Server-Side JavaScript Guide

iPlanet Web Server, Enterprise Edition

Version4.1

BXX-XXXX-XX
August 2000

Copyright © 2000 Sun Microsystems, Inc. Some preexisting portions Copyright © 2000 Netscape
Communications Corporation. All rights reserved.

Sun, Sun Microsystems, and the Sun logo, iPlanet, and the iPlanet logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. Netscape and the
Netscape N logo are registered trademarks of Netscape Communications Corporation in the U.S.
and other countries. Other Netscape logos, product names, and service names are also trademarks
of Netscape Communications Corporation, which may be registered in other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms
and Conditions

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of the product or this document may be reproduced in any
form by any means without prior written authorization of the Sun-Netscape Alliance and its
licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS I1S” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2000 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2000
Netscape Communication Corp. Tous droits réservés.

Sun, Sun Microsystems, et the Sun logo, iPlanet, and the iPlanet logo sont des marques de fabrique
ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays. Netscape et the
Netscape N logo sont des marques déposées de Netscape Communications Corporation aux
Etats-Unis et d’autre pays. Les autres logos, les noms de produit, et les noms de service de Netscape
sont des marques déposées de Netscape Communications Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent
I'utilisation, la copie, la distribution et la décompilation. Aucune partie de ce produit ni de ce
document ne peut étre reproduite sous quelque forme ou par quelque moyen que ce soit sans
I'autorisation écrite préalable de I’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de
licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS EXPRESSES
OU IMPLICITES, TOUTES REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE
GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A UN BUT PARTICULIER OU DE NON
CONTREFACON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES EXCLUSIONS
SERAIENT CONTRAIRES A LA LOI.

Contents

Preface .. 11

What's New inthisRelease i e 11
SUPPOrt for JavaSCript 1.4 . .. e 12
Changes to the JavaScript Application Managert .13
What You Should Already KNOW 14
JAVASCHIPE VerSIONS . .. oo e e e e 15
Where to Find JavaScript Information 15
Upgrading from an Earlier Release 17
Backward Compatibility with Earlier Releases i 17
Document CONVENTIONSttt et et e e e e e e 18
Chapter 1 JavaScript OVEIrVIEWttt e e e e 19
WAt IS JaVaSCriPt? . ..o 19
Core, Client-Side, and Server-Side JavaSCriptt 20
(0] 3=\ 7= 5 To] T o | 21
Client-Side JavaSCript oo 21
Server-Side JavaSCripl 23
JavaSCript and JaVva 26
Debugging JavaSCript 28
ViSUAl JaVaS I . oo 28
JavaScript and the ECMA Specification 28
Relationship Between JavaScript and ECMA Versions ... 29
JavaScript Documentation vs. the ECMA Specification 29
JavaScript and ECMA Terminologyt e 29

Part 1 Developing Server Applications e 31

Pt e 31
Chapter 2 Getting Started 33
Architecture of JavaScript Applications e 34
SYStem REQUITEMENTSottt e e e e e e e e e 37
Configuration Information 39

Enabling Server-Side JavaSCript e 39
Protecting the Application Managert e 40
Setting Up for LIVECONNECEo e e e e e 41
Locating the Compiler o e 41
Chapter 3 Mechanics of Developing JavaScript Applications 43
Basic Steps in Building an Application i 44
JavaScript Application Manager OVEIVIEWttt e 46
Creating Application Source Files i 49
Compiling an ApPliCatioN o 50
Installing a New Application 54
APPHCAION URLS ... e 56
Controlling Accessto an Application i 58
Modifying an Application 59
Removing an Application 59
Starting, Stopping, and Restarting an Application i 59
Running an Application 61
Debugging an Application i 61
Using the Application Manager for Debugging i i 61
UsSiNg DebUG URLS ... o e 63
Using the debug FUNCLION e e 63
Deploying an Application 63
Application Manager Details 64
Configuring Default Settingso ot 64
Underthe Hood 66

4 Administrator's Guide * August 1999

Part

2 Server-Side JavaScript Features i e 69

e e e 69
Chapter 4 Quick Start with the Sample Applications 71
About Server-Side JavaScript Sample Applications 71
Hello WOrld 73

What Hello WOrld DOESo e 74
Looking at the SOUICe SCIiPLo e e e 75
Modifying Hello World o 78
HanNgman ... 79
Looking atthe Source Files 80
Debugging Hangman 84
Chapter 5 Basics of Server-Side JavaScript 87
What to DOWNAEIE 88
Overview of RUNTIME ProCesSiNgottt e e e e 89
Server-Side Language OVEIVIEWttt e et e 93
L (0] (0] 177 0 1= 93
L= T T 94
ENVITONMENT . 95
Classes and OB ECtS . ..ottt e 96
Embedding JavaScript in HTML o e e e 98
The SERVER 180 . ..ottt e e e e 99
BaCKQUOTES . . . o 100
When to Use Each Technique e e 102
Runtime Processing onthe Server 103
Constructing the HTML Paget e e e 107
Generating HT ML ... o 107
Flushing the Output Bufer e e e 108
Changingtoa New Client Requestot e e e 109
Accessing CGlVariableso 110
Communicating Between Serverand Client i i 114
Sending Values from Client to Servero e 114
Sending Values from Serverto Client i 119
USING CO0KIES . ..ottt 122
Garbage ColleCtion o 126
Error Handling in Server-Side JavaScript i 127
Chapter 6 Session Management SErviCettt 129
Overview of the Predefined Objects o i e 129

6

The request ObjeCt 133

PrOPE IS . o 134
Working with Image Maps o 135
The client ObjJeCto 136
PrOPE IS . o 137
Uniquely Referring to the client Object 139
Creating a Custom client Object 140
The Project ObJECt 144
[(0T 0 1=T o AT 144
Sharing the project ObJect 145
The Server ODJeCt o 145
PrOPE IS . o 146
Sharing the server ObJect 147
Techniques for Maintaining the client Object e 147
Comparing Client-Maintenance TeChNiques e 148
Client-Side TeChNIQUESo e e e e 151
Server-Side TeChNIQUESo 155
The Lifetime of the client Object 158
Manually Appending client Propertiesto URLS 160
Sharing Objects Safely with Locking e 163
Using Instances 0f LOCK 164
Special Locks for project and server ObJects it 168
Avoiding Deadlock o e 169
Chapter 7 Other JavaScript Functionality i 175
Ml SEIVICE . .. 176
File SYstem SerViCe 180
Security ConSIderations i 180
Creating a File Object 180
Opening and Closing aFile 181
LocKING FIles . . . e 182
Working With Files o 183
EXAmMIe . 186
Working with External Libraries 187
Guidelines for Writing Native FUNCLIONS e 188
Identifying Library Files 189
Registering Native FUNCLIONS o e 189
Using Native Functions in JavaScript o e 190
Request and Response Manipulation i 192
Request Header 193
ReqUEST BOY 194
ReSpONSE Header 196

Administrator's Guide * August 1999

Part 3 LiveWire Database ServiCe it e 197

2 L S 197
Chapter 8 ConnectingtoaDatabase i 199
Interactions With Databases it 200
ApPProaches to CONNECLINGttt e e e et e e e e et e 201
Database ConNection POOIS 202
Single-Threaded and Multithreaded Databases 204

GUIEIINES .. 205
Managing Connection POOIS 207
Sharing a Fixed Set of Connection Pools i 208
Sharing an Array of Connection POOIS i e 209
Individual Database CONNECLIONS et e 212
Maintaining a Connection ACrossS REQUESESottt e 214
Waiting for a CONNECLION o e e e 217
Retrieving an Idle CONNECLION i e 218
Chapter 9 Working with aDatabase i 225
Interacting with a Relational Database i e 225
Automatically Displaying Query ResUlts i e e 226
Executing Arbitrary SQL Statements i 227
Manipulating Query Results With CUISOrSt e e e 228
Creating @ CUISOT . ..ttt e e e e e e e e 229
Displaying Record Valueso e 231
Displaying Expressions and Aggregate FUNCLIONSttt 234
Navigating With CUISOIS ot e e 235
Working With COIUMINSo e e e 236
Changing Database Information e e 237
Managing TranSaCtioNSttt ettt e 241
Using the Transaction-Control Methods i i 242
Working With Binary Dataot e 243
Calling Stored ProCeAUIESt 247
Exchanging Information 248
Steps for Using Stored ProCedUIES ittt e e e 249
Registering the Stored Procedure 250
Defining a Prototype for aStored Procedure i 250
Executing the Stored Procedureot 251
Working With ReSUIt SEtS o 253
Working with Return Values e e e 260
Working with OUEPUL Parameterst e e e e 261

8

Closing Stored ProCeAUIESt e e e e e e e e 263

Informix and Sybase EXCePLiONSt 263
Chapter 10 Configuring Your Database i 265
About LiveWire Database Service 266
Checking Your Database Configuration i 266
Supported Database Clients and ODBC DFIVEISttt 268
DB . 271
INfOrMIX L 272

INfOrmMIX RemMOte 272

Informix Local 274
OB i 274

ODBC Data Source Names (NT only) e 274

OpenLink ODBC Driver (Solarisonly) 275

Visigenic ODBC Driver (UnixX Only) e e e 276
OraCle . 277

Oracle REMOTE 277

Oracle LoCal 278
QYDA . o 279

SYbASE REMIOTE 279

Sybase Local 280

Sybase (UNiX ONlY) .. .o 281
Chapter 11 Data Type CONVEISIONttt e e e 283
About Data TYpe CONVEISIONttt e e e e e e e 283
Working with Dates and Databasesottt 284
Data-Type Conversion by Databaseottt 284
Chapter 12 Error Handling for LiveWire e 289
Checking for Error Conditions 289
REtUIN ValUBS . .. o 290

NUMIEE . 290

(] 1= S 291

BO0IEaN . 292

SHIING oot 293

VO o 294
Error Methods o 294
StATUS OB . . o ittt et 295
Chapter 13 Videoapp Sample Application e 297
About the Videoapp Sample Application i 297
Configuring Your ENVIrONMENt o 298

Administrator's Guide * August 1999

Connecting to the Database and Recompiling i i 298

Creating the Database e 299
RUNNING V0P - et e e e e e e e e e 303
Looking atthe Source Files 304

Application ArchiteCcture 306

Modifying VIAEOaPDo 308

Part 4 Working with LiveConnect e 309
Chapter 14 LiveConnect OVEIVIEWttt e i 311
What IS LIVECONNECT? oot e e e e 311
Working With WIrapperso e e e e 312
JavaScript to Java Communication 313

The Packages ObjeCt 314

Working With Java ArTaYS e e e e e e e e e 315

Package and Class ReferenCest e 315

Arguments of TYPe Char 316

Example of JavaScript CallingJava 316
Java to JavaScript CommuNICatioN 317

Using the LiveCoNnNect Classesttt e e e e e 319

Accessing Server-Side JavaSCripl 322
Data TYPe CONVEISIONS oottt et e et e et e e e e e e e e e e e e e 324

JavaScript t0 Java CONVEISIONSottt et e e et e e e e e 324

Java to JavaScript CONVEISIONSottt e e e e e e e e e 330

GlOSSaANY ettt 333
o = 339

10 Administrator's Guide * August 1999

Preface

This book desctibes creating Server-Side JavaScript (SS]S) applications. JavaScript is
Netscape’s cross-platform, object-based scripting language for client and server applications.

This chapter contains these sections:

What’s New in this Release

What You Should Already Know

JavaScript Versions

Where to Find JavaScript Information
Upgrading from an Earlier Release

Backward Compatibility with Eatlier Releases

Document Conventions

What's New in this Release

With the release of the 3.x and 4.x versions of the server, LiveWire is fully integrated into the
server. Since LiveWire database connectivity is now integrated as the LiveWire Database
Service portion of server-side JavaScript, developers do not have to install LiveWire as a
separate product. Simply turn on the JavaScript support in the Administration Server to make
the necessary components available.

NOTE The difference between SSJS in Netscape Enterprise

Setver (NES) 3.x and iPlanet™ Web Server 4.1 is that
version 4.1 now uses a JavaScript Runtime from
Morzilla.org which supports JavaScript 1.4. Previous
versions of SSJS supported JavaScript 1.0, JavaScript 1.1,
and JavaScript 1.2.

11

What's New in this Release

Support for JavaScript 1.4

JavaScript version 1.4 provides several new features and enhancements, which are discussed in
the online manual Core JavaScript Reference v1.4 at:

http://ww. i pl anet. conl docs/
The following list summarizes the new features:
* Exception handling.
You can throw and catch exceptions using the t hr owand try. .. cat ch statements.
* New operators i n and i nst anceof .

The i n operator returns t r ue if the specified property is in the specified object. The
i nst anceof operator returns t r ue if the specified object is of the specified object type.

* Changes to LiveConnect.
Several changes to LiveConnect improve the way Java and JavaScript code communicate:

e The methods of j ava. | ang. Qbj ect are inherited by JavaAr r ay. In addition, the
JavaArrary.toString method now calls the method
java.lang. Obj ect.toString.

* You can pass a JavaC ass object to a Java method which requires an argument of
type j ava. | ang. C ass instead of creating a wrapper around an instance of
java.l ang. d ass.

* You cannot construct an instance of JSExcept i on with a detail message.

* The three original public constructors for the Java class
net scape. j avascri pt. JSExcept i on that supported this feature are
deprecated.

* You cannot use the == operator to compare two instances of JSChj ect . Use
JShj ect . equal s.

e Changes to the eval method.

e The top-level eval method cannot be called indirectly. In previous versions, it was
recommended that this method not be called indirectly; starting with JavaScript 1.4,
calling eval indirectly could result in a runtime error. This change improves
performance.

* The eval method is no longer available as a method of Qbj ect ; use the top-level
eval function instead.

* Changes to the Function object.

12 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

What's New in this Release

* You should no longer specify a function name when using the ar gunent s array; the
ar gurmrent s array is a variable and is no longer a property of Funct i on objects. This
change improves performance.

e Deprecated the Functi on. ari ty property. It has been replaced by the
Functi on. | engt h property.

Changes to the JavaScript Application Manager

The functionality of the JavaScript Application Manager has not changed in iPlanet Web Server
4.1 compared to Enterprise Server 3.x. However, it uses the same new color scheme as the
Server Manager and it has some minor layout rearrangements.

Figure 1 shows the JavaScript Application Manager in iPlanet Web Server 4.1.

=F1T1|
1 Wl Seneps 4.1

Server Skie JavaScripl Applicaticn Manager

information for "bugbase

Weh Flle Path: dénesoapelisemend] Upligne'sassple s’ aboghas
Diifanl Page: bome bl
Initkal Page: star el

Bulr b Blaxdimms
Databgie O s etions:

Exraitial Lliramies: Mose

Clisnt Olijeet
Mliintsnanie: dest-tooks

Ntakun: Ackwes

Figure 1 The JavaScript Application Manager in iPlanet Web Server 4.1

13

What You Should Already Know

The JavaScript Application Manager now has three tabs:

Applications

Lists the installed applications and displays buttons for Start, Stop, Restart, Run, Debug,
Modify and Remove on the left. The right panel displays information about the application
selected in the applications list. If you click Modify, the right panel displays fields that let
you modify the selected application.

Add Application.
Lets you add a new application.
Preferences.

Lets you specify the default values when adding a new application.

Although the names and layout of the tabs and buttons are slightly different in the JavaScript
Application Manager in iPlanet Web Server 4.1 than in Enterprise Server 3.6, the underlying
functionality is unchanged.

What You Should Already Know

‘This book assumes you have this basic background:

A general understanding of the Internet and the World Wide Web (WWW).

A general understanding of client-side JavaScript. This book does not duplicate core or
client-side language information.

Good working knowledge of Hypertext Markup Language (HTML). Experience with
forms and the Common Gateway Interface (CGI) is also useful.

Some programming experience in Pascal, C, Petl, Visual Basic, or a similar language.

If you're going to use the LiveWire Database Service, familiarity with relational databases
and a working knowledge of Structured Query Language (SQL).

14 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

JavaScript Versions

JavaScript Versions

Each version of the server suppotts a different version of JavaScript. To help you write scripts
that are compatible with multiple versions of the server, this manual uses an abbreviation to
indicate the server version in which each feature was implemented.

Table 1 JavaScript and Server versions

JavaScript Version Server version

JavaScript 1.2 Netscape Enterprise Server 3.6 (NES 3.6)
JavaScript 1.4 Netscape Enterprise Server 4.0 (NES 4.0)
JavaScript 1.4 iPlanet Web Server 4.1 (WS 4.1)

Where to Find JavaScript Information

Because JavaScript can be approached on several levels, its documentation has been split across
several books to facilitate your introduction. The suite of online JavaScript books includes:

The server-side JavaScript documentation includes the following books:

* The <Italic>Server-Side JavaScript Guide (this book) provides information about the
JavaScript language and its objects. This book contains information for both core and
servet-side JavaScript. Some core language features work differently on the client than on
the server; these differences are discussed in this book.

* The Server-Side JavaScript Reference provides reference material for the JavaScript language,
including both core and server-side JavaScript.

15

Where to Find JavaScript Information

If you ate new to JavaScript, start with Chapter 1, “JavaScript Overview” then continue with
the rest of the book. Once you have a firm grasp of the fundamentals, you can use the Server-Side
JavaScript Reference to get more details on individual objects and statements.

Use the material in this book to familiarize yourself with core and server-side JavaScript. Use
the Client-Side JavaScript Guide and Client-Side JavaScript Reference for information on scripting HTML

pages.

iPlanet Web Server 4.1 Release Notes' provides late-breaking information on iPlanet Web Server 4.1,
including some information relevant to server-side JavaScript for iPlanet Web Server 4.1.

The Programmer’s Guide for iPlanet Web Server® summarizes the different programming interfaces
available with the 4.x versions of Netscape web servers. Use this guide as a roadmap or starting
point for exploting the iPlanet Web Server documentation for developers.

In addition, other Netscape books discuss certain aspects of JavaScript particulatly relevant to
their topic area. These books are mentioned where relevant throughout this book.

The Netscape web site contains much information that can be useful when you’re creating
JavaScript applications. Some areas of particular interest include:

* Netscape’s technical support page for information on the LiveWire Database Service. It
contains lots of useful pointers to information on using LiveWire in your JavaScript
applications.

* Netscape’s support page for information on server-side JavaScript.

* View Source Magazine, Netscape’s online technical magazine for developers. It is updated
every other week and frequently contains articles of interest to JavaScript developets.

1. http://home.netscape.com/eng/server/webserver
2. http://developer.iplanet.com/docs/manuals/enterprise.html

16

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Upgrading from an Earlier Release

All of these pages are accessible from:

http://wwv i pl anet. conl docs/

Upgrading from an Earlier Release

If you have previously installed an eatlier version of a Netscape web setver, you should migrate
the server settings when you install the iPlanet Web Server 4.1. For information on how to
install the server and migrate settings, see the iPlanet Web Server Installation and Migration Guide.

If you have previously created JavaScript applications using Server-Side JavaScript 3.x, you
should be aware of these changes that occur when you upgrade to 4.x and migrate old server
settings:

* If the previous server had LiveWire turned on, the 3.x server will have server-side
JavaScript turned on. Whether or not the Application Manager requites a password is also
preserved. For more information, see “Configuration Information,” on page 39 in
Chapter 2, “Getting Started.”

* However, upgrading server settings does not move your applications nor does it recompile
them for use with the 4.x web server. You must manually recompile user-defined
applications before you can use them with a 4.x web server, as described in “Backward
Compatibility with Earlier Releases.” Be aware that older applications may not work with
their original version of the server after recompiling. If you want to use an application with
both servers, you should copy the application instead of moving it.

* For information on changes you may have to make in your code when upgrading, see the
next section.

Backward Compatibility with Earlier Releases

You must also be aware of these changes in the behavior of server-side JavaScript applications
relative to Netscape Enterprise Server 3.x:

* You must recompile all of your existing JavaScript applications. For information on using
the compiler, see “Compiling an Application.” Once you recompile your applications, they
will not work under old SSJS installations.

17

Document Conventions

Document Conventions

JavaScript applications run on many operating systems; the information here applies to all
versions. Iile and directory paths are given in Windows format (with backslashes separating
directory names). For Unix versions, the directory paths are the same, except that you use
slashes instead of backslashes to separate directories.

This book uses uniform resource locators (URLs) of the form
ht t p: /| server.domain/ path/ file. ht M

In these URLSs, server represents the name of the server on which you run your application, such
as resear chl or WWW, domain tepresents your Internet domain name, such as net scape. com
or Ui uc. edu; parh represents the directory structure on the server; and fik. ht m represents an
individual filename. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL) enabled, you would
use ht t ps instead of ht t p in the URL.

This book uses the following font conventions:

e The nonospace font isused for sample code and code listings, API and language
elements (such as function names and class names), filenames, pathnames, directory
names, HTML tags, and any text that must be typed on the screen. (Monospace italic font is
used for placeholders embedded in code.)

e Itale typeis used for book titles, emphasis, variables and placeholders, and words used in the
literal sense.

» Boldface type is used for glossary terms.

NOTE Throughout this manual, all Unix-specific desctiptions
apply to the Linux operating system as well, except where
Linux is specifically mentioned.

18 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Chapter 1

JavaScript Overview

This chapter introduces JavaScript and discusses some of its fundamental concepts.

This chapter contains the following sections:

What Is JavaScript?

Core, Client-Side, and Server-Side JavaSctipt
JavaScript and Java

Debugging JavaScript

Visual JavaScript

JavaScript and the ECMA Specification

What Is JavaScript?

JavaScript is Netscape’s cross-platform, object-oriented scripting language. Core JavaScript
contains a core set of objects, such as Arr ay, Dat e, and Mat h, and a core set of language
elements such as operators, control structures, and statements. Core JavaScript can be
extended for a variety of purposes by supplementing it with additional objects; for example:

Client-side JavaS cript extends the core language by supplying objects to control a browser
(Navigator or another web browser) and its Document Object Model (DOM). For
example, client-side extensions allow an application to place elements on an HTML form
and respond to user events such as mouse clicks, form input, and page navigation.

Server-side JavaS cript extends the core language by supplying objects relevant to running
JavaScript on a server. For example, server-side extensions allow an application to
communicate with a relational database, provide continuity of information from one
invocation to another of the application, or perform file manipulations on a server.

19

Core, Client-Side, and Server-Side JavaScript

JavaSctipt lets you create applications that run over the Internet. Client applications run in a
browser, such as Netscape Navigator, and server applications run on a server, such as iPlanet
Web Server. Using JavaScript, you can create dynamic HTML pages that process user input
and maintain persistent data using special objects, files, and relational databases.

Through JavaScript’s LiveConnect functionality, you can let Java and JavaScript code
communicate with each other. From JavaScript, you can instantiate Java objects and access
their public methods and fields. From Java, you can access JavaScript objects, properties, and
methods.

Netscape invented JavaScript, and JavaScript was first used in Netscape browsers.

Core, Client-Side, and Server-Side JavaScript

The components of JavaScript are illustrated in the following figure.

Figure 1-1 The JavaScript language

CLIENT-SIDE JAYASCRIPT
|

Client-side
additions i
. Server-side

[such as window additions

and history) Core
JavaScri (such as server

pt and database
Core |language
features (such
_) as wvariables,
Client-side functions, and

LivetZonnect)

’7 Serverside —‘

I
SERYER-5IDE JAVASCRIPT

20 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Core, Client-Side, and Server-Side JavaScript

The following sections introduce the workings of JavaSctipt on the client and on the setrver.

Core JavaScript

Client-side and server-side JavaScript have the following elements in common:
* Keywords

* Statement syntax and grammar

* Rules for expressions, variables, and literals

* Underlying object model (although client-side and server-side JavaScript have different
sets of predefined objects)

* Predefined objects and functions, such as such as Ar r ay, Dat e, and Mat h

Client-Side JavaScript

Web browsers such as Navigator (2.0 and later versions) can interpret client-side JavaScript
statements embedded in an HTML page. When the browser (or c/ent) requests such a page, the
server sends the full content of the document, including HTML and JavaScript statements,

21

Core, Client-Side, and Server-Side JavaScript

22

over the netwotk to the client. The browser reads the page from top to bottom, displaying the
results of the HTML and executing JavaScript statements as they are encountered. This
process, illustrated in the following figure, produces the results that the user sees.

Figure 1-2 Client-side JavaScript

<HEAD><TITLE>A Single Document</TITLE>
<SCRIEPT>
funetion update (form) 4
alert ("Form being updated")
i
< fSCRIPT x>
< /HEAD =
s S0 ey
<FORM MAME="Ipfform" ACTION="start.htm"
METHOD="geat" >
Enter a value:

< /FORM> Internet
< /BODY >
I Eade htol
B B [ul
br=robdil s s
i Nt FEE
-~

Rnter a walne: EnHrHII" alue

b E e . i list: B _,."-". lav-asin cEe
Cleek iF wou want to be on ow metling list: SV S
Fulirnil FEEPTER
b

_oH Y Loz Lore

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Core, Client-Side, and Server-Side JavaScript

Client-side JavaSctipt statements embedded in an HTML page can respond to user events such
as mouse clicks, form input, and page navigation. For example, you can write a JavaScript
function to verify that users enter valid information into a form requesting a telephone number
or zip code. Without any network transmission, the embedded JavaScript on the HTML page
can check the entered data and display a dialog box if the user enters invalid data.

Different versions of JavaScript work with specific versions of Navigator. For example,
JavaScript 1.2 1s for Navigator 4.0. Some features available in JavaScript 1.2 are not available in
JavaScript 1.1 and hence are not available in Navigator 3.0. For information on JavaScript and
Navigator versions, see “JavaScript Versions.”

Server-Side JavaScript

On the server, you also embed JavaScript in HTML pages. The server-side statements can
connect to relational databases from different vendots, share information across users of an
application, access the file system on the server, or communicate with other applications
through LiveConnect and Java. HTML pages with server-side JavaScript can also include
client-side JavaScript.

In contrast to pure client-side JavaScript pages, HTML pages that use server-side JavaSctipt are
compiled into bytecode executable files. These application executables are run by a web server
that contains the JavaScript runtime engine. For this reason, creating JavaSctipt applications is
a two-stage process.

In the first stage, shown in Figure 1-3, you create HTML pages (which can contain both
client-side and server-side JavaScript statements) and JavaScript files. You then compile all of
those files into a single executable.

23

Core, Client-Side, and Server-Side JavaScript

Figure 1-3 Server-side JavaScript during development

fonction Substitute] guess, word, answer)

var resuvlt = "7

var len = word. length;

var pos = 0;

while({ pos < len 3
var word_char = word substring pos, pos + 1)
var answer_ char = answer.substringl pos, pos + 1 3;
if [word_char == guess) result = result + guess;
glse result = result + answer_char;
pos = pos + 1

E
return result;
) |
hangman. j= fraScript Wb file
application (bytecode
compiler esecutable)
<HTML: <HE&D: <TITLE: Hangman < TITLE::/ /HEAD: P
<BODY: </Hl:> Hangman < H1:

~EEETER S
ir (client.gamens — poll)
client .gamenn = 1
client . .newjERe = "tme®
3
</ SPRVER >
You have uvsed the following letters so far:

~SFEYER»urite] client .osel) < SPRTERY
<FOF METHID="post" ACTION="hangman.htm":
<P

That i= youwr guess?
<INPUT TYPE="text" NAME="guess" SIZE="1"»

< /EODY> < /HTHL »

hangman. htm

In the second stage, shown in Figure 1-4, a page in the application is requested by a client
browser. The runtime engine uses the application executable to look up the source page and
dynamically generate the HTML page to return. It runs any server-side JavaScript statements
found on the page. The result of those statements might add new HTML or client-side

24 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Core, Client-Side, and Server-Side JavaScript

JavaScript statements to the HTML page. The run-time engine then sends the resulting page
over the network to the Navigator client, which runs any client-side JavaScript and displays the

results.

Figure 1-4 Server-side JavaScript during runtime

Wb file JavaScript
(bytecode [runtime —
executable)| engine

b Hel:cape - “[langiman]
Fi= Ect Yew Eno Bochmaks [Opbcn: Drecioy Window Hel

<HTML > « HE&T> « TITLE » Hanuqman< STITLE: < /> HEAD »
<BODY > «Hl» Hamgman < /Hl:

You hawe used the fo0llowing letters so far:

SAM

<FOEM METHOD="post" ACTION="hangman.html":
<P

That is your gquess?

<INFUT TYPE="text" HAME="guess" SIEE="1":

+ fBODY > ¢ JHTIIL >

Internet

ﬂ Ndalg;|wp:r’fd'ﬂi.nnunmniwgmr'hurglmw LI

Hangman

ATEGELET

Wrhar 14 yOUF e f |_

Erter | Clear

Mgl |Doaumane Dore

Tou hare uaed the falkering etterz 3o fue: § A

To lmarn bow co plig Hanaman, plais raad cha ruled.

In contrast to standard Common Gateway Interface (CGI) programs, all JavaScript source is
integrated directly into HTML pages, facilitating rapid development and easy maintenance.
Server-side JavaScript’s Session Management Service contains objects you can use to maintain

25

JavaScript and Java

data that persists across client requests, multiple clients, and multiple applications. Server-side
JavaScript’s LiveWire Database Service provides objects for database access that setve as an
interface to Structured Query Language (SQL) database servers.

JavaScript and Java

JavaScript and Java are similar in some ways but fundamentally different in others. The
JavaScript language resembles Java but does not have Java’s static typing and strong type
checking. JavaScript supports most Java expression syntax and basic control-flow constructs.

In contrast to Java’s compile-time system of classes built by declarations, JavaScript suppotts a
runtime system based on a small number of data types representing numeric, Boolean, and
string values. JavaScript has a prototype-based object model instead of the more common
class-based object model. The prototype-based model provides dynamic inheritance; that is,
what is inherited can vary for individual objects. JavaSctipt also suppozts functions without any
special declarative requirements. Functions can be propetties of objects, executing as loosely

typed methods.

JavaSctipt is a very free-form language compared to Java. You do not have to declare all
variables, classes, and methods. You do not have to be concerned with whether methods are
public, private, or protected, and you do not have to implement interfaces. Variables,
parameters, and function return types are not explicitly typed.

Java is a class-based programming language designed for fast execution and type safety. Type
safety means, for instance, that you can’t cast a Java integer into an object reference or access
private memory by corrupting Java bytecodes. Java’s class-based model means that programs
consist exclusively of classes and their methods. Java’s class inheritance and strong typing
generally require tightly coupled object hierarchies. These requirements make Java
programming more complex than JavaScript authoring.

In contrast, JavaScript descends in spirit from a line of smaller, dynamically typed languages
such as HyperTalk and dBASE. These scripting languages offer programming tools to a much
wider audience because of their easier syntax, specialized built-in functionality, and minimal
requirements for object creation.

Table 1-1 JavaScript compared to Java

JavaScript Java

Interpreted (not compiled) by client. Compiled bytecodes downloaded from
server, executed on client.

26 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Table 1-1 JavaScript compared to Java

JavaScript and Java

JavaScript

Java

Object-oriented. No distinction between
types of objects. Inheritance is through
the prototype mechanism, and
properties and methods can be added to
any object dynamically.

Code integrated with, and embedded in,
HTML.

Variable data types not declared
(dynamic typing).

Cannot automatically write to hard disk.

Class-based. Objects are divided into
classes and instances with all
inheritance through the class hierarchy.
Classes and instances cannot have
properties or methods added
dynamically.

Applets distinct from HTML (accessed
from HTML pages).

Variable data types must be declared
(static typing).

Cannot automatically write to hard disk.

27

Debugging JavaScript

Debugging JavaScript

JavaScript allows you to write complex computer programs. As with all languages, you may
make mistakes while writing your scripts. The Netscape JavaScript Debugger allows you to
debug your scripts.

For information on using the Debugger, see Getting Started with Netscape JavaScript Debﬂ(ggerl.

Visual JavaScript

Netscape Visual JavaScript is a component-based visual development tool for the Netscape
Open Network Environment (ONE) platform. It is primarily intended for use by application
developers who want to build cross-platform, standards-based, web applications from
ready-to-use components with minimal programming effort. The applications are based on
HTML, JavaSctipt, and Java.

For information on Visual JavaScript, see the Visual JavaScript Developers Guide®.

JavaScript and the ECMA Specification

Netscape invented JavaScript, and JavaScript was first used in Netscape browsers. However,

Netscape is working with ECMA® (European Computer Manufacturers Association) to deliver
a standardized, international programming language based on core JavaScript. ECMA is an
international standards association for information and communication systems. This
standardized version of JavaScript, called ECMAScript, behaves the same way in all
applications that support the standard. Companies can use the open standard language to
develop their implementation of JavaScript. The first version of the ECMA standard is
documented in the ECMA-262 specification.

The ECMA-262 standard is also approved by the 1SO* (International Organization for
Standards) as ISO-16262. You can find a PDF version of ECMA-262% on the iPlanet web site
in the JavaScript information. You can also find the speciﬁcation6 on the ECMA web site. The

. http://developer.netscape.com/docs/manuals/jsdebug/index.htm

. http://developer.netscape.com/library/documentation/visualjs/index.htm
. http://www.ecma.ch

. http://www.iso.ch

. http://developer.netscape.com/docs/javascript/e262-pdf.pdf

. http://www.ecma.ch/stand/ecma-262.htm

o OB W N

28 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

JavaScript and the ECMA Specification

ECMA specification does not describe the Document Object Model (DOM), which is being

standardized by the World Wide Web Consortium (W 3C)1. The DOM defines the way in
which HTML document objects are exposed to your script.

Relationship Between JavaScript and ECMA
Versions

Netscape works closely with ECMA to produce the ECMA specification. For detailed
information which desctibes the relationship between JavaScript versions and ECMA
specifications, refer to mozilla.org.

JavaScript will always include features that are not part of the ECMA specification; JavaScript is
compatible with ECMA, while providing additional features.

JavaScript Documentation vs. the ECMA
Specification

The ECMA specification is a set of requirements for implementing ECMAScript; it is useful if
you want to determine whether a JavaScript feature is supported under ECMA. If you plan to
write JavaScript code that uses only features supported by ECMA, then you may need to
review the ECMA specification.

The ECMA document is not intended to help script programmers; use the JavaScript
documentation for information on writing scripts.

JavaScript and ECMA Terminology

The ECMA specification uses terminology and syntax that may be unfamiliar to a JavaScript
programmer. Although the description of the language may differ in ECMA, the language itself
remains the same. JavaScript suppotts all functionality outlined in the ECMA specification.

The JavaScript documentation describes aspects of the language that are appropriate for a
JavaSctipt programmer. For example:

e The global object is not discussed in the JavaScript documentation because you do not use
it directly. The methods and properties of the global object, which you do use, are
discussed in the JavaScript documentation but are called top-level functions and
properties.

1. http://www.w3.0rg/\

29

JavaScript and the ECMA Specification

The no parameter (zero-argument) constructor with the Nunber and St ri ng objects is
not discussed in the JavaScript documentation, because what is generated is of little use. A
Nurber constructor without an argument returns +0, and a St r i ng constructor without
an argument returns “” (an empty string).

30 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Part 1

Developing Server Applications

Getting Started

Mechanics of Developing JavaScript Applications

31

32 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Chapter 2

Getting Started

This chapter provides an overview of what a typical server-side JavaScript application looks
like, and it shows you how to set up your system for server-side development.

This chapter contains the following sections:
* Architecture of JavaScript Applications
* System Requirements

* Configuration Information

33

Architecture of JavaScript Applications

Architecture of JavaScript Applications

As discussed in earlier sections, JavaScript applications have portions that run on the client and
on the server. In addition, many JavaScript applications use the LiveWire Database Service to
connect the application to a relational database. For this reason, you can think of JavaScript
applications as having a three-tier client-server architecture, as illustrated in Figure 2-1.

Figure 2-1 Architecture of the client-server JavaScript application environment
WWW Clients

(Netscape
Communicator)

web server
(also may be a database client)

|

: JavaScript
© | applications
 and JavaScript

runtime engine
HTML parser
and JavaScript

interpreter Optional database servers
behind firewall
CLIENT-SIDE SERVER-SIDE
ENVIRONMENT ENVIRONMENT

The three tiers are:

o WWW clients (such as Netscape Navigator clients): This tier provides a cross-platform end-user
interface to the application. This tier can also contain some application logic, such as
data-validation rules implemented in client-side JavaScript. Clients can be inside or outside
the corporate firewall.

* Netscape WWW server/ database client: This tier consists of a Netscape server, with server-side
JavaScript enabled. It contains the application logic, manages security, and controls access
to the application by multiple users, using server-side JavaScript. This tier allows clients
both inside and outside the firewall to access the application. The WWW server also acts
as a client to any installed database servers.

34 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Architecture of JavaScript Applications

* Database servers: This tier consists of SQL database servers, typically running on
high-performance wotkstations. It contains all the database data, metadata, and referential
integrity rules required by the application. This tier typically is inside the corporate firewall
and can provide a layer of security in addition to that provided by the WWW server.
iPlanet Web Server, Enterprise Edition supportts the use of ODBC, DB2, Informix,
Oracle, and Sybase database servers. iPlanet Web Server, FastTrack Edition supports only
ODBC. For further information about the LiveWire Database Service, see Part 3,
“LiveWire Database Service.”

The client-side JavaScript environment runs as part of WWW clients, and the server-side
JavaScript environment runs as part of an iPlanet Web Server with access to one or more
database servers. Figure 2-2 shows more detail of how the server-side JavaScript environment,
and applications built for this environment, fit into the iPlanet Web Server.

The top part of Figure 2-2 shows how server-side JavaScript fits into an iPlanet Web Server.
Inside the web server, the server-side JavaScript runtime environment is built from three main
components which are listed below. The JavaScript Application Manager then runs on top of
server-side JavaScript, as do the sample applications provided by iPlanet (such as the

vi deoapp application) and any applications you create.

Figure 2-2 Server-side JavaScript in the iPlanet server environment

web SSIS)
server Application \s/'lgis Y Your application
Manager
Server-side JavaScript
SSIS LiveWire Java
runtime database Virtual
library access library Machine

|

Relational
database

35

Architecture of JavaScript Applications

36

These are the three primary components of the JavaScript runtime environment:

o The JavaScript runtime library: This component provides basic JavaScript functionality. An
example is the Session Management Service, which provides predefined objects to help
manage your application and share information between the client and the server and
between multiple applications. The Session Management Service is described in Chapter 0,
“Session Management Service.”

» The LiveWire database access library: This component extends the base setver-side JavaScript
functionality with classes and objects that provide seamless access to external database
servers. [t is described in Part 3, “LiveWire Database Service.”

» The Java virtual machine: Unlike the other components, the Java virtual machine is not only
for use with JavaScript; any Java application running on the server uses this virtual
machine. The Java virtual machine has been augmented to allow JavaScript applications to
access Java classes, using JavaScript’s LiveConnect functionality. LiveConnect is described
in Chapter 14, “LiveConnect Overview.”

In general, a JavaScript application can contain statements interpreted by the client (with the
JavaScript interpreter provided with Netscape Navigator or some other web browser) and by
the server (with the JavaScript runtime engine just discussed).

When you run a JavaScript application, a variety of things occur, some on the setver and some
on the client. Although the end user does not need to know the details, it is important for you,
the application developer, to understand what happens “under the hood.”

In creating your application, you write HT'ML pages that can contain both server-side and
client-side JavaScript statements. In the source code HTML, client-side JavaScript is delimited
by the SCRI PT tag and server-side JavaScript by the SERVER tag.

You can also write files that contain only JavaScript statements and no HTML tags. A
JavaScript file can contain either client-side JavaScript or server-side JavaScript; a single file
cannot contain both client-side and server-side objects or functions.

The JavaScript VM used in iPlanet Web Server 4.1 implements significant improvements in the
processing of local variables (that is, variables that are declared inside a function) as compared
to NES 3.6. Therefore it is suggested that use of global variables (that is, variables that are

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

System

System Requirements

declared between the <ser ver > and </ ser ver > tags) be minimized and applications be
rewtitten to use functions as much as possible. This can improve the application performance
significantly.

If the HTML and JavaScript files contain server-side JavaScript, you then compile them into a
single JavaScript application executable file. The executable is called a web file and has the
extension . Web. The JavaSctipt application compiler turns the source code HIML into
platform-independent bytecodes, parsing and compiling server-side JavaScript statements.

Finally, you deploy your application on your web server and use the JavaScript Application
Manager to install and start the application, so that users can access your application.

At runtime, when a client requests a page from a server-side JavaScript application, the runtime
engine locates the representation of that file in the application’s web file. It runs all the server
code found and creates an HTML page to send to the client. That page can contain both
regular HTML tags and client-side JavaScript statements. All server code is run on the server,
before the page goes to the client and before any of the HTML or client-side JavaScript is
executed. Consequently, your server-side code cannot use any client-side objects, nor can your
client-side code use any server-side objects.

For more details, see Chapter 5, “Basics of Server-Side JavaScript.”

Requirements

To develop and run JavaScript applications that take advantage of both client-side and
server-side JavaScript, you need appropriate development and deployment environments. In
general, it is recommended that you develop applications on a system other than your
deployment (production) server because development consumes resources (for example,
communications ports, bandwidth, processor cycles, and memory). Development might also
disrupt end-user applications that have already been deployed.

A JavaScript development environment consists of

* Development tools for authoring and compiling JavaScript applications. These tools typically
are resident on the development machine.

o A development machine with a web server for running JavaScript applications that are under
development.

o A deployment machine with a web server for deploying finished applications. End users access
completed applications on this server.

The development tools needed include:

* A JavaScript-enabled browser, such as Netscape Navigator, included in Netscape
Communicator.

37

System Requirements

* A JavaScript application compiler, such as the one bundled with Netscape web servers.
* An editor, such as Emacs or Notepad.

The development and deployment machines require the following software:

* A web server.

* A JavaScript runtime engine, such as the one bundled with Netscape web servers.

* A way to configure your server to run JavaScript applications, as provided in the JavaScript
Application Manager bundled with Netscape web servers.

In addition, if your application uses JavaScript’s LiveWire Database Service, you need the
following:

* Relational database server software on your database server machine. For more
information, refer to your database server documentation. In some cases, you may want to
install the web server and the database server on the same machine. For specific
requirements for server-side JavaScript, see Chapter 10, “Configuring Your Database.”

* Your database’s client and networking software on your web server machine. If you use
one machine as both your database server and web server, typically the necessary database
client software is installed when the database server is installed. Otherwise, you must
ensure that the database client software is installed on the same machine as the web server,
so that it can access the database as a client. For motre information on database client
software requirements, refer to the database vendor’s documentation.

38 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Configuration Information

Configuration Information

This section provides configuration information for using server-side JavaScript. For additional
information on setting up your database to work with the LiveWire Database Service, see
Chapter 10, “Configuring Your Database.”

Enabling Server-Side JavaScript

To run Server Side JavaSctipt applications on your server, you must enable the JavaScript
runtime engine from your Server Manager by clicking Programs and then choosing Server Side
JavaScript. At the prompt “Activate the JavaScript application environment?”, choose Yes and
click OK. You are also asked about restricting access to the Application Manager. For more
information, see “Protecting the Application Manager.”

NOTE If you do not enable the JavaSctipt runtime engine,
JavaSctipt applications cannot run on the server.

To use both servlets and LiveWire, you need to enable Server Side JavaScript before enabling
Java. Both can be enabled using the programs menu of the Administration Server. If you
modify the classpath in obj . conf , your changes will be lost if you enable/disable either
Server Side JavaScript or Java from the programs menu of the Administration Server. An
alternative to editing the classpath directive in the obj . conf is setting the CLASSPATH
environment variable in Unix or setting the CLASSPATH variable in the System settings for

39

Configuration Information

40

Windows NT. If you must edit the obj . conf directly, please be sute to back up your changes.
For iPlanet Web Server 4.1, you should add CLASSPATH info to the JVM configuration files
(j vml2. conf for Solaris and N'T) via the Web Server Administration Server interface.

Once you activate the JavaScript application environment, you must stop and restart your web
server for the associated environment variables to take effect. If you do not, JavaScript
applications that use the LiveWire Database Service will not run.

You can also define a thread pool to be used for server-side JavaScript applications. For more
information about thread pools, see “Adding and Using Thread Pools” in Chapter 7,
“Configuring Server Preferences,” in the iPlanet Web Server Administrator’s Guide.

Protecting the Application Manager

The Application Manager provides control over JavaScript applications. Because of its special
capabilities, you should protect it from unauthorized access. If you don’t restrict access to the
Application Manager, anyone can add, remove, modify, start, and stop applications on your
server. This can have undesirable consequences.

You (the JavaScript application developer) need to have permission to use the Application
Manager on your development server, because you use it to work with the application as you
develop it. Your web server administrator, however, may choose to not give you this access to
the deployment server.

When you enable the JavaScript runtime engine in the Server Manager, a prompt asks you
whether to restrict access to the Application Manager. Choose Yes to do so, then click OK.
(Yes 1s the default.) After this point, anyone attempting to access the Application Manager
must enter the Server Manager user name and password to use the Application Manager and
the dbadmi n sample application. For more information, see the administrator’s guide for your
web server.

If your server is not using the Secure Sockets Layer (SSL), the user name and password for the
Application Manager are transmitted unencrypted over the network. An intruder who
intercepts this data can get access to the Application Manager. If you use the same password
for your administration server, the intruder will also have control of your server. Therefore, it is

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Configuration Information

recommended that you do not use the Application Manager outside your firewall unless you
use SSL. For instructions on how to turn on SSL for your setver, see the administrator’s guide
for your web server.

Setting Up for LiveConnect

In order to use Java classes in LiveConnect, you need to set up the server’s CLASSPATH. For
a complete description of this procedure, refer to the Programmer’s Guide to Servlets for iPlanet Web
Server and the iPlanet Web Server Administrator’s Guide.

Locating the Compiler

Installation of a Netscape server does not change your PATH environment variable to include
the directory in which the JavaScript application compiler is installed. If you want to be able to
easily refer to the location of the compiler, you must modify this environment variable.

On Unix systems, you have various choices on how to change your PATH environment
variable. You can add $NSHOVE/ bi n/ ht t ps/ | i b, where $NSHOME is the directory in which
you installed the server. See your system administrator for information on how to do so.

To change your NT system path, start the Control Panel application, locate the System dialog
box, and set the PATH variable in the Environment settings to include the

YINSHQOVE% bi n\ ht t ps\ bi n, where NSHOVE is the directory in which you installed the
setver.

If you move the JavaScript application compiler to a different directory, you must add that
directory to your PATH environment variable.

41

Configuration Information

42 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide « March 2000

Chapter 3

Mechanics of Developing JavaScript
Applications

This chapter describes the process of developing your application, such as how to use the
JavaScript application compiler and how to use the Application Manager of Netscape servers
to install or debug your application. For information on using only client-side JavaScript, see
the <BookName> JavaScript Guide.

43

Basic Steps in Building an Application

Basic Steps in Building an Application

Normally, HTML is static: after you write an HTML page, its content is fixed. The fixed
content is transmitted from the server to the client when the client accesses the page’s URL.
With JavaScript, you can create HTML pages that change based on changing data and user
actions. Figure 3-1 shows the basic procedure for creating and running a JavaScript application.

Figure 3-1 Creating and running a JavaScript application

Create Build the application T e T ‘ T Ot
source files | | by using the JavaScript ' Publish the web file and;— Install the application |
application compiler 1any needed HTML, Java,: 1using the JavaScript !
to create the web file rand JavaScript files on ' Application Manager 3
:the development Y

Development server
'Run the application !
1by clicking Runin ¢
 Application Manager :
ror loading the !
1application URL in !
ryour browser 3

Testing

Move the
=~ | application to a
production server

Production
server Deployment

You take these basic steps to build a JavaScript application:

1. Create the source files. The source files can be HTML files with embedded
JavasScript, files containing only JavaScript, or Java source files. (See “Creating
Application Source Files.”)

44 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide « March 2000

Basic Steps in Building an Application

Note that the JavaScript VM used in iPlanet Web Server 4.1 implements
significant improvements in the processing of local variables (that is, variables
that are declared inside a function) as compared to NES 3.6. Therefore it is
suggested that use of global variables (that is, variables that are declared
between the <ser ver > and </ ser ver > tags) be minimized and applications be
rewritten to use functions as much as possible. This can improve the
application performance significantly.

Build the application by using the JavaScript application compiler to create the
bytecode executable (. web file). (See “Compiling an Application.”) Compile
Java source files into class files.

Publish the web file, any needed uncompiled HTML, image, and client-side
JavaScript files, and compiled Java class files in appropriate directories on the
server. You can use the Netscape Web Publisher to publish your files, as
described in the Web Publisher User’s Guide.

Install the application for the first time (see “Installing a New Application.”)
using the JavaScript Application Manager. You also use the Application
Manager to restart an application after rebuilding it (see “Starting, Stopping,
and Restarting an Application.”). Installing or restarting the application
enables the JavaScript runtime engine to run it.

o Afterinstalling an application, you may want to protect it. See “Deploying
an Application.” You do not need to restart an application after you
initially install it.

Run the application by clicking Run in the Application Manager or loading the
application URL in your browser. (See “Running an Application” and
“Application URLs”) For example, to run Hello World, load

ht t p: / / server.domain/ wor | d/ . You can also debug the application by clicking
Debug in the Application Manager. (See “Debugging an Application.”)

After you have completed developing and testing your application, you need
to deploy it to make it available to users. Deploying generally involves
installing it on a production server and changing access restrictions. (See
“Deploying an Application.”)

45

JavaScript Application Manager Overview

Before you can develop JavaScript applications, you need to enable the runtime engine on the
server and should protect the JavaScript Application Manager from unauthorized access. For
more information, see “Configuration Information,” on page 39 and Chapter 2, “Getting
Started.”

JavaScript Application Manager Overview

Before learning how to cteate JavaScript applications, you should become familiar with the
JavaScript Application Managet. You can use the Application Manager to accomplish these
tasks:

* Add a new JavaScript application.

* Modify any of the attributes of an installed application.
e Stop, start, and restart an installed application.

* Run and debug an active application.

* Remove an installed application.

46 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide « March 2000

JavaScript Application Manager Overview

The Application Manager is itself a JavaScript application that demonstrates the power and
flexibility of JavaScript. You start the JavaScript Application Manager from the following URL
in Navigator:

htt p: // server.domainl apprgr
In response, the Application Manager displays the page shown in Figure 3-2 for Netscape
Enterprise Server 3.x and Figure 3.3 for iPlanet Web Server 4.1.

Figure 3-2 Application Manager in Enterprise Server 3.x

kg Fsi ez ape - Havaboipl Applasios Hehsgem - o i s o)

Fle [di Yes Lo Boimwic [eors [eckay girados Hep

ﬂ Blasi i I'll_ T ﬂ 1"-:-

Appleabres: Information for “world™

i Wk Flle Paly et Tor =30 s mgiest i o s sesty
Dot Pagges 1o b1

Iistial Fragges Pines

47

JavaScript Application Manager Overview

Figure 3-3 Application Manager in iPlanet Web Server 4.1

St Ehde lnpka npt donda paon Marager

Eelmk Pigec b bl

It Pagre it b

L’ Dk o Yluwos

Tzixt i Duitsksis Tl K.
T 3
— Evivrnal Librariess Hoar
;’ iz (W1

[TP ST R PR
= —— = [T

Yrk Fln Puiir A lmeryemges'vrrvret | ipl e orp bt it sy et

The Application Manager displays, in a scrolling list in the left frame, all JavaScript applications
currently installed on the server. Select an application by clicking its name in the scrolling list.

For the selected application, the right frame displays the following information:

e application name at the top of the frame
* path of the application web file on the server

* default and initial pages for the application

* maximum number of database connections allowed for the predefined dat abase object.
(This is provided for backward compatibility with applications that use database objects;
for new applications that use a dbpool, ignore this field. See See “Database Connection
Pools,” on page 202 for how to set this parameter for a dbpool .)

e external libraries (if any)

e client object maintenance technique

* status of the application: active or stopped (Users can run only active applications. Stopped

applications are not accessible.)

48 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Creating Application Source Files

For a description of these fields, see “Installing a New Application.”
Click the Add Application button at the top to add a new application.

Click Configure (in Enterprise Server 3.x) or Preferences (in iPlanet Web Server 4.1) to
configure the default settings for the Application Manager.

Click Documentation to reach Netscape’s technical support page for server-side JavaScript,
including links to all sorts of documentation about it. Click Help for more instructions on using
the Application Manager.

Creating Application Source Files

The first step in building a JavaSctipt application is to create and edit the source files. The web
file for a JavaScript application can contain two kinds of source files:

* Files with standard HTML or JavaScript embedded in HTML. These files have the file
extension (suffix) .ht M or .htm

* Files with JavaScript functions only. These files have the file extension .j S.

When you use JavaScript in an HTML file, you must follow the rules outlined in “Embedding
JavaScript in HTML.”

Do not use any special tags in . j S files; the JavaScript application compiler on the server and
the JavaScript interpreter on the client assume everything in the file is JavaScript. While an
HTML file is used on both the client and the server, a single JavaScript file must be either for

49

Compiling an Application

use on the server or on the client; it cannot be used on both. Consequently, a JavaScript file can
contain either client-side JavaScript or server-side JavaSctipt, but a single file cannot contain
both client-side and server-side objects or functions.

The JavaScript application compiler compiles and links the HTML and JavaScript files that
contain server-side JavaScript into a single platform-independent bytecode web file, with the
file extension . Web, as described in “Compiling an Application.”

You install a web file to be run with the JavaScript runtime engine, as described in “Installing a
New Application.”

Compiling an Application

You compile a JavaScript application using the JavaScript application compiler, j sac. The
compiler creates a web file from HTML and JavaScript source files.

NOTE iPlanet Web Setver 4.1 supports JavaSctipt Application
Compiler version 24.13. Note that compiled applications

using “="" as the Equal operator will fail using the new
K——2

compiler. You must use as the Equal (==) operator.

50 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Compiling an Application

For ease of accessing the compiler, you may want to add the directory in which it is installed to
your PATH environment variable. For information on how to do so, see “Locating the
Compiler,” on page 41 in Chapter 3, “Mechanics of Developing JavaScript Applications.”

You also need to add the server_root/ bi n/ htt pd/ | i b directory to LD_LI BRARY_PATH (or
LI BPATH or SHLI B_PATH on Unix platforms), and Server_root/ bi n/ ht t ps/ bi n to PATH
on Windows NT platforms.

You only need to compile those pages containing server-side JavaScript or both client-side and
server-side JavaScript. You do not need to compile pages that contain only client-side
JavaScript. You can do so, but runtime performance is better if you leave them uncompiled.

The compiler is available from any command prompt. Use the following command-line syntax
to compile and link JavaScript applications on the server:

Jsac [-h] [-c] [-vl [-d] [-T]
[-0 outfile. web]
[-i inputlile]
[-p pathName)
[-f includeFile]
[-r errorTile]
[-a 1.2]
seript] . htmd [... serptN. htd]
[funct1.js ... functN.]| s]

Items enclosed in square brackets are optional. The syntax is shown on multiple lines for
clarity. The scri pt N. ht ml and f unct IN. j s files are the input files to the compiler. There
must be at least one HTML file. By default, the HTML and JavaSctipt files are relative to the
current directory. Files you specify must be either JavaScript files or HI' ML files; you cannot
specify other files, such as GIF files.

On all platforms, you may use either the dash (-) or the forward slash (/) to indicate a
command-line option. That is, the following lines are equivalent:

Note that because the forward slash indicates a command-line option, an input file cannot start
with a forward slash to indicate that it is an absolute pathname. That is, the following call is
illegal:

jsac -o myapp.web /usr/vpg/ myapp. ht m

51

Compiling an Application

52

This restriction does not apply to any of the pathnames you supply as arguments to
command-line options; only to the input files. On NT, you can instead use backslash (\) to
indicate an absolute pathname in an input file, as in the following call:

jsac -o myapp.web \usr\vpg\ nmyapp. ht m

On Unix, you must use the - i command-line option to specify an absolute pathname, as
described below.

The following command-line options are available:

e - h: Displays compiler syntax help. If you supply this option, don’t use any other options.

* - C: Checks syntax only; does not generate a web file. If you supply this option, you do not

need to supply the - 0 option.

* - Vv: (Verbose) Displays information about the running of the compiler.

* - d: Displays generated JavaSctipt contents.

e -1 :Specifies the character set to use when compiling (such as i s0- 8859- 1, x-sj i s, or
euc-kr)

* - 0 outfile: Creates a bytecode-format web file, named out f i | e. web. If you do not supply

this option, the compiler does not generate a web file. (Omit this option only if you're
using the - ¢ option to check syntax or - h to get help.)

e - i imputFile: Allows you to specify an input file using its full pathname instead of a relative

pathname. You can provide only one filename to this option. If you need to specify
multiple filenames using full pathnames, use the - f option.

* - p pathName: Specifies a directory to be the root of all relative pathnames used during
compilation. (Use before the - f option.) You can provide only one pathname to this
option.

e - includelile: Specifies a file that is actually a list of input files, allowing you to circumvent

the character limit for a command line. You can provide only one filename to this option.
The list of input files in znc/udeFile is white-space delimited. If a filename contains a space,

you must enclose the filename in double quotes.

* -1 errorFile: Redirects standard output (including error messages) to the specified file. You

can provide only one filename to this option.

e -a 1. 2:Sets language version to 1.2 for backward compatibility.

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Compiling an Application

For example, the following command compiles and links two JavaScript-enhanced HTML
pages, mai n. ht m and hel | 0. ht m ; and a server-side JavaScript file, support . j s, creating
a binary executable named nyapp. web. In addition, during compilation, the compiler prints
progress information to the command line.

jsac -v -0 nyapp.web main.htm hello.html support.js

As a second example, the following command compiles the files listed in the file
| ooksee. t xt into a binary executable called | ooksee. web:

jsac -f | ooksee.txt -o | ooksee.web

Here, | ooksee. t Xt might contain the following:

I ookseel. htm
| ooksee2. ht m
\ nyapps\j spl ace\ common. j s
| ooksee3. ht

53

Installing a New Application

Installing a New Application

You cannot run an application and clients cannot access it until you install it. Installing an
application identifies it to the server. After you have installed the application, you can rebuild
and run it any number of times. You need to reinstall it only if you subsequently remove it. You
can install up to 120 JavaScript applications on one server.

Before you install, you must move all application-related files to the correct directory, by
publishing the files. Otherwise, you’ll get an error when you install the application. For security
reasomns, you may not want to publish your JavaScript source files on your deployment setrver.
See “Application URLs” for restrictions on whete you can place your files.

To install a new application with the Application Manager, click Add Application. In response,
the Application Manager displays, in its right frame, the form shown in Figure 3-4. (The color
scheme is different in iPlanet Web Server 4.1.)

Figure 3-4 Add Application form

Wk e 1

Barvei Tihy Jupa Jerip! Bpiaation Waragel

Wi Tilr Pty [
Frelaall Fage: f
Inikiad Fagm: I‘——'

Bwili-um Haxisem

Bt ahias Do i ena: II
Fatamal Likrarisa: :]
rI
i v
CLimwi Wpct
Bainbananrs:
reriople ®

L= B

54 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Installing a New Application

Fill in the fields in the Add Application form, as follows:

Nanme: the name of the application. This name defines the application URL. For example,
the name of the Hello Wozld application is “world,” and its application URL is

ht t p: /1 server.domainl wor | d. This is a required field, and the name you type must be
different from all other application names on the server. See “Application URLs.”

Web File Path: the full pathname of the application web file. This is a required field. For
example, if you installed the Netscape server in ¢: \ nshomne, the web file path for the
Hello Wosld application is ¢: \ nshone\ pl ugi ns\ sanpl es\j s\wor | d\ hel | 0. web.

Default Page: the page that the JavaScript runtime engine serves if the user does not indicate
a specific page in the application. This page is analogous to i ndex. ht M for a standard
URL.

Initial Page: the page that the JavaScript runtime engine executes when you start the
application in the Application Manager. This page is executed exactly once per running of
the application. It is generally used to initialize values, create locks, and establish database
connections. Any JavaScript soutce on this page cannot use either of the predefined
request orclient objects. This is an optional field.

Built-in Maxcinum Database Connections: the default value for the maximum number of
database connections that this application can have at one time using the predefined

dat abase object. (This is provided for backward compatibility with applications that use
database objects; for new applications that use a dbpool object, ignore this field.
“Database Connection Pools,” on page 202 for how to set this parameter for a dbpool
object.)

External zbraries: the pathnames of external libraries to be used with the application. If
you specify multiple libraries, delimit the names with either commas or semicolons. This is
an optional field. Libraries installed for one application can be used by all applications on
the server. See “Working with External Libraries.”

Client Object Maintenance: the technique used to save the properties of the client object. This
can be client cookie, client URL, server IP, setver cookie, or server URL. See “Techniques
for Maintaining the client Object.”

55

Installing a New Application

After you have provided all the required information, click Enter to install the application,
Reset to clear all the fields, or Cancel to cancel the operation.

You must stop and restart your server after you add or change the external libraries for an
application. You can restart a server from your Server Manager; see the administrator’s guide
for your web server for more information.

Application URLs

When you install an application, you must supply a name for it. This name determines the base
application URL, the URL that clients use to access the default page of a JavaScript application.
The base application URL is of the form

ht t p: / / server.domain/ appName

Here, server is the name of the HT'TP setver, domain is the Internet domain (including any
subdomains), and gppName is the application name you enter when you install it. Individual
pages within the application are accessed by application URLs of the form

ht t p: / / server.domain/ appNanse/ page. ht m

Here, page is the name of a page in the application. For example, if your server is named
coyot e and your domain name is r oyal ai r ways. com the base application URL for the
hangman sample application is

http://coyote. royal ai rways. conf hangnan

56 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Installing a New Application

When a client requests this URL, the server generates HIML for the default page in the

application and sends it to the client. The application URL for the winning page in this
application is

http://coyote.royal ai rways. conl hangnan/ youwon. ht ni

NOTE Before you install an application, be sure the application
name you choose does not usurp an existing URL on your
server. The JavaScript runtime engine routes all client
requests for URLs that match the application URL to the
directory specified for the web file. This circumvents the
server’s normal document root.

For instance, suppose a client requests a URL that starts with this prefix from the previous
example:

http://coyote. royal ai rways. conf hangman

57

Controlling Access to an Application

In this case, the runtime engine on the server looks for a document in the sanpl es\ hangnman
directory and not in your server’s normal document root. The setver also serves pages in the
directory that are not compiled into the application.

You can place your source (uncompiled) server-side JavaScript files in the same directory as the
web file; however, you should do so only for debugging purposes. When you deploy your
application to the public, for security reasons, you should not publish uncompiled server-side

JavaScript files.

Controlling Access to an Application

58

When you install an application, you may want to restrict the users who can access it,
particularly if the application provides access to sensitive information or capabilities.

If you work on a development server inside a firewall, then you may not need to worry about
restricting access while developing the application. It is convenient to have unrestricted access
during development, and you may be able to assume that the application is safe from attack

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Modifying an Application

inside the firewall. If you use sample data during the development phase, then the risk is even
less. However, if you leave your application open, you should be aware that anyone who knows
or guesses the application URL can use the application.

When you finish development and are ready to deploy your application, you should reconsider
how you want to protect it. You can restrict access by applying a server configuration style to
the application. For information on configuration styles, see the administrator’s guide for your
web setver.

Modifying an Application

To modify an application, select the application name in the list of applications and click
Modify.

You can change any of the fields defined when you installed the application, except the
application name. To change the name of an application, you must remove the application and
then reinstall it.

If you modify the fields of a stopped application, the Application Manager automatically starts
it. When you modify fields of an active application, the Application Manager automatically
stops and restarts it.

Removing an Application

To remove an application, select it in the list of applications and click Remove. The
Application Manager removes the application so that it cannot be run on the server. Clients are
no longer able to access the application. If you delete an application and subsequently want to
run it, you must install it again.

Although clients can no longer use the application, removing it with the Application Manager
does not delete the application’s files from the server. If you want to delete them as well, you
must do so manually.

Starting, Stopping, and Restarting an Application

After you first install an application, you must start it to run it. Select the application in the list
of applications and click Start. If the application successfully starts, its status changes from
Stopped to Active.

You can also start an application by loading the following URL:

59

Starting, Stopping, and Restarting an Application

ht t p: / / server.domainl apprgr/ cont rol . ht m ?nane=appName&cnd=st ar t

Here, appName is the application name. You cannot use this URL unless you have access
privileges for the Application Manager.

To stop an application and thereby make it inaccessible to users, select the application name in
the list of applications and click Stop. The application’s status changes to Stopped and clients
can no longer run the application. You must stop an application if you want to move the web
file or update an application from a development server to a deployment server.

You can also stop an application by loading the following URL.:

ht t p: /1 server.domainl apprgr / cont rol . ht m ?nane=appName&cnd=st op

Here, appName 1s the application name. You cannot use this URL unless you have access
privileges for the Application Manager.

You must restart an application each time you rebuild it. To restart an active application, select
it in the list of applications and click Restart. Restarting essentially reinstalls the application; the
software looks for the specified web file. If there is not a valid web file, then the Application
Manager generates an errof.

You can also restart an application by loading the following URL:

ht t p: / / server.domainl apprgr/ cont rol . ht m ?name=appName&crd=r est ar t

60 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Running an Application

Here, appName is the application name. You cannot use this URL unless you have access
privileges for the Application Manager.

Running an Application

Once you have compiled and installed an application, you can run it in one of two ways:

* Select the application name in the list of applications, and then click Run. In response, the
Application Manager opens a new Navigator window to access the application.

* Load the base application URL in Navigator by typing it in the Location field.

The setver then generates HIML for the specified application page and sends it to the client.

Debugging an Application

To debug an application, do one of the following:

* Select the application name in the list of applications, and then click Debug, as described
in “Using the Application Manager for Debugging.”

* Load the application’s debug URL, as described in “Using Debug URLs.”

You can use the debug function to display debugging information, as described in “Using the
debug Function.”

Once you’ve started debugging a JavaScript application in this way, you may not be able to stop
or restart it. In this situation, the Application Manager displays the warning “Trace is active.” If
this occurs, do the following:

1. Close any windows running the debugger.
2. Close any windows running the affected application.
3. Inthe Application Manager, select the affect application and click Run.

You can now stop or restart the application.

Using the Application Manager for Debugging

To debug an application, select it in the list of applications and then click Debug. In response,
the Application Manger opens a new Navigator window in which the application runs. The
trace utility also appears, either in a separate frame of the window containing the application or

61

Debugging an Application

in another window altogether. (You can determine the appearance of the debug window when
you configure the default settings for the Application Manager, as described in “Configuring

Default Settings.”)

The trace utility displays this debugging information:

Figure 3-5 shows what you might see if you debug the Hangman application.

Figure 3-5

62

values of object properties and arguments of debug functions called by the application

property values of the r equest and cl i ent objects, before and after generating HTML

for the page

property values of the pr oj ect and server objects

indication of when the application assigns new values to propetties

indication of when the runtime engine sends content to the client

ko M sl . ety

bl Edi Yaw fo fodnmb: ptore [eeckay lyrcce Help

Debugging Hangman

_ﬂ Fidede hlh Mehanresa oot spprey Adabug hind 'nesashmgnn

Pty PR Dh{ecr

s =

ip = "N L1310
pFonacid = HTTR LIF
mathead = PIET

Hangman

Lo

-

HETTRETEE

Yo harw npad thea Fol lawing Iwtinr: ca e MITE
“'I'Ithrur,.-dl_

Eveer | Glowr

To lmwrn bow o plwy Hergrren, plesce pmed te rabe:.

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Deploying an Application

Using Debug URLs

Instead of using the Application Manager, you may find it more convenient to use an
application’s debug URL. To display an application’s trace utility in a separate window, enter
the following URL:

ht t p: /1 server.domainl apprgr/ trace. ht m ?nane=appName

Hete, appNamre is the name of the application. To display the trace utility in the same window as
the application (but in a separate frame), enter this URL:

ht t p: /1 server.domainl apprgr / debug. ht m ?nane=appName

You cannot use these two URLSs unless you have access privileges to run the Application
Manager. You may want to bookmark the debug URL for convenience during development.

Using the debug Function

You can use the debug function in your JavaScript application to help trace problems with the
application. The debug function displays values to the application trace utility. For example,
the following statement displays the value of the guess property of the r equest object in the
trace window along with some identifying text:

debug ("Current Cuess is ", request.guess);

Deploying an Application

After you have finished developing and testing your application, you are ready to deploy it so
that it is available to its intended users. This involves two steps:

* moving the application from the development server to the deployment (production)
server that is accessible to end users

63

Application Manager Details

* applying or changing access restrictions to the application, as appropriate

You should move the application web file to the deployment server, along with any images and
uncompiled HTML and JavaScript files that are needed. For more information on how to
deploy your application files, see the Web Publisher Users Guide.

NOTE In general, for security reasons, you should not deploy
source files.

Depending on the application, you might want to restrict access to certain groups or
individuals. In some cases, you might want anyone to be able to run the application; in these
cases you don’t need to apply any restrictions at all. If the application displays sensitive
information or provides access to the server file system, you should restrict access to
authorized users who have the proper user name and password.

You restrict access to an application by applying a server configuration style from your Server
Manager. For information on using Server Manager and configuration styles, see the /Planet Web
Server Administrator’s Guide.

Application Manager Details

This section shows how to change default settings for the Application Manager. In addition, it
talks about the format of the underlying file in which the Application Manager stores
information.

Configuring Default Settings

To configure default settings for the Application Manager, click Configure (in Enterprise
Setrver 3.x) or Preferences (in iPlanet Web Server 4.1) in the Application Manager’s top frame.
In response, the Application Manager displays the form shown in Figure 3-6.

You can specify these default values:
» Web File Path: A default directory path for your development area.
* Defanlt Page: A default name for the default page of a new application.

* Iwitial Page: A default name for the initial page of a new application.

64 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Application Manager Details

* Built-in Maximum Database Connections: A default value for the maximum number of
database connections you can make for the predefined dat abase object. (This is
provided for backward compatibility with applications that use database objects; for new
applications that use a dbpool object, ignore this field. See “Database Connection Pools,”
on page 202 for how to set this parameter for a dbpool object.)

* External Libraries: A default directory path for native executables libraries.

e Client Object Maintenance: A default maintenance technique for the cl i ent object
properties.

When you install a new application, the default installation fields are used for the initial settings.

Figure 3-6 Default Settings form

Server Side JavaSerpl Applicatian Managss

Pl
| Woal Serem d1

Eaplealis
Lok Diefauit Yalues When Adding Applications

Webh File Pakh: I

Fefault Fage: I

Imiiial Fage: |

Bailf-im Harirmms

Eatalags CaniELT1one II.

Exlornal Librarios: d

Climnk @bfmck

i nf civanes e §
I'.'ll"l"“'l.'l:ﬂ'ﬂl.' a

In addition, you can specify these preferences, shown in Figure 3-7:

e Confirm on: Whether you are prompted to confirm your action when you remove, start,
stop, or restart an application.

* Debug Output: Whether, when debugging an application, the application trace appears in
the same window as the application but in another frame, or in a window separate from
the application.

65

Application Manager Details

Figure 3-7 Default Settings form with Preferences shown

P laret

Wel Serwar 0

o

Server Slde JavaScripl Apphcation Manager

LT =
Amicalitn L _-'l-l
Client Geon

Haintansnra:
||:||?||1-.|:l2|l|ri 'F'l

Preferences

Csnficm 0 g foom P Sl SuplC Bestan

Pebug Sukputy g Same Wadow T Othear Wisdins

o] _Rusn_| _caresl |

Under the Hood

The Application Manager is a convenient interface for modifying the configuration file
$NSHOME\ ht t ps- serverID\ conf i g\ j sa. conf , where $NSHOVE is the directory in which
you installed the server and serverID is the server’s ID. In case of catastrophic errors, you may
need to edit this file yourself. In general, this is not recommended, but the information is
provided here for troubleshooting purposes.

Each line in j sa. conf corresponds to an application. The first item on each line is the
application name. The remaining items ate in the format nane=val ue, where nane is the
name of the installation field, and val ue is its value. The possible values for nane are:

e uri: the application name portion of the base application URL
* obj ect: path to the application web file
* hone: application default page

e start: application initial page

66 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Application Manager Details

* maxdbconnect : default maximum number of database connections allowed for the
predefined dat abase object. (This is provided for backward compatibility with
applications that use database objects; for new applications that use a dbpool object,
ignore this field. See “Database Connection Pools” for how to set this parameter for a
dbpool object.)

e library: paths to external libraries, separated by commas or semicolons
e client-node: technique for maintaining the cl i ent object

The j sa. conf file is limited to 1024 lines, and each line is limited to 1024 characters. If the
fields entered in the Application Manager cause a line to exceed this limit, the line is truncated.
‘This usually results in loss of the last item, external library files. If this occurs, reduce the
number of external libraries entered for the application, and add the libraties to other
applications. Because installed libraries are accessible to all applications, the application can still
use them.

A line that starts with # indicates a comment. That entire line is ignored. You can also include
empty lines in the file.

Do not include multiple lines specifying the same application name. Doing so causes errors in
the Application Manager.

67

Application Manager Details

68 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Part 2

Server-Side JavaScript Features

Quick Start with the Sample Applications
Basics of Server-Side JavaScript
Session Management Service

Other JavaScript Functionality

69

70 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Chapter 4

Quick Start with the Sample
Applications

This chapter describes the sample server-side JavaScript applications that ship with Netscape
web servers. It introduces using server-side JavaScript by working with two of the simpler
sample applications.

This chapter contains the following sections:
* About Server-Side JavaScript Sample Applications
¢ Hello World

* Hangman

About Server-Side JavaScript Sample
Applications

When you install a Netscape web server, several sample JavaScript applications ate also
installed. For an introduction to the full capabilities of JavaScript applications, run them and
browse their source code. You can also modify these applications as you learn about
JavaSctipt’s capabilities. Both the source files and the application executables for these
applications are installed in the SNSHOME\ pl ugi ns\ sanpl es\ j s directory, where $NSHOVE
is the directory in which you installed the server.

The following table lists the sample applications.

Table 4-1 Sample JavaScript applications

Basic concepts

wor | d “Hello World” application.

71

About Server-Side JavaScript Sample Applications

Table 4-1 Sample JavaScript applications (Continued)

hangman The word-guessing game.

ci pher Word game that has the player guess a cipher.
LiveWire Database Service?
dbadm n Simple interactive SQL access using LiveWire.

If you have restricted access to the Application Manager, this
sample is also protected with the server administrator’s user
name and password.

The Maximum Database Connections field for this
application modifies a dbpool object.

vi deoapp Complete video store application using a relational database
of videos.

LiveConnect
bugbase Simple bug entry sample using LiveConnect.

Other sample applications

sendmai | Demonstrates the ability to send email messages from your
JavaScript application.

Vi ewer Allows you to view files on the server, using JavaScript’s
Fi | e class.

For security reasons this application is not automatically
installed with the Netscape server. If you install it, be sure to
restrict access. Otherwise, unauthorized persons may be able
to read and write files on your server. For information on
restricting access to an application, see the administrator’s
guide for your web server.

j saccal | Sample using external native libraries and providing access
to CGl variables.

1. These sample applications work only if you have a supported database server installed on your
network and have configured the client software correctly. For more information, see Chapter 10,
“Configuring Your Database.” These applications are discussed in Chapter 13, “Videoapp Sample
Application.” Before using Vi deoapp, follow the instructions to set them up found in that chapter.

72 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Hello World

NOTE In addition to sample applications, the
$NSHOME\ pl ugi ns\ sanpl es\ j s directory also
contains an application named et adat a. This
application is used by Visual JavaScript. While you are
welcome to browse its source code, do not modify the
executable.

The rest of this chapter walks you through two of the simpler samples, giving you a feel for
working with JavaScript applications. For now, don’t worry about any of the details. This
discussion is intended only to give you a rough idea of the capabilities of JavaScript
applications. Details are discussed in later chapters.

Chapter 13, “Videoapp Sample Application” discusses the vi deoapp application in detail.
You should read that chapter when you’re ready to start working with the LiveWire Database
Service.

Hello World

In this section, you run Hello Wortld, the simplest sample application, and get an introduction
to the following procedures:

* Reading JavaScript source files
* Embedding JavaScript in HTML
* Building and restarting an application

To get started with the sample applications, you need to access the JavaScript Application
Manager. You can do so by loading the following URL in Navigator:

ht t p: / / server.domain/ appngr

In this and other URLs throughout this manual, server represents the name of the server on
which you run your application, such as r esear chl or ww, and domain represents your
Internet domain name, such as net scape. comor ui uc. edu. If your server has Secure
Sockets Layer (SSL) enabled, use ht t ps instead of ht t p in the URL.

In the Application Manager, select Wor | d in the left frame and click the Run button.
Alternatively, you can enter the application URL in the Navigator Location field:

htt p: // server.domain/ wor | d

73

Hello World

In response, the Application Manager displays the page shown in Figure 4-1.

Figure 4-1 Hello World

e Mest i ages - [Hislo Wioikd]

Dls Ecil Ywew (o Fectmada [iptom
Couclay lincoss Hulp

.ﬂ Hﬂ:-l-tﬂ:l"h-'-'-:h:l'rcz-r-:m-mu- ;I
Hello World

Tanr |Fuddraes ie 0.0 134207

Luck: tirren s wars undafined

Thir e yees ura undufined
Enter your nams...
I
S

Tan bwra bean bara i Hear
This pags has besn aocesisd O dmey.

o=l | Dooams [x|

For more information on the Application Manager, see Chapter 3, “Mechanics of Developing
JavaScript Applications.”

What Hello World Does

This application illustrates two important capabilities: maintaining a distinct client state for
multiple clients and maintaining a persistent application state. Specifically, it performs these
functions:

e Displays the IP address of the client accessing it

* Displays the names entered previously and provides a simple form for the user to enter a
name

* Displays the number of times the user has previously accessed the page and the total
number of times the page has been accessed by anyone

74 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Hello World

The first time a user accesses this page, the values for both names are not defined. The number
of times the user has previously accessed the page is 0; the total number of times it has been
accessed 1s 0.

Type your name and click Enter. The page now shows the name you enteted following the text
“This time you are.” Both numbers of accesses have been incremented. This action illustrates
simple form processing. Enter another name and click Enter. The page now shows the new
name following the text “This time you are” and the previous name following the text “Last
time you were.” Again, both numbers of accesses have been incremented.

If you access the application from another instance of the Navigator (or from another
computer), the page displays the total number of accesses and the number of accesses by each
instance of Navigator, not just by that particular instance.

Looking at the Source Script

Now take a look at the JavaScript source script for this application. Using your favorite text
editor, open the file SNSHOME\ pl ugi ns\ sanpl es\j s\wor | d\ hel | 0. ht m , where
$NSHOME is the directory in which you installed the Netscape server. The file begins with some
typical HTML:

<htm >

<head>

<title> Hello World </title>

</ head>

<body>

<h1l> Hello Wrld </hil>

<p>Your | P address is <server>wite(request.ip);</server>

75

Hello World

The SERVER tags in the bottom line enclose JavaSctipt code that is executed on the server. In
this case, the statement W i t e(request . i p) displays the i p property of the r equest
object (the IP address of the client accessing the page). The wri t e function is very important
in server-side JavaScript applications, because you use it to add the values of JavaScript
expressions to the HTML page sent to the client.

The r equest object is part of the JavaScript Session Management Service. For a full
description of it, see Chapter 6, “Session Management Service.” The wr i t e function is one of
the functions JavaScript defines that is not associated with a specific object. For information on
the wr i t e function, see “Constructing the HTML Page.”

Then come some statements you shouldn’t worry about quite yet. These are the next
statements of interest:

<server> client.oldname = request. newnane; </ server>

This statement assigns the value of the newnane property of the r equest object to the

ol dnare property of the cl i ent object. The cl i ent object is also patt of the JavaScript
Session Management Service. For a full description of it, see Chapter 6, “Session Management
Service.” For now, just realize that cl i ent can hold information about an application specific
to a particular browser running that application.

The value of r equest . newnane is set when a user enters a value in the form. Later in the file
you’ll find these form statements:

<f orm net hod="post" action="hello.htm ">
<i nput type="text" nane="newnane" size="20">

The value of the form’s ACTI ON attribute is hel | 0. ht m (the current filename). This means
that when the user submits the form by clicking Enter or pressing the Enter key, Navigator
reloads the current page. In general, ACTI ON can be any page in a JavaScript application.

The value of the NAME attribute of the text field is newnanme. When the page is submitted, this
statement assigns whatever the user has entered in the text field to the newnane property of
the r equest object, referred to in JavaScript as r equest . newnane. The values of form
elements always correspond to properties of the r equest object. Properties of the r equest
object last only for a single client request.

A few lines down, there is another SERVER tag, indicating that the following lines are
server-side JavaScript statements. Here is the first group of statements:

it (client. nunber == null)
client.nunber =0
el se
client.nunber = 1 + parselnt (client.nunber, 10)

76 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Hello World

This conditional statement checks whether the nunber property of the cl i ent object has
been initialized. If not, then the code initializes it to 0; otherwise, it increments nunber by 1
using the JavaScript par sel nt function, which converts the string value to a number. Because
the predefined cl i ent object converts all property values to strings, you must use par sel nt
or par seFl oat to convert these values to numbers.

Because nunber is a property of the cl i ent object, it is distinct for each different client that
accesses the application. This value indicates the number of times “you have been here.”

To track the total number of accesses, you use the pr oj ect object, because it is shared by all
clients accessing the application. Properties of the pr oj ect object persist until the application
is stopped. The next group of statements tracks accesses:

proj ect. | ock()
if (project.nunber == null)
project.nunber = 0
el se
proj ect.nunber = 1 + project.nunber
proj ect . unl ock()

The first statement uses the | 0ck method of the pr oj ect object. This gives the client
temporary exclusive access to the pr 0j ect object. Anotheri f statement checks whether
pr oj ect . nunber has been defined. If not, then the code initializes it to 0; otherwise, the
code increments it by 1. Finally, the unl ock method releases the pr oj ect object so that
other clients can access it.

The final statements in the file display the values of ¢l i ent . nunber and pr oj ect . nurber .

<p>You have been here <server>write(client.nunber);</server>
tines.

Thi s page has been accessed <server>wite(project.nunber);
</ server> tines.

7

Hello World

78

Modifying Hello World

In this section, you modify, recompile, and restart this sample application. To edit the source
file, you must first determine where it is. In case you don’t remember, the Application Manager
shows the directory path of the application executable (the file that has the suffix . web). The
source file, hel | 0. ht m , should be in the same directory. Edit the file with your favorite text
editor. The HTML file starts with these statements:

<htm >

<head> <title> Hello Wirld </title> </head>

<body>

<hl> Hello World </ hl>

<p>Your |P address is <server>wite(request.ip);</server>
<server>

wite ("<P>Last tine you were " + client.oldname + ".");

</ server>

<p>This tine you are <server>wite(request.newnane); </server>
<server>client.ol dnane = request.newnane; </server>

Add a line that displays the type of browser the user has:
<p>You are using <server>wite(request.agent)</server>

If you want, you can also personalize the heading of the page; for example, you could make the
title “Fred’s Hello World.”

When you’ve finished modifying the file, run the JavaScript application compiler. At the
command prompt, change to the directory containing the source code. Type this line at the
command prompt to compile the application:

jsac -v -0 hello.web hello.htmn

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Hangman

Alternatively, from that directory you can run the bui | d script (for Unix) or bui | d. bat
script (for N'T). In either case, the compiler starts and displays messages. The final message
should be “Compiled and linked successfully.”

Publish the application’s files on your development server. To restart, access the Application
Manager, select Hello World, then choose Restart. This loads the newly compiled version of
the application into the server. You can then run the application by choosing Run. A window
opens with Hello World. You see the changes you made to the application.

Hangman

In this section, you run and modify the Hangman sample application and get an introduction
to:

* Using a JavaScript-only source file
e Correcting compile-time errors
* Using the trace utility for runtime debugging

Hangman is a classic word game in which the players try to guess a secret word. The unknown
letters in the word are displayed on the screen as asterisks; the asterisks are replaced as a player
guesses the correct letters. When the guess is incorrect, one more part of the hanged man is
drawn. The game also shows the incorrect letters you have guessed.

When the hanged man is completely drawn, the player loses the game. The player wins by
guessing all the letters in the word before the man is hanged. In this simple version of the
game, there are only three possible secret words. After a game, the player can choose to play
again (and use the next secret word) or quit.

Run the Hangman application by selecting Hangman in the Application Manager and clicking
Run. Alternatively, you can load the application URL in Navigator:

ht t p: / / server.domain/ hangman

79

Hangman

In response, the Application Manager displays the page shown in the following figure.

Figure 4-2 Hangman

E Edd Yaw Ho Bocaks [t [ireciay
ke Hals

T T e ————— :J

Hangman

Tan s ussd the falowing btters io R
‘Wl i yaur et |_

B B

Ta bmmi baw ta pley Hasgra, ples:n pmd the rolee

A'spl | Docusen: Dora = .

Play the game to get a feel for it.

Looking at the Source Files

The following table shows the sources files for Hangman.

Table 4-2 Hangman source files

hangman.html The main page for the application. This page is installed as
the default page for Hangman in the Application Manager.
It is displayed if the user enters just the hangnman URL,
with no specific page.

hangman.js A file containing only server-side JavaScript functions used
in hangman. ht m .

80 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Hangman

Table 4-2 Hangman source files (Continued)

youwon.html The pages displayed when a player wins, loses, and

youlost.html finishes playing the game, respectively.

thanks.html

images directory Contains the Hangman images, hangO. gi f, hangl. gi f,
and so on.

rules.html Contains text explaining the game. This file is not compiled

with the application; it is included as an example of an
uncompiled application page that is part of the same site.

Most of the application logic is in hangman. ht m . The basic logic is simple:

1.

2
3
4,
5

For a new game, initialize the secret word and other variables.

If the player correctly guessed a letter, substitute it into the answer.

If the guess was wrong, increment the number of wrong (missed) guesses.
Check whether the user has won or lost.

Draw the current version of the hanged man, using a GIF image based on the
number of wrong guesses.

The body of the HTML file hangman. ht m starts with some JavaScript code inside a SERVER
tag. First comes code to initialize a new game:

if (client.ganeno == null) {
client.ganmeno = 1;
client.newgane = "true";
}
if (client.newgame == "true") {
if (client.ganeno %3 == 1)
client.word = "LI VEWRE";
if (client.ganeno % 3 == 2)
client.word = "NETSCAPE";
if (client.ganeno % 3 == 0)
client.wrd = "JAVASCR PT";
client.answer = InitAnswer(client.word);
client.used = "";
client.numm sses = 0;
}
client.newgane = "fal se";

81

Hangman

This code makes extensive use of the Cl i ent object to store information about this client
playing the game. Because there is no state that needs to be saved between uses of this same
application by different clients, the code doesn’t use the pr oj ect or server objects.

The first statement determines whether the player has played before, by checking if

cl i ent . ganeno exists; if not, the code initializes it to 1 and sets cl i ent . newgane totr ue.
Then, some simple logic assigns the “secret word” to cl i ent. wor d; there are just three
secret words that playets cycle through as they play the game. The cl i ent . gameno property
keeps track of how many times a particular player has played. The final part of initialization
uses | ni t Answer , a function defined in hangman. j s, to initialize cl i ent. answer to a
string of asterisks.

Then comes a block of statements to process the player’s guess:

if (request.guess != null) {
request. guess = request. guess.toUpper Case().substring(0,1);
client.used = client.used + request.guess + " ";
request.ol d_answer = client.answer;
client.answer = Substitute (request.guess, client.word,
client.answer);
if (request.old_answer == client.answer)
client.numm sses = parselnt(client.numnmn sses) + 1;

82 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Hangman

The i f statement determines whether the player has made a guess (entered a letter in the form
field). If so, the code calls Subst i t ut e (another function defined in hangnan. j s) to
substitute the guessed letter into cl i ent. answer . This makes cl i ent . answer the answer
so far (for example, “N*T*+*AP*”).

The second i f statement checks whether cl i ent . answer has changed since the last guess; if
not, then the code increments ¢l i ent . num_m sses to keep track of the number of incorrect
guesses. You must always use par sel nt to work with integer property values of the
predefined cl i ent object.

As shown in the following code, the final i f statement in the JavaScript code checks whether
the player has won or lost, and redirects the client accordingly. The r edi r ect function opens
the specified HTML file and passes control to it.

if (client.answer == client.word)
redirect(addClient("youwon.html"));

else if (client.num_misses > 6)
redirect(addClient("youlost.html"));

This is the end of the initial SERVER tag. HTML, augmented with more JavaSctipt expressions,

begins. The hanged man is drawn by using a backquoted JavaSctipt expression inside an
HTML | MG tag:

The entire expression between the two backquotes (*) is a JavaScript string. It consists of the
string literal images\hang concatenated with the value of client.num_misses (which
represents an integer but is stored as a string), concatenated with the string literal .gif . There
are six GIF files containing the hanged man in different stages of completion: image0.gif
imagel.gif , and so on. The backquoted JavaScript generates HITML of the form:

>

These lines follow:

<PRE><SERVER>write(client.answer)</SERVER></PRE>
You have used the following letters so far:
<SERVER>write(client.used)</SERVER>

83

Hangman

They display the value of cl i ent . answer (the word containing all the correctly guessed
letters) and all the guessed letters.

The remainder of the file consists of standard HTML. One important thing to notice is that the
ACTI ON attribute of the FORMtag specifies hangman. ht m as the URL to which to submit
the form. That means when you submit the form, the page is reloaded with the specified form
values.

Examine hangman. j s, an example of a server-side JavaScript-only source file. It defines two
functions, | ni t Answer and Subst i t ut e, used in the application. Notice that you do not use
SERVER tags in a JavaScript-only file.

Debugging Hangman

You can experiment more with JavaScript to get a feel for developing applications. One
important task to master is debugging. In the Application Manager, select Hangman and
choose Debug. The Application Manager opens a window with the application in one frame
and debugging information in a narrow frame along the left side of the window, as shown in
Figure 4-3.

84 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Hangman

Figure 4-3 Debugging Hangman

Notice that the URL is
ht t p: / / server.domain/ appngr/ debug. ht m ?nane=hangnan

You can add a bookmatk for this URL as a convenience while you work on Hangman. Then
you don’t have to go through the Application Manager.

Try adding a function to Hangman verifying that a player’s guess is a letter (not a number or
punctuation mark). You can use the function | ni t Answer defined in hangnman. j s as a
starting point. After compiling and restarting the application, use your bookmark to run the
application in debug mode.

85

Hangman

86 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Chapter 5

Basics of Server-Side JavaScript

This chapter describes the basics of server-side JavaScript. It introduces server-side
functionality and the differences between client-side and server-side JavaScript. The chapter
describes how to embed server-side JavaScript in HTML files. It discusses what happens at
runtime on the client and on the server, so that you can understand what to do when. The
chapter describes how you use JavaScript to change the HTML page sent to the client and,
finally, how to share information between the client and server processes.

This chapter contains the following sections:

* What to Do Where

* Opverview of Runtime Processing

* Server-Side Language Overview

* Embedding JavaSctipt in HTML

* Runtime Processing on the Server

* Constructing the HTML Page

* Accessing CGI Variables

* Communicating Between Server and Client
* Garbage Collection

e Error Handling in Server-Side JavaScript

87

What to Do Where

Setrver-side JavaScript contains the same core language as the client-side JavaScript with which
you may already be familiar. The tasks you perform when running JavaScript on a server are
quite different from those you perform when running JavaScript on a client. The different
environments and tasks call for different objects.

What to Do Where

The client (browser) environment provides the front end to an application. In this
environment, for example, you display HTML pages in windows and maintain browser session
histories of HTML pages displayed during a session. The objects in this environment,
therefore, must be able to manipulate pages, windows, and histories.

By contrast, in the server environment you work with the resources on the server. For example,
you can connect to relational databases, share information across users of an application, or
manipulate the server’s file system. The objects in this environment must be able to manipulate
relational databases and server file systems.

In addition, an HTML page is not displayed on the server. It is retrieved from the server to be
displayed on the client. The page retrieved can contain client-side JavaScript. If the requested
page is part of a JavaScript application, the server may generate this page on the fly.

In developing a JavaScript application, keep in mind the differences between client and server
platforms. They are compared in the following table.

Table 5-1 Client and server comparison

Servers Clients

Servers are usually (though not always) Clients are often (though not always)

high-performance workstations with desktop systems with less processor
fast processors and large storage power and storage capacity.
capacities.

Servers can become overloaded when Clients are often single-user machines,
accessed by thousands of clients. so it can be advantageous to offload

processing to the client.

Preprocessing data on the client can also
reduce bandwidth requirements, if the
client application can aggregate data.

88 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Overview of Runtime Processing

There are usually a variety of ways to partition an application between client and server. Some
tasks can be performed only on the client or on the setver; others can be performed on either.
Although there is no definitive way to know what to do where, you can follow these general
guidelines:

As a rule of thumb, use client processing (the SCRI PT tag) for these tasks:
e Validating user input; that is, checking that values entered in forms are valid
* Prompting a user for confirmation and displaying error or informational dialog boxes

* Performing aggregate calculations (such as sums or averages) or other processing on data
retrieved from the server

* Conditionalizing HTML

e Performing other functions that do not require information from the server

Use server processing (the SERVER tag) for these tasks:

e Maintaining information through a series of client accesses

* Maintaining data shared among several clients or applications

* Accessing a database or files on the server

* Calling external libraries on the server

* Dynamically customizing Java applets; for example, visualizing data using a Java applet

JavaScript’s Session Management Service provides objects to preserve information over time,
but client-side JavaScript is more ephemeral. Client-side objects exist only as the user accesses a
page. Also, servers can aggregate information from many clients and many applications and can
store large amounts of data in databases. It is important to keep these characteristics in mind
when partitioning functionality between client and server.

Overview of Runtime Processing

Once you've installed and started a JavaScript application, users can access it. The basic
procedute is as follows:

1. A user accesses the application URL with a web browser, such as Netscape
Communicator. The web browser sends a client request to the server for a page
in the application.

89

Overview of Runtime Processing

90

If the request is to a page under the application URL, the JavaScript runtime
engine running on the server finds information in the web file corresponding
to that URL. For details on what happens in this and the next two steps, see
“Runtime Processing on the Server.”

The runtime engine constructs an HTML page to send to the client in response.
It runs the bytecodes associated with SERVER tags from the original source code
HTML, creating an HTML page based on those bytecodes and any other
HTML found in the original. For information on how you can influence that
page that is constructed, see “Constructing the HTML Page.”

The runtime engine sends the new HTML page (which may contain client-side
JavaScript statements) to the client.

The JavaScript runtime engine inside the web browser interprets any
client-side JavaScript statements, formats HTML output, and displays results
to the user.

Figure 5-1 illustrates this process.

Figure 5-1 Processing a JavaScript page request

Step 1 Step 2:
User requests Runtime engine finds
page source page in the
web file
Step 3: 1
Runtime engine
produces HTML page;
Step 5 runs all server code

Client interprets
and displays HTML
page, executing
client-side JavaScript
statements

while creating page

Step 4: 1

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Runtime engine sends
page to client

Overview of Runtime Processing

Of course, the user must have Netscape Navigator (or some other JavaScript-capable web
browser), for the client to be able to interpret client-side JavaScript statements. Likewise, if you
create a page containing server-side JavaSctipt, it must be installed on a Netscape server to
operate propetly.

For example, assume the client requests a page with this source:

<htm >
<head> <title> Add New Custoner </title> </ head>
<body t ext ="#FFFF00" bgcol or="#C0C0C0"
background="bl ue_narble. gi f">
<ing src="billlog2.gif">

<server>
if (project.lock()) {
project.lastID =1 + project.lastlD
client.custonerl D = project.lastlD
proj ect. unl ock();
}
</ server>
<h1>Add a New Customer </hl>
<p>Note: All fields are required for the new custoner
<f or m net hod="post" acti on="add. ht nf ></ p>
<p>I| D

<server>wite(" " +
project.lastlD + "</ FONT></ STRONG") ; </ server >
<l-- other htm statenents -->
</ body>
</htm >

91

Overview of Runtime Processing

92

When this page is accessed, the runtime engine on the server executes the code associated with
the SERVER tags. (The code shown in bold.) If the new customer ID is 42, the server sends this
HTML page to the client to be displayed:

<htm >

<head> <title> Add New Custoner </title> </ head>

<body t ext ="#FFFF00" bgcol or="#C0C0C0"

background="bl ue_narble. gi f">

<ing src="billlog2.gif">

<hl>Add a New Custoner </hl>

<p>Note: All fields are required for the new custoner
<f or m net hod="post" acti on="add. ht nf ></ p>

<p>I| D

42</ FONT></ STRONG>
<l-- other html statenments -->

</ body>

</htn >

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Server-Side Language Overview

Server-Side Language Overview

Client-side and server-side JavaScript both implement the JavaScript language. In addition,
each adds objects and functions specific to working in the client or the server environment. For
example, client-side JavaScript includes the f or mobject to represent a form on an HIML
page, whereas server-side JavaScript includes the dbpool for connecting to an external
relational database.

The <Italic>Client-Side JavaScript Guide discusses in detail the core JavaScript language and
the additions specific to client-side JavaScript.

ECMA, the European standards organization for standardizing information and
communication systems, derived its ECMA-262 standard from the JavaScript language. You
can download the standard specification from ECMA’s web site at ht t p: / / www. ecna. ch.

Prototypes

As described in the Server-Side JavaS cript Reference, you can use the pr ot ot ype property of many
classes to add new properties to a class and to all of its instances. As described in “Classes and
Objects,” server-side JavaScript adds several classes and predefined objects. For the new
classes that have the pr ot ot ype property, it works for server-side JavaScript exactly as for
client-side JavaScript.

You can use the pr ot ot ype property to add new properties to the Bl ob, Connect i on,
Cur sor, DbPool , Fi | e, Lock, Resul t set, SendMai | , and St pr oc classes.

You cannot use pr ot ot ype with the cl i ent, proj ect, request, and server objects.

Also, as for client-side JavaScript, you can use the pr ot ot ype property for any class that you
define for your application.

Remember that all JavaScript applications on a server run in the same environment. This is why
you can share information between clients and applications. One consequence of this,
however, is that if you use the pr ot ot ype property to add a new property to any of the

93

Server-Side Language Overview

94

server-side classes added by JavaScript, the new property is available to all applications running
on the server, not just the application in which the property was added. This provides you with
an easy mechanism for adding functionality to all JavaScript applications on your server.

By contrast, if you add a property to a class you define in your application, that property is
available only to the application in which it was created.

Usage

You need to be aware of how the JavaScript application compiler recognizes client-side and
server-side JavaScript in an HTML file.

Client-side JavaScript statements can occur in several situations:

* By including them as statements and functions within a SCRI PT tag

* By specifying a file as JavaScript source to the SCRI PT tag

* By specifying a JavaScript expression as the value of an HTML attribute

* By including statements as event handlers within certain other HTML tags
For detailed information, see the <Italic>Client-Side JavaScript Guide.
Setrver-side JavaScript statements can occur in these situations:

* By including them as statements and functions within a SERVER tag

* By specifying a file as JavaScript source to the JavaScript application compiler

* By specifying a JavaScript expression as the value or name of an HTML attribute

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Server-Side Language Overview

Notice that you cannot specify a server-side JavaScript statement as an event handler. For more
information, see “Embedding JavaScript in HTML.”

Environment

The LiveConnect feature of the core JavaScript language works differently on the server than it
does on the client. For more information, see Chapter 14, “LiveConnect Overview.”

JavaSctipt provides additional functionality without the use of objects. You access this
functionality through functions not associated with any object (global functions). The core
JavaScript language provides the global functions described in the following table (as well as
other functions described in the Core JavaScript documentation).

Table 5-2 Core JavaScript global functions

Function Description

escape Returns the hexadecimal encoding of an argument in the ISO
Latin-1 character set; used to create strings to add to a URL.

unescape Returns the ASCII string for the specified value; used in parsing a
string added to a URL.

isNaN Evaluates an argument to determine if it is not a number.

parseFloat Parses a string argument and returns a floating-point number.

parselnt Parses a string argument and returns an integer.

Server-side JavaScript adds the global functions described in the following table.

Table 5-3 JavaScript server-side global functions

Function Description

write Adds statements to the client-side HTML page
being generated. (See “Generating HTML.”)

flush Flushes the output buffer. (See “Flushing the
Output Buffer.”)

redirect Redirects the client to the specified URL. (See
“Changing to a New Client Request.”)

95

Server-Side Language Overview

Table 5-3 JavaScript server-side global functions (Continued)

Function Description

getOptionValue Gets values of individual options in an HTML
SELECT form element. (See “Using Select Lists.”)

getOptionValueCount Gets the number of options in an HTML SELECT
form element. (See “Using Select Lists.”)

debug Displays values of expressions in the trace window
or frame. (See “Using the debug Function.”)

addClient Appends client information to URLS. (See
“Manually Appending client Properties to URLS.”)

registerCFunction Registers a native function for use in server-side
JavaScript. (See “Registering Native Functions.””)

callC Calls a native function. (See “Using Native
Functions in JavaScript.”)

deleteResponseHeader Removes information from the s sent to the client.
(See “Request and Response Manipulation.”)

addResponseHeader Adds new information to the response header sent
to the client. (See “Request and Response
Manipulation.”)

ssjs_getClientID Returns the identifier for the cl i ent object used by
some of JavaScript’s client-maintenance techniques.
(See “Uniquely Referring to the client Object.”)

ssjs_generateClientIiD Returns an identifier you can use to uniquely
specify the cl i ent object. (See “Uniquely
Referring to the client Object.”)

ssjs_getCGlVariable Returns the value of the specified CGI environment
variable. (See “Accessing CGI Variables.”)

Classes and Objects

To support the different tasks you perform on each side, JavaScript has classes and predefined
objects that work on the client but not on the server and other classes and predefined objects
that wotk on the server but not on the client.

NOTE These names of these objects are reserved for JavaScript.
Do not create your own objects using any of these names.

96 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Server-Side Language Overview

The core JavaScript language provides the classes desctibed in the following table. For details
of all of these objects, see the Server-Side JavaScript Reference.

Table 5-4 Core JavaScript classes

Class Description

Array Represents an array.

Boolean Represents a Boolean value.

Date Represents a date.

Function Specifies a string of JavaScript code to be compiled as a function.

Math Provides basic math constants and functions; for example, its PI
property contains the value of pi.

Number Represents primitive numeric values.

Object Contains the base functionality shared by all JavaScript objects.

Packages Represents a Java package in JavaScript. Used with LiveConnect.

String Represents a JavaScript string.

Server-side JavaScript includes the core classes, but not classes added by client-side JavaScript.

Server-side JavaScript has its own set of additional classes to support needed functionality, as
described in the following table.

Table 5-5 Server-side JavaScript classes

Class Description

Connection Represents a single database connection from a pool of connections.
(See “Individual Database Connections.”)

Cursor Represents a database cursor. (See “Manipulating Query Results
with Cursors.”)

DbPool Represents a pool of database connections. (See “Database
Connection Pools.”)

Stproc Represents a database stored procedure. (See “Calling Stored
Procedures.”)

Resultset Represents the information returned by a database stored

procedure. (See “Calling Stored Procedures.”)

97

Embedding JavaScript in HTML

Table 5-5 Server-side JavaScript classes (Continued)

Class Description

File Provides access to the server’s file system. (See “File System
Service.”)

Lock Provides functionality for safely sharing data among requests,
clients, and applications. (See “Sharing Objects Safely with
Locking.”)

SendMail Provides functionality for sending electronic mail from your

JavaScript application. (See “Mail Service.”)

In addition, server-side JavaScript has the predefined objects described in the following table.
These objects ate all available for each HTTP request. You cannot create additional instances
of any of these objects.

Table 5-6 Server-side JavaScript singleton objects

Object Description

client Encapsulates information about a client/application pair,
allowing that information to last longer than a single HTTP
request. (See “The client Object.”)

pr oj ect Encapsulates information about an application that lasts until the
application is stopped on the server. (See “The project Object.”)

request Encapsulates information about a single HTTP request. (See “The
request Object.””)

server Encapsulates global information about the server that lasts until
the server is stopped. (See “The server Object.”)

Embedding JavaScript in HTML

There are two ways to embed server-side JavaSctipt statements in an HTML page:
* With the SERVER tag

Use this tag to enclose a single JavaScript statement or several statements. You
precede the JavaScript statements with <SERVER> and follow them with
</ SERVER>.

98 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Embedding JavaScript in HTML

You can intermix the SERVER tag with complete HTML statements. Never put
the SERVER tag between the open bracket (<) and close bracket (>) of a single
HTML tag. (See “The SERVER tag.”) Also, do not use the <SCRI PT> tag
between <SERVER> and </ SERVER>.

e With a backquote (*), also known as a tick

Use this character to enclose a JavaScript expressions inside an HTML tag,
typically to generate an HTML attribute or attribute value based on JavaScript
values. This technique is useful inside tags such as anchors, images, or form
element tags, for example, to provide the value of an anchor’s HREF attribute.

Do not use backquotes to enclose JavaScript expressions outside HTML tags.
(See “Backquotes.™)

When you embed server-side JavaScript in an HTML page, the JavaScript runtime engine on
the server executes the statements it encounters while processing the page. Most statements
perform some action on the server, such as opening a database connection or locking a shared
object. However, when you use the Wr i t e function in a SERVER tag or enclose statements in
backquotes, the runtime engine dynamically generates new HITML to modify the page it sends
to the client.

The SERVER tag

The SERVER tag is the most common way to embed server-side JavaSctipt in an HTML page.
You can use the SERVER tag in any situation; typically, however, you use backquotes instead if
you’re generating attributes names ot values for the HTML page.

Most statements between the <SERVER> and </ SERVER> tags do not appear on the HTML
page sent to the client. Instead, the statements are executed on the server. However, the output
from any calls to the wri t e function do appear in the resulting HTML.

The following excerpt from the Hello World sample application illustrates these uses:

<P>This tine you are

<SERVER>

write(request. newnane);
client.oldnane = request. newnane;
</ SERVER>

<h3>Enter your name</h3>

99

Embedding JavaScript in HTML

100

When given this code snippet, the runtime engine on the server generates HITML based on the
value of r equest . newnane in the wr i t e statement. In the second statement, it simply
performs a JavaScript operation, assigning the value of r equest . newnamne to

client. ol dname. It does not generate any HI'ML. So, if r equest . newnane is “Mr. Ed,”
the runtime engine generates the following HITML for the previous snippet:

<P>This time you are
Mr. Ed
<h3>Enter your name</h3>

Backguotes

Use backquotes (*) to enclose server-side JavaScript expressions as substitutes for HTML
attribute names or attribute values. JavaSctipt embedded in HTML with backquotes
automatically generates HTML; you do not need to use write

In general, HTML tags ate of the form
<TAG ATTRIB="value"[... ~ ATTRIB=" value"]>

where ATTRIB is an attribute and sa/ue is its value. The bracketed expression indicates that any
number of attribute/value pairs is possible.

When you enclose a JavaScript expression in backquotes to be used as an attribute value, the
JavaScript runtime engine automatically adds quotation marks for you around the entire value.
You do not provide quotation marks yourself for this purpose, although you may need them to
delimit string literals in the expression, as in the example that follows. The runtime engine does
not do this for attribute names, because attribute names are not supposed to be enclosed in
quotation marks.

For example, consider the following line from the Hangman sample application:

This line dynamically generates the name of the image to use based on the value of
client.num_misses . The backquotes enclose a JavaScript expression that concatenates the
string images\hang with the integer value of client.num_misses and the string .gif
producing a string such as images\hang0.gif . The result is HTML such as

5

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Embedding JavaScript in HTML

The order of the quotation marks is critical. The backquote comes first, indicating that the
following value is a JavaScript expression, consisting of a string (i mages\ hang), concatenated
with an integer (Cl i ent. num_mi sses), concatenated with another string (. gi f). JavaScript
converts the entire expression to a string and adds the necessary quotation marks around the
attribute value.

You need to be careful about using double quotation marks inside backquotes, because the
value they enclose is interpreted as a literal value. For this reason, do not surround JavaScript
expressions you want evaluated with quotation marks. For example, if the value of
client.val is NetHead, then this statement:

generates this HTML:

But this statement:

generates this HTML:

As another example, two of the ANCHORag’s attributes are HREFand NAMEHREFmakes the
tag a hyperlink, and NAMEmakes it a named anchor. The following statements use the choice
variable to set the attrib and val properties of the client object and then create either a
hyperlink or a target, depending on those values:

<SERVER>
if (choice == "link") {
client.attrib = "HREF";
client.val = "http://www.netscape.com";
}
if (choice == "target”) {
client.attrib = "NAME";
client.val = "NetHead";
}
</SERVER>
<A ‘client.attrib’="client.val’>Netscape Communications

If the value of choice 1is link , the result is

Netscape Communications

101

Embedding JavaScript in HTML

102

If the value of choi ce is t ar get, the result is

Net scape Commruni cati ons</ A>

When to Use Each Technique

In most cases, it is clear when to use the SERVER tag and when to use backquotes. However,
sometimes you can achieve the same result either way. In general, it is best to use backquotes to
embed JavaScript values inside HTML tags, and to use the SERVER tag elsewhere.

For example, in Hangman, instead of writing

you could write

<SERVER>

write("<IMG SRC=\"images\hang");
write(client.num_misses);
write(".gif\">");

</SERVER>

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Runtime Processing on the Server

Notice the backslash that lets you use a quotation mark inside a literal string. Although the
resulting HTML is the same, in this case backquotes are preferable because the source is easier
to read and edit.

Runtime Processing on the Server

“Overview of Runtime Processing” gives an overview of what happens at runtime when a
single user accesses a page in a JavaScript application. This section provides more details about
steps 2 through 4 of this process, so you can better see what happens at each stage. This
description provides a context for understanding what you can do on the client and on the
server.

One of the most important things to remember when thinking about JavaScript applications is
the asynchronous nature of processing on the Web. JavaScript applications are designed to be
used by many people at the same time. The JavaScript runtime engine on the server handles
requests from many different users as they come in and processes them in the order received.

Unlike a traditional application that is run by a single user on a single machine, your application
must support the interleaving of multiple simultaneous users. In fact, since each frame in an
HTML document with multiple frames generates its own request, what might seem to be a
single request to the end user can appear as several requests to the runtime engine.

HTTP (Hypertext Transfer Protocol) is the protocol by which an HTML page is sent to a
client. This protocol is stateless, that is, information is not preserved between requests. In
general, any information needed to process an HI'TP request needs to be sent with the request.
This poses problems for many applications. How do you share information between different
users of an application or even between different requests by the same user? JavaScript’s
Session Management Service was designed to help with this problem. This service is discussed
in detail in Chapter 6, “Session Management Service.” For now simply remember that the
runtime engine automatically maintains the cl i ent, server, proj ect, and r equest
objects for you.

When the Netscape server receives a client request for an application page, it first performs
authorization. This step is patt of the basic server administration functions. If the request fails
server authorization, then no subsequent steps are performed. If the request receives server
authorization, then the JavaScript runtime engine continues. The runtime engine performs
these steps, described in the following sections:

1. Constructs a new request object and constructs or restores the client object.

2. Finds the page for the request and starts constructing an HTML page to send to
the client.

3. For each piece of the source HTML page, adds to the buffer or executes code.

103

Runtime Processing on the Server

4. Saves the client object properties.
5. Sends HTML to the client.

6. Destroys the request object and saves or destroys the client object.

Step 1. Construct request object and construct or restore client object

It initializes the built-in properties of the r equest object, such as the request’s IP address and
any form input elements associated with the request. If the URL for the request specifies other
properties, those are initialized for the r equest object, as described in “Encoding
Information in a URL.”

If the cl i ent object already exists, the runtime engine retrieves it based on the specified
client-maintenance technique. (See “Techniques for Maintaining the client Object.”) If no
cl i ent object exists, the runtime engine constructs a new object with no properties.

You cannot count on the order in which these objects are constructed.

Step 2. Find source page and start constructing HTML page

When you compiled your JavaScript application, the source included HTML pages containing
server-side JavaScript statements. The main goal of the runtime engine is to construct, from
one of those source pages, an HTML page containing only HTML and client-side JavaScript
statements. As it creates this HTML page, the runtime engine stores the partially created page
in a special area of memory called a buffer until it is time to send the buffered contents to the
client.

Step 3. Add to output buffer or execute code

This step is performed for each piece of code on the source page. The details of the effects of
various server-side statements are covered in other sections of this manual. For more
information, see “Constructing the HTML Page.”

For a given request, the runtime engine keeps performing this step until one of these things

happens:
e The buffer contains 64KB of HTML.

* In this situation, the runtime engine performs steps 4 and 5 and then returns to step 3
with a newly emptied buffer and continues processing the same request. (Step 4 is only
executed once, even if steps 3 and 5 are repeated.)

¢ The server executes the f | ush function.

* In this situation, the runtime engine performs steps 4 and 5 and then returns to step 3
with a newly emptied buffer and continues processing the same request. (Step 4 is only
executed once, even if steps 3 and 5 are repeated.)

104 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Runtime Processing on the Server

e The server executes the r edi r ect function.

e In this situation, the runtime engine finishes this request by performing steps 4 through 6.
It ignores anything occurring after the r edi r ect function in the source file and starts a
new request for the page specified in the call to r edi r ect .

e It reaches the end of the page.

* In this situation, the runtime engine finishes this request by performing steps 4 through 6.

Step 4. Save client object properties

The runtime engine saves the cl i ent object’s properties immediately before the firsz time it
sends part of the HTML page to the client. It only saves these properties once. The runtime
engine can repeat steps 3 and 5, but it cannot repeat this step.

The runtime engine saves the properties at this point to support some of the maintenance
techniques for the cl i ent object. For example, the clent URL encoding scheme sends the

cl i ent properties in the header of the HI'ML file. Because the header is sent as the first part
of the file, the cl i ent properties must be sent then.

As a consequence, you should be careful of where in your source file you set cl i ent
properties. You should always change cl i ent properties in the file before any call to
redirect orfl ush and before generating 64KB of HTML output.

If you change property values for the ¢l i ent object in the code after HIML has been sent to
the client, those changes remain in effect for the rest of that client request, but they are then
discarded. Hence, the next client request does not get those values for the properties; it gets the
values that were in effect when content was first sent to the client. For example, assume your
code contains these statements:

<HTM>

<P>The current custoner is
<SERVER>

client.custonerName = "M . Ed";
write(client.customerNane);
client.custonerName = "M. Bill";
</ SERVER>

<P>The current custoner really is
<SERVER>
write(client.customerNane);

</ SERVER>

</ HTML>

105

Runtime Processing on the Server

106

This series of statements results in this HTML being sent to the client:

<P>The current custoner is M. Ed
<P>The current custoner really is M. Bill

And when the next client request occurs, the value of cl i ent . cust oner Narne is “Mz. Bill”.
This very similar set of statements results in the same HTML:

<HTM_>

<P>The current custoner is
<SERVER>

client.custonerName = "M . Ed";
write(client.custonmerNane);
flush();

client.customerNane = "M. Bill";
</ SERVER>

<P>The current custoner really is
<SERVER>
wite(client.custonmerNane);

</ SERVER>

</ HTML>

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Constructing the HTML Page

However, when the next client request occuts, the value of ¢l i ent. cust omer Nane is “Mz.
Ed”; it is nor “Mz. Bill”.

For more information, see “Techniques for Maintaining the client Object.”

Step 5. Send HTML to client

The server sends the page content to the client. For pages with no server-side JavaScript
statements, the server simply transfers HIML to the client. For other pages, the runtime
engine performs the application logic to construct HITML and then sends the generated page to
the client.

Step 6. Destroy request object and save or destroy client object

The runtime engine destroys the r equest object constructed for this client request. It saves
the values of the cl i ent object and then destroys the physical JavaScript object. It does not
destroy either the pr oj ect or the server object.

Constructing the HTML Page

When you compile your JavaScript application, the source includes HTML pages that contain
server-side JavaScript statements and perhaps also HTML pages that do not contain server-side
JavaScript statements. When a user accesses a page in an application that does not contain
server-side JavaScript statements, the server sends the page back as it would any other HTML
page. When a user accesses a page that does contain server-side JavaScript statements, the
runtime engine on the server constructs an HIML page to send in response, using one of the
source pages of your application.

The runtime engine scans the source page. As it encounters HIML statements or client-side
JavaScript statements, it appends them to the page being created. As it encounters server-side
JavaScript statements, it executes them. Although most server-side JavaScript statements
perform processing on the server, some affect the page being constructed. The following
sections discuss three functions—wri t e, f | ush, and r edi r ect —that affect the HTML
page served.

Generating HTML

As discussed eatlier in this chapter, the Wr i t e function generates HITML based on the value of
JavaScript expression given as its argument. For example, consider this statement

write("<P>Custoner Nane is:" + project.custname + ".");

107

Constructing the HTML Page

In response to this statement, JavaScript generates HIML including a paragraph tag and some
text, concatenated with the value of the cust nanme property of the pr oj ect object. For
example, if this property is “Fred’s software company”, the client would receive the following
HTML:

<P>Customer Name is: Fred’s software company.

As far as the client is concerned, this is normal HTML on the page. However, it is actually
generated dynamically by the JavaScript runtime engine.

Flushing the Output Buffer

To improve performance, JavaScript buffers the HIML page it constructs. The flush
function immediately sends data from the internal buffer to the client. If you do not explicitly
call the flush function, JavaScript sends data to the client after each 64KB of content in the
constructed HTML page.

Don’t confuse the flush function with the flush method of the File class. (For
information on using the File class to petform file input and output, see “File System
Setvice.”)

You can use flush to control the timing of data transfer to the client. For example, you might
choose to flush the buffer before an operation that creates a delay, such as a database query.
Also, if a database query retrieves a large number of rows, flushing the buffer every few rows
prevents long delays in displaying data.

NOTE If you use the client cookie technique to maintain the
properties of the client object, you must make all
changes to the client object before flushing the buffer.
For more information, see “Techniques for Maintaining
the client Object.”

The following code fragment shows how flush is used. Assume that your application needs
to perform some action on every customer in your customer database. If you have a lot of
customers, this could result in a lengthy delay. So that the user doesn’t have to wait in front of

108 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Constructing the HTML Page

an unchanging screen, your application could send output to the client before starting the
processing and then again after processing each row. To do so, you could use code similar to
the following:

flush();
conn. begi nTransaction();
cursor = conn.cursor ("SELECT * FROM CUSTOVER', true);
while (cursor.next()) {
I'l ... process the row ...
flush();
}
conn. comi t Transaction();
cursor.cl ose();

Changing to a New Client Request

The r edi r ect function terminates the current client request and starts another for the
specified URL. For example, assume you have this statement:

redirect ("http://ww.royal ai rways. conif apps/ page2. htm ") ;

When the runtime engine executes this statement, it terminates the current request. The
runtime engine does not continue to process the original page. Therefore any HTML or
JavaScript statements that follow the call to r edi r ect on the original page are lost. The client
immediately loads the indicated page, discarding any previous content.

The parameter to r edi r ect can be any server-side JavaScript statement that evaluates to a
URL. In this way, you can dynamically generate the URL used in r edi r ect . For example, if a
page defines a variable choi ce, you can redirect the client to a page based on the value of
choi ce, as follows:

redirect ("http://ww.royal ai rways. conf apps/ page"
+ choice + ".htm");

109

Accessing CGl Variables

If you want to be certain that the current cl i ent properties are available in the new request,
and you’re using one of the URL-based maintenance techniques for the cl i ent object, you
should encode the properties in the URL you pass to r edi r ect . For information on doing so,
see “Manually Appending client Properties to URLs.”

In general, properties of the r equest object and top-level JavaScript variables last only for a

single client request. When you redirect to a new page, you may want to maintain some of this
information for multiple requests. You can do so by appending the property names and values
to the URL, as described in “Encoding Information in a URL.”

Accessing CGI Variables

110

Like most web servers, Netscape servers set values for a particular set of environment
variables, called CGI variables, when setting up the context for running a CGI script. Writers
of CGI scripts expect to be able to use these variables in their scripts.

By contrast, Netscape web servers do not set up a separate environment for server-side
JavaScript applications. Nevertheless, some of the information typically set in CGI variables
can also be useful in JavaScript applications. The runtime engine provides several mechanisms
for accessing this information:

* By accessing properties of the predefined r equest object

* By using the ssj s_get CA Vari abl e function to access some CGI variables and other
environment variables

* By using the ht t pHeader method of r equest to access properties of the client request
header

The following table lists properties of the r equest object that correspond to CGI variables.
For more information on these properties and on the r equest object in general, see “The
request Object.”

Table 5-7 CGl variables accessible as properties of the r equest object

CGl variable Property Description

AUTH_TYPE aut h_type The authorization type, if the request is
protected by any type of authorization.
Netscape web servers support HTTP basic
access authorization. Example value: basic

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Accessing CGlI Variables

Table 5-7 CGlI variables accessible as properties of the r equest object (Continued)

CGl variable Property

Description

REMOTE_USER aut h_user

REQUEST_METHCD net hod

SERVER _PROTCCO pr ot ocol
L

QUERY_STRI NG query

The name of the local HTTP user of the web
browser, if HTTP access authorization has been
activated for this URL. Note that this is not a
way to determine the user name of any person
accessing your program. Example value:
ksmith

The HTTP method associated with the request.
An application can use this to determine the
proper response to a request. Example value:
GET

The HTTP protocol level supported by the
client’s software. Example value: HTTP/1.0

Information from the requesting HTML page;
if “?” is present, the information in the URL
that comes after the “?”. Example value: x=42

The server-side function ssj s_get CA Vari abl e lets you access the environment variables
set in the server process, including the CGI variables listed in the following table.

Table 5-8 CGl variables accessible through ssj s_get CdA Vari abl e

Variable Description

AUTH_TYPE The authorization type, if the request is protected by any
type of authorization. Netscape web servers support
HTTP basic access authorization. Example value: basi ¢

HTTPS If security is active on the server, the value of this variable
is O\, otherwise, it is OFF. Example value: ON

HTTPS_KEYSI ZE The number of bits in the session key used to encrypt the
session, if security is on. Example value: 128

HTTPS_SECRETKEYSI The number of bits used to generate the server’s private
ZE key. Example value: 128

PATH_| NFO Path information, as sent by the browser. Example value:
[cgivars/cgivars. htm

111

Accessing CGl Variables

Table 5-8 CGl variables accessible through ssj s_get Cd Vari abl e (Continued)

Variable

Description

PATH_TRANSLATED

QUERY_STRI NG

REMOTE_ADDR

REMOTE_HOST

REMOTE_USER

REQUEST _METHCD

SCRI PT_NAMVE

SERVER_NAME

SERVER_PORT

SERVER_PROTOCOL

SERVER _URL

The actual system-specific pathname of the path
contained in PATH_I NFO. Example value:

[usr/ ns-hone/ nyht t pd/ j s/ sanpl es/ cgi vars/ cg
ivars. htm

Information from the requesting HTML page; if “?” is
present, the information in the URL that comes after the
“?”. Example value: x=42

The IP address of the host that submitted the request.
Example value: 198. 93. 95. 47

If DNS is turned on for the server, the name of the host
that submitted the request; otherwise, its IP address.
Example value: wmv. net scape. com

The name of the local HTTP user of the web browser, if
HTTP access authorization has been activated for this
URL. Note that this is not a way to determine the user
name of any person accessing your program. Example
value: ksm th

The HTTP method associated with the request. An
application can use this to determine the proper response
to a request. Example value: GET

The pathname to this page, as it appears in the URL.
Example value: cgi vars. ht m

The hostname or IP address on which the JavaScript
application is running, as it appears in the URL. Example
value: pi ccol 0. rcom com

The TCP port on which the server is running. Example
value: 2020

The HTTP protocol level supported by the client’s
software. Example value: HTTP/ 1. 0

The URL that the user typed to access this server.
Example value: htt ps: // pi ccol 0: 2020

The syntax of ssj s_get CA Vari abl e is shown here:

val ue = ssjs_get Cd Vari abl e("name");

112 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Accessing CGlI Variables

This statement sets the variable val ue to the value of the name CGI variable. If you supply an
argument that isn’t one of the CGI variables listed in Table 5-8, the runtime engine looks for an
environment variable by that name in the server environment. If found, the runtime engine
returns the value; otherwise, it returns null. For example, the following code assigns the value
of the standard CLASSPATH environment variable to the JavaSctipt variable cl asspat h:

classpath = ssjs_get Cd Vari abl e(" CLASSPATH") ;

The ht t pHeader method of r equest returns the header of the current client request. For a
CGI script, Netscape web servers set CGI variables for some of the information in the header.
For JavaScript applications, you get that information directly from the header. Table 5-9 shows
information available as CGI variables in the CGI environment, but as header properties in
server-side JavaScript. In header properties, the underlines in the CGI-variable name (_) are
replaced with dashes (-); for example, the CGI variable CONTENT_LENGTH corresponds to the
header property cont ent - | engt h.

Table 5-9 CGl variables accessible through the client header

CGl variable Description

CONTENT_LENGTH The number of bytes being sent by the client.

CONTENT_TYPE The type of data being sent by the client, if a form is
submitted with the POST method.

HTTP_ACCEPT Enumerates the types of data the client can accept.

HTTP_USER AGENT Identifies the browser software being used to access

your program.

HTTP_I F_MODI FI ED_SI N A date, set according to GMT standard time, allowing
CE the client to request a response be sent only if the data
has been modified since the given date.

For more information on manipulating the client header, see “Request and Response
Manipulation.”

The following table shows the CGI variables that are not supported by server-side JavaScript,
because they are not applicable when running JavaScript applications.

Table 5-10CGlI variables not supported by server-side JavaScript

Variable Description
GATEWAY_I NTERFA The version of CGI running on the server. Not applicable to
CE JavaScript applications.

113

Communicating Between Server and Client

Table 5-10CGlI variables not supported by server-side JavaScript (Continued)

Variable Description

SERVER_SOFTWARE The type of server you are running. Not available to
JavaScript applications.

Communicating Between Server and Client

Frequently your JavaScript application needs to communicate information either from the
server to the client or from the client to the server. For example, when a user first accesses the
vi deoapp application, the application dynamically generates the list of movie categories from
the current database contents. That information, generated on the server, needs to be
communicated back to the client. Conversely, when the user picks a category from that list, the
user’s choice must be communicated back to the server so that it can generate the set of
movies.

Sending Values from Client to Server

Here are several ways to send information from the client to the server:

e The runtime engine automatically creates properties of the r equest object for each value
in an HTML form. (See “Accessing Form Values.”)

* Ifyou’re using a URL-based maintenance technique for properties of the cl i ent object,
you can modify the URL sent to the server to include property values for the cl i ent and
request objects. (See “Encoding Information in a URL.”)

* You can use cookies to set property values for the cl i ent and r equest objects. (See
“Using Cookies.”)

* On the client, you can modify the header of the client request. You can then use the
ht t pHeader method of the r equest object to manipulate the header and possibly the
body of the request. (See “Request and Response Manipulation.”)

114 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Communicating Between Server and Client

Accessing Form Values

Forms are the bread and butter of a JavaScript application. You use form elements such as text
fields and radio buttons as the primary mechanism for transferring data from the client to the
server. When the user clicks a Submit button, the browser submits the values entered in the
form to the server for processing.

The ACTI ON attribute of the FORMtag determines the application to which the values are
submitted. To send information to the application on the server, use an application URL as the
value of the ACTI ON attribute.

If the document containing the form is a compiled part of the same application, you can simply
supply the name of the page instead of a complete URL. For example, here is the FORMtag
from the Hangman sample application:

<FORM METHOD="post" ACTI ON="hangman. htm ">

Forms sent to server-side JavaScript applications can use either get or post as the value of
the METHOD attribute.

NOTE Server-side JavaSctipt applications do not automatically
support file upload. That is, if the action specified is a page
in a JavaScript application and you submit an | NPUT
element of TYPE="fi | ", your application must
manually handle the file, as described in “Request and
Response Manipulation.”

Each input element in an HTML form corresponds to a property of the r equest object. The
property name is specified by the NAME attribute of the form element. For example, the
following HTML creates a r equest propetty called guess that accepts a single characterin a
text field. You refer to this property in server-side JavaScript as r equest . guess.

<FORM METHOD="post" ACTI ON="hangman. htm ">
<p>

What is your guess?

<I NPUT TYPE="text" NAME="guess" SIZE="1">

115

Communicating Between Server and Client

A SELECT form element that allows multiple selections requites special treatment, because it is
a single property that can have multiple values. You can use the get Opt i onVal ue function to
retrieve the values of selected options in a multiple select list. For more information, see
“Using Select Lists.”

For more information on the r equest object, see “The request Object.”

If you want to process data on the client first, you have to create a client-side JavaScript
function to perform processing on the form-element values and then assign the output of the
client function to a form element. You can hide the element, so that it is not displayed to the
user, if you want to perform client preprocessing.

For example, suppose you have a client-side JavaScript function named cal ¢ that performs
calculations based on the user’s input. You want to pass the result of this function to your
application for further processing. You first need to define a hidden form element for the
result, as follows:

<I NPUT TYPE="hi dden" NAME="result" SIZE=5>

Then you need to create an onCl i ck event handler for the Submit button that assigns the
output of the function to the hidden element:

<I NPUT TYPE="submit" VALUE="Submt"
ondick="this.formresult.value=calc(this.form">

The value of r esul t is submitted along with any other form-element values. This value can be
referenced as r equest . resul t in the application.

Using Select Lists

The HTML SELECT tag, used with the MULTI PLE attribute, allows you to associate multiple
values with a single form element. If your application requites select lists that allow multiple
selected options, you use the get Qpt i onVal ue function to get the values in JavaScript. The
syntax of get Qpt i onVal ue is

i tenVal ue = get Opti onVal ue(nane, i ndex)

116 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Communicating Between Server and Client

Here, nane is the string specified as the NAVE attribute of the SELECT tag, and i ndex is the
zero-based ordinal index of the selected option. The get Opt i onVal ue function returns the
value of the selected item, as specified by the associated OPTI ON tag.

The function get Opt i onVal ueCount returns the number of options (specified by OPTI ON
tags) in the select list. It requires only one argument, the string containing the name of the
SELECT tag.

For example, suppose you have the following element in a form:

<SELECT NAME="what-to-wear" MJILTI PLE S| ZE=8>
<OPTI ON SELECTED>Jeans
<OPTI ON>Whol Sweat er
<OPTI ON SELECTED>Sweat shirt
<OPTI ON SELECTED>Socks
<OPTI ON>Leat her Jacket
<COPTI ON>Boot s
<OPTI ON>Runni ng Shoes
<OPTI ON>Cape
</ SELECT>

You could process the input from this select list as follows:

<SERVER>
var i = 0;
var howrany = get Opti onVal ueCount (" what -t o- wear ") ;
while (i < howrany) {
var optionVal ue =
get Opti onVal ue("what-to-wear", i);

wite ("
ltem#" +i +": " + optionValue + "\n");
i ++;

}

</ SERVER>

117

Communicating Between Server and Client

If the user kept the default selections, this script would return:

Item #0: Jeans
Ttem #1: Sweatshirt
Ttem #2: Socks

Encoding Information in a URL

You can manually encode properties of the r equest object into a URL that accesses a page of
your application. In creating the URL, you use the following syntax:

URL?var Nanel=val uel[&ar Nane2=val ue2. ..]

Here, URL is the base URL, each var NaneNN is a property name, and each val ueNis the
corresponding property value (with special characters escaped). In this scheme, the base URL
is followed by a question mark (?) which is in turn followed by pairs of property names and
their values. Separate each pair with an ampersand (&). When the runtime engine on the server
receives the resultant URL as a client request, it creates a r equest property named

var NanmeNN for each listed variable.

For example, the following HTML defines a hyperlink to a page that instantiates the r equest
properties i andj to 1 and 2, respectively. JavaScript statements in r ef page. ht M can then
refer to these variables as r equest . i and request.j.

Cl i ck Here</ A>

Instead of using a static URL string, as in the preceding example, you can use server-side or
client-side JavaSctipt statements to dynamically generate the URL that encodes the property
values. For example, your application could include a page such as the following:

<HTM>
<HEAD>
<SCRI PT>
function conpute () {
Il ...replace with an appropriate computation
'l that returns a search string ...
return "?num=25";
}
</ SCRI PT>
</ HEAD>
<BODY>

Click here to submt a val ue. </ a></p>
</ BODY>
</ HTM.>

118 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Communicating Between Server and Client

In this case, when the user clicks the link, the runtime engine on the client runs the ond i ck
event handler. This event handler sets the search portion of the URL in the link to whatever

string is returned by the conput e function. When the runtime engine on the server gets this
request, it creates a NuMproperty for the r equest object and sets the value to 25.

As a second example, you might want to add r equest properties to a URL created in a
server-side script. This is most likely to be useful if you’ll be redirecting the client request to a
new page. To add r equest properties in a server-side sctipt, you could instead use this
statement:

Click Here

If you create a URL in a server-side JavaScript statement, the client object’s properties are
not automatically added. If you’re using a URL-based maintenance technique for the client
object, use the addClient function to generate the final URL. In this example, the statement
would be:

<A HREF=‘addClient("refpage.html|?i=" + escape(i)
+ "&j=" + escape(j))>Click Here

For information on using addClient , see “Manually Appending client Properties to URLs.”

The core JavaScript escape function allows you to encode names or values appended to a
URL that may include special characters. In general, if an application needs to generate its own
property names and values in a URL request, you should use escape , to ensure that all values
are interpreted propetly. For more information, see the Server-Side JavaScript Reference.

Remember that a URL does not change when a user reloads it, although the page’s contents
may change. Any properties sent in the original URL are restored to their values in the URL as
it was first sent, regardless of any changes that may have been made during processing. For
example, if the user clicks the Reload button to reload the URL in the previous example, i and
j are again set to 1 and 2, respectively.

Sending Values from Server to Client

A JavaScript application communicates with the client through HTML and client-side
JavaSctipt. If you simply want to display information to the user, there is no subtlety: you
create the HTML to format the information as you want it displayed.

However, you may want to send values to client scripts directly. You can do this in a variety of
ways, including these three:

* You can set default form values and values for hidden form elements. (See “Default Form
Values and Hidden Form Elements.”)

119

Communicating Between Server and Client

120

* You can directly substitute information in client-side SCRI PT statements or event
handlers. (See “Direct Substitution.”)

* You can use cookies to send cl i ent property values or other values to the client. (See
“Using Cookies.”)

* You can modify the header of the response sent to the client, using the
del et eResponseHeader and addResponseHeader functions. (See “Request and
Response Manipulation.”)

Default Form Values and Hidden Form Elements

To display an HTML form with default values set in the form elements, use the | NPUT tag to
create the desired form element, substituting a server-side JavaScript expression for the VALUE
attribute. For example, you can use the following statement to display a text element and set
the default value based on the value of ¢l i ent . cust name:

<| NPUT TYPE="text" NAME="cust oner Nane" SIZE="30"
VALUE=/client.custname‘>

The initial value of this text field is set to the value of the variable client.custname . So, if
the value of client.custname is Victoria, this statement 1s sent to the client:

<INPUT TYPE="text" NAME="customerName" SIZE="30" VALUE="Victoria">

You can use a similar technique with hidden form elements if you do not want to display the
value to the user, as in this example:

<INPUT TYPE="hidden" NAME="custID" SIZE=5 VALUE="client.custID‘>

In both cases, you can use these values in client-side JavaScript in property values of objects
available on the client. If these two elements are in a form named entryForm | then these
values become the JavaSctipt properties document.entryForm.customerName and

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Communicating Between Server and Client

docurrent . ent r yFor m cust | D, respectively. You can then perform client processing on
these values in client-side scripts. For more information, see the <Italic>Client-Side JavaScript
Guide.

Direct Substitution

You can also use server-side JavaScript to generate client-side scripts. These values can be used
in subsequent statements on the client. As a simple example, you could initialize a client-side
variable named budget based on the value of ¢l i ent . amount as follows:

<p>The budget is

<SCRI PT>

<SERVER>

wite("var budget =" + client.anount);
</ SERVER>

docurent . wri t e(budget) ;

</ SCRI PT>

If the value of cl i ent . ampbunt is 50, this would generate the following JavaScript:

<p>The budget is:

<SCRI PT>

var budget = 50
docurent . wri t e(budget);
</ SCRI PT>

When run on the client, this appears as follows:

The budget is: 50

121

Communicating Between Server and Client

122

Using Cookies

Cookies are a mechanism you can use on the client to maintain information between requests.
This information resides in a file called cooki e. t xt (the cookie file) stored on the client
machine. The Netscape cookie protocol is described in detail in the <Italic>Client-Side
JavaScript Guide.

You can use cookies to send information in both directions, from the client to the server and
from the server to the client. Cookies you send from the client become properties of either the
cli ent object or of the r equest object. Although you can send any string value to the client
from the server as a cookie, the simplest method involves sending cl i ent object properties.

Properties of the client Object as Cookies

If an application uses the client cookie technique to maintain the cl i ent object, the runtime
engine on the server stores the names and values of properties of the ¢l i ent object as cookies
on the client. For information on using cookies to maintain the cl i ent object, see
“Techniques for Maintaining the client Object.”

Foracli ent property called propNawme, the runtime engine automatically creates a cookie
named NETSCAPE_LI| VEW RE. propNarze, assuming the application uses the client cookie
maintenance technique. The runtime engine encodes property values as required by the
Netscape cookie protocol.

To access these cookies in a client-side JavaScript script, you can extract the information using
the document . cooki e property and a function such as the get SSCooki e function shown
here:

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Communicating Between Server and Client

functi on get SSCooki e(name) {
var search = "NETSCAPE LIVEWRE." + nane + "=";
var retstr
var offset 0;
var end = 0;
if (docunent.cookie.length > 0) {
of fset = docunent. cooki e. i ndex(f (search);

if (offset '=-1) {
of fset += search. | ength;
end = docunent. cookie.indexOf (";", offset);
if (end == -1)

end = docunent. cooki e. | engt h;
retstr = unescape(docunent. cooki e. substring(offset,
end));
}
}

return(retstr)

The get SSCooki e function is not a predefined JavaScript function. If you need similar
functionality, you must define it for your application.

To send information to the server to become a property of the cl i ent object, add a cookie
whose name is of the form NETSCAPE_LI VEW RE. propName. Assuming your application uses
the client cookie maintenance technique, the runtime engine on the server creates a cl i ent
property named propName for this cookie.

To do so, you can use a function such as the following:

function set SSCooki e (name, value, expire) {
docurent . cooki e =
"NETSCAPE_LI VEWRE. " + nane + "="
+ escape(val ue)
+ ((expire == null) ? "" : ("; expires=" +
expire.toGUIString()));
}

123

Communicating Between Server and Client

124

Here, too, the set SSCooki e function is not a predefined JavaScript function. If you need
similar functionality, you must define it for your application.

You can call these functions in client-side JavaScript to get and set property values for the
cli ent object, as in the following example:

var val ue = get SSCooki e ("answer");

if (value == "") {
var expires = new Date();
expires.setDate(expires.getDate() + 7);
set SSCooki e ("answer", "42", Expires);

}

el se
docurment.wite ("The answer is ", val ue);

This group of statements checks whether there is a cl i ent property called answer . If not,
the code creates it and sets its value to 42; if so, it displays its value.

Other Cookies

When a request is sent to the server for a page in a JavaScript application, the header of the
request includes all cookies currently set for the application. You can use the
request . htt pHeader method to access these cookies from server-side JavaScript and

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Communicating Between Server and Client

assign them to server-side variables. Conversely, you can use the addResponseHeader
function to add new cookies to the response sent back to the client. This functionality is
described in “Request and Response Manipulation.”

On the client, you can use a function such as the following to access a particular cookie:

function Get Cooki e (nane) {
var arg = name + "="
var alen = arg.length;
var clen = docunent. cookie. | ength;

var i = 0;

while (i < clen) {

var j =i + alen

i f (docunent.cookie.substring(i, j) == arg) {
var end = docunent. cookie.indexOr (";", j);
if (end == -1)

end = docunent. cooki e. | engt h;
return unescape(document. cookie. substring(j, end));

}

i = docunent.cookie.indexOr(" ", i) + 1;
if (i == 0) break;

}

return null;

And you can use a function such as the following to set a cookie on the client:

function set Cooki e (nane, value, expires, path, domain, secure) {
docunent . cooki e =

nane + "="

+ escape(val ue)

+ ((expires) ? "; expires=" + expires.to@String() : "")
+ ((path) ? "; path=" + path : "")

+ ((domain) ? "; domain=" + domain : "")

+ ((secure) ? "; secure" : "");

125

Garbage Collection

If the path you specify for a cookie is in your JavaScript application, then that cookie will be
sent in any request sent to the application.

You can use this technique for passing cookie information between the client and the server
regardless of the cl i ent object maintenance technique you use.

Garbage Collection

Setrver-side JavaScript contains a garbage collector that automatically frees memoty allocated to
objects no longer in use. Most users do not need to understand the details of the garbage
collector. This section gives an overview of the garbage collector and information on when it is

invoked.

NOTE This section provides advanced users with a peek into the
internal workings of server-side JavaScript. Netscape does
not guarantee that these algorithms will remain the same in

future releases.

The JavaScript object space consists of arenas. That is, the JavaScript runtime engine allocates a
set of arenas from which it allocates objects. When the runtime engine receives a request for a
new object, it first looks on the free list. If the free list has available space, the engine allocates
that space. Otherwise, the runtime engine allocates space from the arena currently in use. If all
arenas are in use, the runtime engine allocates a new arena. When all the objects from an arena
are garbage, the garbage collector frees the arena.

A JavaSctipt string is typically allocated as a GC object. The string has a reference to the bytes
of the string which are also allocated in the process heap. When a string object is garbage
collected, the string’s bytes are freed.

The JavaScript garbage collector is a based on mark and sweep. It does not relocate objects.
The garbage collector maintains a root set of objects at all times. This root set includes the
JavaScript stack, the global object for the JavaScript context, and any JavaScript objects which

126 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Error Handling in Server-Side JavaScript

have been explicitly added to the root set. During the mark phase, the garbage collector marks
all objects that are reachable from the root set. At the end of this phase, all unmarked objects
are garbage. All garbage objects are collected into a free list.

A garbage collection is considered necessary if the number of bytes currently in use is 1.5 times
the number of bytes that were in use at the end of the last garbage collection. The runtime
engine checks for this condition at the following points and starts the garbage collector if it
needs to:

e At the end of every request.

* During a long JavaScript computation after a predetermined number of JavaScript
bytecode operations have executed, and only when a branch operation is executed. If you
have code with no branch operations, garbage collection won’t occur simply because a
predetermined number of operations have executed. (A branch operation can be an i f
statement, Whi | e statement, function call, and so on.)

e When an attempt is made to allocate a new JavaScript object but JavaSctipt has no
available memory and no additional memory can be obtained from the operation system.

* When the | w_For ceGar bageCol | ect i on function is called.

Error Handling in Server-Side JavaScript

The ssj s_onError function, when defined in your application, is called in the event of a
server-side JavaScript error such as “undefined variable name.” In a ssj S_onEr r or function
you can do anything you can do in a server-side JavaScript function, including access the server,
project, client and request objects. You can also redirect and call other functions.

The ssj s_onError function has the following syntax:

function ssjs_onError (<nessage>, <file>, <line nunber>)
<message> is the error message text
<f il e> is the source file name

<l i ne nunber > is the line number of the error

127

Error Handling in Server-Side JavaScript

A JavaSctipt error during the execution of the onError function is reported in the error log and
the livewire trace (if active). The SSj s_onError function is not called recursively, however.
An error in the onError function causes a report in the error log, but does not launch a call to
onError.

Here is an example function:

function ssjs_onError(nsg,file,line)
{

write("
\n<hr>")

wite("error nmessage: "+nmsg+"
\n")
wite("file name: "+file+"
\n")
wite("line nunber: "+l ine+"
\n")
wite("<hr>")

}

NOTE To give each page its own special onError function, add
an assignment to ssjs_onkError at the beginning of the
code for the page. For example:

ssjs_onError = customonError;
function customonError(nsg,file,line)

{
/1

}

Setrver-side JavaScript executes whatever SSj S_ONErr or represents at the time of the error.
You can use a single SSj S_onErr or function that is shared by all pages, or you can
dynamically switch to another onError function at any time, including at the beginning of each
page. If two requests execute the same onError function at the same time, they have different
execution environments, just as if you are simultaneously executing any other function.

128 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Chapter 6

Session Management Service

This chapter describes the Session Management Service objects available in server-side
JavaScript for sharing data among multiple client requests to an application, among multiple
users of a single application, or even among multiple applications on a server.

The Session Management Service is a set of capabilities that control the construction and
destruction of various predefined objects during any server session. These capabilities are
provided in the predefined objects r equest, cl i ent, proj ect, and server.

In addition, you can construct instances of Lock to control access during the sharing of
information. Lock instances provide you with fine-grained control over information sharing
by getting exclusive access to specified objects.

This chapter contains the following sections:

* Opverview of the Predefined Objects

e The request Object

e The client Object

e The project Object

* The server Object

* Techniques for Maintaining the client Object

* Sharing Objects Safely with Locking

Overview of the Predefined Objects

The predefined r equest , cl i ent, proj ect, and server objects contain data that persists
for different periods and is available to different clients and applications. There is one ser ver
object shared by all running applications on the server. Thete is a separate pr 0j ect object for
each running application. There is one ¢l i ent object for each browser (client) accessing a

129

Overview of the Predefined Objects

particular application. Finally, there is a separate r equest object for each client request from a
particular client to a particular application. Figure 6-1 illustrates the relative availability of the
different objects.

Figure 6-1 Relative availability of session-management objects

Server
Project Project

Client Client Client
Request Request
Request -Other chents. . Dther requests . Request
Request . Dther requests .

L Dther requests .. - Other clients..

Other project 5.

The JavaScript runtime engine on the server constructs session-management objects at
different times. These objects are useful for storing a variety of data. You can define
application-specific properties for any of these objects.

* request object

Contains data available only to the current client request. Nothing else shares
this object. The r equest object has predefined properties you can access.

Treat the r equest object almost as a read-only object. The runtime engine
stores the current value of all form elements as properties of the r equest
object. You can use it to store information specific to a single request, but it is
more efficient to use JavaScript variables for this purpose.

The runtime engine constructs a r equest object each time the server responds
to a client request from the web browser. It destroys the object at the end of the
client request. The runtime engine does not save r equest data at all.

For more details, see “The request Object.”
* client object

Contains data available only to an individual client/application pair. If a single
client is connected to two different applications at the same time, the JavaScript
runtime engine constructs a separate cl i ent object for each client/application
pair. All requests from a single client to the same application share the same

cl i ent object. The cl i ent object has no predefined properties.

130 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Overview of the Predefined Objects

In general, use the cl i ent object for data that should be shared across multiple
requests from the same client (user) but that should not be shared across
multiple clients of the application. For example, you can store a user’s
customer ID as a property of the cl i ent object.

The runtime engine physically constructs the client object for each client
request, but properties persist across the lifetime of the client’s connection to
the application. Therefore, although the physical client object exists only for a
single client request, conceptually you can think of it as being constructed
when the client is first connected to the application, and not destroyed until the
client stops accessing the application. There are several approaches to
maintaining the properties of the cl i ent object across multiple requests. For
more information, see “Techniques for Maintaining the client Object.”

The runtime engine destroys the cl i ent object when the client has finished
using the application. In practice, it is tricky for the JavaScript runtime engine
to determine when the cl i ent object and its properties should be destroyed.
For information on how it makes this determination, see “The Lifetime of the
client Object.” Also, see “The client Object.”

proj ect object

Contains data that is available to all clients accessing any part of the
application. All clients accessing the same application share the same pr oj ect
object. The pr oj ect object has no predefined properties.

In general, use the pr oj ect object to share data among muiltiple clients
accessing the same application. For example, you can store the next available
customer ID as a property of the pr oj ect object. When you use the pr oj ect
object to share data, you need to be careful about simultaneous access to that
data; see “Sharing Objects Safely with Locking.” Because of limitations on the
cl i ent object’s properties, you sometimes use the pr oj ect object to store data
for a single client.

The runtime engine constructs the pr oj ect object when the application is
started by the Application Manager or when the server is started. It destroys
the object when the application or the server is stopped.

For more details, see “The project Object.”
server object

Contains data available to all clients and all applications for the entire server.
All applications and all client/application pairs share the same ser ver object.
The ser ver object has predefined properties you can access.

131

Overview of the Predefined Objects

Use the ser ver object to share data among multiple applications on the server.
For example, you might use the ser ver object to track usage of all of the
applications on your server. When you use the ser ver object to share data, you
need to be careful about simultaneous access to that data; see “Sharing Objects
Safely with Locking.”

The runtime engine constructs the ser ver object when the server is started and
destroys the object when the server is stopped.

For more details, see “The server Object.”
It may help to think about how these objects correspond to a URL for a page in your

application. Consider Figure 6-2.

Figure 6-2 Predefined objects in a URL

E . .
i Joe — http://www.royalairways.com/videoapp/category.htm
: I Il |

\

JavaScript for

Server category.html

Client

In this illustration, Joe requests the URL

htt p: // www. royal ai rways. conl vi deoapp/ cat egory. ht m , corresponding to a
page in the vi deoapp sample application. When the runtime engine receives the request, it
uses the already-existing Ser ver object corresponding to Www. r oyal ai rways. comand the
already-existing pr oj ect object corresponding to the vi deoapp application. The engine
creates a Cl i ent object corresponding to the combination of Joe and the vi deoapp

132 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

The request Object

application. If Joe has already accessed other pages of this application, this new cl i ent object
uses any stored properties. Finally, the engine creates a new r equest object for the specific
request for the cat egory. ht m page.

The request Object

The r equest object contains data specific to the current client request. It has the shortest
lifetime of any of the objects. JavaScript constructs a new r equest object for each client
request it receives; for example, it creates an object when

* A user manually requests a URL by typing it in or choosing a bookmark.
* A user clicks a hyperlink or otherwise requests a document that refers to another page.

e Client-side JavaScript sets the property docunent . | ocat i on or navigates to the page
using the hi st or y method.

e Server-side JavaScript calls the r edi r ect function.

The JavaScript runtime engine on the server destroys the r equest object when it finishes
responding to the request (typically by providing the requested page). Therefore, the typical
lifetime of a r equest object can be less than one second.

NOTE You cannot use the r equest object on your application’s
initial page. This page is run when the application is started
on the server. At this time, there is no client request, and
so there is no available r equest object. For more
information on initial pages, see “Installing a New
Application.”

133

The request Object

For summary information on the r equest object, see “Overview of the Predefined Objects.

Properties

>

The following table lists the predefined properties of the r equest object. Several of these
predefined properties correspond to CGI environment variables. You can also access these and
other CGI environment variables using the ssj s_get CE Var i abl e function described in

“Accessing CGI Variables.”

Table 6-1 Properties of the r equest object
Property Description Example value
agent Name and version of the client software. Use this information to Mozilla/l. 1N
conditionally employ advanced features of certain browsers. (Wndows; |;
32bit)
auth_typ The authorization type, if this request is protected by any type of basi c
e authorization. Netscape web servers support HTTP basic access
authorization. Corresponds to the CGl AUTH_TYPE environment
variable.
aut h_use The name of the local HTTP user of the web browser, if HTTP access vpg
r authorization has been activated for this URL. Note that this is not a way
to determine the user name of any person accessing your program.
Corresponds to the CGI REMOTE_USER environment variable.
ip The IP address of the client. May be useful to authorize or record access. 198. 95. 251. 3
0
nmet hod The HTTP method associated with the request. An application can use GeT?
this to determine the proper response to a request. Corresponds to the
CGI REQUEST_METHOD environment variable.
pr ot ocol The HTTP protocol level supported by the client’s software. Corresponds HTTP/ 1. 0
to the CGl SERVER_PROTOCCL environment variable.
query Information from the requesting HTML page; this is information in the butt onl=0n&b
URL that comes after the “?””. Corresponds to the CGlI QUERY_STRI NG utt on2=of f
environment variable.
i mgeX The horizontal position of the cursor when the user clicked over an 45
image map. Described in “Working with Image Maps.”
i mgeY The vertical position of the cursor when the user clicked over an image 132
map. Described in “Working with Image Maps.”
uri The request’s partial URL, with the protocol, host name, and the optional vi deoapp/ add

port number stripped out.

. htni

134 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

1. For

The request Object

HTTP 1.0, nethod is one of GET, POCST, or HEAD.

When you declare top-level variables in server-side JavaScript, they have the same lifetime as
request properties. For example, this declaration persists during the current request only:

var nunber = 42;

In addition to the predefined properties, you can, in your client code, have information that
will become properties of the r equest object. You do so by using form elements and by
encoding properties into the request URL, as described “Sending Values from Client to
Server.”

Although you can also create additional properties for r equest directly in server-side
JavaScript statements, performance may be better if you instead use JavaScript variables. The
properties of the r equest object you create can be of any legal JavaScript type, including
references to other JavaScript objects.

Remember that the lifetime of the r equest object and hence of its properties is the duration
of the request. If you store a reference to another object in the r equest object, the referenced
object is destroyed at the end of the request along with the r equest object, unless the
referenced object has other live references to it, directly or indirectly from the server or

pr oj ect object.

Working with Image Maps

The | SMAP attribute of the | MG tag indicates a server-based image map. If the user clicks on an
image map, the hotizontal and vertical positions of the cursor are sent to the server. The

i mmgeXand i mageY properties return these horizontal and vertical positions. Consider this
HTML:

<| MG SRC="i mages\ map. gi f" HEI GHT=599 W DTH=424 BORDER=0
| SMAP ALT="SANTA CRUZ COUNTY" >

</ A>

135

The client Object

The page mapchoi ce. ht m has properties r equest . i mageXand r equest . i mageY based
on the cursor position at the time the user clicked.

The client Object

Many browser clients can access a JavaScript application simultaneously. The cl i ent object
provides a method for dealing with each browser client individually. It also provides a
technique for tracking each browser client’s progress through an application across multiple
requests.

The JavaScript runtime engine on the server constructs a Cl i ent object for every
client/application pait. A browser client connected to one application has a different cl i ent
object from the same browser client connected to a different application. The runtime engine
constructs a new Cl i ent object each time a user accesses an application; there can be
hundreds or thousands of cl i ent objects active at the same time.

NOTE You cannot use the ¢l i ent object on your application’s
initial page. This page is run when the application is started
on the server. At this time, there is no client request, and
so there is no available cl i ent object. For more
information on initial pages, see “Installing a New
Application.”

The runtime engine constructs and destroys the cl i ent object for each client request.
However, while processing a request, the runtime engine saves the names and values of the
cl i ent object’s properties. In this way, the runtime engine can construct a new cl i ent

136 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

The client Object

object from the saved data when the same user returns to the application with a subsequent
request. Thus, conceptually you can think of the cl i ent object as remaining for the duration
of a client’s session with the application.

JavaScript does not save cl i ent objects that have no property values. Therefore, if an
application does not need ¢l i ent objects and does not assign any cl i ent object property
values, it incurs no additional overhead.

You have several options for how and where the runtime engine saves cl i ent object
properties. These options are discussed in “T'echniques for Maintaining the client Object.”

For summary information on the cl i ent object, see “Overview of the Predefined Objects.”

Properties

There are no predefined property values in the ¢l i ent object, because it is intended to
contain data specific to the application. JavaScript statements can assign application-specific
properties and values to the cl i ent object. A good example of a cl i ent object property is a
customer ID number. When the user first accesses the application, the application might assign
a customer ID, as in the following example:

client.custlD = getNext CustlD();

This example uses the application-defined get Next Cust | D function to compute a customer
ID. The runtime engine then assigns this ID to the cl i ent object’s cust | D property.

Once the customer ID has been established, it would be inconvenient to require the user to
reenter the ID on each page of the application. However, without the cl i ent object, there
would be no way to associate the correct customer ID with subsequent requests from a client.

Because of the techniques used to maintain ¢l i ent properties across multiple client requests,
there is one major restriction on cl i ent property values. The JavaScript runtime engine on
the server converts the values of all of the ¢l i ent object’s properties to strings.

Do not assign an object as the value of a cl i ent property. If you do so, the runtime engine
converts that object to a string; once this happens, you won’t be able to work with it as an
object anymore. If a client property value represents another data type, such as a number, you
must convert the value from a string before using it. For example, you can create an integer
cli ent property as follows:

client.total Nunber = 17,
You could then use par sel nt to increment the value of t ot al Nunber as follows:

client.total Nunmber = parselnt(client.total Nunber) + 1;

137

The client Object

138

Similarly, you can create a Boolean cl i ent property as follows:
client.bool = true;

Then you can check it as follows:

if (client.bool == "true")
write("It's true!");

else
write("It's false!");

Notice that the conditional expression compares €l i ent . bool to the string t r ue. You can
use other techniques to handle Boolean expressions. For example, to negate a Boolean
property, you can use code like this:

client.bool = (client.bool == "true") ? false : true;

Although you can wotk with ¢l i ent properties directly, you incur some overhead doing so. If
you repeatedly use the value of a cl i ent property, consider using top-level JavaScript
variables. Before using the cl i ent property, assign it to a variable. When you have finished
wortking with that variable, assign the resulting value back to the appropriate cl i ent property.
This technique can result in a substantial performance improvement.

As noted previously, you cannot store references to other objects in the ¢l i ent object. You
can, however, store object references in either the pr oj ect or the ser ver object. If you want
a property associated with the client to have object values, create an array indexed by client ID
and store a reference to the array in the pr oj ect or server object. You can use that array to
store object values associated with the client. Consider the following code:

if client.id == null
client.id = ssjs_generateClientID();
project.clientDates|client.id] = new Date();

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

The client Object

This code uses the ssj s_gener at eCl i ent | D function, described next, to create a unique
ID for this cl i ent object. It uses that ID as an index into the cl i ent Dat es array on the
pr oj ect object and stores a new Dat e object in that array associated with the current

cli ent object.

Uniquely Referring to the client Object

For some applications, you may want to store information specific to a client/application pair
in the pr oj ect or server objects. Two common cases ate storing a database connection
between client requests (described in Chapter 8, “Connecting to a Database.”) or storing a
custom object that has the same lifetime as the predefined cl i ent object and that contains
object values (described in “Creating a Custom client Object”).

In these situations, you need a way to refer uniquely to the client/application pait. JavaScript
provides two functions for this purpose, ssj s_get d i ent | Dand

ssj s_gener at eCl i ent | D. Neither function takes any arguments; both return a unique
string you can use to identify the pair.

Each time you call ssj s_gener at ed i ent | D, the runtime engine returns a new identifier.
For this reason, if you use this function and want the identifier to last longer than a single client
request, you need to store the identifier, possibly as a property of the cl i ent object. For an
example of using this function, see “Sharing an Array of Connection Pools.”

If you use this function and store the ID in the ¢l i ent object, you may need to be careful that
an intruder cannot get access to that ID and hence to sensitive information.

An alternative approach is to use the ssj s_get C i ent | D function. If you use one of the
server-side maintenance techniques for the cl i ent object, the JavaScript runtime engine
generates and uses a identifier to access the information for a patticular client/application pair.
(For information on maintaining the cl i ent object, see “Techniques for Maintaining the
client Object.”)

When you use these maintenance techniques, sSj s_get C i ent | D returns the identifier used
by the runtime engine. Every time you call this function from a particular client/application
pair, you get the same identifier. Therefore, you do not need to store the identifier returned by

139

The client Object

ssjs_get d i ent | D. However, if you use any of the other maintenance techniques, this
function returns “undefined”; if you use those techniques you must instead use the
ssjs_generat ed i ent!| D function.

If you need an identifier and you’re using a server-side maintenance technique, you probably
should use the ssj s_get Cl i ent | D function. If you use this function, you do not need to
store and track the identifier yourself; the runtime engine does it for you. However, if you use a
client-side maintenance technique, you cannot use the ssj s_get O i ent | D function; you
must use the ssj s_gener at e i ent | D function.

Creating a Custom client Object

As discussed in eatlier sections, properties of the predefined cl i ent object can have only
string values. This restriction can be problematic for some applications. For instance, your
application may require an object that persists for the same lifetime as the predefined cl i ent
object, but that can have objects or other data types as property values. In this case, you can
create your own object and store it as a property of the cl i ent object.

This section provides an example of creating such an object. You can include the code in this
section as a JavaScript file in your application. Then, at the beginning of pages that need to use
this object, include the following statement:

var custonClient = getCustonClient()

(Of course, you can use a different variable name.) If this is the first page that requests the
object, get Cust ol i ent creates a new object. On other pages, it returns the existing object.

This code stores an array of all the custom cl i ent objects defined for an application as the
value of the cust onTl i ent s property of the predefined pr oj ect object. It stores the index
in this array as a string value of the cust onl i ent | D property of the predefined cl i ent
object. In addition, the code uses a lock stored in the cust onCl i ent Lock property of

proj ect to ensure safe access to that array. For information on locking, see “Sharing Objects
Safely with Locking.”

The t i meout variable in the get Cust onCl i ent function hard-codes the expiration period
for this object. If you want a different expiration time, specify a different value for that variable.
Whatever expiration time you use, you should call the predefined cl i ent object’s

expi rat i on method to set its expiration to the same time as specified for your custom
object. For information on this method, see “The Lifetime of the client Object.”

To remove all expired custom client objects for the application, call the following function:

expi reCustonC i ents()

140 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

The client Object

That’s all there is to it! If you use this code, the predefined cl i ent and pr oj ect objects have
these additional properties that you should not change:

e client.custonClientlD
e project.customCients
e project.customdientlLock

You can customize the custom class by changing its onl ni t and onDest r oy methods. As
shown here, those methods are just stubs. You can add code to modify what happens when the
object is created or destroyed.

Here’s the code:

/1 This function creates a new customclient object or retrieves
/1 an existing one.
function get CustonCient()
{
|| ==========> Change t he hardcoded hol d period <==========
/1l Note: Be sure to set the client state naintenance
/] expiration to the sane val ue you use bel ow by calling
/1 client.expiration. That allows the index held in the
pr edefi ned
/1l client object to expire about the sane tine as the state
held in
/1 the project object.
var tinmeout = 600;
var custonClient = null;
var deat hRow = nul [;
var new(hj ect WasCreated = fal se;

var custonC ientlLock = getCustonC ientLock();
custonCl i ent Lock. | ock();
var custonClientI D = client.custonCientlD
if (custonClientID == null) {
custonClient = new CustonClient(tineout);
newObj ect WasCreated = true;

}

el se {

var custonClients = getCustonClients();

custonClient = custonClients[custonCientlD;

if (custonClient == null) {
custonClient = new CustonClient(tineout);
newObj ect WasCreated = true;

}

el se {
var now = (new Date()).getTime();

141

The client Object

if (custonClient.expiration <= now) {
del ete customCients[custonClientlD];
deat hRow = custonCl i ent;

custonClient = new CustonClient(tineout);
newObj ect WasCreated = true;

}
el se {
custonCl ient.expiration = (new
Date()).getTime() +
ti meout *1000;
}

}
}
if (newObj ect WasCreated)

custonClient.onlnit();
custonC i ent Lock. unl ock();

if (deathRow != null)
deat hRow. onDest roy() ;
return custonC ient;

}

/1 Function to renmove ol d custom client objects.
function expireCustonCients()
{
var custonClients = getCustonClients();
var now = (new Date()).getTime();
for (var i in custonCients) {
var clientj = custonCients[i];
if (clientObj.expiration <= now) {
var custonC ientlLock = getCustonC ientLock();
custonCl i ent Lock. | ock();
if (clientObj.expiration <= now) {
delete custonCients[i];

}

el se {
clientOj = null;

}

custonC i ent Lock. unl ock()

if (clientGoj !'= null)
clientObj.onDestroy();

} } }

// Don't call this function directly.
/I It's used by getCustomClient and expireCustomClients.
function getCustomClientLock()

{

if (project.customClientLock == null) {

142 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

proj ect. | ock()
if (project.custonCientLock == null

proj ect.custonC ientlLock = new Lock()

proj ect. unl ock()

}

return project.custondientlLock

}

// Don’t call this function directly.
Il It's used by getCustomClient and expireCustomClients.
function getCustomClients()

{
if (project.customClients == null) {
project.lock()
if (project.customClients == null)
project.customClients = new Object()
project.unlock()
}
return project.customClients
}
I/l The constructor for the CustomClient class. Don't call this
directly.

Il Instead use the getCustomClient function.
function CustomClient(seconds)

{

var customClients = getCustomClients();
var customClientlD = ssjs_generateClientID();

this.onlnit = CustomClientMethod_onlnit;
this.onDestroy = CustomClientMethod_onDestroy;
this.expiration = (new Date()).getTime() + seconds*1000;

client.customClientID = customClientlD;

customClients[customClientID] = this;

}

/I If you want to customize, do so by redefining the next 2
functions.
function CustomClientMethod_onlnit()

/| ==========> Add your object initialization code

)

The client Object

143

The project Object

<=—=—=—=m—=m-m—m—m——
/1 This nethod is called while in a lock, so keep it quick!
}
function CustonC i ent Met hod_onDestroy()
{
[| ==========> Add your object cleanup code <==========
/1 This nethod is not called fromw thin a | ock.
}

The project Object

The pr oj ect object contains global data for an application and provides a method for sharing
information among the clients accessing the application. JavaScript constructs a new pr oj ect
object when an application is started using the Application Manager. Each client accessing the
application shares the same pr oj ect object. For summary information on the pr oj ect
object, see “Overview of the Predefined Objects.”

In this release the JavaScript runtime engine does not, as in previous releases, create or destroy
the pr oj ect object for each request. When you stop an application, that application’s

proj ect object is destroyed. A new pr oj ect object is created for it when the application is
started again. A typical pr oj ect object lifetime is days or weeks.

JavaScript constructs a set of pr 0j ect objects for each Netscape HI'TP process running on
the server. JavaScript constructs a pr 0j ect object for each application running on each
distinct server. For example, if one server is running on pozrt 80 and another is running on port
142 on the same machine, JavaScript constructs a distinct set of pr 0j ect objects for each
process.

Properties

There are no predefined properties for the pr oj ect object, because it is intended to contain
application-specific data accessible by multiple clients. You can create properties of any legal
JavaScript type, including references to other JavaScript objects. If you store a reference to

144 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

The server Object

another object in the pr oj ect object, the runtime engine does not destroy the referenced
object at the end of the client request during which it is created. The object is available during
subsequent requests.

A good example of a pr oj ect object property is the next available customer ID. An
application could use this property to track sequentially assigned customer IDs. Any client that
accesses the application without a customer ID would be assigned an ID, and the value would
be incremented for each initial access.

Remember that the pr oj ect object exists only as long as the application is running on the
server. When the application is stopped, the pr 0j ect object is destroyed, along with all of its
property values. For this reason, if you have application data that needs to be stored
permanently, you should store it either in a database (see Part 3, “LiveWire Database Service”)
or in a file on the server (see “File System Service”).

Sharing the project Object

There is one pr oj ect object for each application. Thus, code executing in any request for a
given application can access the same pr oj ect object. Because the server is multithreaded,
there can be multiple requests active at any given time, either from the same client or from
several clients.

To maintain data integrity, you must make sure that you have exclusive access to a property of
the pr oj ect object when you change the property’s value. There is no implicit locking as in
previous releases; you must request exclusive access. The simplest way to do this is to use the
proj ect object’s | ock and unl ock methods. For details, see “Sharing Objects Safely with
Locking.”

The server Object

The ser ver object contains global data for the entire server and provides a method for
sharing information between several applications running on a server. The ser ver object is
also automatically initialized with information about the server. For summary information on
the ser ver object, see “Overview of the Predefined Objects.”

The JavaScript runtime engine constructs a new Ser ver object when the server is started and
destroys the ser ver object when the setver is stopped. Every application that runs on the
server shates the same ser ver object.

JavaScript constructs a Ser ver object for each Netscape HI'TPD process (server) running on
a machine. For example, there might be a server process running for port 80 and another for
port 8080. These are entirely distinct server processes, and JavaScript constructs a Ser ver

145

The server Object

object for each.

Properties

The following table describes the properties of the ser ver object.

Table 0.1 Properties of the ser ver object

Property Description Example

host nane Full host name of the server, including WM. net scape. com 8
the port number 5

host Server name, subdomain, and domain WMV net scape. com
name

pr ot ocol Communications protocol being used htt p:

port Server port number being used; default 85

is 80 for HTTP

j sVersion Server version and platform 3.0 W ndowsNT

For example, your can use the j sVer si on property to conditionalize features based on the
server platform (or version) on which the application is running, as demonstrated here:

if (server.jsVersion == "3.0 WndowsNT")
write ("Application is running on a Wndows NT server.");

146 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Techniques for Maintaining the client Object

In addition to these automatically initialized properties, you can ctreate propetties to store data
to be shared by multiple applications. Properties may be of any legal JavaScript type, including
references to other JavaScript objects. If you store a reference to another object in the ser ver
object, the runtime engine does not destroy the referenced object at the end of the request
during which it is created. The object is available during subsequent requests.

Like the proj ect object, the ser ver object has a limited lifetime. When the web server is
stopped, the ser ver object is destroyed, along with all of its property values. For this reason,
if you have application data that needs to be stored permanently, you should store it either in a
database (see Part 3, “LiveWire Database Service”) or in a file on the server (see “File System
Service”).

Sharing the server Object

There is one ser ver object for the entire server. Thus, code executing in any request, in any
application, can access the same Ser ver object. Because the server is multithreaded, there can
be multiple requests active at any given time. To maintain data integrity, you must make sure
that you have exclusive access to the ser ver object when you make changes to it.

Also, you must make sure that you have exclusive access to a property of the server object
when you change the property’s value. There is no implicit locking as in previous releases; you
must request exclusive access. The simplest way to do this is to use the ser ver object’s | ock
and unl ock methods. For details, see “Sharing Objects Safely with Locking.”

Techniques for Maintaining the client Object

The cl i ent object is associated with both a particular application and a particular client. As
discussed in “The client Object,” the runtime engine creates a new Cl i ent object each time a
new request comes from the client to the server. However, the intent is to preserve cl i ent
object properties from one request to the next. In order to do so, the runtime engine needs to
store Cl i ent properties between requests.

There are two basic approaches for maintaining the properties of the cl i ent object; you can
maintain them either on the client or on the server. The two client-side techniques either store
the property names and their values as cookies on the client or store the names and values
directly in URLSs on the generated HTML page. The three server-side techniques all store the
property names and their values in a data structure in server memory, but they differ in the
scheme used to index that data structure.

You select the technique to use when you use the JavaScript Application Manager to install or
modify the application, as explained in “Installing a New Application.” This allows you (or the
site manager) to change the maintenance technique without recompiling the application.

147

Techniques for Maintaining the client Object

However, the behavior of your application may change depending on the client-maintenance
technique in effect, as described in the following sections. Be sure to make clear to your site
manager if your application depends on using a particular technique. Otherwise, the manager
can change this setting and break your application.

Because some of these techniques involve storing information either in a data structure in
server memoty or in the cookie file on the client, the JavaScript runtime engine additionally
needs to decide when to get rid of those properties. “The Lifetime of the client Object”
discusses how the runtime engine makes this decision and describes methods you can use to
modify its behavior.

Comparing Client-Maintenance Techniques

Each maintenance technique has its own set of advantages and disadvantages and what is a
disadvantage in one situation may be an advantage in another. You should select the technique
most appropriate for your application. The individual techniques are described in more detail in
subsequent sections; this section gives some general compatisons.

The following table provides a general comparison of the client-side and server-side
techniques.

Table 6-2 Comparison of server-side and client-side maintenance techniques

Server-Side Client-Side

1. No limit on number of properties Limits on properties.
stored or the space they use.

2. Consumes extra server memory Does not consume extra server
between client requests. memory between client requests.

These differences are related. The lack of a limit on the number and size of
properties can be either a disadvantage or an advantage. In general, you want to
limit the quantity of data for a consumer application available on the Internet so that
the memory of your server is not swamped. In this case, you could use a client
technique. However, if you have an Intranet application for which you want to store
a lot of data, doing so on the server may be acceptable, as the number of expected
clients is limited.

3. Properties are stored in server Properties are not stored in server
memory and so are lost when server memory and so aren’t lost when
or application is restarted. server is restarted.

If the properties are user preferences, you may want them to remain between server
restarts; if they are particular to a single session, you may want them to disappeatr.

148 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Techniques for Maintaining the client Object

Table 6-2 Comparison of server-side and client-side maintenance techniques (Continued)

Server-Side Client-Side

4. Either no increase or a modest Larger increases in network traffic.

increase in network traffic.

Client-side techniques transmit every property name and corresponding value to
the client one or more times. This causes a significant increase in network traffic.

Because the server-side techniques all store the property names and values on the
server, at most they send a generated name to the client to use in identifying the

appropriate entry in the server data structure.

Figure 6-3 and Figure 6-4 show what information is stored for each technique, where it is

stored, and what information goes across the network. Figure 6-3 shows this information for

the client-side techniques.

Figure 6-3 Client-side techniques

Client cookie
Server runtime

Client runtime Client disk

£

Cookie file

Client URL encoding
Server runtime

I names and values

Client runtime

g

149

Techniques for Maintaining the client Object

Figure 6-4 shows this information for the server-side techniques.

Figure 6-4 Server-side techniques

Server cookie
Server runtime

Data structure | = Client runtime Client disk
inmemory | ___J
contains Index into Index into
........................ .
property names data structure data structure

and values

Client URL encoding
Server runtime

Data structure | ==
inmemory ||

Client runtime

; Index into
ntain
contains ata structure
property names
and values

Server IP address
Server runtime

Data structure Client runtime

in memory
contains
property names
and values

150 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Techniques for Maintaining the client Object

There are some other general considerations. For both techniques that use cookies, the
browser must support the Netscape cookie protocol. In both cases, when you close your
browser on the client machine, information is stored in the client machine’s cookie file. The
other techniques do not have this restriction.

The server cookie technique creates a single cookie to identify the appropriate cl i ent object.
By contrast, the client cookie technique creates a separate cookie for each property of the

cli ent object. The client cookie technique is therefore more likely to be affected by the limit
of 20 cookies per application.

With the client cookie technique, the cl i ent object properties are sent to the client when the
first piece of the HI'ML page is sent. If you change cl i ent property values later in the
execution of that page, those changes are not sent to the client and so are lost. This restriction
does not apply to any other maintenance technique.

For both techniques that use URL encoding, if your application constructs a URL at runtime or
uses the r edi r ect function, it must either manually append any cl i ent properties that need
to be saved or use addC i ent to have the runtime engine append the properties. Although
appending properties is not required for other techniques, you might want to do it anyway, so
that changing the maintenance technique does not break your application.

In addition, for the URL encoding techniques, as soon as the browser accesses any page
outside the application, or even submits a form to the application using the GET method, all
cli ent properties are lost. Properties are not lost this way for the other techniques. Your
choice of technique should be partially guided by whether or not you want cl i ent properties
to be persist in these situations.

Your choice of maintenance technique rests with the requirements of your application. The
client cookie technique does not use extra server memoty (as do the server-side techniques)
and sends information only once per page (in contrast to the client URL encoding technique).
These facts may make the client cookie technique appropriate for high-volume Internet
applications. However, there are circumstances under which another technique is more
suitable. For example, server IP address is the fastest technique, causing no increase in network
traffic. You may use it for a speed-critical application running on your intranet.

Client-Side Techniques

There are two client-side maintenance techniques:
¢ Client cookie

* Client URL encoding

151

Techniques for Maintaining the client Object

For a comparison of all of the maintenance techniques, see “Comparing Client-Maintenance
Techniques.”

When an application uses client-side maintenance techniques, the runtime engine encodes
properties of the cl i ent object into its response to a client request, either in the header of the
response (for client cookie) or in URLs in the body of the response (for client URL encoding).

Because the actual property names and values are sent between the client and the server,
restarting the server does not cause the client information to be lost. However, sending this
information causes an increase of network traffic.

Using Client Cookie

In the client cookie technique, the JavaScript runtime engine on the server uses the Netscape
cookie protocol to transfer the properties of the ¢l i ent object and their values to the client. It
creates one cookie per Cl i ent property. The properties are sent to the client once, in the
response header of the generated HTML page. The Netscape cookie protocol is described in
the <Italic>Client-Side JavaScript Guide.

To avoid conflicts with other cookies you might create for your application, the runtime engine
creates a cookie name by adding NETSCAPE_LI VEW RE. to the front of the name of a

cli ent property. For example, if ¢l i ent has a property called cust | D, the runtime engine
creates a cookie named NETSCAPE_LI VEW RE. cust | D. When it sends the cookie
information to the client, the runtime engine performs any needed encoding of special
characters in a property value, as described in the <Italic>Client-Side JavaScript Guide.

Sometimes your application needs to communicate information between its JavaScript
statements running on the client and those running on the server. Because this maintenance
technique sends cl i ent object properties as cookies to the client, you can use it as a way to
facilitate this communication. For more information, see “Communicating Between Server and
Client.”

With this technique, the runtime engine stores Cl i ent properties the first time it flushes the
internal buffer containing the generated HTML page. For this reason, to prevent losing any
information, you should assign all ¢l i ent property values eatly in the scripts on each page. In
particular, you should ensure that cl i ent properties are set before (1) the runtime engine
generates 64KB of content for the HTML page (it automatically flushes the output buffer at
this point), (2) you call the f | ush function to clear the output buffer, or (3) you call the

redi rect function to change client requests. For more information, see “Flushing the
Output Buffer” and “Runtime Processing on the Server.”

By default, when you use the client cookie technique, the runtime engine does not explicitly set
the expiration of the cookies. In this case, the cookies expire when the user exits the browser.
(This is the default behavior for all cookies.) As described in “The Lifetime of the client

152 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Techniques for Maintaining the client Object

Object” you can use the cl i ent object’s expi r at i on method to change this expiration
period. If you use cl i ent . expi rati on, the runtime engine sets the cookie expiration
appropriately in the cookie file.

When using the client cookie technique, cl i ent . destr oy eliminates all cl i ent property

values but does not affect what is stored in the cookie file on the client machine. To remove

the cookies from the cookie file or browser memory, do not use cl i ent . dest r oy; instead,
use cl i ent. expiration with an argument of 0 seconds.

In general, Netscape cookies have the following limitations. These limitations apply when you
use cookies to store Cl i ent properties:

* 4KB for each cookie (including both the cookie’s name and its value). If a single cookie is
longer than 4KB, the cookie entry is truncated to 4KB. This may result in an invalid
cli ent property value.

* 20 cookies for each application. If you create motre than 20 cookies for an application, the
oldest (first created) cookies are eliminated. Because the client cookie technique creates a
separate cookie for each cl i ent property, the cl i ent object can store at most 20
properties. If you want to use other cookies in your application as well, the total number of
cookies is still limited to 20.

* 300 total cookies in the cookie file. If you create more than 300 cookies, the oldest (first
created) cookies are eliminated.

153

Techniques for Maintaining the client Object

Using Client URL Encoding

In the client URL encoding technique, the runtime engine on the server transmits the
properties of the cl i ent object and their values to the client by appending them to each URL
in the generated HITML page. Consequently, the properties and their values are sent as many
times as there are links on the generated HTML page, resulting in the largest increase in
network traffic of all of the maintenance techniques.

The size of a URL string is limited to 4KB. Therefore, when you use client URL encoding, the
total size of all the property names and their values is somewhat less than 4KB. Any
information beyond the 4KB limit is truncated.

If you generate URLs dynamically or use the r edi r ect function, you can add cl i ent
properties or other properties to the URL. For this reason, whenever you call r edi r ect or
generate your own URL, the compiler does not automatically append the cl i ent properties
for you. If you want cl i ent properties appended, use the addCl i ent function. For more
information, see “Manually Appending client Properties to URLs.”

In the client URL encoding technique, property values are added to URLs as those URLs are
processed. You need to be careful if you expect your URLs to have the same properties and
values. For example, consider the following code:

<SERVER>

client.numwites = 2;
wite (addd i ent(
"Some link"));
client.numwrites = 3;
write (addClient(
"Another link"));

</SERVER>

154 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Techniques for Maintaining the client Object

When the runtime engine processes the first W i t € statement, it uses 2 as the value of the
numa i t es property, but when it processes the second Wr i t e statement, it uses 3 as the
value.

Also, if you use the cl i ent . dest r oy method in the middle of a page, only those links that
come before the method call have property values appended to their URLs. Those that come
after the method call do not have any values appended. Therefore, cl i ent property values are
propagated to some pages but not to others. This may be undesirable.

If your page has a link to a URL outside of your application, you may not want the client state
appended. In this situation, do not use a static string as the HREF value. Instead, compute the
value. This prevents the runtime engine from automatically appending the client state to the
URL. For example, assume you have this link:

In this case, the runtime engine appends the cl i ent object properties. To instead have it not
do so, use this very similar link:

In this technique, the client object does not expire, because it exists solely in the URL string
residing on the client. Therefore, the client.expiration method does nothing.

In client URL encoding, you lose all client properties when you submit a form using the GET
method and when you access another application,. Once again, you may or may not want to
lose these properties, depending on your application’s needs.

In contrast to the client cookie technique, client URL encoding does not require the web
browser support the Netscape cookie protocol, nor does it require writing information on the
client machine.

Server-Side Techniques

There are three server-side maintenance techniques:
e IP addresses
e Server cookie

* Server URL encoding

155

Techniques for Maintaining the client Object

156

For a comparison of all of the maintenance techniques, see “Comparing Client-Maintenance
Techniques.”

In all of these techniques, the runtime engine on the server stores the properties of the cl i ent
object and their values in a data structure in server memory. A single data structure, preserved
between client requests, is used for all applications running on the server. These techniques
differ only in the index used to access the information in that data structure, ensuring that each
client/application pait gets the approptiate properties and values for the cl i ent object.

None of these techniques writes information to the server disk. Only the server cookie
technique can cause information to be written to the client machine’s disk, when the browser is
exited.

Because these techniques store Cl i ent object information in server memory between client
requests, there is little or no network traffic increase. The property names and values are never
sent to the client. Additionally, there are no restrictions on the number of properties a cl i ent
object can have nor on the size of the individual properties.

The trade-off, of course, is that these techniques consume server memory between client
requests. For applications that are accessed by a large number of clients, this memory
consumption could become significant. Of course, this can be considered an advantage as well,
in that you can store as much information as you need.

Using IP Address

The IP address technique indexes the data structure based on the application and the client’s IP
address. This simple technique is also the fastest, because it doesn’t requite sending any
information to the client at all. Since the index is based on both the application and the IP
addtess, this technique does still create a separate index for every application/client pair
running on the server.

This technique works well when all clients have fixed IP addresses. It does not work reliably if
the client is not guaranteed to have a fixed IP address, for example, if the client uses the
Dynamic Host Configuration Protocol (DHCP) or an Internet service provider that

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Techniques for Maintaining the client Object

dynamically allocates IP addresses. This technique also does not work for clients that use a
proxy server, because all users of the proxy report the same IP address. For this reason, this
technique is probably useful only for intranet applications.

Using Server Cookie

The server cookie technique uses a long unique name, generated by the runtime engine, to
index the data structure on the server. The runtime engine uses the Netscape cookie protocol
to store the generated name as a cookie on the client. It does not store the property names and
values as cookies. For this reason, this technique creates a single cookie, whereas the client
cookie technique creates a separate cookie for each property of the ¢l i ent object.

The generated name is sent to the client once, in the header of the HTML page. You can access
this generated name with the ssj s_get O i ent | D function, described in “Uniquely Referring
to the client Object.” This technique uses the same cookie file as the client cookie technique;
these techniques differ in what information is stored in the cookie file. The Netscape cookie
protocol is described in the <Italic>Client-Side JavaScript Guide.

Also, because only the generated name is sent to the client, and not the actual property names
and values, it does not matter where in your page you make changes to the cl i ent object
properties. This contrasts with the client cookie technique.

By default, the runtime engine sets the expiration of the server data structure to ten minutes
and does not set the expiration of the cookie sent to the client. As described in “The Lifetime
of the client Object,” you can use the cl i ent object’s expi r ati on method to change this
expiration period and to set the cookie’s expiration.

When using server cookie, ¢l i ent . dest r oy eliminates all cl i ent property values.

In general, Netscape cookies have the limitations listed in “Using Client Cookie.” When you
use server cookies, however, these limits are unlikely to be reached because only a single cookie
(containing the index) is created.

This technique is fast and has no built-in restrictions on the number and size of properties and
their values. You are limited more by how much space you’re willing to use on your server for
saving this information.

Using Server URL Encoding

The server URL encoding technique uses a long unique name, generated by the runtime engine,
to index the data structure on the server. In this case, rather than making that generated name
be a cookie on the client, the server appends the name to each URL in the generated HTML

page. Consequently, the name is sent as many times as there are links on the generated HTML

157

Techniques for Maintaining the client Object

page. (Property names and values are not appended to URLs, just the generated name.) Once
again, you can access this generated name with the ssj s_get d i ent | D function, described
in “Uniquely Referring to the client Object.”

If you generate URLs dynamically or use the r edi r ect function, you can add properties to
the URL. For this reason, whenever you call r edi r ect or generate your own URL, the
compiler does not automatically append the index for you. If you want to retain the index for
the cl i ent properties, use the addC i ent function. For more information, see “Manually
Appending client Properties to URLs.”

If your page has a link to a URL outside of your application, you may not want the client index
appended. In this situation, do not use a static string for the HREF value. Instead, compute the
value. This prevents the runtime engine from automatically appending the client index to the
URL. For example, assume you have this link:

In this case, the runtime engine appends the cl i ent index. To instead have it not do so, use
this very similar link:

In server URL encoding, you lose the client identifier (and hence its properties and values)
when you submit a form using the GETmethod. You may or may not want to lose these
properties, depending on your application’s needs.

The Lifetime of the client Object

Once a client accesses an application, thete is no guarantee that it will request further
processing or will continue to a logical end point. For this reason, the client object has a
built-in expiration mechanism. This mechanism allows JavaScript to occasionally “clean up”
old client objects that are no longer necessary. Each time the server receives a request for a
page in an application, JavaScript resets the lifetime of the client object.

Causing client Object Properties to Expire

The default behavior of the expiration mechanism varies, depending on the client object
maintenance technique you use, as shown in the following table.

Table 6-3 Default expiration of client properties based on the maintenance technique

For this maintenance The properties of the client object...
technique...
client cookie Expire when the browser is exited.

158 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Techniques for Maintaining the client Object

Table 6-3 Default expiration of cl i ent properties based on the maintenance technique

For this maintenance The properties of the client object...
technique...

client URL encoding Never expire.

server cookie Are removed from the data structure on the

server after 10 minutes. The cookie on the client
expires when the browser is exited. The cl i ent
object properties are no longer accessible as soon
the data structure is removed or the browser
exited.

server URL encoding Are removed from the data structure on the
server after 10 minutes.

server IP address Are removed from the data structure on the
server after 10 minutes.

An application can control the length of time JavaScript waits before cleaning up cl i ent
object properties. To change the length of this period, use the expi r at i on method, as in the
following example:

client.expiration(30);

In response to this call, the runtime engine causes Cl i ent object properties to expire after
30 seconds. For server-side maintenance techniques, this call causes the server to remove the
object properties from its data structures after 30 seconds. For the two cookie techniques, the
call sets the expiration of the cookie to 30 seconds.

If the cl i ent object expires while there is an active client request using that object, the
runtime engine waits until the end of the request before destroying the cl i ent object.

You must call expi rati on on each application page whose expiration behavior you want to

specify. Any page that does not specify an expiration uses the default behavior.

Destroying the client Object

An application can explicitly destroy a cl i ent object with the dest r oy method, as follows:

client.destroy();

159

Techniques for Maintaining the client Object

When an application calls dest r oy, JavaScript removes all properties from the cl i ent
object.

If you use the client cookie technique to maintain the cl i ent object, dest r oy eliminates all
cli ent property values but has no effect on what is stored in the client cookie file. To also
eliminate property values from the cookie file, do not use dest r oy; instead, use expi r at i on
with an argument of 0 seconds.

When you use client URL encoding to maintain the cl i ent object, the dest r oy method
removes all ¢l i ent properties. Links on the page before the call to dest r oy retain the
cli ent properties in their URLs, but links after the call have no properties. Because it is
unlikely that you will want only some of the URLs from the page to contain cl i ent
properties, you probably should call dest r oy either at the top or bottom of the page when
using client URL maintenance. For more information, see “Using Client URL Encoding.”

Manually Appending client Properties to URLs

When using URL encoding either on the client or on the setver to maintain the cl i ent object,
in general the runtime engine should store the appropriate information (cl i ent property
names and values or the setver data structure’s index) in all URLs sent to the client, whether
those URLs were presented as static HTML or were generated by setver-side JavaScript
statements.

The runtime engine automatically appends the appropriate information to HTML hyperlinks
that do not occur inside the SERVER tag. So, for example, assume your HTML page contains
the following statements:

<HTM.>

For nore infornmation, contact

Royal Ai rways

</ HTM_>

160 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Techniques for Maintaining the client Object

If the application uses URL encoding for the cl i ent object, the runtime engine automatically
appends the cl i ent information to the end of the URL. You do not have to do anything
special to supportt this behavior.

Howevet, your application may use the W i t e function to dynamically generate an HTML
statement containing a URL. You can also use the r edi r ect function to start a new request.
Whenever you use server-side JavaScript statements to add a URL to the HTML page being
generated, the runtime engine assumes that you have specified the complete URL as you want
it sent. It does not automatically append client information, even when using URL encoding to
maintain the cl i ent object. If you want client information appended, you must do so
yourself.

You use the addCl i ent function to manually add the appropriate ¢l i ent information. This
function takes a URL and returns a new URL with the information appended. For example,
suppose the appropriate contact URL varies based on the value of the cl i ent . cont act
property. Instead of the HTML above, you might have the following:

<HTM_>

For nore information, contact
<server>

if (client.contact == "VIP") {

wite ("");
write ("Royal Airways VIP Contact");
}
else {
write ("");
write ("Royal Airways");

}

</server>

</HTML>

161

Techniques for Maintaining the client Object

In this case, the runtime engine does not append cl i ent properties to the URLs. If you use
one of the URL-encoding cl i ent maintenance techniques, this may be a problem. If you
want the cl i ent properties sent with this URL, instead use this code:

<HTML>

For more information, contact

<server>

if (client.contact == "VIP") {
write (addClient(
""));
write ("Royal Airways VIP Contact");

}

else {
write (addClient(
""));
write ("Royal Airways");

}

</server>

</HTML>

Similarly, any time you use the r edi r ect function to change the client request, you should use
addd i ent to append the information, as in this example:

redirect (addd i ent ("nypage. htm ")) ;

Conversely, if your page has a link to a URL outside of your application, you may #of want
client information appended. In this situation, do not use a static string for the HREF value.
Instead, compute the value. This prevents the runtime engine from automatically appending
the client index or properties to the URL. For example, assume you have this link:

In this case, the runtime engine appends client information. To instead have it not do so, use
this very similar link:

162 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Sharing Objects Safely with Locking

Even though an application is initially installed to use a technique that does not use URL
encoding to maintain cl i ent , it may be modified later to use a URL encoding technique.
Therefore, if your application generates dynamic URLs or uses r edi r ect , you may always
want to use addd i ent .

Sharing Objects Safely with Locking

The execution environment for a 3.x or 4.x version of a Netscape server is multithreaded; this
1s, it processes more than one request at the same time. Because these requests could require
JavaScript execution, more than one thread of JavaScript execution can be active at the same
time.

If multiple threads simultaneously attempt to change a property of the same JavaScript object,
they could leave the object in an inconsistent state. A section of code in which you want one
and only one thread executing at any time is called a critical section.

One ser ver object is shared by all clients and all applications running on the server. One
pr oj ect object is shared by all clients accessing the same application on the server. In
addition, your application may create other objects it shates among client requests, or it may
even share objects with other applications. To maintain data integrity within any of these
shared objects, you must get exclusive access to the object before changing any of its
properties.

NOTE There is no implicit locking for the pr oj ect and ser ver objects
as there was in previous releases.

To better understand what can happen, consider the following example. Assume you create a
shared object pr oj ect . orders to keep track of customer orders. You update
proj ect.orders. count every time there is a new order, using the following code:

var X = project.orders.count;
X =X + 1
proj ect.orders. count = x;

163

Sharing Objects Safely with Locking

164

Assume that pr oj ect. or der s. count is initially set to 1 and two new orders come in, in
two separate threads. The following events occur:

1. The first thread stores pr oj ect. order s. count into x.

2. Before it can continue, the second thread runs and stores the same value in its
copy of x.

3. At this point, both threads have a value of 1 in x.

4. The second thread completes its execution and sets pr oj ect . order s. count to
2.

5. The first thread continues, unaware that the value of proj ect . or ders. count
has changed, and also sets it to 2.

So, the end value of pr oj ect . or der s. count is 2 rather than the correct value, 3.

To prevent problems of this kind, you need to obtain exclusive access to the properties of
shared objects when writing to them. You can construct your own instances of Lock for this
purpose that work with any shared object. In addition, the ser ver and pr oj ect objects have
I ock and unl ock methods you can use to restrict access to those objects.

Using Instances of Lock

Think of a lock as a named flag that you must hold before you gain access to a critical section.
If you ask for the named flag and somebody else is already holding it, you wait in line until that
person releases the flag. While waiting, you won’t change anything you shouldn’t. Once you get
the flag, anybody else who’s waiting for it won’t change anything either. If an etror occurs or a
timeout period elapses before you get the flag, you can either get back in line to wait some
more or do something else, such as letting your user know the application is too busy to
perform that operation right now. You should not decide to break into the line (by changing
shared information)! Figure 6-5 illustrates this process.

Figure 6-5 Thread 2 waits while thread 1 has the lock

project.ordersLock

=
=0
3
@D
feb)
o
2

Thread 2

project.orders.count

2]

9
]

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Sharing Objects Safely with Locking

In programming terms, a lock is represented by an instance of the Lock class. You can use an
instance of Lock to gain exclusive access to any shared object, providing all code that accesses
the shatred object honots the lock. Typically, you create your Lock instances on the initial page
of your application (for reasons that explained later).

In your other pages, before a critical section for the shared object (for example, sections that
retrieve and change a property value), you call the Lock instance’s | ock method. If that
method returns t r ue, you have the lock and can proceed. At the end of the critical section,
you call the Lock instance’s unl ock method.

When a client request in a single execution thread calls the | ock method, any other request
that calls | ock for the same Lock instance waits until the original thread calls the unl ock

method, until some timeout period elapses, or until an error occurs. This is true whether the
second request is in a different thread for the same client or in a thread for a different client.

If all threads call the | ock method before trying to change the shared object, only one thread
can enter the critical section at one time.

NOTE The use of locks is completely under the developet’s
control and requires cooperation. The runtime engine
does not force you to call | ock, nor does it force you to
respect a lock obtained by someone else. If you don’t ask,
you can change anything you want. For this reason, it’s
very important to get into the habit of always calling | ock
and unl ock when entering any critical section of code
and to check the return value of | ock to ensure you have
the lock. You can think of it in terms of holding a flag: if
you don’t ask for the flag, you won’t be told to wait in line.
If you don’t wait in line, you might change something you
shouldn’t.

165

Sharing Objects Safely with Locking

166

You can create as many locks as you need. The same lock may be used to control access to
multiple objects, or each object (or even object property) can have its own lock.

A lock is just a JavaScript object itself; you can store a reference to it in any other JavaScript
object. Thus, for example, it is common practice to construct a Lock instance and store it in
the pr oj ect object.

NOTE Because using a lock blocks other usets from accessing the
named flag, potentially delaying execution of their tasks, it
is good practice to use locks for as short a period as
possible.

The following code illustrates how to keep track of customer orders in the shared
proj ect . or der s object discussed eatlier and to update pr oj ect . or ders. count every
time there is a new order. In the application’s initial page, you include this code:

/1 Construct a new Lock and save in project

proj ect.ordersLock = new Lock();

if (! project.ordersLock.isValid()) {
/1 Unable to create a Lock. Redirect to error page
redirect ("sysfailure.htnl);

This code creates the Lock instance and verifies (in the call to i sVal i d) that nothing went
wrong creating it. Only in very rare cases is your Lock instance impropetly constructed. This
happens only if the runtime engine runs out of system resources while creating the object.

You typically create your Lock instances on the initial page so that you don’t have to get a lock
before you create the Lock instances. The initial page is run exactly once during the running of
the application, when the application is started on the server. For this reason, you’re guaranteed
that only one instance of each lock is created.

If, however, your application creates a lock on another of its pages, multiple requests could be
invoking that page at the same time. One request could check for the existence of the lock and
find it not there. While that request creates the lock, another request might create a second

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Sharing Objects Safely with Locking

lock. In the meantime, the first request calls the | ock method of its object. Then the second
request calls the | ock method of s object. Both requests now think they have safe access to
the critical section and proceed to corrupt each other’s work.

Once it has a valid lock, your application can continue. On a page that requires access to a
critical section, you can use this code:

/1 Begin critical section -- obtain | ock
if (project.ordersLock.lock()) {
var X = project.orders.count;

X = X + 1;
proj ect.orders.count = x;
/1l End critical section -- release |ock
proj ect. ordersLock. unl ock();
}
el se

redi rect ("conbackl ater. htni');

167

Sharing Objects Safely with Locking

168

This code requests the lock. If it gets the lock (that is, if the | 0ck method returns t r ue), then
it enters the critical section, makes the changes, and finally releases the lock. If the | ock
method returns f al se, then this code did not get the lock. In this case, it redirects the
application to a page that indicates the application is cutrently unable to satisfy the request.

Special Locks for project and server Objects

The pr oj ect and server objects each have | ock and unl ock methods. You can use these
methods to obtain exclusive access to properties of those objects.

There is nothing special about these methods. You still need cooperation from other sections
of code. You can think of these methods as already having one flag named “project” and
another named “server.” If another section of code does not call proj ect. | ock, it can
change any of the pr oj ect object’s properties.

Unlike the | ock method of the Lock class, however, you cannot specify a timeout period for
the | ock method of the pr oj ect and ser ver objects. That is, when you call

proj ect . | ock, the system waits indefinitely for the lock to be free. If you want to wait for
only a specified amount of time, instead use an instance of the Lock class.

The following example uses | ock and unl ock to get exclusive access to the pr oj ect object
while modifying the customer ID property:

proj ect. | ock()

project.next_id = 1 + project.next_id;
client.id = project.next_id;

proj ect. unl ock();

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Sharing Objects Safely with Locking

Avoiding Deadlock

You use locks to protect a critical section of your code. In practice, this means one request
waits while another executes in the critical section. You must be careful in using locks to
protect critical sections. If one request is waiting for a lock that is held by a second request, and
that second request is waiting for a lock held by the first request, neither request can ever
continue. This situation is called deadlock.

Consider the earlier example of processing customer orders. Assume that the application
allows two interactions. In one, a user enters a new customer; in the other, the user enters a
new order. As part of entering a new customer, the application also creates a new customer
order. This interaction is done in one page of the application that could have code similar to
the following:

/1 Create a new customer.

if (project.custonersLock.lock()) {
var id = project.custoners.|D
id=1id + 1;
project.custoners. D = id;
/1 Start a new order for this new customer.
if (project.ordersLock.lock()) {
var ¢ = project.orders.count;
c =c + 1,
proj ect.orders.count = c;
proj ect. ordersLock. unl ock();

}

proj ect . cust oner sLock. unl ock() ;

169

Sharing Objects Safely with Locking

170

In the second type of interaction, a user enters a new customer order. As patt of entering the
order, if the customer is not already a registered customer, the application creates a new
customer. This interaction is done in a different page of the application that could have code

similar to the following:

/1 Start a new order
if (project.ordersLock.lock()) {
var ¢ = project.orders.count;
c =c¢ + 1;
proj ect.orders.count = c;
it (...code to establish unknown customer...) {
/1 Create a new custoner.
/1 This internal lock is going to cause trouble!
if (project.custonersLock.lock()) {
var id = project.customers.|D
id=1id + 1;
project.custoners. D = id;
pr oj ect . cust ormer sLock. unl ock();

}
}

proj ect. order sLock. unl ock();

Notice that each of these code fragments tries to get a second lock while already holding a lock.
That can cause trouble. Assume that one thread starts to create a new customer; it obtains the
cust omer sLock lock. At the same time, another thread starts to create a new order; it obtains
the or der sLock lock. Now, the first thread requests the or der sLock lock. Since the second
thread has this lock, the first thread must wait. However, assume the second thread now asks

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Sharing Objects Safely with Locking

for the cust oner sLock lock. The first thread holds that lock, so the second thread must wait.
The threads are now waiting for each other. Because neither specified a timeout period, they
will both wait indefinitely.

In this case, it is easy to avoid the problem. Since the values of the customer ID and the order
number do not depend on each other, there is no real reason to nest the locks. You could avoid
potential deadlock by rewriting both code fragments. Rewrite the first fragment as follows:

/1 Create a new custoner.
if (project.custonersLock.lock()) {
var id = project.custoners.|D;
id=1id + 1;
project.custoners. D = id;
proj ect . cust oner sLock. unl ock() ;
}
/1 Start a new order for this new custoner.
if (project.ordersLock.lock()) {
var c¢ = project.orders.count;
c =c¢ + 1;
proj ect.orders.count = c;
proj ect. ordersLock. unl ock();

171

Sharing Objects Safely with Locking

172

The second fragment looks like this:

// Start a new order

if (project.ordersLock.lock()) {
var ¢ = project.orders.count;
c =c¢ + 1;
proj ect.orders.count = c;
proj ect. ordersLock. unl ock();

}

it (...code to establish unknown customer...) {
/1 Create a new customer
if (project.custonersLock.lock()) {
var id = project.custoners.|D

id=id + 1
project.custoners.ID = id;

proj ect . cust oner sLock. unl ock() ;
}

Although this situation is cleatly contrived, deadlock is a very real problem and can happen in
many ways. It does not even require that you have more than one lock or even more than one
request. Consider code in which two functions each ask for the same lock:

function fnl () {
if (project.lock()) {
11 ... do some stuff ...
proj ect. unl ock();
}
}
function fn2 () {
if (project.lock()) {
11 ... do some other stuff ...
proj ect. unl ock();

}

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Sharing Objects Safely with Locking

By itself, that is not a problem. Later, you change the code slightly, so that f n1 calls f N2 while
holding the lock, as shown here:

function fnl () {
if (project.lock()) {
Il ... do some stuff ...
fn2();
proj ect. unl ock();

}

Now you have deadlock. This is particulatly ironic, in that a single request waits forever for
itself to release a flag!

173

Sharing Objects Safely with Locking

174 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Chapter 7

Other JavaScript Functionality

This chapter describes additional server-side JavaScript functionality you can use to send email
messages from you application, access the server file system, include external libraries in your
application, or directly manipulate client requests and client responses.

This chapter contains the following sections:
* Mail Service

* File System Service

* Working with External Libraries

* Request and Response Manipulation

175

Mail Service

Mail Service

Your application may need to send an email message. You use an instance of the SendMai |
class for this purpose. The only methods of SendMai | are send, to send the message, and
error Code and err or Message, to interpret an error.

For example, the following script sends mail to vpg with the specified subject and body for the
message:

<server >

SMNarme = new SendMail ();

SMNane. To = "vpg@ oyal ai rways. cont';

SMNane. From = "t hi sapp@et scape. cont';

SMName.Subject = "Here's the information you wanted";

SMName.Body = "sharm, maldives, phuket, coral sea, taveuni, maui,
cocos island, marathon cay, san salvador";

SMName.send();

</server>

The following table describes the properties of the SendMai | class. The To and Fr om
properties are required; all other properties are optional.

Table 7-1 Properties of the SendMail class

To A comma-delimited list of primary recipients of the message.

From The user name of the person sending the message.

Cc A comma-delimited list of additional recipients of the message.

Bcc A comma-delimited list of recipients of the message whose
names should not be visible in the message.

Smtpserver The mail (SMTP) server name. This property defaults to the
value specified through the setting in the administration
server.

Subject The subject of the message.

Body The text of the message.

176 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Mail Service

In addition to these properties, you can add any other properties you wish. All properties of the
SendMai | class are included in the header of the message when it is actually sent. For
example, the following code sends a message to bi | | from vpg, setting vpg’s organization
field to Royal Airways. Replies to the message go to vpgboss.

mai | oj ["Reply-to"] = "vpgboss";

mai | Obj . Organi zation = "Royal Airways";
mai | j . From = "vpg";

mai |l Cbj . To = "bill";

mai | bj . send() ;

177

Mail Service

For more information on predefined header fields, refer to RFC 8221, the standard for the
format of internet text messages.

The SendMai | class allows you to send either simple text-only mail messages or complex
MIME-compliant mail. You can also add attachments to your message. To send a MIME

message, add a Cont ent - t ype property to the SendMai | object and set its value to the
MIME type of the message.

For example, the following code segment sends a GIF image:

<server>
SMNarme = new SendMail ();

SMNane. To = "vpg@ oyal ai rways. conf';
SMNane. From = "t hi sapp@et scape. cont';

SMNane. Subject = "Here's the inmage file you wanted"
SMNare[" Content -type"] = "image/gif";
SMNare[" Cont ent - Tr ansf er - Encodi ng"] = "base64";

/1 In this next statement, image2.gif nmust be base 64 encoded
/1 If you use uuencode to encode the A F file, delete the header
/1l (for exanple, "begin 644 inage2.gif") and the trailer ("end").
fileObj = new File("/usr/somebody/image2.gif");
openFlag = filebj.open("r");
if (openFlag) {

len = fileQbj.getLength();

SMNane. Body = fil eObj.read(len);

SMNane. send() ;

}

</ server>

1. http://infointernet.isi.edu:80/in-notes/rfc/ files/rfc822.txt

178 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Mail Service

Some MIME types may need morte information. For example, if the content type is

nmul ti part/ m xed, you must also specify a boundary separator for one or more different
sets of data in the body. For example, the following code sends a multipart message containing
two patts, both of which are plain text:

<server>
SMNane = new SendMai |l ();
SMNarne. To = "vpg@ oyal ai rways. cont';
SMNare. From = "t hi sapp@et scape. cont';
SMNarne. Subject = "Here's the informati on you wanted";
SMNane[" Cont ent -t ype"]
= "nul ti part/m xed; boundary=\"si npl e boundary\"";
fileObj = new File("/usr/vpg/multi.txt");
openFlag = fil eQbj.open("r");
if (openFlag) {
len = fileQbj.getLength();
SMNane. Body = fil eObj.read(len);
SMNane. send() ;
}

</ server>

Here the file mul ti . t Xt contains the following multipart message:

This is the place for preanble.

It is to be ignored.

It is a handy place for an explanatory note to non-M ME conpl i ant
readers.

--sinmpl e boundary

This is the first part of the body.

This does NOT end with a |ine break.

--sinmpl e boundary

Cont ent - Type: text/plain; charset=us-ascii

This is the second part of the body.

It DOES end with a |ine break

--sinmpl e boundary- -

This is the epilogue. It is also to be ignored.

179

File System Service

You can nest multipart messages. That is, if you have a message whose content type is
multipart, you can include another multipart message in its body. In such cases, be careful to
ensure that each nested multipart entity uses a different boundary delimiter.

For details on MIME types, refer to RFC 13411, the MIME standard. For mote information on
sending mail messages with JavaScript, see the description of this class in the Server-Side
JavaScript Reference.

File System Service

JavaScript provides a Fi | e class that enables applications to write to the server’s file system.
This 1s useful for generating persistent HTML files and for storing information without using a
database server. One of the main advantages of storing information in a file instead of in
JavaSctipt objects is that the information is preserved even if the server goes down.

Security Considerations

Exercise caution when using the Fi | € class. A JavaScript application can read or write files
anywhere the operating system allows, potentially including sensitive system files. You should
be sure your application does not allow an intruder to read password files or other sensitive
information ot to write files at will. Take care that the filenames you pass to its methods cannot
be modified by an intruder.

For example, do not use cl i ent orr equest properties as filenames, because the values may
be accessible to an intruder through cookies or URLs. In such cases, the intruder can modify
cookie or URL values to gain access to sensitive files.

For similar security reasons, Navigator does not provide automatic access to the file system of
client machines. If needed, the user can save information directly to the client file system by
making appropriate menu choices in Navigator.

Creating a File Object

To create an instance of the Fi | e class, use the standard JavaScript syntax for object creation:

fileCbjectNane = new File("path");

1. http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1341.txt

180 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

File System Service

Here, f i | eCbj ect Narre is the name by which you refer to the file, and pat h is the complete
file path. The path should be in the format of the server’s file system, not a URL path.

You can display the name of a file by using the wri t € function, with the Fi | € object as its
argument. For example, the following statement displays the filename:

X = new File("\path\file.txt");
write(x);

Opening and Closing a File

Once you have created a Fi | e object, you use the open method to open the file so that you
can read from it or write to it. The open method has the following syntax:

result = fil eCbject Nane. open(" node");

This method returns t r ue if the operation is a success and f al se otherwise. If the file is
already open, the operation fails and the original file remains open.

The parameter nDde is a string that specifies the mode in which to open the file. The
following table describes how the file is opened for each mode.

Table 7-2 File-access modes

Mode Description

r Opens the file, if it exists, as a text file for reading and returns t r ue. If the
file does not exist, returns f al se.

w Opens the file as a text file for writing. Creates a new (initially empty) text
file whether or not the file exists.

a Opens the file as a text file for appending (writing at the end of the file). If
the file does not already exist, creates it.

r+ Opens the file as a text file for reading and writing. Reading and writing
commence at the beginning of the file. If the file exists, returnst r ue. If the
file does not exist, returns f al se.

w+ Opens the file as a text file for reading and writing. Creates a new (initially
empty) file whether or not the file already exists.

a+ Opens the file as a text file for reading and writing. Reading and writing
commence at the end of the file. If the file does not exist, creates it.

b When appended to any of the preceding modes, opens the file as a binary
file rather than a text file. Applicable only on Windows operating systems.

181

File System Service

When an application has finished using a file, it can close the file by calling the cl ose method.
If the file is not open, cl ose fails. This method returns t r ue if successful and f al se
otherwise.

Locking Files

Most applications can be accessed by many users simultaneously. In general, however, different
users should not try to make simultaneous changes to the same file, because unexpected errors
may result.

To prevent multiple users from modifying a file at the same time, use one of the locking
mechanisms provided by the Session Management Setvice, as desctibed in “Shatring Objects
Safely with Locking.” If one user has the file locked, other users of the application wait until
the file becomes unlocked. In general, this means you should precede all file operations with
| ock and follow them with unl ock.

If only one application can modify the same file, you can obtain the lock within the pr oj ect
object. If more than one application can access the same file, however, obtain the lock within
the server object.

For example, suppose you have created a file called myFi | e. Then you could use it as follows:

if (project.lock()) {
nmyFil e.open("r");
Il ... use the file as needed ...
myFil e. cl ose();
proj ect. unl ock();

182 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

File System Service

In this way, only one user of the application has modify to the file at one time. Alternatively,
for finer locking control you could create your own instance of the Lock class to control access
to a file. This is described in “Using Instances of Lock.”

Working with Files

The Fi | e class has a number of methods that you can use once a file is open:

* DPositioning: set Posi ti on, get Posi ti on, eof. Use these methods to set and get the

current pointer position in the file and determine whether the pointer is at the end of the
file.

* Reading from a file: r ead, r eadl n, r eadByt e.
* Witingtoafilewite,witeln,witeByte,flush.

* Converting between binary and text formats: byt eToSt ri ng, stri ngToByt e. Use
these methods to convert a single number to a character and vice versa.

* Informational methods: get Lengt h, exi st s, error, cl ear Error. Use these
methods to get information about a file and to get and clear error status.

The following sections describe these methods.

Positioning Within a File

The physical file associated with a Fi | € object has a pointer that indicates the cutrent position
in the file. When you open a file, the pointer is either at the beginning or at the end of the file,
depending on the mode you used to open it. In an empty file, the beginning and end of the file
are the same.

The set Posi ti on method positions the pointer within the file, returning t r ue if successful
and f al se otherwise.

fileCbj.setPosition(position);
fileQbj.setPosition(position, reference);

Here, fi | eCbj is a Fi | e object, posi ti on is an integer indicating where to position the
pointer, and r ef er ence indicates the reference point for posi ti on, as follows:

e 0: relative to beginning of file
e 1: relative to current position
e 2:relative to end of file

* Other (or unspecified): relative to beginning of file

183

File System Service

The get Posi ti on method returns the current position in the file, where the first byte in the
file is always byte 0. This method returns -1 if there is an etror.

fileCbj.getPosition();

The eof method returns t r ue if the pointer is at the end of the file and f al se otherwise.

This method returns t r ue after the first read operation that attempts to read past the end of
the file.

fileQbj.eof();

Reading from a File

Use ther ead, r eadl n, and r eadByt e methods to read from a file.

The r ead method reads the specified number of bytes from a file and returns a string.
fileQbj.read(count);

Here, fi | eCbj is a Fi | e object, and count is an integer specifying the number of bytes to
read. If count specifies more bytes than are left in the file, then the method reads to the end of
the file.

The r eadl n method reads the next line from the file and returns it as a string.
fileQbj.readln();

Here, fi | eQbj is a Fi | e object. The line-separator characters (either \ r\ n on Windows or
just \ n on Unix or Macintosh) are not included in the string. The character \ r is skipped; \ n
determines the actual end of the line. This compromise gets reasonable behavior on all
platforms.

The r eadByt e method reads the next byte from the file and returns the numeric value of the
next byte, or -1.

fileCbj.readByte();

Writing to a File

The methods for writing to a filearewrite,witel n,witeByte,andfl ush.

The wr i t e method writes a string to the file. It returns t r ue if successful and f al se
otherwise.

fileQbj.wite(string);

184 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

File System Service

Here, fi | eCbj is a Fi | e object, and st ri ng is a JavaScript string.

The wri t el n method writes a string to the file, followed by \ n (\ r\ n in text mode on
Windows). It returns t r ue if the write was successful and f al se otherwise.

fileObj.witeln(string);

The wr i t eByt e method writes a byte to the file. It returns t r ue if successful and f al se
otherwise.

fileQbj.witeByte(nunber);
Here, fi | eCbj is a Fi | e object and nunber is a number.

When you use any of these methods, the file contents are buffered internally. The f | ush
method writes the buffer to the file on disk. This method retutns t r ue if successful and
f al se otherwise.

filej.flush();

Converting Data

There are two primary file formats: ASCII text and binary. The byt eToSt ri ng and
stri ngToByt e methods of the Fi | e class convert data between these formats.

The byt eToSt ri ng method converts a number into a one-character string. This method is
static. You can use the Fi | e class object itself, and not an instance, to call this method.

Fil e. byteToStri ng(nunber);
If the argument is not a number, the method returns the empty string.

The st ri ngToByt e method converts the first character of its argument, a string, into a
number. This method is also static.

File.stringToByte(string);

The method returns the numeric value of the first character, or 0.

Getting File Information

You can use several Fi | @ methods to get information on files and to work with the error
status.

The get Lengt h method returns the number characters in a text file or the number of bytes in
any other file. It returns -1 if there is an error.

fileQbj.getlLength();
The exi st s method returns t r ue if the file exists and f al se otherwise.

fileQoj.exists();

185

File System Service

The er r or method returns the error status, or -1 if the file is not open or cannot be opened.
The error status is a nonzero value if an error occurred and 0 otherwise (no error). Error status
codes are platform dependent; refer to your operating system documentation.

fileObj.error();

The cl ear Er r or method clears both the error status (the value of er r or) and the value of
eof .

fileQbj.clearError();

Example

Netscape servers include the Viewer sample application in its directory structure. Because this
application allows you to view any files on the server, it is not automatically installed.

Viewer gives a good example of how to use the Fi | e class. If you install it, be sure to restrict
access so that unauthotized persons cannot view files on your server. For information on
restricting access to an application, see “Deploying an Application.”

The following code from the vi ewer sample application creates a Fi | e class, opens it for
reading, and generates HTML that echoes the lines in the file, with a hard line break after each
line.

X = new File("\tnp\nanes.txt");
filelsOpen = x.open("r");
if (filelsOpen) {

wite("file name: " + x + "
");

while (Ix.eof ()) {

line = x.readln();

if (!x.eof())

write(line+"
");

if (x.error() !'=0)
wite("error reading file" + "
");
x.cl ose();

186 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Working with External Libraries

Working with External Libraries

The recommended way to communicate with external applications is using LiveConnect, as
described in Chapter 14, “LiveConnect Overview.” However, you can also call functions
written in languages such as C, C++, or Pascal and compiled into libraries on the server. Such
functions are called native functions or external functions. Libraries of native functions, called
external ltbraries, are dynamic link libraries on Windows operating systems and shared objects on
Unix operating systems.

NOTE Be careful when using native functions with your
application. Native functions can compromise security if
the native program processes a command-line entry from
the user (for example, a program that allows users to enter
operating system or shell commands). This functionality is
dangerous because an intruder can attach additional
commands using semicolons to append multiple
statements. It is best to avoid command-line input, unless
you strictly check it.

Using native functions in an application is useful in these cases:

* If you already have complex functions written in native code that you can use in your
application.

* If the application requires computation-intensive functions. In general, functions written
in native code run faster than those written in JavaScript.

e If the application requires some other task you cannot do in JavaScript.

The sample directory j saccal | contains source and header files illustrating how to call
functions in external libraries from a JavaScript application.

In the Application Manager, you associate an external library with a particular application.
However, once associated with any installed application, an external library can be used by all
installed applications.

Follow these steps to use a native function library in a JavaScript application:

1. Write and compile an external library of native functions in a form compatible
with JavaScript. (See “Guidelines for Writing Native Functions.”)

187

Working with External Libraries

2. With the Application Manager, identify the library to be used by installing a
new application or modifying installation parameters for an existing
application. Once you identify an external library using the Application
Manager, all applications on the server can call external functions in that
library. (See “Identifying Library Files.”)

3. Restart the server to load the library with your application. The functions in the
external library are now available to all applications on the server.

4. Inyour application, use the JavaScript functions r egi st er CFunct i on to
identify the library functions to be called and cal | Cto call those functions. (See
“Registering Native Functions” and “Using Native Functions in JavaScript.”)

5. Recompile and restart your application for the changes to take effect.

NOTE You must restart your server to install a library to use with
an application. You must restart the server any time you
add new library files or change the names of the library
files used by an application.

Guidelines for Writing Native Functions

Although you can write external libraries in any language, JavaScript uses C calling conventions.
Your code must include the header file j saccal | . h provided in
pl ugi ns\ sanpl es\js\jsaccal I\.

This directory also includes the source code for a sample application that calls a C function
defined in j saccal | . c. Refer to these files for more specific guidelines on writing C
functions for use with JavaScript.

Functions to be called from JavaScript must be exported and must conform to this type
definition:

typedef void (*Livew reUser CFuncti on)
(int argc, struct LivewireCCallData argv[],
struct Livew reCCall Data* result, pblock* pb,
Sessi on* sn, Request* rq);

188 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Working with External Libraries

|dentifying Library Files

Before you can run an application that uses native functions in external libraries, you must
identify the library files. Using the Application Manager, you can identify libraries when you
imitially install an application (by clicking Add) or when you modify an application’s installation
parameters (by clicking Modify). For more information on identifying library files with the
Application Manager, see “Installing a New Application.”

NOTE After you enter the paths of library files in the Application
Manager, you must restart your server for the changes to
take effect. You must then be sure to compile and restart
your application.

Once you have identified an external library using the Application Manager, all applications
running on the server can call functions in the library (by using r egi st er CFunct i on and

call C.

Registering Native Functions

Use the JavaScript function r egi st er CFunct i on to register a native function for use with a
JavaScript application. This function has the following syntax:

regi st er CFuncti on(JSFuncti onName, |ibraryPath, CFunctionNane);

Here, JSFunct i onNane is the name of the function as it will be called in JavaScript with the
cal | Cfunction. The | i br ar yPat h parameter is the full pathname of the libraty, using the
conventions of your operating system and the CFunct i onNane parameter is the name of the
C function as it is defined in the library. In this method call, you must use the exact case shown
in the Application Manager, even on NT.

NOTE Backslash (\) is a special character in JavaScript, so you
must use either forward slash (/) or a double backslash
(\\) to separate Windows directory and filenames in
|'i braryPat h.

189

Working with External Libraries

190

This function returns t r ue if it registers the function successfully and f al se otherwise. The
function might fail if JavaScript cannot find the library at the specified location or the specified
function inside the library.

An application must use r egi st er CFunct i on to register a function before it can use cal | C
to call it. Once the application registers the function, it can call the function any number of
times. A good place to register functions is in an application’s initial page.

Using Native Functions in JavaScript

Once your application has registered a function, it can use cal | Cto call it. This function has
the following syntax:

cal | C(JSFuncti onName, arguments);

Here, JSFunct i onNane is the name of the function as it was identified with

regi st er CFuncti on and ar gurment s is a comma-delimited list of arguments to the native
function. The arguments can be any JavaScript values: strings, numbers, Boolean values,
objects, or null. The number of arguments must match the number of arguments required by

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Working with External Libraries

the external function. Although you can specify a JavaScript object as an argument, doing so is
rarely useful, because the object is converted to a string before being passed to the external
function.

This function returns a string value returned by the external function. The cal | C function can
return only string values.

The j saccal | sample JavaScript application illustrates the use of native functions. The

j saccal | directory includes C source code (in j saccal | . ¢) that defines a C function
named nyst uf f _EchoCCal | Ar gunent s. This function accepts any number of arguments
and then returns a string containing HTML listing the arguments. This sample illustrates calling
C functions from a JavaScript application and returning values.

To run j saccal |, you must compile j saccal | . ¢ with your C compiler. Command lines
for several common compilers are provided in the comments in the file.

The following JavaScript statements (taken from j saccal | . ht ml) register the C function as
echoCCal | Ar gument s in JavaScript, call the function echoCCal | Ar gurent s, and then
generate HTML based on the value returned by the function.

var isRegistered = registerCFunction("echoCCal | Argurment s",
"c:\\'nycode\\ nystuff.dll", "nystuff_EchoCCal | Argunents");
if (isRegistered == true) {
var returnVal ue = call C("echoCCal | Argunents"”,

"first arg",
42,
true,
"last arg");
write(returnVal ue);
}
el se {
wite("registerCrFunction() returned false, "
+ "check server error log for details")
}

191

Request and Response Manipulation

The echoCCal | Ar gunment s function creates a string result containing HTML that reports
both the type and the value of each of the JavaScript arguments passed to it. If the
regi st er CFunct i on returns true, the code above generates this HTML:

argc = 4

argv[0].tag: string; value = first arg

argv[1] .tag: double; value = 42

argv[2].tag: bool ean; value = true

argv[3].tag: string; value = |ast arg

Request and Response Manipulation

A typical request sent by the client to the server has no content type. The JavaScript runtime
engine automatically handles such requests. However, if the user submits a form, then the
client automatically puts a content type into the header to tell the server how to interpret the
extra form data. That content type is usually appl i cat i on/ x- ww f or m ur | encoded.

192 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Request and Response Manipulation

The runtime engine also automatically handles requests with this content type. In these
situations, you rarely need direct access to the request or response header. If, however, your
application uses a different content type, it must be able to manipulate the request header itself.

Conversely, the typical response sent from the server to the client has the t ext / ht m content
type. The runtime engine automatically adds that content type to its responses. If you want a
different content type in the response, you must provide it yourself.

To support these needs, the JavaScript runtime engine on the server allows your application to
access (1) the header of any request and (2) the raw body of a request that has a nonstandard
content type. You already control the body of the response through the SERVER tag and your
HTML tags. The functionality desctibed in this section also allows you to control the header of
the response.

You can use this functionality for various purposes. For example, as described in “Using
Cookies,” you can communicate between the client and server processes using cookies. Also,
you can use this functionality to support a file upload.

The Wotld Wide Web Consortium publishes online information about the HT'TP protocol and
information that can be sent using that protocol. See, for example, HTTP Specifications and

D ny‘z‘yl .

Request Header

To access the name/value pairs of the header of the client request, use the ht t pHeader
method of the r equest object. This method returns an object whose propetties and values
cotrespond to the name/value pairs of the header.

For example, if the request contains a cookie, header [" cooki €"] or header. cooki e isits
value. The cooki e property, containing all of the cookie’s name/value paits (with the values
encoded as described in “Using Cookies”), must be parsed by your application.

1. http://www.w3.otg/Protocols/Specs.html

193

Request and Response Manipulation

NOTE

If the client object maintenance technique of an application is configured to
use server-cookie, the client properties of the application are restored in
subsequent requests only if the same URL is used. For example, even if
123.456.78.90 is the IP address for nyser ver , the following two requests
are ot considered to be the same:

http:// nyserver/hangman
http://123. 456. 78. 90/ hangnman

The following code prints the properties and values of the header:

var header = request. httpHeader();
var count = O;

var i;

for (i in header) {

wite(count + ". " + i + " " + header[i] + "
\n");
count ++;

}

If you submitted a form using the GET method, your output might look like
this:

0. connection Keep-Alive

1. user-agent Mzilla/4.1bl (WnNT; I)

2. host piccol 0: 2020

3. accept inmmge/gif, inmagel/x-xbitmap, inmage/jpeg,
i mage/ pj peg, */*

If you used the POST method to submit your form, your output might look
like this:

0. referer http://piccolo:2020/world/hello.html

1. connection Keep-Alive

2. user-agent Mozilla/4.1b1 (WinNT; 1)

3. host piccolo:2020

4 accept image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

cookie NETSCAPE_LIVEWIRE.oldname=undefined,;
NETSCAPE LIVEWIRE.number=0
6. content-type multipart/form-data; boundary=--------------------muncaen 79741602416605

7. content-length 208

Request Body

For normal HTML requests, the content type of the request is
appl i cati on/ x- www f or m ur | encoded. Upon receiving a request with this content
type, the JavaScript runtime engine on the server processes the request using the data in the

194 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Request and Response Manipulation

body of the request. In this situation, you cannot directly access the raw data of the request
body. (Of course, you can access its content through the r equest and cl i ent objects
constructed by the runtime engine.)

If, however, the request has any other content type, the runtime engine does not automatically
process the request body. In this situation, it is up to your application to decide what to do with
the content.

Presumably, another page of your application posted the request for this page. Therefore, your
application must expect to receive unusual content types and should know how to handle
them.

To access the body of a request, you use the get Post Dat a method of the r equest object.
This method takes as its parameter the number of characters of the body to return. If you
specify 0, it returns the entire body. The return value is a string containing the requested
characters. If there is no available data, the method returns the empty string.

You can use this method to get all of the characters at once, or you can read chunks of data.
Think of the body of the request as a stream of characters. As you read them, you can only go
forward; you can’t read the same characters multiple times.

To assign the entire request body to the post Dat a variable, you can use the following
statement:

post Dat a = request. get Post Dat a(0) ;

If you specify O as the parameter, the method gets the entire request. You can explicitly find out
how many characters are in the information using the header’s cont ent - | engt h property, as
follows:

| ength = parselnt(header["content-1length"], 10);

To get the request body in smaller chunks, you can specify a different parameter. For example,
the following code processes the request body in chunks of 20 characters:

var |l ength = parselnt(header["content-length"], 10);
var i = 0;
while (i < length) {

post Dat a = request . get Post Dat a(20) ;

Il ...process postData...

i =i + 20;

195

Request and Response Manipulation

Of course, this would be a sensible approach only if you knew that chunks consisting of 20
characters of information were meaningful in the request body.

Response Header

If the response you send to the client uses a custom content type, you should encode this
content type in the response header. The JavaScript runtime engine automatically adds the
default content type (t ext/ ht m) to the response header. If you want a custom header, you
must first remove the old default content type from the header and then add the new one. You
do so with the addResponseHeader and del et eResponseHeader functions.

For example, if your response uses r oyal ai rways- f or mat as a custom content type, you
would specify it this way:

del et eResponseHeader ("content -type");
addResponseHeader ("content-type", "royal ai rways-fornmat");

You can use the addResponseHeader function to add any other information you want to
the response header.

NOTE Remember that the header is sent with the first part of the response.
Therefore, you should call these functions early in the script on each page.
In particular, you should ensure that the response header is set before any of
these happen:

= The runtime engine generates 64KB of content for the HTML page (it
automatically flushes the output buffer at this point).

= You call the f | ush function to clear the output buffer.

= Youcall theredi rect function to change client requests.

For more information, see “Flushing the Output Buffer” and “Runtime Processing on the
Server.”

196 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Part

3

LiveWire Database Service

Connecting to a Database
Working with a Database
Configuring Your Database
Data Type Conversion
Error Handling for LiveWire

Videoapp Sample Application

197

198 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Chapter 8

Connecting to a Database

This chapter discusses how to use the LiveWire Database Service to connect your application
to DB2, Informix, ODBC, Oracle, or Sybase relational databases. It describes how to choose
the best connection methodology for your application.

This chapter contains the following sections:

* Interactions with Databases

* Approaches to Connecting

* Database Connection Pools

* Single-Threaded and Multithreaded Databases
* Managing Connection Pools

¢ Individual Database Connections

199

Interactions with Databases

Interactions with Databases

Your JavaScript applications running on iPlanet Web Server can use the LiveWire Database
Service to access databases on Informix, Oracle, Sybase, and DB2 servers and on servers using
the Open Database Connectivity (ODBC) standard. Your applications running on Netscape
FastTrack Server can access only databases on servers using the ODBC standard.

The following discussions assume you are familiar with relational databases and Structured
Query Language (SQL).

Before you create a JavaScript application that uses LiveWire, the database or databases you
plan to connect to should already exist on the database server. Also, you should be familiar
with their structure. If you create an entirely new application, including the database, you
should design, create, and populate the database (at least in prototype form) before creating the
application to access it.

Before you try to use LiveWire, be sure your environment is propetly configured. For
information on how to configure it, see Chapter 10, “Configuring Your Database.” Also, you
can use the vi deoapp sample application, described in Chapter 13, “Videoapp Sample
Application” to explore some of LiveWire’s capabilities.

Typically, to interact with a database, you follow these general steps:

1. Create a DbPool object to establish a pool of database connections. This is
typically done on the initial page of the application, unless your application
requires that users have a special database connection.

2. Connect the pool to the database. Again, this is typically done on the
application’s initial page.

3. Retrieve a connection from the pool. This is done explicitly when you use the
connect i on method of a DbPool object.

4. If you're going to change information in the database, begin a transaction.
Database transactions are discussed in “Managing Transactions.”

5. Either create a cursor or call a database stored procedure to work with
information from the database. This could involve, for example, displaying
results from a query or updating database contents. Close any open cursors,
result sets, and stored procedures when you have finished using them. Cursors
are discussed in “Manipulating Query Results with Cursors.” Stored
procedures are discussed in “Calling Stored Procedures.”

6. Commit or rollback an open transaction.

7. Release the database connection.

200 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Approaches to Connecting

This chapter discusses the first three of these steps. Chapter 9, “Working with a Database”
discusses the remaining steps.

Approaches to Connecting

To connect to a database with the LiveWire Database Service, you use DoPool and

Connect i on objects. You create an instance of the DbPool class and then access

Connect i on objects through that DoPool object. DbPool and Connect i on objects
separate the activities of connecting to a database and managing a set of connections from the
activities of accessing the database through a connection.

‘This approach offers a lot of flexibility. Your application can have several database pools, each
with its own configuration of database and user. Each pool can have multiple connections for
that configuration. This allows simultaneous access to multiple databases or to the same
database from multiple accounts. You can also associate the connection pool with the
application itself instead of with a single client request and thus have transactions that span
multiple client requests. You make this association by assigning the pool to a property of the
pr oj ect object and then removing the assignment when you’re finished with the pool.

As described in the following sections, you need to consider two main questions when deciding
how to set up your database connections:

* How many configurations of database and user do you need?
* Does a single database connection need to span multiple client requests?

The following table summarizes how the answers to these questions affect how you set up and
manage your pool of database connections and the individual connections. The following
sections discuss the details of these possibilities.

Table 8-1 Considerations for creating the database pools

Number of Where is the Where is What Does your code How does your code
database pool the pool object(s) hold need to store store the pool and
configurations connected? disconnected the pool? the pool and connections in the
? ? connection? pr oj ect object?
1, shared by Application’s Nowhere 1 DbPool Yes DbPool : Named
all clients initial page object property;

Connecti on: 1array

201

Database Connection Pools

Table 8-1 Considerations for creating the database pools (Continued)

Number of Where is the Where is What Does your code How does your code
database pool the pool object(s) hold need to store store the pool and
configurations connected? disconnected the pool? the pool and connections in the
? ? connection? pr oj ect object?
Fixed set, Application’s Nowhere N DbPool Yes DbPool : Named
shared by all initial page objects property;
clients .

Connection: N

arrays
Separate pool Client Dependsl Many Onlyifa DbPool : 1 array;
for each client request page DbPool connection .

. - Connect i on: 1 array
objects spans client
requests

1. If an individual connection does not span client requests, you can connect and disconnect the pool on each page that needs a
connection. In this case, the pool is not stored between requests. If individual connections do span requests, connect on the first
client page that needs the connection and disconnect on the last such page. This can result in idle connections, so your application
will need to handle that possibility.

Database Connection Pools

The first step is to create an instance of the DbPool class and connect that object to a
particular database which creates a pool of connections.

You can either create a generic DbPool object and later specify the connection information
(using its connect method) or you can specify the connection information when you create
the pool. A generic DbPool object doesn’t have any available connections at the time it is
created. For this reason, you may want to connect when you create the object.

connect (dbtype, serverName, userNane, password,
dat abaseNane, maxConnections, commitFl ag);

You can specify the following information when you make a connection, either when creating
a DbPool object or when calling the connect method of DbPool :

» dbt ype: The database type. This must be DB2, | NFORM X, ODBC, ORACLE, or SYBASE.
(For applications running on Netscape FastTrack Setver, it must be ODBC)

* server Nanme: The name of the database server to which to connect. The server name
typically is established when the database is installed. If in doubt, see your database or
system administrator. For more information on this parameter, see the description of the
connect method or the DbPool constructor in the Server-Side JavaScript Reference.

e user nane: The name of the user to connect to the database.

202 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Database Connection Pools

* passwor d: The user’s password.

* dat abaseNane: The name of the database to connect to for the given server. If your
database server supports the notion of multiple databases on a single server, supply the
name of the database to use. If you provide an empty string, the default database is
connected. For Oracle, ODBC, and DB2, you must always provide an empty string.

* maxConnecti ons: (Optional) The number of connections to have available in the
database pool. Remember that your database client license probably specifies a maximum
number of connections. Do not set this parameter to a number higher than your license
allows. If you do not supply this parameter for the DbPool object, its value is 1. See
“Single-Threaded and Multithreaded Databases” for things you should consider before
setting this parameter.

 commitfl ag: (Optional) A Boolean value indicating whether to commit or to roll back
open transactions when the connection is finalized. Specify t r ue to commit open
transactions and f al se to roll them back. If you do not supply this parameter for the
DbPool object, its value is f al se.

For example, the following statement creates a new database pool of five connections to an
Oracle database. With this pool, uncommitted transactions are rolled back:

pool = new DbPool ("ORACLE", "mnyserverl", "ENG', "pwdl", "", 5);

The dbadm n sample application lets you expetiment with connecting to different databases as
different users.

For many applications, you want to share the set of connections among clients or have a
connection span multiple client requests. In these situations, you should make the connection
on your application’s initial page. This avoids potential problems that can occur when
individual clients make shared database connections.

However, for some applications each client needs to make its own connection. As discussed in
“Sharing an Array of Connection Pools,” the clients may still be sharing objects. If so, be sure
to use locks to control the data sharing, as discussed in “Sharing Objects Safely with Locking.”

The following table shows DbPool methods for managing the pool of connections. For a full
description of these methods, see the Server-Side JavaS cript Reference.

Table 8-2 DbPool methods for managing connection pools

connect Connects the pool to a particular configuration of
database and user.

connect ed Tests whether the database pool and all of its
connections are connected to a database.

203

Single-Threaded and Multithreaded Databases

Table 8-2 DbPool methods for managing connection pools (Continued)

connection Retrieves an available Connect i on object from the
pool.

di sconnect Disconnects all connections in the pool from the
database.

maj or Er r or Code Major error code returned by the database server or
ODBC.

maj or Err or Message Major error message returned by the database server or
ODBC.

nm nor Err or Code Secondary error code returned by vendor library.

nm nor Er r or Message Secondary error message returned by vendor library.

Single-Threaded and Multithreaded Databases

LiveWire supports multithreaded access to your database. That is, it supports having more than
one thread of execution access a single database at the same time. This support explains why it
makes sense to have a connection pool with more than one connection in it. However, some

204 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Single-Threaded and Multithreaded Databases

vendor database libraries are not multithreaded. For those databases, it does not matter how
many connections are in your connection pool; only one connection can access the database at
a time.

The following table lists the database client libraries that are multi-threaded on each platform.

Table 8-3 Multi-threading for database clients on each platform
Sybase Informix Oracle DB2 obBc!
NT Yes Yes Yes Yes Yes
Sun Solaris Yes Yes Yes No No
HP-UX Yes Yes No No No
IBM AIX Yes Yes No Yes No
SGI IRIX No No No Not No
Supported

Digital Unix Yes Yes No Not Not

Supported Supported

1. All Multi-threading tests for ODBC were done on MS SQL Server. If you are using a different driver for ODBC, check
with that vendor to determine whether the driver is multi-threaded.

Guidelines

These guidelines are crucial for single-threaded access. However, you should think about these
points even for databases with multithreaded access.

A single-threaded database library has possible serious performance ramifications. Because
only one thread can access the database at a time, all other threads must wait for the first thread
to stop using the connection before they can access the database. If many threads want to
access the database, each could be in for a long wait. You should consider the following when
designing your database access:

* Keep your database interactions very short.

Every thread must wait for every other thread. The shorter your interaction,
the shorter the wait.

* Always release connections and close open cursors and stored procedures.

You should do this anyway. In the case of a single-threaded database,
however, it becomes absolutely essential to prevent needless waiting.

* Always use explicit transaction control.

205

Single-Threaded and Multithreaded Databases

With explicit transaction control, it is clearer when you’re done with a
connection.

* Do not keep a connection open while waiting for input from the user.

Users don’t always complete what they start. If a user browses away from your
application while it has an open connection, the system won’t know when to
release the connection. Unless you’ve implemented a scheme for retrieving idle
connections (as discussed in “Retrieving an Idle Connection”), that connection
could be tied up for a very long time, thus restricting other users from
accessing the database.

* Do not keep a cursor or transaction open actoss multiple pages of your application.

Any time a database interaction spans multiple pages of an application, the
risk of a user not completing the transaction becomes even greater.

Limitations on use of transactions for database client libraries that are not multithreaded:

* If you have single threaded libraries and you use two connections on the same page from
the same database type, then you can deadlock if you perform explicit transactions (that is,
transactions started using beginTransaction) on them. This can happen with single page
transactions.

* On a multi-page transaction with single threaded libraries, only one database connection
can be active at a time or you may deadlock as described in previous bullet.

e Ifadatabase client library is not multi-threaded, then only one database connection can be
active at a time. While you do not have to change your code to handle this situation, you
should be aware that without a multi-threaded database client library, you will not get the
performance gains of multiple, simultaneous connections.

* Certain database libraries are not multi-threaded. Because of this, you must set the
maximum number of database connections for your application to be higher than the
number of clients you expect to use the application. Otherwise, some clients may not be
able to get database connections, and their application will hang;

206 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Managing Connection Pools

Managing Connection Pools

At any given time, a connected DoPool and all the connections in the pool are associated with
a particular database configuration. That is, everything in a pool is connected to a particular
database server, as a particular user, with a particular password, and to a particular database.

If your application always uses the same configuration, then you can easily use a single DbPool
object and connect exactly once. In this case, you should make the connection on your
application’s initial page.

If your application requires multiple configurations, either because it must connect to different
databases, or to the same database as different users, or both, you need to decide how to
manage those configurations.

You can connect, disconnect, and reconnect the same DbPool object. However, it may be
more convenient to create as many pools as you need and place them under the control of the
pr oj ect object. (See Chapter 6, “Session Management Service” for information on the

pr oj ect object.) Using multiple database pools is more efficient and is generally safer than
reusing a single pool.

In deciding how to manage your pools, you must consider two factors: how many different
configurations you want your pools to be able to access, and whether a single connection needs
to span multiple client requests. If you have a small number of possible configurations, you can
create a separate pool for each configuration. “Sharing a Fixed Set of Connection Pools”
discusses this approach.

If you have a very large or unknown number of configurations (for example, if all users get
their own database user ID), there are two situations to consider. If each connection needs to
last for only one client request, then you can create individual database pools on a client page.

However, sometimes a connection must span multiple client requests (for example, if a single
database transaction spans multiple client requests). Also, you may just not want to reconnect
to the database on each page of the application. If so, you can create an array of pools that is

shared. “Sharing an Array of Connection Pools” discusses this approach.

Whichever approach you use, when you no longer need an individual connection in a pool,
clean up the resources used by the connection so that it is available for another user. To do so,
close all open cursors, stored procedures, and result sets. Release the connection back to the

pool.

If you do not release the connection, when you try to disconnect the pool, the system waits
before actually disconnecting for one of two conditions to occui:

* You do release all connections

e The connections go out of scope and get collected by the garbage collector

207

Managing Connection Pools

If you create individual database pools for each user, be sure to disconnect the pool when
you’re finished with it. For information on cursors, see “Manipulating Query Results with
Cursors.” For information on stored procedures and result sets, see “Calling Stored
Procedures.”

Sharing a Fixed Set of Connection Pools

Frequently, an application shates a small set of connection pools among all users of the
application. For example, your application might need to connect to three different databases,
or it might need to connect to a single database using four different user IDs corresponding to
four different departments. If you have a small set of possible connection configurations, you
can create separate pools for each configuration. You use DbPool objects for this purpose.

In this case, you want the pool of connections to exist for the entire life of the application, not
just the life of a client or an individual client request. You can accomplish this by creating each
database pool as a property of the pr oj ect object. For example, the application’s initial page
could contain these statements:

proj ect. engpool = new DbPool ("ORACLE', "nyserverl", "ENG',
"pwdl", "", 5, true);

proj ect. sal espool = new DbPool ("I NFORM X", "nyserver2", "SALES",
"pwd2", "salsnktg", 2);

proj ect. supppool = new DbPool ("SYBASE", "nyserver3"," SUPPORT",
"pwd3", "suppdb", 3, false);

These statements create three pools for different groups who use the application. The

pr oj ect . eng pool has five Oracle connections and commits any uncommitted transactions
when a connection is released back to the pool. The pr oj ect . sal es pool has two Informix
connections and rolls back any uncommitted transactions at the end of a connection. The

pr oj ect . supp pool has three Sybase connections and rolls back any uncommitted
transactions at the end of a connection.

You should create this pool as part of the application’s initial page. That page is run only when
the application starts. On user-accessible pages, you don’t create a pool, and you don’t change
the connection. Instead, these pages determine which group the current user belongs to and

uses an already established connection from the appropriate pool. For example, the following

208 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Managing Connection Pools

code determines which database to use (based on the value of the user Gr oup property of the
request object), looks up some information in the database and displays it to the user, and
then releases the connection:

if (request.userGoup == "SALES") {

sal esconn = project. sal espool .. connection("A sal es
connection");

sal esconn. SQLTabl e ("select * fromdept");

sal esconn. rel ease();

Alternatively, you can choose to create the pool and change the connection on a user-accessible
page. If you do so, you’ll have to be careful that multiple users accessing that page at the same
time do not interfere with each other. For example, only one user should be able to create the
pool that will be shared by all users. For information on safe sharing of information, see
“Sharing Objects Safely with Locking.”

Sharing an Array of Connection Pools

“Sharing a Fixed Set of Connection Pools” describes how you can use propetties of the

pr oj ect object to share a fixed set of connection pools. This approach is useful if you know
how many connection pools you will need at the time you develop the application and
furthermore you need only a small number of connections.

For some applications, you cannot predict in advance how many connection pools you will
need. For others, you can predict, but the number is prohibitively large. For example, assume
that, for each customer who accesses your application, the application consults a user profile to
determine what information to display from the database. You might give each customer a

209

Managing Connection Pools

210

unique user ID for the database. Such an application requires each user to have a different set
of connection parameters (corresponding to the different database user IDs) and hence a
different connection pool.

You could create the DbPool object and connect and disconnect it on every page of the
application. This woztks only if a single connection does not need to span multiple client
requests. Otherwise, you can handle this situation differently.

For this application, instead of creating a fixed set of connection pools during the application’s
initial page or a pool on each client page, you create a single property of the pr oj ect object
that will contain an array of connection pools. The elements of that atray are accessed by a key
based on the particular user. At initialization time, you create the array but do not put any
elements in the array (since nobody has yet tried to use the application), as shown here:

proj ect. sharedPool s = new Obj ect();

The first time a customer starts the application, the application obtains a key identifying that
customer. Based on the key, the application creates a DbPool pool object and stores it in the
array of pools. With this connection pool, it can either reconnect on each page or set up the

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Managing Connection Pools

connection as described in “Maintaining a Connection Across Requests.” The following code
either creates the pool and or obtains the already created pool, makes sure it is connected, and
then works with the database:

/1 Generate a unique index to refer to this client, if that

/I hasn't already been done on another page. For information

/I on the ssjs_generateClientID function, see

/l "Uniquely Referring to the client Object."

if client.id == null {
client.id = ssjs_generateClientID();

}

/I If there isn't already a pool for this client, create one and

/I connect it to the database.

project.lock();

if (project.sharedPools[client.id] == null) {
project.sharedPools[client.id] = new DbPool ("ORACLE",
"myserver", user, password, ", 5, false);

project.unlock();
/I Set a variable to this pool, for convenience.
var clientPool = project.sharedPools[client.id];
/] You've got a pool: see if it's connected. If not, try to
/I connect it. If that fails, redirect to a special page to
/I inform the user.
project.lock();
if (IclientPool.connected()) {
clientPool.connect("ORACLE", "myserver", user, password,
" 5, false);
if (IclientPool.connected()) {
delete project.sharedPools[client.id];
project.unlock();
redirect("noconnection.htm");

}
}

project.unlock();

I If you've got this far, you're successfully connected and
/I can work with the database.

clientConn = clientPool.connection();
clientConn.SQLTable("select * from customers");

/I ... more database operations ...

I/l Always release a connection when you no longer need it.
clientConn.release();

}

211

Individual Database Connections

The next time the customer accesses the application (for example, from another page in the
application), it uses the same code and obtains the stored connection pool and (possibly a
stored Connect i on object) from the pr oj ect object.

If youuse ssj s_generat el i ent | Dand store the ID on the cl i ent object, you may need
to protect against an intruder getting access to that ID and hence to sensitive information.

NOTE The shar edConns object used in this sample code is not
a predefined JavaScript object. It is simply created by this
sample and could be called anything you choose.

Individual Database Connections

Once you've created a pool of connections, a client page can access an individual connection
from the pool. A connection is encapsulated in a Connect i on object, which you get by calling
a method of the DbPool object. For example, suppose you have this pool:

proj ect.eng = new DbPool ("ORACLE", "nyserver", "ENG', "pwdl", "",
5);

You can get a connection from the pool with this method call:
myconn = proj ect.eng.connection ("My Connection", 60);

The parameters to this method are both optional. The first is a name for the connection (used
for debugging); the second is an integer indicating a time-out period, in seconds. In this
example, if the pool has an available connection, or if one becomes available within 60 seconds,
that connection is assigned to the variable myconn. If no connection becomes available during
this period, the method returns without a connection. For more information on waiting to get
a connection from a pool, see “Waiting for a Connection.” For information on what to do if
you don’t get one, see “Retrieving an Idle Connection.”

When you have finished using a connection, return it to the pool by calling the Connect i on
object’s r el ease method. Before calling the r el ease method, close all open cursots, stored
procedures, and result sets. When you call the r el ease method, the system waits for these to
be closed and then returns the connection to the database pool. The connection is then

212 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Individual Database Connections

available to the next user. (For information on cursors, see “Manipulating Query Results with
Cursors.” For information on stored procedures and result sets, see “Calling Stored
Procedures.”)

Once you have a connection, you can interact with the database. The following table
summarizes the connect i on methods for working with a single connection.

Table 8-4 Connect i on methods for working with a single connection

Method Description

cursor Creates a database cursor for the specified SQL
SELECT statement.

SQLTabl e Displays query results. Creates an HTML table for
results of an SQL SELECT statement.

execut e Performs the specified SQL statement. Use for SQL
statements other than queries.

connect ed Returnst r ue if the database pool (and hence this
connection) is connected to a database.

rel ease Releases the connection back to its database pool.

begi nTransacti on
comm t Transacti on
rol | backTransacti on

st or edProc

maj or Er r or Code

maj or Err or Message

m nor Err or Code

m nor Er r or Message

Begins an SQL transaction.
Commits the current SQL transaction.
Rolls back the current SQL transaction.

Creates a stored-procedure object and runs the
specified database stored procedure.

Major error code returned by the database server or
ODBC.

Major error message returned by the database server
or ODBC.

Secondary error code returned by vendor library.

Secondary error message returned by vendor library.

213

Individual Database Connections

Maintaining a Connection Across Requests

In some situations, you may want a single connection to span multiple client requests. That is,
you might want to use the same connection on multiple HTML pages.

Typically, you use properties of the cl i ent object for information that spans client requests.
However, the value of a cl i ent property cannot be an object. For that reason, you cannot
store a pool of database connections in the cl i ent object. Instead, you use a pool of
connections stored with the pr oj ect object, managing them as described in this section. If
you use this approach, you may want to encrypt user information for security reasons.

CAUTION Take special care with this approach because storing the
connection in this way makes it unavailable for other users.
If all the connections are unavailable, new requests wait
until someone explicitly releases a connection or until a
connection times out. This is especially problematic for
single-threaded database libraries. (For information setting
up connections so that they are retrieved when idle for a
long time, see “Retrieving an Idle Connection.”)

In the following example, a connection and a transaction span multiple client requests. The
code saves the connection as a property of the shar edConns object, which is itself a
property of the pr oj ect object. The shar edConns object is not a predefined JavaScript
object. It is simply created by this sample and could have any name you choose.

Because the same pool is used by all clients, you should create the shar edConns object and
create and connect the pool itself on the application’s initial page, with code similar to this:

proj ect. sharedConns = new Object ();

proj ect. sharedConns. conns = new Obj ect () ;

proj ect . shar edConns. pool = new DbPool ("SYBASE', "sybaseserver",
"user", "password", "sybdb", 10, false);

214 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Individual Database Connections

Then, on the first client page that accesses the pool, follow this strategy:

/I Generate a unique index to refer to this client, if that hasn’t
/l already been done on another page.
if client.id == null {
client.id = ssjs_generateClientID();
}
/I Set a variable to this pool, for convenience.
var clientPool = project.sharedConns.pool;
/I See whether the pool is connected. If not, redirect to a
/l special page to inform the user.
project.lock();
if (IclientPool.connected()) {
delete project.sharedConns.pool;
project.unlock();
redirect("noconnection.htm");

project.unlock();

/I Get a connection from the pool and store it in the project
object

project.sharedConns.conns]client.id] = clientPool.connection();
var clientConn = project.sharedConns.conns[client.id];
clientConn.beginTransaction();

cursor = clientConn.cursor("select * from customers”, true");

/I ... more database statements ...
cursor.close();
}

215

Individual Database Connections

Notice that this page does not roll back or commit the transaction. The connection remains
open and the transaction continues. (Transactions are discussed in “Managing Transactions.”)
The second HTML page retrieves the connection, based on the value of cl i ent . i d and
continues working with the database as follows:

/'l Retrieve the connection.
var clientConn = project.sharedConns. conns[client.id];
/1 ... Do some more database operations ...
/1 In here, if the database operations succeed, set okay to 1.
/1 If there was a database error, set okay to 0. At the end,
/1 either commit or roll back the transaction on the basis of
/1 its val ue.
i f (okay)

cl i ent Conn. conmi t Transacti on();
el se

client Conn. rol |l backTransaction();
/1 Return the connection to the pool.
clientConn.rel ease();
/1 Get rid of the object property value. You no longer need it.
del ete project. sharedConns. conns[client.id];

In this sample, the shar edConns object stores a single DbPool object and the connections
for that pool that are currently in use. Your situation could be significantly more complex. If
you have a fixed set of database pools, you might predefine a separate object to store the
connections for each pool. Alternatively, if you have an array of pools and each pool needs

216 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Individual Database Connections

connections that span multiple requests, you need to create an array of objects, each of which
stores a pool and an array of its connections. As another wrinkle, instead of immediately
redirecting if the pool isn’t connected, a client page might try to reestablish the connection.

If you use ssj s_gener at ed i ent | Dand store the ID in the cl i ent object, you may need
to protect against an intruder getting access to that ID and hence to sensitive information.

Waiting for a Connection

There are a fixed number of connections in a connection pool created with DbPool . If all
connections are in use during an access attempt, then your application waits a specified timeout
period for a connection to become free. You can control how long your application waits.

Assume that you've defined the following pool containing three connections:
pool = new DbPool ("ORACLE", "nyserv", "user", "password", "", 3);

Further assume that three clients access the application at the same time, each using one of
these connections. Now, a fourth client requests a connection with the following call:

myconnecti on = pool . connection();

This client must wait for one of the other clients to release a connection. In this case, because
the call to connect i on does not specify a timeout petiod, the client waits indefinitely until a
connection is freed, and then returns that connection.

You can specify a different timeout period by supplying arguments to the connecti on
method. The second argument to the connect i on method is a timeout period, expressed in
seconds. If you specify 0 as the timeout, the system waits indefinitely. For example, the
following code has the connection wait only 30 seconds before timing out:

myconnecti on = pool.connection ("Nane of Connection", 30);

217

Individual Database Connections

If no connection becomes available within the specified time-out period, the method returns
null, and an error message is set in the minor error message. You can obtain this message by
calling the m nor Er r or Message method of pool . If your call to connect i on times out,
you may want to free one by disconnecting an existing connection. For more information, see
“Retrieving an Idle Connection.”

Retrieving an ldle Connection

When your application requests a connection from a DbPool object, it may not get one. Your
options at this point depend on the architecture of your application.

If each connection lasts only for the lifetime of a single client request, the unavailability of
connections cannot be due to a uset’s leaving an application idle for a significant period of
time. It can only be because all the code on a single page of JavaScript has not finished
executing. In this situation, you should not try to terminate connection that is in use and reuse
it. If you terminate the connection at this time, you run a significant risk of leaving that thread
of execution in an inconsistent state. Instead, you should make sure that your application
releases each connection as soon as it is finished using it. If you don’t want to wait for a
connection, you'll have to present your user with another choice.

If, by contrast, a connection spans multiple client requests, you may want to retrieve idle
connections. In this situation, a connection can become idle because the user did not finish a
transaction. For example, assume that a user submits data on the first page of an application
and that the data starts a multipage database transaction. Instead of submitting data for the
continuation of the transaction on the next page, the user visits another site and never returns
to this application. By default, the connection remains open and cannot be used by other
clients that access the application.

You can manually retrieve the connection by cleaning up after it and releasing it to the database
pool. To do so, write functions such as the following to perform these activities:

e Bucket : Define an object type (called bucket in this example) to hold a connection and
a timestamp.

e MarkBucket : Mark a bucket object with the current timestamp.

* RetrieveConnecti ons: Traverse an array of connections looking for Connecti on
objects that haven’t been accessed within a certain time limit and use Cl eanBucket
(described next) to retrieve the object.

* O eanBucket : Close cursors (and possibly stored procedures and result sets), roll back or
commit any open transaction, and return the connection back to the pool.

Your application could use these functions as follows:

1. When you get a new connection, call Bucket to create a bucket object.

218 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Individual Database Connections

2. On any page that accesses the connection, call Mar kBucket to update the
timestamp.

3. If the application times out trying to get a connection from the pool, call
Ret ri eveConnect i on to look for idle connections, close any open cursors,
commit or rollback pending transactions, and release idle connections back to
the pool.

4. If a connection was returned to the pool, then try and get the connection from
the pool.

Also, on each page where your application uses a connection, it needs to be aware that another
thread may have disconnected the connection before this page was reached by this client.

Creating a Bucket. The bucket holds a connection and a timestamp. This sample
constructor function takes a connection as its only parameter:

/1l Constructor for Bucket
function Bucket (c)
{

t hi s. connection

:C,
this.lastMdified =

new Date();

You call this function to create a bucket for the connection as soon as you get the connection
from the connection pool. You might add other properties to the connection bucket. For
instance, your application may contain a cursor that spans client requests. In this case, you
could use a property to add the cursor to the bucket, so that you can close an open cursor when
retrieving the connection. You store the cursor in the bucket at the time you create it, as shown
in the following statement:

nmyBucket . openCur sor =
nmyBucket . connection. cursor("sel ect * from custoner”, true);

Marking the Bucket. The Mar kBucket function takes a Bucket object as a parameter and
sets the | ast Mbdi fi ed field to the current time.

function MarkBucket (bucket)
{

}

bucket .l ast Modified = new Date();

219

Individual Database Connections

Call Mar kBucket on each page of the application that uses the connection contained in the
bucket. This resets | ast Modi fi ed to the current date and prevents the connection from
appearing idle and hence ripe for retrieval.

Retrieving Old Connections. Ret ri eveConnect i ons scans an array of Bucket
objects, searching for connection buckets whose timestamp predates a certain time. If one is
found, then the function calls O eanBucket (described next) to return the connection to the
database pool.

/'l Retrieve connections idle for the specified nunber of mnutes.
function RetrieveConnections(BucketArray, tineout)
{ .

var i;

var count = O;

var now,

now = new Date();

/1 Do this |loop for each bucket in the array.

for (i in BucketArray) {

/1 Compute the time difference between now and the | ast

/1 nodified date. This difference is expressed in
m||iseconds.

/1 If it is greater than the tinmeout value, then call the

cl ean
/1 out function.
if ((now - i.lastMdified)/60000) > tinmeout) {
Cl eanBucket (i) ;
// Get rid of the bucket, because it's no longer being
used.
delete i;
count = count + 1;
}
}

return count;

220 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Individual Database Connections

Cleaning Up a Bucket. Once it has been determined that a connection should be retrieved
(with the Ret ri eveConnect i ons function), you need a function to clean up the details of
the connection and then release it back to the database pool. This sample function closes open
cursors, rolls back open transactions, and then releases the connection.

function O eanBucket (bucket)

{
bucket . openCur sor. cl ose();
bucket . connection.rol | backTransaction();
bucket . connection.rel ease();

}

Cl eanBucket assumes that this bucket contains an open cursor and its connection has an
open transaction. It also assumes no stored procedures or result sets exist. In your application,
you may want to do some other checking.

Pulling It All Together. The following sample code uses the functions just defined to
retrieve connections that haven’t been referenced within 10 minutes. First, create a shared
connections array and a database pool with five connections:

if (project.sharedConns == null) {
proj ect. sharedConns = new bject();
proj ect. shar edConns. pool = new DbPool ("ORACLE", "nydb",
"user", "password", "", 5, false);
if (project.sharedConns. pool .connected()) {
pr oj ect . shar edConns. connecti ons = new Cbj ect();

}

el se {

del et e project. sharedConns;
}

Now use the following code to try to get a connection. After creating the pool, generate a client
ID and use that as an index into the connection array. Next, try to get a connection. If a
timeout occurs, then call Ret ri eveConnect i ons to return old connections to the pool. If
Retri eveConnect i ons returns a connection to the pool, try to get the connection again. If

221

Individual Database Connections

you still can’t get a connection, redirect to another page saying there are no more free
connections. If a connection is retrieved, store it in a new connection bucket and store that
connection bucket in the shared connections array.

if (project.sharedConns !'= null) {
var pool = project.sharedConns. pool ;
/1 This code is run only if the pool is already connected.
/l'If it is not, presumably you’d have code to connect.
if (pool.connected() == true) {
/I Generate the client ID.
client.id = ssjs_generateClientID();
/I Try to get a connection.
var connection = pool.connection("my connection", 30);
/I If the connection is null, then none was available within
I/ the specified time limit. Try and retrieve old connections.
if (connection == null) {
/I Retrieve connections not used for the last 10 minutes.
var count =
RetrieveConnections(project.sharedConns.connections, 10);
/I If count is nonzero, you made some connections

available.

if (count != 0){
connection = pool.connection("my connection”, 30);
/'If connection is still null, give up.
if (connection == null)
redirect("nofreeconnections.htm");

}

else {
Il Give up.
redirect("nofreeconnections.htm");

1

/[1f you got this far, you have a connection and can proceed.
/I Put this connection in a new bucket, start a transaction,
/I get a cursor, store that in the bucket, and continue.
project.sharedConns.connections]client.id] =
new Bucket(connection);
connection.beginTransaction();
project.sharedConns.connections[client.id].cursor =
connection.cursor("select * from customer”, true);
/I Mark the connection bucket as used.
MarkBucket(project.sharedConns.connections|client.id]);
/I Database statements.

222 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Individual Database Connections

In the next page of the multipage transaction, perform more database operations on the
connection. After the last database operation to the connection, mark the connection bucket:

var Bucket = project.sharedConns. connections[client.id];
if (Bucket == null) {

/'l Reconnect
}

el se {
/! Interact with the database.

/1 The | ast database operation on the page.

row = Bucket. cursor. next();

row. customerid = 666;

Bucket . openCur sor.insert Row(" custoner");

/1 Mark the connection bucket as having been used on this
page.

Mar kBucket (Bucket) ;
}

223

Individual Database Connections

224 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Chapter 9

Working with a Database

This chapter discusses working with DB2, Informix, ODBC, Oracle, or Sybase relational
databases. It describes how to retrieve information from the database and use it in your
application, how to work with database transactions, and how to execute database stored
procedures.

Remember that if your application runs on Netscape FastTrack Setver instead of iPlanet Web
Server, it can access only databases on servers using the ODBC standard.

This chapter contains the following sections:
* Interacting with a Relational Database

* Automatically Displaying Query Results

* Executing Arbitrary SQL Statements

e Manipulating Query Results with Cursors
* Managing Transactions

* Working with Binary Data

* Calling Stored Procedures

Interacting with a Relational Database

The LiveWire Database Service allows you to interact with a relational database in many ways.
You can do all of the following:

* Perform database queries and have the runtime engine automatically format the results for
you.

* Use cursors to perform database queties and present the results in an application-specific
way or use the results in performing calculations.

225

Automatically Displaying Query Results

* Use cursors to change information in your database.

* Use transactions to manage your database interactions.
e Perform SQL processing not involving cursors.

* Run database stored procedures.

For information on how to set up and manage your database connections, see Chapter 8,
“Connecting to a Database.”

Automatically Displaying Query Results

The simplest and quickest way to display the results of database queries is to use the

SQLTabl e method of 2 Connect i on object. The SQLTabl e method takes an SQL SELECT
statement and returns an HTML table. Each row and column in the query is a row and column
of the table. The HTML table also has column headings for each column in the database table.

The SQLTabl e method does not give you control over formatting of the output. Furthermore,
if that output contains a Bl ob object, that object does not display as an image. (For
information on blobs, see “Working with Binary Data.”) If you want to customize the
appearance of the output, use a database cursor to create your own display function. For more
information, see “Manipulating Query Results with Cursors.”

As an example, if myconn is a Connect i on object, the following JavaScript statement displays
the results of the database query in a table:

nmyconn. SQLTabl e("sel ect * from vi deos");

The following is the first part of the table that could be generated by these statements:

Table0.2
Title ID Year Category Quantity On Synopsis
Hand
A Clockwork 1 1975 Science 5 3 Little Alex and his droogies stop by
Orange Fiction the Miloko bar for a refreshing
libation before a wild night on the
town.
Philadelphia Story 1 1940 Romanti Katherine Hepburn and Cary Grant
c are reunited on the eve of her
Comedy remarriage, with Jimmy Stewart for

complications.

226 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Executing Arbitrary SQL Statements

Executing Arbitrary SQL Statements

The execut e method of a Connect i on object enables an application to execute an arbitrary
SQL statement. Using execut e is refetred to as performing passthrough SQL, because it
passes SQL directly to the server.

You can use execut e for any data definition language (DDL) or data manipulation language

(DML) SQL statement supported by the database server. Examples include CREATE, ALTER,

and DROP. While you can use it to execute any SQL statement, you cannot return data with the
execut e method.

Notice that execut e is for performing standard SQL statements, not for performing
extensions to SQL provided by a particular database vendor. For example, you cannot call the
Oracle descr i be function or the Informix | oad function from the execut e method.

To perform passthrough SQL statements, simply provide the SQL statement as the parameter
to the execut e method. For example, you might want to remove a table from the database
that is referred to by the pr oj ect object’s ol dt abl e property. To do so, you can use this
method call:

connobj . execut e("DROP TABLE " + project.oldtable);

NOTE When using execut e, your SQL statement must strictly
conform to the SQL syntax requirements of the database
server. For example, some servers require each SQL
statement to be terminated by a semicolon. For more
information, see your database server documentation.

227

Manipulating Query Results with Cursors

If you have not explicitly started a transaction, the single statement is committed automatically.
For more information on transaction control, see “Managing Transactions.”

To perform some actions, such as creating or deleting a table, you may need to have privileges
granted by your database administrator. Refer to your database server documentation for more
information, or ask your database administrator.

Manipulating Query Results with Cursors

In many situations, you do not simply want to display a table of query results. You may want to
change the formatting of the result or even do arbitrary processing, rather than displaying it at
all. To manipulate query results, you work with a database cursor returned by a database query.
To create an instance of the Cur sor class, call a Connect i on object’s cur sor method,
passing an SQL SELECT statement as its parameter.

You can think of a cursor as a virtual table, with rows and columns specified by the query. A
cursor also implies the notion of a CUrrent row, which is essentially a pointer to a row in the
virtual table. When you perform operations with a cursor, they usually affect the current row.

NOTE When finished, close the database cursor by calling its
cl ose method. A database connection cannot be released
until all associated cursors have been closed. For example,
if you call a Connect i on object’s r el ease method and
that connection has an associated cursor that has not been
closed, the connection is not actually released until you
close the cursor.

The following table summarizes the methods and properties of the Cur sor class.

Table 9-1 Cursor properties and methods

Method or Property Description

col Nane Properties corresponding to each column in the cursor.
The name of each colName property is the name of a
column in the database.

cl ose Disposes of the cursor.
col umms Returns the number of columns in the cursor.
col unmNane Returns the name of a column in the cursor.

228 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Manipulating Query Results with Cursors

Table 9-1 Cursor properties and methods (Continued)

Method or Property Description

next Makes the next row in the cursor the current row.
insertRow Inserts a new row into the specified table.

updateRow Updates records in the current row of the specified table.
deleteRow Deletes the current row of the specified table.

For complete information on these methods, see the description of the Cur sor class in the
Server-Side JavaS cript Reference.

Creating a Cursor

Once an application is connected to a database, you can create a cursor by calling the cur sor
method of the associated dat abase or Connect i on object. Creating the Cur sor object also
opens the cursor in the database. You do not need a separate open command. You can supply
the following information when creating a Cur sor object:

* An SQL SELECT statement supported by the database server. To ensute database
independence, use SQL 89/92-compliant syntax. The cutsor is created as a virtual table of
the results of this SQL statement.

* An optional Boolean parameter indicating whether you want an updatable cursor. Use this
parameter only if you want to change the content of the database, as described in
“Changing Database Information.” It is not always possible to create an updatable cursor
for every SQL statement; this is controlled by the database. For example, if the SELECT
statement is sel ect count (*) from vi deos, you cannot create an updatable cursor.

For example, the following statement creates a cursor for records from the CUSTOVER table.
The records contain the columns i d, nane, and Ci t y and are ordered by the value of the i d
column.

custs = connobj.cursor ("select id, name, city
fromcustoner order by id");

This statement sets the variable cust s to a Cur sor object. The SQL query might return the
following rows:

1 Sally Smith Suva
2 Jane Doe Cupertino
3 John Brown Harper’s Ferry

229

Manipulating Query Results with Cursors

You can then access this information using methods of the cust s Cur sor object. This object
has i d, name, and ci t y propetties, corresponding to the columns in the virtual table.

When you initially create a Cur sor object, the pointer is positioned just before the first row in
the virtual table. The following sections desctibe how you can get information from the virtual
table.

You can also use the string concatenation operator (+) and string variables (such as cl i ent or
request property values) when constructing a SELECT statement. For example, the following
call uses a previously stored customer ID to further constrain the query:

custs = connobj.cursor ("select * fromcustomer where id ="
+ client.custonerlD);

230 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Manipulating Query Results with Cursors

You can encounter various problems when you try to create a Cur sor object. For example, if
the SELECT statement in your call to the cur sor method refers to a nonexistent table, the
database returns an error and the cur sor method returns null instead of a Cur sor object. In
this situation, you should use the maj or Er r or Code and rmaj or Er r or Message methods to
determine what error has occurred.

As a second example, suppose the SELECT statement refers to a table that exists but has no
rows. In this case, the database may not return an error, and the cur sor method returns a
valid Cur sor object. However, since that object has no rows, the first time you use the next
method on the object, it returns f al se. Your application should check for this possibility.

Displaying Record Values

When you create a cursor, it acquires a COIName property for each named column in the virtual
table (other than those corresponding to aggregate functions), as determined by the SELECT
statement. You can access the values for the current row using these properties. In the example
above, the cursor has properties for the columns i d, name, and ci ty. You could display the
values of the first returned row using the following statements:

/1 Create the Cursor object.
custs = connobj.cursor ("select id, nane, city
from customer order by id");
/1 Before continuing, nake sure a real cursor was returned
/1 and there was no database error.
if (custs && (connobj.majorErrorCode() == 0)) {
/1l Get the first row
custs. next ();
/1 Display the val ues
wite ("Customer Nane: " + custs.nanme + "
");
wite ("City:" + custs.city + "
");
wite ("Custoner ID:" + custs.id);
/1 C ose the cursor
custs. cl ose();

Initially, the current row is positioned before the first row in the table. The execution of the
next method moves the current row to the first row. For example, suppose this is the first row
of the cursor:

1 Sally Smith Suva

231

Manipulating Query Results with Cursors

232

In this case, the preceding code displays the following:

Customer Name: Sally Smith
City: Suva
Customer ID: 1

You can also refer to properties of a Cur sor object (or indeed any JavaScript object) as
elements of an array. The zero-index array element corresponds to the first column, the
one-index array element corresponds to the second column, and so on.

For example, you could use an index to display the same column values retrieved in the
previous example:

wite ("Custonmer Nanme:" + custs[1l] + "
");
wite ("City:" + custs[2] + "
");
wite ("Custoner ID:" + custs[0]);

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Manipulating Query Results with Cursors

‘This technique is particulatly useful inside a loop. For example, you can create a Cur sor object
named cust s and display its query results in an HTML table with the following code:

/1l Create the Cursor object.
custs = connobj.cursor ("select id, nane, city
from customer order by id");
/1 Before continuing, nmake sure a real cursor was returned
/1 and there was no database error.
if (custs && (connobj.majorErrorCode() == 0)) {
wite ("<TABLE BORDER=1>");
/1 Display colum nanmes as headers.
wite("<TR>");
i = 0;
while (i < custs.colums()) {
wite("<TH>", custs.columNane(i), "</ TH");
i ++;
}
wite("</TR>");
/1 Display each row in the virtual table.
whil e(custs. next()) {
wite("<TR>");
i =0;
while (i < custs.colums()) {
write("<TD>", custs[i], "</TD>");

i ++;
}
wite("</ TR>");
}

wite ("</ TABLE>");
/1 C ose the cursor.
custs. cl ose();

This code would display the following table:

NAME CITY
Sally Smith Suva
Jane Doe Cupertino

233

Manipulating Query Results with Cursors

Table0.3
ID NAME CITY
3 John Brown Harper’s Ferry

This example uses methods discussed in the following sections.

Displaying Expressions and Aggregate
Functions

SELECT statements can retrieve values that are not columns in the database, such as aggregate
values and SQL expressions. For such values, the Qur sor object does not have a named
property. You can access these values only by using the Cur sor object’s property array index
for the value.

The following example creates a cursor named enpDat a, navigates to the row in that cursor,
and then displays the value retrieved by the aggregate function MAX. It also checks to make sure
the results from the database are valid before using them:

enpData = connobj . cursor ("select mn(salary), avg(salary),
max(sal ary) from enpl oyees");

if (enpData && (connobj.majorErrorCode() == 0)) {
rowexi sts = enpDat a. next ();
if (rowexists) { wite("H ghest salary is ", enpData[2]); }

234 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Manipulating Query Results with Cursors

This second example creates a cursor named enPROWS to count the number of rows in the
table, navigates to the row in that cursor, and then displays the number of rows, once again

checking validity of the data:

enpRows = connobj.cursor ("select count(*) from enpl oyees");
if (enpRows && (connobj.nmajorErrorCode() == 0)) {

rowexi sts = enpRows. next ();

if (rowexists) { wite ("Nunmber of rows in table: ",
}errpROWS[O]); }

Navigating with Cursors

Initially, the pointer for a cursor is positioned before the first row in the virtual table. Use the
next method to move the pointer through the records in the virtual table. This method moves
the pointer to the next row and returns t r ue as long it found another row in the virtual table.
If there is not another row, next returns f al se.

For example, suppose a virtual table has columns named ti t| e, rent al Dat e, and dueDat e.
The following code uses next to iterate through the rows and display the column values in a
table:

/1 Create the cursor.
custs = connobj.cursor ("select * fromcustomner");
/1 Check for validity of the cursor and no database errors.
if (custs && (connobj.majorErrorCode() == 0)) {
wite ("<TABLE>");
/1 lterate through rows, displaying val ues.
while (custs.next()) {
wite ("<TR><TD>" + custs.title + "</ TD>" +
"<TD>" + custs.rental Date + "</ TD>" +
"<TD>" + custs.dueDate + "</ TD></TR>");
}
wite ("</TABLE>");
/1 Al'ways cl ose your cursors when finished!
custs. cl ose();

235

Manipulating Query Results with Cursors

This code could produce output such as the following:

Table 0.4
Clockwork Orange 6/3/97 9/3/97
Philadelphia Story 8/1/97 8/5/97

You cannot necessatily depend on your place in the cursor. For example, suppose you create a
cursor and, while you’re working with it, someone else adds a row to the table. Depending on
the settings of the database, that row may appear in your cursor. For this reason, when
appropriate (such as when updating rows) you may want your code to have tests to ensure it’s
wortking on the approptiate row.

Working with Columns

The col ums method of the Cur sor class returns the number of columns in a cursor. This
method takes no parameters:

custs. col ums()
You might use this method if you need to iterate over each column in a cursor.

The col utTmNane method of the Cur sor class returns the name of a column in the virtual
table. This method takes an integer as a parameter, whete the integer specifies the ordinal
number of the column, starting with 0. The first column in the virtual table is 0, the second is 1,
and so on.

For example, the following expression assigns the name of the first column in the cust s
cursor to the variable header :

header = custs. col utmNane(0)

If your SELECT statement uses a wildcard (*) to select all the columns in a table, the
col utmNane method does not guarantee the order in which it assigns numbers to the
columns. That is, suppose you have this statement:

custs = connobj.cursor ("select * fromcustoner");

236 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Manipulating Query Results with Cursors

If the customer table has 3 columns, ID, NAME, and CITY, you cannot tell ahead of time
which of these columns corresponds to cust s. col utmNamre(0) . (Of course, you atre
guaranteed that successive calls to col unmName have the same result.) If the order matters to
you, you can instead hard-code the column names in the select statement, as in the following
statement:

custs = connobj.cursor ("select 1D, NAME, CITY from custoner");

With this statement, cust s. col utmName(0) is ID, cust s. col umNane(1) is NAME,
and cust s. col umNare(2) is CITY.

Changing Database Information

You can use an updatable cursor to modify a table based on the cursor’s current row. To
request an updatable cursor, add an additional parameter of t r ue when creating the cursor, as
in the following example:

custs = connobj.cursor ("select id, name, city fromcustonmer", true)

237

Manipulating Query Results with Cursors

238

For a cursor to be updatable, the SELECT statement must be an updatable quety (one that
allows updating). For example, the statement cannot retrieve rows from more than one table or
contain a GROUP BY clause, and generally it must retrieve key values from a table. For more
information on constructing updatable queries, consult your database vendor’s documentation.

When you use cursors to make changes to your database, you should always work inside an
explicit transaction. You do so using the begi nTr ansacti on, conmi t Tr ansact i on, and
rol | backTransact i on methods, as described in “Managing Transactions.” If you do not
use explicit transactions in these situations, you may get errors from your database.

For example, Informix and Oracle both return error messages if you use a cursor without an
explicit transaction. Oracle returns Er r or ORA-01002: f et ch out of sequence; Informix
returns Error - 206: There i s no current rowf or UPDATE/ DELETE cur sor .

As mentioned in “Navigating with Cursors,” you cannot necessatily depend on your position in
the cursor. For this reason, when making changes to the database, be sure to test that you're
wortking on the correct row before changing it.

Also, remember that when you create a cursor, the pointer is positioned before any of the rows
in the cursor. So, to update a row, you must call the next method at least once to establish the
first row of the table as the cutrrent row. Once you have a row, you can assign values to
columns in the cursor.

The following example uses an updatable cursor to compute the bonus for salespeople who
met their quota. It then updates the database with this information:

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Manipulating Query Results with Cursors

connobj . begi nTransaction ();
enps = connobj . cursor (
"select * from employees where dept="sales™, true);
/I Before proceeding make sure the cursor was created and
/I there was no database error.
if (emps && (connobj.majorErrorCode() ==0)) {
/I lterate over the rows of the cursor, updating information
/I based on the return value of the metQuota function.
while (emps.next()) {
if (metQuota (request.quota, emps.sold)) {
emps.bonus = computeBonus (emps.sold);

m

}
else emps.bonus = 0;
emps.updateRow ("employees");
}
/I When done, close the cursor and commit the transaction.
emps.close();
connobj.commitTransaction();
}
else {
/I If there wasn't a cursor to work with, roll back the
transaction.
connobj.rollbackTransaction();

This example creates an updatable cursor of all employees in the Sales department. It iterates
over the rows of that cursor, using the user-defined JavaScript function met Quot a to
determine whether or not the employee met quota. This function uses the value of quot a
property of the r equest object (possibly set in a form on a client page) and the sol d column
of the cursor to make this determination. The code then sets the bonus appropriately and calls
updat eRow to modify the enpl oyees table. Once all rows in the cursor have been accessed,
the code commits the transaction. If no cursor was returned by the call to the cur sor method,
the code rolls back the transaction.

In addition to the updat eRow method, you can use the i nser t Rowand del et eRow
methods to insert a new row or delete the current row. You do not need to assign values when
you use del et eRow, because it simply deletes an entire row.

When you use i nser t Row, the values you assign to columns are used for the new row. If you
have previously called the cursor’s next method, then the values of the current row are used
for any columns without assigned values; otherwise, the unassigned columns are null. Also, if
some columns in the table are not in the cursor, then i nser t Rowinserts null in these

239

Manipulating Query Results with Cursors

columns. The location of the inserted row depends on the database vendor library. If you need
to access the row after you call the i nser t Rowmethod, you must first close the existing
cursor and then open a new cursor.

NOTE DB2 has a Ti me data type. JavaSctipt does not have a
corresponding data type. For this reason, you cannot
update rows with values that use the DB2 Ti me data type

240 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Managing Transactions

Managing Transactions

A transaction is a group of database actions that are petformed together. Either all the
actions succeed together or all fail together. When you apply all actions, making permanent
changes to the database, you are said to COMmMIit a transaction. You can also roll back a
transaction that you have not committed; this cancels all the actions.

Transactions are important for maintaining data integrity and consistency. Although the
various database servers implement transactions slightly differently, the LiveWire Database
Service provides the same methods for transaction management with all databases. Refer to the
database vendor documentation for information on data consistency and isolation levels in
transactions.

You can use explicit transaction control for any set of actions. For example, actions that modify
a database should come under transaction control. These actions correspond to SQL | NSERT,
UPDATE, and DELETE statements. Transactions can also be used to control the consistency of
the data you refer to in your application.

For most databases, if you do not control transactions explicitly, the runtime engine uses the
underlying database’s autocommit feature to treat each database statement as a separate
transaction. Each statement is either committed or rolled back immediately, based on the
success or failure of the individual statement. Explicitly managing transactions overrides this
default behavior.

In some databases, such as Oracle, autocommit is an explicit feature that LiveWire turns on for
individual statements. In others, such as Informix, autocommit is the default behavior when
you do not create a transaction. In general, LiveWire hides these differences and puts an
application in autocommit mode whenever the application does not use begi nTransact i on
to explicitly start a transaction.

For Informix ANSI databases, LiveWire does not use autocommit. For these databases, an
application always uses transactions even if it never explicitly calls begi nTr ansact i on. The
application must use conmi t Transacti on orrol | backTransact i on to finish the
transaction.

241

Managing Transactions

242

NOTE You are strongly encouraged to use explicit transaction
control any time you make changes to a database. This
ensures that the changes succeed or fail together. In
addition, any time you use updatable cursors, you should
use explicit transactions to control the consistency of your
data between the time you read the data (with next) and
the time you change it (with i nsert Row, updat eRow, or
del et eRow). As described in “Changing Database
Information,” using explicit transaction control with
updatable cursors is necessaty to avoid errors in some
databases such as Oracle and Informix.

Using the Transaction-Control Methods

Use the following methods of a Connect i on object to explicitly manage transactions:

* begi nTransacti on starts a new transaction. All actions that modify the database are
grouped with this transaction, known as the current transaction.

e commit Transacti on commits the current transaction. This method attempts to
commit all the actions since the last call to begi nTransacti on.

« roll backTransacti on rolls back the cutrent transaction. This method undoes all
modifications since the last call to begi nTr ansacti on.

Of course, if your database does not supportt transactions, you cannot use them. For example,
an Informix database created using the NOLOG option does not support transactions, and you
will get an error if you use these methods.

The LiveWire Database Service does not suppozt nested transactions. If you call
begi nTransact i on multiple times before committing or rolling back the first transaction
you opened, you'll get an error.

For Connect i on objects, the scope of a transaction is limited to the lifetime of that object. If
you release the connection or close the pool of connections before calling the
conmi t Transacti on orrol | backTr ansact i on method, then the transaction is

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Working with Binary Data

automatically either committed or rolled back, based on the setting of the conmi t f | ag
parameter provided when you made the connection, either with the connect method or in the
DbPool constructor.

If there is no current transaction (that is, if the application has not called
begi nTransact i on), calls to conmi t Transacti on and r ol | backTr ansacti on can
result in an error from the database.

You can set your transaction to wotk at different levels of granularity. The example described
in “Changing Database Information” creates a single transaction for modifying all rows of the
cursor. If your cursor has a small number of rows, this approach is sensible.

If, however, your cursor returns thousands of rows, you may want to process the cursor in
multiple transactions. This approach can both cut down the transaction size and improve the
concurrency of access to that information.

If you do break down your processing into multiple transactions, be certain that a call to next
and an associated call to updat eRow or del et eRowhappen within the same transaction. If
you get a tow in one transaction, finish that transaction, and t hen attempt to either update or
delete the row, you may get an error from your database.

How you choose to handle transactions depends on the goals of your application. You should
refer to your database vendor documentation for more information on how to use transactions

appropriately for that database type.

Working with Binary Data

Binary data for multimedia content such as an image or sound is stored in a database as a binary
large object (BLOD). You can use one of two techniques to handle binary data in JavaScript
applications:

* Store filenames in the database and keep the data in separate files.
e Store the data in the database as BLLObs and access it with Bl ob class methods.

If you do not need to keep BLOD data in a database, you can store the filenames in the
database and access them in your application with standard HTML tags. For example, if you
want to display an image for each row in a database table, you could have a column in the table
called i mageFi | eNane containing the name of the desired image file. You could then use this
HTML exptession to display the image for each row:

243

Working with Binary Data

As the cursor navigates through the table, the name of the file in the | MG tag changes to refer
to the appropriate file.

If you need to manipulate actual binary data in your database, the JavaScript runtime engine
recognizes when the value in a column is BLOb data. That is, when the software creates a

Cur sor object, if one of the database columns contains BLODb data, the software creates a

Bl ob object for the corresponding value in the Cur sor object. You can then use the Bl ob
object’s methods to display that data. Also, if you want to insert BLODb data into a database, the
software provides a global function for you to use.

The following table outlines the methods and functions for working with BLOD data.

Table 9-2 Methods and functions for working with Blobs

Method or Function Description

bl obl mage Method to use when displaying BLOb data stored in a
database. Returns an HTML | MGtag for the specified
image type (GIF, JPEG, and so on).

bl obLi nk Method to use when creating a link that refers to BLOb
data with a hyperlink. Returns an HTML hyperlink to the
BLOb.

bl ob Global function to use to insert or update a row containing

BLODb data. Assigns BLODb data to a column in a cursor.

244 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Working with Binary Data

The bl obl mage method fetches a BLOD from the database, creates a temporary file of the
specified format, and generates an HTML | MG tag that refers to the temporary file. The
runtime engine removes the temporary file after the page is generated and sent to the client.

The bl obLi nk method fetches BLOD data from the database, creates a temporary file, and
generates an HTML hypertext link to the temporary file. The runtime engine removes the
temporary file after the user clicks the link or 60 seconds after the request has been processed.

The following example illustrates using bl obl mage and bl obLi nk to create temporary files.
In this case, the FI SHTBL table has four columns: an ID, a name, and two images. One of
these is a small thumbnail image; the other is a larger image. The example code wtites HTML
for displaying the name, the thumbnail, and a link to the larger image.

cursor = connobj.cursor ("select * fromfishtbl");
if (cursor && (connobj.nmajorErrorCode() == 0)) {
while (cursor.next()) {
wite (cursor.nane);
wite (cursor.picture.bloblmge("gif"));
wite (cursor. picture.blobLink("imge\gif", "Link" +
cursor.id));
wite ("
");
}

cursor. close();

If FI SHTBL contains rows for four fish, the example could produce the following HTML:

Cod <I M5 SRC="LI VEW RE_TEMP9" >

Li nk1l </ A>

Ant hi a <I MG SRC="LI VEW RE_TEMP11" >

Li nk2 </ A>

Scor pi on <I MG SRC="LI VEW RE_TEMP13" >

Li nk3 </ A>

Sur geon <I MG SRC="LI VEW RE_TEMP15" >

Li nk4 </ A>

245

Working with Binary Data

If you want to add BLODb data to a database, use the bl ob global function. This function
assigns BLOD data to a column in an updatable cursor. As opposed to bl obl mage and
bl obLi nk, bl ob is a top-level function, not a method.

The following statements assign BLODb data to one of the columns in a row and then update
that row in the FI SHTBL table of the database. The cutsor contains a single row.

/1 Begin a transaction.
connobj . begi nTransacti on();
/'l Create a cursor.
fishCursor = connobj.cursor ("select * fromfishtbl where
name="Harlequin Ghost Pipefish™, true);
/I Make sure cursor was created.
if (fishCursor && (connobj.majorErrorCode() == 0)) {
// Position the pointer on the row.
rowexists = fishCursor.next();
if (rowexists) {
/I Assign the blob data.
fishCursor.picture = blob
("c:\\data\\fish\\photo\\pipe.gif");
/I Update the row.
fishCursor.updateRow (“fishtbl");
/I Close the cursor and commit the changes.
fishCursor.close();
connobj.commitTransaction();
}
else {
/I Close the cursor and roll back the transaction.
fishCursor.close();
connobj.rollbackTransaction();

}

}

else {
/I Never got a cursor; rollback the transaction.
connobj.rollbackTransaction();

}

246 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Calling Stored Procedures

Remember that the backslash (\) is the escape character in JavaScript. For this reason, you
must use two backslashes in NT filenames, as shown in the example.

Calling Stored Procedures

Stored procedures are an integral part of operating and maintaining a relational database. They
offer convenience by giving you a way to automate processes that you do often, but they offer
other benefits as well:

* Limted access. You can limit access to a sensitive database by giving users access
only through a stored procedure. A user has access to the data, but only within the stored
procedure. Any other access is denied.

e Data integrity. Stored procedures help you make sure that information is provided
and entered in a consistent way. By automating complicated transactions, you can reduce
the possibility of user error.

e Efficiency. A stored procedure is compiled once, when executed for the first time.
Later executions run faster because they skip the compilation step. This also helps lighten
the load on your network, because the stored procedure code is downloaded only once.

247

Calling Stored Procedures

The LiveWire Database Service provides two classes for working with stored procedures,
St proc and Resul t set . With the methods of these classes you can call a stored procedure
and manipulate the results of that procedure.

Exchanging Information

Stored procedures work differently for the various databases supported by the LiveWire
Database Service. The most important distinction for LiveWire is how you pass information to
and from the stored procedure in a JavaScript application. You always use input parameters to
the stored procedure to pass information into a stored procedure.

However, conceptually there are several distinct ways you might want to rettieve information
from a stored procedure. Not every database vendor lets you retrieve information in all of
these ways.

Result Sets

A stored procedure can execute one or more SELECT statements, retrieving information from
the database. You can think of this information as a virtual table, very similar to a read-only
cursor. (For information on cursors, see “Manipulating Query Results with Cursors.”)

LiveWire uses an instance of the Resul t set class to contain the rows returned by a single
SELECT statement of a stored procedure. If the stored procedure allows multiple SELECT
statements, you get a separate Resul t set object for each SELECT statement. You use the
resul t Set method of the St pr oc class to obtain a result set object and then you use that
object’s methods to manipulate the result set.

Different database vendors return a result set in these varying ways:

* Sybase stored procedures can directly return the result of executing one or more SELECT
statements.

* Informix stored procedures can have multiple return values. Multiple return values are like
the columns in a single row of a table, except that these columns are not named. In
addition, if you use the RESUVE feature, the stored procedure can have a set of these
multiple return values. This set is like the rows of a table. LiveWire creates a single result
set to contain this virtual table.

* Oracle stored procedures use ref cursors to contain the rows returned by a SELECT
statement. You can open multiple ref cursors in an Oracle stored procedure to contain
rows returned by several SELECT statements. LiveWire creates a separate Resul t set
object for each ref cursor.

* DB2 stored procedures use open cursors to return result sets.

248 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Calling Stored Procedures

Output and Input/Output Parameters

In addition to standard input parameters, some database vendors allow other types of
parameters for their stored procedures. Output parameters store information on return from
the procedure and input/output parameters both pass in information and return information.

For most databases, you use the out Par amCount and out Par anmet er s methods of the

St pr oc class to access output and input/output parameters. However, Informix does not
allow output or input/output parameters. Therefore, you should not use the out Par anCount
and out Par anmet er s methods with Informix stored procedures.

Return Values

Seen as a simple function call, a stored procedure can have a return value. For Oracle and
Sybase, this return value is in addition to any result sets it returns.

You use the r et ur nVal ue method of the St pr oc class to access the return value. However,
the return values for Informix stored procedures are used to generate its result set. For this
reason, I et ur nVal ue always returns null for Informix stored procedures. In addition, return
values are not available for ODBC and DB2 stored procedures.

Steps for Using Stored Procedures

Once you have a database connection, the steps for using a stored procedure in your
application vary slightly for the different databases:

1. (DB2 only) Register the stored procedure in the appropriate system tables.
(You do this outside of JavaScript.)

2. (DB2, ODBC, and Sybase) Define a prototype for your stored procedure.
(All databases) Execute the stored procedure.

(All databases) Create aresul t Set object and get the data from that object.

a > w

(DB2, ODBC, and Sybase) Complete the execution by accessing the return
value.

6. (DB2, ODBC, Oracle, and Sybase) Complete the execution by getting the
output parameters.

7. (All databases) When finished, close the stored procedure by calling its cl ose
method.

249

Calling Stored Procedures

Notice that for several databases you can complete execution of your stored procedure either
by getting the return value or by accessing the output parameters. Once you have done either
of these things, you can no longer work with any result sets created by execution of the stored
procedure.

The following sections describe each of these steps in more detail.

Registering the Stored Procedure

This step applies only to DB2.

DB2 has various system tables in which you can recotd your stored procedure. In general,
entering a stored procedure in these tables is optional. However, to use your stored procedure
with LiveWire, you must make entries in these tables. You perform this step outside of the
JavaScript application.

For DB2 common server, you must create the DB2CLI . PROCEDURES system table and enter
your DB2 stored procedures in it. DB2CLI . PROCEDURES is a pseudo-catalog table.

If your DB2 is for IBM MVS/EA vetsion 4.1 or later, you must define the name of your stored
procedures in the SYSI BM SYSPROCEDURES catalog table.

Remember you use C, C++, or another source language to write a DB2 stored procedure. The
data types you use with those languages do not match the data types available in DB2.
Therefore, when you add the stored procedure to DB2CLI . PROCEDURES or

SYSI BM SYSPROCEDURES, be sure to record the corresponding DB2 data type for the stored
procedure parameters and not the data types of the source language.

For information on DB2 data types and on how to make entries in these tables, see your DB2
documentation.

Defining a Prototype for a Stored Procedure

This step is relevant only for DB2, ODBC, and Sybase stored procedures, both user-defined
and system stored procedures. You do not need to define a prototype for stored procedures for
Oracle or Informix databases.

For DB2, ODBC, and Sybase, the software cannot determine at runtime whether a particular
parameter is for input, for output, or for both. Consequently, after you connect to the database,
you must create a prototype providing information about the stored procedure you want to
use, using the St or edPr ocAr gs method of the dat abase or DbPool object.

You need exactly one prototype for each stored procedure in your application. The software
ignores additional prototypes for the same stored procedure.

250 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Calling Stored Procedures

In the prototype, you provide the name of the stored procedure and the type of each of its
parameters. A parameter must be for input (I N), output (QUT), ot input and output (I NOUT).
For example, to create a prototype for a stored procedure called newhi r e that has two input
parameters and one output parameter, you could use this method call:

pool obj . st or edProcArgs("newhire", "IN, "IN, "OQUT");

Executing the Stored Procedure

This step is relevant to all stored procedures.

To execute a stored procedure, you create a St pr oc object using the dat abase or
Connect i on object’s st or edPr oc method. Creating the object automatically invokes the
stored procedure. When creating a stored-procedure object, you specify the name of the
procedure and any parameters to the procedure.

For example, assume you have a stored procedure called newhi r e that takes one string and
one integer parameter. The following method call creates the spQbj stored-procedure object
and invokes the newhi r e stored procedure:

spObj = connobj . storedProc("newhire", "Fred Jones", 1996);

In general, you must provide values for all input and input/output patameters to the stored
procedure. If a stored procedure has a default value defined for one of its parameters, you can
use the / Def aul t/ directive to specify that default value. Similarly, if a stored procedure can
take a null value for one of its parameters, you can specify the null value either with the

/ Nul I/ directive or by passing in the null value itself.

For example, assume the denosp stored procedure takes two string parameters and one
integer parameter. You could supply all the parameters as follows:

spobj = connobj . storedProc("denmosp”, "Param1", "Param?2", 1);

Alternatively, to pass null for the second parameter and to use the default value for third
parameter, you could use either of these statements:

spobj = connobj . storedProc("denosp”, "Param1", "/Null/",

"/Default/");

spobj = connobj. storedProc("denosp", "Param 1", null, "/Default/");
NOTE On Informix, default values must occur only after all

specified values. For example, you cannot use
/ Defaul t/ for the second parameter of a stored
procedure and then specify a value for the third parameter.

251

Calling Stored Procedures

You can also use the / Def aul t/ and/ Nul | / directives for input/output parametets.

An Oracle stored procedute can take tef cursors as input/output ot output parametets. For
example, assume you have an Oracle stored procedure named pr oc1 that takes four
parameters: a ref cursor, an integer value, another ref cursor, and another integer value. The call
to that stored procedure from SQL Plus might look as follows:

execute procl (refcursorl, 3, refcursor2, 5);

When you call this stored procedure from within a JavaScript application, however, you do not
supply the ref cursor parameters. Instead, the equivalent call would be:

spobj = connobj.storedProc("procl", 3, 5);

For information on output parameters, see “Working with Output Parameters.” Output
patameters cannot be null; howevet, you can assign a null value to input or input/output
parameters.

The following table summarizes the methods of a stored-procedure object.

Table 9-3 St proc methods

Method Description

resul t Set Returns the next result set for the stored procedure.

For Informix, you can have zero or one result set. For other
databases, you can have zero, one, or more result sets.

r et urnVal ue Retrieves the return value of the stored procedure.
For Informix, DB2, and ODBC, this method always returns
null.

out Par anet ers Returns the specified output parameter.

Because Informix stored procedures do not use output
parameters, do not use this method with Informix.

out Par anCount Returns the number of output parameters.

For Informix, this method always returns 0, because Informix
stored procedures do not use output parameters.

252 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Calling Stored Procedures

Working with Result Sets

This step is relevant for all stored procedures.

As described in “Result Sets,” different databases returns result sets in different ways. For
example, assume you have the CUSTI NFO table with the columns i d, ci ty, and nane. In
Sybase, you could use this stored procedure to get the first 200 rows of the table:

create proc getcusts as
begin
select id, nane, city fromcustinfo where id < 200
end

If CUSTI NFOwere an Informix table, the equivalent Informix stored procedure would be this:

create procedure getcusts returning int, char(15), char(15);
define rcity, rname char (15);
define i int;
f oreach
select id, nane, city into i, rnanme, rcity
from custinfo
where id < 200;
return i, rnane, rcity with resune;
end foreach;
end procedure;

If CUSTI NFOwere an Oracle table, the equivalent Oracle stored procedure would be:

create or replace package orapack as
type custcurtype is ref cursor return custinfo% ow ype;
end orapack;
create or replace procedure custresultset (custcursor OUT
or apack. cust curtype)
AS
begin
open custcursor for select id, nane, city fromcustinfo where
id < 200;
end;

253

Calling Stored Procedures

254

In all cases, you create a r esul t Set object to retrieve the information from the stored
procedure. You do so by using the stored-procedure object’s r esul t Set method, as follows:

resCbj = spObj.resultSet();

As for Cur sor objects, r esul t Set objects have a cutrent row, which is simply the row being
pointed to in the result set. Initially, the pointer is positioned before the first row of the result
set. To see the values in the rows of the result set, you use the next method to move the
pointer through the rows in the result set, as shown in the following example:

spobj = connobj.storedProc("getcusts");
if (spobj && (connobj.majorErrorCode() == 0)) {
/1 Creates a new resultSet object.
resobj = spobj.resultSet();
/1 Make sure you got a result set before continuing.
if (resobj && (connobj.majorErrorCode() == 0)) {
/1 Initially noves the resultSet object pointer to the first
/1 result set row and then | oops through the rows.
while (resCbj.next())

{
wite("<TR><TD>" + resChj.nanme + "</ TD>");
wite("<TD>" + resObj.city + "</ TD>");
wite("<TD>" + resQoj.id + "</ TD></ TR>");

}

resobj . cl ose();

}

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Calling Stored Procedures

As long as there is another row in the result set, the next method returns t r ue and moves the
pointer to the next row. When the pointer reaches the last row in the result set, the next
method returns f al se.

The preceding example works for a Sybase stored procedure. In that case, the r esul t Set
object contains a named property for each column in the result set. For Informix and DB2
stored procedures, by contrast, the object does not contain named columns. In this case, you
can get the values by referencing the column position. So, for Informix and DB2, you would
use this code to display the same information:

spobj = connobj.storedProc("getcusts");
if (spobj && (connobj.nmajorErrorCode() == 0)) {
/1 Creates a new resultSet object.
resobj = spobj.resultSet();
/1 Make sure you got a result set before continuing
if (resobj && (connobj.majorErrorCode() == 0)) {
/1 Initially noves the resultSet object pointer to the first
/1 result set row and then | oops through the rows.
while (resCbj.next())
{
wite("<TR><TD>" + reshj[1] + "</ TD>");
wite("<TD>" + resOhj[2] + "</ TD>");
wite("<TD>" + resObj[0] + "</ TD></TR>");

resobj . cl ose();

}

You can use the column position for result sets with any database, not just with Informix and
DB2. You can use the column name for stored procedures for all database types other than
Informix or DB2.

Multiple Result Sets

A Sybase, Oracle, DB2, or ODBC stored procedure can create multiple result sets. If it does,
the stored procedure provides one r esul t Set object for each. Suppose your stored
procedure executes these SQL statements:

sel ect name from custoners where id = 6767
select * fromorders where id = 6767

255

Calling Stored Procedures

256

You could use the multiple r esul t Set objects generated by these statements as follows:

/1 This statenent is needed for DB2, ODBC, and Sybase.
pool obj . st or edPr ocAr gs(" Get Cust Order I nfo","I N');
spobj = connobj . storedProc("Get Cust Orderl nfo", 6767);
if (spobj && (connobj.majorErrorCode() == 0)) {
resobj 1 = spobj.resultSet();
/1 Make sure result set exists before continuing.
if (resobjl & (connobj.nmajorErrorCode() == 0)) {
/1 This first result set returns only one row.
/1 Make sure that row contains data.
rowexi sts = resobj 1. next();
if (rowexists)
write("<P>Custoner " + resobjl.nane +
" has the follow ng orders: </P>");
resobj 1. cl ose();

/1 by the custoner. Make sure the rows have data.
resobj 2 = spobj.resultSet();
var i = 0;
if (resobj2 && (connobj.nmajorErrorCode() == 0)) {
write("\nOrder# Quantity Total </ P>");
whi | e(resobj 2. next()) {

+ " " + resobj 2. Total anount + "</P>");
i ++;
}
resobj 2. cl ose();
wite("Customer has " + i + " orders.</P>");

}

el se wite("Customer has no orders.</P>");

}
}

spobj . cl ose();

/1 The second result set returns one row for each order placed

wite(resobj2.orderno + " " + resobj2.quantity

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Calling Stored Procedures

For an example of using multiple Oracle ref cursors in a stored procedure, see the description
of the Resul t set class in the Server-Side JavaScript Reference.

Result Set Methods and Properties

The following table summarizes the methods and properties of the Resul t set class.

Table 0.5 Resul t set methods and properties

Method or Property

Description

colName

col unms

col umNane

cl ose

next

Properties corresponding to each of the columns in the
result set. The name of each property is the name of the
column in the database.

Since Informix and DB2 stored procedures do not return
named columns, these properties are not created for
Informix or DB2 stored procedures.

Returns the number of columns in the result set.

For Informix, this method returns the number of return
values for a single row.

Returns the name of a column in the result set.

Because Informix and DB2 stored procedures do not have
associated column names, do not use this method for stored
procedures for those databases.

Disposes of the Resul t set object.

Makes the next row in the result set the current row. Returns
f al se if the current row is the last row in the result set;
otherwise, returnstr ue.

257

Calling Stored Procedures

Aresult Set object is a read-only, sequential-style object. For this reason, the class does not
have the i nsert Row, del et eRow, and updat eRow methods defined for Cur sor objects.

When You Can Use Result Sets

Aresult Set object is not valid indefinitely. In general, once a stored procedure starts, no
interactions are allowed between the database client and the database server until the stored
procedure has completed. In particular, there are three circumstances that cause a result set to
be invalid.

1. Ifyou create a result set as part of a transaction, you must finish using the
result set during that transaction. Once you either commit or roll back the
transaction, you can’t get any more data from a result set, and you can’t get any
additional result sets. For example, the following code is illegal:

connobj . begi nTransacti on();

spobj = connobj . storedProc("getcusts");
resobj = spobj.resultSet();

connobj . conmi t Transaction();

/1 Illegal! Result set no |onger valid!
coll = resobj[0];

2. For Sybase, ODBC, and DB2, you must retrieve r esul t Set objects before you
call a stored-procedure object’s r et ur nval ue or out Par anet er s methods.
Once you call either of these methods, you can’t get any more data from a
result set, and you can’t get any additional result sets. See “Working with
Return Values” for more information about these methods.

spobj = connobj . storedProc("getcusts");
resobj = spobj.resultSet();

retval = spobj.returnValue();

/1 Illegal! Result set no |onger valid!

coll = resobj[0];

258 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Calling Stored Procedures

For Sybase, you must retrieve r esul t Set objects before you call the cur sor or
SQLTabl e method of the associated connection. Once you call cur sor or
SQLTabl e, the result set is no longer available. For example, the following code
is illegal:

spobj = connobj.storedProc("getcusts");

resobj = spobj.resultSet();

curobj = connobj.cursor ("select * fromorders");
/1 Illegal! The result set is no |onger avail able!
coll = resobj[0]

For ODBC, a slightly different restriction holds. Again, you must work with
the resul t Set objects before you call the associated connection’s cur sor or
SQLTabl e method. For ODBC, if you get a cursor, then access the result set, and
then use the cursor, the Cur sor object is no longer available. For example, the
following code is illegal:

spbobj = connobj . st oredProc("getcusts");
resobj = spobj.resul Set();

curobj = connobj.cursor ("select * fromorders");
coll = resobj[0];

/1 Illegal! The cursor is no |onger available
curobj . next();

259

Calling Stored Procedures

Closing Result Sets

When finished, close the result set by calling its ¢l 0se method. A database connection cannot
be released until all associated result sets have been closed. For example, if you call a
Connect i on object’s r el ease method and that connection has an associated result set that
has not been closed, the connection is not actually released until you close the result set.

Working with Return Values

This step is relevant to Sybase and Oracle stored procedures. For Informix, ODBC, and DB2
stored procedures, the r et ur nVal ue method always returns null.

If your stored procedure has a return value, you can access that value with the r et ur nVal ue
method.

On DB2, ODBC, and Sybase, you must use stored procedures and cursors sequentially. You
cannot intermix them. For this reason, you must let the system know that you have finished
using the stored procedure before you can wotk with a cursor. You do this by calling the

r et ur nVal ue method of the stored procedure object. This method provides the stored
procedure’s return value (if it has one) and completes the execution of the stored procedure.
You should also close all objects related to stored procedures when you have finished using
them.

NOTE For DB2, ODBC, and Sybase, you must retrieve
resul t Set objects before you call the r et ur nVal ue
method. Once you call r et ur nVal ue, you can’t get any
more data from a result set, and you can’t get any
additional result sets. You should call r et ur nVal ue after
you have processed the result set and before you retrieve
the output parameters.

260 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Calling Stored Procedures

Working with Output Parameters

This step is relevant to Sybase, Oracle, DB2, or ODBC stored procedures. For Informix stored
procedures, the methods discussed here are not applicable.

To determine how many output parameters the procedure has (including both output and
input/output patameters), you use the out Par amCount method. You can wotk with the
output parameters of a stored procedure by using the object’s out Par amet er s method. If
out Par anCount returns 0, the stored procedure has no output parameters. In this situation,
do not call out Par aret er s.

For example, suppose you created a stored procedure that finds the name of an employee when
given an ID. If there is an employee name associated with the given ID, the stored procedure
returns 1, and its output parameter contains the employee name. Otherwise, the output
parameter is empty. The following code either displays the employee name or a message
indicating the name wasn’t found:

id = 100;
get NaneProc = connobj . st oredProc("get Name", id);
returnVal ue = get NaneProc. returnVal ue();
if (returnvValue == 1)
wite ("Nanme of enployee is " +
get NanePr oc. out Par aneters(0));
el se
wite ("No enployee with id =" + id);

Assume a stored procedure has one input parameter, one input/output parameter, and one
output parameter. Further, assume the call to the stored procedure sends a value for the input
patameter and the input/output parameter as shown here:

spobj = connobj.storedProc("nyinout", 34, 56);

261

Calling Stored Procedures

The out Par anmet er s method returns any input/output parameters before it returns the first
output parameter.

In the preceding example, if you call out Par amet er s(1) , it returns the value returned from
the stored procedure. By contrast, if you call out Par anmet er s(0) , the method returns 56.
This is the value passed to the stored procedure in the input/output parameter position.

NOTE Output parameters cannot be null; however, you can
assign a null value to input or input/output parameters.

262 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Calling Stored Procedures

For DB2, ODBC, and Sybase, you must retrieve r esul t Set objects and use the

r et ur nVal ue method before you call out Par anet er s. Once you call r et ur nVal ue or
out Par anet er s, you can’t get any more data from a result set, and you can’t get any
additional result sets. You should call out Par anet er s after you have processed the result set
and any return values.

Closing Stored Procedures

When finished, close the stored procedure by calling its c| 0Se method. A database connection
cannot be released until all associated stored procedures have been closed. For example, if you
call a Connect i on object’s r el ease method and that connection has an associated stored
procedure that has not been closed, the connection is not actually released until you close the
stored procedure.

Informix and Sybase Exceptions

Informix and Sybase stored procedures can return error codes using exceptions. After you run
the stored procedure, you can retrieve these error codes and error messages using the

maj or Er r or Code and maj or Er r or Message methods of the associated dat abase or
Connect i on object.

For example, assume you have the following Informix stored procedure:

create procedure usercheck (user varchar(20))

if user = 'LiveWre' then
rai se exception -746, 0, 'User not Allowed ;
endi f

end procedure

263

Calling Stored Procedures

When you run this stored procedure, you could check whether an etror occurred and then
access the error code and message as follows:

spobj = connobj . storedProc("usercheck");

if (connobj.majorErrorCode()) {
wite("The procedure returned this error code: " +
connobj . maj or Err or Code()) ;
wite("The procedure returned this error nessage: " +
connobj . maj or Error Message()) ;

264 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Chapter 10

Configuring Your Database

This chapter describes how to set up your database to run with the LiveWire Database Service.
You should read this chapter and “Configuration Information” before you tty to use LiveWire
with your JavaScript applications.

NOTE There may have been changes to the database clients that
are supported. For the latest information, see the 7P/anet
Web Server 4.1 Release Notes.

This chapter contains the following sections:

* About LiveWire Database Service

* Checking Your Database Configuration

* Supported Database Clients and ODBC Drivers
« DB2

¢ Informix

+ ODBC
* Oracle
e Sybase

265

About LiveWire Database Service

About LiveWire Database Service

With the release of the 3.x and 4.x versions of Netscape servers, you must install a database
client library (and a particular version of that library) if you wish to use the LiveWire Database
Service. You must also configure the client library for use with LiveWire.

iPlanet Web Servers do not ship with any database client libraries. You must contact your
database vendor for the appropriate library. You need only install and configure the database
client libraries for the databases you will use.

If you install your database on a machine other than the one on which the web server is
installed, you must have a client database library installed on the machine that has the web
server. You must obtain the proper license arrangements directly from your database vendor.
iPlanet does not make these arrangements for you.

The requirements for configuring your database may differ if your database and your web
server are installed on the same machine or on different machines. If they are on the same
machine, the following information refers to it as a /&ca/ configuration; if on different machines,
as a remote configuration.

This chapter describes only those aspects of installing the database client that are specific to
installing it for use with LiveWire. For general information on installing a database client, refer
to the appropriate database vendor documentation.

Checking Your Database Configuration

After you’ve done the setup described in this chapter, you can use the dbadmi n sample
application to verify that your database connection wotks propetly. You use this JavaScript
sample application to connect to your database server and perform various simple tasks such as
executing a SELECT statement and displaying the results or sending an arbitrary SQL
command to the server.

Because you can use dbadmi n to modify and delete database tables, access to it is
automatically restricted if you choose to protect the Application Manager. For more
information on restricting the Application Manager, see “Controlling Access to an
Application.”

The first thing you must do when using dbadmi n is to connect to a database. Choose Connect
to Database. A form, shown in Figure 10-1, appears in which you can enter connection
information. Enter the parameters, and click Connect to attempt to connect to the server. For

266 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Checking Your Database Configuration

information on the parameters you use to connect, see “Database Connection Pools.” For

further information, see the description of the connect method in the Server-Side JavaScript
Reference.

Figure 10-1 The dbadmi n connection page

i L prineaci [(D sbabons - Melacaps

fle Edi Ye e [owmeisa el
LT 0

Tiew: g U 0 00§ BT PRI bk D s il e D L | TR o
rEror gl T aw e i ow el LR o0 B DEacn) e

Eajwn . varea e Tyge. S dmm bafirr, Foer, S s rd Dud sharri

Cgeohs ormiid w i ENFuel i oy G ol G] iy e Wb ey il W e e K e
ki o e i, dppdeyim

G . e W VIR BT B TR RS e T
| B Topw |-ﬂﬂH E s b ek plimen S e o rom
aimwam

Vi s mr iy da drgbes remr e sireryies s ed
T M R e

d i - g ey s RRCASIINNTR
| arme il I,.-._-.----.._.l o mra B
B Dl s e s b e s

e - AT il PR (6§ 0Y B R
= DG - R v o B
% DS . Laral Prighrm S

| Lw= I} Ipn._-u_u T & @ sy ey b= eren g da des s e

| Fan vl |-|-|-|rr|-r|-|-|-|rr T pas el ot ln daedemn per=m i ma v

| | .l:l vl b G i e da bl v om0
D I— munﬂmu-ﬂium.-hlhw

e e T oA i k. e, e e i b e
gl [o 0

I e e el U L Pl T B R T TRNE B

seripag wllby e g rr pam whak .*ﬁ—hﬁzlh-h. _I

Mlslon” Hows Fein - Tars Foe

— ____ Sl er |

267

Supported Database Clients and ODBC Drivers

If this connection succeeds, the Execute Query page appears. In this case, your database is
propetly configured for working with the LiveWire Database Service. If the connection fails,
the Database Connect Error page appears. In this case, make sure you’ve followed the

instructions for your particular database and hardware configuration.

Supported Database Clients and ODBC Drivers

The following table summarizes the specific database vendors supported on each platform for
Netscape Enterprise Server 3.x. These database vendors are not supported for the FastTrack

Edition server.

Table 10-1 Database vendor client libraries supported on each platform by Netscape Enterprise Server

Database AIX DEC Irix 6.2 HP-UX 11.0 Solaris Windows NT
Vendor 25.1/2.6 4.0w/ SP4
DB2 CAE21.2 Not Not supported V5.2 V5.2 V5.2
supported
Informix Informix Informix Informix SDK 2.10 SDK 2.10 SDK 2,10 TC1
Client 7.22 Client 7.22 Client 7.22 (ESQL 9.16) (ESQL 9.16) (ESQL 9.16)
Microsof ODBC Mgr Not ODBC Mgr Not Supported MS SQL
t Visigenic 2.0 supported Visigenic 2.0 supported on Solaris Server 6.5
ODBC 25.1only (3.60 driver)
SQL
Anywhere 5.5
(5.00 driver)
MS Access 7.0
(3.51.171300
Driver)
Oracle! Oracle Oracle Client Oracle Client Oracle Oracle Client Oracle Client
Client7.3.x 7.3.x 7.3.x Client 8.0.5
8.0.5
8.0.5
Sybase Open Open Open 11.1.1 11.1.1 11.1.1
Client Client Client
/C111 /C111 /C111

1. Oracle SQL*Net version 1.1 is no longer supported.

268 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Table 10-2 Database vendor client libraries supported on each platform by iPlanet Web Server

Supported Database Clients and ODBC Drivers

The following table summarizes the specific database vendors supported on each platform for
iPlanet Web Server 4.x. These database vendors are not supported for the FastTrack Edition

Server.

Database Solaris Sparc ~ Solaris Win NT HPUX AIX DEC Linux IRIX

Vendor 26,7,and2.8 x86(DE 4.0SP5 11.0 4.3.2 4.0D RedHat 6.5
beta only) 6.01

Informix Client 2.10 2.3 2.10 210HC2 2.10 2.10 2.10 2.10

SDK Server 7.3

Oracle Client 8.0.5 -- 8.0.5 8.0.5 8.0.5 8.0.5 8.0.5 8.0.5

SDK Server

8.0.5

Sybase Client 1111 -- 1111 1111 1111 1111 11.9.2 1111

SDK Server

119.2

DB2 Client 5.2 -- 5.2 5.2 5.2 5.2 6.1 5.2

SDK Server 5.2

ODBC 351 -- -- -- MS SQL -- -- -- --

MCAD 2.0 SP2 Server 7.0

1. Supported in iPlanet Web Server version 4.1 only.

The following table summarizes support for ODBC on Windows NT for iPlanet Web Setver.

Table 10-3Windows NT ODBC Support

ODBC Component Windows NT 4.0 SP4

ODBC Manager

ODBC Drivers

MS ODBC Manager 3.51 MCAD 2.0 SP2

MS SQL Server 6.5 MS SQL Server Driver 3.60 (sqlsrv32.dll)

MS Access 7.0

Sybase SQL Anywhere 5.5

MS Access Driver 3.51.171300 (odbcjt32.dll)
Sybase SQL Anywhere Driver 5.00.0003 (wod50t.dll)

269

Supported Database Clients and ODBC Drivers

Note that ODBC is not supported on Unix platforms.

NOTE Visigenic no longer enhances their existing ODBC drivers
or SDK products. Instead, Visigenic has selected
INTERSOLYV to provide an upgrade path for these
drivers and products. (For information, see
http://ww. intersolv.conf newsstand/ pr9711
191. ht m). Visigenic will provide a document covering the
operational differences between Visigenic and
INTERSOLV ODBC drivers.

The following table lists the capabilities of the supported ODBC drivers on NT.

Table 10-4 ODBC driver capabilitieson NT

SQL Database Connect SQL Read-only Updatable Stored
passthrough cursor cursor procedures

MS-SQL Setver 6.5 Yes Yes Yes Yes Yes

Sybase SQL Anywhere Yes Yes Yes Yes Not tested

Access Yes Yes Yes No N/A

270 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

DB2

DB2

Note that ODBC drivers are not supported for Unix platforms.

To use a DB2 server, you must have iPlanet Web Server, Enterprise Edition. You cannot
access DB2 from the FastTrack Edition.

All platforms: Install the DB2 client, version 2.1.2. For Solatis, you need APAR #JR10150.
For information, see the DB2 documentation at
http://ww:. software. i bm conif dat a/ db2/.

If the database and web server are on different machines: To determine if you can connect to
the DB2 server, you can issue the following command from the DB2 command line:

DB2 TERM NATE # this comrand al l ows the catal og command to take
ef f ect
DB2 CONNECT TO dat abasenane USERI D userid USI NG password

If you use the BLOB or CLOB data types in your application, you must set the
| ongdat aconpat option in your $DB2PATH db2cl i . i ni file to 1. For example:

[Dat abase nane]
| ongdat aconpat =1

If you make changes to the db2cl i . i ni file, you must restart your web server for them to
take effect.

Unix only: You must set the following environment vatiables:

DB21 NSTANCE Specifies the name of the connection port defined on both the
server and client. This name is also in the dbmconfiguration
file for the SVCENAME configuration parameter.

DB2PATH Specifies the top-level directory in which DB2 is installed.
For example: / hone/ $DB21 NSTANCE/ sql | i b

DB2COovM Verify that this variable specifies the protocol that will be used.
For example:
DB2COMM=TCPIP

PATH Must include

$DB2PATH mi sc: $DB2PATH adm $DB2PATH bi n

LD_LI BRARY_PA (Solaris and Irix) Must include the DB2 1 i b directory. For
TH example, on Solaris it must include
/opt/IBMIb2/v2.1/1ib.

271

Informix

SHLI B_PATH (HP-UX) Must include the DB2 1 i b directory.
LI BPATH (AIX) Must include the DB2 | i b directory.

Informix

To use an Informix server, you must have iPlanet Web Server Enterprise Edition. You cannot
access Informix from the FastTrack Edition.

If the database and the web setver are on different machines, follow the instructions in
“Informix Remote.”

If the database and the web setver are on the same machine, follow the instructions in
“Informix Local”

Informix Remote

Unix only: Install an Informix ESQL/C Runtime Client 7.22 (also called Informix
I-Connect) and then set the following environment variables:

I NFORM XDl R Specifies the top-level directory in which Informix is installed.

I NFORM XSERVE Specifies the name of your default Informix server.
R

I NFORM XSQLHO Specifies the path of the sql host s file if you move it

STS somewhere other than $| NFORM XDI R/ et ¢/ sql host s. You
do not need to set this variable if you leave the sqgl host s file
in this directory.

SHLI B_PATH (HP-UX) Must include $I NFORM XDI R/ | i b and
$I NFORM XDI R/ | i b/ esql .

272 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Informix

You must also modify $| NFORM XDI R/ et ¢/ sql host s to match the service name in the
[et c/ servi ces file. For information on how to do so, see your Informix documentation.

NT only: Install an Informix ESQL/C Runtime Client 7.20 (also called Informix I-Connect.)
During installation all necessary environment variables are set. You use the appropriate
Informix utility to enter the necessary information about the remote server you wish to
connect to.

If you run your web Server as a System, be sure that you have run r egcopy. exe.

All platforms: Depending on your name setvice, you may also need to edit the appropriate
file to add the IP address of the remote host machine you are connecting to. On NT, this file is
wi nnt\systenB2\ drivers\ et c\ host s file under the NT SystemRoot. On Unix, this file
is/etc/hosts.

In the same directory, add the following line to the ser vi ces file:
ifmx_srvc port/tcp # Inform x Online Server

where Zfmx_srve is the name of your service and port is its port number. The port number must
match the port on the remote machine that the Informix server listens to. To make this line
valid, you must either insert at least one space after t Cp or place a comment at the end of the
line. For example, if your Informix service is named ifmx1 and the port number is 1321, you
add this line:

i fmxl 1321/tcp # Inform x Online Server

273

oDBC

Informix Local

If you install Informix locally, you must install the Informix client before you install the
Informix server.

Unix only: If you use 7.22 Online Setver for Unix, the installation process creates the
appropriate directory structure and sql host s file. You must set the environment variables as
for a remote server.

NT only: You should install the Online Server 7.20. This installs the client; no additional steps
are necessaty. If you run your web Setver as a System, be sure that you have run
regcopy. exe.

ODBC

All platforms: For information on the capabilities of the supported ODBC drivers, see
“Supported Database Clients and ODBC Drivers.”

You need to have the appropriate ODBC drivers for the database you are connecting to. You
also need to have additional ODBC connectivity files.

Most software products that provide ODBC connectivity supply an ODBC driver or drivers
and ODBC connectivity.

NT only: Currently Netscape has certified with ODBC Manager version 2.5. If you have
access to an ODBC driver, but not to the ODBC connectivity files, you can obtain them from
the MS ODBC SDK. To get updated files for Access, Foxpro, and Excel, you may need patch
WX1350 from Microsoft.

Unix only: For ODBC on Unix, you can use either the driver from Visigenic or from
OpenLink. If you’re using the Visigenic dtiver, follow the instructions in “Visigenic ODBC
Driver (Unix only).” If you're using the OpenLink driver, follow the instructions in “OpenLink
ODBC Driver (Solaris only).”

ODBC Data Source Names (NT only)

Two types of data sources can be created:

e System DSN: If you're using a system DSN, the web server must be started using the
System account.

* User DSN: If you're using a user DSN, the web server must be started using an
appropriate N'T user account.

274 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

ODBC

The data source describes the connection parameter for each database needing ODBC
connectivity. The data soutce is defined using the ODBC administrator. When ODBC is
installed, an administrator is also installed. Each ODBC driver requires different pieces of
information to set up the data source.

OpenLink ODBC Driver (Solaris only)

Install the request broker, OpenLink Workgroup Edition ODBC Driver, on the database
server. This must be running before you can connect to the database using the OpenLink
request agent.

Install the request agent, in OpenLink Generic ODBC client version 1.5, on the database client
machine.

Rename or copy the request agent’s driver manager file from | i bi odbc. so to | i bodbc. so
in the $ODBCDI R/ | i b directory, where $ODBCDI R s the directory in which ODBC is
mnstalled.

When you installed your server, you installed it to run as some uset, either root, nobody, or a
particular server user. The user you pick must have a real home directory, which you may have
to create. For example, the default home directory for the nobody user on Irix is / dev/ nul | .
If you install your server on Irix as nobody, you must give the nobody user a different home
directory.

In that home directory, you must have an . odbc. i ni file. For example, if you run the server
as root, this file is under the root (/) directoty.

Set the following environment variables:

LD LI BRARY_PA (Solaris and Irix) Add the location of the ODBC libraries to this
TH variable.

UDBCI NI Specifies the location of the . odbc. i ni file.

275

oDBC

Visigenic ODBC Driver (Unix only)

When you installed your server, you installed it to run as some uset, either root, nobody, or a
particular server user. The user you pick must have a real home directory, which you may have
to create. For example, the default home directory for the nobody user on Irix is / dev/ nul | .
If you install your server on Irix as nobody, you must give the nobody user a different home
directory.

In that home directory, you must have an . odbc. i ni file. For example, if you run the server
as root, this file is under the root (/) directoty.

Set the following environment variable:

LD LI BRARY_PA (Solaris and Irix) Add the location of the ODBC libraries to this
TH variable. In the preceding example, this would be
/u/ ny-user/ odbcsdk/ i b.

SHLI B_PATH (HP-UX) Add the location of the ODBC libraries to this
variable.
LI BPATH (AIX) Add the location of the ODBC libraries to this variable.
NOTE Visigenic no longer enhances their existing ODBC drivers

or SDK products. Instead, Visigenic has selected
INTERSOLYV to provide an upgrade path for these
drivers and products. (For information, see
http://ww. intersol v.com newsst and/ pr9711
191. ht m). Visigenic will provide a document covering the
operational differences between Visigenic and
INTERSOLV ODBC drivets.

276 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Oracle

Oracle

To use an Oracle server, you must have iPlanet Web Server, Enterprise Edition. You cannot
access Oracle from the FastTrack Edition.

If the database and the web setver are on different machines, follow the instructions in “Oracle
Remote.”

If the database and the web setver are on the same machine, follow the instructions in “Oracle
Local”

Unix only: Make sure you can connect to your Oracle database via SQL*Net. When you have
finished installation, you can use a loopback test to verify that you connected correctly. For
example, from within sql pl us, you can try to connect to your database with the following
command:

connect usernamel password@ervice_name
Or, from the Unix command line, you could use this command:
sql pl us usernamel password@ervice_name

In these commands, you use the service_name from your t nsnames. or a file.

Oracle Remote

NT only: You must install the Oracle 7.3.2 client software for N'T. Oracle 7.1 and 7.2 clients
are not supported. You must also create the Oracle configuration files using the appropriate
Oracle configuration utility.

Unix only: Before you can connect to Oracle under Irix, you must have the appropriate Irix
patches. See Enterprise Server 3.x Release Notes for information on the patches you need.

You must install the Oracle 7.3.x client software for Unix. Oracle 7.1 and 7.2 clients are not
supported.

You must set the following environment variables:

ORACLE_HOVE Specifies the top-level directory in which Oracle is installed.

TNS_ADM N Specifies the location of configuration files, for example,
$ORACLE_HOMVE/ net wor k/ admi n. After installation Oracle
creates the configuration files under / var / opt/ or acl e. If
i stener. oraandtnsnanes. ora are in this directory, you
might not need to set TNS_ADM N, because by default Oracle
uses/ var/ opt/oracl e.

277

Oracle

278

If you do not set these environment variables propetly, Oracle returns the ORA-1019 error
code the first time you attempt to connect. For information on etror handling, see Chapter 12,
“Error Handling for LiveWire.”

Oracle Local

Unix only: Befote you can connect to Oracle under Irix, you must have the appropriate Irix
patches. See Enterprise Server 3.x Release Notes for information on the patches you need.

All platforms: You must install an Oracle Workgroup, Enterprise Server 7.3.2 (N'T), or
Enterprise Server 7.3.x (Unix). Oracle 7.1 and 7.2 clients are not supported. Check with your
server vendor to verify that the Oracle server version is compatible with the Oracle client.

You must set the following environment variables:

ORACLE_HOVE Specifies the top-level directory in which Oracle is installed.
ORACLE_SI D Specifies the Oracle System Identifier.

When your Oracle database server is local, you must pass the empty string as the second
argument to the connect method of the dat abase or DoPool object or to the DbPool
constructor. This way, those methods use the value of the ORACLE_SI D environment variable.
For example:

connobj . connect ("ORACLE"', "" "user", "password", "");

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Sybase

Sybase

For more information on Oracle installation, see Oracle’s documentation.

To use a Sybase server, you must have iPlanet Web Server, Enterprise Edition. You cannot
access Sybase from the FastTrack Edition.

If the database and the web server are on different machines, follow the instructions in “Sybase
Remote.”

If the database and the web server are on the same machine, follow the instructions in “Sybase
Local”

In addition, if you’re using a Unix platform and Sybase has a multithreaded driver for that
platform, follow the instructions in “Sybase (Unix only).” See Enterprise Server 3.x Release Notes
for a list of the Unix platforms on which Sybase has a multithreaded driver.

Sybase Remote

Unix only: Set the following environment variable:

SYBASE The top-level directory in which Sybase is installed
LD LI BRARY_PA (DEC) Must include $SYBASE/ | i b.
TH

279

Sybase

For Solatis, you must also follow the instructions in “Sybase (Unix only).”

All platforms: You must install SYBASE Open Client/C. Suppotted versions are listed in
“Supported Database Clients and ODBC Drivers.”

You can use the appropriate Sybase utility to enter, in the sql . i ni file (NT) and the
i nterfaces file (all platforms), the information about the remote server you want to connect
to. For more information, see your Sybase documentation.

Sybase Local

Unix only: Set the following environment variable:

SYBASE The top-level directory in which Sybase is installed
LD LI BRARY_PA (DEC) Must include $SYBASE/ | i b.
TH

280 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Sybase

For Solatis, you must also follow the instructions in “Sybase (Unix only).”

All platforms: Install a Sybase SQL Setver, version 11.1; the client portion is installed with
the server. Supported versions are listed in “Supported Database Clients and ODBC Drivers.”

You can use the appropriate Sybase utility to enter the information about the remote server you
want to connect to in the sql . i ni file (NT) and the i nt er f aces file (all platforms). For
more information, see your Sybase documentation.

Sybase (Unix only)

On some Unix platforms, Sybase has both a single-threaded driver and a multithreaded driver.
If Sybase has a multithreaded driver for a particular Unix machine, you must use the
multithreaded driver with LiveWire. On these platforms, your web server will behave
unpredictably with the single-threaded driver. This requirement applies for both a local and a
remote connection. It does not apply to Windows platforms.

See Enterprise Server 3.x Release Notes for a list of the Unix platforms on which Sybase has a
multithreaded driver.

To ensure that you use the multithreaded driver, you must edit your

$SYBASE/ confi g/ i btcl. cfg file. This file contains a pair of lines that enable either the
single-threaded or the multithreaded driver. You must have one of these lines commented out
and the other active. For example, on Solaris locate these lines:

[DRI VERS]
;libtli.so=tcp unused ; This is the nonthreaded tli driver.
libtli_r.so=tcp unused ; This is the threaded tli driver.

Make sure that the line for the single-threaded driver is commented out and that the line for the
multithreaded driver is not commented out. The filename differs on each platform, but the
lines are always in the DRI VERS section and are always commented to indicate which is the
single-threaded and which the multithreaded driver.

NOTE If you wish to use the Sybase i sql utility, you must use
the nonthreaded t | i driver. In this case, the line for
libtli_r.so mustbecommented out. For information
on using this driver, see your Sybase documentation.

281

Sybase

282 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Chapter 11

Data Type Conversion

This chapter describes how the JavaScript runtime engine on the server converts between the
more complex data types used in relational databases and the simpler ones defined for
JavaScript.

This chapter contains the following sections:
* About Data Type Conversion
* Working with Dates and Databases

* Data-Type Conversion by Database

About Data Type Conversion

Databases have a rich set of data types. The JavaScript runtime engine on the server converts
these data types to JavaScript values, primarily either strings or numbers. A JavaScript number
is stored as a double-precision floating-point value. In general, the runtime engine converts
character data types to strings, numeric data types to numbers, and dates to JavaScript Dat e
objects. It converts null values to JavaScript null.

NOTE Because JavaScript does not suppott fixed or packed
decimal notation, some precision may be lost when
reading and writing packed decimal data types. Be sure to
check results before inserting values back into a database,
and use appropriate mathematical functions to correct for
any loss of precision.

283

Working with Dates and Databases

Working with Dates and Databases

Date values retrieved from databases are converted to JavaScript Dat e objects. To insett a date
value in a database, use a JavaScript Dat e object, as follows:

cur sor Nane. dat eCol utm = dat eObj

Here, cur sor Nane is a cursor, dat eCol umm is a column corresponding to a date, and
dat eCbj is a JavaScript Dat e object. You create a Dat e object using the new operator and
the Dat e constructor, as follows:

datethj = new Date(dateString)

where dat eSt ri ng is a string representing a date. If dat eSt ri ng is the empty string, it
creates a Dat e object for the current date. For example:

custs.orderDate = new Date("Jan 27, 1997")

NOTE DB2 databases have t i me and t i mest anp data types.
These data types both convert to the Dat e type in
JavaScript.
CAUTION The LiveWire Database Service cannot handle dates after

February 5, 2037.

Data-Type Conversion by Database

284

The following table shows the conversions made by the JavaSctipt runtime engine for DB2

databases.

Table 11-1DB2 data-type conversions

DB2 Data Type JavaScript Data
Type

char (n),varchar(n),l ong varchar, string

cl ob(n)

i nteger, snallint i nt eger

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Data-Type Conversion by Database

Table 11-1DB2 data-type conversions (Continued)

DB2 Data Type JavaScript Data
Type

deci nal, doubl e doubl e

date, tinme, tinmestanp Dat e

bl ob Bl ob

The following table shows the conversions made by the JavaScript runtime engine for Informix
databases.

Table 11-2Informix data-type conversions

Informix Data Type JavaScript Data
Type

char,nchar,text,varchar, nvarchar string

deci mal (p, s),doubl e precision,float, nunber

i nt eger, money(p, s),serial,smallfloat,

smal | i nt

dat e, dat et i mel Dat e

byte Bl ob

i nterval Not supported

1. The Informix dat eti nme data type has variable precision defined by the user.
Server-side JavaScript displays dat et i ne data with the format of YEAR to SECOND.
Ifadat et i me variable has been defined with another precision, such as MONTH to
DAY, it may display incorrectly. In this situation, the data is not corrupted by the
incorrect display.

285

Data-Type Conversion by Database

ODBC translates a vendor’s data types to ODBC data types. For example, the Microsoft SQL
Server var char data type is converted to the ODBC SQL_VARCHAR data type. For more
information, see the ODBC SDK documentation. The following table shows the conversions
made by the JavaSctipt runtime engine for ODBC databases.

Table 11-30DBC data-type conversions

ODBC Data Type JavaScript Data
Type

SQL_LONGVARCHAR, SQL_VARCHAR SQL_CHAR string

SQL_SMALLI NT, SQL_I NTEGER SQL_DOUBLE, nunber
SQL_FLOAT, SQL_REAL, SQL_BI G NT,
SQL_NUVERI C, SQL_DECI MAL

SQL_DATE, SQL_TI ME, SQL_TI MESTAWP Dat e

SQL_BI NARY, SQL_VARBI NARY, Bl ob
SQL_LONGBI NARY

The following table shows the conversions made by the JavaScript runtime engine for Oracle
databases.

Table 11-40racle data-type conversions

Oracle Data Type JavaScript Data
Type

| ong, char(n), varchar2(n),row d string

nunber (p, s), nunber (p, 0),fl oat (p) nunber

date Dat e

raw(n),long raw Bl ob

286 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Data-Type Conversion by Database

The following table shows the conversions made by the JavaSctipt runtime engine for Sybase
databases.

Table 11-5Sybase data-type conversions

Sybase Data Type JavaScript Data
Type
char (n),varchar (n),nchar(n), string

nvar char (n),text

bit,tinyint,smallint,int,float(p), number 1
doubl e precision,real,decimal (p,s),
nuneric(p, s), money, smal | noney

datetine,smal | datetinme Dat e

bi nary(n),varbinary(n),inmage Bl ob

1. The Sybase client restricts numeric data types to 33 digits. If you insert a JavaScript
number with more digits into a Sybase database, you’ll get an error.

287

Data-Type Conversion by Database

288 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Chapter 12

Error Handling for LiveWire

This chapter describes the types of errors you can encounter when working with relational
databases.

This chapter contains the following sections:
* Checking for Error Conditions

* Return Values

* Error Methods

¢ Status Codes

Checking for Error Conditions

When writing a JavaScript application, you should be aware of the various etror conditions that
can occur. In particular, when you use the LiveWire Database Service to interact with a
relational database, errors can occur for a variety of reasons. For example, SQL statements can

289

Return Values

fail because of referential integrity constraints, lack of user privileges, record or table locking in
a multiuser database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure.

Your code should check for error conditions and handle them appropriately.

Return Values

The return value of the methods of the LiveWire objects may indicate whether or not an error
occurred. Methods can return values of various types. Depending on the type, you can infer
different information about possible errors.

Number

When a method returns a number, the return value can either represent an actual numeric value
or a status code. For example, Cur sor . col umms returns the number of columns in a cursor,
but Cur sor . updat eRow returns a number indicating whether or not an error occurred.

The Cur sor. col ums and Resul t set . col utms methods return an actual numeric value.
The following methods return a numeric value that indicates a status code:

Connect i on. begi nTransact i on
Connecti on. conmt Transacti on
Connecti on. execut e

Connect i on. nmaj or Err or Code
Connecti on. m nor Err or Code
Connection. rel ease
Connection.rol |l backTransacti on
Connecti on. SQLTabl e

Cursor. cl ose

Cur sor. del et eRow
Cursor.insert Row

Cur sor . updat eRow

DbPool . connect

DbPool . di sconnect

DbPool . naj or Er r or Code

DbPool . ni nor Err or Code

DbPool . st or edPr ocAr gs

Resul t set . cl ose

St proc. cl ose

290 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Return Values

If the numeric return value of a method indicates a status code, 0 indicates successful
completion and a nonzero number indicates an error. If the status code is nonzero, you can use
the maj or Er r or Code and maj or Er r or Message methods of the associated Connect i on
or DbPool object to find out information about the error. In some cases, the

mi nor Er r or Code and mi nor Er r or Message methods provide additional information
about the error. For information on the return values of these error methods, see “Etror
Methods.”

Object

When a method returns an object, it can either be a real object ot it can be null. If the method
returns null, a JavaScript error probably occurred. In most cases, if an error occurred in the
database, the method returns a valid object, but the software sets an error code.

The bl ob global function returns an object. In addition, the following methods return an
object:

Connecti on. cur sor
Connecti on. st oredProc
DbPool (constructor)
DbPool . connecti on

St proc. resul t Set

291

Return Values

Whenever you create a cursor, result set, or stored procedure, you should check for both the
existence of the created object and for a possible return code. You can use the
maj or Er r or Code and nmaj or Er r or Message methods to examine an error.

For example, you might create a cursor and verify its correctness with code similar to the
following:

/1l Create the Cursor object.
custs = connobj.cursor ("select id, nane, city
fromcustoner order by id");
/1 Before continuing, nmake sure a real cursor was returned
/1 and there was no database error.
if (custs &% (connobj.majorErrorCode() == 0)) {
/1 Get the first row
custs. next();
/1 ... process the cursor rows ...
/1 C ose the cursor
custs. cl ose();

}
el se
/1 ... handle the error condition ...
Boolean

The following methods return Boolean values:

Connecti on. connect ed
Cur sor. next

DbPool . connect ed
Resul t set . next

292 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Return Values

When a method returns a Boolean value, t r ue usually indicates successful completion,
whereas f al se indicates some other condition. A return value of f al se does not indicate an
actual error; it may indicate a successful termination condition.

For example, Connect i on. connect ed returns f al se to indicate the Connect i on object
is not cutrently connected. This can mean that an etror occurred when the Connect i on
object was created, or it can indicate that a previously used connection was intentionally
disconnected. Neither of these is an error of the connect ed method. If an error occurred
when the connection was created, your code should catch the error with that method. If the
connection was terminated, you can reconnect.

As a second example, Cur sor . next returns f al se when you get to the end of the rows in
the cursor. If the SELECT statement used to create the Cur sor object finds the table but no
rows match the conditions of the SELECT statement, then an empty cursor is created. The first
time you call the next method for that cursor, it returns f al se. Your code should anticipate
this possibility.

String

When a method returns a string, you usually do not get any error information. If, however, the
method returns null, check the associated error method.

The following methods return a string:

Connect i on. nmaj or Err or Message
Connect i on. m nor Err or Message
Cur sor . col utmNane

DbPool . maj or Err or Message
DbPool . m nor Err or Message
Resul t set . col uimmNane

293

Error Methods

Void

Some methods do not return a value. You cannot tell anything about possible errors from such
methods. The following methods do not return a value:

Connection. rel ease
Cursor. cl ose
DbPool . di sconnect
Resul set . cl ose

Error Methods

As discussed eatlier, many methods return a numeric status code. When a method returns a
status code, there may be a corresponding error code and message from the database server.
LiveWire provides four methods for the Connect i on and DbPool objects to access database
error codes and messages. The methods are:

e maj or Err or Message: major error message returned by the database.
e mnor Error Message: secondary message returned by the database.

* maj or Err or Code: major error code returned by the database. This typically corresponds
to the server’s SQLCODE.

* mnor Error Code: secondary error code returned by the database.

The results returned by these methods depend on the database server being used and the
database status code. Most of the time you need to consider only the major error code or error
message to understand a particular error. The minor error code and minot error message are
used in only a small number of situations.

NOTE Calling another method of Connect i on or DbPool can
reset the error codes and messages. To avoid losing error
information, be sure to check these methods before
proceeding,.

294 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Status Codes

After receiving an error message, your application may want to display a message to the user.
Your message may include the string returned by maj or Er r or Message or

mi nor Er r or Message or the number returned by maj or Er r or Code or mi nor Er r or Code.
Additionally, you may want to process the string or number before displaying it.

In computing the string returned by maj or Er r or Message and mi nor Er r or Message,
LiveWire returns the database vendor string, with additional text prepended. For details on the
returned text, see the descriptions of these methods in the Server-Side JavaScript Reference.

Status Codes

The following table lists the status codes returned by various methods. iPlanet recommends
that you do not use these values directly. Instead, if a method returns a nonzero value, use the
associated maj or Er r or Code and maj or Er r or Message methods to determine the
particular error.

Table 12-1Status codes for LiveWire methods

Status Explanation Status Explanation

Code Code

0 No error 14 Null reference parameter

1 Out of memory 15 dat abase object not found (for

backward compatibility with older
applications)

2 Object never initialized 16 Required information is missing
3 Type conversion error 17 Obiject cannot support multiple
readers

4 Database not registered 18 Object cannot support deletions

5 Error reported by server 19 Object cannot support insertions

6 Message from server 20 Object cannot support updates

7 Error from vendor’s 21 Object cannot support updates
library

8 Lost connection 22 Object cannot support indices

9 End of fetch 23 Object cannot be dropped

10 Invalid use of object 24 Incorrect connection supplied

11 Column does not exist 25 Object cannot support privileges

295

Status Codes

Table 12-1Status codes for LiveWire methods (Continued)

Status Explanation Status Explanation
Code Code
12 Invalid positioning within 26 Object cannot support cursors

object (bounds error)

13 Unsupported feature 27 Unable to open

296 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Chapter 13

Videoapp Sample Application

This chapter describes the videoapp sample application, which illustrates the use of the
LiveWire Database Service. It desctibes how to configure your environment to run the
videoapp sample application.

This chapter contains the following sections:

About the Videoapp Sample Application
Configuring Your Environment
Running Videoapp

Looking at the Source Files

About the Videoapp Sample Application

Netscape servers come with a sample database application, vi deoapp, which illustrates the
LiveWire Database Service. This application tracks video rentals at a fictional video store. The
vi deoapp application demonstrates the use of the DbPool and Connect i on objects.

There are a small number of restrictions on the use of these applications:

While these sample applications can be used with ODBC and SQL Setver, if the driver on
your platform does not support updatable cursors, the applications will not work. For

information on which drivers support updatable cursors, see “Supported Database Clients
and ODBC Drivers.”

The vi deoapp application uses cursors that span multiple HIML pages. If your database
driver is single-threaded, these cursors may hold locks on the database and prevent other
users from accessing it. For information on which database drivers are single-threaded, see
the Enterprise Server 3.x Release Notes.

297

Configuring Your Environment

Configuring Your Environment

Before you can run these applications, you must make minor changes to the source files and
create a database of videos. This section tells you which files you must change and which
procedures you use to make these changes and to create the database for each of the supported
database servers. See the section for your database server for specific information.

NOTE Your database server must be up and running before you
can create your video database, and you must configure
your database server and client as described in Chapter 10,
“Configuring Your Database.”

In addition, the database-creation scripts use database utilities provided by your database
vendot. You should be familiar with how to use these utilities.

Connecting to the Database and Recompiling

The vi deoapp application is in the $NSHOME\ pl ugi ns\ sanpl es\ j s\ vi deoapp
directory, where $NSHOME is the directory in which you installed the iPlanet Web Server.

For each application, you must change the connect string in the HTML source file,

st art. ht m to match your database environment. For information on the parameters you use
to connect, see “Database Connection Pools.” For even more information, see the description
of the connect method in the Server-Side JavaScript Reference.

For the vi deoapp application, change this line:

pr oj ect. shar edConnecti ons. pool =
new DbPool ("<Server Type>", "<Server ldentifier>",
"<User>", "<Password>", "<Database>", 2, false)

298 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Configuring Your Environment

Save your changes and recompile the application. To recompile one of the applications from
the command line, run its build file, located in the application’s directory. Be sure your PATH
environment variable includes the path to the compiler (usually $NSHOVE\ bi n\ ht t ps\ bi n
on Windows N'T and $NSHOVE\ bi n\ ht t ps\ | i b on Unix).

Restart the application in the JavaScript Application Manager.

Creating the Database

The creation scripts for vi deoapp are in its application directory. The first time you run the
scripts you might see errors about dropping databases or tables that do not exist. These error
messages are normal; you can safely ignore them.

Informix

Before using the following instructions, you must configure your Informix client as described
in “Informix.” In addition, make sure your PATH environment variable includes
$1 NFORM XDI R\ bi n and that your client is configured to use the Informix utilities.

The SQL files for creating the video database (I w_vi deo) on Informix are in this directory:

$NSHOVE\ pl ugi ns\ sanpl es\j s\ vi deoapp\i f x

NOTE Remember that path names in this manual are given in NT
format if they are for both N'T and Unix. On Unix, you
would use $NSHOWE/ j s/ sanpl es/ vi deoapp/i f x.

1. On Unix, log in as “informix” user and run thei f x_I oad. csh shell script for
vi deoapp.

On NT, in the Informix Server program group, double-click the
Command-Line Utilities icon to open a DOS window, and then run the
following commands:

cd c:\netscape\server\pl ugi ns\ sanpl es\j s\ vi deoapp\i f x
i fx_| oad. bat

2. You can now run the application by making the changes described in
“Connecting to the Database and Recompiling.”

299

Configuring Your Environment

Oracle

Before using the following instructions, you must configure your Oracle client as described in
“Oracle.” In addition, your client must be configured to run the Oracle utilities. T'o run
SQLPlus, you may need to set the ORACLE_SI D environment variable.

The SQL files for creating the video database on Oracle are in these two directoties:
$NSHOVE\ pl ugi ns\ sanpl es\j s\ vi deoapp\ ora

1. On both Unix and NT, start SQL Plus. From the SQL> prompt, enter this
command:

Start $NSHOVE\ pl ugi ns\ sanpl es\ j s\ vi deoapp\ or a\ or a_vi deo. sql

This SQL script does not create a new database. Instead, it creates the Oracle
tables in the current instance.

2. On Unix, run the or a_| oad script file to load the video tables with data. On
NT, run the or a_| oad. bat batch file to load the video tables with data. You
must edit the appropriate file to connect to your server; the instructions for
doing so are in the file.

3. You can now run the application by making the changes described in
“Connecting to the Database and Recompiling.”

Sybase

Before using the following instructions, you must configure your Sybase client as described in
“Sybase.” In addition, on Unix be sute your PATH environment variable includes
$SYBASE\ bi n and set DSQUERY to point to your server.

The SQL files for creating the video database on Sybase ate in these two directories:
$NSHOVE\ pl ugi ns\ sanpl es\j s\ vi deoapp\ syb
1. Run the appropriate script from the command line. On Unix, the script is:
syb_vi deo. csh userid password

For example:
$NSHOVE\ pl ugi ns\ sanpl es\j s\ vi deoapp\ syb\ syb_| oad. csh sa

On NT, the script is:
syb_| oad userid password

For example:

c:\netscape\server\ pl ugi ns\ sanpl es\j s\vi deoapp\ syb\ syb_| oad sa

300 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Configuring Your Environment

2. You can now run the application by making the changes described in
“Connecting to the Database and Recompiling.”

NOTE

If you have both Sybase and MS SQL Server or DB2
installed on your machine, thete is a potential naming
confusion. These vendors have utilities with the same
name (bcp and i sql). When running this script, be
certain that your environment variables are set so that you
run the correct utility.

Microsoft SQL Server (NT only)

Before using the following instructions, you must configure your Sybase client as described in
“ODBC.” In addition on Unix, set DSQUERY to point to your server.

The SQL files for creating the video database on MS SQL Server are in these two directories:

$NSHOVE\ pl ugi ns\ sanpl es\j s\ vi deoapp\ nss

1. From a DOS prompt, run this batch file:

nss_| oad userid password

For example:

c:\netscape\server\pl ugi ns\ sanpl es\j s\vi deoapp\ nss\ nss_I| oad sa

2. You can now run the application by making the changes described in
“Connecting to the Database and Recompiling.”

NOTE

If you have both MS SQL Server and Sybase or DB2
installed on your machine, there is a potential naming
confusion. These vendors have utilities with the same
name (bcp and i sql). When running this script, be
certain that your environment variables are set so that you
run the correct utility.

DB2

The SQL files for creating the video database on DB2 are in these two directories:

$NSHOVE\ pl ugi ns\ sanpl es\j s\ vi deoapp\ db2

301

Configuring Your Environment

1. (Unix only) Your PATHenvironment variable must include the $DB2PATH bi n,
$DB2PATH mi sc, and $DB2PATH admdirectories.

2. Before you can run these scripts, you must have installed the DB2 Software
Developer’s Kit (DB2 SDK).

3. Also, before you can run the script to create the tables, you must edit it to
modify some parameters. On Unix, the script is in db2_| oad. csh; on NT, it is
in db2_| oad. bat . Edit the appropriate db2_1| oad file and modify the following
parameters to reflect your environment:

o <nodenane>: node name alias

o <host nane>: host name of the node where the target database resides
o <service- nanme>; service name or instance name from the services file
o <dat abase- nane>: database name

o <user>:authorized user

o <passwor d>: user’s password

4. Make sure your / et c/ servi ces file has entries for your instance or service
name if you are creating the database in a remote DB2 server.

5. Run the appropriate version of the script from the DB2 command window. The
db2_| oad script runs the db2_vi deo. sql and i nport. sql scripts. These
subsidiary scripts create the video tables and load them with data from the
* . del files. They do not create a new database. Instead, they create the DB2
tables in the local database alias specified in the db2_| oad script.

NOTE If you have both DB2 and Sybase or MS SQL Setver
installed on your machine, there is a potential naming
confusion. These vendors have utilities with the same
name (bcp and i sql). When running this script, be
certain that your environment variables are set so that you
run the correct utility.

302 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Running Videoapp

Running Videoapp

In this section, you get the vi deoapp sample application up and running. This sample is
significantly more complex than the samples discussed in Chapter 4, “Quick Start with the
Sample Applications.” This chapter only gives an overview of it. You should look at some of
the files to start familiarizing yourself with it.

Once you have created the video database and changed the database connection parameters,
you can access the application here:

htt p: / / server.domain/ vi deoapp

After connecting to the database, the Application Manager displays the vi deoapp home page,
as shown in Figure 13-1.

Figure 13-1 Videoapp home page

[= T e ===

T e e—— g] |

Agdmemtwior Ciriore

BT e

303

Looking at the Source Files

If you cannot connect to the database, you see an error message. Make sure you have entered
the correct database connection parameters as described in “Connecting to the Database and
Recompiling” recompiled, and restarted the application.

The first thing you must do when you’re connected is to add a new customer. Until you have
done this, there are no customers to use for any of the other activities.

You can use Vi deoapp as a customer or as an administrator. As a customer, you can:
* Rentamovie

* Show all the movies you currently have rented

As an administrator, you can:

* Show all movies and who has them rented

* Return a video for a customer

* Add a new customer entry

* Delete a customer entry

* Modify a customer entry

Run the application and make a few choices to perform different actions.

Looking at the Source Files

304

The source HTML files for vi deoapp, listed in the following table, are copiously commented.

Table 0.6 Primary vi deoapp source files

hone. ht m The application default page. Has links to pi ck. ht m
status. htmrental s. ht mcust oner. ht mand
del et e. ht m If not connected to the database, this page redirects
the clienttostart. htm

start.htm Connects the application to the database, starts a transaction, and
then redirects back to hone. ht m

abort. htm Cancels a transaction and begins a new transaction.

save. htm Commits a transaction and begins a new transaction.

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Looking at the Source Files

Table 0.6 Primary vi deoapp source files (Continued)

pi ck. htm

status. htm

rentals. htm

cust omer. ht

m

delete. htm

nmodi fy. ht m

Allows the customer to rent a movie. It contains frames for
cat egory. ht mvi deos. ht mand pi ckmenu. ht m

The cat egor y. ht mfile displays video categories.

The vi deos. ht mfile displays all videos in selected category,
linked to r ent . ht mto rent a particular video.

The pi cknenu. ht mfile displays choices of other pages to visit.

Displays the videos the customer currently has rented. If the
customer has not selected an ID, redirects to cl i ent . ht m which
lets the customer select the ID.

Displays a list of all rented videos. When the administrator clicks
on one, it submits the choice tor et ur n. ht m which performs the
logic to return the video, then redirects back tor ent al s. ht m

Allows the administrator to add a new customer. Submits form
input to add. ht m which performs logic to add a customer, then
redirects back to cust oner . ht m

Allows the administrator to delete a customer. Displays a list of
customers with links to r enove. ht m which deletes the specified
row from the customer table, then redirects back to del et e. ht m

Allows the administrator to modify a customer entry. Displays a
list of the first five customers with links to nodi f y1. ht mand
nmodi f y2. ht m Those pages update a specific row in the
customer table and then redirect back to nodi f y. ht m The

nodi f y3. ht m file displays additional customers five at a time.

305

Looking at the Source Files

Application Architecture

This section orients you to the implementation of some of the functionality in vi deoapp. It
describes only how the application works with the database and details the procedure for
renting a movie. Other tasks are similar.

Connection and Workflow

When a user initiates a session with vi deoapp by accessing its default page (home. ht m),

vi deoapp checks whether it is already connected to the database. If so, vi deoapp assumes
not only that the application is connected, but also that this user is already connected, and it
proceeds from there.

If not connected, vi deoapp redirects to st art . ht m On this page, it creates a single pool of
database connections to be used by all customers, gets a connection for the user, and starts a
database transaction for that connection. It then redirects back to honme. ht mto continue. The
user never sees the redirection.

The database transaction started on st art . ht mstays open until the user explicitly chooses
either to save or discard changes, by clicking the Save Changes or Abort Changes button.
When the user clicks one of those buttons, save. ht mor abor t . ht mis run. These pages
commit or roll back the open transaction and then immediately start another transaction. In
this way, the customer’s connection always stays oper.

Once it has a database connection, vi deoapp presents the main page to the user. From that
page, the user makes various choices, such as renting a movie or adding a new customer. Each
of those options involves displaying various pages that contain server-side JavaScript
statements. Many of those pages include statements that use the connection to interact with the
database, displaying information or making changes to the database.

The first thing you must do when you’re connected is to add a new customer. Until you have
done this, there are no customers to use for any of the other activities.

Renting a Movie

The pi ck. ht mpage contains a frameset for allowing a customer to rent a movie. The frameset
consists of the pages cat egory. ht m vi deos. ht m and pi ckmenu. ht m

The cat egor y. ht mpage queries the database for a list of the known categories of movie. It
then displays those categories as links in a table in the left frame. If the user clicks one of those
links, vi deoapp displays vi deo. ht min the right frame. There are a few interesting things
about the server-side code that accomplishes these tasks. If you look at this page eatly on, you
see these lines:

var userld = unscranbl e(client.userld)
var bucket = project.sharedConnections.connections[userld]
var connection = bucket.connection

306 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Looking at the Source Files

These statements occur in most of Vi deoapp’s pages. They retrieve the connection from
where it is stored in the pr oj ect object. The next line then gets a new cursor applicable for
this task:

cursor = connection.cursor("select * from categories");
A variant of this statement occurs at the beginning of most tasks.

Here is the next interesting set of statements:

<SERVER>

while (cursor.next()) {

catstr = escape(cursor.category)
</SERVER>
<TR><TD><A HREF="videos.htm?category="+ catstr‘
TARGET="myright">
<SERVER>write(cursor.category);</SERVER>
</TD>
</TR>
<SERVER>
} /1 bottom of while loop

This loop creates a link for every category in the cursor. Notice this statement in particular:

This line creates the link to videos.htm . It includes the name of the category in the URL.
Assume the category is Comedy. This statement produces the following link:

307

Looking at the Source Files

308

When the user clicks this link, the server goes to vi deos. ht mand sets the value of the
request object’s cat egory property to Conedy.

The vi deos. ht mpage can be served either from pi ck. ht mor from cat egory. ht mIn the
first case, the cat egory property is not set, so the page displays a message requesting the user
choose a category. If the cat egory property is set, vi deos. ht maccesses the database to
display information about all the movies in that category. This page uses the same technique as
cat egory. ht mto construct that information and create links to the r ent . ht mpage.

The r ent . ht mpage actually records the rental for the customer. It gets information from the
request and then updates a table in the database to reflect the new rental. This page performs
the update, but does not commit the change. That doesn’t happen until the user chooses Save
Changes or Abort Changes.

The pi ckmenu. ht mpage simply displays buttons that let you either return to the home page
or to the page for adding a new customer.

Modifying videoapp

As way of getting used to the LiveWire functionality, consider modifying vi deoapp. Here are
some features you might add:

* Change the assumption that the existence of the shar edConnect i ons array implies that
this particular user is connected. You can change st art . ht mto check whether there is an
ID for this user in that array and whether the connection stored in that location is
currently valid. See “Sharing an Array of Connection Pools.”

e This application never releases connections back to the pool. Consequently, once a small
number of users have connected, nobody else can connect. You can modify this in a
couple of ways: add a new command that lets the user indicate completion or implement a
scheme to cleanup unused connections. See “Retrieving an Idle Connection.”

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Part 4

Working with LiveConnect

LiveConnect Overview

309

310 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

What Is

Chapter 14

LiveConnect Overview

This chapter describes using LiveConnect technology to let Java and JavaScript code
communicate with each other. The chapter assumes you are familiar with Java programming.

This chapter contains the following sections:
* What Is LiveConnect?

* Working with Wrappers

* JavaScript to Java Communication

e Java to JavaScript Communication

* Data Type Conversions

For additional information on using LiveConnect, see the JavaScript technical notes on the
iPlanet site, and also search for related information on the mozilla.org site.

LiveConnect?

LiveConnect lets you connect server-side JavaScript applications to Java components or classes
on the server.

Your JavaScript application may want to communicate with code written in other languages,
such as Java or C. To communicate with Java code, you use JavaScript’s LiveConnect
functionality. To communicate with code written in other languages, you have several choices:

* You can wrap your code as a Java object and use LiveConnect directly.

* You can wrap your code as a CORBA-compliant distributed object and use LiveConnect
in association with an object request broker.

* You can directly include external libraries in your application.

311

Working with Wrappers

This chapter discusses using LiveConnect to access non-JavaScript code from JavaScript
applications.

Ultimately, LiveConnect allows the JavaScript objects in your application to interact with Java
objects. These Java objects are instances of classes on the server’s CLASSPATH. See “Setting
Up for LiveConnect” for information on setting CLASSPATH appropriately. LiveConnect
wortks for both client-side and server-side JavaScript but has different capabilities appropriate
to each environment.

This chapter assumes you are familiar with Java programming. For information on using Java
with Netscape servers, see Enterprise Server 3.0: Notes for Java Programmers. For other information
on LiveConnect, see the JavaScript documentation at:

http://ww. i pl anet. conl docs/

For all available Java classes, you can access static public properties or methods of the class, or
create instances of the class and access public properties and methods of those instances.
Unlike on the client, however, you can access ox/y those Java objects that were created by your
application or created by another JavaScript application and then stored as a property of the
server object.

If a Java object was created by a server application other than a server-side JavaScript
application, you cannot access that Java object. For example, you cannot access a Java object
created by an NSAPI extension or an HT'TP applet.

When you call 2 method of a Java object, you can pass JavaScript objects to that method. Java
code can set properties and call methods of those JavaScript objects. In this way, you can have
both JavaScript code that calls Java code and Java code that calls JavaScript code.

Java code can access a JavaScript application ox/y in this fashion. That is, a Java object cannot
invoke a JavaScript application unless that JavaScript application (or another JavaScript
application) has itself accessed an appropriate Java object and invoked one of its methods.

Working with Wrappers

In JavaScrtipt, a wrapper is an object of the target language data type that encloses an object of
the source language. On the JavaScript side, you can use a wrapper object to access methods
and fields of the Java object; calling a method or accessing a property on the wrapper results in
a call on the Java object. On the Java side, JavaScript objects are wrapped in an instance of the
class net scape. j avascri pt. JSObj ect and passed to Java.

When a JavaScript object is sent to Java, the runtime engine creates a Java wrapper of type
JSObj ect ; when a JSQhj ect is sent from Java to JavaScript, the runtime engine unwraps it
to its original JavaScript object type. The JSObj ect class provides an interface for invoking
JavaScript methods and examining JavaSctipt properties.

312 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

JavaScript to Java Communication

JavaScript to Java Communication

When you refer to a Java package or class, or work with a Java object or array, you use one of
the special LiveConnect objects. All JavaScript access to Java takes place with these objects,
which are summarized in the following table.

Table 14-1The LiveConnect Objects

Object Description

JavaArray A wrapped Java array, accessed from within JavaScript
code.

Javad ass A JavaScript reference to a Java class.

JavaObj ect A wrapped Java object, accessed from within JavaScript
code.

JavaPackage A JavaScript reference to a Java package.

NOTE Because Java is a strongly typed language and JavaScript is

weakly typed, the JavaScript runtime engine convetts
argument values into the appropriate data types for the
other language when you use LiveConnect. See “Data
Type Conversions” for complete information.

In some ways, the existence of the LiveConnect objects is transparent, because you interact
with Java in a fairly intuitive way. For example, you can create a Java St r i ng object and assign
it to the JavaScript variable my St r i ng by using the new operator with the Java constructor, as
follows:

var nyString = new java.lang. String("Hello world")

In the previous example, the variable mySt ri ng is a JavaCbj ect because it holds an
instance of the Java object St ri ng. As a JavaCbj ect, nyStri ng has access to the public
instance methods of j ava. | ang. St ri ng and its superclass, j ava. | ang. Qbj ect . These
Java methods are available in JavaScript as methods of the JavaCbj ect , and you can call
them as follows:

nmyString.length() // returns 11

313

JavaScript to Java Communication

You access constructors, fields, and methods in a class with the same syntax that you use in
Java. For example, the following JavaScript code uses properties of the r equest object to
create a new instance of the Bug class and then assigns that new instance to the JavaScript
variable bug. Because the Java class requitres an integer for its first field, this code first converts
the r equest string property to an integer before passing it to the constructor.

var bug = new Packages. bugbase. Bug(
par sel nt (request. bugl d),
request . bugPriority,
request);

The Packages Object

If a Java class is not part of the j ava, sun, or net scape packages, you access it with the
Packages object. For example, suppose the Redwood corporation uses a Java package called
redwood to contain various Java classes that it implements. To create an instance of the

Hel | oWbr | d class in r edwood, you access the constructor of the class as follows:

var red = new Packages. redwood. Hel | oWr | d()

You can also access classes in the default package (that is, classes that don’t explicitly name a
package). For example, if the HelloWorld class is directly in the CLASSPATH and not in a
package, you can access it as follows:

var red = new Packages. Hel | oWor | d()

The LiveConnect j ava, sun, and net scape objects provide shortcuts for commonly used
Java packages. For example, you can use the following:

var nyString = new java.lang. String("Hello world")
instead of the longer version:

var nyString = new Packages.java.lang. String("Hello world")

314 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

JavaScript to Java Communication

For Netscape Enterprise Server 3.x, by default, the SNSHOVE\ j s\ sanpl es directory is in the
server’s CLASSPATH. (BNSHOVE is the directory in which the server was installed.) You can put
your packages in this directory.

For iPlanet Web Server 4.x, you can choose to put your Java packages and classes in any
directory. Make sure that the directory is specified in the j vm cl asspat h parameter in the
jvmi2. conf file.

Working with Java Arrays

When any Java method creates an array and you reference that array in JavaScript, you are
wortking with a JavaAr r ay. For example, the following code creates the JavaAr r ay X with
ten elements of type int:

thelnt = java.lang. d ass.forNane("java.l ang. | nteger")
X = java.lang.refl ect. Array. newl nstance(thelnt, 10)

Like the JavaScript Ar r ay object, JavaAr r ay has a | engt h property which returns the
number of elements in the array. Unlike Array. | engt h, JavaArray. | engt h is a read-only
property, because the number of elements in a Java array are fixed at the time of creation.

Package and Class References

Simple references to Java packages and classes from JavaScript create the JavaPackage and
Javad ass objects. In the earlier example about the Redwood corporation, for example, the
reference Packages. r edwood is a JavaPackage object. Similarly, a reference such as
java.lang. StringisaJavaCl ass object.

Most of the time, you don’t have to worry about the JavaPackage and JavaCl ass
objects—you just work with Java packages and classes, and LiveConnect creates these objects
transparently.

Javad ass objects are not automatically converted to instances of j ava. | ang. O ass when
you pass them as parameters to Java methods—you must create a wrapper around an instance
of java. | ang. ass. In the following example, the f or Narme method creates a wrapper
object t heCl ass, which is then passed to the newl nst ance method to create an array.

thed ass = java.lang. d ass. forNanme("java.l ang. String")
theArray = java.lang.refl ect. Array. newl nstance(thed ass, 5)

315

JavaScript to Java Communication

Arguments of Type char

You cannot pass a one-character string to a Java method which requires an argument of type
char . You must pass such methods an integer which corresponds to the Unicode value of the
character. For example, the following code assigns the value “H” to the variable c:

¢ = new java.l ang. Character(72)

Example of JavaScript Calling Java

The $NSHOVE\ pl ugi ns\ sanpl es\ j s\ bugbase directory includes a simple application
illustrating the use of LiveConnect. This section desctibes the JavaSctipt code in that sample
application. See “Example of Calling Server-Side JavaScript” for a description of this
application’s Java code.

The bugbase application represents a simple bug database. You enter a bug by filling in a
client-side form with the bug number, priority, affected product, and a short description.
Another form allows you to view an existing bug.

The following JavaScript processes the enter action:

/1 Step 1. Verify that I D was entered.
if (request.bugld !'="") {
/1 Step 2. Create Bug instance and assign to variable.
var bug = new Packages. bugbase. Bug(par sel nt (request . bugl d),
request. bugPriority, request);
/1l Step 3. Get access to shared array and store instance
there.
proj ect. bugsLock. | ock();
proj ect . bugs[par sel nt (request . bugld)] = bug;
proj ect . bugsLock. unl ock();
/1 Step 4. Display information.
wite("<P><|>====>Commi tted bug: </I1>");
wite(bug, "
");

}

/1l Step 5. If no ID was entered, alert user.

el se {
wite("<P><|>====>Coul dn’t commit bug: please conplete
all fields.</1>");

}

316 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Java to JavaScript Communication

The steps in this code are:
1. Verify that the user entered an ID for the bug. Enter the bug only in this case.

2. Create an instance of the Java class Bug, and assign that instance to the bug
variable. The Bug class constructor takes three parameters: two of them are
properties of the r equest object; the third is the JavaScript r equest object
itself. Because they are form elements, these r equest properties are both
JavaScript strings. The code changes the ID to an integer before passing it to the
Java constructor. Having passed the r equest object to the Java constructor,
that constructor can then call its methods. This process is discussed in
“Example of Calling Server-Side JavaScript.”

3. Useproject.bugsLock to get exclusive access to the shared pr oj ect . bugs
array and then store the new Bug instance in that array, indexed by the bug
number specified in the form. Notice that this code stores a Java object
reference as the value of a property of a JavaScript object. For information on
locking, see “Sharing Objects Safely with Locking.”

4. Display information to the client about the bug you have just stored.

5. Ifno bug ID was entered, display a message indicating that the bug couldn’t be
entered in the database.

1Java to JavaScript Communication

If you want to use JavaScript objects in Java, you must import the net scape. j avascri pt
package into your Java file. This package defines the following classes:

* netscape.javascript.JSObj ect allows Java code to access JavaScript methods and
properties.

* netscape.javascript.JSExcepti on allows Java code to handle JavaScript errots.

These classes are delivered in either a jar or a .zip file. See the Server-Side JavaS cript Reference for
more information about these classes.

To access the LiveConnect classes, place the .jar or .zip file in the CLASSPATH of the JDK
compiler in either of the following ways:

e Create a CLASSPATH environment variable to specify the path and name of jar or .zip file.

* Specify the location of .jar or .zip file when you compile by using the - cl asspat h
command line parameter.

1. http://developer.netscape.com/docs/manuals/communicator/plugin/index.htm

317

Java to JavaScript Communication

For example, in Navigator 4. 0 for Windows N'T, the classes are delivered in the j ava40. j ar
file in the Progr am Java\ C asses directory beneath the Navigator directory. You can
specify an environment variable in Windows N'T by double-clicking the System icon in the

Control Panel and creating a user environment variable called CLASSPATH with a value similar
to the following:

D: \ Navi gat or\ Progr am Java\ Cl asses\j ava40.j ar

See the Sun JDK documentation for more information about CLASSPATH

NOTE Because Java is a strongly typed language and JavaScript is
weakly typed, the JavaScript runtime engine convetts
argument values into the appropriate data types for the
other language when you use LiveConnect. See “Data
Type Conversions” for complete information.

318 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Java to JavaScript Communication

Using the LiveConnect Classes

All JavaScript objects appear within Java code as instances of

net scape. j avascri pt. JSCbj ect . When you call a method in your Java code, you can
pass it a JavaScript object as one of its argument. To do so, you must define the corresponding
formal parameter of the method to be of type JSChj ect .

Also, any time you use JavaScript objects in your Java code, you should put the call to the
JavaScript object inside atry. .. cat ch statement which handles exceptions of type
net scape. j avascri pt. JSExcept i on. This allows your Java code to handle errors in
JavaScript code execution which appear in Java as exceptions of type JSExcept i on.

Accessing JavaScript with JSObject

For example, suppose you are working with the Java class called JavaDog. As shown in the
following code, the JavaDog constructor takes the JavaScript object j sDog, which is defined
as type JSbj ect , as an argument:

i mport netscape.javascript.*;
public class JavaDog
{
public String dogBreed,;
public String dogCol or;
public String dogSex;
/1 define the class constructor
publi ¢ JavaDog(JSObj ect jsDog)
{
/1 use try...catch to handl e JSExceptions here
this.dogBreed = (String)jsDog. get Menber ("breed");
thi s. dogCol or = (String)jsDog. get Menber ("col or");
this.dogSex = (String)jsDog. get Menber ("sex");
}
}

319

Java to JavaScript Communication

320

Notice that the get Menber method of JSCbj ect is used to access the properties of the
JavaSctipt object. The previous example uses get Menber to assign the value of the JavaScript
property j sDog. br eed to the Java data member JavaDog. dogBr eed

NOTE A more realistic example would place the call to
get Menber insideatry. .. cat ch statement to handle
errots of type JSExcept i on. See “Handling JavaScript
Exceptions in Java” for more information.

To get a better sense of how get Menber wortks, look at the definition of the custom
JavaScript object Dog:

function Dog(breed,color, sex) {
this.breed = breed
this.color = color
this.sex = sex

You can create a JavaScript instance of Dog called gabby as follows:
gabby = new Dog("Il ab", "chocol ate", "femal e")

If you evaluate gabby. col or, you can see that it has the value “chocolate”. Now suppose you
create an instance of JavaDog in your JavaScript code by passing the gabby object to the
constructor as follows:

j avabDog = new Packages. JavaDog(gabby)

If you evaluate j avaDog. dogCol or, you can see that it also has the value “chocolate”,
because the get Menber method in the Java constructor assigns dogCol or the value of
gabby. col or.

Handling JavaScript Exceptions in Java

When JavaScript code called from Java fails at run time, it throws an exception. If you are
calling the JavaScript code from Java, you can catch this exceptioninatry...catch
statement. The JavaScript exception is available to your Java code as an instance of

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Java to JavaScript Communication

net scape. j avascri pt .JSExcepti on. JSExcepti on is a Java wrapper around any
exception type thrown by JavaScript, similar to the way that instances of JSCbj ect are
wrappers for JavaScript objects.

Use JSExcept i on when you are evaluating JavaScript code in Java. If the JavaScript code is
not evaluated, either due to a JavaScript compilation error or to some other error that occurs at
run time, the JavaScript interpreter generates an error message that is converted into an
instance of JSExcept i on.

For example, you can use atry. . . cat ch statement such as the following to handle
LiveConnect exceptions:

try {
gl obal . eval ("foo. bar = 999;");

} catch (Exception e) {
if (e instanceof JSException) {
jsCodeFailed()”;
}else {
otherCodeFailed();

}

321

Java to JavaScript Communication

In this example, the eval statement fails if f 00 is not defined. The cat ch block executes the
j sCodeFai | ed method if the eval statement in the t ry block throws a JSExcept i on; the
ot her CodeFai | ed method executes if the t ry block throws any other error.

Accessing Server-Side JavaScript

Now let’s look specifically at using Java to access server-side JavaScript. For a Java method to
access server-side JavaScript objects, it must have been called from a server-side JavaScript
application. In client-side JavaSctipt, Java can initiate an interaction with JavaScript. On the
server, Java cannot initiate this interaction.

NOTE When you recompile a Java class that is used in a
JavaScript application, the new definition may not take
effect immediately. If any JavaScript application running
on the web server has a live reference to an object created
from the old class definition, all applications continue to
use the old definition. For this reason, when you
recompile a Java class, you should restart any JavaScript
applications that access that class.

Threading

Java allows you to create separate threads of execution. You need to be careful using this
feature when your Java code interacts with JavaScript code.

Every servet-side JavaSctipt request is processed in a thread known as the request thread.
This request thread is associated with state information such as the JavaScript context being
used to process the request, the HT'TP request information, and the HIT'TP response buffer.

When you call Java code from a JavaSctipt application, that Java code runs in the same request
thread as the original JavaScript application. The Java code in that thread can interact with the
JavaScript application and be guaranteed that the environment is as it expects. In particular, it

can rely on the associated state information.

However, you can create a new thread from your Java code. If you do, that new thread cannot
interact with the JavaScript application and cannot rely on the state information associated with
the original request thread. If it attempts to do so, the behavior is undefined. For example, a

322 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Java to JavaScript Communication

Java thread you create cannot initiate any execution of JavaSctipt code using JSChj ect , nor
can it use Wr i t eHt t pQut put , because this method requires access to the HT'TP response
buffer.

Example of Calling Server-Side JavaScript

The $NSHOVE\ pl ugi ns\ sanpl es\ j s\ bugbase directory includes a simple application
that illustrates the use of LiveConnect. This section describes the sample application’s Java
code. See “Example of JavaScript Calling Java” for a description of the basic workings of this
application and of its JavaScript code.

/1 Step 1. Inmport the needed Java objects.
package Bugbase;
i mport netscape.javascript.*;
i mport netscape. server.serverenv.*;
/1l Step 2. Create the Bug cl ass.
public class Bug {
int id;
String priority;
String product;
String description;
String submtter;
/1 Step 3. Define the class constructor.
public Bug(int id, String priority, JSCbject req)
throws java.io. | OException
{
/1l wite part of http response
Net scapeSer ver Env. writ eHt t pQut put ("Java constructor: Creating
a new bug.
");
this.id = id;
this.priority = priority;
this.product = (String)req. get Merber (" bugPr oduct");
this.description = (String)req.get Merber ("bugDesc");
}
/1 Step 4. Return a string representation of the object.
public String toString()

{
StringBuffer result = new StringBuffer();
resul t.append("“\r\nld =" + this.id
+ "; \r\nPriority =" + this.priority
+ "; \r\nProduct =" + this. product
+ "; \r\nDescription =" + this.description);
return result.toString();
1}

323

Data Type Conversions

Many of the steps in this code are not specific to communicating with JavaScript. It is only in
steps 1 and 3 that JavaScript is relevant.

1. Specify the package being used in this file and import the
net scape. j avascri pt and net scape. server. server env packages. If you
omit this step, you cannot use JavaScript objects.

2. Create the Java Bug class, specifying its fields.

3. Define the constructor for this class. This constructor takes three parameters:
an integer, a string, and an object of type JSQbj ect . This final parameter is the
representation of a JavaScript object in Java. Through the methods of this
object, the constructor can access properties and call methods of the JavaScript
object. In this case, it uses the get Member method of JSOhj ect to get property
values from the JavaScript object. Also, this method uses the wri t eHt t pQut put
method of the predefined Net scapeSer ver Env object (from the
net scape. server. serverenv package) to print information during object
construction. This method writes a byte array to the same output stream used
by the JavaScript wri t e function.

4. Define thet oSt ri ng method. This is a standard method for a Java object that
returns a string representation of the fields of the object.

Data Type Conversions

Because Java is a strongly typed language and JavaScript is weakly typed, the JavaScript runtime
engine converts argument values into the appropriate data types for the other language when
you use LiveConnect. These conversions are desctibed in the following sections:

e JavaScript to Java Conversions

* Java to JavaScript Conversions

JavaScript to Java Conversions

When you call a Java method and pass it parameters from JavaScript, the data types of the
parameters you pass in are converted according to the rules described in the following sections:

¢ Number Values
¢ Boolean Values

* String Values

324 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

¢ Null Values

Data Type Conversions

e JavaArray and JavaObject Objects

* JavaClass Objects

e Other JavaScript Objects

The return values of methods of net scape. j avascri pt. JSQbj ect are always converted
to instances of j ava. | ang. Qbj ect . The rules for converting these return values are also

described in these sections.

For example, if JSQbj ect . eval returns a JavaScript numbert, you can find the rules for
converting this number to an instance of j ava. | ang. Qbj ect in “Number Values.”

Number Values

When you pass JavaScript number types as parameters to Java methods, Java converts the
values according to the rules described in the following table:

Table 14-2

Java parameter type Conversion rules

doubl e The exact value is transferred to Java without rounding
and without a loss of magnitude or sign.

| ava. | ang. Doubl e A new instance of j ava. | ang. Doubl e is created, and

j ava. | ang. Obj ect the exact value is transferred to Java without rounding
and without a loss of magnitude or sign.

fl oat = Values are rounded to float precision.
= Values which are unrepresentably large or small are

rounded to +infinity or -infinity.

byt e = Values are rounded using

char round-to-negative-infinity mode.

i nt .

| ong = Values which are unrepresentably large or small

result in a run-time error.

short
< NaNvalues are converted to zero.

java.lang. String Values are converted to strings. For example,
e 237 becomes “237”

bool ean = 0and NaNvalues are converted to false.

Other values are converted to true.

325

Data Type Conversions

326

When a JavaScript number is passed as a parameter to a Java method which expects an instance
of java. | ang. St ri ng, the number is converted to a string. Use the == operator to
compare the result of this conversion with other string values.

Boolean Values

When you pass JavaScript Boolean types as parameters to Java methods, Java converts the
values according to the rules described in the following table:

Table 14-3
Java parameter type Conversion rules
bool ean All values are converted directly to the Java equivalents.

| ava. | ang. Bool ean A new instance of java.lang.Boolean is created. Each
j ava. | ang. Obj ect parameter creates a new instance, not one instance with
the same primitive value.

java.lang. String Values are converted to strings. For example:

e true becomes “true”

false becomes “false”

byte true becomes 1
char
doubl e
f1 oat

i nt

| ong
short

false becomes 0

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

Data Type Conversions

When a JavaScript Boolean is passed as a parameter to a Java method which expects an
instance of j ava. | ang. Stri ng, the Boolean is converted to a string. Use the == operator to
compare the result of this conversion with other string values.

String Values

When you pass JavaScript string types as parameters to Java methods, Java converts the values
according to the rules described in the following table:

Table 14-4

Java parameter type

Conversion rules

I ava.lang. String
j ava. | ang. Qbj ect

byte
doubl e
fl oat
int

| ong
short

char

bool ean

A JavaScript string is converted to an instance of
j ava. | ang. Stri ng with an ASCII value.

All values are converted to numbers as described in
ECMA-262L.

All values are converted to numbers.
= The empty string becomes false.

« All other values become true.

1. http://developer.netscape.com/docs/javascript/e262-pdf.pdf

Null Values

When you pass null JavaScript values as parameters to Java methods, Java converts the values
according to the rules described in the following table:

Table 14-5

Java parameter type

Conversion rules

Any class
Any interface type

The value becomes null.

327

Data Type Conversions

Table 14-5

Java parameter type Conversion rules

byte The value becomes 0.
char

doubl e

f1 oat

i nt

| ong

short

bool ean The value becomes false.

JavaArray and JavaObject Objects

In most situations, when you pass a JavaScript JavaAr r ay or Java(bj ect as a parameter to
a Java method, Java simply unwraps the object; in a few situations, the object is coerced into
another data type according to the rules described in the following table:

Table 14-6
Java parameter type Conversion rules
Any interface or class The object is unwrapped.
that is

assignment-compatible
with the unwrapped

object.

java.lang. String The object is unwrapped, the t oSt ri ng method of the
unwrapped Java object is called, and the result is
returned as a new instance of j ava. | ang. St ri ng.

byte The object is unwrapped, and either of the following

char situations occur:

doubl e .

f1 oat = If the unwrapped Java object has a doubl eVal ue

int method, the JavaAr r ay or JavaQbj ect is

| ong converted to the value returned by this method.

short = If the unwrapped Java object does not have a

doubl eVal ue method, an error occurs.

328 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Table 14-6

Data Type Conversions

Java parameter type

Conversion rules

bool ean

The object is unwrapped and either of the following
situations occur:

= If the unwrapped object has a bool eanVal ue
method, the source object is converted to the return
value.

= If the object does not have a bool eanVal ue
method, the conversion fails.

An interface or class is assignment-compatible with an unwrapped object if the unwrapped
object is an instance of the Java parameter type. That is, the following statement must return

true:

unwrappedObject i nst anceof parameterType

JavaClass Objects

When you pass a JavaScript JavaCl ass object as a parameter to a Java method, Java converts
the object according to the rules described in the following table:

Table 14-7

Java parameter type

Conversion rules

java.l ang. d ass

j ava. | ang. JSObj ect
j ava. | ang. Obj ect

java.lang. String

bool ean

The object is unwrapped.

The Javad ass object is wrapped in a new instance of
java. | ang. JShj ect .

The object is unwrapped, the t oSt ri ng method of the
unwrapped Java object is called, and the result is
returned as a new instance of j ava. | ang. St ri ng.

The object is unwrapped and either of the following
situations occur:

= If the unwrapped object has a booleanValue method,
the source object is converted to the return value.

= If the object does not have a booleanValue method,
the conversion fails.

329

Data Type Conversions

Other JavaScript Objects

When you pass any other JavaSctipt object as a parameter to a Java method, Java converts the
object according to the rules desctibed in the following table:

Table 14-8

Java parameter type Conversion rules

java. |l ang. JSCbj ect The object is wrapped in a new instance of
java. | ang. Obj ect j ava. | ang. JShj ect .

java.lang. String The object is unwrapped, the t oSt ri hg method of the
unwrapped Java object is called, and the result is
returned as a new instance of j ava. | ang. St ri ng.

byte The object is converted to a value using the logic of the
char ToPrimi ti ve operator described in ECMA-2621. The
doubl e PreferredIype hint used with this operator is Number.

fl oat

i nt

| ong

short

bool ean The object is unwrapped and either of the following

situations occur:

= If the unwrapped object has a booleanValue method,
the source object is converted to the return value.

= If the object does not have a booleanValue method,
the conversion fails.

1. http://developer.netscape.com/docs/javascript/e262-pdf.pdf

Java to JavaScript Conversions

Values passed from Java to JavaScript are converted as follows:
* Java byte, char, short, int, long, float, and double are converted to JavaScript numbers.
* A Java boolean is converted to a JavaScript boolean.

* Anobject of class net scape. j avascri pt. JSObj ect is converted to the original
JavaScript object.

330 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Data Type Conversions

* Java arrays ate converted to a JavaScript pseudo-Array object; this object behaves just like
a JavaScript Ar r ay object: you can access it with the syntax ar r ayNane[i ndex] (where
i ndex is an integer), and determine its length with ar r ayNane. | engt h.

* A Java object of any other class is converted to a JavaScript wrapper, which can be used to
access methods and fields of the Java object:

o Converting this wrapper to a string calls the t oSt ri ng method on the
original object.

o Converting to a number calls the doubl eval ue method, if possible, and
fails otherwise.

o Converting to a boolean calls the bool eanVval ue method, if possible, and
fails otherwise.

Note that instances of java.lang.Double and java.lang.Integer are converted to
JavasScript objects, not to JavaScript numbers. Similarly, instances of
java.lang.String are also converted to JavaScript objects, not to JavaScript
strings.

Java St ri ng objects also correspond to JavaScript wrappers. If you call a JavaScript method
that requires a JavaScript string and pass it this wrapper, you’ll get an error. Instead, convert the
wrapper to a JavaScript string by appending the empty string to it, as shown here:

var JavaString = JavaQbj . nmet hodThat Ret ur nsAStri ng();

var JavaScriptString = JavaString + ;

331

Data Type Conversions

332 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide ¢ March 2000

Glossary

This glossary defines terms useful in understanding JavaScript applications.

active application A JavaScript application that has been started, and can
therefore be run, or accessed, by clients.

application URL A page in a JavaScript application, relative to the base
application URL. Clients use the application URL to access a particular page in the
application.

ASCIl American Standard Code for Information Interchange. Defines the codes
used to store characters in computers.

base application URL The name of a JavaScript application, as specified in
Application Manager. Clients use the application URL to access the default page of
an application.

BLOb Binary large object. The format of binary data stored in a relational
database.

bytecodes Platform-independent object code, intermediate between source code
and platform-specific machine code.

CGI Common Gateway Interface. A specification for communication between an
HTTP server and gateway programs on the server. CGl is a popular interface used
to create server-based web applications with languages such as Perl or C.

client A web browser, such as Netscape Navigator.

client cookie One of the methods that JavaScript uses to maintain properties of

the cl i ent object. This method stores name/values pairs as cookies on the client
machine.

333

334

client-side JavaScript Core JavaScript plus extensions that control a browser
(Navigator or another web browser) and its DOM. For example, client-side
extensions allow an application to place elements on an HTML form and respond
to user events such as mouse clicks, form input, and page navigation. See also core
JavaScript, server-side JavaScript.

client URL encoding One of the methods that JavaScript uses to maintain
properties of the cl i ent object. This method appends name/value pairs to a URL
string.

commit To perform all the database actions in a transaction; the attempt to
commit may succeed or fail, depending on the actions and the state of the database.

cookie A mechanism by which the Navigator client can store small items of
information on the client machine.

CORBA Common Object Request Broker Architecture. A standard endorsed by
the OMG (Object Management Group), the Object Request Broker (ORB) software
that handles the communication between objects in a distributed computing
environment.

core JavaScript The elements common to both client-side and server-side
JavaScript. Core JavaScript contains a core set of objects, such as Arr ay, Dat e, and
Mat h, and a core set of language elements such as operators, control structures, and
statements. See also client-side JavaScript, server-side JavaScript.

critical section A section of code in which you need exclusive access to an object
or property to ensure data consistency.

currentrow A row in atable referred to by a database cursor.

current transaction In a database application, the active transaction under which
all database actions are performed.

cursor A data structure returned by a database query, consisting of a virtual table
and a pointer to a row in the virtual table; the JavaScript Cur sor object has
corresponding properties and methods.

DDL Data Definition Language. Database statements to create, alter, or delete
database objects such as tables, keys, stored procedures, and so on.

deadlock The situation in which two processes each wait for the other to finish a
task before continuing. If each waits for the other, neither can continue.

iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide « March 2000

default page The page, specified in the Application Manager, that a client
accesses if the user requests an application URL, but no specific page in the
application. Compare to initial page.

deploy To transfer an application to a location where others can access it. The
location can be on the local server’s file system or a remote server connected to the
Internet.

deployment server A server on which a JavaScript application is installed that is
accessible to end users; also called a production server. Should be different from
the development server.

deprecate To discourage use of a feature without removing the feature from the
product. When a JavaScript feature is deprecated, an alternative is typically
recommended; you should no longer use the deprecated feature because it might
be removed in a future release.

development server A server, typically inside a firewall, on which you develop
and test JavaScript applications, not accessible to end users. Should be different
from the deployment server.

DML Data Manipulation Language. Database statements to select, update, insert,
or delete rows in tables.

ECMA European Computer Manufacturers Association. The international
standards association for information and communication systems.

ECMAScript A standardized, international programming language based on
core JavaScript. This standardization version of JavaScript behaves the same way
in all applications that support the standard. Companies can use the open standard
language to develop their implementation of JavaScript. See also core JavaScript.

external function A function defined in a native library that can be used in a
JavaScript application.

HTML Hypertext Markup Language. A markup language used to define pages
for the World Wide Web.

HTTP Hypertext Transfer Protocol. The communication protocol used to transfer
information between web servers and clients.

initial page The page, specified in the Application Manager, that the Application
Manager runs when the application is first started. Compare to default page.

335

IP address A set of four numbers between 0 and 255, separated by periods, that
specifies a location for the TCP/IP protocol.

IP address technique One of JavaScript’s techniques for maintaining the cl i ent
object, in which the server uses the client’s IP address to refer to a data structure
containing cl i ent property values.

LiveConnect Lets Java and JavaScript code communicate with each other. From
JavaScript, you can instantiate Java objects and access their public methods and
fields. From Java, you can access JavaScript objects, properties, and methods.

MIME Multipart Internet Mail Extension. A standard specifying the format of
data transferred over the internet.

Netscape cookie protocol Netscape’s format for specifying the parameters of a
cookie in the HTTP header.

ODBC Open Database Connectivity. Microsoft’s interface for relational database
programming.

primitive value Data that is directly represented at the lowest level of the
language. A JavaScript primitive value is a member of one of the following types:
undef i ned, nul | , Bool ean, nunber, or st ri ng. The following examples show some
primitive values.

a=true /1 Boolean primtive val ue
b=42 [/ nunber primtive val ue
c="Hell o world" [l string primtive val ue

i f (x==undefined) {} // undefined primtive value
if (x==null) {} [/ null primtive value

roll back To cancel all the database actions within one transaction.

server cookie One of JavaScript’s techniques for maintaining the cl i ent object,
in which the server generates a unique name for a client, stored in the cookie file on
the client, and later uses the stored name to refer to a data structure containing

cl i ent property values.

server-side JavaScript Core JavaScript plus extensions relevant only to running
JavaScript on a server. For example, server-side extensions allow an application to
communicate with a relational database, provide continuity of information from
one invocation to another of the application, or perform file manipulations on a
server. See also client-side JavaScript, core JavaScript.

336 iPlanet Web Server, Enterprise Edition Server-Side JavaScript Guide * March 2000

server URL encoding One of JavaScript’s techniques for maintaining the cl i ent
object, in which the server generates a unique name for a