Process Manager 6.0 SP1
Programmer’s Guide
Contents

INErOdUCTION . 7
AboUt This BOOK 7
Developing Process Manager Applications e 7
Interacting with Clusters and Deployed Applications 8
ASSUMPEIONS .« Lo e e 9
Conventions Used in This GUIAE e e 9
For More Information 9
Chapter 1 Writing Custom ACtIVItIES e 1
INtrOdUCTION .o e e 11
Comparison to Automated ACtIVITIES 12
Overview of Creating a Custom ACtIVILYo e e 12
Implementing ISimpleWorkPerformer 12
Methods of ISimpleWorkPerformer e 13
Sample Java Classo 14
Writing the XML Description File 19
File FOrmat .o 19
Sample XML Description File 27
Packaging a Custom ACtiVItYo i 29
Adding a Custom Activity tothe Process Mapt e e 30
Adding a Custom Activity froma Custom Palette 30
Adding a Custom Activity without Usinga Custom Palette 33
Working with @ Custom ACHIVITY i e 34
IMpPlemENtation TIPS ...t e 35
AVOId INSEANCE DAtottt e 35

2

Use CoNSIStent Data TYPES oottt et e et e e e e e e 37

Avoid Non-default CONSEIUCLOrS ot 38
Use One Implementation of aJava Class Per Server0, 38
When to Use a CuStom ACHIVILY o e e 38
Example Custom ACHIVILY 39
Chapter 2 Writing Custom Data Fields e 41
INTrOdUCTLION e e e e e e 41
Steps for Creatinga Custom Field e 42
Defining Field PropertiesinaJSBFile 42
JSB_DESCRIPTOR TG .+ .+« oot ettt ettt e e e e et e e e e e e e e e 43
JSB _PROPERTY T vttt ittt ettt ettt et et e e e e et e e e e e 44
Writing the Java Classesot e 47
Define a Subclass of BasicCustomField 48
The Methods in Detail 49
Specifying Images for Use in Process Builder i 68
Packaging a Custom Field 68
Adding a Custom Field to an Application i e 69
Example Custom Data Field 72
Development HINtS and TIPS . ..ottt e e e e 73
Avoid Non-default CONSIIUCLOrS e 73
AVOId INStANCe Data o 74
USE BNty KBYS .ot 76
Deploy the Custom Field to Test It e 77
Develop and Test on a Server Where Process Manager isInstalled 78
Use One Implementation of aJava Class Per Server 0. 78
Debugging Hints 79
Class REfEIBNCE . . oo e 80
BasiCCUSTOMFIEId 80
AFCNIVE() . oo 81
(o1 T 1= 82
AiSPlaY () . o 82
OEENAME() . oot 84
GEtPMAPPIICAtION() . ..o 84
OetPrettyNamMe() . .. o 85
I0ad() .. e 85
loadDataElementProperties()ttt 86
LS00 =T P 88
UPAEE . ot e 89

Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

P M REQUESE . .o 89

getAuthenticatedUserld 90
Lo =] oL = 1 1= =T 90
iSParameterDefined 91
Chapter 3 Advanced Office Setup Application 93
Changes in the Advanced Office Setup Application i .. 93
The Custom Data Field 95
OV BNV W . . o e e e 95
The Codein Detail 96
Complete SOUrce COde e e 114
The CUSTOM ACHIVITYo e e e e e e e 114
OV IV . .o e 114
The CodeinDetail 115
Complete SOUrce COde e e 128
Chapter 4 Cluster Managementt 129
INtrOdUCTION . o e e e 129
IPMCIUSIErMaNagEr . . .ottt 131
CrEAtEC USTEr . . 132
OO CIUSEEr .o 133
JOINCIUSEE ..o e e 134
UNJOINCIUSEEE o e e e e e 134
deleteCIUStEr ..o 135
CheCKLDAPCONNECLION o e e e e 135
CheCKL D APENIIY . .. e e e 136
CheCkDBCONNECTION e e e e 136
P CIUSEET o 137
Ot IUSTEI P oD Y . .ottt e 139
ChangeCluSter . .. 139
0o 141
L0 =] 1 o o 142
getinstalled Applications e 142
GBIV B S 0N o e 142
ISDEfINEd . o 143
getApplicationsPath e 143
getCOrPOrateDIreCIOrY ..o 143
OEtFINAEr L 144

4

getDeploymentManagerot 144

IPM CIUSTE POy . . oo 144
Getting and Setting Property Values i e 148
OEtValUE . o 148
SEEVAIUE . o 149
[0 T2 (0] o L= 1 =T 149

PM CIUSterPropertyFactory 150
(0] T 1 150

Code SaMPIES ..o 151
Mount the Cluster Manager and Get the DefaultCluster 151
Create a ClUSTEr e e 152
Getand Set Cluster Propertiest 153

Chapter 5 Deployment Managerttt e e e e 155

DEPlOYMENt STatES .. oot 155
ST A GE . .. e 156
MO . . 156
ST A TUS o e 156
TESTING .ot 157

IDeploymentManager Interface 157
Where are the Classes and Interfaces? e 157
Method Reference 158
remoVeAPPlICAtION 158
getinstalled Applicationso 158

IDeploymentDescriptor Interface 159
Code EXample ... 159
Method ReferenCe 160
ISAPPLICAtiIONSIOPPEd o 161
ISApplicationStarted 161
ISMOAECIOSEA 161
ISMOAEOPEN . o e 162
ISStagEDEVEIOPMENT .. o 162
ISStagEPrOdUCLION 162
ST S ING ..ot 162
LT Y 163
SEtAPPLICAtiONSTOPPEd oo 163
setApplicationStarted 163
SEtMOAECIOSEAo e 163

Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

SEEMOAEOPEN . . 164

SEETESING . .ottt e 164
Chapter 6 Working with Applications, Process Instances and Work Items 165
IPMADPICALION . . 166
IProcessINSIaNnCeo 167
VO I 168

A A g . ottt e e 168

BSOS . . o ittt e e e e 169

X PI o 169

XN . oo 169

OV T O ot e e 170

getChildPrimary ey e 170

GELC OMIMIBNT L ot 170

GetCONCIUSION . .. e 171

etCreatioNDate e 171

QEtEITOrMESSAgE . . . o oottt 171

getExceptioNNOdENAME e 171

QEtEXPIratioNDate e 172

OEtNOOENAME . . oo 172

Qe P IMaANY K Y . . o e 172

OEPIrOCESSINSTANCE o e 172

getRedireCtioNURLL o 173

[0 <] 1] 7 L P 173

NASEXPIrEd . . . 174

NASSIDIINGS . . oo 174

ISAULOMALEd 174

ISUSEIASSIONEE . . .ottt et et e e e e e 174

TNV A S G . . ittt it ettt e e e e e e 175

FEMOVEASSIGNEES . . ittt ettt ettt et e e e e e e e e e 175

FESUIMIE . ittt ettt e e e e e e e e 175

SV . ittt e 176

S C OMIMIENT e 176

SEtCONCIUSION 176

SE EXPIFAtiONDAteo 177

SUSPENA . . ottt e e 177
T [T 178

6

Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

Introduction

This preface has the following sections:
= About This Book

= Assumptions

= Conventions Used in This Guide

e For More Information

About This Book

This book is intended for use by Java programmers who need to extend iPlanet
Process Manager 6.0 functionality, either for developing applications or for
accessing deployed applications.

There are two main kinds of situations when you might want to use Java when
working with Process Manager:

= when developing Process Manager applications

= for interacting with clusters and deployed applications

Developing Process Manager Applications

For many applications, Process Builder allows you to do everything you want to
do in the way of building applications to control the flow of processes. You can
create process maps that route the flow of control of a process from assignee to
assignee. The process can include tasks that are performed manually or
automatically, in parallel or sequentially. In many cases, you never need to go
outside the Process Builder to build your application.

About This Book

However, in some cases you may need to tweak applications further. You may
want your process to use a data field that is different from any of the built in data
fields. You may want to define activities in Java that integrate with external data
sources. In these cases, you can create custom data fields and custom activities in
Java, and then bring them into the Process Builder to use when building an
application.

Relevant chapters are:

= Chapter 1, “Writing Custom Activities,” discusses how to write custom
activities in Java and bring them into the Process Builder.

= Chapter 2, “Writing Custom Data Fields,” discusses how to write custom data
fields in Java and bring them into the Process Builder.

= Chapter 3, “Advanced Office Setup Application,” discusses a custom data field
and custom activity that are provided with the AdvancedOfficeSetup sample
application.

Interacting with Clusters and Deployed
Applications

The standard way for users to interact with deployed applications is through the
Process Express. However, there may be situations when you need to interact
programmatically with deployed applications or you want to programmatically
perform cluster administration tasks, for example if you want to embed Process
Manager functionality inside another application. In this case you can write Java
applications that use the Process Manager Engine and Cluster API. In other
situations, you might want to write your own front-end to the Process Manager
Engine rather than have your users use the Process Express.

Relevant chapters are:

= Chapter 4, “Cluster Management,” discusses the classes for programmatically
interacting with Process Manager clusters.

= Chapter 5, “Deployment Manager,” discusses the classes for programmatically
accessing deployment descriptors.

= Chapter 6, “Working with Applications, Process Instances and Work Items,”
discusses the classes for programmatically interacting with applications,
process instances and work items.

8 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Assumptions

Assumptions

This guide assumes you are familiar with using Process Manager 6.0 and with
using the Java language. This guide does not attempt to teach Java.

To get started learning Java, see the online Java Tutorial at:

http://java. sun. conl docs/ books/tutorial/

Conventions Used in This Guide

File and directory paths are given in Windows format (with backslashes separating
directory names). For Unix versions, the directory paths are the same, except
slashes are used instead of backslashes to separate directories.

This guide uses URLs of the form:
ht t p: / / server. domain/ path/ file. ht m

In these URLS, ser ver is the name of server on which you run your application;
domai n is your Internet domain name; pat h is the directory structure on the server;
and fil e is an individual filename. Italic items in URLs are placeholders.

This guide uses the following font conventions:

= The nonospace font is used for sample code and code listings, APl and
language elements (such as function names), file names, path names, directory
names, and HTML tags.

= [talic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

For More Information

Table 0-1 summarizes the tasks involved in using Process Manager and describes
where to go for more information about each one.

Introduction 9

For More Information

Table 0-1 Summary of Process Manager Components

Do What? Which Process Comments

Manager

Component?
Install Process Installation For more information about installing Process Manager, see
Manager component the Process Manager Installation Guide

Build a process
application

Perform the steps
in a process

Administer a
process application

Build Java custom
data fields and
activities in Java.
Also use the Java
API to
programmatically
interact with
Process Manager.

Process Builder

Process Express

Process
Administrator and
Business
Administrator

Process Manager
Java classes and
APl which are
available in a JAR
file.

The Builder is a graphical user interface for building
processes.

For more information about Process Builder, see the Process
Manager Builder’s Guide.

The Express is a web-based interface that is used by the
people who perform tasks in a process. It includes a
customized work list for each person as well as a web-based
form for each task.

For more information about Process Express, see the Process
Express User’s Guide.

This is a set of web-based interface for doing administration
tasks such as shutting down processes.

For more information, see the Administrator’s and Business
Manager’s Guide.

Java programmers can build custom data fields and custom
activies in Java that can be imported into the Process Builder.
Programmers can also create Java applications that embed
Process Manager functionality or present customized front
ends to Process Manager.

For more information, read this book.

Process Manager 6.0 runs on top of iPlanet Application Server 6.0 (iAS 6.0). For
more information about iAS 6.0 and other iPlanet products, see the iPlanet
documentation web site at ht t p: // docs. i pl anet. con’ docs/ manual s/ .

10 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Chapter 1

Writing Custom Activities

This chapter describes how to write and use custom activities. The sections in this
document are:

Introduction

Implementing ISimpleWorkPerformer
Writing the XML Description File

Packaging a Custom Activity

Adding a Custom Activity to the Process Map
Working with a Custom Activity
Implementation Tips

Example Custom Activity

Introduction

Process Manager lets you create custom activities as Java classes and bring them
into your process definitions.

Custom activities are useful when you want to do more than can easily be done in
an automation script, such as when the programming logic or data resides outside
of Process Manager. For example, you might build a custom activity to interface
with external applications and databases. Custom activities might also run local
applications and then interact with mail gateways or FAX servers.

11

Implementing ISimpleWorkPerformer

Comparison to Automated Activities

Custom activities are similar to automated activities. In both cases:

= You place them on the process map by dragging and dropping them from the
Palette.

= They can have verification and completion scripts.

= They are triggered as soon as the process instance reaches the activity, unless
the activity is deferred. A deferred activity is triggered at its specified date and
time.

Automated and custom activities have one main difference: an automated activity
is carried out by an automation script, whereas a custom activity is carried out by a
user-defined Java class.

Overview of Creating a Custom Activity

Creating and using a custom activity involves the following major steps:

1. Write and compile a Java class that implements the | Si npl eWor kPer f or mer
interface.

2. Define an XML description file for the activity.
3. Package the Java class and the XML description file as a zip or jar file.

4. Bring the custom activity into an application.

Implementing ISimpleWorkPerformer

12

The first step in creating a custom activity is to write a Java class that implements
I Si npl eVor kPer f or ner, an interface in the package com net scape. pm nodel .

I Si npl eVor kPer f or mer defines a custom activity that;
1. gets values, typically data field values, as input

2. performs some task

3. sets data field values as output

Note: You can find the ISimpleWorkPerformer class in the pn60cl asses. j ar file.
If you have installed the Process Manager Builder, you can find this jar file in the
directory builder-root\ suppor t \ sdk. You may also be able to find it on the CD.

Process Manager Programmer’s Guide « 6.0 (SP1)

Implementing ISimpleWorkPerformer

This section describes the following topics:
= Methods of ISimpleWorkPerformer

= Sample Java Class

Methods of ISimpleWorkPerformer

I Si npl eVr kPer f or mer has three methods:
= Theinit() method is called when the application starts.

= The perform() method is called each time the custom activity is executed. This
method must be thread-safe.

= The destroy() method is called when the application is unloaded or removed.

The init() method

public void init (Hashtable environment) throws Exception

Theinit () method performs initialization tasks that the custom activity requires
when the application starts. For example, usei ni t () to set up database
connections that are shared by all instances of the activity, or usei ni t () to define
variables that are constant across all instances of the activity.

Theinit () method does not execute each time a custom activity is created in a
process instance. Instead, this method is called only once—when the application
starts.

As its input argument, i ni t () takes a hashtable of environment variables. A
hashtable is a Hashtable object that contains a series of parameter-value pairs. The
parameters in the environment hashtable are defined in the ENVIRONMENT
section of an XML description file.

A process designer sets the values of the hashtable parameters while creating the
process map.

For example, suppose a Language parameter is defined in the environment
hashtable of a custom activity. In Process Builder, the Language parameter would
appear as a property for the custom activity (you would open the Inspector
window and view the Properties tab).

In your Java class, define thei ni t () method to perform the desired initialization
tasks. Then, to obtain the value of a parameter in the environment hashtable, call
the get () method on the environment hashtable. The get () method returns either
the value of the parameter, or nul | if the parameter doesn’t exist.

Chapter 1 Writing Custom Activities 13

Implementing ISimpleWorkPerformer

14

The perform() method
public void perform (Hashtable in, Hashtable out) throws Exception

The per f or () method executes whatever tasks must be done for the activity. This
method takes two Hashtable arguments. The input hashtable contains values taken
from data fields, and the output hashtable contains values to put into data fields.

The parameters in the input and output hashtables are defined in the INPUT and
OUTPUT sections, respectively, of an XML description file.

The Input Hashtable

To obtain the value of a parameter in the input hashtable, call the get () method on
the input hashtable. The get () method returns either the value of the parameter, or
nul | if the parameter doesn’t exist. Note that the get () method returns a Java
object, so you must cast this object to the object class type that your custom activity
is expecting. For example:

String sizeOrder = (String) input.get("order");

The Output Hashtable

To set data field values, the per f or () method must put values into the output
hashtable by calling put () on the output hashtable. When the per f or n{) method
finishes executing, you then assign the values to the corresponding data fields.

The destroy() method
public void destroy()

The dest roy() method is called when the application that uses the custom activity
is unloaded or removed. Typically, you use the dest r oy() method to clean up
resources that were used by the i ni t () method.

Sample Java Class

The following code samples are from Hel | oWor | dPer f or ner . j ava, the class that
implements the HelloWorld custom activity. HelloWorld is included in Process
Manager as a sample custom activity, so you can view the source code directly.

HelloWorld constructs a welcome message in either French or English. The
message value is derived from two things: the value of the cust oner Nane data
field in the process instance, and the Language property of the Hel | oWor | d activity
instance. The HelloWorld activity puts the welcome message in the gr eet i ng data
field.

Process Manager Programmer’s Guide « 6.0 (SP1)

Implementing I1SimpleWorkPerformer

Creating HelloWorldPerformer.java

Using your favorite Java editor and compiler, create and compile a Java class that
implements the | Si npl eWor kPer f or mer interface. When you use Process Builder
to add a custom activity, Process Manager automatically places the custom
activity’s class file in the server’s class path when the application is deployed.

Note. Don’t define any constructors in classes implementing
ISimpleWorkPerformer, because Process Manager does not use them. A Java
exception will be thrown. Defining a class without any constructors is the same as
defining one with just a default constructor.

Here are the steps for creating Hel | oWor | dPer f or ner . j ava:
1. Define a package for your class:
package com net scape. pm sanpl e;

2. Import the required standard Java packages:

i mport java.lang. *;

import java.util.x*;

3. Define the class HelloWorldPerformer to implement
com net scape. pm nodel . | Si npl eWor kPer f or mer , as follows:

public class Hell oWrl dPerf orner

i mpl ements com net scape. pm nodel . | Si npl eWor kPer f or ner

Chapter 1 Writing Custom Activities 15

Implementing ISimpleWorkPerformer

4. Define two variables to hold the English and French parts of the greeting.
Define another variable to hold the complete greeting when it has been derived
(such as “Bonjour Nikki.”)

/1l Greeting Messages
public static final String GREETI NG FRENCH = "Bonjour";
public static final String GREETING ENGLI SH = "Hel | 0";

/1 Holds the greeting nessage once the | anguage is specified
String n&eeting;

5. Define theinit () method to get the value of the Language environment
variable and to set the language-specific part of the greeting. In addition, throw
an exception if the language is not provided, or if the language is neither
English nor French. For example:

16 Process Manager Programmer’s Guide * 6.0 (SP1)

Implementing ISimpleWorkPerformer

/**

* The HelloWorld customactivity knows to generate both French
* and English greetings. The Language argunent defines which

* | anguage shoul d be used.

*/

public void init(Hashtable env) throws Exception

{
String lang = (String) env.get("language");
if(lang == null)
{
t hrow new Exception("-- |anguage not defined.") ;
}
else if (lang.equal sl gnoreCase("French"))
{
N eeting = GREETI NG_FRENCH;
}
else if (lang.equal sl gnoreCase("English"))
{
nreeti ng = GREETI NG_ENGLI SH;
}
el se
{
t hrow new Exception("-- Unknown | anguage:"+ | ang +
We currently support English or French--") ;
}
}

Later, you will set the exact value of the Language environment. You’'ll do this
in Process Builder, when you set up the custom activity in a process definition.

Chapter 1 Writing Custom Activities 17

Implementing ISimpleWorkPerformer

18

6. Define the perf orn{) method to construct a welcome message consisting of
the language-specific part of the greeting and the user’s name, for example
“Hello Billy.” The value of the user Nane parameter is derived later—from a
data field in a process instance that uses the custom activity.

Use the get () method on the input parameter to get the value of an input
parameter.

/**

* Reads the userNane el enent of the input hashtabl e,
* generates greetings, and sets the Greeting el enent of out.
*/

public void perfornm Hashtable input, Hashtable output)
throws Exception

{
/1 Read the userNane attribute fromthe input hashtable
String userNane = (String) input.get("userNane");
if(userName == null)
{
t hrow new Exception("userNane is not initialized!'");
}
/1 Generate greetings
String nmsg = nreeting + " " + userNaneg;
/* Use the put() nmethod on the output parameter to set
* the val ue of an output paraneter.
*/
/1 Put the greeting into the wel comeMsg paraneter of
/1 the output hashtable.
out put . put ("wel comeMessage" , nsg);
}

Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the XML Description File

7. Finally, define the dest r oy() method, which is invoked when the application
is unloaded from the application server. In this case, the method does nothing
because no resource cleanup is needed.

public void destroy()

{
}

/! End of class

}

8. Compile Hel | oWor | dPer f or ner . j ava to get a class file,
Hel | oWor | dPer f or mer . cl ass.

Writing the XML Description File

After you write and compile the Java class that implements
ISimpleWorkPerformer, the next step is to define an XML description file for the
class. This XML file specifies the environment, input, and output parameters that
the class uses. In addition, the XML file specifies some optional design parameters.
Design parameters control the custom activity’s appearance in Process Builder.

This section describes the following topics:
e File Format

< Sample XML Description File

File Format

The XML description file starts with a tag indicating the XML version, such as:

<?XM. version = "1.0" ?>

Chapter 1 Writing Custom Activities 19

Writing the XML Description File

The body of the description is contained between an opening <WORKPERFORVER>
tag and a closing </ WORKPERFORMER> tag. Within the WORKPERFORMER section
you define four sections, as summarized in the following table.

XML Section What this section describes

ENVIRONMENT Environment hashtable used by i ni t () method.

INPUT Input hashtable used by per f or m() method.

OUTPUT Output hashtable used by per f or m() method.

DESIGN Appearance of custom activity icons in Process
Builder.

Here is the structural overview of an XML description file:

<?XM. version = "1.0" ?>
<WORKPERFORMER >
<ENVI RONVENT>

<PARAMETER> ... </ PARAMETER> ...
</ ENVI RONVENT>
<| NPUT>

<PARAMETER> ... </ PARAMETER> ...
</ | NPUT>
<QUTPUT>

<PARAMETER> ... </ PARAMETER> ...
</ QUTPUT>
<DESI GN\>

<PARAMETER> ... </ PARAMETER> ...
</ DESI G\>
</ WORKPERFORVER>

20 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Writing the XML Description File

WORKPERFORMER Tag
The <WORKPERFORMER> tag has four attributes: TYPE, NAME, CLASS_| D, and VERSI ON.

= TYPEis the full package name for the Java class for this type of activity. For a
simple custom activity, TYPE is always this:

com net scape. pm nodel . | Si npl eWor kPer f or ner

= NAME is the name of the custom activity (which is the same as the name of the
XML description file and the jar file that contains the custom activity). This
name is not currently used anywhere.

= CLASS | Dis the full package name for the Java class that implements the
custom activity.

= VERSI ONis the version of the custom activity. VERSI ONis currently unused, but
you could use it to keep version information about the description file.

Here is a sample <WORKPERFORVER> tag:

<WORKPERFORMER
TYPE="com net scape. pm nodel . | Si npl eWbr kPer f or mer "
NAME="Hel | oWor | d"
CLASS_| D="com net scape. pm sanpl e. Hel | oWor | dPer f or mer"
VERSI ON="1. 1" >

ENVIRONMENT Section

The <ENVI RONMENT> tag defines environment parameters that are constant within
all instances of the custom activity. For example, suppose that in an application
named HelloWorld, you set the value of the Language environment parameter to
French. Then, the value is always French in every process instance of that
application.

Chapter 1 Writing Custom Activities 21

Writing the XML Description File

22

The ENVI RONMENT section contains embedded <PARAMETER> tags. Each
<PARAMETER> tag describes a parameter in the environment hashtable—the
argument used by the i ni t () method. The <ENVI RONMVENT> tag has a
corresponding closing </ ENVI RONMENT> tag , and each <PARAMETER> tag has a
closing </ PARAMETER> tag.

When you add the custom activity to the process map in Process Builder, each
parameter in the <ENVI RONVENT> tag appears as a field in the Inspector Window.

Here’s a sample ENVI RONVENT section:

<ENVI RONMVENT>
<PARAMETER NAME="Language" >"Fr ench" </ PARAMETER>
</ ENVI RONMVENT>

Warning. Parameter values (such as “French” in the example above) are actually
JavaScript expressions, so you can supply the value as a string, integer, or function.
However, be sure to quote any string expression. Note that Fr ench (without
quotes) and " French" (with quotes) mean different things.

For details on the syntax of the <PARAMETER> tag, see the section “PARAMETER

Tag”.

INPUT Section

The <I NPUT> tag contains embedded <PARAMETER> tags. Each <PARAMETER> tag
specifies a JavaScript expression that returns a value for the input hashtable to be
used as the argument to per f or n() . The<l NPUT> tag has a corresponding closing
</ I NPUT> tag , and each <PARAMETER> tag has a closing </ PARAMETER> tag.

The <PARAMETER> can specify any JavaScript expression as the parameter.

To use the value of a data field in the process instance as an input parameter,
embed a call to get Dat a() in the <PARAMETER> tag. For example, the following
code sets the value of the user Name parameter in the input hashtable to the value of
the cust omer Nane data field in the process instance.

Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the XML Description File

<| NPUT>
<PARAMETER
NAME=" user Nane"
DI SPLAYNAME="User Nane"
TYPE="j ava. | ang. Stri ng"
DESCRI PTI ON="Last Nane">
get Dat a(" cust ormer Nane")
</ PARAMVETER>
</ | NPUT>

For details on the syntax of the <PARAMETER> tag, see the section “PARAMETER

Tag”.

The corresponding code in your Java class file uses the per f or () method to get
the value of the user Nane parameter. Within the per f or n{) method, you call the
get () method. Here is a code fragment:

Chapter 1 Writing Custom Activities

23

Writing the XML Description File

24

public void perform Hashtable input, Hashtable output)
throws Exception

{
/1 Read the userNane attribute fromthe input hashtable
String userNane = (String) input.get("userNanme");
if(userName == null)
{

t hrow new Exception("userNane is not initialized!'");
}
/1 Cenerate greetings
String msg = naeeting + " " + userNaneg;
OUTPUT Section

The <QUTPUT> tag contains embedded <PARAMETER> tags. Each <PARAMETER> tag
specifies a JavaScript statement that defines what to do with parameter in the
output hashtable, the output argument of the per f or n{) method. The <OUTPUT>
tag has a corresponding closing </ OQUTPUT> tag, and each <PARAMETER> tag has a
closing </ PARAMETER> tag.

Use the mapTo() JavaScript function to specify that the value of a parameter of the
output hashtable is to be automatically installed in a data field in the process
instance. For example, the following code specifies that when the per f or m()
method has finished executing, the value of the wel comeMsg parameter in the
output hashtable is automatically installed in the gr eet i ng data field in the process
instance.

Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the XML Description File

<QOUTPUT>
<PARAMETER
NAME=" wel conmeMsg"
DI SPLAYNAMVE=" Wl cone Message"
TYPE="j ava. | ang. Stri ng"
DESCRI PTI ON="Greeting for the user">
mapTo("greeting")
</ PARAMVETER>
</ QUTPUT>

For details on the syntax of the <PARAMETER> tag, see the section “PARAMETER

Tag”.

The corresponding code in your Java class file uses the per f or m() method to puta
value in the wel comeMsg parameter of the output hashtable. Within the per f or m()
method, call the put () method:

out put . put ("wel coneMessage" , nsg);

PARAMETER Tag
The <PARAMETER> tag specifies a JavaScript statement or expression that defines a
parameter for the input hash table when used in the INPUT section.

The <PARAMETER> tag specifies a JavaScript statement that defines what to do with
a parameter in the output hash table when used in the OUTPUT section.

The <PARAMETER> tag has the attributes as summarized in the following table.
When you define parameters within the DESIGN section of the XML description
file, only the NAME and DESCRIPTION attributes apply. However, within the
ENVIRONMENT, INPUT, or OUTPUT sections, all of the attributes apply.

Attribute Meaning

NAME Name of the parameter.

Chapter 1 Writing Custom Activities 25

Writing the XML Description File

26

Attribute
DESCRIPTION

Meaning

The text for the tool tip (also called bubble help) that

appears when you place the mouse over the item in
Process Builder.

TYPE The Java object class of the parameter. This attribute is
optional. The value can be given as a complete class
name, such asj ava. | ang. Stri ng or
com net scape. pm Shoppi ngCart.

VALUESET A comma-delimited list of possible values for this
parameter. These values appear as a pop up menu in the

Inspector Window. This attribute is optional.

EDITOR The type of editor window to use. For example, use this
attribute to set a Browse button, text area, drop down

list, dialog box. This attribute is optional.

EDITABLE A boolean that determines whether the parameter value
can be edited in the Inspector Window. The default is

true. This attribute is optional.

DESIGN Section

The <DESI G\> tag contains embedded <PARAMETER> tags. The <DESI G\> tag has a
corresponding closing </ DESI G\> tag, and each <PARAMETER> tag has a closing
</ PARAVETER> tag.

Use the DESIGN section to define the custom activity’s user interface within
Process Builder. In the DESIGN section, the <PARAMETER> tag accepts two
attributes: NAME and DESCRIPTION.

By setting the NAME attribute, you define a particular aspect of the custom
activity’s user interface. The following table summarizes the available values for
the NAME attribute:

NAME Attribute Meaning

Icon The image file to use for the icon in the custom palette.

Label A text label that appears under the icon.

BubbleHelp The text for the tool tip that appears when the mouse
pointer is over the icon.

HelpUrl The URL for the online help for this custom activity,

accessible from a right-click.

Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the XML Description File

NAME Attribute Meaning

Maplcon The image file to use for the icon in the process map. In
typical usage, this is the same as Icon.

SelectedMaplcon The image file to use for the icon in the process map,
when the activity is selected.

TreeViewlcon The file to use for a small image that represents the
activity in the Application Tree View.

Sample XML Description File
The following code defines a file called Hel | owor | d. xnl . Things to note are:

= This file specifies user Narre as a parameter in the input hash table. However,
the value of this parameter is obtained from the cust omer Nane data field in the
process instance.

= Similarly, the file specifies wel comeMsg as a parameter in the output hashtable,
and maps its value back into the gr eet i ng data field in the process instance.

Here is the entire code for the Hel | oWor | d. xml description file:

<?XML version = "1.0" ?>
<WORKPERFORMER
TYPE="com net scape. pm nodel . | Si npl eWbr kPer f or mer "
NAMVE=" Hel | oWor | d"
CLASS_| D="com net scape. pm sanpl e. Hel | oWor | dPer f or mer"
VERS| ON="1. 1" >
<ENVI RONMENT>
<PARAMETER
NAME=" Language"
VALUESET=""Engl i sh’ ,” French’ "
TYPE="j ava. | ang. Stri ng">
"English’
</ PARAMETER>
</ ENVI RONMENT>

Chapter 1 Writing Custom Activities 27

Writing the XML Description File

28

<l NPUT>

<PARAMETER
NAME="user Nanme"
DI SPLAYNAME=" User Nange"
TYPE="j ava. |l ang. Stri ng"
DESCRI PTI ON="Last Nane">

get Dat a(" cust oner Nane")

</ PARAMETER>

</ | NPUT>
<QUTPUT>

<PARAMETER
NAME="wel comeMsg"
DI SPLAYNAMVE=" | cone Message”
TYPE="j ava. |l ang. Stri ng"
DESCRI PTI ON="Greeting for the user">
mapTo("greeting")
</ PARAMETER>
</ QUTPUT>

<DESI G\>
<PARAMETER
NAME="| con"

DESCRI PTI ON="A 32x32 icon that is placed on the palette">

drap_uk2. gi f
</ PARAVETER>
<PARAMETER

NAME=" Label "

DESCRI PTI ON="The DI SPLAYNAME for this palette elenent.">

Hello Wrld
</ PARANETER>

<PARAMETER

NAME=" Bubbl eHel p"

DESCRI PTI ON="Bubbl e hel p for the palette el ement">
Hel |l oWworld - A sinple work perforner Custom Activity.
</ PARAVETER>

<PARAMETER

NAME=" Hel pURL"

DESCRI PTI ON="URL explaing this palette elenent">
http:// peopl e. net scape. conf m chal /
</ PARAVETER>

Process Manager Programmer’s Guide « 6.0 (SP1)

Packaging a Custom Activity

<PARAMETER

NAMVE=" Mapl con”

DESCRI PTI ON="1con for the process map (48x48)">
drap_uk2.gif
</ PARAVETER>

<PARAMETER

NAME="Sel ect edMapl con”

DESCRI PTI ON="1con for the process map (48x48)">
drap_fr2.gif
</ PARAMVETER>

<PARAMETER
NAME="Tr eeVi ew con"
DESCRI PTI ON="Icon for the tree view (48x48)">
mailer_tree_viewgif
</ PARANVETER>
</ DESI G\>
</ WORKPERFORVER>

Packaging a Custom Activity

After you create the Java class file and the XML description file, the next step is to
package the custom activity. A custom activity consists of the following files:

= One or more Java classes. At least one of these classes must implement
| Si mpl eWor kPer f or ner .

= An XML description file.
= Optional image files to use as icons in Process Builder.

Create a zip or jar archive that contains these files. The archive must have the same
root name as the XML file. For example, if the XML file is Hel | oWor | d. xmi , then
name the zip file Hel | oWor | d. zi p.

As you create the archive, check that the directory structure reflects the package
structure of the class. For example, the Hel | oWor | dPer f or mer class is in the
package com net scape. pm sanpl e. Therefore, the class file must be in the
directory com net scape/ pnf sanpl e, as shown in Figure 1-1. The Hel | oWor | d. xni
file must be at the top level.

Chapter 1 Writing Custom Activities 29

Adding a Custom Activity to the Process Map

Figure 1-1 Directory structure for the HelloWorld activity

al| Winsip - HelloWorld. zip

=
File Actions Option: Help

D Q|7 el S

~ MNew | Open | Fawontes{ Add | Exbract Yigww | CheckOut] ‘Wizard

Mame Date Time Size Raho Packed Pasth
‘.JT drap_fr2.qif 03/24/33 10:34 2084 223 1609
A drap_uk2 gif 03/24/99 10:34 2478 4% 2383
=] Hellow/orld. «ml 039/23/93 1822 1.763 EBX G24

E] Hello\w orldPerfarmer.class 06418793 1246

2004 43% 1,049 comhnetzcapehpmieamplet,

Selected 0 fles, 0 bytes

Note the two image files, drap_fr2. gi f and drap_uk2. gi f. These images will be
used by Process Builder in the process map. The images, shown in Figure 1-2, will
correspond to the selected state of the Language property, either French or English.

Tatal 4 files, 9B @

Figure 1-2 Image files in the HelloWorld activity

ip ==

Adding a Custom Activity to the Process Map

There are two ways to add a custom activity to the process map:

30

= Inone case you create a custom palette. This approach is useful if you intend to
use a custom activity often, either within a single application or across several

applications.

= In the other case, you don’t create a custom palette, and you simply use the

Custom Activity icon provided with Process Builder. This approach might be
better if you rarely use custom activities, and you don’t want to create a custom

palette for them.

Adding a Custom Activity from a Custom Palette

To use a custom activity from a custom palette, do the following:

Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Adding a Custom Activity to the Process Map

1. In the palette, right-click the area below the title bar, and choose “Add custom
palette,” as shown in Figure 1-3. This adds a new tab to the palette.

Figure 1-3 Adding a custom palette

N Map Palette | x|

Activities

Documentation l

Add custarm pallete

What's Thig"?

2. Inthe “New palette name” dialog box (shown in Figure 1-4), type the label for
the new tab. For example, enter “HelloWorld”.

Figure 1-4 Enter a name for the new palette

New palette name

Enter palette narme:

ok | cancel | Help |

A new tab is added to the palette.

3. Click your new custom tab to make it active. Note that the area contains no
icons.

4. Right-click in the empty area under the tabs, and select “Add Custom Activity
..”". See Figure 1-5.

Chapter 1 Writing Custom Activities 31

Adding a Custom Activity to the Process Map

Figure 1-5 Add a custom activity to the palette

N Map Palette

Activities] Documentation HE“DWDrldl

i
, Add Custom Activi
i
Rebuild Palette ..

i Help

What's This?

A file selection window appears.

5. Using the file selection window, locate the archive file that represents the
custom activity, and select the file. For example, Figure 1-6 show the selection
of Hel | oVér | d. zi p:

Figure 1-6 Select the file that represents a custom activity

Select the Custom Activity definition

Lookin: |3 builder

] Applications [manual
27 bin R netzcape
23 classes 3 Samplez
-1 cam ([zounds
) images Ea support
£ jdk116 2 Tmp

File narne:]Hellu:u‘-.-\-’u:urld.zip Open

Files of upe: [l Files [£ Cancel

The custom activity is added to your new palette. For example, as shown in
Figure 1-7, the HelloWorld activity appears on the palette like this:

32 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Adding a Custom Activity to the Process Map

Figure 1-7 A custom activity icon appearing on the HelloWorld custom palette

M. Map Palette

Activities l Documentation HelloWorld

P L
= LS

Hello ot

Note that the custom activity’s appearance in Process Builder is controlled by
the DESIGN section of the XML file. In the HelloWorld tab pictured above, you
see the effects of setting the Icon, Label, and BubbleHelp parameters in the
DESIGN section.

To add the activity to your application, drag the icon from the custom palette
to the process map.

Adding a Custom Activity without Using a
Custom Palette

If you don’t have a custom palette icon or don’t want to create one, you can add a
custom activity as follows:

1.
2.
3.

In the palette, drag the Custom Activity icon to the process map.
Select the custom activity and open the Inspector window.

On the Properties tab of the Inspector, locate the property named Custom
Activity.

Click the Browse button to bring up a file selection window, and locate the zip
or jar file that represents the custom activity. An example is shown in Figure
1-8.

Chapter 1 Writing Custom Activities 33

Working with a Custom Activity

Figure 1-8 Setting the Custom Activity property

Select the Custom Activity definition
Lookin: |3 builder
I &pplications [manual
1 bin [netscape
] classes L Samples
|1 com [zounds
] images (23 suppart
3 jdk 116 3 Tmp
File: narne:]Hellu:u‘-.-\-’u:urld.zip Open i
Files of upe: [l Files [£ Cancel |

5. Click Open to associate the selected file with the Custom Activity icon. The
Custom Activity icon now has the characteristics defined by the file.

Working with a Custom Activity

After you place a custom activity on the process map, you can view or set its
properties in the Inspector window. For example, Figure 1-9 shows the Inspector
window’s Input tab for HelloWorld.

Figure 1-9 Input properties for a custom activity

ML Inspector - Customn B

Properties | INput DutputlTransitionsl

| fa UserName |getData("custnmerName") |

The Input tab shows the parameter names in the input hashtable, and shows how
the value for each parameter is derived. In this case, the value for the input
parameter user Nane is derived by getting the value of the cust omer Nare datafield.

34 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Implementation Tips

The INPUT section of the XML description file determines the appearance of the
Input tab in the Inspector window. For example, note that the user Nane parameter
displays as "User Name," which was specified through the DISPLAYNAME
attribute in the XML file.

Similarly, the Output tab shows the parameter names in the output hashtable, and
shows how the value for each parameter is mapped back into the process instance.
In this case, the value for the output parameter wel conmeMsg is put in the greet i ng
data field.

As you design the process, be sure to add the data fields that are used by the
custom activity. For example, the HelloWorld activity uses two Textfields:
gr eeti ng and cust oner Nane.

Implementation Tips

This section describes some design tips you should consider as you create and
implement a custom activity.

< Avoid Instance Data
= Use Consistent Data Types
= Avoid Non-default Constructors

= When to Use a Custom Activity

Avoid Instance Data

A custom activity, like a custom data field, is a stateless entity. In effect, there is
only one copy of each occurrence of a custom activity per application. All the
process instances in an application effectively share the same custom activity
instance for each occurrence of the custom activity class in the application. Because
of this, it’s recommended that you avoid using instance data in a class that
implements a custom activity, particularly if the per f or n{) method is likely to
change this data. If you can’t avoid using instance data, be sure to synchronize the
data. With unsynchronized data, a variable set during one request might not exist
for the next request.

For example, consider an application that employees use to request vacation days.
Let’s suppose this application has a custom activity that updates the corporate
database with the new vacation balance.

Chapter 1 Writing Custom Activities 35

Implementation Tips

The following code, which uses an instance variable called vacat i onBal ance,
shows how NOT to implement the custom activity:

/1 This is the WRONG way to inplenent a customactivity!!
public class Request Vacati onPerf or mer

i mpl ements com net scape. pm nodel . | Si npl eWor kPer f or ner

{

i nt vacati onBal ance;

public void init (Hashtable environnent) throws Exception

{
/I Get the employee’s vacation balance from the database
/I Store it temporarily as instance data
vacationBalance = getVacBalance(employeelD);

}

public void perform(Hashtable input, Hashtable output)
throws Exception

{
/I Read the employee ID attribute from the input hashtable
String employeeUD = (String) input.get("employeelD");

/I Get the num of requested vac days from the input hash table
String vacRequested = (String) input.get("vacDaysRequested");

/I Update the vacationBalance instance variable
vacationBalance = vacationBalance - vacationRequested;

/I Change the vacation balance in the database
updateVacationinfo(employeelD, vacationBalance)

36 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Implementation Tips

Fred is the first person to request a vacation using this Process Manager application
and he wants to go river rafting for 2 days. Fred’s i ni t () method gets his vacation
balance, which is 3 days, (Fred has already been scuba diving in Hawaii this year)
and stores it in the vacat i onBal ance instance variable. Fred’s per f or n{) method
calculates his updated vacation balance, which is 1 day, and stores it in the

vacat i onBal ance instance variable.

Now Bob comes online and requests a vacation of 8 days. Bob has been saving his
vacation days for a long time for his dream trip to climb Everest. However, since
the application has already been initialized, i ni t () does not run again. Bob’s
per f or n{) method ends up accessing the vacat i onBal ance that was set by Fred’s
per f or n{) method, thus Bob ends up having a vacation balance of only 1 day,
which is hardly enough time to fly to Nepal, let alone climb Everest and fly home
again.

It is OK to use instance variables for data that is constant across all occurrences of a
custom activity within an application. For example, the custom activity in the
vacation request application might use a global variable that represents the
number of company holidays per year. This number does not change from
employee to employee, so it is OK to store this as an instance variable.

Another example of a situation where it is OK to use instance variables is if the
custom activity needs the iAS engine context to call out to a connector such as an
SAP connector. In this case, you could set the context inside i ni t () and then re-use
it inside per f or () . The key thing to remember is that objects such as the context
are considered to be immutable and hence will only be used, not changed, inside

perform).

An application can contain multiple occurrences of a custom activity class. For
example, an application might have custom activities called

CheckVacat i onBal ance and CheckVacat i onAccr ual , which are both instances of
the CheckVacat i onl nf o custom activity class. When the application is running,
these two activities operate completely independently. If the activities use instance
data, that data would not be shared between them. For example, if the activities use
an instance variable called DBTabl eNane, the CheckVacat i onBal ance instance
could set it to VacBal Tabl e while the CheckVacat i onAccrual could set it to
VacAccTabl e, and there would be no confusion between the two.

Use Consistent Data Types

Watch for consistent data typing. Make sure that the data types you specify in the
XML file are consistent with the corresponding values you pass to the input and
output hashtables. Although Process Manager performs some basic data matching
for you, inconsistent data is likely to generate an error.

Chapter 1 Writing Custom Activities 37

Implementation Tips

Avoid Non-default Constructors

In classes that implement | Si npl eWor kPer f or mer , avoid defining non-default
constructors (meaning constructors with non-zero arguments). Otherwise, you
may encounter problems during dynamic loading. The problem may arise because
Process Manager dynamically loads the class that implements your custom
activity. In other words, Process Manager has no prior awareness of nhon-default
constructors and therefore cannot call them.

Use One Implementation of a Java Class Per
Server

When an application is deployed, the Java classes it uses are deployed to the appropriate folder
in the class path on the engine. This class path is shared by all applications running on the
engine. Every application that uses a particular Java class uses the same implementation of that class.
For example, suppose application A and application B both use a Java class Shar edd ass1.
When application A is deployed, its version of Shar edC ass1 is deployed to the class path.
When application B is deployed, its version of Shar edd ass1 is deployed to the class path,
overwriting the implementation deployed previously by application A.

Thus if multiple applications running on a Process Manager engine use the same custom
activity, they should all use exactly the same implementation of the custom activity, since each
time the custom activity is deployed to the engine, it overwrites the previous implementation.

If you want multiple applications to use a custom activity that is basically the same but differs
slightly from application to application, make sure that the name of the activity Java class is
different in each application.

When to Use a Custom Activity

Custom activities are useful when you want to integrate an existing legacy process
into a Process Manager process through a well-defined interface. For example, use
a custom activity in a Process Manager process that exchanges data with external
resources such as a CORBA server, a CICS system, or the business logic in an EJB
component.

By contrast, custom activities are not a good solution if you must represent a
complex data structure from an external source. For example, to represent result
sets or other data types from Oracle databases or SAP R/3 systems, you are better
off using a custom field. Reserve custom activities for situations where data can be
easily parsed and stored (either directly in a data field or in the content store).

38 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Example Custom Activity

Example Custom Activity

The AdvancedOfficeSetup sample application that ships with the Process Builder
includes an example of a custom activity.

The AdvancedOfficeSetup application has a custom activity that automatically
schedules a new employee to attend a company orientation training.

The day of the training depends on which department the employee is joining and
what day they start work at the company. For more details, see Chapter 3,
“Advanced Office Setup Application."

Chapter 1 Writing Custom Activities 39

Example Custom Activity

40 Process Manager Programmer’s Guide * 6.0 (SP1)

Chapter 2

Writing Custom Data Fields

This chapter describes how to write custom fields for use in Process Manager 6.0.
This chapter includes the following sections:

* Introduction
e Defining Field Properties in a JSB File
* Writing the Java Classes
* Specifying Images for Use in Process Builder
* Packaging a Custom Field
* Adding a Custom Field to an Application
* Example Custom Data Field
e Development Hints and Tips
e Class Reference
o BasicCustomField

o IPMRequest

Introduction

A data field contains information relevant to a process instance, such as the maximum value of
the budget or the name of a document. Process Builder offers a set of predefined data field
classes, such as Radi o Butt ons and Text fi el d. The predefined data fields store a single
value per data field.

In situations where you need behavior that is not provided by any of the predefined data field
classes, you can define your own custom data field. Such situations include the need for:

41

Defining Field Properties in a JSB File

* supporting data types that are more complex than the data types available with built-in
fields.

* representing multi-dimensional values, or other high-level data objects, in a process. For
example, custom fields can represent a “shopping cart,” an account, or a service order.

* accessing data objects that are stored in resources external to Process Manager, such as
PeopleSoft or CICS.

* displaying the data field differently in an entrypoint and a workitem

Process Manager allows you to define your own classes of data fields. Custom data fields are
sometimes known as entity fields.

Steps for Creating a Custom Field

The main steps for creating a custom field are as follows:

e Create a JavaScript bean (JSB) file to specify the field properties that will be visible in
Process Builder. For details, see “Defining Field Properties in a JSB File”.

e Write a Java class to determine the presentation and data management capabilities of the
custom field. At a minimum, you must implement two interfaces, IDataElement and
IPresentationElement. For details, see “Writing the Java Classes”.

e Optionally, create images to depict the data field in the Process Builder interface. For
details, see “Specifying Images for Use in Process Builder”.

* Package the JSB and Java classes into a zip or jar archive. For details, see “Packaging a
Custom Field”.

¢ In Process Builder, insert a data field and add the archive file as a new class. For details,
see “Adding a Custom Field to an Application”.

Defining Field Properties in a JSB File

42

You need to write a JSB file that defines which of the custom field’s properties can be set at
design time in Process Builder. In Process Builder, these properties are visible through the
field’s Inspector window. For each property shown in the Inspector window, a corresponding
property must be defined in the JSB file.

To create a JSB file for a new custom field class, you can copy an existing JSB file and modify it
to suit your needs. For example, you can copy the JSB files for Process Builder’s predefined
data fields, or you can copy a template JSB file. These files are located in the following path of
your Process Builder installation:

Process Manager Programmer’s Guide « 6.0 (SP1)

Defining Field Properties in a JSB File

builder-root\ com net scape\ wor kf | ow\ f i el ds

Warning: Do not modify the original JSB files for predefined data fields. If you do, the data
fields may no longer wotk.

The JSB file and the custom field class must have the same name. For example, a custom field
class named Shoppi ngCar t Fi el d. cl ass must have a JSB file named
Shoppi ngCartFi el d.j sb.

A JSB file has the following general structure:

<JSB>
<JSB DESCRI PTOR ... >
<JSB _PROPERTY ...>
<JSB PROPERTY ...>
</ JSB>
The file is surrounded by an opening <JSB> tag and a closing </ JSB> tag. The other two tags

are described in the following sections:

* JSB_DESCRIPTOR Tag
* JSB_PROPERTY Tag

JSB_DESCRIPTOR Tag

The <JSB_DESCRI PTOR> tag specifies the name, display name, and a short description of the
data field class.

For example, Shoppi ngCart Fi el d. j sb uses the fol |l owi ng <JSB_DESCRI PTOR> tag:
<JSB_DESCRI PTOR

NAME=" com net scape. pm sanpl e. Shoppi ngCart Fi el d"

DI SPLAYNAME=" Shoppi ng Cart Fiel d"

SHORTDESCRI PTI ON=" Shoppi ng Cart Fi el d">

The NAME attribute is the full path name for the data field class, using a dot () as the directory
separatot.

The DI SPLAYNAME attribute is the name that Process Builder uses for the field, such as the
field’s name in the Data Dictionary.

The SHORTDESCRI PTI ON attribute is a brief description of the field.

Chapter 2 Writing Custom Data Fields 43

Defining Field Properties in a JSB File

a4

JSB_PROPERTY Tag

The JSB file contains a series of <JSB_PROPERTY> tags, one for each property that appears in
the Inspector window. The following code shows some example <JSB_PROPERTY> tags. In
this case, the Inspector window shows properties for dsi denti fi er, dbuser,

dbpasswor d, dbuser and dbt abl enane as shown in Figure 2-1.

<JSB_PROPERTY NAME="dsi dentifier"
TYPE="string"
DI SPLAYNAME="Dat a Source ldentifier"
SHORTDESCRI PTI ON="DS ldentifier">

<JSB_PROPERTY NAME="dbnane"
TYPE="string"
DI SPLAYNAME=" Dat abase Nane"
SHORTDESCRI PTI ON="DB Type" >

<JSB_PROPERTY NAME="dbpasswor d"
TYPE="string"
DI SPLAYNAVE=" Dat abase Password"
SHORTDESCRI PTI ON=" DB Passwor d" >

<JSB_PROPERTY NAME="dbuser"
TYPE="string"
DI SPLAYNAVE=" Dat abase User"
SHORTDESCRI PTI ON="DB User " >

<JSB_PROPERTY NAME="dbt abl enane"
TYPE="string"
DI SPLAYNAME="DB t abl e nane"
SHORTDESCRI PTI ON="DB User" >

Process Manager Programmer’s Guide « 6.0 (SP1)

Defining Field Properties in a JSB File

Figure 2-1 Inspector Window shows properties defined in the JSB file

B
Cipds Soajrpe oevpiig
Ligha Typsy ERTIT
_ Lvalibard i N
Lk B P cirivon

ks b e iy
D8 faed= namss

The JSB_PROPERTY attributes and required property names are described in the next two
sections.

JSB_PROPERTY Attributes
The attributes for the JSB_PROPERTY tag are shown in Table 2-1:

Table 2-1 Attributes for the JSB_PROPERTY Tag

Attribute Name Purpose

NAME The name of the property.

DI SPLAYNAME The display name for this property, as it appears in
the Inspector window.

SHORTDESCRI PTI ON A short description of the property.

DEFAULTVALUE The default value of the property. This attribute is
optional.

VALUESET A comma-delimited list of the possible values for

this property. These values appear as a pop up
menu on the property in the Inspector window.
This attribute is optional.

TYPE The type of the data field column in the application
table in the database.

Chapter 2 Writing Custom Data Fields

45

Defining Field Properties in a JSB File

Table 2-1 Attributes for the JSB_PROPERTY Tag

Attribute Name

Purpose

| SDESI GNTI MEREADONLY

| SEXPERT

When specified, this attribute indicates that the
property cannot be changed in Process Builder.
This attribute is optional. By default, a property
value can be changed any time.

This attribute does not have an attribute=value
specification. You simply give the value, for
example:

<JSB_PROPERTY NAME="nynane"
| SDESI GNTI MEREADONLY>

When specified, this attribute indicates that the
property can be changed in Process Builder while
the application is in design mode. This attribute is
optional. By default, a property value can be
changed any time.

This attribute does not have an attribute=value
specification. You simply give the value, for
example:

<JSB_PROPERTY NAME="nynane" | SEXPERT>

Required Data Field Properties
Each data field must have the properties listed in Table 2-2:

Table 2-2 Standard Data Field Properties

Property Name Default Display Purpose
Name
ch Name of this The common name of the data field instance.
field (Note this is not the name of the data field
class.) The name is set when you create the
data field in Process Builder.
description Short A description of the data field.
Description
prettyname Display Name The field’s display name which is the name

that Process Builder uses for the field.

46 Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the Java Classes

Table 2-2 Standard Data Field Properties

Property Name Default Display Purpose
Name
hel p Help Message A help message for the field.

fieldclassid Field Class ID This is the package name of the data field
class. This is used to ensure that each data
field type is unique. This value uses the same
convention as the Java haming convention
for packages. For example, if
Shoppi ngCart Fi el d is stored in
\ com net scape\ pml sanpl e, then its
fieldclassidis:
com net scape. pm sanpl e. Shoppi ngCa
rtField

fieldtype Data Type The datatype that the field uses when it is
stored in the Process Manager database. The
value must be ENTITY.

In addition to these required properties, each data field can have properties that are specific to
itself. For example, a Textfield has properties for size and length; a radio button data field has a
property for options; and so on.

When you define the properties for a custom field, consider the purpose of the field. For
example, if the custom field must access an external database, you may want to define
connection properties. These properties might include the database type (ORACLE,
SYBASE), a username and password, or a connection string.

Not all properties you define in a JSB file will necessarily be used. It depends on how your Java
class interprets these properties. For example, the JSB file could contain a col or property that
is totally ignored in the Java class. In this case, no matter what color the designer specifies for
the field, it has no effect.

Writing the Java Classes

To wrtite your Java classes, you must know something about the data these classes will work
with. Consider the following questions:

* What data types do you want the custom field to accept? For example, in what format will
the data be? This could well depend on where the data is coming from.

Chapter 2 Writing Custom Data Fields 47

Writing the Java Classes

48

* What data sources will the custom field be required to access? For example, will the
custom field access a PeopleSoft application? an SAP R/3 application? a relational
database?

Custom data fields are stateless, that is, you cannot use them to store information about a
process instance from one workitem to another. Think of your custom data field as being a
data manager. When a process instance arrives at a work item, the data field gets its data from
an external data store. The data can be any Java object. When the process instance leaves the
work item, the data field saves its data to an external store. The important idea is that the
custom fields specify only the logic to manage the data, not the data itself.

Define a Subclass of BasicCustomField

To implement a new data field class, create a Java subclass of BasicCustomField. This class
provides methods that enable Process Manager to treat your custom field just like any other

data field.

The BasicCustomField class implements the IPresentationElement and IDataElement
interfaces. The IPresentationFElement interface specifies the presentation methods for the data
field, which are di spl ay() and updat e() . The IDataElement interface specifies the
methods for managing the loading and storing of data, which are cr eat e(), | oad(),
store() and archi ve() . Your new subclass needs to provide definitions for each of the
methods in these interfaces.

Note: You can find all the necessary classes in the pn60cl asses. j ar file. If you
have installed the Process Manager Builder, you can find this jar file in the
directory builder-root\ suppor t \ sdk. You may also be able to find it on the CD.

Before looking at the methods in detail, here is a discussion of how and when the methods are

called.
When a form is displayed in an entrypoint or a workitem the following happens:

e Thedi spl ay() method displays the data field.

If the form is displayed in an entrypoint, the process instance does not yet exist, therefore
di spl ay() cannot access information about it. When the form is displayed in a
workitem, the process instance exists, therefore the di spl ay() method can access
information on it, such as the value of other data fields.

» Ifthedi spl ay() method of a work item calls get Dat a() to get the value of the data
field, the | oad() method is invoked.

When an entrypoint or workitem form is submitted, the following happens:

Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the Java Classes

If the process instance is at an enfrypoint, the system automatically calls cr eat e() on every
data field, regardless of whether the field appears on the entry point form. The cr eat e()
method initializes the value of the data field.

If the process instance is at a workitem, the process instance already exists, so the
creat e() method is not called.

If the form displayed the field is displayed in EDIT mode, the field’s updat () method
is called to update the data field on the process instance. The updat e() method typically
calls set Dat a() to put the changed data into the data field.

If the field’s data was modified by a call to set Dat a() (which might happen in the
| oad(), create() orupdat e() methods) the system calls the st or () method to
store the data.

A JavaScript script (for example, an automation sctipt, assignment script or completion script)
can use the JavaScript functions get Dat a() and set Dat a() to get and set the data objects
of a custom field. In this case, the invocation order is as follows:

When get Dat a() is called, the | oad() method is invoked to fetch the data unless it has
already been loaded for the cutrent activity.

The | oad() method typically uses set Dat a() to load the fetched data in to the data
field.

Whenever set Dat a() is performed, the st or () method is invoked when the process
instance is ready to store itself. As a result, the St or e() method may be called even if the
field’s data has not changed.

The next sections discuss in detail the methods that your new data field class must implement.

The Methods in Detall

Define the following methods on your subclass of BasicCustomField:

| oadDat aEl enent Properties()

Processes the properties for the data field that were set in the Builder.

di splay()

Determines how the data field is displayed in an entrypoint or work item form.
updat e()

Processes form element values when an entrypoint or workitem form is submitted.

create ()

Chapter 2 Writing Custom Data Fields 49

Writing the Java Classes

Initializes the data field’s value when the process instance is created.
e load ()

Loads the value of the data field when an attempt is made to retrieve the value of a data
field for which no value has been set yet in the current workitem.

e store()
Stores the data field value externally.
« archive()

Archives the data field value.

loadDataElementProperties()

Define this method to process the properties that were set in the Builder during development
of the process definition. The syntax is:

protected voi d | oadDat aEl enent Properties(Hashtable entry)
t hrows Exception

This method is passed a hashtable of all the properties that can be set in the Builder (which
correspond to the properties that are defined in the JSB file). Call the get () method on the
hashtable to get the values of specific properties.

Typically, the | oadDat aEl ement Properti es() method sets default values that are needed
by the data field. For example, if the data field displays a table,

| oadDat aEl ement Properti es() might read the background color of the table from the
properties hash table. If the data field uses an external database, the method might read the
database table name from the properties hash table.

For example, suppose your JSB file contains properties for dbTabl eNanme and bgCol or, as
follows:

50 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Writing the Java Classes

<JSB_PROPERTY
NAVE=" dbTabl eNane"
TYPE="string"
DI SPLAYNAME=" Dat abase Tabl e Nane"
SHORTDESCRI PTI ON="DB tabl e where this df stores its data"
| SEXPERT>

<JSB_PROPERTY NAME="bgCol or"
TYPE="string"
DI SPLAYNAME="Tabl e Background Col or"
DEFAULTVALUE=" whi t e"
SHORTDESCRI PTI ON=" Tabl e Backgr ound Col or" >

The dbTabl eNane value is used to access a database, and the t abl eBackgr ound color is
used in an HTML TABLE tag when the data field is displayed.

Given the previous JSB code, the following Java code implements the

| oadDat aEl enent Properti es() method. This method reads the dbTabl eNane property
and sets a variable accordingly. If no value was specified in the Builder for this property, the
method throws an exception. The | oadDat aEl enent Properti es() method also gets the
value for bgCol or that was specified in the Builder. If the bgCol or was not specified in the
Builder, the method sets a default value for the corresponding variable.

Chapter 2 Writing Custom Data Fields 51

Writing the Java Classes

public class nyCustontield
ext ends Basi cCust onFi el d

{

/| Dat abase tabl e nane

String MY_DB TABLE;

/1 background color for table displaying this data field
String bgCol or;

public myCustonfiel d()
{

}

/** Cet the values that were set in the Builder */
protected voi d | oadDat aEl ement Properti es(Hashtable entry)

throws Exception

super () ;

{
String tabl eBackground = (String) entry.get("bgColor");

i f(tabl eBackground == null)
t abl eBackground = "white");

/1 Cet the database table name
MY_DB_TABLE = (String) entry.get("dbTabl eNane");
if(MY_DB TABLE == null)

t hr ow new Exception("DB Tabl e not specified");

display()
The di spl ay() method determines how the data field displays itself in an HTML form in an
entrypoint or a work item.

This method is invoked when the process instance reaches an activity that displays an HTML
form, it is not invoked when the process instance reaches an automated or custom activity.

52 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Writing the Java Classes

‘This method has two definitions -- one for an entrypoint and one for a workitem. When the
user views an entrypoint form, the process instance does not exist yet, thus the di spl ay()
method cannot access information on the process instance. When the user views a workitem
form, the process instance does exist, therefore the di spl ay() method can access
information about the process instance.

The syntax for an entrypoint is:
public void display(
| HTM_.Page htnl,
i nt di spl ayMde,
String displayFormat) throws Exception
The syntax for a workitem is:
public void display(
| Processl nstance pi,
| HTM_.Page htnl,
i nt di spl ayMde,
String displayFormat) throws Exception

Define the di spl ay() method to write the HTML code for displaying the data field. For
example, if the field is to be displayed as a table, define the di spl ay() method to write the
<TABLE> and </ TABLE> tags, as well as the tags for the table rows and table cells. Call the
write() method on the | HTM_Page input parameter to write to the HTML page.

Attributes that affect the appearance of the data field (such as the background color of a table)
can be defined in the JSB file and set by the process designer in the Builder. The

| oadDat aEl enent Properti es() method can retrieve them and set them as values of
instance variables to make them available to the di spl ay() method.

The di spl ay() method should consider whether the data field is in view, edit, or hidden
mode, and display the data field accordingly. For view mode, it should display the value in such
a way that the user cannot change it. For edit mode, it should display the value in some kind of
form element, such as a text field or check box, so that the user can edit the value. There is no
need to write the <FORM> and </FORM> tags - these are written automatically.

The di spl ay() method should write a form element for every value that is associated with
the data field, even if the user is not allowed to change the value. You can use hidden form
elements to transmit data values that the user does not need to see or is not allowed to edit.

The workitem version of di spl ay() can retrieve the value of a data field by calling the

get Dat a() method on the process instance. This method gets the value out of the process
instance if it has already been set for the current workitem, or loads it from external storage by
calling the | oad() method if it has not already been set.

Chapter 2 Writing Custom Data Fields 53

Writing the Java Classes

54

As far as the di spl ay() method is concerned, however, all it needs to do to get the value is to
call get Dat a() on the process instance, specifying the name of this data field. To get the
name of this data field, use the get Name() method as follows:

nmyDat aCbj ect myObj ect = (nyDat aCbj ect) pi.getData(getName());

When a process instance is loaded into a work item, the value of a data field can be any kind of
object. The di spl ay() method might, for example, get the values of several instance
variables on an object and display each one in a separate text field.

Example display() method

This example discusses a data field that manages information about employees, such as their
name, phone number and email address. Each employee is uniquely identified by their
employee ID.

The data field presents itself as a table, as illustrated in Figure 2-3. Some of the table attributes,
such as background coloz, can be specified in the Builder. When the data field is displayed in an
entrypoint form, it does not know which employee it is associated with. The intent is that the
employee would enter their employee ID number in the entrypoint. Given the employee ID
number, the data field can retrieve information about the employee from the employee
database. When the data field is displayed in a subsequent wotkitem, it has access to
information about the employee, such as their name and phone number.

The code for the entrypoint version is shown here. At an entrypoint, the only thing that the
user can enter is their employee ID number. This number is needed to uniquely identify the
employee in the database. Figure 2-2 shows the data field in edit and modes in an entry point
form.

Figure 2-2 Example data field in an entrypoint

Bl ot

I'.':-'_' exployes 1T

Engar voumr emploses I

¥inw mode:
Enplloyes il nof knewn

Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the Java Classes

public void display(| HTM.Page htm page, int displayMde,

{

String displayFormat) throws Exception

/]l Create a string buffer to hold the HTM. code
StringBuffer buffer = new StringBuffer();

/1 Wite the code to display the data field data in a table
swi tch(di spl ayMode)
{
case MODE EDIT:
/[l Wite HTML text to display the field in edit node

buf f er. append(" <TABLE BORDER=1 BGCOLOR=" + bgCol or + ">";

buf f er. append(" <TR><TD>Ent er your enployee |D: </ TD>");

buf f er. append(" <TD><I NPUT TYPE=TEXT NAME=i dEnt rypoi nt FE"
+ " VALUE=your _enpl oyee_I D> </ TD</ TR></ TABLE>") ;

br eak;

case MODE_VI EW
/1 In an entrypoint, this data field should not
/'l be shown in view node
buf f er. append(" <P>Enpl oyee id not known.</P>");
br eak;

case MODE_H DDEN:
defaul t:
/1 Do not hing

}

/1 Wite the contents to the HTM. page
ht M page. wite(buffer.toString());
/1 end class

}

Chapter 2 Writing Custom Data Fields

55

Writing the Java Classes

When the data field appears in a work item form, it shows the ID number, name, phone
number and email address for the employee. The user is not allowed to change the value of the
ID once the process instance has progressed beyond the entrypoint, but they are allowed to
change their name and phone number when the data field is in edit mode. Figure 2-3 shows the
data field in edit mode in a work item.

Figure 2-3 Example data field in a workitem

Toip ermployes [y | By

Yot name I!-Iltl'. Ba=Trww L1
Yeour pibwsies [133 455 vesa
Teoier e ||||l.ll.'.PI.llr-ll-l=I.I S

The code for the work item version of di spl ay() is shown here:

56 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Writing the Java Classes

public void display(|Processlnstance pi, |HTM.Page htnl page,
int displayMdde, String displayFormat) throws Exception

StringBuffer buffer = new StringBuffer();

/1l Get the value of this data field as an object.
/1 Use getNane() to get the nane of this data field
myDat aCbj ect nyQhj ect =(nyDat albj ect) pi.getData(get Nane());

/1 CGet the enployee id, nane, phone nunber and enail
String enpl oyeeED = nyQoj ect. enpl oyeel D

String nane = nyChj ect. enpl oyeeNane;

String phone = nmyQbj ect. phone;

String email = nmyQbject.email;

/1 Wite the code to display the val ues of
/1 the data field in a table

swi tch(displ ayMode)

{

case MODE _EDIT:
/1 Wite HTM. text to display the field in edit nbde
/1 Display a table that contains editable text fields
buf f er. append("” <TABLE BORDER=1 BGCOLOR=" + bgCol or + ">");

/1 Display the enployee ID as plain text
/1l so it is not editable
buf f er. append(" <TR><TD>Your enpl oyee |ID: </ TD>");

buf f er. append("<TD>"" + enployeelD + "’ > </ TD</ TR>");

/1 Add a hidden elenent to represent the enployee id

/1l so that update() can access the enployee id nunber

buf f er. append(" <l NPUT TYPE=HI DDEN NAME=i dFE VALUE="" +
+ enpl oyeel D + "' >");

Chapter 2 Writing Custom Data Fields 57

Writing the Java Classes

/1 Display the name, phone, and enmil as text fields
buf f er. append(" <TR><TD>Your nane: </ TD>");
buf f er. append(" <TD><I NPUT TYPE=TEXT NAME=naneFE" +

" VALUE="" + name + "'> </ TD</ TR>");

buf f er. append(" <TR><TD>Your phone: </ TD>");
buf f er. append(" <TD><I NPUT TYPE=TEXT NAME=phoneFE" +
" VALUE='" + phone + "'> </ TD</ TR>");

buf f er. append(" <TR><TD>Your enail :</TD>");

buf f er. append(" <TD><I NPUT TYPE=TEXT NAME=enmi | FE" +
" VALUE="" + email + "’ > </TD</TR></ TABLE>");

br eak;

case MODE_VI EW
/[l Wite HTM.L text to display the field in
/1 a table in view node
buf f er. append(" <TABLE BORDER=1 BGCOLOR=" + bgCol or + ">");
buf f er. append(" <TR><TD>Your enpl oyee |ID:. </ TD>");
buf f er. append("<TD>" + enpl oyeel D + "</ TD</ TR>");

buf f er. append(" <TR><TD>Your nane: </ TD>");
buf f er. append("<TD>" + name + "</ TD</ TR>");

buf f er. append(" <TR><TD>Your phone: </ TD>");
buf f er. append("<TD>" + phone + "</ TD</ TR>");

buf f er. append(" <TR><TD>Your enail : </ TD>");
buf f er. append("<TD>" + email + "</ TD</ TR></ TABLE>");
br eak;

case MODE_HI DDEN:
defaul t:
/1 Do not hing
}
/1 Wite the contents to the HTM. page
ht M page. wite(buffer.toString());

For more information about di spl ay(), see the discussion of di spl ay() in the Class
Reference.

58 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Writing the Java Classes

update()

This method updates the value of the data field on the process instance when a form is
submitted in an entrypoint or workitem. This method is not invoked when the process instance
finishes an automated or custom activity.

The syntax is:
public void updat e(
| Processl nstance pi,
| PMRequest rq) throws Exception

Despite its name, the updat () method is not the place where you update external databases
when the value associated with the data field has changed. The updat () method does not
store values for persistence from one workitem to another, it just updates the process instance
for the current work item only. The st or () method stotes the data field value in an external
data store to make it persistent between workitems. You can define St or e() to store the data
in whatever way you wish, for example in a database table of your choosing.

Typically, the updat e() method translates the name/value parameters sent by the form
submission into an appropriate kind of data object for the field. If you do not define

updat e(), all changes relevant to this data field that the user makes in the form are discarded
when the form is submitted.

When a form is submitted, the value and name of every form element (such as text field or
checkbox) on the form is packaged into a query string. One of the arguments to updat e() is
an IPMRequest object that has a method for extracting individual values from the submitted
parameter string. You can use the get Par armet er () method to get the value of a named
parameter. You can use the i sPar anmet er Def i ned() method to test for the existence of a
parameter before attempting to get its value.

When defining updat e() , you do not need to worry about whether the data field was in edit,
view or hidden mode. The updat e() method is only called if the field was displayed in edit

mode.

The updat e() method needs to know the names of the form elements that the di spl ay()
method writes to the HTML page. For example, if di spl ay() displays a textfield called
i dFE, updat e() can access the value of that form element as follows:

String enployeel D = rq. get Paraneter ("i dFE");
Conversely, if updat () needs to receive a value from the form, it is the responsibility of the
di spl ay() method to write an appropriately named form element to the page, even if the

user is not allowed to change the value. You can use hidden form elements to transmit data
values that the user does not need to see or is not allowed to edit.

WARNING -- Do not use variables on the data field itself to hold values that are specific to a
process instance, since all process instances effectively share a single instance of the data field.

Chapter 2 Writing Custom Data Fields 59

Writing the Java Classes

60

In the following example, four form elements are used to represent the data field when it is in
edit mode. These form elements are i dFE, naneFE, phoneFE, and enai | FE, which are form
elements whose values specify employee ID number, employee name, phone, and email
respectively.

This updat e() method creates a new instance of myDataObject. It extracts the values of the
i dFE, naneFE, phoneFE and emai | FE form elements, and puts the values into
corresponding variables on the object. Finally it calls set Dat a() to put the object as the value
of the data field on the process instance.

public void update(|Processlnstance pi, |PVMRequest rq)
throws Exception
{
/1l Create an instance of nyDataOhject and set its
/'l enpl oyeel D, enpl oyeeNane, phone and enmil vari abl es.
myDat aObj ect nyQhj ect = new nyDat alhj ect ();
if (rq.isParaneterDefined("idFE"))
myCbj ect . enpl oyeel D = rq. get Paraneter ("i dFE");
if (rq.isParaneterDefined("naneFE"))
nmyCbj ect . enpl oyeeNane = rq. get Par anet er (" naneFE") ;
if (rq.isParaneterDefined("phoneFE"))
myCbj ect . phone = rq. get Par anet er (" phoneFE") ;
if (rq.isParaneterDefined("email FE"))
nmyCbj ect. email = rq. get Paraneter("enmil FE");
/1 Put nyQoject into the data field on the process instance
pi . setData(get Nane(), myObject);
}
create ()
This method sets the default value for a data field when the process instance is created. The
syntax is:

public void create (lIProcesslinstance pi) throws Exception

Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the Java Classes

The purpose of cr eat () is to set a default value for a data field when the process instance is
initialized in case the data field’s value is not set in an entrypoint form. If the user sets the value
of the data field in an entrypoint form, the user-specified value overrides the value set by the

creat e() method (assuming that updat e() handles the user-specified value appropriately).

When a process instance is initialized, the cr eat €() method is called on all data fields,
regardless of whether they appear in the entry point form or not.

The cr eat () method puts values into the process instance which is created when the
entrypoint completes. The st or () method takes the values out of the process instance and
stores them externally to make them persistent until the process instance reaches the next work
item.

Typically, you would define the cr eat e() method to create a default value and put it in the
process instance through a call to set Dat a() . However, not all custom fields require these
actions. This decision is up to the process designer. If a default value does not need to be set, it
is recommended that you define cr eat () to do nothing:

public void create(|Processlnstance pi)
t hrows Exception

{
}

Default values can be defined in the JSB file and set by the process designer in the Builder. The
| oadDat aEl enent Properti es() method can retrieve them and set them as values of
instance variables to make them available to the cr eat () method.

The following code shows a generic example of cr eat e() :

/** Initialize the data field with the default value */
public void create(|Processlnstance pi)
throws Exception

{
/1 Assign a default value for this field.
cust ontbj ect obj ectl = new custonCbject();
obj ect 1. val uel = default_val uel";
obj ect 1. val ue2 = default_val ue2;
pi . set Dat a(get Nane(), obj ectl);

)

Chapter 2 Writing Custom Data Fields 61

Writing the Java Classes

62

load ()

This method loads the value of the data field when the process instance is at a wotk item.
public void | oad(|Processlnstance pi) throws Exception

This method is invoked when the get Dat a() method of the process instance attempts to get
the value of the data field but the value has not yet been set at the current work item. If the
value has been set already at the current work item, then get Dat a() returns the value -- it
does not call | oad() again. Each time the process instance moves to a new work item, the
first call to get Dat a() at the new work item causes the value to be loaded again by a call to

| oad().

Note that built-in fields are loaded whenever the process instance is loaded, but custom fields
are loaded only when their data value is explicitly asked for. This behavior is called lazy loading.

Define the | oad() method to retrieve the data field’s value from wherever it is stored by the
st or e() method. It might, for example, retrieve a set of values from a database (maybe
address, phone number and employee id) and create an object that stores those values as
instance variables.

If the data is loaded from an external database, you might need a key to access the database
tables. The st or () method should set this key if necessary when the entry point or work
item is completed.

If a key is needed (and has been set by the st or e() method), the | oad() method can retrieve
it by calling get Ent i t yKey() on the process instance, specifying the data field name. This
method returns a String:

String nmyKey = pi.getEntityKey(getName());

/1 now that you know the key, you can access the database

To load the value into the data field, define the | oad() method to call set Dat a() on the
process instance, specifying the name of the data field and the value for it.Use get Name() to
get the name of this data field:

pi . set Dat a(get Nane(), value);

NOTE: do not call get Dat a() on this data field from within | oad() or you will end up in
an infinite loop, since get Dat a() invokes | oad() .

The following example shows the basic structure for defining | oad() . The real wotk of
extracting the values from the database is carried out in this case by the user-defined function
retrieveMyDat a() .

Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the Java Classes

public void load(|Processlnstance pi) throws Exception
{

/! Load the data fromwherever it is stored

/1 and put it in the Pl

/1l CGet the entity key

String thislD = (String) pi.getEntityKey(getNanme());

/1 retrieveMyData() is a user-defined function (not a system
/1 one) that interrogates an external database to get the data
myDat aCbj ect nyQhj ect =(nyDataObj ect) retrieveMyData(thislD);

/1l Put the value in the data field
pi . setData(get Nane(), myObject);

The following is a simple example of a function that extracts data from a database and returns
an object that encapsulates that data. In this case, ret ri eveMyDat a() gets the name, phone
number and email for an employee, given the key which is the employee’s ID number.

This example assumes that MY_DB_TABLE has been defined as the database table name and
that nyDat aSour ce has been bound to a data source for a database.

Chapter 2 Writing Custom Data Fields 63

Writing the Java Classes

{

myDat aObj ect retrieveMyData(String enpl oyeel D)t hrows Exception

myDat aObj ect nyDat aCbj ect = new nyDat aCbj ect () ;

/| Dat abase-rel ated vari abl es
Connection ¢ = null;

PreparedSt at enrent nyStatenent = null;
Resul t Set nyResultSet = null;

/1 String My_DB TABLE;, -- already defined
/| DataSource nyDataSource; -- already defined
try {

/1 Connect to the database.
/| Dat abase paranmeters are specified by nyDataSource
¢ = nyDat aSour ce. get Connection();

/1 Create a query string to get the nane, phone and email from
/1 the MY_DB TABLE dat abase tabl e
/1 (for exanple EMPLOYEE TABLE)
String MY_QUERY_DATA = "SELECT nane, phone, email " +
" FROM MY_DB_TABLE WHERE enployee_id =" + enpl oyeel D,

/1 Prepare and execute the query statenent
mySt at ement = c. prepareStatenent (MY_QUERY_DATA);
myResul t Set = nySt at enent . execut eQuery();

/1l Process the results
whil e(nyResul t Set. next())

{
String nane = nyResul t Set.getString("nane");
String phone = nyResultSet.getString("phone");
String email = nmyResultSet.getString("email");
nmyDat aCbj ect . enpl oyeeNanme = nane;
nmyDat aCbj ect . phone = phone;
nyDat aCbj ect. enai|l = email;

}

}

catch(Exception e) {

t hrow new Exception("Cannot |oad " + getNanme() +
" because: " + e);

}
return myDat aCbj ect ;

64 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Writing the Java Classes

For more information about | oad(), see the discussion of | oad() in the Class Reference.

store()

This method stores the data associated with the custom field to make it persistent from one
workitem to another.

public void store (IProcesslnstance pi) throws Exception

This method stores the data associated with the custom field to make it persistent from one
wortkitem to another. This method is automatically invoked during completion of an activity if
set Dat a() was previously called. Typically, the set Dat a() method is called during
completion of an entrypoint or workitem in which the data field appeared in the form, but it
can also be called in other situations such as by a completion script, an automated activity or a
custom activity.

The set Dat a() method is typically called in the following cases:

* bycreate() to initialize the value of the data field when the process instance is created

* byl oad() toload the value into the data field for a workitem. Often the value is loaded
and displayed in a form in a workitem. In such cases, St or e() is called when the work
item completes even if the value did not change.

* byupdat e() to update the process instance when the user enters relevant data in a form
in an entrypoint or workitem

It’s up to the designer of the custom field to decide where and how to externally store the data.
Note that data from a custom field cannot be stored in the application-specific table where
built-in data fields are stored. That is, you cannot define st or () to just “do the default
thing” and save the value in the default way as done by the builtin data fields.

Do not define st or e() to save state by storing values in instance variables. The reason for
this restriction is that for each instance of a data field in a process definition, Process Manager
creates one instance of that class when the application is deployed. This instance is shared by all
the process instances that use that process definition. For example, suppose you create and
deploy a process definition whose data dictionary contains one instance of a custom data field,
called enpl oyeel nf 0. Three employees, Ann, Ben, and Carol, start processes instances. You
might think that Ann, Ben and Carol’s process instances would each create their own instance
of enpl oyeel nf 0, but you would be wrong. There is only a single instance of

enpl oyeel nf o that is shared by all three process instances.

If the data field stores its data in an external database, it may need to use a key to identify the
relevant data in the database. If applicable, defined the st or e() method to store a key to the
database by calling set Ent i t yKey() on the process instance. The set Ent i t yKey()
method stores the key with the process instance. Later, when the | oad() method needs to
load the data, it can get the key to identify the data it is looking for by calling

get EntityKey().

Chapter 2 Writing Custom Data Fields 65

Writing the Java Classes

66

Currently, Process Manager does not support global transactions. If the custom field stores its
data in an external datasource that is both XA-compliant and managed by a resource manager,
the custom field could participate in a global transaction. However, transactions initiated by
Process Manager are not made through an XA resource manager, so they cannot be a part of
the larger transaction.

The following example shows the basic structure for the St or e() method. In this example,
the real work of storing the data gets done in the user-defined function st or eMyDat a() .

public void store(|Processlnstance pi)throws Exception

{
myDat aCbj ect nyQhj ect =(nyDat albj ect) pi.getData(get Nane());
String nmyKey = nmyQbj ect. enpl oyeel D

/1l Set the key so we can get it back when needed
pi . setEntityKey(get Nane(), nyKey);

/1 Store the data. storeMyData is a user-defined function
/1l not a system one
st oreMyDat a(nyKey, myQbj ect);

The following is a simple example of a user-defined method that serializes a data field value to
an external database. In this case, the nane, phone and emai | values are stored in
corresponding columns in a database table. The key is the enpl oyeel D.

This example assumes that MY_DB_TABLE has been defined as the database table name and
that nyDat aSour ce has been bound to a data source for a database.

Process Manager Programmer’s Guide « 6.0 (SP1)

Writing the Java Classes

protected void storeMyData(String nyKey, nyDataObhject nyQhject)
throws Exception

{

Connection ¢ = null;

PreparedSt at emrent nyStatenent = null;

/1 String MYy_DB TABLE; -- previously defined

/1 DataSource nmyDataSource; -- previously defined
try {

/1l Create the SQ. statenent for updating the database
String SQ._UPDATE DATA = "UPDATE " +
MY_DB TABLE +
" SET nane
" WHERE id

? phone = ?, email = ?" +

nyKey"

/'l Connect to the database.
/| Dat abase paraneters are specified by nyDataSource
¢ = nyDat aSour ce. get Connecti on();

/1 Prepare and execute the SQ statenent
mySt at ement = c. prepareStatenent (SQL_UPDATE_DATA);
/1 do any other necessary preparation work

/1 Update the database

try {
ny St at enent . execut eUpdat e() ;
}

catch(Exception e){
t hrow new Exception("Cannot save data for data field:

+ getNanme() + " because: " + e);
b
c.commt();
}

Chapter 2 Writing Custom Data Fields

67

Specifying Images for Use in Process Builder

For more information about the st or () method, see the discussion of st or €() in the Class
Reference.

archive()

When an archive operation is initiated from the administration pages, the ar chi ve() method
for each data element associated with the process instance writes its data value to an output
stream. The syntax for ar chi ve() is:

public void archive(
| Processl nstance pi,
CQut put St ream os) throws Exception

Built-in data elements archive themselves simply by writing their values out as bytes. By
contrast, you can determine how custom fields write their data to an output stream. For
example, you can stream bytes or encapsulate the values in XML.

For more information, see the discussion of ar chi ve() in the Class Reference.

Specifying Images for Use in Process Builder

You can optionally create images to represent data fields in the Process Builder. Name the
image that represents the data field in edit mode as dataFieldName- EDI T. gi f , and name the
image that represents the data field in view mode as dataFieldName- VI EW gi f .

For example, for the myNewCust onFi el d data field, the edit mode image is
nmyNewCust onFi el d- EDI T. gi f, and the view mode image is
nmyNewCust onfi el d- VIEW gi f.

Packaging a Custom Field

68

After you have compiled your custom field Java classes, defined the JSB file and optionally
created images to represent the data field in the builder, the next step is to package these files
into a zip or jar archive. Include any additional classes that your custom field uses in the
archive.

Figure 2-4 shows an example archive file for a custom data field called my NewCust onFi el d.
In this case, the data field is in a package cust oner . fi el ds. The archive contains the
following files:

* nyNewCust onFi el d. j sb is the JSB file for this custom field.
* nyNewCust onFi el d. cl ass is the class file for this custom field.

* nyDat aCbj ect . cl ass is the class of data objects that are used as the dat field values.

Process Manager Programmer’s Guide « 6.0 (SP1)

Adding a Custom Field to an Application

* nyNewCustonFi el d- EDI T. gi f and nyNewCust onFi el d- VI EW gi f . are GIF
image files that are used as icons to represent the data field in edit and view mode in the
Builder.

Figure 2-4 Archive file for myNewCustomField

Winfip - myNewCuztomField

File Actions Optione: Help

< I - A=)

New Elpen Fauu:untes .-'1'-.|:||:| E utract Yigw || CheckOut] ‘wizard

M ame Date Time Size Batio Packed Fath
";ﬂ myD atalbject.class M/28/00 153:42 440 3% 292 customerifieldsh,
iyt ewCuztomField. class m/28/00 1542 5385 B4 2,483 customerfieldsh,
iy ewCuztomField.jzb m/28/00 1432 3688 7h 932 customerfieldsh
myMewCuztomField-EDIT.gf 0192/00 1416 1,316 &S 892 customerfieldsh
myMewCustomFieldIEWw gif 01/2/00 1418 1,561 45 354 customerfieldsh

| Selected O files, 0 butes | Total & files, 13KB (r 16

Note that the archive file, JSB file, and custom field class must all have the same root name. In
the example shown in Figure 2-4, this name is my NewCust onFi el d.

As you create the archive, check that the directory structure reflects the package structure of
the class. For example, if the class files are in the package cust oner . fi el ds, the class files
must be in the ditectory cust onmer/ fi el ds, as shown in Figure 2-4. The JSB file must be at
the same level as the class files.

NOTE When you use the j ar command to cteate an archive, a file named
mani f est. nf is automatically created by default. This file contains
information about the other files within the archive. The mani f est . nf file
has no effect on the custom field.

Adding a Custom Field to an Application

After you package a custom field as an archive file, you can add the field in Process Builder, as
described in “Adding a Custom Field to an Application” on page 69.

Chapter 2 Writing Custom Data Fields 69

Adding a Custom Field to an Application

The specific steps for adding a custom field ate as follows:

1. From the Insert menu, choose Data Field.

2. In the “Create a New Data Field” dialog box click Add New Class. An example is shown
in Figure 2-5:

Figure 2-5 Creating a data field from a new class

Create a New Data field

&)

3. In the “Select the field JAR Package” dialog box, select the archive that represents your
custom field class, then click Open. An example is shown in Figure 2-6:

70 Process Manager Programmer’'s Guide ¢ 6.0 (SP1)

Adding a Custom Field to an Application

Figure 2-6 Selecting the archive that represents a custom field class

Select the field JAR Package

Lockin: | = buider 2 = = N

] Applications [manual
"1 bin 3 netzcape
1 classes 3 Samples
1 com [0 sounds
1 images 3 support
1 jdk116 iyt ewCuztomField.jar
1] | i

File narme: Im_I,IN ewCuztamField.jar Open I
Filez of type: I.-'l'-.II Files [*.%] j Cancel |

4. In the Name field, enter the name of the new field.
5. Add the field to the Data Dictionary in either of two ways:

o Click Add to add the field without setting its properties first. The dialog
box remains open, and you can add more items.

o Click Add & Define to add the field and set its properties immediately. The
Inspector window appears for the data field you added, as shown in
Figure 2-7

Chapter 2 Writing Custom Data Fields 71

Example Custom Data Field

Figure 2-7 Setting properties for the new custom field

M Inspector Window
Properties
Data Source [dentifig
Data Type ERTITY -

Datahase Mame
Datahase Password
Datahase User

DB table name

Display Mame emploveelnfo

Field Class ID customer fields. myblewCustomField

Help Messane =help for employeelnfo= [|
MHame of this field emploveelnfo

Short Description =no description=

Tahle Background < white

6. Set the properties and close the window when you are done.

The new data field, with the properties you defined, now appears in the Data Dictionary folder
in the application tree view. You can now use the data field as you would use a typical data field
in Process Builder.

Example Custom Data Field

72

The AdvancedOfficeSetup sample application that ships with the Process Builder includes an
example of a custom data field.

The advanced office setup application uses a custom data field called dfComputerChoice that
presents a pop-up menu of computers that can be ordered for a new employee, as shown in
Figure 2-8. This data field dynamically generates the list of computers every time it is displayed
in edit mode. It gets the list by reading an XML file containing the choices. Whenever the
company’s list of approved computers changes, all the administrator needs to do is to change
the list in the XML file -- there’s no need to redeploy the Process Manager application.

Figure 2-8 Pop-up menu of computers

Process Manager Programmer’s Guide « 6.0 (SP1)

Development Hints and Tips

Compater Ta Order: | Chaose e -

Angka it

HE-ATH] Lapion
HE-S150 laplop

s ok o s el e

For full details of this custom data field, see Chapter 3, “Advanced Office Setup
Application.”

Development Hints and Tips

This section gives some hints and tips for developing and debugging custom fields:

* Avoid Non-default Constructors

* Avoid Instance Data

* Use Entity Keys

* Deploy the Custom Field to Test It

* Develop and Test on a Server Where Process Manager is Installed
e Use One Implementation of a Java Class Per Server

e Debugging Hints

Avoid Non-default Constructors

In classes that extend Basi cCust onFi el d, do not define non-default constructors (meaning
constructors with non-zero arguments). Process Manager has no ptior awareness of
non-default constructors and therefore cannot call them. Thus if you define non-default
constructors, your class may encounter problems during loading.

Chapter 2 Writing Custom Data Fields 73

Development Hints and Tips

74

Avoid Instance Data

Custom fields, like custom activities, are stateless entities. In effect, there is only one copy
of each occurrence of a custom data field per application. All the process instances
in an application effectively share the same custom data field instance for each
occurrence of the custom data field class in the application. Because of this, it’s
recommended that you avoid using instance data in a class that implements a
custom data field. If you can’t avoid using instance data, be sure to synchronize the
data. With unsynchronized data, a variable set during one request might not exist
for the next request.

For example, consider a custom data field class called Dynami cLi st that dynamically
generates a list of things (such as computers), displays the list as a SELECT menu in HTML
and stores the selected item in a text file.

Suppose the custom data field erroneously uses an instance variable to keep track of the file
name where the value is stored, as shown in the following code:

/1 This is the WRONG way to track the nane of the file
/1l where data field values are stored!!

public class Updatabl eLi st extends Basi cCustonField inplenents
| Present ati onEl enent , | Dat aEl enent
{

/! The nane of the file where the value is saved

public String thisFile;

protected voi d | oadDat aEl ement Properti es(Hashtable entry)
throws Exception

{

/1 Cenerate the file name
thisFile = generateFil eNane();

Process Manager Programmer’s Guide « 6.0 (SP1)

Development Hints and Tips

public void store(lProcesslnstance pi) throws Exception

{

/1 Store the val ue
thi sVal ue = pi.get Dat a(get Nare());

storeltNow (thisValue, thisFile);

public void display(lProcesslnstance pi, |HTM.Page htnl,

int displayMde, String displayFormat) throws Exception
{

String sel ectedOpti on = pi.getData(get Nane());

/1 code to display the selected option

public void | oad(lProcesslnstance pi) throws Exception
{
/] Get value out of the file
thi svValue = readDataFronFile (thisFile);
return thisVal ue;

Suppose Carol starts a process instance that uses the ChooseConput er data field, which is an
instance of this data field class. The | oadDat aEl ement Pr operti es() method sets the
value of the t hi sFi | e variable to Car ol sVal ue. t xt . She chooses an HP laptop computer.
Her st or () method stores the value in the file.

Later, Alice starts a process instance. The | oadDat aEl ement Properti es() method sets
the value of t hi sFi | e to Al i cesVal ue. t xt . Alice chooses a Compaq Pro computer,
which is saved to the file Al i cesVal ue. t xt .

Carol’s process instance reaches a work item where the ChooseConput er data field is
displayed again, perhaps to confirm the choice of computer. This time, when the | oad()
method is invoked by the di spl ay(), it reads the value from t hi sFi | e, which is now

Al i cesVal ue. t xt . Thus the data field displays Alice’s choice, not Carol’s, which does not
please Carol at all.

Chapter 2 Writing Custom Data Fields 75

Development Hints and Tips

76

For an example of the correct way to record the names of files where data field values are
stored, see Chapter 3, “Advanced Office Setup Application" for a discussion of the
example data field class, updat abl eLi st that is available in the AdvancedOfficeSetup
application.

It is OK, however, to use instance variables to store read-only information that is common
across all process instances, such as the name of the external database or file where the data is
stored. For example, the custom data field discussed previously might use a global variable to
record the file name of an XML file that contains the choices to be displayed in the SELECT
list (for example, IBM ThinkPad, Apple iMac, Sun Solaris workstation and so on) . These
choices do not change from employee to employee, so it is OK to store the name of the file
containing the choices as an instance variable. (Note that the file name containing the selected
choice does vary from process instance to process instance, whereas the one containing the
choices for the menu does #of vary from process instance to process instance.)

An application can contain multiple occurrences of a custom data field class. For example, an
application might have custom data fields called Corrput er Choi ces and Chai r Choi ces,
that are both instances of the Dynami cLi st class. When the application is running, these two
fields operate completely independently. If the fields use instance data, that data would not be
shared between them. For example, if the data fields use an instance variable called

nmy Choi cesFi | eName, the Conput er Choi ces data field could set it to

conput er Choi ces. xm while the Chai r Choi ces field could set it to

chai r Choi ces. xnl , and there would be no confusion between the two.

Use Entity Keys

When a custom field loads data from an external data source, the custom field might need a key
to identify the data it is looking for. This key, known as an entity key, can be stored with the
process instance.

To work with entity keys, use the following two methods on the | Processl nst ance
interface:

e getEntityKey(fiel dName)
This call returns the key for the custom field whose name is fieldName.
« setEntityKey(fieldName, key)

Specifies key as the key for the custom field whose name is f i el dNare.

Process Manager Programmer’s Guide « 6.0 (SP1)

Development Hints and Tips

Deploy the Custom Field to Test It

To test and debug a custom data field, you need to import it into a Process Manager application
in the Builder, deploy the application and then test it. During the development process, you will
make changes to your Java source files and recompile the classes. Whether you need to
redeploy your application or not depends on where Process Manager is running.

If Process Manager engine is running on the same computer whete you do your Java
development work, you do not need to redeploy the application from the Builder but you do
need to restart the Application Server, at least the KJS component. See the next section for
more details.

If the Process Manager engine is running on a remote computet, you need to redeploy the
application each time you make changes to the Java classes for the custom data field. Before
redeploying, make sure the changes have been copied into the appropriate places (as discussed
next) in the Appl i cat i ons folder hierarchy.

When you use the Builder to bring a zip or jar file for a custom data field into a Process
Manager application, the Builder unzips the zip or jar file and then creates the folders needed
for the package structure for the custom data field. For example, if the application name is

My App and the custom data field is in the package cust om fi el ds. new, the Builder creates
a folder called newin a folder called f i el ds in a folder called cust omin the my App folder in
the Appl i cat i ons directory, as illustrated in the following image:

=] e adaore:
= 1 Hwpp
] Ay
- ek

] raw

The Builder places the unzipped files into the appropriate folders, for example, it places the
JSB and Java class file for the data field in the new folder.

After making changes to the Java files, copy the compiled class files into the appropriate folder
beneath the Applications directory. If you make changes to the JSB file, make sure the changes
are also copied to the appropriate folder beneath the Applications directory.

To test the changes, redeploy the application.

When you’re done making changes, make a new zip or jar file so that the finished data field can
be imported into other Process Manager applications.

Chapter 2 Writing Custom Data Fields 77

Development Hints and Tips

78

Develop and Test on a Server Where Process
Manager is Installed

If your server is on your development machine, you can develop and test your custom field
without redploying after each modification.

1. To start with, develop and compile your Java classes in your preferred Java development
environment.

2. Create the JAR file, import it into the Process Builder, and then build and deploy an
application that uses the custom field.

3. When you need to make changes to the Java file that defines the custom data field, edit
and compile your Java classes in your preferred Java development environment as before.

4. If your output directory is not in the classpath for the Process Manager engine
(BPMCLASSPATH) , copy the class file into the Process Manager classpath.

5. Restart the kjs on the Application Server to update your deployed applications to use the
newly compiled data field class. (For information on restarting the kjs, see the section
“Print Debugging Information.”)

New and existing process instances will use the new definition for the custom data field.

6. When you have completely finished debugging your custom field, create a new jar file for
importing into the Process Builder.

Use One Implementation of a Java Class Per
Server

When an application is deployed, the Java classes it uses are deployed to the appropriate folder
in the class path on the engine. This class path is shared by all applications running on the
engine. Every application that uses a particular Java class uses the same implementation of that class.
For example, suppose application A and application B both use a Java class Shar edC ass1.
When application A is deployed, its version of Shar edC ass1 is deployed to the class path.
When application B is deployed, its version of Shar edd ass1 is deployed to the class path,
overwriting the implementation deployed previously by application A.

Thus if multiple applications running on a Process Manager engine use the same custom data
field, they should all use exactly the same implementation of the custom data field, since each
time the custom data field is deployed to the engine, it overwrites the previous implementation.

If you want multiple applications to use a custom data field that is basically the same but differs
slightly from application to application, make sure that the name of the data field Java class is
different in each application.

Process Manager Programmer’s Guide « 6.0 (SP1)

Development Hints and Tips

Debugging Hints
e Print Debugging Information
* Send Error Messages to the Process Manager Logs

* Errors in store()

Print Debugging Information

To get debugging information, your Java methods can use

Systemout. println("Hel pful debugging info goes here") to display
debugging information in the kjs console on the Application Server if you start it from a DOS
command prompt.

Note: To run the Application Server from the command line, use the interface to stop the
application server. Then open a command prompt and type kxs. When the kxs process blocks,
type Kj s in another command prompt to start the kjs.

Send Error Messages to the Process Manager Logs

You can also log debugging information to the Process Manager logs by using the | og()
method on the IPMCluster bean or the | 0g() method on the IPMApplication bean. Use the
get PMAppl i cati on() method of Basi cCust onFi el d to get the IPMApplication.

For example:
| PMAppl i cation nyapp = get PMApplication();
nmyapp. | og(| PMAppl i cation. LOG_ | NFORMATION, "log info here", null);

You can view the logs in the Process Administrator at
ht t p: / / yourPMserver: port#/ Admi ni strat or. apm

Errors in store()

If the st or e() method has a problem, it might result in St or e() being invoked twice while
the system tries to restore the process instance to its previous state. Thus if you have print
statements that record entry into and exit from st or (), and you see that st ore() is
invoked twice or seems to be entered recutsively, or you see | oad() being called from inside
store() when get Dat a() is called, this is an indication that there might be a problem with
the definition of your st or () method.

Chapter 2 Writing Custom Data Fields 79

Class Reference

Class Reference

The remainder of this chapter provides a class and method reference for the classes needed for
implementing a custom data field. The classes are:

¢ BasicCustomField
* IPMRequest

Several methods on these classes take an | Processl nst ance object as an input argument.
This class has methods for interacting with the process instance, such as getting the values of
other data fields, getting the creation date and finding out who created the process instance.
For details of the methods you can use to work with process instances, see the section
IProcessInstance in Chapter 6, “Working with Applications, Process Instances and Work
Items.”

BasicCustomField

This class is the superclass for all custom data fields. To define a custom data field, create a
subclass of BasicCustomField.

i mport com net scape. pm nodel . Basi cCust onFi el d;

public class nyCustontield
ext ends Basi cCust onFi el d
{

}

The BasicCustom[ield class provides methods that enable Process Manager to treat your
custom field just like any other data field. Most of the methods in BasicCustom[Iield are
predefined and are used internally by Process Manager. However, you need to provide a
definition for the following methods in your custom data field class:

 archive()
e create()
 display()
* load()

80 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

BasicCustomField

* | oadDat aEl enent Properties()
e store()
* update()

BasicCustomField also implements the get PMAppl i cat i on() method that returns the
IPMApplication that contains the field. Two other methods implemented by
BasicCustomField are get Name() and get PrettyNane() which are specified by the
interface | PMVEI ermrent . Your custom data field can use these methods to get the name of the
field itself.

e getName()
« getPMApplication()
« getPrettyName()

archive()

Summary. Writes the data associated with the custom field to an output stteam. When you
create a custom data field, you should define this method if you want your data field to be
archivable. This method is specified by the IDataElement interface.

Syntax.

public void archive (IProcessinstance pi,OutputStream os) throws
Exception

Arguments.

- pi Object representing the process instance.
- 0s The output stream to write the data to.

Return Value. None.

Description. When an archive opetation is initiated from the administration pages, the data
elements associated with the process instance write their data values to an output stream.
Built-in data elements archive themselves, simply by writing their values out as bytes. By
contrast, you can determine how custom fields write their data to an output stream. For
example, you can stream bytes or encapsulate the values in XML.

If a call to this method fails, you can throw a java.lang.Exception at any time to signal an
error. The etror message will be displayed to the administrator.

Chapter 2 Writing Custom Data Fields 81

BasicCustomField

For more information about this method, see the section “ar chi ve().”

create()

Summary. Initializes a newly created process instance with a default value for the custom
field. When you create a custom data field, you must implement this method if you want your
custom data field to have a default value in cases where it does not appear on an entry point
form. This method is defined by the IDataElement interface.

Syntax.

public void create(|Processlinstance pi) throws Exception

Arguments.
e pi Object representing the process instance.

Return Value. None.

Description. Most of the time, the cr eat () method creates a default value and stores it
in the process instance through a call to set Dat a() . However, not all custom fields require
these actions. This decision is up to the process designer.

If a default value does not need to be set, it is recommended that you do not implement the
creat e() method. Leave it blank instead. The st or e() method for custom fields is called
only when set Dat a() has been performed on the field.

The cr eat () method for all fields, whether predefined or custom fields, is called when the
user initiates a process instance from the entry point.

If a call to this method fails, you can throw a j ava. | ang. Except i on at any time to signal an
error. The error message will be displayed to the uset, and the process instance will not be
created.

For more information and an example, see the section “create ().”

display()

Summary. Displays the custom data field in the HTML page. When you create a custom data
field, you must implement both versions of this method. This method is specified in the
IPresentationElement interface.

82 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

BasicCustomField

Syntax 1. This version displays the field when the user is viewing the entry point form, in
which case the process instance does not yet exist.

public void display(|HTM.Page htm, int displayMde, String
di spl ayFormat) throws Exception

Syntax 2. This vetsion displays the field in a wotkitem form, in which case the process
instance does exist.

public void display(|Processlnstance pi,| HTM.Page htm, int
di spl ayMode, String displayFormat) throws Exception

Arguments.

e pi Object representing the process instance.

= html Object representing the HTML page to be returned to the
user.

= displayMode Mode that the field should be displaying itself in. Possible
values are MODE_EDIT, MODE_VIEW and
MODE_HIDDEN.

= displayFormat Additional formatting information available to the field.

This value is specified from the “Display Format™
property of the Inspector window of the field when it is
placed in the form. This value is specific to a process
designer. One possible use is to distinguish between a
secure viewing mode and a non-secure viewing mode,
such as for credit card information. In such a case, the
display format could contain either the value “secure” or
“not secure.”

Return Value. None.

Description. The version of di spl ay() shown in Syntax 1 will be called after the process
instance has been created. In other words, it is called everywhere but the entry point node. The
process instance will contain the data that is associated with your custom field; your
implementation of di spl ay() will need to fetch the data object via the get Dat a() method
of the process instance class before displaying it.

The di spl ayMbde and di spl ayFor mat arguments are defined by the process designer
through the Inspector window.

If a call to this method fails, you can throw a j ava. | ang. Except i on at any time to signal an
error. The error message will be displayed to the user.

Chapter 2 Writing Custom Data Fields 83

BasicCustomField

For more information about this method, see the section “di spl ay().”

For an example, see the section “Example display() method.”

getName()

Summary. Returns the name of the current element. This method is defined by the
IPMElement interface.

Syntax.
public String getName()

Arguments. None.
Return Value. A String object representing the name of the current element.
Description. The returned name is used to access the field’s primary key and data value.

Example. The following code uses get Name() inside the cr eat e() method:

public void create(|Processlnstance pi)
throws Exception

{

/1 Assign a default value for this field.

/1 Just an enpty shopping cart...

pi . set Dat a(get Nanme(), new ShoppingCart());
}

getPMApplication()

Summary. Returns the IPMApplication for the application containing this data field.

Syntax.
public String get PMApplication()

Arguments. None.

Return Value. An IPMApplication bean representing the application containing this data
field.

84 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

BasicCustomField

Description. Use this method to get access to the application containing the custom data
field. IPMApplication has many useful methods for accessing other information about the
application

Example. The following code gets the pathname for the application containing this data field.

/1 Inside store(), get the application path
String path;
try {
path = get PMAppl i cation().get HomePat h();
}
catch (Exception e) {
Systemout. println("Exception getting app path" + e);
}

getPrettyName()

Summary. Returns the “pretty name” of the current element. This method is defined by the
IPMElement interface.

Syntax.
public String getPrettyNane()

Arguments. None.
Return Value. A String object reptesenting the pretty name of the current element.

Description. In previous releases of Process Manager, every element had a name as well as a
“pretty name,” the display name of the element. In the current release, an element’s pretty
name and its name are equivalent.

load()

Summary. Loads the data associated with the custom field. When you create a custom data
field, you must implement this method. This method is specified by the IDataElement
interface.

Syntax.

Chapter 2 Writing Custom Data Fields 85

BasicCustomField

public void | oad(|Processlnstance pi) throws Exception

Arguments.
e pi Object representing the process instance.

Return Value. None.

Description. The | oad() method is invoked whenever the data value associated with the
custom field is accessed through get Dat a() off the process instance. Note that built-in fields
are loaded whenever the process instance is loaded, but custom fields are loaded only when
their data value is explicitly asked for. This behavior is called lazy loading.

Warning: Within the | oad() method, do not call get Dat a() on the custom field. The
| oad() method is already invoked as a result of a call to get Dat a() . As a result, a call to
get Dat a() within the | oad() method causes an infinite loop.

If a user script accesses or modifies the data associated with a custom field, the script must
implicitly know the object’s data type. For example, a script would need to know the API for
objects such as | t enSet and | t emin a shopping cart custom field.

If a call to | oad() fails, you can throw aj ava. | ang. Except i on at any time to signal an
errot. If the current action is to display a form, an error message will be displayed to the user.
If the user has completed a wotk item, an exception work item will be created.

For more information and an example, see the section “l oad () .”

loadDataElementProperties()

Summary. Loads the design-time propetties for the field specified in Process Builder’s
Inspector window. Specified by BasicCustomField. Custom data fields should implement this
method.

Syntax.

protected voi d | oadDat aEl enent Properties(Hashtable entry) throws
Excepti on

Arguments.

- entry The hashtable containing property/value pairs for the
properties of this field that can be set in Process Builder .

86 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

BasicCustomField

Return Value. None.

Description. This method is called after the custom field has been created (while the
application is being initialized). The hashtable entry parameter contains the field’s
configuration information, as it is stored in the LDAP repository. This information includes
the properties you specified in the custom field’s JSB file (which are the properties that appear
in the inspector window in Process Builder).

If a call to this method fails, it can throw a j ava. | ang. Except i on at any time to signal an
errot. The error message will be displayed to the user, and the application will stop being
initialized.

For more information about this method, see the section “loadDataElementProperties().”

Example. Suppose your JSB file contains the following entry:

<JSB_PROPERTY
NAVE="dbi dentifier"
TYPE="string"
DI SPLAYNAVE="External DB ldentifier"
SHORTDESCRI PTI ON="Local alias for connecting to external DB"
| SEXPERT>

Given the previous JSB code, the following Java code implements the
| oadDat aEl enent Properti es() method. The method will first read the property and
then, based on the value, set the instance variable mDBIl dent i fi er.

protected voi d | oadDat aEl ement Properti es(Hashtable entry)
throws Exception

{
String dbldentifier = (String) entry.get("dbidentifier");
if(dbldentifier == null)
t hrow new Exception("DB ldentifier not specified");
el se
DBl denti fier = dbldentifier;
}

Chapter 2 Writing Custom Data Fields 87

BasicCustomField

store()

Summary. Stotes the data associated with the custom field to a persistent resource. When
you create a custom data field, you must implement this method. This method is defined by the
IDataElement interface.

Syntax.

public void store(|Processlnstance pi) throws Exception

Arguments.
- pi Object representing the process instance.

Return Value. None.

Description. It’s up to the designer of the custom field to decide which external persistent
data store will store the custom field data. Note, however, that data from a custom field cannot
be stored in the application-specific table, where built-in data fields are stored.

The custom field is responsible for storing the data, whereas Process Manager is responsible
for storing the custom field’s primary key. This key is stored in the application-specific
database table.

The st or e() method is called only if the field’s value has been modified, through a call to
set Dat a() . Note that the | oad() method typically calls set Dat a() . As a result, the
st or e() method is called whenever | oad() is called.

Currently, Process Manager does not support global transactions. If the custom field stores its
data in an external datasource that is both XA-compliant and managed by a resource manager,
the custom field could participate in a global transaction. However, transactions initiated by
Process Manager are not made through an XA resource manager, so they cannot be a part of
the larger transaction.

If a call to this method fails, you can throw a j ava. | ang. Excepti on at any time to signal an
errot. The current wortk item is converted to an exception work item, and all data field values
are reset to their values prior to the request.

For more information and an example, see the section “st or e().”

88 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMRequest

update

Summary. Determines how the HTML representation of a custom data field is processed
when a form is submitted. Typically this method translates the form element value into the
usual data object associated with the field. When you create a custom data field, you must
implement this method. This method is specified by the IPresentationElement interface.

Syntax.

public void update(|Processlnstance pi, |IPMRequest rq) throws
Excepti on

Arguments.

e pi Object representing the process instance.

= html Object representing the HTTP request.

Return Value. None.

Description. The updat e() method is called after the user has submitted a request to the
Process Manager server. Since all requests take the form of an HTTP GET or HT'TP POST,
this method translates the form parameters of the request into the usual data object associated
with your custom field. For example, suppose the form includes values for an item ID and an
item quantity. The updat e() method would convert the item quantity to a numeric value,
and the method would create an | t emobject out of the item ID. The | t emobject could then
be bound to the process instance via set Dat a() .

If a call to this method fails, you can throw a j ava. | ang. Except i on at any time to signal an
error. The error message will be displayed to the user.

For more information and an example, see the section “updat e().”

IPMRequest

The IPMRequest class represents requests sent by the browser to the Process Manager engine
when a form is submitted. These requests contain the values of the form elements in the form.
An IPMRequest object is automatically passed to the updat () method of a custom data field
class. The updat e() method can access the IPMRequest object to extract form element
values and to find the authenticated uset.

The IPMRequest class has the following methods:

Chapter 2 Writing Custom Data Fields 89

IPMRequest

e getAuthenticatedUserld
e getParaneter

. i sPar anmet er Def i ned

getAuthenticatedUserld

Summary. Gets the ID of the authenticated user who made the request.

Syntax.

public String getAuthenticatedUserld() throws Xl nvali dRequest;
Arguments. None.
Return Value. A String of the name of the authenticated user.

Description. Gets the ID of the authenticated user who made the request

getParameter

Summary. Gets the value of a parameter in the request string. Typically, the parameter is the
name of a form element in the form that was submitted.

Syntax.

public String getParaneter(String paraneter) throws Xl nvalidRequest;

Arguments.

= parameter The name of the parameter whose value is to be retrieved.

Return Value. A String of the value of the parameter.

Description. Gets the value of a parameter in the request string. Typically, the parameter is
the name of a form element in the form that was submitted. This method is typically invoked
by the updat e() method of a custom data field to extract form element values.

Example. See the example for the updat () method.

90 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMRequest

iIsParameterDefined

Summary. Returns true if a parameter is defined in the quety string sent by a form
submission, otherwise returns false.

Syntax.

publ i c bool ean i sParaneterDefined(String paraneter)

Arguments.

= parameter The name of a parameter whose existence is being tested

Return Value. A Boolean indicating whether the named parameter exists ot not.

Description. Returns true if a parameter is defined, otherwise returns false. The updat e()
method can use this method to test for the existence of a parameter before attempting to
retrieve its value. For example, if an entrypoint form displays different data fields than a work
item form, updat e() can test for the existence of particular data fields to determine if the
form came from an entry point or a wotk item.

Example. See the example for the updat () method.

Chapter 2 Writing Custom Data Fields 91

IPMRequest

92 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Chapter 3

Advanced Office Setup Application

This chapter discusses the AdvancedOfficeSetup sample application that is provided with
Process Builder. This application, which is an advanced version of the OfficeSetup sample
application, uses both a custom data field and a custom activity.

The sections in this chapter are:
* Changes in the Advanced Office Setup Application
¢ The Custom Data Field

e The Custom Activity

Changes in the Advanced Office Setup
Application

The advanced office setup sample application basically achieves the same goal as the simple
office setup application, which is to get an office ready for a new employee. However, the
advanced version has been fine-tuned to improve the process.

The differences between the two versions ate:

e The advanced version uses a custom data field to dynamically generate the list of
computers that can be purchased for the new employee.

Theintent hereisto limit the choice a pre-defined selection of computers that have
been approved for corporate use. Previously, the computer choice was represented as a
text field, thus the administrative assistant could enter any computer they wanted in
thisfield, from a Palm Pilot to a Cray supercomputer.

The figure below shows the pop-up menu of computer choices.

Figure 3-1 Pop-up menu of computers

93

Changes in the Advanced Office Setup Application

Computer To Order: |Choose now j

Hi

Apple Imac
HP-4150 laptap
HP-3150 laptap

Sun Solaris workstation
Windows MNT/93
Windows 2000

e The advanced version has a custom activity that automatically schedules the new employee

to attend a company orientation training.

The day of the training depends on which department the employeeisjoining and what
day they start work at the company. The following figure shows the custom activity in
the process map, as well as a new user activity for printing the information about the

training.

3 @
Ehnne
@ Ready @
ChedkSetup

ok
Set Install |nstaed
Ue Nedwuok Weliome
Fhone Connection Fage
true e
\:} Frim.. ~
\-.-_'J \:!J L |
trge | true e
\ 5 7y @
true Schedule Basic Brint
Basic Training Compuiter Satup el
Setup Ingtalled Join 2loor
@ @ |
Enmputer -
@ Ordered @
Order Install
Computer Computer

94 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Data Field

* The advanced version has an additional manual activity which requires the administrative
assistant to print a page that tells the employee what day to attend company orientation
training. This page is written by the custom activity.

The Custom Data Field

This section discusses the custom data field and has the following subsections:
* Overview
* The Code in Detail

* Complete Source Code

Overview

The advanced office setup application uses a custom data field called df Conput er Choi ce
that presents a pop-up menu of computers that can be ordered for the new employee, as
shown in Figure 3-1.

This data field dynamically generates the list of computers every time it is displayed in edit
mode. It gets the list by reading an XML file containing the choices. An example of the XML
file is:

<xm version="1.0" encodi ng="us-ascii">
<| TEMSET>
<| TEM>Appl e | mac</ | TEM>
<| TEM>HP- 4150 | apt op</ | TEM>
<| TEM>HP- 9150 | apt op</ | TEM>
<I TEM>Sun Sol ari s workstation</| TEM>
<| TEM>W ndows NT/ 98</| TEM>
<| TEM>W ndows 2000</ | TEM>
</ | TEMSET>

Chapter 3 Advanced Office Setup Application 95

The Custom Data Field

This XML file resides in the same folder as the application. When the process designer deploys
the application from the Builder, the XML file is automatically copied to the correct location
on the server. After the application has been deployed, users can modify the file whenever the
company’s computer purchase policy changes. The changes take effect immediately.

The selected value is stored externally as an object that is serialized to a file.

To see the entire source code file, click updat abl eLi st . j ava.

The Code in Detall

This section discusses the code for the methods on the custom data field.

* loadDataElementProperties ()

« display()
e update()
« store()

e load()

* Helper Functions

e Complete Source Code

loadDataElementProperties ()

This method reads the properties that were set in the Builder. In this case, it reads the value of
the xmlfile property and stores it in a global variable, myFileName .

Although as a general rule you should not store data in instance variables, in this case it is OK
because this file name is constant for all process instances in the application -- it never changes.
(The contents of the file might change, but the file name itself never changes).

96 Process Manager Programmer’s Guide « 6.0 (SP1)

The Custom Data Field

/1 Method from Basi cCustoneField that | oads

/1 properties that were set in the Buil der

protected voi d | oadDat aEl ement Properti es (Hashtable entry)
throws Exception

{
/1l Get the XML File nane fromthe Buil der properties
myFil eName = (String)entry.get("xmfile");

}

display()

When a form containing the custom data field is displayed in an HTML page, the field’s
di spl ay() method is invoked. If the process is at an entry point, the entry point version of
di spl ay() isinvoked; if it is at a work item then the work item version is used.

The purpose of this data field is to present a list of choices, store the selection, and retrieve the
selection the next time the data field is displayed. Therefore, in an entry point, there is no point
displaying the field in view mode, since there is no prior selection to view.

The data field shows a menu of computers, which is displayed as a SELECT list, for example:

Chapter 3 Advanced Office Setup Application 97

The Custom Data Field

98 Process Manage

<SELECT si ze="1" name="df Conput er Choi ce" >
<OPTI ON sel ect ed>Choose now</ OPTI O\>
<OPTI ON val ue="Appl e | mac" >Appl e | mac</ OPTI ON>
<OPTI ON val ue="HP-4150 | apt op" >HP- 4150 | apt op</ OPTI O\>
<OPTI ON val ue="HP-9150 | apt op" >HP- 9150 | apt op</ OPTI O\>
<OPTI ON val ue="Sun Sol ari s workstation">
Sun Sol ari s workstati on</ OPTI ON>
<OPTI ON val ue="W ndows NT/ 98" >W ndows NT/ 98</ OPTI O\>
<OPTI ON val ue="W ndows 2000">W ndows 2000</ OPTI O\>
</ SELECT>

At an entry point in edit mode, the data field reads the XML file and displays all the choices. At
a work item in edit mode, the data field checks if there is a previously selected value. If a value
has been chosen previously, the data field displays it as the current selection. If a value has not
been chosen previously, the data field displays the default initial value.

The data field has no meaning when used in view mode at an entry point, thus is displayed as a
simple warning. The data field is displayed as plain text showing the current selection in view
mode at a work item.

Here is a discussion of the di spl ay() method for a work item. The code is similar but
simpler for the a work item, since it does not need to consider whether there is a previously
selected value or not.

display() at a Work Item

In edit mode, the di spl ay() method starts by calling get Dat a() to get the value of the data
field. If the value is already loaded, get Dat a() simply returns it, otherwise get Dat a()
invokes | oad() to load the value. In this case, | oad() gets the value by reading it from a file.
The retrieved value is an object that has a variable, myval ue, which indicates the current value.
For example, if the hiring manager has previously selected Apple Imac as the computer for the
new employee, then nyval ue would be bound to Appl e | nac.

The setting of the myval ue variable happens in the st or e() method, which we will worry
about later. For now, it’s enough to know that the myval ue variable holds the selected option.

r Programmer’s Guide « 6.0 (SP1)

The Custom Data Field

public void display(lProcesslnstance pi, |HTM.Page htn,
int displayMde, String displayFormat) throws Exception
{

StringBuffer buffer = new StringBuffer();
String selectedQption = null;

/1l Get the value of the data field
/1 If the value is not |oaded, getData invokes |oad()
myQbj ect nyobj = (nmyQObject) pi.getData(getNane());

/1 If an object is found, set the selected option
/1 to the value of the object’s nyval ue vari abl e.
if (myobj !'=null) {

sel ectedOpti on = nyobj . nyval ue;
}

The di spl ay() method writes the HTML code to display a SELECT menu. Each menu item
is embedded in an <OPTION> tag. The selected menu item is indicated by <OPTION
SELECTED>.

The di spl ay() method reads all the menu items from the appropriate XML file. If no menu
item has been previously selected, it uses a default value for the selected option, which in this
case is <OPTION SELECTED>Choose now</OPTION>. Then the method writes
<OPTION> tags for all the menu items.

Chapter 3 Advanced Office Setup Application 99

The Custom Data Field

100

swi t ch(di spl ayMode) {
/1 In edit node, display the data field as a SELECT nenu
/1 The nenu options are stored in an xm file

case MODE _EDIT:
/1 Get the option nanes fromthe xm file and store
/1 themin the vector optionNanes.
Vect or optionNanes = fetchDataFronXM.();

/1 Wite the openi ng <SELECT> tag.
/1 The nane is the sanme as the data field nane.
buf fer. append("<sel ect size=1 nane=" + getNane() + " >");

/1 If the option was not sel ected previously show default
String optName = "";
if (selectedOption==null)

{
buf f er. append(" <opti on sel ect ed>Choose now</option>");
/1 For each option in the vector optionNanes
[l wite <OPTI ON> val ue="opti onNane" </ OPTI ON\>
for(int i=0; i<optionNanes.size(); i++)
{
opt Name = (String)optionNanes. el enent At (i);
buf f er. append("<opti on val ue=\"" + optNanme + "\">");
buf f er . append(opt Nane) ;
buf f er. append(" </ opti on>");
}
}

If a menu item has been previously selected, the di spl ay() method writes the appropriate
<OPTION SELECTED> tag. Then it takes each menu item in turn, checks if it is the selected
item, and if not, writes an <OPTION> tag for it.

Process Manager Programmer’s Guide ¢« 6.0 (SP1)

The Custom Data Field

/1 Else wite <OPTION SELECTED> val ue=selectedOption</ OPTI ON>
/1 and the rest of the options bel ow that

el se
{
buf f er. append(" <opti on sel ected>" + sel ectedOption +
"</ option>");

/1l For each option in the vector optionNanes, check if this
/1 optionis the selected one. If it is, ignore it since we
/1 already wote the HTM. code for the selected option.

/1 1f it is not the selected one,

/1 wite <OPTI ON> val ue="opti onNanme" </ OPTI ON\>

for(int i=0; i<optionNames.size(); i++)

{
opt Nane = (String)optionNanes. el ement At (i);
i f(! optNane. equal s(sel ectedOption))
{
buf f er. append("<option val ue=\""+ opt Nane +"\">");
buf f er . append(opt Nane) ;
buf f er. append(" </ opti on>");
}
}

}
/1 End the Select |ist

buf f er. append(" </ sel ect >");
br eak;

}

In view mode, the data field is displayed as plain text since it is not editable.

Chapter 3 Advanced Office Setup Application

101

The Custom Data Field

case MODE VI EW

/1 In View node, display the selected option as a string
/1 The user cannot change the value in View node

buf fer. append(" "+ sel ectedOption);

br eak;

}

Finally, the method writes the entire buffer to the HTML page.

/1 Wite the contents to the HTM. page
htm . wite(buffer.toString());
}

display() at an Entry Point

The di spl ay() method for the entry point is similar but simpler. It does not have any of the
conditional code used in edit mode to check for an existing value, since there can be no existing
value. In view mode, the data field displays a warning since there is no good reason to ever use
this data field in view mode in an entry point. See the source code for updat abl eLi st . j ava
for the definition for the di spl ay() method at an entry point.

102 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Data Field

update()

When a form containing the custom data field is submitted, the field’s updat e() method is
invoked. In this case, updat () creates an object and sets the value of its myval ue variable,
then puts the object into the process instance. Later, the St or () method gets the value of
the data field back out of the process instance and saves it to a file as a serialized object. The
next time the data field value needs to be retrieved, the | oad() method reads the object from
the file and puts it into the process instance.

It may seem like overkill to create and save an object to store a single value, but the purpose of
this example is to provide the groundwork for building your own custom data fields. You can
use the same paradigm to store objects with multiple values, for example, if the data field
needed to store the price and SKU of the chosen computer as well as just the name, it could
use an object with three variables instead of one. The mechanism for saving the object to an
external file would be exactly the same. The mechanism for storing the object is implemented
by the st or e() method which is discussed later.

Code Discussion

The updat e() method parses the form parameters when the HTML form is submitted. An
| PMRequest object containing all the values of the form elements is sent to the updat e()
method. In this example, the updat () method extracts the value of the form element that
has the same name as the data field. (This form element was created by the di spl ay()
method).

Then the updat e() method creates a new instance of myQbj ect and sets it myval ue
variable to the extracted value. Finally it puts the new object into the process instance.

Chapter 3 Advanced Office Setup Application 103

The Custom Data Field

public void update(lProcesslnstance pi, |PMRequest rq)
throws Exception

{

try {
/'l Get the value of the form el ement
String thisValue = rq.getParaneter(getNane());
/1l Create a new myCbject to hold the results
myQbj ect obj1 = new nyQoj ect();
/1 Put the value into the object
obj 1. nyval ue = thi sVal ue;
/1 put the object into the pi
pi . set Dat a(get Name(), obj1);
}

catch (Exception e) {
Systemout.println("Problemtranslating formvalues: " + e);
}

}

store()

This data field stores its value externally as a serialized object. (The object is created by the
updat e() method.) The job of the st or e() method is to get the data field value out of the
process instance and store it in a persistent storage. In this example, the St or () method
saves the value, which is an object, by serializing it to a file using standard object serialization
techniques.

Code Discussion

The method generates a unique file name, consisting of the name of the data field plus the
process instance ID.

104 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Data Field

public void store(lProcesslnstance pi) throws Exception

{

// Get the data field nane
String thislD = getNane();

/1 Get the process instance ID
Il ong procl D = pi.getlnstanceld();

/1 Concatenate the data field nanme with the PID

/1l to keep the nane uni que across all process instances
thisID = thislD + procl D

String thisFileNane = thisID + ".txt";

/1 Get the application directory
String appdir = get M/ApplicationsPath();

/1l Generate the full path to the file
/'l where the value will be stored
String fullPath = appdir + "\\" + thisFil eNaneg;

When the data field value is needed in the future, the | oad() method retrieves it from the
external storage. The | oad() method needs a key to help it find the data. The store method
saves the key by calling set Ent i t yKey(), and the load method retrieves the key by calling
get Enti tyKey(). Thel oad() method needs to know which file to access, thus the

st or e() method saves the name of the file as the entity key.

/1l Store the file name as the entity key
pi . set EntityKey(get Nane(), thisFileName);

Chapter 3 Advanced Office Setup Application 105

The Custom Data Field

Next, the st or e() method gets the value of the data field out of the process instance.

/1l Get the value of the data field fromthe pi.
/1 The value is an instance of myQbject
myQbj ect nyobj = (myCbject) pi.getData(getName());

Now to the task of storing the value. In this case, St or () saves the object to a file using
standard Java object serialization techniques.

/! Wite the object to a file

try {
FileQutputStreamfil eout = new Fil eCQut put Streanm(full Path);
bj ect Qut put St ream obj out = new Obj ect Qut put Strean(fil eout);
obj out . writeCbject(myobj);

}

catch (Exception e) {

Systemout.printin("Error while saving field value to file:"

+ e);

}

/!l end store

}

load()

When an attempt is made to access the value of the data field when it has not been loaded, the
| oad() method is called. This happens, for example, when the data field is being displayed in
an HTML form or when an automated activity calls get Dat a() to get the value of the data
field.

106 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Data Field

The task of the | oad() method is to retrieve the data field value from external storage and put
it in the process instance. In this case, the value is stored as an object in a file.

Code Discussion

The first thing this | oad() method needs to do is to find out which file to access. The name
of the file is stored as the entity key, thus | oad() starts off by getting the entity key.

public void | oad(lProcesslnstance pi) throws Exception
{
/'l Get the name of the file where the value is stored.
/1 The file name is saved as the entity key.
/1 An exanple is thisfieldl23.txt
String thisFileNane = (String) pi.getEntityKey(getName());

If the entity key is a file name, the next thing to do is to get generate the full path to the file.
The | oad() method uses the user-defined get MyAppl i cat i onsPat h() method to find
the path to the directory where the application is stored. The file is in that directory.

if (thisFileNanme !'= null)

{

try {
/1 get MyApplicationsPath is a user-defined function

/1 that returns the path to the dir for the application
String nmyPath = get MyAppli cati onsPat h();

/1l Get the full path to the file in the Applications dir
/1 eg rootdir\Applications\nyApp\thisfieldl23.htm
thisFileName = nmyPath + "\\" + thisFileNang;

Chapter 3 Advanced Office Setup Application 107

The Custom Data Field

Now comes the task of loading the value. In this case, the value is an instance of nyoj ect
that has been serialized to a file. The | oad() method uses standard Java techniques for
reading the file and unserializing the object.

/1 Get a file reader and read in the object
FilelnputStreamfilein = new Fil el nput Strean{thisFil eNane);
bj ect I nput St ream obj ectin = new Obj ect | nput Streanm(fil ein);
myQbj ect newobj = (nmyObj ect) objectin.readbject();

The | oad() method puts the retrieved value into the data field on the process instance, where
it is now available for access by all comers (such as the di spl ay() method).

/1 Put the object in the data field in the process instance
pi . set Dat a(get Name(), newobj);

Finally, the | oad() method closes the try clause, writes the catch clause, and takes account of
the situation where get Enti t yKey() did not return a value.

108 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Data Field

/I end try clause

}

catch (Exception e)

{
System.out.printin("Error while reading value from file: "

+e);

}

/I end if (thisFileName != null)

}

else {
pi.setData(getName(), null);
}

/l end load

}

Helper Functions

This class uses several helper methods:
* getMyApplicationsPath()
« fetchDataFromXML()

» parseForltemTag()

getMyApplicationsPath()

This method returns the directory where the current application resides.

Chapter 3 Advanced Office Setup Application 109

The Custom Data Field

110

/1 Returns the path to the fol der where the application is saved
String get MyApplicationsPath ()
{ String path = "";
try {
path = get PMAppl i cation(). get HomePat h();
}

catch (Exception e) {
System out . println("Exception while getting app path"
+ e);
}

return path;

}

fetchDataFromXML()

This method reads the contents of an XML file that contains a series of items. The method
adds each item to a vector and then returns the vector.

To start with, the method creates an empty vector and gets the name of the file to read.

/1l Fetch the set of menu options fromthe XML file
public Vector fetchDataFromXM.()
{

Vect or optionNanes = new Vector();

try {
/1l Get the path for the xm file

/1l nyFileNane is a global variable

/1l It is the sane for all process instances
String Path = get MyAppl i cationsPath();

Path = Path + "\\" + nyFil eNane;

Process Manager Programmer’s Guide ¢« 6.0 (SP1)

The Custom Data Field

Next, the method reads the file into a string.

/1 CGet a file reader

java.io.File f = new java.io. File(Path);

Fi | eReader fr = new Fil eReader (f);

Buf f er edReader in = new BufferedReader (fr);

/1l Create variables in preparation for reading the file
int MAX_LENGTH = 2000;
char xm [] = new char[MAX_LENGTH] ;

/!l Read the entire xm file into the array xm
int count =0;
count = in.read(xm, count, MAX LENGTH);

/]l Create a string of the content and get its length
String charSet = new String(xm);
int charSetLength = charSet.|ength();

Next, the method iterates through every character in the content string contained in the
char Set variable, looking for items. It uses the par seFor | t enTTag() method to find items
and add each one to the vector.

Finally the method returns the vector.

Chapter 3 Advanced Office Setup Application 111

The Custom Data Field

count = 0O;
for(; count < charSetlLength; count++)
{
par seFor | t enifag(count, char Set Length, charSet, opti onNanes);
}
/1 end try
}

cat ch(Exception e){
Systemout.printin("Error while getting data fromxm file:
+ e);

}

/1 return the vector of option nanes
return optionNanes;

}

parseForltemTag()

This method iterates over a string, looking for substrings embedded between <ITEM> and
</ITEM> tags. Each substring, or item, is added to a vector.

112 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Data Field

/11 This method parses an array of characters
/1 to extract the itens enbedded in <ITEM-...</|TEM> tags
public void parseForltenTag (int count, int charSetLength,
String charSet, Vector optionNanes)
{
String tenp;
hj ect tenpobj;
/1 Looking for "<" character

i f(charSet.charAt(count) =="'<)
{

/] Read characters between "<" and ">" into tenp string
temp = "";
for(; charSet.charAt(count) !'=">": count++)

{

}
temp = tenp + char Set. char At (count);

count ++;

tenmp = tenp + charSet.char At (count);

/1 Check if the tenmp string is <lI TEM>
i f(tenp.equal sl gnoreCase("<I TEM-"))

/1l if so, enpty out tenp and then read

/1 the characters between ">" and "<" into tenp

{

for (temp = ""; charSet.charAt(count) !="'< ;
tenp = tenp + charSet.char At (count ++))

/1 W now have an item

/1 Convert the string tenp to an object and
/1 add the object to the vector of options
tenpobj = (Object) tenp;

opti onNanes. addEl enment (t enpobj) ;

}

/1 end of nethod
}

Chapter 3 Advanced Office Setup Application

113

The Custom Activity

Complete Source Code

For the complete source code, click the following links:

* updatabl elList.java

updatabableList.jsb
* myObject.java

* menuOptions.xml

The Custom Activity

This section discusses the custom data field and has the following subsections:
* Overview

¢ The Code in Detail

* Complete Source Code

Overview

The advanced office setup application uses a custom activity called
employeeTrainingPerformer to schedule each new employee to attend a company
otientation. The activity writes a web page telling the employee when to attend the otientation.
The day that the employee should attend orientation depends on what department they are
joining, for example, engineers attend on Mondays while marketing personnel attend on
Tuesdays. The custom activity schedules the employee to attend training on the first
appropriate day after they start work. Trainings are held at 2 pm so they can go to training on
their start date if necessary.

For example, the training day for marketing personnel is Tuesday. So if a marketing in the
marketing department starts on Monday, they are scheduled for training the next day. If they
start on Tuesday, they are scheduled for training on their first day. If they start on Wednesday,
they are scheduled for training the following Tuesday.

The custom activity reads the training schedule from a file called trainingDays.xm L An
example is:

114 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Activity

<xml version="1.0" encoding="us-ascii">
<DEPT>Engineering</DEPT>
<DAY>monday</DAY>
<DEPT>Marketing</DEPT>
<DAY>tuesday</DAY>
<DEPT>Human Resource</DEPT>
<DAY>wednesday</DAY>
<DEPT>Sales</DEPT>
<DAY>thursday</DAY>

This XML file resides in the same folder as the application. The process designer must
manually copy this file into the correct place in the Builder directory. When the process
designer deploys the application from the Builder, the XML file is automatically copied to the
correct location on the server. After the application has been deployed, users can modify the
file whenever the training schedule changes. The changes take effect immediately.

To see the entire source code file, click enpl oyeeTr ai ni ngPer f or mer . j ava.

The Code in Detall

This section discusses the code for the following.
* EmployeeTrainingPerformer.xml
« perform()

» Helper Functions

EmployeeTrainingPerformer.xml

A custom activity receives input data from an xml file that has the same base name as the
activity. This xml file defines the elements in an input hashtable that is passed to the custom
activity automatically. Typically, the elements in the input hashtable are data field values, but
they can be any JavaScript expression. In this case, the input hashtable puts the value of the
dfEmpname data field value into the Emp_nameelement, the dfDeptName data field value
into the Dept element, and the dfStartDate data field value into the Start_Date element.

Chapter 3 Advanced Office Setup Application 115

The Custom Activity

<?xm version = "1.0" ?>
<WORKPERFORMER TYPE="com net scape. pm nodel . | Si npl eWbr kPer f or ner "
NAME=" Enpl oyeeTr ai ni ngPer f or mer"

CLASS | D="custoner. activities. Enpl oyeeTrai ni ngPerforner"
VERSI ON="1. 1" >

<ENVI RONMVENT>

</ ENVI RONMENT>

<I NPUT>
<PARAMETER NAME="Enp_Name" DESCRI PTI ON=" Enpl oyee Name" >
get Dat a(" df EnpNane")
</ PARANVETER>

<PARAMETER NAME="Dept" DESCRI PTI ON="Dept. Nane">
get Dat a(" df Dept Nane")
</ PARAVETER>

<PARAMETER NAME="St art _Dat e" DESCRI PTI ON="Start Date">
get Data("df Start Date")
</ PARAVETER>
</ | NPUT>

The Enpl oyeeTr ai ni ngPer f or mer . xm file also puts the applications path into the
element pat h and the process instance ID into the element i d. The custom activity uses the
applications path to identify where the training schedule resides and it uses the process instance
id to generate a unique file name for the welcome page.

116 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Activity

<PARAMETER NAME="pat h" DESCRI PTI ON=" Appl i cati ons path">
get Appl i cati onPat h()
</ PARAVETER>

<PARAMETER NAME="i d" DESCRI PTI ON="Process |Instance |ID'>
get Processl nstance(). getl nstancel d()
</ PARANVETER>

A custom activity can put elements into an output hashtable. The same xml file that defines the
input parameters also defines what happens to the elements in the output hashtable when the
custom activity is completed. Typically, values are saved into data fields on the process
instance. In this case, the output hashtable contains a filename which is saved into the

df Wl conmePage data field.

<QUTPUT>
<PARAMETER NAME="wel conePage"
DESCRI PTI ON="Greeti ng for New Enmpl oyeer">
mapTo(" df Wl coneURL")
</ PARAMVETER>
</ QUTPUT>

<EXCEPTI ONS></ EXCEPTI ONS>
<DESI GN></ DESI G\>

</ WORKPERFCRMER>

Chapter 3 Advanced Office Setup Application 117

The Custom Activity

perform()

The per f or m() method of a custom activity executes the activity’s task. In this case, it
generates an HTML page telling the new employee when to attend training. The method reads
the employee’s start date, name and department from the input hash table. It also gets the
pathname where the application resides, as well as the process ID which is a number that
uniquely identifies the process instance.

/1 The perform() method defines what the customactivity does.

public void perform Hashtabl e i nput, Hashtabl e output)
{

/1 Get the enployee’'s start date, name and departnent
/1 fromthe input hashtable.

Date startDate = (java.sql.Date)input.get("Start_Date");
String dept = (String) input.get("Dept");

String enmpName = (String) input.get("Enp_Nane");

/1l Get the application path fromthe input hashtable
String appPath = (String)input.get("path");

/1 Get the process instance id fromthe input hashtable
int thislD = ((Double)input.get("id")).intValue();

Then it calls the r eadSchedul e() method to read the Tr ai ni ngDays. xm file, which
resides in the applications directory.

/1 Read the schedule fromthe Traini ngbDays.xm file
Hasht abl e trai ni ngDays = readSchedul e(appPat h);

118 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Activity

Next, it calls the schedul eTr ai ni ng() method to figure out which day the employee must
attend training.

/1 Figure out what day of the week the enpl oyee goes to training
Date trai ni ngDate = schedul eTrai ni ng(startDate, dept,
trai ni ngDays) ;

The perform() method then calls the w i t eVl conePage() method to write an HTMIL
page that informs the employee when to attend company orientation training.

/1 Wite a wel come page containing the training info
String filenane = witeWl conePage(enpNanme, thislD, appPath,
traini ngDate) ;

Finally, per f or m() puts the filename for the welcome page into the output hash table so that
it can be saved into a data field on the process instance.

/1 Put the file name for the HTML page in the output hashtable
out put . put ("wel conrePage", fil enane);

Chapter 3 Advanced Office Setup Application 119

The Custom Activity

Helper Functions
The per f or m() method uses the following helper methods:

* readSchedule()
* scheduleTraining()

which uses the helper method

m IncrementForDayOfWeek()
* writeWelcomePage()

readSchedule()

This function reads the training schedule and returns a hashtable containing key:value pairs of
dept:day. The method creates a hashtable to hold the results. It gets the full path to the file
containing the training schedule.

private Hashtable readSchedule(String appPath)
{

Hashtable trainingDays = new Hashtable();

try{
/I Get the full name for the training schedule

String Path = appPath + "\" + "TrainingDays.xml";

Then it creates a file reader.

120 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Activity

/1l Create a file reader

java.io.File f = new java.io. File(Path);
Fil eReader fr = new Fil eReader (f);

Buf f er edReader in = new BufferedReader (fr);

It reads the entire contents of the file into the String variable char Set .

/! Read the entire file into the String "charSet"
int MAX_LENGTH = 500;

char xm [] = new char[MAX_LENGTH] ;

int count = O;

count = in.read(xm, count, MAX LENGTH);

String charSet = new String(xm);

It gets some variables ready for parsing the file.

Chapter 3 Advanced Office Setup Application 121

The Custom Activity

/1l Create variables in preparation for parsing the String "xm"
int charSetLength = charSet.|ength();
String tenp = new String();

String dept new String();
String day = new String();
count = O;

The method start parsing the string. First it looks for the substring <DEPT>. When it’s found
that, it reads the substring between the end of <DEPT> and the starting "<" in </ DAY>. It
stores this substring in the variable dept .

for(; count < charSetlLength; count++)

{

i f(charSet.charAt(count) == "'<')

{
temp = "";
for(; charSet.charAt(count) !=">"; count++)
{ tenp = tenp + char Set.charAt(count);
}
tenp = tenp + char Set. char At (count);
count ++;

/1 \When tenmp = <DEPT>, find the nane of the departnent
i f(tenp. equal sl gnoreCase(" <DEPT>"))

for(dept = ""; charSet.charAt(count) !="'<
dept = dept + charSet. char At (count ++));

122 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Activity

The parser has just reached the end of </ DEPT> in the string. Now it looks for <DAY>, then
reads the substring between the end of <DAY> and the starting "<" in </ DAY> and stores the
substring in the variable day. It puts an element representing the dept and day into the

t r ai ni ngDays hashtable.

/1 Now we know the current DEPT. Find the day.
i f (tenp. equal sl gnoreCase(" <DAY>"))

f or (day "", charSet.charAt(count) !="< ;

day = day + char Set.char At (count ++));

trai ni ngDays. put (dept, day);
}
}

/! end of function

}

scheduleTraining()

This method figures out what date the new employee is to attend orientation training. To do
this, it figures out what day of the week the employee starts work, finds out what department
the employee is joining, looks up the training day for that department in the t r ai ni ngDays
hashtable, and then calculates the date for the training.

First, the method gets the day of week, day of month, month and year that the employee is
starting wotk.

Chapter 3 Advanced Office Setup Application 123

The Custom Activity

124

public Date schedul eTraining (String startDate, String dept,
Hasht abl e trai ni ngDays)
{
/'l Get info about the start date
date = new Date(startDate);
int thisbDay = date.getDay();
int dayOMonth = date.getDate();
int month = date.getMnth();
int year = date.getYear();

Then the method looks in the t r ai ni ngDays hashtable to see what day of the week the
employee goes to training, which depends on what department they are joining. The
schedul eTr ai ni ng() method then calls a helper function to find the date of the first
appropriate day of the week on or after the start date. For example, if the employee should
attend training on Monday, the helper function returns the start date if it is a Monday or else
finds the date of the first Monday following the start date.

Process Manager Programmer’s Guide ¢« 6.0 (SP1)

The Custom Activity

/1 Using the dept as the key, get the value of the

/1 training day fromthe the traini ngDays hashtabl e

if(((String)trainingDays. get(dept)).equal s("nmonday")){
dayOf Mont h=I ncr enent For Monday(t hi sDay, dayOf Mont h);

}
else if(((String)trainingDays. get(dept)). equal s("tuesday")){
dayOf Mont h=I ncr enent For Tuesday(t hi sDay, dayOf Mont h);

}

else if(((String)traini ngbDays. get(dept)). equal s("wednesday")){
dayOf Mont h=I ncr enent For Wednesday(t hi sDay, dayCOf Mont h);
}

else if(((String)trainingDays. get(dept)).equal s("thursday")){
dayOf Mont h=I ncr enent For Thur sday(t hi sDay, dayOf Mont h);
}

else if(((String)traini ngDays. get(dept)).equal s("friday")){
dayOf Mont h=I ncr emrent For Fri day(t hi sDay, dayOf Month);
}

if(((String)trainingDays. get(dept)).equal s("saturday")){
dayOf Mont h=I ncr enent For Sat ur day(t hi sDay, dayOf Mont h);
}

else if(((String)traini ngbDays. get(dept)). equal s("sunday")){
dayOf Mont h=I ncr enent For Sunday(t hi sDay, dayOf Mont h);

}

Date trainingbDate = new Date(year, nonth, dayOf Month);

return trainingDate;

}

IncrementForDayOfWeek()

The schedul eTr ai ni ng() method uses helper functions to find the first appropriate day of
the week on or after the start date. All these methods have the same basic structure. Here is an
example for | ncr ement For Monday () , which takes a week day and a day of the month. It
returns the day of the month unchanged if the given week day is Monday, else returns the day
of the month for the first Monday following the day of the month that was passed in.

Chapter 3 Advanced Office Setup Application 125

The Custom Activity

/1 hel per functions to find training date
private int IncrenentForMnday(int thisDay, int dayOfMonth){
i f(thisbDay == SUN)
/1 for Monday increnent 1 from Sunday
dayOf Mont h = dayOf Mont h+1;
i f(thisbay == TUE)
/1 for Monday increnent 6 from Tue
dayOf Mont h = dayOf Mont h+6;
i f(thisbDay == WED)
/1 for Monday increnent 5 from Wed
dayOf Mont h = dayOf Mont h+5;
i f(thisbay == THU)
/1 for Monday increnent 4 from Thursday
dayOf Mont h = dayCOf Mont h+4;
if(thisbay == FR)
/1 for Monday increnent 3 from Friday
dayOf Mont h = dayOf Mont h+3;
i f(thisbay == SAT)
/1 for Monday increnent 2 from Saturday
dayOf Mont h = dayCOf Mont h+2;

return dayO Mont h;
}

writeWelcomePage()

This method generates an HTML page that informs the employee when to attend training, for
example:

126 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

The Custom Activity

Hello Jocelvn Becker

Welodme o O4F Cormpany.

Flease afierd sew erpployes anentaioe tranng on Tue Ot 67
2000 ar 2 pee m Fiom Bl whek o aiove e Caleitna

Wa'Tl hawe 3 tee- gkt and cap and other corporaie garshes for you
et the ramng

The method starts by formatting the Date string to make it more readable and generating a
unique pathname for a new file in the applications folder.

Note: For the code for f or mat Dat eSt ri ng(), see the source code for
Enpl oyeeTr ai ni ngPer f or ner. j ava.

public String witeWl conePage(String enpl oyeeNane, int thislD,
String appPath, Date trainingDate)

{
/1 Format the date string to remove "00: 00: 00 PDT/ PST"
String final Date = format DateString(traini ngDate);

/1 File name is Enpl oyee nane + Processlnstance
String fileNane = enpl oyeeNane + thisID + ".htm";

/1 Remove all white spaces fromthe fil ename
/1 URLS cannot have white spaces
fileName = fileNanme.replace(’ ', ' _');

/1l Get the pathnane to the file in the Application’s folder
String thisPath = appPath + fil eNaneg;

Then it creates a file with the name it has just derived, and writes a welcome message for the
new employee into the file. This message includes the date of the employee’s orientation
training.

Chapter 3 Advanced Office Setup Application 127

The Custom Activity

128

/! Make a file in this
try {

thisPath, "rw")

HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("

HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.file. witeUTF("
HTM.fil e. cl ose();

Application’s folder

RandomAccessFil e HTM.fil e = new RandomAccessFile (

<HTM.><HEAD>") ;

<TI TLE>New Enpl oyee Trai ni ng</ TI TLE>");
</ HEAD>") ;

<BODY>");

<CENTER>") ;

HTM.file. witeUTF(<HL>Hel lo <I> ");
HTM.file.witeUTF(enpl oyeeNane) ;

</ | ></ FONT></ H1></ CENTER>") ;

<H3>Wel conme to our conpany. </H3>");
<P> Pl ease attend new enpl oyee ");
orientation training on ");

<I>" + finalDate + " at 2 pm</I>");
in Room B3 above the cafeteria.</P>");
<P>We’ || have a tee-shirt and cap and
ot her corporate goodies for you");

at the training!</P>");

</ BODY>");

</ HTML>");

");

Complete Source Code

For the complete source code, click the following links:

* Enpl oyeeTrai ni ngPerforner.java

* Enpl oyeeTr ai ni ngPer f or ner . xmi

e trainingDays. xm

Process Manager Programmer’s Guide ¢« 6.0 (SP1)

Chapter 4

Cluster Management

This chapter discusses the Java classes used for performing cluster administration tasks. This
chapter has the following sections:

* Introduction

* IPMClusterManager

* IPMCluster

* IPMClusterProperty

e PMClusterPropertyFactory
* Code Samples

Note: You can find all the necessary classes in the pn60cl asses. j ar file. If you
have installed the Process Manager Builder, you can find this jar file in the
directory builder-root\ suppor t \ sdk. You may also be able to find it on the CD.

Introduction

A Process Manager cluster contains the following components:

* acorporate user LDAP directory service

e aconfiguration LDAP directory service that stores the application definitions
* arelational database for user data

* one or mote application servers

* aniPlanet Web Server

e amail server for notifications

129

Introduction

When deploying an application from Process Builder, application developers must identify the
cluster on which to deploy it. All applications in a cluster share the same common database and
directories. They access the same Directory Server for their process definitions and they use
the same set of cross-application tables in the database, as well as the same corporate users and
groups directory.

Using the Process Administrator interface, you can interactively modify a cluster.

You can build Java applications that programmatically perform Process Manager cluster
administration tasks. Process Manager has one cluster manager bean, IPMClusterManager. For
each separate cluster, there is an IPMCluster bean.

You can use the cluster manager bean to perform administrative tasks such as creating,
deleting, joining and unjoining clusters. You can also use the cluster manager bean to get
handles to individual clusters beans.

You can use the cluster bean to change properties of the cluster, to access and write to cluster
logs, and to retrieve information about the cluster such as getting installed applications, getting
path information, getting the finder and getting the deployment manager.

Given an individual cluster bean, you can get individual application beans. Given an application
bean, you can access any process instance or work item so long as you have the key, such as the
process instance ID.

For details of IPMClusterManager and IPMCluster beans see:
e IPMClusterManager
e IPMCluster

In Process Manager 6.0, there is only one cluster, but in future releases there may be multiple
clusters.

Clusters have properties. These are represented as IPMClusterProperty objects. Many of the
methods for working with clusters take IPMClusterProperty objects as arguments. To create
cluster property objects, you use IPMClusterPropertyFactory . For details see:

* IPMClusterProperty
e PMClusterPropertyFactory
At the end of this chapter, there is a coded example of creating a cluster.

* Code Samples

130 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMClusterManager

IPMClusterManager

The IPMClusterManager bean can be thought as a manager of all the cluster beans in the
application server instance. In Process Manager 6.0, there is just one cluster, which is the
default cluster. The IPMClusterManager manages the default cluster bean. But in the future,
when Process Manager supports multiple clusters, the IPMClusterManager bean will manage
all the different clusters for that application server instance.

The following code shows how to access the cluster manager:

/1l Get the cluster nmanager
| PMCl ust er Manager nyd ust er Manager = nul | ;

try {
j avax. nam ng. Cont ext cxt = new javax. nam ng. I nitial Context();
| PMCl ust er Manager Home cl Manager Hone = (| PMO ust er Manager Hone)
cxt. | ookup(| PMCl ust er Manager . JNDI _RQOOT) ;
nmyC ust er Manager = cl Manager Hone. create();
}

catch(Exception e)
{

Systemout. println("d uster nanager creation failed" + e);

}

The IPMClusterManager bean is a stateless session bean that has the following methods:
* created uster - create a new cluster

* getd uster -- getaccess to a cluster bean

e joinduster --join to a existing cluster

* unjoi nCl ust er -- unjoin from an existing cluster

* deleted uster --delete an existing cluster

e checkLDAPConnect i on -- check whether the cluster manager can connect to particular
LDAP server

Chapter 4 Cluster Management 131

IPMClusterManager

* checkLDAPENt ry -- check whether the cluster manager can read a particular entry from
a LDAP server

* checkDBConnecti on -- check whether the cluster manager can establish a connection
with a DB

createCluster

This method creates a cluster. Use the | PMCl ust er Property class to create the cluster
properties needed when creating a new cluster.

Syntax.
| PMCl uster createC uster (IPMJ usterProperty prop)
t hrows PMException

Parameters.

e prop This parameter is an IPMClusterProperty object that
contains all the properties required to create the cluster. Use
the | PMCl ust er PropertyFactory. creat e() method
to create this. See Table 4-1 for a list of the optional and
required properties for a cluster.

If any of the required properties for the cluster are not set
when this method is called, this method throws a
PMException.

Description. This method does the following:

* creates a deployment descriptor for a new bean

* registers a cluster bean with the new deployment descriptor
* creates the cluster bean

Process Manager 6.0 suppozts only one cluster at a time. If you create a new cluster when a
cluster exists already, the new cluster overwrites the existing cluster.

Returns . The interface to the cluster bean.

Example. The following example creates a new cluster called ¢l ust er 1 that overwrites the
existing cluster.

132 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMClusterManager

/1 Create a PMO usterProperty object
| PMCl ust er Property propl = PMC usterPropertyFactory.create () ;

/1 Popul ate the properties in the PMO usterProperty object

propl. set Val ue(l PMCl ust er Property. CONFI GURATI ON_DI RECTORY_SERVER
, "westmnster");

propl. set Val ue(| PMCl ust er Pr oper ty. CONFI GURATI ON_DI RECTORY_PORT,
"4141");

/1 Continue setting properties

/1 Now create the cluster
| PMCl uster clusterl = nyCd usterManager.createC uster(propl);

getCluster

Syntax.
| PMCl uster getCluster (String nane) throws PMException

Parameters.

= name This is the INDI name of the cluster bean that is being
looked up.

Example. The following example gets the default cluster:

Chapter 4 Cluster Management 133

IPMClusterManager

/1l Get the default cluster
| PMCl uster nyC uster = nmyd usterManager. get C uster (
| PMCl ust er . DEFAULT) ;

joinCluster

Joins a new cluster to the original cluster.
Syntax.
| PMCl uster joinCuster (|IPMJuster cluster)

Parameters.

= cluster This is the cluster to join. Use the get Cl ust er method to
get the cluster.

Description. This method performs the following tasks:
e creates a deployment descriptor for a new cluster bean
e registers a cluster bean with the new deployment descriptor

* joins the cluster to the original cluster

Example.

unjoinCluster

Unjoins a cluster bean from the Process Manager cluster that it currently belongs to.

Syntax.

voi d unjoinCluster (|IPMJuster cluster)

134 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMClusterManager

Parameters.

= cluster This is the cluster to unjoin. Use the get Cl ust er method
to get the cluster.

Description. unjoins the cluster bean and unregisters the cluster bean from the JNDI

name space.

deleteCluster

Deletes a cluster.

Syntax.

voi d del eteCluster (|IPMJuster cluster, bool ean bDel eteTable)

Parameters.

= cluster This is the cluster to delete. Use the get Cl ust er method
to get the cluster.

e bDeleteTable If this parameter is set to true then the backend database

tables are deleted otherwise not

Description. deletes the cluster bean and unregisters it from the JNDI name space. If
bDeleteTable is t r ue, the backend database tables are deleted otherwise not.

checkLDAPConnection

Checks whether a user can connect to the configuration or corporate directory at the given
host name and port number.

Syntax.
voi d checkLDAPConnection (String hostName, String portNunber,

String userNane, String password)

t hrows LDAPExcepti on

Parameters.
e hostName hostName of the LDAP server

Chapter 4 Cluster Management 135

IPMClusterManager

= portNumber port number of the LDAP server

= userName name of the user who is accessing the configuration or
corporate directory

= password password of the user

Description. Checks whether the cluster bean can connect to the configuration ot corporate
directory. The userName and password can be empty strings for the corporate directory
connection (for anonymous lookups).

checkLDAPENtry

Checks whether a given LDAP entry can be read.

Syntax.

voi d checkLDAPEntry (String entry, String hostNane,
String portNunber, String userNanme, String password)
t hrows LDAPExcepti on

Parameters.

- entry A string of the LDAP entry to be checked, for example
"cn=nyC uster, o=NetscapeRoot"

= hostName hostName of the LDAP server

= portNumber port number of the LDAP server

= userName name of the user who is accessing the configuration or
corporate directory

= password password of the user

Description . Checks whether the LDAP entty can be read.This method is typically used to
verify whether the corporate directory base entry can be read.

checkDBConnection

Checks whether the given user can connect to the database with the given password.

136 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMCluster

Syntax.

voi d checkDBConnection (String dbServerType, String dbServer Nane,
String dbServerldentifier, String userName, String password)
throws SQLException

Parameters.
= dbServerType The type of database server. The valid values are:
¢ IPMClusterProperty.ORACLE
¢ IPMClusterProperty.SYBASE
e dbServer Nanme The name of the database server. This an be an empty

string if the database is ORACLE.
e dbServerldentifier The database identifier.
= userName The name of the user who is accessing the database.

= password The user’s password.

Description. checks whether the given user can connect to the database with the given
password.

IPMCluster

IPMCluster objects represent individual clusters. For operations such as creating, deleting,
joining and unjoining clusters, you call methods on the cluster manager class,
IPMClusterManager, rather than calling methods on the cluster itself.

To get access to an IPMCluster method, call the get Cl ust er () method on the
IPMClusterManager as illustrated in the following code sample:

Chapter 4 Cluster Management 137

IPMCluster

/I Get the cluster manager
IPMClusterManager myClusterManager = null;

try {
javax.naming.Context cxt = new javax.naming.lnitialContext();

IPMClusterManagerHome cIManagerHome = (IPMClusterManagerHome)
cxt.lookup(IPMClusterManager.JNDI_ROOQOT);
myClusterManager = clManagerHome.create();

}

catch(Exception e)

{

System.out.printin("Cluster manager creation failed" + e);

}

/I Get the default cluster
IPMCluster myCluster = myClusterManager.getCluster(
IPMCluster.DEFAULT);

The IPMCluster bean has the following methods for changing cluster properties, accessing logs
and retrieving information about the cluster:

» getClusterProperty

» changeCluster

* log

+ getlLog

« getinstalledApplications
e getVersion

» isDefined

* getApplicationsPath

» getCorporateDirectory

138 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMCluster

e getFinder

* getDeploymentManager

getClusterProperty

Gets the properties of the cluster as an IPMClusterProperty object.

Syntax.

IPMClusterProperty getClusterProperty() throws PMException

Description. Retutns an IPMClusterPropetty intetface that contains all the properties of the
cluster.

You can call the getValue() method on the returned IPMClusterProperty object to get a
particular property, specifying one of the static ints described in Table 4-1 to identify the
property.

Example.

/I myCluster is an IPMCluster
/I Get some properties
IPMClusterProperty myProp = myCluster.getClusterProperty();
String description =
myProp.getValue(IPMClusterProperty. DESCRIPTION);

changeCluster

This method changes the properties of a cluster.
Syntax.
void changeCluster (IPMClusterProperty prop) throws PMException

Parameters.

e | PMClusterProperty The IPMClusterProperty object that contains the
properties for the cluster.

Chapter 4 Cluster Management 139

IPMCluster

Description. This method changes the properties of the cluster.

To change the properties of a cluster, first get an IPMClusterProperty either by:
* callingget Gl ust er Property() on the cluster to get the current one.

e creating a new one by calling cr eat e() on PMClusterPropertyFactory.

To change the properties of an IPMClusterProperty object, use its set Val ue() method.
When you have finished setting properties on the IPMClusterProperty object, call

changeC ust er () on the IPMCluster object, specifying the IPMClusterProperty object that
contains the changes.

The properties of a cluster that you can change are:
« PRETTY_NAME

* DESCRIPTION

*+ CORPORATE_DIRECTORY_SERVER

*+ CORPORATE_DIRECTORY_PORT

*+ CORPORATE_DIRECTORY_BASE

*+ CORPORATE_DIRECTORY_BIND_DN

* CORPORATE_DIRECTORY_BIND_DN_PASSWORD
* SMIP_SERVER

* SMIP_PORT

* SMTP_REPLY_TO

+ EVENT_USER

*+ EVENT_USER_PASSWORD

Example.

140 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMCluster

/1 myCluster is the default cluster

/1 Change some property val ues
| PMCl ust er Property nmyProp = nyCl uster.getC usterProperty();
myPr op. set Val ue(| PMCl ust er Property. DESCRI PTI ON,
"New cl uster description");
myProp. set Val ue(| PMJ ust er Property. SMIP_REPLY_TO ,
"pmadm ni st rat or @et scape. coni');

/1 Change the cluster property object
myProp. changed ust er (nyProp) ;

log

Logs exceptions to a cluster log.

Syntax.
void Log (Exception e)

Parameters.
- e An exception to be logged. This can be any atbitrary
exception including PMExceptions.

Description. The | og() method logs exceptions to the cluster log. The cluster maintains
three different kinds of logs - error, information, and security.

This method takes any arbitrary exception including PMExceptions. If the exception is a
PMException, this method introspects the exception object to determine what type (error,
information, or security) of an exception it is and logs the exception accordingly into the
appropriate files.

If the exception is an ordinary Java exception, the exception is logged in the error file.

Chapter 4 Cluster Management 141

IPMCluster

getLog

Accesses the logs.

Syntax.

public Vector getLog(int |ogType, int size) throws PMException

Parameters.

* logType Indicates the type of log to access. The value can be:
«IPMCl ust er Property. LOG | NFORVATI ON
¢IPMClusterProperty.LOG_ERROR
*IPMClusterProperty.LOG_SECURITY

- size The number of entries you want to see in the log. To see

the entire log specify
| PMCl ust er Property. MAX_LOG SI ZE.

Description. This method accesses the logs and returns a vector of log objects. Each log
object is essentially a single timestamped log entry. So if a particular log contains 1000
timestamped entries, the vector contains 1000 entries. The log entries are given in reverse
chronological order.

getinstalledApplications

Returns a vector of the names of applications that are installed in the cluster currently.

Syntax.

Vector getlnstall edApplications () throws PMException

Description. This returns a vector of the names of applications that are installed in the
cluster currently. Given a vector of currently installed application names you could use the
names to look up an application bean in the J]NDI name space.

getVersion

returns the version of the cluster

Syntax.

142 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMCluster

String getVersion() throws RenoteException, PMException

isDefined

returns true if the cluster 1s defined or false if the cluster 1s not defined.

Syntax.

bool ean i sDefined() throws RenoteException, PMException

Description. In Process Manager 6.0, the installer registers an empty bean as the default
cluster bean. When you create a cluster (either interactively through the Administrator interface
or programmatically by calling cr eat el ust er () on the cluster manager), this bean is filled
with the relevant information for the cluster. Until then, the bean is empty - just a place holder.
The i sDef i ned() method determines if the cluster has been created ot not.

Before calling methods on the default cluster you can use i sDef i ned() to test if it has been
created. If it has not been created, you cannot call methods on it (that is, you get an exception
if you try to call methods on it).

Example.
if (isDefined(lPMI uster.DEFAULT))

{ I/ call methods on the default cluster bean }

getApplicationsPath

returns the full path of the Process Manager applications directory.

Syntax.
String getApplicationsPath() throws RenoteException, PMException

returns the full path of the Process Manager applications directory. It is typically
$PM_HOME /applications.

getCorporateDirectory

returns the corporate directory object for the cluster.

Syntax.

Chapter 4 Cluster Management 143

IPMClusterProperty

Cor porateDi rectory getCorporateDirectory() throws PMException,
Renot eExcept i on

getFinder

returns the Finder object of the cluster.

Syntax.

| Fi nder getFinder() throws RenoteException, PMException

Description. Retutns the Finder object for a cluster. Given the Finder object, you can find
wortk items and process instances in the cluster.

getDeploymentManager

returns the DeploymentManager object for the cluster.

Syntax.

| Depl oynent Manager get Depl oynent Manager () throws PMExcepti on,
Renot eExcepti on

Description. Returns the Deployment Manager object for a cluster. Given the deployment
managet, you can access the deployment descriptor for individual applications. Given a
deployment descriptor, you can change the application’s stage, status, mode and testing state.
For details of the deployment manager, see Chapter 5, “Deployment Manager."

IPMClusterProperty

The IPMClusterProperty interface is used in various cluster bean APIs. It is used to set and get
cluster properties.

When creating an IPMCluster, you first need to create an IPMClusterProperty and then use the
set Val ue() method to set the cluster properties. Table 4-1 lists the cluster properties that
must be set when creating a cluster. Table 4-2 lists cluster properties that specify URLs for
accessing various Process Manager components.

To create an IPMClusterProperty, use the cr eat () method on IPMClusterPropertyFactory
as follows:

| PMCl ust er Property propl = PMCO usterPropertyFactory.create () ;

144 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMClusterProperty

To get the existing IPMClusterProperty for a cluster, call get Cl ust er Property() on the
cluster, as follows:

| PMCl ust er Property nyProp = myd uster.getd usterProperty();

Table 4-1 Cluster properties

All properties are public static int
Cluster and configuration properties

e CLUSTER_DN the distinguished name (DN) of the cluster
entry

* CONFIGURATION_DIRECTORY_SERVERthe host name where the configuration
directory resides

 CONFIGURATION_DIRECTORY_PORT the port number for the configuration
directory

« CONFIGURATION_DIRECTORY_BIND_ the Bind DN of the configuration directory
DN

 CONFIGURATION_DIRECTORY_BIND_ the Bind DN password of the configuration
DN_ PASSWORD directory

Corporate directory properties

« CORPORATE_DIRECTORY_SERVER the host name where the corporate directory

resides
« CORPORATE_DIRECTORY_PORT the corporate directory port number
« CORPORATE_DIRECTORY_BASE the corporate directory base, for example:

ou=People, o=mcom.com
e CORPORATE_DIRECTORY_BIND_DN the corporate directory BIND DN, for example:
cn=Directory Manager

This property is optional when creating a
cluster.

« CORPORATE_DIRECTORY_BIND_DN_ the corporate directory BIND DN Password.

PASSWORD
This property is optional when creating a

cluster.

Database properties

Chapter 4 Cluster Management 145

IPMClusterProperty

Table 4-1 Cluster properties

DATABASE_TYPE

DATABASE_IDENTIFIER
DATABASE_NAME

DATABASE_USER_NAME
DATABASE_PASSWORD

General properties

DESCRIPTION
PRETTY_NAME

SMTP_SERVER

SMTP_PORT

SMTP_REPLY_TO

the Database Type. The value can be:
IPMClusterProperty. ORACLE
IPMClusterProperty.SYBASE

the database identifier

the database name (optional if the database
type is ORACLE)

the database user name

the database password

the description of the cluster

the pretty name of the cluster that appears in
the Builder.

This property is optional when creating a
cluster.

the SMTP server host name.

This property is optional when creating a
cluster.

the SMTP port number .

This property is optional when creating a
cluster.

the SMTP reply to.

This property is optional when creating a
cluster.

146 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Table 4-2 URL Properties

All properties are public static int

« DEPLOY_URL

« EXPRESS_URL

The URL where Process Manager
applications are deployed.

The URL for the Process Manager Express

IPMClusterProperty

Table 4-2 URL Properties

« ADMINISTRATOR_URL The URL for the Process Administration
interface
e BUSINESS URL The URL for the Process Business

Manager’s interface

* APPLICATION_URL

Table 4-3 Event Properties

All properties are public static int

e EVENT _USER The cluster uses the EVENT_USER ID
when it makes asynchronous requests into
the Process Manager Engine, such as
when the timer agent checks for expired
work items.

This user and password combination
should be a valid combination inside the
corporate directory.

« EVENT_USER_PASSWORD Password for the EVENT_USER.

Other pre-defined variables are listed in Table 4-4.

Table 4-4 Other static int variables

e ORACLE These are used as the values of the DATABASE_TYPE
. SYBASE variable.
* LOG_INFORMATION These are used as an argument to the getLog() method

. LOG_SECURITY on IPMCluster to specify what kind of log to retrieve.

« LOG_ERROR

Chapter 4 Cluster Management 147

IPMClusterProperty

Getting and Setting Property Values

To retrieve or set properties, use the following methods:

e getValue
* setValue

e getProperties

getValue

Gets the value of a particular property.

Syntax:

String getValue (int propName)

Parameters.

= propName The property whose value is to be retrieved. The value
must be one of the static variables listed in Table 4-1. For
example:
| PMCl ust er Property. DATABASE _USER_NAME

Example.

/1 myCluster is the default cluster

| PMCl ust er Property myProp = nyCl uster.getC usterProperty();
String description =
myPr op. get Val ue(| PMJ ust er Property. DESCRI PTI ON) ;

148 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

IPMClusterProperty

setValue

Sets the value of a particular property.

Syntax.

voi d setValue (int propNane, String val ue)

Parameters.

= propName The property to be set. The value must be one of the static
variables listed in Table 4-1. For example:
| PMCl ust er Property. DATABASE _USER_NAME

« value The value for the property.

Example.

/1 Create a PMCO usterProperty object
| PMCl ust er Property propl = PMC usterPropertyFactory.create () ;

/1 Popul ate the properties in the PMJ usterProperty object
propl. set Val ue(| PMCl ust er Pr operty. CORPCRATE_DI RECTORY_SERVER,
"westm nster");

propl. set Val ue(| PMCl ust er Pr oper t y. CORPORATE_DI RECTORY_PORT,
"4141");

getProperties

Returns a hashtable of all properties and their corresponding values. Clients can iterate through
the properties and their corresponding values. The hashtable is indexed by property name.

Syntax.
Hasht abl e getProperties ()

Chapter 4 Cluster Management 149

PMClusterPropertyFactory

Example.

/1 Popul ate the properties in the PMO usterProperty object
Hasht abl e al | props = propl. get Properties();

PMClusterPropertyFactory

The purpose of this class is to create new IPMClusterProperty objects, which contain the
properties for a cluster.

create

Creates an IPMClusterProperty object.

Syntax.
| PMCl ust er Property create();

Example.

/1 Create a PMO usterProperty object
| PMCl ust er Property propl = PMJ usterPropertyFactory.create ()

150 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Code Samples

| PMCl ust er Property prop = PMCl usterPropertyFactory.create ();
/1 Set the various properties of the interface

/1 look up in JNDI name space to get a handle on the
/1 | PMC ust er Manager bean interface

/1 maybe, then create a cluster
| PMCl ust er Manager . creat eCl uster (prop)

Code Samples

This section presents the following code samples:
* Mount the Cluster Manager and Get the Default Cluster
e Create a Cluster

* Get and Set Cluster Properties

Mount the Cluster Manager and Get the Default
Cluster

This code sample gets the cluster manager and the default cluster.

Chapter 4 Cluster Management 151

Code Samples

/1 Get the cluster nmanager
| PMCl ust er Manager nyd ust er Manager = nul | ;

try {
j avax. nam ng. Cont ext cxt = new javax. nam ng. I nitial Context();
| PMCl ust er Manager Honme cl Manager Hone = (| PMC ust er Manager Hone)
cxt. | ookup(| PMCl ust er Manager . JNDI _RQOOT) ;
nmyC ust er Manager = cl Manager Hone. create();

}

catch(Exception e)
{

Systemout.println("d uster nanager creation failed" + e);

}

/'l Get the default cluster
| PMCl uster nyC uster = myd usterManager. get C uster (
| PMCl ust er . DEFAULT) ;

Create a Cluster

This code sample creates a new cluster, which overwrites the existing one in Process Manager
6.0, since only one cluster is supported at a time.

152 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Code Samples

/1 Create a PMO usterProperty object

| PMCl ust er Property propl = PMC usterPropertyFactory.create () ;
/1 Popul ate the properties in the PMO usterProperty object

propl. set Val ue(l PMCl ust er Property. CONFI GURATI ON_DI RECTORY_SERVER
, "westmnster");

propl. set Val ue(| PMCl ust er Pr oper ty. CONFI GURATI ON_DI RECTORY_PORT,
"4141");

/1 Continue setting properties

/1 Now create the cluster
| PMCl uster clusterl = nyCd usterManager.createC uster(propl);

Get and Set Cluster Properties

This code sample gets and sets cluster properties.

Chapter 4 Cluster Management 153

Code Samples

/1 myCluster is the default cluster

/1l Get sonme properties

| PMCl ust er Property nmyProp = nyCl uster.getC usterProperty();
String description =

myPr op. get Val ue(| PMJ ust er Property. DESCRI PTI ON) ;

/1 Change sonme property val ues
| PMCl ust er Property nmyProp = nyCl uster.getC usterProperty();
myPr op. set Val ue(| PMJ ust er Property. DESCRI PTI ON,
"New cl uster description");
myProp. set Val ue(| PM ust er Property. SMIP_REPLY_TO ,
"pmadm ni st r at or @et scape. coni) ;

/1 Save the changes to the cluster
myPr op. changed ust er (nyprop);

154 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

Chapter 5

Deployment Manager

The deployment manager is responsible for installing and removing applications from the
cluster. The deployment managet is also responsible for changing the deployment state of a
deployed application by changing its deployment descriptor when applicable.

Process Manager clients can access the deployment manager by calling the

get Depl oynment Manager () method on the cluster bean which is described in Chapter 4,
“Cluster Management.” Given the deployment manager, you can access the deployment
descriptor for individual applications. Given a deployment descriptor, you can change the
application’s stage, status, mode and testing state. For explanations of these states, see the
section “Deployment States”. (Note however that you cannot programmatically install
applications, they must be deployed from the Process Builder.)

This chapter has the following sections:
* Deployment States

* IDeploymentManager Interface

e IDeploymentDescriptor Interface

Note: You can find all the necessary classes in the pn60cl asses. j ar file in the api
directory on the Process Manager 6.0 CD.

Deployment States

The deployment descriptor for a deployed applications specifies the following states for the

application:

*+ STAGE
« MODE

+ STATUS

155

Deployment States

* TESTING

STAGE

The application can be either in DEVELOPMENT stage or in PRODUCTION stage.

« DEVELOPMENT stage -- the application can be completely rewritten from the Process
Builder.

* PRODUCTION stage -- only limited changes can be made from the Process Builder.

The stage can be changed programmatically. In the interface, the change from
DEVELOPMENT to PRODUCTION can only done from the Process Builder and NOT
from the Administrator UL

Note: An application in the production stage can be in the testing state which means that even
though the changes that can be made from the Process Builder are restrictive all the work items
can still be assigned to the ctreator of the process instance. This kind of a scenario is useful
when an application has been deployed to production but a final pass is being made to make
sure that everything is working.

MODE

The mode of the application can be either OPEN or CLOSED
* OPEN mode -- new process instances can be created.

e CLOSED mode -- no new process instances can be created but old process instances can
continue through the system to completion.

The mode can be changed programmatically. In the interface, administrators can change the
MODE from OPEN to CLOSED and back to OPEN from the Administrator UL

STATUS

The application STATUS can be either STARTED or STOPPED.
* STARTED status -- the application can be accessed from the Express UL
e STOPPED status -- the application cannot be accessed through the Express Ul

The stage can be changed programmatically. In the interface, administrators can change the
STATUS from STARTED to STOPPED and back to STARTED from the Administrator Ul.

156 Process Manager Programmer’s Guide « 6.0 (SP1)

IDeploymentManager Interface

TESTING

The TESTING state can be either TRUE or FALSE.
e TRUE -- all work items are automatically assigned to the creator of the process instance.
e FALSE -- the wortk items are assigned to the real user.

The stage can be changed programmatically. In the interface, administrators can change the
TESTING from TRUE to FALSE and back to FALSE from the Administrator UL

Note: An application in the production stage can be in the testing state which means that even
though the changes that can be made from the Process Builder are restrictive all the wartimes
can still be assigned to the creator of the process instance. This kind of a scenatio is useful
when an application has been deployed to production but a final pass is being made to make
sure that everything is working.

IDeploymentManager Interface

Use the IDeploymentManager interface to get access to the deployment descriptors for
installed applications and to remove an application. Given the deployment descriptor for an
application, you can change deployment details, such as changing its stage, status, mode, and
testing state.

To get the IDeploymentManager for a cluster, call the get Depl oynent Manager () method
on the relevant IPMCluster object. For an example of accessing the deployment manager, see
the code sample in the section "IDeploymentDesctiptor Interface.”

Where are the Classes and Interfaces?

The cluster manager and all classes related to the cluster are in the
com net scape. pm nodel package.

The deployment manager and deployment descriptor classes are in the
com net scape. pm dmpackage.

All the classes are in the in the pn60cl asses. j ar file. If you have installed the Process
Manager Builder, you can find this jar file in the directory builder-root\ suppor t \ sdk.
You may also be able to find it on the CD.

Chapter 5 Deployment Manager 157

IDeploymentManager Interface

158

Method Reference

The methods of the IDeploymentManager interface are:

* removeApplication

« getlnstalledApplications

removeApplication

Removes an application.

Syntax.

void removeApplication (String appName, boolean bDropTable)

Parameters.

* appName is the name of the application that is to be removed from
the cluster

« bDropTable indicates whether the backend database table is to be

dropped or not. If this is TRUE, the database table is
dropped. If it is FALSE, the database table is not dropped.

Description. This method removes an application. Whether or not the backend database
table is removed depends on the bDropTable argument.

getinstalledApplications

Gets a hashtable of deployment descriptors for all installed applications.

Syntax.

Hashtable getinstalledApplications ()

Description. This returns a hashtable of deployment descriptors of installed applications.
The hashtable is indexed by the names of the applications. The hashtable is keyed by the

application name.

Given a deployment desctiptor, you can test the stage, mode, status and testing state of an
application.

For a coded example, see the next section.

Process Manager Programmer’s Guide « 6.0 (SP1)

IDeploymentDescriptor Interface

IDeploymentDescriptor Interface

Given the deployment manager, clients can call get | nst al | edAppl i cati ons() to geta
hashtable of deployment descriptors for all installed applications. The hashtable is keyed by
application name. You can then get access the hashtable to retrieve the deployment descriptor
for an individual application.

Code Example

The following code example illustrates how to get the deployment descriptor for an application
named nyApp.

Chapter 5 Deployment Manager 159

IDeploymentDescriptor Interface

/1 Get the cluster nmnager
| PMCl ust er Manager nyd ust er Manager = nul | ;
try {
j avax. nam ng. Cont ext cxt = new javax.nam ng.lnitial Context();
| PMCl ust er Manager Hone cl Manager Hone = (| PMJ ust er Manager Horre)
cxt. | ookup(| PMCl ust er Manager . JNDI _RQOOT) ;
nmyC ust er Manager = cl Manager Home. create();
}
catch(Exception e)
{
Systemout.println("d uster nanager creation failed" + e);

}

/1 Get the default cluster
| PMCl uster nyC uster = nmyd uster Manager. get C uster (
| PMCO ust er . DEFAULT) ;

/1 CGet the depl oyment nanager
| Depl oynent Manager nyDepManager = myd ust er. get Depl oynment Manager () ;

/1l Get a hastable of all installed apps
Hasht abl e appLi st = nmyDepManager. getlnstal |l edApplications ();

/1 Get the deployment descriptor for nyapp
| Depl oynent Descri pt or nyAppDD = appli st.get ("myapp");

Each application has a deployment descriptor that contains the current settings for the mode,
stage, status and testing state of the application. Clients can access the deployment descriptor
of a particular application to manipulate these individual parameters.

Method Reference

The IDeploymentDescriptor Interface has the following methods that can be performed on
the deployment descriptor of a particular application:

160 Process Manager Programmer’s Guide « 6.0 (SP1)

IDeploymentDescriptor Interface

e isApplicationStopped e save

e isApplicationStarted e setApplicationStarted
= isMded osed = setApplicationStopped
= isMdeQpen = set MbdeOpen

= isStageDevel oprent = set Mbded osed

= isStageProduction e setTesting

e isTesting -

iIsSApplicationStopped

Tests if the application is stopped.

Syntax.
bool ean i sApplicationOf ()

Description. Returns true if the application’s status is OFF otherwise returns false.

isSApplicationStarted

Tests if the application is on.

Syntax.
bool ean i sApplicationOn ()

Description. Returns true if the application’s status is ON otherwise returns false.

iIsModeClosed

Tests if the application’s mode is CLOSED.

Syntax.
bool ean i sMbdeCd osed ()

Description. Returns true if the mode is CLOSED otherwise returns false.

Chapter 5 Deployment Manager

161

IDeploymentDescriptor Interface

162

isModeOpen

Tests if the application’s mode is OPEN.

Syntax.
bool ean i sMbdeOpen ()

Description. Returns true if the mode is OPEN otherwise returns false.

isStageDevelopment

Tests if the application is in the development stage.

Syntax.

bool ean i sSt ageDevel opnent ()

Description. Returns true if the application is in the DEVELOPMENT stage otherwise
returns false.

isStageProduction

Tests if the application is in the production stage.
Syntax.
bool ean i sSt ageProduction ()

Description. Retutns true if the application is in the PRODUCTION stage otherwise
returns false.

isTesting

Tests if the application is in the testing state.

Syntax.

bool ean isTesting ()

Description. Returns true if the application is in the TESTING state otherwise returns false.

Process Manager Programmer’s Guide « 6.0 (SP1)

IDeploymentDescriptor Interface

save

Saves the deployment descriptor.

Syntax.

voi d save ()

Description. Saves changes to the deployment descriptor. Clients must call this method after
calling any methods that change the deployment descriptor.

setApplicationStopped

Sets the application to stopped.

Syntax.
voi d set ApplicationOif()

Description. sets the STATUS of the application to STOPPED which means the
application cannot be accessed through the Express UI .

Clients must call the save() method after calling this method.

setApplicationStarted
Sets the application to STARTED.

Syntax.
voi d set ApplicationOn ()

Description. sets the STATUS of the application to STARTED which means the
application can be accessed from the Express Ul

Clients must call the save() method after calling this method.

setModeClosed

Sets the application mode to closed.

Syntax.
voi d set MbdeCd osed()

Chapter 5 Deployment Manager 163

IDeploymentDescriptor Interface

164

Description. Sets the MODE of the application to CLOSED. This means that no new
process instances can be created but old process instances can continue through the system to
completion.

Clients must call the save() method after calling this method.

setModeOpen

Sets the application mode to open.
Syntax.
voi d set ModeOpen ()

Description. sets the MODE of the application to OPEN. This means that new process
instances can be created.

Clients must call the save() method after calling this method.

setTesting

Syntax.

voi d set Testing (bool ean yesNo)

Parameters.
* yesNo if true, the application is in testing mode, if false it is not.

Description. Sets TESTING to TRUE or FALSE depending on the parameter .
e TRUE -- all work items are automatically assigned to the creator of the process instance.
e FALSE -- the wortk items are assigned to the real user.

Clients must call the save() method after calling this method.

Process Manager Programmer’s Guide « 6.0 (SP1)

Chapter 6

Working with Applications, Process
Instances and Work Items

The Process Manager Application API provides classes and methods that let you find and
work with applications, process instances and work items. You would use this API to build
Java applications that embed the functionality of the Process Manager engine.

For example, you can create back-end systems that create process instances programmatically
rather than through the UI.. After creating a process instance, the back-end system can check
its status and interact with work items.

You can also use the Process Manager Application API to write your own front-end
user-interface to the Process Manager engine so that your users use the new interface rather
than using the Process Express. For example, suppose you want to have a batch delegate UL
The inbuilt delegate feature only allows you to delegate one work item. You could write a
web-based UI that allows the user to select multiple work items. Then in the back-end, you
would call wi . del egat e() repeatedly for each wortk item.

In every Process Manager installation, a cluster manager bean manages the Process Manager
clusters. Given the cluster manager bean, you can get access to individual cluster beans. Given
an individual cluster bean, you can access the application bean for the cluster. Given the
application bean, you can find and work with individual process instances and wotk items in
the application.

See Chapter 4, “Cluster Management” for information about accessing the cluster manager and
individual cluster beans.

The Application API consists of the following interfaces:

* IPMApplication -- has methods for finding work items and process instances, and for
testing the state of an application.

e IProcessInstance -- has methods for working with individual process instances, such as
getting and setting data field values, getting information such as the creation date and
creator, changing the state, and suspending, terminating or resuming the process instance.

165

IPMApplication

* IWortkItem -- has methods for working with individual wozk items, such as changing
assignees, expiring or extending the expiration date, finding which node (activity) it is
at,and suspending or resuming it.

e IFinder -- has methods for finding process instances and work items in the application.

You can find all the necessary classes in the pn60cl asses. j ar file. If you have
installed the Process Manager Builder, you can find this jar file in the directory
builder-root\ suppor t \ sdk. You may also be able to find it on the CD.

IPMApplication

The application bean is the main access point for process instances. It has methods that allow
the user to initiate and edit process instances and work items associated with the application.
The IPMApplication bean is best thought of as a factory for PIs and W1s.

It also has methods that let you get the application’s stage, mode, status and testing state. See
the section “Deployment States” in Chapter 5, “Deployment Manager” for more information
about these settings.

To remove an application or to change its state, use the IDeploymentDescriptor interface, as
discussed in Chapter 5, “Deployment Manager.”

To get a handle to a specific application, mount the application bean. For example:

String jndi Name = | PMAppl i cati on. DEFAULT_JNDI _ROOT + "/" + appNane;

try
{

j avax. nam ng. Cont ext cxt = javax.naming.lnitial Context () ;

| PMAppl i cati onHome hone = (1 PMAppli cati onHone)

cxt. | ookup(jndi Name);

| PMAppl i cati on nyApp = hone.create();
}
catch(Exception e)
{
}

166 Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

IProcesslinstance

All the methods on IPMApplication throw a PMEXcept i on in case of error. The methods
findPl andfindW also throw XPr ocessl nst anceNot Found and
XWor kil t emNot Found respectively in the event the object cannot be located.

For details of the methods on IPMApplication, consult the javadocs, which are in the
suppor t\ sdk\ docs directory of the Process Manager Builder installation directory.

IProcessinstance

The IProcessInstance Interface has methods for getting information about process instances

and for performing operations on them such as suspending and resuming them or setting their
data field values.

Given an IPMCluster bean (see Chapter 4, “Cluster Management”) you can get the Finder bean
for the cluster. Given the Finder bean you can call the fi ndMyl nst ances() method to find
all process instances in the cluster.

Given an application bean, you can find a specific process instance by calling its
findProcessl nstance() method and specifying the process instance’s key.

For example:

/1 myApp is a nmounted application bean

| Processl nst ancePK pk = Processl nstancePKFactory.create(PID);
pk. set Edi tabl e(true); /1 for update

| Processl nstance pi = nyApp. findProcessl nstance(pk);

For details of the methods on IProcessInstance, consult the javadocs, which are in the
suppor t\ sdk\ docs directory of the Process Manager Builder installation directory.

Chapter 6 Working with Applications, Process Instances and Work ltems 167

IWorkltem

IWorkltem

The IWorkItem Interface has methods for getting information about work items and for
performing operations on them such as changing their assignees, expiring them or extending
the expiration date, suspendig them or resuming them and so on.

Given an IPMCluster bean (see Chapter 4, “Cluster Management”) you can get the Finder bean
for the cluster. Given the Finder bean you can call the f i ndWbr kil t ens() method to find all
wortk items in the cluster. If you know the key for a specific process instance, you can use the
Finder bean to find all the work items in a specific process instance.

Given a cluster bean, you can also get an application bean for a specific application. Given the
application bean, you can get a specific work item by calling its f i ndWér ki t em() method and
specifying the work item’s key.

For details of the methods on IWorkItem, consult the javadocs, which are in the
suppor t\ sdk\ docs directory of the Process Manager Builder installation directory.

The methods on IWotkItem are:

assi gnees

expire

extend

noveTo

get Chi | dPri mar yKey
get Comment

get Concl usi on

get Creati onDat e

get Err or Message

= addAssi gnee = get Excepti onNodeNane

get Expi rati onDat e
get NodeNane

get Pri mar yKey

get Processl nstance
get Redi recti onURL
getState
hasExpi r ed
hasSi bl i ngs

i sAut onmat ed

i sUser Assi gnee

r emoveAssi gnee

r enoveAssi gnees
resune

save

set Comment

set Concl usi on
set Expi rati onDat e

suspend

addAssignee

Adds the specified user as an additional assignee for the work item.

Syntax.

voi d addAssi gnee (Il Participant participant)

168 Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

IWorkltem

Parameters.

e participant An IParticipant object for the user to whom this work
item is to be assigned.

Description. Adds the specified user as an assignee for the work item in addition to existing
assignees.

assignees

Returns the assignees for the work item.

Syntax.

Enuneration of |Participant assignees ()

Description. Returns an enumeration of the assignees for the work item.

expire
Expires the work item.

Syntax.

void expire () throws PMException

Description. Expites the wotk item which causes the expiration sctipt to be executed as
well.

extend

Extends a work item to a new date.
Syntax.
voi d extend(Date newDat e)

Parameters.

* newDate A Date object indicating the new expiration date for the
work item.

Chapter 6 Working with Applications, Process Instances and Work Items 169

IWorkltem

Description. Extends an expired work item by setting the expiration date to newDate.

moveTo

Completes the work item and moves it to a new activity.
Syntax.
voi d noveTo (String nodeNane)

Parameters.

e nodeName A String of the name of the node (activity) where the
process instance will move to.

Description. Completes the work item and moves the process instance to the named node,
which can be any kind of activity.

getChildPrimaryKey

Returns the primary key for the process instance started as a sub process at this work item or
null if there is no sub process.

Syntax.
| Processl nst ancePK get Chi | dPri mar yKey()

Description. Retutns the primary key for the process instance spawned by this work item if
this work item starts a sub process.

getComment

Gets the history comment for this work item.

Syntax.
String get Comment ()

Description. Returns the history comment that the user specified in for this work item.

170 Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

IWorkltem

getConclusion

Returns the name of the button that the user pressed to submit the form for this work item.
Syntax.
String get Concl usi on()

Description. Retutns the name of the name of the button that the user pressed to submit the
form for this work item. For an automated activity, this method returns null.

getCreationDate

Returns the date when this work item was created.

Syntax.
Date getCreationbDate ()

Description. Returns the date when this work item was created.

getErrorMessage

Returns the error message specified by the last user script (such as an automation script or
completion script).

Syntax.
String getErrorMessage ()

Description. Retutns the etror message specified by the last user script. (such as an
automation script or completion script). If there is no error message, null is returned. The error
message can be an error, history, or security message.

getExceptionNodeName

Returns the name of the exception node object where the work item is currently positioned.

Syntax.
String get Excepti onNodeName()

Chapter 6 Working with Applications, Process Instances and Work Items 171

IWorkltem

Description. Returns the name of the exception node object where the work item is
cutrently positioned. If the work item is not at an exception node, the method returns null.

getExpirationDate

Gets the work item’s expiration date.

Syntax.
Dat e get ExpirationDate ()

Description. Returns the work item’s expiration date.

getNodeName

Returns the node (activity) name of the work item.

Syntax.
String get NodeNane () throws PMException

Description. Retutns the name of the node where the wotk item is positioned. In other
wortds, this method returns the name of the activity which this work item corresponds to.

getPrimaryKey

Returns the primary key for the work item.

Syntax.
Wor kit enPK get Pri maryKey ()

Description. Returns the primary key for the work item.

getProcesslinstance

Returns the process instance associated with this work item.

Syntax.

| Processl nstance get Processlnstance () throws PMExceptions

172 Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

IWorkltem

Description. Returns the process instance associated with this work item.

getRedirectionURL

Returns the redirection URL specified by the last user script.

Syntax.
String getRedirecti onURL ()

Description. Returns the redirection URL specified by the last user script or null if no
redirection URL was specified.

getState

Returns the current state of the work item.

Syntax.
int getState ()

Description. Returns the current state of the work item.The state will be one of the
following:

* IWorkltem.STATE_RUNNING
The work item has been assigned to a user, but has not been started yet.
* IWorkltem. STATE_RUNNING_TO_GROUP

The work item has been assigned to a group of users, but has not been started
yet.

* IWorkltem. STATE_ACTIVE

The work item has been assigned and is available for action.
* IWorkltem.STATE_SUSPENDED

The work item has been suspended and is not available for action.
* IWorkltem. STATE_EXCEPTION

The work item is currently in an exception state.

Chapter 6 Working with Applications, Process Instances and Work Items 173

IWorkltem

hasExpired

Indicates whether or not the work item has expired.
Syntax.
bool ean hasExpired ()

Description. Retutns true if the work item has expired; false otherwise. If a wotk item’s
expiration data has passed, the work item has expired.

hasSiblings

Returns t r ue if this wotk item is in a parallel branch and other work items exist within the
same split.

Syntax.
bool ean hasSiblings () throws PMException

Description. Returns true if the work item has siblings W1, that is, if this work item is within
a split and other WIs exist along other parallel branches of the split.Otherwise it returns false.

ISAutomated

Returns true if the work item corresponds to an automated activity.
Syntax.
bool ean i sAutomated ()

Description. Returns true if the work item is at a node that is automated; false otherwise. An
automated activity is any activity that does not require user interaction via an HTML form.

isUserAssignee

Returns t r ue if the given user is currently an assignee of the wotk item.

Syntax.

bool ean i sUser Assi gnee (| Participant participant)

174 Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

IWorkltem

Parameters.
e participant An IParticipant object for a user.

Description. Returns t r ue if the given user is on the assignment list for the work item;
otherwise returns f al se.

removeAssignee

Removes an assignee from the work item.

Syntax.

voi d renoveAssi gnee (Il Participant participant)

Parameters.

e participant An IParticipant object representing the user to be
removed.

Description. Removes the specified user from the assignee list for the work item.

removeAssignees

Removes all assignees from the wotk item.

Syntax.

voi d renoveAssi gnees ()

Description. Removes all assignees from the work item. This method is used to clean the
assignment list for a wotk item. You must not save a workitem without an assignee, since it
causes an exception.

resume

Resumes the work item if it is suspended.

Syntax.

Chapter 6 Working with Applications, Process Instances and Work Items 175

IWorkltem

voi d resune()

Description. Resumes the wotk item if it is suspended. This method is only accessible by
clients with administrator privileges. If the work item is not currently suspended, this method
does nothing.

save

Saves the work item
Syntax.
voi d save () throws PMException

Description. Saves the work item. Saving the work item does not complete it.Normally, this
method does not need to be invoked directly. You normally call app. execut e(wi), which
completes the work item and generates the next set of wotk items.

If you make a change to the work item or process instance and do not complete it, you would
call the save() method, for example during work item delegation.

setComment

Sets a comment for this wotk item.

Syntax.

voi d set Commrent (String comment)

Par anet er s

e comment A String of the comment for this work item.

Description. Sets the history comment for this work item. The comment appeats in the
history log.

setConclusion

Sets the conclusion (user action) for this work item.

176 Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

IWorkltem

Syntax.

voi d set Concl usion (String concl usion)

Parameters.

» conclusion A String of the conclusion for this work item. The
conclusion should be the name of one of the submit
buttons on the HTML form for this work item.

Description. Sets the conclusion (that is, user action) for the work item. The conclusion is
usually the name of one of the submit buttons on the HTML form for this work item.

setExpirationDate

Sets the expiration date for the work item.

Syntax.
voi d set Expirati onDate (Date expDate)

Parameters.
* expDate The date at which the work item expires.

Description. Sets the expiration date for the work item, but does not set the expiration flag,
which indicates whether the work item has expired or not.

suspend

Suspends the work item.

Syntax.

voi d suspend ()

Description. Suspends the wotk item. This functionality is only accessible to clients with
administrator privileges.

Chapter 6 Working with Applications, Process Instances and Work Items 177

IFinder

IFinder

The Ifinder bean is the access point for getting lists of work items and process instances.

In every Process Manager installation, a cluster manager bean manages the Process Manager
clusters. Given the cluster manager bean, you can get access to individual cluster beans. Given
an individual cluster bean, you can get the finder bean for the cluster by calling the

get Fi nder () method.

The finder has methods for getting worklists, which are lists of work items. The worklist
queries only return IWorkItems currently assigned to the principal in read-only mode; the
principal cannot retrieve an IWorkItem that is not assigned to them via this interface.

The finder has methods for getting process instances. The process instance search methods
only return IProcessInstances that were created by the principal in read-only mode; the
principal cannot gain access to a process instance that they did not initiate.

For details of the IFinder methods, see the javadocs, which can be found in the
suppor t\ sdk\ docs directory of the Process Manager Builder installation.

178 Process Manager Process Manager Programmer’s Guide ¢ Oct 2000

A
activities
custom, 11
adding
custom activities to an application, 30
custom data fields to an application, 69
ADMINISTRATOR_URL, 147
AdvancedOfficeSetup
sample application, 93
API
for applications, process instances and work
items, 165
for clusters, 131
for custom data field classes, 80
SimpleWorkPerformer for custom activities, 13
APPLICATION_URL, 147
applications, 165
getting installed applications, 158
removing, 158
archive()
discussion, 68
method, 81

B

BasicCustomField
class, 80
custom data fields, 48
BubbleHelp value
NAME attribute of DESIGN tag, 26

Index

BUSINESS_URL, 147

C

changeCluster(), 139
changing
clusters, 139
checkDBConnection(), 136
checkLDAPConnection(), 135
checkLDAPEnNtry(), 136
class reference
classes for custom data fields, 80
for applications, process instances,work
items, 165
for clusters, 131
SimpleWorkPerformer for custom activities, 13
CLASS_ID attribute
WORKPERFORMER tag, 21
CLOSED mode, 156
cluster management
classes for, 130
introduction, 129
CLUSTER_DN, 145
clusters
changing, 139
checking database connections, 136
checking LDAP connections, 135
checking LDAP entries, 136
code samples, 151
creating, 132

179

creating properties, 150 clusters, 132

deleting, 135 custom activities, 12

example of creating, 152 custom data fields, 41

example of getting and setting properties, 153 custom activities, 11

getting, 133 adding to process map, 30

getting and setting property values, 148 adding using a custom palette, 30

getting application path, 143 adding without using a custom palette, 33

getting corporate directory, 143 example in AdvancedOfficeSetup, 114

getting deployment manager, 144 image for, 26

getting installed applications, 142 implementation tips, 35

getting logs, 142 mapping data field values to input

getting properties, 137, 139 parameters, 22

getting the Finder, 144 mapping output values to data fields, 24

getting version, 142 overview of creating, 12

introduction, 129 packaging, 29

isDefined(), 143 sample class, 14

joining, 134 working with in the Process Builder, 34

logging exceptions, 141 XML description file, 19

mount cluster manager, 151 custom data fields, 41, 48

progran_"nmatic interaction, 129 adding to an application, 69

properties, 145 BasicCustomField, 48

unjoining, 134 class reference, 80
cn debugging hints, 79

data field property, 46 development hints, 73
CONFIGURATION_DIRECTORY_BIND_ DN, 145 displaying debugging info, 79
CONFIGURATION_DIRECTORY_BIND_DN_ entity keys, 76

PASSWORD, 145 example, 72
CONFIGURATION_DIRECTORY_PORT, 145 example create() method, 61

example display() method, 54
example in AdvancedOfficeSetup, 95
example load() method, 63

CONFIGURATION_DIRECTORY_SERVER, 145
corporate directory

getting, 143 example store() method, 66
CORPORATE_DIRECTORY_BASE, 145 example update() method, 60
CORPORATE_DIRECTORY_BIND_DN, 145 getting values that were set in the Builder, 50
CORPORATE_DIRECTORY_BIND_DN _ images for PM Builder, 68

PASSWORD, 145 individual properties, 47
CORPORATE_DIRECTORY_PORT, 145 introduction, 41
CORPORATE_DIRECTORY_SERVER, 145 jar file for compiling, 48
create() logging errors, 79

method invocation order, 48

packaging, 68

required properties, 46

steps for creating, 42

view versus edit mode, 53

writing to the HTML page, 53

wrting Java classes, 47
customerName data field, 14

BasicCustomField discussion, 60
BasicCustomField method, 82
PMClusterPropertyFactory, 150
when is it called on BasicCustomField, 49
createCluster(), 132
creating
cluster properties, 150

180 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

D

data dictionary

adding custom data fields, 71
DATABASE_IDENTIFIER, 146

DATABASE_NAME, 146

DATABASE_PASSWORD, 146

DATABASE_TYPE, 146

DATABASE_USER_NAME, 146

databases

checking connections, 136

debugging hints

custom data fields, 79
default cluster

getting, 151
DEFAULTVALUE attribute

JSB_PROPERTY tag, 45
defining

custom activities, 11

custom data fields, 41
deleteCluster(), 135
deleting

clusters, 135
DEPLOY_URL, 146
deployment

to a cluster, 130
deployment manager, 155

accessing, 155

getting, 144, 157
deployment states, 155

MODE, 156

STAGE, 156

STATUS, 156

TESTING, 157
DESCRIPTION

cluster property, 146
description

data field property, 46
DESCRIPTION attribute

PARAMETER tag, 26
DESIGN tag, 26
destroy() method, 14
development hints

for custom activities, 35

for custom data fields, 73
DEVELOPMENT stage, 156
display(), 82

discussion, 52
example, 54

example in AdvancedOfficeSetup, 97

overview, 48
DISPLAYNAME attribute

JSB_DESCRIPTOR tag, 43
JSB_PROPERTY tag, 45

E

EDITABLE attribute
PARAMETER tag, 26

EDITOR attribute
PARAMETER tag, 26

EmployeeTrainingPerformer.java, 128
EmployeeTrainingPerformer.xml, 115, 128

entity fields, 42
entity keys, 76
ENVIRONMENT tag, 21
environment variables
in custom activities, 13
examples
creating a cluster, 152
custom activity, 14
custom data field, 72

deployment descriptors, 159

getting and setting cluster properties, 153
programmatically interacting with clusters, 151
xml description file for custom activity, 27

EXPRESS_URL, 146

F

fetchDataFromXML(), 110
fieldclassid
data field property, 47

fieldtype
data field property, 47

Index

181

Finder

getting, 144
finder bean, 178
finding

process instances and work items, 178
forms

parsing submitted values, 59

what happens on submit, 59

G

get()
hashtable method, 14

getApplicationsPath(), 143
getCluster(), 133
getClusterProperty(), 137, 139
getCorporateDirectory(), 143

getData()
custom data fields, 53
using in custom activities, 22
what it does, 62

getDeploymentManager(), 144

getEntityKey(), 76
calling from load(), 62

getFinder(), 144
getinstalledApplications(), 142, 158

getLog()
for clusters, 142

getMyApplicationsPath(), 109
getName(), 84

getParameter()
IPMRequest, 59

getPMApplication(), 84
getPrettyName(), 85
getProperties(), 149

getValue()
cluster properties, 148

getVersion()
of cluster, 142

greeting data field, 14

182 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

H

HelloWorld.xml, 27
HelloWorldPerformer, 14

help
data field property, 47

HelpUrl value
NAME attribute of DESIGN tag, 26

HTML pages
writing to in custom data fields, 53

Icon value

NAME attribute of DESIGN tag, 26
IDataElement, 48
IDeploymentDescriptor, 159
IDeploymentManager, 157
IFinder, 178

IHTMLPage

input paramter to display() method, 53
images

for custom activities, 26

for custom data fields, 68
implementing

ISimpleWorkPerformer, 12
IncrementForDayOfWeek(), 125

init() method
ISimple WorkPerformer, 13

input hashtable, 14, 22
getting data field values, 22

INPUT tag, 22
IPMApplication, 166
IPMCluster, 137
IPMClusterManager, 131
IPMClusterProperty, 144
IPMElement, 81

IPMRequest
parsing form element values, 59

IPresentationElement, 48
IProcesslnstance, 167
isApplicationStarted(), 161

isApplicationStopped(), 161
isDefined()
clusters, 143
ISDESIGNTIMEREADONLY attribute
JSB_PROPERTY tag, 46
ISEXPERT attribute
JSB_PROPERTY tag, 46
ISimpleWorkPerformer, 12
implementing, 12
methods of, 13
isModeClosed(), 161
isModeOpen(), 162
isStageDevelopment(), 162
isStageProduction(), 162
isTesting(), 162
IWorkltem, 168

J

jar files
for compiling cluster classes, 129
for compiling custom activities, 12
for compiling custom data fields, 48

for compiling deployment manager classes, 157

for packaging custom activities, 29
for packaging custom data fields, 48
pmé60classes.jar, 12, 129

javadocs, 178
joinCluster(), 134
joining clusters, 134

JSB file, 42
general structure, 43

JSB_DESCRIPTOR tag, 43
JSB_PROPERTY tag, 44, 45

K

kjs
displaying debugging info, 79
starting, 79

L

Label value

NAME attribute of DESIGN tag, 26
Language property

HelloWorld sample application, 14
LDAP connections

checking, 135
LDAP entries

checking, 136

load(), 85
discussion, 62
example, 62
example in AdvancedOfficeSetup, 106

loadDataElementProperties
example in AdvancedOfficeSetup, 96
loadDataElementProperties(), 86
discussion, 50

log()
IPMCluster, 141

LOG_ERROR, 147
LOG_INFORMATION, 147
LOG_SECURITY, 147

logging
cluster exceptions, 141

M

Maplcon value
NAME attribute of DESIGN tag, 27

mapping
data fields to input parameters, 22
output values to data fields, 24
mapTo(), 24
menuOptions.xml, 114
MODE
deployment state, 156

mounting
cluster manager, 151

myNewCustomField, 69
myObject.java, 114

Index

183

N

NAME attribute
JSB_DESCRIPTOR tag, 43
JSB_PROPERTY tag, 45
PARAMETER tag, 25
WORKPERFORMER tag, 21

non-default constructors
for custom data fields, 73

O

OPEN mode, 156
ORACLE, 147

output hashtable, 14, 24
OUTPUT tag, 24

P

packaging
custom activities, 29
custom data fields, 68
PARAMETER tag, 25
parseForltemTag(), 112

perform()

example in AdvancedOfficeSetup, 118
perform() method, 14
PM Builder

images for data fields, 68
pme60classes.jar, 12, 48, 129
PMClusterPropertyFactory, 150
predefined data fields, 41
preface, 7

PRETTY_NAME
cluster property, 146

prettyname
data field property, 46
process instances, 165
finding, 178
process map

184 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

adding custom activities, 30
PRODUCTION stage, 156

put()
hashtable method, 14

R

readSchedule(), 120
removeApplication(), 158
required properties

of data fields, 46

S

sample applications
AdvancedOfficeSetup, 93

samples
see examples

save()
deployment descriptor, 163

scheduleTraining(), 123

SelectedMaplcon value
NAME attribute of DESIGN tag, 27

setApplicationStarted(), 163
setApplicationStopped(), 163
setData()

using inside load(), 62

when used, 65
setEntityKey(), 76

used in store(), 65
setModeClosed(), 163
setModeOpen(), 164
setTesting(), 164
setVValue()

cluster properties, 149
SHORTDESCRIPTION attribute

JSB_DESCRIPTOR tag, 43

JSB_PROPERTY tag, 45
SMTP_PORT, 146
SMTP_REPLY_TO, 146

SMTP_SERVER, 146 DEPLOY_URL, 146
STAGE EXPRESS_URL, 146

deployment state, 156
STARTED status, 156

STATUS
deployment state, 156 V
STOPPED status, 156
store(), 88 VALUESET attribute

JSB_PROPERTY tag, 45

discussion, 65
PARAMETER tag, 26

example, 66 :

example in AdvancedOfficeSetup, 104 VERSION attribute

indications of errors, 79 WORKPERFORMER tag, 21
SYBASE, 147

W

T work items, 165
TESTING finding, 178

deployment state, 157 WORKPERFORMER tag, 21
trainingDays.xml, 114, 128 write()

TreeViewlcon value writing to an HTML page, 53
NAME attribute of DESIGN tag, 27 writeWelcomePage(), 126
TYPE attribute
JSB_PROPERTY tag, 45
PARAMETER tag, 26
WORKPERFORMER tag, 21 X

XML description file
for custom activities, 19
format of, 19
U sample for custom activity, 27

unjoinCluster(), 134
unjoining clusters, 134
updatabableList.jsb, 114
updatableList.java, 114
update(), 89
discussion, 59
example, 60
example in AdvancedOfficeSetup, 103
overview, 49
URLs
ADMINISTRATOR_URL, 147
APPLICATION_URL, 147
BUSINESS_URL, 147

Index 185

186 Process Manager Programmer’s Guide ¢ 6.0 (SP1)

	Introduction
	About This Book
	Developing Process Manager Applications
	Interacting with Clusters and Deployed Applications

	Assumptions
	Conventions Used in This Guide
	For More Information

	Chapter�1
	Writing Custom Activities
	Introduction
	Comparison to Automated Activities
	Overview of Creating a Custom Activity

	Implementing ISimpleWorkPerformer
	Methods of ISimpleWorkPerformer
	Sample Java Class

	Writing the XML Description File
	File Format
	Sample XML Description File

	Packaging a Custom Activity
	Adding a Custom Activity to the Process Map
	Adding a Custom Activity from a Custom Palette
	Adding a Custom Activity without Using a Custom Palette

	Working with a Custom Activity
	Implementation Tips
	Avoid Instance Data
	Use Consistent Data Types
	Avoid Non-default Constructors
	Use One Implementation of a Java Class Per Server
	When to Use a Custom Activity

	Example Custom Activity

	Chapter�2
	Writing Custom Data Fields
	Introduction
	Steps for Creating a Custom Field

	Defining Field Properties in a JSB File
	JSB_DESCRIPTOR Tag
	JSB_PROPERTY Tag

	Writing the Java Classes
	Define a Subclass of BasicCustomField
	The Methods in Detail

	Specifying Images for Use in Process Builder
	Packaging a Custom Field
	Adding a Custom Field to an Application
	Example Custom Data Field
	Development Hints and Tips
	Avoid Non-default Constructors
	Avoid Instance Data
	Use Entity Keys
	Deploy the Custom Field to Test It
	Develop and Test on a Server Where Process Manager is Installed
	Use One Implementation of a Java Class Per Server
	Debugging Hints

	Class Reference
	BasicCustomField
	archive()
	create()
	display()
	getName()
	getPMApplication()
	getPrettyName()
	load()
	loadDataElementProperties()
	store()
	update

	IPMRequest
	getAuthenticatedUserId
	getParameter
	isParameterDefined

	Chapter�3
	Advanced Office Setup Application
	Changes in the Advanced Office Setup Application
	The Custom Data Field
	Overview
	The Code in Detail
	Complete Source Code

	The Custom Activity
	Overview
	The Code in Detail
	Complete Source Code

	Chapter�4
	Cluster Management
	Introduction
	IPMClusterManager
	createCluster
	getCluster
	joinCluster
	unjoinCluster
	deleteCluster
	checkLDAPConnection
	checkLDAPEntry
	checkDBConnection

	IPMCluster
	getClusterProperty
	changeCluster
	log
	getLog
	getInstalledApplications
	getVersion
	isDefined
	getApplicationsPath
	getCorporateDirectory
	getFinder
	getDeploymentManager

	IPMClusterProperty
	Getting and Setting Property Values
	getValue
	setValue
	getProperties

	PMClusterPropertyFactory
	create

	Code Samples
	Mount the Cluster Manager and Get the Default Cluster
	Create a Cluster
	Get and Set Cluster Properties

	Chapter�5
	Deployment Manager
	Deployment States
	STAGE
	MODE
	STATUS
	TESTING

	IDeploymentManager Interface
	Where are the Classes and Interfaces?
	Method Reference
	removeApplication
	getInstalledApplications

	IDeploymentDescriptor Interface
	Code Example
	Method Reference
	isApplicationStopped
	isApplicationStarted
	isModeClosed
	isModeOpen
	isStageDevelopment
	isStageProduction
	isTesting
	save
	setApplicationStopped
	setApplicationStarted
	setModeClosed
	setModeOpen
	setTesting

	Chapter�6
	Working with Applications, Process Instances and Work Items
	IPMApplication
	IProcessInstance
	IWorkItem
	addAssignee
	assignees
	expire
	extend
	moveTo
	getChildPrimaryKey
	getComment
	getConclusion
	getCreationDate
	getErrorMessage
	getExceptionNodeName
	getExpirationDate
	getNodeName
	getPrimaryKey
	getProcessInstance
	getRedirectionURL
	getState
	hasExpired
	hasSiblings
	isAutomated
	isUserAssignee
	removeAssignee
	removeAssignees
	resume
	save
	setComment
	setConclusion
	setExpirationDate
	suspend

	IFinder

	Index

