
comp.sys

TCP/IP

directory server

World Wide Web

ww
Personal

IStore

Proxy

merchant system
HTML

http://www
Internet

server
security

news

URL

HTML

mail

Inter

navigator
community system

electronic commerce

JavaScript
Proxy

Mozilla

certificate

Publishing

Publishing

Chat

encryption

secure sockets layer

SSL

Messaging Access SDK
Guide

Messaging Access SDK
Java Version

Version 3.5

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software
programs offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and
related documentation is governed by the license agreement accompanying the Software and applicable copyright
law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or
compilation works is prohibited and constitutes a punishable violation of the law. Netscape may revise this
documentation from time to time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION
OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

The Software and documentation are copyright ©1998 Netscape Communications Corporation. All rights reserved.

Portions of the Software copyright © 1994, 1995 Sun Microsystems, Inc. All rights reserved.

Netscape, Netscape Certificate Server, Netscape DevEdge, Netscape Navigator, Netscape ONE, SuiteSpot, and the
Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in the United
States and other countries. Other Netscape logos, product names, and service names are also trademarks of Netscape
Communications Corporation, which may be registered in other countries. Other product and brand names are
trademarks of their respective owners.

The downloading, export or reexport of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software
or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

The Team: Messaging Access SDK Project Team, Manager: Gena Cunanan
Engineering: Soon Shin, Derek Tumulak, Prasad Yendluri
Marketing: Faten Hellal
Publications: Sharon Williams
Version 3.5

Part Number

©1998 Netscape Communications Corporation. All Rights Reserved

Printed in the United States of America. 00 99 98 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

Contents iii

Messaging Access SDK Guide

This guide describes the Java version of the Netscape Messaging Access SDK 3.5,
a development kit for writing messaging applications.

June 8, 1998

Contents

About This Guide ...9

Who Should Read This Guide ..9

What’s in This Guide ...10

Organization ..10

Quick Reference to Tasks ...11

Conventions Used in This Guide ..12

Where to Find More Information ..13

Chapter 1 Introducing the Messaging Access SDK17

The Netscape Messaging Access software development kit (SDK) pro-
vides a set of Protocol Level APIs that the developer can use to write
messaging applications and extend applications with messaging ser-
vices. This chapter is an overview of the Messaging Access SDK, ver-

iv Messaging Access SDK Guide

sion 3.5.

How the Protocol APIs Work Together ... 18

The Messaging Access SDK, Java Version ... 20

Supported Platforms ... 21

SDK Sink Classes for Java ... 21

SDK Exceptions for Java ... 23

Compiling with the Java SDK ... 24

Chapter 2 Sending Mail with SMTP ... 27

This chapter is an overview of using SMTP (Simple Mail Transfer Pro-
tocol) to create and send email messages.

The SMTP Protocol ... 28

Steps in an SMTP Session .. 29

SMTP Response Codes ... 29

SMTP in the Messaging Access SDK ... 31

SMTP Callback Mapping ... 32

Creating a Response Sink ... 34

Creating a Client .. 35

Connecting to a Server ... 35

Determining ESMTP Support .. 36

Pipelining Commands ... 37

Setting the Mailer .. 38

Setting the Recipient ... 39

Sending the Message .. 40

Sending Messages with Convenience APIs .. 41

Ending the Session .. 42

Chapter 3 Building and Parsing MIME Messages 43

This chapter is an overview of using the MIME (Multipurpose Internet
Mail Extension) API of the Messaging Access SDK to encode, decode,
and parse mail messages, and handle text and non-text attachments.

The MIME Protocol ... 44

MIME Encoding Types ... 45

MIME Content Types .. 45

Contents v

Structure of a MIME Message ... 46

MIME in the Messaging Access SDK ... 48

Steps in a MIME Session ... 49

Building the MIME Message ... 50

Adding Message Headers ... 52

Adding Content to the Message ... 53

Adding Body Parts to a Multipart .. 54

Creating a Message Part ... 55

Adding Parts to the Message .. 56

Deleting Parts of a Message ... 57

Encoding the Message .. 58

Encoding and Decoding Utilities ... 58

Sending Documents with the Convenience API ... 60

Parsing MIME Messages .. 61

Parsing the Entire Message .. 61

Dynamic Parsing ... 62

Chapter 4 Receiving Mail with IMAP4 .. 69

This chapter is an overview of using IMAP4 (Internet Message Access
Protocol 4) to retrieve and manage messages remotely.

The IMAP4 Protocol .. 70

IMAP4 Session States .. 70

Steps in an IMAP4 Session ... 72

IMAP4 in the Messaging Access SDK .. 72

vi Messaging Access SDK Guide

IMAP4 Callback Mapping ... 73

Creating a Response Sink ... 76

Creating a Client .. 77

Connecting to a Server ... 77

Determining Server Capabilities ... 78

Logging In and Out ... 79

Checking for New Messages .. 80

Searching for Messages ... 80

Fetching Message Data ... 81

Closing a Mailbox ... 82

Chapter 5 Receiving Mail with POP3 .. 85

This chapter is an overview of using POP3 (Post Office Protocol 3) to
download messages to a client.

The POP3 Protocol ... 86

POP3 Session States ... 86

POP3 Response Codes ... 87

Steps in a POP3 Session ... 88

POP3 in the Messaging Access SDK .. 89

POP3 Callback Mapping ... 90

Creating a Response Sink ... 91

Creating a Client .. 92

Connecting to a Server ... 93

Logging In ... 94

Getting Message Count ... 95

Listing Messages .. 95

Retrieving Message Headers ... 96

Retrieving a Message .. 97

Ending the Session .. 98

This page contains links to the reference, in JavaDocs format, to the
Java versions of the Messaging Access SDK Guide Protocol APIs.

SMTP Class Hierarchy .. 100

MIME Class Hierarchy .. 100

IMAP4 Class Hierarchy ... 100

Contents vii

POP3 Class Hierarchy ... 100

Java Convenience API .. 100

Chapter 6 Reference to Protocols .. 101

This chapter summarizes essential information about the Internet
Protocols accessed through the Messaging Access SDK.

Supported SMTP Internet Protocol Commands ... 102

Supported IMAP4 Internet Protocol Commands ... 104

Supported POP3 Internet Protocol Commands ... 106

Appendix A Writing Multithreaded Applications with the

Messaging Access SDK ... 109

This appendix provides some important information for developers
who want to take advantage of multithreading in their messaging ap-
plications.

Multithreading in the MIME API .. 110

Index .. 111

viii Messaging Access SDK Guide

9

About This Guide

The Messaging Access SDK Guide is the developer’s guide and reference to the
Netscape Messaging Access software development kit (SDK), version 3.5, for
writing messaging applications.

The Messaging Access SDK Guide tells you how to tap the capabilities of
familiar and powerful Internet Access Protocols, POP3, IMAP4, SMTP, and
MIME, in your messaging applications.

This guide describes the Java version of the Messaging Access SDK.

Note For system requirements and installation information, see the ReadMe file that is
available on the Netscape web site. §

This chapter includes the following sections:

• Who Should Read This Guide

• What's in This Guide

• Conventions Used in This Guide

• Where to Find More Information

[Top]

Who Should Read This Guide
The Messaging Access SDK Guide is designed for developers who want to
create messaging applications based on the standard Internet protocols SMTP,
POP3, MIME, and IMAP4.

What’s in This Guide

10 Messaging Access SDK Guide

[Top]

What’s in This Guide
This is the guide to read if you want to write messaging applications using a
variety of messaging access APIs. This guide comes in two versions, which
document the C and Java versions of the Messaging Access SDK. You are
reading the Java version of the Guide.

• Organization

• Quick Reference to Tasks

[Top]

Organization

To provide quick access to conceptual information, task-based development
information, and reference information, the guide consists of these parts:

• Using the Messaging Access SDK--Messaging Access SDK basics and
development information.

• Messaging Access SDK Java Reference--Reference to the Java interfaces of
the POP3, IMAP4, SMTP, and MIME Protocol APIs, and the Java
Convenience API of the Messaging Access SDK. This reference is in
JavaDocs format.

[Top] [What's in This Guide]

11

What’s in This Guide

Quick Reference to Tasks

To help you find the information you need more quickly, look in the column
on the left for the task you want to perform. Click the title in the column on the
right to go directly to the appropriate chapter.

To look up the Java classes and methods you need for your messaging
application, see Part 2, “Messaging Access SDK Java Reference.”

[Top] [What's in This Guide]

If you want to do this: See this chapter:

Learn more about Netscape Access APIs. Chapter 1, “Introducing the Messaging
Access SDK.”

Understand how the Access APIs work
together in a Messaging Access SDK
application.

Chapter 1, “Introducing the Messaging
Access SDK.”

Send email messages. Chapter 2, “Sending Mail with SMTP.”

Encode/decode and parse messages.
Add attachments to messages.

Chapter 3, “Building and Parsing MIME
Messages.”

Retrieve manage messages on the server. Chapter 4, “Receiving Mail with IMAP4,”

Retrieve messages, messages attributes,
and parts of messages.

Chapter 5, “Receiving Mail with POP3.”

Find out which Internet Protocol
commands are called by Messaging
Access SDK methods.

Chapter 6, “Reference to Protocols.”

Find out what you need to know about
using multithreading in your messaging
applications.

Appendix A, “Writing Multithreaded
Applications with the Messaging Access
SDK.”

Conventions Used in This Guide

12 Messaging Access SDK Guide

Conventions Used in This Guide
Fonts. All program code listings, URLs, and other program names appear in
Courier, a monospace font. Placeholders, which you replace with your own
value, are in italicized Courier font.

Note Formats. This guide emphasizes information with several types of note
formats:

Note Information of interest to the developer but not essential to understanding the
surrounding topic. §

Warning Information that can affect the development decisions you make or the
development environment you choose. Don’t miss these notes. §

Terminology. This guide uses the word command to represent Internet Protocol
commands, and the word method to represent the Messaging Access SDK Java
implementation that calls this command. For example, the Messaging Access
SDK IMAP4Client.close method sends the CLOSE IMAP4 protocol command.

[Top]

13

Where to Find More Information

Where to Find More Information
For information for developers, see the Netscape DevEdge site.

For information about the Java programming language, see the Sun Java web
site.

This guide tells you how to use each Protocol API for Messaging Access SDK
tasks. Internet Protocols are introduced and described in RFC (Request for
Comments) documents from the Network Working Group. For further
information about the Protocols, see the following RFCs.

SMTP RFCs

• RFC 821: “Simple Mail Transfer Protocol,” August 1982

• RFC 1854:”SMTP Service Extension for Command Pipelining,” October 1995

• RFC 1869: “SMTP Service Extensions,” November 1995

• RFC 1891: “SMTP Service Extension for Delivery Status Notifications,”
January 1996

• RFC 2197: “SMTP Service Extension for Command Pipelining,” September
1997

MIME RFCs

• RFC 2045: “Multipurpose Internet Mail Extensions (MIME), Part One: Format
of Internet Message Bodies,” November 1996

• RFC 2046: “Multipurpose Internet Mail Extensions (MIME), Part Two: Media
Types,” November 1996

• RFC 2047: “MIME (Multipurpose Internet Mail Extensions), Part Three:
Message Header Extensions for Non-ASCII Text,” November 1996

• For MIME headers: RFC 822: “Standard for the Format of ARPA Internet Text
Messages,” August 1982

IMAP4 RFCs

• RFC 2060: “Internet Message Access Protocol - Version 4rev1,” December
1996

Where to Find More Information

14 Messaging Access SDK Guide

• RFC 2086: “IMAP4 ACL extension,” January 1997

• Internet Draft: “IMAP4 Namespace,” December 1997

POP3 RFCs

• RFC 1939: “Post Office Protocol - Version 3,” May 1996

Note An index to RFCs is available through the Internet FAQ Consortium. §

[Top]

1Using the Messaging Access SDK

Chapter 1 Introducing the Messaging Access SDK

The Netscape Messaging Access software development kit (SDK) provides a set of Protocol
Level APIs that the developer can use to write messaging applications and extend
applications with messaging services. This chapter is an overview of the Messaging Access
SDK, version 3.5.

Chapter 2 Sending Mail with SMTP

This chapter is an overview of using SMTP (Simple Mail Transfer Protocol) to create and
send email messages.

Chapter 3 Building and Parsing MIME Messages

This chapter is an overview of using the MIME (Multipurpose Internet Mail Extension) API
of the Messaging Access SDK to encode, decode, and parse mail messages, and handle text
and non-text attachments.

Chapter 4 Receiving Mail with IMAP4

This chapter is an overview of using IMAP4 (Internet Message Access Protocol 4) to retrieve
and manage messages remotely.

16 Messaging Access SDK Guide

Chapter 5 Receiving Mail with POP3

This chapter is an overview of using POP3 (Post Office Protocol 3) to download
messages to a client.

[Top]

Chapter 1, Introducing the Messaging Access SDK 17

C h a p t e r

1
Chapter 1Introducing the Messaging Access

SDK

The Netscape Messaging Access software development kit (SDK) provides a set
of Protocol Level APIs that the developer can use to write messaging
applications and extend applications with messaging services. This chapter is
an overview of the Messaging Access SDK, version 3.5.

The Messaging Access SDK provides SMTP, MIME, POP3, and IMAP4 APIs in
the Java and C programming languages, for a variety of platforms.

The Messaging Access SDK Guide provides developers with a complete set of
software libraries, sample code, and documentation for building mail-enabled
applications.

• How the Protocol APIs Work Together

• The Messaging Access SDK, Java Version

• Supported Platforms

• SDK Sink Classes for Java

• SDK Exceptions for Java

• Compiling with the Java SDK

How the Protocol APIs Work Together

18 Messaging Access SDK Guide

[Top]

How the Protocol APIs Work Together
The Messaging Access SDK provides implementations of the Internet messaging
protocols, SMTP, IMAP4, MIME, and POP3. These Protocol APIs are designed to
work together, yet have the ability to operate independently of each other.

SMTP (Simple Mail Transfer Protocol). SMTP sends non-encoded or MIME-
encoded messages. You can use MIME to prepare to send messages in formats
other than text, to encode messages, and to include attachments. For more
information, see Chapter 2, “Sending Mail with SMTP.”

MIME (Multipurpose Internet Mail Extension). MIME builds and encodes
messages with attachments for sending with SMTP, and parses and decodes
received messages. The encoded MIME message is passed to SMTP.

The MIME API consists of the MIME encoder and the MIME parser. The MIME
encoder is used to build MIME messages with attachments and encode them for
sending over SMTP. You can use the MIME API to parse and decode messages
when they are received through IMAP4 or POP3. For more information, see
Chapter 3, “Building and Parsing MIME Messages.”

IMAP4 (Internet Message Access Protocol, version 4). IMAP4 is used to
retrieve and manage messages remotely. The user can save messages on the
server or locally. In addition, the user can manipulate items on the server (for
example, create or delete mailboxes). IMAP4 supports multiuser mailboxes. For
more information, see Chapter 4, “Receiving Mail with IMAP4.”

POP3 (Post Office Protocol, version 3). POP3 connects to the server and
retrieves messages. POP3 is simpler than IMAP4 and provides a subset of its
capabilities. It supports one user per mailbox. For more information, see
Chapter 5, “Receiving Mail with POP3.”

For a quick reference to the Internet Protocol commands called by Messaging
Access SDK methods, see Chapter 6, “Reference to Protocols.”

Chapter 1, Introducing the Messaging Access SDK 19

How the Protocol APIs Work Together

The Protocol APIs are designed to co-exist in the same client environment and
match each other’s interfaces where applicable. For example, the message data
chunks returned by POP3 and IMAP4 APIs can be fed to the MIME SDK API to
parse the message contents. In the same way, the encoded message byte-
stream returned by the MIME API can be passed to the SMTP API to transmit
the message. At the same time, the APIs are designed to allow customers to use
only the API required by their application.

Applications written with the Messaging Access SDK Protocol APIs can work
with any messaging system that implements the Internet messaging protocols,
primarily the Netscape Messaging Servers. Protocol APIs are self-contained and
are intended to coexist with all other SuiteSpot SDKs; they are independent of
Netscape Server releases.

Each Messaging Access SDK Protocol API is designed to follow its Internet
standard specification. API invocations result in the exchange of standard
protocol elements with the server. Any information exchange with the server
conforms to one of the standard protocols.

Figure 1.1 Messaging Access API Architecture

The Messaging Access SDK is designed to parse and format protocol elements
and make these available to the programmer through Java classes or C data
structures and the methods and functions that access them.

The Messaging Access SDK Protocol APIs are built to be thin and are optimized
for performance and memory. Each Protocol API includes a sendCommand (or
pass-through) interface, which programmers can use to send protocol elements
that are not directly supported by the API. The IMAP4 API has further
conveniences, such as transparently handling unilateral and unsolicited
responses from the server and making these available at the API level through a
callback mechanism.

O
Sta
Me
se

C interface

Java
interface

Messaging
application

Firewall

The Messaging Access SDK, Java Version

20 Messaging Access SDK Guide

For more information about the sendCommand API, see the reference entries for
SMTPClient.sendCommand, POP3Client.sendCommand, and
IMAP4Client.sendCommand.

For more information about using callbacks, see the section about callback
mapping in each of these chapters: Sending Mail with SMTP, Receiving Mail
with IMAP4, Receiving Mail with POP3, and Building and Parsing MIME
Messages.

[Top]

The Messaging Access SDK, Java Version
The Messaging Access SDK (Software Development Kit) comes in a zip file on
Unix and a self-extracting executable on MS Windows.

You can download the SDK at this URL.

For the latest installation information, see the ReadMe file for the SDK.

The Messaging Access SDK download file contains the following directories
and files:

• packages directory - JAR file that contains the Java classes that make up the
Messaging Access SDK. You do not have to unzip this file.

• examples directory - Sample code that demonstrates selected parts of the
Messaging Access SDK.

• ReadMeJ.htm - Links to current installation information, development
notes, system requirements, information about using the SDK that may be
more current than this guide, and Netscape licensing information.

On Unix, unzip the downloaded file using a utility that preserves the file
hierarchy, for example, gzip. On MS Windows, simply execute the self-
extracting executable. For links to the latest information about installation, see
ReadMeJ.htm, included in the SDK.

[Top]

Chapter 1, Introducing the Messaging Access SDK 21

Supported Platforms

Supported Platforms
The Messaging Access SDK supports the MS Windows and Unix platforms listed
in Table 1.1.

Table 1.1 Supported Platforms

[Top]

SDK Sink Classes for Java
The SMTP, IMAP4, and POP3 response sinks and the MIME data sink are Java
interfaces that contain callback methods for each client call. These Java
interfaces contain method definitions and opaque data.

• The method definitions are patterns for the implementation of callbacks;
they do not have implementations and do nothing in themselves.

• The opaque data represents client data that is set by the application and
always returned to the application when the callbacks are made.

Platforms Supported Versions

Solaris 2.5.1, 2.6

Windows NT 4.0 with SP 3

Windows 95

AIX 4.21

IRIX 6.2

OSF/DEC Unix 4.0d

HP-UX 11.0

SDK Sink Classes for Java

22 Messaging Access SDK Guide

For easy reference, each protocol chapter includes a table that shows how its
methods are mapped to callbacks. See the individual protocol chapters under
“Method Callback Mapping.”

When you start a session with SMTP, IMAP4, or POP3, you first create
(initialize) the response sink. Then you create the client, which calls the
response sink methods. To use the client object, you must implement the
response sink interface, as the constructor for the client class takes a sink object
as a parameter. The response sink receives and processes all the available
server response data whenever the processResponses call of the client class is
issued. This call reads in responses from the server and invokes the appropriate
callback method for all responses that are available at the time of execution.

When you start a session with the MIME dynamic parser, you first create and
initialize the data sink, and then you create the parser. The parser makes
callbacks to its data sink based on the kind of data it finds in the input stream.
For example, if it finds a header, it makes the header callback. For the other
protocols, the callback comes from the server and callbacks tend to be tied to
individual methods.

For MIME, the kind of callback is dependent upon the kind of data that is in the
input stream. There are no particular correspondences between functions and
data sink callback prototypes, as there are in the other protocols.

As a convenience, SMTP, IMAP4, and POP3 provide sink classes that implement
the response sink interface. For example, the SMTPSink class implements the
ISMTPSink interface. You can save a step by extending the sink class, or you
can implement your own class based on the interface.

For more information, see the section about implementing the response sink in
each of these chapters: Sending Mail with SMTP, Receiving Mail with IMAP4,
Receiving Mail with POP3, and Building and Parsing MIME Messages.

Note SMTP, IMAP4, and POP3 commands are asynchronous. After sending a
command, the application does not have to wait to issue the next one, but can
do something else. §

[Top]

Chapter 1, Introducing the Messaging Access SDK 23

SDK Exceptions for Java

SDK Exceptions for Java
In general, the Messaging Access SDK uses standard Java exception handling
for dealing with unexpected occurrences during processing. In addition, it
provides several exception classes.

Messaging Access SDK Exceptions

Protocol Exceptions handle internal errors in the protocol implementation of the
Messaging Access SDK. These exceptions can be thrown when an error is
detected within the SDK (on the client side) or when data received from the
server results in a parsing error. Exception classes: SMTPException,
MIMEException, POP3Exception, IMAP4Exception, IMException.

Protocol Server Exceptions handle server response errors. These exceptions are
caused when the server sends an error saying that some part of the operation
failed or is not supported. This can happen even when all relevant code
executes properly and everything operates normally on the client side.

Server Exceptions are thrown from the error callback on the response sink
when an API call that is mapped directly to the RFC fails. It is up to the
developer to determine whether or not the error callback will throw this
exception. As an SDK default, the SMTP, IMAP4, and POP3 sink classes that
represent the response sink classes throw an exception whenever the error
callback is called. Server Exception classes: SMTPServerException,
POP3ServerException, IMAP4ServerException.

Standard Java Exceptions

IOException exceptions handle I/O errors, which usually occur when the user
tries to make API calls before connecting or if the connection is lost
unexpectedly. The user can respond by catching the IOException and
examining the reason for the failure. The user can try to re-establish the
connection by calling connect again.

InterruptedIOException exceptions occur when a time-out occurs. This is a
recoverable condition; the application can wait and reissue the method.

[Top]

Compiling with the Java SDK

24 Messaging Access SDK Guide

Compiling with the Java SDK
Follow these steps to compile the Java version of the Messaging Access SDK.
These instructions assume you have already set up your Java development
environment. If not, you can download the JDK 1.1.5 (Java Development Kit)
from the Java web site.

The Java version of the Netscape Messaging SDK comes with two Java Archive
(JAR) files.

• The proapi.jar file contains the Java classes for the protocol APIs.

• The coapi.jar file contains the Java classes for the convenience APIs.

When you install the Netscape Messaging Access SDK, these files are copied
into the packages subdirectory under the install-root directory.

Setting the CLASSPATH

You must set the CLASSPATH environment variable to include the fully qualified
path names for the proapi.jar and the coapi.jar files.

On Unix platforms, set the CLASSPATH as follows:

If you are using ksh:

%

CLASSPATH=$CLASSPATH:<fully-qualified-path>/proapi.jar:
<fully-qualified-path>/coapi.jar

% export CLASSPATH

For convenience, consider adding the lines above to your .profile file.

If you are using csh:

% set classpath=($classpath <fully-qualified-path>/proapi.jar
 <fully-qualified-path>/coapi.jar)

For convenience, consider adding the lines above to your .cshrc file.

On MS Windows platforms, set the CLASSPATH as follows:

C:\> set

CLASSPATH=%CLASSPATH%;<fully-qualified-path>\proapi.jar;
 <fully-qualified-path>\coapi.jar

Chapter 1, Introducing the Messaging Access SDK 25

Compiling with the Java SDK

If you are using MS Windows 95, consider adding these lines to your
AUTOEXEC.BAT file.

If you are using MS Windows NT, make these environment variable changes in
the Control Panel. To do this, start the Control Panel, select System, and then
edit the environment variables.

Note If you are not using the Sun JDK, you may need to make other environment
changes as specified by the vendor. For example, if you are using Symantec
Visual Cafe 2.0, you must set the CLASSPATH in the sc.ini file in the bin
directory. §

If your environment requires it, set your PATH variable to include the target
directory for building your Java application.

After you have set up your environment, you can build an application that uses
the Messaging Access SDK API by invoking the javac compiler on the Java
files you want to compile. For example, if you are using the Sun JDK, you
could use this code:

cd <build-directory>; javac *.java

If you are using another environment, such as Symantec Visual Cafe, follow the
build procedure for that environment.

[Top]

Compiling with the Java SDK

26 Messaging Access SDK Guide

Chapter 2, Sending Mail with SMTP 27

C h a p t e r

2
Chapter 2Sending Mail with SMTP

This chapter is an overview of using SMTP (Simple Mail Transfer Protocol) to
create and send email messages.

• The SMTP Protocol

• SMTP Callback Mapping

• Creating a Response Sink

• Creating a Client

• Connecting to a Server

• Determining ESMTP Support

• Setting the Mailer

• Setting the Recipient

• Sending the Message

• Sending Messages with Convenience APIs

• Ending the Session

The SMTP Protocol

28 Messaging Access SDK Guide

[Top]

The SMTP Protocol
SMTP (Simple Mail Transport Protocol) allows clients to deliver mail messages
to SMTP servers. To retrieve these messages, the client uses the IMAP4 or POP3
protocol. Servers can use SMTP to move messages from one server to another
before delivering them to a mailbox.

The SMTP client always starts the session, but either client or server can end it.
The client starts the session by connecting to the server. The server
acknowledges the message with a greeting. The client responds, and, in
subsequent commands, specifies the message sender and recipients and sends
the message.

SMTP commands are made up of a keyword, followed by any parameters the
method has. Commands receive a three-digit response code, described in SMTP
Response Codes. SMTP commands include only the U.S. ASCII character set, a
subset of ASCII that includes the values 00h-7Fh (0d-127d).

The responses returned by SMTP commands are made up of a three-digit
numeric code followed by descriptive text. The client application can detect
and handle the response or display the message to the user for interpretation.
For more information, see SMTP Response Codes.

If your server supports Extended SMTP (ESMTP), which is provided in an
update to the existing SMTP specification, your mail application can take
advantage of ESMTP elements, such as pipelining, the bdat command, data
chunking, and DSN. For more information, see Determining ESMTP Support.

During a single SMTP session, the client can send multiple unrelated,
independently addressed messages. Because of this, the SMTP client can
increase efficiency by batching messages and sending them together using
pipelining. For more information, see Pipelining Commands.

The SMTP server waits for SMTP messages on the “well-known” TCP port 25.
Many mail applications allow the user to specify a different port.

Chapter 2, Sending Mail with SMTP 29

The SMTP Protocol

For a table of SDK-supported SMTP protocol commands, see Supported SMTP
Internet Protocol Commands. For detailed information about SMTP, consult one
of the RFCs listed, with links, in SMTP RFCs.

[Top]

Steps in an SMTP Session

Generally, a messaging application follows these steps when using SMTP to
send mail. These steps are listed below with links to more detailed descriptions.

[Top]

SMTP Response Codes

When the client sends an SMTP command, the response that comes back
contains a standard three-digit response code followed by descriptive text. This
section is an overview of SMTP responses. For detailed information, see RFC
821.

Step Section with details

Initialize the response sink. Creating a Response Sink

Initialize the client. Creating a Client

Connect to the server. Connecting to a Server

Determine Extended SMTP (ESMTP)
features supported by the server.

Determining ESMTP Support

Set the mailer. Setting the Mailer

Set the recipients. Setting the Recipient

Send the message. Sending the Message

End the SMTP session. Ending the Session

The SMTP Protocol

30 Messaging Access SDK Guide

The response contains the three digit code, a space, and one or more lines of
text that describes the response. If the response is multi-line, each subsequent
line also contains the three digit code, a hyphen, and text. The final line
contains the code, a space, and text.

This table lists some of the most common SMTP reply codes. In general,
response codes in the 100 to 300 range are considered successful; those in the
400 to 500 range are considered unsuccessful.

Table 2.1 SMTP Reply Codes

Code Text of Response

211 system status, or system help reply

214 help message

220 <domain> service ready

221 <domain> service closing transmission channel

250 request mail action okay, completed

251 user not local, will forward to <forward-path >

354 start mail input; and with <CRLF>.<CRLF>

421 <domain> servers not available, closing transmission channel

450 requested mail action not taken: mailbox unavailable

451 requested action aborted: local error in processing

452 requested action not taken: insufficient system storage

500 syntax error, command unrecognized

501 syntax error in parameters or arguments

502 command not implemented

503 bad sequence of commands

504 command parameter not implemented

550 requested action not taken: mailbox unavailable

551 user not local; please try <forward-path>

552 requested mail action aborted: exceeded storage allocation

553 requested action not taken: mailbox name not allowed

554 transaction failed

Chapter 2, Sending Mail with SMTP 31

The SMTP Protocol

The first digit of the SMTP reply code basically tells whether the response is
positive or negative.

Table 2.2 SMTP Reply Codes, Digit 1

The information described by the second and third digits is noted here. For the
meanings of specific numbers, see RFC 821.

• The second digit supplies response categories, such as Syntax or
Connections, that identify the general type of failure.

• The third digit provides more information to help distinguish between
responses with the same first two digits. For example, note the variations in
the 55x codes in Table 2.1, SMTP Reply Codes. In all of these codes, the
command failed, but for different reasons the code was able to identify,
such as “mailbox unavailable” (550) or “unavailable or unable to find user”
(551).

[Top]

SMTP in the Messaging Access SDK

The SMTP class hierarchy is made up of the following classes.

• netscape.messaging.smtp.ISMTPSink. Interface for the SMTP response
sink. See Creating a Response Sink.

Digit 1 Meaning

1yz Positive Preliminary Reply

2yz Positive Completion Reply

3yz Positive Intermediate Reply

4yz Transient Negative Completion Reply

5yz Permanent Negative Completion Reply

SMTP Callback Mapping

32 Messaging Access SDK Guide

• netscape.messaging.smtp.SMTPClient. Represents the SMTP client. See
Creating a Client.

• netscape.messaging.smtp.SMTPSink . Convenience implementation of
the ISMTPSink interface. See Creating a Response Sink.

• netscape.messaging.smtp.SMTPException. Exception thrown when an
SMTP API error condition is detected by the Messaging Access SDK.
Extends IOException.

• netscape.messaging.smtp.SMTPServerException. Exception thrown
from the error callback on the response sink when the server sends an
error. Extends IOException and SMTPException.

[Top]

SMTP Callback Mapping
Callbacks are associated with many SMTP methods. For general information
about the response sink and callbacks, see “SDK Sink Classes for Java.”

The ISMTPSink interface contains callbacks for each client call. The client’s
processResponses method invokes the interface method that corresponds to
the client call. Methods with multi-line responses map to more than one
callback. The second callback provides a notification that the operation is
complete.

If a server error occurs, the error callback is invoked.

Table 2.3 shows which SMTP methods are mapped to callbacks in the
ISMTPSink interface. Table 2.4 shows methods that do not map to callbacks.

Table 2.3 Methods with Callbacks

SMTPClient Methods Possible Callbacks on ISMTPSink

bdat bdat, error

connect connect, error

Chapter 2, Sending Mail with SMTP 33

SMTP Callback Mapping

Table 2.4 Methods without Callbacks

[Top] [SMTP Callback Mapping]

data data, error

ehlo ehlo, ehloComplete, error

expand expand, expandComplete, error

help help, helpComplete, error

mailFrom mailFrom, error

noop noop, error

quit quit, error

rcptTo rcptTo, error

reset reset, error

send send, error

sendCommand sendCommand, sendCommandComplete, error

sendStream send, error

verify verify, error

Methods Without Callbacks

disconnect setChunkSize

free setPipelining

get_option setResponseSink

initialize setTimeout

processResponses set_option

SMTPClient Methods Possible Callbacks on ISMTPSink

Creating a Response Sink

34 Messaging Access SDK Guide

Creating a Response Sink
The first step in starting an SMTP session is to create the SMTP response sink,
which is defined by the ISMTPSink interface. The response sink contains the
callback methods for the SMTP client. For general information about the
response sink, see “SDK Sink Classes for Java.”

The ISMTPSink interface contains callbacks for each client call. You must
implement this interface in order to use the SMTP client object. The constructor
for the SMTPClient class takes an ISMTPSink object as a parameter.

To create your own response sink class, you can implement the ISMTPSink
interface, using this syntax:

public class newSMTPSink extends Object
implements ISMTPSink

As a convenience, the Messaging SDK provides the SMTPSink class, which
implements the ISMTPSink interface. SMTPSink implements all the interfaces in
ISMTPSink. By default, the implementation does nothing, except provide the
error callback, which throws an exception. You can save a step by extending
this class, using this syntax:

public class newSMTPSink extends SMTPSink{
}

The following section of code creates a response sink.

SMTPSink l_smtpSink;

l_smtpSink = new SMTPSink();

After you create the response sink, the next step is Creating a Client.

[Top]

Chapter 2, Sending Mail with SMTP 35

Creating a Client

Creating a Client
The SMTP client uses an SMTPClient object to communicate with the server.
To create the SMTPClient object and set the response sink for the client’s use,
call the SMTPClient.SMTPClient class constructor, which takes an existing
response sink. Use this syntax:

public SMTPClient(ISMTPSink in_sink)

The following section of code creates a client.

/* Create sink first, as described in Creating a Response Sink */

SMTPClient l_client;

SMTPSink l_smtpSink;

l_client = new SMTPClient(l_smtpSink);

After you initialize the client, the next step is Connecting to a Server.

[Top]

Connecting to a Server
Before sending mail, the client must connect with the server through a service
port. To connect to the server, call either of two SMTPClient.connect
methods, depending on whether or not you want to specify the connection
port. The SDK methods perform some error-checking.

To connect to the server using the default port for the SMTP protocol (port 25),
use this form of connect and supply the identifier of the server:

public synchronized void connect(String in_server) throws IOException

To specify the server port to use for the server connection, use the other form
of connect:

public synchronized void connect(String in_server,
int in_port) throws IOException

On connecting, the server sends a greeting message to client. The client
responds by identifying itself with the EHLO command.

Determining ESMTP Support

36 Messaging Access SDK Guide

Note For this method’s callback mapping, see SMTP Callback Mapping. §

The following section of code connects the client to the server.

/* After Creating a Response Sink and Creating a Client */

l_client.connect("smtpserver.com");

l_client.processResponses();

During the connect process, you can enable pipelining if your server supports
it. See Pipelining Commands. To find out which extensions are supported by
the server, see Determining ESMTP Support. After connecting to the server, the
next step is Setting the Mailer

To disconnect the client from the server, and close the socket connection, use
this SMTPClient class method.

public synchronized void disconnect() throws IOException

You could use this function as part of a Cancel operation while retrieving a
message. Remember that you do not call processResponses after
disconnect. If an input or output error occurs, the method throws an
IOException.

[Top]

Determining ESMTP Support
To retrieve a listing of extensions that are supported by the server, call the
SMTPClient.ehlo method. This method returns a multiline message listing the
Extended SMTP (ESMTP) features, such as pipelining or DSN, that the server
supports. This is similar to the functionality of the IMAP4Client.capability
command. Use this syntax:

public synchronized void ehlo(String in_domain)
throws IOException

This method calls the EHLO SMTP protocol command, which can be issued in
any session state, but is usually issued after connecting to the server.

Chapter 2, Sending Mail with SMTP 37

Pipelining Commands

In Messaging Server 3.5, the developer must determine ESMTP support; in
Messaging Server 4.0, this is optional.

Note For this method’s callback mapping, see SMTP Callback Mapping. §

The following section of code finds out which Extended SMTP (ESMTP)
features the server supports.

/* After Connecting to a Server */

l_client.ehlo("yourdomain.com");

l_client.processResponses();

You can enable pipelining if your server supports this extension. See Pipelining
Commands.

[Top]

Pipelining Commands
Pipelining allows you to group, or batch, methods for execution rather than
sending each separately. If pipelining is enabled on your server, commands are
stored internally in the client as they are issued. All commands begin to execute
when triggered in one of three ways: if the SMTPClient.processResponses
method is called, if the internal storage area is full, or if a method that cannot
be pipelined is issued.

You can enable pipelining anywhere, but it may make sense to do this after
invoking the SMTPClient.ehlo method. Pipelining may then be enabled if the
server supports it. If not, the way the network works does not change. The
ehlo callback indicates whether pipelining is supported.

Use this syntax to attempt to enable pipelining:

public synchronized void setPipelining(
boolean in_enablePipelining)
throws SMTPException

Setting the Mailer

38 Messaging Access SDK Guide

The in_enablePipelining parameter is a Boolean value that tells the server
to attempt to enable pipelining. The method throws an SMTPException if
PIPELINING is not supported by the server. This method sends the PIPELINING
SMTP protocol command.

Note For this method’s callback mapping, see SMTP Callback Mapping. §

Some methods continue to add to the pipelining list. These are
SMTPClient.bdat, SMTPClient.mailFrom, SMTPClient.rcptTo, and
SMTPClient.send. Calling any other method causes the methods on the
pipelining list to begin executing.

For example, you could call mailFrom, followed by one or more calls to
rcptTo. These methods are added to the pipelining list and are not executed. If
you then call another method, such as noop, the commands are sent to the
server.

For details about using pipelining, refer to RFC 1854,”SMTP Service Extension
for Command Pipelining.”

[Top]

Setting the Mailer
Setting the mailer starts the process of delivering a message. If your server
supports Extended SMTP, you can implement ESMTP elements in the
in_esmtpParams parameter. Use the SMTPClient.mailFrom method:

public synchronized void mailFrom(String in_reverseAddress,
 String in_esmtpParams)
 throws IOException

This method identifies the sender and provides the sender’s fully qualified
domain name in the in_reverseAddress parameter. It sends the MAIL FROM
SMTP protocol command. If an I/O error occurs, the method throws an
IOException.

Note For this method’s callback mapping, see SMTP Callback Mapping. §

The following section of code sets the mailer.

Chapter 2, Sending Mail with SMTP 39

Setting the Recipient

/* After Connecting to a Server */

SMTPClient l_client;

l_client.mailFrom("sender@netscape.com", null);

l_client.processResponses();

After you set the mailer, the next step is Setting the Recipient.

[Top]

Setting the Recipient
After setting the mailer, the next step is to set the recipient. Use this
SMTPClient class method:

public synchronized void rcptTo(String in_forwardAddress,
 String in_esmtpParams)
 throws IOException

This method sets a single recipient, so you must call it again for each recipient
of a message. The in_forwardAddress parameter contains the recipient’s
address. If your server supports Extended SMTP, you can pass ESMTP elements
in the in_esmtpParams parameter. If an input or output error occurs, the
method throws an IOException.

SMTPClient.rcpTo sends the RCPT TO SMTP protocol command.

Note For this method’s callback mapping, see SMTP Callback Mapping. §

The following section of code sets the recipient.

/* After Setting the Mailer */

l_client.rcptTo("recipient@netscape.com", null);

l_client.processResponses();

After you set the recipient, the next step is Sending the Message.

[Top]

Sending the Message

40 Messaging Access SDK Guide

Sending the Message
After setting all of the message recipients, the client can send the message data.
To send a message, use SMTPClient.data, followed by the SMTPClient.send
method. First, use this method:

public synchronized void data()
throws IOException

The server responds with a success or failure reply code. See SMTP Response
Codes.

The SMTPClient.send method delivers data to the server. If you use this
method, you must send data with the SMTPClient.data method and not with
SMTPClient.bdat. The SMTPClient.bdat method, which can deliver binary
data, is not supported on the Netscape Messaging Server and some other
servers.

After the data method, call SMTPClient.send, which sends a message to the
server:

public synchronized void send(
InputStream in_inputStream) throws IOException

The input stream contains the data to send. When the server responds that it is
ready, the client sends the RFC 822 message data line by line.

You can set data chunk size with SMTPClient.setChunkSize, or you can use
the default (1 K). You can set this at any point before the SMTPClient.send
method.

Note For the callback mapping for these methods, see SMTP Callback Mapping. §

The following section of code uses SMPTClient.data and SMPTClient.send
to send a message.

l_client.data();

l_client.processResponses();

l_client.send(new ByteArrayInputStream("Hello World!!!"));

l_client.processResponses();

Chapter 2, Sending Mail with SMTP 41

Sending Messages with Convenience APIs

After you send the message and perform any other SMTP operations you need
for the session, the next step is Ending the Session.

To use a more convenient, but less flexible, way to send messages, see Sending
Messages with Convenience APIs.

[Top]

Sending Messages with Convenience APIs
The Messaging Access SDK provides two Convenience APIs that combine
several message-handling operations in one step. The
ImTransport.sendMessage and ImTransport.sendDocuments methods are
for developers who want to mail-enable applications, such as spreadsheets and
word processors, whose primary purpose is not messaging. Adding this mail
functionality can allow the end user to mail documents or post them to a news
group from within the application.

The ImTransport.sendMessage method is a convenience for sending
messages. It lets the client use SMTP to send a message that is already in MIME
format.

This method connects to the SMTP transport at the specified host, and submits
a message created with the Netscape MIME API or in any other way. Use this
syntax:

public String[] sendMessage(String host,
 String sender,
 String recipients[],
 InputStream MIMEMessageStream)
 throws IMException

You provide the names of the host and sender, and the email addresses of the
recipients. The input stream contains the MIME message itself.

The Messaging Access SDK also provides an API for building and sending a
message in a single step. For more information, see Sending Documents with
the Convenience API.

[Top]

Ending the Session

42 Messaging Access SDK Guide

Ending the Session
When the client wants to end the session, the client should call
SMTPClient.quit to notify the server. The server closes the TCP connection
and returns a response code. You should always end a session with quit
instead of just closing the connection. This method sends the QUIT SMTP
protocol command:

public synchronized void quit() throws IOException

Note For this method’s callback mapping, see SMTP Callback Mapping. §

The following section of code notifies the server that the client is terminating
the session.

l_client.quit();

l_client.processResponses();

[Top]

Chapter 3, Building and Parsing MIME Messages 43

C h a p t e r

3
Chapter 3Building and Parsing MIME Messages

This chapter is an overview of using the MIME (Multipurpose Internet Mail
Extension) API of the Messaging Access SDK to encode, decode, and parse
mail messages, and handle text and non-text attachments.

• The MIME Protocol

• Structure of a MIME Message

• MIME in the Messaging Access SDK

• Steps in a MIME Session

• Building the MIME Message

• Encoding the Message

• Parsing MIME Messages

[Top]

The MIME Protocol

44 Messaging Access SDK Guide

The MIME Protocol
The MIME (Multipurpose Internet Mail Extension) protocol is the solution for
sending multipart, multimedia, and binary data over the Internet. MIME is the
standard for sending a variety of data types, including video, audio, images,
programs, formatted documents, and text, in email messages.

The MIME protocol is made up of the extensions to the Internet mail format
documented in RFC 822, “Standard for the Format of ARPA Internet Text
Messages,” August 1982. The MIME protocol, documented in a series of MIME
RFCs, adds these features:

• the ability to send rich information through the Internet

• the ability to encode and attach binary (non-ASCII) content to messages

• a framework for multipart mail messages that contain differing body parts

• a way to identify the content type associated with a message body part

• a standardized and interpretable set of body part types

MIME messages can include attachments and non-ASCII data. To conform with
RFC 822, which requires mail message characters to be in ASCII, MIME uses an
encoding algorithm to convert binary data to ASCII characters. For content that
requires encoding, MIME specifies two encoding types, either Quoted-Printable
or BASE64, which are described more fully in MIME Encoding Types.

In addition to the ability to build multimedia messages in MIME format, the
MIME API of the Messaging Access SDK provides a parsing facility for
messages. This generic MIME parser takes a MIME-encoded email message and
decodes all or parts of it, depending on the preferences of the application. The
MIME parser is described in Parsing MIME Messages.

For detailed information about MIME, consult one of the RFCs listed, with links,
in MIME RFCs.

[Top]

Chapter 3, Building and Parsing MIME Messages 45

The MIME Protocol

MIME Encoding Types

MIME messages can include attachments and non-ASCII data. RFC 822 requires
mail message characters to be in ASCII, so MIME uses an encoding algorithm to
convert binary data to ASCII characters. MIME uses one of two encoding types,
Quoted-Printable and BASE64 encoding.

Quoted printable encoding handles content that is mostly composed of ASCII
characters, with only a small number that are non-ASCII (for example,
Scandinavian characters in the ISO-8859-1 character set). This text is mostly
readable on the client before it is encoded. The encoding process ignores ASCII
characters and encodes the rest, using a set of rules for representing characters,
line breaks, and tabs, and limiting line length.

BASE64 encoding handles binary data. This algorithm works by encoding sets
of a octets into encoded characters, and produces 33 percent data expansion.

The MIME API also supports a non-encoding option. For example, no encoding
is required for text messages.

For detailed information about MIME encoding, consult one of the RFCs listed,
with links, in MIME RFCs.

[Top]

MIME Content Types

MIME types typically have three parts, a type, a subtype and optional content-
type parameters. The type is the general content category; the subtype is the
specific data format, as shown in these examples:

• text/plain: Text content (type) in plain format (subtype).

• image/gif: An image file (type) in gif format (subtype).

This table lists the valid MIME content types. A valid subtype can be of any data
format type, including numerous experimental formats.

Structure of a MIME Message

46 Messaging Access SDK Guide

Table 3.1 MIME Content Types

The MIME implementation of the Messaging Access SDK provides methods that
create these content types, add them to messages, and encode or decode them.

For detailed information about MIME content types, subtypes, and content
parameters, consult one of the RFCs listed, with links, in MIME RFCs.

[Top]

Structure of a MIME Message
A MIME message has two main parts, the header and the body.

Type Description Subtypes

Text Information in raw text form. Has optional
character set (default: us-ascii).

plain: includes no
formatting information

Audio Message body contains audio data. basic

Image Message body contains an image. image format name, for
example: gif, jpeg

Video Message body contains a time-varying-
picture image, possibly with color and
sound.

image format name,
for example: mpeg

Application Uninterpreted binary data or information
to be processed by an application.

octet-stream, postscript

Multipart Messages with multiple attachments of
potentially different media. Subtypes
describe how the sub-parts relate.

mixed, alternative,
digest, parallel

Message Identifies a message. rfc822, partial,
external-body

Chapter 3, Building and Parsing MIME Messages 47

Structure of a MIME Message

Figure 3.1 Parts of a MIME message

The message header consists of lines that describe the sender, subject,
recipient, date, version of MIME in use, and a variety of other types of
information, depending on the needs of the messaging application. This
example shows the header lines of a message.

Return-Path:<Prasad@netscape.com>

Received:from netscape.com ([205.217.229.85])by
dredd.mcom.com (Netscape Messaging Server
3.0) with ESMTP id AAA24896; Wed, 4 Feb 1998
20:08:19 -0800

Sender:prasad

Message-ID:<34D93795.C1F48C83@netscape.com>

Date:Wed, 04 Feb 1998 19:52:53 -0800

From:Prasad Yendluri <Prasad@netscape.com>

X-Mailer:Mozilla 4.03C-NSCP [en] (X11; U; SunOS 5.5.1
sun4u)

MIME-Version:1.0

To:sharonw@netscape.com

Subject:Information about MIME

Content-Type:multipart/mixed; boundary =
"------------ BFA9E722569728E3111F0326"

MIME message

Headers
;lka;ldkfj ;o iaja;lia a;ldskfj; aslk sj;flkasd
as; dlkjfas'klfas.kjdf asdreaw aawer
asd f.ka s;lk;oi iu h;opi;kkawer awer aer
'd faskjjdf awser awer awer asef

;lka;ldkfj ;o iaja;lia a;ldslk ;liu kfj; aslk sj;flkasd
as; dlkjfas'klfas.kjdf asdoiu poireaw aawer
asd f.ka s;lk;oi io uo iuu h;opi;kkawer awer aer
'd faskjjdf aoi uopiuiyt oioiwser awer awer asef
alskdjf ;aois erfiausjdm ;dlasdlkfja'spoalul;;sdjif
a'o;s
asetr
p iu;l,w q
werewar
sadfas
awer
asdf
aer
asdf
awer
 sdf
tdy
fgj
glkpo

;lka;ldkfj ;o a;ldsk sj;flkasd
as; dlkjfakjdf asdrea wer
asd iuh;opi;kkawer a

;lka;ld;lka;ldkfj ;o iaja;lia a;ldslkkjsdhflksdjfh lkjadhsf lkjasdaf ;liu kfj;

h ;joi j;alsdf jalsuroiewaeori aslk sj;flkasdasdf asdfasdf sdafas

as; dlkjfas'klfas.kjdf asdoiu poireaw aawer sadf sdfva erasdf sadr

asd f.ka s;lk;oi io uo iuu h;opi;kkaer aeasd rfasrasrfasdvcdar ar

'd faskjjdf aoi uopiuiyt oioiwser asefasdf asdf asdr asdfafdxasdr

kfj ;o a;ldsk sj;lo uo iuoaewi a=q4039 oase rasfdvdxtdrfastsdf

flkasdsadr aesrasd fsdra

asdf asd rasefas; d; poi ;k lkjfakjdf asdra;ldkf aoiwefea wer

asd iuhas;djf sad rfaserasefdsdrfdse;ao';l kdfa'skdfiaeu asfsieu r;as

lasik eurdo;asjda;sdlkf jaslkdjf/lk t usda rasefsdrfaesfsdrfae wap

oek l;sajdf ;ajweiieer asd lkopi;kkawer alasse rfsd fasdr afsf sdfsdarf

alsdkjf ;oaiseu rkjfalsjdh;otiasdfha;glajs ersda rfaserdfasd frsef

f;las idufuas.sadfr saerfser fasdfmklsdjh flkjsdh flkjsdhf lksjdhf ljksdhf l

;sdlkf j;lasdjfhiruf;lskdjsdjkfvladjfkh;odisjkfksnad flkjahrelkjsdl khfdl

k,jsdnh lfkasdhfliukaseryhlafksm,

Body headers

Body parts:
 basic part
 message part
 multipart

Body

Body data

Structure of a MIME Message

48 Messaging Access SDK Guide

For more information, see Adding Message Headers.

The message body consists of body parts of different types, depending on the
demands of the data in the message.

• Basic part. Includes all Basic MIME body part types: text, image, audio,
video, and application. It does not include the Message-part or Multipart
types. This is the simplest part.

• Multipart. Container part made up of two or more sub-body parts. The
Multipart type includes several subtypes that describe how the sub-parts
relate to each other (mixed, alternative, digest, and parallel).

• Message part. Message used as an attachment, for example, a message
forwarded in another message.

For more information, see Building the MIME Message.

[Top]

MIME in the Messaging Access SDK

The MIME class hierarchy is made up of the following classes.

• class netscape.messaging.mime.Header (implements
java.lang.Cloneable). Represents a message header.

• class netscape.messaging.mime.MIMEBodyPart (implements
java.lang.Cloneable). Represents the body part of a message.

• class netscape.messaging.mime.MIMEBasicPart (implements
java.lang.Cloneable). Represents Basic MIME BodyPart types: text,
image, audio, video, and application, except structured parts such as
MIMEMessagePart and MIMEMultiPart.

• class netscape.messaging.mime.MIMEMessagePart (implements
java.lang.Cloneable). Represents a forwarded message.

Chapter 3, Building and Parsing MIME Messages 49

Steps in a MIME Session

• class netscape.messaging.mime.MIMEMultiPart (implements
java.lang.Cloneable). Represents a message composed of several basic
parts.

• class netscape.messaging.mime.MIMEDataSink . Represents the data
sink for the MIME dynamic parser.

• class netscape.messaging.mime.MIMEDynamicParser. Represents the
MIME dynamic parser.

• class netscape.messaging.mime.MIMEHelper. Contains MIME utility
methods.

• class netscape.messaging.mime.MIMEMessage . (implements
java.lang.Cloneable). Represents the data sink for the MIME message.

• class netscape.messaging.mime.MIMEParser. Represents the data sink
for the MIME parser.

• class netscape.messaging.mime.MIMEException. Exception thrown
when a MIME API error condition is detected by the Messaging Access SDK.

• class netscape.messaging.mime.fileMIMEType. Contains file type and
encoding information.

Top]

Steps in a MIME Session
The basic MIME operations focus on preparing a message to be sent and
translating a received message into readable form for a mail application. Before
the MIME message can be sent, the message and its attachments must be built
and encoded in MIME format. When a message is received, it must be parsed
and decoded.

Generally, a messaging application follows these steps when using MIME to
build a message.

Building the MIME Message

50 Messaging Access SDK Guide

• Building the MIME Message.

• Encoding the Message.

• Decoding and parsing the Message. See Parsing MIME Messages.

Figure 3.2 Translating a MIME Message

[Top]

Building the MIME Message
Before sending a MIME message, you must build the message and its
attachments and encode them in MIME format. This section describes the steps
in building a message.

You can build MIME messages from RFC headers and simple text or
attachments or both. You have the option of either building the message part
by part, or using one of the convenience methods provided by the API.

There are two stages in building a message.

Message in
MIME canonical

format

Header lines

Lines of
message body

Includes header
and body lines

Message body

Parsing

Encoding

Message object

Chapter 3, Building and Parsing MIME Messages 51

Building the MIME Message

First, create the message object. A MIME message is an instance of the
MIMEMessage class. The methods of this class create the message, add headers
and body parts, return information about message attributes, and encode the
message.

To create a MIMEMessage object, call one of the MIMEMessage class
constructors.

• MIMEMessage.MIMEMessage(). Creates a default message.

• MIMEMessage.MIMEMessage(Header[]). Creates a message, given a set of
RFC 822 headers.

• MIMEMessage.MIMEMessage(InputStream, String, int). Creates a
multipart MIMEMessage with the specified text and file.

Then, add two components, in either order.

• Add the message headers. Headers are name:value pairs that conform to
the requirements of RFC 822. For more information, see Adding Message
Headers.

• Add the content. Content can simply be text or it can include several parts
or file attachments. For more information, see Adding Content to the
Message.

You can also create a message with ImTransport.sendDocuments, a
convenience method for building and mailing documents. This method builds a
MIME message, given headers, host, recipients, and other basic message
information, then connects to the SMTP transport and submits the message. For
more information, see Sending Documents with the Convenience API.

One of the sample applications in the examples directory of the SDK illustrates
building a message using this method.

The following section of code demonstrates using MIMEMessage.MIMEMessage
to build a MIME message with text from an input stream, a data buffer, and the
default encoding type.

/* Get an inputStream to user entered text */

bins = new ByteArrayInputStream (textMsg.getBytes());

/* Create a new Multipart MIMEMessage with the above text and the file
passed; -1 selects default encoding */

mmsg = new MIMEMessage(bins, fullfilename, -1);

Building the MIME Message

52 Messaging Access SDK Guide

Next, add the headers to the message. See Adding Message Headers.

[Top]

Adding Message Headers

After building a message, add the message headers. A MIME header is an
instance of the Header class. The methods of this class create the header, and
get and set header information.

To create a Header object, call one of the Header class constructors. These
methods create a header entry as a name:value pair.

• Header.Header(byte[]). Creates a default header from ASCII characters.

• Header.Header(String). Creates a message, given an ASCII string that
contains a header in name:value format.

• Header.Header(String, String). Creates a header, given a name and
value.

This method creates a header entry. You supply the header name and value.
This method creates a header entry as a name:value pair.

public Header(String name,
String value) throws MIMEException

Alternatively, you can add a header to a message, using either the
MIMEMessage.addHeader or the MIMEMessage.setHeader method. The
addHeader method adds the specified header to the message. If a header with
the specified name already exists, it appends the value to the current header
value.

public void addHeader(String name,
String value) throws MIMEException

The MIMEMessage.setHeader method sets any RFC 822 headers including X-
headers. If a header exists, it overwrites the existing value.

public void setHeader(String name,
String value) throws MIMEException

Chapter 3, Building and Parsing MIME Messages 53

Building the MIME Message

The following section of code creates RFC 822-compliant headers for a MIME
message.

/* Set user-entered RFC822 headers to a message (mmsg). */

mmsg.setHeader ("From", sender);
mmsg.setHeader ("Reply-To", sender);
mmsg.setHeader ("To", To);
mmsg.setHeader ("Subject", subject);

/* Add any other desired headers. */

mmsg.setHeader ("X-MsgSdk-Header", "This is a Text Message");

Next, you can add other message parts or attachments as needed to the
message. See Adding Content to the Message.

[Top]

Adding Content to the Message

To add content to a message, you first create a message body part that contains
data, then use MIMEMessage methods to add this part to the message. A MIME
message can include the following types of body parts:

• Basic part, a MIMEBasicPart object. The simplest basic part is text that you
type in. Other basic parts are audio, video, image, or application files. To
add data to a basic part, use the MIMEBasicPart.setBodyData method.

• Multipart, a MIMEMultiPart object. A multipart contains two or more basic
parts. Use MIMEBasicPart methods to build a basic part. Use the
MIMEMultiPart.addBodyPart method to add the basic part to the
multipart. Then you can add the constructed multipart to the message. Use
this content type if you are constructing a message that has more than one
attachment.

• Message part, a MIMEMessagePart object. A message part is a message that
becomes an attachment, for example, when it is forwarded. You can use the
MIMEMessagePart.setMessage method to add the message to the
message part.

Building the MIME Message

54 Messaging Access SDK Guide

Creating the Basic Part and Adding Data

Before you can add a basic part, you first create the basic part object. A MIME
basic part is an instance of the MIMEBasicPart class. This is the common
structure for the leaf parts, text, audio, video, image, and application. Use one
of the two class constructors.

• MIMEBasicPart.MIMEBasicPart(). Creates a default basic part with the
“Text” content type.

• MIMEBasicPart.MIMEBasicPart(int). Creates a basic part, given the
content type. Set the attributes of the basic part as required. For example,
use MIMEBasicPart.setContentID to set the content ID.

After you create the basic part object and its attributes, you can add the body
data. To add data to an existing basic part, use one of the
MIMEBasicPart.setBodyData methods, depending on the source of the data.

• MIMEBasicPart.setBodyData(InputStream is). Sets the body data of
this basic part from an input stream.

• MIMEBasicPart.setBodyData(byte s[]). Sets the body data of this basic
part from a buffer.

The following section of code demonstrates adding data to a body part.

byte() bodyData = userTxt.getBytes()
/* userTxt is a user-entered text string */

MIMEBasicPart bp1 = new MIMEBasicPart (MIMEBasicPart.Text);

bp1.setBodyData(bodyData);

Now you can add this part to the message. See Adding Parts to the Message.

[Top]

Adding Body Parts to a Multipart

If a message has two or more attachments, you must create a multipart that
includes them before you can add them the message.

Chapter 3, Building and Parsing MIME Messages 55

Building the MIME Message

• First, create each part as a basic part. For more information, see Creating the
Basic Part and Adding Data.

• Then create a multipart and add each basic part to it.

• After this, you can add this multipart to the message.

To add an existing body part to a multipart, use this MIMEMultiPart method:

public int addBodyPart(MIMEBodyPart part,
 boolean clone) throws MIMEException

Supply the body part type you are adding, either a MIMEBasicPart, a
MIMEMultiPart, or a MIMEMessagePart.

The following section of code demonstrates adding a body part to a multipart.

/* Create the basic part */

MIMEBasicPart bp1 = new MIMEBasicPart();

MIMEBasicPart bp2 = new MIMEBasicPart(MIMEBasicPart.AUDIO);

/* Set bodyData of bp1 and bp2; set attributes of bp1 and bp2 */
/* See Creating the Basic Part and Adding Data for details */

/* Create the multipart */

MIMEMultiPart mp = new MIMEMultiPart();

mp.addBodyPart(bp1, false);

mp.addBodyPart(bp2, false);

/* Set attributes of multipart */

mp.setContentSubType ("Mixed");

After creating and assembling the multipart, the next step is to add the multipart
to the message. See Adding Parts to the Message.

[Top]

Creating a Message Part

When you forward a message, it becomes the content of another message. This
means that the mail application must do two things:

Building the MIME Message

56 Messaging Access SDK Guide

• Make a message part from the message structure to be forwarded.

• Add it as the content (body) of the message to be sent.

To make a message part from the message structure, use the MIMEMessagePart
constructor:

public MIMEMessagePart(MIMEMessage msg) throws MIMEException

For the msg parameter, supply the MIMEMessage object for the message to be
forwarded. Alternatively, you can create a message part and then add the
message to be forwarded to it, as shown here:

MIMEMessagePart msgPart = new MIMEMessagePart();

msgPart.setMessage(msg);

public void setMessage(MIMEMessage msg,
boolean clone) throws MIMEException

Supply the message. The clone parameter should contain true if the function
should clone a copy of the message or false if it should store a reference to
the passed object.

[Top]

Adding Parts to the Message

After you create the MIME message object and the body parts you want it to
include, use MIMEMessage methods to add the parts to the message. For
information about creating the message, see Adding Content to the Message.

When a basic part, multipart, or message part is complete and includes data,
you can add it to the message with the MIMEMessage.setBody method:

public void setBody(MIMEBodyPart part,
boolean clone) throws MIMEException

You supply the body part type, either MIMEBasicPart, MIMEMultiPart, or
MIMEMessagePart, and this part becomes the body of the message. For
information about constructing a basic part, see Creating the Basic Part and
Adding Data.

Chapter 3, Building and Parsing MIME Messages 57

Building the MIME Message

You can simplify the process of building and adding content to a message by
using the MIMEMessage constructor that takes a new stream and file name. You
can also use the ImTransport.sendDocuments Convenience API to build and
send MIME messages from files and memory-based buffers. You supply
message content and other attributes. The method creates a message, then
connects to the SMTP transport and submits it. For more information, see
Sending Documents with the Convenience API.

[Top]

Deleting Parts of a Message

If you want to delete the message, a body part, or parts of it, after it is built, use
one of the MIME delete methods. You can delete the entire message, the body,
or a message part, as needed.

• MIMEBasicPart.deleteBodyData. Deletes the body data for a part.

• MIMEMultiPart.deleteBodyPart. Deletes a body part from a multipart.

• MIMEMessagePart.deleteMessage. Deletes a MIME message that is the
body of a message part.

• MIMEMessage.deleteBody. Deletes the body of a message.

[Top]

Encoding the Message

58 Messaging Access SDK Guide

Encoding the Message
After building a message, the next step is to encode it. You can encode an
entire message, with headers and message attachments, in one operation with
the MIMEMessage.putByteStream method. Encoding generates a byte stream
in MIME canonical form, so that it can be transmitted over SMTP and other
transport methods.

public void putByteStream(OutputStream os)
throws IOException, MIMEException

This method encodes the data and writes it to the specified MIME output
stream.

If you need to encode only a message body part, use the putByteStream
method for that part. MIMEMessage.putByteStream internally invokes the
putByteStream method for each constituent body part as needed.

The following section of code demonstrates using the putByteStream method.

FileOutputStream fos = new fileInputStream(“<fileName>”);

mmsg.putByteStream (fos);

[Top]

Encoding and Decoding Utilities

The MIMEHelper class provides a number of utility methods for encoding and
decoding. These methods are used by other MIME API methods internally, and
are also made available to developers to use in their applications.

The MIMEMessage.putByteStream method could call either of two encoding
utility methods, MIMEHelper.encodeBase64 or MIMEHelper.encodeQP, based
on whether the requested encoding type is Base64 (default for non-text types)
or Quoted Printable. These MIMEHelper utility methods each provide a single
form of encoding. Like MIMEMessage.putByteStream, these methods take an
input stream and encode it. If an application requires only Base64 or QP-
encoded data, you can use one of these methods in place of
MIMEMessage.putByteStream.

Chapter 3, Building and Parsing MIME Messages 59

Encoding the Message

• MIMEHelper.encodeBase64. Base64 encodes data and writes it to an
output stream.

• MIMEHelper.encodeQP. Quoted Printable encodes the data from an input
stream and writes to an output stream.

The MIMEParser.parseEntireMessage method, which parses and decodes
encoded messages, could call either of two decoding utility methods,
MIMEHelper.decodeBase64 or MIMEHelper.decodeQP, based on the
requested encoding type. These MIMEHelper utility methods each provide a
single form of decoding, and could be used instead of parseEntireMessage if
an application only needs to decode Base64 or QP-encoded data.

• MIMEHelper.decodeBase64. Base64 decodes the data from an input stream
and writes to an output stream.

• MIMEHelper.decodeQP. Quoted Printable decodes the data from an input
stream and writes to an output stream.

[Top]

Encoding and Decoding Headers

Two utility methods allow you to encode and decode only the headers of a
message.

• MIMEHelper.encodeHeader. Encodes an RFC 2047-compliant header from
an input stream, using Base64 or Q encoding. You can select the character
set for the encoding operation. The header string can be used as the value
of unstructured headers or in the comments section of structured headers.

• MIMEHelper.decodeHeader. Decodes an RFC 2047 header of a message.

[Top]

Sending Documents with the Convenience API

60 Messaging Access SDK Guide

Sending Documents with the Convenience
API

The Messaging Access SDK provides convenience APIs that combine several
message-handling operations in one step. These can be helpful when you are
mail-enabling an otherwise mail-ignorant application.

ImTransport.sendDocuments is a convenience method for mailing
documents. This method builds a MIME message with the specified parameters
by automatically detecting the MIME types. It then connects to the SMTP
transport at the specified host, and submits the message. If the message has
more than one attachment, it is sent as a MIME message of multipart/mixed
type.

public String[] sendDocuments(String host,
String sender,
String recipients[],
String subject,
String[] msgHeaderNames,
String[] msgHeaderValues,
IMAttachment [] attachments,
boolean fUseTempFiles)
throws IMException

You provide the names of the host and sender, the email addresses of the
recipients, the subject of the message, header information, any message
attachments. If you set the fUseTempFiles parameter to true, sendDocuments
uses temporary intermediate files for some internal processing, for better
performance. If you don’t want to create temporary files, set this flag to false.

For other purposes, or for more sophisticated email requirements, use the
ImTransport.sendMessage method in association with the Netscape MIME
API or other Messaging APIs provided by Netscape.

The Messaging Access SDK also provides an API for sending a message that is
already in MIME format in a single step. For more information, see Sending the
Message.

[Top]

Chapter 3, Building and Parsing MIME Messages 61

Parsing MIME Messages

Parsing MIME Messages
For parsing encoded messages, the Messaging Access SDK provides these
options:

• Parsing the Entire Message. Use this option when the message to be parsed
is available in its entirety when you begin parsing.

• Dynamic Parsing. Use the dynamic parser when the entire message is not
available when you begin parsing, but becomes available block by block.
This could happen when you are receiving a message from a server.

[Top]

Parsing the Entire Message

You can use MIMEParser class methods to parse and decode encoded
messages retrieved through email protocol APIs, such as POP3 and IMAP4.
First, create a MIMEParser object; then call
MIMEParser.parseEntireMessage.

This method parses an entire MIME message in one operation and returns the
parsed message:

public MIMEMessage parseEntireMessage(
InputStream input) throws MIMEException

Supply the identifier of the input stream for the message.

The following section of code uses MIMEParser.parseEntireMessage as part
of a routine that parses an entire file.

MIMEMessagePart msg = parseEntireMessage(inputStream);

[Top]

Parsing MIME Messages

62 Messaging Access SDK Guide

Dynamic Parsing

This section describes the steps involved in using the dynamic parser. Dynamic
parsing contrasts with standard MIME parsing, as described in Parsing the Entire
Message, in several ways.

• The dynamic parser can parse a message in chunks, rather than in its
entirety, in a single operation. The dynamic parser decodes the message on
the fly, passing the data to the user right away without waiting for the
whole message.

• The dynamic parser returns parsed message data to the caller using
callbacks in the data sink. For information about this, see Creating a Data
Sink. The MIMEParser.parseEntireMessage method does not use
callbacks; instead, it passes the entire parsed message to the user after
parsing is complete.

• The dynamic parser does not decode the Base64/QP-encoded parts of the
message. To do this, use the utility methods in the MIMEHelper class.

[Top]

Steps in Dynamic Parsing

Using the dynamic parser involves these operations:

• Create a MIMEDataSink object and callback methods for the parser. The
MIME data sink contains one call for each piece of information that the
parser can return. For example, for a header, it contains a header callback
method. See Creating a Data Sink.

• Create a parser object, which takes the data sink as a parameter. See
Creating the Dynamic Parser.

• Begin parsing. See Running the Parser.

Chapter 3, Building and Parsing MIME Messages 63

Parsing MIME Messages

• As long as there is more data to parse, continue to call a dynamic parsing
method that matches the source of the data. Keep calling this method until
there is no more data. See Running the Parser.

• When there is no more data to parse, indicate that parsing is complete.
These steps are described in Running the Parser.

All dynamic parser methods are defined in the MIMEDynamicParser class.

[Top]

MIME Data Sink Callbacks

Callbacks operate in the same way in MIME as they do in other Messaging
Access SDK protocols. However, for SMTP, IMAP4, and POP3, callbacks are
tied to server responses to individual functions.

The dynamic parser data sink differs from the response sink in that, with a
response sink, the mail application sends a command and gets a server
response. In the data sink, when a callback takes place, the data is passed to
the sink in callbacks. The callback is dependent upon the data in the input
stream.

The MIME data sink contains one callback prototype for each piece of
information that the parser can return. The dynamic parser makes callbacks
based on the kind of data it finds in its input stream. For example, if the parser
finds a header, the result is a header callback. As the parser encounters data, it
returns information to the caller through callbacks in the data sink.

For general information about the data sink, response sinks, and callbacks, see
SDK Sink Classes for Java.

[Top]

Parsing MIME Messages

64 Messaging Access SDK Guide

Creating a Data Sink

The first step in starting the MIME parser session is to create and initialize the
MIME data sink. To do this, extend the MIMEDataSink abstract class. The
MIMEDataSink class contains null body callbacks for all methods. For general
information about the data sink, see SDK Sink Classes for Java.

After creating the data sink, the application passes it to the parser. As the parser
encounters information, it sends this on to the caller through callbacks in the
data sink. The MIME data sink contains a call for each piece of information that
the parser can return.

The following section of code demonstrates creating a data sink.

public class myDataSink extends MIMEDataSink
{

public MIMEMessage m_mimeMessage;
/* Constructor */

public myDataSink()
{

super();

public void header(Object callbackObject,
byte[] name, byte[] value)

{
show ("header name = " + new String(name) +

"value = " + new String(value));
}

public void contentType(Object callbackObject,
int nContentType)

{
show("contentType()=" + nContentType);

}

public void contentSubType(Object callbackObject,
byte[] contentSubType)

{
show("contentSubType()=" + new String (contentSubType));

}

public void contentTypeParams(Object callbackObject,
byte[] contentTypeParams)

{

show("contentTypeParams()" + new String(contentTypeParams));

}

public void contentID(Object callbackObject,
byte[] contentID)

Chapter 3, Building and Parsing MIME Messages 65

Parsing MIME Messages

{

show("contentID()" + new String(contentID));

}
/* Processing continues... */
}

After the data sink is created, the mail application can pass it to the parser
when this object is created. As the parser encounters information, it goes
through the data sink, returning information to the caller through callbacks.

You can create parsers with different data sinks, based on what you want the
messaging application to do. For example, you can define data sinks that create
a brief header, a normal header, or list all header lines, each of which can be
invoked with a different parser invocation. To add headers, define the ones
your application requires within the data sink structure.

After you create the data sink, the next step is Creating the Dynamic Parser.

[Top]

Creating the Dynamic Parser

After creating the data sink, the next step is to create a dynamic parser. You can
use the MIMEDynamicParser class constructor to create a new parser and
identify the data sink to use.

public MIMEDynamicParser(MIMEDataSink dataSink) throws MIMEException

The following section of code creates a dynamic parser.

/* Initialize sink first, as described in Creating a Data Sink */

MIMEDynamicParser mdp = new MIMEDynamkcParser(myDataSink);

After you create the dynamic parser, the next step is Running the Parser.

[Top]

Parsing MIME Messages

66 Messaging Access SDK Guide

Running the Parser

After the dynamic parser object has been created, as described in Creating the
Dynamic Parser, parsing can begin. The parsing operation should continue
until no more data is available, then signal that the parsing is complete.

To begin parsing, use the MIMEDynamicParser.beginParse method:

public void beginParse() throws MIMEException

This method starts a new parse cycle and resets the parser’s internal data
structures.

To continue parsing, use the MIMEDynamicParser.parse method:

public void parse(InputStream input) throws MIMEException

This method requires the input stream for the data to parse. Continue to call
this method until there is no more data left.

When no more data remains to be parsed, call this method to indicate that
parsing is complete. The parser ends the parse operation.

public void endParse() throws MIMEException

To initiate another parsing cycle, you can call beginParse again.

The following section of code creates a dynamic parser, parses data from an
input stream, and ends the parse operation.

Class myDataSink extends MIMEDataSink;

/* Implement the methods of myDataSink as needed */

myDataSink dataSink = new myDataSink();

/* Create the dynamic parser; see Creating the Dynamic Parser */

MIMEDynamicParser mdp = new MIMEDynamicParser(dataSink);

/* Start dynamic parsing */

mdp.beginParse();

/* Continue dynamic parsing until no more data remains */

while (not done)
{

mdp.parse (data to parse);
}

/* When data is finished, stop the dynamic parser */

Chapter 3, Building and Parsing MIME Messages 67

Parsing MIME Messages

mdp.endParse ();

[Top]

Parsing MIME Messages

68 Messaging Access SDK Guide

Chapter 4, Receiving Mail with IMAP4 69

C h a p t e r

4
Chapter 4Receiving Mail with IMAP4

This chapter is an overview of using IMAP4 (Internet Message Access Protocol
4) to retrieve and manage messages remotely.

• The IMAP4 Protocol

• IMAP4 Callback Mapping

• Creating a Response Sink

• Creating a Client

• Connecting to a Server

• Logging In and Out

• Checking for New Messages

• Searching for Messages

• Fetching Message Data

• Closing a Mailbox

[Top]

The IMAP4 Protocol

70 Messaging Access SDK Guide

The IMAP4 Protocol
IMAP4 (Internet Message Access Protocol, Version 4), which was developed at
the University of Washington, allows clients to retrieve and manage their email
messages remotely. This can be very helpful to users who access mail on
several different computers.

IMAP4 also provides these capabilities:

• Filing: You can create folders, called “mailboxes,” on the server, manage
mail messages on the server (search, delete, rename), and transfer messages
from one folder to another on the server.

• Searching: You can find the messages that meet specified criteria on the
server without downloading messages to the client

To send mail, use SMTP (Simple Mail Transport Protocol). For more
information, see Chapter 2, “Sending Mail with SMTP.”

For detailed information about IMAP4, consult one of the RFCs listed, with
links, in IMAP4 RFCs.

[Top]

IMAP4 Session States

An IMAP4 session progresses through several stages, or states. Within each
state, only certain commands are possible.

Chapter 4, Receiving Mail with IMAP4 71

The IMAP4 Protocol

Figure 4.1 IMAP4 Session States

Table 4.1 IMAP4 Session States and Commands

The client must keep track of the current session state in order to know which
commands are valid.

For a table of SDK-supported IMAP4 protocol commands that lists the state in
which each can be called, see Supported IMAP4 Internet Protocol Commands.
For detailed information about IMAP4 and IMAP4 session states, consult one of
the RFCs listed, with links, in IMAP4 RFCs.

Session State Commands

All States Commands: CAPABILITY, LOGOUT, NOOP

Non-Authenticated Before login. User login, approval. Command: LOGIN

Authenticated User is logged in, can perform operations involving
mailboxes and mailbox management. Commands:
APPEND, CREATE, DELETE, EXAMINE, LIST, LSUB,
RENAME, SELECT, STATUS, SUBSCRIBE, UNSUBSCRIBE

Selected Operations involving messages. Commands: CHECK,
CLOSE, COPY, EXPUNGE, FETCH, SEARCH, STORE,
UID

Server
greeting

Log out
Close connection

Authenticated
(operations

involving
mailboxes)

User login, approval

Note: All states can result in logging out
and closing the connection in response to
the logout command, server shutdown, or
a closed connection.

Non-authenticated

Selected
(operations

involving
messages)

The IMAP4 Protocol

72 Messaging Access SDK Guide

[Top]

Steps in an IMAP4 Session

Generally, a messaging application follows these steps when using IMAP4 to
receive mail and manage mailboxes and messages. These steps are listed below
with links to more detailed descriptions.

[Top]

IMAP4 in the Messaging Access SDK

The IMAP4 class hierarchy is made up of the following classes.

• netscape.messaging.imap4.IIMAP4Sink. Interface for the IMAP4
response sink. See Creating a Response Sink.

Step Section with details

Create a response sink. Creating a Response Sink

Create a client. Creating a Client

Connect to the server. Connecting to a Server

Log in. Logging In and Out

Check for new messages. Checking for New Messages

Select a mailbox. Searching for Messages

Fetch a new message. Fetching Message Data

Perform other message and mailbox
management tasks.

IMAP4 in the Messaging Access SDK

Close the mailbox. Closing a Mailbox

Chapter 4, Receiving Mail with IMAP4 73

IMAP4 Callback Mapping

• netscape.messaging.imap4.IMAP4Client. Represents the IMAP4 client.
See Creating a Client.

• netscape.messaging.imap4.IMAP4Sink . Implementation of the
IIMAP4Sink interface. See Creating a Response Sink.

• netscape.messaging.imap4.SystemPreferences. Sets and returns
preferences for block size, default port, debug flag, and time-out length.

• netscape.messaging.imap4.IMAP4Exception. Exception thrown when
an IMAP4 API error condition is detected by the Messaging Access SDK.
Extends IOException.

• netscape.messaging.imap4.IMAP4ServerException. Exception thrown
from the error callback on the response sink when the server sends an
error. Extends IOException and IMAP4Exception.

[Top]

IMAP4 Callback Mapping
Callbacks are associated with many IMAP4 methods. For general information
about the response sink and callbacks, see SDK Sink Classes for Java.

The.IIMAP4Sink interface contains callbacks for each client call. The client’s
processResponses method invokes the interface method that corresponds to
the client call.

Methods with multi-line responses map to two or more callbacks. For example,
when a method is mapped to three callbacks, the first provides a notification of
the start of the operation, the second of the response, and the third that the
operation is complete.

Many IMAP4 methods generate a tag (out_ppTagID) that you can use to help
match the command and the response associated with it within the within the
IMAP4Client.taggedLine response.

IMAP4 Callback Mapping

74 Messaging Access SDK Guide

If a server error occurs, the error callback is invoked.

Table 4.2 shows which IMAP4 methods are mapped to callbacks in the
IIMAP4Sink interface.

Table 4.2 Methods with Callbacks

IMAP4Client Methods Possible Callbacks on IIMAP4Sink

General Commands

connect ok, error

disconnect bye

sendCommand rawResponse, taggedLine, error

Non-Authenticated State Commands

capability capability, taggedLine, error

noop exists, expunge, recent, fetchStart,
fetchFlags, fetchEnd, taggedLine, error

login taggedLine, error

logout bye, taggedLine, error

Authenticated State Commands

append taggedLine, error

create taggedLine, error

delete taggedLine, error

examine flags, exists, recent, ok, taggedLine, error

list list, taggedLine, error

lsub lsub, taggedLine, error

rename taggedLine, error

select flags, exists, recent, ok, taggedLine, error

status statusMessages, statusRecent,
statusUidnext, statusUidvalidity,
statusUnseen, taggedLine, error

subscribe taggedLine, error

unsubscribe taggedLine, error

Selected State Commands

check taggedLine, error

close taggedLine, error

Chapter 4, Receiving Mail with IMAP4 75

IMAP4 Callback Mapping

[Top] [IMAP4 Callback Mapping]

copy taggedLine, error

uidCopy taggedLine, error

expunge expunge, taggedLine, error

fetch fetchStart, fetchEnd, fetchSize,
fetchData, fetchFlags, fetchBodyStructure,
fetchEnvelope, fetchInternalDate,
fetchHeader, fetchUid, taggedLine, error

uidFetch fetchStart, fetchEnd, fetchSize,
fetchData, fetchFlags, fetchBodyStructure,
fetchEnvelope, fetchInternalDate,
fetchHeader, fetchUid, taggedLine, error

search searchStart, search, searchEnd,
taggedLine, error

uidSearch searchStart, search, searchEnd,
taggedLine, error

store taggedLine, error

uidStore taggedLine, error

Extended IMAP Commands

nameSpace nameSpaceStart, nameSpacePersonal,
nameSpaceOtherUsers, nameSpaceShared,
nameSpaceEnd, taggedLine, error

setACL taggedLine, error

deleteACL taggedLine, error

getACL aclStart, aclIdentifierRight, aclEnd,
taggedLine, error

myRights myRights, taggedLine, error

listRights listRightsStart, listRightsRequiredRights,
listRightsOptionalRights, listRightsEnd,
taggedLine, error

IMAP4Client Methods Possible Callbacks on IIMAP4Sink

Creating a Response Sink

76 Messaging Access SDK Guide

Creating a Response Sink
The first step in starting an IMAP4 session is to create the IMAP4 response sink,
which is defined in the IIMAP4Sink interface. For general information about
the response sink, see SDK Sink Classes for Java.

The IIMAP4Sink interface contains callbacks for each client call. You must
implement this interface in order to use the IMAP4 client object. The
constructor for the IMAP4Client class takes an IIMAP4Sink object as a
parameter.

To create a response sink class, you can implement the IIMAP4Sink interface.
Use this syntax:

public class ResponseSink
implements IIMAP4Sink {
/* implementation of all methods declared in the sink */
}

As a convenience, the Messaging SDK provides the IMAP4Sink class, which
implements the IIMAP4Sink interface. IMAP4Sink implements all the interfaces
in IIMAP4Sink. By default, the implementation does nothing, except provide
the error callback, which throws an exception. You can save time by
extending this class, using this syntax:

public class ResponseSink extends IMAP4Sink{
}

The following section of code creates a response sink.

ResponseSink l_sink = new ResponseSink();

After you create the response sink, the next step is Creating a Client.

[Top]

Chapter 4, Receiving Mail with IMAP4 77

Creating a Client

Creating a Client
The IMAP4 client uses an IMAP4Client object to communicate with the server.
To create the IMAP4Client object and set the response sink for the client’s use,
call the IMAP4Client.IMAP4Client class constructor, which takes an existing
response sink. Use this syntax:

public IMAP4Client(IIMAP4Sink in_sink)

The following section of code creates a client.

/* After Creating a Response Sink */

IMAP4Client l_client = new IMAP4Client(l_sink);

After you initialize the client, the next step is Connecting to a Server.

[Top]

Connecting to a Server
Before retrieving mail, the client must connect with the server through a service
port. To connect to the server, call either of the two connect methods in the
IMAP4Client class, depending on whether or not you want to specify the
connection port.

To connect to the server using the default port (143) for the IMAP4 protocol,
use this form of connect and supply the identifier of the server:

public synchronized boolean connect(String in_IMAPHost)
throws IOException

To specify the server port to use for the server connection, use the other form
of connect. With this form, you can pass in the port number as well as the
server identification, as follows:

public synchronized boolean connect(String in_IMAPHost,
int in_portNumber)
throws IOException

These methods generate tags that you can use to help match the commands
and the responses associated with them.

Determining Server Capabilities

78 Messaging Access SDK Guide

The following section of code connects the client to the server.

/* After Creating a Response Sink and Creating a Client */

l_client.connect (“HOSTNAME”, 143);

l_client.processResponses();

During the connect process, you can find out what extensions the server
supports. For more information, see Determining Server Capabilities. You also
might want to log in. For more information, see Logging In and Out.

To disconnect the client from the server and close the socket connection, use
this IMAP4Client class method:

public synchronized void disconnect() throws IOException

You could use this method as part of a Cancel operation while retrieving a
message. Remember that you do not call processResponses after
disconnect.

Note For the callback mapping for these methods, see IMAP4 Callback Mapping. §

[Top]

Determining Server Capabilities
To retrieve a listing of the capabilities that are supported by the server, call the
IMAP4Client.capability method:

public synchronized String capability() throws IOException

This method calls the CAPABILITY IMAP4 protocol command, which can be
issued in any session state, but is usually issued after connecting to the server.

Note For this method’s callback mapping, see IMAP4 Callback Mapping. §

The following section of code retrieves a list of server capabilities.

/* After Connecting to a Server */

l_client.capability();

l_client.processResponses();

Chapter 4, Receiving Mail with IMAP4 79

Logging In and Out

[Top]

Logging In and Out
Once the client is connected to the server, the user can log in. Login identifies
the client to the server. Logging in requires the user ID and the plain text
password that authenticates this user. Use this IMAP4Client class method:

public synchronized String login(String in_user,
String in_password) throws IOException

The method sends the LOGIN IMAP4 protocol command, which can be issued
during the Non-Authenticated state. Successful login moves the IMAP4 session
to the Authenticated state, where the user can search for messages and manage
messages on the server. This method generate a tag that you can use to help
match the command and the response associated with it.

The following section of code logs the user in with user name and password.

l_client.login(“userid”, “password”);

l_client.processResponses();

After you log in, the next step is Checking for New Messages.

To log out at the end of a session, use this IMAP4Client class method:

public synchronized String logout() throws IOException

The following section of code logs the user out.

l_client.logout();

l_client.processResponses();

Note For the callback mapping for these methods, see IMAP4 Callback Mapping. §

[Top]

Checking for New Messages

80 Messaging Access SDK Guide

Checking for New Messages
Most IMAP4 servers check for messages whenever a command is issued. In the
absence of commands, the server does not check for messages and may
disconnect. To keep the server open indefinitely and check for messages
periodically, the developer can call IMAP4Client.noop at set intervals.

The noop method is ideal for polling for new mail and ensuring that the server
connection is still active. noop does nothing in itself, so it only produces the
side effect of resetting the autologout timer inside the server and retrieving
unsolicited server responses, which all commands do. The server responses
may indicate the arrival of new messages or a change in the attributes of an
existing message. Use this method:

public synchronized String noop() throws IOException

Note For this method’s callback mapping, see IMAP4 Callback Mapping. §

The following section of code uses IMAP4Client.noop to check for messages.

l_client.noop();

l_client.processResponses();

After checking for new messages, the next step is Searching for Messages.

[Top]

Searching for Messages
The IMAP4Client class provides two ways to search for messages while in the
Selected state. Two methods, search and uidsearch, search the currently
selected mailbox and return the message numbers of messages that match a
search key. These numbers can be used in turn to fetch the messages
themselves.

You can supply one or more of the search keys defined in RFC 2060, section
6.4.4. Place more than one search key in a parenthesized list.

Chapter 4, Receiving Mail with IMAP4 81

Fetching Message Data

The IMAP4Client.search method searches the mailbox for messages that
match the search criteria and returns their message numbers:

public synchronized String search(String in_criteria)

This method sends the SEARCH IMAP4 protocol command, which can be
issued in the Selected session state.

The IMAP4Client.uidSearch method retrieves the message numbers that
match the search criteria in the currently selected mailbox:

public synchronized String uidSearch(String in_criteria)
 throws IOException

This method uses the UID IMAP4 protocol command to specify that the
SEARCH command uses unique message identifiers rather than sequence
numbers.

Both methods generate tags that you can use to help match the command and
the response associated with it.

Note For the callback mapping for these methods, see IMAP4 Callback Mapping. §

The following section of code searches for messages that have the SUBJECT
“afternoon meeting.”

l_client.search(“SUBJECT \”Afternoon Meeting\””);

l_client.processResponses();

After locating messages, the next step is Fetching Message Data.

[Top]

Fetching Message Data
IMAP4 provides two methods that fetch messages while in the Selected state.
IMAP4Client.fetch and IMAP4Client.uidfetch both search the currently
selected mailbox and retrieve the data specified by the fetch criteria.

Closing a Mailbox

82 Messaging Access SDK Guide

When you fetch messages, you supply the message set (mailbox) and one or
more fetch criteria, placing more than one data item in a parenthesized list. The
fetch criteria determine the information that is returned. You can fetch one or
more of the data items defined in RFC 2060, section 6.4.5.

The IMAP4Client.fetch method performs a fetch:

public synchronized String fetch(String in_msgSet,
String in_fetchCriteria) throws IOException

The IMAP4Client.uidfetch method performs a fetch using unique identifiers
for messages:

public synchronized String uidFetch(String in_msgSet,
String in_fetchCriteria) throws IOException

It uses the UID IMAP4 protocol command to specify that the FETCH command
uses unique message identifiers rather than sequence numbers.

Both methods generate tags that you can use to help match the command and
the response associated with it.

Note For the callback mapping for these methods, see IMAP4 Callback Mapping. §

The following section of code fetches the body of the message specified by the
message number.

l_client.fetch(“1:*”, “(BODY[HEADER])”);

l_client.processResponses();

[Top]

Closing a Mailbox
To close a mailbox, use the IMAP4Client.close method. This method sends
the CLOSE IMAP4 protocol command, which closes the mailbox and removes
any messages marked with the \Deleted flag. You can close the mailbox
without logging out. In this case, the session moves to the parent mailbox. Use
this syntax:

public synchronized String close() throws IOException

Chapter 4, Receiving Mail with IMAP4 83

Closing a Mailbox

If you need to permanently delete messages without closing, call the
IMAP4Client.expunge method.

This method generate a tag that you can use to help match the command and
the response associated with it.

Note For this method’s callback mapping, see IMAP4 Callback Mapping. §

The following section of code closes a mailbox.

l_client.close();

l_client.processResponses();

[Top]

Closing a Mailbox

84 Messaging Access SDK Guide

Chapter 5, Receiving Mail with POP3 85

C h a p t e r

5
Chapter 5Receiving Mail with POP3

This chapter is an overview of using POP3 (Post Office Protocol 3) to
download messages to a client.

• The POP3 Protocol

• POP3 Callback Mapping

• Creating a Response Sink

• Creating a Client

• Connecting to a Server

• Logging In

• Getting Message Count

• Listing Messages

• Retrieving Message Headers

• Retrieving a Message

• Ending the Session

The POP3 Protocol

86 Messaging Access SDK Guide

[Top]

The POP3 Protocol
POP3 (Post Office Protocol 3) retrieves mail from mailboxes on a remote
server. The server retains messages until the client requests them.

Unlike IMAP4, POP3 only receives mail. IMAP4 provides the capabilities of
POP3 along with the ability to move messages back and forth between client
and server, and manage mailboxes on the server. For information about IMAP4,
see Chapter 4, “Receiving Mail with IMAP4.”

POP3 commands use the ASCII character set. They are made up of a keyword,
followed by any parameters the command has, and ending with
“<CRLF>.<CRLF>.” Commands are line-oriented and can return a single or
multi-line response.

For detailed information about POP3, see RFC 1939: “Post Office Protocol -
Version 3.”

[Top]

POP3 Session States

A POP3 session progresses through three stages, or states. Within each state,
only certain commands are possible.

Chapter 5, Receiving Mail with POP3 87

The POP3 Protocol

Figure 5.1 POP3 Session States

Table 5.1 POP3 Session States and Commands

For a table of SDK-supported POP3 protocol commands that lists the state in
which each can be called, see Supported POP3 Internet Protocol Commands.
For detailed information about POP3 and POP3 session states, see POP3 RFCs.

[Top]

POP3 Response Codes

When a client sends a POP3 command, a text response code is returned with
descriptive text. The response can either be single- or multi-line.

Session State Commands

Authorization User login, password approval, quit. Commands: USER, PASS, QUIT

Transaction Operations involving messages. Commands: STAT, LIST, RETR,
DELE, NOOP, RSET, TOP, UIDL

Update Delete any marked messages. The session enters this state after a
QUIT command, deletes messages marked for deletion, then quits.
Commands: QUIT

Authorization
Finished with session
Server disconnects

Transaction
(operations

involving
messages)

User login
Update

(delete any
marked

messages)

The POP3 Protocol

88 Messaging Access SDK Guide

Table 5.2 POP3 Response Types

For a list of functions and their associated callbacks, see POP3 Callback
Mapping.

[Top]

Steps in a POP3 Session

Generally, a messaging application follows these steps when using POP3 to
receive mail. These steps are listed below with links to more detailed
descriptions.

Response Type Response Code and Description

Single line • +OK (Success), followed by descriptive text, for example,
“+OK message deleted” for the delete operation.
Responses are mapped to appropriate callbacks.

• -ERR (failure), followed by descriptive text, for example,
“-ERR no such message” for the delete operation. Mapped
to error callback.

Multi-line First line: Like single-line response:

• +OK (Success), followed by descriptive text, for example,
“+OK message follows” for the retrieve operation.
Responses are mapped to appropriate callbacks.

• -ERR (failure), followed by descriptive text, for example,
“-ERR no such message” for the retrieve operation.
Mapped to error callback.

Subsequent lines: More information about the condition.

Final line: . (dot) and <CRLF>. (Not considered part of the
response.)
Note: If an error occurs on a multi-line response, a single line is
returned.

Step Section with details

Initialize the response sink. Creating a Response Sink

Create a client. Creating a Client

Chapter 5, Receiving Mail with POP3 89

POP3 in the Messaging Access SDK

[Top]

POP3 in the Messaging Access SDK
The POP3 class hierarchy is made up of the following classes.

• netscape.messaging.pop3.IPOP3Sink. Interface for the POP3 response
sink. See Creating a Response Sink.

• netscape.messaging.pop3.POP3Client. Represents the POP3 client. See
Creating a Client.

• netscape.messaging.pop3.POP3Sink . Implementation of the IPOP3Sink
interface. See Creating a Response Sink.

• netscape.messaging.pop3.POP3Exception. Exception thrown when an
POP3 API error condition is detected by the Messaging Access SDK.
Extends IOException.

• netscape.messaging.pop3.POP3ServerException. Exception thrown
from the error callback on the response sink when the server sends an
error. Extends IOException and POP3Exception.

[Top]

Connect to the server. Connecting to a Server

Log in to the server. Logging In

Get the message count. Getting Message Count

List messages on the server. Listing Messages

Retrieve the message headers. Retrieving Message Headers

Retrieve messages themselves. Retrieving a Message

End the POP3 session. Ending the Session

Step Section with details

POP3 Callback Mapping

90 Messaging Access SDK Guide

POP3 Callback Mapping
Callbacks are associated with many POP3 methods. For general information
about the response sink and callbacks, see SDK Sink Classes for Java.

The IPOP3Sink interface contains callbacks for each client call. The client’s
processResponses method invokes the interface method that corresponds to
the client call. Methods with multi-line responses map to more than one
callback. The first type of callback indicates the start of a notification. The
second type passes back multi-line data. The third type of callback provides a
notification that the operation is complete.

If a server error occurs, the error callback is invoked.

Table 5.3 shows which POP3 methods are mapped to callbacks in the
IPOP3Sink interface. Table 5.4 shows methods that do not map to callbacks.

Table 5.3 Methods with Callbacks

 POP3Client Methods Possible Callbacks on IPOP3Sink

connect connect, error

delete dele, error

list listStart, list, listComplete, error

noop noop, error

pass pass, error

quit quit, error

reset reset, error

retrieve retrieveStart, retrieve,
retrieveComplete, error

sendCommand sendCommandStart, sendCommand,
sendCommandComplete, error

stat stat, error

top topStart, top, topComplete, error

uidList uidListStart, uidList,
uidListComplete, error

Chapter 5, Receiving Mail with POP3 91

Creating a Response Sink

Table 5.4 Methods without Callbacks

[Top] [POP3 Callback Mapping]

Creating a Response Sink
The first step in starting a POP3 session is to create the POP3 response sink,
which is defined in the IPOP3Sink interface. The response sink contains the
callback methods for the POP3 client. For general information about the
response sink, see SDK Sink Classes for Java.

The IPOP3Sink interface contains callbacks for each client call. You must
implement this interface in order to use the POP3 client object. The constructor
for the POP3Client class takes an IPOP3Sink object as a parameter.

To implement your own response sink class, you can extend the IPOP3Sink
interface, using this syntax:

public class newIPOP3Sink extends Object
implements IPOP3Sink

user user, error

xAuthList xAuthListStart, xAuthList,
xAuthListComplete, error

xSender xSender, error

Methods Without Callbacks

disconnect

processResponses

setChunkSize

setResponseSink

setTimeout

 POP3Client Methods Possible Callbacks on IPOP3Sink

Creating a Client

92 Messaging Access SDK Guide

As a convenience, the Messaging SDK provides the POP3Sink class, which
implements the IPOP3Sink interface. POP3Sink implements all the interfaces in
IPOP3Sink. By default, the implementation does nothing, except for the error
callback, which throws an exception. You can save a step by extending this
class, using this syntax:

public class newPOP3Sink extends IPOP3Sink{
}

The following section of code creates a response sink.

POP3Sink l_pop3Sink;

l_pop3Sink = new POP3Sink();

After you create the response sink, the next step is Creating a Client.

[Top]

Creating a Client
The POP3 client uses a POP3Client object to communicate with the server. To
create the POP3Client object and set the response sink for the client’s use, call
the POP3Client.POP3Client class constructor, which takes an existing
response sink. Use this syntax:

public POP3Client(IPOP3Sink in_sink)

The client class must implement all of the methods in the IPOP3Sink interface.

The following section of code creates a client.

/* Create sink first as described in Creating a Response Sink */

POP3Client l_client;

l_client = new POP3Client(l_pop3Sink);

After you initialize the client, the next step is Connecting to a Server.

[Top]

Chapter 5, Receiving Mail with POP3 93

Connecting to a Server

Connecting to a Server
Before receiving mail, the client must connect with the server through a service
port. To connect to the server, call either of two POP3Client connect
methods, depending on whether or not you want to specify the connection
port. The SDK methods perform some error-checking.

To connect to the server using the default port for the POP3 protocol (port 110),
use this form of connect and supply the identifier of the server:

public synchronized void connect(String in_server)
throws IOException

To specify the server port to use for the server connection, use this form of
connect:

public synchronized void connect(String in_server,
int in_port) throws IOException

Note For the callback mapping for these methods, see POP3 Callback Mapping. §

The following section of code connects the client to the server.

/* After Creating a Response Sink and Creating a Client */

l_client.connect("pop3server.com");

l_client.processResponses();

After connecting to the server, the next step is Logging In.

To disconnect the client from the server and close the socket connection, use
this POP3Client class method:

public synchronized void disconnect() throws IOException

You could use this method as part of a Cancel operation while retrieving a
message. Remember that you do not call processResponses after
disconnect.

[Top]

Logging In

94 Messaging Access SDK Guide

Logging In
Once the client is connected to the server, the user can log in. Login identifies
the client to the server. Logging in requires the identifier of the POP3 client, as
well as the user’s ID and plain text password.

First, call POP3Client.user and give the name of the user's maildrop or
mailbox:

public synchronized void user(String in_user) throws IOException

This method sends the USER POP3 protocol command.

To submit the user password, call the POP3Client.pass method:

public synchronized void pass(String in_password)
throws IOException

This method sends the PASS POP3 protocol command.

While these commands execute, the session is in Authorization state. Successful
completion moves the session to the Transaction state. For a list of states and
commands that can be executed in each state, see POP3 Session States.

A successful login moves the POP3 session from the Authorization state to the
Transaction state, where the user can perform a number of operations.

Note For the callback mapping for these methods, see POP3 Callback Mapping. §

The following section of code shows a login sequence for a user.

/* User id sequence */

l_client.user("pop3user");

l_client.processResponses();

/* Password sequence */

l_client.pass("pop3password");

l_client.processResponses();

After you log in, you can perform any Transaction state operations. The next
step is Retrieving a Message.

[Top]

Chapter 5, Receiving Mail with POP3 95

Getting Message Count

Getting Message Count
In the POP3 Transaction state, the client can find out how many messages are
present by requesting the status of the mail drop or mailbox. The
POP3Client.status method gets the mailbox status for a given client by
issuing the STAT protocol command.

The POP3Client.status method gets mailbox status for a given mailbox:

public synchronized String status(String in_mailbox,
String in_statusData) throws IOException

The status returned includes the number of messages present and the octet size
of the mail drop.

Note For this method’s callback mapping, see POP3 Callback Mapping. §

The following section of code requests the status of the mail drop.

l_client.stat();

l_client.processResponses();

[Top]

Listing Messages
To list messages while in the POP3 Transaction state, call either of two
POP3Client.list methods, depending on whether you want to list all of the
messages in a mailbox or a specific message.

To go through all the messages in the mailbox and generate a list of messages,
use the list method that takes no parameters:

public synchronized void list() throws IOException

Retrieving Message Headers

96 Messaging Access SDK Guide

This method sends the LIST POP3 protocol command.

To list only the message specified by the message number, use this list
method:

public synchronized void list(int in_messageNumber)
throws IOException

Supply the message number as a parameter. This method sends the LIST [arg]
POP3 protocol command.

Note For the callback mapping for these methods, see POP3 Callback Mapping. §

The following section of code retrieves the email address of the sender along
with authenticated messages.

l_client.list();

l_client.processResponses();

[Top]

Retrieving Message Headers
In the Transaction state, the user can preview mailbox contents or part of a
long message before deciding to download it by listing the headers plus some
of the lines of the body. The user (or the mail application) determines the
number of message lines to retrieve.

To identify the message, supply the number of the message and the number of
body lines to retrieve. Use the POP3Client.top method, which issues the TOP
protocol command:

public synchronized void top(int in_messageNumber,
 int in_lines) throws IOException

To retrieve all headers for a given mailbox, combine POP3Client.top with a
call to POP3Client.stat. First, call stat to find the number of messages in the
mailbox. When you get the number, for example, 10, call top once, passing
each message number in turn, until you get to the total (in this case, 10). For
the in_lines parameter, use a value of 0 so that no body lines are returned.

Chapter 5, Receiving Mail with POP3 97

Retrieving a Message

Note For this method’s callback mapping, see POP3 Callback Mapping. §

The following section of code lists the header of the message specified by its
message number. It retrieves no body lines.

l_client.top(1, 0);

l_client.processResponses();

After you retrieve message headers, you can go on to Retrieving a Message if
you like.

[Top]

Retrieving a Message
Retrieving a message is one of the most common activities that users want to
perform during the POP3 Transaction state.

The POP3Client.pop3_retrieve method takes the identifier of the POP3
client that is retrieving the mail and the message number, and retrieves the
contents of the message:

public synchronized void retrieve(int in_messageNumber)
 throws IOException

The message is returned in the form of data chunks, which are sent to the
application through callbacks. The pop3_retrieve method issues a RETR
command. It fails if the message with the specified number does not exist.

Note For this method’s callback mapping, see POP3 Callback Mapping. §

The following section of code retrieves the contents of a message.

l_client.retrieve(1);

l_client.processResponses();

[Top]

Ending the Session

98 Messaging Access SDK Guide

Ending the Session
When it is time to end the session, the client should call POP3Client.quit to
notify the server:

public synchronized void quit() throws IOException

This method sends the QUIT POP3 protocol command. The server closes the
TCP connection and sends back a response. It is preferable to end a session
with quit instead of just closing the connection.

If the session is in the Authentication state when this method is called, the
server simply closes the connection. If the session is in the Transaction state,
the server goes into the Update state and expunges any messages marked for
deletion, and then quits.

Note For this method’s callback mapping, see POP3 Callback Mapping. §

The following section of code notifies the server that the client is terminating
the session.

l_client.quit();

l_client.processResponses();

[Top]

2Messaging Access SDK Java

Reference

This page contains links to the reference, in JavaDocs format, to the Java versions of the Messaging Access
SDK Guide Protocol APIs.

100 Messaging Access SDK Guide

SMTP Class Hierarchy

MIME Class Hierarchy

IMAP4 Class Hierarchy

POP3 Class Hierarchy

Java Convenience API

Chapter 6 Reference to Protocols

This chapter summarizes essential information about the Internet Protocols
accessed through the Messaging Access SDK.

[Top]

Chapter 6, Reference to Protocols 101

C h a p t e r

6
Chapter 6Reference to Protocols

This chapter summarizes essential information about the Internet Protocols
accessed through the Messaging Access SDK.

Messaging Access SDK Protocol APIs are based on the standard Internet
messaging protocols, SMTP, IMAP4, POP3, and MIME. The SDK
implementations of the protocols contain methods that call Internet Protocol
commands. This chapter lists the Internet Protocol commands supported by the
Messaging Access SDK, defines them, and notes the SDK methods that call
them.

• Supported SMTP Internet Protocol Commands. SMTP (Simple Mail Transfer
Protocol) sends messages.

• Supported IMAP4 Internet Protocol Commands. IMAP4 (Internet Message
Access Protocol) retrieves and manages messages remotely.

• Supported POP3 Internet Protocol Commands. POP3 (Post Office Protocol)
downloads messages to a client and allows for search and retrieval of
messages.

Supported SMTP Internet Protocol Commands

102 Messaging Access SDK Guide

• MIME, Multipurpose Internet Mail Extension. MIME builds code messages
with attachments for sending with SMTP, and parses and decodes received
messages. SDK MIME methods and functions do not map to a set of
Internet Protocol commands in the same way that the other protocols do.

[Top]

Supported SMTP Internet Protocol
Commands

This table lists supported protocol commands for SMTP (Simple Mail Transfer
Protocol) and the SDK SMTPClient method that calls each command. For the
RFC sources for these protocol APIs, see SMTP RFCs.

Supported Internet
Protocol command

What the command does SMTPClient
method that calls
the command

DATA Informs server that the client is about to send the message.
After server OK, client sends RFC 822-compliant message
data line by line. On completion, client sends
“<CRLF>.<CRLF>” line.

data

DSN [NOTIFY,
RET, ENVID]

Allows SMTP client to generate delivery status notifications
(DSNs) when needed, determine whether the notifications
return the message contents, and get additional information
with a DSN so that the sender can identify both recipient(s)
for the DSN and the transaction that contained the original
message. (RFC 1891)

EHLO Client starts SMTP session by sending identification to server;
server responds (identifies itself) in a greeting message.
EHLO replaces older HELO command for SMTP clients that
support SMTP service extensions. Can be issued at the start
of the session to see which extensions the server supports.

ehlo

EXPN Expands a mailing list alias; the command retrieves the alias
member list.

expand

Chapter 6, Reference to Protocols 103

Supported SMTP Internet Protocol Commands

[Top]

HELP Calls the server Help utility. Application-specific; usually lists
available commands.

help

MAIL FROM Initiates sending the message; supplies the message’s reverse
path (usually the sender’s fully qualified domain name).

mailFrom

NOOP Gets positive server response. noop

QUIT Sent by a client to a server when the client is ready to end
the session. Server sends response and closes TCP
connection. Best to use this command rather than just
closing the connection.

quit

PIPELINING Allows command pipelining (batching multiple commands
into single TCP sends). To find out if server supports
pipelining, issue the EHLO command. If it does, the server
response includes code 250 and EHLO keyword
PIPELINING. Pipelining allows the client to transmit batches
of SMTP commands without waiting for a response to each.
(RFC 2197)

RCPT TO Specifies the address of a message recipient. Called once for
each recipient. Follows the MAIL command.

rcptTo

RSET Cancels the current mail transfer and all current processes,
discards data, and clears session states. Returns to the
session state that followed the EHLO command.

reset

VRFY Sent by a client to verify a user name with the server. The
server responds with a positive or negative code.

verify

Supported Internet
Protocol command

What the command does SMTPClient
method that calls
the command

Supported IMAP4 Internet Protocol Commands

104 Messaging Access SDK Guide

Supported IMAP4 Internet Protocol
Commands

This table lists supported protocol commands for IMAP4 (Internet Message
Access Protocol) and the SDK IMAP4Client method that calls each command.
For the RFC sources for these protocol APIs, see IMAP4 RFCs.

Supported
Internet Protocol
command

What the command does Session state for
command

IMAP4Client
method that calls the
command

APPEND Appends message to specified mailbox,
passes on any message flags.

Authenticated append

CAPABILITY Gets a list of server capabilities. All states capability

CHECK Requests a checkpoint of the currently
selected mailbox; server flushes existing
mailbox states to disk.

Selected check

CLOSE Closes a mailbox, deletes flagged messages,
moves session to Non-Authenticated state.

Selected close

COPY Copies a message to the specified mailbox. Selected copy

CREATE Creates a mailbox. Authenticated create

DELETE Marks a message for deletion. Authenticated delete

EXAMINE Like SELECT, but read-only. Authenticated examine

EXPUNGE Removes all messages flagged “\Deleted”
in a mailbox.

Selected expunge

FETCH Returns information from messages. The
protocol’s FETCH [XSENDER] form is
supported.

Selected fetch

LIST Gets list of user names. Authenticated list

LOGIN Logs in to server with user name and
password.

Non-Authenticated login

LOGOUT Ends session; server responds with “BYE.” All states logout

LSUB Lists members of subscription list (must be
added with SUBSCRIBE).

Authenticated lsub

Chapter 6, Reference to Protocols 105

Supported IMAP4 Internet Protocol Commands

NAMESPACE Retrieves the prefixes of namespaces used by
a server for personal mailboxes, other user’s
mailboxes, and shared mailboxes.

All states namespace

NOOP Gets positive server response. All states noop

RENAME Renames mailbox. Authenticated rename

SEARCH Finds messages that meet specified criteria. Selected search

SELECT Selects a mailbox on the server for operations
involving messages.

Authenticated select

STATUS Requests one or more types of status for the
specified mailbox.

Authenticated status

STORE Updates flags on messages; can return the
new flag status.

Selected store

SUBSCRIBE Adds a mailbox to a server’s subscribed
mailbox list. List is accessed with LSUB.

Authenticated subscribe

UID Used with a command name to specify that it
uses unique message identifiers.

Selected uidCopy
uidFetch
uidSearch
uidStore

UNSUBSCRIBE Deletes a mailbox from a server’s subscribed
mailbox list. List is accessed with LSUB.

Authenticated unsubscribe

SETACL Changes the access control list on the
specified mailbox and grants specified
permissions.

All states setACL

DELETEACL Removes an <identifier, rights> pair for the
specified identifier from the access control
list for the specified mailbox.

All states deleteACL

GETACL Retrieves the access control list for the
mailbox in an untagged ACL reply.

All states getACL

LISTRIGHTS Retrieves the access control list for mailbox in
an untagged ACL reply.

All states listRights

MYRIGHTS Retrieves the user’s rights to the specified
mailbox.

All states myRights

Supported
Internet Protocol
command

What the command does Session state for
command

IMAP4Client
method that calls the
command

Supported POP3 Internet Protocol Commands

106 Messaging Access SDK Guide

[Top]

Supported POP3 Internet Protocol
Commands

This table lists supported protocol commands for POP3 (Post Office Protocol)
and the SDK POP3Client method that calls each command. For the RFC
sources for these protocol APIs, see POP3 RFCs.

Supported
Internet Protocol
command

What the command does Session state
for command

POP3Client
method that calls
the command

DELE Asks server to mark specified message for
deletion. Deletion actually takes place on entry
into Update state.

Transaction delete

LIST Gets the size of one or all messages. Transaction list
listA

NOOP Gets positive server response. Transaction noop

PASS Identifies a user password; on success, moves
session to the Transaction state.

Authorization pass

QUIT Ends the session. If issued in Authentication
state, server closes connections. If issued in
Transaction state, server goes into Update and
deletes any marked messages, then quits.

Authorization,
Update

quit

RSET Asks the server to clear all delete tags from
messages.

Transaction reset

RETR Requests the entire specified message. Transaction retrieve

STAT Gets the number of messages in and octet size
of mail drop.

Transaction stat

TOP Asks server for first n lines of specified
message.

Transaction top

Chapter 6, Reference to Protocols 107

Supported POP3 Internet Protocol Commands

[Top]

UIDL Gets the unique identifier string for specified or
all messages.

Transaction uidList
uidListA

USER Identifies the user or mail drop by name to the
server; the server returns a known or unknown
response.

Authorization user

XAUTHLIST Returns a list of authenticated users. Transaction xAuthList
xAuthListA

XSENDER Gets the email address of the sender of the
specified message. Client uses this to query
whether an individual message has been
authenticated. Server returns an empty OK
string if no authenticated sender is found.

Transaction xSender

Supported
Internet Protocol
command

What the command does Session state
for command

POP3Client
method that calls
the command

Supported POP3 Internet Protocol Commands

108 Messaging Access SDK Guide

Appendix A, Writing Multithreaded Applications with the Messaging Access

Appendix

A
Appendix A Writing Multithreaded Applications

with the Messaging Access SDK

This appendix provides some important information for developers who want
to take advantage of multithreading in their messaging applications.

The Java Messaging Access SDK is thread-safe. Three types of Messaging
Access SDK methods can share resources. The methods of each type are
synchronized with each other and with one of the other types, as shown in this
table.

Type Description Synchronized with

1 Protocol API commands, for example,
SMTPClient.rcptTo, POP3Client.list.

Synchronized among each
other and with type 3.

2 The processResponses methods. Synchronized among each
other and with type 3.

3 Methods that set options, for example,
SMTPClient.setTimeout,
POP3Client.setTimeout.

Synchronized among each
other and with type 2.

110 Messaging Access SDK Guide

Using multiple threads enhances performance by allowing the client to send
commands to the server for processing before completing a call to
processResponses. For example, a thread that uses the IMAP4 module can
invoke a call to processResponses to download a message while another
thread is executing API commands.

A multithreaded application may need to provide a lock on the SDK in order to
synchronize state-sensitive sequences of commands within the SMTP, POP3,
and IMAP4 modules as well. For example, if two threads that are connected to
the same SMTP server are used to send mail, a lock is needed to prevent both
threads from sending mail at the same time. If the SMTPClient.rcptTo
methods of the two threads are interleaved, the email may be sent to the wrong
destination.

[Top]

Multithreading in the MIME API

In general, in the MIME API, concurrent access by multiple threads is not
necessary. Multiple threads should not need to change the same MIMEMessage
or other MIME objects, such as MIMEMultiPart, concurrently.

One situation that is applicable to MIME in a multithreaded environment is the
simultaneous parsing of multiple messages by different threads. To do this,
multiple threads can create their own instances of the MIMEParser (or
MIMEDynamicParser) object or share the same MIMEParser (or
MIMEDynamicParser) instance.

When multiple threads share the parser object, the client application must
serialize access to the object. Different MIMEDynamicParser objects can
share a single instance of the MIMEDataSink object, however.

[Top]

Index 111

Index
A
adding

message content 53
message headers 52
message part 55

all IMAP4 states, protocol commands 71

Authenticated state
in IMAP4 session 71
methods with callbacks 74
protocol commands 71

Authorization state
in POP3 session 87
protocol commands 87

B
BASE64 encoding 45

batching commands (pipelining), SMTP 37

body data
adding 54
deleting 57

building MIME messages 50

C
callback mapping

IMAP4 73
MIME 63
POP3 90
SMTP 32

CAPABILITY command, IMAP4 78

checking for new messages, IMAP4 80

class hierarchy
IMAP4 72
MIME 48
POP3 89

SMTP 31

CLASSPATH, setting 24

clients
creating, IMAP4 77
creating, POP3 92
creating, SMTP 35

CLOSE command, IMAP4 82

closing mailboxes, IMAP4 82

compiling the SDK 24

connecting to a server 93
IMAP4 77
POP3 93
SMTP 35

content types, MIME 45

conventions, document 12

counting messages, POP3 95

creating
data sink 64
dynamic parser 65
MIME messages, convenience function 51, 57

creating a client 92
IMAP4 77
POP3 92
SMTP 35

creating a response sink
IMAP4 76
POP3 91
SMTP 34

D
data sinks 21

callbacks 62, 63
creating 64

decoding

112 Messaging Access SDK Guide

message headers, utility 59
messages 61

deleting
body data 57
MIME messages 57

developer information 13

disconnecting from the server, POP3 93

document conventions 12

downloading the SDK 20

dynamic parsers
creating 65
running 66

dynamic parsing 62

E
EHLO command, SMTP 35, 36

encoding
encoding entire MIME message 58
message headers, utility 59
messages 58

encoding types
BASE64 45
MIME 45
Q 59
QP (Quoted Printable) 45

ending the session
IMAP4 82
POP3 98
SMTP 42

ESMTP support, determining 36

exceptions
Messaging Access SDK 23
SDK 23
standard Java 23

Extended IMAP4 methods with callbacks 75

extensions
determining, IMAP4 78
determining, SMTP 36

F
FETCH command, IMAP4 82

fetching message data, IMAP4 81

G
getting message count, POP3 95

H
how Protocol APIs work together 18

I
IMAP4 (Internet Message Access Protocol,

version 4)
class hierarchy 72
commands

CAPABILITY 78
CLOSE 82
FETCH 82
LOGIN 79
NOOP 80
SEARCH 81
UID 81, 82

commands supported in SDK 104
in SDK 18
list of RFCs 13
protocol 70
session commands 71
sessions 72
session states 70
supported protocol commands 104

installing the SDK 20

Internet Draft, IMAP4 Namespace 14

Internet Protocols 101
and protocol APIs 19

J
Java language

exceptions 23
web site 13

Index 113

L
LIST command, POP3 96

listing messages, POP3 95

locks 110

logging in
IMAP4 79
POP3 94

logging out
IMAP4 79

LOGIN command, IMAP4 79

M
mailboxes, closing, IMAP4 82

mailer, setting, SMTP 38

MAIL FROM command, SMTP 38

message headers 47
adding 52
decoding, utility 59
encoding, utility 59

messages
adding message content 53
adding message headers 52
adding message parts 55
building 50
checking for, IMAP4 80
counting, POP3 95
creating, MIME 50
creating with a convenience function 51, 57
deleting 57
encoding 58
encoding entire message 58
fetching message data, IMAP4 81
listing, POP3 95
message body 48
parsing entire message 61
retrieving, POP3 97
retrieving message headers, POP3 96
searching for, IMAP4 80
sending, SMTP 40
structure 46

Messaging Access SDK

downloading 20
exceptions 23
installing 20
organization 20
supported Internet protocols 101
supported platforms 21

MIME (Multipurpose Internet Mail
Extensions) 44

callback mapping 63
canonical form 58
class hierarchy 48
content subtypes 45
content types 45
content types, listed 46
data sink 62, 63
dynamic parser 62
encoding types 45
in SDK 18
list of RFCs 13
messages, deleting 57
Multipart functions 48
operations 50
sessions 49, 62
Utility functions 58

multipart, adding 54, 56

multiple threads
in MIME 110
using 110

multithreading
in messaging applications 109
in MIME API 110

N
namespace, Internet Draft 14

Netscape developer information 13

Non-Authenticated state
methods with callbacks 74
protocol commands 71

NOOP command, IMAP4 80

O
organization of guide 10

114 Messaging Access SDK Guide

overview of this manual 10

P
parsing 61

dynamic parsing 62
the entire message 61

parsing, simultaneous 110

pipelining (batching commands), SMTP 37

PIPELINING command, SMTP 38

POP3 (Post Office Protocol, version 3) 86
callback mapping 90
class hierarchy 89
commands

LIST 96
PASS 94
QUIT 98
RETR 97
STAT 95
TOP 96

commands supported in SDK 106
in SDK 18
list of RFCs 14
methods with callbacks 90
response codes 87
sessions 88
session states 86
session states and commands 87
supported protocol commands 106

Protocol APIs 17
and Internet Protocols 19, 101
combining 18
commands supported in SDK 101
IMAP4 70
in the SDK 17
POP3 86
SMTP 28

Q
QUIT command

POP3 98
SMTP 42

Quoted Printable encoding 45

R
RCPT TO command, SMTP 39

recipients, setting, SMTP 39

requesting server capabilities
IMAP4 78
SMTP 36

response codes
POP3 87
SMTP 29

response sinks
classes, introduction 21
creating, IMAP4 76
creating, POP3 91
creating, SMTP 34

RETR command, POP3 97

retrieving a message, POP3 97

retrieving a message header, POP3 96

RFCs (Request for Comments)
IMAP4 13
MIME 13
POP3 14
SMTP 13

running the dynamic parser 66

S
SDK files 20, 23

SEARCH command, IMAP4 81

searching for messages, IMAP4 80

Selected state
in IMAP4 session 71
methods with callbacks 74
protocol commands 71

sending the message, SMTP 40

servers
connecting to, IMAP4 77
connecting to, POP3 93
connecting to, SMTP 35
determining ESMTP support 36
determining server extensions, IMAP4 78
determining server extensions, SMTP 36

Index 115

disconnecting from, IMAP4 78
disconnecting from, POP3 93
disconnecting from, SMTP 36
requesting capabilities, IMAP4 78

sessions
ending, IMAP4 82
ending, POP3 98
ending, SMTP 42

session states
in IMAP4 sessions 70
in POP3 sessions 86

setting
CLASSPATH 24
mailers, SMTP 38
recipients, SMTP 39

SMTP (Simple Mail Transfer Protocol) 27, 28
callback mapping 32
class hierarchy 31
commands

EHLO 35, 36
MAIL FROM 38
PIPELINING 38
QUIT 42
RCPT TO 39

commands supported in SDK 102
functions with callbacks 32
in SDK 18
list of RFCs 13
Reply Codes, listed 30
response codes 29
sessions 29
supported protocol commands 102

STAT command, POP3 95

supported platforms
Messaging Access SDK 21

T
text conventions 12

thread safety 109

TOP command, POP3 96

Transaction state
in POP3 session 87

protocol commands 87

U
UID command, IMAP4 81, 82

Update state
in POP3 session 87
protocol commands 87

USER command, POP3 94

116 Messaging Access SDK Guide

117

Messaging Access SDK Guide
Contents
About This Guide

PART 1 Using the Messaging Access SDK
Chapter 1. Introducing the Messaging Access SDK
Chapter 2. Sending Mail with SMTP
Chapter 3. Building and Parsing MIME Messages
Chapter 4. Receiving Mail with IMAP4
Chapter 5. Receiving Mail with POP3

PART 2 Messaging Access SDK Java Reference
Chapter 6. Reference to Protocols
Appendix A. Writing Multithreaded Applications with the Messaging Access SDK
Index

118 Messaging Access SDK Guide

	Messaging Access SDK Guide
	Contents
	About This Guide
	Who Should Read This Guide
	What's in This Guide
	Organization
	Quick Reference to Tasks
	Conventions Used in This Guide
	Where to Find More Information

	Introducing the Messaging Access SDK
	How the Protocol APIs Work Together
	The Messaging Access SDK, Java Version
	Supported Platforms
	SDK Sink Classes for Java
	SDK Exceptions for Java
	Compiling with the Java SDK

	Sending Mail with SMTP
	The SMTP Protocol
	Steps in an SMTP Session
	SMTP Response Codes
	SMTP in the Messaging Access SDK
	SMTP Callback Mapping
	Creating a Response Sink
	Creating a Client
	Connecting to a Server
	Determining ESMTP Support
	Pipelining Commands
	Setting the Mailer
	Setting the Recipient
	Sending the Message
	Sending Messages with Convenience APIs
	Ending the Session

	Building and Parsing MIME Messages
	The MIME Protocol
	MIME Encoding Types
	MIME Content Types
	Structure of a MIME Message
	MIME in the Messaging Access SDK
	Steps in a MIME Session
	Building the MIME Message
	Adding Message Headers
	Adding Content to the Message
	Adding Body Parts to a Multipart
	Creating a Message Part
	Adding Parts to the Message
	Deleting Parts of a Message
	Encoding the Message
	Encoding and Decoding Utilities
	Sending Documents with the Convenience API
	Parsing MIME Messages
	Parsing the Entire Message
	Dynamic Parsing

	Receiving Mail with IMAP4
	The IMAP4 Protocol
	IMAP4 Session States
	Steps in an IMAP4 Session
	IMAP4 in the Messaging Access SDK
	IMAP4 Callback Mapping
	Creating a Response Sink
	Creating a Client
	Connecting to a Server
	Determining Server Capabilities
	Logging In and Out
	Checking for New Messages
	Searching for Messages
	Fetching Message Data
	Closing a Mailbox

	Receiving Mail with POP3
	The POP3 Protocol
	POP3 Session States
	POP3 Response Codes
	Steps in a POP3 Session
	POP3 in the Messaging Access SDK
	POP3 Callback Mapping
	Creating a Response Sink
	Creating a Client
	Connecting to a Server
	Logging In
	Getting Message Count
	Listing Messages
	Retrieving Message Headers
	Retrieving a Message
	Ending the Session
	SMTP Class Hierarchy
	MIME Class Hierarchy
	IMAP4 Class Hierarchy
	POP3 Class Hierarchy
	Java Convenience API

	Reference to Protocols
	Supported SMTP Internet Protocol Commands
	Supported IMAP4 Internet Protocol Commands
	Supported POP3 Internet Protocol Commands

	Writing Multithreaded Applications with the Messaging Access SDK
	Multithreading in the MIME API

	Index

