
Process Manager
Programming Guide

iPlanet Process Manager

Version 6.0 Service Pack 2

816-0518-01
March 2001

Copyright © 2000 Sun Microsystems, Inc.
Some preexisting portions Copyright © 2000 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, iPlanet and the iPlanet logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. Netscape and the Netscape N logo are registered trademarks
of Netscape Communications Corporation in the U.S. and other countries. Other Netscape logos, product names, and
service names are also trademarks of Netscape Communications Corporation, which may be registered in other
countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of the product or this document may be reproduced in any form by any means without prior
written authorization of the Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

__

Copyright © 2000 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2000 Netscape
Communication Corp. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, iPlanet et the iPlanet logo sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays. Netscape et the Netscape N logo sont des marques déposées
de Netscape Communications Corporation aux Etats-Unis et d’autre pays. Les autres logos, les noms de produit, et les
noms de service de Netscape sont des marques déposées de Netscape Communications Corporation dans certains autres
pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie,
la distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque
forme ou par quelque moyen que ce soit sans l’autorisation écrite préalable de l’Alliance Sun-Netscape et, le cas échéant,
de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS EXPRESSES OU
IMPLICITES, TOUTES REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE
IMPLICITE D'APTITUDE À LA VENTE, OU À UN BUT PARTICULIER OU DE NON CONTREFAÇON
SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES EXCLUSIONS SERAIENT CONTRAIRES
À LA LOI.

3

Process Manager
Programming Guide

Contents

Introduction . 7
About This Book . 7

Developing Process Manager Applications . 7

Interacting with Clusters and Deployed Applications . 8
Assumptions . 9
Conventions Used in This Guide . 9
For More Information . 9

Chapter 1 Writing Custom Activities . 11
Introduction . 11

Comparison to Automated Activities . 12

Overview of Creating a Custom Activity . 12
Implementing ISimpleWorkPerformer . 12

Methods of ISimpleWorkPerformer . 13

Sample Java Class . 14
Writing the XML Description File . 19

File Format . 19

Sample XML Description File . 27
Packaging a Custom Activity . 29
Adding a Custom Activity to the Process Map . 30

Adding a Custom Activity from a Custom Palette . 31

Adding a Custom Activity without Using a Custom Palette . 34
Working with a Custom Activity . 35
Implementation Tips . 35

Avoid Instance Data . 36

4 Process Manager Programming Guide • Version 6.0 Service Pack 2

Use Consistent Data Types . 38

Avoid Non-default Constructors . 39

Use One Implementation of a Java Class Per Server . 39

When to Use a Custom Activity . 39
Example Custom Activity . 40

Chapter 2 Writing Custom Data Fields . 41
Introduction . 41

Steps for Creating a Custom Field . 42
Defining Field Properties in a JSB File . 42

JSB_DESCRIPTOR Tag . 43

JSB_PROPERTY Tag . 44
Writing the Java Classes . 47

Define a Subclass of BasicCustomField . 48

The Methods in Detail . 49
Specifying Images for Use in Process Builder . 69
Packaging a Custom Field . 69
Adding a Custom Field to an Application . 71
Example Custom Data Field . 73
Development Hints and Tips . 73

Avoid Non-default Constructors . 74

Avoid Instance Data . 74

Use Entity Keys . 77

Deploy the Custom Field to Test It . 77

Develop and Test on a Server Where Process Manager is Installed . 78

Use One Implementation of a Java Class Per Server . 79

Debugging Hints . 79
Class Reference . 80
BasicCustomField . 80

archive() . 82

create() . 82

display() . 83

getName() . 84

getPMApplication() . 85

getPrettyName() . 86

load() . 86

loadDataElementProperties() . 87

store() . 88

update . 89

5

IPMRequest . 90

getAuthenticatedUserId . 91

getParameter . 91

isParameterDefined . 91

Chapter 3 Advanced Office Setup Application . 93
Changes in the Advanced Office Setup Application . 93
The Custom Data Field . 95

Overview . 95

The Code in Detail . 96

Complete Source Code . 114
The Custom Activity . 114

Overview . 114

The Code in Detail . 115

Complete Source Code . 128

Chapter 4 Cluster Management . 129
Introduction . 129
IPMClusterManager . 131
IPMCluster . 131
IPMClusterProperty . 132

Getting and Setting Property Values . 135
PMClusterPropertyFactory . 136
Code Samples . 137

Mount the Cluster Manager and Get the Default Cluster . 137

Create a Cluster . 138

Get and Set Cluster Properties . 138

Chapter 5 Deployment Manager . 141
Deployment States . 141

STAGE . 142

MODE . 142

STATUS . 142

TESTING . 143
IDeploymentManager Interface . 143

Where are the Classes and Interfaces? . 143
IDeploymentDescriptor Interface . 144

Code Example . 144

6 Process Manager Programming Guide • Version 6.0 Service Pack 2

Chapter 6 Working with Applications, Process Instances and Work Items 147
IPMApplication . 148
IProcessInstance . 150
IWorkItem . 150
IFinder . 150

Index . 153

7

Introduction

This preface has the following sections:

• About This Book

• Assumptions

• Conventions Used in This Guide

• For More Information

About This Book
This book is intended for use by Java programmers who need to extend iPlanet
Process Manager 6.0 functionality, either for developing applications or for
accessing deployed applications.

There are two main kinds of situations when you might want to use Java when
working with Process Manager:

• when developing Process Manager applications

• for interacting with clusters and deployed applications

Developing Process Manager Applications
For many applications, Process Builder allows you to do everything you want to
do in the way of building applications to control the flow of processes. You can
create process maps that route the flow of control of a process from assignee to
assignee. The process can include tasks that are performed manually or
automatically, in parallel or sequentially. In many cases, you never need to go
outside the Process Builder to build your application.

About This Book

8 Process Manager Programming Guide • Version 6.0 Service Pack 2

However, in some cases you may need to tweak applications further. You may
want your process to use a data field that is different from any of the built in data
fields. You may want to define activities in Java that integrate with external data
sources. In these cases, you can create custom data fields and custom activities in
Java, and then bring them into the Process Builder to use when building an
application.

Relevant chapters are:

• Chapter 1, “Writing Custom Activities,” discusses how to write custom
activities in Java and bring them into the Process Builder.

• Chapter 2, “Writing Custom Data Fields,” discusses how to write custom data
fields in Java and bring them into the Process Builder.

• Chapter 3, “Advanced Office Setup Application,” discusses a custom data field
and custom activity that are provided with the AdvancedOfficeSetup sample
application.

Interacting with Clusters and Deployed
Applications
The standard way for users to interact with deployed applications is through the
Process Express. However, there may be situations when you need to interact
programmatically with deployed applications or you want to programmatically
perform cluster administration tasks, for example if you want to embed Process
Manager functionality inside another application. In this case you can write Java
applications that use the Process Manager Engine and Cluster API. In other
situations, you might want to write your own front-end to the Process Manager
Engine rather than have your users use the Process Express.

Relevant chapters are:

• Chapter 4, “Cluster Management,” discusses the classes for programmatically
interacting with Process Manager clusters.

• Chapter 5, “Deployment Manager,” discusses the classes for programmatically
accessing deployment descriptors.

• Chapter 6, “Working with Applications, Process Instances and Work Items,”
discusses the classes for programmatically interacting with applications,
process instances and work items.

Assumptions

Introduction 9

Assumptions
This guide assumes you are familiar with using Process Manager 6.0 and with
using the Java language. This guide does not attempt to teach Java.

To get started learning Java, see the online Java Tutorial at:

http://java.sun.com/docs/books/tutorial/

Conventions Used in This Guide
File and directory paths are given in Windows format (with backslashes separating
directory names). For Unix versions, the directory paths are the same, except
slashes are used instead of backslashes to separate directories.

This guide uses URLs of the form:

http://server.domain/path/file.html

In these URLs, server is the name of server on which you run your application;
domain is your Internet domain name; path is the directory structure on the server;
and file is an individual filename. Italic items in URLs are placeholders.

This guide uses the following font conventions:

• The monospace font is used for sample code and code listings, API and
language elements (such as function names), file names, path names, directory
names, and HTML tags.

• Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

For More Information
Table 0-1 summarizes the tasks involved in using Process Manager and describes
where to go for more information about each one.

For More Information

10 Process Manager Programming Guide • Version 6.0 Service Pack 2

Process Manager 6.0 runs on top of iPlanet Application Server 6.0 (iAS 6.0). For
more information about iAS 6.0 and other iPlanet products, see the iPlanet
documentation web site at http://docs.iplanet.com/docs/manuals/.

Table 0-1 Summary of Process Manager Components

Do What? Which Process
Manager
Component?

Comments

Install Process
Manager

Installation
component

For more information about installing Process Manager, see
the Process Manager Installation Guide

Build a process
application

Process Builder The Builder is a graphical user interface for building
processes.

For more information about Process Builder, see the Process
Manager Builder’s Guide.

Perform the steps
in a process

Process Express The Express is a web-based interface that is used by the
people who perform tasks in a process. It includes a
customized work list for each person as well as a web-based
form for each task.

For more information about Process Express, see the Process
Express User’s Guide.

Administer a
process application

Process
Administrator and
Business
Administrator

This is a set of web-based interface for doing administration
tasks such as shutting down processes.

For more information, see the Administrator’s and Business
Manager’s Guide.

Build Java custom
data fields and
activities in Java.
Also use the Java
API to
programmatically
interact with
Process Manager.

Process Manager
Java classes and
API which are
available in a JAR
file.

Java programmers can build custom data fields and custom
activies in Java that can be imported into the Process Builder.
Programmers can also create Java applications that embed
Process Manager functionality or present customized front
ends to Process Manager.

For more information, read this book.

Use the
Application or
Cluster APIs.

Java API
components

see the javadocs, which can be found in the
support\sdk\docs directory of the Process Manager
Builder installation.

11

Chapter 1

Writing Custom Activities

This chapter describes how to write and use custom activities. The sections in this
document are:

• Introduction

• Implementing ISimpleWorkPerformer

• Writing the XML Description File

• Packaging a Custom Activity

• Adding a Custom Activity to the Process Map

• Working with a Custom Activity

• Implementation Tips

• Example Custom Activity

Introduction
Process Manager lets you create custom activities as Java classes and bring them
into your process definitions.

Custom activities are useful when you want to do more than can easily be done in
an automation script, such as when the programming logic or data resides outside
of Process Manager. For example, you might build a custom activity to interface
with external applications and databases. Custom activities might also run local
applications and then interact with mail gateways or FAX servers.

Implementing ISimpleWorkPerformer

12 Process Manager Programming Guide • Version 6.0 Service Pack 2

Comparison to Automated Activities
Custom activities are similar to automated activities. In both cases:

• You place them on the process map by dragging and dropping them from the
Palette.

• They can have verification and completion scripts.

• They are triggered as soon as the process instance reaches the activity, unless
the activity is deferred. A deferred activity is triggered at its specified date and
time.

Automated and custom activities have one main difference: an automated activity
is carried out by an automation script, whereas a custom activity is carried out by a
user-defined Java class.

Overview of Creating a Custom Activity
Creating and using a custom activity involves the following major steps:

1. Write and compile a Java class that implements the ISimpleWorkPerformer

interface.

2. Define an XML description file for the activity.

3. Package the Java class and the XML description file as a zip or jar file.

4. Bring the custom activity into an application.

Implementing ISimpleWorkPerformer
The first step in creating a custom activity is to write a Java class that implements
ISimpleWorkPerformer, an interface in the package com.netscape.pm.model.

ISimpleWorkPerformer defines a custom activity that:

1. gets values, typically data field values, as input

2. performs some task

3. sets data field values as output

Note: You can find the ISimpleWorkPerformer class in the pm60classes.jar file.

Implementing ISimpleWorkPerformer

Chapter 1 Writing Custom Activities 13

If you have installed the Process Manager Builder, you can find this jar file in the
directory builder-root\support\sdk. You may also be able to find it on the CD.

This section describes the following topics:

• Methods of ISimpleWorkPerformer

• Sample Java Class

Methods of ISimpleWorkPerformer
ISimpleWorkPerformer has three methods:

• The init() method is called when the application starts.

• The perform() method is called each time the custom activity is executed. This
method must be thread-safe.

• The destroy() method is called when the application is unloaded or removed.

The init() method
public void init (Hashtable environment) throws Exception

The init() method performs initialization tasks that the custom activity requires
when the application starts. For example, use init() to set up database
connections that are shared by all instances of the activity, or use init() to define
variables that are constant across all instances of the activity.

The init() method does not execute each time a custom activity is created in a
process instance. Instead, this method is called only once—when the application
starts.

As its input argument, init() takes a hashtable of environment variables. A
hashtable is a Hashtable object that contains a series of parameter-value pairs. The
parameters in the environment hashtable are defined in the ENVIRONMENT
section of an XML description file.

A process designer sets the values of the hashtable parameters while creating the
process map.

For example, suppose a Language parameter is defined in the environment
hashtable of a custom activity. In Process Builder, the Language parameter would
appear as a property for the custom activity (you would open the Inspector
window and view the Properties tab).

Implementing ISimpleWorkPerformer

14 Process Manager Programming Guide • Version 6.0 Service Pack 2

In your Java class, define the init() method to perform the desired initialization
tasks. Then, to obtain the value of a parameter in the environment hashtable, call
the get() method on the environment hashtable. The get() method returns either
the value of the parameter, or null if the parameter doesn’t exist.

The perform() method
public void perform (Hashtable in, Hashtable out) throws Exception

The perform() method executes whatever tasks must be done for the activity. This
method takes two Hashtable arguments. The input hashtable contains values taken
from data fields, and the output hashtable contains values to put into data fields.

The parameters in the input and output hashtables are defined in the INPUT and
OUTPUT sections, respectively, of an XML description file.

The Input Hashtable
To obtain the value of a parameter in the input hashtable, call the get() method on
the input hashtable. The get() method returns either the value of the parameter, or
null if the parameter doesn’t exist. Note that the get() method returns a Java
object, so you must cast this object to the object class type that your custom activity
is expecting. For example:

String sizeOrder = (String) input.get("order");

The Output Hashtable
To set data field values, the perform() method must put values into the output
hashtable by calling put() on the output hashtable. When the perform() method
finishes executing, you then assign the values to the corresponding data fields.

The destroy() method
public void destroy()

The destroy() method is called when the application that uses the custom activity
is unloaded or removed. Typically, you use the destroy() method to clean up
resources that were used by the init() method.

Sample Java Class
The following code samples are from HelloWorldPerformer.java, the class that
implements the HelloWorld custom activity. HelloWorld is included in Process
Manager as a sample custom activity, so you can view the source code directly.

Implementing ISimpleWorkPerformer

Chapter 1 Writing Custom Activities 15

HelloWorld constructs a welcome message in either French or English. The
message value is derived from two things: the value of the customerName data
field in the process instance, and the Language property of the HelloWorld activity
instance. The HelloWorld activity puts the welcome message in the greeting data
field.

Creating HelloWorldPerformer.java
Using your favorite Java editor and compiler, create and compile a Java class that
implements the ISimpleWorkPerformer interface. When you use Process Builder
to add a custom activity, Process Manager automatically places the custom
activity’s class file in the server’s class path when the application is deployed.

Note. Don’t define any constructors in classes implementing
ISimpleWorkPerformer, because Process Manager does not use them. A Java
exception will be thrown. Defining a class without any constructors is the same as
defining one with just a default constructor.

Here are the steps for creating HelloWorldPerformer.java:

1. Define a package for your class:

package com.netscape.pm.sample;

2. Import the required standard Java packages:

3. Define the class HelloWorldPerformer to implement
com.netscape.pm.model.ISimpleWorkPerformer, as follows:

import java.lang.*;

import java.util.*;

Implementing ISimpleWorkPerformer

16 Process Manager Programming Guide • Version 6.0 Service Pack 2

4. Define two variables to hold the English and French parts of the greeting.
Define another variable to hold the complete greeting when it has been derived
(such as “Bonjour Nikki.”)

5. Define the init() method to get the value of the Language environment
variable and to set the language-specific part of the greeting. In addition, throw
an exception if the language is not provided, or if the language is neither
English nor French. For example:

public class HelloWorldPerformer

implements com.netscape.pm.model.ISimpleWorkPerformer

{

// Greeting Messages
public static final String GREETING_FRENCH = "Bonjour";
public static final String GREETING_ENGLISH = "Hello";

// Holds the greeting message once the language is specified
String mGreeting;

Implementing ISimpleWorkPerformer

Chapter 1 Writing Custom Activities 17

Later, you will set the exact value of the Language environment. You’ll do this
in Process Builder, when you set up the custom activity in a process definition.

/**
* The HelloWorld custom activity knows to generate both French
* and English greetings. The Language argument defines which
* language should be used.
*/

public void init(Hashtable env) throws Exception
{

String lang = (String) env.get("language");

if(lang == null)
{

throw new Exception("-- language not defined.") ;
}

else if (lang.equalsIgnoreCase("French"))
{

mGreeting = GREETING_FRENCH;
}

else if (lang.equalsIgnoreCase("English"))
{

mGreeting = GREETING_ENGLISH;
}

else
{

throw new Exception("-- Unknown language:"+ lang +
". We currently support English or French--") ;

}
}

Implementing ISimpleWorkPerformer

18 Process Manager Programming Guide • Version 6.0 Service Pack 2

6. Define the perform() method to construct a welcome message consisting of
the language-specific part of the greeting and the user’s name, for example
“Hello Billy.” The value of the userName parameter is derived later—from a
data field in a process instance that uses the custom activity.

Use the get() method on the input parameter to get the value of an input
parameter.

/**
* Reads the userName element of the input hashtable,
* generates greetings, and sets the Greeting element of out.
*/

public void perform(Hashtable input, Hashtable output)
throws Exception

{
// Read the userName attribute from the input hashtable
String userName = (String) input.get("userName");

if(userName == null)
{

throw new Exception("userName is not initialized!");
}

// Generate greetings
String msg = mGreeting + " " + userName;

/* Use the put() method on the output parameter to set
* the value of an output parameter.
*/
// Put the greeting into the welcomeMsg parameter of
// the output hashtable.
output.put("welcomeMessage" , msg);

}

Writing the XML Description File

Chapter 1 Writing Custom Activities 19

7. Finally, define the destroy() method, which is invoked when the application
is unloaded from the application server. In this case, the method does nothing
because no resource cleanup is needed.

8. Compile HelloWorldPerformer.java to get a class file,
HelloWorldPerformer.class.

Writing the XML Description File
After you write and compile the Java class that implements
ISimpleWorkPerformer, the next step is to define an XML description file for the
class. This XML file specifies the environment, input, and output parameters that
the class uses. In addition, the XML file specifies some optional design parameters.
Design parameters control the custom activity’s appearance in Process Builder.

This section describes the following topics:

• File Format

• Sample XML Description File

File Format
The XML description file starts with a tag indicating the XML version, such as:

<?XML version = "1.0" ?>

public void destroy()
{
}
// End of class
}

Writing the XML Description File

20 Process Manager Programming Guide • Version 6.0 Service Pack 2

The body of the description is contained between an opening <WORKPERFORMER>
tag and a closing </WORKPERFORMER> tag. Within the WORKPERFORMER section
you define four sections, as summarized in the following table.

Here is the structural overview of an XML description file:

XML Section What this section describes

ENVIRONMENT Environment hashtable used by init() method.

INPUT Input hashtable used by perform() method.

OUTPUT Output hashtable used by perform() method.

DESIGN Appearance of custom activity icons in Process
Builder.

<?XML version = "1.0" ?>
<WORKPERFORMER >
<ENVIRONMENT>

<PARAMETER> ... </PARAMETER> ...
</ENVIRONMENT>
<INPUT>

<PARAMETER> ... </PARAMETER> ...
</INPUT>
<OUTPUT>

<PARAMETER> ... </PARAMETER> ...
</OUTPUT>
<DESIGN>

<PARAMETER> ... </PARAMETER> ...
</DESIGN>
</WORKPERFORMER>

Writing the XML Description File

Chapter 1 Writing Custom Activities 21

WORKPERFORMER Tag
The <WORKPERFORMER> tag has four attributes: TYPE, NAME, CLASS_ID, and VERSION.

• TYPE is the full package name for the Java class for this type of activity. For a
simple custom activity, TYPE is always this:

com.netscape.pm.model.ISimpleWorkPerformer

• NAME is the name of the custom activity (which is the same as the name of the
XML description file and the jar file that contains the custom activity). This
name is not currently used anywhere.

• CLASS_ID is the full package name for the Java class that implements the
custom activity.

• VERSION is the version of the custom activity. VERSION is currently unused, but
you could use it to keep version information about the description file.

Here is a sample <WORKPERFORMER> tag:

ENVIRONMENT Section
The <ENVIRONMENT> tag defines environment parameters that are constant within
all instances of the custom activity. For example, suppose that in an application
named HelloWorld, you set the value of the Language environment parameter to
French. Then, the value is always French in every process instance of that
application.

<WORKPERFORMER
TYPE="com.netscape.pm.model.ISimpleWorkPerformer"
NAME="HelloWorld"
CLASS_ID="com.netscape.pm.sample.HelloWorldPerformer"
VERSION="1.1">

Writing the XML Description File

22 Process Manager Programming Guide • Version 6.0 Service Pack 2

The ENVIRONMENT section contains embedded <PARAMETER> tags. Each
<PARAMETER> tag describes a parameter in the environment hashtable—the
argument used by the init() method. The <ENVIRONMENT> tag has a
corresponding closing </ENVIRONMENT> tag , and each <PARAMETER> tag has a
closing </PARAMETER> tag.

When you add the custom activity to the process map in Process Builder, each
parameter in the <ENVIRONMENT> tag appears as a field in the Inspector Window.

Here’s a sample ENVIRONMENT section:

Warning. Parameter values (such as “French” in the example above) are actually
JavaScript expressions, so you can supply the value as a string, integer, or function.
However, be sure to quote any string expression. Note that French (without
quotes) and "French" (with quotes) mean different things.

For details on the syntax of the <PARAMETER> tag, see the section “PARAMETER
Tag”.

INPUT Section
The <INPUT> tag contains embedded <PARAMETER> tags. Each <PARAMETER> tag
specifies a JavaScript expression that returns a value for the input hashtable to be
used as the argument to perform(). The<INPUT> tag has a corresponding closing
</INPUT> tag , and each <PARAMETER> tag has a closing </PARAMETER> tag.

The <PARAMETER> can specify any JavaScript expression as the parameter.

To use the value of a data field in the process instance as an input parameter,
embed a call to getData() in the <PARAMETER> tag. For example, the following
code sets the value of the userName parameter in the input hashtable to the value of
the customerName data field in the process instance.

<ENVIRONMENT>
<PARAMETER NAME="Language">"French"</PARAMETER>

</ENVIRONMENT>

Writing the XML Description File

Chapter 1 Writing Custom Activities 23

For details on the syntax of the <PARAMETER> tag, see the section “PARAMETER
Tag”.

The corresponding code in your Java class file uses the perform() method to get
the value of the userName parameter. Within the perform() method, you call the
get() method. Here is a code fragment:

<INPUT>
<PARAMETER

NAME="userName"
DISPLAYNAME="User Name"
TYPE="java.lang.String"
DESCRIPTION="Last Name">

getData("customerName")
</PARAMETER>

</INPUT>

Writing the XML Description File

24 Process Manager Programming Guide • Version 6.0 Service Pack 2

OUTPUT Section
The <OUTPUT> tag contains embedded <PARAMETER> tags. Each <PARAMETER> tag
specifies a JavaScript statement that defines what to do with parameter in the
output hashtable, the output argument of the perform() method. The <OUTPUT>

tag has a corresponding closing </OUTPUT> tag, and each <PARAMETER> tag has a
closing </PARAMETER> tag.

Use the mapTo() JavaScript function to specify that the value of a parameter of the
output hashtable is to be automatically installed in a data field in the process
instance. For example, the following code specifies that when the perform()

method has finished executing, the value of the welcomeMsg parameter in the
output hashtable is automatically installed in the greeting data field in the process
instance.

public void perform(Hashtable input, Hashtable output)
throws Exception

{
// Read the userName attribute from the input hashtable
String userName = (String) input.get("userName");

if(userName == null)
{
 throw new Exception("userName is not initialized!");
}

// Generate greetings
String msg = mGreeting + " " + userName;

Writing the XML Description File

Chapter 1 Writing Custom Activities 25

For details on the syntax of the <PARAMETER> tag, see the section “PARAMETER
Tag”.

The corresponding code in your Java class file uses the perform() method to put a
value in the welcomeMsg parameter of the output hashtable. Within the perform()
method, call the put() method:

output.put("welcomeMessage" , msg);

PARAMETER Tag
The <PARAMETER> tag specifies a JavaScript statement or expression that defines a
parameter for the input hash table when used in the INPUT section.

The <PARAMETER> tag specifies a JavaScript statement that defines what to do with
a parameter in the output hash table when used in the OUTPUT section.

The <PARAMETER> tag has the attributes as summarized in the following table.
When you define parameters within the DESIGN section of the XML description
file, only the NAME and DESCRIPTION attributes apply. However, within the
ENVIRONMENT, INPUT, or OUTPUT sections, all of the attributes apply.

<OUTPUT>
<PARAMETER

NAME="welcomeMsg"
DISPLAYNAME="Welcome Message"
TYPE="java.lang.String"
DESCRIPTION="Greeting for the user">

mapTo("greeting")
</PARAMETER>

</OUTPUT>

Attribute Meaning

NAME Name of the parameter.

Writing the XML Description File

26 Process Manager Programming Guide • Version 6.0 Service Pack 2

DESIGN Section
The <DESIGN> tag contains embedded <PARAMETER> tags. The <DESIGN> tag has a
corresponding closing </DESIGN> tag, and each <PARAMETER> tag has a closing
</PARAMETER> tag.

Use the DESIGN section to define the custom activity’s user interface within
Process Builder. In the DESIGN section, the <PARAMETER> tag accepts two
attributes: NAME and DESCRIPTION.

By setting the NAME attribute, you define a particular aspect of the custom
activity’s user interface. The following table summarizes the available values for
the NAME attribute:

DESCRIPTION The text for the tool tip (also called bubble help) that
appears when you place the mouse over the item in
Process Builder.

TYPE The Java object class of the parameter. This attribute is
optional. The value can be given as a complete class
name, such as java.lang.String or
com.netscape.pm.ShoppingCart.

VALUESET A comma-delimited list of possible values for this
parameter. These values appear as a pop up menu in the
Inspector Window. This attribute is optional.

EDITOR The type of editor window to use. For example, use this
attribute to set a Browse button, text area, drop down
list, dialog box. This attribute is optional.

EDITABLE A boolean that determines whether the parameter value
can be edited in the Inspector Window. The default is
true. This attribute is optional.

NAME Attribute Meaning

Icon The image file to use for the icon in the custom palette.

Label A text label that appears under the icon.

BubbleHelp The text for the tool tip that appears when the mouse
pointer is over the icon.

HelpUrl The URL for the online help for this custom activity,
accessible from a right-click.

Attribute Meaning

Writing the XML Description File

Chapter 1 Writing Custom Activities 27

Sample XML Description File
The following code defines a file called HelloWorld.xml . Things to note are:

• This file specifies userName as a parameter in the input hash table. However,
the value of this parameter is obtained from the customerName data field in the
process instance.

• Similarly, the file specifies welcomeMsg as a parameter in the output hashtable,
and maps its value back into the greeting data field in the process instance.

Here is the entire code for the HelloWorld.xml description file:

MapIcon The image file to use for the icon in the process map. In
typical usage, this is the same as Icon.

SelectedMapIcon The image file to use for the icon in the process map,
when the activity is selected.

TreeViewIcon The file to use for a small image that represents the
activity in the Application Tree View.

<?XML version = "1.0" ?>
<WORKPERFORMER

TYPE="com.netscape.pm.model.ISimpleWorkPerformer"
NAME="HelloWorld"
CLASS_ID="com.netscape.pm.sample.HelloWorldPerformer"
VERSION="1.1">

<ENVIRONMENT>
<PARAMETER

NAME="Language"
VALUESET="'English','French'"
TYPE="java.lang.String">

'English'
</PARAMETER>

</ENVIRONMENT>

NAME Attribute Meaning

Writing the XML Description File

28 Process Manager Programming Guide • Version 6.0 Service Pack 2

<INPUT>
<PARAMETER

NAME="userName"
DISPLAYNAME="User Name"
TYPE="java.lang.String"
DESCRIPTION="Last Name">

getData("customerName")
</PARAMETER>

</INPUT>
<OUTPUT>

<PARAMETER
NAME="welcomeMsg"
DISPLAYNAME="Welcome Message"
TYPE="java.lang.String"
DESCRIPTION="Greeting for the user">

mapTo("greeting")
</PARAMETER>

</OUTPUT>

<DESIGN>
<PARAMETER

NAME="Icon"
DESCRIPTION="A 32x32 icon that is placed on the palette">
drap_uk2.gif

</PARAMETER>
<PARAMETER

NAME="Label"
DESCRIPTION="The DISPLAYNAME for this palette element.">

Hello World
</PARAMETER>

<PARAMETER
NAME="BubbleHelp"
DESCRIPTION="Bubble help for the palette element">

HelloWorld - A simple work performer Custom Activity.
</PARAMETER>

<PARAMETER
NAME="HelpURL"
DESCRIPTION="URL explaing this palette element">

http://people.netscape.com/michal/
</PARAMETER>

Packaging a Custom Activity

Chapter 1 Writing Custom Activities 29

Packaging a Custom Activity
After you create the Java class file and the XML description file, the next step is to
package the custom activity. A custom activity consists of the following files:

• One or more Java classes. At least one of these classes must implement
ISimpleWorkPerformer.

• An XML description file.

• Optional image files to use as icons in Process Builder.

Create a zip or jar archive that contains these files. The archive must have the same
root name as the XML file. For example, if the XML file is HelloWorld.xml, then
name the zip file HelloWorld.zip.

As you create the archive, check that the directory structure reflects the package
structure of the class. For example, the HelloWorldPerformer class is in the
package com.netscape.pm.sample. Therefore, the class file must be in the
directory com/netscape/pm/sample, as shown in . The HelloWorld.xml file must
be at the top level.

<PARAMETER
NAME="MapIcon"
DESCRIPTION="Icon for the process map (48x48)">

drap_uk2.gif
</PARAMETER>

<PARAMETER
NAME="SelectedMapIcon"
DESCRIPTION="Icon for the process map (48x48)">

drap_fr2.gif
</PARAMETER>

<PARAMETER
NAME="TreeViewIcon"
DESCRIPTION="Icon for the tree view (48x48)">

mailer_tree_view.gif
</PARAMETER>

</DESIGN>
</WORKPERFORMER>

Adding a Custom Activity to the Process Map

30 Process Manager Programming Guide • Version 6.0 Service Pack 2

Figure 1-1 Directory structure for the HelloWorld activity

Note the two image files, drap_fr2.gif and drap_uk2.gif. These images will be
used by Process Builder in the process map. The images will correspond to the
selected state of the Language property, either French or English.

Figure 1-2 Image files in the HelloWorld activity

Adding a Custom Activity to the Process Map
There are two ways to add a custom activity to the process map:

• In one case you create a custom palette. This approach is useful if you intend to
use a custom activity often, either within a single application or across several
applications.

Adding a Custom Activity to the Process Map

Chapter 1 Writing Custom Activities 31

• In the other case, you don’t create a custom palette, and you simply use the
Custom Activity icon provided with Process Builder. This approach might be
better if you rarely use custom activities, and you don’t want to create a custom
palette for them.

Adding a Custom Activity from a Custom Palette
To use a custom activity from a custom palette, do the following:

1. In the palette, right-click the area below the title bar, and choose “Add custom
palette,” as shown in . This adds a new tab to the palette.

Figure 1-3 Adding a custom palette

2. In the “New palette name” dialog box (shown in), type the label for the new
tab. For example, enter “HelloWorld”.

Figure 1-4 Enter a name for the new palette

Adding a Custom Activity to the Process Map

32 Process Manager Programming Guide • Version 6.0 Service Pack 2

A new tab is added to the palette.

3. Click your new custom tab to make it active. Note that the area contains no
icons.

4. Right-click in the empty area under the tabs, and select “Add Custom Activity”
See Figure 1-5.

Figure 1-5 Add a custom activity to the palette

A file selection window appears.

5. Using the file selection window, locate the archive file that represents the
custom activity, and select the file. For example, Figure 1-6 show the selection
of HelloWorld.zip:

Figure 1-6 Select the file that represents a custom activity

Adding a Custom Activity to the Process Map

Chapter 1 Writing Custom Activities 33

The custom activity is added to your new palette. For example, as shown in
Figure 1-7, the HelloWorld activity appears on the palette like this:

Figure 1-7 A custom activity icon appearing on the HelloWorld custom palette

Note that the custom activity’s appearance in Process Builder is controlled by
the DESIGN section of the XML file. In the HelloWorld tab pictured above, you
see the effects of setting the Icon, Label, and BubbleHelp parameters in the
DESIGN section.

6. To add the activity to your application, drag the icon from the custom palette
to the process map.

Adding a Custom Activity to the Process Map

34 Process Manager Programming Guide • Version 6.0 Service Pack 2

Adding a Custom Activity without Using a
Custom Palette
If you don’t have a custom palette icon or don’t want to create one, you can add a
custom activity as follows:

1. In the palette, drag the Custom Activity icon to the process map.

2. Select the custom activity and open the Inspector window.

3. On the Properties tab of the Inspector, locate the property named Custom
Activity.

4. Click the Browse button to bring up a file selection window, and locate the zip
or jar file that represents the custom activity. An example is shown in Figure
1-8.

Figure 1-8 Setting the Custom Activity property

5. Click Open to associate the selected file with the Custom Activity icon. The
Custom Activity icon now has the characteristics defined by the file.

Working with a Custom Activity

Chapter 1 Writing Custom Activities 35

Working with a Custom Activity
After you place a custom activity on the process map, you can view or set its
properties in the Inspector window. For example, Figure 1-9 shows the Inspector
window’s Input tab for HelloWorld.

Figure 1-9 Input properties for a custom activity

The Input tab shows the parameter names in the input hashtable, and shows how
the value for each parameter is derived. In this case, the value for the input
parameter userName is derived by getting the value of the customerName datafield.

The INPUT section of the XML description file determines the appearance of the
Input tab in the Inspector window. For example, note that the userName parameter
displays as "User Name," which was specified through the DISPLAYNAME
attribute in the XML file.

Similarly, the Output tab shows the parameter names in the output hashtable, and
shows how the value for each parameter is mapped back into the process instance.
In this case, the value for the output parameter welcomeMsg is put in the greeting

data field.

As you design the process, be sure to add the data fields that are used by the
custom activity. For example, the HelloWorld activity uses two Textfields:
greeting and customerName.

Implementation Tips
This section describes some design tips you should consider as you create and
implement a custom activity.

• Avoid Instance Data

Implementation Tips

36 Process Manager Programming Guide • Version 6.0 Service Pack 2

• Use Consistent Data Types

• Avoid Non-default Constructors

• When to Use a Custom Activity

Avoid Instance Data
A custom activity, like a custom data field, is a stateless entity. In effect, there is
only one copy of each occurrence of a custom activity per application. All the
process instances in an application effectively share the same custom activity
instance for each occurrence of the custom activity class in the application. Because
of this, it’s recommended that you avoid using instance data in a class that
implements a custom activity, particularly if the perform() method is likely to
change this data. If you can’t avoid using instance data, be sure to synchronize the
data. With unsynchronized data, a variable set during one request might not exist
for the next request.

For example, consider an application that employees use to request vacation days.
Let’s suppose this application has a custom activity that updates the corporate
database with the new vacation balance.

The following code, which uses an instance variable called vacationBalance,
shows how NOT to implement the custom activity:

Implementation Tips

Chapter 1 Writing Custom Activities 37

// This is the WRONG way to implement a custom activity!!

public class RequestVacationPerformer
implements com.netscape.pm.model.ISimpleWorkPerformer

{

int vacationBalance;

public void init (Hashtable environment) throws Exception
{

...
// Get the employee’s vacation balance from the database
// Store it temporarily as instance data
vacationBalance = getVacBalance(employeeID);
...

}

public void perform(Hashtable input, Hashtable output)
throws Exception

{
// Read the employee ID attribute from the input hashtable
String employeeUD = (String) input.get("employeeID");

// Get the num of requested vac days from the input hash table
String vacRequested = (String) input.get("vacDaysRequested");

// Update the vacationBalance instance variable
vacationBalance = vacationBalance - vacationRequested;

// Change the vacation balance in the database
updateVacationInfo(employeeID, vacationBalance)
....

Implementation Tips

38 Process Manager Programming Guide • Version 6.0 Service Pack 2

Fred is the first person to request a vacation using this Process Manager application
and he wants to go river rafting for 2 days. Fred’s init() method gets his vacation
balance, which is 3 days, (Fred has already been scuba diving in Hawaii this year)
and stores it in the vacationBalance instance variable. Fred’s perform() method
calculates his updated vacation balance, which is 1 day, and stores it in the
vacationBalance instance variable.

Now Bob comes online and requests a vacation of 8 days. Bob has been saving his
vacation days for a long time for his dream trip to climb Everest. However, since
the application has already been initialized, init() does not run again. Bob’s
perform() method ends up accessing the vacationBalance that was set by Fred’s
perform() method, thus Bob ends up having a vacation balance of only 1 day,
which is hardly enough time to fly to Nepal, let alone climb Everest and fly home
again.

It is OK to use instance variables for data that is constant across all occurrences of a
custom activity within an application. For example, the custom activity in the
vacation request application might use a global variable that represents the
number of company holidays per year. This number does not change from
employee to employee, so it is OK to store this as an instance variable.

Another example of a situation where it is OK to use instance variables is if the
custom activity needs the iAS engine context to call out to a connector such as an
SAP connector. In this case, you could set the context inside init() and then re-use
it inside perform(). The key thing to remember is that objects such as the context
are considered to be immutable and hence will only be used, not changed, inside
perform().

An application can contain multiple occurrences of a custom activity class. For
example, an application might have custom activities called
CheckVacationBalance and CheckVacationAccrual, which are both instances of
the CheckVacationInfo custom activity class. When the application is running,
these two activities operate completely independently. If the activities use instance
data, that data would not be shared between them. For example, if the activities use
an instance variable called DBTableName, the CheckVacationBalance instance
could set it to VacBalTable while the CheckVacationAccrual could set it to
VacAccTable, and there would be no confusion between the two.

Use Consistent Data Types
Watch for consistent data typing. Make sure that the data types you specify in the
XML file are consistent with the corresponding values you pass to the input and
output hashtables. Although Process Manager performs some basic data matching
for you, inconsistent data is likely to generate an error.

Implementation Tips

Chapter 1 Writing Custom Activities 39

Avoid Non-default Constructors
In classes that implement ISimpleWorkPerformer, avoid defining non-default
constructors (meaning constructors with non-zero arguments). Otherwise, you
may encounter problems during dynamic loading. The problem may arise because
Process Manager dynamically loads the class that implements your custom
activity. In other words, Process Manager has no prior awareness of non-default
constructors and therefore cannot call them.

Use One Implementation of a Java Class Per
Server
When an application is deployed, the Java classes it uses are deployed to the appropriate folder

in the class path on the engine. This class path is shared by all applications running on the

engine. Every application that uses a particular Java class uses the same implementation of that class.

For example, suppose application A and application B both use a Java class SharedClass1.

When application A is deployed, its version of SharedClass1 is deployed to the class path.

When application B is deployed, its version of SharedClass1 is deployed to the class path,

overwriting the implementation deployed previously by application A.

Thus if multiple applications running on a Process Manager engine use the same custom

activity, they should all use exactly the same implementation of the custom activity, since each

time the custom activity is deployed to the engine, it overwrites the previous implementation.

If you want multiple applications to use a custom activity that is basically the same but differs

slightly from application to application, make sure that the name of the activity Java class is

different in each application.

When to Use a Custom Activity
Custom activities are useful when you want to integrate an existing legacy process
into a Process Manager process through a well-defined interface. For example, use
a custom activity in a Process Manager process that exchanges data with external
resources such as a CORBA server, a CICS system, or the business logic in an EJB
component.

By contrast, custom activities are not a good solution if you must represent a
complex data structure from an external source. For example, to represent result
sets or other data types from Oracle databases or SAP R/3 systems, you are better
off using a custom field. Reserve custom activities for situations where data can be
easily parsed and stored (either directly in a data field or in the content store).

Example Custom Activity

40 Process Manager Programming Guide • Version 6.0 Service Pack 2

Example Custom Activity
The AdvancedOfficeSetup sample application that ships with the Process Builder
includes an example of a custom activity.

The AdvancedOfficeSetup application has a custom activity that automatically
schedules a new employee to attend a company orientation training.

The day of the training depends on which department the employee is joining and
what day they start work at the company. For more details, see Chapter 3,
“Advanced Office Setup Application."

41

Chapter 2

Writing Custom Data Fields

This chapter describes how to write custom fields for use in Process Manager 6.0.

This chapter includes the following sections:

• Introduction

• Defining Field Properties in a JSB File

• Writing the Java Classes

• Specifying Images for Use in Process Builder

• Packaging a Custom Field

• Adding a Custom Field to an Application

• Example Custom Data Field

• Development Hints and Tips

• Class Reference

❍ BasicCustomField

❍ IPMRequest

Introduction
A data field contains information relevant to a process instance, such as the maximum value of

the budget or the name of a document. Process Builder offers a set of predefined data field

classes, such as Radio Buttons and Textfield. The predefined data fields store a single

value per data field.

In situations where you need behavior that is not provided by any of the predefined data field

classes, you can define your own custom data field. Such situations include the need for:

Defining Field Properties in a JSB File

42 Process Manager Programming Guide • Version 6.0 Service Pack 2

• supporting data types that are more complex than the data types available with built-in

fields.

• representing multi-dimensional values, or other high-level data objects, in a process. For

example, custom fields can represent a “shopping cart,” an account, or a service order.

• accessing data objects that are stored in resources external to Process Manager, such as

PeopleSoft or CICS.

• displaying the data field differently in an entrypoint and a workitem

Process Manager allows you to define your own classes of data fields. Custom data fields are

sometimes known as entity fields.

Steps for Creating a Custom Field
The main steps for creating a custom field are as follows:

• Create a JavaScript bean (JSB) file to specify the field properties that will be visible in

Process Builder. For details, see “Defining Field Properties in a JSB File”.

• Write a Java class to determine the presentation and data management capabilities of the

custom field. At a minimum, you must implement two interfaces, IDataElement and

IPresentationElement. For details, see “Writing the Java Classes”.

• Optionally, create images to depict the data field in the Process Builder interface. For

details, see “Specifying Images for Use in Process Builder”.

• Package the JSB and Java classes into a zip or jar archive. For details, see “Packaging a

Custom Field”.

• In Process Builder, insert a data field and add the archive file as a new class. For details,

see “Adding a Custom Field to an Application”.

Defining Field Properties in a JSB File
You need to write a JSB file that defines which of the custom field’s properties can be set at

design time in Process Builder. In Process Builder, these properties are visible through the

field’s Inspector window. For each property shown in the Inspector window, a corresponding

property must be defined in the JSB file.

To create a JSB file for a new custom field class, you can copy an existing JSB file and modify it

to suit your needs. For example, you can copy the JSB files for Process Builder’s predefined

data fields, or you can copy a template JSB file. These files are located in the following path of

your Process Builder installation:

Defining Field Properties in a JSB File

Chapter 2 Writing Custom Data Fields 43

builder-root\com\netscape\workflow\fields

Warning: Do not modify the original JSB files for predefined data fields. If you do, the data

fields may no longer work.

The JSB file and the custom field class must have the same name. For example, a custom field

class named ShoppingCartField.class must have a JSB file named

ShoppingCartField.jsb.

A JSB file has the following general structure:

<JSB>
<JSB_DESCRIPTOR ...>
<JSB_PROPERTY ...>
<JSB_PROPERTY ...>
...

</JSB>

The file is surrounded by an opening <JSB> tag and a closing </JSB> tag. The other two tags

are described in the following sections:

• JSB_DESCRIPTOR Tag

• JSB_PROPERTY Tag

JSB_DESCRIPTOR Tag
The <JSB_DESCRIPTOR> tag specifies the name, display name, and a short description of the

data field class.

For example, ShoppingCartField.jsb uses the following <JSB_DESCRIPTOR>

tag:

<JSB_DESCRIPTOR

NAME="com.netscape.pm.sample.ShoppingCartField"

DISPLAYNAME="Shopping Cart Field"

SHORTDESCRIPTION="Shopping Cart Field">

The NAME attribute is the full path name for the data field class, using a dot (.) as the directory

separator.

The DISPLAYNAME attribute is the name that Process Builder uses for the field, such as the

field’s name in the Data Dictionary.

The SHORTDESCRIPTION attribute is a brief description of the field.

Defining Field Properties in a JSB File

44 Process Manager Programming Guide • Version 6.0 Service Pack 2

JSB_PROPERTY Tag
The JSB file contains a series of <JSB_PROPERTY> tags, one for each property that appears in

the Inspector window. The following code shows some example <JSB_PROPERTY> tags. In

this case, the Inspector window shows properties for dsidentifier, dbuser,

dbpassword, dbuser and dbtablename as shown in .

<JSB_PROPERTY NAME="dsidentifier"
TYPE="string"
DISPLAYNAME="Data Source Identifier"
SHORTDESCRIPTION="DS Identifier">

<JSB_PROPERTY NAME="dbname"
TYPE="string"
DISPLAYNAME="Database Name"
SHORTDESCRIPTION="DB Type">

<JSB_PROPERTY NAME="dbpassword"
TYPE="string"
DISPLAYNAME="Database Password"
SHORTDESCRIPTION="DB Password">

<JSB_PROPERTY NAME="dbuser"
TYPE="string"
DISPLAYNAME="Database User"
SHORTDESCRIPTION="DB User">

<JSB_PROPERTY NAME="dbtablename"
TYPE="string"
DISPLAYNAME="DB table name"
SHORTDESCRIPTION="DB User">

Defining Field Properties in a JSB File

Chapter 2 Writing Custom Data Fields 45

Figure 2-1 Inspector Window shows properties defined in the JSB file

The JSB_PROPERTY attributes and required property names are described in the next two

sections.

JSB_PROPERTY Attributes
The attributes for the JSB_PROPERTY tag are shown in Table 2-1:

Table 2-1 Attributes for the JSB_PROPERTY Tag

Attribute Name Purpose

NAME The name of the property.

DISPLAYNAME The display name for this property, as it appears in the
Inspector window.

SHORTDESCRIPTION A short description of the property.

DEFAULTVALUE The default value of the property. This attribute is
optional.

VALUESET A comma-delimited list of the possible values for this
property. These values appear as a pop up menu on the
property in the Inspector window. This attribute is
optional.

TYPE The type of the data field column in the application table
in the database.

ISDESIGNTIMEREADONLY When specified, this attribute indicates that the property
cannot be changed in Process Builder. This attribute is
optional. By default, a property value can be changed
any time.

This attribute does not have an attribute=value
specification. You simply give the value, for example:

<JSB_PROPERTY NAME="myname"
ISDESIGNTIMEREADONLY>

Defining Field Properties in a JSB File

46 Process Manager Programming Guide • Version 6.0 Service Pack 2

Required Data Field Properties
Each data field must have the properties listed in Table 2-2:

ISEXPERT When specified, this attribute indicates that the property
can be changed in Process Builder while the application
is in design mode. This attribute is optional. By default,
a property value can be changed any time.

This attribute does not have an attribute=value
specification. You simply give the value, for example:

<JSB_PROPERTY NAME="myname" ISEXPERT>

Table 2-2 Standard Data Field Properties

Property Name Default Display
Name

Purpose

cn Name of this
field

The common name of the data field instance.
(Note this is not the name of the data field class.)
The name is set when you create the data field in
Process Builder.

description Short
Description

A description of the data field.

prettyname Display Name The field’s display name which is the name that
Process Builder uses for the field.

help Help Message A help message for the field.

fieldclassid Field Class ID This is the package name of the data field class.
This is used to ensure that each data field type is
unique. This value uses the same convention as
the Java naming convention for packages. For
example, if ShoppingCartField is stored in
\com\netscape\pm\sample, then its
fieldclassid is:
com.netscape.pm.sample.ShoppingCart
Field

Table 2-1 Attributes for the JSB_PROPERTY Tag

Attribute Name Purpose

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 47

In addition to these required properties, each data field can have properties that are specific to

itself. For example, a Textfield has properties for size and length; a radio button data field has a

property for options; and so on.

When you define the properties for a custom field, consider the purpose of the field. For

example, if the custom field must access an external database, you may want to define

connection properties. These properties might include the database type (ORACLE,

SYBASE), a username and password, or a connection string.

Not all properties you define in a JSB file will necessarily be used. It depends on how your Java

class interprets these properties. For example, the JSB file could contain a color property that

is totally ignored in the Java class. In this case, no matter what color the designer specifies for

the field, it has no effect.

Writing the Java Classes
To write your Java classes, you must know something about the data these classes will work

with. Consider the following questions:

• What data types do you want the custom field to accept? For example, in what format will

the data be? This could well depend on where the data is coming from.

• What data sources will the custom field be required to access? For example, will the

custom field access a PeopleSoft application? an SAP R/3 application? a relational

database?

Custom data fields are stateless, that is, you cannot use them to store information about a

process instance from one workitem to another. Think of your custom data field as being a

data manager. When a process instance arrives at a work item, the data field gets its data from

an external data store. The data can be any Java object. When the process instance leaves the

work item, the data field saves its data to an external store. The important idea is that the

custom fields specify only the logic to manage the data, not the data itself.

fieldtype Data Type The datatype that the field uses when it is stored
in the Process Manager database. The value
must be ENTITY.

Table 2-2 Standard Data Field Properties

Property Name Default Display
Name

Purpose

Writing the Java Classes

48 Process Manager Programming Guide • Version 6.0 Service Pack 2

Define a Subclass of BasicCustomField
To implement a new data field class, create a Java subclass of BasicCustomField. This class

provides methods that enable Process Manager to treat your custom field just like any other

data field.

The BasicCustomField class implements the IPresentationElement and IDataElement

interfaces. The IPresentationElement interface specifies the presentation methods for the data

field, which are display() and update(). The IDataElement interface specifies the

methods for managing the loading and storing of data, which are create(), load(),

store() and archive(). Your new subclass needs to provide definitions for each of the

methods in these interfaces.

Note: You can find all the necessary classes in the pm60classes.jar file. If you
have installed the Process Manager Builder, you can find this jar file in the
directory builder-root\support\sdk. You may also be able to find it on the CD.

Before looking at the methods in detail, here is a discussion of how and when the methods are

called.

When a form is displayed in an entrypoint or a workitem the following happens:

• The display() method displays the data field.

If the form is displayed in an entrypoint, the process instance does not yet exist, therefore

display() cannot access information about it. When the form is displayed in a

workitem, the process instance exists, therefore the display() method can access

information on it, such as the value of other data fields.

• If the display() method of a work item calls getData() to get the value of the data

field, the load() method is invoked.

When an entrypoint or workitem form is submitted, the following happens:

• If the process instance is at an entrypoint, the system automatically calls create() on every

data field, regardless of whether the field appears on the entry point form. The create()

method initializes the value of the data field.

If the process instance is at a workitem, the process instance already exists, so the

create() method is not called.

• If the form displayed the field is displayed in EDIT mode, the field’s update() method

is called to update the data field on the process instance. The update() method typically

calls setData() to put the changed data into the data field.

• If the field’s data was modified by a call to setData() (which might happen in the

load(), create() or update() methods) the system calls the store() method to

store the data.

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 49

A JavaScript script (for example, an automation script, assignment script or completion script)

can use the JavaScript functions getData() and setData() to get and set the data objects

of a custom field. In this case, the invocation order is as follows:

• When getData() is called, the load() method is invoked to fetch the data unless it has

already been loaded for the current activity.

• The load() method typically uses setData()to load the fetched data in to the data

field.

• Whenever setData() is performed, the store() method is invoked when the process

instance is ready to store itself. As a result, the store() method may be called even if the

field’s data has not changed.

The next sections discuss in detail the methods that your new data field class must implement.

The Methods in Detail
Define the following methods on your subclass of BasicCustomField:

• loadDataElementProperties()

Processes the properties for the data field that were set in the Builder.

• display()

Determines how the data field is displayed in an entrypoint or work item form.

• update()

Processes form element values when an entrypoint or workitem form is submitted.

• create ()

Initializes the data field’s value when the process instance is created.

• load ()

Loads the value of the data field when an attempt is made to retrieve the value of a data

field for which no value has been set yet in the current workitem.

• store()

Stores the data field value externally.

• archive()

Archives the data field value.

Writing the Java Classes

50 Process Manager Programming Guide • Version 6.0 Service Pack 2

loadDataElementProperties()
Define this method to process the properties that were set in the Builder during development

of the process definition. The syntax is:

protected void loadDataElementProperties(Hashtable entry)

throws Exception

This method is passed a hashtable of all the properties that can be set in the Builder (which

correspond to the properties that are defined in the JSB file). Call the get() method on the

hashtable to get the values of specific properties.

Typically, the loadDataElementProperties() method sets default values that are needed

by the data field. For example, if the data field displays a table,

loadDataElementProperties() might read the background color of the table from the

properties hash table. If the data field uses an external database, the method might read the

database table name from the properties hash table.

For example, suppose your JSB file contains properties for dbTableName and bgColor, as

follows:

The dbTableName value is used to access a database, and the tableBackground color is

used in an HTML TABLE tag when the data field is displayed.

<JSB_PROPERTY
NAME="dbTableName"
TYPE="string"
DISPLAYNAME="Database Table Name"
SHORTDESCRIPTION="DB table where this df stores its data"
ISEXPERT>

<JSB_PROPERTY NAME="bgColor"
TYPE="string"
DISPLAYNAME="Table Background Color"
DEFAULTVALUE="white"
SHORTDESCRIPTION="Table Background Color">

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 51

Given the previous JSB code, the following Java code implements the

loadDataElementProperties() method. This method reads the dbTableName property

and sets a variable accordingly. If no value was specified in the Builder for this property, the

method throws an exception. The loadDataElementProperties() method also gets the

value for bgColor that was specified in the Builder. If the bgColor was not specified in the

Builder, the method sets a default value for the corresponding variable.

LoadDataElementProperties() Exception Handling
If the custom method throws an exception, deployment fails with an exception because the

engine fails to initialize the field.

public class myCustomField
extends BasicCustomField

{
// Database table name
String MY_DB_TABLE;
// background color for table displaying this data field
String bgColor;

public myCustomField()
{

super();
}

/** Get the values that were set in the Builder */
protected void loadDataElementProperties(Hashtable entry)

throws Exception
{

String tableBackground = (String) entry.get("bgColor");
if(tableBackground == null)

tableBackground = "white");

// Get the database table name
MY_DB_TABLE = (String) entry.get("dbTableName");
if(MY_DB_TABLE == null)

throw new Exception("DB Table not specified");
}

Writing the Java Classes

52 Process Manager Programming Guide • Version 6.0 Service Pack 2

display()
The display() method determines how the data field displays itself in an HTML form in an

entrypoint or a work item.

This method is invoked when the process instance reaches an activity that displays an HTML

form, it is not invoked when the process instance reaches an automated or custom activity.

This method has two definitions -- one for an entrypoint and one for a workitem. When the

user views an entrypoint form, the process instance does not exist yet, thus the display()

method cannot access information on the process instance. When the user views a workitem

form, the process instance does exist, therefore the display() method can access

information about the process instance.

The syntax for an entrypoint is:

public void display(

IHTMLPage html,

int displayMode,

String displayFormat) throws Exception

The syntax for a workitem is:

public void display(

To get a handle to a specific application, mount the
application bean. For example: pi,

IHTMLPage html,

int displayMode,

String displayFormat) throws Exception

Define the display() method to write the HTML code for displaying the data field. For

example, if the field is to be displayed as a table, define the display() method to write the

<TABLE> and </TABLE> tags, as well as the tags for the table rows and table cells. Call the

write() method on the IHTMLPage input parameter to write to the HTML page.

Attributes that affect the appearance of the data field (such as the background color of a table)

can be defined in the JSB file and set by the process designer in the Builder. The

loadDataElementProperties() method can retrieve them and set them as values of

instance variables to make them available to the display() method.

The display() method should consider whether the data field is in view, edit, or hidden

mode, and display the data field accordingly. For view mode, it should display the value in such

a way that the user cannot change it. For edit mode, it should display the value in some kind of

form element, such as a text field or check box, so that the user can edit the value. There is no

need to write the <FORM> and </FORM> tags -- these are written automatically.

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 53

The display() method should write a form element for every value that is associated with

the data field, even if the user is not allowed to change the value. You can use hidden form

elements to transmit data values that the user does not need to see or is not allowed to edit.

The workitem version of display() can retrieve the value of a data field by calling the

getData() method on the process instance. This method gets the value out of the process

instance if it has already been set for the current workitem, or loads it from external storage by

calling the load() method if it has not already been set.

As far as the display() method is concerned, however, all it needs to do to get the value is to

call getData() on the process instance, specifying the name of this data field. To get the

name of this data field, use the getName() method as follows:

myDataObject myObject = (myDataObject) pi.getData(getName());

When a process instance is loaded into a work item, the value of a data field can be any kind of

object. The display() method might, for example, get the values of several instance

variables on an object and display each one in a separate text field.

display() Upon Entry Exception Handling
If the custom method throws an exception, the exception text is displayed but there is no way

to access the process instance because it hasn’t been created yet. The process instance is

created after a successful entry node is performed.

display() Upon Non-entry Exception Handling
If the custom method throws an exception, the exception text is displayed but the process

instance is not affected. The form displays nothing where it should display the field data.

Example display() method
This example discusses a data field that manages information about employees, such as their

name, phone number and email address. Each employee is uniquely identified by their

employee ID.

The data field presents itself as a table, as illustrated in Figure 2-3. Some of the table attributes,

such as background color, can be specified in the Builder. When the data field is displayed in an

entrypoint form, it does not know which employee it is associated with. The intent is that the

employee would enter their employee ID number in the entrypoint. Given the employee ID

number, the data field can retrieve information about the employee from the employee

database. When the data field is displayed in a subsequent workitem, it has access to

information about the employee, such as their name and phone number.

The code for the entrypoint version is shown here. At an entrypoint, the only thing that the

user can enter is their employee ID number. This number is needed to uniquely identify the

employee in the database. shows the data field in edit and modes in an entry point form.

Figure 2-2 Example data field in an entrypoint

Writing the Java Classes

54 Process Manager Programming Guide • Version 6.0 Service Pack 2

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 55

public void display(IHTMLPage htmlpage, int displayMode,
String displayFormat) throws Exception

{
// Create a string buffer to hold the HTML code
StringBuffer buffer = new StringBuffer();

// Write the code to display the data field data in a table
switch(displayMode)
{
case MODE_EDIT:

// Write HTML text to display the field in edit mode
buffer.append("<TABLE BORDER=1 BGCOLOR=" + bgColor + ">";
buffer.append("<TR><TD>Enter your employee ID:</TD>");
buffer.append("<TD><INPUT TYPE=TEXT NAME=idEntrypointFE"

+ " VALUE=your_employee_ID> </TD</TR></TABLE>");
break;

case MODE_VIEW:
// In an entrypoint, this data field should not
// be shown in view mode
buffer.append("<P>Employee id not known.</P>");
break;

case MODE_HIDDEN:
default:

// Do nothing
 }

// Write the contents to the HTML page
htmlpage.write(buffer.toString());
// end class
}

Writing the Java Classes

56 Process Manager Programming Guide • Version 6.0 Service Pack 2

When the data field appears in a work item form, it shows the ID number, name, phone

number and email address for the employee. The user is not allowed to change the value of the

ID once the process instance has progressed beyond the entrypoint, but they are allowed to

change their name and phone number when the data field is in edit mode. Figure 2-3 shows the

data field in edit mode in a work item.

Figure 2-3 Example data field in a workitem

The code for the work item version of display() is shown here:

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 57

public void display(IProcessInstance pi, IHTMLPage htmlpage,
int displayMode, String displayFormat) throws Exception

{
StringBuffer buffer = new StringBuffer();

// Get the value of this data field as an object.
// Use getName() to get the name of this data field
myDataObject myObject =(myDataObject) pi.getData(getName());

// Get the employee id, name, phone number and email
String employeeED = myObject.employeeID;
String name = myObject.employeeName;
String phone = myObject.phone;
String email = myObject.email;

// Write the code to display the values of
// the data field in a table
switch(displayMode)
{

case MODE_EDIT:
// Write HTML text to display the field in edit mode
// Display a table that contains editable text fields
buffer.append("<TABLE BORDER=1 BGCOLOR=" + bgColor + ">");

// Display the employee ID as plain text
// so it is not editable
buffer.append("<TR><TD>Your employee ID:</TD>");
buffer.append("<TD>'" + employeeID + "'> </TD</TR>");

// Add a hidden element to represent the employee id
// so that update() can access the employee id number
buffer.append("<INPUT TYPE=HIDDEN NAME=idFE VALUE='" +

+ employeeID + "'>");

Writing the Java Classes

58 Process Manager Programming Guide • Version 6.0 Service Pack 2

For more information about display(), see the discussion of display() in the Class

Reference.

// Display the name, phone, and email as text fields
buffer.append("<TR><TD>Your name:</TD>");
buffer.append("<TD><INPUT TYPE=TEXT NAME=nameFE" +

" VALUE='" + name + "'> </TD</TR>");

buffer.append("<TR><TD>Your phone:</TD>");
buffer.append("<TD><INPUT TYPE=TEXT NAME=phoneFE" +

" VALUE='" + phone + "'> </TD</TR>");

buffer.append("<TR><TD>Your email:</TD>");
buffer.append("<TD><INPUT TYPE=TEXT NAME=emailFE" +

" VALUE='" + email + "'> </TD</TR></TABLE>");
break;

case MODE_VIEW:
// Write HTML text to display the field in
// a table in view mode
buffer.append("<TABLE BORDER=1 BGCOLOR=" + bgColor + ">");
buffer.append("<TR><TD>Your employee ID:</TD>");
buffer.append("<TD>" + employeeID + "</TD</TR>");

buffer.append("<TR><TD>Your name:</TD>");
buffer.append("<TD>" + name + "</TD</TR>");

buffer.append("<TR><TD>Your phone:</TD>");
buffer.append("<TD>" + phone + "</TD</TR>");

buffer.append("<TR><TD>Your email:</TD>");
buffer.append("<TD>" + email + "</TD</TR></TABLE>");
break;

case MODE_HIDDEN:
default:

// Do nothing
}
// Write the contents to the HTML page
htmlpage.write(buffer.toString());

}

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 59

update()
This method updates the value of the data field on the process instance when a form is

submitted in an entrypoint or workitem. This method is not invoked when the process instance

finishes an automated or custom activity.

The syntax is:

public void update(

To get a handle to a specific application, mount the application
bean. For example: pi,

IPMRequest rq) throws Exception

Despite its name, the update() method is not the place where you update external databases

when the value associated with the data field has changed. The update() method does not

store values for persistence from one workitem to another, it just updates the process instance

for the current work item only. The store() method stores the data field value in an external

data store to make it persistent between workitems. You can define store() to store the data

in whatever way you wish, for example in a database table of your choosing.

Typically, the update() method translates the name/value parameters sent by the form

submission into an appropriate kind of data object for the field. If you do not define

update(), all changes relevant to this data field that the user makes in the form are discarded

when the form is submitted.

When a form is submitted, the value and name of every form element (such as text field or

checkbox) on the form is packaged into a query string. One of the arguments to update() is

an IPMRequest object that has a method for extracting individual values from the submitted

parameter string. You can use the getParameter() method to get the value of a named

parameter. You can use the isParameterDefined() method to test for the existence of a

parameter before attempting to get its value.

When defining update(), you do not need to worry about whether the data field was in edit,

view or hidden mode. The update() method is only called if the field was displayed in edit

mode.

The update() method needs to know the names of the form elements that the display()

method writes to the HTML page. For example, if display() displays a textfield called

idFE, update() can access the value of that form element as follows:

String employeeID = rq.getParameter("idFE");

Conversely, if update() needs to receive a value from the form, it is the responsibility of the

display() method to write an appropriately named form element to the page, even if the

user is not allowed to change the value. You can use hidden form elements to transmit data

values that the user does not need to see or is not allowed to edit.

WARNING -- Do not use variables on the data field itself to hold values that are specific to a

process instance, since all process instances effectively share a single instance of the data field.

Writing the Java Classes

60 Process Manager Programming Guide • Version 6.0 Service Pack 2

In the following example, four form elements are used to represent the data field when it is in

edit mode. These form elements are idFE, nameFE, phoneFE, and emailFE, which are form

elements whose values specify employee ID number, employee name, phone, and email

respectively.

This update() method creates a new instance of myDataObject. It extracts the values of the

idFE, nameFE, phoneFE and emailFE form elements, and puts the values into

corresponding variables on the object. Finally it calls setData() to put the object as the value

of the data field on the process instance.

update() Exception Handling
If the custom method throws an exception, the exception is displayed on the Express interface

and the process instance or work item remains intact.

public void update(IProcessInstance pi, IPMRequest rq)
throws Exception

{
// Create an instance of myDataObject and set its
// employeeID, employeeName, phone and email variables.
myDataObject myObject = new myDataObject();

if (rq.isParameterDefined("idFE"))
myObject.employeeID = rq.getParameter("idFE");

if (rq.isParameterDefined("nameFE"))
myObject.employeeName = rq.getParameter("nameFE");

if (rq.isParameterDefined("phoneFE"))
myObject.phone = rq.getParameter("phoneFE");

if (rq.isParameterDefined("emailFE"))
myObject.email = rq.getParameter("emailFE");

// Put myObject into the data field on the process instance
pi.setData(getName(), myObject);

}

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 61

create ()
This method sets the default value for a data field when the process instance is created. The

syntax is:

public void create (To get a handle to a specific application, mount
the application bean. For example: pi) throws Exception

The purpose of create() is to set a default value for a data field when the process instance is

initialized in case the data field’s value is not set in an entrypoint form. If the user sets the value

of the data field in an entrypoint form, the user-specified value overrides the value set by the

create() method (assuming that update() handles the user-specified value appropriately).

When a process instance is initialized, the create() method is called on all data fields,

regardless of whether they appear in the entry point form or not.

The create() method puts values into the process instance which is created when the

entrypoint completes. The store() method takes the values out of the process instance and

stores them externally to make them persistent until the process instance reaches the next work

item.

Typically, you would define the create() method to create a default value and put it in the

process instance through a call to setData(). However, not all custom fields require these

actions. This decision is up to the process designer. If a default value does not need to be set, it

is recommended that you define create() to do nothing:

public void create(To get a handle to a specific application, mount
the application bean. For example: pi)

throws Exception
{
}

Default values can be defined in the JSB file and set by the process designer in the Builder. The

loadDataElementProperties() method can retrieve them and set them as values of

instance variables to make them available to the create() method.

The following code shows a generic example of create():

Writing the Java Classes

62 Process Manager Programming Guide • Version 6.0 Service Pack 2

create() Exception Handling
If the custom method throws an exception, the process instance doesn’t get created.

load ()
This method loads the value of the data field when the process instance is at a work item.

public void load(To get a handle to a specific application, mount
the application bean. For example: pi) throws Exception

This method is invoked when the getData() method of the process instance attempts to get

the value of the data field but the value has not yet been set at the current work item. If the

value has been set already at the current work item, then getData() returns the value -- it

does not call load() again. Each time the process instance moves to a new work item, the

first call to getData() at the new work item causes the value to be loaded again by a call to

load().

Note that built-in fields are loaded whenever the process instance is loaded, but custom fields

are loaded only when their data value is explicitly asked for. This behavior is called lazy loading.

Define the load() method to retrieve the data field’s value from wherever it is stored by the

store() method. It might, for example, retrieve a set of values from a database (maybe

address, phone number and employee id) and create an object that stores those values as

instance variables.

/** Initialize the data field with the default value */
public void create(IProcessInstance pi)

throws Exception
{

// Assign a default value for this field.
customObject object1 = new customObject();
object1.value1 = default_value1";
object1.value2 = default_value2;
pi.setData(getName(),object1);

)

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 63

If the data is loaded from an external database, you might need a key to access the database

tables. The store() method should set this key if necessary when the entry point or work

item is completed.

If a key is needed (and has been set by the store() method), the load() method can retrieve

it by calling getEntityKey() on the process instance, specifying the data field name. This

method returns a String:

String myKey = pi.getEntityKey(getName());
// now that you know the key, you can access the database

To load the value into the data field, define the load() method to call setData() on the

process instance, specifying the name of the data field and the value for it.Use getName() to

get the name of this data field:

pi.setData(getName(), value);

NOTE: do not call getData() on this data field from within load() or you will end up in

an infinite loop, since getData() invokes load().

The following example shows the basic structure for defining load(). The real work of

extracting the values from the database is carried out in this case by the user-defined function

retrieveMyData().

public void load(IProcessInstance pi) throws Exception
{

// Load the data from wherever it is stored
// and put it in the PI
// Get the entity key
String thisID = (String) pi.getEntityKey(getName());

// retrieveMyData() is a user-defined function (not a system
// one) that interrogates an external database to get the data
myDataObject myObject =(myDataObject) retrieveMyData(thisID);

 // Put the value in the data field
pi.setData(getName(), myObject);

}

Writing the Java Classes

64 Process Manager Programming Guide • Version 6.0 Service Pack 2

The following is a simple example of a function that extracts data from a database and returns

an object that encapsulates that data. In this case, retrieveMyData() gets the name, phone

number and email for an employee, given the key which is the employee’s ID number.

This example assumes that MY_DB_TABLE has been defined as the database table name and

that myDataSource has been bound to a data source for a database.

myDataObject retrieveMyData(String employeeID)throws Exception
{

myDataObject myDataObject = new myDataObject();

// Database-related variables
Connection c = null;
PreparedStatement myStatement = null;
ResultSet myResultSet = null;

// String MY_DB_TABLE; -- already defined
// DataSource myDataSource; -- already defined

try {
// Connect to the database.
// Database parameters are specified by myDataSource
c = myDataSource.getConnection();

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 65

For more information about load(), see the discussion of load() in the Class Reference.

load() Exception Handling
If the custom method throws an exception, the field data being stored is null. As a result, the

pi.getData() returns a null and the process instance or work item are preserved.

store()
This method stores the data associated with the custom field to make it persistent from one

workitem to another.

public void store (To get a handle to a specific application, mount
the application bean. For example: pi) throws Exception

// Create a query string to get the name, phone and email from
// the MY_DB_TABLE database table
// (for example EMPLOYEE_TABLE)
String MY_QUERY_DATA = "SELECT name, phone, email " +

" FROM MY_DB_TABLE WHERE employee_id = " + employeeID;

// Prepare and execute the query statement
myStatement = c.prepareStatement(MY_QUERY_DATA);
myResultSet = myStatement.executeQuery();

// Process the results
while(myResultSet.next())
{

String name = myResultSet.getString("name");
String phone = myResultSet.getString("phone");
String email = myResultSet.getString("email");
myDataObject.employeeName = name;
myDataObject.phone = phone;
myDataObject.email = email;

}
}
catch(Exception e) {
throw new Exception("Cannot load " + getName() +

" because: " + e);
}
return myDataObject;

}

Writing the Java Classes

66 Process Manager Programming Guide • Version 6.0 Service Pack 2

This method stores the data associated with the custom field to make it persistent from one

workitem to another. This method is automatically invoked during completion of an activity if

setData()was previously called. Typically, the setData() method is called during

completion of an entrypoint or workitem in which the data field appeared in the form, but it

can also be called in other situations such as by a completion script, an automated activity or a

custom activity.

The setData() method is typically called in the following cases:

• by create() to initialize the value of the data field when the process instance is created

• by load() to load the value into the data field for a workitem. Often the value is loaded

and displayed in a form in a workitem. In such cases, store()is called when the work

item completes even if the value did not change.

• by update() to update the process instance when the user enters relevant data in a form

in an entrypoint or workitem

It’s up to the designer of the custom field to decide where and how to externally store the data.

Note that data from a custom field cannot be stored in the application-specific table where

built-in data fields are stored. That is, you cannot define store() to just “do the default

thing” and save the value in the default way as done by the builtin data fields.

Do not define store() to save state by storing values in instance variables. The reason for

this restriction is that for each instance of a data field in a process definition, Process Manager

creates one instance of that class when the application is deployed. This instance is shared by all

the process instances that use that process definition. For example, suppose you create and

deploy a process definition whose data dictionary contains one instance of a custom data field,

called employeeInfo. Three employees, Ann, Ben, and Carol, start processes instances. You

might think that Ann, Ben and Carol’s process instances would each create their own instance

of employeeInfo, but you would be wrong. There is only a single instance of

employeeInfo that is shared by all three process instances.

If the data field stores its data in an external database, it may need to use a key to identify the

relevant data in the database. If applicable, defined the store() method to store a key to the

database by calling setEntityKey() on the process instance. The setEntityKey()

method stores the key with the process instance. Later, when the load() method needs to

load the data, it can get the key to identify the data it is looking for by calling

getEntityKey().

Currently, Process Manager does not support global transactions. If the custom field stores its

data in an external datasource that is both XA-compliant and managed by a resource manager,

the custom field could participate in a global transaction. However, transactions initiated by

Process Manager are not made through an XA resource manager, so they cannot be a part of

the larger transaction.

The following example shows the basic structure for the store() method. In this example,

the real work of storing the data gets done in the user-defined function storeMyData().

Writing the Java Classes

Chapter 2 Writing Custom Data Fields 67

The following is a simple example of a user-defined method that serializes a data field value to

an external database. In this case, the name, phone and email values are stored in

corresponding columns in a database table. The key is the employeeID.

This example assumes that MY_DB_TABLE has been defined as the database table name and

that myDataSource has been bound to a data source for a database.

public void store(IProcessInstance pi)throws Exception
{

myDataObject myObject =(myDataObject) pi.getData(getName());
String myKey = myObject.employeeID;

// Set the key so we can get it back when needed
pi.setEntityKey(getName(), myKey);

// Store the data. storeMyData is a user-defined function
// not a system one
storeMyData(myKey, myObject);

}

Writing the Java Classes

68 Process Manager Programming Guide • Version 6.0 Service Pack 2

protected void storeMyData(String myKey, myDataObject myObject)
throws Exception

{
Connection c = null;
PreparedStatement myStatement = null;

// String MY_DB_TABLE; -- previously defined
// DataSource myDataSource; -- previously defined

try {
// Create the SQL statement for updating the database
String SQL_UPDATE_DATA = "UPDATE " +

MY_DB_TABLE +
" SET name = ? , phone = ?, email = ?" +
" WHERE id = myKey";

// Connect to the database.
// Database parameters are specified by myDataSource
c = myDataSource.getConnection();

// Prepare and execute the SQL statement
myStatement = c.prepareStatement(SQL_UPDATE_DATA);
// do any other necessary preparation work
...

// Update the database
try {

myStatement.executeUpdate();
}

catch(Exception e){
throw new Exception("Cannot save data for data field: "

+ getName() + " because: " + e);
};
c.commit();
}

Specifying Images for Use in Process Builder

Chapter 2 Writing Custom Data Fields 69

For more information about the store() method, see the discussion of store() in the Class

Reference.

store() Exception Handling
If the custom method throws an exception then, when the engine is storing the process

instance and the related PA data to the database, the work item gets saved (in an exception

state) to be retrived by the user (in the case of a user activity), or the timer thread (in the case of

an automated activity).

archive()
When an archive operation is initiated from the administration pages, the archive() method

for each data element associated with the process instance writes its data value to an output

stream. The syntax for archive() is:

public void archive(
To get a handle to a specific application, mount the application

bean. For example: pi,
OutputStream os) throws Exception

Built-in data elements archive themselves simply by writing their values out as bytes. By

contrast, you can determine how custom fields write their data to an output stream. For

example, you can stream bytes or encapsulate the values in XML.

For more information, see the discussion of archive() in the Class Reference.

Specifying Images for Use in Process Builder
You can optionally create images to represent data fields in the Process Builder. Name the

image that represents the data field in edit mode as dataFieldName-EDIT.gif, and name the

image that represents the data field in view mode as dataFieldName-VIEW.gif.

For example, for the myNewCustomField data field, the edit mode image is

myNewCustomField-EDIT.gif, and the view mode image is

myNewCustomField-VIEW.gif.

Packaging a Custom Field
After you have compiled your custom field Java classes, defined the JSB file and optionally

created images to represent the data field in the builder, the next step is to package these files

into a zip or jar archive. Include any additional classes that your custom field uses in the

archive.

Packaging a Custom Field

70 Process Manager Programming Guide • Version 6.0 Service Pack 2

 shows an example archive file for a custom data field called myNewCustomField. In this

case, the data field is in a package customer.fields. The archive contains the following

files:

• myNewCustomField.jsb is the JSB file for this custom field.

• myNewCustomField.class is the class file for this custom field.

• myDataObject.class is the class of data objects that are used as the dat field values.

• myNewCustomField-EDIT.gif and myNewCustomField-VIEW.gif. are GIF

image files that are used as icons to represent the data field in edit and view mode in the

Builder.

Figure 2-4 Archive file for myNewCustomField

Note that the archive file, JSB file, and custom field class must all have the same root name. In

the example shown in , this name is myNewCustomField.

As you create the archive, check that the directory structure reflects the package structure of

the class. For example, if the class files are in the package customer.fields, the class files

must be in the directory customer/fields, as shown in . The JSB file must be at the same

level as the class files.

Adding a Custom Field to an Application

Chapter 2 Writing Custom Data Fields 71

Adding a Custom Field to an Application
After you package a custom field as an archive file, you can add the field in Process Builder, as

described in “Adding a Custom Field to an Application” on page 71.

The specific steps for adding a custom field are as follows:

1. From the Insert menu, choose Data Field.

2. In the “Create a New Data Field” dialog box click Add New Class. An example is shown

in Figure 2-5:

Figure 2-5 Creating a data field from a new class

3. In the “Select the field JAR Package” dialog box, select the archive that represents your

custom field class, then click Open. An example is shown in Figure 2-6:

Figure 2-6 Selecting the archive that represents a custom field class

NOTE When you use the jar command to create an archive, a file named

manifest.mf is automatically created by default. This file contains

information about the other files within the archive. The manifest.mf file

has no effect on the custom field.

Adding a Custom Field to an Application

72 Process Manager Programming Guide • Version 6.0 Service Pack 2

4. In the Name field, enter the name of the new field.

5. Add the field to the Data Dictionary in either of two ways:

❍ Click Add to add the field without setting its properties first. The dialog
box remains open, and you can add more items.

❍ Click Add & Define to add the field and set its properties immediately. The
Inspector window appears for the data field you added, as shown in
Figure 2-7

Figure 2-7 Setting properties for the new custom field

6. Set the properties and close the window when you are done.

Example Custom Data Field

Chapter 2 Writing Custom Data Fields 73

The new data field, with the properties you defined, now appears in the Data Dictionary folder

in the application tree view. You can now use the data field as you would use a typical data field

in Process Builder.

Example Custom Data Field
The AdvancedOfficeSetup sample application that ships with the Process Builder includes an

example of a custom data field.

The advanced office setup application uses a custom data field called dfComputerChoice that

presents a pop-up menu of computers that can be ordered for a new employee, as shown in

Figure 2-8. This data field dynamically generates the list of computers every time it is displayed

in edit mode. It gets the list by reading an XML file containing the choices. Whenever the

company’s list of approved computers changes, all the administrator needs to do is to change

the list in the XML file -- there’s no need to redeploy the Process Manager application.

Figure 2-8 Pop-up menu of computers

For full details of this custom data field, see Chapter 3, “Advanced Office Setup Application.”

Development Hints and Tips
This section gives some hints and tips for developing and debugging custom fields:

• Avoid Non-default Constructors

• Avoid Instance Data

• Use Entity Keys

• Deploy the Custom Field to Test It

• Develop and Test on a Server Where Process Manager is Installed

Development Hints and Tips

74 Process Manager Programming Guide • Version 6.0 Service Pack 2

• Use One Implementation of a Java Class Per Server

• Debugging Hints

Avoid Non-default Constructors
In classes that extend BasicCustomField, do not define non-default constructors (meaning

constructors with non-zero arguments). Process Manager has no prior awareness of

non-default constructors and therefore cannot call them. Thus if you define non-default

constructors, your class may encounter problems during loading.

Avoid Instance Data
Custom fields, like custom activities, are stateless entities. In effect, there is only
one copy of each occurrence of a custom data field per application. All the process
instances in an application effectively share the same custom data field instance for
each occurrence of the custom data field class in the application. Because of this, it’s
recommended that you avoid using instance data in a class that implements a
custom data field. If you can’t avoid using instance data, be sure to synchronize the
data. With unsynchronized data, a variable set during one request might not exist
for the next request.

For example, consider a custom data field class called DynamicList that dynamically

generates a list of things (such as computers), displays the list as a SELECT menu in HTML

and stores the selected item in a text file.

Suppose the custom data field erroneously uses an instance variable to keep track of the file

name where the value is stored, as shown in the following code:

Development Hints and Tips

Chapter 2 Writing Custom Data Fields 75

// This is the WRONG way to track the name of the file
// where data field values are stored!!

public class UpdatableList extends BasicCustomField implements
IPresentationElement ,IDataElement
{

// The name of the file where the value is saved
public String thisFile;

protected void loadDataElementProperties(Hashtable entry)
throws Exception
{

 // Generate the file name
 thisFile = generateFileName();
}

public void store(IProcessInstance pi) throws Exception
{

// Store the value
thisValue = pi.getData(getName());

storeItNow (thisValue, thisFile);
...

}

public void display(IProcessInstance pi, IHTMLPage html,
int displayMode, String displayFormat) throws Exception

{
String selectedOption = pi.getData(getName());
// code to display the selected option
...

}

Development Hints and Tips

76 Process Manager Programming Guide • Version 6.0 Service Pack 2

Suppose Carol starts a process instance that uses the ChooseComputer data field, which is an

instance of this data field class. The loadDataElementProperties() method sets the

value of the thisFile variable to CarolsValue.txt. She chooses an HP laptop computer.

Her store() method stores the value in the file.

Later, Alice starts a process instance. The loadDataElementProperties() method sets

the value of thisFile to AlicesValue.txt. Alice chooses a Compaq Pro computer,

which is saved to the file AlicesValue.txt.

Carol’s process instance reaches a work item where the ChooseComputer data field is

displayed again, perhaps to confirm the choice of computer. This time, when the load()

method is invoked by the display(), it reads the value from thisFile, which is now

AlicesValue.txt. Thus the data field displays Alice’s choice, not Carol’s, which does not

please Carol at all.

For an example of the correct way to record the names of files where data field values are

stored, see Chapter 3, “Advanced Office Setup Application" for a discussion of the example

data field class, updatableList, that is available in the AdvancedOfficeSetup application.

It is OK, however, to use instance variables to store read-only information that is common

across all process instances, such as the name of the external database or file where the data is

stored. For example, the custom data field discussed previously might use a global variable to

record the file name of an XML file that contains the choices to be displayed in the SELECT

list (for example, IBM ThinkPad, Apple iMac, Sun Solaris workstation and so on) . These

choices do not change from employee to employee, so it is OK to store the name of the file

containing the choices as an instance variable. (Note that the file name containing the selected

choice does vary from process instance to process instance, whereas the one containing the

choices for the menu does not vary from process instance to process instance.)

An application can contain multiple occurrences of a custom data field class. For example, an

application might have custom data fields called ComputerChoices and ChairChoices,

that are both instances of the DynamicList class. When the application is running, these two

fields operate completely independently. If the fields use instance data, that data would not be

public void load(IProcessInstance pi) throws Exception
{

 // Get value out of the file
thisValue = readDataFromFile (thisFile);
return thisValue;

}

Development Hints and Tips

Chapter 2 Writing Custom Data Fields 77

shared between them. For example, if the data fields use an instance variable called

myChoicesFileName, the ComputerChoices data field could set it to

computerChoices.xml while the ChairChoices field could set it to

chairChoices.xml, and there would be no confusion between the two.

Use Entity Keys
When a custom field loads data from an external data source, the custom field might need a key

to identify the data it is looking for. This key, known as an entity key, can be stored with the

process instance.

To work with entity keys, use the following two methods on the To get a handle to a

specific application, mount the application bean. For example:

interface:

• getEntityKey(fieldName)

This call returns the key for the custom field whose name is fieldName.

• setEntityKey(fieldName, key)

Specifies key as the key for the custom field whose name is fieldName.

Deploy the Custom Field to Test It
To test and debug a custom data field, you need to import it into a Process Manager application

in the Builder, deploy the application and then test it. During the development process, you will

make changes to your Java source files and recompile the classes. Whether you need to

redeploy your application or not depends on where Process Manager is running.

If Process Manager engine is running on the same computer where you do your Java

development work, you do not need to redeploy the application from the Builder but you do

need to restart the Application Server, at least the KJS component. See the next section for

more details.

If the Process Manager engine is running on a remote computer, you need to redeploy the

application each time you make changes to the Java classes for the custom data field. Before

redeploying, make sure the changes have been copied into the appropriate places (as discussed

next) in the Applications folder hierarchy.

Development Hints and Tips

78 Process Manager Programming Guide • Version 6.0 Service Pack 2

When you use the Builder to bring a zip or jar file for a custom data field into a Process

Manager application, the Builder unzips the zip or jar file and then creates the folders needed

for the package structure for the custom data field. For example, if the application name is

myApp and the custom data field is in the package custom.fields.new, the Builder creates

a folder called new in a folder called fields in a folder called custom in the myApp folder in

the Applications directory, as illustrated in the following image:

The Builder places the unzipped files into the appropriate folders, for example, it places the

JSB and Java class file for the data field in the new folder.

After making changes to the Java files, copy the compiled class files into the appropriate folder

beneath the Applications directory. If you make changes to the JSB file, make sure the changes

are also copied to the appropriate folder beneath the Applications directory.

To test the changes, redeploy the application.

When you’re done making changes, make a new zip or jar file so that the finished data field can

be imported into other Process Manager applications.

Develop and Test on a Server Where Process
Manager is Installed
If your server is on your development machine, you can develop and test your custom field

without redploying after each modification.

1. To start with, develop and compile your Java classes in your preferred Java development

environment.

2. Create the JAR file, import it into the Process Builder, and then build and deploy an

application that uses the custom field.

3. When you need to make changes to the Java file that defines the custom data field, edit

and compile your Java classes in your preferred Java development environment as before.

4. If your output directory is not in the classpath for the Process Manager engine

(BPMCLASSPATH) , copy the class file into the Process Manager classpath.

5. Restart the kjs on the Application Server to update your deployed applications to use the

newly compiled data field class. (For information on restarting the kjs, see the section

“Print Debugging Information.”)

Development Hints and Tips

Chapter 2 Writing Custom Data Fields 79

New and existing process instances will use the new definition for the custom data field.

6. When you have completely finished debugging your custom field, create a new jar file for

importing into the Process Builder.

Use One Implementation of a Java Class Per
Server
When an application is deployed, the Java classes it uses are deployed to the appropriate folder

in the class path on the engine. This class path is shared by all applications running on the

engine. Every application that uses a particular Java class uses the same implementation of that class.

For example, suppose application A and application B both use a Java class SharedClass1.

When application A is deployed, its version of SharedClass1 is deployed to the class path.

When application B is deployed, its version of SharedClass1 is deployed to the class path,

overwriting the implementation deployed previously by application A.

Thus if multiple applications running on a Process Manager engine use the same custom data

field, they should all use exactly the same implementation of the custom data field, since each

time the custom data field is deployed to the engine, it overwrites the previous implementation.

If you want multiple applications to use a custom data field that is basically the same but differs

slightly from application to application, make sure that the name of the data field Java class is

different in each application.

Debugging Hints
• Print Debugging Information

• Send Error Messages to the Process Manager Logs

• Errors in store()

Print Debugging Information
To get debugging information, your Java methods can use

System.out.println("Helpful debugging info goes here") to display

debugging information in the kjs console on the Application Server if you start it from a DOS

command prompt.

Note: To run the Application Server from the command line, use the interface to stop the

application server. Then open a command prompt and type kxs. When the kxs process blocks,

type kjs in another command prompt to start the kjs.

Class Reference

80 Process Manager Programming Guide • Version 6.0 Service Pack 2

Send Error Messages to the Process Manager Logs
You can also log debugging information to the Process Manager logs by using the log()

method on the IPMCluster bean or the log() method on the IPMApplication bean. Use the

getPMApplication() method of BasicCustomField to get the IPMApplication.

For example:

IPMApplication myapp = getPMApplication();

myapp.log(IPMApplication.LOG_INFORMATION, "log info here", null);

You can view the logs in the Process Administrator at

http://yourPMserver:port#/Administrator.apm.

Errors in store()
If the store() method has a problem, it might result in store() being invoked twice while

the system tries to restore the process instance to its previous state. Thus if you have print

statements that record entry into and exit from store(), and you see that store() is

invoked twice or seems to be entered recursively, or you see load() being called from inside

store() when getData() is called, this is an indication that there might be a problem with

the definition of your store() method.

Class Reference
The remainder of this chapter provides a class and method reference for the classes needed for

implementing a custom data field. The classes are:

• BasicCustomField

• IPMRequest

Several methods on these classes take an IProcessInstance object as an input argument.

This class has methods for interacting with the process instance, such as getting the values of

other data fields, getting the creation date and finding out who created the process instance.

For details of the methods you can use to work with process instances, see the section To get a

handle to a specific application, mount the application bean. For example: in Chapter 6,

“Working with Applications, Process Instances and Work Items.”

BasicCustomField
This class is the superclass for all custom data fields. To define a custom data field, create a

subclass of BasicCustomField.

BasicCustomField

Chapter 2 Writing Custom Data Fields 81

The BasicCustomField class provides methods that enable Process Manager to treat your

custom field just like any other data field. Most of the methods in BasicCustomField are

predefined and are used internally by Process Manager. However, you need to provide a

definition for the following methods in your custom data field class:

• archive()

• create()

• display()

• load()

• loadDataElementProperties()

• store()

• update()

BasicCustomField also implements the getPMApplication() method that returns the

IPMApplication that contains the field. Two other methods implemented by

BasicCustomField are getName() and getPrettyName() which are specified by the

interface IPMElement . Your custom data field can use these methods to get the name of the

field itself.

• getName()

• getPMApplication()

• getPrettyName()

import com.netscape.pm.model.BasicCustomField;

public class myCustomField
extends BasicCustomField

{
...

}

BasicCustomField

82 Process Manager Programming Guide • Version 6.0 Service Pack 2

archive()

Summary. Writes the data associated with the custom field to an output stream. When you

create a custom data field, you should define this method if you want your data field to be

archivable. This method is specified by the IDataElement interface.

Syntax.

public void archive (To get a handle to a specific application,
mount the application bean. For example: pi,OutputStream os) throws
Exception

Arguments.

Return Value. None.

Description. When an archive operation is initiated from the administration pages, the data

elements associated with the process instance write their data values to an output stream.

Built-in data elements archive themselves, simply by writing their values out as bytes. By

contrast, you can determine how custom fields write their data to an output stream. For

example, you can stream bytes or encapsulate the values in XML.

If a call to this method fails, you can throw a java.lang.Exception at any time to signal an

error. The error message will be displayed to the administrator.

For more information about this method, see the section “archive().”

create()

Summary. Initializes a newly created process instance with a default value for the custom
field. When you create a custom data field, you must implement this method if you want your

custom data field to have a default value in cases where it does not appear on an entry point

form. This method is defined by the IDataElement interface.

Syntax.

public void create(To get a handle to a specific application, mount
the application bean. For example: pi) throws Exception

• pi Object representing the process instance.

• os The output stream to write the data to.

BasicCustomField

Chapter 2 Writing Custom Data Fields 83

Arguments.

Return Value. None.

Description. Most of the time, the create() method creates a default value and stores it

in the process instance through a call to setData(). However, not all custom fields require

these actions. This decision is up to the process designer.

If a default value does not need to be set, it is recommended that you do not implement the

create() method. Leave it blank instead. The store() method for custom fields is called

only when setData() has been performed on the field.

The create() method for all fields, whether predefined or custom fields, is called when the

user initiates a process instance from the entry point.

If a call to this method fails, you can throw a java.lang.Exception at any time to signal an

error. The error message will be displayed to the user, and the process instance will not be

created.

For more information and an example, see the section “create ().”

display()

Summary. Displays the custom data field in the HTML page. When you create a custom data

field, you must implement both versions of this method. This method is specified in the

IPresentationElement interface.

Syntax 1. This version displays the field when the user is viewing the entry point form, in
which case the process instance does not yet exist.

public void display(IHTMLPage html, int displayMode, String
displayFormat) throws Exception

Syntax 2. This version displays the field in a workitem form, in which case the process
instance does exist.

public void display(To get a handle to a specific application,
mount the application bean. For example: pi,IHTMLPage html, int
displayMode, String displayFormat) throws Exception

Arguments.

• pi Object representing the process instance.

BasicCustomField

84 Process Manager Programming Guide • Version 6.0 Service Pack 2

Return Value. None.

Description. The version of display() shown in Syntax 1 will be called after the process

instance has been created. In other words, it is called everywhere but the entry point node. The

process instance will contain the data that is associated with your custom field; your

implementation of display() will need to fetch the data object via the getData() method

of the process instance class before displaying it.

The displayMode and displayFormat arguments are defined by the process designer

through the Inspector window.

If a call to this method fails, you can throw a java.lang.Exception at any time to signal an

error. The error message will be displayed to the user.

For more information about this method, see the section “display().”

For an example, see the section “Example display() method.”

getName()

Summary. Returns the name of the current element. This method is defined by the
IPMElement interface.

Syntax.

• pi Object representing the process instance.

• html Object representing the HTML page to be returned to the
user.

• displayMode Mode that the field should be displaying itself in. Possible
values are MODE_EDIT, MODE_VIEW and
MODE_HIDDEN.

• displayFormat Additional formatting information available to the field.
This value is specified from the “Display Format”
property of the Inspector window of the field when it is
placed in the form. This value is specific to a process
designer. One possible use is to distinguish between a
secure viewing mode and a non-secure viewing mode,
such as for credit card information. In such a case, the
display format could contain either the value “secure” or
“not secure.”

BasicCustomField

Chapter 2 Writing Custom Data Fields 85

public String getName()

Arguments. None.

Return Value. A String object representing the name of the current element.

Description. The returned name is used to access the field’s primary key and data value.

Example. The following code uses getName() inside the create() method:

getPMApplication()
Summary. Returns the IPMApplication for the application containing this data field.

Syntax.

public String getPMApplication()

Arguments. None.

Return Value. An IPMApplication bean representing the application containing this data

field.

Description. Use this method to get access to the application containing the custom data

field. IPMApplication has many useful methods for accessing other information about the

application

Example. The following code gets the pathname for the application containing this data field.

public void create(IProcessInstance pi)
throws Exception

{
// Assign a default value for this field.
// Just an empty shopping cart...
pi.setData(getName(), new ShoppingCart());

}

BasicCustomField

86 Process Manager Programming Guide • Version 6.0 Service Pack 2

getPrettyName()
Summary. Returns the “pretty name” of the current element. This method is defined by the

IPMElement interface.

Syntax.

public String getPrettyName()

Arguments. None.

Return Value. A String object representing the pretty name of the current element.

Description. In previous releases of Process Manager, every element had a name as well as a

“pretty name,” the display name of the element. In the current release, an element’s pretty

name and its name are equivalent.

load()
Summary. Loads the data associated with the custom field. When you create a custom data

field, you must implement this method. This method is specified by the IDataElement

interface.

Syntax.

public void load(To get a handle to a specific application, mount
the application bean. For example: pi) throws Exception

Arguments.

// Inside store(), get the application path
String path;
try {

 path = getPMApplication().getHomePath();
 }

catch (Exception e) {
 System.out.println("Exception getting app path" + e);

}

• pi Object representing the process instance.

BasicCustomField

Chapter 2 Writing Custom Data Fields 87

Return Value. None.

Description. The load() method is invoked whenever the data value associated with the

custom field is accessed through getData() off the process instance. Note that built-in fields

are loaded whenever the process instance is loaded, but custom fields are loaded only when

their data value is explicitly asked for. This behavior is called lazy loading.

Warning: Within the load() method, do not call getData() on the custom field. The

load() method is already invoked as a result of a call to getData(). As a result, a call to

getData() within the load() method causes an infinite loop.

If a user script accesses or modifies the data associated with a custom field, the script must

implicitly know the object’s data type. For example, a script would need to know the API for

objects such as ItemSet and Item in a shopping cart custom field.

If a call to load() fails, you can throw a java.lang.Exception at any time to signal an

error. If the current action is to display a form, an error message will be displayed to the user.

If the user has completed a work item, an exception work item will be created.

For more information and an example, see the section “load ().”

loadDataElementProperties()
Summary. Loads the design-time properties for the field specified in Process Builder’s
Inspector window. Specified by BasicCustomField. Custom data fields should implement this

method.

Syntax.

protected void loadDataElementProperties(Hashtable entry) throws
Exception

Arguments.

Return Value. None.

Description. This method is called after the custom field has been created (while the

application is being initialized). The hashtable entry parameter contains the field’s

configuration information, as it is stored in the LDAP repository. This information includes

the properties you specified in the custom field’s JSB file (which are the properties that appear

in the inspector window in Process Builder).

• entry The hashtable containing property/value pairs for the
properties of this field that can be set in Process Builder .

BasicCustomField

88 Process Manager Programming Guide • Version 6.0 Service Pack 2

If a call to this method fails, it can throw a java.lang.Exception at any time to signal an

error. The error message will be displayed to the user, and the application will stop being

initialized.

For more information about this method, see the section “loadDataElementProperties().”

Example. Suppose your JSB file contains the following entry:

Given the previous JSB code, the following Java code implements the

loadDataElementProperties() method. The method will first read the property and

then, based on the value, set the instance variable mDBIdentifier.

store()
Summary. Stores the data associated with the custom field to a persistent resource. When

you create a custom data field, you must implement this method. This method is defined by the

IDataElement interface.

Syntax.

<JSB_PROPERTY
NAME="dbidentifier"
TYPE="string"
DISPLAYNAME="External DB Identifier"
SHORTDESCRIPTION="Local alias for connecting to external DB"
ISEXPERT>

protected void loadDataElementProperties(Hashtable entry)
throws Exception

{
String dbIdentifier = (String) entry.get("dbidentifier");
if(dbIdentifier == null)

throw new Exception("DB Identifier not specified");
else

mDBIdentifier = dbIdentifier;
}

BasicCustomField

Chapter 2 Writing Custom Data Fields 89

public void store(To get a handle to a specific application, mount
the application bean. For example: pi) throws Exception

Arguments.

Return Value. None.

Description. It’s up to the designer of the custom field to decide which external persistent

data store will store the custom field data. Note, however, that data from a custom field cannot

be stored in the application-specific table, where built-in data fields are stored.

The custom field is responsible for storing the data, whereas Process Manager is responsible

for storing the custom field’s primary key. This key is stored in the application-specific

database table.

The store() method is called only if the field’s value has been modified, through a call to

setData(). Note that the load() method typically calls setData(). As a result, the

store() method is called whenever load() is called.

Currently, Process Manager does not support global transactions. If the custom field stores its

data in an external datasource that is both XA-compliant and managed by a resource manager,

the custom field could participate in a global transaction. However, transactions initiated by

Process Manager are not made through an XA resource manager, so they cannot be a part of

the larger transaction.

If a call to this method fails, you can throw a java.lang.Exception at any time to signal an

error. The current work item is converted to an exception work item, and all data field values

are reset to their values prior to the request.

For more information and an example, see the section “store().”

update
Summary. Determines how the HTML representation of a custom data field is processed

when a form is submitted. Typically this method translates the form element value into the

usual data object associated with the field. When you create a custom data field, you must

implement this method. This method is specified by the IPresentationElement interface.

Syntax.

• pi Object representing the process instance.

IPMRequest

90 Process Manager Programming Guide • Version 6.0 Service Pack 2

public void update(To get a handle to a specific application, mount
the application bean. For example: pi, IPMRequest rq) throws
Exception

Arguments.

Return Value. None.

Description. The update() method is called after the user has submitted a request to the

Process Manager server. Since all requests take the form of an HTTP GET or HTTP POST,

this method translates the form parameters of the request into the usual data object associated

with your custom field. For example, suppose the form includes values for an item ID and an

item quantity. The update() method would convert the item quantity to a numeric value,

and the method would create an Item object out of the item ID. The Item object could then

be bound to the process instance via setData().

If a call to this method fails, you can throw a java.lang.Exception at any time to signal an

error. The error message will be displayed to the user.

For more information and an example, see the section “update().”

IPMRequest
The IPMRequest class represents requests sent by the browser to the Process Manager engine

when a form is submitted. These requests contain the values of the form elements in the form.

An IPMRequest object is automatically passed to the update() method of a custom data field

class. The update() method can access the IPMRequest object to extract form element

values and to find the authenticated user.

The IPMRequest class has the following methods:

• getAuthenticatedUserId

• getParameter

• isParameterDefined

• pi Object representing the process instance.

• html Object representing the HTTP request.

IPMRequest

Chapter 2 Writing Custom Data Fields 91

getAuthenticatedUserId

Summary. Gets the ID of the authenticated user who made the request.

Syntax.

public String getAuthenticatedUserId() throws XInvalidRequest;

Arguments. None.

Return Value. A String of the name of the authenticated user.

Description. Gets the ID of the authenticated user who made the request

getParameter

Summary. Gets the value of a parameter in the request string. Typically, the parameter is the
name of a form element in the form that was submitted.

Syntax.

public String getParameter(String parameter) throws XInvalidRequest;

Arguments.

Return Value. A String of the value of the parameter.

Description. Gets the value of a parameter in the request string. Typically, the parameter is

the name of a form element in the form that was submitted. This method is typically invoked

by the update() method of a custom data field to extract form element values.

Example. See the example for the update() method.

isParameterDefined
Summary. Returns true if a parameter is defined in the query string sent by a form
submission, otherwise returns false.

• parameter The name of the parameter whose value is to be retrieved.

IPMRequest

92 Process Manager Programming Guide • Version 6.0 Service Pack 2

Syntax.

public boolean isParameterDefined(String parameter)

Arguments.

Return Value. A Boolean indicating whether the named parameter exists or not.

Description. Returns true if a parameter is defined, otherwise returns false. The update()

method can use this method to test for the existence of a parameter before attempting to

retrieve its value. For example, if an entrypoint form displays different data fields than a work

item form, update() can test for the existence of particular data fields to determine if the

form came from an entry point or a work item.

Example. See the example for the update() method.

• parameter The name of a parameter whose existence is being tested

93

Chapter 3

Advanced Office Setup Application

This chapter discusses the AdvancedOfficeSetup sample application that is provided with

Process Builder. This application, which is an advanced version of the OfficeSetup sample

application, uses both a custom data field and a custom activity.

The sections in this chapter are:

• Changes in the Advanced Office Setup Application

• The Custom Data Field

• The Custom Activity

Changes in the Advanced Office Setup
Application

The advanced office setup sample application basically achieves the same goal as the simple

office setup application, which is to get an office ready for a new employee. However, the

advanced version has been fine-tuned to improve the process.

The differences between the two versions are:

• The advanced version uses a custom data field to dynamically generate the list of

computers that can be purchased for the new employee.

The intent here is to limit the choice a pre-defined selection of computers that have
been approved for corporate use. Previously, the computer choice was represented as a
text field, thus the administrative assistant could enter any computer they wanted in
this field, from a Palm Pilot to a Cray supercomputer.

The figure below shows the pop-up menu of computer choices.

Changes in the Advanced Office Setup Application

94 Process Manager Programming Guide • Version 6.0 Service Pack 2

Figure 3-1 Pop-up menu of computers

• The advanced version has a custom activity that automatically schedules the new employee

to attend a company orientation training.

The day of the training depends on which department the employee is joining and what
day they start work at the company. The following figure shows the custom activity in
the process map, as well as a new user activity for printing the information about the
training.

The Custom Data Field

Chapter 3 Advanced Office Setup Application 95

• The advanced version has an additional manual activity which requires the administrative

assistant to print a page that tells the employee what day to attend company orientation

training. This page is written by the custom activity.

The Custom Data Field
This section discusses the custom data field and has the following subsections:

• Overview

• The Code in Detail

• Complete Source Code

Overview
The advanced office setup application uses a custom data field called dfComputerChoice

that presents a pop-up menu of computers that can be ordered for the new employee, as

shown in Figure 3-1.

This data field dynamically generates the list of computers every time it is displayed in edit

mode. It gets the list by reading an XML file containing the choices. An example of the XML

file is:

<xml version="1.0" encoding="us-ascii">
<ITEMSET>

<ITEM>Apple Imac</ITEM>
<ITEM>HP-4150 laptop</ITEM>
<ITEM>HP-9150 laptop</ITEM>
<ITEM>Sun Solaris workstation</ITEM>
<ITEM>Windows NT/98</ITEM>
<ITEM>Windows 2000</ITEM>

</ITEMSET>

The Custom Data Field

96 Process Manager Programming Guide • Version 6.0 Service Pack 2

This XML file resides in the same folder as the application. When the process designer deploys

the application from the Builder, the XML file is automatically copied to the correct location

on the server. After the application has been deployed, users can modify the file whenever the

company’s computer purchase policy changes. The changes take effect immediately.

The selected value is stored externally as an object that is serialized to a file.

To see the entire source code file, click updatableList.java.

The Code in Detail
This section discusses the code for the methods on the custom data field.

• loadDataElementProperties ()

• display()

• update()

• store()

• load()

• Helper Functions

• Complete Source Code

loadDataElementProperties ()
This method reads the properties that were set in the Builder. In this case, it reads the value of

the xmlfile property and stores it in a global variable, myFileName.

The Custom Data Field

Chapter 3 Advanced Office Setup Application 97

Although as a general rule you should not store data in instance variables, in this case it is OK

because this file name is constant for all process instances in the application -- it never changes.

(The contents of the file might change, but the file name itself never changes).

display()
When a form containing the custom data field is displayed in an HTML page, the field’s

display() method is invoked. If the process is at an entry point, the entry point version of

display() is invoked; if it is at a work item then the work item version is used.

The purpose of this data field is to present a list of choices, store the selection, and retrieve the

selection the next time the data field is displayed. Therefore, in an entry point, there is no point

displaying the field in view mode, since there is no prior selection to view.

// Method from BasicCustomeField that loads
// properties that were set in the Builder
protected void loadDataElementProperties (Hashtable entry)

throws Exception
{

// Get the XML File name from the Builder properties
myFileName = (String)entry.get("xmlfile");

}

The Custom Data Field

98 Process Manager Programming Guide • Version 6.0 Service Pack 2

The data field shows a menu of computers, which is displayed as a SELECT list, for example:

At an entry point in edit mode, the data field reads the XML file and displays all the choices. At

a work item in edit mode, the data field checks if there is a previously selected value. If a value

has been chosen previously, the data field displays it as the current selection. If a value has not

been chosen previously, the data field displays the default initial value.

The data field has no meaning when used in view mode at an entry point, thus is displayed as a

simple warning. The data field is displayed as plain text showing the current selection in view

mode at a work item.

Here is a discussion of the display() method for a work item. The code is similar but

simpler for the a work item, since it does not need to consider whether there is a previously

selected value or not.

display() at a Work Item
In edit mode, the display() method starts by calling getData() to get the value of the data

field. If the value is already loaded, getData() simply returns it, otherwise getData()

invokes load() to load the value. In this case, load() gets the value by reading it from a file.

The retrieved value is an object that has a variable, myvalue, which indicates the current value.

For example, if the hiring manager has previously selected Apple Imac as the computer for the

new employee, then myvalue would be bound to Apple Imac.

The setting of the myvalue variable happens in the store() method, which we will worry

about later. For now, it’s enough to know that the myvalue variable holds the selected option.

<SELECT size="1" name="dfComputerChoice" >
<OPTION selected>Choose now</OPTION>
<OPTION value="Apple Imac">Apple Imac</OPTION>
<OPTION value="HP-4150 laptop">HP-4150 laptop</OPTION>
<OPTION value="HP-9150 laptop">HP-9150 laptop</OPTION>
<OPTION value="Sun Solaris workstation">

Sun Solaris workstation</OPTION>
<OPTION value="Windows NT/98">Windows NT/98</OPTION>
<OPTION value="Windows 2000">Windows 2000</OPTION>

</SELECT>

The Custom Data Field

Chapter 3 Advanced Office Setup Application 99

The display() method writes the HTML code to display a SELECT menu. Each menu item

is embedded in an <OPTION> tag. The selected menu item is indicated by <OPTION

SELECTED>.

The display() method reads all the menu items from the appropriate XML file. If no menu

item has been previously selected, it uses a default value for the selected option, which in this

case is <OPTION SELECTED>Choose now</OPTION>. Then the method writes

<OPTION> tags for all the menu items.

public void display(IProcessInstance pi, IHTMLPage html,
int displayMode, String displayFormat) throws Exception

{

StringBuffer buffer = new StringBuffer();
String selectedOption = null;

// Get the value of the data field
// If the value is not loaded, getData invokes load()
myObject myobj = (myObject) pi.getData(getName());

// If an object is found, set the selected option
// to the value of the object's myvalue variable.
if (myobj != null) {

selectedOption = myobj.myvalue;
}

The Custom Data Field

100 Process Manager Programming Guide • Version 6.0 Service Pack 2

If a menu item has been previously selected, the display() method writes the appropriate

<OPTION SELECTED> tag. Then it takes each menu item in turn, checks if it is the selected

item, and if not, writes an <OPTION> tag for it.

switch(displayMode){
// In edit mode, display the data field as a SELECT menu
// The menu options are stored in an xml file

case MODE_EDIT:
// Get the option names from the xml file and store
// them in the vector optionNames.
Vector optionNames = fetchDataFromXML();

// Write the opening <SELECT> tag.
// The name is the same as the data field name.
buffer.append("<select size=1 name=" + getName() + " >");

// If the option was not selected previously show default
String optName = "";
if (selectedOption==null)
{

buffer.append("<option selected>Choose now</option>");

// For each option in the vector optionNames
// write <OPTION> value="optionName"</OPTION>

for(int i=0; i<optionNames.size(); i++)
{

optName = (String)optionNames.elementAt(i);
buffer.append("<option value=\"" + optName + "\">");
buffer.append(optName);
buffer.append("</option>");

}
}

The Custom Data Field

Chapter 3 Advanced Office Setup Application 101

In view mode, the data field is displayed as plain text since it is not editable.

// Else write <OPTION SELECTED> value=selectedOption</OPTION>
// and the rest of the options below that

else
{

buffer.append("<option selected>" + selectedOption +
"</option>");

// For each option in the vector optionNames, check if this
// option is the selected one. If it is, ignore it since we
// already wrote the HTML code for the selected option.
// If it is not the selected one,
// write <OPTION> value="optionName"</OPTION>
for(int i=0; i<optionNames.size(); i++)
{

optName = (String)optionNames.elementAt(i);
if(! optName.equals(selectedOption))
{

buffer.append("<option value=\""+ optName +"\">");
buffer.append(optName);
buffer.append("</option>");

}
}

}
// End the Select list
buffer.append("</select>");
break;
}

The Custom Data Field

102 Process Manager Programming Guide • Version 6.0 Service Pack 2

Finally, the method writes the entire buffer to the HTML page.

display() at an Entry Point
The display() method for the entry point is similar but simpler. It does not have any of the

conditional code used in edit mode to check for an existing value, since there can be no existing

value. In view mode, the data field displays a warning since there is no good reason to ever use

this data field in view mode in an entry point. See the source code for updatableList.java

for the definition for the display() method at an entry point.

case MODE_VIEW:
// In View mode, display the selected option as a string
// The user cannot change the value in View mode
buffer.append(" "+ selectedOption);
break;
}

// Write the contents to the HTML page
html.write(buffer.toString());
}

The Custom Data Field

Chapter 3 Advanced Office Setup Application 103

update()
When a form containing the custom data field is submitted, the field’s update() method is

invoked. In this case, update() creates an object and sets the value of its myvalue variable,

then puts the object into the process instance. Later, the store() method gets the value of

the data field back out of the process instance and saves it to a file as a serialized object. The

next time the data field value needs to be retrieved, the load() method reads the object from

the file and puts it into the process instance.

It may seem like overkill to create and save an object to store a single value, but the purpose of

this example is to provide the groundwork for building your own custom data fields. You can

use the same paradigm to store objects with multiple values, for example, if the data field

needed to store the price and SKU of the chosen computer as well as just the name, it could

use an object with three variables instead of one. The mechanism for saving the object to an

external file would be exactly the same. The mechanism for storing the object is implemented

by the store() method which is discussed later.

Code Discussion
The update() method parses the form parameters when the HTML form is submitted. An

IPMRequest object containing all the values of the form elements is sent to the update()

method. In this example, the update() method extracts the value of the form element that

has the same name as the data field. (This form element was created by the display()

method).

Then the update() method creates a new instance of myObject and sets it myvalue

variable to the extracted value. Finally it puts the new object into the process instance.

The Custom Data Field

104 Process Manager Programming Guide • Version 6.0 Service Pack 2

store()
This data field stores its value externally as a serialized object. (The object is created by the

update() method.) The job of the store() method is to get the data field value out of the

process instance and store it in a persistent storage. In this example, the store() method

saves the value, which is an object, by serializing it to a file using standard object serialization

techniques.

Code Discussion
The method generates a unique file name, consisting of the name of the data field plus the

process instance ID.

public void update(IProcessInstance pi, IPMRequest rq)
throws Exception

{

try {
// Get the value of the form element
String thisValue = rq.getParameter(getName());

// Create a new myObject to hold the results
myObject obj1 = new myObject();

// Put the value into the object
obj1.myvalue = thisValue;

// put the object into the pi
pi.setData(getName(), obj1);
}

catch (Exception e) {
System.out.println("Problem translating form values: " + e);
}

}

The Custom Data Field

Chapter 3 Advanced Office Setup Application 105

When the data field value is needed in the future, the load() method retrieves it from the

external storage. The load() method needs a key to help it find the data. The store method

saves the key by calling setEntityKey(), and the load method retrieves the key by calling

getEntityKey(). The load() method needs to know which file to access, thus the

store() method saves the name of the file as the entity key.

public void store(IProcessInstance pi) throws Exception
{

// Get the data field name
String thisID = getName();

// Get the process instance ID
long procID = pi.getInstanceId();

// Concatenate the data field name with the PID
// to keep the name unique across all process instances
thisID = thisID + procID;
String thisFileName = thisID + ".txt";

// Get the application directory
String appdir = getMyApplicationsPath();

// Generate the full path to the file
// where the value will be stored
String fullPath = appdir + "\\" + thisFileName;

// Store the file name as the entity key
pi.setEntityKey(getName(), thisFileName);

The Custom Data Field

106 Process Manager Programming Guide • Version 6.0 Service Pack 2

Next, the store() method gets the value of the data field out of the process instance.

Now to the task of storing the value. In this case, store() saves the object to a file using

standard Java object serialization techniques.

load()
When an attempt is made to access the value of the data field when it has not been loaded, the

load() method is called. This happens, for example, when the data field is being displayed in

an HTML form or when an automated activity calls getData() to get the value of the data

field.

The task of the load() method is to retrieve the data field value from external storage and put

it in the process instance. In this case, the value is stored as an object in a file.

// Get the value of the data field from the pi.
// The value is an instance of myObject
myObject myobj = (myObject) pi.getData(getName());

// Write the object to a file
try {

FileOutputStream fileout = new FileOutputStream(fullPath);
ObjectOutputStream objout = new ObjectOutputStream(fileout);
objout.writeObject(myobj);

}
catch (Exception e) {

System.out.println("Error while saving field value to file:"
+ e);

}
// end store
}

The Custom Data Field

Chapter 3 Advanced Office Setup Application 107

Code Discussion
The first thing this load() method needs to do is to find out which file to access. The name

of the file is stored as the entity key, thus load() starts off by getting the entity key.

If the entity key is a file name, the next thing to do is to get generate the full path to the file.

The load() method uses the user-defined getMyApplicationsPath() method to find

the path to the directory where the application is stored. The file is in that directory.

Now comes the task of loading the value. In this case, the value is an instance of myObject

that has been serialized to a file. The load() method uses standard Java techniques for

reading the file and unserializing the object.

public void load(IProcessInstance pi) throws Exception
{

// Get the name of the file where the value is stored.
// The file name is saved as the entity key.
// An example is thisfield123.txt
String thisFileName = (String) pi.getEntityKey(getName());

if (thisFileName != null)
{

try {
// getMyApplicationsPath is a user-defined function
// that returns the path to the dir for the application
String myPath = getMyApplicationsPath();

// Get the full path to the file in the Applications dir
// eg rootdir\Applications\myApp\thisfield123.html
thisFileName = myPath + "\\" + thisFileName;

The Custom Data Field

108 Process Manager Programming Guide • Version 6.0 Service Pack 2

The load() method puts the retrieved value into the data field on the process instance, where

it is now available for access by all comers (such as the display() method).

Finally, the load() method closes the try clause, writes the catch clause, and takes account of

the situation where getEntityKey() did not return a value.

// Get a file reader and read in the object
FileInputStream filein = new FileInputStream(thisFileName);
ObjectInputStream objectin = new ObjectInputStream(filein);
myObject newobj = (myObject) objectin.readObject();

// Put the object in the data field in the process instance
pi.setData(getName(), newobj);

The Custom Data Field

Chapter 3 Advanced Office Setup Application 109

Helper Functions
This class uses several helper methods:

• getMyApplicationsPath()

• fetchDataFromXML()

• parseForItemTag()

getMyApplicationsPath()
This method returns the directory where the current application resides.

// end try clause
}
catch (Exception e)
{

System.out.println("Error while reading value from file: "
+ e);

}
// end if (thisFileName != null)
}
else {

pi.setData(getName(), null);
}

// end load
}

The Custom Data Field

110 Process Manager Programming Guide • Version 6.0 Service Pack 2

fetchDataFromXML()
This method reads the contents of an XML file that contains a series of items. The method

adds each item to a vector and then returns the vector.

To start with, the method creates an empty vector and gets the name of the file to read.

// Returns the path to the folder where the application is saved
String getMyApplicationsPath ()
{ String path = "";

try {
path = getPMApplication().getHomePath();

}
catch (Exception e) {

System.out.println("Exception while getting app path"
+ e);

}
return path;
}

// Fetch the set of menu options from the XML file
public Vector fetchDataFromXML()
{

Vector optionNames = new Vector();

try {
// Get the path for the xml file
// myFileName is a global variable
// It is the same for all process instances
String Path = getMyApplicationsPath();
Path = Path + "\\" + myFileName;

The Custom Data Field

Chapter 3 Advanced Office Setup Application 111

Next, the method reads the file into a string.

Next, the method iterates through every character in the content string contained in the

charSet variable, looking for items. It uses the parseForItemTag() method to find items

and add each one to the vector.

Finally the method returns the vector.

// Get a file reader
java.io.File f = new java.io.File(Path);
FileReader fr = new FileReader(f);
BufferedReader in = new BufferedReader(fr);

// Create variables in preparation for reading the file
int MAX_LENGTH = 2000;
char xml[] = new char[MAX_LENGTH];

// Read the entire xml file into the array xml
int count =0;
count = in.read(xml, count, MAX_LENGTH);

// Create a string of the content and get its length
String charSet = new String(xml);
int charSetLength = charSet.length();

The Custom Data Field

112 Process Manager Programming Guide • Version 6.0 Service Pack 2

parseForItemTag()
This method iterates over a string, looking for substrings embedded between <ITEM> and

</ITEM> tags. Each substring, or item, is added to a vector.

count = 0;
for(; count < charSetLength; count++)
{
parseForItemTag(count, charSetLength, charSet, optionNames);
}

// end try
}
catch(Exception e){

System.out.println("Error while getting data from xml file: "
+ e);

}

// return the vector of option names
return optionNames;
}

The Custom Data Field

Chapter 3 Advanced Office Setup Application 113

/// This method parses an array of characters
// to extract the items embedded in <ITEM>...</ITEM> tags
public void parseForItemTag (int count, int charSetLength,

String charSet, Vector optionNames)
{

String temp;
Object tempobj;
// Looking for "<" character

if(charSet.charAt(count) == '<')
{

// Read characters between "<" and ">" into temp string
temp = "";
for(; charSet.charAt(count) != '>'; count++)
{

temp = temp + charSet.charAt(count);
}
temp = temp + charSet.charAt(count);
count++;

// Check if the temp string is <ITEM>
if(temp.equalsIgnoreCase("<ITEM>"))

// if so, empty out temp and then read
// the characters between ">" and "<" into temp
{
for (temp = ""; charSet.charAt(count) != '<' ;

temp = temp + charSet.charAt(count++))

// We now have an item
// Convert the string temp to an object and
// add the object to the vector of options
tempobj = (Object) temp;
optionNames.addElement(tempobj);
}

}
// end of method
}

The Custom Activity

114 Process Manager Programming Guide • Version 6.0 Service Pack 2

Complete Source Code
For the complete source code, click the following links:

• updatableList.java

• updatabableList.jsb

• myObject.java

• menuOptions.xml

The Custom Activity
This section discusses the custom data field and has the following subsections:

• Overview

• The Code in Detail

• Complete Source Code

Overview
The advanced office setup application uses a custom activity called

employeeTrainingPerformer to schedule each new employee to attend a company

orientation. The activity writes a web page telling the employee when to attend the orientation.

The day that the employee should attend orientation depends on what department they are

joining, for example, engineers attend on Mondays while marketing personnel attend on

Tuesdays. The custom activity schedules the employee to attend training on the first

appropriate day after they start work. Trainings are held at 2 pm so they can go to training on

their start date if necessary.

For example, the training day for marketing personnel is Tuesday. So if a marketing in the

marketing department starts on Monday, they are scheduled for training the next day. If they

start on Tuesday, they are scheduled for training on their first day. If they start on Wednesday,

they are scheduled for training the following Tuesday.

The custom activity reads the training schedule from a file called trainingDays.xml. An

example is:

The Custom Activity

Chapter 3 Advanced Office Setup Application 115

This XML file resides in the same folder as the application. The process designer must

manually copy this file into the correct place in the Builder directory. When the process

designer deploys the application from the Builder, the XML file is automatically copied to the

correct location on the server. After the application has been deployed, users can modify the

file whenever the training schedule changes. The changes take effect immediately.

To see the entire source code file, click employeeTrainingPerformer.java.

The Code in Detail
This section discusses the code for the following.

• EmployeeTrainingPerformer.xml

• perform()

• Helper Functions

EmployeeTrainingPerformer.xml
A custom activity receives input data from an xml file that has the same base name as the

activity. This xml file defines the elements in an input hashtable that is passed to the custom

activity automatically. Typically, the elements in the input hashtable are data field values, but

they can be any JavaScript expression. In this case, the input hashtable puts the value of the

dfEmpname data field value into the Emp_name element, the dfDeptName data field value

into the Dept element, and the dfStartDate data field value into the Start_Date element.

<xml version="1.0" encoding="us-ascii">
<DEPT>Engineering</DEPT>
<DAY>monday</DAY>
<DEPT>Marketing</DEPT>
<DAY>tuesday</DAY>
<DEPT>Human Resource</DEPT>
<DAY>wednesday</DAY>
<DEPT>Sales</DEPT>
<DAY>thursday</DAY>

The Custom Activity

116 Process Manager Programming Guide • Version 6.0 Service Pack 2

The EmployeeTrainingPerformer.xml file also puts the applications path into the

element path and the process instance ID into the element id. The custom activity uses the

applications path to identify where the training schedule resides and it uses the process instance

id to generate a unique file name for the welcome page.

<?xml version = "1.0" ?>
<WORKPERFORMER TYPE="com.netscape.pm.model.ISimpleWorkPerformer"

NAME="EmployeeTrainingPerformer"

CLASS_ID="customer.activities.EmployeeTrainingPerformer"
VERSION="1.1">

<ENVIRONMENT>
</ENVIRONMENT>

<INPUT>
<PARAMETER NAME="Emp_Name" DESCRIPTION="Employee Name">

getData("dfEmpName")
</PARAMETER>

<PARAMETER NAME="Dept" DESCRIPTION="Dept. Name">
getData("dfDeptName")

</PARAMETER>

<PARAMETER NAME="Start_Date" DESCRIPTION="Start Date">
getData("dfStartDate")

</PARAMETER>
</INPUT>

The Custom Activity

Chapter 3 Advanced Office Setup Application 117

A custom activity can put elements into an output hashtable. The same xml file that defines the

input parameters also defines what happens to the elements in the output hashtable when the

custom activity is completed. Typically, values are saved into data fields on the process

instance. In this case, the output hashtable contains a filename which is saved into the

dfWelcomePage data field.

<PARAMETER NAME="path" DESCRIPTION="Applications path">
getApplicationPath()

</PARAMETER>

<PARAMETER NAME="id" DESCRIPTION="Process Instance ID">
getProcessInstance().getInstanceId()

</PARAMETER>

<OUTPUT>
<PARAMETER NAME="welcomePage"

DESCRIPTION="Greeting for New Employeer">
mapTo("dfWelcomeURL")

</PARAMETER>
</OUTPUT>

<EXCEPTIONS></EXCEPTIONS>
<DESIGN></DESIGN>

</WORKPERFORMER>

The Custom Activity

118 Process Manager Programming Guide • Version 6.0 Service Pack 2

perform()
The perform() method of a custom activity executes the activity’s task. In this case, it

generates an HTML page telling the new employee when to attend training. The method reads

the employee’s start date, name and department from the input hash table. It also gets the

pathname where the application resides, as well as the process ID which is a number that

uniquely identifies the process instance.

Then it calls the readSchedule() method to read the TrainingDays.xml file, which

resides in the applications directory.

// The perform() method defines what the custom activity does.

public void perform(Hashtable input, Hashtable output)
{

// Get the employee's start date, name and department
// from the input hashtable.
Date startDate = (java.sql.Date)input.get("Start_Date");
String dept = (String) input.get("Dept");
String empName = (String) input.get("Emp_Name");

// Get the application path from the input hashtable
String appPath = (String)input.get("path");

// Get the process instance id from the input hashtable
int thisID = ((Double)input.get("id")).intValue();

// Read the schedule from the TrainingDays.xml file
Hashtable trainingDays = readSchedule(appPath);

The Custom Activity

Chapter 3 Advanced Office Setup Application 119

Next, it calls the scheduleTraining() method to figure out which day the employee must

attend training.

The perform() method then calls the writeWelcomePage() method to write an HTML

page that informs the employee when to attend company orientation training.

Finally, perform() puts the filename for the welcome page into the output hash table so that

it can be saved into a data field on the process instance.

Helper Functions
The perform() method uses the following helper methods:

// Figure out what day of the week the employee goes to training
Date trainingDate = scheduleTraining(startDate, dept,

trainingDays);

// Write a welcome page containing the training info
String filename = writeWelcomePage(empName, thisID, appPath,

trainingDate);

// Put the file name for the HTML page in the output hashtable
output.put("welcomePage", filename);
}

The Custom Activity

120 Process Manager Programming Guide • Version 6.0 Service Pack 2

• readSchedule()

• scheduleTraining()

which uses the helper method

m IncrementForDayOfWeek()

• writeWelcomePage()

readSchedule()
This function reads the training schedule and returns a hashtable containing key:value pairs of

dept:day. The method creates a hashtable to hold the results. It gets the full path to the file

containing the training schedule.

Then it creates a file reader.

private Hashtable readSchedule(String appPath)
{

Hashtable trainingDays = new Hashtable();

try{
// Get the full name for the training schedule
String Path = appPath + "\\" + "TrainingDays.xml";

// Create a file reader
java.io.File f = new java.io.File(Path);
FileReader fr = new FileReader(f);
BufferedReader in = new BufferedReader(fr);

The Custom Activity

Chapter 3 Advanced Office Setup Application 121

It reads the entire contents of the file into the String variable charSet.

It gets some variables ready for parsing the file.

The method start parsing the string. First it looks for the substring <DEPT>. When it’s found

that, it reads the substring between the end of <DEPT> and the starting "<" in </DAY>. It

stores this substring in the variable dept.

// Read the entire file into the String "charSet"
int MAX_LENGTH = 500;
char xml[] = new char[MAX_LENGTH];
int count = 0;
count = in.read(xml, count, MAX_LENGTH);
String charSet = new String(xml);

// Create variables in preparation for parsing the String "xml"
int charSetLength = charSet.length();
String temp = new String();
String dept = new String();
String day = new String();
count = 0;

The Custom Activity

122 Process Manager Programming Guide • Version 6.0 Service Pack 2

The parser has just reached the end of </DEPT> in the string. Now it looks for <DAY>, then

reads the substring between the end of <DAY> and the starting "<" in </DAY> and stores the

substring in the variable day. It puts an element representing the dept and day into the

trainingDays hashtable.

for(; count < charSetLength; count++)
{

if(charSet.charAt(count) == '<')
{

temp = "";
for(; charSet.charAt(count) != '>'; count++)
{ temp = temp + charSet.charAt(count);
}
temp = temp + charSet.charAt(count);
count++;

// When temp = <DEPT>, find the name of the department
if(temp.equalsIgnoreCase("<DEPT>"))
{

for(dept = ""; charSet.charAt(count) != '<' ;
dept = dept + charSet.charAt(count++));

}

The Custom Activity

Chapter 3 Advanced Office Setup Application 123

scheduleTraining()
This method figures out what date the new employee is to attend orientation training. To do

this, it figures out what day of the week the employee starts work, finds out what department

the employee is joining, looks up the training day for that department in the trainingDays

hashtable, and then calculates the date for the training.

First, the method gets the day of week, day of month, month and year that the employee is

starting work.

// Now we know the current DEPT. Find the day.
if(temp.equalsIgnoreCase("<DAY>"))
{

for(day = ""; charSet.charAt(count) != '<' ;
day = day + charSet.charAt(count++));

trainingDays.put(dept, day);
}

}
}

// end of function
}

The Custom Activity

124 Process Manager Programming Guide • Version 6.0 Service Pack 2

Then the method looks in the trainingDays hashtable to see what day of the week the

employee goes to training, which depends on what department they are joining. The

scheduleTraining() method then calls a helper function to find the date of the first

appropriate day of the week on or after the start date. For example, if the employee should

attend training on Monday, the helper function returns the start date if it is a Monday or else

finds the date of the first Monday following the start date.

public Date scheduleTraining (String startDate, String dept,
Hashtable trainingDays)

{
// Get info about the start date
date = new Date(startDate);
int thisDay = date.getDay();
int dayOfMonth = date.getDate();
int month = date.getMonth();
int year = date.getYear();

The Custom Activity

Chapter 3 Advanced Office Setup Application 125

IncrementForDayOfWeek()
The scheduleTraining() method uses helper functions to find the first appropriate day of

the week on or after the start date. All these methods have the same basic structure. Here is an

example for IncrementForMonday(), which takes a week day and a day of the month. It

returns the day of the month unchanged if the given week day is Monday, else returns the day

of the month for the first Monday following the day of the month that was passed in.

// Using the dept as the key, get the value of the
// training day from the the trainingDays hashtable
if(((String)trainingDays.get(dept)).equals("monday")){

dayOfMonth=IncrementForMonday(thisDay, dayOfMonth);
}

else if(((String)trainingDays.get(dept)).equals("tuesday")){
dayOfMonth=IncrementForTuesday(thisDay, dayOfMonth);
}

else if(((String)trainingDays.get(dept)).equals("wednesday")){
dayOfMonth=IncrementForWednesday(thisDay, dayOfMonth);
}

else if(((String)trainingDays.get(dept)).equals("thursday")){
dayOfMonth=IncrementForThursday(thisDay, dayOfMonth);
}

else if(((String)trainingDays.get(dept)).equals("friday")){
dayOfMonth=IncrementForFriday(thisDay, dayOfMonth);
}

if(((String)trainingDays.get(dept)).equals("saturday")){
dayOfMonth=IncrementForSaturday(thisDay, dayOfMonth);
}

else if(((String)trainingDays.get(dept)).equals("sunday")){
dayOfMonth=IncrementForSunday(thisDay, dayOfMonth);

}
Date trainingDate = new Date(year, month, dayOfMonth);
return trainingDate;
}

The Custom Activity

126 Process Manager Programming Guide • Version 6.0 Service Pack 2

writeWelcomePage()
This method generates an HTML page that informs the employee when to attend training, for

example:

// helper functions to find training date
private int IncrementForMonday(int thisDay, int dayOfMonth){
if(thisDay == SUN)

// for Monday increment 1 from Sunday
dayOfMonth = dayOfMonth+1;

if(thisDay == TUE)
// for Monday increment 6 from Tue
dayOfMonth = dayOfMonth+6;

if(thisDay == WED)
// for Monday increment 5 from Wed
dayOfMonth = dayOfMonth+5;

if(thisDay == THU)
// for Monday increment 4 from Thursday
dayOfMonth = dayOfMonth+4;

if(thisDay == FRI)
// for Monday increment 3 from Friday
dayOfMonth = dayOfMonth+3;

if(thisDay == SAT)
// for Monday increment 2 from Saturday

dayOfMonth = dayOfMonth+2;

return dayOfMonth;
}

The Custom Activity

Chapter 3 Advanced Office Setup Application 127

The method starts by formatting the Date string to make it more readable and generating a

unique pathname for a new file in the applications folder.

Note: For the code for formatDateString(), see the source code for
EmployeeTrainingPerformer.java.

Then it creates a file with the name it has just derived, and writes a welcome message for the

new employee into the file. This message includes the date of the employee’s orientation

training.

public String writeWelcomePage(String employeeName, int thisID,
String appPath, Date trainingDate)

{
// Format the date string to remove "00:00:00 PDT/PST"
String finalDate = formatDateString(trainingDate);

// File name is Employee name + ProcessInstance
String fileName = employeeName + thisID + ".html";

// Remove all white spaces from the filename
// URLS cannot have white spaces
fileName = fileName.replace(' ', '_');

// Get the pathname to the file in the Application's folder
String thisPath = appPath + fileName;

The Custom Activity

128 Process Manager Programming Guide • Version 6.0 Service Pack 2

Complete Source Code
For the complete source code, click the following links:

• EmployeeTrainingPerformer.java

• EmployeeTrainingPerformer.xml

• trainingDays.xml

// Make a file in this Application's folder
try {

RandomAccessFile HTMLfile = new RandomAccessFile (
thisPath, "rw");

HTMLfile.writeUTF("<HTML><HEAD>");
HTMLfile.writeUTF("<TITLE>New Employee Training</TITLE>");
HTMLfile.writeUTF("</HEAD>");
HTMLfile.writeUTF("<BODY>");
HTMLfile.writeUTF("<CENTER>");
HTMLfile.writeUTF(<H1>Hello <I> ");
HTMLfile.writeUTF(employeeName);
HTMLfile.writeUTF("</I></H1></CENTER>");
HTMLfile.writeUTF("<H3>Welcome to our company. </H3>");
HTMLfile.writeUTF("<P> Please attend new employee ");
HTMLfile.writeUTF("orientation training on ");
HTMLfile.writeUTF("<I>" + finalDate + " at 2 pm.</I>");
HTMLfile.writeUTF("in Room B3 above the cafeteria.</P>");
HTMLfile.writeUTF("<P>We'll have a tee-shirt and cap and ");
HTMLfile.writeUTF("other corporate goodies for you");
HTMLfile.writeUTF("at the training!</P>");
HTMLfile.writeUTF("</BODY>");
HTMLfile.writeUTF("</HTML>");
HTMLfile.close();

}

129

Chapter 4

Cluster Management

This chapter discusses the Java classes used for performing cluster administration tasks. This

chapter has the following sections:

• Introduction

• IPMClusterManager

• IPMCluster

• IPMClusterProperty

• PMClusterPropertyFactory

• Code Samples

Note: You can find all the necessary classes in the pm60classes.jar file. If you
have installed the Process Manager Builder, you can find this jar file in the
directory builder-root\support\sdk. You may also be able to find it on the CD.

Introduction
A Process Manager cluster contains the following components:

• a corporate user LDAP directory service

• a configuration LDAP directory service that stores the application definitions

• a relational database for user data

• one or more application servers

• an iPlanet Web Server

• a mail server for notifications

Introduction

130 Process Manager Programming Guide • Version 6.0 Service Pack 2

When deploying an application from Process Builder, application developers must identify the

cluster on which to deploy it. All applications in a cluster share the same common database and

directories. They access the same Directory Server for their process definitions and they use

the same set of cross-application tables in the database, as well as the same corporate users and

groups directory.

Using the Process Administrator interface, you can interactively modify a cluster.

You can build Java applications that programmatically perform Process Manager cluster

administration tasks. Process Manager has one cluster manager bean, IPMClusterManager. For

each separate cluster, there is an IPMCluster bean.

You can use the cluster manager bean to perform administrative tasks such as creating,

deleting, joining and unjoining clusters. You can also use the cluster manager bean to get

handles to individual clusters beans.

You can use the cluster bean to change properties of the cluster, to access and write to cluster

logs, and to retrieve information about the cluster such as getting installed applications, getting

path information, getting the finder and getting the deployment manager.

Given an individual cluster bean, you can get individual application beans. Given an application

bean, you can access any process instance or work item so long as you have the key, such as the

process instance ID.

For details of IPMClusterManager and IPMCluster beans see:

• IPMClusterManager

• IPMCluster

In Process Manager 6.0, there is only one cluster, but in future releases there may be multiple

clusters.

Clusters have properties. These are represented as IPMClusterProperty objects. Many of the

methods for working with clusters take IPMClusterProperty objects as arguments. To create

cluster property objects, you use IPMClusterPropertyFactory . For details see:

• IPMClusterProperty

• PMClusterPropertyFactory

At the end of this chapter, there is a coded example of creating a cluster.

• Code Samples

IPMClusterManager

Chapter 4 Cluster Management 131

IPMClusterManager
The IPMClusterManager bean can be thought as a manager of all the cluster beans in the

application server instance. In Process Manager 6.0, there is just one cluster, which is the

default cluster. The IPMClusterManager manages the default cluster bean. But in the future,

when Process Manager supports multiple clusters, the IPMClusterManager bean will manage

all the different clusters for that application server instance.

The following code shows how to access the cluster manager:

The IPMClusterManager bean is a stateless session bean that has methods for creating, joining,

accessing, unjoining and deleting clusters, and checking LDAP and database connections.

IPMCluster
IPMCluster objects represent individual clusters. For operations such as creating, deleting,

joining and unjoining clusters, you call methods on the cluster manager class,

IPMClusterManager, rather than calling methods on the cluster itself.

To get access to an IPMCluster method, call the getCluster() method on the

IPMClusterManager as illustrated in the following code sample:

// Get the cluster manager
IPMClusterManager myClusterManager = null;

try {
javax.naming.Context cxt = new javax.naming.InitialContext();
IPMClusterManagerHome clManagerHome = (IPMClusterManagerHome)

cxt.lookup(IPMClusterManager.JNDI_ROOT);
 myClusterManager = clManagerHome.create();
}

catch(Exception e)
{
 System.out.println("Cluster manager creation failed" + e);
}

IPMClusterProperty

132 Process Manager Programming Guide • Version 6.0 Service Pack 2

The IPMCluster bean has methods for changing cluster properties, accessing logs and

retrieving information about the cluster.

For details for the IPMCluster bean methods, see the javadocs, which can be found in the

support\sdk\docs directory of the Process Manager Builder installation.

IPMClusterProperty
The IPMClusterProperty interface is used in various cluster bean APIs. It is used to set and get

cluster properties.

When creating an IPMCluster, you first need to create an IPMClusterProperty and then use the

setValue() method to set the cluster properties. Table 4-1 lists the cluster properties that

must be set when creating a cluster. Table 4-2 lists cluster properties that specify URLs for

accessing various Process Manager components.

// Get the cluster manager
IPMClusterManager myClusterManager = null;

try {
javax.naming.Context cxt = new javax.naming.InitialContext();
IPMClusterManagerHome clManagerHome = (IPMClusterManagerHome)

cxt.lookup(IPMClusterManager.JNDI_ROOT);
 myClusterManager = clManagerHome.create();
}

catch(Exception e)
{
 System.out.println("Cluster manager creation failed" + e);
}

// Get the default cluster
IPMCluster myCluster = myClusterManager.getCluster(

IPMCluster.DEFAULT);

IPMClusterProperty

Chapter 4 Cluster Management 133

To create an IPMClusterProperty, use the create() method on IPMClusterPropertyFactory

as follows:

IPMClusterProperty prop1 = PMClusterPropertyFactory.create () ;

To get the existing IPMClusterProperty for a cluster, call getClusterProperty() on the

cluster, as follows:

IPMClusterProperty myProp = myCluster.getClusterProperty();

Table 4-1 Cluster properties

All properties are public static int

Cluster and configuration properties

• CLUSTER_DN the distinguished name (DN) of the cluster
entry

• CONFIGURATION_DIRECTORY_SERVER the host name where the configuration
directory resides

• CONFIGURATION_DIRECTORY_PORT the port number for the configuration
directory

• CONFIGURATION_DIRECTORY_BIND_
DN

the Bind DN of the configuration directory

• CONFIGURATION_DIRECTORY_BIND_
DN_ PASSWORD

the Bind DN password of the configuration
directory

Corporate directory properties

• CORPORATE_DIRECTORY_SERVER the host name where the corporate directory
resides

• CORPORATE_DIRECTORY_PORT the corporate directory port number

• CORPORATE_DIRECTORY_BASE the corporate directory base, for example:

ou=People, o=mcom.com

• CORPORATE_DIRECTORY_BIND_DN the corporate directory BIND DN, for example:

cn=Directory Manager

This property is optional when creating a
cluster.

• CORPORATE_DIRECTORY_BIND_DN_
PASSWORD

the corporate directory BIND DN Password.

This property is optional when creating a
cluster.

Database properties

IPMClusterProperty

134 Process Manager Programming Guide • Version 6.0 Service Pack 2

• DATABASE_TYPE the Database Type. The value can be:

IPMClusterProperty.ORACLE

IPMClusterProperty.SYBASE

• DATABASE_IDENTIFIER the database identifier

• DATABASE_NAME the database name (optional if the database
type is ORACLE)

• DATABASE_USER_NAME the database user name

• DATABASE_PASSWORD the database password

General properties

• DESCRIPTION the description of the cluster

• PRETTY_NAME the pretty name of the cluster that appears in
the Builder.

This property is optional when creating a
cluster.

• SMTP_SERVER the SMTP server host name.

This property is optional when creating a
cluster.

• SMTP_PORT the SMTP port number .

This property is optional when creating a
cluster.

• SMTP_REPLY_TO the SMTP reply to.

This property is optional when creating a
cluster.

Table 4-2 URL Properties

All properties are public static int

• DEPLOY_URL The URL where Process Manager
applications are deployed.

• EXPRESS_URL The URL for the Process Manager Express

• ADMINISTRATOR_URL The URL for the Process Administration
interface

Table 4-1 Cluster properties

IPMClusterProperty

Chapter 4 Cluster Management 135

Other pre-defined variables are listed in Table 4-4.

Getting and Setting Property Values
To retrieve or set properties, use the methods:

• BUSINESS_URL The URL for the Process Business
Manager’s interface

• APPLICATION_URL

Table 4-3 Event Properties

All properties are public static int

• EVENT_USER The cluster uses the EVENT_USER ID
when it makes asynchronous requests into
the Process Manager Engine, such as
when the timer agent checks for expired
work items.

This user and password combination
should be a valid combination inside the
corporate directory.

• EVENT_USER_PASSWORD Password for the EVENT_USER.

Table 4-4 Other static int variables

• ORACLE

• SYBASE

These are used as the values of the DATABASE_TYPE
variable.

• LOG_INFORMATION

• LOG_SECURITY

• LOG_ERROR

These are used as an argument to the getLog() method
on IPMCluster to specify what kind of log to retrieve.

Table 4-2 URL Properties

PMClusterPropertyFactory

136 Process Manager Programming Guide • Version 6.0 Service Pack 2

• getValue

• setValue

• getProperties

For on the property value settings, see the javadocs, which can be found in the

support\sdk\docs directory of the Process Manager Builder installation.

PMClusterPropertyFactory
The purpose of this class is to create new IPMClusterProperty objects, which contain the

properties for a cluster.

// Create a PMClusterProperty object
IPMClusterProperty prop1 = PMClusterPropertyFactory.create () ;

 IPMClusterProperty prop = PMClusterPropertyFactory.create ();
// Set the various properties of the interface
....
....
...
// look up in JNDI name space to get a handle on the
// IPMClusterManager bean interface
...
....
// maybe, then create a cluster
IPMClusterManager.createCluster (prop) ;

Code Samples

Chapter 4 Cluster Management 137

Code Samples
This section presents the following code samples:

• Mount the Cluster Manager and Get the Default Cluster

• Create a Cluster

• Get and Set Cluster Properties

Mount the Cluster Manager and Get the Default
Cluster
This code sample gets the cluster manager and the default cluster.

// Get the cluster manager
IPMClusterManager myClusterManager = null;

try {
javax.naming.Context cxt = new javax.naming.InitialContext();
IPMClusterManagerHome clManagerHome = (IPMClusterManagerHome)

cxt.lookup(IPMClusterManager.JNDI_ROOT);
 myClusterManager = clManagerHome.create();
}

catch(Exception e)
{
 System.out.println("Cluster manager creation failed" + e);
}

// Get the default cluster
IPMCluster myCluster = myClusterManager.getCluster(

IPMCluster.DEFAULT);

Code Samples

138 Process Manager Programming Guide • Version 6.0 Service Pack 2

Create a Cluster
This code sample creates a new cluster, which overwrites the existing one in Process Manager

6.0, since only one cluster is supported at a time.

Get and Set Cluster Properties
This code sample gets and sets cluster properties.

// Create a PMClusterProperty object
IPMClusterProperty prop1 = PMClusterPropertyFactory.create () ;

// Populate the properties in the PMClusterProperty object
prop1.setValue(IPMClusterProperty.CONFIGURATION_DIRECTORY_SERVER
, "westminster");
prop1.setValue(IPMClusterProperty.CONFIGURATION_DIRECTORY_PORT,
"4141");

// Continue setting properties
...

// Now create the cluster
IPMCluster cluster1 = myClusterManager.createCluster(prop1);

Code Samples

Chapter 4 Cluster Management 139

// myCluster is the default cluster

// Get some properties
IPMClusterProperty myProp = myCluster.getClusterProperty();
String description =
myProp.getValue(IPMClusterProperty.DESCRIPTION);

// Change some property values
IPMClusterProperty myProp = myCluster.getClusterProperty();
myProp.setValue(IPMClusterProperty.DESCRIPTION,

"New cluster description");
myProp.setValue(IPMClusterProperty.SMTP_REPLY_TO ,

"pmadministrator@netscape.com");

// Save the changes to the cluster
myProp.changeCluster(myprop);

Code Samples

140 Process Manager Programming Guide • Version 6.0 Service Pack 2

141

Chapter 5

Deployment Manager

The deployment manager is responsible for installing and removing applications from the

cluster. The deployment manager is also responsible for changing the deployment state of a

deployed application by changing its deployment descriptor when applicable.

Process Manager clients can access the deployment manager by calling the

getDeploymentManager() method on the cluster bean which is described in Chapter 4,

“Cluster Management.” Given the deployment manager, you can access the deployment

descriptor for individual applications. Given a deployment descriptor, you can change the

application’s stage, status, mode and testing state. For explanations of these states, see the

section “Deployment States”. (Note however that you cannot programmatically install

applications, they must be deployed from the Process Builder.)

This chapter has the following sections:

• Deployment States

• IDeploymentManager Interface

• IDeploymentDescriptor Interface

Note: You can find all the necessary classes in the pm60classes.jar file. If you
have installed the Process Manager Builder, you can find this jar file in the
directory builder-root\support\sdk. You may also be able to find it on the CD.

Deployment States
The deployment descriptor for a deployed applications specifies the following states for the

application:

• STAGE

• MODE

Deployment States

142 Process Manager Programming Guide • Version 6.0 Service Pack 2

• STATUS

• TESTING

STAGE
The application can be either in DEVELOPMENT stage or in PRODUCTION stage.

• DEVELOPMENT stage -- the application can be completely rewritten from the Process

Builder.

• PRODUCTION stage -- only limited changes can be made from the Process Builder.

The stage can be changed programmatically. In the interface, the change from

DEVELOPMENT to PRODUCTION can only done from the Process Builder and NOT

from the Administrator UI.

Note: An application in the production stage can be in the testing state which means that even
though the changes that can be made from the Process Builder are restrictive all the work items

can still be assigned to the creator of the process instance. This kind of a scenario is useful

when an application has been deployed to production but a final pass is being made to make

sure that everything is working.

MODE
The mode of the application can be either OPEN or CLOSED

• OPEN mode -- new process instances can be created.

• CLOSED mode -- no new process instances can be created but old process instances can

continue through the system to completion.

The mode can be changed programmatically. In the interface, administrators can change the

MODE from OPEN to CLOSED and back to OPEN from the Administrator UI.

STATUS
The application STATUS can be either STARTED or STOPPED.

• STARTED status -- the application can be accessed from the Express UI.

• STOPPED status -- the application cannot be accessed through the Express UI.

IDeploymentManager Interface

Chapter 5 Deployment Manager 143

The stage can be changed programmatically. In the interface, administrators can change the

STATUS from STARTED to STOPPED and back to STARTED from the Administrator UI.

TESTING
The TESTING state can be either TRUE or FALSE.

• TRUE -- all work items are automatically assigned to the creator of the process instance.

• FALSE -- the work items are assigned to the real user.

The stage can be changed programmatically. In the interface, administrators can change the

TESTING from TRUE to FALSE and back to FALSE from the Administrator UI.

Note: An application in the production stage can be in the testing state which means that even
though the changes that can be made from the Process Builder are restrictive all the wartimes

can still be assigned to the creator of the process instance. This kind of a scenario is useful

when an application has been deployed to production but a final pass is being made to make

sure that everything is working.

IDeploymentManager Interface
Use the IDeploymentManager interface to get access to the deployment descriptors for

installed applications and to remove an application. Given the deployment descriptor for an

application, you can change deployment details, such as changing its stage, status, mode, and

testing state.

To get the IDeploymentManager for a cluster, call the getDeploymentManager() method

on the relevant IPMCluster object. For an example of accessing the deployment manager, see

the code sample in the section "IDeploymentDescriptor Interface."

Where are the Classes and Interfaces?
The cluster manager and all classes related to the cluster are in the

com.netscape.pm.model package.

The deployment manager and deployment descriptor classes are in the

com.netscape.pm.dm package.

All the classes are in the pm60classes.jar file. If you have installed the Process Manager

Builder, you can find this jar file in the directory builder-root\support\sdk. You may

also be able to find it on the CD.

IDeploymentDescriptor Interface

144 Process Manager Programming Guide • Version 6.0 Service Pack 2

IDeploymentDescriptor Interface
Given the deployment manager, clients can call getInstalledApplications() to get a

hashtable of deployment descriptors for all installed applications. The hashtable is keyed by

application name. You can then access the hashtable to retrieve the deployment descriptor for

an individual application.

Given the deployment descriptor, you can call methods to find an application’s stage, mode

and status.

Code Example
The following code example illustrates how to get the deployment descriptor for an application

named myApp.

IDeploymentDescriptor Interface

Chapter 5 Deployment Manager 145

Each application has a deployment descriptor that contains the current settings for the mode,

stage, status and testing state of the application. Clients can access the deployment descriptor

of a particular application to manipulate these individual parameters.

for more details, see the javadocs, which can be found in the support\sdk\docs directory

of the Process Manager Builder installation.

// Get the cluster manager
IPMClusterManager myClusterManager = null;
try {

 javax.naming.Context cxt = new javax.naming.InitialContext();
 IPMClusterManagerHome clManagerHome = (IPMClusterManagerHome)

cxt.lookup(IPMClusterManager.JNDI_ROOT);
 myClusterManager = clManagerHome.create();
}

catch(Exception e)
{
 System.out.println("Cluster manager creation failed" + e);
}

// Get the default cluster
IPMCluster myCluster = myClusterManager.getCluster(

IPMCluster.DEFAULT);

// Get the deployment manager
IDeploymentManager myDepManager = myCluster.getDeploymentManager();

// Get a hastable of all installed apps
Hashtable appList = myDepManager.getInstalledApplications ();

// Get the deployment descriptor for myapp
IDeploymentDescriptor myAppDD = appList.get ("myapp");

IDeploymentDescriptor Interface

146 Process Manager Programming Guide • Version 6.0 Service Pack 2

147

Chapter 6

Working with Applications, Process
Instances and Work Items

The Process Manager Application API provides classes and methods that let you find and

work with applications, process instances and work items. You would use this API to build

Java applications that embed the functionality of the Process Manager engine.

For example, you can create back-end systems that create process instances programmatically

rather than through the UI.. After creating a process instance, the back-end system can check

its status and interact with work items.

You can also use the Process Manager Application API to write your own front-end

user-interface to the Process Manager engine so that your users use the new interface rather

than using the Process Express. For example, suppose you want to have a batch delegate UI.

The inbuilt delegate feature only allows you to delegate one work item. You could write a

web-based UI that allows the user to select multiple work items. Then in the back-end, you

would call wi.delegate() repeatedly for each work item.

In every Process Manager installation, a cluster manager bean manages the Process Manager

clusters. Given the cluster manager bean, you can get access to individual cluster beans. Given

an individual cluster bean, you can access the application bean for the cluster. Given the

application bean, you can find and work with individual process instances and work items in

the application.

See Chapter 4, “Cluster Management” for information about accessing the cluster manager and

individual cluster beans.

The Application API consists of the following interfaces:

• IPMApplication -- has methods for finding work items and process instances, and for

testing the state of an application.

IPMApplication

148 Process Manager Programming Guide • March 2001

• To get a handle to a specific application, mount the application bean. For example: -- has

methods for working with individual process instances, such as getting and setting data

field values, getting information such as the creation date and creator, changing the state,

and suspending, terminating or resuming the process instance.

• To get a handle to a specific application, mount the application bean. For example: -- has

methods for working with individual work items, such as changing assignees, expiring or

extending the expiration date, finding which node (activity) it is at,and suspending or

resuming it.

• IFinder -- has methods for finding process instances and work items in the application.

You can find all the necessary classes in the pm60classes.jar file. If you have installed the

Process Manager Builder, you can find this jar file in the directory

builder-root\support\sdk. You may also be able to find it on the CD.

IPMApplication
The application bean is the main access point for process instances. It has methods that allow

the user to initiate and edit process instances and work items associated with the application.

The IPMApplication bean is best thought of as a factory for PIs and WIs.

It also has methods that let you get the application’s stage, mode, status and testing state. See

the section “Deployment States” in Chapter 5, “Deployment Manager” for more information

about these settings.

To remove an application or to change its state, use the IDeploymentDescriptor interface, as

discussed in Chapter 5, “Deployment Manager.”

IPMApplication

Chapter 6 Working with Applications, Process Instances and Work Items 149

To get a handle to a specific application, mount the application bean. For example:

All the methods on IPMApplication throw a PMException in case of error. The methods

findPI and findWI also throw XProcessInstanceNotFound and

XWorkItemNotFound respectively in the event the object cannot be located.

For details of the methods on IPMApplication, consult the javadocs, which are in the

support\sdk\docs directory of the Process Manager Builder installation directory.

String jndiName = IPMApplication.DEFAULT_JNDI_ROOT + "/" + appName;

try
{

javax.naming.Context cxt = javax.naming.InitialContext () ;
IPMApplicationHome home = (IPMApplicationHome)

cxt.lookup(jndiName);
IPMApplication myApp = home.create();

}
catch(Exception e)
{
}

// myApp is a mounted application bean
IProcessInstancePK pk = ProcessInstancePKFactory.create(PID);
pk.setEditable(true); // for update
IProcessInstance pi = myApp.findProcessInstance(pk);

IProcessInstance

150 Process Manager Programming Guide • March 2001

IProcessInstance
The IProcessInstance Interface has methods for getting information about process instances

and for performing operations on them such as suspending and resuming them or setting their

data field values.

Given an IPMCluster bean (see Chapter 4, “Cluster Management”) you can get the Finder bean

for the cluster. Given the Finder bean you can call the findMyInstances() method to find

all process instances in the cluster.

Given an application bean, you can find a specific process instance by calling its

findProcessInstance() method and specifying the process instance’s key.

For example:

For details of the methods on IProcessInstance, consult the javadocs, which are in the

support\sdk\docs directory of the Process Manager Builder installation directory.

IWorkItem
The IWorkItem Interface has methods for getting information about work items and for

performing operations on them such as changing their assignees, expiring them or extending

the expiration date, suspendig them or resuming them and so on.

Given an IPMCluster bean (see Chapter 4, “Cluster Management”) you can get the Finder bean

for the cluster. Given the Finder bean you can call the findWorkItems() method to find all

work items in the cluster. If you know the key for a specific process instance, you can use the

Finder bean to find all the work items in a specific process instance.

Given a cluster bean, you can also get an application bean for a specific application. Given the

application bean, you can get a specific work item by calling its findWorkItem() method and

specifying the work item’s key.

For details of the methods on IWorkItem, consult the javadocs, which are in the

support\sdk\docs directory of the Process Manager Builder installation directory.

IFinder
The Ifinder bean is the access point for getting lists of work items and process instances.

IFinder

Chapter 6 Working with Applications, Process Instances and Work Items 151

In every Process Manager installation, a cluster manager bean manages the Process Manager

clusters. Given the cluster manager bean, you can get access to individual cluster beans. Given

an individual cluster bean, you can get the finder bean for the cluster by calling the

getFinder() method.

The finder has methods for getting worklists, which are lists of work items. The worklist

queries only return IWorkItems currently assigned to the principal in read-only mode; the

principal cannot retrieve an IWorkItem that is not assigned to them via this interface.

The finder has methods for getting process instances. The process instance search methods

only return IProcessInstances that were created by the principal in read-only mode; the

principal cannot gain access to a process instance that they did not initiate.

For details of the IFinder methods, see the javadocs, which can be found in the

support\sdk\docs directory of the Process Manager Builder installation.

IFinder

152 Process Manager Programming Guide • March 2001

153

Index

A
activities

custom, 11
adding

custom activities to an application, 30
custom data fields to an application, 71

ADMINISTRATOR_URL, 134
AdvancedOfficeSetup

sample application, 93
API

for clusters, 131
for custom data field classes, 80
SimpleWorkPerformer for custom activities, 13

APPLICATION_URL, 135
archive()

discussion, 69
method, 82

B
BasicCustomField

class, 80
custom data fields, 48

BubbleHelp value
NAME attribute of DESIGN tag, 26

BUSINESS_URL, 135

C
class reference

classes for custom data fields, 80
for clusters, 131
SimpleWorkPerformer for custom activities, 13

CLASS_ID attribute
WORKPERFORMER tag, 21

CLOSED mode, 142
cluster management

classes for, 130
introduction, 129

CLUSTER_DN, 133
clusters

code samples, 137
example of creating, 138
example of getting and setting properties, 138
getting and setting property values, 135
getting properties, 131
introduction, 129
mount cluster manager, 137
programmatic interaction, 129
properties, 133

cn
data field property, 46

CONFIGURATION_DIRECTORY_BIND_ DN, 133
CONFIGURATION_DIRECTORY_BIND_ DN_

PASSWORD, 133
CONFIGURATION_DIRECTORY_PORT, 133
CONFIGURATION_DIRECTORY_SERVER, 133
CORPORATE_DIRECTORY_BASE, 133
CORPORATE_DIRECTORY_BIND_DN, 133

154 Process Manager Programmer’s Guide • 6.0 (SP1)

CORPORATE_DIRECTORY_BIND_DN_
PASSWORD, 133

CORPORATE_DIRECTORY_PORT, 133
CORPORATE_DIRECTORY_SERVER, 133
create()

BasicCustomField discussion, 61
BasicCustomField method, 82
when is it called on BasicCustomField, 48

creating
custom activities, 12
custom data fields, 41

custom activities, 11
adding to process map, 30
adding using a custom palette, 31
adding without using a custom palette, 34
example in AdvancedOfficeSetup, 114
image for, 26
implementation tips, 35
mapping data field values to input

parameters, 22
mapping output values to data fields, 24
overview of creating, 12
packaging, 29
sample class, 14
working with in the Process Builder, 35
XML description file, 19

custom data fields, 41, 48
adding to an application, 71
BasicCustomField, 48
class reference, 80
debugging hints, 79
development hints, 73
displaying debugging info, 79
entity keys, 77
example, 73
example create() method, 61
example display() method, 53
example in AdvancedOfficeSetup, 95
example load() method, 63
example store() method, 67
example update() method, 60
getting values that were set in the Builder, 50
images for PM Builder, 69
individual properties, 47
introduction, 41
jar file for compiling, 48

logging errors, 80
method invocation order, 48
packaging, 69
required properties, 46
steps for creating, 42
view versus edit mode, 52
writing to the HTML page, 52
wrting Java classes, 47

customerName data field, 15

D
data dictionary

adding custom data fields, 72
DATABASE_IDENTIFIER, 134
DATABASE_NAME, 134
DATABASE_PASSWORD, 134
DATABASE_TYPE, 134
DATABASE_USER_NAME, 134
debugging hints

custom data fields, 79
default cluster

getting, 137
DEFAULTVALUE attribute

JSB_PROPERTY tag, 45
defining

custom activities, 11
custom data fields, 41

DEPLOY_URL, 134
deployment

to a cluster, 130
deployment manager, 141

accessing, 141
getting, 143

deployment states, 141
MODE, 142
STAGE, 142
STATUS, 142
TESTING, 143

DESCRIPTION
cluster property, 134

description
data field property, 46

Index 155

DESCRIPTION attribute
PARAMETER tag, 26

DESIGN tag, 26
destroy() method, 14
development hints

for custom activities, 35
for custom data fields, 73

DEVELOPMENT stage, 142
display(), 83

discussion, 52
example, 53
example in AdvancedOfficeSetup, 97
overview, 48

DISPLAYNAME attribute
JSB_DESCRIPTOR tag, 43
JSB_PROPERTY tag, 45

E
EDITABLE attribute

PARAMETER tag, 26
EDITOR attribute

PARAMETER tag, 26
EmployeeTrainingPerformer.java, 128
EmployeeTrainingPerformer.xml, 115, 128
entity fields, 42
entity keys, 77
ENVIRONMENT tag, 21
environment variables

in custom activities, 13
examples

creating a cluster, 138
custom activity, 14
custom data field, 73
deployment descriptors, 144
getting and setting cluster properties, 138
programmatically interacting with clusters, 137
xml description file for custom activity, 27

EXPRESS_URL, 134

F
fetchDataFromXML(), 110
fieldclassid

data field property, 46
fieldtype

data field property, 47
finder bean, 149
finding

process instances and work items, 149
forms

parsing submitted values, 59
what happens on submit, 59

G
get()

hashtable method, 14
getClusterProperty(), 131
getData()

custom data fields, 53
using in custom activities, 22
what it does, 62

getEntityKey(), 77
calling from load(), 63

getMyApplicationsPath(), 109
getName(), 84
getParameter()

IPMRequest, 59
getPMApplication(), 85
getPrettyName(), 86
greeting data field, 15

H
HelloWorld.xml, 27
HelloWorldPerformer, 14
help

data field property, 46
HelpUrl value

156 Process Manager Programmer’s Guide • 6.0 (SP1)

NAME attribute of DESIGN tag, 26
HTML pages

writing to in custom data fields, 52

I
Icon value

NAME attribute of DESIGN tag, 26
IDataElement, 48
IDeploymentDescriptor, 144
IDeploymentManager, 143
IFinder, 149
IHTMLPage

input paramter to display() method, 52
images

for custom activities, 26
for custom data fields, 69

implementing
ISimpleWorkPerformer, 12

IncrementForDayOfWeek(), 125
init() method

ISimple WorkPerformer, 13
input hashtable, 14, 22

getting data field values, 22
INPUT tag, 22
IPMApplication, 149
IPMCluster, 131
IPMClusterManager, 131
IPMClusterProperty, 132
IPMElement, 81
IPMRequest

parsing form element values, 59
IPresentationElement, 48
IProcessInstance, 149
ISDESIGNTIMEREADONLY attribute

JSB_PROPERTY tag, 45
ISEXPERT attribute

JSB_PROPERTY tag, 46
ISimpleWorkPerformer, 12

implementing, 12
methods of, 13

IWorkItem, 149

J
jar files

for compiling cluster classes, 129, 141
for compiling custom activities, 12
for compiling custom data fields, 48
for compiling deployment manager classes, 143
for packaging custom activities, 29
for packaging custom data fields, 48
pm60classes.jar, 12, 129, 141

javadocs, 10, 132, 136, 145, 149
JSB file, 42

general structure, 43
JSB_DESCRIPTOR tag, 43
JSB_PROPERTY tag, 44, 45

K
kjs

displaying debugging info, 79
starting, 79

L
Label value

NAME attribute of DESIGN tag, 26
Language property

HelloWorld sample application, 15
load(), 86

discussion, 62
example, 63
example in AdvancedOfficeSetup, 106

loadDataElementProperties
example in AdvancedOfficeSetup, 96

loadDataElementProperties(), 87
discussion, 50

LOG_ERROR, 135
LOG_INFORMATION, 135
LOG_SECURITY, 135

Index 157

M
MapIcon value

NAME attribute of DESIGN tag, 27
mapping

data fields to input parameters, 22
output values to data fields, 24

mapTo(), 24
menuOptions.xml, 114
MODE

deployment state, 142
mounting

cluster manager, 137
myNewCustomField, 70
myObject.java, 114

N
NAME attribute

JSB_DESCRIPTOR tag, 43
JSB_PROPERTY tag, 45
PARAMETER tag, 25
WORKPERFORMER tag, 21

non-default constructors
for custom data fields, 74

O
OPEN mode, 142
ORACLE, 135
output hashtable, 14, 24
OUTPUT tag, 24

P
packaging

custom activities, 29
custom data fields, 69

PARAMETER tag, 25

parseForItemTag(), 112
perform()

example in AdvancedOfficeSetup, 118
perform() method, 14
PM Builder

images for data fields, 69
pm60classes.jar, 12, 48, 129, 141
PMClusterPropertyFactory, 136
predefined data fields, 41
preface, 7
PRETTY_NAME

cluster property, 134
prettyname

data field property, 46
process instances

finding, 149
process map

adding custom activities, 30
PRODUCTION stage, 142
put()

hashtable method, 14

R
readSchedule(), 120
required properties

of data fields, 46

S
sample applications

AdvancedOfficeSetup, 93
samples

see examples
scheduleTraining(), 123
SelectedMapIcon value

NAME attribute of DESIGN tag, 27
setData()

using inside load(), 63
when used, 66

158 Process Manager Programmer’s Guide • 6.0 (SP1)

setEntityKey(), 77
used in store(), 66

SHORTDESCRIPTION attribute
JSB_DESCRIPTOR tag, 43
JSB_PROPERTY tag, 45

SMTP_PORT, 134
SMTP_REPLY_TO, 134
SMTP_SERVER, 134
STAGE

deployment state, 142
STARTED status, 142
STATUS

deployment state, 142
STOPPED status, 142
store(), 88

discussion, 65
example, 67
example in AdvancedOfficeSetup, 104
indications of errors, 80

SYBASE, 135

T
TESTING

deployment state, 143
trainingDays.xml, 114, 128
TreeViewIcon value

NAME attribute of DESIGN tag, 27
TYPE attribute

JSB_PROPERTY tag, 45
PARAMETER tag, 26
WORKPERFORMER tag, 21

U
updatabableList.jsb, 114
updatableList.java, 114
update(), 89

discussion, 59
example, 60

example in AdvancedOfficeSetup, 103
overview, 48

URLs
ADMINISTRATOR_URL, 134
APPLICATION_URL, 135
BUSINESS_URL, 135
DEPLOY_URL, 134
EXPRESS_URL, 134

V
VALUESET attribute

JSB_PROPERTY tag, 45
PARAMETER tag, 26

VERSION attribute
WORKPERFORMER tag, 21

W
work items

finding, 149
WORKPERFORMER tag, 21
write()

writing to an HTML page, 52
writeWelcomePage(), 126

X
XML description file

for custom activities, 19
format of, 19
sample for custom activity, 27

	Process Manager Programming Guide
	iPlanet Process Manager
	Version 6.0 Service Pack 2
	Process Manager Programming Guide Contents
	Introduction 7
	Chapter�1

	Writing Custom Activities 11
	Chapter�2

	Writing Custom Data Fields 41
	Chapter�3

	Advanced Office Setup Application 93
	Chapter�4

	Cluster Management 129
	Chapter�5

	Deployment Manager 141
	Chapter�6

	Working with Applications, Process Instances and Work Items 147

	Introduction
	About This Book
	Developing Process Manager Applications
	Interacting with Clusters and Deployed Applications

	Assumptions
	Conventions Used in This Guide
	For More Information

	Chapter�1
	Writing Custom Activities
	Introduction
	Comparison to Automated Activities
	Overview of Creating a Custom Activity

	Implementing ISimpleWorkPerformer
	Methods of ISimpleWorkPerformer
	Sample Java Class

	Writing the XML Description File
	File Format
	Sample XML Description File

	Packaging a Custom Activity
	Adding a Custom Activity to the Process Map
	Adding a Custom Activity from a Custom Palette
	Adding a Custom Activity without Using a Custom Palette

	Working with a Custom Activity
	Implementation Tips
	Avoid Instance Data
	Use Consistent Data Types
	Avoid Non-default Constructors
	Use One Implementation of a Java Class Per Server
	When to Use a Custom Activity

	Example Custom Activity

	Chapter�2
	Writing Custom Data Fields
	Introduction
	Steps for Creating a Custom Field

	Defining Field Properties in a JSB File
	JSB_DESCRIPTOR Tag
	JSB_PROPERTY Tag

	Writing the Java Classes
	Define a Subclass of BasicCustomField
	The Methods in Detail

	Specifying Images for Use in Process Builder
	Packaging a Custom Field
	Adding a Custom Field to an Application
	Example Custom Data Field
	Development Hints and Tips
	Avoid Non-default Constructors
	Avoid Instance Data
	Use Entity Keys
	Deploy the Custom Field to Test It
	Develop and Test on a Server Where Process Manager is Installed
	Use One Implementation of a Java Class Per Server
	Debugging Hints

	Class Reference
	BasicCustomField
	archive()
	create()
	display()
	getName()
	getPMApplication()
	getPrettyName()
	load()
	loadDataElementProperties()
	store()
	update

	IPMRequest
	getAuthenticatedUserId
	getParameter
	isParameterDefined

	Chapter�3
	Advanced Office Setup Application
	Changes in the Advanced Office Setup Application
	The Custom Data Field
	Overview
	The Code in Detail
	Complete Source Code

	The Custom Activity
	Overview
	The Code in Detail
	Complete Source Code

	Chapter�4
	Cluster Management
	Introduction
	IPMClusterManager
	IPMCluster
	IPMClusterProperty
	Getting and Setting Property Values

	PMClusterPropertyFactory
	Code Samples
	Mount the Cluster Manager and Get the Default Cluster
	Create a Cluster
	Get and Set Cluster Properties

	Chapter�5
	Deployment Manager
	Deployment States
	STAGE
	MODE
	STATUS
	TESTING

	IDeploymentManager Interface
	Where are the Classes and Interfaces?

	IDeploymentDescriptor Interface
	Code Example

	Chapter�6
	Working with Applications, Process Instances and Work Items
	IPMApplication
	IProcessInstance
	IWorkItem
	IFinder

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

