activity Queue window for the queued activity.

See Step 1 through Step 4 under “Checking the Status of an Activity Queue” on 
page 188.

2. Select the activity in the activity list.



Monitoring and Managing Process Execution

190 iPlanet Integration Server • Process System Guide • August 2001

3. Choose Activity > Set Priority. The Set Queued Activity Priority window 
displays:

4. In the New prioritizing value, change the value of the queue prioritizing 
process attribute.

5. Click OK.

The activity will be placed in a new position in the activity queue, based on the 
new value of the queue prioritizing attribute.



Monitoring and Managing Process Execution

Chapter 6 Managing Process Execution 191

Managing Timer Instances
This section describes how to check the status of a timer, reset it, or change its state.

Checking the Status of a Timer
1. Open the Timers tab of a Process Instance property inspector, shown below.

For each timer, the list displays the timer name, timer state, and expiration 
time.

2. Select a timer.



Monitoring and Managing Process Execution

192 iPlanet Integration Server • Process System Guide • August 2001

3. Choose Timers > Open. The Timer property inspector displays, with the basic 
properties of the selected timer:

Changing the Timer State and Expiration Time

➤ To change the state and expiration time of a timer

1. Open the timer’s property inspector.

See Step 1 through Step 3 under “Checking the Status of a Timer” on page 191.

2. Click the Set State button. The Set Timer window displays:



Monitoring and Managing Process Execution

Chapter 6 Managing Process Execution 193

3. To change the state of the timer, click one of the radio buttons in the On/Off 
Control.

4. To change the expiration time, click one of the radio buttons in the Options 
box.

❍ For an elapsed timer (screen shown above), Reset sets the original elapsed 
time interval and Set Interval lets you enter a new elapsed time interval in 
IntervalData format 
(years:months:days:hours:minutes:seconds:milliseconds). 

❍ For a deadline timer (screen not shown), Reset sets the deadline (expiration 
time) to its original value and Set Deadline lets you enter a new expiration 
time, in DateTimeData format (dd-nnn-yyyy hh:mm:ss, for example 
03-Feb-1993 22:45:12).

5. Click the Set Timer button.

Managing Process Attributes
This section describes how to check the value of an attribute and its lock state and 
to change the attribute value or release a lock.

Checking the Value and Lock State of a Process Attribute
1. Select the attribute in any window that contains a process attribute list:

❍ the Process Attributes tab of a Process Instance property inspector

❍ the Process Attributes tab of an Activity property inspector



Monitoring and Managing Process Execution

194 iPlanet Integration Server • Process System Guide • August 2001

An example attribute list (the Process Attributes tab of a Process Instance 
property inspector) is shown below.

For each process attribute the list displays the attribute name, data type, 
attribute value, and lock state.

Changing a Process Attribute Value
You might change the value of a process attribute because you want to roll back an 
activity from ACTIVE to READY state and reoffer the activity using a different 
attribute-dependent assignment rule.



Monitoring and Managing Process Execution

Chapter 6 Managing Process Execution 195

➤ To change the value of a process attribute

1. Select the attribute in any process attribute list window, as described in 
“Checking the Value and Lock State of a Process Attribute” on page 193.

2. Choose Process Attributes > Set. The change value window displays:

3. Enter a new value.

4. Click the Set button.

Removing a Process Attribute Lock
You might remove a process attribute lock because you want to force a change in 
the value of an attribute, or because a lock was inadvertently not released during 
an activity rollback or abort.

➤ To remove a process attribute lock

1. Select the attribute in any process attribute list window, as described in 
“Checking the Value and Lock State of a Process Attribute” on page 193.

2. Choose Process Attributes > Remove Read Lock

-or-

Process Attributes > Remove Write Lock, depending on the lock state of the 
process attribute.



Monitoring and Managing Process Execution

196 iPlanet Integration Server • Process System Guide • August 2001

Checking for Bottlenecks in Process Execution
Instances of a given process sometimes stall at a particular activity, causing a 
bottleneck in execution of that activity. This could happen, for example, if a 
particular activity were backlogged, or a trigger condition could not be fulfilled.

➤ To find a process bottleneck

1. Select the engine executing the process in the iIS Console main window.

The engine must be running.

2. Choose Monitor > Activities Resident. This opens the Activity Resident 
window, displaying the list of activity instances being executed by the engine.

For each activity instance, the list shows the activity name, activity ID, activity 
state, process name, and process ID.

3. Filter the activity list by the process name (registered process definition) of the 
process you are checking (see “Filtering iIS Console Lists” on page 73). 

This filter should list activities for all active process instances corresponding to 
the registered process.

4. Look for an activity name with more than an average number of instances.

You can also filter the activity list by activity name and check the number of 
items in the list, which is displayed in the status bar. 

5. Filter the activity list by the name of the suspected bottleneck activity.

6. Check the state of activities in the listing.

Depending on the situation, you might need to do further analysis. For example, if 
most instances of the activity are in READY state, there might currently be too few 
sessions to do the work or the sessions to which the activity is assigned are doing 
other work. If most of the activities are in PENDING state, then probably a trigger 
condition is not being met. 



Analyzing Process Execution

Chapter 6 Managing Process Execution 197

To analyze the situation further you might have to open particular activity 
instances, check sessions, or possibly check attributes of the corresponding process 
instances.

Analyzing Process Execution
The iIS product does not provide tools for analyzing information in the engine 
database’s history log tables that could be useful in managing and reporting on 
process execution. The history log provides information that can be used to answer 
the following types of questions:

• How long does it take for processes to complete?

You can determine how long it took for a particular process instance (identified 
by primary attribute) to go from start to finish, or how long it takes, on 
average, for process instances to complete. You can analyze this question as a 
function of some particular process attribute (creator, creation date, invoice 
value, and so forth). 

• Where are the bottlenecks in process execution?

There are several approaches to finding bottlenecks. One is to determine how 
many process instances are currently in a given stage of completion. For 
example, you could create a graph of how many process instances have 
reached each activity, and then look at how this graph changes over time to see 
if a pattern emerges that indicates a bottleneck. You could also look at how this 
graph changes as a function of some particular process attribute.

Another approach to finding bottlenecks is to determine how long it takes, on 
the average, for a process instance to complete each activity. Some might take 
substantially longer than others. You might also look at how long the activity is 
in each state (PENDING, READY, ACTIVE) to determine a strategy for 
resolving the bottleneck.

• How well are activity queues functioning?

For a queued activity, you can see how long the queue currently is or how long 
it is on the average. You can determine the average length of time that activities 
remain in the queue, or if the prioritizing of activities in the queue leaves some 
activities at the bottom of the queue for an unacceptable length of time. 



Analyzing Process Execution

198 iPlanet Integration Server • Process System Guide • August 2001

• Worker productivity

You can perform productivity analyses. For example, you can tabulate how 
many activities have been completed in a given time as a function of the 
session (user). You can also look at how many activities are currently owned 
(made active) by each user. 

• Quality assurance

You can track the work being done on a particular process instance. For 
example you can determine who completed a previous step in an activity, 
tracking the process from one user to another.

History Log Schema
The full engine database schema is documented in the Appendix B, “Engine 
Database Schema”. “History Log Tables” on page 347 of this Appendix lists the 
schema of all the history log tables. Using this information, you can write your own 
tools for querying the database and analyzing historical process execution data.

State Values
Many of the history log tables listed in “History Log Tables” on page 347, have a 
field that represents the state of a given engine object: process instance, activity, 
session, and timer. The following table shows the values corresponding to the 
various states of these objects:

Object State Value

Process Instance PREPARE_CREATE 405

CREATED 410

ACTIVE 420

COMPLETED 430

PREPARE_ABORT 435

ABORTED 440



Monitoring and Managing Two-Phase Commit

Chapter 6 Managing Process Execution 199

Monitoring and Managing Two-Phase Commit 
iIS provides a two-phase commit protocol that allows process client applications to 
easily synchronize iIS process state changes with application database updates. 

As illustrated in Figure 6-3, process client applications typically perform iIS 
operations that change process state maintained by the engine, while also making 
application database updates.

Activity PENDING 10

READY 20

PREPARE_ACTIVE 25

ACTIVE 30

PREPARE_COMPLETE 35

COMPLETED 40

PREPARE_ABORT 45

ABORTED 50

DELETED 60

Timer CREATED 810

OFF 820

ON 830

EXPIRED 840

DELETED 850

Session ACTIVE 210

SUSPENDED 220

TERMINATED 230

NOTE Two-phase commit does not apply to application proxies. This 
section applies only to client applications that interact directly with 
the engine.

Object State Value



Monitoring and Managing Two-Phase Commit

200 iPlanet Integration Server • Process System Guide • August 2001

Figure 6-3 Client Applications Change Both iIS Process State and Application Data

For example, a process client application typically interacts with the engine to start 
an activity, performs the activity by updating application data, and then interacts 
with the engine again to complete the activity. If, for some reason, the update of 
application data fails, the CompleteActivity operation should not succeed. Or, 
similarly, if for some reason the CompleteActivity operation fails, the update of 
application data should not succeed.

The iIS two-phase commit protocol facilitates the synchronization of iIS engine 
operations with application transactions by letting you place iIS operations in a 
transactional context. As with application database transactions, the iIS two-phase 
commit protocol lets you split processing of iIS transactions into two phases: the 
first phase—preparing—guarantees that the operation (transaction) can either 
commit or roll back; the second phase actually performs the commit (or rollback). 

NOTE “Rollback” in this usage is equivalent to “undo.” For example, 
rolling back a CompleteActivity operation cancels the request to 
complete the activity.

Client Applications

Application
Services

Enterprise
Databases

iIS Process
 Engine

iIS Process
Engine Operations

Application
Transactions



Monitoring and Managing Two-Phase Commit

Chapter 6 Managing Process Execution 201

Because of this two-phase commit capability, an iIS engine transaction and an 
application transaction can be combined into a higher level distributed transaction. 
The constituent transactions are placed in a PREPARE phase before either can 
commit. If either of the constituent transactions cannot be placed in a PREPARE 
phase, then the other is rolled back to its original state. In other words, the 
distributed transaction only commits if both constituent transactions commit, 
guaranteeing that application state and process state are synchronized. 

The iIS two-phase commit protocol also facilitates synchronization between 
different activities—or sessions—in a given process instance. For example, if Client 
Application A (session A) has already prepared an AbortProcess for the process 
instance, and Client Application B (session B) tries to complete or abort an activity 
belonging to that process instance, an exception is raised on session B indicating 
that session A is going to abort the same process instance. 

The iIS two-phase commit protocol makes it possible to include the following iIS 
engine operations in a transactional context: 

• creating a process

• aborting a process

• starting an activity

• completing an activity

• aborting an activity

When included in a transactional context, these operations are automatically 
placed in a PREPARE phase before being explicitly committed or rolled back. For 
example, any StartActivity or CompleteActivity operation would be automatically 
placed in a PREPARE phase.

By being placed in a transactional context, these iIS transactions can be 
synchronized, as described above, with application update transactions. The client 
application simply prepares any application (database update) operations it needs 
to make. If the application transaction can be successfully placed in a PREPARE 
phase, then the client application can commit both the application transaction and 
the iIS engine transaction. If the application transaction cannot be successfully 
placed in a PREPARE phase, then the client application should roll back the iIS 
engine transaction.

All iIS objects associated with a prepared transaction are unavailable for further 
operations until the client application explicitly commits or rolls back the 
transaction.



Monitoring and Managing Two-Phase Commit

202 iPlanet Integration Server • Process System Guide • August 2001

The iIS two-phase commit protocol is implemented by placing an engine session in 
two-phase commit mode. iIS engine transactions for this session are automatically 
placed in a PREPARE phase. A session with two-phase commit enabled can only 
support one iIS transaction at a time.

The iIS process engine uses a unique transaction ID to monitor transactions during a 
two-phase transaction. The client application can specify a unique transaction ID; 
otherwise the engine generates a transaction ID (based on a time stamp, session 
name, and the session operation sequence number). 

Managing Two-Phase Commit Operations
If a session should be suspended for any of a number of reasons, any iIS transaction 
in a PREPARE phase is retained on the session, awaiting resolution (commit or 
rollback). The client application is normally responsible for resolving these 
transactions; however, in the case of failure, these transactions may be left 
permanently in the PREPARE phase. Because of this, it is up to a system manager 
to check for and resolve any transactions left in a PREPARE phase.

For example, a client application may perform an activity, but fail before it can 
notify the engine to commit the CompleteActivity operation. Similarly, the engine 
could fail before receiving the commit. Both these situations result in inconsistency 
of state information between the client application and engine.

To properly resolve iIS transactions in a PREPARE phase, however, you must 
investigate whether related application transactions were committed or aborted. 
How you do this depends on the details of the application and how it keeps track 
of transaction IDs.

You can use Conductor Script commands to identify and resolve transactions in a 
PREPARE phase, as described in “Monitoring and Managing Two-Phase Commit 
Transactions” on page 258.



203

Chapter 7

Troubleshooting

This chapter discusses a number of topics and approaches related to diagnosing 
problems in your iIS process management system.

This chapter covers the following kinds of troubleshooting information:

• alarms

• exceptions

• messages

• performance indicators

Introduction
iIS provides a number of tools to help you diagnose engine problems or problems 
in process execution with your iIS enterprise applications: 

• the Process Engine Alarms window

• the engine component log files

• the iIS Console Trace window

• the Engine Event Trace window

• the iIS Console performance charts

These tools all display various types of information that can be useful in 
uncovering and diagnosing the cause of problems.



Introduction

204 iPlanet Integration Server • Process System Guide • August 2001

The information displayed in these iIS tools falls into the following categories:

Alarms A number of error conditions in the functioning of an iIS process engine 
that might require your intervention are reported as alarms. These conditions 
range from a communication problem between engine components to exceptions 
generated in the primary engine unit in the course of process execution. Alarms are 
displayed in the Process Engine Alarm window (see “Process Engine Alarms 
Window” on page 205) and written to an alarms table in the engine’s history log 
database (see “WFHAlarmLog” on page 349).

Exceptions All error conditions detected by an engine (including alarms) cause 
an exception to be raised. When the task that encounters the condition originates in 
the client, the error is reported directly to the client (for example, attempting to 
start an activity that has already been started). When an error is detected by an 
internal engine task (for example, attempting to start an unregistered subprocess), 
the engine records a process exception, activity exception, session exception, or 
timer exception in the primary engine unit’s log file (see “Engine Log Files” on 
page 210). The exception can also be written to the iIS Console trace window (see 
“Using the iIS Console Trace Window” on page 215).

Messages Each engine component—whether it be an engine unit, database 
service, or governor—can generate many types and levels of messages. You can 
specify the type and level of messages you want to have logged to a component’s 
log file and to an iIS Console trace window (see “iIS Console Trace Window” on 
page 212). You can often use this message output to track down the source of 
problems.

Performance Indicators You can monitor various aspects of process execution 
using the iIS Console. For example, you can monitor sessions and executing 
processes as described in Chapter 6, “Managing Process Execution.” You can also 
monitor a number of specific performance indicators using the charting capabilities 
described in “Performance Charts” on page 221.

This chapter describes how to use the iIS alarms window, log files, tracing window, 
and performance window to display the above categories of troubleshooting 
information.



Process Engine Alarms Window

Chapter 7 Troubleshooting 205

Process Engine Alarms Window
A number of engine conditions result in an alarm. An alarm is a message notifying 
you of a condition in the functioning of an iIS process engine that might require 
intervention.

The following list shows these alarms and a description of the condition that gives 
rise to each:

Alarm Description

ChannelDisconnect A communication channel to the engine unit has been 
disconnected due to the failure of a component or an 
interruption of the network. 

DatabaseDisconnect A database service has been disconnected due to the 
partition shutting down or a network failure.

EngineUnitForceStandby Because an engine unit cannot operate independently in a 
fault tolerant state, the engine unit has been forced into 
STANDBY state due to an interruption of contact with its 
partner. 

EngineUnitOnline The engine unit has gone into ONLINE state and is now 
capable of accepting client connections. 

EngineUnitShutdown An engine unit has shut down and is no longer running as a 
partition, due either to operator intervention or to a failure in 
the software. If a software failure is suspected, look in the log 
files for the engine units and governor. 

Exception An exception has been generated in the engine unit. The 
Severity and Message fields contain the information about 
the exception. 

GovernorDisconnect A communication channel between an engine unit and the 
Governor has been disconnected due to the failure of a 
component or an interruption of the network.

ProcessAbort A process has been aborted. The details field of this alarm 
gives the ID of the process that was aborted. If this alarm is 
unexpected, look in the log files for further information. 

StartupFailure An engine unit has failed to start up correctly. Further 
information as to the reason for the failure can be found in 
the governor log file. The engine unit is now in STANDBY 
state. 

UserAccess Access to something has been denied to a user. The Reason 
field gives the reason for the access violation. 



Process Engine Alarms Window

206 iPlanet Integration Server • Process System Guide • August 2001

Monitoring Alarms
Alarms for any number of engines can be displayed in the Process Engine Alarms 
window, allowing you to monitor all your iIS process engines from one central 
location. (Alarms can also be written to the engine database of any engine for 
which history logging is turned on.)

To view alarms for a specific engine, you must first register the engine with the 
alarm service. An engine can be registered with the alarm service before it is started 
up, and can be unregistered as well.

➤ To register an engine with the alarm service

1. Choose Environment > Alarms in the iIS Console main window. The Select an 
Engine window displays:

2. Select an engine and click OK. 

The engine does not have to be running to register it with the Alarm service.



Process Engine Alarms Window

Chapter 7 Troubleshooting 207

3. The Process Engine Alarms window displays.

In the following illustration, a registered engine, ceengine, was shut down, 
causing the EngineUnitShutdown alarm to be displayed.

➤ To unregister an engine from the Alarm service

1. Select an engine in the engine list in the right hand panel of the Process Engine 
Alarms window.

2. Choose Engines > Remove Engine. 

You can filter the alarms that are displayed in the Process Engine Alarms window, 
and also search for alarms in the window.

➤ To filter alarms in the Process Engine Alarms window

1. Choose Alarms > Filter.

The Filter Expression window opens. This window allows you to build an 
expression to use for filtering the display. Expressions are built using the 
available attributes listed in the window.

2. In the Filter Expression window, drag an attribute from the Available 
Attributes list to the Filter Expression editing area.

3. Using a boolean operator together with a legal value for the attribute, build the 
filter expression, and then click OK.

Attribute values must be legal for the type of the attribute. String values must 
be enclosed in quotes.



Process Engine Alarms Window

208 iPlanet Integration Server • Process System Guide • August 2001

You can add additional expressions to build complex filters. For example, the 
following expressions displays alarms of type EngineUnitShutdownAlarm for 
the engine named ceengine:

Type="EngineUnitShutdownAlarm"

Engine="ceengine"

For more information on creating filter expressions, refer to “Filtering iIS 
Console Lists” on page 73.

➤ To search for an alarm in the Process Engine Alarms window

1. Choose Alarms > Find.

The Filter Expression window opens.

2. In the Filter Expression window, build an expression for the alarms you are 
trying to find.

Use the steps outlined in the previous procedure to build the expression.

3. Click OK.

4. To search again, using the same expression, choose Alarms > Find Again.

Viewing Alarms
After an engine has been registered with the Alarm service, any alarms sent by that 
engine (either in start-up or while it is running) are displayed in the Process Engine 
Alarms window. The Process Engine Alarms window must be open. Alarms that 
occur when the Process Engine Alarms window is not open, cannot be displayed 
by opening the window. To see the alarm in that case, you have to open the engine 
unit log file (see “Engine Log Files” on page 210).



Process Engine Alarms Window

Chapter 7 Troubleshooting 209

➤ To get detailed information about an alarm

1. Select the alarm in the Process Engine Alarms window.

2. Right-click and choose Alarm > Open from the popup menu. The Alarm 
Details window displays:

➤ To remove an alarm from the Alarm window

1. Select the alarm in the Alarms window.

2. Right-click and choose Alarm > Remove from the popup menu.



Engine Log Files

210 iPlanet Integration Server • Process System Guide • August 2001

Engine Log Files
Each iIS process engine component, like other iPlanet UDS partitions, writes to a 
log file that records exceptions and message output. The component log files are 
therefore an important source of troubleshooting information. 

The log file for each component is written in the FORTE_ROOT/log directory of 
the node on which the component is executing. Log files are named according to 
the executing partition’s name. Engine components can be executed as standard 
partitions interpreted by an iPlanet UDS ftexec partition or as compiled partitions. 
The corresponding log file names and locations on the host server node are as 
follows:

Several kinds of information are written to an engine component log file. Some 
kinds are written automatically and some are under your control. Some 
information is generated by the underlying iPlanet UDS runtime system, while 
other information is specific to the execution of iIS processes. In general the 
information falls into four categories: engine exceptions, requested message 
output, instrument data, and audit traces.

Engine Exceptions All iIS error conditions detected by an engine cause an 
appropriate exception to be raised. When the error is detected by an internal engine 
task (for example, attempting to start an unregistered subprocess), the engine 
records the exception in the primary engine unit’s log file. (It also writes it to the iIS 
Console trace window, if open.)

Requested Message Output You can request that specific categories of messages 
be logged to any iIS engine component log file (see “Messages and Message Filters” 
on page 212). In general, you can set log filters (or flags) that specify the type and 
level of messages you want to have logged. (These messages are also written to the 
iIS Console trace window, if open.)

iPlanet UDS Partition Standard Output Log File in FORTE_ROOT/log/

Standard partition forte_ex_process_ID.log (for example, forte_ex_13456.log)

Compiled partition filename_process_ID.log



Engine Log Files

Chapter 7 Troubleshooting 211

Instrument Data You can decide to have instrument data—such as application 
resource usage or performance statistics—collected by the underlying system for 
an engine component and written to the partition log file at time intervals you can 
specify. The logging of instrument data is determined by values you set for special 
logging instruments using iPlanet UDS system management tools, such as the 
iPlanet UDS Environment Console. 

Audit Traces Audit traces for important system events (such as starting and 
stopping partitions, and so forth) are automatically written to log files, depending 
on the event. You cannot turn off the logging of this information.

Once a component has come on line, you can view its log file from within iIS 
Console. 

➤ To view an engine component log file

1. Select an engine from the list of running engines in the iIS Console main 
window.

2. Choose Engine > Status. The Engine Status window displays.

3. Select the engine unit for which you want to see the log file.



iIS Console Trace Window

212 iPlanet Integration Server • Process System Guide • August 2001

4. Click the View Partition Log button.

iIS Console Trace Window
iIS Console provides a trace window that displays information written to iIS 
engine component log files. This information consists of output logged by engine 
components when they encounter exceptions (error conditions), as well as 
messages generated in process execution.

Messages and Message Filters
iIS engine components—engine units, database services, and the governor— 
generate many types and levels of messages. These messages are generated in the 
course of execution and can be used, in addition to exception output, for tracking 
down problems.

To view these messages you must specifically request the type and level of 
message you want to see, and for which engine component. The specified messages 
are then written to the corresponding component log files (and to the iIS Console 
Trace window).

You can specify message filters in a number of ways:

• You can set an environment variable (FORTE_LOGGER_SETUP) on each node 
that specifies the message filters for every iPlanet UDS partition (engine 
component) started on that node. 

• You can set message filters for an individual iPlanet UDS partition (overriding 
the environment variable—or its default value) by specifying a log flag (-fl) on 
the partition start-up command. (There is currently no way to do this in iIS 
Console or Conductor Script.)

• You can set message filters dynamically for a running partition (overriding the 
specification in a logger flag or environment variable) by using the File > 
Modify Log Flags command in the trace window of the iIS Console (or the 
Conductor Script ModLogFlags command, page 292).

NOTE If an engine component has not come online, its log file cannot be 
viewed from iIS Console. In that case you need to access the log file 
directly on the component’s host node.



iIS Console Trace Window

Chapter 7 Troubleshooting 213

This section discusses how to use the iIS Console Trace window to select and 
display messages generated by iIS engine components.

Specifying Message Filters
The syntax for specifying log message filters is shown in Figure 7-1. Generally you 
specify a standard output log file, “%stdout,” as the log file name (see “Engine Log 
Files” on page 210). You can specify more than one log file if you want different 
information written to different files. For each file you can specify any number of 
filters, each separated by a space.

Figure 7-1 Specifying iPlanet UDS Message Output Filters

In general, for each log file you can specify four levels of filter, as follows:

Message type (mandatory) You can include more than one message type 
separated by spaces—the message types available are shown above.

Service type Each message type can be divided into a maximum of ten service 
types, which typically map to important application services.

Group number Each service type can be divided in turn into a maximum of 63 
group numbers, which typically map to a group of facilities.

Level number Each group number can be subdivided into up to 255 additional 
levels.

FORTE_LOGGER_SETUP (or -fl flag):

“file_name (message_type [:service_type[:group_number[:level_number]]])...”

Message Types
err Error messages
sec Security messages
aud Audit messages
prf Performance information
cfg Configuration modification
trc Debugging information
* all of the above



iIS Console Trace Window

214 iPlanet Integration Server • Process System Guide • August 2001

iIS Message Filters
iIS message filters follow the general guidelines above and have the following 
particularities:

Message type trc (debug)

Service type cr (iIS runtime)

Group number iIS uses the following group designations:

Level number iIS uses the following level designations:

Group  Description

1 Engine

2 Session

3 Process

4 Activity

5 Timer

6 currently not used

7 History

8 Access checking

9 Recovery

10 Registration

13 Client application messages

Group  Description

2 Coarse

3 Medium

4 Fine

255 Method entry and exit (where implemented)



iIS Console Trace Window

Chapter 7 Troubleshooting 215

For example, an iIS message filter for a primary engine unit might be as follows:

FORTE_LOGGER_SETUP: "%stdout(trc:cr:2:2)"

This filter specifies that all messages about sessions created in the engine —but not 
a lot of detail—be written to the primary engine unit’s log file (on the server node 
on which the primary engine unit is running) and to the iIS Console trace window 
(if you have opened it at least once before).

If you do not specify any iIS message filters, none are set by default.

Using the iIS Console Trace Window
You can use the iIS Console trace window to select and display messages generated 
by iIS process engine components and to view exception output. Using the trace 
window, you can monitor engines distributed throughout your environment from 
one central location.

➤ To open the iIS Console Trace window

1. Select a running engine in the iIS Console main window.

2. Choose Engine > Trace. This opens the iIS Console Trace window

The trace window shows all messages you specify for components of the 
selected engine.

Setting Message Filters
The iIS Console provides a Modify Log Flags window for setting the message 
filters described in the previous section, “iIS Message Filters.”



iIS Console Trace Window

216 iPlanet Integration Server • Process System Guide • August 2001

➤ To set message filters for a selected engine

1. Select a running engine in the iIS Console main window.

2. Choose Engine > Trace. The iIS Console Trace window displays.

3. Choose File > Modify Log Flags. This opens the Select Component window.

4. Select an engine component and click OK to open the Modify Log Flags 
window.

5. Add, modify, or delete a message filter and click OK.

Use the message filter specifications documented in the previous section, “iIS 
Message Filters.”

NOTE To specify the trc message type, select Debug in the Message 
column of the Modify Log Flags dialog.



iIS Console Engine Event Filter Window

Chapter 7 Troubleshooting 217

All messages generated by the component that meet the specification are now 
written to the trace window, as well as to the components log file.

Special Example: Write Client Messages to Trace Window
As an example of using message filters, suppose you want to have all messages 
generated by client applications written to the iIS Console trace window. To do 
this, the client applications must generate the messages and pass them to the 
engine to be written to the engine log file and trace window. To pass the messages 
to the engine, the client partitions must also set their trace flag to the value shown 
in the procedure below. (This is a special procedure used for troubleshooting and 
diagnosing client application problems.)

➤ To set the engine tracing

1. Select the engine in the iIS Console main window.

2. Choose Engine > Trace. The iIS Console Trace window displays.

3. Choose File > Modify Log Flags. 

4. In the Modify Log Flags window, enter the following filter: Debug:CR:13:4

This filter causes all messages generated by client applications that have this 
same trace flag set to be written to the engine trace window and the primary 
engine unit log file.

5. For each client partition whose messages you want to trace in iIS Console, set 
the following filter: Debug:CR:13:4

iIS Console Engine Event Filter Window
iIS Console provides a filtering mechanism and trace window to let you view 
information about iIS process engine events. These messages are generated in the 
course of process execution and can be used, in addition to exception output, for 
tracking down problems. 

When you trace engine events for a specified engine you can:

• view all engine events for that engine

• view all engine events belonging to an existing process instance

• view all engine events belonging to the next process instance of a specified 
process definition

• view engine events according to a custom filter you specify



iIS Console Engine Event Filter Window

218 iPlanet Integration Server • Process System Guide • August 2001

Engine Event Types
iIS Console engine event types consist of:

• timer state changes (on/off/value change)

• session events (start, suspend, terminate)

• activity state changes

• process events (start, terminate, new registration, deregistration)

• security events (access denial for invalid logon)

• engine state changes (start, standby, shutdown)

Using the iIS Console Engine Event Filter 
Window
You can use the iIS Console engine event filter window to specify and display 
messages regarding engine event generated by any iIS process engine in your 
environment.

➤ To open the Engine Event Filter window

1. Select a running engine in the iIS Console main window.

2. Choose Engine > Event Trace. This opens the Engine Event Filter window.



iIS Console Engine Event Filter Window

Chapter 7 Troubleshooting 219

Displaying All Engine Events
You can view all engine events for a running engine.

➤ To view all engine events for the selected engine

1. From the Engine Event Filter window, select the option Show all engine events. 

Each engine event is identified by event type, class, ID, description, and time of 
occurrence. The information starts displaying after the next engine event 
occurs.

Displaying Process Instance Events
You can display all engine events for a given process instance, either one that 
exists, or the next process instance for a given process definition in your repository.

➤ To view all engine events for an existing process

1. From the Engine Event Filter window, select the option Existing process 
instance: and enter the ID for that process instance.



iIS Console Engine Event Filter Window

220 iPlanet Integration Server • Process System Guide • August 2001

Events for the specified process instance display:

➤ To view all engine events for the next process instance of a specific process 
definition

1. From the Engine Event Filter window, select the option Next process instance 
of: and select a process definition from the drop down list.

All engine events for the next process instance of the process definition will 
start displaying when the process instance starts. Each engine event is 
identified by event type, class, ID, description, and time of occurrence.



Performance Charts

Chapter 7 Troubleshooting 221

Filtering Engine Events
A fourth way to view engine events is by providing a custom filter. You can filter 
on events involving sessions, process instances, activities, engine objects, timers 
and registrations. For details on valid filter expressions, see “CreateFilter” on 
page 279.

➤ To specify a custom filter

1. Select the option Custom filter and enter a valid filter expression.

Events which satisfy the filter expression are displayed:

Performance Charts
An iIS process engine that is performing process execution without any visible sign 
of problems might nevertheless encounter performance bottlenecks. One cause 
might be increased load on the engine.



Performance Charts

222 iPlanet Integration Server • Process System Guide • August 2001

It is therefore a good idea to regularly monitor a number of performance 
indicators—instrumentation within an engine that can be displayed over time in 
the iIS Console Performance Charts. The instruments displayed in the Performance 
Charts are the following:

These instruments indicate how performance might be impacted by an increasing 
load on the engine. 

For example, as the number of sessions increases over time, you would expect the 
average response time to increase. At some point, you might decide to add an 
additional engine to your workflow system to help balance the load.

As the number of process instances and activities increase over time, you would 
expect the average transaction commit time to increase. In this case you might 
decide to start up additional database services to speed throughput to the engine 
database.

In many situations these factors have complicated interactions and you have to 
monitor these indicators carefully under varying conditions, analyzing the source 
of any performance bottlenecks.

Viewing Performance Indicators
You can view performance indicators for any running engine in the Performance 
window.

Instrument Description

Process Instances number of active process instances

Activities number of activities in the ready or active state

Average response 
time

the average time it takes for the engine to complete a request 
made by a session (such as OpenSession, StartActivity, and 
CompleteActivity)

Average transaction 
commit time

the time it takes the engine to commit a change of state (complete 
a transaction involving the engine database)

Allocated memory the amount of the active memory currently allocated to objects 
created by the primary engine unit

Peak allocated 
memory

the amount of allocated memory remaining after the most recent 
memory reclamation (probably the best measure of active 
memory utilization)



Performance Charts

Chapter 7 Troubleshooting 223

➤ To view performance indicators for an engine

1. Select a running engine in the iIS Console main window.

2. Choose Monitor > Performance.

The Performance Charts window is displayed. You can choose View > 
Observed Values to expand the Charts window to display maximum, last 
observed, and minimum values for the charts.

3. You can change the interval between each update to the chart by changing the 
Update Every ___ seconds field. You can also change the number of entries 
recorded on the chart by changing the Record ___ Observations field.



Performance Charts

224 iPlanet Integration Server • Process System Guide • August 2001

4. To set the vertical scale parameters for the chart and see the maximum and 
minimum values recorded by this chart, click somewhere in the chart, then 
right-click and choose Chart > Properties from the popup menu.

The Timeline Properties window displays. You can choose to display observed 
values or the differences between succeeding values.

5. To modify the appearance of the chart, click somewhere in the chart, then 
right-click and choose one of the following commands from the popup menu:

❍ Chart > Line Color

❍ Chart > Line Weight

❍ Chart > Set Default



Performance Charts

Chapter 7 Troubleshooting 225

Logging Performance Information
You can save performance information to a log file.

➤ To log performance information

1. At the Performance Charts window, choose File > Set Logging File.

2. Define a name and location for the performance log data file.

3. Click OK.

4. Choose File > Start Logging to File.

➤ To stop logging performance information

At the Performance Charts window, choose File > Stop Logging to File.



Performance Charts

226 iPlanet Integration Server • Process System Guide • August 2001



227

Chapter 8

Using the Conductor Script Utility

This chapter describes the Conductor Script utility, the iIS command line system 
management interface.

The Conductor Script utility is the command line equivalent of the iIS Console. 
However, Conductor Script also lets you incorporate system management tasks 
into scripts. These scripts can then be executed at engine startup, regular intervals, 
or other times to register iIS distributions, or to start and shut down engine 
components.

This chapter covers the following topics:

• starting and exiting Conductor Script

• working with Conductor Script

• using Conductor Script to perform system management tasks

For a complete reference listing of all Conductor Script commands, see 
Appendix A, “Conductor Script Commands.”

Overview
With the exception of configuring iIS process engines, the Conductor Script utility 
is the functional equivalent of the iIS Console: you can use it to perform iIS process 
management tasks, such as managing iIS engines, managing registration, and 
managing process execution. 

Like the iIS Console, Conductor Script connects to and communicates with the 
executing Environment Manager and any active Node Managers in your 
environment. It lets you perform iIS process management tasks by providing you 
with access to your iIS engines and to the full hierarchy of iPlanet UDS system 
management agents. 



Starting Conductor Script

228 iPlanet Integration Server • Process System Guide • August 2001

Unlike the iIS Console, however, you can use Conductor Script to perform system 
management by building and executing predefined scripts of Conductor Script 
commands. For information on building and executing Conductor Script scripts, 
see “Writing and Executing Scripts” on page 232.

This chapter explains how to perform system management tasks using Conductor 
Script. It provides a list of Conductor Script commands for various sets of tasks, 
and in some cases provides detailed step by step procedures. However, it does not 
provide background and conceptual information offered elsewhere in this manual.

For a complete reference listing of all Conductor Script commands, refer to 
Appendix A, “Conductor Script Commands.”

Conductor Script Help
Conductor Script provides an online help utility, which provides help for all 
Conductor Script commands. At a Cscript prompt type Help to list all the available 
commands. For help on a specific command, type Help plus the command. You 
can also use wildcard characters to get help on groups of commands.

For information on the Help command, see “General Conductor Script Operations” 
on page 231.

Starting Conductor Script
You can start Conductor Script on any node in your iPlanet UDS environment 
where it has been installed.

➤ To start Conductor Script on Windows or Windows NT

1. Double-click the Conductor Script icon.

2. Enter a valid password if one is requested (see “SetPassword” on page 300).

NOTE Some commands are associated with a particular engine component, 
so help for those commands is only available when an engine or the 
particular component is current.



Starting Conductor Script

Chapter 8 Using the Conductor Script Utility 229

➤ To start Conductor Script on UNIX, OpenVMS, or Windows NT

1. Use the cscript command (see “Using the Cscript Command” below for 
information).

2. Enter a valid password if one is requested (see “SetPassword” on page 300).

When Conductor Script starts, it opens a cscript command prompt.

Using the Cscript Command
As mentioned above, you can start iIS Console on command line-based operating 
systems by executing the cscript command.

The syntax of the cscript command for most platforms:

cscript [-fl message_filters][-fm memory_options] [-i input_file] 
[-o output_file] [-fns name_service_address] 

The syntax of the cscript command for OpenVMS:

VFORTE CSCRIPT
[/LOGGER=message_filters]
[/MEMORY=memory_options]
[/INPUT=input_file]
[/OUTPUT=output_file]
[/NAMESERVER=name_service_address]

As in all iPlanet UDS command line specifications, if you use a name that includes 
a space, you should enclose the name in double quotation marks.

The following table describes the command line flags for the cscript command.

Flag Description

-fl message_filters
/LOGGER=message_filters 

Specifies the log flags to use for the Conductor 
Script session. See the iPlanet UDS System 
Management Guide for information about the 
syntax for specifying log flags. Overrides the 
FORTE_LOGGER_SETUP environment variable 
setting. On UNIX, you must specify the log flags 
in double quotes.



Working with Conductor Script

230 iPlanet Integration Server • Process System Guide • August 2001

Working with Conductor Script
Conductor Script is a command line utility built on top of the iPlanet UDS Fscript 
command utility. As such, it includes Fscript commands for performing 
repository-based operations, as well as a large number of iIS-specific commands. 
(A few Fscript commands, however, have been disabled in Conductor Script.)

This section covers topics related to some of the general purpose Fscript commands 
accessible from within Conductor Script. iIS-specific operations and commands are 
discussed in subsequent sections. The topics covered in this section are the 
following:

• general Conductor Script operations

• writing and executing scripts

• operating system and file management commands

-fm memory_options
/MEMORY=
memory_options 

Specifies the memory flags to use for the 
Conductor Script session. See the iPlanet UDS 
System Management Guide for syntax information. 
Overrides defaults appropriate for the operating 
system. On UNIX, you must specify the memory 
flags in double quotes.

-i input_file 
/INPUT=input_file 

Specifies an input file. The file should consist of a 
Conductor Script script—a set of Conductor 
Script commands—that you want to execute 
automatically when the Conductor Script utility 
starts.

-o output_file 
/OUTPUT= output_file 

Specifies an alternate output file, in addition to 
stdout.

-fns name_service_address 
/NAMESERVER=
name_service_address 

Specifies the name service address for the 
environment in which this application will run. 
This value overrides the value, if any, specified by 
the FORTE_NS_ADDRESS environment variable. 
If you want your application to be able to switch 
to a backup Environment Manager if the primary 
Environment Manager fails, you can also specify 
multiple name service addresses, as discussed in 
the iPlanet UDS System Management Guide.

Flag Description



Working with Conductor Script

Chapter 8 Using the Conductor Script Utility 231

For full reference documentation of the commands discussed below, consult the 
Fscript Reference Guide.

General Conductor Script Operations
The following table lists Conductor Script commands used for general operations 
such as getting online help, defining the format of file names, specifying a directory 
search path, and so on:

 Command  Arguments Function

AddAlias alias_name
command_string

Define an alias for a Conductor Script 
command and its arguments.

AddPath directory_name
[;directory_name…]

Add the specified directories to the current 
search path (see SetPath).

Exit —— Exit Conductor Script.

Help [comand_name|
match_string]

List help for general Conductor Script 
commands and currently available 
FNscript commands. Use a wildcard (*) to 
get help on similarly named commands.

ModLogger +(log_flags)|
–(log_flags)

Modify the current iPlanet UDS log 
message filters (log flag settings) for 
Conductor Script.

Quit —— Exit Conductor Script.

RemoveAlias [alias_name] Remove an alias definition.

SetOutFile [file_name] Specify a file where standard output is 
printed.

SetPath directory_name
[;directory_name…] 

Set the directory search path used by any 
of the commands that take a file name as 
an argument.

ShowAlias [alias_name] Display one or all defined aliases with 
their expansions.

ShowPath —— Show the current directory search path 
(see SetPath).



Working with Conductor Script

232 iPlanet Integration Server • Process System Guide • August 2001

Writing and Executing Scripts
This section describes Conductor Script commands you use to write and execute 
scripts to automate iIS process management tasks. For full reference 
documentation of the commands, consult the Fscript Reference Guide.

One of the advantages of using Conductor Script over the iIS Console is that 
Conductor Script lets you automate your routine system management tasks. You 
can capture a sequence of Conductor Script operations into a script file and then 
run that file at a later time.

You can run a script either by starting Conductor Script with the -i flag (and 
supplying the script file name) or by starting Conductor Script and then issuing the 
Include command when you want to run the script.

Comments
To include comments in your scripts, start the line containing the comment with 
the # character, as shown in the following example:

UseLocal —— Set Conductor Script to recognize file 
names specified in local operating system 
format.

UsePortable —— Set Conductor Script to recognize file 
names specified in iPlanet UDS portable 
name format.

# Shut down the Banking engine.
FindEngine Banking
Shutdown

 Command  Arguments Function



Working with Conductor Script

Chapter 8 Using the Conductor Script Utility 233

The following table lists Conductor Script commands most often used for writing 
and executing scripts:

Operating System and File Management 
Commands
The following table lists Conductor Script commands for interacting with the 
operating system on a node to perform file management operations.

 Command  Arguments Function

CommentOff —— Stop writing script file commands and output to 
standard output.

CommentOn —— Write script file commands and output to 
standard output.

Delay milliseconds Delay execution of the next command for the 
specified number of milliseconds.

Include filename Execute the commands in a specified script file.

Repeat repeat_count Repeat execution of the next command the 
specified number of times.

Script filename Capture Conductor Script commands and write 
them into a specified script file.

ShowExpansions show_flag Enable or disable the printing of alias 
expansions to standard output when they occur.

SilentOff —— Turn off printing of exceptions to standard 
output.

SilentOn —— Turn on printing of exceptions to standard 
output.

Step —— Step through the commands in an include 
script, prompting you for each command.

 Command  Arguments Function

Cd directory_name Change the current working directory.

Chmod mode
file_name [r]

Change the access permissions of the specified 
file.



Working with Conductor Script

234 iPlanet Integration Server • Process System Guide • August 2001

CopyFile file1_name
file2_name [r]

Copy a specified file in the local file system.

Cp file1_name
file2_name [r]

Copy a specified file in the local file system.

Directory directory_name List the files in a directory.

Duplicate file1_name
file2_name [r]

Copy a specified file in the local file system.

ExecCmd opsys_cmd
[bg_flag]
[in_file]
[out_file]
[err_file]

Execute the specified operating system 
command.

ExecLocal opsys_cmd Execute the specified operating system 
command (for path names in opsys_cmd that 
use local format).

ExecPortable opsys_cmd Execute the specified operating system 
command (for path names in opsys_cmd that 
use portable format)

ListFile ListFile Lists the contents of the specified file onto 
standard output.

ListFiles directory_name List the files in a directory.

Ls directory_name List the files in a directory.

MkDir directory_name Make a new directory.

Mv old_file_name
new_file_name

Rename a specified file in the local file system.

Pwd —— Display the name of the current working 
directory.

ReadIntoFile file_name
[term_str]

Read subsequent lines and write them to the 
specified file until the terminating string is 
encountered.

Rm file_name Remove a specified file in the local file system.

SetDefault directory_name Change the current working directory.

WhichFile file_name Find the specified file in the current directory 
search path.

 Command  Arguments Function



Managing iIS Process Engines with Conductor Script

Chapter 8 Using the Conductor Script Utility 235

Managing iIS Process Engines with 
Conductor Script

This section describes how to perform the following engine management functions 
using Conductor Script:

• starting an engine

• monitoring an engine

• changing engine component states (including stopping an engine)

Conductor Script cannot be used to configure an engine. You can use iIS Console 
(see “Configuring an Engine” on page 85) or edit an engine configuration file by 
hand (using the information in “Engine Configuration File” on page 90).

For background information on starting an engine, monitoring it, and changing 
component states, as well as how to perform these functions using iIS Console, see 
Chapter 4, “Managing Engines.”

Starting an Engine
You can start engine components from a centralized location using the Conductor 
Script utility (see Appendix A, “Conductor Script Commands”). Conductor Script 
uses iPlanet UDS system management agents to start the partitions corresponding 
to each of the engine components, as specified in the engine configuration file. 

➤ To start an engine

1. Enter ListEngines to get a list of configured engines.

The list indicates which engines are online.

2. Use the FindEngine command to choose the engine you want to start.

The selected engine is the current engine.

3. Use the StartEngine command to start the current engine.

The engine starts using the component partitioning and startup information in 
the engine configuration file (see “Engine Configuration File” on page 90). The 
components are started in the following order: governor, engine units, 
database services.



Managing iIS Process Engines with Conductor Script

236 iPlanet Integration Server • Process System Guide • August 2001

Starting Individual Engine Components
You can start an individual engine component on any node on which it is installed. 
Each component is an application consisting of a single server partition that must 
establish communication channels with other components.

Except for the governor, as each of these partitions is started, it must be provided a 
component name and the name of the engine to which it belongs. The partition 
uses this engine name along with its component name to explicitly register itself 
with the iPlanet UDS Name Service. As each component starts up, it looks in the 
Name Service registry for the names of other components with which it must 
establish a communication channel. When all necessary communication channels 
are established, the primary engine unit can log on to its database and perform 
other operations needed to come fully online.

The engine startup protocol is designed to allow components to start in any order. 
They simply wait for the other components to which they must connect. However, 
because an engine unit will eventually time out if it cannot log on to its database or 
establish a communication channel with its partner or the governor, there is a 
preferred order for engine startup if there might be a delay in starting a 
component.

➤ To start an engine where delays might be involved

1. Start the governor.

2. Start at least one database service.

3. Start each engine unit.

➤ To start an individual engine component (governor, database service, or engine 
unit)

1. Use the FindEngine command to the engine you want to start to the current 
engine.

2. Use the FindNode command to set node for the component to the current node. 

3. Use the appropriate Conductor Script Start command to start the engine 
component on the current node.



Managing iIS Process Engines with Conductor Script

Chapter 8 Using the Conductor Script Utility 237

The Conductor Script commands used to start engines are documented in 
Appendix A, “Conductor Script Commands” and summarized in the following 
table:

Command Arguments Function See…

ListEngines —— Display a list of all running 
and configured iIS process 
engines in the environment.

page 289

FindEngine engine_name Set specified engine as the 
“current” engine. The 
engine (nor any of its 
components) does not have 
to be running.

page 284

StartEngine [newLog]
[newState]
[newRegistration]
[cold]

Start all components of the 
engine as specified in the 
engine configuration file. 
(Includes various start 
options that create new 
engine database tables.)

page 315

FindNode node_name Set the specified node as the 
“current” node. The node 
must exist in the 
environment.

page 285

StartGovernor —— Start the governor for the 
current engine on the 
current node.

page 316

StartDBService service_name
priority

Start the specified database 
service for the current 
engine on the current node.

page 315

StartUnit unit_name
[cold]

Start the specified engine 
unit for the current engine 
on the current node. 
(Includes cold start option 
to create engine database.)

page 317



Managing iIS Process Engines with Conductor Script

238 iPlanet Integration Server • Process System Guide • August 2001

As indicated in the table, the engine unit partition has a startup argument which 
specifies that when the engine unit comes ONLINE, that it create the required 
tables in the engine database. This argument should be used when you start an 
engine for the first time, or if you explicitly want to delete the existing database 
schema.

Example Manual Startup Scenario
You can override the component partitioning scheme in the engine configuration 
file by starting each engine component manually. As an example, take the engine 
partitioning scheme illustrated in Figure 4-2 on page 88. Assume the iPlanet UDS 
environment is named “Galaxy”, and the engine is named “Enterprise.” The 
partitioning scheme is summarized in the following table:

NOTE A cold start purges and deletes any tables that already exist, 
including the registration table and the current state and history log 
tables. Be careful when using this option, since you can lose 
unrecoverable information.

Component Component Name Location (Node Name)

Governor Server1

Primary engine unit primero Server2

Backup engine unit secundo Server3

Database service main1 (priority=10) Server4

Database service main2 (priority=10) Server4

Database service main3 (priority=10) Server4

Database service load1 (priority=9) Server1

Database service load2 (priority=8) Server3



Managing iIS Process Engines with Conductor Script

Chapter 8 Using the Conductor Script Utility 239

The following Conductor Script commands start up the Enterprise engine in the 
preferred order.

Monitoring Engines and Engine Components
After you have started an engine, you should ensure that it has started successfully 
and monitor it periodically. 

You can get status information about the engine as a whole and about each of the 
individual engine components. Conductor Script uses iIS engine agents to gather 
engine component data. Each agent has a set of instruments that report relevant 
information.

Monitoring the Engine
Typically you want to know which engine components are up and running. 

➤ To check the engine runtime configuration

1. Use the ListEngines command to see which engines are running in your 
environment.

2. Use the FindEngine command to make the engine of interest current.

3. Use the ShowStatus command to display the runtime configuration of the 
current engine.

findengine galaxy.enterprise
findnode server1
startgovernor
startdbservice load1 9
findnode server2
startunit primero
findnode server3
startunit secundo
startdbservice load2 8
findnode server4



Managing iIS Process Engines with Conductor Script

240 iPlanet Integration Server • Process System Guide • August 2001

The Conductor Script commands used to monitor engines are documented in 
Appendix A, “Conductor Script Commands” and summarized in the following 
table:

Monitoring Individual Engine Components
You can get more information about individual engine components.

➤ To monitor individual engine components

1. Use the ListEngines command to see which engines are running in your 
environment.

2. Use the FindEngine command to make a particular engine current.

3. Use the appropriate FindComponent command to make a component current.

4. Use the ShowStatus command to display information about the current 
component.

Command Arguments Function See…

FindEngine engine_name Set specified engine as the “current” 
engine. The engine (nor any of its 
components) does not have to be 
running.

page 284

ListEngines —— Display a list of all running and 
configured iIS process engines in the 
environment.

page 289

ShowEngine engine_name Display status of the specified engine. page 306

ShowStatus [short] Display status of the current engine. 
(No engine components need be 
running for this command to work.)

page 309



Managing iIS Process Engines with Conductor Script

Chapter 8 Using the Conductor Script Utility 241

The Conductor Script commands used to monitor individual engine components 
are documented in Appendix A, “Conductor Script Commands” and summarized 
in the following table:

Command Arguments Function See…

FindEngine engine_name Set specified engine as the “current” 
engine. The engine (nor any of its 
components) does not have to be 
running.

page 284

FindDBService service_name Set the specified database service for 
the current engine as the current 
component. The database service 
must be running.

page 283

FindGovernor —— Set the governor for the current 
engine as the current component. 
The governor must be running.

page 284

FindPrimary —— Set the primary engine unit for the 
current engine as the current 
component. The primary unit must 
be ONLINE.

page 285

FindUnit unit_name Set the specified engine unit for the 
current engine as the current 
component. The engine unit must be 
running.

page 286

ListEngines —— Display a list of all running and 
configured iIS process engines in the 
environment.

page 289

ShowStatus [short] Display the status of the current 
component. If the current 
component is an engine unit in the 
ONLINE state, then this command 
shows the full instrumentation 
implemented for all the engine’s 
internal manager objects.

page 309



Managing iIS Process Engines with Conductor Script

242 iPlanet Integration Server • Process System Guide • August 2001

Changing Engine States
You can change the state of an engine by changing the state of an engine unit or by 
shutting down an engine component.

Changing Engine Unit States
You might want to change the state of an engine unit for a number of reasons. For 
example, you might want to close all client sessions with a primary engine unit 
(change its state from ONLINE to STANDBY) in order to perform administrative 
functions on the database. Or you might want to place a primary engine unit in 
STANDBY state so you can make its partner primary. When the partner goes from 
STANDBY to ONLINE, it recovers state information from the database.

➤ To change the state of an engine unit

1. Use the FindEngine command to make the engine of interest current.

2. Use the FindUnit or FindPrimary command to make the component of 
interest current.

3. Use the SetState command to set the engine unit state.

If you want to place the primary unit on standby, and the backup unit online, you 
can perform this operation in a single command using the SetPrimary command.

The Conductor Script commands used to change engine states are documented in 
Appendix A, “Conductor Script Commands” and summarized in the following 
table:

Command Arguments Function See…

FindEngine engine_name Set specified engine as the “current” 
engine. The engine (nor any of its 
components) does not have to be 
running.

page 284

FindUnit unit_name Set the specified engine unit for the 
current engine as the current component. 
The engine unit must be running.

page 286

FindPrimary —— Set the primary engine unit for the 
current engine as the current component. 
The primary unit must be ONLINE.

page 285

SetState state Set the state for the current engine unit to 
ONLINE or STANDBY. 

page 302



Managing Registrations with Conductor Script

Chapter 8 Using the Conductor Script Utility 243

Shutting Down Engine Components
You can shut down an individual component or all engine components using the 
Shutdown command. This command shuts down the current component or engine.

If your engine components are standard iPlanet UDS partitions (interpreted by an 
iPlanet UDS ftexec) shutting down a component leaves the corresponding ftexec 
running.

Managing Registrations with Conductor Script
This section describes how to perform the following registration functions using 
Conductor Script:

• making iIS library distributions

• registering iIS distributions

• unregistering iIS distributions

For background information on iIS library distributions and registration, including 
how to perform registration using iIS Console, see Chapter 5, “Managing 
Registrations.”

Making iIS Library Distributions
You can use Conductor Script to perform operations normally performed through 
the iIS process development workshops, the operations performed with the File > 
Compile and File > Distribute commands in the Process Development, Assignment 
Rule, User Profile, and Validation workshops. These commands are used to create 
TOOL projects from the various iIS plans and to make iIS library distributions from 
these TOOL projects. As explained in “About Registration” on page 137, it is these 
iIS library distributions that are registered with iIS process engines.

SetPrimary unit_name Set the specified engine unit for the 
current engine as the primary unit. This 
will change the states of the engine units 
to make the specified unit ONLINE.

page 301

Command Arguments Function See…



Managing Registrations with Conductor Script

244 iPlanet Integration Server • Process System Guide • August 2001

➤ To make an iIS library distribution

1. Use the SetWorkspace command to make a particular workspace current. 

2. Use the Open command to open the current workspace.

3. Use the ListPlans command to display iIS plans in the workspace.

4. Use the FindPlan command to make a particular plan current.

5. Use the CompilePlan command to create a TOOL project for the plan.

6. Use the MakeConductorDistribution command to generate an iIS library 
distribution.

The library distribution is saved in the FORTE_ROOT/appdist directory on the 
central server node in your iIS system.

The commands needed to make iIS library distributions, except for 
MakeConductorDistribution, are documented in the iPlanet UDS Fscript Reference 
Guide and summarized in the table below:

 Command  Arguments Function

Close —— Close the current 
workspace.

IncludePublicPlan plan_name Include a 
publicly-available plan in 
the current workspace.

ListPublicPlans [match_string]
[show_unintegrated]
[show_internal]

List the publicly available 
plans in the repository.

ListWorkspaces [verbose_flag] List the workspaces in the 
repository.

NewWorkspace workspace_name Create a new workspace in 
current repository.

Open [permissions]
[workspace_password]

Open the workspace 
specified on the last 
SetWorkspace command.

SetRepos repository_name Set the name of the 
repository for the next 
Open command.

SetWorkspace workspace_name Set the name of the 
workspace for the next 
Open command.



Managing Registrations with Conductor Script

Chapter 8 Using the Conductor Script Utility 245

AddSupplierPlan plan_name Include a plan as a 
supplier plan to the 
current plan.

Commit —— Commit changes to 
current workspace.

CompilePlan [force_flag] compile all out-of-date 
components in a plan.

ExportPlan file_name [node | ids] Export all components of a 
plan to an export file.

FindPlan plan_name Make the specified plan 
current. 

ImportPlan file_name Import a plan from the 
specified file.

IntegrateWorkspace [comment]
[logfile_name]
[baseline_password]

Integrate the changes in 
this workspace into the 
shared repository.

ListPlans [match_string] | [*] List the plans in the 
current workspace.

MakeConductor
Distribution

—— Make an iIS library 
distribution from the 
current iIS plan. See 
page 292.

RemoveSupplierPlan plan_name Remove a supplier plan 
from the current plan.

ShowPlan —— Display information about 
the current plan.

ShowWorkspace —— show the name of the 
current workspace and 
repository.

UpdateWorkspace [logfile_name] Update the current 
workspace with any 
changes in the system 
baseline since the last 
update.

 Command  Arguments Function



Managing Registrations with Conductor Script

246 iPlanet Integration Server • Process System Guide • August 2001

Registering iIS Library Distributions
After iIS library distributions have been generated, they can be registered with iIS 
process engines. You can register any number of iIS distributions with an engine 
using Conductor Script, but you can register only one type of distribution (user 
profile, process definition, and so on) with one engine at a time. To register 
multiple distributions, you can write a script that performs all the registrations that 
you want.

➤ To register an iIS distribution with an engine

1. Use the FindEngine command to make a particular engine current. 

2. Use the ListConductorDistributions command to display a list of iIS library 
distributions that are available for registration. 

3. Use the appropriate Register command to register an available distribution of 
the corresponding type.

The commands needed to register iIS library distributions are documented in 
Appendix A, “Conductor Script Commands” and summarized in the table below:

Command Arguments Function See…

FindEngine engine_name Set specified engine as 
the “current” engine. 
The engine (nor any 
of its components) 
does not have to be 
running.

page 284

ListConductor
Distributions

[type] Display a list of the 
specified type of iIS 
library distributions 
available for 
registration. May 
include process 
definitions, 
assignment rule 
dictionaries, user 
profiles, and user 
validations.

page 288

ListEngines —— Display a list of 
configured iIS process 
engines.

page 289



Managing Registrations with Conductor Script

Chapter 8 Using the Conductor Script Utility 247

Unregistering iIS Library Distributions
Normally you unregister an iIS distribution from an engine if it is no longer 
needed. Cold-starting an engine unregisters all registrations; however, if you want 
to be more selective, you can unregister specific distributions using Conductor 
Script.

You can unregister any number of registered distributions, but you can only 
unregister one type of distribution (user profile, process definition, assignment rule 
dictionary…) from one engine at a time. To unregister multiple distributions, you 
can write a script that performs all the unregistrations that you want.

RegisterAlias alias_name
process_name
engine_name
environment

Register the 
alias—representing a 
specified process 
running on a specified 
engine in a specified 
environment—with 
the current engine.

page 294

Register
AssignmentRules

[dictionary_name] Register all 
assignment rule 
dictionaries or the 
specified dictionary 
with the current 
engine.

page 294

Register
ProcessDefinition

[process_name] Register all process 
definitions or the 
specified process 
definition with the 
current engine.

page 295

Register
UserProfile

[user_profile_name] Register all user 
profiles or the 
specified user profile 
with the current 
engine.

page 295

RegisterValidation validation_name Register the specified 
validation with the 
current engine.

page 296

Command Arguments Function See…



Managing Registrations with Conductor Script

248 iPlanet Integration Server • Process System Guide • August 2001

➤ To unregister an iIS distribution from an engine

1. Use the FindEngine command to make a particular engine current.

2. Use the ListRegistrations command to display a list of iIS distributions that 
are registered with the current engine. 

3. Use the appropriate UnRegister command to unregister a distribution of the 
corresponding type.

The engine maintains only one validation, so registering a new validation 
implicitly unregisters the previous one.

The commands needed to unregister iIS distributions are documented in 
Appendix A, “Conductor Script Commands” and summarized in the table below:

Command Arguments Function See…

FindEngine engine_name Set specified engine as 
the “current” engine. 
The engine (nor any of 
its components) does 
not have to be running.

page 284

ListEngines —— Display a list of all 
running and 
configured iIS process 
engines in the 
environment.

page 289

ListRegistrations [type] List all registered 
process definitions, 
assignment rule 
dictionaries, user 
profiles, user 
validations and aliases 
(or just the specified 
type of distribution) for 
the current engine.

page 290

Uninstall name
compatibility_level

Deletes an iIS 
distribution of the 
specified name and 
level from the 
environment 
repository.

page 321

UnRegisterAlias alias_name Unregister the specified 
alias from the current 
engine.

page 322



Managing Process Execution with Conductor Script

Chapter 8 Using the Conductor Script Utility 249

Managing Process Execution with 
Conductor Script

This section describes how to perform some basic monitoring and management of 
process execution using Conductor Script. Normally these operations are more 
suited to iIS Console than to a command line utility. However, a number of 
Conductor Script commands are available to perform the following management 
tasks:

• monitoring and managing sessions

• monitoring and managing executing processes

For background information on iIS process execution, including how to perform 
process management using iIS Console, see Chapter 6, “Managing Process 
Execution.”

UnRegister
AssignmentRules

dictionary_name
[rule_name]

Unregister all 
assignment rules (or 
just the specified 
assignment rule) in the 
specified assignment 
rule dictionary from 
the current engine.

page 322

UnRegister
ProcessDefinition

process_name Unregister the specified 
process definition from 
the current engine.

page 323

UnRegister
UserProfile

user_profile_name Unregister the specified 
user profile from the 
current engine.

page 324

Command Arguments Function See…



Managing Process Execution with Conductor Script

250 iPlanet Integration Server • Process System Guide • August 2001

Monitoring and Managing Engine Sessions
This section describes how to perform a number of tasks regarding the monitoring 
and managing of sessions:

• obtaining state information about a session

• suspending or terminating sessions

• sending messages to sessions

➤ To obtain state information about a session

1. Use the FindEngine command to make a particular engine current 

2. Use the ListSessions command to display a list of sessions with the current 
engine. 

3. Use the CreateFilter command to filter the list of sessions, if desired. 

4. Use the ListSessions command to display a list of filtered sessions. 

5. Use the ShowSession command to display state information about a particular 
session.

➤ To suspend or terminate a session

1. Display a list of sessions as described in Step 1 through Step 4 above.

2. Enter SuspendSession, TerminateSession, SuspendAllSessions, or 
TerminateAll Sessions to suspend or terminate one or all sessions.

➤ To send a message to one or more sessions

1. Use the SendMessage or BroadcastMessage command, depending on whether 
you want to send a message to one session or to all sessions. 

NOTE A session that has in-progress two-phase commit operations can be 
suspended, but cannot be terminated. For more information, see 
“Monitoring and Managing Two-Phase Commit” on page 199.



Managing Process Execution with Conductor Script

Chapter 8 Using the Conductor Script Utility 251

The commands needed to monitor and manage iIS sessions are documented in 
Appendix A, “Conductor Script Commands” and summarized in the table below:

Command Arguments Function See…

BroadcastMessage message_text
priority

Send a message with the 
specified priority to all 
sessions connected to the 
engine. The priority is a 
text string meaningful to 
the receiver.

page 275

FindEngine engine_name Set specified engine as the 
“current” engine. The 
engine (nor any of its 
components) does not 
have to be running.

page 284

ListEngines —— Display a list of all running 
and configured iIS process 
engines in the 
environment.

page 289

ListSessions —— List all sessions in the 
current engine.

page 291

SendMessage session_id, 
message_text
priority

Send a message with the 
specified priority to the 
specified session. The 
priority is a text string 
meaningful to the receiver.

page 299

ShowSession session_id Show details of the given 
session, including the 
activity list.

page 308

SuspendAllSessions —— Suspend all active sessions 
in the current engine.

page 319

SuspendSession session_id Suspend the specified 
active session.

page 320

TerminateAllSessions Terminate all sessions in 
the current engine.

page 320

TerminateSession session_id Terminate the specified 
session.

page 321



Managing Process Execution with Conductor Script

252 iPlanet Integration Server • Process System Guide • August 2001

Monitoring and Managing Process Execution
There are a number of situations where you are likely to want to monitor or 
intervene in process execution to resolve problems. Depending on the situation, 
you might wish to take some of the actions described in the following paragraphs.

Managing Process Instances

➤ To check the status of a process instance

1. Use the FindEngine command to make a particular engine current 

2. Use the ListProcesses command to display a list of process instances in the 
current engine. 

3. Use the CreateFilter command to filter the list of process instances, if 
desired. 

4. Use the ListProcesses command to display a list of filtered process instances. 

5. Use the ShowProcess command to display information about a particular 
process instance.

The output shows information about the activities, timers, and process 
attributes of the process instance (see Figure 6-2 on page 180). You can get 
further information about these objects using their corresponding Show 
command.

➤ To abort a process instance

1. Display a list of process instances as described in Step 1 through Step 4 above.

2. Use the AbortProcess or AbortAllProcesses command, depending on 
whether you wish to abort a specific process instance or all process instances.

Managing Activity Instances

➤ To check the status of an activity instance

1. Use the FindEngine command to make a particular engine current 

2. Use the ListActivities command to display a list of process instances in the 
current engine. 

3. Use the CreateFilter command to filter the list of activities, if desired. 

4. Use the ListActivities command to display a list of filtered activities. 



Managing Process Execution with Conductor Script

Chapter 8 Using the Conductor Script Utility 253

5. Use the ShowActivity command to display information about a particular 
activity.

The output shows information about the activity, its attributes and its linked 
timers. You can get further information about these objects using their 
corresponding Show command.

➤ To change the state of an activity

1. Display a list of activities as described in Step 1 through Step 4 above.

2. Use the ShowActivity command to display information about a particular 
activity.

3. Use the AbortActivity, ReadyActivity, or RollbackActivity command to 
abort an activity, change its state from PENDING to READY, or change its 
state from ACTIVE to READY.

Managing Activity Queues

➤ To list the contents of an activity queue

1. Use the FindEngine command to make a particular engine current.

2. Use the ListActivityQueues command to display a list of queues in the 
current engine. 

3. Use the CreateFilter command to filter the list of queues, if desired. 

4. Use the ShowActivityQueue command to display a list of activities in a 
specified queue. 

This command displays information about the activities in the queue. You can 
get further information about these activities using the ShowActivity 
command.

➤ To reprioritize an activity in a queue

1. Display a list of activities in a queue as described in Step 1 through Step 4 
above.

2. Use the ShowActivity command to display information about a particular 
activity.

3. Use the SetQueuedActivityPriority command to change the value of the 
queue prioritizing process attribute for the activity. The engine reorders the 
queue.



Managing Process Execution with Conductor Script

254 iPlanet Integration Server • Process System Guide • August 2001

Managing Timers

➤ To check the status of a timer

1. Use the FindEngine command to make a particular engine current.

2. Use the ListTimers command to display a list of timers in the current engine. 

3. Use the CreateFilter command to filter the list of timers, if desired. 

4. Use the ListTimers command to display a list of filtered timers. 

5. Use the ShowTimer command to display information about a particular timer.

The output shows information about the timer, its state and its expiration time.

➤ To change the state of a timer or change its expiration time

1. Display a list of timers as described in Step 1 through Step 4 above.

2. Use the ShowTimer command to display information about a particular timer.

3. Use the SetTimer, SetTimerDeadline, or SetTimerElapsed command to turn 
a timer on or off, or to change the expiration date or time, depending on 
whether the timer is a deadline timer or an elapsed timer.

Managing Process Attributes

➤ To check the value or lock state of a process attribute

1. Use the FindEngine command to make a particular engine current.

2. Use the ListProcesses command to display a list of process instances in the 
current engine. 

3. Use the CreateFilter command to filter the list of process instances, if 
desired. 

4. Use the ListProcesses command to display a list of filtered process instances. 

5. Use the ShowProcess command to display information about a particular 
process instance.

The output shows information about the process attributes of the process 
instance.



Managing Process Execution with Conductor Script

Chapter 8 Using the Conductor Script Utility 255

➤ To change the value of a process attribute

1. Display a list of attributes as described in Step 1 through Step 4 above.

2. Use the SetAttributeValue command to set the value of any listed process 
attribute.

➤ To remove an attribute lock

1. Display a list of attributes as described in Step 1 through Step 4 above.

2. Use the RemoveReadLock command to remove a read lock, or the 
RemoveWriteLock command to remove a write lock.

Checking for Bottlenecks in Process Execution

➤ To find a process bottleneck

1. Use the FindEngine command to make a particular engine current. 

2. Use the ListActivities command to display a list of activity instances in the 
current engine. 

3. Use the CreateFilter command to filter the list of activity instances by 
process name. 

4. Use the ListActivities command to display a list of filtered activity 
instances. 

5. Look for an activity name with more than an average number of instances.

6. Use the CreateFilter command to filter the list of activity instances by the 
suspected bottleneck activity name. 

7. Use the ListActivities command to display a list of filtered activity 
instances. 

8. Check the state of activities in the listing.

9. Use the ShowActivity command to display more information about each 
particular activity instance to determine what is causing the bottleneck.



Managing Process Execution with Conductor Script

256 iPlanet Integration Server • Process System Guide • August 2001

The commands needed to intervene in execution of an iIS process instance are 
documented in Appendix A, “Conductor Script Commands” and summarized in 
the table below:

 Command  Arguments Function See…

AbortActivity process_id
activity_name

Place the specified activity in the 
ABORTED state.

page 273

AbortAllProcesses —— Abort all process instances in the current 
engine.

page 274

AbortProcess process_id Abort the specified process instance. page 274

CompleteActivity process_id
activity_name

Change the state of the specified activity 
from ACTIVE to COMPLETED.

page 276

ConsultActivity process_id, 
activity_id
state
consultation_rule
return_rule
[user_name1]
[other_info1]
[user_name2]
[other_info2]

Delegate the specified activity (in the 
specified state) to consultant users using 
the specified consultation assignment 
rule. A consultant session returns the 
activity using the return_rule 
assignment rule. The user name and 
other info strings are supplied if 
required by the consultation and return 
assignment rules.

page 276

CreateActivity process_id, 
activity_name

Create an activity of the specified name 
in the specified process instance and 
place it in the PENDING state.

page 278

CreateFilter time_interval
filter_expression

Create a filter for events posted on the 
current engine object which conform to 
the specified filter expression.

page 279

DelegateActivity process_id, 
activity_id
state
delegation_rule
[user_name]
[other_info]

Delegate the specified offered activity 
(in the specified state) to other users 
using the specified delegation 
assignment rule. The user name and 
other info string are supplied if required 
by the delegation rule.

page 281

DeleteFilter filter_id Delete the specified filter. page 283

ListActivities —— List all activities in the current engine. page 287

ListActivityQueues [process_name] Display activity queues for the specified 
process (or all activity queues) in the 
current engine.

page 287



Managing Process Execution with Conductor Script

Chapter 8 Using the Conductor Script Utility 257

ListFilters —— List all existing event filters for the 
current engine.

page 289

ListProcesses [short],
[name process_name]

List process instances for a specified 
process (or all process instances) in the 
current engine, or list a summary of 
process instances by process name.

page 289

ListTimers —— List all timers in the current engine. page 291

ReadyActivity process_id, 
activity_name

Change the state of the specified activity 
from PENDING to READY.

page 293

RemoveReadLock process_id
attribute_name

Remove a shared lock on the specified 
process attribute.

page 297

RemoveWriteLock process_id
attribute_name

Remove an exclusive lock on the 
specified process attribute.

page 297

RollbackActivity process_id
activity_name

Change the state of the specified activity 
from ACTIVE to READY.

page 298

SetAttributeValue process_id
attribute_name
attribute_type
value

Set the value of the specified attribute 
for a specified process instance.

page 300

SetQueuedActivity
Priority

process_id
activity_id
prioritizing_value

Reprioritize activities in an activity 
queue by setting the prioritizing process 
attribute for a specified activity to a 
specified value.

page 301

SetTimer process_id
timer_name
state
[reset_control]

Set the specified timer to the specified 
state (ON, OFF, or no change) and 
resume operation (or reset the timer)

page 302

SetTimerDeadline process_id
timer_name
state
expiration_time

Set the specified deadline timer to the 
specified state (ON, OFF, or no change) 
and set a new expiration time.

page 303

SetTimerElapsed process_id
timer_name
state
time_interval

Set the specified elapsed timer to the 
specified state (ON, OFF, or no change) 
and set a new elapsed time interval until 
expiration.

page 304

ShowActivity process_id, 
activity_name

Show details of the specified activity. page 304

 Command  Arguments Function See…



Managing Process Execution with Conductor Script

258 iPlanet Integration Server • Process System Guide • August 2001

Monitoring and Managing Two-Phase Commit 
Transactions
The iIS two-phase commit protocol facilitates the synchronization of iIS process 
engine operations with application transactions by making it possible to place iIS 
engine operations in a transactional context. For information on this capability, see 
“Monitoring and Managing Two-Phase Commit” on page 199.

As a system manager, you can monitor and manage these iIS transactions, as 
described in the following sections.

Monitoring Two-Phase Commit Operations
You can use Conductor Script commands to monitor the status of in-progress iIS 
engine operations, as indicated in the table below. These commands print out the 
transaction ID of any iIS operations that are in a PREPARE phase.

ShowActivityQueue process_name,
[queue_name]

Display the contents of the specified 
queue (or all queues) for the specified 
process in the current engine.

page 305

ShowProcess process_id Show details of specified process 
instance, including all activities and the 
values of all process attributes.

page 307

ShowTimer process_id
timer_name

Show details of the specified timer. page 313

StartActivity process_id, 
activity_name
session_id

Change the state of the specified activity 
from READY to ACTIVE. 

page 314

StartTimer process_id
timer_name

Start the specified timer. Place it in the 
ON state.

page 317

StopTimer process_id
timer_name

Stop the specified timer. Place it in the 
OFF state.

page 319

Command Arguments Function See…

ShowActivity process_id
activity_id

Indicates any in-progress two-phase 
commit transactions in the activity.

page 304

 Command  Arguments Function See…



Managing Process Execution with Conductor Script

Chapter 8 Using the Conductor Script Utility 259

Managing Two-Phase Commit Operations
If a session should be suspended for any of a number of reasons, any iIS engine 
transaction in a PREPARE phase is retained on the session, awaiting resolution 
(commit or rollback). The process client application is normally responsible for 
resolving these transactions; however, in the case of failure, these transactions may 
be left permanently in the PREPARE phase. Because of this, it is up to a system 
manager to check for and resolve any transactions left in a PREPARE phase.

For example, a client application may perform an activity, but fail before it can 
notify the engine to commit the CompleteActivity operation. Similarly, the engine 
could fail before receiving the commit. Both these situations result in inconsistency 
of state information between the client application and engine.

To properly resolve iIS engine transactions in a PREPARE phase, however, you 
must investigate whether related application transactions were committed or 
aborted. How you do this depends on the details of the application and how it 
keeps track of transaction IDs.

You can use the following Conductor Script commands to identify and resolve 
transactions in a PREPARE phase: 

ShowProcess process_id Indicates any in-progress two-phase 
commit transactions in the process.

page 307

ShowSession session_id Indicates whether the session has 
two-phase commit mode enabled, and if 
so, any in-progress transaction. For 
example, it may indicate the following:

Two phase commit mode is enabled.
There is a client operation
“CompleteActivity” in 
PREPARE phase.

page 308

Command Argument Function See…

CommitTransaction session_ID
transaction_ID

Commits the in-progress 
iIS engine transaction for 
the specified session or 
transaction ID.

page 275

Command Arguments Function See…



Managing Process Execution with Conductor Script

260 iPlanet Integration Server • Process System Guide • August 2001

➤ To resolve transactions after a client or engine failure

1. Start Conductor Script from a command line and invoke ListTransactions.

cscript >ListTransactions

The output of this command identifies all sessions, and their respective status, 
that have transactions in a PREPARE phase. For example, if a CreateProcess 
transaction had been prepared before the client crashed and there was only one 
session in progress, you would see output such as the following:

2. Commit or roll back the prepared transaction:

cscript >CommitTransaction 200

3. Verify the commit or rollback of the transaction:

cscript >ShowSession 200

The output of the ShowSession command should indicate that the transaction 
has been resolved.

ListTransactions Lists information for all 
in-progress iIS engine 
transactions (that is, those 
in a PREPARE phase) for 
all sessions in the current 
engine.

page 291

RollbackTransaction session_ID
transaction_ID

Rolls back the in-progress 
iIS transaction for the 
specified session or 
transaction ID.

page 298

Session Name:s1 Id:200 Status:Suspended
   TransactionId:My_Transaction_Id1 Current operation:
                "CreateProcess"

Command Argument Function See…



261

Appendix A

Conductor Script Commands

This appendix is an alphabetically ordered reference of the Conductor Script 
commands.

Conductor Script is a command line utility built on top of the iPlanet UDS Fscript 
command utility. As such, it includes Fscript commands for performing 
repository-based operations, as well as a large number of iIS-specific commands. 

This appendix documents only the iIS-specific Conductor Script commands. For 
documentation of Fscript Commands accessible through Conductor Script, see the 
Fscript Reference Guide.

An introduction summarizes and groups the Conductor Script commands 
according to their function.

Conductor Script Command Summary
The following tables summarize Conductor Script commands and group them into 
the following categories, each of which represents a level within the hierarchy 
shown in Figure A-1:

• environment mode commands

• engine mode commands

• component mode commands



Conductor Script Command Summary

262 iPlanet Integration Server • Process System Guide • August 2001

Figure A-1 Hierarchy of Conductor Script Levels

Each Conductor Script command is defined on one of these levels. To use a 
command, you navigate the hierarchy, making either an engine or an engine 
component “current,” and then invoke the command.

NOTE Conductor Script also provides access to all iPlanet UDS Fscript 
commands (except for the Run, RunDistrib, and RunFile 
commands). Fscript is an iPlanet UDS command line interface that 
lets you create new plans and projects, examine components, define 
and modify classes, partition, test, and run distributed applications, 
and define and deploy libraries. For information on how to use 
Fscript commands for writing and running Conductor Script scripts, 
see Chapter 8, “Using the Conductor Script Utility.” For more 
complete information on Fscript commands, see the iPlanet UDS 
Fscript Reference Guide.

Environment

Engine 2

Governor

Engine 2 Engine 2

Backup Engine Unit

Primary Engine UnitDatabase Service

Environment
Mode

Engine
Mode

Component
Mode



Conductor Script Command Summary

Appendix A Conductor Script Commands 263

Environment Mode Commands
The Conductor Script environment mode commands work only in the active 
environment. They are used mostly to specify the current engine and current node, 
and also to make library distributions that can be registered with iIS process 
engines.

Command Arguments Function See…

FindEngine engine_name Set specified engine as the 
“current” engine. The 
engine (nor any of its 
components) does not have 
to be running.

page 284

IIOPServer [start|stop|show] Starts, stops, or displays 
information about the IIOP 
service needed to support 
CORBA/IIOP iIS process 
client applications.

page 287

ListConductor
Distributions

[type] Display a list of the 
specified type of iIS library 
distributions available for 
registration. May include 
process definitions, 
assignment rule 
dictionaries, user profiles, 
and user validations.

page 288

ListEngines —— Display a list of all running 
and configured iIS process 
engines in the 
environment.

page 288

MakeConductor
Distribution

—— Generate a library 
distribution for the current 
iIS plan. Plan must be 
created using the iIS 
process development 
workshops. (Automatically 
boosts compatibility level 
of distribution.)

page 292



Conductor Script Command Summary

264 iPlanet Integration Server • Process System Guide • August 2001

Engine Mode Commands: Engine Management
The Conductor Script engine mode commands work only for the current engine. 
They are used mostly to start components and specify the current component.

SetPassword [old_password]
[new_password]

Set password protection on 
opening Conductor Script 
in your active 
environment. Once you set 
a password, other users 
may not open Conductor 
Script (or iIS Console, or 
iPlanet UDS Environment 
Console, or Escript) in that 
environment without 
using the password.

page 300

ShowEngine engine_name Display status of the 
specified engine.

page 306

Uninstall name
compatibility_level

Deletes an iIS distribution 
of the specified name and 
compatibility level from 
the environment 
repository. Normally 
performed after 
unregistering an iIS 
distribution from all 
engines in the 
environment.

page 321

Command Arguments Function See…

FindDBService service_name Set the specified database 
service for the current 
engine as the current 
component. The database 
service must be running.

page 283

FindGovernor —— Set the governor for the 
current engine as the 
current component. The 
governor must be 
running.

page 284

Command Arguments Function See…



Conductor Script Command Summary

Appendix A Conductor Script Commands 265

FindNode node_name Set the specified node as 
the “current” node. The 
node must exist in the 
environment.

page 285

FindPrimary —— Set the primary engine 
unit for the current 
engine as the current 
component. The primary 
unit must be ONLINE.

page 285

FindUnit unit_name Set the specified engine 
unit for the current 
engine as the current 
component. The engine 
unit must be running.

page 286

SetPrimary unit_name Set the specified engine 
unit for the current 
engine as the primary 
unit. This will change the 
states of the engine units 
to make the specified 
unit ONLINE.

page 301

ShowConfiguration —— Display contents of the 
configuration file of the 
current engine. (No 
engine components need 
be running for this 
command to work.)

page 309

ShowStatus —— Display status of the 
current engine. (No 
engine components need 
be running for this 
command to work.)

page 309

Shutdown —— Shut down the current 
engine. This shuts down 
the governor, all 
database services, and all 
engine units.

page 314

StartDBService service_name
priority

Start the specified 
database service for the 
current engine on the 
current node.

page 315

Command Arguments Function See…



Conductor Script Command Summary

266 iPlanet Integration Server • Process System Guide • August 2001

Engine Mode Commands: Process 
Execution Management
There are a large number of Conductor Script commands that let you monitor and 
manage sessions, process execution, and registration—functions performed by the 
primary engine unit. These commands, nevertheless, are available in engine 
mode—when the engine is current. The Conductor Script commands for managing 
process execution are also available when the primary engine unit is current.

StartEngine [newLog]
[newState]
[newRegistration]
[cold]

Start all components of 
the engine as specified in 
the engine configuration 
file. (Includes various 
start options that create 
new engine database 
tables.)

page 315

StartGovernor —— Start the governor for the 
current engine on the 
current node.

page 316

StartUnit unit_name
[cold]

Start the specified engine 
unit for the current 
engine on the current 
node. (Includes cold start 
option to create engine 
database.)

page 317

WaitForStartup unit_name
timeout

Wait the specified 
timeout period (in 
seconds) for the specified 
engine unit to start up, 
and prints an error 
message if engine unit 
does not start within 
specified time. Used for 
writing automated 
scripts.

page 324

Command Arguments Function See…



Conductor Script Command Summary

Appendix A Conductor Script Commands 267

Command Arguments Function See…

AbortActivity process_id, 
activity_name

Place the specified activity in the 
ABORTED state.

page 273

AbortAllProcesses —— Abort all process instances in the 
current engine.

page 274

AbortProcess process_id Abort the specified process 
instance.

page 274

BroadcastMessage message_text,
priority

Send a message with the specified 
priority to all sessions connected to 
the engine. The priority is a text 
string meaningful to the receiver.

page 275

CommitTransaction session_ID
transaction_ID

Commits the in-progress iIS 
transaction for the specified 
session or transaction ID.

page 275

CompleteActivity process_id, 
activity_name

Change the state of the specified 
activity from ACTIVE to 
COMPLETED.

page 276

ConsultActivity process_id, 
activity_id
state
consultation_rule
return_rule
[user_name1]
[other_info1]
[user_name2]
[other_info2]

Delegate the specified activity (in 
the specified state) to consultant 
users using the specified 
consultation assignment rule. A 
consultant session returns the 
activity using the return_rule 
assignment rule. The user name 
and other info strings are supplied 
if required by the consultation and 
return assignment rules.

page 276

CreateActivity process_id, 
activity_name

Create an activity of the specified 
name in the specified process 
instance and place it in the 
PENDING state.

page 276

CreateFilter time_interval
filter_expression

Create a filter for events posted on 
the current engine object which 
conform to the specified filter 
expression.

page 279



Conductor Script Command Summary

268 iPlanet Integration Server • Process System Guide • August 2001

DelegateActivity process_id, 
activity_id
state
delegation_rule
[user_name]
[other_info]

Delegate the specified offered 
activity (in the specified state) to 
other users using the specified 
delegation assignment rule. The 
user name and other info string are 
supplied if required by the 
delegation rule.

page 281

DeleteFilter filter_id Delete the specified filter. page 281

FlushLog —— Remove all the data held in the 
history log database tables.

page 286

ListActivities —— List all activities in the current 
engine.

page 287

ListActivityQueues [process_name] Display activity queues for the 
specified process (or all processes) 
in the current engine.

page 287

ListFilters —— List all existing event filters for the 
current engine.

page 289

ListProcesses [short],
[name process_name]

List process instances for a 
specified process (or list all process 
instances) in the current engine, or 
list a summary of process instances 
by process name.

page 289

ListRegistrations [type] List all registered process 
definitions, assignment rule 
dictionaries, user profiles, user 
validations and aliases (or just the 
specified type of distribution) for 
the current engine.

page 290

ListSessions —— List all sessions in the current 
engine.

page 291

ListTimers —— List all timers in the current 
engine.

page 291

ListTransactions Lists information for all 
in-progress iIS engine transactions 
(that is, those in a PREPARE 
phase) for all sessions in the 
current engine.

page 291

Command Arguments Function See…



Conductor Script Command Summary

Appendix A Conductor Script Commands 269

ReadyActivity process_id, 
activity_name

Change the state of the specified 
activity from PENDING to 
READY.

page 293

RegisterAlias alias_name,
process_name,
engine_name,
environment

Register the alias—representing a 
specified process running on a 
specified engine in a specified 
environment—with the current 
engine.

page 294

Register
AssignmentRules

[dictionary_
name]

Register all assignment rule 
dictionaries or the specified 
assignment rule dictionary with 
the current engine.

page 294

Register
ProcessDefinition

[process_name] Register all process definitions or 
the specified process definition 
with the current engine.

page 295

Register
UserProfile

[user_profile_
name]

Register all user profiles or the 
specified user profile with the 
current engine.

page 295

RegisterValidation validation_name Register the specified validation 
with the current engine.

page 296

RemoveReadLock process_id, 
attribute_name

Remove a shared lock on the 
specified process attribute.

page 297

RemoveWriteLock process_id, 
attribute_name

Remove an exclusive lock on the 
specified process attribute.

page 297

RollbackActivity process_id, 
activity_name

Change the state of the specified 
activity from ACTIVE to READY.

page 298

RollbackTransaction session_ID
transaction_ID

Rolls back the in-progress iIS 
transaction for the specified 
session or transaction ID.

page 298

SendMessage session_id, 
message_text,
priority

Send a message with the specified 
priority to the specified session. 
The priority is a text string 
meaningful to the receiver.

page 299

SetAttributeValue process_id
attribute_name
attribute_type
value

Set the value of the specified 
attribute for a specified process 
instance.

page 300

Command Arguments Function See…



Conductor Script Command Summary

270 iPlanet Integration Server • Process System Guide • August 2001

SetQueuedActivity
Priority

process_id, 
activity_id
prioritizing_value

Reprioritize activities in an activity 
queue by setting the prioritizing 
process attribute for a specified 
activity to a specified value.

page 301

SetTimer process_id, 
timer_name
state
[reset]

Set the specified timer to the 
specified state (ON, OFF, or no 
change) and resume operation (or 
reset the timer)

page 302

SetTimerDeadline process_id, 
timer_name
state
expiration_time

Set the specified deadline timer to 
the specified state (ON, OFF, or no 
change) and set a new expiration 
time.

page 303

SetTimerElapsed process_id, 
timer_name
state
time_interval

Set the specified elapsed timer to 
the specified state (ON, OFF, or no 
change) and set a new elapsed time 
interval until expiration.

page 304

ShowActivity process_id, 
activity_name

Show details of the specified 
activity.

page 302

ShowActivityQueue process_name,
[queue_name]

Display the contents of the 
specified queue (or all queues) for 
the specified process in the current 
engine.

page 305

ShowProcess process_id Show details of specified process 
instance, including all activities 
and the values of all process 
attributes.

page 307

ShowSession session_id Show details of the given session, 
including the activity list.

page 308

ShowTimer process_id, 
timer_name

Show details of the specified timer. page 313

StartActivity process_id, 
activity_name
session_id

Change the state of the specified 
activity from READY to ACTIVE. 

page 314

StartTimer process_id, 
timer_name

Start the specified timer. Place it in 
the ON state.

page 317

StopTimer process_id, 
timer_name

Stop the specified timer. Place it in 
the OFF state.

page 319

Command Arguments Function See…



Conductor Script Command Summary

Appendix A Conductor Script Commands 271

Component Mode Commands
The Conductor Script engine component mode commands work only for the 
current component.

SuspendAllSessions —— Suspend all active sessions in the 
current engine.

page 319

SuspendSession session_id Suspend the specified active 
session.

page 320

TerminateAllSessions Terminate all sessions in the 
current engine.

page 320

TerminateSession session_id Terminate the specified session. page 321

UnRegisterAlias alias_name Unregister the specified alias from 
the current engine.

page 322

UnRegister
AssignmentRules

dictionary_
name
[rule_name]

Unregister all assignment rules (or 
just the specified assignment rule) 
in the specified assignment rule 
dictionary from the current engine.

page 322

UnRegister
ProcessDefinition

process_name Unregister the specified process 
definition from the current engine.

page 324

UnRegister
UserProfile

user_profile_
name

Unregister the specified user 
profile from the current engine.

page 324

Command Arguments Function See…



Conductor Script Command Summary

272 iPlanet Integration Server • Process System Guide • August 2001

Generic component
A few commands work for any current component.

Engine Unit 
One command applies only if the current component is an engine unit.

Command Parameters Function See…

ShowStatus [short] Display the status of the 
current component. If 
the current component 
is an engine unit in the 
ONLINE state, then this 
command shows the 
full instrumentation 
implemented for all the 
engine’s internal 
manager objects.

page 309

ShowLogFlags —— Display the logger 
message filters (logger 
flags) set for the current 
component (partition 
logger settings).

page 307

ModLogFlags +(message_filters)
–(message_filters)

modify the logger 
message filters (logger 
flag) set for the current 
component.

page 292

Shutdown —— Shut down the current 
component.

page 314

FindParentEngine —— Make the component’s 
parent engine current. 
Puts you in “engine 
mode.”

page 285

Command Parameters Function See…

SetState state Set the state for the current engine 
unit to ONLINE or STANDBY. 

page 302



Conductor Script Commands

Appendix A Conductor Script Commands 273

Conductor Script Commands
The following is a listing of all Conductor Script commands.

AbortActivity 
The AbortActivity command aborts the specified activity, placing it in the 
ABORTED state.

AbortActivity process_id activity_name

The AbortActivity command is only available when an engine is current. Use the 
FindEngine Script command to set the current engine.

When you issue the AbortActivity command, the engine performs the following 
actions:

• discards pending process attribute updates—rolls back changes that were 
made in performing the activity and frees locks on process attributes 
associated with the activity

• evaluates the activity’s OnAbort method, if one is specified in the process 
definition

• evaluates the activity’s OnAbort routing methods—if none are specified, the 
engine by default aborts the process

• checks for a process stall condition—when all other activity instances are either 
COMPLETED or PENDING (no activities are in ACTIVE or READY state) and 
no timers are active—and aborts the process if a stall condition is detected.

• deletes the ABORTED activity

Argument Description

process_id The process instance in which the activity was created.

activity_name The name of the activity.



Conductor Script Commands

274 iPlanet Integration Server • Process System Guide • August 2001

AbortAllProcesses 
The AbortAllProcesses command aborts all process instances for the current 
engine.

AbortAllProcesses 

The AbortAllProcesses command is only available for the current engine. Use the 
FindEngine Script command to set the current engine and the ListProcesses 
Script command to display a list of process instances before aborting them.

When you issue the AbortAllProcesses command, the engine posts an alarm for 
each process instance to be aborted.

AbortProcess 
The AbortProcess command aborts a specified process instance for the current 
engine.

AbortProcess process_id [process_id…]

The AbortProcess command is only available for the current engine. Use the 
FindEngine Script command to set the current engine and the ListProcesses 
Script command to display a list of process instances before selecting the process to 
abort.

When you issue the AbortProcess command, the engine posts an alarm for the 
process instance to be aborted.

Argument Description

process_id The specified process instance. (A list of up to ten process_ids 
separated by spaces is supported.)



Conductor Script Commands

Appendix A Conductor Script Commands 275

BroadcastMessage
The BroadcastMessage command sends a message to all active sessions on the 
current engine.

BroadcastMessage message urgency 

The BroadcastMessage command is only available when an engine is current. Use 
the FindEngine Script command to set the current engine.

The BroadcastMessage command is used to notify all sessions about a pending 
administrative action, such as changing the state of the primary engine from 
ONLINE to STANDBY.

CommitTransaction
The CommitTransaction command commits an in-progress iIS engine transaction 
(that is, one in a PREPARE phase). For details on two-phase commit operations, see 
“Monitoring and Managing Two-Phase Commit” on page 199.

CommitTransaction {session_ID | transaction_ID} 

To roll back an in-progress iIS engine transaction, use the RollbackTransaction 
command. To list all in-progress iIS transactions for a given engine, use the 
ListTransactions command.

Argument Description

message An alphanumeric string that constitutes the text of the message. Message text 
must be enclosed in double quotes.

urgency One of two specified string constants: INFORMATIONAL or CRITICAL.

Argument Description

session_ID The identifier of the session which has a transaction in a PREPARE 
phase. A session can have only one in-progress two-phase 
transaction.

transaction_ID The identifier of the transaction in a PREPARE phase.



Conductor Script Commands

276 iPlanet Integration Server • Process System Guide • August 2001

CompleteActivity 
The CompleteActivity command completes the specified activity, putting it in 
COMPLETED state.

CompleteActivity process_id activity_name 

The CompleteActivity command is only available when an engine is current. Use 
the FindEngine Script command to set the current engine.

When you issue the CompleteActivity command, the engine performs the 
following actions:

• commits pending process attribute updates—saves changes that were made in 
performing the activity and frees locks on process attributes associated with 
the activity

• evaluates the activity’s OnComplete method, if one is specified

• evaluates the activity’s OnComplete router methods

• checks for a process stall condition—when all other activity instances are either 
COMPLETED or PENDING (no activities are in ACTIVE or READY state) and 
no timers are active—and aborts the process if a stall condition is detected

• deletes the COMPLETED activity

ConsultActivity 
The ConsultActivity command hands off the specified offered activity to other 
users using the specified consultation assignment rule. A consulted session returns 
the activity using an assignment rule specified by the return_rule.

Argument Description

process_id The process instance in which the activity was created.

activity_name The name of the activity.



Conductor Script Commands

Appendix A Conductor Script Commands 277

ConsultActivity process_id activity_id state consultation_rule 
return_rule [user_name1 [other_info1] [user_name2 [other_info2]]] 

The ConsultActivity command is only available when an engine is current. Use 
the FindEngine Script command to set the current engine.

The ConsultActivity command is used to hand off the work associated with an 
offered activity to someone else, one or more consulted users, who then return it to 
one or more originating users. The activity must be in READY or ACTIVE state 
before the ConsultActivity command is used. If the activity is in an ACTIVE 
state, any open attributes are updated as necessary, the accessor is closed, and the 
activity’s state is changed to READY. The activity is offered to sessions as 
permitted by the consultation assignment rule.

Argument Description

process_id The process instance in which the activity was created.

activity_id The activity instance to be delegated.

state The state of the activity instance to be delegated (READY or 
ACTIVE).

consultation_rule The assignment rule used to hand off the activity to consulted 
sessions.

return_rule The assignment rule used to return the activity to delegating 
users.

user_name1 The user name, if any, required by the consultation_rule. If this 
argument is not required, put a null argument enclosed in 
double quotes (““).

other_info1 Otherinfo string of the user name passed to the 
consultation_rule, if any. If this argument is not required, put a 
null argument enclosed in double quotes (““).

user_name2 The user name if any, required by the return_rule.

other_info2 Otherinfo string of the user name passed to the return_rule, if 
any.

NOTE The state parameter is used to confirm that the current state of the 
activity is what you expect when you issue the ConsultActivity 
command. If the state has changed, the engine does not execute the 
command.



Conductor Script Commands

278 iPlanet Integration Server • Process System Guide • August 2001

The user_name1 and other_info1 arguments must be supplied if required by the 
consultation assignment rule. For example, if a consultation rule named 
“ManagerOf” looks for the manager of the user who is handing off to a consultant, 
then this user’s user name and other info (in this case the manager’s name) would 
be passed to the ManagerOf assignment rule. This behavior is similar in function to 
the linked activity mechanism described in the iIS Process Development Guide.

Once the consulted user has completed work on the activity, the activity is offered 
back according to the assignment rule specified by return_rule. The user_name2 
and other_info2 arguments must be supplied if required by the return_rule. For 
example, if a return_rule assignment rule named “SameAs” looks for the original 
user who passed off the activity to a consultant, then that original user’s name 
would be passed to the return_rule assignment rule.

Once the user to whom the activity is returned has completed (or aborted) the 
activity, process execution continues as specified in the process definition.

CreateActivity 
The CreateActivity command creates the specified activity, placing it in 
PENDING state.

CreateActivity process_id activity_name

The CreateActivity command is only available when an engine is current. Use 
the FindEngine Script command to set the current engine.

When the CreateActivity command creates an activity, it is placed in PENDING 
state. Its Trigger method is evaluated each time the router method of a preceding 
activity is evaluated as TRUE or when a process attribute changes value. When the 
trigger conditions are fulfilled, the activity can transition into READY state. To 
override the trigger conditions, you can use the ReadyActivity Script command 
after creating the activity. 

Argument Description

process_id The process instance in which the activity is to be created.

activity_name The name of the activity.



Conductor Script Commands

Appendix A Conductor Script Commands 279

CreateFilter 
The CreateFilter command creates a filter for events posted on the current 
engine object.

CreateFilter time_interval filter_expression

The CreateFilter command is only available when an engine is current. Use the 
FindEngine Script command to set the current engine.

The CreateFilter command assigns a filter ID to the new filter.

The filter_expression argument provides the criteria used to filter the universe of 
events posted by the engine. These events include all state changes to sessions, 
process instances, and activities, as well as changes in process attributes. The filter 
expression uses a number of comparison operators to specify three filter expression 
elements. The three elements—type, object class, and object instance—and the 
operators are described below:

Event Type

Argument Description

time_interval The time during which the filter batches up events before 
reporting them, in milliseconds.

filter_expression Expression specifying filter criteria.

Type Value Description

Object creation 1 Events reporting creation of sessions, process instances, or 
activities

Object deletion 2 Events reporting deletion of sessions, process instances, or 
activities

Attribute change 3 Events reporting changes in process attribute values

Alarm report 4 Events of a particularly important nature regarding process 
execution



Conductor Script Commands

280 iPlanet Integration Server • Process System Guide • August 2001

Object Class

Object Instance
This element specifies a particular instance identification, if desired—for example, 
a session name, activity name, or process ID.

Operators
The table below shows the different operators that can be used with the filter 
elements to specify the filter criteria. The two unary operators at the top of the table 
have higher priority than the binary operators that follow, which have higher 
priority than the logical operators at the bottom of the table.

Class Value Description

Session 1 Events involving sessions

Process instance 2 Events involving process instances

Activity 3 Events involving activities

Engine 4 Events involving engine objects

Timer 5 Events involving timers

Registration 6 Events involving registrations

Class Instance Identification

Session session_id

Process instance process_id

Activity process_id and activity_id

Operator Meaning

? instance identification present (in the event)

~ instance identification not present (in the event)

= equal

<> not equal

< less than



Conductor Script Commands

Appendix A Conductor Script Commands 281

Examples
Some example filter expressions follow:

When the CreateFilter command sets up the filter as specified, events that satisfy 
the filter expression are printed to the screen.

DelegateActivity 
The DelegateActivity command delegates the specified offered activity to other 
users using the specified delegation assignment rule.

DelegateActivity process_id activity_id state delegation_rule 
[user_name [other_info]]

> greater than

<= less than or equal to

>= greater than or equal to

and logical and

or logical or

not logical not

Filter Expression Meaning

class = 1 and name = “Session1” Filter all events from the session whose name is 
“Session1”.

type =1 and class = 2 Filter all process creations.

type = 4 Filter all alarms.

class = 3 and process_id = 45 Filter all events from the activities of process 45.

Argument Description

process_id The process instance in which the activity was created.

activity_id The activity instance to be delegated.

Operator Meaning



Conductor Script Commands

282 iPlanet Integration Server • Process System Guide • August 2001

The DelegateActivity command is only available when an engine is current. Use 
the FindEngine Script command to set the current engine.

The DelegateActivity command is used to hand off the work associated with an 
offered activity to someone else: one or more delegated users. The delegated 
activity must be in READY or ACTIVE state before the DelegateActivity 
command is used. If the activity is in ACTIVE state, any open attributes are 
updated as necessary, the accessor is closed, and the activity’s state is changed to 
READY. The activity is then offered to sessions as permitted by the delegation 
assignment rule.

The user_name and other_info arguments must be supplied if required by the 
delegation assignment rule. For example, if a delegation rule named “ManagerOf” 
looks for the manager of the delegator, then the delegator’s user name and other 
info (in this case the manager’s name) would be passed to the ManagerOf 
assignment rule. This behavior is similar in functionality to the linked activity 
mechanism described in the iIS Process Development Guide.

Once the delegated user has completed (or aborted) the activity, process execution 
continues as specified in the process definition.

state The state of the activity instance to be delegated (READY or 
ACTIVE).

delegation_rule The assignment rule used to assign the activity to sessions, that is, 
to delegated users.

user_name The user name, if any, required by the delegation_rule. If this 
argument is not required, place a null argument in quotation 
marks (““).

other_info Otherinfo string of the user name passed to the delegation_rule, if 
any.

NOTE The state parameter is used to confirm that the current state of the 
activity is what you expect when you issue the DelegateActivity 
command. If the state has changed, the engine does not execute the 
command.

Argument Description



Conductor Script Commands

Appendix A Conductor Script Commands 283

DeleteFilter
The DeleteFilter command deletes the specified event filter in the current 
engine. 

DeleteFilter filter_id

The DeleteFilter command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

You can to use the ListFilters Script command to display a list of filters before 
selecting the filter to delete.

FindDBService 
The FindDBService command sets the specified database service for the current 
engine as the current component. 

FindDBService service_name

The FindDBService command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine. The 
specified database service must also be running.

The FindDBService command is normally used to check the status of a specific 
database service (using the ShowStatus Script command) or to shut it down (using 
the Shutdown Script command). 

Argument Description

filter_id The specified filter.

Argument Description

service_name The specified database service.



Conductor Script Commands

284 iPlanet Integration Server • Process System Guide • August 2001

FindEngine
The FindEngine command sets the specified engine as the current engine. 

FindEngine engine_name

The FindEngine command is always available. The specified engine need not be 
running. 

You can use the ListEngines Script command to display the list of engines. The 
FindEngine command is normally the first command issued to perform any 
engine management, database management, or process execution management 
tasks.

FindGovernor 
The FindGovernor command sets the governor for the current engine as the 
current component.

FindGovernor 

The FindGovernor command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine. The 
governor must also be running.

The FindGovernor command is normally used to check the status of the governor 
(using the ShowStatus Script command) or to shut it down (using the Shutdown 
Script command). 

Argument Description

engine_name The specified engine.



Conductor Script Commands

Appendix A Conductor Script Commands 285

FindNode 
The FindNode command sets the specified node as the current node. 

FindNode node_name

The FindNode command is available only for the current engine. 

The FindNode command is normally used to start engine components (using the 
StartGovernor, StartDBService, and StartUnit Script commands). 

FindParentEngine
The FindParentEngine command makes the component’s parent engine current.

FindParentEngine 

The FindParentEngine command is available only when an engine component is 
current. 

The FindParentEngine command is used to navigate to the current engine when 
one of its components is current and you want to make another of its components 
current. (The Find and Start component Script commands are only available 
when an engine is current.)

FindPrimary 
The FindPrimary command sets the primary engine unit for the current engine as 
the current component.

FindPrimary 

The FindPrimary command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine. The 
primary engine unit must also be running.

Argument Description

node_name The specified node. Must be in same environment as the engine.



Conductor Script Commands

286 iPlanet Integration Server • Process System Guide • August 2001

The FindPrimary command is normally used to check the status of the primary 
engine unit (using the ShowStatus Script command), to change its state (using the 
SetState and Shutdown Script commands), and to perform process execution and 
engine database management tasks.

FindUnit 
The FindUnit command sets the specified engine unit for the current engine as the 
current component. 

FindUnit unit_name

The FindUnit command is available only when an engine is current, so you must 
first use the FindEngine Script command to set the current engine. The specified 
engine unit must also be running.

The FindUnit command is normally used to check the status of a specific engine 
unit (using the ShowStatus Script command) or to change its state (using the 
SetState and Shutdown Script commands). If the engine unit is the primary engine 
unit then you can also perform process execution and engine database 
management tasks.

FlushLog 
The FlushLog command removes all the data held in the history log database 
tables of the current engine.

The FlushLog command is available only when an engine is current, so you must 
first use the FindEngine Script command to set the current engine. 

You can use the FlushLog command when the history log database grows too 
large. Typically you would first back up the current database or export the history 
log tables.

Argument Description

unit_name The specified engine unit.



Conductor Script Commands

Appendix A Conductor Script Commands 287

IIOPServer 
The IIOPServer command starts, stops, or displays information about the IIOP 
service needed to support CORBA/IIOP iIS process client applications.

IIOPServer [start|stop|show]

The IIOPServer command is always available.

The IIOPServer command is used to start up the IIOP service installed by the iIS 
installer program on the central server node in your iPlanet UDS environment. The 
IIOP service is required for CORBA/IIOP client applications to access an iIS 
process engine.

ListActivities 
The ListActivities command displays all activities in the current engine. 

ListActivities 

The ListActivities command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The ListActivities command displays activities in all process instances of all 
registered process definitions. For each activity, the ListActivities command 
displays the following information: activity name, activity ID, activity state, and 
process name.

ListActivityQueues 
The ListActivityQueues command displays queues either for the specified 
process or for all processes in the current engine. 

ListActivityQueues [process_name]

The ListActivityQueues command is available only when an engine is current, 
so you must first use the FindEngine Script command to set the current engine.

Argument Description

process_name The specified process. If not specified then all queues in the engine 
are displayed.



Conductor Script Commands

288 iPlanet Integration Server • Process System Guide • August 2001

The ListActivityQueues command displays all activity queues in a specified 
process definition. For each queue the ListActivityQueues command displays 
the process name and the queue name.

ListConductorDistributions
The ListConductorDistributions command displays a list of the specified type 
of library distribution (generated from iIS process development workshops) 
available for registration.

ListConductorDistributions [type]

The ListConductorDistributions command is always available. If the 
distribution type is not specified, all types are listed, grouped by type.

The ListConductorDistributions command is used to display a list of library 
distributions of the appropriate type that you might want to register using the 
Register Script command. For each distribution, the 
ListConductorDistributions command displays the distribution name and the 
distribution type.

You can generate the libraries listed by this command using the FindPlan Fscript 
command to make a specified plan current, and then issuing the 
MakeConductorDistribution Script command to create the library distribution on 
the central server of the active environment. The list of iIS libraries accessed by 
ListConductorDistributions is maintained by the WFEngAgent service running 
on the central server node.

Argument Description

type The specified distribution type: process definition, assignment rule 
dictionary, or user profile.



Conductor Script Commands

Appendix A Conductor Script Commands 289

ListEngines 
The ListEngines command displays a list of all running and configured engines 
in the current environment. 

ListEngines 

The ListEngines command is always available.

The list displayed includes all configured engines, indicating engines that are 
ONLINE. It also includes engines that are ONLINE for which there is no 
configuration file.

ListFilters
The ListFilters command displays all sieves in the current engine. 

ListFilters 

The ListFilters command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

For each filter the ListFilters command displays the filter ID, the time interval, 
and the filter expression.

ListProcesses
The ListProcesses command displays process instances for a specified process 
(or displays all process instances) in the current engine, or lists a summary of 
process instances by process name.

ListProcesses [short] [name process_name] 

The ListProcesses command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The ListProcesses command displays process instances. 

Argument Description

process_name The specified process. 



Conductor Script Commands

290 iPlanet Integration Server • Process System Guide • August 2001

Options
• If you use the short option, the command displays a summary of process 

instances by process definition. 

• If you use the name option, the command displays all process instances for the 
specified registered process definition. 

• If you do not specify an option, it displays all process instances in the current 
engine. 

For any given process instance, you can monitor or manage its activities, timers, 
attributes, and attribute locks. For each process instance, the ListProcesses 
command displays the following information: process name, the process definition 
version, the value of the primary process attribute, the primary process attribute 
name, the process instance ID, and the process creation time.

ListRegistrations
The ListRegistrations command displays distributions of the specified type (or 
all types) registered with the current engine. 

ListRegistrations [type]

The ListRegistrations command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine. If the 
type is not specified, all types are listed, grouped by type.

You can delete any registered entity from the current engine’s registration database 
using the appropriate UnRegister Script command. You can register additional 
entities using the appropriate Register Script command. For each registered 
entity the ListRegistrations command displays the name of the registered 
component and the type.

Argument Description

type The specified component type: process definition, assignment rule 
dictionary, user profile, uservalidation, or alias.



Conductor Script Commands

Appendix A Conductor Script Commands 291

ListSessions 
The ListSessions command displays all sessions maintained by the current 
engine. 

ListSessions 

The ListSessions command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

For any given session, you can change its state using the SuspendSession or 
TerminateSession Script command. For each session, the ListSessions 
command displays the following information: session name, session ID, user, 
session state (ACTIVE or SUSPENDED), and the number of items on the session 
activity list.

ListTimers
The ListTimers command displays all timers in the current engine. 

ListTimers 

The ListTimers command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The ListTimers command displays timers in all process instances of all registered 
process definitions. For each timer, the ListTimers command displays the timer 
name, the process ID, the state, and the expiration time and date.

ListTransactions
The ListTransactions command lists all in-progress iIS engine transactions for 
all sessions for a specified engine. For details on two-phase commit operations, see 
“Monitoring and Managing Two-Phase Commit” on page 199.

To roll back an in-progress iIS engine transaction, use the RollbackTransaction 
command. To commit an in-progress iIS engine transaction, use the 
CommitTransaction command.



Conductor Script Commands

292 iPlanet Integration Server • Process System Guide • August 2001

MakeConductorDistribution
The MakeConductorDistribution command generates a library distribution for 
the current plan. The plan must be created in the iIS process development 
workshops.

MakeConductorDistribution 

The MakeConductorDistribution command is always available; however, it 
requires that a plan created in the iIS process development workshops also be 
current. To make such a plan current, use the FindPlan Script command (see 
“Making iIS Library Distributions” on page 243).

After issuing the MakeConductorDistribution command, you can use the 
ListConductorDistributions Script command to confirm that the library 
distribution has been generated.

ModLogFlags 
The ModLogFlags command modifies the log message filters set for the current 
component.

ModLogFlags {+(message_filters) | -(message_filters)} 

The ModLogFlags command is only available when an engine component is 
current. 

NOTE Unlike the generation of library distributions in the iPlanet UDS 
development environment, generating library distributions with 
MakeConductorDistribution automatically increases the 
compatibility level of the current plan. iIS developers must keep 
track of the compatibility level of any iIS plans they export, noting 
that their compatibility level will change after generation of library 
distributions.

Argument Description

+(message_filters) Turn on the log flag settings given in the parentheses.

-(message_filters) Turn off the log flag settings given in the parentheses.



Conductor Script Commands

Appendix A Conductor Script Commands 293

To start logging, use the ’+’ followed by a set of message filters in parentheses. To 
stop logging, use the ’-’ followed by a set of message filters in parentheses.

The settings specified with the ModLogFlags command modify the log message 
filters that were set when the current component started up, based on the 
FORTE_LOGGER_SETUP environment variable.

An example of the ModLogFlags command is:

cscript> ModLogFlags +(trc:wr:2:2) 

This filter specifies that all messages about sessions created in the engine —but not 
a lot of detail— be written to the primary engine unit’s log file (on the server node 
on which the primary engine unit is running). For information on iIS message 
filters, see “Messages and Message Filters” on page 212. 

ReadyActivity
The ReadyActivity command changes the state of the specified activity from 
PENDING to READY.

ReadyActivity process_id activity_name

The ReadyActivity command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The ReadyActivity command does not apply to activities that do not pass through 
READY state, such as subprocess activities. 

Before changing the state of an activity from PENDING to READY, the engine first 
evaluates the activity’s Ready expression if one is specified in the process 
definition.

Argument Description

process_id The process instance in which the activity was created.

activity_name The name of the activity.



Conductor Script Commands

294 iPlanet Integration Server • Process System Guide • August 2001

RegisterAlias
The RegisterAlias command registers the specified subprocess alias in the 
current engine’s registration database. For more information on aliases, see “About 
Aliases” on page 143.

RegisterAlias alias_name process_name engine_name environment

The RegisterAlias command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The RegisterAlias command registers an alias only if an alias of the same name is 
not already registered. 

RegisterAssignmentRules
The RegisterAssignmentRules command registers the specified assignment rule 
dictionary (or all available assignment rule dictionaries) in the current engine’s 
registration database. 

RegisterAssignmentRules [dictionary_name]

The RegisterAssignmentRules command is available only when an engine is 
current, so you must first use the FindEngine Script command to set the current 
engine.

Argument Description

alias_name The name of the alias (same as the process name).

process_name The name of the process referenced by the specified alias.

engine_name The name of the engine on which the specified process is executed.

environment The name of the environment in which the specified engine is located. 

Argument Description

dictionary_name The name of the assignment rule dictionary to be registered. If not 
specified, then all available assignment rule dictionaries are 
registered.



Conductor Script Commands

Appendix A Conductor Script Commands 295

Use the ListConductorDistributions Script command to display a list of 
distributions available for registration (you can filter the list for assignment rule 
dictionaries). The RegisterAssignmentRules command registers an assignment 
rule dictionary only if a dictionary of the same name and compatibility level is not 
already registered. 

RegisterProcessDefinition
The RegisterProcessDefinition command registers the specified process 
definition (or all available process definitions) in the current engine’s registration 
database. 

RegisterProcessDefinition [process_name]

The RegisterProcessDefinition command is available only when an engine is 
current, so you must first use the FindEngine Script command to set the current 
engine.

Use the ListConductorDistributions Script command to display a list of 
distributions available for registration. You can filter the list for process definitions. 
The RegisterProcessDefinition command registers a process definition only if 
a process definition of the same name and compatibility level is not already 
registered. 

RegisterUserProfile
The RegisterUserProfile command registers a user profile in the current 
engine’s registration database. 

RegisterUserProfile [user_profile_name]

Argument Description

process_name The name of the process definition to be registered. If not specified, 
then all available process definitions are registered.

Argument Description

user_profile_name The name of the user profile to be registered. If not specified, 
then all available user profiles are registered.



Conductor Script Commands

296 iPlanet Integration Server • Process System Guide • August 2001

The RegisterUserProfile command is available only when an engine is current, 
so you must first use the FindEngine Script command to set the current engine.

Use the ListConductorDistributions Script command to display a list of 
distributions available for registration. You can filter the list for user profiles. You 
can register multiple user profiles with an engine if each has a unique name, but 
you can register only one compatibility level of a user profile of a given name. The 
RegisterUserProfile command registers a user profile only if a user profile of 
the same name is not already registered. 

RegisterValidation 
The RegisterValidation command registers a validation in the current engine’s 
registration database. 

RegisterValidation validation_name

The RegisterValidation command is available only when an engine is current, 
so you must first use the FindEngine Script command to set the current engine.

Use the ListConductorDistributions Script command to display a list of 
distributions available for registration. You can filter the list for validations. You 
can only register one validation with an engine (any previous registration will be 
implicitly unregistered). The RegisterValidation command registers a 
validation only if a validation of the same name and compatibility level is not 
already registered. 

Argument Description

validation_name The name of the validation.



Conductor Script Commands

Appendix A Conductor Script Commands 297

RemoveReadLock 
The RemoveReadLock command removes a read lock on the specified process 
attribute.

RemoveReadLock process_id attribute_name

The RemoveReadLock command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The RemoveReadLock command lets you remove a read lock that remains due to 
some unusual circumstance. Completing or aborting an activity should remove 
any locks placed on a process attribute; however, if a session is unexpectedly 
terminated, locks might remain in place.

RemoveWriteLock
The RemoveWriteLock command removes a write lock on the specified process 
attribute.

RemoveWriteLock process_id attribute_name

The RemoveWriteLock command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine.

The RemoveWriteLock command lets you remove a write lock that remains due to 
some unusual circumstance. Completing or aborting an activity should remove 
any locks placed on a process attribute; however, if a session is unexpectedly 
terminated, locks might remain in place.

Argument Description

process_id The process instance of the specified attribute.

attribute_name The name of the process attribute that is locked.

Argument Description

process_id The process instance of the specified attribute.

attribute_name The name of the process attribute that is locked.



Conductor Script Commands

298 iPlanet Integration Server • Process System Guide • August 2001

RollbackActivity 
The RollbackActivity command changes the state of the specified activity from 
ACTIVE to READY.

RollbackActivity process_id activity_name

The RollbackActivity command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine.

The RollbackActivity command does not apply to activities that do not pass 
through READY state, such as SubProcess, First, and Last activities. 

When you issue the RollbackActivity command, the engine performs the 
following actions:

• Discards pending process attribute updates—rolls back changes that were 
made in performing the activity and frees locks on process attributes

• Changes the activity state from ACTIVE to READY

• Posts an ActivityListUpdate event to all sessions associated with the activity

• If the activity is an offered activity, the engine reassigns it to sessions based on 
the activity’s assignment rules

• If the activity is a queued activity, the engine places it back on the queue to 
which it was assigned

• If the activity is an automatic activity, the engine automatically places it in 
ACTIVE state, and re-evaluates the AutoAction expression for the activity.

RollbackTransaction
The RollbackTransaction command rolls back (undoes) an in-progress iIS engine 
transaction (that is, one in a PREPARE phase). For details on two-phase commit 
operations, see “Monitoring and Managing Two-Phase Commit” on page 199.

Argument Description

process_id The process instance in which the activity was created.

activity_name The name of the activity.



Conductor Script Commands

Appendix A Conductor Script Commands 299

RollbackTransaction {session_ID | transaction_ID} 

To commit an in-progress iIS engine transaction, use the CommitTransaction 
command. To list all in-progress iIS engine transactions for a given engine, use the 
ListTransactions command.

SendMessage
The SendMessage command sends a message to a specified sessions on the current 
engine.

SendMessage session_id message urgency

The SendMessage command is only available when an engine is current. Use the 
FindEngine Script command to set the current engine.

The SendMessage command is used to notify a session about a pending 
administrative action, such as a request for consultation, pending suspension of the 
session, and so forth.

Argument Description

session_ID The identifier of the session which has a transaction in a PREPARE 
phase. A session can have only one in-progress two-phase 
transaction.

transaction_ID The identifier of the transaction in a PREPARE phase.

Argument Description

session_id The specified session.

message An alphanumeric string that constitutes the text of the message. 
Message text must be enclosed in double quotes.

urgency One of two specified string constants: INFORMATIONAL or 
CRITICAL.



Conductor Script Commands

300 iPlanet Integration Server • Process System Guide • August 2001

SetAttributeValue
The SetAttributeValue command sets a specified process attribute in the current 
engine to a specified value.

SetAttributeValue process_id attribute_name attribute_type value

The SetAttributeValue command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine.

The SetAttributeValue command lets you change a specified process attribute 
value of a process instance (for example, a priority attribute, which affects the 
routing between activities).

SetPassword
The SetPassword command sets password protection for opening Conductor 
Script in your active environment. After you set a password, other users cannot 
open Conductor Script (or iIS Console, or iPlanet UDS Environment Console, or 
iPlanet UDS Escript) in that environment without using the password.

SetPassword [old_password] [new_password]

The SetPassword command is always available. The specified engine need not be 
running to use the SetPassword command. 

Argument Description

process_id The process instance of the specified attribute.

attribute_name The name of the process attribute that is to be set.

attribute_type The data type of the attribute value.

value The value to be assigned to the attribute. String values must be 
enclosed in within double quotes.

Argument Description

old_password The current existing password.

new_password The new (or null) password.



Conductor Script Commands

Appendix A Conductor Script Commands 301

You can use the SetPassword Script command to set a password, change an 
existing password to a new password, or delete an existing password.

SetPrimary 
The SetPrimary command sets the specified engine unit for the current engine as 
the primary unit.

SetPrimary unit_name

The SetPrimary command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine. The 
specified engine unit must also be running.

The SetPrimary command is normally used to switch the role of the primary and 
backup engine units. If the specified engine unit is the backup unit, the primary 
unit will be placed in a STANDBY state and the backup unit will then be placed 
ONLINE. If the specified engine unit is the primary unit, nothing will be done.

The SetPrimary command makes the specified engine unit the current component.

SetQueuedActivityPriority
The SetQueuedActivityPriority command reprioritizes activities in an activity 
queue by setting the prioritizing process attribute for a specified activity to a 
specified value.

SetQueuedActivityPriority process_id activity_id prioritizing_value 

Argument Description

unit_name The specified engine unit.

Argument Description

process_id The process instance in which the activity was created.

activity_id The activity ID of the specified activity.

prioritizing_value The value to be assigned to the queue prioritizing process 
attribute of the process instance. 



Conductor Script Commands

302 iPlanet Integration Server • Process System Guide • August 2001

The SetQueuedActivityPriority command is available only when an engine is 
current, so you must first use the FindEngine Script command to set the current 
engine.

The SetQueuedActivityPriority command lets you change the ordering of 
activities in a queue by changing the value of the queue prioritizing attribute for a 
specified activity in the queue. Doing so causes the engine to place the specified 
activity instance in a different position in the queue.

SetState 
The SetState command sets the state of the specified engine unit.

SetState state

The SetState command is only available if the current component is an engine 
unit. Use the FindEngine Script command to set the current engine and the 
FindUnit Script command to make the desired engine unit current.

The SetState command is normally used to take the primary engine unit offline 
for administrative functions and then to restore it to ONLINE state afterwards. 
Placing the primary engine unit in STANDBY state will not cause the partner 
engine unit to come ONLINE.

SetTimer
The SetTimer command sets the specified timer to the specified state and resumes 
operation (or resets the timer).

SetTimer process_id timer_name state [reset] 

Argument Description

state The state to which the engine unit will be set: ONLINE or STANDBY.

Argument Description

process_id The process instance of the specified timer.

timer_name The name of the specified timer.

state The specified new state: ON, OFF, or no change.



Conductor Script Commands

Appendix A Conductor Script Commands 303

The SetTimer command is available only when an engine is current, so you must 
first use the FindEngine Script command to set the current engine.

You can use the SetTimer command to turn any timer on or off, to reset an elapsed 
timer to its original time interval, or to do both. To set new timer expiration times, 
use the SetTimerDeadline or SetTimerElapsed, depending on the type of timer. The 
reset option lets you use the SetTimer command to reset the timer, rather than 
resume operation. This option applies only to elapsed timers.

SetTimerDeadline
The SetTimerDeadline command sets the specified deadline timer to the specified 
state (ON, OFF, or no change) and sets a new expiration time.

SetTimerDeadline process_id timer_name state expiration_time 

The SetTimerDeadline command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine.

You can use the SetTimerDeadline command to turn any deadline timer on or off, 
and to set a new expiration time.

Argument Description

process_id The process instance of the specified timer.

timer_name The name of the specified timer.

state The specified new state: ON, OFF, or no change.

expiration_time The new expiration time in DateTimeData format (dd-nnn-yyyy 
hh:mm:ss, for example, 03-Feb-1993 22:45:12). Applies only to 
deadline timers.



Conductor Script Commands

304 iPlanet Integration Server • Process System Guide • August 2001

SetTimerElapsed
The SetTimerElapsed command sets the specified elapsed timer to the specified 
state (ON, OFF, or no change) and sets a new elapsed time interval until expiration.

SetTimerElapsed process_id timer_name state time_interval 

The SetTimerElapsed command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine.

You can use the SetTimerElapsed command to turn any elapsed timer on or off, 
and to set a new elapsed time interval until expiration.

ShowActivity 
The ShowActivity command displays the properties of the specified activity in the 
current engine.

ShowActivity process_id activity_name

The ShowActivity command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

Argument Description

process_id The process instance of the specified timer.

timer_name The name of the specified timer.

state The specified new state: ON, OFF, or no change.

time_interval The new time interval until expiration, in IntervalData format 
(years:months:days:hours:minutes:seconds:milliseconds). Applies 
only to elapsed timers.

Argument Description

process_id The process instance in which the activity was created.

activity_name The name of the activity.



Conductor Script Commands

Appendix A Conductor Script Commands 305

The ShowActivity command displays the following information: 

• activity name 

• activity ID

• process name

• process ID

• activity state

• activity type

• application description

• list of sessions for which activity is on session activity list, displaying session 
ID

• list of process attributes, displaying: attribute name, attribute type, attribute 
value, attribute lock status

• list of timer links, displaying: timer link name, activity state, timer state, value 

You can use the ListActivities Script command to display a list of activities in 
the engine before selecting the activity to display. 

ShowActivityQueue
The ShowActivityQueue command displays the contents either of the specified 
queue or of all queues for a given process definition executed by the current 
engine.

ShowActivityQueue process_name [queue_name] 

The ShowActivityQueue command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine.

Argument Description

process_name The name of the process definition in which the queued activity is 
defined.

queue_name The name of the specified activity queue (the same as the name of the 
queued activity). If not specified, then the contents of all queues for 
the specified process are displayed.



Conductor Script Commands

306 iPlanet Integration Server • Process System Guide • August 2001

The ShowActivityQueue command displays a list of activities in the queue, if any, 
or of sessions waiting for a queued activity if no activities are in the queue. For each 
activity in the queue, the ShowActivityQueue command displays the following 
information: activity name, activity ID, activity state, prioritizing value (value of 
the queue prioritizing process attribute), and process ID.

ShowConfiguration
The ShowConfiguration command displays contents of the configuration file of 
the current engine.

ShowConfiguration 

The ShowConfiguration command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine. No 
engine components need be running for this command to work.

ShowEngine 
The ShowEngine command displays the configuration, state, and other properties 
of the specified engine. 

ShowEngine engine_name

The ShowEngine command is always available. The specified engine need not be 
running to use the ShowEngine command.

The ShowEngine command displays the following properties: 

• engine name

• governor run state: TRUE or FALSE

• primary engine unit run state: TRUE or FALSE

• number and names of engine units running

• number and names of database services running

Argument Description

engine_name The specified engine.



Conductor Script Commands

Appendix A Conductor Script Commands 307

You can use the ListEngines Script command to display a list of engines in the 
environment before selecting the engine to display. 

ShowLogFlags
The ShowLogFlags command displays the log message filters (log flags) for the 
current component.

ShowLogFlags 

The ShowLogFlags command is available only when an engine component is 
current. 

For information on iIS message filters, see “Messages and Message Filters” on 
page 212. 

ShowProcess 
The ShowProcess command displays the properties of the specified process 
instance in the current engine.

ShowProcess process_id

The ShowProcess command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The ShowProcess command displays the following information: 

• process name 

• process compatibility level

• process ID

• creation time

• list of process attributes, displaying: attribute name, attribute type, attribute 
value, attribute lock status

Argument Description

process_id The specified process instance.



Conductor Script Commands

308 iPlanet Integration Server • Process System Guide • August 2001

• list of activities, displaying activity name, activity ID, process ID, activity state 
(as in ListActivities Script command)

• list of timers, displaying timer name, process ID, state, type, expiration time 
and date (as in ListTimers Script command)

• parent activity and engine (for subprocesses)

• list of active attribute accessors

You can use the ListProcesses Script command to display a list of process 
instances in the engine before selecting the process instance to display. 

ShowSession
The ShowSession command displays the properties of the specified session in the 
current engine.

ShowSession session_id

The ShowSession command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The ShowSession command displays the following information: 

• session ID

• session name

• client connected: TRUE or FALSE

• session state: ACTIVE or SUSPENDED

• version

• administrative user: TRUE or FALSE

• activity list size

Argument Description

session_id The specified session.



Conductor Script Commands

Appendix A Conductor Script Commands 309

• user

• user’s roles

• list of active attribute accessors

You can use the ListSessions Script command to display a list of sessions in the 
engine before selecting the session to display. 

ShowStatus 
The ShowStatus command displays status information for the current engine or 
any of its individual components.

ShowStatus [short]

The ShowStatus command is available only when the engine is current or if an 
engine component is current. Use the FindEngine Script command to set the 
current engine, and, in addition, the FindGovernor, FindDBService, FindUnit, or 
FindPrimary Script command to make the corresponding engine component 
current.

The properties displayed by the ShowStatus command depend upon whether the 
engine is current or an engine component is current. If an engine component is 
current, then using the short option of the ShowStatus command will display an 
abbreviated set of properties for that component (italicized properties in the lists 
below are not displayed)

engine:
• engine name

• governor run state: TRUE or FALSE

• primary engine unit run state: TRUE or FALSE

• number and names of engine units running

• number and names of database services running

• number of idle database services



Conductor Script Commands

310 iPlanet Integration Server • Process System Guide • August 2001

engine unit:
(See also “primary engine unit:” on page 311.)

• unit name

• unit state: ONLINE or STANDBY

• shell state: IDLE, TOKEN_REQUESTED (negotiating with partner), or 
CONNECTED

• governor channel: OPEN or CLOSED

• partner channel: OPEN or CLOSED

• ping interval

• start time 

• host node 

database service:
• database service name

• database connection state: CONNECTED or DISCONNECTED

• router channel: OPEN or CLOSED

• ping interval

• start time 

• host node 

• work units processed 

governor:
• governor state: E1, BOTH, E2, or IDLE

• ping interval

• start time 

• host node 



Conductor Script Commands

Appendix A Conductor Script Commands 311

primary engine unit:
• unit name

• startup phase (if not ONLINE)

• unit state: ONLINE or STANDBY

• shell state: IDLE, TOKEN_REQUESTED (negotiating with partner), or 
CONNECTED

• governor channel: OPEN or CLOSED

• partner channel: OPEN or CLOSED

• ping interval

• start time 

• host node 

• instruments 

The following table shows the instrumentation displayed for the primary engine 
unit.

Instrument Description

ActiveSessions Number of current active sessions

SuspendedSessions Number of current suspended sessions

CurrentSessions Number of current sessions = ActiveSessions 
+SuspendedSessions 

TotalSessions Number of sessions since engine startup = 
CurrentSessions + Number of terminated sessions

ActiveProcessInstances Number of current active process instances

TotalProcessInstances Number of process instances since engine startup = 
ActiveProcess Instances + number of terminated process 
instances

ActiveSubProcessInstances Number of current active subprocess instances

TotalSubProcessInstances Number of subprocess instances since engine startup = 
ActiveSubProcess Instances + number of terminated 
subprocess instances

PendingActivities Number of current PENDING activities

ReadyActivities Number of current READY activities



Conductor Script Commands

312 iPlanet Integration Server • Process System Guide • August 2001

ActiveActivities Number of current ACTIVE activities

CurrentActivities Number of current activities = PendingActivities + 
ReadyActivities + ActiveActivities

CompletedActivities Number of completed activities (terminated) since engine 
startup

AbortedActivities Number of aborted activities (terminated) since engine 
startup

TotalActivities Number of activities since engine startup = 
CurrentActivities +

CompletedActivities + AbortedActivities

RunningTimers Number of current running timers

StoppedTimers Number of current stopped timers

CurrentTimers Number of current timers = RunningTimers + 
StoppedTimers

TotalTimers Number of timers since engine startup = CurrentTimers + 
number of terminated timers

ReadLocks Number of current read (shared) locks

WriteLocks Number of current write (exclusive) locks

CurrentLocks Number of current locks = ReadLocks + WriteLocks

TotalLocks Number of locks since engine startup = CurrentLocks + 
number of terminated locks

QueuedReadLocks Number of current read (shared) locks queued

QueuedWriteLocks Number of current write (exclusive) locks queued

ResponseTime The average time it takes for the engine to complete a 
request made by a session

ActivePages The size of the primary engine unit memory heap

AllocatedPages The amount of the active memory currently allocated to 
objects created by the primary engine unit

PeakAllocatedPages The amount of allocated memory remaining after the most 
recent memory reclamation (probably the best measure of 
active memory utilization)

TransactionCount The number of transactions completed with the engine 
database since engine startup.

DatabaseName The name of the engine database.

Instrument Description



Conductor Script Commands

Appendix A Conductor Script Commands 313

ShowTimer 
The ShowTimer command displays the properties of the specified timer.

ShowTimer process_id timer_name

The ShowTimer command is available only when an engine is current, so you must 
first use the FindEngine Script command to set the current engine.

The ShowTimer command displays the following information: 

• timer name

• timer state

• process name and ID

• type

• started: TRUE or FALSE

• expiration time and date

You can use the ShowProcess Script command to display a list of timers in a 
specified process instance before selecting the timer to display. 

LoginUserName The database user (login) name.

LoggingState The database logging settings: the tables to which the 
engine is logging state and history information.

TransactionCommitTime The average time it takes the engine to commit a change of 
state (complete a transaction involving the engine 
database).

DatabaseType The database management system: ORACLE, SYBASE, etc.

DBServiceRequestTime The average time it takes for the database service to 
complete a request made by the engine.

Argument Description

process_id The process instance of the specified timer.

timer_name The specified timer.

Instrument Description



Conductor Script Commands

314 iPlanet Integration Server • Process System Guide • August 2001

Shutdown 
The Shutdown command shuts down the current engine or one of its individual 
components.

Shutdown 

The Shutdown command is available only when the engine is current or if an 
engine component is current. Use the FindEngine Script command to set the 
current engine, and, in addition, the FindGovernor, FindDBService, FindUnit, or 
FindPrimary Script command to make the corresponding engine component 
current.

The effect of the Shutdown command depends upon whether the engine is current 
or an engine component is current: 

• if engine: shuts down all components of current engine

• if engine component: shuts down the current component

If the Shutdown command results in a primary engine unit being shut down, then 
all state information in the engine is lost and must be recovered from the engine 
database when a primary unit comes online.

StartActivity 
The StartActivity command changes the state of the specified activity from 
READY to ACTIVE.

StartActivity process_id activity_name session_id

The StartActivity command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The StartActivity command does not apply to activities that do not pass through 
ACTIVE or READY state, such as First and Last activity. 

Argument Description

process_id The process instance in which the activity was created.

activity_name The name of the activity.

session_id The session that will perform the ACTIVE activity. Applies only to 
Offered and Queued activities.



Conductor Script Commands

Appendix A Conductor Script Commands 315

In the case of offered and queued activities, which are performed by client 
applications, the engine will assign the ACTIVE activity to the session specified by 
the session_id parameter. In the case of Automatic or SubProcess activities, which 
are not directly performed by client applications, the engine need not assign the 
ACTIVE activity to a session. 

StartDBService 
The StartDBService command starts the specified database service for the current 
engine. 

StartDBService service_name priority

The StartDBService command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The StartDBService command reads the memory flag setting for database service 
specified in the engine configuration file (see “Engine Configuration File” on 
page 90 and Step 10 under “How to Configure a New Engine” on page 95).

The ShowStatus Script command—or the FindDBService command followed by 
the ShowStatus command—can be used to check that the database service has 
started up properly.

StartEngine
The StartEngine command starts all engine components as specified in the engine 
configuration file (see “Engine Configuration File” on page 90).

StartEngine [newLog] [newState] [newRegistration] [cold]

The StartEngine command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

Argument Description

service_name The specified database service.

priority An integer (positive or negative) that assigns a priority to the 
specified service. A higher numeric value signifies a higher priority. 
A default priority of “1” is used if no priority is specified. See “Full 
Configuration: Failover and Load Balancing Combined” on page 35.



Conductor Script Commands

316 iPlanet Integration Server • Process System Guide • August 2001

The StartEngine command includes a number of start options that create new 
engine database tables:

The newLog, newState, and newRegistration options are independent, except 
that you cannot create new registration tables without also creating new state 
tables.

The ShowStatus Script command can be used to check that the engine has started 
up properly.

StartGovernor
The StartGovernor command starts the governor for the current engine.

StartGovernor 

The StartGovernor command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

Table A-1 StartEngine Command Options

Option Description

newLog New history log database tables are created during the primary 
engine unit startup process. All history log information stored in 
an existing database is lost.

newState New current state database tables are created during the primary 
engine unit startup process. All current state information stored in 
an existing database is lost.

newRegistration New registration database tables are created during the primary 
engine unit startup process. All registration information stored in 
an existing database is lost. You must also specify newState 
when you specify the newRegistration option.

cold All new database tables (log, state, and registration) are created 
during the primary engine unit startup process. The cold option 
must always be used the first time an engine is started. If used in 
subsequent engine starts, however, the cold option will cause 
deletion of the existing engine database before the creation of the 
new one. All current state information, history log data, and 
registration information stored in an existing database is lost.



Conductor Script Commands

Appendix A Conductor Script Commands 317

The StartGovernor command reads the memory flag setting for governor 
specified in the engine configuration file (see “Engine Configuration File” on 
page 90 and Step 10 under “How to Configure a New Engine” on page 95).

The ShowStatus Script command—or the FindGovernor command followed by 
the ShowStatus command—can be used to check that the governor has started up 
properly.

StartTimer
The StartTimer command changes the state of a specified timer from OFF to ON.

StartTimer process_id timer_name

The StartTimer command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The StartTimer command lets you start the specified timer or restart it if it has 
previously been turned off. 

StartUnit
The StartUnit command starts the specified engine unit for the current engine. 

StartUnit unit_name [newLog] [newState] [newRegistration] [cold]

The StartUnit command is available only when an engine is current, so you must 
first use the FindEngine Script command to set the current engine.

Argument Description

process_id The process instance of the specified timer.

timer_name The name of the timer to be started.

Argument Description

unit_name The specified engine unit.



Conductor Script Commands

318 iPlanet Integration Server • Process System Guide • August 2001

The StartUnit command includes the following start options that create new 
engine database tables:

The newLog, newState, and newRegistration options are independent, except 
that you cannot create new registration tables without also creating new state 
tables.

The StartUnit command reads the memory flag setting for the engine unit 
specified in the engine configuration file (see “Engine Configuration File” on 
page 90 and Step 10 under “How to Configure a New Engine” on page 95).

The ShowStatus Script command— or the FindUnit command followed by the 
ShowStatus command—can be used to check that the engine unit has started up 
properly.

Table A-2 StartUnit Command Options

Option Description

newLog New history log database tables are created during the primary 
engine unit startup process. All history log information stored in 
an existing database is lost.

newState New current state database tables are created during the primary 
engine unit startup process. All current state information stored in 
an existing database is lost.

newRegistration New registration database tables are created during the primary 
engine unit startup process. All registration information stored in 
an existing database is lost. You must also specify newState 
when you specify the newRegistration option.

cold All new database tables (log, state, and registration) are created 
during the primary engine unit startup process. The cold option 
must always be used the first time an engine is started. If used in 
subsequent engine starts, however, the cold option causes 
deletion of the existing engine database before the creation of the 
new one. All current state information, history log data, and 
registration information stored in an existing database is lost.



Conductor Script Commands

Appendix A Conductor Script Commands 319

StopTimer
The StopTimer command changes the state of the specified timer from ON to OFF.

StopTimer process_id timer_name

The StopTimer command is available only when an engine is current, so you must 
first use the FindEngine Script command to set the current engine.

The StopTimer command lets you stop the specified timer. The timer can be 
subsequently restarted with the StartTimer Script command. 

SuspendAllSessions
The SuspendAllSessions command suspends all active sessions in the current 
engine.

SuspendAllSessions 

The SuspendAllSessions command is available only when an engine is current, 
so you must first use the FindEngine Script command to set the current engine.

The SuspendAllSessions command places all ACTIVE sessions in SUSPENDED 
state, making them dormant: the engine cannot assign new activities to suspended 
sessions or post events to them.

Automatic reconnect by the client application does not take place if sessions are 
suspended with the SuspendSession command. A subsequent explicit client 
request to open each session can restore the session to ACTIVE state or create a 
new session, depending on the value of the reconnectAction property set when 
each session was originally opened.

The engine posts a SessionSuspended event on each session before it is suspended, 
so that the client applications can take appropriate action. The effect of suspending 
a session on any ACTIVE activities depends on the suspendAction property set by 
each client application when accepting each activity.

Argument Description

process_id The process instance of the specified timer.

timer_name The name of the timer to be reset.



Conductor Script Commands

320 iPlanet Integration Server • Process System Guide • August 2001

SuspendSession
The SuspendSession command suspends the specified active session, or sessions, 
in the current engine.

SuspendSession session_id [session_id…]

The SuspendSession command is available only when an engine is current, so you 
must first use the FindEngine Script command to set the current engine.

The SuspendSession command places an ACTIVE session in SUSPENDED state. 
This means that the session is now dormant: the engine cannot assign new 
activities to a suspended session or post events to it. 

Automatic reconnect by the client application does not take place if a session is 
suspended using the SuspendSession command. A subsequent explicit client 
request to open the session can restore it to ACTIVE state or create a new session, 
depending on the value of the reconnectAction property set when the session was 
first opened.

The engine posts a SessionSuspended event on the session before it is suspended, 
so that the client application can take appropriate action. The effect of suspending a 
session on any ACTIVE activities depends on the suspendAction property set by 
the client application when accepting each activity.

TerminateAllSessions
The TerminateAllSessions command terminates all sessions in the current 
engine.

TerminateAllSessions

The TerminateAllSessions command is available only when an engine is current, 
so you must first use the FindEngine Script command to set the current engine.

The TerminateAllSessions command ends all sessions and deletes them from 
the engine and the engine’s state database table.

Argument Description

session_id The specified active session. (A list of up to ten session_ids separated by 
spaces is supported.)



Conductor Script Commands

Appendix A Conductor Script Commands 321

The engine posts a SessionTerminated event on each session before it is terminated, 
so that the respective client applications can take appropriate action. The effect of 
terminating a session on any ACTIVE activities is to place the activities back in 
READY state.

TerminateSession
The TerminateSession command terminates the specified session in the current 
engine.

TerminateSession session_id [session_id…]

The TerminateSession command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine.

The TerminateSession command ends the session and deletes it from the engine 
and the engine’s state database table.

The engine posts a SessionTerminated event on the session before it is terminated, 
so that the client application can take appropriate action. The effect of terminating 
a session on any ACTIVE activities is to place the activities back in a READY state.

Uninstall
The Uninstall command deletes an iIS distribution of the specified name and 
compatibility level from the environment repository.

Uninstall name compatibility_level 

Argument Description

session_id The specified session. (A list of up to ten session_ids separated by spaces 
is supported.)

Argument Description

name The name of the library distribution to be deleted from the 
environment repository.

compatibility_level The compatibility level of the distribution to be deleted.



Conductor Script Commands

322 iPlanet Integration Server • Process System Guide • August 2001

The Uninstall command is always available. 

The Uninstall command is normally performed to clean up the environment 
repository after unregistering an iIS distribution from all engines in an 
environment. 

UnRegisterAlias
The UnRegisterAlias command unregisters the specified subprocess alias from 
the current engine’s registration database. For more information on aliases, see 
“About Aliases” on page 143.

UnRegisterAlias alias_name t

The UnRegisterAlias command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine.

Use the ListRegistrations Script command to display a list of components 
registered with the current engine (you can filter the list for aliases). The 
UnRegisterAlias command will remove the alias from the registration table, 
however it should be replaced by a new alias if the location of a subprocess is 
required by a process executing on the current engine. 

UnRegisterAssignmentRules
The UnRegisterAssignmentRules command deletes all assignment rules (or just 
the specified rule) in the specified assignment rule dictionary from the current 
engine’s registration database. 

UnRegisterAssignmentRules dictionary_name [rule_name]

Argument Description

alias_name The name of the alias (same as the process name).

Argument Description

dictionary_name The name of the assignment rule dictionary to be unregistered. 



Conductor Script Commands

Appendix A Conductor Script Commands 323

The UnRegisterAssignmentRules command is available only when an engine is 
current, so you must first use the FindEngine Script command to set the current 
engine.

Use the ListRegistrations Script command to display a list of components 
registered with the current engine (you can filter the list for assignment rule 
dictionaries). The UnRegisterAssignmentRules command removes the specified 
assignment rule or the entire assignment rule dictionary from the registration table, 
preventing subsequent use of any of the assignment rules in process execution on 
the current engine. 

UnRegisterProcessDefinition
The UnRegisterProcessDefinition command deletes the specified process 
definition from the current engine’s registration database.

UnRegisterProcessDefinition process_name

The UnRegisterProcessDefinition command is available only when an engine 
is current, so you must first use the FindEngine Script command to set the current 
engine.

Use the ListRegistrations Script command to display a list of components 
registered with the current engine. You can filter the list for process definitions. 
The UnRegisterProcessDefinition command removes the specified process 
definition from the registration table but will have no effect on currently running 
process instances. It prevents subsequent creation of instances of the process 
definition on the current engine. 

rule_name The name of the assignment rule to be unregistered. If not 
specified, then all assignment rules in the specified dictionary 
will be unregistered.

Argument Description

process_name The name of the registered process definition.

Argument Description



Conductor Script Commands

324 iPlanet Integration Server • Process System Guide • August 2001

UnRegisterUserProfile
The UnRegisterUserProfile command deletes the specified user profile from the 
current engine’s registration database.

UnRegisterUserProfile user_profile_name

The UnRegisterUserProfile command is available only when an engine is 
current, so you must first use the FindEngine Script command to set the current 
engine.

Use the ListRegistrations Script command to display a list of components 
registered with the current engine. You can filter the list for user profiles. The 
UnRegisterUserProfile command removes the specified user profile from the 
registration table.

WaitForStartup
The WaitForStartup command waits a specified timeout period for a specified 
engine unit to start up, and prints an error message if the engine unit does not start 
within the specified time. 

WaitForStartup unit_name timeout

Argument Description

user_profile_name The name of the registered user profile.

Argument Description

unit_name The specified engine unit.

timeout A timeout period (in seconds) within which the specified engine unit must 
start up, or an error message is written.



Conductor Script Commands

Appendix A Conductor Script Commands 325

The WaitForStartup command is available only when an engine is current, so 
you must first use the FindEngine Script command to set the current engine.

In a script, the WaitForStartup command is used after a StartUnit Script 
command. The WaitForStartup command causes the script to pause until the 
specified engine unit successfully starts up before continuing with subsequent 
Script commands. If the engine unit does not start up within the specified time, an 
error message is generated and the script aborts.



Conductor Script Commands

326 iPlanet Integration Server • Process System Guide • August 2001



327

Appendix B

Engine Database Schema

This appendix documents the engine database schema. It lists the database tables 
and the specification of each, according to the following categories:

• current state tables

• registration tables

• history log tables

The tables are grouped first by category, and then alphabetically within each 
category. For an alphabetical listing of all tables, see “Alphabetical Listing of 
Tables” on page 329.

Database Tables by Category
The tables comprising the engine database are listed in the following table. They 
are grouped into the following categories: current state, registration, and history 
log tables.

Current State Tables Registration Tables History Log Tables

WFHRegistration WFHRegistrationLog

WFHAlias WFHAliasLog

WFHProcess WFHProcessLog*
WFHProcessStateLog*

WFHProcAttributes WFHProcAttribLog*

WFHLocks WFHAttribLockLog*

* corresponds to History log configuration options. See “How to Configure a New Engine” on page 95.



Database Tables by Category

328 iPlanet Integration Server • Process System Guide • August 2001

WFHProcParameters

WFHTerminatedProcs

WFHTermProcParas

WFHActivity WFHActivityLog*
WFHActStateLog*

WFHQueuedActivity

WFHRoleBasedAct

WFHActivityTokens

WFHActivityUsers

WFHAssignment

WFHSession WFHSessionLog*

WFHSessionRole

WFHSessAttributes

WFHRetryInfo

WFHTimer WFHTimerLog*
WFHTimerStateLog*

WFHActiveTimer

WFHComplexRule

WFHControl

WFHRecoveryHelp

WFHColdStart WFHColdStartLog

WFHPerformanceLog

WFHAlarmLog

Current State Tables Registration Tables History Log Tables

* corresponds to History log configuration options. See “How to Configure a New Engine” on page 95.



Alphabetical Listing of Tables

Appendix B Engine Database Schema 329

Alphabetical Listing of Tables
The following is an alphabetical list of all tables created in the engine database, 
with a page reference to details about each.

Table B-1 Engine Database Tables

Database Table See… Description

WFHActiveTimer page 332 Active timers that are not in memory.

WFHActivity page 332 Activity instances that are current in the engine.

WFHActivityLog page 348 Log of activity instances (both current and past) 
in the system.

WFHActivityTokens page 335 Activity token counts—number of times the 
activity has completed—that are current in the 
system.

WFHActivityUsers page 335 Activity link information: who has completed 
some activity. A row is held representing each 
activity that is listed as the activity link in some 
other activity.

WFHActStateLog page 348 Log of state changes in activity instances in the 
engine.

WFHAlarmLog page 349 A log of all alarms generated on this engine, 
recorded whenever history logging is turned on.

WFHAlias page 346 Aliases currently registered with the engine.

WFHAliasLog page 349 A log of aliases registered with the engine.

WFHAssignment page 336 Used by the engine to track the stack of 
assignment rules generated by ConsultActivity 
and DelegateActivity method calls from client 
applications.

WFHAttribLockLog page 350 Log of access obtained on all instances of process 
attributes.

WFHColdStart page 336 System maintained table used by the engine 
before performing a cold start.

WFHColdStartLog page 350 Always contains one row showing the last time 
the engine was cold started (thus dropping and 
re-creating all registration, state, and log tables).

WFHComplexRule page 337 Used by the engine to track activities that 
contain complex assignment rules (assignment 
rules with custom Evaluate methods).



Alphabetical Listing of Tables

330 iPlanet Integration Server • Process System Guide • August 2001

WFHControl page 337 System maintained table of sequence values for 
producing unique IDs for process, session, and 
timer instances.

WFHLocks page 337 The type of access held on all instances of 
process attributes.

WFHPerformanceLog page 351 Provides performance statistics for the engine. 
Average time measurements are expressed in 
milliseconds.

WFHProcAttribLog page 352 Log of value changes to process attributes.

WFHProcAttributes page 338 Current values of process attributes within all 
current process instances.

WFHProcess page 339 All current process instances within the engine.

WFHProcessLog page 353 Log of process instances created in this engine.

WFHProcessStateLog page 354 Log of state changes to process instances in this 
engine.

WFHProcParameters page 341 For a synchronous subprocess, the list of output 
parameters it must supply to its parent.

WFHQueuedActivity page 341 Managed by the engine to maintain queued 
activities not in memory.

WFHRecoveryHelp page 341 Internal use only.

WFHRegistration page 347 Currently registered iIS plans.

WFHRegistrationLog page 354 Log of registrations with the engine.

WFHRetryInfo page 342 Internal use only. Managed by the engine to 
ensure consistency between engine actions and 
messages to client applications.

WFHRoleBasedAct page 342 Internal use only. Managed by the engine to 
manage role-based activities.

WFHSessAttributes page 343 User profile attributes associated with a session.

WFHSession page 343 Currently active and suspended client sessions 
with the engine.

WFHSessionLog page 355 Log of current and past client session.

Table B-1 Engine Database Tables (Continued)

Database Table See… Description



Database Schema Reference

Appendix B Engine Database Schema 331

Database Schema Reference
This section provides an annotated description of all the tables created and 
maintained by an iIS process engine. The iIS process engine automatically creates 
these tables when the engine is cold started and maintain their contents during 
normal operations. You can use the information provided here to write queries 
against the tables for management information on current and past process 
instances. However, you should avoid altering the rows in the tables (with the 
exception of periodically flushing history tables of rows that are no longer needed).

Some tables are for internal use only, and are unlikely to be useful for any 
management queries. The documentation on these tables is limited.

The data type description for each entry in a table is based on the representation 
used in Oracle databases. The actual data type may differ, depending on the 
database vendor you are using. 

WFHSessionRole page 344 Current client sessions and their roles. If a 
session has multiple roles, this table has a 
separate row for each role.

WFHTerminatedProcs page 344 Internal use only. Managed by the engine to 
track aborted synchronous subprocesses.

WFHTermProcParas page 345 Internal use only. Managed by the engine to 
track output parameters from aborted 
synchronous subprocesses.

WFHTimer page 345 Timer instances currently instantiated in the 
engine.

WFHTimerLog page 355 Log of timer instances that have been 
instantiated in the engine.

WFHTimerStateLog page 356 Log of the state of timer instances for the engine.

NOTE The schema presented here may differ from the schema for previous 
versions of iIS. Also, the schema is subject to further change in 
future versions.

Table B-1 Engine Database Tables (Continued)

Database Table See… Description



Database Schema Reference

332 iPlanet Integration Server • Process System Guide • August 2001

Current State Tables
The following is an alphabetical list of all current state tables in the engine 
database. Indexes to tables are indicated by a checkmark (✔) in the Index column. 
In some cases, a table has an alternate index, indicated by a bullet (●).

For a description of each of these tables, refer to Table B-1 on page 329.

Table B-2 WFHActiveTimer

Name Index Null? Type Description

ID ✔ NOT 
NULL

NUMBER(38) Identifier for the timer instance within 
the process instance designated by 
PROCESSID.

PROCESSID ✔ NOT 
NULL

NUMBER(38) Unique identifier for the process instance 
in which this active timer occurs.

TIMETOALARM DATE Date time stamp indicating when the 
timer is expected to expire.

Table B-3 WFHActivity 

Name Index Null? Type Description

PROCESSID ✔ NOT 
NULL

NUMBER(38) Unique identifier for the process instance 
in which this activity instance occurs.

ROOTPROCID NUMBER(38) Identifier for the process instance on this 
engine that originally invoked this 
process. For a process instance that is not 
running as a subprocess, this is the same 
as PROCESSID. For a subprocess, this is 
the PROCESSID of the parent process 
instance, or its parent, or its parent; up to 
the original initiating process instance.



Database Schema Reference

Appendix B Engine Database Schema 333

TYPE NUMBER(38) Type of activity:

1 – First activity

2 – Last activity

3 – Offered activity

4 – Subprocess activity

5 – Automatic activity

6 – Queued activity

7 – Junction activity

Note: These constant values are internal 
to the engine only. You should avoid 
their use if possible.

ID ✔ NOT 
NULL

NUMBER(38) Unique identifier for this activity 
instance within the process instance in 
which it occurs.

STATE NUMBER(38) Activity state:

10 – WFActivity.PENDING

20 – WFActivity.READY

25 – WFActivity.PREPARE_ACTIVE

30 – WFActivity.ACTIVE

35 – WFActivity.PREPARE_COMPLETE

40 – WFActivity.COMPLETED

45 – WFActivity.PREPARE_ABORT

50 – WFActivity.ABORTED

PREVSTATE NUMBER(38) The state the activity was in immediately 
prior to the current state. See the values 
for STATE above.

CREATETIME DATE Time that the activity instance was 
created.

SESSIONID ● NUMBER(38) For an ACTIVE activity, the ID of the 
session that owns the activity. This 
column links to column 
WFHSESSION.ID

Table B-3 WFHActivity  (Continued)

Name Index Null? Type Description



Database Schema Reference

334 iPlanet Integration Server • Process System Guide • August 2001

ACTNAME VARCHAR2(64) The name of the activity in the process 
definition.

ABORTRACTION NUMBER(38) Abort routing information. Internal use 
only.

WUSER VARCHAR2(64) The “LinkedUser” information passed 
into this activity by its activity link. If 
there is no activity link, value is 
“<NO_LINKED_USER>”

OTHERINFO VARCHAR2(64) The “OtherInfo” information passed into 
this activity by its activity link. If there is 
no activity link, value is 
“<NO_OTHERINFO>”

CURASSIGNRULE VARCHAR2(64) This column is used internally by the 
engine to track dynamic assignment 
rules during a ConsultActivity or 
DelegateActivity method call from a 
client application.

NEXTASSIGNID NUMBER(38) This column is used internally by the 
engine to track dynamic assignment 
rules during a ConsultActivity or 
DelegateActivity method call from a 
client application.

FIFOORDER NUMBER(38) For a queued activity with the queue 
prioritized by ‘First In First Out’ (the 
default), a system-assigned sequence 
value for placement of this activity in the 
queue.

SUSPENDACTION NUMBER(38) Actions to take when the activity is 
suspended:

700 – WFActivity.RETAIN

701 – WFActivity.REMOVE

MARKER NOT 
NULL

NUMBER(38) Internal use only.

PRIORITY NOT 
NULL

NUMBER(38) Internal use only.

READYCOUNT NOT 
NULL

NUMBER(38) Internal use only.

Table B-3 WFHActivity  (Continued)

Name Index Null? Type Description



Database Schema Reference

Appendix B Engine Database Schema 335

Table B-4 WFHActivityTokens 

Name Index Null? Type Description

PROCESSID ✔ NOT 
NULL

NUMBER(38) Unique identifier for the process instance 
in which this activity instance occurs.

ACTIVITYID ✔ NOT 
NULL

NUMBER(38) Unique identifier for a pending activity 
instance within the process instance in 
which it occurs. 

ACTIVITYNAME  VARCHAR2(64) The name of an activity that is an 
immediate predecessor of the activity 
instance identified by the ACTIVITYID 
in this row.

TOKCOUNTER NUMBER(38) Value of the attribute 
_COUNT<ActivityName>, where 
<ActivityName> is the same as 
ACTIVITYNAME in this row.

Table B-5 WFHActivityUsers 

Name Index Null? Type Description

PROCESSID ✔ NOT 
NULL

NUMBER(38) Unique identifier for the process instance 
in which this activity instance occurs.

ACTIVITYNAME ✔ NOT 
NULL

VARCHAR2(64) The name of the activity in the process 
definition.

WUSER VARCHAR2(64) The name of the user who completed the 
last instance of this activity.

OTHERINFO VARCHAR2(64) The otherInfo of the user who completed 
the last instance of this activity.



Database Schema Reference

336 iPlanet Integration Server • Process System Guide • August 2001

Table B-6 WFHAssignment 

Name Index Null? Type Description

PROCESSID ✔ NOT 
NULL

NUMBER(38) Unique identifier for the process instance 
in which this activity instance occurs.

ACTIVITYID ✔ NOT 
NULL

NUMBER(38) Identifier for the activity instance in the 
process instance designated by 
PROCESSID.

ID ✔ NUMBER(38) Identifier for the assignment rule.

LINKEDUSER VARCHAR2(64) The “LinkedUser” information passed 
into this activity by its activity link. If 
there is no activity link, value is 
“<NO_LINKED_USER>”

OTHERINFO VARCHAR2(64) The “OtherInfo” information passed into 
this activity by its activity link. If there is 
no activity link, value is 
“<NO_OTHERINFO>”

ASSIGNMENTRULE VARCHAR2(64) The name of an assignment rule 
generated by a call to ConsultActivity or 
DelegateActivity from a client 
application.

Table B-7 WFHColdStart 

Name Index Null? Type Description

SEQID NUMBER(38) Internal use only.

VERNUM NUMBER(38) Schema version of the engine database.

LOGVER NUMBER(38) Version of the database log table.

REGVER NUMBER(38) Version of the database registration 
table.

STATEVER NUMBER(38) Version of the database state table.



Database Schema Reference

Appendix B Engine Database Schema 337

Table B-8 WFHComplexRule 

Name Index Null? Type Description

PROCESSID ✔ NUMBER(38) Unique identifier for the process instance 
in which this activity instance occurs.

ACTIVITYID ✔ NUMBER(38) Identifier for the activity instance in the 
process instance designated by 
PROCESSID.

Table B-9 WFHControl 

Name Index Null? Type Description

NEXTSESSIONID NUMBER(38) System maintained sequence for session 
ID values.

NEXTPROCESSID NUMBER(38) System maintained sequence for process 
ID values.

NEXTTIMERID NUMBER(38) System maintained sequence for timer 
ID values.

HISTORYDETAIL NUMBER(38) Internal use only.

Table B-10 WFHLocks 

Name Index Null? Type Description

PROCESSID ✔ NUMBER(38) Unique identifier for the process instance 
in which this process attribute occurs.

ATTNAME ✔ VARCHAR2(64) Name of the process attribute.

ACTIVITYID NUMBER(38) If the access to the process attribute is 
associated with an activity, the unique 
identifier for this activity instance.

SESSIONID NUMBER(38) If the access to the process attribute is 
associated with a user session, the 
unique identifier for this session.



Database Schema Reference

338 iPlanet Integration Server • Process System Guide • August 2001

LOCKTYPE NUMBER(38) Type of access to the process attribute:

1 – WFAttributeAccessor.READ

2 – WFAttributeAccessor.READQ

3 – WFAttributeAccessor.WRITE

4 – WFAttributeAccessor.WRITEQ

5 – WFAttributeAccessor.NO_LOCK

ACCESSORID ✔ NUMBER(38) Unique identifier for the attribute 
accessor instance within the process 
instance.

Table B-11 WFHProcAttributes 

Name Index Null? Type Description

PROCESSID NOT 
NULL

NUMBER(38) Unique identifier for the process instance 
in which this process attribute occurs.

ATTNAME VARCHAR2(64) Name of the process attribute.

ATTTYPE NUMBER(38) Type of the attribute:

1 – IntegerData

2 – TextData

3 – BooleanData

4 – DateTimeData

5 – DoubleData

6 – IntervalData

7 – DecimalData

8– XMLData

ATTSEGMENTID ✔ NUMBER(38) Internal use only.

ATTSEGLENGTH NUMBER(38) Internal use only.

ATTVALUE VARCHAR2(255) The value of the attribute, in readable 
character form.

Table B-10 WFHLocks  (Continued)

Name Index Null? Type Description



Database Schema Reference

Appendix B Engine Database Schema 339

Table B-12 WFHProcess 

Name Index Null? Type Description

ID ✔ NOT 
NULL

NUMBER(38) Unique identifier for the process instance 
in this engine.

TYPE NUMBER(38) Type of process (means of process 
creation):

1 – Process

2 – Subprocess

STATE NUMBER(38) State of the process instance:

405 – WFProcess.PREPARE_CREATE

410 – WFProcess.CREATED

420 – WFProcess.ACTIVE

430 – WFProcess.COMPLETED

435 – WFProcess.PREPARE_ABORT

440 – WFProcess.ABORTED

SUBMITTIME DATE Date and time the process instance was 
begun.

PARENTACTIVITY NUMBER(38) For a subprocess, the activity ID of the 
subprocess activity instance in the parent 
process that invoked this process.

PARENTPROCESSID NUMBER(38) For a subprocess, the process ID for the 
process instance that started this process 
instance.

ROOTPROCESSID NUMBER(38) For a subprocess, the process ID for the 
process instance that ultimately started 
this process (the parent of the parent of 
the parent … of this process, up to the 
original process that is not a subprocess).

PARENTENVIRONMENT VARCHAR2(64) For a subprocess, the environment of the 
engine of the process instance that 
started this process instance.

PARENTENGINE VARCHAR2(64) For a subprocess, the name of the engine 
of the process instance that started this 
process.

COLDSEQID NUMBER(38) Internal use only.



Database Schema Reference

340 iPlanet Integration Server • Process System Guide • August 2001

NEXTACTIVITYID NUMBER(38) Sequence for the next activity instance 
within this process instance.

INTERNALNAME VARCHAR2(138) Internal use only.

PROCNAME VARCHAR2(64) The name of the process definition of 
which this running process is an 
instance.

RECOVERYLEVEL NOT 
NULL

NUMBER(38) The recovery level designated for this 
process:

0 – WFProcess.RCVR_NORMAL

501 – WFProcess.RCVR_ONLY

502 – WFProcess.RCVR_NONE

503 – WFProcess.RCVR_FULL

504 – WFProcess.RCVR_PARENT

PARENTACTNAME VARCHAR2(64) For a subprocess, the name of the parent 
activity that invoked the subprocess.

USERID VARCHAR2(64) The user who started the process.

PATTNAME VARCHAR2(64) The name of the primary attribute of the 
process.

COMPLEVEL NOT 
NULL

NUMBER(38) Compatibility level for the process.

MSTATUS NOT 
NULL

NUMBER(38) Internal use only.

Table B-12 WFHProcess  (Continued)

Name Index Null? Type Description



Database Schema Reference

Appendix B Engine Database Schema 341

Table B-13 WFHProcParameters 

Name Index Null? Type Description

PROCESSID ✔ NOT 
NULL

NUMBER(38) The PROCESSID of a synchronous 
subprocess that has an output 
parameter.

ATTNAME VARCHAR2(64) The name of a process attribute that 
must be returned to the calling process 
(an output parameter).

Table B-14 WFHQueuedActivity 

Name Index Null? Type Description

ID NOT 
NULL

NUMBER(38) Identifier for the activity being queued.

PROCESSID ● NOT 
NULL

NUMBER(38) Unique identifier for the process instance 
containing the queued activity.

FIFOORDER ✔ NOT 
NULL

NUMBER(38) The placement of the activity in the 
queue, based on FIFO order (first in, first 
out). 

PRIORITY ✔ NOT 
NULL

NUMBER(38) The priority of the queued activity.

QUEUENAME ✔ NOT 
NULL

VARCHAR2(129) The name of the activity queue in which 
the activity is placed.

Table B-15 WFHRecoveryHelp 

Name Index Null? Type Description

PROCESSID NOT 
NULL

NUMBER(38) Unique identifier for a process instance 
in the engine.

ACTIVITYID NOT 
NULL

NUMBER(38) Identifier for an activity instance in the 
process instance designated by 
PROCESSID.



Database Schema Reference

342 iPlanet Integration Server • Process System Guide • August 2001

Table B-16 WFHRetryInfo 

Name Index Null? Type Description

GROUPID ✔ NOT 
NULL

NUMBER(38) Identifier for the session between the 
engine and client.

SEQNUMBER NOT 
NULL

NUMBER(38) Identifier for the retry attempt.

PROCESSID NUMBER(38) Unique identifier for a process instance 
in the engine.

ACTIVITYID NUMBER(38) Identifier for an activity instance in the 
process instance designated by 
PROCESSID.

REQSTATUS NUMBER(38) Internal use only.

ACTIONFLAG NUMBER(38) Internal use only.

Table B-17 WFHRoleBasedAct 

Name Index Null? Type Description

PROCESSID ● NOT 
NULL

NUMBER(38) Unique identifier for a process instance 
in the engine.

ID ✔ NOT 
NULL

NUMBER(38) Identifier for the role-based activity 
instance in the process instance 
designated by PROCESSID.

ROLENAME ✔ VARCHAR2(64) The user role name.

STATE NOT 
NULL

NUMBER(38) Internal use only.



Database Schema Reference

Appendix B Engine Database Schema 343

Table B-18 WFHSessAttributes 

Name Index Null? Type Description

SESSIONID ✔ NOT 
NULL

NUMBER(38) Identifier for the session between the 
engine and client application.

ATTNAME NOT 
NULL

VARCHAR2(64) Name of a process attribute in the 
session.

ATTTYPE NOT 
NULL

NUMBER(38) The type of the process attribute.

ATTSEGMENTID NOT 
NULL

NUMBER(38) Internal use only.

ATTSEGLENGTH NOT 
NULL

NUMBER(38) Internal use only.

ATTVALUE NOT 
NULL

VARCHAR2(255) The value of the attribute (in text 
format).

SETNUMBER ✔ NOT 
NULL

NUMBER(38) Internal use only.

Table B-19 WFHSession 

Name Index Null? Type Description

ID ✔ NOT 
NULL

NUMBER(38) Unique identifier for this client session.

SESSNAME VARCHAR2(64) The session name.

USERNAME VARCHAR2(64) The user name of the user on the session.

PROFILENAME VARCHAR2(64) The profile name of the user on the 
session.

STATE NUMBER(38) The state of the session:

210 – WFSession.ACTIVE

220 – WFSession.SUSPENDED

SESSMODE NUMBER(38) Internal use only.

SESSTXID VARCHAR2(255) The transaction ID, used only in iIS 
two-phase commit operations.

OTHERINFO VARCHAR2(64) The otherInfo attribute associated with a 
user profile.



Database Schema Reference

344 iPlanet Integration Server • Process System Guide • August 2001

Table B-20 WFHSessionRole 

Name Index Null? Type Description

SESSIONID NOT 
NULL

NUMBER(38) Unique identifier for the client session.  
Joins to WFHSESSION.ID.

ROLENAME ● VARCHAR2(64) A role held by the session.

Table B-21 WFHTerminatedProcs 

Name Index Null? Type Description

COMBINEDID ✔ NOT 
NULL

VARCHAR2(158) Internal use only.

PROCESSID NUMBER(38) Unique identifier for a process instance 
in the engine.

ACTIVITYID NUMBER(38) Identifier for an activity instance within 
the process instance designated by 
PROCESSID.

ENVIRONMENT VARCHAR2(64) The name of the environment the engine 
is running in.

ENGINE VARCHAR2(64) The name of the engine.

COLDSEQID NUMBER(38) Internal use only.

COMPLETIONCODE NUMBER(38) Indicates the completion state of the 
process:

440 – Aborted

430 – Completed

USERNAME VARCHAR2(64) The user name for the user that started 
the process.

OTHERINFO VARCHAR2(64) The otherInfo attribute associated with a 
user profile.



Database Schema Reference

Appendix B Engine Database Schema 345

Table B-22 WFHTermProcParas 

Name Index Null? Type Description

COMBINEDID ✔ NOT 
NULL

VARCHAR2(158) Internal use only.

ATTNAME VARCHAR2(64) The name of the attribute that must be 
returned to the calling process (an 
output parameter).

ATTTYPE NUMBER(38) Attribute type.

ATTSEGMENTID NUMBER(38) Internal use only.

ATTSEGLENGTH NUMBER(38) Internal use only.

ATTVALUE VARCHAR2(255) The value of the attribute (in text format)

Table B-23 WFHTimer 

Name Index Null? Type Description

ID ✔ NOT 
NULL

NUMBER(38) Unique identifier for the timer instance 
within this engine.

PROCESSID ✔ NOT 
NULL

NUMBER(38) Unique identifier for the process instance 
in which this timer instance occurs.

TIMERNAME VARCHAR2(64) Name of the timer in the process 
definition.

STATE NUMBER(38) State of the timer:

820 – WFTimer.OFF

830 – WFTimer.ON

RELATIVETIME VARCHAR2(32) For an elapsed timer, the defined 
duration of time set for the timer, 
expressed in character form.

For a deadline timer, the defined 
expiration time set for the timer, 
expressed in character form.



Database Schema Reference

346 iPlanet Integration Server • Process System Guide • August 2001

Registration Tables
This section contains an alphabetical list of all registration tables in the engine 
database. For a description of each of these tables, refer to Table B-1 on page 329.

CURRELATIVETIME VARCHAR2(32) For a paused elapsed timer, the duration 
remaining should the timer be turned on 
again without reset, expressed in 
character form.

For a paused deadline timer, the 
“remembered” expiration time should 
the timer be turned on again without 
reset, expressed in character form.

TIMETOALARM DATE For a running timer, the time when it 
will expire.

TYPE NUMBER(38) Type of timer:

1 – WFTimer.ELAPSED

2 – WFTimer.DEADLINE

Table B-24 WFHAlias 

Name Index Null? Type Description

ALIAS ✔ NOT 
NULL

VARCHAR2(64) Name of an alias registered on this 
engine.

PROCESS VARCHAR2(64) Name of the process definition which the 
alias represents (same as the alias name).

ENGINE VARCHAR2(64) Engine where the actual process 
definition resides.

ENVIRONMENT VARCHAR2(64) Environment of the engine where the 
actual process definition resides.

Table B-23 WFHTimer  (Continued)

Name Index Null? Type Description



Database Schema Reference

Appendix B Engine Database Schema 347

History Log Tables
The following is an alphabetical list of all history log tables in the engine database. 
“State Values” on page 357 lists the possible values for the State field present in 
many of the history log tables. 

For a description of each of these tables, refer to Table B-1 on page 329.

Table B-25 WFHRegistration 

Name Index Null? Type Description

APPLICATIONID ✔ NOT 
NULL

VARCHAR2(32) Name of the installed application for this 
iIS plan.

COMPATIBILITYLEVEL ✔ NOT 
NULL

NUMBER(38) Compatibility level of the installed 
library of this iIS plan.

LIBRARYNAME VARCHAR2(64) Name of the installed library for this iIS 
plan.

LOADOPTIONS NUMBER(38) Internal use only.

PROJECTNAME VARCHAR2(67) Name of the generated TOOL project of 
the compiled iIS plan.

REGISTRATIONNAME ✔ NOT 
NULL

VARCHAR2(64) Name of the source iIS plan from which 
the iIS component is derived.

TYPE ✔ NOT 
NULL

NUMBER(38) Type of iIS plan:

151-Process Definition

152-Validation

153-Assignment Rule

154-User Profile

WUSAGE NUMBER(38) Internal use only.

CREATETIME DATE Date and time of registration.

OBSOLETE ✔ NOT 
NULL

NUMBER(38) Internal use only.



Database Schema Reference

348 iPlanet Integration Server • Process System Guide • August 2001

Table B-26 WFHActivityLog 

Name Index Null? Type Description

ID NUMBER(38) Unique identifier for this activity 
instance within the process instance in 
which it occurs.

ACTNAME VARCHAR2(64) The name of the activity in the process 
definition.

CREATETIME DATE Time that the activity instance was 
created.

PROCESSID NUMBER(38) Unique identifier for the process instance 
in which this activity instance occurs.

LOGTIME DATE Time of this logging.

Table B-27 WFHActStateLog 

 Name Index Null? Type Description

ID NUMBER(38) Unique identifier for this activity 
instance within the process instance in 
which it occurs.

PROCESSID NUMBER(38) Unique identifier for the process instance 
in which this activity instance occurs.

STATE NUMBER(38) Activity state:

10 – WFActivity.PENDING

20 – WFActivity.READY

25 – WFActivity.PREPARE_ACTIVE

30 – WFActivity.ACTIVE

35 – WFActivity.PREPARE_COMPLETE

40 – WFActivity.COMPLETED

45 – WFActivity.PREPARE_ABORT

50 – WFActivity.ABORTED

PREVSTATE NUMBER(38) Immediately previous state of this 
activity. Values are the same as in STATE 
above.



Database Schema Reference

Appendix B Engine Database Schema 349

SESSIONID NUMBER(38) ID of the session that owns this activity 
(if the activity is ACTIVE).

LOGTIME DATE Time of this logging.

Table B-28 WFHAlarmLog 

Name Index Null? Type Description

ALARMTYPE VARCHAR2(64) The type of the alarm.

DETAILS VARCHAR2(255) The text of the alarm.

LOGTIME DATE Time of this logging.

Table B-29 WFHAliasLog 

Name Index Null? Type Description

ALIAS VARCHAR2(64) Name of an alias registered (or now 
unregistered) on this engine.

PROCESS VARCHAR2(64) Name of the process definition which the 
alias represents (same as the alias name).

ENGINE VARCHAR2(64) Engine where the actual process 
definition resides.

ENVIRONMENT VARCHAR2(64) Environment of the engine where the 
actual process definition resides.

STATE NUMBER(38) State of this alias registration:

 1 – Registered

-1 – Unregistered

LOGTIME DATE Time of this logging.

Table B-27 WFHActStateLog  (Continued)

 Name Index Null? Type Description



Database Schema Reference

350 iPlanet Integration Server • Process System Guide • August 2001

Table B-30 WFHAttribLockLog

Name Index Null? Type Description

PROCESSID NUMBER(38) Unique identifier for the process instance 
in which this process attribute occurs.

ACTIVITYID NUMBER(38) If the access to the process attribute is 
associated with an activity, the unique 
identifier for this activity instance.

SESSIONID NUMBER(38) If the access to the process attribute is 
associated with a user session, the 
unique identifier for this session.

ACCESSORID NUMBER(38) Unique identifier for this attribute 
accessor instance within this process 
instance.

ATTNAME VARCHAR2(64) Name of the process attribute.

LOCKTYPE NUMBER(38) Type of access to the process attribute:

0 – Not applicable (used internally)

1 – WFAttributeAccessor.READ

2 – WFAttributeAccessor.READQ

3 – WFAttributeAccessor.WRITE

4 – WFAttributeAccessor.WRITEQ

5 – WFAttributeAccessor.NO_LOCK

STATE NUMBER(38) Internal use only.

LOGTIME DATE Time of this logging.

Table B-31 WFHColdStartLog

Name Index Null? Type Description

SEQID NUMBER(38) Internal use only.

STARTTIME DATE Date and time this engine was last cold 
started.

PROCATTSIZE NUMBER(38) Internal use only.

SESSATTSIZE NUMBER(38) Internal use only.



Database Schema Reference

Appendix B Engine Database Schema 351

Table B-32 WFHPerformanceLog 

Name Index Null? Type Description

SAMPLETIME NOT 
NULL

DATE Date time stamp for the sample.

RESPONSETIME NOT 
NULL

NUMBER(38) Average engine response time to 
requests by a client application.

SWAPINTIME NOT 
NULL

NUMBER(38) Average process swap in time.

SWAPOUTTIME NOT 
NULL

NUMBER(38) Average process swap out time.

TXCOMMITTIME NOT 
NULL

NUMBER(38) Average engine transaction commit 
time.

DBSACQUIRETIME NOT 
NULL

NUMBER(38) Average DB service acquire time.

APPCPUTIME NOT 
NUL

NUMBER(38) Engine CPU time.

GCCPUTIME NOT 
NUL

NUMBER(38) Engine garbage collection time.

ACTIVESESSION NOT 
NULL

NUMBER(38) The number of active sessions.

SUSPENDSESSION NOT 
NULL

NUMBER(38) The number of suspended sessions.

ACTIVEPROCESS NOT 
NULL

NUMBER(38) The number of active processes.

ACTIVESUBPROCESS NOT 
NULL

NUMBER(38) The number of active subprocesses.

PENDINGACTIVITY NOT 
NULL

NUMBER(38) The number of pending activities.

READYACTIVITY NOT 
NULL

NUMBER(38) The number of ready activities.

ACTIVEACTIVITY NOT 
NULL

NUMBER(38) The number of active activities.

RUNNINGTIMER NOT 
NULL

NUMBER(38) The number of running timers.

STOPPEDTIMER NOT 
NULL

NUMBER(38) The number of stopped timers.



Database Schema Reference

352 iPlanet Integration Server • Process System Guide • August 2001

ACTIVEPAGE NOT 
NULL

NUMBER(38) The number of active memory pages for 
the engine.

ALLOCATEPAGE NOT 
NULL

NUMBER(38) The number of allocated memory pages 
for the engine.

Table B-33 WFHProcAttribLog

Name Index Null? Type Description

PROCESSID NUMBER(38) Unique identifier for the process instance 
in which this process attribute occurs.

ATTNAME VARCHAR2(64) Name of the process attribute.

ATTTYPE NUMBER(38) Type of the attribute:

1 – IntegerData

2 – TextData

3 – BooleanData

4 – DateTimeData

5 – DoubleData

6 – IntervalData

7 – DecimalData

8 – XmlData

ATTSEGMENTID NUMBER(38) Internal use only.

ATTSEGLENGTH NUMBER(38) Internal use only.

ATTVALUE VARCHAR2(255) New value of the attribute.

STATE NUMBER(38) New state of the process attribute:

1 – Instantiation

0 – Value change

-1 – Uninstantiation

LOGTIME DATE Time of this logging.

Table B-32 WFHPerformanceLog  (Continued)

Name Index Null? Type Description



Database Schema Reference

Appendix B Engine Database Schema 353

Table B-34 WFHProcessLog 

Name Index Null? Type Description

ID NUMBER(38) Unique identifier for the process instance 
in this engine.

PROCNAME VARCHAR2(64) The name of the process definition of 
which this process is an instance.

SUBMITTIME DATE Date and time the process instance was 
begun.

PARENTACTIVITY NUMBER(38) For a subprocess, the activity ID of the 
subprocess activity instance in the parent 
process that invoked this process.  The 
value is 0 if this is not a subprocess.

PARENTPROCID NUMBER(38) For a subprocess, the process ID for the 
process instance that started this process 
instance.  The value is 0 if this is not a 
subprocess.

ROOTPROCID NUMBER(38) For a subprocess, the process ID for the 
process instance that ultimately started 
this process (the parent of the parent of 
the parent … of this process, up to the 
original process that is not a subprocess). 
The value is 0 if this is not a subprocess.

LOGTIME DATE Time of this logging.

PARENTENVIRONMENT VARCHAR2(64) The name of the parent environment for 
the parent process instance indicated by 
PARENTPROCID.

PARENTENGINE VARCHAR2(64) The name of the engine containing the 
parent process instance indicated by 
PARENTPROCID.



Database Schema Reference

354 iPlanet Integration Server • Process System Guide • August 2001

Table B-35 WFHProcessStateLog 

Name Index Null? Type Description

ID NUMBER(38) Unique identifier for the process instance 
in this engine.

STATE NUMBER(38) New state of the process instance:

405 – WFProcess.PREPARE_CREATE

410 – WFProcess.CREATED

420 – WFProcess.ACTIVE

430 – WFProcess.COMPLETED

435 – WFProcess.PREPARE_ABORT

440 – WFProcess.ABORTED

LOGTIME DATE Time of this logging.

Table B-36 WFHRegistrationLog 

Name Index Null? Type Description

APPLICATIONID VARCHAR2(32) Name of the installed application for this 
iIS plan.

COMPATIBILITYLEVEL NUMBER(38) Compatibility level of the installed 
library of this iIS plan.

PROJECTNAME VARCHAR2(67) Name of the generated TOOL project of 
the compiled iIS plan.

REGISTRATIONNAME VARCHAR2(64) Name of the source iIS plan from which 
the iIS component is derived.

TYPE NUMBER(38) Type of iIS plan:

151-Process Definition

152-Validation

153-Assignment Rule

154-User Profile

OBSOLETE NUMBER(38) Internal use only.



Database Schema Reference

Appendix B Engine Database Schema 355

STATE NUMBER(38) Effect of this registration action:

 1 – Registered

-1 – Unregistered

LOGTIME DATE Time of this logging.

Table B-37 WFHSessionLog 

Name Index Null? Type Description

ID NUMBER(38) Unique identifier for the client session.

SESSNAME VARCHAR2(64) The session name (not logged on session 
termination).

USERNAME VARCHAR2(64) The user name for the session user (not 
logged on session termination).

PROFILENAME VARCHAR2(64) The profile name of the user on the 
session.

STATE NUMBER(38) Logged new state for the session:

210 – WFSession.ACTIVE

220 – WFSession.SUSPENDED

230 – WFSession.TERMINATED

LOGTIME DATE Time of this logging.

Table B-38 WFHTimerLog 

Name Index Null? Type Description

ID NUMBER(38) Unique identifier for the timer instance 
within this engine.

PROCESSID NUMBER(38) Unique identifier for the process instance 
in which this timer instance occurs.

TIMERNAME VARCHAR2(64) Name of the timer in the process 
definition.

LOGTIME DATE Time of this logging.

Table B-36 WFHRegistrationLog  (Continued)

Name Index Null? Type Description



Database Schema Reference

356 iPlanet Integration Server • Process System Guide • August 2001

Table B-39 WFHTimerStateLog 

Name Index Null? Type Description

ID NUMBER(38) Unique identifier for the timer instance 
within this engine.

PROCESSID NUMBER(38) Unique identifier for the process instance 
in which this timer instance occurs.

STATE NUMBER(38) New state of the timer:

810 – WFTimer.CREATED

820 – WFTimer.OFF

830 – WFTimer.ON

840 – WFTimer.EXPIRED

850 – WFTimer.DELETED

RELATIVETIME VARCHAR2(32) For an elapsed timer, the defined 
duration of time set for the timer, 
expressed in character form.

For a deadline timer, the defined 
expiration time set for the timer, 
expressed in character form.

CURRELATIVETIME VARCHAR2(32) For a paused elapsed timer, the duration 
remaining should the timer be turned on 
again without reset, expressed in 
character form.

For a paused deadline timer, the 
“remembered” expiration time should 
the timer be turned on again without 
reset, expressed in character form.

TIMETOALARM DATE For a running timer, the time when it 
is/was to expire.

LOGTIME DATE Time of this logging.



Database Schema Reference

Appendix B Engine Database Schema 357

State Values
Many of the history log tables listed in this section have a field that represents the 
state of a given engine object: process instance, activity, session, and timer. The 
following table shows the values corresponding to the various states of these 
objects:

Object State Value

Process Instance PREPARE_CREATE 405

CREATED 410

ACTIVE 420

COMPLETED 430

PREPARE_ABORT 435

ABORTED 440

Activity PENDING 10

READY 20

PREPARE_ACTIVE 25

ACTIVE 30

PREPARE_COMPLETE 35

COMPLETED 40

PREPARE_ABORT 45

ABORTED 50

DELETED 60

Timer CREATED 810

OFF 820

ON 830

EXPIRED 840

DELETED 850

Session ACTIVE 210

SUSPENDED 220

TERMINATED 230



Database Schema Reference

358 iPlanet Integration Server • Process System Guide • August 2001



359

Index

A
AbortActivity command, Conductor Script 273
AbortAllProcesses command, Conductor Script 274
ABORTED

activity state 163, 199, 357
process instance state 173, 198, 357

aborting
activities 186
process instances 181

AbortProcess command, Conductor Script 274
ACTIVE

activity state 163, 199, 357
process instance state 198, 357
session state 158, 199, 357

activities
about 162
creation 167
methods, execution of 164
state transitions 168
status, checking 185
termination 171

activity execution
automatic activities 171
offered activities 168
queued activities 169
subprocess activities 170

activity queues
reprioritizing 189
status, checking 188

activity states
ABORTED 163, 199, 357
ACTIVE 163, 199, 357
changing 186
COMPLETED 163, 199, 357
DELETED 199, 357
PENDING 162, 199, 357
process execution and 167
READY 162, 199, 357
transitions 164, 168

activity types 165
alarms

about 204
list and descriptions 205
monitoring 206
viewing 208

Alarms window 205
aliases

about 143
registration 144, 148
subprocess activity and 143
unregistration 150

Assignment Rule dictionary, registration 144
audit trace 211
automatic activities

described 165
execution of 171

auto-reconnect mechanism, sessions 159



Section B

360 iPlanet Integration Server • Process System Guide • August 2001

B
backup engine unit

defined 33
partitioning guidelines 86

BOTH governor state 106
BroadcastMessage command, Conductor Script 275

C
cconsole command 67
central server node

definition 51
installation 57

ChannelDisconnect alarm 205
client application development node 52
client applications 45
command summary

Conductor Script 261
iIS Console 78

CommitTransaction command, Conductor 
Script 275

CompleteActivity command, Conductor Script 276
COMPLETED

activity state 163, 199, 357
process instance state 173, 198, 357

component mode Conductor Script commands 271
Conductor Script

about 41
command summary 261
component mode commands 271
engine management commands 264
engine status, showing 309
environment mode commands 263
iIS distributions 144
process execution management commands 266
starting 228

Conductor Script command
AbortActivity 273
AbortAllProcesses 274
AbortProcess 274
BroadcastMessage 275
CommitTransaction 275

CompleteActivity 276
ConsultActivity 276
CreateActivity 278
CreateFilter 279
DelegateActivity 281
DeleteFilter 283
FindDBService 283
FindEngine 284
FindGovernor 284
FindNode 285
FindParentEngine 285
FindPrimary 285
FindUnit 286
FlushLog 286
IIOPServer 287
ListActivities 287
ListActivityQueues 287
ListConductorDistributions 288
ListEngines 289
ListFilters 289
ListProcesses 289
ListRegistrations 290
ListSessions 291
ListTimers 291
ListTransactions 291
MakeConductorDistribution 292
ModLogFlags 292
ReadyActivity 293
RegisterAlias 294
RegisterAssignmentRules 294
RegisterProcessDefinition 295
RegisterUserProfile 295
RegisterValidation 296
RemoveReadLock 297
RemoveWriteLock 297
Rollback Transaction 298
RollbackActivity 298
SendMessage 299
SetAttributeValue 300
SetPassword 300
SetPrimary 301
SetQueuedActivityPriority 301
SetState 302
SetTimer 302
SetTimerDeadline 303
SetTimerElapsed 304
ShowActivity 304



Section D

Index 361

Conductor Script command (continued)
ShowActivityQueue 305
ShowConfiguration 306
ShowEngine 306
ShowLogFlags 307
ShowProcess 307
ShowSession 308
ShowStatus 309
ShowTimer 313
Shutdown 314
StartActivity 314
StartDBService 315
StartEngine 315
StartGovernor 316
StartTimer 317
StartUnit 317
StopTimer 319
SuspendAllSessions 319
SuspendSession 320
TerminateAllSessions 320
TerminateSession 321
Uninstall 321
UnRegisterAlias 322
UnRegisterAssignmentRules 322
UnRegisterProcessDefinition 323
UnRegisterUserProfile 324
WaitForStartup 324

configuration file, engine 90
ConsultActivity command, Conductor Script 276
CreateActivity command, Conductor Script 278
CREATED states 198, 357
CreateFilter command, Conductor Script 279
Cscript, See Conductor Script
current state tables

engine database 124, 327
schema 332

D
data file, dump/restore facility 128
database

See also engine database
Dump/Restore facilities 126
engine 32

enterprise 45
organization 46

database service
configuring 98, 99
defined 32
monitoring 121
partitioning guidelines 87
startup 109

database service state 109
DatabaseDisconnect alarm 205
DelegateActivity command, Conductor Script 281
DELETED states 199, 357
DeleteFilter command, Conductor Script 283
development client node, installation 59
development engines 83
development repository 45
disconnect parameters, sessions 160
distributions

iIS 144
making with Conductor Script 243

DrDump command, Conductor Script 130
DrRestore command, Conductor Script 135
Dump/Restore facilities 41, 63, 126

E
E1 governor state 106
E2 governor state 106
EMBRYONIC engine unit state 107
engine

access, restricting 71
described 27
development engines 83
failover 33
functions 36
management tasks 37
management tools 40
monitoring with Conductor Script 239
monitoring with iIS Console 118
performance 89
performance tuning 116
process execution and 28
production engines 83



Section E

362 iPlanet Integration Server • Process System Guide • August 2001

engine (continued)
reconfiguration 113
recovery 34, 166
registration manager 142
relation to iIS process management system 45
relocating 62
shutting down 124
shutting down components 243
starting with Conductor Script 235
starting with iIS Console 110
startup, monitoring 112
states, changing with Conductor Script 242
states, changing with iIS Console 122
status, showing 309

engine component
backup engine unit 33
compiled vs. interpreted 50
database service 32
engine database 32
engine unit 32
governor 34
icons, state indicators 69
monitoring with Conductor Script 240
monitoring with iIS Console 119
partitioning 85
partners 33
shutting down 124

engine component log file 210
engine configuration

about 85
component memory settings 89, 101
configuration file 90
deleting 104
duplicating 104
failover 33
failover and load balancing 35
minimal, no failover 31
multiple 29
properties 88, 91
recover cursor size 102

engine database
See also current state tables; history log tables; 

registration log tables
configuration file 90
configuration properties 89, 97

controlling growth 125
defined 32
Dump/Restore facilities 41
failure 125
logging settings 89, 98, 115
managing 124
recovery options 125
relation to iIS process management system 45
schema 331

engine database tables
about 124
list, alphabetical 329
list, category 327
registration table entries 140
registration tables 346

Engine Event Filter window 217
engine instrumentation

performance chart 222
ShowStatus command 311

engine management, Conductor Script 
commands 264

engine partitioning 86, 99
engine server node

defined 52
installation 58

engine sessions, See sessions
engine state

changing 122
monitoring 117

engine unit
configuring 99
defined 32
failover 33
failure 159
monitoring 120
startup 106
state, changing 122
states 107

EngineUnitForceStandby alarm 205
EngineUnitOnline alarm 205
EngineUnitShutdown alarm 205
environment mode, Conductor Script 

commands 263



Section F

Index 363

exception alarm 205
exceptions, logged 210
execution options 103
Exit command, iIS Console 71
EXPIRED timer state 199, 357

F
failover, engine unit 33
failure

engine 34, 159
engine database 125
network connection 159

filtering
engine events 217
iIS Console lists 73

FindDBService command, Conductor Script 283
FindEngine command, Conductor Script 236, 239, 

284
FindGovernor command, Conductor Script 284
FindNode command, Conductor Script 236, 285
FindParentEngine command, Conductor Script 285
FindPlan command, Conductor Script 244
FindPrimary command, Conductor Script 285
FindUnit command, Conductor Script 286
first activity, description 165
FlushLog command, Conductor Script 286

G
GenerateDistribution command, Conductor 

Script 292
governor

configuring 99
defined 34
monitoring 121
partitioning guidelines 87
startup 105
states 106

GovernorDisconnect alarm 205

H
history log schema, graphical representation 198
history log tables

database schema 347
engine database 124, 327
graphical representation 198

I
IDLE governor state 106
IIOPServer command, Conductor Script 287
iIS Console

command summary 78
engine list 69
exiting 71
list views 77
lists, filtering 73
lists, sorting 76
main window 68
menu bar 70
online help 70
overview 40, 65
password protection 71
popup menu 70
starting 67
window refresh behavior 72

iIS distributions, registration 144
iIS process engine, See engine
iIS process management system

See also system maintenance
about 46
components 45
configuration 51
installation program 56
multiple engines 29
resource considerations 54
setup preparation 44
setup procedure 55
system software 47
uninstalling 64

implicit unregistration 142, 144



Section L

364 iPlanet Integration Server • Process System Guide • August 2001

installation
central server 57
development client node 59
engine server node 58
runtime client node 60

instrument data, logged 211

L
last activity, description 165
library distribution and registration 139
ListActivities command, Conductor Script 287
ListActivityQueues command, Conductor Script 287
ListConductorDistributions command, Conductor 

Script 288
ListEngines command, Conductor Script 239, 240, 

289
ListFilters command, Conductor Script 289
ListPlans command, Conductor Script 244
ListProcesses command, Conductor Script 289
ListRegistrations command, Conductor Script 290
ListSessions command, Conductor Script 291
ListTimers command, Conductor Script 291
ListTransactions command, Conductor Script 291
load balancing 35
log file

about 210
engine component 212
registration 145

logging settings, engine database 98

M
Maximum number of processes option 103
Maximum number of sessions option 103
memory options, engine component 101
memory requirements 116
Memory-resident process limit 103

message filters
iIS 214
specifying 212, 218

messages
broadcasting 179
sending to sessions 177

ModLogFlags command, Conductor Script 292
monitoring

engine startup 112
engine state 118
process execution 179, 266
sessions 174
two-phase commit operations 258

N
network failure 159

O
OFF timer state 199, 357
offered activities

described 165
execution of 168

ON timer state 199, 357
ONLINE engine unit state 107
online help

iIS Console 70

P
partitioning engine components 85
partner 33
password

Conductor Script 300
iIS Console 71

PDF files, viewing and searching 24
PENDING activity state 162, 199, 357



Section Q

Index 365

performance chart 221, 224
performance indicators 222
performance, engine 89, 116
ping interval, session 159
PREPARE state (two-phase commit) 201
primary engine unit, partitioning guidelines 86
process attributes

locks, removing 194
value, changing 194
value/lock state, checking 189

process client applications, See client applications
process creation 166
process definition, registration 145
process development node 52
process development workshops 45
process engine, See engine
process execution

about 165
activity creation 167
activity execution 168
activity termination 171
analysis 197
bottlenecks, checking 196
configuration options 89
historical data 197
managing 116, 179, 197, 266
monitoring 179, 266
monitoring and management tasks 180
objects in engine, diagram 179
process creation 166
process termination 173
recovering state 34, 123
recovery levels 123
reports 197
tuning 116

process history 197
process instance states

ABORTED 173, 198, 357
ACTIVE 198, 357
COMPLETED 173, 198, 357
CREATED 198, 357

process instances
aborting 181
execution options 102
stalled 173
status, checking 181
swapping 116

process, analysis of 197
ProcessAbort alarm 205
production engines 83
production loads and memory 116
properties

database configuration 97
engine configuration 88
performance chart 224

Q
queued activities

described 165
execution of 169

Quit command, iIS Console 71

R
READY activity state 162, 199, 357
ReadyActivity command, Conductor Script 293
reconfiguring

engine 113
engine database logging 115

reconnect parameters, sessions 160
recover cursor size, process instances 102
recovery

engine 34
engine database options 125
levels 123
state information 34, 123, 166

refresh behavior 72



Section S

366 iPlanet Integration Server • Process System Guide • August 2001

RegisterAlias command, Conductor Script 294
RegisterAssignmentRules command, Conductor 

Script 294
registering

Conductor distributions 145
engine with alarm service 206

RegisterProcessDefinition command, Conductor 
Script 295

RegisterUserProfile command, Conductor Script 295
RegisterValidation command, Conductor Script 296
registration

about 137–142
aliases 144, 148
assignment rule dictionary 144
engine registration manager 142
entities registered 138
iIS distributions 144, 243
implicit unregistration 142, 144
library distributions, and 139
order 145
performing 145
process definition 145
steps 139
unregistration 142, 147
viewing 150

registration log tables
about 124
entries, engine database 140
list, alphabetical 346
list, category 327

RemoveReadLock command, Conductor Script 297
RemoveWriteLock command, Conductor Script 297
reports, generating 197
repository

central 38
management tools 41
setting up 54

repository server node 52
repository server, managing 62
requested message output, logged 210
restoring

See also recovery
engine database tables 41
session connections 159

RollbackActivity command, Conductor Script 298

RollbackTransaction command, Conductor 
Script 298

runtime client node
defined 52
installation 60

S
schema, See engine database
scripts

comments in 232
running using the cscript -i flag 230

SendMessage command, Conductor Script 299
session states

ACTIVE 158, 199, 357
SUSPENDED 158, 199, 357
TERMINATED 199, 357

sessions
about 158
auto-reconnect 159
disconnect parameters 160
disruptions 159
management 174
messages, broadcasting to 179
messages, sending to 177
monitoring 174
reconnect parameters 160
setting maximum number 103
suspending 161, 176
terminating 161, 176

SetAttributeValue command, Conductor Script 300
SetPassword command, Conductor Script 300
SetPrimary command, Conductor Script 301
SetQueuedActivityPriority, Conductor Script 301
SetState command, Conductor Script 242, 302
SetTimer command, Conductor Script 302
SetTimerDeadline command, Conductor Script 303
SetTimerElapsed command, Conductor Script 304
ShowActivity command, Conductor Script 304
ShowActivityQueue command, Conductor 

Script 305
ShowConfiguration command, Conductor 

Script 306



Section T

Index 367

ShowEngine command, Conductor Script 306
ShowLogFlags command, Conductor Script 307
ShowProcess command, Conductor Script 307
ShowSession command, Conductor Script 308
ShowStatus command, Conductor Script 239, 240, 

309
ShowTimer command, Conductor Script 313
shutdown 124, 243
Shutdown command, Conductor Script 243, 314
sorting lists, iIS Console 76
stall, process instance 173
STANDBY engine unit state 107
StartActivity command, Conductor Script 314
StartDBService command, Conductor Script 315
StartEngine command, Conductor Script 235, 315
StartGovernor command, Conductor Script 316
StartTimer command, Conductor Script 317
StartUnit command, Conductor Script 317
startup phases, primary engine unit 108
StartupFailure alarm 205
state

database service 109
engine unit 107
process state values 198, 357
process state, recovering 34
recovering process execution state 123

state transitions, activities 164
StopTimer command, Conductor Script 319
subprocess activities

aliases and 143
described 165
execution of 170

SuspendAllSessions command, Conductor 
Script 319

SUSPENDED session state 158, 199, 357
suspending sessions 161, 176
SuspendSession command, Conductor Script 320
swap-out interval 103, 116
synchronizing transactions 200
system design 51
system libraries 47

system maintenance
engine, relocating 62
iIS system, uninstalling 64
nodes, adding 61
private repository, creating 63
repository server 62

system management node 52

T
TerminateAllSessions command, Conductor 

Script 320
TERMINATED session state 199, 357
TerminateSession command, Conductor Script 321
terminating

process instances 173
sessions 161

timers
expiration time, changing 192
state, changing 192
states 199, 357
status, checking 191

Trace window
about 212
client messages, writing to 217
message filters, setting 215
using 215

transactions, See two-phase commit
troubleshooting

engine event messages, displaying 217
engine problems 204

tuning process execution 116
two-phase commit

about 199
managing transactions 202
monitoring transactions 258
PREPARE state 201



Section U

368 iPlanet Integration Server • Process System Guide • August 2001

U
UDS runtime environment 44
Uninstall command, Conductor Script 321
uninstalling iIS 64
UnRegisterAlias command, Conductor Script 322
UnRegisterAssignmentRules command, Conductor 

Script 322
UnRegisterProcessDefinition command, Conductor 

Script 323
UnRegisterUserProfile command, Conductor 

Script 324
unregistration

about 142
aliases 150
Conductor distributions 147
iIS distributions 142
implicit 142, 144

upgrading
Conductor system software 63
monolithic 154
rolling 155

user profile registration 144
UserAccess alarm 205
using list views, iIS Console 77

V
validation, registration 144

W
WaitForStartup command, Conductor Script 324
WFEnvAgent, registration service 139


	Contents
	List of Figures
	List of Procedures
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Syntax Statements

	Other Documentation Resources
	iPlanet Integration Server Documentation
	Online Help
	Documentation Roadmap

	iIS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation


	1    Introduction: iIS Process Management
	What Is an iIS Process Engine?
	Multiple Engine Systems

	iIS Process Engine Components
	Minimal Engine Configuration
	Failover Configuration
	Full Configuration: Failover and Load Balancing Combined

	What Does an iIS Process Engine Do?
	iIS Process Management Tasks
	Setting up and Maintaining an iIS System
	Setting Up an iPlanet UDS Runtime Environment
	Installing iIS Process Management Software
	Setting Up and Maintaining Central Development Repositories

	Managing iIS Process Engines
	Managing Registration
	Managing Process Execution

	iIS Process Management Tools
	iIS Console
	Conductor Script Utility
	Custom System Management Tools
	Repository Management Tools
	Dump/Restore Facilities


	2    Setting Up an iIS Process Management System
	Preparation: Setting up an iPlanet UDS Runtime Environment
	iIS Process System Components
	iIS Backbone

	iIS Process System Software
	Compiled and Interpreted Engine Components
	Before you invoke the setccomp script, you must do the following

	iIS Process System Configuration

	Setting Up an iIS Process System
	iIS Process System Setup Procedure
	To set up an iIS process system

	The iIS Installation Program
	Central Server Installation
	Engine Server Installation
	Development Client Installation
	Runtime Client Installation

	Configuring and Starting Your iIS Engines

	Maintaining an iIS Process System
	Adding New Nodes to an iIS System
	To add a new node to an iIS system

	Moving an iIS Engine
	Creating a New iIS Repository Server
	To create a new iIS Repository Server

	Moving an iIS Repository Server
	To move an iIS Repository Server

	Creating a Private iIS Repository
	To create a private iIS Repository on a development node

	Upgrading an iIS System
	Uninstalling an iIS System


	3    The iIS Console
	Overview
	Starting the iIS Console
	To start the iIS Console on Windows or Windows NT
	To start the iIS Console on UNIX, OpenVMS, or Windows NT
	Using the cconsole Command

	The iIS Console Main Window
	Main Viewing Panel
	Menu Bar
	Mouse Popup Menu
	Online Help
	Setting Password Protection for iIS Console
	To set a password for iIS Console

	Exiting iIS Console

	Using iIS Console Windows
	Using the Mouse
	Window Refresh Behavior
	To turn automatic refresh off or on
	To set the automatic refresh interval
	To force an immediate refresh

	Filtering iIS Console Lists
	Operators
	Specifying Values
	Example Filter Expression

	Sorting iIS Console Lists
	Using List Views

	iIS Console Main Window Command Summary
	Environment Menu
	View Menu
	Engine Menu
	Monitor Menu
	Help Menu


	4    Managing Engines
	Production Engines Versus Development Engines
	Configuring an Engine
	Engine Component Partitioning
	Engine Startup Properties
	Engine Configuration File
	Customizing Engine Database Schema
	How to Configure a New Engine
	To configure a new engine

	Duplicating an Engine Configuration
	To duplicate an engine configuration

	Deleting an Engine Configuration
	To delete an engine configuration


	Starting an Engine
	Governor
	Engine Unit
	Primary Engine Unit Startup Phases

	Database Service
	How to Start an Engine
	To start an engine
	To start individual engine components


	Reconfiguring an Engine
	How to Reconfigure an Engine
	To reconfigure an engine

	How to Dynamically Modify Database Logging
	To modify database logging for an engine

	How to Tune Process Execution

	Monitoring and Changing Engine States
	Monitoring Engines and Engine Components
	Monitoring the Engine
	To check the engine runtime configuration
	Monitoring Engine Components
	To monitor individual engine components

	Changing Engine States
	Changing Engine Unit States
	To change the state of an engine unit
	To put the primary engine unit on STANDBY and the backup unit ONLINE
	About Recovering State Information
	Shutting Down Engine Components


	Managing an Engine Database
	Database Management Issues
	Growth of the Database
	Failure of the Database
	Recovering Data

	Dumping and Restoring Data
	Dumping Database Tables
	To use the Dump/Restore application to dump database tables
	Restoring Database Tables
	To preserve custom engine database schema changes when upgrading iIS
	To use the Dump/Restore application to restore database tables
	Dump/Restore Environment Variables



	5    Managing Registrations
	About Registration
	What Does Registration Do?
	Registration in Production Environments
	To transfer iIS library distributions to a production environment

	What Does Unregistration Do?
	Engine Registration Manager
	About Aliases

	Registering iIS Distributions
	Registration Order
	Performing Registrations
	To register one or more distributions using the iIS Console

	Upgrading Registrations
	Unregistering iIS Distributions
	To unregister a process definition, assignment rule dictionary, or user profile


	Registering Aliases
	To register an alias using the iIS Console
	Unregistering Aliases
	To unregister an alias


	Viewing Registrations for an Engine
	To view the registrations for a given engine
	Unregistering a Distribution
	To unregister a registered distribution

	Monitoring Instances of a Registered Process Definition
	To monitor instances of a registered process definition


	Performing Application Upgrades
	Monolithic Upgrades
	To perform a monolithic upgrade

	Rolling Upgrades
	To perform a rolling upgrade



	6    Managing Process Execution
	Introduction
	Engine Sessions
	Disrupted Sessions
	Explicitly Suspended Sessions
	Explicitly Terminated Sessions

	Activity States
	Activity Types

	Process Execution
	Process Instance Creation
	Process Instance Execution
	Activity Creation
	Activity Execution
	Activity Termination

	Process Instance Termination
	Completed Process Instances
	Aborted Process Instances


	Monitoring and Managing Engine Sessions
	Monitoring the State of a Session
	To obtain state information about a session

	Managing Sessions
	Suspending or Terminating Sessions
	To suspend a session
	To terminate a session
	Sending and Broadcasting Messages to Sessions
	To send a message to an active session
	To broadcast a message to all sessions


	Monitoring and Managing Process Execution
	Managing Process Instances
	Checking the Status of a Process Instance
	To check the current execution status of a process instance
	Aborting a Process Instance
	To abort a process instance

	Managing Activity Instances
	Checking the Status of an Activity
	Changing the State of an Activity
	To change the state of an activity

	Managing Activity Queues
	Checking the Status of an Activity Queue
	To view the contents of an activity queue
	Reprioritizing a Queued Activity
	To reprioritize a queued activity

	Managing Timer Instances
	Checking the Status of a Timer
	Changing the Timer State and Expiration Time
	To change the state and expiration time of a timer

	Managing Process Attributes
	Checking the Value and Lock State of a Process Attribute
	Changing a Process Attribute Value
	To change the value of a process attribute
	Removing a Process Attribute Lock
	To remove a process attribute lock

	Checking for Bottlenecks in Process Execution
	To find a process bottleneck


	Analyzing Process Execution
	History Log Schema
	State Values


	Monitoring and Managing Two-Phase Commit
	Managing Two-Phase Commit Operations


	7    Troubleshooting
	Introduction
	Process Engine Alarms Window
	Monitoring Alarms
	To register an engine with the alarm service
	To unregister an engine from the Alarm service
	To filter alarms in the Process Engine Alarms window
	To search for an alarm in the Process Engine Alarms window

	Viewing Alarms
	To get detailed information about an alarm
	To remove an alarm from the Alarm window


	Engine Log Files
	To view an engine component log file

	iIS Console Trace Window
	Messages and Message Filters
	Specifying Message Filters
	iIS Message Filters

	Using the iIS Console Trace Window
	To open the iIS Console Trace window
	Setting Message Filters
	To set message filters for a selected engine
	Special Example: Write Client Messages to Trace Window
	To set the engine tracing


	iIS Console Engine Event Filter Window
	Engine Event Types
	Using the iIS Console Engine Event Filter Window
	To open the Engine Event Filter window
	Displaying All Engine Events
	To view all engine events for the selected engine
	Displaying Process Instance Events
	To view all engine events for an existing process
	To view all engine events for the next process instance of a specific process definition
	Filtering Engine Events
	To specify a custom filter


	Performance Charts
	Viewing Performance Indicators
	To view performance indicators for an engine

	Logging Performance Information
	To log performance information
	To stop logging performance information



	8    Using the Conductor Script Utility
	Overview
	Conductor Script Help

	Starting Conductor Script
	To start Conductor Script on Windows or Windows NT
	To start Conductor Script on UNIX, OpenVMS, or Windows NT
	Using the Cscript Command

	Working with Conductor Script
	General Conductor Script Operations
	Writing and Executing Scripts
	Comments

	Operating System and File Management Commands

	Managing iIS Process Engines with Conductor Script
	Starting an Engine
	To start an engine
	Starting Individual Engine Components
	To start an engine where delays might be involved
	To start an individual engine component (governor, database service, or engine unit)
	Example Manual Startup Scenario

	Monitoring Engines and Engine Components
	Monitoring the Engine
	To check the engine runtime configuration
	Monitoring Individual Engine Components
	To monitor individual engine components

	Changing Engine States
	Changing Engine Unit States
	To change the state of an engine unit
	Shutting Down Engine Components


	Managing Registrations with Conductor Script
	Making iIS Library Distributions
	To make an iIS library distribution

	Registering iIS Library Distributions
	To register an iIS distribution with an engine

	Unregistering iIS Library Distributions
	To unregister an iIS distribution from an engine


	Managing Process Execution with Conductor Script
	Monitoring and Managing Engine Sessions
	To obtain state information about a session
	To suspend or terminate a session
	To send a message to one or more sessions

	Monitoring and Managing Process Execution
	Managing Process Instances
	To check the status of a process instance
	To abort a process instance
	Managing Activity Instances
	To check the status of an activity instance
	To change the state of an activity
	Managing Activity Queues
	To list the contents of an activity queue
	To reprioritize an activity in a queue
	Managing Timers
	To check the status of a timer
	To change the state of a timer or change its expiration time
	Managing Process Attributes
	To check the value or lock state of a process attribute
	To change the value of a process attribute
	To remove an attribute lock
	Checking for Bottlenecks in Process Execution
	To find a process bottleneck

	Monitoring and Managing Two-Phase Commit Transactions
	Monitoring Two-Phase Commit Operations
	Managing Two-Phase Commit Operations
	To resolve transactions after a client or engine failure



	A    Conductor Script Commands
	Conductor Script Command Summary
	Environment Mode Commands
	Engine Mode Commands: Engine Management
	Engine Mode Commands: Process Execution Management
	Component Mode Commands
	Generic component
	Engine Unit


	Conductor Script Commands
	AbortActivity
	AbortAllProcesses
	AbortProcess
	BroadcastMessage
	CommitTransaction
	CompleteActivity
	ConsultActivity
	CreateActivity
	CreateFilter
	Event Type
	Object Class
	Object Instance
	Operators
	Examples

	DelegateActivity
	DeleteFilter
	FindDBService
	FindEngine
	FindGovernor
	FindNode
	FindParentEngine
	FindPrimary
	FindUnit
	FlushLog
	IIOPServer
	ListActivities
	ListActivityQueues
	ListConductorDistributions
	ListEngines
	ListFilters
	ListProcesses
	Options

	ListRegistrations
	ListSessions
	ListTimers
	ListTransactions
	MakeConductorDistribution
	ModLogFlags
	ReadyActivity
	RegisterAlias
	RegisterAssignmentRules
	RegisterProcessDefinition
	RegisterUserProfile
	RegisterValidation
	RemoveReadLock
	RemoveWriteLock
	RollbackActivity
	RollbackTransaction
	SendMessage
	SetAttributeValue
	SetPassword
	SetPrimary
	SetQueuedActivityPriority
	SetState
	SetTimer
	SetTimerDeadline
	SetTimerElapsed
	ShowActivity
	ShowActivityQueue
	ShowConfiguration
	ShowEngine
	ShowLogFlags
	ShowProcess
	ShowSession
	ShowStatus
	ShowTimer
	Shutdown
	StartActivity
	StartDBService
	StartEngine
	StartGovernor
	StartTimer
	StartUnit
	StopTimer
	SuspendAllSessions
	SuspendSession
	TerminateAllSessions
	TerminateSession
	Uninstall
	UnRegisterAlias
	UnRegisterAssignmentRules
	UnRegisterProcessDefinition
	UnRegisterUserProfile
	WaitForStartup


	B    Engine Database Schema
	Database Tables by Category
	Alphabetical Listing of Tables
	Database Schema Reference
	Current State Tables
	Registration Tables
	History Log Tables
	State Values



	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


