
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

A Sun Microsystems, Inc. Business

Sun Internet Mail Server™ 4.0

Reference Manual

Part No.: 805-7677-10
Revision A, July 1999

Please
Recycle

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

Copyright 1992-1996 Regents of the University of Michigan. All Rights Reserved. Redistribution and use in source and binary forms are

permitted provided that this notice is preserved and that due credit is given to the University of Michigan at Ann Arbor. The name of the

University may not be used to endorse or promote products derived from this software or documentation without specific prior written

permission.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Solaris, Sun Internet Mail Server, HotJava, Java, Sun Workstation, OpenWindows, SunExpress, SunDocs,

Sun Webserver are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States

and in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-

INFRINGEMENT.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etatis-Unis. Tous droits réservés.

Copyright 1992-1996 Régents de l’Université de Michigan. Tous droits réservés. La redistribution et l’utilisation sous forme de code source et de

code binaire sont autorisées à condition que cette notice soit conservée et qu’il soit fait mention de l’Université de Michigan à Ann Arbor. Le

nom de l’Université ne pourra être utilisé pour endosser ou promouvoir des produits derivés de ce logiciel ou de sa documentation sans

autorisation écrite préalable.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie et la décompilation.

Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Solaris, Sun Internet Mail Server, HotJava, Java, Sun Workstation, OpenWindows, SunExpress, SunDocs,

Sun Webserver sont des marques déposées, enregistrées, ou marques de service de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc. aux Etats-Unis et

dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents iii

Contents

Preface xxi

1. Commands Reference 25

SIMS Administration Commands 26

SIMS Monitoring 30

Message Access and Store 31

imaccessd 31

imbackup 31

imcheck 31

imdeluser 32

imexpire 32

imexportmbox 33

imimportmbox 33

iminitquota 34

impurge 34

imquotacheck 34

imrestore 35

imsasm 35

imsinit 35

iv Sun Internet Mail Server 4.0 Reference Manual • July 1999

mkbackupdir 36

Sun Directory Services 38

dsserv 38

dsserv.conf 38

dsserv.acl.conf 39

dsserv.at.conf 39

dsserv.oc.conf 39

dsserv.replog 39

dsservcmd 40

dsprepush 40

dspushd 40

imldifsync 41

ldapadd 41

ldapdelete 42

ldapmodify 42

ldapsearch 42

ldbmcat 42

ldif 42

ldif2ldbm 43

Internet Message Transfer Agent 43

imta cache 45

imta chbuild 46

imta clbuild 47

imta cnbuild 47

imta counters -clear 49

imta counters -create 49

imta counters -show 49

Contents v

imta counters -today 49

imta crdb 50

imta dirsync 50

imta find 50

imta process 51

imta program 51

imta purge 52

imta qm: Queue Management 52

imta queue 53

imta renamedb 53

imta restart 54

imta return 54

imta run 54

imta start 55

imta stop 55

imta submit 55

imta test -mapping 56

imta test -match 56

imta test -rewrite 57

imta view 58

imta version 58

Installation 58

setup-tty 59

uninstall 62

vi Sun Internet Mail Server 4.0 Reference Manual • July 1999

2. IMTA Configuration 65

The IMTA Configuration Files 66

imta.cnf File 68

Structure of the imta.cnf File 68

Comments in the File 69

Including Other Files 69

Domain Rewriting Rules 70

Rewriting Rules Structure 70

Rewriting Rules Operation 71

Extracting the First Host or Domain Specification 72

Scanning the Rewrite Rules 74

Rewrite rule templates 75

Finishing the Rewriting Process 76

Rewrite Rule Failure 77

Syntax checks after rewriting 77

Template Substitutions 77

Customer-Supplied Routine Substitutions, $[...] 79

Source Channel-Specific Rewrite Rules ($M, $N) 80

Destination Channel-Specific Rewrite Rules

($C, $Q) 80

Direction- and Location-Specific Rewrites
($B, $E, $F, $R) 81

Host Location-Specific Rewrites ($A, $P, $S, $X) 81

Single Field Substitutions ($&, $! , $* , $#) 83

Handling Domain Literals 83

General Database Substitutions ($(...)) 84

Applying Specified Mapping (${...}) 85

Contents vii

Special Patterns and Tags 85

Controlling Error Messages Associated with Rewriting ($?) 87

Rewrite Rule Control Sequences 88

Handling Large Numbers of Rewrite Rules 89

Testing Domain Rewriting Rules 90

Simple Configuration File 91

Channel Definitions 92

Channel Configuration Keywords 93

Address Interpretation (bangoverpercent , nobangoverpercent) 100

Routing Information in Addresses (exproute , noexproute , improute ,

noimproute) 100

Address Rewriting Upon Message Dequeue (connectalias ,

connectcanonical) 101

Channel Directionality (master , slave , bidirectional) 102

Channel Service Periodicity (immediate , immnonurgent , immnormal ,

immurgent , periodic , period) 102

Message Size Affecting Priority (urgentblocklimit ,

normalblocklimit , nonurgentblocklimit) 103

Channel Connection Information Caching (cacheeverything ,

cachesuccesses , cachefailures , nocache) 103

Priority of Messages Handled by Periodic Jobs (minperiodicnonurgent ,

minperiodicnormal , minperiodicurgent ,

maxperiodicnonurgent , maxperiodicnormal ,

maxperiodicurgent) 104

Number of Addresses or Message Files to Handle per Service Job or File

(addrsperjob , filesperjob , maxjobs) 105

Multiple Addresses (multiple , addrsperfile , single ,

single_sys) 106

Expansion of Multiple Addresses (expandlimit) 107

Multiple Subdirectories (subdirs) 107

Service Job Queue (queue) 108

viii Sun Internet Mail Server 4.0 Reference Manual • July 1999

Deferred Delivery Dates (deferred , nodeferred) 108

Undeliverable Message Notification Times (notices) 108

Returned Messages (sendpost , nosendpost , copysendpost ,

errsendpost) 109

Warning Messages (warnpost , nowarnpost , copywarnpost ,

errwarnpost) 110

Postmaster Returned Message Content (postheadonly ,

postheadbody) 111

Including Altered Addresses in Notification Messages (includefinal ,

suppressfinal) 111

Triggering New Threads in Multithreaded Channels (threaddepth) 112

Channel Protocol Selection (smtp , nosmtp) 112

SMTP EHLO Command (ehlo , checkehlo , noehlo) 113

Receiving an SMTP ETRN Command (allowetrn , blocketrn ,

domainetrn , silentetrn) 113

Sending an SMTP ETRN Command (sendetrn , nosendetrn) 114

SMTP VRFY Commands (domainvrfy , localvrfy , novrfy) 114

Responding to SMTP VRFY commands (vrfyallow , vrfydefault ,

vrfyhide) 115

TCP/IP Port Number (port) 115

TCP/IP MX Record Support (mx, nomx, defaultmx , randommx ,

nonrandommx) 115

Specifying a Last Resort Host (lastresort) 116

Reverse DNS and IDENT Lookups on Incoming SMTP Connections

(identtcp , identtcplimited , identtcpnumeric ,

identtcpsymbolic , identnone , identnonelimited ,

identnonenumeric , identnonesymbolic , forwardchecknone ,

forwardchecktag , forwardcheckdelete) 116

Selecting an Alternate Channel for Incoming Mail (switchchannel ,

allowswitchchannel , noswitchchannel) 118

Host Name to Use When Correcting Incomplete Addresses (remotehost ,

noremotehost) 119

Contents ix

Legalizing Messages Without Recipient Headers

(missingrecipientpolicy) 119

Eight-Bit Capability (eightbit , eightnegotiate , eightstrict ,

sevenbit) 120

Automatic Character Set Labeling (charset7 , charset8) 121

Message Line Length Restrictions (linelength) 121

Channel-Specific Use of the Reverse Database (reverse , noreverse) 122

Inner Header Rewriting (noinner , inner) 122

Restricted Mailbox Encoding (restricted , unrestricted) 122

Trimming Message Header Lines (headertrim , noheadertrim ,

headerread , noheaderread , innertrim , noinnertrim) 123

Encoding Header (ignoreencoding , interpretencoding) 124

Generation of X-Envelope-to Header Lines (x_env_to ,

nox_env_to) 124

Envelope to Address in Received: header (receivedfor ,

noreceivedfor , receivedfrom , noreceivedfrom) 125

Blank Envelope Return Addresses (returnenvelope) 125

Mapping Reply-to Header (usereplyto) 126

Mapping Resent- Headers Using a Gateway to Non-RFC 822 Environments

(useresent) 126

Comments in Address Message Headers (commentinc , commentomit ,

commentstrip , commenttotal) 127

Personal Names in Address Message Headers (personalinc ,

personalomit , personalstrip) 127

Two- or Four-Digit Date Conversion (datefour , datetwo) 128

Day of Week in Date Specifications (dayofweek , nodayofweek) 128

Automatic Splitting of Long Header Lines (maxheaderaddrs ,

maxheaderchars) 129

Header Alignment and Folding (headerlabelalign ,

headerlinelength) 129

x Sun Internet Mail Server 4.0 Reference Manual • July 1999

Automatic Defragmentation of Message/Partial Messages (defragment ,

nodefragment) 130

Automatic Fragmentation of Large Messages (maxblocks , maxlines) 130

Absolute Message Size Limits (blocklimit , linelimit) 131

Specify Maximum Length Header (maxprocchars) 132

Message Logging (logging , nologging) 132

Debugging Channel Master and Slave Programs (master_debug ,

nomaster_debug , slave_debug , noslave_debug) 132

Delivery of Deferred Messages (serviceall , noserviceall) 133

Sensitivity checking (sensitivitynormal , sensitivitypersonal ,

sensitivityprivate ,

sensitivitycompanyconfidential) 134

SMTP AUTH (maysaslserver , mustsaslserver , nosasl ,

nosaslserver , saslswitchchannel) 134

Verify the Domain on MAIL FROM: Is In the DNS (mailfromdnsverify ,

nomailfromdnsverify) 135

Domain Database 135

Aliases 135

The Alias Database 136

Alias File 136

Local Channel 138

Native Channel 138

var/mail Channel Option File 138

SMTP Channel Option Files 139

Format of the File 139

Available SMTP Channel Options 140

The Pipe Channel 144

Using the Pipe Channel 144

The Hold Channel 145

Contents xi

Conversion Channel 145

Selecting Traffic for Conversion Processing 146

Configuration of the Conversion Channel 146

Conversion Control 147

UUCP Channel 153

Setting Up the Channel 153

Log Files 155

Returning Undelivered Messages 155

Starting the Message Return cron Job 156

Mapping File 156

Locating and Loading the Mapping File 157

File Format in the Mapping File 157

Mapping Operations 159

Address-Reversal Database, REVERSE Mapping and FORWARD
Mapping 168

FORWARD Address Mapping 170

Option Files 171

Locating and Loading the IMTA Option File 172

Option File Format and Available Options 172

Header Option Files 179

Tailor File 182

Dirsync Option File 186

Autoreply Option File 187

Job Controller 187

Job Controller Configuration 188

Examples of Use 189

Job Controller Configuration File Format 190

xii Sun Internet Mail Server 4.0 Reference Manual • July 1999

SMTP Dispatcher 193

Operation of the SMTP Dispatcher 194

Debugging and Log Files 199

System Parameters on Solaris 201

3. Sun Directory Services Directory Information Tree and Schema 203

Introduction 203

Producers and Consumers of the Mail Schema 204

Directory Schema and DIT Specification 205

Directory Information Tree 206

Data in OSI and DC trees 209

Attribute Syntax 213

Services and Functions 214

Object Classes Used by Sun Internet Mail Server 4.0 215

Directory Information Tree and Virtual Domain Object Classes 215

Internet Mail User Object Classes 227

Internet Mail Distribution List Object Classes 242

Internet Mail Routing Object Classes 251

Object Classes for Services 252

4. SIMS Configuration Files 255

The ims.cnf File 255

Message Store Paths 256

Message Store File System 256

Message Store Delivery 257

Message Access 257

APOP Parameters 259

popb4smtp Parameters 259

Contents xiii

The sims.cnf File 260

The imdmc.cnf File 262

The imta.cnf File 263

Address Rewrite Rules 268

A. Supported Standards 269

Messaging 269

Basic Message Structure 269

Access Protocols and Message Store 270

SMTP and Extended SMTP 270

Message Content and Structure 271

Delivery Status Notifications 272

Domain Name Service 273

Directory Server Specifications 273

Directory Server Specification 274

Access Protocols 275

Text and Character Set Specifications 275

National and International 275

Internet References 276

Glossary 277

Index 293

xiv Sun Internet Mail Server 4.0 Reference Manual • July 1999

Figures xv

Figures

FIGURE 1-1 Backup directory hierarchy 36

FIGURE 3-1 SIMS OSI (Primary) Directory Information Tree 210

FIGURE 3-2 SIMS Domain Component (Secondary) Directory Information Tree 212

xvi Sun Internet Mail Server 4.0 Reference Manual • July 1999

Tables xvii

Tables

TABLE P-1 Typographic Changes in Text xxiii

TABLE P-2 Shell Prompts in Command Examples xxiv

TABLE 1-1 SIMS Administration Commands 26

TABLE 1-2 SIMS Administration Commands - miscellaneous 29

TABLE 1-3 SIMS Monitoring Commands 30

TABLE 1-4 IMTA Utilities 44

TABLE 1-5 clbuild cld-file-spec 47

TABLE 1-6 imta - find file pattern 51

TABLE 1-7 imta qm Mode Commands 52

TABLE 1-8 imta test -mapping syntax 56

TABLE 1-9 imta view Command Qualifiers 58

TABLE 1-10 setup-tty options 59

TABLE 1-11 sims_setup.dat File 60

TABLE 1-12 uninstall options 63

TABLE 2-1 IMTA Configuration files 67

TABLE 2-2 IMTA Database Files 68

TABLE 2-3 Rewriting Rule Structure 71

TABLE 2-4 Extracted Addresses and Host Names 73

TABLE 2-5 Summary of Template Substitutions 78

xviii Sun Internet Mail Server 4.0 Reference Manual • July 1999

TABLE 2-6 Single Field Substitutions 83

TABLE 2-7 Patterns for Rewrite Rules 85

TABLE 2-8 Template Control Sequences 89

TABLE 2-9 Address Routing and Channel Queuing 92

TABLE 2-10 Channel Keywords 93

TABLE 2-11 missingrecipientpolicy Values 120

TABLE 2-12 Reply-to: Header Mapping Options 126

TABLE 2-13 Resent- Headers Mapping Options 126

TABLE 2-14 Local Channel Options 139

TABLE 2-15 SMTP Channel Options 140

TABLE 2-16 Conversion Parameters 147

TABLE 2-17 Environment Variables used by Conversion Channel 150

TABLE 2-18 Mapping Pattern Wildcards 160

TABLE 2-19 Mapping Template Substitutions and Metacharacters 162

TABLE 2-20 REVERSE mapping table flags 169

TABLE 2-21 Option File Options 172

TABLE 2-22 USE_REVERSE_DATABASE Bit Values 179

TABLE 2-23 Header options 181

TABLE 2-24 tailor File Options 183

TABLE 2-25 dirsync File Options 186

TABLE 2-26 autoreply File Options 187

TABLE 2-27 Job Controller Configuration File Options 192

TABLE 2-28 Dispatcher configuration file options 196

TABLE 2-29 Dispatcher Debugging Bits 200

TABLE 3-1 Required country Attributes 216

TABLE 3-2 Optional country Attributes 217

TABLE 3-3 Required organization Attributes 217

TABLE 3-4 Optional organization Attributes 218

Tables xix

TABLE 3-5 Required organizationalUnit Attributes 219

TABLE 3-6 Optional organizationalUnit Attributes 220

TABLE 3-7 Required domain Attributes 221

TABLE 3-8 Optional domain Attributes 222

TABLE 3-9 Required inetDomain Attributes 223

TABLE 3-10 Required simsDomain Attributes 226

TABLE 3-11 Required top Attributes 229

TABLE 3-12 Required person Attributes 230

TABLE 3-13 Optional person Attributes 230

TABLE 3-14 Optional organizationalperson Attributes 231

TABLE 3-15 Optional inetOrgPerson Attributes 232

TABLE 3-16 Optional inetSubscriber Attributes 235

TABLE 3-17 Optional inetMailUser : Membership Attributes 236

TABLE 3-18 Optional inetAdministrator Attributes 241

TABLE 3-19 Required imCalendarUser Attributes 242

TABLE 3-20 Optional imCalendarUser Attributes 242

TABLE 3-21 Required groupOfUniqueNames Attributes 244

TABLE 3-22 Optional groupOfUniqueNames Attributes 244

TABLE 3-23 Required inetMailGroup Attributes 246

TABLE 3-24 Optional inetMailGroup Attributes 246

TABLE 3-25 Optional inetMailGroup : Mail List Administration Attributes 248

TABLE 3-26 Optional inetMailGroup : Mail Restriction Attributes 249

TABLE 3-27 Optional inetMailGroup : Membership Attributes 251

TABLE 3-28 Required inetMailRouting Attributes 252

TABLE 3-29 Required inetService Attributes 254

TABLE 4-1 Message Store Paths Parameters 256

TABLE 4-2 Message Store File System Parameters 256

TABLE 4-3 Message Store Delivery Parameters 257

xx Sun Internet Mail Server 4.0 Reference Manual • July 1999

TABLE 4-4 Message Access Parameters 257

TABLE 4-5 APOP Parameters 259

TABLE 4-6 popb4smtp Parameters 259

TABLE 4-7 sims.cnf File Parameters 261

TABLE 4-8 imdmc.cnf File Parameters 263

TABLE 4-9 The imta.cnf Channel Descriptions 267

TABLE A-1 Basic Message Structure 269

TABLE A-2 Access Protocols and Message Store 270

TABLE A-3 SMTP and Extended SMTP 270

TABLE A-4 Message Content and Structure 271

TABLE A-5 Delivery Status Notifications 272

TABLE A-6 Domain Name Service 273

TABLE A-7 Server Specification 274

TABLE A-8 Access Protocols 275

TABLE A-9 National and International Information Exchange 275

TABLE A-10 Internet References 276

xxi

Preface

Sun™ Internet Mail Server™ 4.0 (SIMS 4.0) is an enterprise-wide, open standards

based, scalable electronic message handling system. The Sun Internet Mail Server 4.0
Reference Manual provides reference information about the Sun Internet Mail Server

4.0 product.

Use this guide as a companion to the Sun Internet Mail Server 4.0 Administrator’s
Guide. The administrator’s guide focuses on how to configure, maintain, monitor,

and troubleshoot Sun Internet Mail Server 4.0 using the Administration Console. The

Sun Internet Mail Server 4.0 Reference Manual provides information about

command-line utilities and configuration files. This information enables you to

configure, maintain, monitor, and troubleshoot Sun Internet Mail Server 4.0.

Who Should Use This Book

This book is intended for two audiences:

■ Highly technical network administrators who are experienced in working with

Solaris™ systems and who manage a network comprised of Sun™ workstations,

personal computers (PCs), Macintoshes, or IBM mainframes that share resources.

This network administrator has previous experience planning, installing,

configuring, maintaining, and troubleshooting an enterprise email system.

■ Moderately technical network administrators with some Solaris experience who

manage a network that includes Sun workstations, PCs, and Macintoshes that

share resources. This network administrator may not have previous experience

planning, installing, configuring, maintaining, and troubleshooting an email

system.

xxii Sun Internet Mail Server 4.0 Reference Manual • July 1999

How This Book Is Organized

Chapter 1, “Commands Reference,” is a reference to the server-side utilities used to

configure and administer the Sun Internet Mail Server 4.0 product. The commands

are listed by component. This chapter describes what each command does.

Chapter 2, “IMTA Configuration,” describes IMTA configuration files that you can

edit and that are supported by Sun Internet Mail Server 4.0.

Chapter 3, “Sun Directory Services Directory Information Tree and Schema,”

describes the Sun Directory Services configuration files.

Chapter 4, “SIMS Configuration Files,” describes the ims.cnf file, the sims.cnf
file, the imdmc.cnf file, and the imta.cnf file.

Appendix A, “Supported Standards,” lists the industry standards that are

supported by Sun Internet Mail Server 4.0.

“Glossary,” The glossary covers terms that are specific or unique to Sun Internet

Mail Server 4.0 and some terms that might be helpful to your understanding of this

product.

Related Information

The following books are related to Sun Internet Mail Server 4.0. Included in this

documentation set are:

■ Sun Internet Mail Server 4.0 Concepts Guide – Provides a conceptual understanding

of the SIMS product. By understanding how SIMS works on a conceptual level,

readers will more easily understand the administrative tasks described in the

SIMS System Administration Guide and SIMS Reference Manual.

■ Sun Internet Mail Server 4.0 Provisioning Guide – Describes how to provision the

SIMS LDAP directory with users, distribution lists, administrators, and domains

by creating and importing LDIF records.

■ Sun Internet Mail Server 4.0 Installation Guide – Describes the planning and

installation procedures for the Sun Internet Mail Server (SIMS) 3.5 software on

Solaris SPARC and Intel-based x86 systems. In particular, it describes the

installation of the software using the Graphical User Interface (GUI).

■ Sun Internet Mail Server 4.0 Administrator’s Guide – Describes how to fine-tune the

default configuration, and maintain, monitor, and troubleshoot your mail server

using the Administration Console, a GUI.

xxiii

■ Sun Internet Mail Server 4.0 Delegated Management Guide – Describes the SIMS

Delegated Management Console and the tasks associated with the console. In

particular, it describes how a delegated administrator for a hosted domain

performs tasks on users and distribution lists.

■ Reference manual pages (man pages) – Describe command-line utilities and

detailed information about the arguments and attributes relevant to each

command.

■ Sun Web Access Administrator’s Guide – Describes the core system administration

tasks for Sun Web Access software.

■ Sun Internet Mail Server 4.0 Release Notes – Covers open issues and late-breaking

installation, administration, and reference information that is not published in the

product books.

■ Sun Internet Mail Server 4.0 Web site (located at http://www.sun.com/sims)

offers up-to-date information on a variety of topics, including: online product

documentation and late-breaking updates, product information, technical white

papers, press coverage, and customer success stories.

What Typographic Changes Mean

Table P-1 describes the typographic changes used in this book.

TABLE P-1 Typographic Changes in Text

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output is printed

using courier font.

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output is

printed using bold courier
font.

machine_name% su
Password:

AaBbCc123 Command-line placeholder;

replace with a real name or

value.

To delete a file, type: rm filename.

AaBbCc123 Book titles, new words or

terms, or words to be

emphasized are printed using

italic text.

Read Chapter 6 in User’s Guide. These

are called class options.

You must be root to do this.

xxiv Sun Internet Mail Server 4.0 Reference Manual • July 1999

Shell Prompts in Command Examples

Table P-2 shows the default system and superuser prompts for the C, Bourne, and

Korn shells.

Note – Although the majority of commands can be run without special superuser

permissions, some commands can be performed only as root . These commands

include: imta dirsync, imta start, imta stop, and imta restart . Other

commands that require root privileges are noted within the document.

Notice

To better illustrate the process being discussed, SIMS manuals contain examples of

data that might be used in daily business operations. The examples might include

names of individuals, companies, brands, and products. SIMS manuals use only

fictitious names, and any similarity to the names of individuals, companies, brands,

and products used by any business enterprise is purely coincidental.

TABLE P-2 Shell Prompts in Command Examples

Shell Prompt

C shell user prompt machine_name%

C shell superuser (root) prompt machine_name#

Bourne shell and Korn shell user prompt $

Bourne shell and Korn shell superuser

(root) prompt

#

25

CHAPTER 1

Commands Reference

The following topics are covered in this chapter:

■ “SIMS Administration Commands” on page 26

■ “SIMS Monitoring” on page 30

■ “Message Access and Store” on page 31

■ “Sun Directory Services” on page 38

■ “Internet Message Transfer Agent” on page 43

■ “Installation” on page 59

The command-line utilities described in this chapter allow you to configure and

manage server resources for SIMS. Most of the utilities are located in

/opt/SUNWmail/sbin . For complete information, see the corresponding man page

for the command you want.

Note – To view the man page of a compound command, that is a command that

consists of two more words such as “imta test -rewrite ” or “imadmin
create user ,” type man word-word-word . Example: man imta-test-rewrite

26 Sun Internet Mail Server 4.0 Reference Manual • July 1999

SIMS Administration Commands

The SIMS Administration command line (CLI) utilities are also called commands.

(The SIMS Administrator uses all the commands. The Delegated Administrator uses

the add, modify, delete, and search commands for the user and group objects.) Each

command’s task and object summary is provided in the imadmin man page. For

specific information about the use of these commands, refer to the individual man

pages.

TABLE 1-1 SIMS Administration Commands

Command Description

imadmin The imadmin(1M) man page describes the repertoire of SIMS

Administration command line (CLI) utilities, also called commands.

imadmin add admin Grants the SIMS Administrator privileges to a user. To grant privileges to

multiple users, use the -i option.

imadmin add group Adds a single group to the SIMS system. To add multiple groups, use the

-i option. When a message is sent to the group address, SIMS sends the

message to all members in the group.

imadmin add ldapserver Adds a single ldap host:port for the admin server. Having multiple ldap

servers for the admin server means that the admin server can failover to

the next ldap server in the list when one ldap server goes down. To add

multiple ldapservers with the same command, use the -i option.

imadmin add user Adds a single user to the SIMS system. To add multiple users, use the -i
option. You can run the imadmin add user command remotely using the

DMS and supplying the domain name option.

imadmin create domain Creates a single domain in the SIMS system. To create multiple domains,

use the -i option.

imadmin delete domain Deletes a single hosted domain from the SIMS system. To delete multiple

hosted domains, use the -i option. When you invoke the command, the

simsDomainStatus attribute of the domain’s DC node entry is set to

deleted. There is no undelete utility.

imadmin delete group Deletes a single group from the SIMS system. To delete multiple groups,

use the -i option. When you invoke this command, the

inetmailGroupStatus of the group is set to deleted.

There is no undelete utility.

Chapter 1 Commands Reference 27

imadmin delete user Deletes a single user from the SIMS system. To delete multiple users, use

the -i option. When the hostname option is used by a Delegated

Administrator, hostname refers to the Delegated Management Server

(DMS) host. When used by a SIMS Administrator, hostname refers to the

LDAP host. When you invoke this command, the

inetSubscriberStatus of the user is set to deleted. The deleted user

remains connected to the system until the purge task is run against the

user. There is no undelete utility.

imadmin modify currentldap Modifies the current ldap server property of the admin server. After this

command is executed successfully, the admin GUI and CLI will use the

specified ldap server for it’s directory operations.

imadmin modify domain Modifies attributes of a single domain’s directory entry. To modify multiple

domains, use the -i option.

imadmin modify group Changes the attributes of a single group that already exists in the SIMS

system. To change multiple groups, use the -i option.

imadmin modify msglimits Changes the message limits attributes of a single existing channel. To

change multiple channels, use the -i option.

imadmin modify notary Changes the delivery status notification schedule of a single channel. To

change multiple channels, use the -i option.

For a permanent failure, the message is bounced and a notification is sent

to the postmaster. For a transient failure, by default, the channel sends a

maximum of three warning messages to the originator of the message.

imadmin modify postmaster Returned messages:

SIMS might be unable to deliver a message because of long-term service

failures or invalid addresses. The IMTA channel program returns the

message to the sender with an accompanying explanation of why the

message was not delivered.

Warning messages:

The IMTA occasionally sends warnings detailing messages that it has been

unable to deliver. This is generally due to timeouts based on the setting of

the notices channel keyword. The warning messages contain a description

of what is wrong and how long delivery attempts will continue.

To modify messages for multiple channels, use the -i option.

imadmin modify user Changes the attributes of a single user that already exists in the SIMS

system. To change multiple users, use the -i option. You can run the

imadmin modify user command remotely using the Delegated

Management Server and supplying the domain name option.

imadmin purge domain Permanently deletes a single domain from the SIMS system. To

permanently delete multiple domains, use the -i option. Use the command

to remove all domains that have been deleted by the status attribute for a

time period that is longer than the specified grace period. You can perform

a purge at any time by invoking the command manually.

TABLE 1-1 SIMS Administration Commands (Continued)

Command Description

28 Sun Internet Mail Server 4.0 Reference Manual • July 1999

imadmin purge group Use the command to permanently delete all groups that have been deleted

by the status attribute for a time period that is longer than the specified

grace period. To permanently delete multiple groups, use the -i option.

You can perform a purge at any time by invoking the command manually.

There is no undelete utility.

imadmin purge user Use the command to remove all users who have been deleted by the status

attribute for a time period that is longer than the specified grace period. To

permanently delete multiple users, use the -i option. You can perform a

purge at any time by invoking the command manually.

imadmin remove admin Removes SIMS Administrator privileges from a user. To remove SIMS

Administrator privileges from multiple users, use the -i option.

imadmin search admin SIMS Administrators use this command to search and display users who

have SIMS administrative privileges. The -n domain name option will

distinguish a Delegated Administrator when the option is specified. When

the -n option is omitted, the command will filter for all users who have

been granted SIMS Administrator privileges.

imadmin search group Obtains all the LDAP attributes associated with a single group. To obtain

all the LDAP attributes for multiple groups, use the -i option.

imadmin search msglimits Searches for the message limits attributes of single existing channel. To

search for attributes for multiple channels, use the -i option.

imadmin search notary Searches for the delivery status notification schedule of a single channel. To

perform a search of the schedules for multiple channels, use the -i option.

imadmin search postmaster Returns the values of the variables, which direct the system how to treat

failure and warning messages for a single postmaster. To return values for

multiple postmasters, use the -i option.

imadmin search user Obtains the LDAP attributes associated with one or more users.

TABLE 1-1 SIMS Administration Commands (Continued)

Command Description

Chapter 1 Commands Reference 29

The following commands are part of the SIMS Administration.

TABLE 1-2 SIMS Administration Commands - miscellaneous

Command Description

imedit Used when the specified configuration file (config_file) is locked according to

the SIMS configuration file locking convention. The contents of config_file are

copied to a temporary file in the same directory. The editor specified by the

VISUAL or EDITOR environment variables is invoked on the temporary file. If the

editor exits with status 0, the temporary file is renamed to the specified file name

(config_file) and unlocked. If the editor exits with a non-zero status, the

temporary file is removed and the specified file is unlocked.

imxclean C hecks for the existence of SIMS configuration file update logs that are not locked

by any running process. If any are found, they are assumed to represent SIMS

configuration file transactions that were interrupted before completion. imxclean
examines the log and rolls the transaction forward or backs the transaction out,

according to whether or not the transaction has been committed.

setup-tty A script that installs the Sun Internet Mail Server (SIMS) and related files and

packages onto the system.

uninstall A script that removes the Sun Internet Mail Server (SIMS) and related files and

packages from the system. You can specify uninstall to perform a standard or

dramatic uninstall procedure.

The dramatic uninstall option is a clean uninstall, removing all files installed by the

SIMS installation process and created by SIMS during operation, except packages

that may have already been present before the uninstall procedure

30 Sun Internet Mail Server 4.0 Reference Manual • July 1999

SIMS Monitoring

These commands let you monitor the components of SIMS. For the specifics

concerning the use of these related commands, refer to the man pages.

TABLE 1-3 SIMS Monitoring Commands

Command Description

immonitor The umbrella script for monitoring the components of SIMS. For information about

the installation, configuration, and example usage of these utilities look at the

Monitoring_ex_conf_scen.html , Monitoring_install.html , and

Monitoring_intro.html . These are found in /opt/SUNWmail/html/C.

immonitor access Monitors the SIMS services, comprising Mail Delivery (SMTP), Message Access

and Store (POP, IMAP), and Directory Service (LDAP). The Directory Service is

monitored by looking up a specified user in the directory and measuring the

response time. The Mail Delivery is monitored by sending a mail (SMTP) and the

Message Access and Store is monitored by retrieving it. (POP/IMAP). This utility

measures the response times of the various services and the total round trip time

taken to send and retrieve a message.

immonitor queue Monitors the IMTA component. Can be used to report the domains to which

delivery has failed, the number of messages in the queue that are not eligible for

delivery processing (messages with .HELD extension) and the number of messages

in each channel queue.

immonitor reenqueue Re-submits messages. The utility re-enqueues the message, for the movement to

another channel to take place. The new channel with the rewrite rules must be

created by the administrator prior to executing this command. Look at SIMS

Administrator’s Guide to create channel and add rewrite rules.

immonitor system Monitors the status of system resources utilized by SIMS. These include:

• the swap space

• disk utilization

• the number of connections in the ESTABLISHED state.

immonitor users Reports user information including top <n> submitters and targets of a SPAM

attack. Looking at this information the administrator can block connections from a

spammers domain or move their messages to a slower channel.

Chapter 1 Commands Reference 31

Message Access and Store

Message Access and Store refers to the data stores,protocol servers, software drivers,

and libraries that support message delivery, storage, retrieval, and final disposition.

The following command line utilities are used for message access and storage and

are outlined in this section. Detailed information about access and store utilities can

be found in the man pages.

imaccessd

imaccessd provides email clients with access to the Sun Internet Mail Server. The

imaccessd daemon supports two access protocols: Post Office Protocol, version 3

(POP3, RFC 1939); and Internet Message Access Protocol (IMAP, RFC 2060). The

imaccessd daemon process normally runs whenever the mail server is up. Unlike

other commands, imaccessd is a daemon which, when started, runs in the

background. If this daemon is not running, all client requests for IMAP or POP

connections receive a “Connection Refused” error.

imbackup

Use the imbackup utility to back up stored Sun Message Store messages. imbackup
should be run as the message store owner as specified in the ims.cnf file. The default

owner should be set to inetmail.

Caution – The imbackup utility is unable to backup /var/mail messages, MIME

files, and messages stored in the queues.

imcheck

The imcheck command validates the message store and the user files, reports

errors, and generates message store reports. In addition to validating the message

store and generating reports, it also allows you to recover the message store from a

crash.

Messages may be lost if a crash occurs after the messages have been removed from

mail queue by IMTA, but have not yet been “sync-ed” in the user file. When the -c
option is specified, imcheck looks at all the messages delivered to the message store

32 Sun Internet Mail Server 4.0 Reference Manual • July 1999

within the last few minutes before the crash, verifies if they are in the user files, and

redelivers those that are not. Users may get the same message twice after a crash

recovery.

Note – You must be logged in as the message store owner to use this utility.

imdeluser

imdeluser is a utility for the system administrator to remove a user from the

message store. imdeluser is a utility command and needs to be run on the server

as root .

If all of the following conditions are valid, all the folders and user files for the

specified user are removed from the message store:

■ Administrator entered the correct user name and password

■ User or public shared folder exists in the message store

■ User is not receiving messages

Note – In SIMS 3.5 you needed to enter the full LDAP DN of the administrator. In

Sun Internet Mail Server 4.0, you need to enter the login name (not the user name) of

the administrator who has authority to manage the users in their domains.

imexpire

imexpire scans all user folders in the message store and marks all the messages

that match the specified criteria as permanently deleted, or “expired.” The deleted

messages will be expunged from the user mailbox when the user connects or

disconnects from the server.

The actual data will be removed from the message store when impurge -a is run

after the imexpire utility.

imexpire must be run on the message store server by root or by the message store

owner.

Chapter 1 Commands Reference 33

Note – imexpire does not remove expired messages from the message store. It

only marks those messages as “expired.” You must run impurge -a after you run

imexpire to reclaim the disk space. When imexpire is used with the -s option, it

marks the “unseen” messages as “pending” instead of “expired.” Once a message is

marked as “pending”, imexpire will not expire the message. You must run impurge
-a to clear the “pending” flag.

imexportmbox

imexportmbox is a SIMS utility which allows the message store owner (usually

inetmail) to copy a user’s folders to a target directory. Unless the -s option is used

to specify a single folder, all the user’s folders are copied into the destination

directory preserving any folder hierarchies in the form of directories. If the

destination directory does not exist, imexportmbox will attempt to create it. If a file

already exists in the destination directory, imexportmbox will not overwrite the file

and will move on to the next folder.

imexportmbox must be run as the message store owner as specified in the ims.cnf
file. The default owner should be set to inetmail . The destination directory must

allow the message store owner write permission.

imimportmbox

As the administrator, to populate your SIMS 3.5 message store with a user’s existing

messages and folders, you need to execute the message store utility called

imimportmbox . This utility helps you to move the user’s existing inbox messages

and folders from existing /var/mail format to the newly installed message store.

It is possible to specify a non-existent user with imimportmbox .

Note – Run this utility as root or as the message store owner.

34 Sun Internet Mail Server 4.0 Reference Manual • July 1999

iminitquota

The iminitquota utility reinitializes the user’s in the user’s mailbox based on their

LDAP entry and recalculates the total amount of disk space that is being used by the

specified user. It updates the file quota under the user’s Admdirectory in the

Message Store. This file will be read by the delivery agent when trying to determine

if a certain user is over-quota.

iminitquota must be run as the message store owner as specified in the ims.cnf
file. The default owner should be set to inetmail .

impurge

The impurge utility removes messages from the Message Store that are no longer

referenced from any user folders, and returns the space to the file system. When a

user deletes a message, the reference to the message is also removed. Eventually, all

users who received the message may remove their references. When the last

reference is gone, the message can be purged from the store.

The purge operation requires a considerable amount of time and system resources.

Do not wait until your disk is full before attempting a message purge. Run impurge
while there is more disk space than the amount of space used by the message store

on the busiest 24 hour period of the message store. You can check the message store

disk usage by noting the disk usage increase on the /var/opt/SUNWmail/ims
partition over a 24 hour period.

Note – Messages under 2 days old will not get purged.

imquotacheck

imquotacheck , the Quota Notification utility, calculates the total mailbox size for

each user in the message store, compares the size with their assigned quota, and

sends a notification via email to the users that have exceeded a set percentage of

their assigned quota. The default percentage used to determine quota is exactly 90%.

The -p option may be used to specify a different percentage.

If the -v or -u options are not specified, imquotacheck displays only the users

who have exceeded the quota.

imquotacheck must be run as the message store owner as specified in the ims.cnf
file. The default owner should be set to inetmail.

Chapter 1 Commands Reference 35

Note – The content of the quota notification message can be changed.

imrestore

imrestore is the utility used to restore messages from the backup device into the

message store.

imsasm

imsasm is an external Solstice Backup ASM (Application Specific Module) that

handles the saving and recovering of user mailboxes. imsasm is used in Solstice

Backup (Networker) and invokes the imbackup and imrestore utilities to create

and interpret a data stream.

During a save operation imsasm creates a save record for each mailbox or folder in

its argument list. The data associated with each file or directory is generated by

running the imbackup or imrestore command on the user’s mailbox.

When browsing the file details with the nwrecover program, files (mailboxes)

saved with imsasm will appear empty, but the full contents will be restored when

they are actually recovered.

imsinit

imsinit is the utility that initializes the message store file system.

The top-level directories are specified in the /etc/opt/SUNWmail/ims/ims.cnf
file. If a default SIMS installation has been performed, these directories are:

■ /var/opt/SUNWmail/ims/index

■ /var/opt/SUNWmail/ims/hash

■ /var/opt/SUNWmail/ims/data

■ /var/opt/SUNWmail/ims/adm

■ /var/opt/SUNWmail/ims/shared

■ /var/opt/SUNWmail/ims/user

The preceding directories must also be owned by the message store owner as

specified in the ims.cnf file. If a default SIMS installation has been performed, the

owner should be set to inetmail.

36 Sun Internet Mail Server 4.0 Reference Manual • July 1999

If the top-level directories are not present imsinit will create them.

Upon successful completion, the message store file system is initialized.

Note – You cannot run this command after you have initialized a message store in

/var/opt/SUNWmail/im s.

mkbackupdir

The mkbackupdir utility creates and synchronizes the backup directory with the

information in the message store. It is used in Solstice Backup (Legato Networker).

The backup directory is an image of the message store. It does not contain the actual

data. mkbackupdir scans the message store’s user directory, compares it with the

backup directory, and updates the backup directory with the user names and

mailbox names under the message store’s user directory.

The backup directory is created to contain the information necessary for Networker

to backup the message store at different levels (server, group, user, and mailbox).

FIGURE 1-1 displays the structure.

FIGURE 1-1 Backup directory hierarchy

ADM_ROOT

backup

DEFAULT group

user user user

Mail INBOX .nsr

folder folder

mailbox .nsr

Chapter 1 Commands Reference 37

The variables in the backup directory contents are:

The mkbackupdir utility creates:

■ a user directory under the backup directory for each new user in the message

store

■ a user folders hierarchy under the user/Mail subdirectory

■ a .nsr file for each subdirectory that contains user mailboxes

The user folder hierarchy (user/Mail) contains the same structure as the user/Mail
directory in the message store. The INBOX and the user mailboxes under the folder

hierarchy contain zero length files that represent the mailbox names that are to be

saved. They do not contain the actual data.

The .nsr file is the NSR configuration file that informs the Networker to invoke

imsasm . imsasm then creates and interprets the data stream.

Each user mailbox is a file of zero length. This includes the INBOX, which is located

under the user directory.

ADM_ROOT The message store administrator root directory as specified in the

/etc/opt/SUNWmail/ims/ims.cnf file. The default directory is

/var/opt/SUNWmail/ims/adm .

group The user-defined group directory created by the system

administrator.

user Name of the message store user.

folder Name of the user mailbox directory.

mailbox Name of the user mailbox.

38 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Sun Directory Services

This section summarizes the Sun Directory Services (LDAP) utilities commonly used

for SIMS administration. For usage information on these utilities, refer to the Sun

Directory Services documentation and the SIMS Administrator’s Guide. For complete

syntax and option information refer to the specific utility man pages.

Note – You can specify a regular expression for the distinguished name of an entry.

For example, the regular expression dn=“cn=Joe Smith , ou=.* ,dc=XYZ,

dc=com,o=internet” specifies the set of entries for people called Joe Smith in the

whole of the XYZ Corporation. DN-based regular expressions are useful when

defining access controls.

You can also use a DN-based regular expression to specify a set of values for an

attribute whose values are DNs. For example, you can grant write access to a

distribution list entry to any person whose DN is a value of the member attribute,

using the regular expression member=”dn=.*” .

dsserv

The dsserv daemon is the directory server daemon. It listens for LDAP connections

on port 389, responding to the LDAP operations it receives over these connections.

dsserv is typically invoked at boot time, usually out of /etc/rc.local . Upon

startup, dsserv normally forks and dissociates itself from the invoking tty. If the -d
flag is specified, and debugging is set to a non-zero value, dsserv does not fork and

dissociates from the invoking tty .

The dsserv daemon can be configured to provide replicated service for a data store,

in conjunction with slurpd , the directory server update replication daemon. See the

section “dspushd ” on page 40 for details.

dsserv.conf

The file dsserv.conf contains configuration information for the dsservd daemon.

This configuration information is also used by the dspushd and dspulld
replication daemons and by the LDBM indexing utilities ldif2ldbm , ldif2index ,

ldif2id2entry , and ldif2id2children .

Chapter 1 Commands Reference 39

The dsserv.conf file consists of a series of global configuration options that apply

to dsservd as a whole (including all data stores), followed by zero or more

definitions that contain information specific to a data store.

dsserv.acl.conf

The file dsserv.acl.conf contains access control rules (also called ACLs) that

apply to information stored in the directory. ACLs protect sensitive information such

as user pass words. You can create extra ACLs that are specific to the kind of

information that you need to protect. ACLs can be defined by using the Admin

Console, or by hand, by editing the dsserv.acl.conf file. The syntax for an access

control rule is:

access to what [by who accesslevel]...

Grant access (specified by accesslevel) to a set of entries and/or attributes (specified

by what) by one or more requestors (specified by who).

dsserv.at.conf

The file dsserv.at.conf contains the SIMS attributes.

dsserv.oc.conf

The file dsserv.oc.conf contains the SIMS object class.

dsserv.replog

The file dsserv.replog is produced by the stand-alone LDAP daemon, dsservd ,

when changes are made to its local database that are to be propagated to one or

more replica data stores. The file consists of zero or more records, each one

corresponding to a change, addition, or deletion from the database. The file is used

by dspushd , the stand-alone LDAP update replication daemon. The records are

separated by a blank line.

40 Sun Internet Mail Server 4.0 Reference Manual • July 1999

dsservcmd

The dsservcmd command sends orders to the dsserv daemon to set the trace level,

put the database into, and out of, read-only mode (for backup), and get SNMP

statistics about the dsserv daemon.

dsprepush

The dsprepush command creates a replication log file for the replication daemon

slurpd to use when creating a new replica. It extracts entry information from the

data base directory (databasedir) and creates appropriate replica entries. All

parameters are optional. If you do not supply any parameters, dsprepush generates

replica entries for all databases and for all replica (slave) servers.

dspushd

The dspushd daemon is used to propagate changes from one dsserv database to

another. If dsserv is configured to produce a replication log, dspushd reads that

replication log and sends the changes to the replica dsserv instances using the

LDAP protocol.

Upon startup, dspushd reads the replication log (given either by the replogfile
directive in the dsserv configuration file, or by the -r option). If the replication log

file does not exist or is empty, dspushd goes to sleep. It periodically wakes up and

checks to see if any changes need to be made.

When changes need to be made to replica dsserv instances, dspushd locks the

replication log, makes a private copy, releases the lock, and forks one copy of itself

for each replica dsserv to be updated. Each child process binds to the slave dsserv
with the DN given by the binddn option to the replica directive in the dsserv
config file, and sends the changes. See dsprepush for details on the directory

server daemon.

Note – By default, dspushd is set up not to run. To start it, you must modify

/etc/opt/SUNWconn/ldap/current/dsserv.ini and change

startDspush=true . Restart dsserv .

Chapter 1 Commands Reference 41

imldifsync

The imldifsync command synchronizes LDAP directory entries with data in

passwd format and data in aliases format. It is used to generate and update

directory entries for users and for groups in LDAP Directory Interchange Format

(LDIF). The LDIF file format is described in ldif (4) and dsserv.replog . Entries

created from the content of the LDIF file can be added to an LDAP directory using

ldapmodify .

The imldifsync command runs in two modes that are mutually exclusive: user

mode (option -u) to create user entries, and group mode (option -g) to create group

entries. When you create or update your directory database, you need to run

imldifsync twice: first in user mode, then in group mode. It is important to

generate users first and apply the changes to the directory database before

generating groups.

To generate user entries and email addresses, the imldifsync command uses the

password file and alias file. The common name of each user entry is generated from

the gecos field (the fifth field in the password file) by a conversion script. You can

specify your own conversion script using the -G option if the default conversion

does not meet your requirements.

To generate group entries, the imldifsync command uses primarily the alias file.

Information about the members of a group is taken from the directory database,

from the previously generated user entries.

Each entry must have a unique name. If two entries have the same name, the second

entry is written to a temporary file in /tmp and a warning message is generated.

Entries for which a proper common name cannot be created are ignored, and an

error is generated.

When the program exits (or is terminated by CTRL-C), it prints some statistics to

stderr indicating how many DNs were added, modified, or found to be duplicates.

In the case of duplicates, it indicates the name of the temporary file to which they

were written.

ldapadd

The ldapadd utility is used to add email entry tools. The entry information is read

from standard input or from a file, specified using the -f option. The ldapadd
command is a variant of the ldapmodify command. When invoked as ldapadd ,

the -a (add new entry) flag is turned on automatically. Additional information about

modifying email entry tools can be found in the following section entitled

ldapmodify .”

42 Sun Internet Mail Server 4.0 Reference Manual • July 1999

ldapdelete

The ldapdelete command opens a connection to an LDAP server, binds, and

deletes one or more entries. If one or more dn arguments are provided, entries with

those distinguished names are deleted. If no dn arguments are provided, a list of

DNs is read from file, if the -f flag is specified, or from standard input.

ldapmodify

The ldapmodify command opens a connection to an LDAP server, binds, and

modifies or adds entries. The entry information is read from standard input or from

a file, specified using the -f option. The ldapadd command is a variation of the

ldapmodify command. When invoked as ldapadd , the -a (add new entry) flag is

automatically turned on. Both ldapadd and ldapmodify reject duplicate

attribute-name/value pairs for the same entry.

ldapsearch

The ldapsearch command opens a connection to an LDAP server, binds, and

performs a search using the filter filter. If ldapsearch finds one or more entries, the

attributes specified by attrs are retrieved and the entries and values are printed to

standard output. If no attributes are listed, all attributes are returned.

ldbmcat

The ldbmcat command is used to convert a dsserv LDBM database to the LDAP

Directory Interchange Format (LDIF) as defined in ldif2ldbm .” It opens the

id2entryfile file for the database to be converted and writes the corresponding LDIF

output to standard output.

ldif

The ldif command converts arbitrary data to the LDAP Directory Interchange

Format (LDIF). ldif reads data from standard input, converts it, and writes the

corresponding LDIF output to standard output. The output is suitable for use as a

line in an LDIF file.

Chapter 1 Commands Reference 43

By default, ldif considers its input a sequence of values, one value on each line, to

be converted to values of the specified attribute. With the -b flag, ldif considers its

input as a single raw binary value to be converted. This is useful when converting

binary data such as a photo or audio attribute.

ldif2ldbm

This section describes the following conversion utilities used to convert LDIF to

LDBM database format:

■ ldif2ldbm

■ ldif2index

■ ldif2id2entry

■ ldif2id2children

These utilities convert a database in LDAP Directory Interchange Format (LDIF) to

an LDBM database suitable for use by dsserv . Normally, you need only use

ldif2ldbm . It invokes the other utilities as necessary. Occasionally, it may be

necessary to invoke them directly. For example, to create a new index file for an

existing database, use the ldif2index program. To do the reverse conversion, from

LDBM to LDIF, use the ldbmcat command, described in ldbmcat .”

Internet Message Transfer Agent

The IMTA contains a modest collection of management utility programs that are

used to perform various maintenance, testing, and management tasks. The following

sections describe these utilities.

44 Sun Internet Mail Server 4.0 Reference Manual • July 1999

This section summarizes the Internet Message Transfer Agent (IMTA) utilities. These

commands are in the /opt/SUNWmail/imta/sbin/ directory. You need to be

logged in as root to run the imta start, imta stop, imta dirsync, and imta
restart commands. Unless mentioned otherwise, all IMTA commands should be

run as inetmail (the postmaster account created during installation).

TABLE 1-4 IMTA Utilities

Utility Description

imta cache -close Has detached processes close their connections to the queue cache database.

imta cache -rebuild Builds a new, synchronized queue cache database.

imta cache -synch Synchronizes the current queue cache database.

imta cache -view Views entries in the queue cache database.

imta chbuild Compiles the IMTA character set conversion tables.

imta clbuild Compiles an IMTA command definition file.

imta cnbuild Compiles the IMTA configuration, alias, mapping, security, system wide

filter, and option files

imta counters -clear Clears the in-memory cache of channel counters

imta counters -show Displays the contents of the database of channel counters

imta counters -today Displays count of the number of messages processed today

imta crdb Creates a IMTA database

imta dirsync Recreates or updates the IMTA directory cache.

imta find Finds the file name corresponding to the specified version of a IMTA file.

imta process Lists currently running IMTA jobs.

imta program Uses to manipulate the IMTA program delivery options.

imta purge Purges IMTA log files.

imta qm Manages IMTA message queues.

imta queue Performs maintenance tasks on imta queue. The imta queue
retry_delivery channel_name command reprocesses HELD messages

in the channel specified by the channel_name parameter. To avoid mail

loops, the IMTA holds messages when they have been forwarded more than

30 times. When corrected, the administrator can run this command to

reprocess all the HELD messages.

The imta queue recover_crash command rebuilds the MTA

queue-cache database after a crash.

imta renamedb Renames an IMTA database.

imta restart Restarts detached IMTA processes.

imta return Returns (bounce) a mail message to its originator.

Chapter 1 Commands Reference 45

imta cache

The IMTA maintains a disk cache of all the messages currently stored in its queues.

This cache is called the queue cache. The purpose of the queue cache is to make

dequeue operations perform more by relieving master programs from having to

open every message file to find out which message to dequeue and in which order.

The queue cache consists of the indexed files contained in the directory pointed at by

the IMTA_QUEUE_CACHE_DATABASEoption in the IMTA tailor file,

/etc/opt/SUNWmail/imta/imta_tailor . Normally, the queue cache directory is

called /etc/opt/SUNWmail/imta/queue_cache . This directory and the files it

contains should be protected against world and group access and have the same uid

as the directories /var/opt/SUNWmail/imta/queue and

/var/opt/SUNWmail/imta/log .

imta cache -close

The imta cache -close command forces IMTA processes to close any open I/O

channels to the queue cache database. This is generally done for two reasons: to

close all channels to the files in the database so that the database can be modified,

and to force processes to reopen the queue cache database files, to begin using any

new version of that database.

imta run Processes messages in a specified channel.

imta start Starts detached IMTA processes.

imta stop Shuts down the IMTA job controller and the IMTA Service Dispatcher.

imta submit Processes messages in a specified channel.

imta submit_master Process messages in a specified channel; on UNIX, a synonym for submit.

imta test -mapping Test a mapping table.

imta test -match Test a mapping wildcard pattern.

imta test -rewrite Tests address rewriting.

imta view Displays the contents of the specified “version” of a IMTA log file.

imta version Prints the SIMS version number.

TABLE 1-4 IMTA Utilities (Continued)

Utility Description

46 Sun Internet Mail Server 4.0 Reference Manual • July 1999

imta cache -rebuild

The imta cache -rebuild command creates a new, synchronized queue cache.

Although the new database inherits the ownership and file protections of the queue

cache, it is a good idea to check afterwards that the new queue cache directory and

files have the same uid as the queue and log directories and that the queue cache

database directory and files are protected against group and world access.

Caution – Rebuilding the queue cache database with this command should only be

performed as a last resort–for example, if disk problems have corrupted your queue

cache database–as it will cause loss of some information from the queue cache

database. The type of information lost includes, but is not limited to, message

creation dates, deferral dates, and expiration dates.

imta cache -sync

The imta cache -sync command updates the active queue cache database by

updating it to reflect all non-held message files currently present in the

/var/opt/SUNWmail/imta/queue/* subdirectories. The imta cache -close
command does not need to be issued in conjunction with the imta cache -sync
command.

Note that the imta cache -sync utility does not remove any entry from the queue

cache. The queue cache entries not corresponding to an actual queued message are

silently discarded by master programs. They can also be removed using the imta
cache -rebuild utility.

imta cache -view

The imta cache -view command shows the current non-held entries in the

IMTA cache database for a channel.

imta chbuild

The imta chbuild command compiles the character set conversion tables and

loads the resulting image file into shared memory. The IMTA ships with complete

character set tables so you would not normally need to run this command.

Chapter 1 Commands Reference 47

imta clbuild

The imta clbuild utility compiles a command line definition file and loads the

resulting image file into shared memory. The IMTA ships with a pre-compiled

command line definition image so it is not normally necessary to run this utility.

You must have superuser privileges to run this utility.

The file specification of a an IMTA command definition file to read as input; for

example, /opt/SUNWmail/imta/lib/imta.cld .

Example

The standard command used to compile the basic IMTA command definition file is:

imta clbuild -option_file -image_file=IMTA_COMMAND_DATA
/opt/SUNWmail/imta/lib/pmdf.cld

imta cnbuild

The imta cnbuild command compiles the textual configuration , option ,

mapping , conversion , and alias files, and loads the resulting image file into

shared memory. The resulting image is saved to a file usually named

/opt/SUNWmail/imta/lib/config_data by the IMTA_CONFIG_DATAoption of

the IMTA tailor file, /etc/opt/SUNWmail/imta/imta_tailor .

TABLE 1-5 clbuild cld-file-spec

Command Qualifiers Defaults

-debug -nodebug

-image_file=file-spec -noimage_file

-maximum -nomaximum

-option_file=file-spec -nooption_file

-remove None

-sizes -nosizes

-statistics -nostatistics

48 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Whenever a component of the IMTA (for example, a channel program) must read a

compiled configuration component, it first checks to see whether the file named by

the IMTA tailor file option IMTA_CONFIG_DATAis loaded into shared memory; if

this compiled image exists but is not loaded, the IMTA loads it into shared memory.

If the IMTA finds (or not finding, is able to load itself) a compiled image in shared

memory, the running program uses that image. This rule has two exceptions:

1. The first is imta cnbuild itself, which always reads the text files and never tries

to use an image form of the configuration data.

2. The second exception is imta test -rewrite , which can be instructed with the

-image_file option to use a different compiled configuration file. This facility

in imta test -rewrite is useful for testing changes prior to compiling them.

The reason for compiling configuration information is performance. The only

penalty paid for compilation is the need to recompile and reload the image any time

the configuration or alias files are edited. Also, be sure to restart any programs or

channels that load the configuration data only once when they start up, for example,

the IMTA multithreaded TCP SMTP server.

It is necessary to recompile the configuration every time changes are made to any of

the following files:

■ IMTA configuration file (or any files referenced by it)

■ IMTA system alias file, the IMTA mapping file

■ IMTA option file

■ IMTA conversion file

These are the files pointed at the IMTA tailor file options: IMTA_CONFIG_FILE ,

IMTA_ALIAS_FILE , IMTA_MAPPING_FILE, IMTA_OPTION_FILE , and

IMTA_CONVERSION_FILE, respectively, which usually point to the following files:

■ /etc/opt/SUNWmail/imta/imta.cnf

■ /etc/opt/SUNWmail/imta/aliases

■ /etc/opt/SUNWmail/imta/mappings

■ /etc/opt/SUNWmail/imta/option.dat

■ /etc/opt/SUNWmail/imta/conversions

Note – Until the configuration is rebuilt, changes to any of these files are not visible

to the running IMTA system.

Chapter 1 Commands Reference 49

imta counters -clear

The IMTA accumulates in the form of message traffic statistics for each of its

channels. These statistics are referred to as channel counters. The counters are kept in

a shared memory cache.

The imta counters -clear command clears the in-memory channel counters.

Syntax

imta counters -create

The imta counters -create command creates an in-memory cache of channel

counters.

Note – Do not execute this utility if you already have in-memory counters because

imta start creates this section. Normally this utility should never be used unless

you have manually deleted the counters using imta counters -delete .

imta counters -show

The contents of the in-memory cache of channel counters may be displayed with the

imta counters -show command.

imta counters -today

imta counters -today counts and displays the number of messages processed

on this day. Note that the messages counted are the number of messages processed

at the time that this command is executed.

imta counters -clear

50 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Example
imta counters -today
4263 messages processed so far today
30000 messages per day are permitted by your license

This example shows IMTA’s count of the number of messages processed so far on a

particular day.

imta crdb

The imta crdb command creates and updates IMTA database files. imta crdb
converts a plain text file into IMTA database records; from them, it either creates a

new database or adds the records to an existing database.

In general, each line of the input file must consist of a left side and a right side. The

two sides are separated by one or more spaces or tabs. The left side is limited to 32

characters in a short database (the default variety) and 80 characters in a long

database. The right side is limited to 80 characters in a short database and 256 in a

long database. Spaces and tabs may not appear in the left side.

imta dirsync

The imta dirsync utility recreates or updates the IMTA directory cache.

The -t option executes dirsync in the test mode. It searches the directory and

prints out the details on invalid entries, if there are any. No changes are made to the

cache itself. Run this in conjunction with the -F option (causes the directory cache to

be completely regenerated, thus creating a faithful image of the directory) to test the

entire directory contents used by this MTA. Without the -F option, only the new

additions are tested.

Note – You must be logged in as root to use this utility.

imta find

The imta find command finds the precise file name of the specified version of an

IMTA file. IMTA log files contain a -uniqueid, which is appended to the file name to

allow for the creation of multiple versions of the log file.

Chapter 1 Commands Reference 51

imta find understands these unique ids and can find the particular file name

corresponding to the requested version of the file.

By default, if no offset qualifier (n) is specified, imta find locates the most recent

version of the file.

Examples
imta find /var/opt/SUNWmail/imta/log/tcp_local_slave.log

This command will print out the file name of the

/imta/log/tcp_local_slave.log-uniqueid file most recently created.

imta find /imta/log/tcp_smtp_server.log -f=0

This command will display the file name of the oldest

/var/opt/SUNWmail/imta/log/tcp_local_slave.log-uniqueid file.

imta process

This command displays the current IMTA processes. The IMTA Service Dispatcher

and the IMTA Job Controller and SMTP should be present; in the Departmental

Edition, the IMTA Job Controller should be present. Additional processes may be

present if messages are currently being processed, or if certain additional IMTA

components are in use.

imta program

The imta program commands are used to manipulate the program delivery

options.

These commands can be executed as root or inetmail . A change in an existing

one will take effect only after the next full dirsync is performed.

TABLE 1-6 imta - find file pattern

Command Qualifiers Defaults

-f=offset-from-first None

-l=offset-from-last None

52 Sun Internet Mail Server 4.0 Reference Manual • July 1999

imta purge

The imta purge command deletes older versions of IMTA log files. imta purge
can determine which log files are older, based on the uniqueid strings terminating

IMTA log file names.

imta qm: Queue Management

The imta qm command is a utility for inspecting and manipulating the channel

queue directories and the messages contained in them. It has some functionality

overlap with the imta cache , imta queue , and imta counter s commands.

Privileges sufficient to read, create, and delete files in the channel queue directory

tree as well as read and update the queue cache database are required to use this.

For example, imta queue -retry_delivery can be achieved using the release

command in imta qm . As another example, some of the information returned by

imta cache -view is also available through the directory command in imta qm .

However, imta qm does not completely replace imta cache or imta queue .

imta qm can only be run by root or inetmail .

To run imta qm in interactive mode, issue the command

$ imta qm

To run imta qm in non-interactive mode, issue a command such as:

$ imta qm <command>

Use the exit or quit command to exit imta qm . The commands accepted by this

utility in maintenance mode are summarized in .

Note – Some of the commands available in the interactive mode are not available in

the non-interactive mode and the reverse is also true.

TABLE 1-7 imta qm Mode Commands

Commands Descriptions

counters Controls aspects of the channel counter caches and database.

date Shows current date and time

delete Irrevocably deletes the specified messages

directory Lists currently queued messages

Chapter 1 Commands Reference 53

imta queue

Use the imta queue command to perform common maintenance tasks on the

IMTA message queues. Unlike the imta cache utility, operations performed with

imta queue apply not only to the queue cache database but also to the actual

message queues (message files).

imta renamedb

The imta renamedb command renames an IMTA database. Since the IMTA may

optionally reference several “live” databases, that is, databases whose presence

triggers their use by the IMTA, it is important, first, to ensure that the IMTA does not

see such a database while it is in a mixed state, and second, to minimize any period

of time during which the database is inaccessible. The imta crdb command locks

the database it is creating to avoid having it accessed in a mixed state.

▼ To create or update the IMTA databases:

1. Create or update a temporary database.

2. Rename the temporary database with the “live” name using the imta renamedb
command.

exit Exits the utility.

held Lists messages which have been marked as held.

help Obtains help.

history Displays message delivery history information.

hold Marks a message as held.

quit Exits the utility.

read Displays message envelope and header information

release Releases held message.

return Returns a message to its originator.

run Executes commands from the specified file.

view Controls whether the channel queue directory tree or queue cache

database is viewed.

TABLE 1-7 imta qm Mode Commands (Continued)

Commands Descriptions

54 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The imta renamedb utility, which must delete any old database files and rename

the new database files, locks the database during the renaming process to avoid

presenting the database in a mixed state. This way, the database is never accessible

while it is in a mixed state, yet any window of time during which the database is

inaccessible is minimized. Renaming is generally quicker than database generation.

imta restart

The imta restart command stops any IMTA Job Controller or IMTA Service

Dispatcher jobs that are running, and restarts the IMTA Job Controller and IMTA

Service Dispatcher. Detached IMTA processes should be restarted whenever the

IMTA configuration is altered—these processes load information from the

configuration only once and need to be restarted in order for configuration changes

to become visible to them. In addition to general IMTA configuration files, such as

the imta.cnf file, some components, such as the IMTA Service Dispatcher, have

their own specific configuration files, for example, dispatcher.cnf , and should be

restarted after changes to any of these files.

Note – You must be logged in as root to use this utility.

imta return

The imta return command returns a message to the message’s originator. The

returned message is in two parts. The first part explains why the message is being

returned. The text of the reason is contained in the file return_bounce.txt located

in the /etc/opt/SUNWmail/imta/locale/C/LC_MESSAGES/ directory. The

second part of the returned message contains the original message.

imta run

The imta run command processes the messages in the channel specified by the

channel parameter. Output during processing is displayed at your terminal, which

makes your terminal unavailable for the duration of the operation of the utility.

Refer also to the imta submit command that, unlike imta run , does not

monopolize your terminal.

Chapter 1 Commands Reference 55

imta start

The imta start command starts up detached IMTA processes. If no component

parameter is specified, then the IMTA Job Controller and IMTA Service Dispatcher

are started. Starting the Service Dispatcher starts all services the Service Dispatcher

is configured to handle, which may include SMTP server. If a component parameter

is specified, then only detached processes associated with that component are

started. The standard component names are:

The services handled by the IMTA multithreaded Service Dispatcher must be started

by starting the IMTA Service Dispatcher. Only services not being handled by the

IMTA Service Dispatcher can be individually started using the imta start
command. The Service Dispatcher may be configured to handle various services, for

example, the multithreaded SMTP server.

Note – You must be logged in as root to use this utility.

imta stop

The imta stop command shuts down the IMTA Job Controller and the IMTA

Service Dispatcher. Shutting down the IMTA Service Dispatcher shuts down all

services (for example, SMTP) being handled by the Service Dispatcher.

Note – You must be logged in as root to use this utility.

imta submit

The imta submit command forks a process to execute the messages in the channel

specified by the channel parameter.

Component Description

dispatcher Multithreaded Service Dispatcher

job_controller Schedules deliveries (dequeues messages).

56 Sun Internet Mail Server 4.0 Reference Manual • July 1999

imta test -mapping

Use the imta test -mapping utility to test the behavior of a mapping table in the

mapping file. The result of mapping an input string will be output along with

information about any meta characters specified in the output string.

If an input string is supplied on the command line, then only the result of mapping

that input string will be output. If no input string is specified, imta test
-mapping will enter a loop, prompting for an input string, mapping that string, and

prompting again for another input string. imta test -mapping will exit when

you press CTRL-D.

Example

In the following example, the sample PAGER mapping is tested. The

-mapping_file qualifier is used to select the mapping file pager_table.sample
instead of the default mapping file.

TABLE 1-8 imta test -mapping syntax

Command Qualifiers Defaults

-flags=list of characters -noflags

-image_file -image_file

-mapping_file =file-spec -mapping_file=IMTA_MAPPING_FILE

-option_file =file-spec -option_file=IMTA_OPTION_FILE

-table =table-name None

% pmdf test -mapping -noimage_file
-mapping_file=/imta/table/pager_table.sample
Enter table name: PAGER
Input string: H|From: "Dancer" <dan@bridge.com> (Doof City)
Output string: H|F:dan
Output flags: [0,1,2,89]
Input string: ^D
%

Chapter 1 Commands Reference 57

imta test -match

You can use imta test -match to test a mapping pattern, particularly, to test

wildcard and glob matching.

When invoked, imta test -match prompts for a pattern and then for a target

string to compare against the pattern, and will output whether or not the target

string matched and if it did match, which characters in the target string matched

which wildcard or glob of the pattern. imta test -match will loop, prompting for

input, until you exit using a CTRL/D.

Example

In the following example, the sample mapping pattern $[ax1]*@*.bridge.com is

tested for several sample target strings.

imta test -rewrite

Use imta test -rewrite to provide a test facility for examining the IMTA’s

address rewriting and channel mapping process without actually sending a message.

Various qualifiers can be used to control whether imta test -rewrite uses the

configuration text files or the compiled configuration (if present), the amount of

output produced, and so on.

% imta test -match
Pattern: $[ax1]*@*.bridge.com
Target: xx11a@sys1.bridge.com
Match.
0 - xx11a
1 - sys1
Pattern: $[ax1]*@*.bridge.com
Target: 12a@node.bridge.com
No match.
Pattern: $[ax1]*@*.bridge.com
Target: 1xa@node.bridge.com
Match.
0 - 1xa
1 - node
Pattern: ^D
%

58 Sun Internet Mail Server 4.0 Reference Manual • July 1999

If a test address is specified on the command line, imta test -rewrite applies

the IMTA address rewriting to that address, reports the results, and exits. If no test

address is specified, imta test -rewrite enters a loop, prompting for an

address, rewriting it, and prompting again for another address. imta test
-rewrite exits when you press CTRL-D.

When testing an email address corresponding to a restricted distribution list, imta
test -rewrite uses as the posting address the return address of the local

postmaster, which is usually postmaster@localhost unless specified by the

IMTA option RETURN_ADDRESSin the IMTA Option file.

imta view

Use imta view to display a specified version of an IMTA log file. IMTA log files

contain a uniqueid , which is appended to the file name to allow creation of

multiple versions of the log file. imta view understands these unique ids and can

display the contents of the particular file corresponding to the requested version of

the file.

By default, if no offset qualifier (n) is specified, imta view displays the most

recent version of the file.

TABLE 1-9 imta view Command Qualifiers

Command Qualifier Description

-f=offset-from-first Use this qualifier to specify displaying the nth version of the

file (starting counting from 0). For instance, to display the

earliest (oldest) version of the file, specify -f=0 .

-l=offset-from-last Use this qualifier to specify displaying the nth from the last

version of the file (starting decrementing from 0 as the most

recent version). For instance, to display the most recent

(newest) version of the file, specify -l=0.

Chapter 1 Commands Reference 59

imta version

imta version prints out the IMTA version number, and displays the system’s

name, operating system release number and version, and hardware type.

Installation

This section describes the utilities associated with the installation process. For more

information on installation, refer to the Sun Internet Mail Server 4.0 Advanced
Installation Guide.

setup-tty

setup-tty is a script that installs SIMS and related files and packages onto the

system.

Note – Because setup-tty is not installed on the target system, you must retrieve

the setup-tty program from the distribution image and not from the system. On

the CD, the setup-tty script can be found in

/cdrom/sun_internet_mail_4_0/products/sims/setup-tty .

The setup-tty interface is considered to be “unstable.” See attributes (5) for a

description of interface stability.

60 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Syntax

The options for setup-tty appear in TABLE 1-10.

Examples

The following command performs a standard interactive installation, with -c
install as the default parameter:

Execute the following to uninstall SIMS and related packages and files from the

system:

The following command:

setup-tty [-c install | remove] [-d]

TABLE 1-10 setup-tty options

Option Description

-c install Specifies a standard install of SIMS and related files and packages.

-c remove Specifies an uninstall of SIMS and related packages and files from the system.

-c removeall Specifies a dramatic removeall of SIMS and related files and packages. This option

removes data and configuration files left over from the standard removeall . This is

a clean removeall , removing all files installed by the SIMS installation process and

created by SIMS during operation, with the exception of packages that were present

before the removeall procedure.

-d Specifies a non-interactive automated install using the /tmp/sims_setup.dat file, if

it exists. If /tmp/sims_setup.dat does not exist, setup-tty will default to the

standard interactive install and prompt the user for necessary information. See

TABLE 1-11 for a description of the parameters included in the sims_setup.dat file.

% setup-tty [-c install]

% setup-tty -c remove

% setup-tty -d

Chapter 1 Commands Reference 61

performs a non-interactive install, which uses the file /tmp/sims_setup.dat if it

exists. It will gather all necessary configuration data from the

/tmp/sims_setup.dat file. If the file does not exist, setup-tty reverts to the

interactive install, which prompts the user for necessary information. If

/tmp/sims_setup.dat exists and setup-tty is executed without the -d option

specified, the /tmp/sims_setup.dat file is removed and the interactive install

continues

sims_setup.dat File

TABLE 1-11 describes the parameters included in the sims_setup.dat file. The

sims_setup.dat file can be provided by the user when the -d option is specified

in the setup-tty command.

TABLE 1-11 sims_setup.dat File

Parameter Description

administrator-name The user name for the directory administrator.

administrator-passwd The password for the directory administrator.

cgi-bin The location of the CGI bin directory for the HotJava Views

server.

dcRoot Root node for the directory tree (default is internet).

do_upgrade Specifies whether or not to upgrade to SIMS 3.5 (1=upgrade,

0=do not upgrade).

document-root The location of the document root for the Sun Web Server.

fax-number The fax number. This is a text entry.

filename Name of the file that contains the SIMS license.

ha_install Determines whether or not to install the High Availability

option. (0=do not install, 1=install).

ha_master The logical hostname of the HA master host.

ha_masterlhost The logical host name for the HA installation.

ha_sharedfs The shared disk location for the HA installation.

hostname Fully qualified name of the local host.

install-mode Specifies which SIMS product package to upgrade (3=optional

features install, 4=core install).

install-sws Determines whether or not to install the Sun web server (0=do

not install, 1=install).

ldap-port The LDAP port number.

62 Sun Internet Mail Server 4.0 Reference Manual • July 1999

ldap-server Hostname of the LDAP master server.

ldap-type ldap server selected by user: sun for SunDS and netscape
for Netscape DS

ldap_up 1 if the ldap (directory) is local; or if it is remote and the

remote machine has the directory server running.

0 if the remote ldap server is not running.

locality The name of the locality. This is a text entry.

maildomain The mail domain.

mta-role Determines if the IMTA is installed behind the firewall (0=not

behind firewall, 1=behind firewall).

org-name-long The name of the organization. This is a text entry.

phone-number The phone number. This is a text entry.

postal-address The postal address. This is a text entry.

postmaster The postmaster’s ID.

postmaster_uid The postmaster’s UID.

province The name of the province. This is a text entry.

readfromfile Determines whether or not the directory server license will be

read from a local file (0=no, 1=yes).

remote-ldap Determines where the LDAP server is located (0=local host,

1=not local).

remadmin Determines whether or not to install the remote administrator

option (0=do not install, 1=install).

rootdomain The root domain.

standalone Determines whether or not SIMS is already installed (0=SIMS

already installed, 1=SIMS not installed).

sdk Determines whether or not to install the SIMS SDK (0=do not

install, 1=install).

sdk-doc Determines whether or not to install the documentation for

the SIMS SDK (0=do not install, 1=install).

select-options Specifies whether or not any options have been selected to

install (0=no options selected, 1=HA option only, 2=at least

one option selected).

sims-doc 1 if the SIMS doc must be installed.

0 in all other cases.

siteadmin-name The user name for the SIMS administrator.

TABLE 1-11 sims_setup.dat File (Continued)

Parameter Description

Chapter 1 Commands Reference 63

uninstall

The uninstall utility removes SIMS and other related files and packages from

your system. You can specify uninstall to perform a standard or dramatic

procedure.

Note – uninstall might not remove packages that have been installed by a

separate application and might be used by that application. This is the case even if

SIMS has installed that package upon setup.

sendmail is restored by the SIMS uninstall utility but it is not started. To start

sendmail , the user must either reboot the system or manually start the sendmail
program.

Web server packages can be removed by uninstall , but httpd is not stopped.

siteadmin-passwd The password for the SIMS administrator.

spmServer The fully qualified host name of the machine where SPM is

installed (default: local host).

smarthost Has a text string value only if mta-role=1 (behind the

firewall).

varmail Determines whether or not the /var/mail message store is

supported (0=not supported, 1=supported).

upgrade-possible 0=not upgradable.

webaccess Determines whether or not to install the WebAccess option

(0=do not install, 1=install).

ws_port The Web server’s port (default is 80).

TABLE 1-11 sims_setup.dat File (Continued)

Parameter Description

64 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Syntax

The options for this command appear in TABLE 1-12.

Note – Option -d is recommended before re-installing SIMS.

Examples

The following command performs a standard uninstall :

The following command performs a dramatic uninstall :

uninstall [-c sims] [-d sims]

TABLE 1-12 uninstall options

-c sims Specifies a standard uninstall of SIMS and related files and packages. The standard

uninstall does not remove the directories and files of configuration and data, for

example, the message store. Only the binaries are removed.

-d sims Specifies a dramatic uninstall of SIMS and related files and packages. This option

removes data and configuration files left over from the standard uninstall . The

dramatic uninstall option is a clean uninstall , removing all files installed by the

SIMS installation process and created by SIMS during operation, with the exception of

packages that may have already been present before the uninstall procedure.

% uninstall -c sims

% uninstall -d sims

65

CHAPTER 2

IMTA Configuration

The following topics are covered in this chapter:

■ “imta.cnf File” on page 68

■ “Domain Rewriting Rules” on page 70

■ “Template Substitutions” on page 77

■ “Handling Large Numbers of Rewrite Rules” on page 89

■ “Rewrite Rule Control Sequences” on page 88

■ “Channel Definitions” on page 92

■ “Channel Configuration Keywords” on page 93

■ “Aliases” on page 135

■ “Local Channel” on page 138

■ “SMTP Channel Option Files” on page 139

■ “The Pipe Channel” on page 144

■ “The Hold Channel” on page 145

■ “Conversion Channel” on page 145

■ “UUCP Channel” on page 153

■ “Mapping File” on page 156

■ “Option Files” on page 171

■ “Tailor File” on page 182

■ “Dirsync Option File” on page 186

■ “Autoreply Option File” on page 187

■ “Job Controller” on page 187

■ “SMTP Dispatcher” on page 193

66 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The IMTA Configuration Files

This section explains the structure and layout of the IMTA configuration files. Some

configuration modifications can be done using the command-line interface, as

described in Chapter 1 in “Internet Message Transfer Agent” on page 43, or by using

the accompanying SIMS Admin Console, as described in the SIMS Administrator’s
Guide. Modifications not possible through either can be done by editing the

configuration files. We recommend that only experienced administrators edit and

modify the configuration files. Many configuration settings can be defined using the

GUI described in the Sun Internet Mail Server System Administrator’s Guide.

Caution – Sun does not guarantee that the changes made by modifying

configuration files will be recorded properly by the administration console. The

administration console interfaces cannot recognize different types of information

that the user might add to the configuration files.

All configuration files are ASCII text files that can be created or changed with any

text editor. Permissions for the configuration file should be set to world-readable.

Failure to make configuration files world-readable may cause unexpected IMTA

failures. A physical line in most files is limited to 252 characters and you can split a

logical line into multiple physical lines using the backslash (\) continuation

character.

Note – If you change any of the files manually, restart your administration server

after you make the changes. Then restart the administration console. This will ensure

that the information that you changed in the imta.cnf configuration file is

synchronized with the administration console.

By preprocessing these files and storing them in memory, the initialization time for

IMTA is significantly reduced, thereby improving IMTA's performance.

Chapter 2 IMTA Configuration 67

TABLE 2-1 lists the IMTA configuration files with a short description.

TABLE 2-1 IMTA Configuration files

File Description Page

Autoreply Option File Options used by the autoreply
program./etc/opt/SUNWmail/imta/autoreply.opt

187

Alias File (mandatory) Implements aliases not present in the directory.

/etc/opt/SUNWmail/imta/aliases
136

Channel Options File Many channels use channel options files to set channel specific options.

/etc/opt/SUNWmail/imta/ channel _option
139

Conversion File Used by conversion channel to control message body part conversions.

/etc/opt/SUNWmail/imta/conversions
147

Dirsync Option File

(mandatory)

Options used by the dirsync program.

/etc/opt/SUNWmail/imta/dirsync.opt
186

Dispatcher Configuration

File (mandatory)

Configuration file for dispatcher. (Enterprise Edition only).

/etc/opt/SUNWmail/imta/dispatcher.cnf
195

IMTA Configuration File

(mandatory)

Used for address rewriting and routing as well as channel definition.

/etc/opt/SUNWmail/imta/imta.cnf
68

Mapping File (mandatory) Repository of mapping tables. (Enterprise Edition only).

/etc/opt/SUNWmail/imta/mappings
156

IMTA Option File File of global IMTA options. /etc/opt/SUNWmail/imta/option.dat 171

IMTA Tailor File

(mandatory)

File to specify locations and some tuning parameters.

/etc/opt/SUNWmail/imta/imta_tailor
182

Job Controller Config. File

(mandatory)

Configuration file used by the job_controller .

/etc/opt/SUNWmail/imta/job_controller.cnf
188

Log Files (mandatory) mail.log file to indicate the message traffic through the IMTA and log

files for specific master or slave programs.

/var/opt/SUNWmail/imta/log/*

155

Message Files (mandatory) Enqueued messages are stored in message files in channel queue

directories. /var/opt/SUNWmail/imta/queue/*/*
105

68 Sun Internet Mail Server 4.0 Reference Manual • July 1999

TABLE 2-2 lists the IMTA database files with a short description.

imta.cnf File

The imta.cnf file contains the routing and address rewriting configuration. It

defines all channels and their characteristics, the rules to route mail among those

channels, and the method in which addresses are rewritten by the IMTA.

Structure of the imta.cnf File

The configuration file consists of two parts: domain rewriting rules and channel

definitions. The domain rewriting rules appear first in the file and are separated

from the channel definitions by a blank line. The channel definitions are collectively

referred to as the channel table. An individual channel definition forms a channel

block.

TABLE 2-2 IMTA Database Files

File Description

Address Reversal Database

(mandatory)

Used to change addresses in outgoing mail. This database is created using the

imta dirsync command and is not editable directly. DO NOT EDIT.

/var/opt/SUNWmail/imta/db/reversedb*

Alias Database (mandatory) Implements aliases, mail forwarding, and mailing lists. Changes should be

made to the directory and running imta dirsync . DO NOT EDIT.

/var/opt/SUNWmail/imta/db/aliasesdb*

Domain Database Used for Storing additional rewriting rules. DO NOT EDIT.

/var/opt/SUNWmail/imta/db/domaindb

General Database Used with domain rewriting rules or in mapping rules, for site-specific

purposes. Also used for POP before SMTP support.

/var/opt/SUNWmail/imta/db/generaldb

Profile Database

(mandatory)

Database to store program delivery, file delivery, and other special delivery

mechanism information. This database is also created from information in the

directory during imta dirsync . DO NOT EDIT.

/var/opt/SUNWmail/imta/db/profiledb*

Queue Cache Database

(mandatory)

The messages currently enqueued are recorded in the queue cache database.

Channel master programs determine which messages to process by querying

this database. DO NOT EDIT. /var/opt/SUNWmail/imta/queue_cache/*

Chapter 2 IMTA Configuration 69

Comments in the File

Comment lines may appear anywhere in the configuration file. A comment is

introduced with an exclamation point (!) in column one. Liberal use of comments to

explain what is going on is strongly encouraged. The following imta.cnf file

fragment displays the use of comment lines.

Distinguishing between blank lines and comment lines is important. Blank lines play

an important role in delimiting sections of the configuration file. Comment lines are

ignored by the configuration file reading routines—they are literally “not there” as

far as the routines are concerned and do not count as blank lines.

Including Other Files

The contents of other files may be included in the configuration file. If a line is

encountered with a less than sign (<) in column one, the rest of the line is treated as

a file name; the file name should always be an absolute and full file path. The file is

opened and its contents are spliced into the configuration file at that point. Include

files may be nested up to three levels deep. The following imta.cnf file fragment

includes the /etc/opt/SUNWmail/table/internet.rules file.

Note – Any files included in the configuration file must be world-readable just as

the configuration file is world-readable.

! Part I: Rewrite rules
!
sims-ms.my_server.my_company.com EU@sims-ms-daemon
!
! Part II: Channel definitions

</etc/opt/SUNWmail/table/internet.rules

70 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Domain Rewriting Rules

Domain rewriting rules, or, as they are also called, “rewrite rules,” play two

important roles.

■ They are used to rewrite addresses into their proper form.

■ They are used to determine to which channels a message should be enqueued.

The determination of which channels to enqueue a message is made by rewriting

its envelope To: addresses .

Each rewrite rule appears on a single line in the upper half of the imta.cnf file.

For additional information about the domain configuring rules, refer to the Sun
Internet Mail Server 4.0 Administrator’s Guide.

Rewriting Rules Structure

The rewrite rules appear in the upper-half of the IMTA configuration file, imta.cnf
(see the sample configuration file in “Configuration File Format” on page 195). Each

rule in the configuration file appears on a single line. Comments, but not blank lines,

are allowed between the rules. The rewrite rules end with a blank line, after which

the channel definitions follow.

Rewrite rules consist of two parts: a pattern followed by an equivalence string or

“template.” The two parts must be separated by spaces, although spaces are not

allowed within the parts themselves. The template specifies a usertemplate, any

applicable options, a host/domain specification, and the name of a system attached to

an existing IMTA channel (the routing system), to which messages to this address are

sent. The structure for rewriting rules is:

pattern [controls] [userTemplate]%[domainTemplate] @[routingSystem]
[controls]

Chapter 2 IMTA Configuration 71

TABLE 2-3 describes the parts of the rewriting rule structure.

Refer to “Template Substitutions” on page 77 for additional information about

rewrite rule structures and concepts.

Rewriting Rules Operation

The following steps apply to the application of the domain rewriting rules to a given

address:

1. The first host or domain specification is extracted from an address.

An address can specify more than one host or domain name as in the case:

jdoe%hostname@alpha.com .

TABLE 2-3 Rewriting Rule Structure

Part Description

pattern The rule applies if the pattern matches the domain part of the

address. Patterns can contain wildcards.

controls The applicability of a rule can be limited using these control

sequences. Control sequences can be located either before the user

template or after the routing system. The selection criteria are

described in TABLE 2-8. They include:

• Envelope or header addresses

• Direction (To or From)

• Source or destination channel of the message

[userTemplate] Specifies how the user part of the address is rewritten. The template

can be built using substitution sequences to represent certain parts of

the original address or the results of a database lookup. The

substitution sequences are replaced with what they represent in order

to construct the rewritten address. See TABLE 2-5.

% Separator used between userTemplate and domainTemplate (see

preceding structure sample).

[domainTemplate] Specifies how the domain part of the address is rewritten. Like the

userTemplate, the domainTemplate can be built using substitution

sequences.

@ Separator used between domainTemplate and routingSystem (see

preceding structure sample).

[routingSystem] Specifies the destination channel's routing system. Every channel is

associated with a string (the routingSystem).

72 Sun Internet Mail Server 4.0 Reference Manual • July 1999

2. After identifying the first host or domain name, a search is conducted that scans for

a rewrite rule whose pattern matches the host/domain name.

3. When the matching rewrite rule is found, the address is rewritten according to the

template portion of that rule.

The template also specifies the name of a routing system to which messages sent

to this address are routed. (In this case, the term “routing system” does not

necessarily mean the name of a system through which the message is routed, but

rather a tag associated with a specific channel.)

4. Finally, the routing system name is compared with the host names that are

associated with each channel.

If a match is found, the message is enqueued to that channel; otherwise, the

rewriting process fails. If the matching channel is the local channel, some

additional rewriting of the address may take place by looking up the aliases

database because the local channel rules are used to identify any local users as

well as any /var/mail users.

Note – Using a routing system that does not belong to any existing channel will

cause messages whose addresses match this rule to be bounced. That is, it makes

matching messages nonroutable.

Extracting the First Host or Domain Specification

The process of rewriting an address starts by extracting the first host or domain

specification from the address. (Readers not familiar with RFC 822 address

conventions are advised to read that standard to understand the following

discussion.) The order in which host/domain specifications in the address are

scanned is as follows:

■ Hosts in source routes (read from left to right)

■ Hosts appearing to the right of the “at” sign (@)

■ Hosts appearing to the right of the last single percent sign (%)

■ Hosts appearing to the left of the first exclamation point (!)

The order of the last two items is switched if the bangoverpercent keyword is in

effect on the channel that is doing the address rewriting. That is, if the channel

attempting to enqueue the message is, itself, marked with the bangoverpercent
channel keyword.

Chapter 2 IMTA Configuration 73

Some examples of addresses and the host names that could be extracted first are

shown in TABLE 2-4.

RFC 822 does not address the interpretation of exclamation points (!) and percent

signs (%) in addresses. Percent signs are customarily interpreted in the same manner

as at signs (@) if no at sign is present, so this convention is adopted by IMTA.

TABLE 2-4 Extracted Addresses and Host Names

Address
First host domain
specification Comments

user@a a a is a “short-form” domain name.

user@a.b.c a.b.c a.b.c is a “fully qualified” domain name

(FQDN).

user@[0.1.2.3] [0.1.2.3] [0.1.2.3] is a “domain literal.”

@a:user@b.c.d a a source-routed address with a short-form

domain name, the “route.”

@a.b.c:user@d.e.f a.b.c Source-routed address; route part is fully

qualified.

@[0.1.2.3]:user@d.e.f [0.1.2.3] Source-routed address; route part is a domain

literal.

@a,@b,@c:user@d.e.f a Source-routed address with an a to b to c

routing.

@a,@[0.1.2.3]:user@b a Source-routed address with a domain literal in

the route part.

user%A@B B This nonstandard form of routing is called a

“percent hack.”

user%A%B%C@D D A built-up percent hack.

user%A A

user%A%B B

user%%A%B B

A!user A “Bang-style” addressing; commonly used for

UUCP.

A!user@B B

A!user%B@C C

A!user%B B nobangoverpercent keyword active; the

default.

A!user%B A bangoverpercent keyword active.

74 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The special interpretation of repeated percent signs is used to allow percent signs as

part of local user names; thus is used in handling PSIMail and other foreign mail

system addresses. The interpretation of exclamation points conforms to RFC 976’s

“bang-style” address conventions and makes it possible to use UUCP addresses with

IMTA.

The order of these interpretations is not specified by either RFC 822 or RFC 976, so

the bangoverpercent and nobangoverpercent keywords can be used to control

the order in which they are applied by the channel doing the rewriting. The default

is more “standard,” although the alternate setting may be useful under some

circumstances.

Note – The use of exclamation points (!) or percent signs (%) in addresses is not

recommended. It is preferable to convert them into regular Internet addresses using

the patterns $! or $%.

Scanning the Rewrite Rules

Once the first host or domain specification has been extracted from the address, the

IMTA consults the rewrite rules to find out what to do with it. The host/domain

specification is compared with the pattern part of each rule (that is, the left side of

each rule). The comparison is case insensitive. Case insensitivity is mandated by

RFC 822, UUCP addresses notwithstanding. The IMTA is insensitive to case but

preserves it whenever possible.

If the host or domain specification does not match any pattern, in which case it is

said to “not match any rule”, the first part of the host or domain specification—the

part before the first period, usually the host name—is removed and replaced with an

asterisk (*) and another attempt is made to locate the resulting host or domain

specification, but only in the configuration file rewrite rules (the domain database is

not consulted).

If this fails, the first part is removed and the process is repeated. If this also fails the

next part is removed (usually a subdomain) and the rewriter tries again, first with

asterisks and then without. All probes that contain asterisks are done only in the

configuration file rewrite rules table; the domain database is not checked. This

process proceeds until either a match is found or the entire host or domain

specification is exhausted. The effect of this procedure is to try to match the most

specific domain first, working outward to less specific and more general domains.

A more algorithmic view of this matching procedure is:

■ The host/domain specification is used as the initial value for the comparison

strings spec_1 and spec_2 . (For example, spec_1 = spec_2 = a.b.c).

Chapter 2 IMTA Configuration 75

■ The comparison string spec_1 is compared with the pattern part of each rewrite

rule in the configuration file and then the domain database until a match is found.

The matching procedure is exited if a match is found.

■ If no match is found, then the left-most, nonasterisk part of spec_2 is converted

to an asterisk. For example, if spec_2 is a.b.c then it is changed to *.b.c ; if

spec_2 is *.b.c , then it is changed to *.*.c. The matching procedure is exited

if a match is found.

■ If no match is found then the first part, including any leading period, of the

comparison string spec_1 is removed. Where spec_1 has only one part (for

example, .c or c), the string is replaced with a single period, “.”. If the resulting

string spec_1 is of nonzero length, then you return to step 1. If the resulting

string has zero length (for example, was previously “.”) then the lookup process

has failed and you exit the matching procedure.

For example, suppose the address dan@sc.cs.cmu.edu is to be rewritten. This

causes the rewriter to look for the following patterns in the given order:

Rewrite rule templates

Once the host/domain specification matches a rewrite rule, it is rewritten using the

template part of the rule. The template specifies three things:

1. A new user name for the address,

2. a new host/domain specification for the address, and

3. the name of a system attached to an existing IMTA channel (the “routing system”)

to which messages to this address should actually be sent.

The usual format for templates is A%B@C, where A is the new user name, B is the

new host/domain specification, and C is the routing system. If B and C are identical,

%B can be omitted; for example, you may use A@C when B and C are identical.

sc.cs.cmu.edu
*.cs.cmu.edu
.cs.cmu.edu
..cmu.edu
.cmu.edu
..*.edu
.edu
..*.*
.

76 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Substitution Strings in Templates

Substitution strings are allowed in the template. Any occurrences of $U in the

template are replaced with the user name from the original address, any occurrences

of $H are replaced with the portion of the host/domain specification that was not

matched by the rule, and any occurrences of $D are replaced by the portion of the

host/domain specification that was matched by the rewrite rule. $L substitutes the

portion of a domain literal that was not matched by the rewrite rule.

Note – User names of the form a."b" will be replaced by "a.b" because current

Internet standardization work is deprecating the former syntax from RFC 822. It is

expected that the latter usage will become mandatory in future.

$$ expands to a single dollar sign, $; $% expands to a single percent, %(the percent

is not interpreted as a template field separator in this case); and $@expands to a

single at sign, @(also not interpreted as a field separator).

As an example, suppose that the host/domain specification jdoe@stream.com has

matched the rewrite rule

stream.com $U@STREAM.COM

Then the template will produce the user name jdoe, the host/domain specification

STREAM.COM, and the routing system STREAM.COM. In a slightly more complicated

example, assume that the host/domain specification has matched the rewrite rule

.com $U%$H$D@TCP-DAEMON

In this case, $U = jdoe , $H = stream , and $D = .com . The template produces the

username jdoe, the host/domain specification stream.com, and the routing system

TCP-DAEMON.

TABLE 2-5 on page 78 contains a summary of these and other substitution strings,

which are presented in “Template Substitutions” on page 77.

Finishing the Rewriting Process

One of two things can happen once the host/domain specification is rewritten.

■ If the routing system is not associated with the local channel or there are no

additional host/domain specifications in the address, the rewritten specification

is substituted into the address replacing the original specification that was

extracted for rewriting, and the rewriting process terminates.

■ If the routing system matches the local channel and there are additional

host/domain specifications that appear in the address, the rewritten address is

discarded, the original (initial) host/domain specification is removed from the

Chapter 2 IMTA Configuration 77

address, a new host/domain specification is extracted from the address and the

entire process is repeated. Rewriting will continue until either all the

host/domain specifications are gone or a route through a non-local channel is

found. This iterative mechanism is IMTA’s way of providing support for source

routing. In effect, superfluous routes through the “local system” are removed

from addresses by this process.

Rewrite Rule Failure

If a host/domain specification fails to match any rewrite rule and no default rule is

present, IMTA uses the specification “as-is”; for example, the original specification

becomes both the new specification and the routing system. If the address has a

nonsensical host/domain specification it will be detected when the routing system

does not match any system name associated with any channel and the message will

be bounced.

Syntax checks after rewriting

No additional syntax checking is done after the rewrite rules have been applied to

an address. This is deliberate—it makes it possible for rewrite rules to be used to

convert addresses into formats that do not conform to RFC 822. However, this also

means that mistakes in the configuration file may result in messages leaving the

IMTA with incorrect or illegal addresses.

Template Substitutions

Substitutions are used to abbreviate user names or addresses by inserting a character

string into the rewritten address, the value of which is determined by the particular

substitution sequence used. For example, in the template:

$U@stream.com

the $U is a substitution sequence. It causes the username portion of the address being

rewritten to be substituted into the output of the template. Thus, if

jdoe@mailhost.stream.com was being rewritten by this template, the resulting

output would be jdoe@stream.com , the $U substituting in the username portion,

jdoe , of the original address.

78 Sun Internet Mail Server 4.0 Reference Manual • July 1999

A summary of template substitutions appears in TABLE 2-5.

TABLE 2-5 Summary of Template Substitutions

Substitution Sequence Substitutes

$D Portion of domain specification that matched.

$H Unmatched portion of host/domain specification; left of dot in

pattern.

$L Unmatched portion of domain literal; right of dot in pattern literal.

$U User name from original address.

$$ Inserts a literal dollar sign ($).

$% Inserts a literal percent sign (%).

$@ Inserts a literal at sign (@).

$\ Forces material to lowercase.

$^ Forces material to uppercase.

$_ Uses original case.

$W Substitutes in a random, unique string.

$[...] Invokes customer-supplied routine; substitutes in result.

$(text) General database substitution; rule fails if lookup fails.

${...} Applies specified mapping to supplied string.

$&n The nth part of unmatched (or wildcard) host, counting from left to

right, starting from 0.

$!n The nth part of unmatched (wildcard) host, as counted from right to

left, starting from 0.

$*n The nth part of matching pattern, counting from left to right,

starting from 0.

$#n The nth part of matching pattern, counted from right to left, starting

from 0.

Chapter 2 IMTA Configuration 79

Customer-Supplied Routine Substitutions,

$[...]

A substitution of the form $[image,routine,argument] is handled specially. The

image,routine,argument part is used to find and call a customer-supplied routine. At

runtime, IMTA uses dlopen and dlsym to dynamically load and call the routine

routine from the shared library image. The routine routine is then called as a function,

with the following argument list:

The argument and result are 252-byte long character string buffers. The routine

routine returns a 0 if the rewrite rule fails, and -1 if the rewrite rule succeeds.

This mechanism allows the IMTA rewriting process to be extended in complex ways.

For example, a call to a name service could be performed, and the result used to

alter the address. For example, directory service lookups for forward-pointing

addresses (To: addresses) to the host alpha.com might be performed as follows,

with the rewrite rule, $F, described in TABLE 2-8 causing this rule to be used only

for forward-pointing addresses):

jdoe@stream.com F [libxyz.so,mylookup ,$U]

A forward-pointing address, jdoe@stream.com , when it matches this rewrite rule,

causes libxyz.so to be loaded into memory, then causes the routine mylookup
called with jdoe as the argument parameter. The routine mylookup might then

return a different string, say, John.Doe%alpha.com in the result parameter and

the value -1 to indicate that the rewrite rule succeeded. The percent sign (%) in the

result string causes the rewriting process to start over again, using

John.Doe@alpha.com as the address to be rewritten. The site-supplied shared

library image image should be world readable.

Note – This facility is not designed for use by casual users; it is intended to be used

to extend IMTA’s capabilities system-wide.

int routine (char *argument
int *arglength

char *result
init *reslength);

/* input string */
/* pointer to length of input
string
/* result of substitution */
/* length of result of
substitution */

80 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Source Channel-Specific Rewrite Rules ($M, $N)

Rewrite rules can possibly act only in conjunction with specific source channels. This

is useful when a short-form name has two meanings:

1. When it appears in a message arriving on one channel.

2. When it appears in a message arriving on a different channel.

Source channel-specific rewriting is associated with the channel program in use and

the channel keywords rules and norules . If norules is specified on the channel

associated with an IMTA component that is doing the rewriting, no channel-specific

rewrite checking is done. If rules is specified on the channel, then channel-specific

rule checks are enforced. The keyword rules is the default.

Source channel-specific rewriting is not associated with the channel that matches a

given address. It depends only on the IMTA component doing the rewriting and that

component’s channel table entry. Channel-specific rewrite checking is triggered by

the presence of a $N or $M control sequence in the template part of a rule. The

characters following the $N or $M, up until either an at sign (@), percent sign (%), or

subsequent $N, $M, $Q, $C, $T, or $? are interpreted as a channel name.

The $Mchannel causes the rule to fail if the channel channel is not currently doing the

rewriting. The $N channel causes the rule to fail if the channel channel is doing the

rewriting. Multiple $M and $N clauses may be specified. If any one of multiple $M
clauses matches, the rule succeeds. If any of multiple $N clauses matches, the rules

will fail.

Destination Channel-Specific Rewrite Rules

($C, $Q)

Rewrite rules possibly can act only in conjunction with the channel to which the

message is being queued. This is useful if a host has two names, one known to one

group of hosts and one known to another. By using different channels to send mail

to each group, addresses can be rewritten to refer to the host under the name known

to each group.

Destination channel-specific rewriting is associated with the channel to which the

message is to be dequeued and processed by, and the channel keywords rules and

norules on that channel. If norules is specified on the destination channel, no

channel-specific rewrite checking is done. If rules is specified on the destination

channel, channel-specific rule checks are enforced. The keyword rules is the

default.

Chapter 2 IMTA Configuration 81

Destination channel-specific rewriting is not associated with the channel matched by

a given address. It depends only on the message’s envelope To: address. When a

message is enqueued, its envelope To: address is first rewritten to determine to

which channel the message is enqueued. During the rewriting of the envelope To:
address, any $C and $Q control sequences are ignored. After the envelope To:
address is rewritten and the destination channel determined, then the $C and $Q
control sequences are honored, as other addresses associated with the message are

rewritten.

Destination channel-specific rewrite checking is triggered by the presence of a $C or

$Q control sequence in the template part of a rule. The characters following the $C or

$Q, up until either an at sign (@), percent sign (%), or subsequent $N, $M, $C, $Q, $T,

or $? are interpreted as a channel name.

The $Q channel causes the rule to fail if the channel channel is not the destination.

The $C channel causes the rule to fail if the channel channel is the destination.

Multiple $Q and $C clauses may be specified. If any one of multiple $Q clauses

matches, the rule succeeds. If any of multiple $C clauses matches, the rule fails.

Direction- and Location-Specific Rewrites
($B, $E, $F, $R)

Sometimes you need to specify rewrite rules that apply only to envelope addresses

or, alternately, only to header addresses. The control sequence $E forces a rewrite to

fail if the address being rewritten is not an envelope address. The control sequence

$B forces a rewrite to fail if the address being rewritten is not from the message

header or body. These sequences have no other effects on the rewrite and may

appear anywhere in the rewrite rule template.

Addresses may also be categorized by direction. A forward pointing address is one

that originates on a To: , Cc: , Resent-to: , or other header or envelope line that

refers to a destination. A backward pointing address is something like a From: ,

Sender: , or Resent-From: , that refers to a source. The control sequence $F causes

the rewrite to fail if the address is backward pointing. The control sequence $R
causes the rewrite to fail if the address is forward-pointing.

Host Location-Specific Rewrites ($A, $P, $S, $X)

Circumstances occasionally require rewriting that is sensitive to the location where a

host name appears in an address. Host names can appear in several different

contexts in an address:

■ In a source route

82 Sun Internet Mail Server 4.0 Reference Manual • July 1999

■ To the right of the at sign (@)

■ To the right of a percent sign (%) in the local-part

■ To the left of an exclamation point in the local-part

Under normal circumstances, a host name should be handled in the same way,

regardless of where it appears. Situations might require specialized handling.

Four control sequences are used to control matching on the basis of the host’s

location in the address.

1. $S specifies that the rule can match a host extracted from a source route.

2. $A specifies that the rule can match a host found to the right of the @sign.

3. $P specifies that the rule can match a host found to the right of a %sign.

4. $X specifies that the rule can match a host found to the left of an exclamation

point (!).

The rule fails if the host is from a location other than one specified. These sequences

can be combined in a single rewrite rule. For example, if $S and $A are specified, the

rule matches hosts specified in either a source route or to the right of the at sign.

Specifying none of these sequences is equivalent to specifying all of them; the rule

can match regardless of location.

Chapter 2 IMTA Configuration 83

Single Field Substitutions ($&, $! , $* , $#)

Single field substitutions extract a single subdomain part from the host/domain

specification being rewritten. The available single field substitutions are shown in

TABLE 2-6.

Suppose the address jdoe@vaxa.stream.com matches the following rewrite rule:

Then the result from the template will be jdoe@vaxa.stream.com with

mailhub.stream.com used as the routing system.

Handling Domain Literals

Domain literals are handled specially during the rewriting process. If a domain

literal appearing in the left of an address does not match, the literal is interpreted as

a group of strings separated by periods and surrounded by square brackets. The

right-most string is removed and the search is repeated. If this does not work, the

next string is removed, and so on until only empty brackets are left. If the search for

empty brackets fails, the entire domain literal is removed and rewriting proceeds

with the next section of the domain address, if there is one. No asterisks are used in

TABLE 2-6 Single Field Substitutions

Control Sequence Usage

$&n Substitutes the nth element, n=0,1,2,..,9, in the host specification (the part

that did not match or matched a wildcard). Elements are separated by

dots; the first element on the left is element zero. The rewrite fails if the

requested element does not exist.

$!n Substitutes the nth element, n=0,1,2,..,9, in the host specification (the part

that did not match or matched a wildcard). Elements are separated by

dots; the first element on the right is element zero. The rewrite fails if the

requested element does not exist.

$*n Substitutes the nth element, n=0,1,2,...,9, in the domain specification (the

part that did match explicit text in the pattern). Elements are separated

by dots; the first element on the left is element zero. The rewrite fails if

the requested element does not exist.

$#n Substitutes the nth element, n=0,1,2,...,9, in the domain specification (the

part that did match explicit text in the pattern). Elements are separated

by dots; the first element on the right is element zero. The rewrite fails if

the requested element does not exist.

*.STREAM.COM $U%$&0.stream.com@mailhub.stream.com

84 Sun Internet Mail Server 4.0 Reference Manual • July 1999

the internal processing of domain literals; when an entire domain literal is replaced

by an asterisk, the number of asterisks corresponds to the number of elements in the

domain literal.

Like normal domain or host specifications, domain literals are also tried in most

specific to least specific order. The first rule whose pattern matches will be the one

used to rewrite the host or domain specification. If there are two identical patterns in

the rules list, the one which appears first will be used.

As an example, suppose the address dan@[128.6.3.40] is to be rewritten. The

rewriter looks for [128.6.3.40] , then [128.6.3.] , then [128.6.] , then [128.] ,

then [] , then [*.*.*.*] , and finally the match-all rule “.” .

General Database Substitutions ($(...))

A substitution of the form $(text) is handled specially. This database is generated

with the crdb utility. If text is found in the database the corresponding template

from the database is substituted. If text does not match an entry in the database the

rewrite process fails; it is as if the rewrite rule never matched in the first place. If the

substitution is successful, the template extracted from the database is rescanned for

additional substitutions. However, additional $(text) substitutions from the extracted

template are prohibited in order to prevent endless recursive references.

As an example, suppose that the address jdoe@stream.decnet matches the

following rewrite rule:

Then, the text string stream will be looked up in the general database and the result

of the lookup, if any, used for the rewrite rule's template. Suppose that the result of

looking up stream is $u%eng.stream.com@tcp-local . Then the output of the

template will be jdoe@eng.stream.com (username = jdoe , host or domain

specification = eng.stream.com), and the routing system will be tcp-local .

If a general database exists, it should be world readable to insure that it operates

properly.

Note – This database consists of files specified with the IMTA_GENERAL_DATABASE
option in the /etc/opt/SUNWmail/imta/imta/tailor file, which are usually the

files /var/opt/SUNWmail/imta/db/generaldb.* .

.DECNET $($H)

Chapter 2 IMTA Configuration 85

Applying Specified Mapping (${...})

A substitution of the form ${mapping,argument} is handled specially. The

mapping,argument part is used to find and apply a mapping from the IMTA mapping

file. The mapping field specifies the name of the mapping table to use while argument
specifies the string to pass to the mapping. The mapping must exist and must set the

$Y flag in its output if it is successful; if it doesn't exist or doesn't set $Y, the rewrite

will fail. If successful the result of the mapping is merged into the template at the

current location and re-expanded.

This mechanism allows the IMTA’s rewriting process to be extended in various

complex ways. For example, the user name part of an address can be selectively

analyzed and modified, which normally isn't a feature that the IMTA’s rewriting

process is capable of.

Special Patterns and Tags

Rewrite rules can make use of several special patterns, summarized in TABLE 2-7,

and discussed in the following subsections.

In addition to these special patterns, IMTA also has the concept of tags, which may

appear in rewrite rule patterns. These tags are used in situations where an address

may be rewritten several times and, based upon previous rewritings, distinctions

must be made in subsequent rewrites by controlling which rewrite rules match the

address.

TABLE 2-7 Patterns for Rewrite Rules

Pattern Description/Usage

$% Percent Hack Rule. Matches any host/domain specification of the form A%B.

$! Bang-style Rule. Matches any host/domain specification of the form A!B.

. Match-all Rule. Matches any host/domain specification.

$[} Matches any domain literal address. For example, joe@[129.165.12.11}

$* Matches any address. This is applied before any other rule.

86 Sun Internet Mail Server 4.0 Reference Manual • July 1999

A Rule to Match Percent Hacks

If IMTA tries to rewrite an address of the form A%Band fails, it tries one extra rule

before falling through and treating this address form as A%B@localhost . This extra

rule is the percent hack rule. The pattern is $%. The pattern never changes. This rule is

only activated when a local part containing a percent sign has failed to rewrite any

other way (including the match all rule described below).

The percent hack rule is useful for assigning some special, internal meaning to

percent hack addresses.

A Rule to Match Bang-Style (UUCP) Addresses

If IMTA tries to rewrite an address of the form B!A and fails, it tries one extra rule

before falling through and treating this address form as B!A@localhost . This extra

rule is the bang-style rule. The pattern is $! . The pattern never changes. This rule is

only activated when a local part containing an exclamation point has failed to

rewrite any other way (including the default rule described below).

The bang-style rule can be used to force UUCP style addresses to be routed to a

system with comprehensive knowledge of UUCP systems and routing.

A Rule to Match Any Address

The special pattern “.” (a single period) will match any host/domain specification if

no other rule matches and the host/domain specification cannot be found anywhere

in the channel table. In other words, the “.” rule is used as a last resort when address

rewriting would fail otherwise.

Note – When the match-all rule matches and its template is expanded, $H expands

to the full host name and $D expands to a single dot “. ”. Thus, $D is of limited use

in a match-all rule template!

Tagged Rewrite Rule Sets

As the rewrite process proceeds it may be appropriate to bring different sets of rules

into play. This is accomplished by the use of the rewrite rule tag. The current tag is

prepended to each pattern before looking it up in the configuration file or domain

database. The tag can be changed by any rewrite rule that matches by using the $T
substitution string in the rewrite rule template (described below).

Chapter 2 IMTA Configuration 87

Tags are somewhat sticky; once set they will continue to apply to all hosts that are

extracted from a single address. This means that care must be taken to provide

alternate rules that begin with the proper tag values once any tags are used. In

practice this is rarely a problem since tags are usually used in only very specialized

applications. Once the rewriting of the address is finished the tag is reset to the

default tag---an empty string.

By convention all tag values end in a vertical bar |. This character is not used in

normal addresses and thus is free to delineate tags from the rest of the pattern.

Changing the Current Tag Value, $T

The $T control sequence is used to change the current rewrite rule tag. The rewrite

rule tag is prepended to all rewrite rule patterns before they are looked up in the

configuration file and domain database. Text following the $T, up until either an @

sign, percent sign, $N, $M, $Q, $C, $T, or $? is taken to be the new tag.

Tags are useful in handling special addressing forms where the entire nature of an

address is changed when a certain component is encountered. For example, suppose

that the special host name internet , when found in a source route, should be

removed from the address and the resulting address forcibly matched against the

TCP-DAEMON channel. This could be implemented with rules like the following

(localhost is assumed to be the official name of the local host):

internet SU@localhost$Tmtcpforce |
mtcp-force|. $U%$H@TCP-DAEMON

The first rule will match the special host name internet if it appears in the source

route. It forcibly matches internet against the local channel, which insures that it

will be removed from the address. A rewrite tag is then set. Rewriting proceeds, but

no regular rule will match because of the tag. Finally, the default rule is tried with

the tag, and the second rule of this set fires, forcibly matching the address against

the TCP- DAEMON channel regardless of any other criteria.

Controlling Error Messages Associated with

Rewriting ($?)

The IMTA provides default error messages when rewriting and channel matching

fail. The ability to change these messages can be useful under certain circumstances.

For example, if someone tries to send mail to an Ethernet router box, it may be

considered more informative to say something like “our routers cannot accept mail”

rather than the usual “illegal host/domain specified.”

88 Sun Internet Mail Server 4.0 Reference Manual • July 1999

A special control sequence can be used to change the error message that is printed if

the rule fails. The sequence $? is used to specify an error message. Text following

the $? , up to either an at sign (@), percent sign (%), $N, $M, $Q, $C, $T, or $? is

taken to be the text of the error message to print if the result of this rewrite fails to

match any channel. The setting of an error message is “sticky” and lasts through the

rewriting process.

A rule that contains a $? operates just like any other rule. The special case of a rule

containing only a $? and nothing else receives special attention: The rewriting

process is terminated without changing the mailbox or host portions of the address

and the host is looked up as is in the channel table. This lookup is expected to fail

and the error message is returned as a result. For example, if the final rewrite rule in

the IMTA configuration file is:

$?Unrecognized address; contact postmaster@xyz.com

then any unrecognized host or domain specifications that can fail will, in the process

of failing, generate the error message: Unrecognized address; contact
postmaster@xyz.com .

Rewrite Rule Control Sequences

Special control sequences can also appear in rewrite rule templates. These sequences

impose additional conditions to the applicability of a given rewrite rule. Not only

must the pattern portion of the rewrite rule match the host or domain specification

being examined, but other aspects of the address being rewritten must meet

conditions set by the control sequence or sequences. For instance, the $E control

sequence requires that the address being rewritten be an envelope address, while the

$F control sequence requires that it be a forward pointing address. Thus, the rewrite

rule:

stream.com $U@mail.stream.com$E$F

only applies to (rewrite) envelope To: addresses of the form user@stream.com .

If a domain or host specification matches the pattern portion of a rewrite rule but

doesn’t meet all of the criteria imposed by control sequences in the rule’s template,

then the rewrite rule fails and the rewriter continues to look for other applicable

rules. This makes possible sets of rewrite rules such as:

stream.com $U@mail.stream.com$Nverify
stream.com $U%stream.com@verify-daemon

Chapter 2 IMTA Configuration 89

which results in messages to user@stream.com being passed to the directory

channel. However, should the verify channel rewrite a message with the address

user@stream.com , that message does not again pass through the verify channel.

This then allows all mail to user@stream.com to pass through the verify channel

and for the verify channel to send mail to that address without causing a mail loop.

A summary of control sequences appears in TABLE 2-8.

Handling Large Numbers of Rewrite
Rules

IMTA always reads in all the rewrite rules from the configuration file and stores

them in memory in a hash table. Use of a compiled configuration bypasses the

overhead associated with reading the configuration file each and every time the

information is needed; a hash table is still used to store all of the rewrite rules in

memory. This scheme is adequate for small to medium numbers of rewrite rules.

However, some sites may require as many as 10,000 rewrite rules or more, which can

consume prohibitive amounts of memory.

TABLE 2-8 Template Control Sequences

Control Sequence Effect on Rewrite Rule

$E Applies only to envelope addresses.

$B Applies only to header and body addresses.

$F Applies only to forward directed (for example, To:) addresses.

$R Applies only to backward directed (for example, From:) addresses.

$M channel Applies only if channel is rewriting the address.

$N channel Fails if channel channel is rewriting the address.

$Q channel Applies if sending to channel channel.

$C channel Fails if sending to channel channel.

$S Applies if host is from a source route.

$A Applies if host is to the right of the at sign.

$P Applies if host is to the right of a percent sign.

$X Applies if host is to the left of an exclamation point.

$? errmsg If rewriting fails, return errmsg instead of the default error message.

90 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The IMTA solves this problem by providing an optional facility for storing large

numbers of rewrite rules in an ancillary indexed data file. Whenever the regular

configuration file is read, IMTA checks for the existence of the domain database,

IMTA_DOMAIN_DATABASE. If this database exists, it is opened and consulted

whenever an attempted match fails on the rules found in the configuration file. The

domain database is only checked if a given rule is not found in the configuration file,

so rules can always be added to the configuration file to override those in the

database. By default, the domain database is used to store rewrite rules associated

with hosted domains. DO NOT EDIT BY HAND.

Testing Domain Rewriting Rules

You can test rewrite rules with the imta test -rewrite command. The

-noimage qualifier will allow you to test changes made to the configuration file

prior to recompiling and reinstalling the new configuration.

You may find it helpful to rewrite a few addresses using this utility with the -debug
qualifier. This will show you step-by-step how the address is rewritten. For example,

issue the following command:

% imta test -rewrite joe@alpha.com

For a detailed description of the imta test -rewrite utility, refer to Chapter 1,
“Commands Reference.”

Chapter 2 IMTA Configuration 91

Simple Configuration File

The following example of an imta.cnf configuration file shows how rewrite rules

are used to route messages to the proper channel. No domain names are used to

keep things as simple as possible.

The key items (labeled with boldface numbers, enclosed in parentheses) in the

preceding configuration file are explained in the following list:

1. Exclamation points (!) are used to include comment lines. The exclamation point

must appear in the first column. An exclamation point appearing anywhere else is

interpreted as a literal exclamation point.

2. The rewrite rules appear in the first half of the configuration file. No blank lines

can appear among the lines of rewrite rules. Lines with comments (beginning

with an exclamation point in the first column) are permitted.

3. The first blank line to appear in the file signifies the end of the rewrite rules

section and the start of the channel blocks.

4. The first channel block to appear is always channel l (the local channel,

designated with the lowercase letter “l”). Blank lines then separate each channel

block from one another. An exception is a defaults channel, which can appear

before channel l.

! test.cnf - An example configuration file. (1)
!
! This is only an example of a configuration file. It serves
! no useful purpose and should not be used in a real system.
!
a $U@a-daemon (2)
b $U@b-daemon
c $U%c@b-daemon
d $U%d@a-daemon

(3)
l (4)
local-host

a_channel defragment charset7 usascii (5)
a-daemon

b_channel noreverse notices 1 2 3
b-daemon

92 Sun Internet Mail Server 4.0 Reference Manual • July 1999

TABLE 2-9 lists the routing and queuing of messages by the preceding configuration:

Channel Definitions

The second part of an IMTA configuration file contains the definitions for the

channels themselves. These definitions are collectively referred to as the “channel or

host table.” Each individual channel definition forms a “channel block,” which

defines the channels that IMTA can use and the names associated with each channel.

Blocks are separated by single blank lines. Comments, but no blank lines, may

appear inside a channel block. A channel block contains a list of keywords which

define the configuration of a channel. These keywords are referred to as “channel

keywords.” See TABLE 2-10 for more information.

The following imta.cnf file fragment displays a sample channel block:

The routing_system is an abstract label used to refer to this channel within the

rewrite rules.

For detailed information about channel definitions and channel table keywords,

refer to the section “Channel Configuration Keywords,” and to TABLE 2-10.

TABLE 2-9 Address Routing and Channel Queuing

Address Queued to channel

u@a a_channel

u@b b_channel

u@c b_channel

u@d a_channel

[blank line]
! sample channel block
channelname keyword1 keyword2
routing_system
[blank line]

Chapter 2 IMTA Configuration 93

Channel Configuration Keywords

The first line of each channel block is composed of the channel name, followed by a

list of keywords defining the configuration of the specific channel. The following

sections describe keywords and how they control the types of addresses the channel

supports. A distinction is made between the addresses used in the transfer layer (the

message envelope) and those used in message headers.

The keywords following the channel name are used to assign various attributes to

the channel. Keywords are case-insensitive, and may be up to 32 characters long; any

additional characters are ignored. The supported keywords are listed in TABLE 2-10;

the keywords shown in boldface are defaults.

Specifying a keyword not on this list is not an error (although it may be incorrect).

On UNIX systems, undefined keywords are interpreted as group IDs. The imta
test -rewrite utility tells you whether you have any keywords in your

configuration file that don’t match a known rights list identifier.

TABLE 2-10 Channel Keywords

Keyword Usage

addrsperfile (page 106) Number of addresses per message file.

addrsperjob (page 105) Number of addresses to be processed by a single job.

after Specifies time delay before master channel programs run.

allowetrn The IMTA will attempt to honor all ETRN commands.

(default)

allowswitchchannel
(page 118)

Allows switching to this channel from an

allowswitchchannel channel.

bangoverpercent (page 100) Group A!B%Cas A!(B%C).

bidirectional (page 102) Channel is served by both a master and slave program.

blocketrn Tells the IMTA not to honor ETRN commands.

blocklimit (page 131) Maximum number of IMTA blocks allowed per message.

cacheeverything (page 103) Caches all connection information.

cachefailures (page 155) Caches only connection failure information.

cachesuccess (page 103) Caches only connection success information.

charset7 (page 121) Default character set to associate with 7-bit text messages.

charset8 (page 121) Default character set to associate with 8-bit text messages.

checkehlo (page 113) Checks the SMTP response banner for whether to use EHLO.

commentinc (page 127) Leaves comments in message header lines intact.

commentomit (page 127) Removes comments from message header lines.

commentstrip (page 127) Removes problematic characters from comment field in

message header lines.

commenttotal (page 127) Strips comments (material in parentheses) everywhere.

connectalias (page 101) Does not rewrite addresses upon message dequeue.

94 Sun Internet Mail Server 4.0 Reference Manual • July 1999

connectcanonical
(page 101)

Rewrites addresses upon message dequeue.

copysendpost (page 109) Sends copies of failures to the postmaster unless the

originator address is blank.

copywarnpost (page 110) Sends copies of warnings to the postmaster unless the

originator address is blank.

daemon Specifies the name of a gateway to which the daemon is

routed.

datefour (page 128) Converts date/time specifications to four-digit years.

datetwo (page 128) Converts date/time specifications to two-digit years.

dayofweek (page 128) Includes day of week in date and time specifications.

defaultmx (page 115) Channel determines whether or not to do MX lookups from

network.

deferred (page 108) Honors deferred delivery dates.

defragment (page 130) Reassembles any MIME-compliant message/partial parts

queued to this channel.

domainetrn Tells the IMTA to honor only those ETRN commands that

specify a domain. It also causes the IMTA not to echo back

the name of the channel that the domain matched and that

the IMTA will be attempting to run.

domainvrfy (page 114) Issues SMTP VRFYcommands using full address.

ehlo (page 113) Uses EHLO on all initial SMTP connections.

eightbit (page 120) Channel supports 8-bit characters.

eightnegotiate (page 120) Channel should negotiate use of eight bit transmission, if

possible.

eightstrict (page 120) Channel should reject messages that contain unnegotiated

8-bit data.

errsendpost (page 109) Sends copies of failures to the postmaster if the originator

address is illegal.

errwarnpost (page 110) Sends copies of warnings to the postmaster if the originator

address is illegal.

expandchannel

expandlimit (page 107) Processes an incoming message “offline” when the number

of addressees exceeds this limit.

exproute (page 100) Explicit routing for this channel’s addresses.

filesperjob (page 105) Number of queue entries to be processed by a single job.

forwardcheckdelete Tells the IMTA to do a forward lookup after each reverse

lookup and to ignore (delete) the reverse lookup returned

name if the forward lookup of that name does not match the

original connection IP address. Use the original IP address

instead.

forwardchecknone No forward lookup is done

forwardchecktag Tells the IMTA to do a forward lookup after each reverse

lookup and to tag the IP name with an asterisk, *, if the

number found using the forward lookup does not match that

of the original connection.

TABLE 2-10 Channel Keywords (Continued)

Keyword Usage

Chapter 2 IMTA Configuration 95

headerinc Places the message header at the top of the message.

headerlabelalign
(page 129)

Aligns headers.

headerlinelength
(page 129)

Folds long headers.

headerread (page 123) Applies header trimming rules from an options file to the

message headers upon message enqueue (use with caution).

headertrim (page 123) Applies header trimming rules from an options file to the

message headers (use with caution).

identnone (page 116) Does not perform IDENT lookups; does perform

IP-to-hostname translation.

identnonelimited Has the same effect as identnone as far as IDENT lookups,

reverse DNS lookups, and information displayed in

Received: header. With identnonelimited the IP literal

address is always used as the basis for any channel

switching due to use of the switchchannel keyword,

regardless of whether the DNS reverse lookup succeeds in

determining a host name.

identnonenumeric
(page 116)

Does not perform IDENT lookups or IP-to-hostname

translation.

identnonesymbolic Disables this IDENT lookup, but does do IP to host name

translation; only the host name will be included in the

Received: header for the message.

identtcp (page 116) Performs IDENT lookups on incoming SMTP connections

and IP to host name translation.

identtcplimited Has the same effect as identtcp as far as IDENT lookups,

reverse DNS lookups, and information displayed in

Received: header. With identtcplimited the IP literal address

is always used as the basis for any channel switching due to

use of the switchchannel keyword, regardless of whether the

DNS reverse lookup succeeds in determining a host name.

identtcpnumeric (page 116) Performs IDENT lookups on incoming SMTP connections,

but do not perform IP to hostname translation.

identtcpsymbolic Tells the IMTA to perform a connection and lookup using

the IDENT protocol (RFC 1413).

ignoreencoding (page 124) Ignores Encoding: header on incoming messages.

immediate (page 102) Delivery started immediately after submission for messages

of second-class or higher priority.

immnonurgent (page 102) Delivery started immediately after submission, even for

messages with lower-than-normal priority.

immnormal (page 102) Delivery started immediately after submission for messages

of normal-or-higher priority.

immurgent (page 102) Delivery started immediately after submission for urgent

messages only.

improute (page 100) Implicit routing for this channel’s addresses.

includefinal Include final form of address in delivery notifications.

inner (page 122) Rewrites inner message headers.

TABLE 2-10 Channel Keywords (Continued)

Keyword Usage

96 Sun Internet Mail Server 4.0 Reference Manual • July 1999

innertrim (page 123) Applies header trimming rules from an options file to inner

message headers (use with caution).

interpretencoding
(page 124)

Interprets Encoding: header on incoming messages.

lastresort (page 116) Specifies a last-resort host.

linelength (page 121) Message lines exceeding this length limit are wrapped.

linelimit (page 131) Maximum number of lines allowed per message.

localvrfy (page 114) Issues SMTP VRFY command using local address.

logging (page 132) Log message enqueues and dequeues into the log file.

mailfromdnsverify Setting on an incoming TCP/IP channel causes the IMTA to

verify that an entry in the DNS exists for the domain used

on the SMTP MAIL FROM: command, and to reject the

message if no such entry exists.

master (page 102) Channel is served only by a master program.

master_debug (page 132) Generates debugging output in the channel’s master

program output.

maxblocks (page 130) Maximum number of IMTA blocks per message; longer

messages are broken into multiple messages.

maxheaderaddrs (page 129) Maximum number of addresses per message header line;

longer header lines are broken into multiple header lines.

maxheaderchars (page 129) Maximum number of characters per message header line;

longer header lines are broken into multiple header lines.

maxjobs (page 105) Maximum number of jobs that can be created at one time.

maxlines (page 130) Maximum number of message lines per message; longer

messages are broken into multiple messages.

maxperiodic-- The maxperiodicnonurgent , maxperiodicnormal , or

maxperiodicurgent keywords specify the maximum

priority of message that a periodic job should try to deliver;

the job will ignore messages of higher priority.

maxprocchars (page 132) Specifies maximum length of headers to process.

maysaslserver Causes the SMTP server to permit clients to attempt to use

SASL authentication.

minperiodic-- The minperiodicnonurgent , minperiodicnormal , or

minperiodicurgent keywords specify the minimum

priority of message that a periodic job should try to deliver;

the job will ignore messages of lower priority.

missingrecipientpolicy T akes an integer value specifying the approach to use for

such messages; the default value, if the keyword is not

explicitly present, is 0, meaning that envelope To: addresses

are placed in a To: header.

multiple (page 106) Accepts multiple destination hosts in a single message copy.

mustsaslserver Causes the SMTP server to insist that clients use SASL

authentication; the SMTP server will not accept messages

unless the remote client successfully authenticates.

mx (page 115) TCP/IP network and software supports MX record lookups.

TABLE 2-10 Channel Keywords (Continued)

Keyword Usage

Chapter 2 IMTA Configuration 97

nobangoverpercent
(page 100)

Group A!B%Cas (A!B)%C (default).

nocache (page 155) Does not cache any connection information.

nodayofweek (page 128) Removes day of week from date/time specifications.

nodeferred (page 108) Does not honor deferred delivery dates.

nodefragment (page 130) Does not perform special processing for message/partial

messages.

noehlo (page 113) Never use the SMTP EHLO command.

noexproute (page 100) No explicit routing for this channel’s addresses.

noheaderread (page 123) Does not apply header trimming rules from option file upon

message enqueue.

noheadertrim (page 123) Does not apply header trimming rules from options file.

noimproute (page 100) No implicit routing for this channel’s addresses.

noinner (page 122) Does not rewrite inner message headers.

noinnertrim (page 123) Does not apply header trimming to inner message headers.

nologging (page 132) Does not log message enqueues and dequeues into the log

file.

nomailfromdnsverify Means that IMTA does not verify that an entry in the DNS

exists for the domain used.

nomaster_debug (page 132) Does not generate debugging output in the channel’s master

program output.

nomx (page 115) TCP/IP network does not support MX lookups.

nonrandommx (page 115) Does MX lookups; does not randomize returned entries with

equal precedence.

nonurgentblocklimit
(page 103)

Forces messages above this size to wait unconditionally for a

periodic job.

noreceivedfor (page 125) Does not include envelope to address in Received header.

noreceivedfrom Instructs the IMTA to construct Received : headers without

including the original envelope From : address.

noremotehost (page 119) Uses local host’s domain name as the default domain name

to complete addresses.

norestricted Does not apply RFC 1137 restricted encoding to addresses.

noreverse (page 122) Does not apply reverse database to addresses.

normalblocklimit
(page 103)

Forces messages above this size to nonurgent priority.

nosasl SASL authentication will not be permitted or attempted.

nosaslserver SASL authentication will not be permitted.

nosendpost (page 109) Does not send copies of failures to the postmaster.

nosendetrn The IMTA will not send an ETRNcommand.

noserviceall (page 133) Indicates that the master program should only process the

messages that were queued to process after its inception.

noslave_debug (page 132) Does not generate debugging output in the channel’s slave

program output.

nosmtp (page 112) Channel does not use SMTP.

TABLE 2-10 Channel Keywords (Continued)

Keyword Usage

98 Sun Internet Mail Server 4.0 Reference Manual • July 1999

noswitchchannel (page 118) Stays with the server channel; do not switch to the channel

associated with the originating host; does not permit being

switched to.

notices (page 108) Specifies the amount of time that may elapse before notices

are sent and messages returned.

novrfy (page 114) Does not issue SMTP VRFYcommands.

nowarnpost (page 110) Does not send copies of warnings to the postmaster.

nox_env_to (page 124) Does not add X-Envelope-to header lines while

enqueuing.

period (page 102) Specifies periodicity of periodic channel service.

periodic (page 102) Channel is serviced only periodically; immediate delivery

processing is never done.

personalinc (page 127) Leaves personal names in message header lines intact.

personalomit (page 127) Removes personal name fields from message header lines.

personalstrip (page 127) Strips problematic characters from personal name fields in

message header lines.

port (page 115) Sends to the specified TCP/IP port.

postheadbody (page 111) Both the message’s header and body are sent to the

postmaster when a delivery failure occurs.

postheadonly (page 111) Only the message’s header is sent to the postmaster when a

delivery failure occurs.

queue (page 108) Specifies queue master channel programs run in.

randommx (page 115) Does MX lookups; randomizes returned entries with equal

precedence.

receivedfor (page 125) Includes envelope to address in Received header.

receivedfrom Instructs the IMTA to include the original envelope From :

address when constructing a Received : header for an

incoming message if the IMTA has changed the envelope
From: address due to, for example, certain sorts of mailing

list expansions. receivedfrom is the default.

remotehost (page 119) Uses remote host's name as the default domain name to

complete addresses.

restricted (page 122) Applies RFC 1137 restricted encoding to addresses.

returnenvelope (page 125) Controls use of blank envelope return addresses.

reverse (page 122) Applies reverse database to addresses.

saslswitchchannel Causes incoming connections to be switched to a specified

channel upon a client’s successful use of SASL. It takes a

required value, specifying the channel to which to switch.

sendpost (page 109) Sends copies of failures to the postmaster.

sendetrn Tells the IMTA to send an ETRNcommand, if the remote

SMTP server says it supports ETRN. The sendetrn keyword

should be followed by the name of the system requesting

that its messages receive a delivery attempt.

TABLE 2-10 Channel Keywords (Continued)

Keyword Usage

Chapter 2 IMTA Configuration 99

sensitivity-- The sensitivitynormal , sensitivitypersonal ,

sensitivityprivate , and

sensitivitycompanyconfidential (messages of any

sensitivity are allowed) keywords set an upper limit on the

sensitivity of messages that can be accepted by a channel.

serviceall (page 133) Specifies that the master program should attempt to process

all messages queued to the channel each time it runs.

sevenbit (page 120) Channel does not support 8-bit characters; 8-bit characters

must be encoded.

silentetrn Tells the IMTA to honor all ETRN commands, but without

echoing the name of the channel that the domain matched

and that the IMTA will be attempting to run.

single (page 106) Only one envelope To address per message copy.

single_sys (page 106) Each message copy must be for a single destination system.

slave (page 102) Channel is serviced only by a slave program.

slave_debug (page 132) Generates debugging output in the channel's slave program

output.

smtp (page 112) Channel uses SMTP.

smtp_cr (page 112) Accepts CR as an SMTP line terminator.

smtp_crlf (page 112) Requires CRLF as the SMTP line terminator.

smtp_lf (page 112) Accepts LF as an SMTP line terminator.

sourceroute Uses source routes in the message envelope; synonymous

with 822.

subdirs (page 107) Uses multiple subdirectories.

suppressfinal Causes IMTA to suppress the final address form, if an

original address form is present, from notification messages.

switchchannel (page 118) Switches from the server channel to the channel associated

with the originating host.

threaddepth (page 112) Number of messages triggering new thread with

multithreaded SMTP client.

unrestricted (page 122) Does not apply RFC 1137 restricted encoding to addresses.

urgentblocklimit
(page 103)

Forces messages above this size to normal priority.

usereplyto (page 126) Specifies mapping of Reply-to header.

useresent (page 126) Specifies mapping of Resent- headers for non-RFC 822

environments.

vrfyallow Tells IMTA to issue a detailed, informative response.

vrfydefault Tells IMTA to provide a detailed, informative response,

unless the channel option HIDE_VERIFY=1 has been

specified.

vrfyhide Tells IMTA to issue only a vague, ambiguous response.

warnpost (page 110) Sends copies of warnings to the postmaster.

x_env_to (page 124) Adds X-Envelope-to header lines while enqueuing.

TABLE 2-10 Channel Keywords (Continued)

Keyword Usage

100 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Address Interpretation (bangoverpercent ,

nobangoverpercent)

Addresses are always interpreted in accordance with RFC 822 and RFC 976.

However, there are ambiguities in the treatment of certain composite addresses that

are not addressed by these standards. In particular, an address of the form A!B%C
can be interpreted as either:

■ A as the routing host and C as the final destination host

or

■ C as the routing host and A as the final destination host

While RFC 976 implies that mailers can interpret addresses using the latter set of

conventions, it does not say that such an interpretation is required. Some situations

may be better served by the former interpretation.

The bangoverpercent keyword forces the former A!(B%C) interpretation. The

nobangoverpercent keyword forces the latter (A!B)%C interpretation.

nobangoverpercent is the default.

Note – This keyword does not affect the treatment of addresses of the form A!B@C.

These addresses are always treated as (A!B)@C . Such treatment is mandated by

both RFC 822 and RFC 976.

Routing Information in Addresses (exproute ,

noexproute , improute , noimproute)

The addressing model that IMTA deals with assumes that all systems are aware of

the addresses of all other systems and how to get to them. Unfortunately, this ideal

is not possible in all cases, such as when a channel connects to one or more systems

that are not known to the rest of the world (for example, internal machines on a

private TCP/IP network). Addresses for systems on this channel may not be legal on

remote systems outside of the site. If you want to be able to reply to such addresses,

they must contain a source route that tells remote systems to route messages through

the local machine. The local machine can then (automatically) route the messages to

these machines.

The exproute keyword (short for “explicit routing“) tells IMTA that the associated

channel requires explicit routing when its addresses are passed on to remote

systems. If this keyword is specified on a channel, IMTA adds routing information

Chapter 2 IMTA Configuration 101

containing the name of the local system (or the current alias for the local system) to

all header addresses and all envelope From: addresses that match the channel.

noexproute , the default, specifies that no routing information should be added.

The EXPROUTE_FORWARDoption can be used to restrict the action of exproute to

backward-pointing addresses. Another scenario occurs when IMTA connects to a

system through a channel that cannot perform proper routing for itself. In this case,

all addresses associated with other channels need to have routing indicated when

they are used in mail sent to the channel that connects to the incapable system.

Implicit routing and the improute keyword is used to handle this situation. IMTA

knows that all addresses matching other channels need routing when they are used

in mail sent to a channel marked improute . The default, noimproute , specifies

that no routing information should be added to addresses in messages going out on

the specified channel. The IMPROUTE_FORWARDoption can be used to restrict the

action of improute to backward-pointing addresses.

The exproute and improute keywords should be used sparingly. It makes

addresses longer, more complex, and may defeat intelligent routing schemes used by

other systems. Explicit and implicit routing should not be confused with specified

routes. Specified routes are used to insert routing information from rewrite rules into

addresses. This is activated by the special A@B@Crewrite rule template.

Specified routes, when activated, apply to all addresses, both in the header and the

envelope. Specified routes are activated by particular rewrite rules and as such are

usually independent of the channel currently in use. Explicit and implicit routing, on

the other hand, are controlled on a per-channel basis and the route address inserted

is always the local system.

Address Rewriting Upon Message Dequeue

(connectalias , connectcanonical)

IMTA normally rewrites addresses as it enqueues messages to its channel queues.

No additional rewriting is done during message dequeue. This presents a potential

problem when host names change while there are messages in the channel queues

still addressed to the old name.

■ The connectalias keyword tells IMTA to deliver to whatever host is listed in

the recipient address. This is the default. The keyword connectcanonical
forces IMTA to run the address through the rewrite rules one additional time and

use the resulting host.

102 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Channel Directionality (master , slave ,

bidirectional)

Three keywords are used to specify whether a channel is served by a master

program (master), a slave program (slave), or both (bidirectional). The

default, if none of these keywords are specified, is bidirectional . These

keywords determine whether IMTA initiates delivery activity when a message is

queued to the channel.

The use of these keywords reflects certain fundamental characteristics of the

corresponding channel program or programs. The descriptions of the various

channels IMTA supports indicate when and where these keywords should be used.

Channel Service Periodicity (immediate ,

immnonurgent , immnormal , immurgent ,

periodic , period)

If a channel is capable of master-mode operations (as specified with the master
keyword), such operations may be initiated either by a periodic service job or on

demand as delivery is needed:

■ immediate , which is the default, specifies that jobs should run on demand for

messages of appropriate urgency.

■ periodic inhibits initiation of delivery jobs on demand for the channel it is

associated with, regardless of priority.

What appropriate urgency means is controlled by the keywords:

■ immurgent enables immediate delivery processing on messages with a

priority setting of urgent. Messages with a lower priority must wait for

periodic processing.

■ immnormal enables immediate delivery for messages with normal or urgent

priority (immnormal is the default keyword with immediate).

■ immnonurgent enables immediate delivery for urgent, normal, and nonurgent

messages.

The default behavior (immediate immnormal) enables immediate processing for all

but nonurgent or lower priority messages.

Delivery by periodic service jobs is always possible unless the channel is marked

with the slave keyword. Channels capable of master-mode operation are

periodically checked for pending messages by periodic service jobs. These jobs run

at fixed intervals, usually every four hours, although you can change this interval.

On UNIX systems, the interval is determined in the crontab entry for the post job.

Chapter 2 IMTA Configuration 103

Not all channels need service at the same intervals. For example, a channel might see

little traffic and be expensive to service. Servicing such a channel at longer intervals

than that of a single period between periodic jobs can lower the cost of operation

without significantly affecting the quality of service.

In another case, one particular channel may see very heavy traffic and require

frequent service, while other channels need servicing much less often. In this

situation it may be appropriate to service the heavily used channel more often than

any other.

The period keyword can be used to control how often a channel is serviced. This

keyword must be followed by an integer value N. The channel is then serviced by

every Nth service job. The default value of the period keyword is 1, which means

that every periodic service job checks the channel for pending messages.

Message Size Affecting Priority

(urgentblocklimit , normalblocklimit ,

nonurgentblocklimit)

The urgentblocklimit , normalblocklimit , and nonurgentblocklimit
keywords may be used to downgrade the priority of messages based on size. This

priority, in turn, may affect whether the message is processed immediately, or

whether it is left to wait for processing until the next periodic job runs.

The urgentblocklimit keyword instructs IMTA to downgrade messages larger

than the specified size to normal priority. The normalblocklimit keyword

instructs IMTA to downgrade messages larger than the specified size to nonurgent
priority. The nonurgentblocklimit keyword instructs IMTA to downgrade

messages larger than the specified size to lower than nonurgent priority (second

class priority), meaning that the messages always wait for the next periodic job for

further processing.

Channel Connection Information Caching

(cacheeverything , cachesuccesses ,

cachefailures , nocache)

SMTP channels maintain a cache containing a history of prior connection attempts.

This cache is used to avoid reconnecting multiple times to inaccessible hosts, which

can waste time and delay other messages. The cache normally records both

connection successes and failures. (Successful connection attempts are recorded to

104 Sun Internet Mail Server 4.0 Reference Manual • July 1999

offset subsequent failures; for example, a host that succeeded before but fails now

doesn’t warrant as long a delay before making another connection attempt as does

one that has never been tried or one that has failed previously.)

However, this caching strategy is not necessarily appropriate for all situations. For

example, an SMTP router channel that is used to connect to a single unpredictable

host does not benefit from caching. Therefore, channel keywords are provided to

adjust IMTA’s cache.

The cacheeverything keyword enables all forms of caching and is the default.

nocache disables all caching. The cachefailures enables caching of connection

failures but not successes. Finally, cachesuccesses caches only successful

connections. This last keyword is equivalent to nocache for channels.

Priority of Messages Handled by Periodic Jobs

(minperiodicnonurgent , minperiodicnormal ,

minperiodicurgent , maxperiodicnonurgent ,

maxperiodicnormal , maxperiodicurgent)

When periodic delivery jobs are used they normally process all messages queued for

the channel. However, on some channels you might want to limit normal periodic

job processing to only messages of specified priorities. Other special site-supplied

periodic jobs may then process the remaining messages. For instance, a site might

choose to have normal IMTA periodic jobs pass over nonurgent messages, leaving

the nonurgent messages to be delivered by a site-supplied job (perhaps scheduled to

run at off-peak hours).

The minperiodicnonurgent , minperiodicnormal , or minperiodicurgent
keywords specify the minimum priority of message that a periodic job should try to

deliver; the job will ignore messages of lower priority.

The maxperiodicnonurgent , maxperiodicnormal , or maxperiodicurgent
keywords specify the maximum priority of message that a periodic job should try to

deliver; the job will ignore messages of higher priority.

Chapter 2 IMTA Configuration 105

Number of Addresses or Message Files to Handle

per Service Job or File (addrsperjob ,

filesperjob , maxjobs)

When a message is enqueued to a channel the job controller normally starts one

master process per channel. If the channel is processed on a periodic basis, one

master process per channel is started.

A single master process might not be sufficient to ensure prompt delivery of all

messages. In particular, fax messages may take a long time to deliver; if multiple fax

modems are available, it is not efficient to use a single process and a single modem.

The addrsperjob and filesperjob keywords can be used to create additional

master processes. Each of these keywords take a single positive integer parameter

which specifies how many addresses or queue entries (files) must be sent to the

associated channel before more than one master process is created to handle them. If

a value less than or equal to zero is given, it is interpreted as a request to queue only

one service job. Not specifying a keyword defaults to a value of 0. The effect of these

keywords is maximized; the larger number computed is the number of service jobs

that are actually created.

The addrsperjob keyword computes the number of service jobs to start by

dividing the total number of To: addressees in all entries by the given value. The

filesperjob keyword divides the number of actual queue entries or files by the

given value. The number of queue entries resulting from a given message is

controlled by a large number of factors, including but not limited to the use of the

single and single_sys keywords and the specification of header modifying

actions in mailing lists.

The maxjobs keyword places an upper limit on the total number of service jobs that

can be created. This keyword must be followed by an integer value; if the computed

number of service jobs is greater than this value, only maxjobs processes are

actually created. If maxjobs is not specified, the default for this value is 100 .

Normally maxjobs is set to a value that is less than or equal to the total number of

jobs that can run simultaneously in whatever service queue or queues the channel

uses.

For example, if a message with four recipient addresses is queued to a channel

marked addrsperjob 2 and maxjobs 5 , a total of two service jobs are created.

But if a message with 23 recipient addresses is queued to the same channel, only five

jobs are created because of the maxjobs restriction.

106 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Note – These keywords affect the creation of both periodic and immediate service

jobs. In the case of periodic jobs, the number of jobs created is calculated from the

total number of messages in the channel queue. In the case of immediate service

jobs, the calculation is based only on the message being entered into the queue at the

time.

The addrsperjob keyword is generally useful only on channels that provide

per-address service granularity. Currently this is limited to fax channels.

Multiple Addresses (multiple , addrsperfile ,

single , single_sys)

The IMTA allows multiple destination addresses to appear in each queued message.

Some channel programs may only be able to process messages with one recipient, or

with a limited number of recipients, or with a single destination system per message

copy. For example, the SMTP channels master program establishes a connection only

to a single remote host in a given transaction, so only addresses to that host can be

processed (this, despite the fact, that a single channel is typically used for all SMTP

traffic).

Another example is that some SMTP servers may impose a limit on the number of

recipients they can handle at one time, and they may not be able to handle this type

of error.

The keywords multiple , addrsperfile , single , and single_sys can be used

to control how multiple addresses are handled. The keyword single means that a

separate copy of the message should be created for each destination address on the

channel. The keyword single_sys creates a single copy of the message for each

destination system used.The keyword multiple , the default, creates a single copy

of the message for the entire channel.

Note – At least one copy of each message is created for each channel the message is

queued to, regardless of the keywords used.

The addrsperfile keyword is used to put a limit on the maximum number of

recipients that can be associated with a single message file in a channel queue, thus

limiting the number of recipients that are processed in a single operation. This

keyword requires a single-integer argument specifying the maximum number of

recipient addresses allowed in a message file; if this number is reached, IMTA

automatically creates additional message files to accommodate them. (The default

multiple keyword corresponds to imposing no limit on the number of recipients in a

message file.)

Chapter 2 IMTA Configuration 107

Expansion of Multiple Addresses (expandlimit)

Most channels support the specification of multiple recipient addresses in the

transfer of each inbound message. The specification of many recipient addresses in a

single message may result in delays in message transfer processing (“online”

delays). If the delays are long enough, network timeouts can occur, which in turn

can lead to repeated message submission attempts and other problems.

IMTA provides a special facility to force deferred (“offline”) processing if more than

a given number of addresses are specified for a single message. Deferral of message

processing can decrease online delays enormously. Note, however, that the

processing overhead is only deferred, not avoided completely.

This special facility is activated by using a combination of the generic reprocessing

channel and the expandlimit keyword. The expandlimit keyword takes an

integer argument that specifies how many addresses should be accepted in messages

coming from the channel before deferring processing. The default value is infinite if

the expandlimit keyword is not specified. A value of 0 forces deferred processing

on all incoming addresses from the channel.

The expandlimit keyword must not be specified on the local channel or the

reprocessing channel itself; the results of such a specification are unpredictable. The

reprocessing channel is used to perform the deferred processing and must be added

to the configuration file in order for the expandlimit keyword to have any effect.

If your configuration was built by the IMTA configuration utility, then you should

already have such a channel.

Multiple Subdirectories (subdirs)

By default, all messages queued to a channel are stored as files in the directory

/imta/queue/channel-name , where channel-name is the name of the channel.

However, a channel that handles a large number of messages and tends to build up

a large store of message files waiting for processing, for example, a TCP/IP channel,

may get better performance out of the file system if those message files are spread

across a number of subdirectories. The subdirs channel keyword provides this

capability: it should be followed by an integer that specifies the number of

subdirectories across which to spread messages for the channel, for example,

tcp_local single_sys smtp subdirs 10 .

108 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Service Job Queue (queue)

IMTA creates service jobs (channel master programs) to deliver messages. The job

controller, which launches these jobs, associates them with queues. Queue types are

defined in the job_controller.cnf file. The queue type with which each

channel’s master program is associated can be selected on a channel-by-channel

basis, using the queue keyword. The queue keyword must be followed by the name

of the queue type to which delivery jobs for the current channel should be queued.

The name of the queue type should not contain more than 12 characters. If the

queue keyword is omitted, then the queue used is the default queue, the first queue

listed in the job controller configuration file.

Deferred Delivery Dates (deferred ,

nodeferred)

The deferred channel keyword implements recognition and honoring of the

Deferred-delivery: header. Messages with a deferred delivery date in the

future are held in the channel queue until they either expire and are returned or the

deferred delivery date is reached. See RFC 1327 for details on the format and

operation of the Deferred-delivery: header.

The keyword nodeferred is the default. It is important to realize that while

support for deferred message processing is mandated by RFC 1327, actual

implementing of it effectively lets people use the mail system as an extension of their

disk quota.

Undeliverable Message Notification Times

(notices)

The notices keyword controls the amount of time an undeliverable message is

silently retained in a given channel queue. IMTA is capable of returning a series of

warning messages to the originator and, if the message remains undeliverable, IMTA

eventually returns the entire message.

The keyword is followed by a list of up to five monotonically increasing integer

values. These values refer to the message ages at which warning messages are sent.

The ages have units of days if the RETURN_UNITSoption is 0 or not specified in the

option file; or hours if the RETURN_UNITSoption is 1. When an undeliverable

message attains or exceeds the last listed age, it is returned (bounced).

Chapter 2 IMTA Configuration 109

When a message attains any of the other ages, a warning notice is sent. The default

if no notices keyword is given is to use the notices setting for the local channel.

If no setting has been made for the local channel, then the defaults 3, 6, 9, 12 are

used, meaning that warning messages are sent when the message attains the ages 3,

6, and 9 days (or hours) and the message is returned after remaining in the channel

queue for more than 12 days (or hours).

Note – The syntax for the notices keyword uses no punctuation. For example, the

default return policy is expressed as: notices 3 6 9 12 .

The following line specifies that if messages are enqueued to the tcp_local
channel and deferred for later reprocessing, transient failure delivery status

notifications will be generated after 1 and 2 days. If the message is still not delivered

after 5 days, it will be returned to its originator.

The defaults channel appears immediately after the first blank line in the

configuration file, usually /imta/table/imta.cnf . It is important that a blank

line appear before and after the line defaults notices... .

Returned Messages (sendpost , nosendpost ,

copysendpost , errsendpost)

A channel program may be unable to deliver a message because of long-term service

failures or invalid addresses. When this failure occurs, the IMTA channel program

returns the message to the sender with an accompanying explanation of why the

message was not delivered. Optionally, a copy of all failed messages is sent to the

local postmaster. This is useful for monitoring message failures, but it can result in

lots of traffic for the postmaster to deal with.

The keywords sendpost , copysendpost , errsendpost , and nosendpost
control the sending of failed messages to the postmaster. The keyword sendpost
tells IMTA to send a copy of all failed messages to the postmaster unconditionally.

copysendpost instructs IMTA to send a copy of the failure notice to the postmaster

unless the originator address on the failing message is blank, in which case, the

postmaster gets copies of all failed messages except those messages that are actually

themselves bounces or notifications.

The keyword errsendpost instructs IMTA to send a copy of the failure notice only

to the postmaster when the notice cannot be returned to the originator. No failed

messages are ever sent to the postmaster if nosendpost is specified. The default, if

none of these keywords is specified, is to send a copy of failed mail messages to the

tcp_local charset7 us-ascii charset8 iso-8853-1 notices 1 2 3 mail.alpha.com

110 Sun Internet Mail Server 4.0 Reference Manual • July 1999

postmaster, unless error returns are completely suppressed with a blank

Errors-to: header or a blank envelope From: address.This default behavior does

not correspond to any of the keyword settings.

Warning Messages (warnpost , nowarnpost ,

copywarnpost , errwarnpost)

In addition to returning messages, IMTA sometimes sends warnings detailing

messages that it has been unable to deliver. This is generally due to timeouts based

on the setting of the notices channel keyword, although in some cases channel

programs may produce warning messages after failed delivery attempts. The

warning messages contain a description of what’s wrong and how long delivery

attempts will continue. In most cases they also contain the headers and the first few

lines of the message in question.

Optionally, a copy of all warning messages is sent to the local postmaster. This can

be somewhat useful for monitoring the state of the various queues, although it does

result in lots of traffic for the postmaster to deal with. The keywords warnpost ,

copywarnpost , errwarnpost , and nowarnpost are used to control the sending

of warning messages to the postmaster.

■ warnpost –Tells IMTA to send a copy of all warning messages to the postmaster

unconditionally.

■ copywarnpost –Instructs IMTA to send a copy of the warning to the postmaster,

unless the originator address on the undelivered message is blank.

In this case, the postmaster gets copies of all warnings of undelivered messages

except for undelivered messages that are actually themselves bounces or

notifications.

■ errwarnpost –Instructs IMTA to send only a copy of the warning to the

postmaster when the notice cannot be returned to the originator.

No warning messages are ever sent to the postmaster if nowarnpost is specified.

The default, if none of these keywords is specified, is to send a copy of warnings to

the postmaster unless warnings are completely suppressed with a blank

Warnings-to: header or a blank envelope From: address. This default behavior

does not correspond to any of the keyword settings.

Chapter 2 IMTA Configuration 111

Postmaster Returned Message Content

(postheadonly , postheadbody)

When a channel program or the periodic message return job returns messages to

both the postmaster and the original sender, the postmaster copy can either be the

entire message or just the headers. Restricting the postmaster copy to just the

headers adds an additional level of privacy to user mail. However, this by itself does

not guarantee message security; postmasters and system managers are typically in a

position where the contents of messages can be read using root system privileges, if

they so choose.

The keywords postheadonly and postheadbody are used to control what gets

sent to the postmaster. The keyword postheadbody returns both the headers and

the contents of the message. It is the default.The keyword postheadonly causes

only the headers to be sent to the postmaster.

Including Altered Addresses in Notification

Messages (includefinal , suppressfinal)

When IMTA generates a notification message (bounce message, delivery receipt

message, and so on), there may be both an “original” form of a recipient address and

an altered “final” form of that recipient address available to IMTA. IMTA always

includes the original form (assuming it is present) in the notification message,

because that is the form that the recipient of the notification message (the sender of

the original message, which the notification message concerns) is most likely to

recognize.

The includefinal and suppressfinal channel keywords control whether IMTA

also includes the final form of the address. Suppressing the inclusion of the final

form of address may be of interest to sites that are “hiding” their internal mailbox

names from external view; such sites may prefer that only the original, “external”

form of address be included in notification messages. includefinal is the default

and includes the final form of the recipient address. suppressfinal causes IMTA

to suppress the final address form, if an original address form is present, from

notification messages.

112 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Triggering New Threads in Multithreaded

Channels (threaddepth)

The multithreaded SMTP client sorts outgoing messages to different destinations to

different threads. The threaddepth keyword may be used to instruct IMTA’s

multithreaded SMTP client to handle only the specified number of messages in any

one thread, using additional threads even for messages all to the same destination

(hence normally all handled in one thread).

Channel Protocol Selection (smtp , nosmtp)

These options specify whether or not a channel supports the SMTP protocol and

what type of SMTP line terminator IMTA expects to see as part of that protocol. The

keyword nosmtp means that the channel doesn’t support SMTP; all the rest of these

keywords imply SMTP support.

The selection of whether or not to use the SMTP protocol is implicit for most

channels; the correct protocol is chosen by the use of the appropriate channel

program or programs. Some gateway systems use the Simple Mail Transfer Protocol

(SMTP) described in RFC 821 as a message envelope, while others might not use an

envelope format. The result is that all envelope information is derived from the RFC

822 message header, which is present in all cases. The smtp keyword is used to tell

the channel master programs to put a batch SMTP header on the message. The

nosmtp keyword inhibits the generation of the batch SMTP header. The nosmtp is

the default.

The keyword smtp is mandatory for all SMTP channels. The keywords smtp_cr ,

smtp_crlf , and smtp_lf can be used on SMTP channels to specify the character

sequences to accept as line terminators. The keyword smtp_crlf means that lines

must be terminated with a carriage return (CR) line feed (LF) sequence. The

keyword smtp_lf or smtp means that an LF without a preceding CR is accepted.

Finally, smtp_cr means that a CR is accepted without a following LF. It is normal to

use CRLF sequences as the SMTP line terminator, and this is what IMTA always

generates; this option affects only the handling of incoming material.

Chapter 2 IMTA Configuration 113

SMTP EHLO Command (ehlo , checkehlo ,

noehlo)

The SMTP protocol has recently been extended (RFC 1651) to allow for negotiation

of additional commands. This is done using the new EHLOcommand, which replaces

RFC 821’s HELO command. Extended SMTP servers respond to EHLOby providing

a list of the extensions they support. Unextended servers return an unknown

command error, and the client then sends the old HELOcommand instead.

This fallback strategy normally works well with both extended and unextended

servers. Problems can arise, however, with servers that do not implement SMTP

according to RFC 821. In particular, some noncompliant servers are known to drop

the connection on receipt of an unknown command.

The SMTP client implements a strategy whereby it attempts to reconnect and use

HELO when any server drops the connection on receipt of an EHLO. However, this

strategy may not work if the remote server not only drops the connection but also

goes into a problematic state upon receipt of EHLO.

The channel keywords ehlo , noehlo , and checkehlo are provided to deal with

such situations. EHLOtells IMTA to use the ehlo command on all initial connection

attempts. The keyword noehlo disables all use of the EHLOcommand. The keyword

checkehlo tests the response banner returned by the remote SMTP server for the

string “ESMTP.” If this string is found, EHLOis used; if not, HELOis used. The

default behavior is to use EHLOon all initial connection attempts, unless the banner

line contains the string “fire away,” in which case HELOis used.

Note – There is no keyword corresponding to this default behavior, which lies

between the behaviors resulting from the ehlo and checkehlo keywords.

Receiving an SMTP ETRN Command

(allowetrn , blocketrn , domainetrn ,

silentetrn)

The allowetrn , blocketrn , domainetrn , and silentetrn keywords control the

IMTA response when a sending SMTP client issues the SMTP ETRNcommand,

requesting that the IMTA attempt to deliver messages in the IMTA queues.

allowetrn is the default; the IMTA will attempt to honor all ETRNcommands.

silentetrn tells the IMTA to honor all ETRNcommands, but without echoing the

name of the channel that the domain matched and that the IMTA will be attempting

to run. blocketrn tells the IMTA not to honor ETRNcommands. domainetrn tells

114 Sun Internet Mail Server 4.0 Reference Manual • July 1999

the IMTA to honor only ETRNcommands that specify a domain; it also causes the

IMTA not to echo back the name of the channel that the domain matched and that

the IMTA will be attempting to run.

Sending an SMTP ETRN Command (sendetrn ,

nosendetrn)

The extended SMTP command ETRN(RFC 1985) allows an SMTP client to request

that a remote SMTP server start up processing of the remote side’s message queues

destined for sending to the original SMTP client; that is, it allows an SMTP client

and SMTP server to negotiate “switching roles”, where the side originally the sender

becomes the receiver, and the side originally the receiver becomes the sender. In

other words, ETRNprovides a way to implement “polling” of remote SMTP systems

for messages incoming to one’s own system. This can be useful for systems that have

only transient connections between each other, for example, over dial-up lines.

When the connection is brought up and one side sends to the other, using the ETRN
command, the SMTP client can also tell the remote side that it should now try to

deliver any messages that needs to travel in the reverse direction.

The SMTP client specifies on the SMTP ETRNcommand line the name of the system

to which to send messages (generally the SMTP client system’s own name). If the

remote SMTP server supports the ETRNcommand, it will trigger execution of a

separate process to connect back to the named system and send any messages

awaiting delivery for that named system.

The sendetrn and nosendetrn channel keywords control whether the IMTA

SMTP client sends an ETRNcommand at the beginning of an SMTP connection. The

default is nosendetrn , meaning that the IMTA will not send an ETRNcommand.

The sendetrn keyword tells the IMTA to send an ETRNcommand, if the remote

SMTP server says it supports ETRN. The sendetrn keyword should be followed by

the name of the system requesting that its messages receive a delivery attempt.

SMTP VRFY Commands (domainvrfy ,

localvrfy , novrfy)

These keywords control IMTA’s use of the VRFYcommand in its SMTP client. Under

normal circumstances there is no reason to issue a VRFYcommand as part of an

SMTP dialogue. The SMTP MAIL TO command should perform the same function

that VRFYdoes and return an appropriate error. However, servers exist that can

accept any address in a MAIL TO (and bounce it later), whereas these same servers

perform more extensive checking as part of a VRFYcommand.

Chapter 2 IMTA Configuration 115

The IMTA can be configured to issue SMTP VRFYcommands. The keyword

domainvrfy causes a VRFYcommand to be issued with a full address (user@host)

as its argument. The localvrfy keyword causes IMTA to issue a VRFYcommand

with just the local part of the address (user) . novrfy is the default.

Responding to SMTP VRFY commands

(vrfyallow , vrfydefault , vrfyhide)

These keywords control the IMTA SMTP server’s response when a sending SMTP

client issues an SMTP VRFYcommand. The vrfyallow keyword tells IMTA to issue

a detailed, informative response. The vrfydefault tells IMTA to provide a

detailed, informative response, unless the channel option HIDE_VERIFY=1 has been

specified. The vrfyhide keyword tells IMTA to issue only a vague, ambiguous

response. These keywords allow per-channel control of VRFYresponses, as opposed

to the HIDE_VERIFY option, which normally applies to all incoming TCP/IP

channels handled through the same SMTP server.

TCP/IP Port Number (port)

The SMTP over TCP/IP channels normally connects to port 25 when sending

messages. The port keyword can be used to instruct an SMTP over TCP/IP channel

to connect to a nonstandard port.

TCP/IP MX Record Support (mx, nomx,

defaultmx , randommx , nonrandommx)

Some TCP/IP networks support the use of MX(mail forwarding) records and some

do not. Some TCP/IP channel programs can be configured not to use MXrecords if

they are not provided by the network that the IMTA system is connected to. The

keyword randommx specifies that MX lookups should be done and MXrecord values

of equal precedence should be processed in random order. The keyword

nonrandommx specifies that MXlookups should be done and MXvalues of equal

precedence should be processed in the same order in which they were received.

The mx keyword is currently equivalent to nonrandommx ; it might change to be

equivalent to randommx in a future release. The nomx keyword disables MXlookups.

The defaultmx keyword specifies that mx should be used if the network says that

MXrecords are supported. The keyword defaultmx is the default on channels that

support MXlookups in any form.

116 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Specifying a Last Resort Host (lastresort)

The lastresort keyword is used to specify a host to connect even when all other

connection attempts fail. In effect this acts as an MXrecord of last resort. This is only

useful on SMTP channels.

Reverse DNS and IDENT Lookups on Incoming

SMTP Connections (identtcp ,

identtcplimited , identtcpnumeric ,

identtcpsymbolic , identnone ,

identnonelimited , identnonenumeric ,

identnonesymbolic , forwardchecknone ,

forwardchecktag , forwardcheckdelete)

The identtcp keyword tells the IMTA to perform a connection and lookup using

the IDENT protocol (RFC 1413). The information obtained from the IDENT protocol

(usually the identity of the user making the SMTP connection) is then inserted into

the Received: header of the message, with the host name corresponding to the

incoming IP number, as reported from a DNS reverse lookup and the IP number

itself.

The identtcpsymbolic keyword tells the IMTA to perform a connection and

lookup using the IDENT protocol (RFC 1413). The information obtained from the

IDENT protocol (usually the identity of the user making the SMTP connection) is

then inserted into the Received: header of the message, with the actual incoming

IP number, as reported from a DNS reverse lookup; the IP number itself is not

included in the Received : header .

The identtcpnumeric keyword tells the IMTA to perform a connection and

lookup using the IDENT protocol (RFC 1413). The information obtained from the

IDENT protocol (usually the identity of the user making the SMTP connection) is

then inserted into the Received : header of the message, with the actual incoming

IP number --- no DNS reverse lookup on the IP number is performed.

Note – The remote system must be running an IDENT server for the IDENT lookup

caused by identtcp or identtcpnumeric to be useful.

Chapter 2 IMTA Configuration 117

Be aware that IDENT query attempts may incur a performance hit. Increasingly

routers will “black hole” attempted connections to ports that they don’t recognize; if

this happens on an IDENT query, then the IMTA does not hear back until the

connection times out (a TCP/IP package controlled time-out, typically on the order

of a minute or two).

A lesser performance factor occurs when comparing identtcp or

identtcpsymbolic to identtcpnumeric . The DNS reverse lookup called for

with identtcp or identtcpsymbolic incurs some additional overhead to obtain

the more user-friendly host name.

The identnone keyword disables this IDENT lookup, but does do IP to host name

translation, and both IP number and host name will be included in the Received:
header for the message. The identnonesymbolic keyword disables this IDENT
lookup, but does do IP to host name translation; only the host name will be included

in the Received: header for the message. The identnonenumeric keyword

disables this IDENT lookup and inhibits the usual DNS reverse lookup translation of

IP number to host name, and might result in a performance improvement at the cost

of less user-friendly information in the Received: header . identnone is the

default.

The identtcplimited and identnonelimited keywords have the same effect as

identtcp and identnone , respectively, as far as IDENT lookups, reverse DNS

lookups, and information displayed in Received: header . Where they differ is

that with identtcplimited or identnonelimited the IP literal address is

always used as the basis for any channel switching due to use of the

switchchannel keyword, regardless of whether the DNS reverse lookup succeeds

in determining a host name.

The forwardchecknone , forwardchecktag , and forwardcheckdelete channel

keywords can modify the effects of doing reverse lookups, controlling whether the

IMTA does a forward lookup of an IP name found using a DNS reverse lookup, and

if such forward lookups are requested what the IMTA does if the forward lookup of

the IP name does not match the original IP number of the connection. The

forwardchecknone keyword is the default, and means that no forward lookup is

done. The forwardchecktag keyword tells the IMTA to do a forward lookup after

each reverse lookup and to tag the IP name with an asterisk, *, if the number found

using the forward lookup does not match that of the original connection. The

forwardcheckdelete keyword tells the IMTA to do a forward lookup after each

reverse lookup and to ignore (delete) the reverse lookup returned name if the

forward lookup of that name does not match the original connection IP address. Use

the original IP address instead.

Note – Having the forward lookup not match the original IP address is normal at

many sites, where a more “generic” IP name is used for several different IP

addresses.

118 Sun Internet Mail Server 4.0 Reference Manual • July 1999

These keywords are only useful on SMTP channels that run over TCP/IP.

Selecting an Alternate Channel for Incoming Mail

(switchchannel , allowswitchchannel ,

noswitchchannel)

When an IMTA server accepts an incoming connection from a remote system, it must

choose a channel with which to associate the connection. Normally this decision is

based on the transfer used; for example, an incoming TCP/IP connection is

automatically associated with the tcp_local channel.

This convention breaks down, however, when multiple outgoing channels with

different characteristics are used to handle different systems over the same transfer.

When this happens, incoming connections are not associated with the same channel

as outgoing connections, and the result is that the corresponding channel

characteristics are not associated with the remote system.

The switchchannel keyword provides a way to eliminate this difficulty. If

switchchannel is specified on the server’s initial channel (tcp_local), the name

of the originating host is matched against the channel table; if it matches, the source

channel changes accordingly. The source channel may change to any channel

marked switchchannel or allowswitchchannel (the default). The keyword

noswitchchannel specifies that no channel switching should be done to or from

the channel.

Specification of switchchannel on anything other than a channel that a server

associates with by default has no effect. At present, switchchannel only affects

SMTP channels, but there are actually no other channels where switchchannel
would be reasonable.

Note – When the switchchannel is specified, the name of the originating host is

obtained by a DNS reverse lookup translation of the IP address to host name.

Consequently, this keyword is useful for setting up anti-spamming, but it may affect

performance.

Chapter 2 IMTA Configuration 119

Host Name to Use When Correcting Incomplete

Addresses (remotehost , noremotehost)

The IMTA often receives from misconfigured or incompliant mailers and SMTP

clients addresses that do not contain a domain name. IMTA attempts to make such

addresses legal before allowing them to pass further. IMTA does this by appending a

domain name to the address (for example, appends @stream.com to mrochek). In

the case of the SMTP server, however, the two logical choices for the domain name

are:

■ Local host name

■ Remote host name reported by the client SMTP

Either of these two choices is likely to be correct, as both may occur operationally

with some frequency. The use of the remote host’s domain name is appropriate

when dealing with improperly configured SMTP clients. The use of the local host’s

domain name is appropriate when dealing with a lightweight remote mail client

such as a POP or IMAP client that uses SMTP to post messages.

The best that IMTA can do is to allow the choice to be made on a channel-by-channel

basis. The remotehost channel keyword specifies that the remote host’s name

should be used. The noremotehost channel keyword specifies that the local host’s

name should be used. The keyword noremotehost is the default.

The switchchannel keyword as described, in the preceding section, Selecting an

Alternate Channel for Incoming Mail (switchchannel, allowswitchchannel,

noswitchchannel)” can be used to associate incoming SMTP connections with a

particular channel. This facility can be used to group remote mail clients on a

channel where they can receive proper treatment. Alternatively, it is simpler to

deploy standards-compliant remote mail clients (even if a multitude of

noncompliant clients are in use) rather than attempting to fix the network-wide

problem on your IMTA hosts.

Legalizing Messages Without Recipient Headers

(missingrecipientpolicy)

RFC 822 (Internet) messages are required to contain a recipient header: a To:, Cc:, or

Bcc: header. A message without such a header is illegal. Nevertheless, some broken

user agents and mailers (for example, many older versions of sendmail) will allow

illegal messages.

The missingrecipientpolicy keyword takes an integer value specifying the

approach to use for such messages; the default value, if the keyword is not explicitly

present, is 0, meaning that envelope To: addresses are placed in a To: header.

120 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Note that the MISSING_RECIPIENT_POLICY option can be used to set an IMTA

system default for this behavior.

Eight-Bit Capability (eightbit ,

eightnegotiate , eightstrict , sevenbit)

Some transfers restrict the use of characters with ordinal values greater than 127

(decimal). Most notably, some SMTP servers strip the high bit and thus garble

messages that use characters in this eight-bit range. IMTA provides facilities to

automatically encode such messages so that troublesome eight-bit characters do not

appear directly in the message. This encoding can be applied to all messages on a

given channel by specifying the sevenbit keyword. A channel should be marked

eightbit if no such restriction exists.

Some transfers, such as extended SMTP, may actually support a form of negotiation

to determine if eight-bit characters can be transmitted. The eightnegotiate
keyword can be used to instruct the channel to encode messages when negotiation

fails. This is the default for all channels; channels that do not support negotiation

assume that the transfer is capable of handling eight-bit data. The eightstrict
keyword tells IMTA to reject any messages that contain unnegotiated eight-bit data.

TABLE 2-11 missingrecipientpolicy Values

Value Action

0 Place envelope To: recipients in a To: header.

1 Pass the illegal message through unchanged.

2 Place envelope To: recipients in a To: header.

3 Place all envelope To: recipients in a single Bcc: header.

4 Generate a group construct (for example, ;) To: header, To: Recipients not

specified.

5 Generate a blank Bcc: header.

6 Reject the message.

Chapter 2 IMTA Configuration 121

Automatic Character Set Labeling (charset7 ,

charset8)

The MIMEspecification provides a mechanism to label the character set used in a

plain text message. Specifically, a charset= parameter can be specified as part of

the Content-type: header line. Various character set names are defined in MIME,

including US-ASCII (the default), ISO-8859-1, ISO-8859-2, and so on.

Some existing systems and user agents do not provide a mechanism for generating

these character set labels; as a result, some plain text messages may not be properly

labeled. The charset7 and charset8 channel keywords provide a per-channel

mechanism to specify character set names to be inserted into message headers. Each

keyword requires a single argument giving the character set name. The names are

not checked for validity.

Note – Character set conversion can be done only on character sets specified in the

character set definition file charsets.txt found in the IMTA table directory,

/imta/table/charsets.txt . Use the names defined in this file, if possible.

The charset7 character set name is used if the message contains only seven-bit

characters; charset8 is used if eight-bit data is found in the message. If the

appropriate keyword is not specified, no character set name is inserted into the

Content-type: header lines.

These character set specifications never override existing labels; that is, they have no

effect if a message already has a character set label or is of a type other than text. It

is usually appropriate to label IMTA local channels as follows:

If there is no Content-type header in the message, it is added. This keyword also

adds the MIME-version: header if it is missing.

Message Line Length Restrictions (linelength)

The SMTP specification allows for lines of text containing up to 1000 bytes.

However, some transfers may impose more severe restrictions on line length. The

linelength keyword provides a mechanism for limiting the maximum permissible

message line length on a channel-by-channel basis. Messages queued to a given

channel with lines longer than the limit specified for that channel are automatically

encoded.

l ... charset7 US-ASCII charset8 ISO-8859-1 ...
hostname

122 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The various encodings available in the IMTA always result in a reduction of line

length to fewer than 80 characters. The original message may be recovered after such

encoding is done by applying an appropriating decoding filter.

Note – Encoding can only reduce line lengths to fewer than 80 characters.

Specification of line length values less than 80 may not actually produce lines with

lengths that comply with the stated restriction.

Channel-Specific Use of the Reverse Database

(reverse , noreverse)

The reverse keyword tells IMTA that addresses in messages queued to the channel

should be checked against, and possibly modified, by the address reversal database

or REVERSEmapping, if either exists. noreverse exempts addresses in messages

queued to the channel from address reversal processing. The reverse keyword is

the default.

Inner Header Rewriting (noinner , inner)

The contents of header lines are interpreted only when necessary. However, MIME
messages can contain multiple sets of message headers as a result of the ability to

imbed messages within messages (message/RFC822). IMTA normally only

interprets and rewrites the outermost set of message headers. IMTA can optionally

be told to apply header rewriting to inner headers within the message as well.

This behavior is controlled by the use of the noinner and inner keywords. The

keyword noinner tells IMTA not to rewrite inner message header lines. It is the

default. The keyword inner tells IMTA to parse messages and rewrite inner

headers. These keywords can be applied to any channel.

Restricted Mailbox Encoding (restricted ,

unrestricted)

Some mail systems have difficulty dealing with the full spectrum of addresses

allowed by RFC 822. A particularly common example of this is sendmail-based

mailers with incorrect configuration files. Quoted local-parts (or mailbox

specifications) are a frequent source of trouble:

"smith, ned"@xyz.com

Chapter 2 IMTA Configuration 123

This is such a major source of difficulty that a methodology was laid out in RFC 1137

to work around the problem. The basic approach is to remove quoting from the

address, then apply a translation that maps the characters requiring quoting into

characters allowed in an atom (see RFC 822 for a definition of an atom as it is used

here). For example, the preceding address would become:

smith#m#_ned@xyz.com

The restricted channel keyword tells IMTA that the channel connects to mail

systems that require this encoding. IMTA then encodes quoted local-parts in both

header and envelope addresses as messages are written to the channel. Incoming

addresses on the channel are decoded automatically. The unrestricted keyword

tells IMTA not to perform RFC 1137 encoding and decoding. The keyword

unrestricted is the default.

Note – The restricted keyword should be applied to the channel that connects to

systems unable to accept quoted local-parts. It should not be applied to the channels

that actually generate the quoted local-parts. (It is assumed that a channel capable of

generating such an address is also capable of handling such an address.)

Trimming Message Header Lines (headertrim ,

noheadertrim , headerread , noheaderread ,

innertrim , noinnertrim)

The IMTA provides per-channel facilities for trimming or removing selected message

header lines from messages. This is done through a combination of a channel

keyword and an associated header option file or two. The headertrim keyword

instructs the IMTA to consult a header option file associated with the channel and to

trim the headers on messages queued to the channel accordingly, after the messages

are processed. The noheadertrim keyword bypasses header trimming. The

keyword noheadertrim is the default.

The innertrim keyword instructs the IMTA to perform header trimming on inner

message parts, for example, embedded MESSAGE/RFC822 parts. The

noinnertrim keyword, which is the default, tells the IMTA not to perform any

header trimming on inner message parts.

The headerread keyword instructs the IMTA to consult a header option file

associated with the channel and to trim the headers on messages queued to the

channel accordingly, before the messages are processed. Note that headertrim
header trimming, on the other hand, is applied after the messages have been

processed. The noheaderread keyword bypasses message enqueue header

trimming. noheaderread is the default.

124 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Caution – Stripping away vital header information from messages may cause

improper operation of the IMTA. Be extremely careful when selecting headers to

remove or limit. This facility exists because there are occasional situations where

selected header lines must be removed or otherwise limited. Before trimming or

removing any header line, be sure that you understand the usage of that header line

and have considered the possible implications of its removal.

Header options files for the headertrim and innertrim keywords have names of

the form channel_headers.opt with channel, the name of the channel with which

the header option file is associated. Similarly, header options files for the

headerread keyword have names of the form channel_read_headers.opt .

These files are stored in the IMTA configuration directory,

/etc/opt/SUNWmail/imta/ .

Encoding Header (ignoreencoding ,

interpretencoding)

IMTA can convert various nonstandard message formats to MIMEusing the Yes
CHARSET-CONVERSION. In particular, the RFC 1154 format uses a nonstandard

Encoding: header. However, some gateways emit incorrect information on this

header line, with the result that sometimes it is desirable to ignore this header. The

ignoreencoding keyword instructs the IMTA to ignore any Encoding: header.

Note – Unless the IMTA has a CHARSET-CONVERSIONenabled, such headers are

ignored in any case. The interpretencoding keyword instructs the IMTA to pay

attention to any Encoding: header, if otherwise configured to do so, and is the

default.

Generation of X-Envelope-to Header Lines

(x_env_to , nox_env_to)

The x_env_to and nox_env_to keywords control the generation or suppression of

X-Envelope-to header lines on copies of messages queued to a specific channel.

The x_env_to keyword enables generation of these headers while the nox_env_to
will remove such headers from enqueued messages. The default is nox_env_to .

Chapter 2 IMTA Configuration 125

Envelope to Address in Received: header

(receivedfor , noreceivedfor ,

receivedfrom , noreceivedfrom)

The receivedfor keyword instructs the IMTA that if a message is addressed to

just one envelope recipient, to include that envelope to the address in the

Received: header it constructs. The keyword receivedfor is the default. The

noreceivedfor keyword instructs the IMTA to construct Received headers

without including any envelope addressee information.

The receivedfrom keyword instructs the IMTA to include the original envelope
From: address when constructing a Received : header for an incoming message if

the IMTA has changed the envelope From : address due to, for example, certain

sorts of mailing list expansions. receivedfrom is the default. The

noreceivedfrom keyword instructs the IMTA to construct Received : headers

without including the original envelope From : address.

Blank Envelope Return Addresses

(returnenvelope)

The returnenvelope keyword takes a single integer value, which is interpreted as

a set of bit flags. Bit 0 (value = 1) controls whether or not return notifications

generated by IMTA are written with a blank envelope address or with the address of

the local postmaster. Setting the bit forces the use of the local postmaster address;

clearing the bit forces the use of a blank address.

Note – The use of a blank address is mandated by RFC 1123. However, some

systems do not properly handle blank envelopes From: address and may require the

use of this option.

Bit 1 (value = 2) controls whether or not IMTA replaces all blank envelope addresses

with the address of the local postmaster. This is used to accommodate incompliant

systems that don’t conform to RFC 821, RFC 822, or RFC 1123.

126 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Mapping Reply-to Header (usereplyto)

The usereplyto keyword controls the mapping of the Reply-to header. The

default is usereplyto 0 , which means to use the channel default behavior, which

varies from channel to channel. TABLE 2-12 indicates the mapping specifications for

the Reply-to: header.

Mapping Resent- Headers Using a Gateway to

Non-RFC 822 Environments (useresent)

The useresent keyword controls the use of Resent- headers when using a

gateway to environments that do not support RFC 822 headers. This keyword takes

a single integer-valued argument. TABLE 2-13 lists the values used for mapping the

Resent- headers.

TABLE 2-12 Reply-to: Header Mapping Options

Value Action

-1 Never map Reply-to addresses to anything.

0 Use the channel default mapping of Reply-to addresses; (varies from

channel to channel). This is the default.

1 Map Reply-to to From if no usable From address exists.

2 If there is a usable Reply-to address, then map it to From; otherwise, fall

back to the From address.

TABLE 2-13 Resent- Headers Mapping Options

Value Action

+2 Use any Resent- headers that are present to generate address

information.

+1 Use only Resent-From headers to generate address information; all

other Resent- headers are ignored.

0 Do not use Resent- headers to generate address information. This is the

default.

Chapter 2 IMTA Configuration 127

Comments in Address Message Headers

(commentinc , commentomit , commentstrip ,

commenttotal)

IMTA interprets the contents of header lines only when necessary. However, all

registered headers containing addresses must be parsed to rewrite and eliminate

short form addresses and otherwise convert them to legal addresses. During this

process, comments (strings enclosed in parentheses) are extracted and may be

modified or excluded when the header line is rebuilt.

This behavior is controlled by the use of the commentinc , commentomit ,

commentstrip , and commenttotal keywords. The commentinc keyword tells

IMTA to retain comments in header lines. It is the default. The keyword

commentomit tells IMTA to remove any comments from addressing headers, for

example, To, From , or Cc headers.

The keyword commenttotal tells IMTA to remove any comments from all headers,

including Received: headers; this keyword is not normally useful or

recommended. commentstrip tells IMTA to strip any nonatomic characters from

all comment fields. These keywords can be applied to any channel.

Personal Names in Address Message Headers

(personalinc , personalomit ,

personalstrip)

During the rewriting process, all registered headers containing addresses must be

parsed in order to rewrite and eliminate short form addresses and otherwise convert

them to legal addresses. During this process personal names (strings preceding

angle-bracket-delimited addresses) are extracted and can be optionally modified or

excluded when the header line is rebuilt.

This behavior is controlled by the use of the personalinc , personalomit , and

personalstrip keywords. The keyword personalinc tells IMTA to retain

personal names in the headers. It is the default. The keyword personalomit tells

IMTA to remove all personal names.The keyword personalstrip tells IMTA to

strip any nonatomic characters from all personal name fields. These keywords can be

applied to any channel.

128 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Two- or Four-Digit Date Conversion (datefour ,

datetwo)

The original RFC 822 specification called for two-digit years in the date fields in

message headers. This was later changed to four digits by RFC 1123. However, some

older mail systems cannot accommodate four-digit dates. In addition, some newer

mail systems can no longer tolerate two-digit dates.

Note – Systems that cannot handle both formats are in violation of the standards.

The datefour and datetwo keywords control IMTA’s processing of the year field

in message header dates. The keyword datefour , the default, instructs IMTA to

expand all year fields to four digits. Two- digit dates with a value less than 50 have

2000 added, while values greater than 50 have 1900 added.

Caution – The keyword datetwo instructs IMTA to remove the leading two digits

from four-digit dates. This is intended to provide compatibility with incompliant

mail systems that require two digit dates; it should never be used for any other

purpose.

Day of Week in Date Specifications (dayofweek ,

nodayofweek)

The RFC 822 specification allows for a leading day of the week specification in the

date fields in message headers. However, some systems cannot accommodate day of

the week information. This makes some systems reluctant to include this

information, even though it is quite useful information to have in the headers.

The dayofweek and nodayofweek keywords control IMTA’s processing of day of

the week information. The keyword dayofweek , the default, instructs IMTA to

retain any day of the week information and to add this information to date/time

headers if it is missing.

Caution – The keyword nodayofweek instructs IMTA to remove any leading day

of the week information from date/time headers. This is intended to provide

compatibility with incompliant mail systems that cannot process this information

properly; it should never be used for any other purpose.

Chapter 2 IMTA Configuration 129

Automatic Splitting of Long Header Lines

(maxheaderaddrs , maxheaderchars)

Some message transfers, notably some sendmail implementations, cannot process

long header lines properly. This often leads not just to damaged headers but to

erroneous message rejection. Although this is a gross violation of standards, it is

nevertheless a common problem.

IMTA provides per-channel facilities to split (break) long header lines into multiple,

independent header lines. The maxheaderaddrs keyword controls how many

addresses can appear on a single line. The maxheaderchars keyword controls how

many characters can appear on a single line. Both keywords require a single integer

parameter that specifies the associated limit. By default, no limit is imposed on the

length of a header line nor on the number of addresses that can appear.

Header Alignment and Folding

(headerlabelalign , headerlinelength)

The headerlabelalign keyword controls the alignment point for message

headers enqueued on this channel; it takes an integer-valued argument. The

alignment point is the margin where the contents of headers are aligned. For

example, sample headers with an alignment point of 10 might look like this:

To: joe@stream.com
From: mary@stream.com
Subject: Alignment test

The default headerlabelalign is 0, which causes headers not to be aligned. The

headerlinelength keyword controls the length of message header lines

enqueued on this channel. Lines longer than this are folded in accordance with RFC

822 folding rules.

These keywords only control the format of the headers of the message in the

message queue; the actual display of headers is normally controlled by the user

agent. In addition, headers are routinely reformatted as they are transferred across

the Internet, so these keywords may have no visible effect even when used in

conjunction with simple user agents that do not reformat message headers.

130 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Automatic Defragmentation of Message/Partial

Messages (defragment , nodefragment)

The MIME standard provides the message/partial content type for breaking up

messages into smaller parts. This is useful when messages have to traverse networks

with size limits. Information is included in each part so that the message can be

automatically reassembled after it arrives at its destination.

The defragment channel keyword and the defragmentation channel provide the

means to reassemble messages in IMTA. When a channel is marked defragment ,

any message or partial messages queued to the channel are placed in the

defragmentation channel queue instead. After all the parts have arrived, the

message is rebuilt and sent on its way. The nodefragment disables this special

processing. The keyword nodefragment is the default.

A defragment channel must be added to the IMTA configuration file in order for the

defragment keyword to have any effect. If your configuration was built by the

IMTA configuration utility, then you should already have such a channel.

Automatic Fragmentation of Large Messages

(maxblocks , maxlines)

Some email systems or network transfers cannot handle messages that exceed

certain size limits. IMTA provides facilities to impose such limits on a

channel-by-channel basis. Messages larger than the set limits are automatically split

(fragmented) into multiple, smaller messages. The Content-type: used for such

fragments is message/partial , and a unique ID parameter is added so that parts

of the same message can be associated with one another and, possibly, be

automatically reassembled by the receiving mailer.

The maxblocks and maxlines keywords are used to impose size limits beyond

which automatic fragmentation are activated. Both of these keywords must be

followed by a single integer value. The keyword maxblocks specifies the maximum

number of blocks allowed in a message. An IMTA block is normally 1024 bytes; this

can be changed with the BLOCK_SIZE option in the IMTA option file. The keyword

maxlines specifies the maximum number of lines allowed in a message. These two

limits can be imposed simultaneously if necessary.

Message headers are, to a certain extent, included in the size of a message. Because

message headers cannot be split into multiple messages, and yet they themselves

can exceed the specified size limits, a rather complex mechanism is used to account

for message header sizes. This logic is controlled by the MAX_HEADER_BLOCK_USE
and MAX_HEADER_LINE_USEoptions in the IMTA option file.

Chapter 2 IMTA Configuration 131

MAX_HEADER_BLOCK_USEis used to specify a real number between 0 and 1. The

default value is 0.5. A message's header is allowed to occupy this much of the total

number of blocks a message can consume (specified by the maxblocks keyword). If

the message header is larger, IMTA takes the product of MAX_HEADER_BLOCK_USE
and maxblocks as the size of the header (the header size is taken to be the smaller

of the actual header size and maxblocks) * MAX_HEADER_BLOCK_USE.

For example, if maxblocks is 10 and MAX_HEADER_BLOCK_USEis the default, 0.5,

any message header larger than 5 blocks is treated as a 5-block header, and if the

message is 5 or fewer blocks in size it is not fragmented. A value of 0 causes headers

to be effectively ignored insofar as message-size limits are concerned.

A value of 1 allows headers to use up all of the size that's available. Each fragment

always contains at least one message line, regardless of whether or not the limits are

exceeded by this. MAX_HEADER_LINE_USEoperates in a similar fashion in

conjunction with the maxlines keyword.

Absolute Message Size Limits (blocklimit ,

linelimit)

Although fragmentation can automatically break messages into smaller pieces, it is

appropriate in some cases to reject messages larger than some administratively

defined limit, (for example, to avoid service denial attacks). The blocklimit and

linelimit keywords are used to impose absolute size limits. Each of these

keywords must be followed by a single integer value.

The keyword blocklimit specifies the maximum number of blocks allowed in a

message. IMTA rejects attempts to queue messages containing more blocks than this

to the channel. An IMTA block is normally 1024 bytes; this can be changed with the

BLOCK_SIZE option in the IMTA option file.

The keyword linelimit specifies the maximum number of lines allowed in a

message. IMTA rejects attempts to queue messages containing more than this

number of lines to the channel. These two, blocklimit and linelimit , can be

imposed simultaneously, if necessary.

IMTA options LINE_LIMIT and BLOCK_LIMIT can be used to impose similar limits

on all channels. These limits have the advantage that they apply across all channels.

Therefore, IMTA servers can make them known to mail clients prior to obtaining

message recipient information. This simplifies the process of message rejection in

some protocols.

132 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Specify Maximum Length Header

(maxprocchars)

Processing of long header lines containing lots of addresses can consume significant

system resources. The maxprocchars keyword is used to specify the maximum

length header that IMTA can process and rewrite. Messages with headers longer

than this are still accepted and delivered; the only difference is that the long header

lines are not rewritten in any way. A single integer argument is required. The default

is processing headers of any length.

Message Logging (logging , nologging)

IMTA provides facilities for logging each message as it is enqueued and dequeued.

All log entries are made to the file mail.log_current in the log directory

/var/opt/SUNWmail/imta/log/mail.log_current . Logging is controlled on a

per-channel basis. The logging keyword activates logging for a particular channel

while the nologging keyword disables it.

Debugging Channel Master and Slave Programs

(master_debug , nomaster_debug ,

slave_debug , noslave_debug)

Some channel programs include optional code to assist in debugging by producing

additional diagnostic output. Two channel keywords are provided to enable

generation of this debugging output on a per-channel basis. The keywords are

master_debug , which enables debugging output in master programs, and

slave_debug , which enables debugging output in slave programs. Both types of

debugging output are disabled by default, corresponding to nomaster_debug and

noslave_debug .

When activated, debugging output ends up in the log file associated with the

channel program. The location of the log file may vary from program to program.

Log files are usually kept in the IMTA log directory. Master programs usually have

log file names of the form x_master.log , where x is the name of the channel;

slave programs usually have log file names of the form x_slave.log . Also, some

channel programs, notably TCP/IP and fax channel programs, may produce

additional log files with names:

■ err_x_master.log

■ err_x_slave.log

■ di_x_master.log

Chapter 2 IMTA Configuration 133

■ di_x_xlave.log

■ ph_x_master.log

■ ph_x_slave.log

In the case of the local channel, master_debug enables debugging output when

sending from the local channel, and slave_debug enables debugging output as

messages are delivered to the local channel, with output usually appearing in the

/var/opt/SUNWmail/imta/log/l_master.log .

Delivery of Deferred Messages (serviceall ,

noserviceall)

Master programs normally process only a subset of the messages queued for the

channel. There may be other messages that were queued to the channel at some

prior time that will not be processed. However, on some channels, particularly those

that only provide a link to a single mail component, this sort of operation may be

inappropriate: if the immediate delivery job is successful in connecting to the mail

component it may be able to easily process all the messages that are queued.

The serviceall and noserviceall keywords control this behavior.

noserviceall , the default, indicates that the master program should only process

the messages that were queued to process after its inception. serviceall specifies

that the master program should attempt to process all messages queued to the

channel each time it runs.

It may be tempting to indulge in use of serviceall on most or all channels. Be

warned, however, that use of serviceall is probably not suitable for most

channels that connect to multiple remote systems, or channels that entail lots of

per-message overhead. If serviceall is used on such channels it may cause a

dramatic increase in network and message processing overhead and the net result

may be slower message processing overall.

Note that these keywords do not change the order in which message processing

occurs. Immediate jobs always attempt to process the messages they were created to

process prior to turning to other messages that are also in the channel queue.

134 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Sensitivity checking (sensitivitynormal ,

sensitivitypersonal , sensitivityprivate ,

sensitivitycompanyconfidential)

The sensitivity checking keywords set an upper limit on the sensitivity of messages

that can be accepted by a channel. The default is

sensitivitycompanyconfidential ; messages of any sensitivity are allowed

through. A message with no Sensitivity : header is considered to be of normal,

that is, the lowest, sensitivity. Messages with a higher sensitivity than that specified

by such a keyword will be rejected when enqueued to the channel with an error

message:

message too sensitive for one or more paths used

Note that IMTA does this sort of sensitivity checking at a per-message, not

per-recipient, level: if a destination channel for one recipient fails the sensitivity

check, then the message bounces for all recipients, not just for those recipients

associated with the sensitive channel.

SMTP AUTH (maysaslserver ,

mustsaslserver , nosasl , nosaslserver ,

saslswitchchannel)

The maysaslserver , mustsaslserver , nosasl , nosaslserver , and

saslswitchchannel channel keywords are used to configure SASL (SMTP AUTH)

use during the SMTP protocol by SMTP channels such as TCP/IP channels.

nosasl is the default and means that SASL authentication will not be permitted or

attempted. It subsumes nosaslserver , which means that SASL authentication will

not be permitted. Specifying maysaslserver causes the SMTP server to permit

clients to attempt to use SASL authentication. Specifying mustsaslserver causes

the SMTP server to insist that clients use SASL authentication; the SMTP server will

not accept messages unless the remote client successfully authenticates.

Use saslswitchchannel to cause incoming connections to be switched to a

specified channel upon a client’s successful use of SASL. It takes a required value,

specifying the channel to which to switch.

Chapter 2 IMTA Configuration 135

Verify the Domain on MAIL FROM: Is In the DNS

(mailfromdnsverify , nomailfromdnsverify)

Setting mailfromdnsverify on an incoming TCP/IP channel causes the IMTA to

verify that an entry in the DNS exists for the domain used on the SMTP MAIL FROM:
command, and to reject the message if no such entry exists. nomailfromdnsverify
is the default and means that no such check is performed.

Note that performing DNS checks on the return address domain may result in

rejecting some valid messages (for example, from legitimate sites that have not yet

registered their domain name, or at times of bad information in the DNS); it is

contrary to the spirit of being generous in what you accept and getting the e-mail

through, expressed in RFC 1123, Requirements for Internet Hosts. However, some

sites might want to perform such checks in cases where junk email (SPAM) is being

sent with forged email addresses from non-existent domains.

Domain Database

The IMTA dirsync program creates in the domain database as well as in a file,

/etc/opt/SUNWmail/imta/domains.rules . You can use this file instead of the

domain database in case the number of domains is significantly fewer.

Note – Incremental dirsync does not update the domains.rules file. If you use

the file instead of the database, the newly added domains would be recognized only

after the next full dirsync . Also, if you make any changes to the domains.rules
file manually, those changes will be overwritten by imta dirsync .

Aliases

The IMTA provides a facility to support mailbox names associated with the local

system that do not necessarily correspond to actual users: aliases. Aliases are useful

for constructing mailing lists, forwarding mail, and providing synonyms for user

names. A second set of related facilities provides support for “centralized naming,”

whereby you establish, for instance, mail addresses of the form

first.last@stream.com for all of your users. There are several advantages to

136 Sun Internet Mail Server 4.0 Reference Manual • July 1999

such centralized naming systems. The addresses are simple; they provide added

security in that they make no reference to internal account or system names; and,

because they lack reference to account and system names, they are more stable.

Each time an address that matches the local channel is encountered by the IMTA’s

message submission logic, the mailbox (for example, username) specified in the

address is compared against each entry in the alias database or alias file. If a match

occurs the alias address is replaced by the translation value or values specified by

the alias. An alias can translate into any combination and number of additional

aliases or real addresses. The real addresses need not themselves be associated with

the local channel and thus aliases can be used to forward mail to remote systems.

Aliases apply only to addresses mapped to the local channel. Since the only

addresses truly considered to match a channel are Envelope To addresses, aliases

can apply only to Envelope To addresses. The IMTA performs alias translation

and expansion only after address parsing is completed. The translation values

produced by an alias are treated as completely new addresses and are reprocessed

from scratch.

The Alias Database

The IMTA uses the information in the directory and creates the alias database. The

alias database is consulted once each time the regular alias files is consulted.

However, the alias database is checked before the regular alias file is used. In effect,

the database acts as a sort of address rewriter that is invoked prior to using the alias

file. Refer to the SIMS Provisioning Guide for information on what directory attributes

are used to create user and distribution list entries in the alias database.

Note – The format of the database itself is private. Do not try to edit the database

directly. Make all required changes in the directory.

Alias File

The alias file is used to set aliases not set in the directory. In particular, the

postmaster alias is a good example. Aliases set in this file will be ignored, if the same

aliases exist in the directory. The IMTA has to be restarted for any changes to take

effect. Any line that begins with an exclamation point is considered to be a comment

and is ignored. Blank lines are also ignored.

A physical line in this file is limited to 252 characters. You can split a logical line into

multiple physical lines using the backslash (\) continuation character.

Chapter 2 IMTA Configuration 137

The format of the file is as follows:

For example:

Including Other Files in the Alias File

Other files can be included in the primary alias file. A line of the following form

directs the IMTA to read the file-spec file:

The file specification must be a complete file path specification and the file must

have the same protections as the primary alias file; for example, it must be world

readable.

The contents of the included file are inserted into the alias file at its point of

reference. The same effect can be achieved by replacing the reference to the included

file with the file's actual contents. The format of include files is identical to that of

the primary alias file itself. Indeed, include files may themselves include other files.

Up to three levels of include file nesting are allowed.

By default, the file /etc/opt/SUNWmail/imta/aliases/usr is included. This file

is updated by the imta dirsync program. List of addresses too long to fit in the

alias database are put in this file.

user? < address> (for users in hosted domains)

user: < address> (for users in non-hosted domains. For example,
default-domain)

! A /var/mail/ user
inetmail : inetmail@native-daemon

! A message store user
ms_testuser : mstestuser@sims-ms-daemon

<file-spec

138 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Local Channel

The local channel (l) is unique because addresses diverted to it are looked up in the

alias table. In general, the result of the alias table lookup matches another channel,

causing the message to be enqueued to this channel. In practice, no message is

enqueued to the local channel.

When using a mail user agent on the local system to send mail (to anywhere), the

sendmail utility (/opt/SUNWmail/imta/bin/sendmail) is invoked as the

replacement for sendmail to queue the messages to the appropriate queues, and

then the channel programs for those queues will process the messages.

Native Channel

The native channel is used to deliver messages to /var/mail mailboxes.

var/mail Channel Option File

An option file may be used to control various characteristics of the local channel.

This local channel option file must be stored in the IMTA configuration directory

and named native_option (for example,

/etc/opt/SUNWmail/imta/native_option).

Option files consist of several lines. Each line contains the setting for one option. An

option setting has the form:

The value may be either a string or an integer, depending on the option's

requirements.

option=value

Chapter 2 IMTA Configuration 139

SMTP Channel Option Files

An option file may be used to control various characteristics of TCP/IP channels.

Such an option file must be stored in the IMTA configuration directory

(/etc/opt/SUNWmail/imta) and named x_option , where x is the name of the

channel.

Format of the File

Option files consist of several lines. Each line contains the setting for one option. An

option setting has the form:

TABLE 2-14 Local Channel Options

Options Descriptions

FORCE_CONTENT_LENGTH
(0 or 1; UNIX only)

If FORCE_CONTENT_LENGTH=1, then the IMTA adds a Content-length: header

line to messages delivered to the native channel, and causes the channel not to

use the “>From” syntax when “From” is at the beginning of the line. This makes

local UNIX mail compatible with Sun’s newer mail tools, but potentially

incompatible with other UNIX mail tools.

REPEAT_COUNT(integer)

SLEEP_TIME (integer)

In case the user’s new mail file is locked by another process when the IMTA tries

to deliver the new mail, these options provide a way to control the number and

frequency of retries the local channel program should attempt. If the file can not

be opened after the number of retries specified, the messages will remain in the

local queue and the next run of the local channel will attempt to deliver the new

messages again.

The REPEAT_COUNToption controls how many times the channel programs will

attempt to open the mail file before giving up. REPEAT_COUNTdefaults to 30, (30

attempts).

The SLEEP_TIMEoption controls how many seconds the channel program waits

between attempts. SLEEP_TIME defaults to 2 (two seconds between retries).

option=value

140 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The value may be either a string or an integer, depending on the option's

requirements. If the option accepts an integer value, a base may be specified using

notation of the form b%v, where b is the base expressed in base 10 and vb .

Available SMTP Channel Options

The available options are listed in TABLE 2-15.

TABLE 2-15 SMTP Channel Options

Option Description

ALLOW_ETRNS_PER_SESSION(integer) Sets a limit on the number of ETRN commands accepted per

session. The default is 1.

ALLOW_TRANSACTIONS_PER_SESSION
(Integer)

Sets a limit on the number of messages allowed per connection.

The default is no limit.

ALLOW_RECIPIENTS_PER_TRANSACTION
(Integer)

Sets a limit on the number of recipients allowed per message. The

default is no limit.

ATTEMPT_TRANSACTIONS_PER_SESSION
(Integer)

Sets a limit on the number of messages IMTA will attempt to

transfer during any one connection session.

COMMAND_RECEIVE_TIME(Integer) Specifies, in minutes, how long to wait to receive general SMTP

commands (commands other than those with explicitly specified

time-out values set using other specifically named options).

COMMAND_TRANSMIT_TIME(Integer) Specifies, in minutes, how long to spend transmitting general

SMTP commands (commands other than those with explicitly

specified time-out values set using other specifically named

options).

DATA_RECEIVE_TIME(Integer) Specifies, in minutes, how long to wait to receive data during an

SMTP dialogue. The default is 60.

DATA_TRANSMIT_TIME(Integer) Specifies, in minutes, how long to spend transmitting data during

an SMTP dialogue. The default is 10.

DISABLE_ADDRESS(0 or 1) The IMTA SMTP server implements a private command XADR.
This command returns information about how an address is

routed internally by IMTA as well as general channel information.

Releasing such information may constitute a breach of security for

some sites. Setting the DISABLE_ADDRESSoption to 1 disables the

XADRcommand. The default is 0, which enables the XADR
command.

Chapter 2 IMTA Configuration 141

DISABLE_EXPAND(0 or 1) The SMTP EXPNcommand is used to expand mailing lists.

Exposing the contents of mailing lists to outside scrutiny may

constitute a breach of security for some sites. The

DISABLE_EXPANDoption, when set to 1, disables the EXPN
command completely. The default value is 0, which causes the

EXPNcommand to work normally.

Note that mailing list expansion can also be blocked on a

list-by-list basis by setting the expandable attribute to False in

the list’s directory entry.

DISABLE_STATUS(0 or 1) The IMTA SMTP server implements a private command XSTA.

This command returns status information about the number of

messages processed and currently in the IMTA channel queues.

Releasing such information may consisted a breach of security for

some sites. Setting the DISABLE_STATUSoption to 1 disables the

XSTAcommand. The default is 0, which enables the XSTA
command.

DOT_TRANSMIT_TIME(Integer) Specifies, in minutes, how long to spend transmitting the dot (.)

terminating the data in an SMTP dialogue. The default is 10.

HIDE_VERIFY (0 or 1) The SMTP VRFYcommand can be used to establish the legality of

an address before using it. This command has been abused by

automated query engines in some cases. The HIDE_VERIFY
option, when set to 1, tells IMTA not to return any useful

information in the VRFYcommand result. The default value is 0,

which causes VRFYto act normally.

LOG_BANNER(0 or 1) The LOG_BANNERoption controls whether the remote SMTP

server banner line is included in mail.log* file entries when the

logging channel keyword is enabled for the channel. A value of 1

(the default) enables logging of the remote SMTP server banner

line; a value of 0 disables it.

TABLE 2-15 SMTP Channel Options (Continued)

Option Description

142 Sun Internet Mail Server 4.0 Reference Manual • July 1999

LOG_CONNECTION(integer) The LOG_CONNECTIONoption controls whether or not connection

information, e.g., the domain name of the SMTP client sending the

message, is saved in mail.log file entries and the writing of

connection records when the logging channel keyword is enabled

for the channel. This value is a decimal integer representing a

bit-encoded integer, the interpretation of which is given below:

Bit-0 Value-1: When set, connection information is included in E

and D log records.

Bit-1 Value-2: When set, connection open/close/fail records are

logged by message enqueue and dequeue agents such as

the SMTP and X.400 clients and servers.

Bit-2 Value-4: When set, I records are logged recording ETRN

events.

Where Bit 0 is the least significant bit.

This channel option defaults to the setting of the global IMTA

option LOG_CONNECTION as set in the IMTA option file. This

channel option may be set explicitly to override on a per-channel

basis the behavior requested by the global option.

LOG_TRANSPORTINFO(0 or 1) The LOG_TRANSPORTINFOcontrols whether transport

information, such as the sending and receiving side IP addresses

and TCP ports, is included in mail.log file entries when the

logging channel keyword is enabled for the channel. A value of 1

enables transport information logging. A value of 0 disables it.

This channel option defaults to the setting of the global IMTA

option LOG_CONNECTIONas set in the IMTA option file.

MAIL_TRANSMIT_TIME (Integer) Specifies, in minutes, how long to spend transmitting the SMTP

command MAIL FROM. The default is 10.

MAX_CLIENT_THREADS An integer number indicating the maximum number of

simultaneous outbound connections that the client channel

program will allow. Note that multiple processes may be used for

outbound connections, depending on how you have

channel-processing queues set up. This option controls the

number of threads per process. The default if this option is not

specified is 10.

RCPT_TRANSMIT_TIME(Integer) Specifies, in minutes, how long to spend transmitting the SMTP

command RCPT TO. The default is 10.

TABLE 2-15 SMTP Channel Options (Continued)

Option Description

Chapter 2 IMTA Configuration 143

STATUS_DATA_RECEIVE_TIME(Integer) Specifies, in minutes, how long to wait to receive the SMTP

response to your sent data; that is, how long to wait to receive a

550 (or other) response to the dot-terminating-sent data. The

default value is 10. See also the

STATUS_DATA_RECV_PER_ADDR_TIME,

STATUS_DATA_RECV_PER_BLOCK_TIME, and

STATUS_DATA_RECV_PER_ADDR_PER_BLOCK_TIMEoptions.

STATUS_DATA_RECV_PER_ADDR_TIME
(Floating Point Value)

Specifies an adjustment factor for how long to wait to receive the

SMTP response to your sent data based on the number of

addresses in the MAIL TO command. This value is multiplied by

the number of addresses and added to the base wait time

(specified with the STATUS_DATA_RECV_TIMEoption). The

default is 0.083333.

STATUS_DATA_RECV_PER_BLOCK_TIME
(Floating Point Value)

Specifies an adjustment factor for how long to wait to receive the

SMTP response to your sent data based on the number of blocks

sent. This value is multiplied by the number of blocks and added

to the base wait time (specified with the

STATUS_DATA_RECV_TIMEoption). The default is 0.001666.

STATUS_DATA_RECV_PER_ADDR_PER_BL
OCK_TIME(Floating Point Value)

Specifies an adjustment factor for how long to wait to receive the

SMTP response to your sent data based on the number of

addresses (in the MAIL TO command) per number of blocks sent.

This value is multiplied by the number of addresses per block and

added to the base wait time (specified with the

STATUS_DATA_RECV_TIMEoption). The default is 0.003333.

STATUS_MAIL_RECEIVE_TIME(Integer) Specifies, in minutes, how long to wait to receive the SMTP

response to a sent MAIL FROMcommand. (Also corresponds to

the time we wait for the greetings.) The default is 10.

STATUS_RCPT_RECEIVE_TIME(Integer) Specifies, in minutes, how long to wait to receive the SMTP

response to a sent RCPT TOcommand. The default value is 10.

STATUS_RECEIVE_TIME(Integer) Specifies, in minutes, how long to wait to receive the SMTP

response to general SMTP commands, (commands other than

those with specified time out values set using other specifically

named options). The default value is 10.

STATUS_TRANSMIT_TIME(Integer) Specifies, in minutes, how long to spend transmitting the SMTP

response to an SMTP command.

TRACE_LEVEL(0, 1, or 2) This option controls whether TCP/IP level trace is included in

debug log files. The default value is 0, meaning that no TCP/IP

packet traces are included; a value of 1 tells IMTA to include

TCP/IP packet traces in any debug log files; a value of 2 tells

IMTA to include DNS lookup information as well as TCP/IP

packet traces.

TABLE 2-15 SMTP Channel Options (Continued)

Option Description

144 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The Pipe Channel

The pipe channel performs delivery of messages using per-user, site-supplied

programs. It provides a similar functionality to sendmail ’s pipe (|). The following

differences are designed so that they will not pose a security threat. First, delivery

programs to be invoked by the pipe channel must be registered by the system

administrator. This registration is done performed using the imta program utility.

See “imta program” on page 51 for information about imta program .

Delivery programs invoked by the pipe channel must return meaningful error codes

so that the channel knows whether to dequeue, deliver for later processing, or return

messages.

If the subprocess exits with an exit code of 0 (EX_OK), the message is presumed to

have been delivered successfully and is removed from IMTA's queues. If it exits with

an exit code of 71, 74, 75, or 79 (EX_OSERR, EX_IOERR, EX_TEMPFAIL, or EX_DB), a

temporary error is presumed to have occurred and delivery of the message is

deferred. If any other exit code is returned, then the message will be returned to its

originator as undeliverable. These exit codes are defined in the system header file

sysexits.h .

Using the Pipe Channel

The imta program utility gives a name to each UNIX command that the

administrator registers as able to be invoked by the pipe channel. This name can

then be used by the end user as a value of their mailprogramdeliveryinfo
LDAP attribute in order to enable delivery using the command corresponding to this

name. The attribute maildeliveryoption must have one value equal to program .

For example, to add a UNIX command myprocmail as a program that can be

invoked by the users, the user’s LDAP entry should contain the following

attributes/values:

maildeliveryoption: program
mailprogramdeliveryinfo: myprocmail

See alternative delivery programs in the SIMS Administrator’s Guide for more

information.

Chapter 2 IMTA Configuration 145

The Hold Channel

The hold channel is used to hold the messages of a recipient temporarily halted from

receiving new messages. Messages may be halted because a user’s name is being

changed, or their mailbox is being moved from one mailhost or domain to another.

There may also be other reasons to temporarily halt a user from receiving messages,

but these are the most common.

Messages are placed in the hold channel in two ways:

1. Setting one of the maildeliveryoption values of a user to hold . All other

maildeliveryoption values are ignored (maildeliveryoption is a

multi-valued attribute), and messages to the user are routed to the hold channel.

2. Executing the hold_slave program. This program steps through all other

channels and moves the existing messages whose recipient(s) matches those

specified by the arguments into the hold channel. (See the hold_slave man

page.)

Unlike most channels, the hold channel master program is not configured to run

automatically. Messages queued in the hold channel will remain there until the

hold_master program is invoked by the administrator. (See the hold_master man

page.)

To migrate user, first mark the user as being moved (use imadmin modify user to

set maildeliveryoption to hold). Then invoke hold_slave to move any

messages already in the other queues to the hold queue. At this point, perform the

remaining migration steps. Once you have completed these steps, remove

maildeliveryoption=hold , and then invoke hold_master to reenqueue

messages to their proper channels.

For more information, refer to the man pages for hold_master , hold_slave , and

imadmin-modify-user .

Conversion Channel

The conversion channel performs arbitrary body-part-by-body-part conversions on

messages flowing through IMTA. Any subset of IMTA traffic can be selected for

conversion and any set of programs or command procedures can be used to perform

conversion processing. (IMTA's native conversion facilities are fairly limited, so the

ability to call external converters is crucial.) A special conversion channel

configuration is consulted to choose an appropriate conversion for each body part.

146 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Selecting Traffic for Conversion Processing

Although conversion processing is done using a regular IMTA channel program,

under normal circumstances this channel is never specified directly either in an

address or in an IMTA rewrite rule. IMTA controls access to the conversion channel

using the CONVERSIONSmapping table in the IMTA mappings file

(/etc/opt/SUNWmail/imta/mappings).

As IMTA processes each message it probes the CONVERSIONSmapping (if one is

present) with a string of the form:

The source-channel is the channel from which the message is coming and

destination-channel is the channel to which the message is heading. If the mapping

produces a result, it should either be the string Yes or No. If Yes is produced, IMTA

will divert the message from its regular destination to the conversion channel. If No
is produced or if no match is found, the message will be queued to the regular

destination channel.

For example, if all messages that do not originate from the tcp_intranet channel

and that are going require conversion processing, the following mapping would

then be appropriate:

Configuration of the Conversion Channel

Configuration of the conversion channel in the IMTA configuration file (imta.cnf)

is performed by default. An address of the form user@conversion. localhostname
or user@conversion will be routed through the conversion channel, regardless of

what the CONVERSIONSmapping states.

IN-CHAN=source-channel;OUT-CHAN=destination-channel;CONVERT

CONVERSIONS

IN-CHAN=tcp_intranet;OUT-CHAN=tcp_intranet;CONVERT NO
IN-CHAN=*;OUT-CHAN=tcp_intranet;CONVERT YES

Chapter 2 IMTA Configuration 147

Conversion Control

The actual conversions performed by the conversion channel are controlled by rules

specified in the IMTA conversion file. This is the file specified by the

IMTA_CONVERSION_FILEoption in the IMTA tailor file. By default, this is the file

/etc/opt/SUNWmail/imta/conversions.

The IMTA conversion file is a text file containing entries in a format that is modeled

after MIME Content-Type parameters. Each entry consists of one or more lines

grouped together; each line contains one or more name=value ; parameter clauses.

Quoting rules conform to MIME conventions for Content-Type header line

parameters. Every line except the last must end with a semicolon (;). A physical line

in this file is limited to 252 characters. You can split a logical line into multiple

physical lines using the backslash (\) continuation character. Entries are terminated

either by a line that does not end in a semicolon, one or more blank lines, or both.

For example, the following entry specifies that application/wordperfect5.1
parts in messages sent to the local channel should be converted to DDIF:

Conversion Control Parameters

The rule parameters currently provided are shown in TABLE 2-16. Parameters not

listed in the table are ignored.

out-chan=l; in-type=application; in-subtype=wordperfect5.1;
out-type=application; out-subtype=ddif; out-mode=block;
command="CONVERT/DOCUMENT 'INPUT_FILE'/FORMAT=WORDP 'OUTPUT_FILE'/FORMAT=DDIF"

TABLE 2-16 Conversion Parameters

Parameter Description

COMMAND Command to execute to perform conversion. This

parameter is required; if no command is specified, the

entry is ignored.

DELETE 0 or 1. If this flag is set, the message part will be deleted.

(If this is the only part in a message, then a single empty

text part will be substituted.)

IN-A1-FORMAT Inputs A1-Format from enclosing MESSAGE/RFC822part.

IN-A1-TYPE Inputs A1-Type from enclosing MESSAGE/RFC822part.

IN-CHAN Inputs channel to match for conversion (wildcards

allowed). The conversion specified by this entry will only

be performed if the message is coming from the specified

channel.

148 Sun Internet Mail Server 4.0 Reference Manual • July 1999

IN-CHANNEL Synonym for IN-CHAN.

IN-DESCRIPTION Inputs MIME Content-Description.

IN-DISPOSITION Inputs MIME Content-Disposition.

IN-DPARAMETER-DEFAULT-n Inputs MIME Content-Disposition parameter value

default if parameter is not present. This value is used as a

default for the IN-DPARAMETER-VALUE-n test when no

such parameter is specified in the body part.

IN-DPARAMETER-NAME-n Inputs MIME Content-Disposition parameter name whose

value is to be checked; n = 0, 1, 2,

IN-DPARAMETER-VALUE-n Inputs MIME Content-Disposition parameter value that

must match corresponding IN-DPARAMETER-NAME
(wildcards allowed). The conversion specified by this

entry is performed only if this field matches the

corresponding parameter in the body part's

Content-Disposition: parameter list.

IN-PARAMETER-DEFAULT-n Inputs MIME Content-Type parameter value default if

parameter is not present. This value is used as a default

for the IN-PARAMETER-VALUE-n test when no such

parameter is specified in the body part.

IN-PARAMETER-NAME-n Inputs MIME Content-Type parameter name whose value

is to be checked; n = 0, 1, 2,

IN-PARAMETER-VALUE-n Inputs MIME Content-Type parameter value that must

match corresponding IN-PARAMETER-NAME(wildcards

allowed). The conversion specified by this entry is

performed only if this field matches the corresponding

parameter in the body part's Content-Type parameter list.

IN-SUBJECT Inputs Subject from enclosing MESSAGE/RFC822part.

IN-SUBTYPE Inputs MIME subtype to match for conversion (wildcards

allowed). The conversion specified by this entry is

performed only if this field matches the MIME subtype of

the body part.

IN-TYPE Inputs MIME type to match for conversion (wildcards

allowed). The conversion specified is performed only if

this field matches the MIME type of the body part.

ORIGINAL-HEADER-FILE 0 or 1. If set to 1, the original headers or the enclosing

MESSAGE/RFC822part are written to the file represented

by the OUTPUT_HEADERSsymbol.

OUT-A1-FORMAT Outputs A1-Format.

OUT-A1-TYPE Outputs A1-Type.

TABLE 2-16 Conversion Parameters (Continued)

Parameter Description

Chapter 2 IMTA Configuration 149

OUT-CHAN Outputs channel to match for conversion (wildcards

allowed). The conversion specified by this entry will be

performed only if the message is destined for the specified

channel.

OUT-CHANNEL Synonym for OUT-CHAN.

OUT-DESCRIPTION Outputs MIME Content-Description if it is different than

the input MIME Content-Description.

OUT-DISPOSITION Outputs MIME Content-Disposition if it is different than

the input MIME Content-Disposition.

OUT-DPARAMETER-NAME-n Outputs MIME Content-Disposition parameter name; n=0,

1, 2,

OUT-DPARAMETER-VALUE-n Outputs MIME Content-Disposition parameter value

corresponding to OUT-DPARAMETER-NAME-n.

OUT-MODE Mode in which to read the converted file. This should be

one of: BLOCK, RECORD, RECORD-ATTRIBUTE, TEXT.

OUT-ENCODING Encoding to apply to the converted file.

OUT-PARAMETER-NAME-n Outputs MIME Content-Type parameter name; n = 0, 1, 2,

....

OUT-PARAMETER-VALUE-n Outputs MIME Content-Type parameter value

corresponding to OUT-PARAMETER-NAME-n.

OUT-SUBTYPE Outputs MIME type if it is different than the input MIME

type.

OUT-TYPE Outputs MIME type if it is different than the input type.

OVERRIDE-HEADER-FILE 0 or 1. If set, then headers are read from the

OUTPUT_HEADERSsymbol, overriding the original headers

in the enclosing MESSAGE/RFC822part.

PARAMETER-SYMBOL-n Content-Type parameters to convert to environment

variables if present; n = 0, 1, 2, Takes as argument the

name of the MIME parameter to convert, as matched by

an IN-PARAMETER-NAME-n clause. Each

PARAMETER-SYMBOL-n is extracted from the

Content-Type: parameter list and placed in an

environment variable of the same name prior to executing

the converter.

PARAMETER-COPY-n A list of the Content-Type parameters to copy from the

input body part's Content-Type parameter list to the

output body part's Content-Type: parameter list; n=0, 1, 2,

.... Takes as argument the name of the MIME parameter to

copy, as matched by an IN-PARAMETER-NAME-n clause.

TABLE 2-16 Conversion Parameters (Continued)

Parameter Description

150 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Predefined Environment Variables

TABLE 2-17 shows the basic set of environment variables available for use by the

conversion command.

Additional environment variables containing Content-Type information can be

created as they are needed using the PARAMETER-SYMBOL-n facility.

Conversion Entry Scanning and Application

The conversion channel processes each message part-by-part. The header of each

part is read and its Content-Type and other header information is extracted. The

entries in the conversion file are then scanned in order from first to last; any IN-
parameters present and the OUT-CHANparameter, if present, are checked. If all of

these parameters match the corresponding information for the body part being

processed, then the conversion specified by the remainder of the parameter is

performed.

PART-NUMBER Dotted integers: a. b. c... The part number of the MIME

body part.

RELABEL 0 or 1. This flag is ignored during conversion channel

processing.

TABLE 2-17 Environment Variables used by Conversion Channel

Environment Variable Description

INPUT_TYPE Content type of the input message part.

INPUT_SUBTYPE Content subtype of the input message part.

INPUT_DESCRIPTION Content description of the input message part.

INPUT_DISPOSITION Content disposition of the input message part.

OUTPUT_FILE Name of the file where the converter should store its output. The

converter should create and write this file.

OUTPUT_FILE Name of the file where the converter should store headers for an

enclosing MESSAGE/RFC822part. The converter should create

and write this file.

TABLE 2-16 Conversion Parameters (Continued)

Parameter Description

Chapter 2 IMTA Configuration 151

More specifically, the matching checks: if the IN-CHAN and OUT-CHANparameters

match the channels through which the message is passing; and if the PART-NUMBER
matches the structured part number2 of the message part; and if all of the IN-CHAN,

IN-PARAMETER-NAME, IN-PARAMETER-VALUE, IN-SUBTYPE, and IN-TYPE ,

parameters match the Content-Type of the message; and if all of the

IN-DISPOSITION , IN-DPARAMETER-NAME, and IN-DPARAMETER-VALUE
parameters match the Content-Disposition of the message; and if the

IN-DESCRIPTION matches the Content-Description of the message; and if the

IN-SUBJECT, IN-A1-TYPE , and IN-A1-FORMAT of the headers of the immediately

enclosing message (MESSAGE/RFC822part) match those immediately enclosing the

message part. Only if all specified parameters match is the entry consider to match.

Scanning terminates once a matching entry has been found or all entries have been

exhausted. If no entry matches no conversion is performed.

If the matching entry specifies DELETE=1, then the message part is deleted.

Otherwise, the command specified by the COMMANDparameter is executed.

Once an entry with a COMMANDparameter has been selected, the body part is

extracted to a file. The converter execution environment is prepared as specified by

the PARAMETER-SYMBOL-n parameters. Finally, a subprocess is created to run the

command specified by the COMMANDparameter. The command should perform the

necessary conversion operation, reading the file specified by the INPUT_FILE
environment variable and producing the file specified by the OUTPUT_FILE
environment variable.

Conversion operations are terminated and no conversion is performed if the forked

command returns an error.

If the command succeeds, the resulting output file is read as specified by the

OUT-MODEparameter and a new body part containing the converted material is

constructed according to the OUT-ENCODING, OUT-PARAMETER-NAME-n,

OUT-PARAMETER-VALUE-n, OUT-SUBTYPE, OUT-TYPE, OUT-DESCRIPTION,

OUT-DISPOSITION , and OUT-DPARAMETER-VALUE-n parameters.

This process is repeated for each part of the message until all parts have been

processed.

Headers in an Enclosing MESSAGE/RFC822 Part

When performing conversions on a message part, the conversion channel has access

to the headers in an enclosing MESSAGE/RFC822part, or to the message headers if

there is no enclosing MESSAGE/RFC822part.

For instance, the IN-A1-TYPE and IN-A1-FORMAT parameters can be used to check

the A1-Type and A1-Format headers of an enclosing part, and the OUT-A1-TYPE
and OUT-A1-FORMATparameters can be used to set those enclosing headers.

152 Sun Internet Mail Server 4.0 Reference Manual • July 1999

More generally, if an entry is selected that has ORIGINAL-HEADER-FILE=1 , then all

the original headers of the enclosing MESSAGE/RFC822part are written to the file

represented by the OUTPUT_HEADERSenvironment variable. If

OVERRIDE-HEADER-FILE=1, then the conversion channel will read and use as the

headers on that enclosing part the contents of the file represented by the

OUTPUT_HEADERSenvironment variable.

Environment Variable Substitution in Conversion Entries

Environment variable names may be substituted into a conversion entry by

enclosing the name in single quotes. For instance, with a site supplied command

procedure CONVERTERthat attempts to perform various conversions and which

defines OUTPUT_TYPEand OUTPUT_SYMBOLjob logicals describing its output, one

might use an entry along the lines of:

To obtain a literal single quote in a conversion entry, quote it with the backslash

character, \' . To obtain a literal backslash in a conversion entry, use two backslashes,

\\ .

Calling Out a Mapping Table from a Conversion Entry

The value for a conversion parameter may be obtained by calling out a mapping

table. The syntax for calling out a mapping table is as follows:

Consider the following mapping table:

in-chan=tcp_local; out-chan=l; in-type=application; in-subtype=*;
out-type='OUTPUT_TYPE'; out-subtype='OUTPUT_SUBTYPE';
command="@CONVERTER 'INPUT_FILE' 'OUTPUT_FILE' 'INPUT_TYPE' 'INPUT_SUBTYPE'"

' mapping-table-name: mapping-input'

X-ATT-NAMES
postscript PS.PS
wordperfect5.1 WPC.WPC
msword DOC.DOC

Chapter 2 IMTA Configuration 153

The following conversion entry for the above mapping table results in substituting

generic file names in place of specific file names on attachments:

UUCP Channel

UUCP (UNIX to UNIX Copy Program) is an asynchronous terminal, line-based

system providing support for file transfer and remote execution between different

computer systems. These primitive operations are then used to construct a mail

system, which is also, confusingly, known as UUCP.

Solaris supports the HoneyDanBer version of UUCP. Refer to the book Configuring
Your Network Software for information on setting up UUCP on your system.

The UUCP channel is not one of the default channels. It cannot be configured

through the Administration Console. This section describes how to set up the UUCP

channel by editing the IMTA configuration file, imta.cnf .

Setting Up the Channel

Two or more channels are needed for the IMTA to communicate using UUCP. A

single common channel is used for all incoming messages, no matter from what

system they originated. An additional outbound channel is needed for each system

connected using UUCP. The incoming message channel is slave-only and should

never have any messages queued to it. The outgoing message channels are

master-only.

out-chan=tcp_local; in-type=application; in-subtype=*;
in-parameter-name-0=name; in-parameter-value-0=*:[*]*;
 out-type=application; out-subtype='INPUT-SUBTYPE';
 out-parameter-name-0=name;
 out-parameter-value-0='X-ATT-NAMES:\'INPUT_SUBTYPE\''
 command="COPY 'INPUT_FILE' 'OUTPUT_FILE'"

154 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Adding the Channel to the imta.cnf File

The entry for the incoming message channel should resemble the following (do not

use a different channel name):

Entries for outgoing UUCP message channels will vary depending on the name of

the system to which the channel connects. For example, suppose the remote system's

official name is uuhost.bravo.com and its UUCP name is simply uuhost . A

channel definition for this system might be:

In this case, the name of the remote host to which the channel connects is derived

from the channel name. When a second channel connecting to the same remote host

is needed, it can be defined as:

In this case, the daemon channel keyword has been used to explicitly specify the

name of the remote system to which the channel connects.

If the official name and UUCP name are the same, ymir , the entry can be simplified:

Rewrite rules should be set up to point at the proper outgoing channel using the

channel's official host name. For example

uucp_gateway uucp slave
uucp-gateway

uucp_uuhost uucp master
uuhost-uucp
uuhost.bravo.com uuhost

uucp_second uucp master daemon uuhost
uuhost-second
uuhost.bravo.com uuhost

uucp_uuhost uucp master
uuhost

uucp.ymir.university.edu EU@ymir

Chapter 2 IMTA Configuration 155

Setting Up the Master Program

Once the UUCP channels have been added to the configuration file, the UUCP

master program should be ready to use. No additional log, script, or option files are

needed.

Setting Up the Slave Program

The IMTA uucp_slave program is used to replace the rmail program on UNIX.

You should rename the original rmail program (for example, to rmail.org) and

create a symbolic link that links rmail to

/opt/SUNWmail/imta/lib/uucp_slave as follows:

Log Files

Various log files are created during the operation of the UUCP channels. All

IMTA-specific log files are kept in the IMTA log directory,

(/var/opt/SUNWmail/imta/log).

While running, the uucp_master program creates a log file, x_master.logfile
where x is the channel name. The x_master.logfile logs each message as it is

queued to the UUCP system.

Operation of the uucp_slave program creates a log file called rmail.logfile .

Returning Undelivered Messages

The IMTA automatically returns undeliverable messages after a certain amount of

time has elapsed. However, UUCP maintains its own queues for files, so it is

possible for messages to get stuck in the UUCP queues where the IMTA’s regular

message return job cannot see them.

An additional periodic cron job is needed to return undeliverable UUCP messages.

This job operates in the same way as the IMTA’s regular message return job except

that it scans the UUCP queues and not the IMTA queues. This job is scheduled by

the cron daemon.

cd /usr/bin
mv rmail rmail.org
ln -s /opt/SUNWmail/imta/lib/uucp_slave rmail

156 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Starting the Message Return cron Job

The UUCP message return job should be scheduled by cron . To submit commands

to the cron daemon, first become administrator, inetmail :

To edit the crontab entries, issue the command:

Add an entry similar to the following:

Use the sample entry shown to run the UUCP return job at 1:30 am and create the

log file /var/opt/SUNWmail/imta/log/return_uucp.log-uniqueid , where

uniqueid will be a unique string disambiguifying the file name, allowing for

multiple versions of the file. The first value specifies the minutes after the hour, and

the second value specifies the hour—you can specify other values according to the

needs of your site. Use the return_uucp shell script as shown above, which itself

calls the program /var/opt/SUNWmail/imta/bin/return_uucp rather than the

UUCP cleanup command, since return_uucp will honor the notices channel

keyword and understand the MIME format of the messages.

Mapping File

Many components of IMTA employ table lookup-oriented information. Generally

speaking, this sort of table is used to transform (that is, map) an input string into an

output string. Such tables, called mapping tables, are usually presented as two

columns, the first (or left-hand) column giving the possible input strings and the

second (or right-hand) column giving the resulting output string for the input it is

associated with. Most of the IMTA databases are instances of just this sort of

mapping table. IMTA database files, however, do not provide wildcard-lookup

facilities, owing to inherent inefficiencies in having to scan the entire database for

wildcard matches.

su inetmail

% crontab -e

30 1 * * * /opt/SUNWmail/imta/lib/return_uucp.sh
</var/opt/SUNWmail/imta/log/return_uucp.log-`/opt/SUNWmail/imta/lib/unique_id` 2>&1

Chapter 2 IMTA Configuration 157

The mapping file provides IMTA with facilities for supporting multiple mapping

tables. Full wildcard facilities are provided, and multistep and iterative mapping

methods can be accommodated as well. This approach is more compute-intensive

than using a database, especially when the number of entries is large. However, the

attendant gain in flexibility may serve to eliminate the need for most of the entries in

an equivalent database, and this may result in lower overhead overall.

Note – The mapping file is used for reverse mapping, forward mapping, access

control mapping, conversion mapping, and so forth. Additional mapping file

information is available in Chapter 6, “IMTA Security and Unsolicited Bulk Email

(UBE) Handling,” of the SIMS Administrator’s Guide.

Locating and Loading the Mapping File

All mappings are kept in the IMTA mapping file. (This is the file specified with the

IMTA_MAPPING_FILE option in the IMTA tailor file; by default, this is

/etc/opt/SUNWmail/imta/mappings .) The contents of the mapping file will be

incorporated into the compiled configuration.

The mapping file should be world readable. Failure to allow world-read access will

lead to erratic behavior.

File Format in the Mapping File

The mapping file consists of a series of separate tables. Each table begins with its

name. Names always have an alphabetic character in the first column. The table

name is followed by a required blank line, and then by the entries in the table.

Entries consist of zero or more indented lines. Each entry line consists of two

columns separated by one or more spaces or tabs. Any spaces within an entry must

be quoted. A blank line must appear after each mapping table name and between

each mapping table; no blank lines can appear between entries in a single table.

Comments are introduced by an exclamation mark (!) in the first column.

158 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The resulting format looks like:

An application using the mapping table TABLE-2-NAME would map the string

pattern2-2 into whatever is specified by template2-2 . Each pattern or template

can contain up to 252 characters. There is no limit to the number of entries that can

appear in a mapping (although excessive numbers of entries may consume huge

amounts of CPU and can consume excessive amounts of memory). Long lines (over

252 characters) may be continued by ending them with a backslash (\). The white

space between the two columns and before the first column may not be omitted.

Duplicate mapping table names are not allowed in the mapping file.

TABLE-1-NAME

 pattern1-1 template1-1
 pattern1-2 template1-2
 pattern1-3 template1-3
 . .
 . .
 . .
 pattern1-n template1-n

TABLE-2-NAME

 pattern2-1 template2-1
 pattern2-2 template2-2
 pattern2-3 template2-3
 . .
 . .
 . .
 pattern2-n template2-n

 .
 .
 .

TABLE-m-NAME

 .
 .
 .

Chapter 2 IMTA Configuration 159

Including Other Files in the Mapping File

Other files may be included in the mapping file. This is done with a line of the form:

This will effectively substitute the contents of the file file-spec into the mapping

file at the point where the include appears. The file specification should specify a full

file path (directory, and so forth). All files included in this fashion must be world

readable. Comments are also allowed in such included mapping files. Includes can

be nested up to three levels deep. Include files are loaded at the same time the

mapping file is loaded—they are not loaded on demand, so there is no performance

or memory savings involved in using include files.

Mapping Operations

All mappings in the mapping file are applied in a consistent way. The only things

that change from one mapping to the next is the source of input strings and what the

output from the mapping is used for.

A mapping operation always starts off with an input string and a mapping table.

The entries in the mapping table are scanned one at a time from top to bottom in the

order in which they appear in the table. The left side of each entry is used as pattern,

and the input string is compared in a case-blind fashion with that pattern.

Mapping Entry Patterns

Patterns can contain wildcard characters. In particular, the usual wildcard characters

are allowed: an asterisk (*) will match zero or more characters, and each percent sign

(%) will match a single character. Asterisks, percent signs, spaces, and tabs can be

quoted by preceding them with a dollar sign ($). Quoting an asterisk or percent sign

robs it of any special meaning. Spaces and tabs must be quoted to prevent them from

ending prematurely a pattern or template. Literal dollar sign characters should be

doubled ($$), the first dollar sign quoting the second one.

<file-spec

160 Sun Internet Mail Server 4.0 Reference Manual • July 1999

TABLE 2-18 Mapping Pattern Wildcards

Wildcard Description

% Match exactly one character.

* Match zero or more characters, with maximal or “greedy”

left-to-right matching

Back match Description

$ n* Match the nth wildcard or glob.

Modifiers Description.

$_ Use minimal or “lazy” left-to-right matching.

$@ Turn off “saving” of the succeeding wildcard or glob.

$^ Turn on “saving” of the succeeding wildcard or glob; this is the

default.

Global wildcard Description

$A% Match one alphabetic character, A--Z or a--z.

$A* Match zero or more alphabetic characters, A--Z or a--z.

$B% Match one binary digit (0 or 1).

$B* Match zero or more binary digits (0 or 1).

$D% Match one decimal digit 0--9.

$D* Match zero or more decimal digits 0--9.

$H% Match one hexadecimal digit 0--9 or A--F.

$H* Match zero or more hexadecimal digits 0--9 or A--F.

$O% Match one octal digit 0--7.

$O* Match zero or more octal digits 0--7.

$S% Match one symbol set character, for example, 0--9, A--Z, a--z, _, $.

$S* Match zero or more symbol set characters, for example, 0--9, A--Z,

a--z, _, $.

$T% Match one tab or vertical tab or space character.

$T* Match zero or more tab or vertical tab or space characters.

$X% A synonym for $H%.

$X* A synonym for $H*.

$[c]% Match character c.

Chapter 2 IMTA Configuration 161

Within globs, that is, within a $[...] construct, the backslash character, ‚is the

quote character. To represent a literal hyphen, - , or right bracket,] , within a glob the

hyphen or right bracket must be quoted with a backslash.

All other characters in a pattern just represent and match themselves. In particular,

single and double quote characters as well as parentheses have no special meaning

in either mapping patterns or templates; they are just ordinary characters. This

makes it easy to write entries that correspond to illegal addresses or partial

addresses.

To specify multiple modifiers, or to specify modifiers and a back match, the syntax

uses just one dollar character. For instance, to back match the initial wild card,

without saving the back match itself, one would use $@0, not $@$0.

Note that the imta test -mapping utility may be used to test mapping patterns

and specifically to test wildcard behavior in patterns.

Asterisk wildcards maximize what they match by working from left to right across

the pattern. For instance, when the string a/b/c is compared to the pattern */* , the

left asterisk will match “a/b” and the right asterisk will match the remainder, c .

IPv4 Matching

With IPv4 matching, an IP address or subnet is specified, optionally followed by a

slash and the number of bits to ignore when checking for a match. For instance,

$<123.45.67.0/8>

will match anything in the 123.45.67.0 subnet. Or another example is that

$<123.45.67.4/2>

will match anything in the range 123.45.67.4--123.45.67.7.

$[c]* Match arbitrary occurrences of character c.

$[c 1 c 2 ... c n]% Match exactly one occurrence of character c 1, c 2, or c n.

$[c 1 c 2 ... c n]* Match arbitrary occurrences of any characters c 1, c 2, or c n.

$[c 1 -c n]% Match any one character in the range c 1 to c n.

$[c 1 -c n]* Match arbitrary occurrences of characters in the range c 1 to c n.

$< IPv4> Match an IPv4 address.

TABLE 2-18 Mapping Pattern Wildcards (Continued)

162 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Mapping Entry Templates

If the comparison of the pattern in a given entry fails, no action is taken; the scan

proceeds to the next entry. If the comparison succeeds, the right side of the entry is

used as a template to produce an output string. The template effectively causes the

replacement of the input string with the output string that is constructed from the

instructions given by the template.

Almost all characters in the template simply produce themselves in the output. The

one exception is a dollar sign ($).

A dollar sign followed by a dollar sign, space, or tab produces a dollar sign, space,

or tab in the output string. Note that all these characters must be quoted in order to

be inserted into the output string.

A dollar sign followed by a digit n calls for a substitution; a dollar sign followed by

an alphabetic character is referred to as a “metacharacter.” Metacharacters

themselves will not appear in the output string produced by a template. See

TABLE 2-19 for a list of the special substitution and standard processing

metacharacters. Any other metacharacters are reserved for mapping-specific

applications.

Note that any of the metacharacters $C, $E, $L , or $R, when present in the template

of a matching pattern, will influence the mapping process and control whether it

terminates or continues. That is, it is possible to set up iterative mapping table

entries, where the output of one entry becomes the input of another entry. If the

template of a matching pattern does not contain any of the metacharacters $C, $E,

$L , or $R, then $E (immediate termination of the mapping process) is assumed.

The number of iterative passes through a mapping table is limited to prevent infinite

loops. A counter is incremented each time a pass is restarted with a pattern that is

the same length or longer than the previous pass. If the string has a shorter length

than previously, the counter is reset to zero. A request to reiterate a mapping is not

honored after the counter has exceeded 10.

TABLE 2-19 Mapping Template Substitutions and Metacharacters

Substitution sequence Substitutes

$n The nth wildcarded field as counted from left to right starting from

0.

$#...# Sequence number substitution.

$|...| Applies specified mapping table to supplied string.

${...} General database substitution.

$[...] Invokes site-supplied routine; substitute in result.

Chapter 2 IMTA Configuration 163

Wildcard Field Substitutions ($n)

A dollar sign followed by a digit n is replaced with the material that matched the

nth wildcard in the pattern. The wildcards are numbered starting with 0. For

example, the following entry would match the input string PSI%A::B and produce

the resultant output string b@a.psi.network.org :

The input string PSI%1234::USER would also match producing

USER@1234.psi.network.org as the output string. The input string

PSIABC::DEF would not match the pattern in this entry and no action would be

taken; that is, no output string would result from this entry.

Metacharacter Description

$C Continues the mapping process starting with the next table entry;

uses the output string of this entry as the new input string for the

mapping process.

$E Ends the mapping process now; uses the output string from this

entry as the final result of the mapping process.

$L Continues the mapping process starting with the next table entry;

use the output string of this entry as the new input string; after all

entries in the table are exhausted, makes one more pass, starting

with the first table entry. A subsequent match may override this

condition with a $C, $E, or $R metacharacter.

$R Continues the mapping process starting with the first entry of the

mapping table; uses the output string of this entry as the new input

string for the mapping process.

$?x? Mapping entry succeeds x percent of the time.

$\ Forces subsequent text to lowercase.

$^ Forces subsequent text to uppercase.

$_ Leaves subsequent text in its original case.

PSI$%*::* $1@$0.psi.network.org

TABLE 2-19 Mapping Template Substitutions and Metacharacters (Continued)

Substitution sequence Substitutes

164 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Controlling Text Case ($\ , $^ , $_)

The metacharacter $\ forces subsequent text to lowercase, $^ forces subsequent text

to uppercase, and $_ causes subsequent text to retain its original case. For instance,

these metacharacters may be useful when using mappings to transform addresses

for which case is significant.

Processing Control ($C, $L , $R, $E)

The $C, $L , $R, and $E metacharacters influence the mapping process, controlling

whether and when the mapping process terminates. The metacharacter:

■ $C causes the mapping process to continue with the next entry, using the output

string of the current entry as the new input string for the mapping process.

■ $L causes the mapping process to continue with the next entry, using the output

string of the current entry as the new input string for the mapping process, and, if

no matching entry is found, making one more pass through the table starting with

the first table entry; a subsequent matching entry with a $C, $E, or $R
metacharacter overrides this condition.

■ $R causes the mapping process to continue from the first entry of the table, using

the output string of the current entry as the new input string for the mapping

process.

■ $E causes the mapping process to terminate; the output string of this entry is the

final output. $E is the default.

Mapping table templates are scanned left to right. To set a $C, $L , or $R flag for

entries that may “succeed” or “fail” (for example, general database substitutions or

random-value controlled entries), put the $C, $L , or $R metacharacter to the left of

the part of the entry that may succeed or fail; otherwise, if the remainder of the entry

fails, the flag will not be seen.

Entry Randomly Succeeds or Fails ($?x?)

The metacharacters $?x? in a mapping table entry cause the entry to “succeed” x
percent of the time; the rest of the time, the entry “fails” and the output of the

mapping entry's input is taken unchanged as the output. (Note that, depending

upon the mapping, the effect of the entry failing is not necessarily the same as the

entry not matching in the first place.)The x should be a real number specifying the

success percentage.

For instance, suppose that a system with IP address 123.45.6.78 is sending your site

just a little too much email and you'd like to slow it down; if you're using the

multithreaded TCP SMTP channel, you can use a PORT_ACCESSmapping table in

the following way. Suppose you'd like to allow through only 25 percent of its

connection attempts and reject the other 75 percent of its connection attempts. The

Chapter 2 IMTA Configuration 165

following PORT_ACCESSmapping table uses $?25? to cause the entry with the $Y
(accept the connection) to succeed only 25 percent of the time; the other 75 percent of

the time, when this entry fails, the initial $C on that entry causes IMTA to continue

the mapping from the next entry, which causes the connection attempt to be rejected

with an SMTP error and the message: Try again later .

Sequence Number Substitutions ($#...#)

A $#...# substitution increments the value stored in an IMTA sequence file and

substitutes that value into the template. This can be used to generate unique,

increasing strings in cases where it is desirable to have a unique qualifier in the

mapping table output; for instance, when using a mapping table to generate file

names.

Permitted syntax is any one of the following:

The required seq-file-spec argument is a full file specification for an already existing

IMTA sequence file, where the optional radix and width arguments specify the radix

(base) in which to output the sequence value, and the number of digits to output,

respectively. The default radix is 10. Radices in the range -36 to 36 are also allowed;

for instance, base 36 gives values expressed with digits 0,...,9,A,...,Z. By default, the

sequence value is printed in its natural width, but if the specified width calls for a

greater number of digits, then the output will be padded with 0's on the left to

obtain the correct number of digits.

Note that if a width is explicitly specified, then the radix must be explicitly specified

also.

PORT_ACCESS

TCP|*|25|123.45.6.78|* C?25?$Y
TCP|*|25|123.45.6.78|* $NTry$ again$ later

$#seq-file-spec| radix| width#

$#seq-file-spec| radix#

$#seq-file-spec#

166 Sun Internet Mail Server 4.0 Reference Manual • July 1999

As noted above, the IMTA sequence file referred to in a mapping must already exist.

To create an IMTA sequence file, use the following command:

or

A sequence number file accessed using a mapping table must be world readable in

order to operate properly. You must also have an IMTA user account in order to use

such sequence number files.

Mapping Table Substitutions ($|...|)

A substitution of the form $| mapping, argument| is handled specially. IMTA looks

for a auxiliary mapping table named mapping in the IMTA mapping file, and uses

argument as the input to that named auxiliary mapping table. The named auxiliary

mapping table must exist and must set the $Y flag in its output if it is successful; if

the named auxiliary mapping table does not exist or doesn't set the $Y flag, then that

auxiliary mapping table substitution fails and the original mapping entry is

considered to fail: the original input string will be used as the output string.

Note that when you want to use processing control metacharacters such as $C, $R, or

$L in a mapping table entry that does a mapping table substitution, the processing

control metacharacter should be placed to the left of the mapping table substitution

in the mapping table template; otherwise the “failure” of a mapping table

substitution will mean that the processing control metacharacter will not be seen.

General Database Substitutions (${...})

A substitution of the form ${text} is handled specially. The text part is used as a key

to access the general database. This database is generated with the IMTA crdb
utility. If text is found in the database, the corresponding template from the database

is substituted. If text does not match an entry in the database, the input string is used

unchanged as the output string.

If a general database exists, it should be world readable to insure that it operates

properly.

% touch seq-file-spec

% cat > seq-file-spec

Chapter 2 IMTA Configuration 167

When you want to use processing control metacharacters such as $C, $R, or $L in a

mapping table entry that does a general database substitution, the processing control

metacharacter should be placed to the left of the general database substitution in the

mapping table template; otherwise the “failure” of a general database substitution

will mean that the processing control metacharacter will not be seen.

Site-Supplied Routine Substitutions ($[...])

A substitution of the form $[image, routine, argument] is handled specially. The

image ,routine ,argument part is used to find and call a customer-supplied

routine. At runtime, IMTA uses dlopen and dlsym to dynamically load and call the

routine routine from the shared library image . The routine routine is then called as a

function with the following argument list:

The argument and result are 252-byte long character string buffers. The

argument and result are passed as a pointer to a character string (for example, in

C, as char*). The arglength and reslength are signed, long integers passed by

reference. On input, argument contains the argument string from the mapping table

template, and arglength the length of that string. On return, the resultant string

should be placed in result and its length in reslength . This resultant string will

then replace the $[image,routine,argument] in the mapping table template.

The routine routine should return 0 if the mapping table substitution should fail and

-1 if the mapping table substitution should succeed. If the substitution fails, then

normally the original input string will be used unchanged as the output string.

If you want to use processing control metacharacters such as $C, $R, or $L in a

mapping table entry that does a site-supplied routine substitution, you place the

processing control metacharacter to the left of the site-supplied routine substitution

in the mapping table template; otherwise, the “failure” of a mapping table

substitution will mean that the processing control metacharacter will not be seen.

The site-supplied routine callout mechanism allows IMTA's mapping process to be

extended in all sorts of complex ways. For example, in a PORT_ACCESSor

ORIG_SEND_ACCESSmapping table, a call to some type of load monitoring service

could be performed and the result used to decide whether or not to accept a

connection or message.

The site-supplied shared library image image should be world readable.

Note – This facility is not designed for use by casual users; it is intended to be used

to extend IMTA's capabilities system-wide.

status = routine (argument, arglength, result, reslength)

168 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Address-Reversal Database, REVERSEMapping

and FORWARDMapping

Address reversal is the operation consisting of converting an address from an

internal form to a public, advertised form. For example, while

uid@mailhost.alpha.com might be a valid address within the alpha.com
domain, it might not be an appropriate address for the outside world to see.

first.last@alpha.com is a more likely public address.

The address reversal operation applies by default to envelop From and all header

addresses. This can be changed by setting the value of the REVERSE_ENVELOPE

and system options. Address reversal can be turned on or off on a per-channel basis

using the reverse channel keyword.

The public address for each user is specified by the mail attribute of the user entry in

the directory. The same is true for distribution lists.

The reverse database contains a mapping between any valid address and this public

address. It is updated and created by imta dirsync .

The reverse database is created each time you run the imta dirsync command.

The reverse database is generally located in the IMTA database directory. The

database is the files whose names are specified with the IMTA_REVERSE_DATABASE
option in the /etc/opt/SUNWmail/imta/imta_tailor file, which by default are

the files /var/opt/SUNWmail/imta/db/reversedb.* .

Note – Do not edit this database directly. Any required changes must be done in the

directory.

If an address is found in the database, the corresponding right side from the

database is substituted for the address. If the address is not found, an attempt is

made to locate a mapping table named REVERSEin the mapping file. No

substitution is made, and rewriting terminates normally if the table does not exist or

no entries from the table match.

Reverse mapping can also be performed on a per-channel basis. The src_channel|
destination and channel| internal addresses need to be mapped to

|tcp_local|@*.stream.com and $|@stream.com$Y .

If the address matches a mapping entry, the result of the mapping is tested. The

resulting string will replace the address if the entry specifies a $Y; a $N will discard

the result of the mapping. If the mapping entry specifies $D in addition to $Y, the

resulting string will be run through the reversal database once more; and if a match

occurs, the template from the database will replace the mapping result (and hence

the address).

Chapter 2 IMTA Configuration 169

As an example, suppose that the internal addresses at stream.com are actually of

the form user@host.stream.com , but, unfortunately, the user name space is such

that user@hosta.stream.com and user@hostb.stream.com specify the same

person for all hosts at stream.com . Then the following, very simple REVERSE
mapping may be used in conjunction with the address-reversal database:

This mapping maps addresses of the form user@anyhost.stream.com to

user@host.stream.com . The $D metacharacter causes the address-reversal

database to be consulted. The address-reversal database should contain entries of the

form:

The reverse and noreverse channel keywords, and the IMTA options

USE_REVERSE_DATABASEand REVERSE_ENVELOPEmight be used to control the

specifics of when and how address reversal is applied. In particular, address reversal

will not be applied to addresses in messages when the destination channel is marked

with the noreverse keyword. If USE_REVERSE_DATABASEis set to 0, address

reversal will not be used with any channel. The REVERSE_ENVELOPEoption controls

TABLE 2-20 REVERSE mapping table flags

Flags Description

$Y Use output as new address.

$N Address remains unchanged.

$D Run output through the reversal database.

$A Add pattern as reverse database entry.

$F Add pattern as forward database entry.

Flag comparison Description

$:B Match only header (body) addresses.

$:E Match only envelope addresses.

$:F Match only forward pointing addresses.

$:R Match only backwards pointing addresses.

$:I Match only message-ids.

REVERSE
* @ *.stream.com $0@host.stream.com$Y$D

user@host.stream.com first.last@stream.com

170 Sun Internet Mail Server 4.0 Reference Manual • July 1999

whether or not address reversal is applied to envelope From addresses as well as

message header addresses. See the descriptions of these options and keywords for

additional information on their effects. By default, the address reversal database is

used if the routability scope is set to the mail server domains.

FORWARDAddress Mapping

Address reversals are not applied to envelope To addresses. These addresses are

continuously rewritten and modified as messages proceed through the mail system.

The entire goal of routing is to convert envelope To addresses to increasingly

system- and mailbox-specific formats. The canonization functions of address reversal

are inappropriate for envelope To addresses.

The various substitution mechanisms for envelope To addresses provide

functionality equivalent to the reversal database, but none of these things provides

functionality equivalent to reverse mapping. Circumstances can arise where

mapping functionality for envelope To addresses is useful and desirable.

The FORWARDmapping table provides this missing functionality. If a FORWARD
mapping table exists in the mapping file, it is applied to each envelope To address.

No changes are made if this mapping does not exist or no entries in the mapping

match.

If the address matches a mapping entry, the result of the mapping is tested. The

resulting string will replace the envelope To address if the entry specifies a $Y; a $N
will discard the result of the mapping.

The following example illustrates the use of a complex REVERSEand FORWARD
mapping. Suppose that a system or pseudo-domain named

am.sigurd.stream.com associated with the native channel produces RFC 822

addresses of the general form:

or

"lastname, firstname"@am.sigurd.stream.com

"lastname,firstname"@am.sigurd.stream.com

Chapter 2 IMTA Configuration 171

Although these addresses are perfectly legal, they often confuse other mailers that

do not fully comply with RFC 822 syntax rules—mailers that do not handle quoted

addresses properly, for instance. Consequently, an address format that does not

require quoting tends to operate with more mailers. One such format is:

The goals of this example mapping are to:

■ Allow any of these three address formats to be used

■ Present only addresses in the original format to the mr_gateway channel ,

converting formats as necessary

■ Present only addresses in the new unquoted format to all other channels,

converting formats as necessary

The following mapping file tables produce the results. The REVERSEmapping

shown assumes that bit 3 in the IMTA option USE_REVERSE_DATABASEis set.

Option Files

Global IMTA options, as opposed to channel options, are specified in the IMTA

option file.

The IMTA uses an option file to provide a means of overriding the default values of

various parameters that apply to the IMTA as a whole. In particular, the option file

is used to establish sizes of the various tables into which the configuration and alias

files are read.

firstname.lastname@am.sigurd.stream.com

REVERSE
 |mr_gateway|",$ *"@am.sigurd.stream.com $Y"$1,$ $2"@am.sigurd.nocompany.com
 |mr_gateway|",*"@am.sigurd.stream.com $Y"$1,$ $2"@am.sigurd.nocompany.com
 ||"*,$ *"@am.sigurd.stream.com Y3.$2@am.sigurd.nocompany.com
 ||"*,*"@am.sigurd.stream.com Y3.$2@am.sigurd.nocompany.com
 |mr_gateway|.*@am.sigurd.stream.com $Y"$2,$ $1"@am.sigurd.nocompany.com
 ||*.*@am.sigurd.stream.com Y2.$3@am.sigurd.nocompany.com

FORWARD
 "*,$ *"@am.sigurd.stream.com $Y"$0,$ $1"@am.sigurd.nocompany.com
 "*,*"@am.sigurd.stream.com $Y"$0,$ $1"@am.sigurd.nocompany.com
 .@am.sigurd.stream.com $Y"$1,$ $0"@am.sigurd.nocompany.com

172 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Locating and Loading the IMTA Option File

The option file is the file specified with the IMTA_OPTION_FILE option in the IMTA

tailor file (/etc/opt/SUNWmail/imta/imta_tailor). By default, this is

/etc/opt/SUNWmail/imta/option.dat .

Option File Format and Available Options

Option files consist of several lines. Each line contains the setting for one option. An

option setting has the form:

The value may be either a string or an integer, depending on the option's

requirements. If the option accepts an integer value, a base may be specified using

notation of the form b%v, where b is the base expressed in base 10 and v is the actual

value expressed in base b.

Comments are allowed. Any line that begins with an exclamation point (!) is

considered to be a comment and is ignored. Blank lines are also ignored in any

option file.

The available options are listed in TABLE 2-21.

option=value

TABLE 2-21 Option File Options

Options Description

ACCESS_ERRORS(Integer 0 or 1) IMTA provides facilities to restrict access to channels on the basis of

group IDs on the SunOS operating system. If ACCESS_ERRORSis set

to 0 (the default), when an address causes an access failure IMTA will

report it as an “illegal host or domain” error. This is the same error

that would occur if the address were simply illegal. Although

confusing, this usage provides an important element of security in

circumstances where information about restricted channels should not

be revealed. Setting ACCESS_ERRORSto 1 will override this default

and provide a more descriptive error.

ALIAS_HASH_SIZE
(Integer <= 32,767)

Sets the size of the alias hash table. This is an upper limit on the

number of aliases that can be defined in the alias file. The default is

256; the maximum value is 32,767.

ALIAS_MEMBER_SIZE
(Integer <= 20,000)

Controls the size of the index table that contains the list of alias

translation value pointers. The total number of addresses on the right

sides of all of the alias definitions in the alias file cannot exceed this

value. The default is 320; the maximum value is 20,000.

Chapter 2 IMTA Configuration 173

BLOCK_LIMIT (Integer > 0) Places an absolute limit on the size, in blocks, of any message that

may be sent or received with IMTA. Any message exceeding this size

will be rejected. By default, IMTA imposes no size limits. Note that the

blocklimit channel keyword can be used to impose limits on a

per-channel basis. The size in bytes of a block is specified with the

BLOCK_SIZE option.

BLOCK_SIZE (Integer > 0) IMTA uses the concept of a “block” in several ways. For example, the

IMTA log files (resulting from placing the logging keyword on

channels) record message sizes in terms of blocks. Message size limits

specified using the maxblocks keyword are also in terms of blocks.

Normally, an IMTA block is equivalent to 1024 characters. This option

can be used to modify this sense of what a block is.

BOUNCE_BLOCK_LIMIT Used to force bounces of messages over the specified size to return

only the message headers, rather than the full message content.

CHANNEL_TABLE_SIZE
(Integer <= 32,767)

Controls the size of the channel table. The total number of channels in

the configuration file cannot exceed this value. The default is 256; the

maximum is 32,767.

COMMENT_CHARS Sets the comment characters in IMTA configuration files.

CONVERSION_SIZE
(Integer <= 2000)

Controls the size of the conversion entry table, and thus the total

number of conversion file entries cannot exceed this number. The

default is 32.

DEQUEUE_DEBUG(0 or 1) Specifies whether debugging output from IMTA's dequeue facility

(QU) is produced. If enabled with a value of 1, this output will be

produced on all channels that use the QU routines. The default of 0

disables this output.

DOMAIN_HASH_SIZE
(Integer <= 32,767)

Controls the size of the domain rewrite rules hash table. Each rewrite

rule in the configuration file consumes one slot in this hash table; thus

the number of rewrite rules cannot exceed this option's value. The

default is 512; the maximum number of rewrite rules is 32,767.

EXPROUTE_FORWARD
(Integer 0 or 1)

Controls the application of the exproute channel keyword to

forward-pointing (To, Cc, and Bcc lines) addresses in the message

header. A value of 1 is the default and specifies that exproute should

affect forward pointing header addresses. A value of 0 disables the

action of the exproute keyword on forward pointing addresses.

HISTORY_TO_RETURN(1-200) Controls how many delivery attempt history records are included in

returned messages. The delivery history provides an indication of

how many delivery attempts were made and might indicate the

reason the delivery attempts failed. The default value for this option is

20.

HELD_SND_OPR Controls the production of operator messages when a message is

forced into a held state because it has too many Received: header

lines.

TABLE 2-21 Option File Options (Continued)

Options Description

174 Sun Internet Mail Server 4.0 Reference Manual • July 1999

HOST_HASH_SIZE
(Integer <= 32,767)

Controls the size of the channel hosts hash table. Each channel host

specified on a channel definition in the IMTA configuration file (both

official hosts and aliases) consumes one slot in this hash table, so the

total number of channel hosts cannot exceed the value specified. The

default is 512; the maximum value allowed is 32,767.

ID_DOMAIN (String) Specifies the domain name to use when constructing message IDs. By

default, the official host name of the local channel is used.

IMPROUTE_FORWARD
(Integer 0 or 1)

Controls the application of the improute channel keyword to

forward-pointing (To, Cc, and Bcc lines) addresses in the message

header. A value of 1 is the default and specifies that improute should

affect forward-pointing header addresses. A value of 0 disables the

action of the improute keyword on forward-pointing addresses.

LINE_LIMIT (Integer) Places an absolute limit on the overall number of lines in any message

that may be sent or received with IMTA. Any message exceeding this

limit will be rejected. By default, IMTA imposes no line-count

limits.The linelimit channel keyword can be used to impose limits

on a per channel basis.

LINES_TO_RETURN(Integer) Controls how many lines of message content IMTA includes when

bouncing messages. The default is 20.

LOG_CONNECTION(0 or 1) Controls whether connection information—for example, the domain

name of the SMTP client sending the message—is saved in the

mail.log file. A value of 1 enables connection logging. A value of 0

(the default) disables it.

LOG_DELAY_BUG Specifies the bins for delivery delay range counters.

LOG_FILENAME(0 or 1) Controls whether the names of the files in which messages are stored

are saved in the mail.log file. A value of 1 enables file name

logging. A value of 0 (the default) disables it.

LOG_FORMAT(1, 2, or 3) Controls formatting options for the mail.log file. A value of 1 (the

default) is the standard format. A value of 2 requests non-null

formatting: empty address fields are converted to the string “<>.” A

value of 3 requests counted formatting: all variable length fields are

preceded by N, where N is a count of the number of characters in the

field.

TABLE 2-21 Option File Options (Continued)

Options Description

Chapter 2 IMTA Configuration 175

LOG_HEADER(0 or 1) Controls whether the IMTA writes message headers to the mail.log
file. A value of 1 enables message header logging. The specific headers

written to the log file are controlled by a site-supplied

log_header.opt file. The format of this file is that of other IMTA

header option files. For example, a log_header.opt file containing

the following would result in writing the first To and the first From
header per message to the log file. A value of 0 (the default) disables

message header logging:

To: MAXIMUM=1
From: MAXIMUM=1
Defaults: MAXIMUM=-1

LOG_LOCAL(0 or 1) Controls whether the domain name for the local host is appended to

logged addresses that don't already contain a domain name. A value

of 1 enables this feature, which is useful when logs from multiple

systems running IMTA are concatenated and processed. A value of 0,

the default, disables this feature.

LOG_MESSAGE_ID(0 or 1) Controls whether message IDs are saved in the mail.log file. A

value of 1 enables message ID logging. A value of 0 (the default)

disables it.

LOG_PROCESS Includes the enqueuing process ID in IMTA log entries.

LOG_SNDOPR Controls the production of operator (OPCOM) messages or syslog

messages by the IMTA message logging facility.

LOG_SIZE_BINS Specifies the bins for message size range counters.

LOG_USERNAME(0 or 1) Controls whether the user name associated with a process that

enqueues mail is saved in the mail.log file. A value of 1 enables user

name logging. A value of 0 (the default) disables it.

MAP_NAMES_SIZE
(Integer > 0)

Specifies the size of the mapping table name table, and thus the total

number of mapping table cannot exceed this number. The default is

32.

MAX_ALIAS_LEVELS(Integer) Controls the degree of indirection allowed in aliases; that is, how

deeply aliases may be nested, with one alias referring to another alias,

and so forth. The default value is 10.

MAX_HEADER_BLOCK_USE
(Real Number Between

0 and 1)

Controls what fraction of the available message blocks can be used by

message headers.

MAX_HEADER_LINE_USE
(Real Number Between

0 and 1)

Controls what fraction of the available message lines can be used by

message headers.

TABLE 2-21 Option File Options (Continued)

Options Description

176 Sun Internet Mail Server 4.0 Reference Manual • July 1999

MAX_INTERNAL_BLOCKS(Integer) Specifies how large (in IMTA blocks) a message IMTA will keep

entirely in memory; messages larger than this size will be written to

temporary files. The default is 10. For systems with lots of memory,

increasing this value may provide a performance improvement.

MAX_LOCAL_RECEIVED_LINES
(Integer)

As IMTA processes a message, it scans any Received: header lines

attached to the message looking for references to the official local host

name. (Any Received line that IMTA inserts will contain this name.)

If the number of Received lines containing this name exceeds the

MAX_LOCAL_RECEIVED_LINESvalue, the message is entered in the

IMTA queue in a held state. The default for this value is 10 if no value

is specified in the option file. This check blocks certain kinds of

message forwarding loops. The message must be manually moved

from the held state for processing to continue.

MAX_MIME_LEVELS Specify the maximum depth to which IMTA should process MIME

messages. The default is 100, which means that IMTA will process up

to 100 levels of message nesting.

MAX_MIME_PARTS Specify the maximum number of MIME parts that IMTA should

process in a MIME message.

MAX_RECEIVED_LINES(Integer) As IMTA processes a message, it counts the number of Received:

header lines in the message's header. If the number of Received lines

exceeds the MAX_RECEIVED_LINESvalue, the message is entered in

the IMTA queue in a held state. The default for this value is 50 if no

value is specified in the option file. This check blocks certain kinds of

message forwarding loops. The message must be manually moved

from the held state for processing to continue.

MISSING_RECIPIENT_POLICY Legalizes messages that lack any recipient headers.

NORMAL_BLOCK_LIMIT(Integer) Used to instruct IMTA to downgrade the priority of messages based

on size: messages above the specified size will be downgraded to

non-urgent priority. This priority, in turn, may affect whether the

message is processed immediately, or whether it is left to wait for

processing until the next periodic job runs.

NON_URGENT_BLOCK_LIMIT
(Integer)

Used to instruct IMTA to downgrade the priority of messages based

on size: Messages above the specified size will be downgraded to

lower than nonurgent priority; they will not be processed immediately

and will wait for processing until the next periodic job runs. The value

is interpreted in terms of IMTA blocks, as specified by the

BLOCK_SIZE option. Note also that the nonurgentblocklimit
channel keyword may be used to impose such downgrade thresholds

on a per channel basis.

POST_DEBUG(0 or 1) Specifies whether debugging output is produced by IMTA's periodic

delivery job. If enabled with a value of 1, this output will be produced

in the post.log file. The default value of 0 disables this output.

TABLE 2-21 Option File Options (Continued)

Options Description

Chapter 2 IMTA Configuration 177

RECEIVED_DOMAIN(String) Sets the domain name to use when constructing Received headers.

By default, the official host name of the local channel.

RETURN_ADDRESS(String) Sets the return address for the local postmaster. The local postmaster's

address is postmaster@ localhost by default, but it can be

overridden with the address of your choice. Care should be taken in

the selection of this address—an illegal selection may cause rapid

message looping and pileups of huge numbers of spurious error

messages.

RETURN_DEBUG(0 or 1) Enables or disables debugging output in the nightly message bouncer

batch job. A value of 0 disables this output (the default), while a value

of 1 enables it. Debugging output, if enabled, appears in the output

log file, if such a log file is present. The presence of an output log file

is controlled by the crontab entry for the return job.

RETURN_DELIVERY_HISTORY
(0 or 1)

Controls whether or not a history of delivery attempts is included in

returned messages. The delivery history provides some indication of

how many delivery attempts were made and, in some cases, indicates

the reason the delivery attempts failed. A value of 1 enables the

inclusion of this information and is the default. A value of 0 disables

return of delivery history information. The HISTORY_TO_RETURN
option controls how much history information is actually returned.

RETURN_ENVELOPE(Integer) Takes a single integer value, which is interpreted as a set of bit flags.

Bit 0 (value = 1) controls whether return notifications generated by

IMTA are written with a blank envelope address or with the address

of the local postmaster. Setting the bit forces the use of the local

postmaster address; clearing the bit forces the use of a blank

addresses. Note that the use of blank address is mandated by RFC

1123. However, some systems do not handle

blank-envelope-from-address properly and may require the use of this

option. Bit 1 (value = 2) controls whether IMTA replaces all blank

envelope addresses with the address of the local postmaster. Again,

this is used to accommodate noncompliant systems that don't conform

to RFC 821, RFC 822, or RFC 1123. Note that the returnenvelope
channel keyword can be used to impose this sort of control on a

per-channel basis.

RETURN_PERSONAL(String) Specifies the personal name to use when IMTA generates postmaster

messages (for example, bounce messages). By default, IMTA uses the

string, Internet Mail Delivery .

REVERSE_ENVELOPE(0 or 1) Controls whether IMTA applies the address reversal to envelope From
addresses as well as header addresses. This option will have no effect

if the USE_REVERSE_DATABASEoption is set to 0 or if the reverse

database does not exist. The default is 1, which means that IMTA will

attempt to apply the database to envelope From addresses. A value of

0 will disable this use of the address reversal database.

TABLE 2-21 Option File Options (Continued)

Options Description

178 Sun Internet Mail Server 4.0 Reference Manual • July 1999

SEPARATE_CONNECTION_LOG
(0 or 1)

Controls whether the connection log information generated by setting

LOG_CONNECTION=1 is stored in the usual IMTA message logging

files, mail.log* or is stored separately in connection.log* files.

The default (0) causes connection logging to be stored in the regular

message log files; 1 causes the connection logging to be stored

separately.

STRING_POOL_SIZE
(Integer <= 10,000,000)

Controls the number of character slots allocated to the string pool

used to hold rewrite rule templates and alias list members. A fatal

error will occur if the total number of characters consumed by these

parts of the configuration and alias files exceeds this limit. The default

is 60,000; the maximum allowed value is 10,000,000.

URGENT_BLOCK_LIMIT(Integer) Used to instruct IMTA to downgrade the priority of messages based

on size: messages above the specified size will be downgraded to

normal priority. This priority, in turn, may affect whether the message

is processed immediately or left to wait for processing until the next

periodic job runs. The value is interpreted in terms of IMTA blocks, as

specified by the BLOCK_SIZE option. Note also that the

urgentblocklimit channel keyword may be used to impose such

downgrade thresholds on a per-channel basis.

USE_ALIAS_DATABASE(0 or 1) Controls whether IMTA uses the alias database as a source of system

aliases for local addresses. The default (1), means that IMTA will

check the database if it exists. A value of 0 will disable this use of the

alias database.

USE_DOMAIN_DATABASE Controls the use of the domain database. The default (1) means that

IMTA will check the database if it exists. 0

USE_ERRORS_TO(0 or 1) Controls whether IMTA uses the information contained in

Errors-to header lines when returning messages. Setting this option

to 1 directs IMTA to make use of this header line. The default (0),

disable uses of this header line.

USE_FORWARD_DATABASE Control use of the forward database.

USE_REVERSE_DATABASE(0-31) Controls whether IMTA uses the address reversal database and

REVERSEmapping as a source of substitution addresses. This value is

a decimal integer representing a bit-encoded integer, the

interpretation of which is given in TABLE 2-22.

USE_WARNINGS_TO(0 or 1) Controls whether IMTA uses the information contained in

Warnings-to header lines when returning messages. Setting this

option to 1 directs IMTA to make use of these header lines. The

default is 0, which disables use of this header line.

WILD_POOL_SIZE (integer) Controls the total number of patterns that appear throughout

mapping tables. the default is 8000. The maximum allowed is 200,000.

TABLE 2-21 Option File Options (Continued)

Options Description

Chapter 2 IMTA Configuration 179

Header Option Files

Some special option files may be associated with a channel that describe how to trim

the headers on messages queued to that channel. This facility is completely general

and may be applied to any channel; it is controlled by the headertrim ,

noheadertrim , headerread , and noheaderread channel keywords.

An option file can be used in addition to the channel keywords to configure the

behavior of a channel. This configuration tool is available for the Solaris /var/mail ,

the UUCP, the pipe, and the SMTP channels. In addition, any channel can use a

header option file in order to create or remove channel-specific headers in messages

processed by the channel's master program.

TABLE 2-22 USE_REVERSE_DATABASEBit Values

Bit Value Usage

0 1 When set, address reversal is applied to addresses after they have been rewritten by the

IMTA address rewriting process.

1 2 When set, address reversal is applied before addresses have had IMTA address rewriting

applied to them.

2 4 When set, address reversal will be applied to all addresses, not just to backward pointing

addresses.

3 8 When set, channel-level granularity is used with REVERSEmapping. REVERSEmapping

table (pattern) entries must have the form (note the vertical bars [|]).

source-channel|
destination-channel|
address

4 16 When set, channel-level granularity is used with address reversal database entries.

Reversal database entries must have the form (note the vertical bars [|]).

source-channel|
destination-channel|
address

Note that bit 0 is the least significant bit.

The default value for USE_REVERSE_DATABASEis 5, which means that IMTA will reverse

envelope From addresses and both backward and forward pointing addresses after they

have passed through the normal address rewriting process. Simple address strings are

presented to both REVERSEmapping and the reverse database. A value of 0 disables the

use of the address reversal completely.

180 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Header option files have a different format than other IMTA option files, and thus a

header option file is always a separate file.

Header Option File Location

For header trimming to be applied upon message dequeue, IMTA looks in the

config directory (/etc/opt/SUNWmail/imta) for header options files with names

of the form channel _headers.opt , where channel is the name of the channel

with which the header option file is associated. The headertrim keyword must be

specified on the channel to enable the use of such a header option file.

For header trimming to be applied upon message enqueue, IMTA looks in the

config directory (/etc/opt/SUNWmail/imta) for header options files with names

of the form channel _read_headers.opt , where channel is the name of the

channel with which the header option file is associated. The headerread keyword

must be specified on the channel to enable the use of such a header option file.

Header option files should be world readable.

Header Option File Format

Simply put, the contents of a header option file are formatted as a set of message

header lines. Note, however, that the bodies of the header lines do not conform to

RFC 822.

The general structure of a line from a header options file is:

Header-name is the name of a header line that IMTA recognizes (any of the header

lines described in this manual may be specified, plus any of the header lines

standardized in RFC 822, RFC 987, RFC 1049, RFC 1421, RFC 1422, RFC 1423, RFC

1424, RFC 1327, and RFC 1521 (MIME).

Header lines not recognized by IMTA are controlled by the special header line name

Other . A set of options to be applied to all header lines not named in the header

option file can also be given on a special defaults line. The use of defaults
guards against the inevitable expansion of IMTA's known header line table in future

releases.

Header-name : OPTION=VALUE, OPTION=VALUE, OPTION=VALUE, ...

Chapter 2 IMTA Configuration 181

Various options can then be specified to control the retention of the corresponding

header lines. The available options are listed in TABLE 2-23.

TABLE 2-23 Header options

Option Description

ADD(Quoted String) Creates a new header line of the given type. The new header line contains the

specified string. The header line created by ADDwill appear after any existing header

lines of the same type. The ADDoption cannot be used in conjunction with the header

line type; it will be ignored if it is specified as part of an Other option list.

FILL
(Quoted String)

Creates a new header line of the given type only if there are no existing header lines

of the same type. The new header line contains the specified string. The FILL option

cannot be used in conjunction with the header line type; it will be ignored if it is

specified as part of an Other option list.

GROUP
(Integer 0 or 1)

Controls grouping of header lines of the same type at a particular precedence level. A

GROUPvalue of 0 is the default, and indicates that all header lines of a particular type

should appear together. A value of 1 indicates that only one header line of the

respective type should be output and the scan over all header lines at the associated

level should resume, leaving any header lines of the same type unprocessed. Once the

scan is complete it is then repeated in order to pick up any remaining header lines.

This header option is primarily intended to accommodate Privacy Enhanced Mail

(PEM) header processing.

MAXCHARS(Integer) Controls the maximum number of characters that can appear in a single header line of

the specified type. Any header line exceeding that length is truncated to a length of

MAXCHARS. This option pays no attention to the syntax of the header line and should

never be applied to header lines containing addresses and other sorts of structured

information. The length of structured header lines should be controlled with the

maxheaderchars and maxheaderaddrs channel keywords.

MAXIMUM(Integer) Controls the maximum number of header lines of this type that may appear. This has

no effect on the number of lines; after wrapping, each individual header line can

consume. A value of -1 is interpreted as a request to suppress this header line type

completely.

MAXLINES(Integer) Controls the maximum number of lines all header lines of a given type may occupy. It

complements the MAXIMUMoption in that it pays no attention to how many header

lines are involved, only to how many lines of text they collectively occupy. As with

the MAXIMUMoption, headers are trimmed from the bottom to meet the specified

requirement.

182 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Tailor File

The IMTA tailor file (imta_tailor) is an option file in which the location of various

IMTA components are set. Certain parameters for tuning the performance of the

IMTA databases are also set in this file. This file must always exist in the

/etc/opt/SUNWmail/imta directory for the MTA to function properly. The file

may be edited to reflect the changes in a particular installation. Some options in the

file should not be edited. The IMTA should be restarted after making any changes to

the file. It is preferable to make the changes while the MTA is down. If the database

tuning parameters are changed, all existing IMTA databases must be removed and

reconstructed.

Note – Do not edit this file unless absolutely necessary.

An option setting has the form:

The value can be either a string or an integer, depending on the option's

requirements. Comments are allowed. Any line that begins with an exclamation

point is considered to be a comment and is ignored. Blank lines are also ignored.

Options that are available and can be edited are shown in TABLE 2-24.

PRECEDENCE
(Integer)

Controls the order in which header lines are output. All header lines have a default

precedence of zero. The smaller the value, the higher the precedence. Positive

PRECEDENCEvalues will push header lines toward the bottom of the header while

negative values will push them toward the top. Equal precedence ties are broken

using IMTA's internal rules for header line output ordering.

RELABEL

(header name)

Changes a header line to another header line; that is, the name of the header is

changed, but the value remains the same. For instance,

X-MSMail-Priority: RELABEL="Priority"
X-Priority: RELABEL="Importance"

option=value

TABLE 2-23 Header options (Continued)

Option Description

Chapter 2 IMTA Configuration 183

TABLE 2-24 tailor File Options

Option Description

IMTA_ADMIN_PROPERTY Location of the adminserver properties file. The imta dirsync utility

reads this file to find the domains the IMTA is responsible for. The default

value is /etc/opt/SUNWmail/admin/adminserver.properties .

IMTA_ALIAS_DATABASE IMTA alias database. The default is

/var/opt/SUNWmail/imta/db/aliasesdb .

IMTA_ALIAS_FILE IMTA aliases file. Aliases not set in the directory, for example, postmaster,

are set in this file. The default is /etc/opt/SUNWmail/imta/aliases .

IMTA_CHARSET_DATA Specifies where IMTA compiled character set data is located. The default

is /opt/SUNWmail/imta/lib/charset_data .

IMTA_CHARSET_OPTION_FILE File used for charset conversion options. The default is

/etc/opt/SUNWmail/imta/option_charset.dat.

IMTA_COM Specifies where IMTA shell scripts are located. The default is

/opt/SUNWmail/imta/lib/ .

IMTA_CONFIG_DATA Compiled configuration for the IMTA. The default is

/opt/SUNWmail/imta/lib/config_data .

IMTA_CONFIG_FILE IMTA configuration file. Rewrite rules and per-channel options are set in

this file. The default is /etc/opt/SUNWmail/imta/imta.cnf .

IMTA_CONVERSION_FILE File to set rules for the conversion channel. The default is

/etc/opt/SUNWmail/imta/conversions .

IMTA_DB_HASH_SIZE IMTA database hash size. The default is 7901. All IMTA databases should

be removed and reconstructed if this value is changed.

IMTA_DB_PTR_SIZE IMTA database pointer size. This value should be increased for very large

databases. All IMTA databases should be removed and reconstructed if

this value is changed. The default is 10 and works fine for databases with

up to 4 million entries.

IMTA_DISPATCHER_CONFIG IMTA dispatcher’s configuration file. The default is

/etc/opt/SUNWmail/imta/dispatcher.cnf .

IMTA_DOMAIN_DATABASE Database used to store additional rewrite rules. The default is

/var/opt/SUNWmail/imta/db/domaindb

IMTA_DNSRULES IMTA DNS configuration library. The default is

/opt/SUNWmail/imta/lib/imdnsrules.so.

IMTA_FORWARD_DATABASE Not used for SIMS 4.0.

IMTA_GENERAL_DATABASE Provided for each site’s customer usage. Generally, lookups can be

embedded in mappings and rewrite rules. The default is

/var/opt/SUNWmail/imta/generaldb .

184 Sun Internet Mail Server 4.0 Reference Manual • July 1999

IMTA_HELP Location of the help files for the imta utility. The default is

/opt/SUNWmail/imta/lib .

IMTA_JBC_CONFIG_FILE IMTA job_controller’s configuration file. The default is

/etc/opt/SUNWmail/imta/job_controller.cnf .

IMTA_JBC_SERVICE Specifies the host and port for the job_controller.

Do not edit this option.

IMTA_LANG Locale of the IMTA’s notary messages. By default it is

/etc/opt/SUNWmail/imta/locale/C \ /LC_MESSAGES .

IMTA_LDAP_SERVER Specifies the location of the LDAP directory, searched by the IMTA

dirsync , autoreply and other programs. The list consists of one or

more ldaphost port pairs separated by commas. Each program reads

this list and connects to the first directory that it is able to connect to. It

connects to port 389, if the port is not specified. The default is just

localhostname:389 .

IMTA_LIB Directory where the IMTA libraries and executables are stored. The

default is /opt/SUNWmail/imta/lib/ .

IMTA_LIBUTIL The IMTA utility library. By default it is

/opt/SUNWmail/lib/libimtautil.so.1 .

IMTA_LOG Location of the IMTA log files. The default is

/var/opt/SUNWmail/imta/log/ .

IMTA_MAPPING_FILE File used for setting access control rules, reverse mapping rules, forward

mapping rules, and so forth. The default value is

/etc/opt/SUNWmail/imta/mappings .

IMTA_NAME_CONTENT_FILE Location of file used by the IMTA for content-type conversions. The

default is /etc/opt/SUNWmail/imta/name_content.dat .

IMTA_OPTION_FILE Name of the IMTA’s option file. The default is

/etc/opt/SUNWmail/imta/option.dat .

IMTA_QUEUE IMTA message queue directory. The default is

/var/opt/SUNWmail/imta/queue .

IMTA_QUEUE_CACHE_DATABASE Location of the IMTA message queue cache. The default is

/var/opt/SUNWmail/imta/queue_cache/ .

IMTA_RETURN_PERIOD Controls the return of expired messages and the generation of

warnings.The default value for this option is 1. If this options is set to an

integer value N, then the associated action will only be performed every N
times the return job runs. By default, the return job runs once every day.

IMTA_RETURN_SPLIT_PERIOD Controls splitting of the mail.log file. The default value for this option

is 1. If this options is set to an integer value N, then the associated action

will only be performed every N times the return job runs. By default, the

return job runs once every day.

TABLE 2-24 tailor File Options (Continued)

Option Description

Chapter 2 IMTA Configuration 185

IMTA_RETURN_SYNCH_PERIOD Controls queue synchronization.The default value for this option is 1. If

this options is set to an integer value N, then the associated action will

only be performed every N times the return job runs. By default, the

return job runs once every day.

IMTA_REVERSE_DATABASE IMTA reverse database. This database is used for rewriting From
addresses. The default is /var/opt/SUNWmail/imta/db/reversedb .

IMTA_ROOT Base directory for the IMTA installation. The default is

/opt/SUNWmail/imta/ .

IMTA_SCRATCH Directory where the IMTA stores its backup configuration files. During a

full dirsync temporary database files are also created under this

directory.The default is /var/opt/SUNWmail/imta/tmp/ .

IMTA_SYNCH_CACHE_PERIOD Controls the queue synchronization by the post program.The default

value for this option is 1. If this option is set to an integer value N, then

the associated action will only be performed every N times the post job

runs. By default the post job runs once every four hours.

IMTA_TABLE The IMTA configuration directory. The default is

/etc/opt/SUNWmail/imta/ .

IMTA_USER Name of the postmaster. The default is inetmail . If this is changed be

sure to edit the /etc/opt/SUNWmail/imta/aliases file to reflect the

change to the postmaster address.

IMTA_USER_PROFILE_DATABASE Database used for storing user’s vacation, forwarding, and program

delivery information. The default is

/var/opt/SUNWmail/imta/profiledb .

IMTA_USER_USERNAME Specifies the userid of the subsidiary account the IMTA uses for certain

“non-privileged” operations—operations which it doesn't want to

perform under the usual IMTA account. The default is nobody.

IMTA_VERSION_LIMIT Maximum versions of log files to be preserved while purging old log files.

The default value is 5.

IMTA_VERSION_LIMIT_PERIOD Controls the frequency of purging of log files by the post job. The default

value for this option is 1. If this options is set to an integer value N, then

the associated action will only be performed every N times the post job

runs. By default the post job runs once every four hours

IMTA_WORLD_GROUP Can perform certain privileged operations as a member of this group. The

default is mail.

TABLE 2-24 tailor File Options (Continued)

Option Description

186 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Dirsync Option File

This file is used to set options for the dirsync program that cannot be set through

the command line. This file should be located in the IMTA configuration directory,

which is specified by the value for IMTA_TABLE in the imta_tailor file. In this

file, any line that begins with an exclamation point is considered to be a comment

and is ignored. Blank lines are also ignored. The format of this file is:

The value may be either a string or an integer, depending on the option's

requirements. If any of the options in this file are changed, perform a full dirsync
after the change. The available options are as follows:

option=value

TABLE 2-25 dirsync File Options

Option Description

IMTA_DL_DIR Directory where the distribution lists member’s list files are

stored. Default value is /var/opt/SUNWmail/imta/dl/ .

IMTA_DL_HASHSIZE Maximum number of subdirectories under the dl directory.

This number must be a prime number. Default value is 211 .

IMTA_PROGRAM_CONFIG File where information about delivery programs are stored. The

default is /etc/opt/SUNWmail/imta/program.opt .

IMTA_PROGRAM_DIR Location of the programs used for program delivery. The

default is /opt/SUNWmail/imta/programs/ .

USER_SPEC_INTERNAL Used to create aliases and domain rewrite rules for hosted

domains (%u?%d is the default). Where %uis replaced by the

user part and %dis replaced by the domain part.

USER_SPEC Used to create addresses for a channel for which no spec has

been specified in the channel option file. (This does not apply to

the default channels.)

Chapter 2 IMTA Configuration 187

Autoreply Option File

This file is used for setting options for the autoreply or vacation program. This file

should be located in the IMTA configuration directory, which is specified by the

value for IMTA_TABLE in the imta_tailor file. In this file, any line that begins

with an exclamation point is considered to be a comment and is ignored. Blank lines

are also ignored The format of this file is:

The value may be either a string or an integer, depending on the option's

requirements.

The available options are:

Job Controller

The job controller is responsible for scheduling and executing the message delivery

or message submission tasks upon request by various IMTA components. For

example, upon receipt of an incoming message from any source, the IMTA channel

that is handling the receipt of the message determines the destination, enqueues the

message, and sends a request to the job controller to execute the next channel. The

job controller schedules only the client tasks for IMTA.

option=value

TABLE 2-26 autoreply File Options

Option Description

DEBUG Determines whether a trace file is created for each autoreply. The

default is 0 and this facility is off. A value of 1 creates an autoreply

trace file for each autoreply sent in the IMTA log directory. A value

of 3 puts more information in the trace file.

RESEND_TIMEOUT If mail arrives for a recipient with autoreply on, an autoreply is not

sent if a certain period has not elapsed since the last autoreply was

sent from this recipient to this specific sender. This option sets the

time in hours, after which an autoreply is sent to the same sender

again. The default, if this option is not set, is 168 (for example, once

a week).

188 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Internally, the job controller maintains the set of channel queues. Requests are placed

on specified queues by server processes as messages are processed. Each queue has

a job limit that consists of the maximum number of concurrent jobs that can be

processed and the maximum number of jobs that can be enqueued. Requests are

executed as they are received until the job limit is exceeded, at which point they are

queued to run when a currently executing request finishes. If the capacity of a queue

is exceeded, requests directed at that queue are ignored by the job controller.

Job Controller Configuration

At startup, the job controller reads a configuration file that specifies parameters,

queues, and channel processing information. This configuration information is

specified in the file job_controller.cnf in the /etc/opt/SUNWmail/imta/
directory.

The job controller configuration file job_controller.cnf :

■ Defines various types of queues that differ by their capacity and job limit

■ Specifies for all channels the master program name and the slave program name,

if applicable

In the imta.cnf file, you can specify a type of queue (that was defined in

job_controller.cnf) by using the queue keyword. For example, the following

fragment from a sample job_controller.cnf file defines the queue MY_QUEUE:

The following fragment from a sample imta.cnf file specifies the queue MY_QUEUE
in a channel block:

If you want to modify the parameters associated with the default queue

configuration or add additional queues, you can do so by editing the

job_controller.cnf file, and stopping and then restarting the job controller with

the command:

[QUEUE=MY_QUEUE]
capacity = 300
job_limit = 12

channel_x queue MY_QUEUE
channel_x-daemon

imta restart job_controller

Chapter 2 IMTA Configuration 189

A new job controller process is created, using the new configuration, and receives

subsequent requests. The old job controller process continues to execute any requests

it has queued until they are all finished, at which time it exits.

To stop the job controller, execute the following command:

The first queue in the job controller configuration file, by default the only queue, is

used for any requests that do not specify the name of a queue. IMTA channels

defined in the IMTA configuration file (imta.cnf) can have their processing

requests directed to a specific queue by using the queue channel keyword followed

by the name of the queue. The queue name must match the name of a queue in the

job controller configuration. If the job controller does not recognize the requested

queue name, the request is ignored.

Examples of Use

Typically, you would add additional types of queue characteristics to the job

controller configuration if you wanted to differentiate processing of some channels

from that of other channels. You might also choose to use queues with different

characteristics. For example, you might need to control the number of simultaneous

requests that some channels are allowed to process. You can do this by creating a

new queue with the job limit, then use the queue channel keyword to direct those

channels to the new, more appropriate queue.

In addition to the definition of queues, the job controller configuration file also

contains a table of IMTA channels and the commands that the job controller must

use to process requests for each channel. These two types of requests are termed

“master” and “slave.” Typically, a channel master program is invoked when there is

a message stored in an IMTA message queue for the channel. The master program

dequeues the message and delivers it.

A slave program is invoked to poll a channel and pick up any messages inbound on

that channel. While nearly all IMTA channels have a master program, many do not

need a slave program. For example, a channel that handles SMTP over TCP/IP

doesn’t use a slave program because a network service, the SMTP server, receives

incoming SMTP messages upon request by any SMTP server. The SMTP channel's

master program is IMTA’s SMTP client.

imta stop job_controller

190 Sun Internet Mail Server 4.0 Reference Manual • July 1999

If the destination system associated with the channel cannot handle more than one

message at a time, you need to create a new type of queue whose job limit is one:

On the other hand, if the destination system has enough parallelism, you can set the

job limit to a higher value. The capacity defines the maximum number of requests

which the job_controller will store at given time. Requests that are received

after the limit has been reached are ignored.

Job Controller Configuration File Format

In accordance with the format of IMTA option files, the job controller configuration

file contains lines of the form:

In addition to option settings, the file may contain a line consisting of a section and

value enclosed in square-brackets ([]) in the form:

Such a line indicates that option settings following this line apply only to the section

named by value. Initial option settings that appear before any such section tags

apply globally to all sections. Per section option settings override global defaults for

that section. Recognized section types for the job controller configuration file are

QUEUE,to define queues and their parameters, and CHANNEL,to define channel

processing information.

[QUEUE = single_job]
job_limit = 1
capacity = 200

option=value

[section-type=value]

Chapter 2 IMTA Configuration 191

The following is a sample job controller configuration file (job_controller.cnf).

The key items in the preceding example (numbered, enclosed in parentheses, and in

bold font) are:

1. This global option defines the UDP port number on which the job controller

listens for requests.

2. Sets a default SLAVE_COMMANDfor subsequent [CHANNEL] sections.

3. Sets a default CAPACITY for subsequent [QUEUE] sections.

4. This [QUEUE] section defines a queue named DEFAULT. Since this is the first queue

in the configuration file, it is used by all channels that do not specify a queue

name using the queue channel keyword.

!IMTA job controller configuration file
!
!Global defaults
debug=1
udp_port=27442 (1)
args=""
slave_command=NULL (2)
capacity=100 (3)
!
!
!Queue definitions
!
[QUEUE=DEFAULT](4)
job_limit=10 (5)
capacity=200
!
[QUEUE=SINGLE_JOB]
job_limit=1
capacity=200
!
!
!Channel definitions
!
!
[CHANNEL=l] (6)
master_command=/opt/SUNWmail/imta/lib/l_master
!
[CHANNEL=sims-ms]
master_command=/opt/SUNWmail/ims/lib/ims_master
!
[CHANNEL=tcp_*] (7)
master_command=/opt/SUNWmail/imta/lib/tcp_smtp_client

192 Sun Internet Mail Server 4.0 Reference Manual • July 1999

5. Set the JOB_LIMIT for this queue to 10.

6. This [CHANNEL] section applies to a channel named l , the IMTA local channel.

The only definition required in this section is the master_command , which the

job controller issues to run this channel. Since no wildcard appears in the channel

name, the channel must match exactly.

7. This [CHANNEL] section applies to any channel whose name begins with tcp_* .

Since this channel name includes a wildcard, it will match any channel whose

name begins with tcp_ .

TABLE 2-27 shows the available options.

TABLE 2-27 Job Controller Configuration File Options

Option Description

CAPACITY=integer Specifies the maximum number of outstanding requests that a queue can

hold. Additional requests beyond the CAPACITYof the queue are ignored.

Exceeding the CAPACITYof a queue does not affect the ability of another

queue to buffer outstanding requests until that queue’s CAPACITY is

exceeded. If set outside of a section, it is used as the default by any [QUEUE]
section that doesn’t specify CAPACITY. This option is ignored inside a

[CHANNEL] section.

DEBUG=0or 1 If DEBUG=1is selected, IMTA writes debugging information to a file in the

/var/opt/SUNWmail/imta/log directory named

job_controller- uniqueid, where uniqueid is a unique ID string that

distinctively identifies the file name. The purge utility recognizes the

uniqueid s and can be used to remove older log files.)

JOB_LIMIT= integer Specifies the maximum number of requests that a queue can execute in

parallel. Execution of a request uses a UNIX system process, so this

corresponds to the maximum number of UNIX system processes you allow a

queue to use. If more requests are present for a queue, they are held until an

executing job finishes, unless the CAPACITYof the queue is exceeded. The

JOB_LIMIT applies to each queue individually; the maximum total number

of jobs is the sum of the JOB_LIMIT parameters for all queues. If set outside

of a section, it is used as the default by any [QUEUE] section that doesn’t

specify JOB_LIMIT . This option is ignored inside of a [CHANNEL] section.

MASTER_COMMAND=file
specification

Specifies the full path to the command to be executed by the UNIX system

process created by the job controller to run the channel and dequeue

messages outbound on that channel. If set outside of a section, it is used as

the default by any [CHANNEL] section that doesn’t specify a

MASTER_COMMAND. This option is ignored inside of a [QUEUE] section.

Chapter 2 IMTA Configuration 193

A master_shutdown command may be associated with each channel that contains

master programs. This is the command that stops the master program if the job

controller is stopped. Such commands are useful for master programs which run like

daemons. The format is:

The path is the full path name to the shutdown executable.

SMTP Dispatcher

The IMTA multithreaded SMTP Dispatcher is a multithreaded connection

dispatching agent that permits multiple multithreaded servers to share

responsibility for a given service. When using the SMTP Dispatcher, it is possible to

have several multithreaded SMTP servers running concurrently. In addition to

having multiple servers for a single service, each server may handle simultaneously

one or more active connections.

POLL_RUNS_SLAVE=0 or 1 Controls whether jobs submitted with the poll parameter execute both

master and slave directions of a channel, or whether poll jobs execute only

the master direction of a channel. POLL_RUNS_SLAVE=1is the default and

should be used for most channels. POLL_RUNS_SLAVE=0should be

specified for IMTA-DIRSYNC channels.

SLAVE_COMMAND=file
specification

Specifies the full path to the command to be executed by the UNIX system

process created by the job controller in order to run the channel and poll for

any messages inbound on the channel. Many IMTA channels do not have a

SLAVE_COMMAND. If that is the case, the reserved value NULL should be

specified. If set outside of a section, it is used as the default by any

[CHANNEL] section that doesn’t specify a SLAVE_COMMAND. This option is

ignored inside of a [QUEUE] section.

UDP_PORT=integer Specifies the UDP port on which the job controller should listen for request

packets. Do not change this unless the default conflicts with another UDP

application on your system. If you do change this option, change the

corresponding IMTA_JBC_SERVICEoption in the IMTA tailor file,

/etc/opt/SUNWmail/imta/imta_tailor , so that it matches. The

UDP_PORToption applies globally and is ignored if it appears in a

[CHANNEL] or [QUEUE] section.

master_shutdown = path

TABLE 2-27 Job Controller Configuration File Options (Continued)

Option Description

194 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Operation of the SMTP Dispatcher

The SMTP Dispatcher works by acting as a central receiver for the TCP ports listed

in its configuration. For each defined service, the IMTA SMTP Dispatcher may create

one or more SMTP server processes that actually handle the connections after

they’ve been established.

In general, when the SMTP Dispatcher receives a connection for a defined TCP port,

it checks its pool of available SMTP server processes and chooses the best candidate

for the new connection. If no suitable candidate is available and the configuration

permits it, the SMTP Dispatcher creates a new SMTP server process to handle this

and subsequent connections. The SMTP Dispatcher may also proactively create a

new SMTP server process in expectation of future incoming connections. There are

several configuration options that can tune the IMTA SMTP Dispatcher’s control of

its various services, and in particular, control the number of SMTP server processes

and the number of connections each SMTP server process handles.

Creation and Expiration of SMTP Server Processes

Automatic housekeeping facilities within the SMTP Dispatcher control the creation

of new and expiration of old or idle SMTP server processes. The basic options that

control the SMTP Dispatcher's behavior are MIN_PROCSand MAX_PROCS.
MIN_PROCSprovides a guaranteed level of service by having a number of SMTP

server processes ready and waiting for incoming connections. MAX_PROCS, on the

other hand, sets an upper limit on how many SMTP server processes may be

concurrently active for the given service.

It is possible that a currently running SMTP server process might not be able to

accept any connections because it is already handling the maximum number of

connections of which it is capable, or because the process has been scheduled for

termination. The SMTP Dispatcher may create additional processes to assist with

future connections.

The MIN_CONNSand MAX_CONNSoptions provide a mechanism to help you

distribute the connections among your SMTP server processes. MIN_CONNSspecifies

the number of connections that flags a SMTP server process as “busy enough” while

MAX_CONNSspecifies the “busiest” that a SMTP server process can be.

In general, the SMTP Dispatcher creates a new SMTP server process when the

current number of SMTP server processes is less than MIN_PROCSor when all

existing SMTP server processes are “busy enough” (the number of currently active

connections each has is at least MIN_CONNSand at least 75 percent of MAX_CONNS).

If a SMTP server process is killed unexpectedly, for example, by the UNIX system

kill command, the SMTP Dispatcher still creates new SMTP server processes as

new connections come in.

Chapter 2 IMTA Configuration 195

SMTP Dispatcher Configuration File

The SMTP Dispatcher configuration information is specified in the

/etc/opt/SUNWmail/imta/dispatcher.cnf file. A default configuration file is

created at installation time and can be used without any changes made. However, if

you want to modify the default configuration file for security or performance

reasons, you can do so by editing the dispatcher.cnf file.

Configuration File Format

The SMTP Dispatcher configuration file format is similar to the format of other

IMTA configuration files. Lines specifying options have the following form:

The option is the name of an option and value is the string or integer to which the

options is set. If the option accepts an integer value, a base may be specified using

notation of the form b%v, where b is the base expressed in base 10 and v is the actual

value expressed in base b. Such option specifications are grouped into sections

corresponding to the service to which the following option settings apply, using

lines of the following form:

The service-name is the name of a service. Initial option specifications that appear

before any such section tag apply globally to all sections.

option=value

SERVICE=service-name

196 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The following is a sample SMTP Dispatcher configuration file (dispatcher.cnf).

TABLE 2-28 shows the available options.

! The first set of options, listed without a [SERVICE=xxx]
! header, are the default options that will be applied to all
! services.
!
MIN_PROCS=0
MAX_PROCS=5
MIN_CONNS=5
MAX_CONNS=20
MAX_LIFE_TIME=86400
MAX_LIFE_CONNS=100
MAX_SHUTDOWN=2
!
! Define the services available to Dispatcher
!
[SERVICE=SMTP]
PORT=25
IMAGE=/opt/SUNWmail/imta/lib/tcp_smtp_server
LOGFILE=/var/opt/SUNWmail/imta/log/tcp_smtp_server.log

TABLE 2-28 Dispatcher configuration file options

Option Description

BACKLOG=integer Controls the depth of the TCP backlog queue for the socket. The default value

for each service is MAX_CONNS*MAX_PROCS(with a minimum value of 5). This

option should not be set higher than the underlying TCP/IP kernel supports.

ENABLE_RBL=0 or 1 Specifying ENABLE_RBL=1causes the Dispatcher to compare incoming

connections to the “Black Hole” list at maps.vix.com. For instance, if the

Dispatcher receives a connection from 192.168.51.32, then it will attempt to

obtain the IP address for the hostname 32.51.168.192.rbl.maps.vix.com. If the

query is successful, the connection will be closed rather than handed off to a

worker process. If this option is enabled on a well-known port (25, 110, or 143),

then a standard message such as the one below will be sent before the

connection is closed:

5.7.1 Mail from 192.168.51.32 refused, see
http://maps.vix.com/rbl/

If you want the IMTA to log such rejections, set the 24th bit of the Dispatcher

debugging DEBUGoption, DEBUG=16%1000000, to cause logging of the

rejections to the dispatcher.log file; entries will take the form:

access_control: host a.b.c.d found on RBL list and rejected

Chapter 2 IMTA Configuration 197

HISTORICAL_TIME=integer Controls how long the expired connections (those that have been closed) and

processes (those that have exited) remain listed for statistical purposes.

INTERFACE_ADDRESS=IP
address

The INTERFACE_ADDRESSoption can be used to specify the IP address

interface to which the Dispatcher service should bind. By default, the

Dispatcher binds to all IP addresses. But for systems having multiple network

interfaces each with its own IP address, it may be useful to bind different

services to the different interfaces. Note that if INTERFACE_ADDRESSis
specified for a service, then that is the only interface IP address to which that

Dispatcher service will bind. Only one such explicit interface IP address may

be specified for a particular service (though other similar Dispatcher services

may be defined for other interface IP addresses).

IDENT=0 or 1 If IDENT=1 is set for a service, it causes the Dispatcher to try an IDENT query

on incoming connections for that service, and to note the remote username (if

available) as part of the Dispatcher statistics. The default is IDENT=0, meaning

that no such query is made.

IMAGE=file specification Specifies the image that is run by SMTP server processes when created by the

SMTP Dispatcher. The specified image should be one designed to be controlled

by the SMTP Dispatcher.

LOGFILE=file specification Causes the SMTP Dispatcher to direct output for corresponding SMTP server

processes to the specified file.

MAX_CONNS=integer Affects the SMTP Dispatcher's management of connections. This value specifies

a maximum number of connections that may be active on any SMTP server

process.

MAX_HANDOFFS=integer Specifies the maximum number of concurrent asynchronous handoffs in

progress that the Dispatcher will allow for newly established TCP/IP

connections to a service port. The default value is 5.

MAX_IDLE_TIME=integer Specifies the maximum idle time for a SMTP server process. When an SMTP

server process has had no active connections for this period, it becomes eligible

for shutdown. This option is only effective if there are more than the value of

MIN_PROCSSMTP server processes currently in the SMTP Dispatcher’s pool

for this service.

MAX_LIFE_CONNS Specifies the maximum number of connections an SMTP server process can

handle in its lifetime. Its purpose is to perform worker-process housekeeping.

DEBUG 0 or 1.

MAX_LIFE_TIME=integer Requests that SMTP server processes be kept only for the specified number of

seconds. This is part of the SMTP Dispatcher’s ability to perform

worker-process housekeeping. When an SMTP server process is created, a

countdown timer is set to the specified number of seconds. When the

countdown time has expired, the SMTP server process is subject to shutdown.

MAX_PROCS=integer Controls the maximum number of SMTP server processes that are created for

this service.

TABLE 2-28 Dispatcher configuration file options (Continued)

Option Description

198 Sun Internet Mail Server 4.0 Reference Manual • July 1999

MAX_SHUTDOWN=integer Specifies the maximum number of SMTP server processes available before the

SMTP Dispatcher shuts down. In order to provide a minimum availability for

the service, the SMTP Dispatcher does not shut down SMTP server processes

that might otherwise be eligible for shutdown if shutting them down results in

having fewer than MAX_SHUTDOWNSMTP server processes for the service. This

means that processes that are eligible for shutdown can continue running until

a shutdown “slot” is available.

MIN_CONNS=integer Determines the minimum number of connections that each SMTP server

process must have before considering the addition of a new SMTP server

process to the pool of currently available SMTP server processes. The SMTP

Dispatcher attempts to distribute connections evenly across this pool.

MIN_PROCS=integer Determines the minimum number of SMTP server processes that are created by

the SMTP Dispatcher for the current service. Upon initialization, the SMTP

Dispatcher creates this many detached processes to start its pool. When a

process is shut down, the SMTP Dispatcher ensures that there are at least this

many available processes in the pool for this service.

PARAMETER The interpretation and allowed values for the PARAMETERoption are service

specific. In the case of an SMTP service, the PARAMETERoption may be set to

CHANNEL=channelname, to associate a default TCP/IP channel with the port

for that SMTP service. For instance,

[SERVICE=SMTP]
PORT=25
...
PARAMETER=CHANNEL=tcp_incoming

This can be useful if you want to run SMTP servers on multiple ports --

perhaps because your internal POP and IMAP clients have been configured to

use a port other than the normal port 25, thus separating their message traffic

from incoming SMTP messages from external SMTP hosts---and if you want to

associate different TCP/IP channels with the different port numbers.

PORT=integer1, integer2,... Specifies the TCP port(s) to which the SMTP Dispatcher listens for incoming

connections for the current service. Connections made to this port are

transferred to one of the SMTP server processes created for this service.

Specifying PORT=0disables the current service.

STACKSIZE Specifies the thread stack size of the SMTP server. The purpose of this option is

to reduce the chances of the SMTP server running out of stack when processing

deeply nested MIME messages (several hundreds of levels of nesting). Note

that these messages are in all likelihood spam messages destined to break mail

handlers. Having the SMTP server fail will protect other mail handlers farther

down the road.

TABLE 2-28 Dispatcher configuration file options (Continued)

Option Description

Chapter 2 IMTA Configuration 199

Controlling the SMTP Dispatcher

The SMTP Dispatcher is a single resident process that starts and shuts down SMTP

server processes for various services, as needed. The SMTP Dispatcher process is

started using the command:

This command subsumes and makes obsolete any other imta start command that

was used previously to start up a component of IMTA that the SMTP Dispatcher has

been configured to manage. Specifically, you should no longer use imta start
smtp . An attempt to execute any of the obsoleted commands causes IMTA to issue a

warning.

To shut down the SMTP Dispatcher, execute the command:

What happens with the SMTP server processes when the SMTP Dispatcher is shut

down depends upon the underlying TCP/IP package. If you modify your IMTA

configuration or options that apply to the SMTP Dispatcher, you must restart the

SMTP Dispatcher so that the new configuration or options take effect. To restart the

SMTP Dispatcher, execute the command:

Restarting the SMTP Dispatcher has the effect of shutting down the currently

running SMTP Dispatcher, then immediately starting a new one.

Debugging and Log Files

Service Dispatcher error and debugging output (if enabled) are written to the file

dispatcher.log in the IMTA log directory.

Debugging output may be enabled using the option DEBUG in the Dispatcher

configuration file, or on a per-process level, using the IMTA_DISPATCHER_DEBUG
environment variable (UNIX).

imta start dispatcher

imta stop dispatcher

imta restart dispatcher

200 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The DEBUGoption or IMTA_DISPATCHER_DEBUGenvironment variable (UNIX)

defines a 32-bit debug mask in hexadecimal. Enabling all debugging is done by

setting the option to -1, or by defining the logical or environment variable

system-wide to the value FFFFFFFF. The actual meaning of each bit is described in

TABLE 2-29.

TABLE 2-29 Dispatcher Debugging Bits

Bit Hexadecimal
value

Decimal
value

Usage

0 x 00001 1 Basic Service Dispatcher main module debugging.

1 x 00002 2 Extra Service Dispatcher main module debugging.

2 x 00004 4 Service Dispatcher configuration file logging.

3 x 00008 8 Basic Service Dispatcher miscellaneous debugging.

4 x 00010 16 Basic service debugging.

5 x 00020 32 Extra service debugging.

6 x 00040 64 Process related service debugging.

7 x 00080 128 Not used.

8 x 00100 256 Basic Service Dispatcher and process communication debugging.

9 x 00200 512 Extra Service Dispatcher and process communication debugging.

10 x 00400 1024 Packet level communication debugging.

11 x 00800 2048 Not used.

12 x 01000 4096 Basic Worker Process debugging.

13 x 02000 8192 Extra Worker Process debugging.

14 x 04000 16384 Additional Worker Process debugging, particularly connection

handoffs.

15 x 08000 32768 Not used.

16 x 10000 65536 Basic Worker Process to Service Dispatcher I/O debugging.

17 x 20000 131072 Extra Worker Process to Service Dispatcher I/O debugging.

20 x 100000 1048576 Basic statistics debugging.

21 x 200000 2097152 Extra statistics debugging.

24 x 1000000 16777216 Log PORT_ACCESS denials to the dispatcher.log file.

Chapter 2 IMTA Configuration 201

System Parameters on Solaris

The system’s heap size (datasize) must be enough to accommodate the

Dispatcher’s thread stack usage. For each Dispatcher service compute

STACKSIZE*MAX_CONNS, and then add up the values computed for each service.

The system’s heap size needs to be at least twice this number.

To display the heap size (that is, default datasize), use the csh command

limit

or the ksh command

ulimit -a

or the utility

sysdef

202 Sun Internet Mail Server 4.0 Reference Manual • July 1999

203

CHAPTER 3

Sun Directory Services Directory
Information Tree and Schema

■ “Introduction” on page 203

■ “Producers and Consumers of the Mail Schema” on page 204

■ “Directory Schema and DIT Specification” on page 205

■ “Directory Information Tree” on page 206

■ “Data in OSI and DC trees” on page 209

■ “Attribute Syntax” on page 213

■ “Services and Functions” on page 214

■ “Object Classes Used by Sun Internet Mail Server 4.0” on page 215

■ “Directory Information Tree and Virtual Domain Object Classes” on page 215

■ “Internet Mail User Object Classes” on page 227

■ “Internet Mail Distribution List Object Classes” on page 242

■ “Internet Mail Routing Object Classes” on page 251

■ “Object Classes for Services” on page 252

Introduction

This chapter describes a schema for Internet mail routing and delivery, but the core

of this schema also serves as the core for other Internet services. It also describes the

SIMS Directory Information Tree (DIT) and Schema. You use the DIT and schema

information for provisioning and debugging.

The examples provided throughout the document show how the schema is suited

for Internet mail and also illustrate the modularity that provides support for service-

and vendor-independent interoperability.

204 Sun Internet Mail Server 4.0 Reference Manual • July 1999

For information on how Sun Directory Services relates to SIMS refer to the SIMS
Concepts Guide and SIMS System Administration Guide. For detailed information on

administration and usage, refer to the Sun Directory Services documentation.

The goal of this document is to precisely identify the format, type, and acceptable

values of the directory entries used by Sun Internet Mail Server. This document has

two intended audiences: engineering groups and customers who develop their own

tools for populating the directory with data.

This document assumes that the reader is familiar and comfortable with installing

and managing SIMS. Readers should be familiar with LDAP Directory Interchange

Format (ldif(1)). It is also assumed that the reader has read and understands the

following documents:

■ X.520 (1993)

■ X.520 (1998)

■ X.521 (1993)

■ RFC 2256

■ http://www.ietf.org/Internet-drafts/draft-smith-ldap-inetorgperson-00.txt

Producers and Consumers of the Mail Schema

A producer is defined as any software component that can create, or subsequently

modify a value for an attribute in an object class. A consumer is defined as any

software component that retrieves and uses attributes in the process of

accomplishing some task.

The following sections defining the LDAP mail schema specify the producer(s) and

consumer(s) of each of the attributes. Here, an Internet mail system is subdivided

into the following components:

Message Transfer Agent (mta) – Communicates through Simple Mail Transfer

Protocol [SMTP] and is responsible for either routing mail to another MTA or

delivering the message into a mailbox.

Message Store / Message Access agent (msma) – Responsible for supporting access

by email client software to a user's mail folders. This component may be:

■ a traditional Message Store Agent, with local storage of user's mail folders

■ a proxy server between the email client and another MSMA agent

■ a referral agent that returns the name of another MSMA agent to the email client

■ a combination of all three of the above.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 205

In proxy mode, the agent can be implemented as a protocol router for POP [POP]

and/or IMAP [IMAP] requests. When functioning as an end-point for mail access

requests, the MSMA agent will retrieve and delete messages, and otherwise

manipulate the folders belonging to the user in the message store.

client – Any software agent producing and/or consuming mail directory entries and

interpreting the semantics of object class attributes as specified here. These are

usually user agents acting on behalf of a non-privileged end-user, and can range

from stand-alone email clients to cgi-bin scripts or Java servlets invoked by a web

server in response to HTTP commands from a user's web browser.

admin – Software agents that provision the directory (creation, update of entries).

This class of producer/consumer is usually acting on behalf of a privileged user (for

example, a site administrator). Such agents can range from GUI stand-alone or

web-based administration consoles, to character-based scripts invoking low-level

LDAP commands. The heading for each of the attribute sections lists the following:

(<matching rule>, <multi-valued>, {<producer/consumer>})

Where:

<matching rule> – Matching rule for this attribute. For example, cis, ces,...

<multi-valued> – Number of attributes allowed per entry. For example, 1, 0-1,

0-many, ...

<producer/consumer> – A comma-separated list of the producers and/or

consumers of this attribute from the list of Internet mail system components above.

Directory Schema and DIT Specification

Structural object classes are used to define nodes in the directory. Auxiliary object

classes can be used to extend the set of attributes that a directory entry might

contain. The data model used by SIMS is to extend entries, defined by standard

object classes, by overlaying them with service-specific auxiliary object classes.

The shared auxiliary object classes hold a minimum of attributes and can be used to

define generic entries in the directory (for example, inetSubscriber is used to

define a basic user entry). Service-specific attributes are encapsulated in the auxiliary

object classes. To enable a user/subscriber to start using a service or to enable a host

object to hold service-specific attributes, these auxiliary object classes are used to

extend the generic entries.

The sections that follow define the object classes used to define the directory entries

(user, groups, hosted domains, host objects, and so on) and the specifications of the

attributes in these object classes.

206 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Directory Information Tree

The role of a directory service is to support the storage and retrieval of data.

Visualize the entries in an LDAP directory as a tree-like structure. This mirrors the

tree model used by most file systems and is referred to as the directory information

tree (DIT).

Just as a file path uniquely identifies a file within a file system, a directory entry is

uniquely identified within the DIT using a distinguished name (DN). A DN

identifies the entry with a comma-separated list of attribute and attribute value pair.

The DN's left-most attribute-value pair is known as the relative distinguished name

(RDN).

Following the RDN, each successive attribute-value pair is the RDN of the next

parent node in the DIT hierarchy, each one representing a potential branch point

above the entry. The final, or right-most, attribute-value pair represents the

conceptual root point of the DIT.

SIMS 4.0 allows the data to be represented in two ways in the directory. The

recommended approach is to have a single domain component tree (DC tree) that

contains all the data used by their services: users, distribution lists, hosted domains

entries, and so on. Starting with this release of SIMS, DC tree deployments will be

recommended and the installer will always create the DC tree for all new installs.

For sites that need to maintain compatibility the OSI style tree, or that don't want to

migrate the directory of SIMS 3.0 to conform with the recommended DIT, an

alternate data layout is supported. This alternate layout uses a combination of

primary and secondary tree.

The primary tree is the repository of all users and distribution list data and is

patterned after an OSI DIT.

inetOrgPerson

inetSubscriber

inetMailRouting

inetMailUser

Base subscriber

Mail enabled subscriber

structural object class

auxiliary object class;

shared by SIMS and SISP

auxiliary object class

auxiliary object class

Chapter 3 Sun Directory Services Directory Information Tree and Schema 207

The secondary tree is a Domain Component tree (DC tree) that mirrors the DNS

hierarchy. The secondary tree also holds the virtual domains, because domain data

logically belongs in the DC tree.

The DC tree provides the mapping from the DNS namespace to the primary

namespace where all users and distribution lists are defined. This mapping is used

by message transfer agents for building routing tables and in making message

routing decisions; it is also used by the IMAP/POP servers when authenticating

users.

The root entry of the DIT is defined by the suffix value of the directory server.

Therefore, the LDAP directory server will have to support multiple suffixes for

multiple DITs to be created. Sun Directory Server and Netscape Directory Server

support multiple DITs.

OSI trees with a shadow DC tree are deprecated with an eye towards discontinuing

support for such deployments in the future.

As noted, SIMS 4.0 supports user/distribution list data in a DC tree or a

combination of DC and OSI trees. Examples using both are shown below.

Data In a Single Domain Component Tree

The recommended approach for setting up the directory information tree in a

directory server is to create all entries that SIMS depends on in a tree that is

patterned after a domain component tree. The tree should be rooted at o=Internet .

Configure the directory server with this suffix.

All nodes directly below o=internet correspond to the top-level domains in the

DNS namespace. For example, some of the nodes below the root would be

dc=com,o=internet ; dc=fr,o=internet; dc=edu,o=internet ; and so on.

These top-level nodes that correspond to the top-level domains contain the node for

organizations. Examples of these are dc=sun,dc=com,o=internet and

dc=sfr,dc=fr,o=internet . DNS domains within an organization’s top level

DNS domain are represented by corresponding containers of the format

dc=<sub_domain>,dc=sun,dc=com,o=internet . Each node representing the

organization or sub-domain in the organization is required to have the following

organizational units:

■ organizational unit: people – User entries are defined so that they are contained

within the people organizational unit.

■ organizational unit: groups – Distribution list entries are defined so that they are

contained within the groups organizational unit.

■ organizational unit: services – Entries for services are contained within the

services organizational unit.

208 Sun Internet Mail Server 4.0 Reference Manual • July 1999

In the figure below, the DN for a user entry in engineering organizational unit will

have a suffix of ou=people,dc=engineering,dc=sun,dc=com,o=internet ,

preceded by the entry’s RDN. For example:

cn=John Doe,ou=people,dc=engineering,dc=sun,dc=com,o=internet .

Each containers — o=internet; dc=<top_level_dns_domain>,o=internet ;

dc=<dns_suffix_for_org>, dc=<top_level_dns_domain>,o=internet —

and then the organizational units people, groups, and services are directory entries

themselves and are made up of the following object classes.

The directory entry for the root node is represented by the following LDIF:

DN OF NODE IN DIT OBJECT CLASSES ASSOCIATED
WITH DIRECTORY ENTRY

o=internet organization

dc=<top_level_dns_domain>, o=internet domain

dc=<dns_suffix_for_org>,dc=<top_level_dns_domain>,
o=internet

domain
simsDomain
inetDomain

dc=<sub_domain>,dc=<dns_suffix_for_org>,dc=<top_level_dn
s_domain>, o=internet

domain
simsDomain
inetDomain

ou=people,
dc=<dns_suffix_for_org>,dc=<top_level_dns_domain>,
o=internet

organizationalUnit

ou=groups,
dc=<dns_suffix_for_org>,dc=<top_level_dns_domain>,
o=internet

organizationalUnit

ou=services,
dc=<dns_suffix_for_org>,dc=<top_level_dns_domain>,
o=internet

organizationalUnit

dn: o=internet
organization: internet
objectclass: organization
description: Root node of the Domain Component (DC) Tree

Chapter 3 Sun Directory Services Directory Information Tree and Schema 209

The directory entry for the second level node is represented by the following LDIF:

The directory entry for the third level node is represented by the following LDIF:

The directory entry for people container is represented by the following LDIF

(groups and services follow the same format).

You can add additional attributes to the above nodes, especially to the nodes defined

with the inetDomain object class. Attributes of the inetDomain and SimsDomain
object classes are used to set the various properties of a virtual domain.

Data in OSI and DC trees

Primary tree

The primary tree is patterned after an OSI tree and is rooted at c=<country-name> .

Therefore, the suffix for the primary tree is set to c=<country_name> . The nodes in

bold correspond to a site's organization structure. Each node in the DIT that

corresponds to a valid DNS domain or sub-domain in the organization is required to

have the following organization units:

■ organizational unit: people

■ organizational unit: groups

■ organizational unit: services

dn: dc=com, o=internet
domainComponent: com
objectclass: domain
description: Top-level node for COM domains.

dn: dc=sun, dc=com, o=internet
domainComponent: sun
objectclass: domain
objectclass: inetDomain
objectclass: simsDomain
inetTreeStyle: DC
description: Top level node of sun.com
dnsDomainName: sun.com

dn: ou=People, dc=sun, dc=com, o=internet
organizationalUnit: people
objectclass: organizationalUnit

210 Sun Internet Mail Server 4.0 Reference Manual • July 1999

FIGURE 3-1 SIMS OSI (Primary) Directory Information Tree

User entries are defined so that they are contained within the people organizational

unit. Distribution list entries are defined so that they are contained within the

groups organizational unit. Service state is located within the services organizational

unit.

In FIGURE 3-1, the DN for a user entry in the engineering organizational unit will

have a suffix of ou=people,ou=engineering,o=sun.com,c=us , preceded by the

entry’s RDN.

Each container is a directory entry and is defined by the organizationalUnit
object class. The directory entry for people container is shown below (groups and

services follow the same format).

In the illustration above, the root of the DIT is defined by the suffix c=us . This

directory entry is defined by country object class. The directory entry for the root

entry is shown below.

dn: ou=People,o=sun.com,c=us
organizationalUnit: people
objectclass: organizationalUnit

dn: c=us
country: us
objectclass: country
description: Root node of the OSI tree

o=sun.com

ou=engineeringou=servicesou=people ou=groups

ou=groupsou=people ou=services

cn=Mktg. Wiz

cn=Engg.Wiz

cn=John Doe

cn=Jane Doe

c=us

o=stanford.edu

Chapter 3 Sun Directory Services Directory Information Tree and Schema 211

Second level nodes correspond to the organizations contained in the directory server

and are defined by organization object class. An example of the entry for a second

level node is shown below.

The organization nodes are followed by entries for the containers for people

(ou=people), groups (ou=groups), and services (ou=services) as described

earlier. Organizations that have divisions and subdivisions (for example,

engineering and marketing) should represent their organizational hierarchy by

creating containers for each division and subdivision. These containers are defined

by the organization object class. An example of the entry for a division is shown

below.

Note – Each node for an organization or a division that can hold users and groups

must have the three containers for people, groups, and services.

Secondary tree

The secondary tree provides the mapping from DNS name space to the OSI name

space and follows the recommendations of RFC 1279, section 11. The tree is rooted at

o=internet and is structured exactly the same way as if the domain component

tree was the primary tree—with one major difference. When the DC tree is not the

primary tree, the attribute inetlabeledURI in the nodes created with inetDomain
is set to point to the DN of the OSI tree containing the users and groups for that

DNS domain (for example, ldap:///ou=engineering,o=sun.com,c=us??sub).

o: sun.com,c=us
o: sun.com
o: Sun Microsystems, Inc
ojectclass: organization
description: OSI node for sun.com

dn: ou=engineering,o=sun.com,c=us
ou: Sun Microsystems engineering organization
objectclass: organizationalUnit

212 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Each node corresponding to a DNS domain is created with the following object

classes — top , domain , inetDomain, and simsDomain . For example, the directory

entry for the eng.sun.com domain is shown below.

FIGURE 3-2 SIMS Domain Component (Secondary) Directory Information Tree

dn: dc=eng,dc=sun,dc=com,o=internet
dc: eng
description: DC node for eng.sun.com
objectclass: top
objectclass: domain
objectclass: inetDomain
objectclass: simsDomain
inettreestyle: OSI
inetdomainstatus: active
simsrecursive: 0
simsdomainversion: 1.0
dnsdomainname: eng.sun.com
inetauthorizedservices: imap
netauthorizedservices: pop3
inetauthorizedservices: imaps
inetauthorizedservices: pop3s
inetauthorizedservices: smtp
inetauthorizedservices: sunw_webaccess
inetauthorizedservices: sunw_calendar
inetlabeleduri: ldap:///ou=engineering,o=sun.com,c=us??sub
maxentries: -1
maxmailboxes: -1
maxdistributionlists: -1
mailhosts: mail.eng.sun.com
preferredmailhost: mail.eng.sun.com

cd=sun

dc=engdc=corp

dc=com

o=internet

Chapter 3 Sun Directory Services Directory Information Tree and Schema 213

Note – It is important that the associations between the domain component tree

(secondary) and the OSI tree (primary) be set up for applications to search for users

and groups within a given DNS domain

FIGURE 3-2 shows that the node dc=eng,dc=Sun,dc=com,o=Internet points to

the DN ou=engineering,o=sun.com,c=us . SIMS looks for users in the

eng.sun.com DNS domain in the sub-tree

ou=People,ou=engineering,o=sun.com,c=us .

Clients of the directory should use the inetTreeStyle attribute of inetDomain
object class to determine whether the users, groups, and services are under the DC

tree (inetTreeStyle=DC) or under the OSI tree (inetTreeStyle=OSI). When

inetTreeStyle=OSI , value of inetlabeledURI is used to determine the DN in

the OSI tree that holds the user entries.

Attribute Syntax

The description of the attributes includes, among other things, the syntax of the

attribute. This syntax is a directive to the Directory Service Agent (DSA). The

possible syntaxes are:

■ dn – A string distinguished name (as defined in rfc1779).

■ cis – A case ignore string.

■ ces – A case exact string (case is significant during comparisons).

■ bin – A binary value.

■ tel – A string telephone number (blanks and dashes are ignored during

comparisons)

■ utctime – UTC time stamp in the following format YYMMDDHHMMSS.

■ protected – An encrypted value. In Sun Directory Server 1.0 and 3.1, a value

prefixed with {crypt} denotes that it has already been encrypted according to

UNIX crypt. A value with no prefix is assumed to be in the clear and is crypted

by the directory before it is stored. In SunDS 3.1, a value prefixed with {sunds}

denotes that the value is encrypted using a MD5 hashing scheme. Attributes with

protected syntax are not returned in searches unless the credentials that the client

is using when binding to the directory has the access (see ACL for Sun Directory

Server) over the attribute with a protected syntax.

Attributes may appear more than once in a directory entry. For each attribute in the

object attribute tables that follow the possible number of attribute values are:

■ 1 – one and only one value

■ 0-1 – zero or one value

214 Sun Internet Mail Server 4.0 Reference Manual • July 1999

■ 0-many – zero or more values

■ 1-many – one or more values

This is the number of values required by the schema checking process.

SIMS provides a tool — imldifsync — that assists in migrating users and

distribution lists from NIS and NIS+ into the directory.

The sections that follow describe the object classes, associated attributes, and the

directory information tree pertinent to the functioning of services provided by SIMS.

Services and Functions

SIMS provides the following services:

■ ms – Sun Message Store

■ ma – IMAP/POP message access

■ mta – SMTP mail service

■ admin – SIMS administration service

These services, individually or in combination, provide a set of functionality

pertinent to an Internet customer. These are defined below:

■ auth – user authentication to mailbox and directory data.

■ authorization – authorization to execute a privileged command, such as delete a

mailbox.

■ routing – routing of messages. Includes routing to the correct mail server and to

the correct channel.

■ access – access control over directory objects

Object class attributes, described in the sections below, are marked with a list of

services that depend on that attribute. The format of the notation is described by the

following BNF.

services
service-name
service

::= "{" service-name [:service-name] "}"
::= service [:service-name]
::="ms"|"ma"|"mta"|"smcs"|"admin"|
"spm"|"ftp"|"nntp"|"web"| "sia" |
"sism"

Chapter 3 Sun Directory Services Directory Information Tree and Schema 215

Object Classes Used by Sun Internet Mail
Server 4.0

The following section describes the object classes used to define the directory

information tree (DIT), mail users, and distribution lists. Some of the object classes

used to create the LDAP entries used by Sun Internet Mail Server 4.0 are defined in

X.500 standard or Internet Drafts. SIMS extends the capabilities of those object

classes and defines new mail specific object classes and relevant attributes. These are

used to overlay basic LDAP entries so that additional mail specific attributes can be

stored in them.

In the following sections, all the object classes used by SIMS are described. The first

section contains information about the object classes used to create the LDAP entries

that make the DIT. It also contains object classes used to make a domain object a

virtual domain. This is followed by internet mail users and internet mail groups.

Directory Information Tree and Virtual Domain

Object Classes

Users and distribution lists are leaf nodes in the DIT. The DIT is defined by the

following object classes.

■ country – Attributes used to describe a country.

■ organization – Attributes used to describe an organization.

■ organizationalUnit – Attributes used to describe an organizational unit

container. Used to create the OU=People , OU=Groups, and OU=Services
containers, and to create other organizational units contained in the OSI tree.

■ domain – Attributes used to describe the domain component nodes of the DC

tree. These nodes may be containers (domain and sub-domains) and leaf nodes

(hosts).

■ inetDomain – Attributes used to describe the additional properties for a hosted

domain. This object class is associated with directory containers that correspond

to a DNS domains. In an Internet style DIT, this object class is associated with

every DC (domain component) node that represents a DNS domain.

■ simsDomain – Attributes used to describe the additional properties for an email

domain. This object class is associated with directory containers that correspond

to a DNS domains. In an Internet style DIT, this object class is associated with

every DC (domain component) node that represents a DNS domain.

216 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Note – Attributes listed in the "Required Attribute" tables are used either for the

basic functionality of SIMS or by one or more extended services. They are not

necessarily required by the schema checking process. Some attributes listed as

required can be omitted, and the object will still pass the schema checking process. If

the number of values for an attribute is listed as either 1 (only one value) or 1-many

(one or more values), then the attribute is required for the object to pass schema

checking. If the number of values for an attribute is listed as either 0-1 (zero or one

value) or 0-many (zero or more values), then the attribute is not required for the

object to pass schema checking.

Optional attributes are not used by SIMS, or are for informational purposes only.

country Object Class

The country object class is used to define the country node. This is also the root

node of the OSI tree. The country object class is defined as follows:

(OID — 2.5.6.2
NAME 'country'
SUPERIOR 'top'
MUST (

countryName
)

MAY (
description $ searchGuide
)

)

TABLE 3-1 Required country Attributes

Attribute Description

countryName (cis, 1, {}) 2-character country code. Defines the root node of the OSI tree.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 217

organization Object Class

The organization object class is used to create the second level nodes in the DIT.

Used with domainRelatedObject object class. The object class is defined as

follows.

TABLE 3-2 Optional country Attributes

Attribute Description

description (cis, 0 – many, {}) Free form text. Description about the country node in the

directory. Usually the full name of the country that matches the country code set

in countryName . For example, if countryName =US, the description could be

set to description =United States of America.

searchGuide (cis, 0 – many, {}) Used by X.500 clients in constructing search filters. Present

here due to the heritage of LDAP schema.

(OID — 2.5.6.4
NAME 'organization'
SUPERIOR 'top'
MUST (

organizationName
)

MAY (
businessCategory $ description $ destinationIndicator $
facsimileTelephoneNumber $ internationaliSDNNumber $

localityName
$ physicalDeliveryOfficeName $ postOfficeBox $ postalAddress
$ postalCode $ preferredDeliveryMethod $ registeredAddress
$ searchGuide $ seeAlso $ state $ streetAddress $

telephoneNumber
$ teletexTerminalIdentifier $ telexNumber $ userPassword $
x121Address
)

)

TABLE 3-3 Required organization Attributes

Attribute Description

organizationName (cis, 0 - many, { }) Name of the organization associated with this group.

218 Sun Internet Mail Server 4.0 Reference Manual • July 1999

TABLE 3-4 Optional organization Attributes

Attribute Description

businessCategory (cis, 0 - many, {}) Business classification for the organization.

description (cis, 0 – many, {}) Free form text. Description about the organization node in

the directory. Usually the full name of the organization that is associated

with the value of attribute organizationName for this entry. For example,

if organizationName =Sun, the description can be set to

description =Sun Microsystems, Inc.

destinationIndicator (cis, 0 - many, {}) Country and city address information.

facsimileTelephoneNumber (tel, 0 - many, {}) Fax telephone number of the distribution list.

internationaliSDNNumber (tel, 0 - many, {}) International ISDN number of the distribution list.

localityName (cis, 0 – many, {}) Locality name.

physicalDeliveryOfficeName (cis, 0 - many, {}) Mail stop.

postOfficeBox (cis, 0 - many, {}) Post office box.

postalAddress (cis, 0 - many, {}) Postal address.

postalCode (cis, 0 - many, {}) Postal code.

preferredDeliveryMethod (cis, 0 - 1, {}) Preferred delivery method of communication.

registeredAddress (cis, 0 - many, {}) Registered postal address.

searchGuide (cis, 0 – many, {}) Used by X.500 clients to construct search filters. Present

here due to the heritage of LDAP schema.

seeAlso (dn, 0 - many, {}) Distinguished name of an entry to consult for further

information.

st (cis, 0 - many, {}) Full name of state or province (stateOrProvinceName).

streetAddress (cis, 0 - many, {}) Street address associated with this organization.

telephoneNumber (tel, 0 - many, {}) Telephone number in international format.

teletexTermicalIdentifier (cis, 0 - many, {}) Teletex terminal ID and optional parameters for a teletex

terminal. $ separated string.

telexNumber (cis, 0 - many, {}) Telex number, country code, and answer back code for a

teletex terminal.

userPassword (protected/sunds, 0 - many, { }) Encrypted string representing the password

of the organization node. In Sun Directory Server, the supported encryption

scheme used is crypt or sunds. For CRAM-MD5 support the encryption

scheme used in the SunDS 3.1 should be sunds.

x121Address (cis, 0 - many, {}) An address as defined by the ITU recommendation X.121.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 219

organizationalUnit Object Class

The organizationalUnit object class is used to create the container entries of the

primary DIT. These entries are the organizational unit (ou) containers corresponding

to an OSI tree based on geography (east, west, UK, Russia, and so on) or functional

units (engineering, marketing, and so on). The ou entry is created using the

organizationalUnit object class. Each organization unit is required to have three

more ou entries — people, groups, and services. The object class is defined as

follows.

(OID — 2.5.6.5
NAME 'organizationalUnit'
SUPERIOR 'top'
STRUCTURAL
MUST (

organizationalUnitName
)

MAY (
businessCategory $ description $ destinationIndicator $
facsimileTelephoneNumber $ internationaliSDNNumber $

localityName
$ physicalDeliveryOfficeName $ postOfficeBox $ postalAddress $
postalCode $ preferredDeliveryMethod $ registeredAddress $
searchGuide $ seeAlso $ state $ streetAddress $ telephoneNumber

$
teletexTerminalIdentifier $ telexNumber $ userPassword $
x121Address
)

)

TABLE 3-5 Required organizationalUnit Attributes

Attribute Description

organizationUnitName (cis, 0 - many, {admin,ms,mta,webaccess}) Name of the organization unit

represented by this entry, for example, ou=Engineering .

220 Sun Internet Mail Server 4.0 Reference Manual • July 1999

TABLE 3-6 Optional organizationalUnit Attributes

Attribute Description

businessCategory (cis, 0 - many, {}) Business classification for the organization unit.

description (cis, 0 – many, {}) Free form text. Description about the organization node in

the directory. Usually the full name of the organization that associated with

the value of attribute organizationUnitName for this entry. For example,

if organizationUnitName =Engineering, the description could be set to

description =All of engineering in Sun Microsystems, Inc.

destinationIndicator (cis, 0 - many, {}) Country and city address information.

facsimileTelephoneNumber (tel, 0 - many, {}) Fax telephone number of the distribution list.

internationaliSDNNumber (tel, 0 - many, {}) International ISDN number of the distribution list.

localityName (cis, 0 – many, {}) Locality name.

physicalDeliveryOfficeName (cis, 0 - many, {}) Mail stop.

postOfficeBox (cis, 0 - many, {}) Post office box.

postalAddress (cis, 0 - many, {}) Postal address.

postalCode (cis, 0 - many, {}) Postal code.

preferredDeliveryMethod (cis, 0 - 1, {}) Preferred delivery method of communication.

registeredAddress (cis, 0 - many, {}) Registered postal address.

searchGuide (cis, 0 – many, {}) This attribute is for use by X.500 clients in constructing

search filters. Present here due to the heritage of LDAP schema.

seeAlso (dn, 0 - many, {}) Distinguished name of an entry to consult for further

information.

st (cis, 0 - many, {}) Full name of state or province (stateOrProvinceName).

streetAddress (cis, 0 - many, {}) Street address associated with this organization.

telephoneNumber (tel, 0 - many, {}) Telephone number in international format.

teletexTermicalIdentifier (cis, 0 - many, {}) Teletex terminal ID and optional parameters for a teletex

terminal. $ separated string.

telexNumber (cis, 0 - many, {}) Telex number, country code, and answer back code for a

teletex terminal.

userPassword (protected/sunds, 0 - many, { }) Encrypted string representing the password

of the organization node. In Sun Directory Server, the supported encryption

scheme used is crypt or sunds. For CRAM-MD5 support the encryption

scheme used in the SunDS 3.1 should be sunds.

x121Address (cis, 0 - many, {}) An address as defined by the ITU recommendation X.121.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 221

domain Object Class

The domain object class is used to create all the container entries (except for the root

entry) in the Domain Component (DC) tree. These entries are the domain component

representing DNS domains. The object class is defined as follows.

(OID — 0.9.2342.19200300.100.4.13
NAME 'domain'
SUPERIOR 'top'
STRUCTURAL
MUST (

domainComponent
)

MAY (
associatedName $ businessCategory $ description $
destinationIndicator $ facsimileTelephoneNumber $
internationaliSDNNumber $ locality $ organizationName $
physicalDeliveryOfficeName $ postOfficeBox $ postalAddress $
postalCode $ preferredDeliveryMethod $ registeredAddress $
searchGuide $ seeAlso $ state $ streetAddress $ telephoneNumber

$
teletexTerminalIdentifier $ telexNumber $ userPassword $
x121Address
)

)

TABLE 3-7 Required domain Attributes

Attribute Description

domainComponent (cis, 1, {admin,ma,mta,webaccess,spm}) Name of the associated DNS domain for

this DC node. DNS domain eng.sun.com would be represented in the DIT by the

following chain of nodes: dc=eng,dc=sun,dc=com,o=<root_suffix> . And

the DNS domain associated with a physical system, like jurassic.eng.sun.com
would be represented in the DIT by the following chain of nodes:

dc=jurassic,dc=eng,dc=sun,dc=com,o=<root_suffix> .

222 Sun Internet Mail Server 4.0 Reference Manual • July 1999

TABLE 3-8 Optional domain Attributes

Attribute Description

associatedName (dn, 0 - many, {admin,ma,mta,webaccess,spm}) Links the organizational

X.500 (OSI) DIT and the DNS (Domain Component) tree. Used to link the

DNS hierarchy to the OSI hierarchy. Where such entries don’t exist or

inetTreeStyle (defined in inetDomain object class) is set to DC, user,

group, and service entries should be looked up in the DC tree.

businessCategory (cis, 0 - many, {}) Business classification for the domain.

description (cis, 0 – many, {}) Free form text. Description about the domain node in the

directory. Usually the full name of the domain that associated with the

value of domainComponent for this entry. For example, if

domainComponent=Eng , the description may be set to

description =Engineering domain in Sun Microsystems, Inc.

destinationIndicator (cis, 0 - many, {}) Country and city address information.

facsimileTelephoneNumber (tel, 0 - many, {}) Fax telephone number of the distribution list.

internationaliSDNNumber (tel, 0 - many, {}) International ISDN number of the distribution list.

localityName (cis, 0 – many, {}) Locality name.

physicalDeliveryOfficeName (cis, 0 - many, {}) Mail stop.

postOfficeBox (cis, 0 - many, {}) Post office box.

postalAddress (cis, 0 - many, {}) Postal address.

postalCode (cis, 0 - many, {}) Postal code.

preferredDeliveryMethod (cis, 0 - 1, {}) Preferred delivery method of communication.

registeredAddress (cis, 0 - many, {}) Registered postal address.

searchGuide (cis, 0 – many, {}) Used by X.500 clients in constructing search filters.

Present here due to the heritage of LDAP schema.

seeAlso (dn, 0 - many, {}) Distinguished name of an entry to consult for further

information.

st (cis, 0 - many, {}) Full name of state or province (stateOrProvinceName).

streetAddress (cis, 0 - many, {}) Street address associated with this organization.

telephoneNumber (tel, 0 - many, {}) Telephone number in international format.

teletexTermicalIdentifier cis, 0 - many, {}) Teletex terminal ID and optional parameters for a teletex

terminal. $ separated string.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 223

inetDomain Object Class

The inetDomain object class is used to create those entries in the DC tree that

correspond to a DNS domain. This object class is overlayed on nodes created with

domain object class. The DC entry is created by using domain object classes. The

object class is defined as follows.

TelexNumber (cis, 0 - many, {}) Telex number, country code, and answer back code for a

teletex terminal.

userPassword (protected/sunds, 0 - many, { }) Encrypted string representing the

password of the organization node. In Sun Directory Server, the supported

encryption scheme used is crypt or sunds. For CRAM-MD5 support the

encryption scheme used in the SunDS 3.1 should be sunds.

x121Address (cis, 0 - many, {}) An address as defined by the ITU recommendation X.121.

(OID — TBD
NAME 'inetDomain'
AUXILIARY
MUST (
dnsDomainName $ inetTreeStyle
)
MAY (

owner $ inetAuthorizedServices $ inetLabeledURI $
inetDomainStatus
)

)

TABLE 3-9 Required inetDomain Attributes

Attribute Description

dnsDomainName (cis, 1, {admin,ma,mta,webaccess,spm}) DNS domain name associated with this

node in the DIT.

inetTreeStyle (cis, 1, {admin,ma,mta,webaccess,spm}) Type of tree that is associated with this

DNS domain. Takes the following values:

• DC All users, groups, and service entries are found in the domain component

tree.

• OSI All users, groups, and service entries are found in OSI tree. Linkage is

provided by the value of attribute associatedName .

TABLE 3-8 Optional domain Attributes (Continued)

Attribute Description

224 Sun Internet Mail Server 4.0 Reference Manual • July 1999

■ inetLabeledURI

<ldapurl> ::= “ldap://” [<hostport>] “/” <dn> [“?” <attributes> [“?”
<scope> “?” <filter>

<hostport> ::= <hostname> [“:” <portnumber>]

<dn> ::= distinguished name (string) as defined in RFC 1779

<attributes> ::= NULL | <attributelist>

owner (dn, 1-many, {admin, spm}) Distinguished name of the delegated

administrator(s) for this domain.

inetLabeledURI (ces, 0-1, {admin, spm,mta,msma}) The LDAP URI points to the naming context

in the OSI tree where the users, groups, and other objects reside. This is useful

for sites that need to deploy an OSI style tree. NOTE: Using a DC/OSI tree is

discouraged and should be used only when necessary.

Components check the inetTreeStyle attribute of the domain entry to

determine if the users are in DC or OSI tree. If the attribute indicates that the

users are to be found in the OSI tree, the value of inetLabeledURI is used to

determine the naming context to search. The syntax for this URL is specified in

the RFC1959 and the relevant ABNF is reproduced below:

inetAuthorizedServices (dn, 0 - many, {ma, mta, admin}) DN of the authorized services for this domain.

List of services that users in this domain are permitted. This attribute explicitly

calls out the set of services that a user is authorized to use. NOTE: If this

attribute is missing from a domains entry, users are allowed to use all services

listed in the user entry, that is, when doing the intersection between the set of

services called out in user entry and domain entry, the domain entries

inetAuthorizedServices list is considered the universal set.

Supported values for service name are:

• imaps allows access to secure IMAP based message access.

• imap allows access to IMAP based message access .

• pop3 allows access to POP based message access.

• pop3s allows access to secure POP based message access.

• smtps allows access to secure SMTP server for message submission.

• sunw_webaccess allows access to the Web Access server.

• sunw_calendar allows access to Sun Calendar server.

inetDomainStatus (cis, 0-1, {mta, ma, admin}) If missing from a user entry, the semantics are the

same as if the value is active. Supported values are:

• active All accounts in the domain are active. Subscribers may use all services

granted by inetAuthorizedServices for domain AND subscribers.

• inactive All accounts in the domain are inactive. Subscribers may not use any

services granted by inetAuthorizedServices for domain AND subscribers.

Where possible, service requests for subscribers must return transient failures.

• deleted All accounts in the domain are marked as deleted. The accounts may

remain in this state within the directory pending purging of deleted domain and

all entries contained within. Service requests for subscribers in this domain must

return permanent failures.

TABLE 3-9 Required inetDomain Attributes (Continued)

Attribute Description

Chapter 3 Sun Directory Services Directory Information Tree and Schema 225

<attributelist> ::= <attributetype> | <attributetype> [“,”
<attributelist>

<attributetype> ::= a string as defined in RFC1777

<scope> ::= “base” | “one” | “sub”

<filter> ::= a string as defined in RFC1558

simsDomain Object Class

The simsDomain object class is used to create entries in the DC tree that correspond

to a DNS domain. The DC entry is created by using domain , inetDomain , and

simsDomain object classes. The object class is defined as follows.

(OID — TBD
NAME 'simsDomain'
AUXILIARY
MUST (

simsDomainVersion
)

MAY (
rfc822Postmaster $ mailHosts $ preferredMailHost $
domainDiskQuota $ mailQuota $ maxMailboxes $ maxEntries $
maxDistributionLists $ simsRecursive
)

)

226 Sun Internet Mail Server 4.0 Reference Manual • July 1999

TABLE 3-10 Required simsDomain Attributes

Attribute Description

rfc822Postmaster (cis, 0-many, {mta, admin}) rfc822 address of the postmaster.

mailHosts (cis, 0-many, {admin,mta,spm}) List of fully qualified host names of mail servers

that have routing responsibility for this domain. Used by MTA to build local

routing tables. When a domain node has mailserver’s name listed in mailhosts,

it implies that all sub-domains are included in the routing scope of that

mailserver. The alias database on the mailserver will be populated with users

from all contained domains. NOTE: It is a provisioning error to have a

mailserver listed in a domain nodes list of mailhosts when a superior domain

node already has that mailserver in its list of mailhosts.

preferredMailHost (cis, 0-1, {admin,spm}) Fully qualified host name of the preferred mail server for

this hosted domain. When the delegated administrator adds a new

user/distribution list, the new user/distribution list is assigned this value for

their mailhost.

domainDiskQuota (cis, 0-1, {ms, admin}) Disk quota in megabytes for this domain. Disk usage for

all users in this hosted domain should not exceed this value.

maxMailBoxes (cis, 0-1, {ma, admin}) Number of allowable mailboxes for this domain.

maxEntries (cis, 0-1, {admin}) Number of allowable directory entries for this domain.

maxDistributionLists (cis, 0-1, {mta, admin}) Number of allowable distribution lists for this domain.

simsRecursive (cis, 0 – 1, {mta,admin,ms,spm}) Legal values for this attribute are 0 and 1. This

attribute controls the bounds of the namespace. When set to 1 for any domain, it

implies that users in the domain and all contained domains are in a flat

namespace and all components must treat all users in that sub-tree as part of

this domain. A value of 0 implies that only users in that domain are in the scope

of the domains namespace and all sub-domains are separate namespaces whose

bounds are determined by the simsRecursive flag of that domain. All domain

provisioning tools must disallow creation of a domain node

<sub>.<domain>.COM when the parent node <domain>.COM has

simsRecursive =1. This would lead to overlapped namespace (parent domain

says all users are within my scope and the child domain node says that all users

beneath the child domain are in the child domains scope, hence leading to two

namespaces claiming rights over the same users). If there is a compelling reason

to create a sub-domain beneath a domain where simsRecursive =1, then the

value of simsRecursive for the sub-domain must be set to 1. Additionally, a

domain node marked with simsHosting =1 may not have simsRecursive =1.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 227

Internet Mail User Object Classes

A user, including a SIMS email user, is represented by an entry in the directory. A

user entry is extensible (as are all other directory entries) and may contain additional

object classes/attributes once such schema extensions have been made in the

directory. Take care to ensure that semantics of existing object classes are not

changed by a schema extension.

An entry that stores user information for an email user consists of attributes drawn

from — at a minimum — the following directory object classes.

The keyword in parentheses following the name of the object class, indicates

whether the object class is standard, shared (by various services that use the

directory data), or service-specific. If it is service-specific, the keyword is followed

by the name of the service.

■ top (standard) – Attributes for describing the classifications of a directory object.

This is a structural object class and all other object classes inherit from this base

class.

■ person (standard) – Attributes for describing a person. Inherits from top.

■ organizationalPerson (standard) – Attributes for describing a person

belonging to an organization. Inherits from person.

■ inetOrgPerson (proposed standard) – Same as organizationalPerson and

also one that interacts with the Internet. Inherits from organizationalPerson .

■ inetSubscriber (shared; auxiliary) – Attributes for describing a basic Sun

Internet Services user. This is an auxiliary object class. All users who are

provisioned for email, Web, ftp, and so on, are described using this object class

and a combination of one or more service-specific auxiliary object classes. The

inetSubscriber object class is an auxiliary class shared by several Sun

products. It requires an inetOrgPerson structural object class, because a

number of auxiliary object classes depend on attributes from inetOrgPerson .

The inetSubscriber object class provides information needed to manage a

subscriber of one or more Internet services (for example, sending email, retrieving

received email, calendar access, and so on). This results in a single shared object

that can be checked to determine which services a specific user is authorized to

use. (Although it is beyond the scope of this chapter, the inetSubscriber object

class is being used to support access to Internet services beyond the email domain

(for example, http, news, and so on).

■ IinetMailUser (service specific; SIMS; auxiliary) – Attributes for describing an

email user. This is an auxiliary object class and is required for defining an email

user. The inetMailUser object class, in conjunction with the auxiliary object

classes inetSubscriber , inetMailRouting, and the structural object class

inetOrgPerson , will be present in the LDAP directory entries for all users who

will receive, send, or read Internet email. Internet email clients and servers should

228 Sun Internet Mail Server 4.0 Reference Manual • July 1999

use this object class to store and retrieve information related to storage of

incoming email and sending of outbound email. All email users must have this

object class.

■ imCalendarUser (service specific; SICS, auxiliary) – Attributes for describing a

calendar subscriber. This is an auxiliary class and is required for defining users of

Sun Internet Calendar Server.

■ inetAdministrator (shared; auxiliary) – Attributes for describing an

administrator for SIMS.

■ inetMailRouting (service specific; SIMS; auxiliary) – Attributes containing the

required routing information common to all Internet email recipients.

■ inetMailGroup (service specific; SIMS; auxiliary) – Attributes that are key to

determining how the mail is processed by the MTAs. Additionally, the

inetMailRouting object class determines how messages are routed through the

mail system.

A detailed explanation of the attributes in this object class (including the valid range

of values for the attribute, the effect on the behavior of SIMS as a result of changing

the value, and the syntax for the attribute), follows the definition of the object class.

The attribute list can have:

■ Required attributes that are used either for the basic functionality of SIMS (that is,

required for the components to function) or by one or more service when

extended features of these products are used.

■ Reserved attributes reserved for future use by SIMS and should not be used by

the end user for other purposes.

■ Optional attributes that are not used nor planned to be used by SIMS.

Attribute names are followed by — within parenthesis — attribute syntax and list of

services that depend on the attribute.

Inherited Object Classes and Attributes

The following attributes are used in this specification but are defined in other

specifications: uid , userPassword , givenName , commonName, and surname .

■ uid (cis, 1, {client, msma, admin}) attribute – The name, unique within a domain,

used by a subscriber to log in to a computer system. The uid attribute must be

used to authenticate to the email message access service before the user may read

messages in their mailbox(es).

■ userPassword (cis, 1, {client, msma, admin}) attribute – The password used by

the subscriber to authenticate to a server for access to a particular service.

■ givenName (ces, 0-many, {admin}) attribute – Used to hold the part of a person's

name which is not their surname or middle name.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 229

■ surname (ces, 0-1, {admin}) attribute – Used to hold a person's last, or family,

name.

■ commonName(ces, 0-many, {admin}) attribute – Used to hold the concatenation of

a person's first and last (or family) name. In the directory the commonNameof a

person is a naming attribute. Because names are not always unique, provisioning

software may optionally transform a non-unique commonNameinto a name that is

unique within a domain; it may do this by further concatenating the value of the

uid attribute to the default commonNamevalue, and then using that now-unique

value as the naming attribute. This is acceptable because the commonName
attribute is defined as multi-valued.

top Object Class

The top object class is the base class for all other structural object classes used by

Sun Internet Services. The object class is defined as follows.

TABLE 3-11 describes the required attributes for the top object class.

(OID — 2.5.6.0
NAME 'top'
STRUCTURAL
MUST (

objectClass
)

)

TABLE 3-11 Required top Attributes

Attribute Description

objectClass (cis, 1 – many, {mta, ma, smcs, admin}) The object classes used to define a directory

entry. For every node in the directory (vertex and leaf nodes), we have to use one

structural object class and zero to many auxiliary object classes.

230 Sun Internet Mail Server 4.0 Reference Manual • July 1999

person Object Class

The following are the optional person attributes.

(OID — 2.5.6.6
NAME 'person'
STRUCTURAL
SUPERIOR 'top'
MUST (

surname $ commonname
)

MAY (
description $ seeAlso $ telephoneNumber $ userPassword
)

)

TABLE 3-12 Required person Attributes

Attribute Description

commonname (cis, 1 - many, {mta, admin}) Users full name. There can be more than one cn

attribute for a user although each attribute is required to be unique within a user

record.

surname (cis, 1 – many, {}) Users last or family name.

TABLE 3-13 Optional person Attributes

Attribute Description

description (cis, 0 –many, {}) Free form text. Description of user entry.

seeAlso (dn, 0 - many, {}) Distinguished name of an entry to consult for further information.

telephoneNumber (tel, 0 - many, {}) Telephone number in international format.

userPassword (protected/sunds, 0 - many, {admin, imta, ms, ftp, calendar}) Encrypted string

representing the users password. In Sun Directory Server, the supported encryption

scheme used is crypt or sunds. For CRAM-MD5 support the encryption scheme

used in the SunDS 3.1 should be sunds.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 231

organizationalPerson Object Class

Attributes for describing a person belonging to an organization.)

(OID — 2.5.6.7
NAME 'organizationalPerson'
STRUCTURAL
SUPERIOR 'person'
MAY (

destinationIndicator $ facsimileTelephoneNumber $
internationaliSDNNumber $ localityName $

organizationalUnitName
$ physicalDeliveryOfficeName $ postOfficeBox $ postalCode $
preferredDeliveryMethod $ registeredAddress $ st $ street $
telephoneNumber $ telexTerminalIdentifier $ title $

x121Address
))

TABLE 3-14 Optional organizationalperson Attributes

Attribute Description

destinationIndicator (cis, 0 - many, {}) Country and city address information.

facsimileTelephoneNumber (tel, 0 - many, {}) Fax telephone number of the distribution list.

internationaliSDNNumber (tel, 0 - many, {}) International ISDN number of the distribution list.

localityName (cis, 0 – many, {}) Locality name.

organizationalUnitName (cis, 0 – 1, {}) Organizational Unit name.

physicalDeliveryOfficeName (cis, 0 - many, {}) Mail stop.

postOfficeBox (cis, 0 - many, {}) Post office box.

postalAddress (cis, 0 - many, {}) Postal address.

postalCode (cis, 0 - many, {}) Postal code.

preferredDeliveryMethod (cis, 0 - 1, {}) Preferred delivery method of communication.

registeredAddress (cis, 0 - many, {}) Registered postal address.

st (cis, 0 - many, {}) Full name of state or province (stateOrProvinceName).

street (cis, 0 - many, {}) Street name.

teletexTermicalIdentifier (cis, 0 - many, {}) Teletex terminal ID and optional parameters for a teletex

terminal. $ separated string.

232 Sun Internet Mail Server 4.0 Reference Manual • July 1999

inetOrgPerson Object Class

Attributes use to describe a person using Internet services.

telexNumber (cis, 0 - many, {}) Telex number, country code and answer back code for a

teletex terminal.

title (cis, 0 - many, {}) Contains the title of a person in their organizational

context.

x121Address (cis, 0 - many, {}) An address as defined by the ITU recommendation X.121.

(OID — 2.16.840.1.113730.3.2.2
NAME 'inetOrgPerson'
STRUCTURAL
SUPERIOR 'organizationalPerson'
MAY (

audio $ businessCategory $ carLicense $ departmentNumber
$ employeeNumber $ employeeType $ givenName $ homePhone
$ homePostalAddress $ initials $ jpegPhoto $ labeledURI $ mail
$ manager $ mobile $ pager $ photo $ roomNumber $ secretary $ uid
$ userCertificate $ x500uniqueueIdentifier $ preferredLanguage
$ userSMIMECertificate
)

)

TABLE 3-15 Optional inetOrgPerson Attributes

Attribute Description

audio (bin, 0 - many, {}) – Audio clip.

businessCategory (cis, 0 - many, {}) – Business classification for the user.

carLicense (cis, 0 - many, {}) – Vehicle license plate number.

departmentNumber (cis, 0 - many, {}) – Numeric or alpha-numeric code for department to which a

person belongs.

employeeNumber (cis, 0 - 1, {}) – Numeric or alpha-numeric identier assigned to a person, typically

based on order of hire or association with an organization. Single valued.

employeeType (cis, 0 - many, {}) – Used to identify employer to employee relationship. Typical

values used will be contractor, employee, intern, temp, external, and unknown,

but any value may be used.

TABLE 3-14 Optional organizationalperson Attributes (Continued)

Attribute Description

Chapter 3 Sun Directory Services Directory Information Tree and Schema 233

givenName (cis, 0 - many, {}) – First name of the user.

homePhone (tel, 0 - many, {}) – Home telephone number.

homePostalAddress (cis, 0 - many, {}) – Home postal address.

initials (cis, 0 - many, {}) – Initials attributes contains the initials of some or all of an

individuals names, but not the surname(s).

jpegPhoto (bin, 0 - many, {}) – Photograph stored in JPEG format.

labeledURI (ces, 0 - many, {}) – Uniform resource identifier.

mail (cis, 0-many, {mta, admin}) – The user's advertised email address (RFC 822

format). Also know as preferredRfc822Originator .

manager (dn, 0-1, { }) – Distinguished name of manger.

mobile (tel, 0 - many, {}) – Mobile telephone number.

pager (tel, 0 - many, {}) – Pager number.

photo (bin, 0 - many, {}) – Photograph associated with this user.

roomNumber (cis, 0 - many, {}) – Room number.

secretary (dn, 0-1, { }) – Distinguished name of secretary.

uid (cis, 0 – 1, {mta, ma, admin, calendar}) – The login identifier of the user. The

naming context within which this is required to be unique is the naming context

associated with containing DNS domain.

userCertificate (cis, 0 – many, { }) – User certificate.

x500UniqueIdentifier (cis, 0 – many, { }) – x500UniqueueIdentifier attribute is used to distinguish

between objects when a distinguished name has been reused.

uid (cis, 0 – 1, {mta, ma, admin, calendar}) – The login identifier of the user. The

naming context within which this is required to be unique is the naming context

associated with containing DNS domain.

userCertificate (cis, 0 – many, { }) – User certificate.

TABLE 3-15 Optional inetOrgPerson Attributes (Continued)

Attribute Description

234 Sun Internet Mail Server 4.0 Reference Manual • July 1999

inetSubscriber Object Class

The inetSubscriber object class is an auxiliary object class used to define an

Internet subscriber. SIMS uses this object class along with inetMailRouting and

inetMailUser to define an email user. The is object class defined as follows:

x500UniqueIdentifier (cis, 0 – many, { }) – Used to distinguish between objects when a distinguished

name has been reused.

preferredLanguage (cis, 0 – 1, { }) – Used to indicate an individual's preferred written or spoken

language. This is useful for international correspondence or human-computer

intercation. Values must conform to the definition of the Accept-Language

header field defined in RFC2068, with one exception: the sequence

"Accept-Language" ":" should be omitted. This is a single-valued attribute.

userSMIMECertificate (bin, 0 - many, {}) – S/MIME signed message with a zero length body. This

attribute is stored and requested in binary form. It contains the person's entire

certificate chain and the signed attribute that describes their algorithm

capabilities, stored as an octetString . If available, this attribute is preferred

over the userCertificate attribute for S/MIME applications.

(1.3.6.1.4.1.42.2.27.3.2.1
NAME 'inetSubscriber'
SUP top
AUXILIARY
MUST (

uid
)

MAY (
inetAuthorizedServices $ inetSubscriberHttpURL $
inetSubscriberStatus
)

)

TABLE 3-15 Optional inetOrgPerson Attributes (Continued)

Attribute Description

Chapter 3 Sun Directory Services Directory Information Tree and Schema 235

TABLE 3-16 Optional inetSubscriber Attributes

Attribute Description

inetAuthorizedServices (cis, 0-many, {client, mta, msma, admin}) A list of tokens representing services

that this user is authorized to access. If this attribute is missing from a user

entry, then the user has permission to use all supported Internet services. If

more granular authorization is wanted, provisioning tools should add the

tokens representing services available to the user. It is recommended that a

directory access control rule be added to the system to restrict the user's ability

to modify this attribute. The tokens defined by this document are:

• imaps Access to secure IMAP based message access.

• imap Access to IMAP based message access.

• pop3 Access to POP based message access.

• pop3s Access to secure POP based message access

• smtps Access to secure SMTP server for message submission.

• sunw_webaccess Access to the Web Access server.

• sunw_calendar Access to Sun Calendar server.

inetSubscriberHttpURL (ces, 0-many, {}) Contains HTTP-based URL's for the subscribers web page(s).

inetSubscriberStatus (cis, 0-1, {client, mta, msma, admin}) Specifies the status of a subscribers account

with regard to global access. Allows the Internet Service Provider to temporarily

suspend and re-enable access, or to permanently remove access, by the

subscriber to the account.

This attribute takes one of three values. If this attribute is missing from a user

entry, the semantics are the same as if the value is active .

Supported values are:

• active Account is active. The subscriber may use all accesses granted by

inetAuthorizedServices .

• inactive Account is inactive. The subscriber may not use any services granted

by inetAuthorizedServices . Service requests for a user marked as inactive

must return transient failures.

• deleted Account is marked as deleted. The account may remain in this state

within the directory pending purging of deleted users. Service requests for a

user marked as deleted must return permanent failures.

Users marked inactive can be made active, that is, service can be restored by

changing the value of this attribute to active . Users marked deleted, may

require further actions outside the context of the Directory to re-instate services.

For example, if their mailboxes have been archived to tape, or even removed,

they might not be available immediately (if at all) if the account is made active.

236 Sun Internet Mail Server 4.0 Reference Manual • July 1999

inetMailUser Object Class

This auxiliary object class is used to overlay LDAP entries defined by

inetOrgPerson, and it allows that user to receive and send email. Two other

auxiliary object classes are used along with inetMailUser for a user to become a

SIMS user: inetMailRouting and inetSubscriber .

The inetMailUser object class is defined as follows:

(1.3.6.1.4.1.42.2.27.2.2.3
NAME 'inetMailUser'
SUP top
AUXILIARY
MUST (

inetMailUserVersion
)

MAY (
datasource $ mailAutoReplyStartDate $
mailAutoReplyExpirationDate $ mailAutoReplyTimeout $
mailAutoReplySubject $ mailAutoReplyText $
mailAutoReplyTextInternal $ mailDeliveryFile $
mailDeliveryOption $ mailFolderMap $
mailForwardingAddress $ mailMessageStore $
mailProgramDeliveryInfo $ mailQuota $ userDefinedAttribute1 $
userDefinedAttribute2 $ userDefinedAttribute3 $
userDefinedAttribute4
)

)

TABLE 3-17 Optional inetMailUser : Membership Attributes

Attribute Description

datasource attribute (cis, 0-1, {admin}) Free form text that describes the source or identifier of

the provisioning tool.

inetMailUserVersion (ces, 1, {admin}) The version tag of this object class. This attribute exists so

that LDAP clients supporting Internet email services may retrieve LDAP

objects that support a particular revision of schema that they want to

support. The starting value of version tags is “1.0”, and any change to this

object class in the future must increment the inetMailUserVersion
attribute value.

mailAutoReplyStartDate (generalizedTime, 0-1, {client, mta} Specifies when an MTA should enable

automatic replies to incoming email for a user with this attribute set.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 237

mailAutoReplyExpirationDate (generalizedTime, 0-1, {client, mta}) Specifies the date on which to disable

automatic replies to incoming email for a user with this attribute set.

mailAutoReplyTimeout (cis, 0-1, {client, mta}) For a user with mailDeliveryOption set to

autorepl , contains the duration, in hours, between successive

auto-replies to incoming email from a specific sender. An implementation

may choose to treat aliases for the same recipient as distinct (separate)

senders. The MTA must not send auto-replies to distribution lists.

mailAutoReplySubject (cis, 0-1, {client, mta} The subject line of an auto-reply message. If it

contains $SUBJECT then the token is replaced by the subject line of the

incoming message.

mailAutoReplyText (cis, 0-1, {client, mta} The body of the auto-reply message. If it contains the

tokens $SUBJECT or $BODY, then these are replaced by the subject or the

body of the inbound message. Use '$' as a line separator.

mailAutoReplyTextInternal (cis, 0-1, {client, mta}) The body of the auto-reply message for internal

auto-replies. Only those senders within the same domain receive the

mailAutoReplyTextInternal . If this attribute contains the tokens

$SUBJECT or $BODY, then these are replaced by the subject or the body of

the inbound message. Use '$' as a line separator.

mailDeliveryFile (ces, 1-many, {mta}) The fully qualified path name of a file to which

incoming messages are appended. This file must be accessible for writing

from the file system on the user's mail host.

TABLE 3-17 Optional inetMailUser : Membership Attributes (Continued)

Attribute Description

238 Sun Internet Mail Server 4.0 Reference Manual • July 1999

mailDeliveryOption (cis, 1-many, {mta}) Specifies one or more delivery options for inbound

email to a designated recipient. While inbound messages can be delivered

into multiple message stores, message access servers can read messages

from only one of them (the mail store from which messages are read is

specified using the mailFolderMap attribute).

The Message Transfer Agent uses this attribute to determine the targets of

message delivery for all messages submitted to this individual recipient.

The attribute is also used by the inetMailGroup object class.

The value of this attribute can take one of a specified set of options; the

subset valid for individual recipients are described as follows:

• mailbox - Deliver mail to a vendor specific/high performance Message

Store mailbox. The mailFolderMap attribute specifies the mail store from

which a Message Access agent would retrieve delivered mail. For

example, in the unbundled Sun Internet email product, provisioning a

user to read messages from the Sun Message Store would require setting

the mailDeliveryOption to mailbox , and the associated

mailFolderMap attribute to Sun-MS.

• shared - Applies only to the inetMailGroup object class.

• native - Deliver mail to a local sendmail-style file system mailbox

(also known as the /var/mail box). If mailDeliveryOption is set to

native , then the mailFolderMap attribute must be set to UNIX V7 for

the user to read messages from the native message store using the Sun

Internet email product’s message access services.

• autoreply - Deliver mail to an auto-reply facility. When this value is

set the behavior of the autoreply feature of the MTA will be controlled by

the following inetMailUser attributes: mailAutoReplyStartDate ,

mailAutoReplyExpirationDate , mailAutoReplyTimeout ,

mailAutoReplySubject , mailAutoReplyText , and

mailAutoReplyTextInternal .

• program - Deliver mail to another program.

• forward - Forward incoming mail to another RFC-822 compliant

address. Refer to the mailForwardingAddress for related information.

MTAs must be able to parse options other than those above, although a

particular MTA may not be able to support such options. This is so that

vendors can use attribute values other than those specified above. In such

cases, it is recommended that the name be prefixed with a vendor-specific

name, such as a stock symbol.

• hold - By setting hold , all other mail delivery options are overridden.

All incoming messages for this user are sent to the hold channel.

TABLE 3-17 Optional inetMailUser : Membership Attributes (Continued)

Attribute Description

Chapter 3 Sun Directory Services Directory Information Tree and Schema 239

mailFolderMap (cis, 0-1, {msma, admin}) The message store for a user's mail folders.

Message access servers (imap server, pop server, and so on) use this

attribute to determine a user's primary mailbox. An MTA may deliver a

message into multiple locations and message access servers have to be

told the default mailbox of the user. Supported values in the unbundled

Sun Internet email product are:

• UNIX V7 - sendmail-style mail store. Also known as the Berkeley style

/var/mail message store.

• Sun-MS - Sun Message Store. A high performance message store

accessed via POP or IMAP protocols.

mailForwardingAddress (cis, 0-many, {mta, admin}) Specifies that the MTA should forward email

to the specified Internet email address (RFC822 format). For the MTA to

forward the email to these addresses, the mailDeliveryOption
attribute should include the value forward in addition to any other

delivery options.

For example, if a user wants to forward mail to another address, then the

directory entry for the user has the first block of values for

mailForwardingAddress and mailDeliveryOption . However if the

user wants to continue receiving mail on their default server and forward

a copy of every message to another address then the directory entry

would have the second block of values. Example:

mailDeliveryOption: forward
mailFolderMap: Sun-MS
mailForwardingAddress: <RFC-822 address>

mailDeliveryOption: forward
mailDeliveryOption: mailbox
mailFolderMap: Sun-MS
mailForwardingAddress: <RFC-822 address>

mailMessageStore (ces, 0-1, {mta, admin}) The file system location for a user's INBOX. This

applies only when a mailDeliveryOption is set to native. The MTA

will deliver incoming messages to this file. The file system location is in

the context of the mail host. If this value is missing and the user's

mailDeliveryOption is set to native, then a default of /var/mail is

used by the server. This attribute specifies only the name of the directory;

to derive the full name of the INBOX, the value of the uid attribute is

appended to the directory name.

mailProgramDeliveryInfo (ces, 0-many, {mta, admin}) Specifies one or more named commands to

use in email delivery. The valid named commands must be defined by the

MTA for secure operation. These named commands are defined by system

administrators of the mail server and are mapped to an executable (with

zero or more options) which processes the messages addressed to the user.

These programs are installed on the mail server and the MTA must check

that the program listed in the user's entry is on the approved list before it

starts the program.

TABLE 3-17 Optional inetMailUser : Membership Attributes (Continued)

Attribute Description

240 Sun Internet Mail Server 4.0 Reference Manual • July 1999

inetAdministrator Object Class

The inetAdministrator object class is used to tag inetSubscribers who have

administrative capabilities. The object class name itself serves as the tag, and the

inetAdministeredServices attribute is used to identify the type of service and

the management scope for when administrative privileges are granted.

mailQuota (cis, 0-1, {mta, msma, admin}) Specifies the maximum size (in bytes) of a

user's message store. Note that this includes the Inbox and all other

mailboxes or folders which the user may have in the message store. A

value of minus one (-1) or a missing value denotes no limit on the

cumulative size of messages in a user's INBOX and/or folder collection.

A value of minus two (-2) implies that the system or domain default is

used. The default unit of bytes may be overridden by using one of the

tags listed below prefixed by the size:

• <size>K - size is specified in kilo bytes

• <size>M - size is specified in mega bytes

• <size>G - size is specified in giga bytes

• <size>T - size is specified in tera bytes

userDefinedAttribute1 (cis, 0-many, {}) May be used by the user.

userDefinedAttribute2 (cis, 0-many, {}) May be used by the user.

userDefinedAttribute3 (cis, 0-many, {}) May be used by the user.

userDefinedAttribute4 (cis, 0-many, {}) May be used by the user.

OID – TBD
Name ‘inetAdministrator’
SUP top
AUXILIARY
MAY (

inetAdministeredServices
)

TABLE 3-17 Optional inetMailUser : Membership Attributes (Continued)

Attribute Description

Chapter 3 Sun Directory Services Directory Information Tree and Schema 241

imCalendarUser Object Class

Use the imCalendarUser object class to define the calendar server attributes for an

inetSubscriber . Use in conjunction with inetorgperson and

inetSubscriber .

TABLE 3-18 Optional inetAdministrator Attributes

Attribute Description

inetAdministeredServices (cis, 0-many, {sia,ma,spm,admin}) A multi-valued attribute enumerating the

services that a particular administrator is authorized to administer. This

attribute is checked by a component before granting administrative access to

that component.

(OID — TBD
NAME 'imCalendarUser'
AUXILIARY
MUST (

uid $ userPassword $ imCalendarHost $ imCalendarUserVersion
)

MAY (
imCalendarName
)

)

242 Sun Internet Mail Server 4.0 Reference Manual • July 1999

This object class promotes uid (alias userid) and userPassword to required

attributes. These attributes are previously defined in inetOrgPerson and person
object classes respectively.

Internet Mail Distribution List Object Classes

Distribution lists are of groups of users and groups to which message can be sent.

An email distribution list is represented by an entry in the directory. An entry, which

stores distribution list information, consists of attributes drawn from these object

classes:

■ groupOfUniqueNames – Attributes for describing a collection of user objects.

Inherits from top and is a structural object class. All SIMS email distribution lists

are provisioned using this object class and the auxiliary object classes

inetMailRouting and inetMailGroup .

■ inetMailGroup – Attributes for describing an email distribution list. All

distribution lists are provisioned using auxiliary object classes and is required for

defining a SIMS distribution list.

TABLE 3-19 Required imCalendarUser Attributes

Attribute Description

uid (cis, 0 – 1, {mta, ma, admin, calendar}) The login identifier of the user. The

naming context within which this is required to be unique is the naming context

associated with containing DNS domain.

userPassword (protected/sunds, 0 - many, {admin, imta, ms, ftp, calendar}) Encrypted string

representing the users password. In Sun Directory Server, the supported

encryption scheme used is crypt or sunds. For CRAM-MD5 support the

encryption scheme used in the SunDS 3.1 should be sunds.

imCalendarHost (cis, 0 - 1, {admin, calendar}) Fully qualified host name of the calendar server.

This calendar server provides access to the users calendar.

imCalendarUserVersion (ces, 0 – 1, {admin}) Version tag of this object class. This is a new attribute added

to the object classes. The starting value of version tags is 2.0 and provisioning

tools should set this attributes value to 2.0.

TABLE 3-20 Optional imCalendarUser Attributes

Attribute Description

imCalendarName (cis, 0 – 1, {admin, calendar}) Name of the calendar object associated with the

subscriber. This calendar object resides on the calendar server called out in

imCalendarHost attribute.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 243

A distribution lists entry is extensible and may contain attributes from additional

object classes once such object classes have been defined in the directory schema.

URL for Attributes Containing Addresses
Several inetMailGroup attributes contain either RFC-822 style mail addresses or

distinguished names (DN) of LDAP entries. This is permitted because

inetMailGroup is both an LDAP and email entity, and it is appropriate to allow both

types of addresses. The attributes errorsTo , moderator , authorizedSubmitter ,

unauthorizedSubmitter , use URL's [URL] to allow this dual use. When preceded

by ldap:/// the entry is used as an LDAP entry with the remaining value treated as the

distinguished name of the entry. When preceded by mailto: the entry is interpreted as

an RFC-822 address.

A missing prefix of ldap:/// or mailto: for the entry is assumed to be an RFC-822

address.

The URL has the form:

ldap:///[<server>[:<port>]]/<baseDN>?[<attrs>]?<scope>?<filter>

■ attrs is not applicable for this use and is ignored.

■ Default value for server:port is the LDAP server being used by the MTA.

■ The baseDN specifies the base for the search; if not present, the default is the

baseDN used by the MTA.

■ scope defines levels of the directory tree to be searched relative to the specified

search base; its default value is base.

■ The default for filter is (mail=*), because you want to include only entities in the

distribution list that can accept mail.

244 Sun Internet Mail Server 4.0 Reference Manual • July 1999

groupOfUniqueNames Object Class

The groupOfUniqueNames object class contains attributes for describing a

collection of directory entries (namely users and other groups). This object class

inherits from top and is a structural object class. This structural class is used along

with inetMailGroup and inetMailRouting to provision Sun Internet Mail

Server distribution lists.

(OID — 2.5.6.17
NAME 'groupOfUniqueNames'
SUPERIOR 'top'
MUST (

commonname $ uniqueMember
)

MAY (
businessCategory $ description $ organizationName $
organizationalUnitName $ owner $ seeAlso
)

)

TABLE 3-21 Required groupOfUniqueNames Attributes

Attribute Description

commonname (cis, 1 - many, {mta, admin}) A distribution lists common name. This names is

used for display only.

uniqueMember (dn, 0 - many, {mta, ma, admin}) Distinguished names of members of this list.

These users have to be defined in the directory for them to receive email

messages sent to the list.

owner (dn, 0 - many, {admin,spm}) Distinguished name of the owner(s) of this group.

Owners have the rights to modify the group membership.

TABLE 3-22 Optional groupOfUniqueNames Attributes

Attribute Description

businessCategory (cis, 0 - many, {}) Business classification for the group.

description (cis, 0 - many, { }) Description of the group.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 245

inetMailGroup Object Class

The inetMailGroup object class contains attributes useful for describing an email

distribution list. SIMS requires this object class for defining a distribution list. All

distribution lists are provisioned using this auxiliary object class, the

inetMailRouting auxiliary object class, and the structural object class

groupOfUniqueNames . These object classes are overlayed on entries created with the

groupofUniqueNames object class. This object class is defined as follows.

The inetMailGroup object class attributes are grouped into the following

categories.

organizationName (cis, 0 - many, { }) Name of the organization associated with this group.

organizationUnitName (cis, 0 - many, { }) Name of the organizational unit associated with this group.

seeAlso (dn, 0 - many, {}) Distinguished name of an entry to consult for further

information about the group.

(1.3.6.1.4.1.42.2.27.2.2.2
NAME 'inetMailGroup'
SUP top
AUXILIARY
MUST (

inetMailGroupVersion
)

MAY (
errorsTo $ joinable $ moderator $ multiLineDescription $
requestsTo $ seeAlso $ suppressEmailError $ userPassword $
authorizedDomain $ authorizedSubmitter $ dataSource $
inetGroupStatus $ expandable $ mailDeliveryFile $
mailDeliveryOption $ mailProgramDeliveryInfo $

rfc822Mailmember $
unauthorizedDomain $ unauthorizedSubmitter $ membershipFilter
)

)

TABLE 3-22 Optional groupOfUniqueNames Attributes

Attribute Description

246 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Mail Processing Attributes

Several inetMailGroup attributes are key to determining how the mail is

processed by the MTAs. Additionally, inetMailRouting determines how messages

are routed through the mail system. One attribute indicates the version of the object

class itself.

TABLE 3-23 Required inetMailGroup Attributes

Attribute Description

inetMailGroupVersion (ces, 0-1, {admin}) Version tag of this object class. This attribute must be set

when an entry is created using this object class. The starting (current) value of

version tag is 1.0.

TABLE 3-24 Optional inetMailGroup Attributes

Attribute Description

errorsTo (ces, 0-1, {admin, MTA}) Indicates the address to which list errors are sent.

When a list is expanded, the original return address in the envelope is replaced

by this address. The intent is for lists errors to be sent to the owner of the list,

rather than the message originator, who generally has no control over the

contents of the list.

The Requirements for Internet Hosts [RFC1123] specify that all MTAs should

support a mechanism where a list is expanded, but with the original return

address preserved. This is referred to by the RFC as “aliasing.” This can be

achieved by omitting the errorsTo attribute. This is different from the

rfc822MailAlias attribute, which is an alternative name for a single user or

list, and does not cause any kind of address list expansion.

requestsTo (ces, 0-many, {mta, admin}) Distribution list addresses are specified using the

mail and rfc822MailAlias attributes of the inetMailRouting object

class. Addresses of this form may be represented as

<addr_local_part>@<domain_part>.

Messages sent to an address constructed by adding “-request” to the

<addr_local_part> of the distribution list address will be delivered

(forwarded) to the address(es) specified in the requestsTo attribute.

For example, a distribution list with the following addresses:

mail: football@sun.com
rfc822MailAlias: football-fans@sun.com
requestsTo: mailto:john.doe@isp.net

would forward messages addressed to football-request@sun.com and

football-fans-request@sun.com to john.doe@isp.net.

suppressEmailError (cis, 0-1, {mta, admin}) Suppress delivery of error messages to senders. If

missing or FALSE, errors are sent back to the sender. If TRUE then errors are

not sent back to the sender or to the address specified in errorsTo .

Chapter 3 Sun Directory Services Directory Information Tree and Schema 247

mailDeliveryFile (ces, 0-many, {mta, admin}) Fully qualified path of a file name to which all

messages submitted to this distribution list are appended. This path is on the

local file system of the mailHost of this distribution list.

mailDeliveryOption (cis, 0-many, {mta, admin}) Specifies one or more delivery options for inbound

email to a designated recipient. While inbound messages can be delivered into

multiple message stores, message access servers can read messages from only

one of them (the mail store from which messages are read is specified using

the mailFolderMap attribute).

The Message Transfer Agent uses this attribute to determine the targets of

message delivery for all messages submitted to this distribution list. The

attribute is also used by the inetMailUser object class. The value of this

attribute can take one of a specified set of options; the subset valid for

distribution lists are described as follows:

• mailbox – Applies only to the inetMailUser object class.

• shared – Deliver mail to a shared mailbox in the Sun Message Store. This is

used for setting up a shared mailbox for a distribution list. Access to the

shared mailbox is enabled for those distribution list members whose

mailhost attribute is the same as the mailhost attribute of the list. All other

members of the list receive a copy of the submitted messages in their incoming

mailbox.

• native – Applies only to the inetMailUser object class.

• autoreply – Applies only to the inetMailUser object class.

• program – Deliver mail to a program. For security reasons, the value of this

attribute is restricted to authorized programs. The list of such authorized

programs may only be modified by the email system administrator; values are

specified via the mailDeliveryProgramInfo attribute. The program option

is also valid for the inetMailUser object class.

• forward – Applies only to the inetMailUser object class.

• file – Append incoming mail to a file. For this option to have any effect,

mailDeliveryFile must point to a valid file, accessible from the local

machine, for which the message transfer agent has write privileges. The file

option is also valid for the inetMailUser object class.

MTAs must be able to parse options other than those above, although a

particular MTA may not be able to support such options. This is so that

vendors may use attribute values other than those specified above. In such

cases, it is recommended that the name be prefixed with a vendor-specific

name, such as a stock symbol.

mailProgramDeliveryInfo
(ces, 0-many, {mta, admin}) Specifies one or more programs to which inbound

messages will be delivered if the mailDeliveryOption contains a value of

program . If the mailDeliveryOption does not contain a value of program,
this attribute is ignored. Valid program names are defined as part of MTA

configuration and the programs are installed on the server by the system

administrator(s).

TABLE 3-24 Optional inetMailGroup Attributes (Continued)

Attribute Description

248 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Mail List Administration Attributes

The following defines the distribution lists attributes used by administration

programs.

Mail Restriction Attributes

Several inetMailGroup attributes are key to determining who can submit

messages to the distribution list. This proposal allows restrictions based on domains

and addresses. One may call out the list of authorized domains/submitters or

unauthorized domains/submitters.

Attributes that restrict who can submit messages to the list fall in two categories:

■ authorized – Users/domains who are explicitly allowed to submit messages to

the distribution list.

TABLE 3-25 Optional inetMailGroup : Mail List Administration Attributes

Attribute Description

joinable (cis, 0-1, {admin}) Used by administrative applications to permit members to

add themselves as a member of the distribution list. Accepted values are TRUE

and FALSE. Missing attribute/value pair is functionally equal to

joinable=FALSE .

multiLineDescription (cis, 0-many, {admin, client}) Multi-line description of the distribution list.

seeAlso (dn, 0-many, {admin, client}) Distinguished name of an entry to consult for

further information.

expandable (cis, 0-1, {mta, admin}) Determines whether the distribution list is expandable or

not, that is, if somebody can list the addresses of the members of the distribution

list. For example, if set to TRUE, the SMTP command expn <dl_name> returns

the RFC-822 address of the members of this distribution list. When

expandable=TRUE , the list must be expanded on the MTA only on the mail

server specified in the mailHost attribute.

datasource (cis, 0-1, {admin}) Free-form text that describes the original source or identifier

of the provisioning tool.

inetMailGroupStatus cis, 0-1, {client, mta, msma, admin}) Specifies the status of a distribution list. The

intent of this attribute is to allow the Internet Service Provider to temporarily

suspend and re-enable the distribution list. This attribute takes one of three

values. If this attribute is missing from a group entry, the semantics are the same

as if the value is active .

Supported values are:

• active
• inactive
• deleted

Chapter 3 Sun Directory Services Directory Information Tree and Schema 249

■ unauthorized – Users/domains who are explicitly disallowed to submit messages

to the distribution list.

Additionally, by specifying a moderator, the MTA can be directed to deliver submitted

messages only to the moderators, unless the message is submitted by one of the

moderators, in which case it is delivered to all distribution list members.

A distribution list that does not have authorizedDomain , unauthorizedDomain ,

authorizedSubmitter, and unauthorizedSubmitter attributes in the LDAP

entry for the distribution list is treated as an unrestricted list and anybody can submit

messages to this list.

If any of the authorizedDomain , unauthorizedDomain ,

authorizedSubmitter, and unauthorizedSubmitter attributes appear in the

distribution list LDAP entry, the list is considered a restricted distribution list.

The following precedence rules are followed by the MTA when deciding whether it

should accept the message for further processing or not (From: address is used in all

the rules when looking for match):

■ if unauthorizedDomain exists in the LDAP entry, then sender's domain must

not match the domain(s) listed in the unauthorizedDomain attribute.

■ if authorizedDomain attribute exists in the LDAP entry, then sender's domain

must match the domain(s) listed in the authorizedDomain attribute.

■ if unauthorizedSubmitter attribute exists in the LDAP entry, the sender's

address must not match either the mail attribute or rfc822MailAlias attribute

of any DN listed in the form of an ldap:///<DN> address and must not match the

RFC-822 address listed in the form of a mailto:<RFC-822> address.

■ if authorizedSubmitter attribute exists in the LDAP entry, the sender's

address must match either the mail attribute or rfc822MailAlias attribute of

any DN listed in the form of an ldap:///<DN> address and must not match the

RFC-822 address listed in the form of a mailto:<RFC-822> address.

TABLE 3-26 Optional inetMailGroup : Mail Restriction Attributes

Attribute Description

moderator (ces, 0-many, {mta, admin}) Address of the moderator(s) of this distribution list.

All messages submitted to this distribution list are delivered to the moderator(s)

listed in directory entry. The moderator(s) then resubmits messages to the list for

them to be delivered to the list members. The From: header of the resubmitted

message must contain one of the addresses listed in the moderator(s) list. If the

listed moderator is a distinguished name then the From: address must match

the value of mail or rfc822MailAlias attribute of the LDAP entry specified

by the DN.

250 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Membership Attributes

Several inetMailGroup attributes are key to determining who can submit

messages to the distribution list. This proposal allows restrictions based on domains

and addresses. One may call out the list of authorized domains/submitters or

unauthorized domains/submitters. Additionally, the distribution list may be marked

as moderated by specifying a moderator for the distribution list.

authorizedDomain (cis, 0-many, {mta, admin} Domain name from which users are authorized to

post to the distribution list. The wildcard character is “*”. The value of this

attribute should conform to RFC-822 specification. Using the wildcard character

one may optionally replace a sub-domain to authorize the entire DNS hierarchy

below a given top or sub-domain.

A distribution list entry with an empty authorizedDomain allows senders

from all domains to post messages to the list, except if they are called out in the

following attributes: unauthorizedDomain , authorizedSubmitter , or

unauthorizedSubmitter .

authorizedSubmitter (ces, 0-many, {mta, admin}) List of all addresses authorized to submit messages

to this distribution list. An open list does not restrict submissions to the list and

does not contain a list of authorized/unauthorized submitters or a list of

authorized/unauthorized domains. This attribute specifies the list of addresses

permitted to submit messages to the distribution list. The address in From:
header must match one of the addresses listed here before the MTA will deliver

the message to a list of members.

unauthorizedDomain (cis, 0-many, {mta, admin}) This attribute may be used in conjunction with

unauthorizedSubmitter to specify sender restrictions. The domain of the

sender's address is compared against those in this attribute. If there are no

entries in this attribute, then all domains are allowed. However, if

authorizedDomain has a list of domains then messages from all domains

other than those in the authorizedDomain list are rejected.

The value should conform to RFC-822 specification. The wildcard character for

any field in the address is “*”.

unauthorizedSubmitter (ces, 0-many, {mta, admin}) Specified using the notation developed in section

4.1. Addresses of users not permitted to post messages to the list. This attribute

may be used in conjunction with authorizedSubmitter to specify sender

restrictions. The sender's address is compared against those in this attribute. If

there is a match then the message is rejected. If there are no entries in this

attribute then all senders are allowed. However, if authorizedSubmitter has

a list of addresses, then messages from those senders are accepted.

TABLE 3-26 Optional inetMailGroup : Mail Restriction Attributes (Continued)

Attribute Description

Chapter 3 Sun Directory Services Directory Information Tree and Schema 251

The members of an alias or distribution list are made up of the union of the users

specified in the uniqueMember attribute of the groupOfUniqueNames object class

as well as the rfc822MailMember and membershipFilter attributes of the

inetMailGroup object class.

Internet Mail Routing Object Classes

To avoid duplicating information, the inetMailRouting object class contains the

required routing information common to all Internet email recipients. This class is

required for entries describing either email users (inetMailUser) or email groups

(inetMailGroup).

Note the distinction between a relay Message Transfer Agent (MTA) that relays a

message and a destination MTA responsible for the final delivery of a message. A

relaying MTA only needs to examine the mailHost attribute to determine the

destination MTA. A destination MTA examines the mail and rfc822MailAlias
attributes to determine the INBOX to which the message should be delivered.

TABLE 3-27 Optional inetMailGroup : Membership Attributes

Attribute Description

rfc822MailMember (cis, 0-many, {mta, admin}) Membership of distribution list may be specified

using the uniqueMember attribute of the object class groupOfUniqueNames .

However, since the syntax of the uniqueMember attribute is Distinguished

Name, only users who are defined in the directory would be supported. The

rfc822MailMember attribute is used to define members of a distribution list

that do not have LDAP entries in the directory.

membershipFilter (ces, 0-many, {mta, admin}) This attribute allows us to specify membership in

the group using an LDAP search URL. This allows the creation of a group based

on search of the directory for entries that match the given filter, rather than

explicitly calling out each member individually.

252 Sun Internet Mail Server 4.0 Reference Manual • July 1999

inetMailRouting Object Class

The inetMailRouting object class is used to describe the mail sorting properties of

mail recipients. This is used for both user and distribution lists. The object class is

defined as follows.

Object Classes for Services

SIMS services are represented in the directory by a entry defined with an

inetService object class.

(1.3.6.1.4.1.42.2.27.2.2.1
NAME 'inetMailRouting’
SUP top
AUXILIARY
MUST (

mail $ mailHost
)

MAY (
rfc822MailAlias
)

)

TABLE 3-28 Required inetMailRouting Attributes

Attribute Description

mail (cis, 1, {mta, client, admin}) The user or group's advertised email address in

form specified by RFC-822's addr-speck syntax [RFC822]. The user or group

may have additional mail aliases listed in the rfc822MailAlias attribute. The

value in this attribute must be unique for all mail and rfc822MailAlias
attributes in a domain.

mailHost (cis, 0-1, {mta, msma, client, admin}) Host name of the user's mail server. This is

the fully qualified official host name of the mail server where a user's official

Inbox is located. In the case of a distribution list, this is the fully qualified host

name of the MTA where the distribution list is expanded.

rfc822MailAlias (cis, 0-many, {mta, msma, client, admin) Stores alternate email aliases (RFC-822

format), if any, defined for the user or distribution list. Mail to any of the listed

rfc822MailAlias attributes of an LDAP entry will be delivered to the user or

group associated with that entry. The value in this attribute must be unique for

all mail and rfc822MailAlias attributes in a domain.

Chapter 3 Sun Directory Services Directory Information Tree and Schema 253

The algorithm for determining the distinguished name of this entry is to begin with

an empty distinguished name (DN) and then attach Relative Distinguished Names

(RDN) for each component of the domain, most significant first. Each of these RDNs

is a single AttributeTypeAndValue , where the type is the attribute DC and the

value is an IA5 string containing the domain name component. Finally, the DN gets

the root suffix of the DC tree as a suffix. For example, if the root suffix of the DC tree

is o=internet and the fully qualified DNS name of the mail server is mail.isp.net,
the DN of the entry is dc=mail,dc=isp,dc=net,o=internet .

■ inetService – attributes for describing a SIMS service. Entries with these

attributes are created under the ou=Service container of either the DC tree or

OSI tree. The naming attribute of an inetService node is the version of the

service.

inetService Object Class

The inetService object class is used to represent state information for and about

specific services. There may also be service entries under the Service subnode of

any SIMS domain node.

The naming attribute for this object class is inetVersion . Nodes created with this

object class are defined under the ou=<service_tag>,ou=Service , container of

the domain node.

The following service_tag values are supported in this release:

■ imta – Message Transfer Agent service

■ msma – Message Access and message store

■ admin – Administrative server

■ spm – Security Policy Manager

■ provisioning – Subscriber provisioning

■ SUNWftp – File Transfer Protocol

■ SUNWsws – Sun Web Server

254 Sun Internet Mail Server 4.0 Reference Manual • July 1999

(OID — TBD
NAME 'inetService'
SUPERIOR 'top'
STRUCTURAL
MUST (

commonname $ inetVersion
)

MAY (
inetPrivateData $ mail $ userPassword
)

)

TABLE 3-29 Required inetService Attributes

Attribute Description

commonName (cis, 1-many) The name of the service.

inetVersion (ces, 1) The version of the named service represented by this entry. This is the

naming attribute for this object class.

inetPrivateData (ces, 1) Reserved for use by the Sun Internet Administrator to store password

data for the service represented by the entry.

mail (cis, 0 - many) Specifies the email address, in RFC 822 format, to be used for

status messages from this service. (Alias: preferredRfc822Originator).

userPassword (protected, 0 - many) The password for the entry represented by this object class

255

CHAPTER 4

SIMS Configuration Files

The following SIMS configuration files are covered in this chapter:

■ “The ims.cnf File” on page 255

■ “The sims.cnf File” on page 260

■ “The imdmc.cnf File” on page 262

■ “The imta.cnf File” on page 263

The ims.cnf File

The ims.cnf file is the configuration file for the Sun Internet Mail Server (SIMS)

Message Store and Message Access components. The ims.cnf file contains

configuration parameters for the Message Store and Message Access utilities.

To make configuration changes to the ims.cnf file, you can either edit the file

manually or use the SIMS administration console. It is recommended that you use

the SIMS administration console rather than editing the ims.cnf file manually.

Any changes made to the Message Store paths should be made when no Message

Store utilities are running.

Each entry in the ims.cnf file has the form:

The parameters are broken down into the following categories: Message Store paths,

Message Store file system parameters, Message Store delivery parameters, and

Message Access parameters. The parameters are described in the following sections.

ims- parameter-name: value

256 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Message Store Paths

TABLE 4-1 describes the parameters for the Message Store paths.

Message Store File System

TABLE 4-2 describes the parameters for the Message Store file system.

TABLE 4-1 Message Store Paths Parameters

Parameter Description

ims-user-root Path to the per-user files. The default is /var/opt/SUNWmail/ims/user .

ims-index-root Path to the index files. The default is /var/opt/SUNWmail/ims/index .

ims-data-root Path to the data files. The default is /var/opt/SUNWmail/ims/data .

ims-hash-root Path to the hashing indices. This path is currently unused but must exist.

The default is /var/opt/SUNWmail/ims/hash .

ims-adm-root Path to where the files and reports are written by the imcheck utility. Also

path where internal lock files and Legato (Solstice Backup) directory reside.

The default is /var/opt/SUNWmail/ims/adm .

ims-shared-root Path to shared mailboxes. The default is

/var/opt/SUNWmail/ims/shared .

TABLE 4-2 Message Store File System Parameters

Parameter Description

ims-owner Solaris owner of all the Message Store files. The default is inetmail .

ims-init-interval Number of days to create at initialization. The default is 30.

ims-augment-interval Number of days to create at one time. The default is 30.

Chapter 4 SIMS Configuration Files 257

Message Store Delivery

TABLE 4-3 describes the parameters for the Message Store delivery utility

(ims_master).

Message Access

TABLE 4-4 describes the parameters for the Message Access utility (imaccessd).

TABLE 4-3 Message Store Delivery Parameters

Parameter Description

ims-mail-host The default domain for parsing an email address when no @domain is

present. The default is localhost .

ims-parse-level Level of parsing for incoming messages. 1=POP-only store and 3=IMAP or

POP3. The level must not go from 3 to 1. The default is 3.

ims-quota Specifies whether per-user quotas are enforced. The default is OFFor ON.

ims-default-quota Default quota in bytes for users. This value is used if the information is not

provided in the directory. The default is 20000000.

TABLE 4-4 Message Access Parameters

Parameter Description

ims-varmail ON specifies that users can access mailboxes in the /var/mail format in

addition to the SIMS Message Store format. The default is OFF.
/var/mail is only supported in the default domain and not in hosted

domains.

ims-maxconnections Number of connections that can be simultaneously supported by the

message access server. The default is 10000 .

ims-proxy Specifies the proxy behavior of the message access server.

• OFFspecifies the proxy is disabled—local users have access.

• ONspecifies the proxy is enabled—local and proxy users have access.

• ONLYspecifies that the server is only a proxy—no local store access.

ims-caps-proxy Specifies the IMAP4 capabilities advertised by imaccessd when the proxy

behavior is ONor ONLY. The default is IMAP4 IMAP4rev1 .

258 Sun Internet Mail Server 4.0 Reference Manual • July 1999

ims-bind-address Specifies the interface (IP address or host name) and ports that are listened

to during POP and IMAP connections. The value of ims-bind-address
is in the form:

[hostname[=domain]][(service=port1[,port2,...][:service=
port3[,port4,...]...])]
This parameter can appear multiple times in the ims.cnf file.

• hostname is a host name or IP address to listen to when binding sockets

in the message access server. If hostname is not specified, or if the value is

*, INADDR_ANYis used.

• domain is the default search domain associated with the hostname and

port(s).

• service can be specified as imap, pop3, imaps, or pop3s. If no service or

ports are specified, the default ports are fetched from /etc/services .

• port is one or more TCP port numbers to listen to for the specified

service. Specifying a port as 0 denotes that the service is not supported on

that particular server.

ims-client-lookup Enables or disables the reverse DNS lookup for the clients that are logged

in. The valid options are DNSON or DNSOFF (default. When the value is

set to DNSOFF, only the client’s IP address will be displayed.

ims-auth-timeout Number of seconds after the user’s last POP command before the server

closes the POP connection. The usual pop client behavior is to download

all messages available as fast as the server can send them and disconnect

immediately. Unlike IMAP, inactive POP connections usually indicate a

stale network connection, which should be terminated by the server. The

default is 600 seconds (the minimum recommended in RFC 1939).

ims-pop-timeout Number of seconds after the user’s last POP command before the server

closes the POP connection. The usual pop client behavior is to download

all messages available as fast as the server can send them and disconnect

immediately. Unlike IMAP, inactive POP connections usually indicate a

stale network connection, which should be terminated by the server. The

default is 600 seconds (the minimum recommended in RFC 1939).

ims-pop-exclusive Disables concurrent access to a mailbox through pop. When this value is

set to ON a user logging in through pop to the server while an active

session already exists that accesses the same mailbox will not be able to

view or download any messages.

ims-ldap-failover-timeout Number of seconds allowed to successfully bind to a given ldap server.

The default value is 30 seconds.

ims-ldap-request-timeout Number of seconds allowed to search for an ldap server that can be

successfully opened and bound to. This value is also the timeout for the

ldap_search . The default value is 60 seconds.

TABLE 4-4 Message Access Parameters (Continued)

Parameter Description

Chapter 4 SIMS Configuration Files 259

APOP Parameters

popb4smtp Parameters

TABLE 4-5 APOPParameters

Parameter Description

ims-md5auth-enable Turns on or off the APOP login function. ON specifies that APOP login is

allowed for users with a plaintext password in LDAP. When the value is set to

OFF, APOP login is not allowed. The default is OFF. This parameter must be

changed manually. You cannot change it using the SIMS Administration

Console.

TABLE 4-6 popb4smtp Parameters

Parameter Description

ims-popb4smtp-lib Enables the POP3 before the SMTP mechanism. Set the value to the full path

specification of libimpopb4smtp . For example:

ims-popb4smtp-lib:/opt/SUNWmail/lib/libimpopb4smtp.so.1
This configuration variable does not have a default value, that is, if this variable

is not set, popb4smtp is not turned on. This parameter must be changed

manually. You cannot change it using the SIMS Administration Console.

ims-popb4smtp-timeout Specifies the timeout value for popb4smtp entries in the IMTA database. The

default value is fifteen minutes. If the value is set to zero, no new entry will be

made to the IMTA database for the POP3 before SMTP. The following format is

used for timeout:

• D or d specifies days

• H or h specifies hours

• M or m specifies minutes

• S or s specifies seconds

For example, 1d2H3m4Sspecifies a time period of 1 day, 2 hours, 3 minutes,

and 4 seconds. This parameter must be changed manually. You cannot change it

using the SIMS Administration Console.

260 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The sims.cnf File

The sims.cnf file contains configuration parameters used by more than one

component in the SIMS. The configuration file consists of lines of characters in the

ASCII character set, terminated by line-feed characters.

This file has three types of lines:

■ Whitespace. Consists only of spaces, tabs, blank lines, and the terminating line-

feed. Whitespace is ignored.

■ Comment lines. The first character of a comment line is a # character. Comment

lines are ignored.

■ Parameter lines. Consist of a parameter name, and equal sign, and the value for

the parameter. Parameter names consist of one or more alphanumeric characters

(upper and lower cases permitted) and should not contain any whitespace. The

parameter line must begin in column 1.

Each entry has the form:

parameter-name=value

If a line begins with whitespace, it must consist only of whitespace. Such a line is not

a comment because it a # does not appear in column 1, and is not a parameter line

because a parameter name does not start in column 1.

The following is a sample sims.cnf file:

Note – To change the information in the sims.cnf file, use the imedit utility to

prevent concurrent updates from leaving the file in an unexpected state.

dcRoot=o-internet
adminBindDN=uid=ISPAdministrator,dc=isp,dc=com,o=internet
loginSeparator=+
domainHostingMode=multiple
ldapServer=ldap1:888,masterldap,lastresort

Chapter 4 SIMS Configuration Files 261

TABLE 4-7 sims.cnf File Parameters

Parameter Description

adminBindDN Administrative user to bind when performing administrative functions.

dcRoot Search base for looking up objects in the DC tree. For example:

dcRoot=o=internet

defaultDomain Users logging in without a loginSeparator in their userid are assumed to

be in this domain. The default search base for LDAP queries is determined by

converting the defaultDomain name to the corresponding entry in the DC

tree. The default is the DNS canonical name for this host, leaving off the first

host name component. For a canonical name of xyz.bar.stream.com the

default defaultDomain is bar.stream.com.

For a search base of dc= stream,dc=com,o=internet an example parameter

entry is:

defaultDomain=stream.com

ldapServer Specifies a comma-separated list (no whitespace) of LDAP server locations.

An LDAP server location is either hostname=portnumber or host name. If

only a host name is specified, the port number is the default LDAP port 389.

The port number is specified in decimals numbers. The default is

localhost:389 . For example:

ldapServer=localhost:389

logicalHostname The logical host name of the system. No default value. This value must be

filled in during installation. For example:

logicalHostname=mail.stream.com

loginSeparator The characters use to separate the user id from the domain name when

logging in to the IMAP or POP server. There are no restrictions on the login

separator. The installation can select any string of non-whitespace graphic

characters that is not a substring of a valid user id. No default value. If the

value is not set, users cannot log in using the uid<separator>domainname
syntax. For example:

loginSeparator=+

osiRoot Search base for looking up objects in the OSI tree. No default value. This

value must be set during installation if the OSI tree will be used. For example:

osiRoot=c=us

spmProgramNumber RPC program number to use to access the SPM. For example:

spmProgramNumber=101234

spmServer Host name to use to locate the SPM RPC service. The default value is

localhost . For example: spmServer=spmhost.stream.com

262 Sun Internet Mail Server 4.0 Reference Manual • July 1999

The imdmc.cnf File

The imdmc.cnf file contains configuration parameters used by the Delegated

Management component in the Sun Internet Mail Server.

This file has three types of lines:

■ Whitespace. Consists only of spaces, tabs, blank lines, and the terminating line-

feed. Whitespace is ignored.

■ Comment lines. The first character of a comment line is a # character. Comment

lines are ignored.

■ Parameter lines. Consist of a parameter name, and equal sign, and the value for

the parameter. Parameter names consist of one or more alphanumeric characters

(upper and lower cases permitted) and should not contain any whitespace. The

parameter line must begin in column 1.

Each entry has the form:

parameter-name=value

If a line begins with whitespace, it must consist only of whitespace. Such a line is not

a comment because it a # does not appear in column 1, and is not a parameter line

because a parameter name does not start in column 1.

The following is a sample imdmc.cnf file:

Note – To change the information in the imdmc.cnf file, use the imedit utility to

prevent concurrent updates from leaving the file in an unexpected state.

spmServer=machine1.eng.sun.com
ws-port=80
document-root=/opt/SUNWmail/html
cgi-bin=/opt/SUNWmail/cgi-bin

Chapter 4 SIMS Configuration Files 263

The imta.cnf File

The following is a default IMTA configuration file (imta.cnf) for a system not

directly connected to the public internet (stream.bridge.net) that has a

routability scope of the mail server domains (bridge.net).

! VERSION=1.2

! Modified by SIMS administration server on: Fri Mar 05 10:44:33

! PST 1999

!

! IMTA configuration file

!

! part I : rewrite rules

!

! DNS canonicalization rules. Uncomment this line to enable DNS

! address canonicalization.

! Please refer to the SIMS documentation for details

!</etc/opt/SUNWmail/imta//dns_canonical.rules

!

TABLE 4-8 imdmc.cnf File Parameters

Parameter Description

spmServer Fully qualified domain name of machine where DM server resides and runs.

ws-port The Web server port number. This port number is necessary for the CGI

component of the Delegated Management console to work.

document-root The location of the SIMS document root directory. If the SUNWimdmr package

was installed manually with a pkgadd on a machine with only a Web server

and no other SIMS components, you will need to manually configure your Web

server to point to the location of the package’s html files with a symbolic link of

a “sims” in your Web server DOCUMENT ROOTdirectory to $BASEDIR/html of

the SUNWimdmi package.

cgi-bin The location of the SIMS cgi-bin directory. If the SUNWimdmr package was

installed manually with a pkgadd on a machine with only a Web server and no

other SIMS components, you will need to manually configure your Web server

to point to the location of the package’s cgi-bin files with a symbolic link of a

“sims” in your Web server CGI-BIN directory to $BASEDIR/cgi-bin of the

SUNWimdmp package.

264 Sun Internet Mail Server 4.0 Reference Manual • July 1999

! Domain Rewrite Rules.

! Uncomment this line to use domain rewrite rules

! from the configuration file instead of the domain database.

! Please refer to the SIMS documentation for details

! </tmp/newconfig/domains.rules

!

! Rules to select local users

stream.bridge.net $U%stream.bridge.net@stream.bridge.net

mailhost.eng.company $U%stream.bridge.net@stream.bridge.net

mailhost.eng $U%stream.bridge.net@stream.bridge.net

mailhost $U%stream.bridge.net@stream.bridge.net

eng.company.com EU%$D@stream.bridge.net

eng $U%eng.company.com@stream.bridge.net

!

! sims-ms

.sims-ms-daemon EU%$H.sims-ms-daemon@sims-ms-daemon

! native

.native-daemon EU%$H.native-daemon@native-daemon

!

! pipe

.pipe-daemon EU%$H.pipe-daemon@pipe-daemon

!

! tcp_intranet

.eng.company.com EU%$H.eng.company.com@tcp_local-daemon

* $U%$&0.eng.company.com@tcp_local-daemon

.eng $U%eng.company.com@tcp_local-daemon

! tcp_default_router

! Rules for top level internet domains

</etc/opt/SUNWmail/imta//internet.rules

. EU%$H@tcp-daemon

!

! reprocess

reprocess EU%reprocess.stream.bridge.net@reprocess-daemon

reprocess.stream.bridge.net
EU%reprocess.stream.bridge.net@reprocess-daemon

!

! process

process EU%process.stream.bridge.net@process-daemon

process.stream.bridge.net EU%process.stream.bridge.net@process-
daemon

!

! defragment

defragment EU%defragment.stream.bridge.net@defragment-daemon

defragment.stream.bridge.net
EU%defragment.stream.bridge.net@defragment-daemon

Chapter 4 SIMS Configuration Files 265

!

! conversion

conversion EU%conversion.stream.bridge.net@conversion-daemon

conversion.stream.bridge.net
EU%conversion.stream.bridge.net@conversion-daemon

!

! bitbucket

bitbucket EU%bitbucket.stream.bridge.net@bitbucket-daemon

bitbucket.stream.bridge.net
EU%bitbucket.stream.bridge.net@bitbucket-daemon

!

! deleted

deleted-daemon EF%$H@deleted-daemon

.deleted-daemon EF%$H@deleted-daemon

!

! inactive

inactive-daemon EF%$H@inactive-daemon

.inactive-daemon EF%$H@inactive-daemon

!

! hold

hold-daemon EF%$H@hold-daemon

.hold-daemon EF%$H@hold-daemon

!

! part II : channel blocks

!

! delivery channel to local /var/mail store

l noswitchchannel copywarnpost copysendpost postheadonly charset7 us-
ascii charset8 iso-8859-1 subdirs 20 immnonurgent logging
viaaliasrequired notices 1 2 4 7 serviceall

stream.bridge.net

!

! sims-ms

sims-ms queue single_job copywarnpost copysendpost postheadonly
noswitchchannel charset7 us-ascii charset8 iso-8859-1 subdirs 20
immnonurgent logging serviceall master_debug slave_debug

sims-ms-daemon

!

! native

native copywarnpost copysendpost postheadonly noswitchchannel
charset7 us-ascii charset8 iso-8859-1 subdirs 20 immnonurgent logging
serviceall

native-daemon

!

! pipe

pipe single subdirs 20 copywarnpost copysendpost postheadonly
immnonurgent noswitchchannel logging notices 1 2 4 7 serviceall

266 Sun Internet Mail Server 4.0 Reference Manual • July 1999

pipe-daemon

!

! tcp_intranet

tcp_local smtp single_sys subdirs 20 copywarnpost copysendpost
postheadonly immnonurgent noreverse logging notices 1 2 4 7
master_debug slave_debug

tcp_local-daemon stream.bridge.net

!

! tcp_default_router

tcp_default_router smtp daemon smarthost.eng.company.com
copysendpost copywarnpost postheadonly subdirs 20 immnonurgent
logging notices 1 2 4 7 master_debug slave_debug

tcp-daemon stream.bridge.net

!

! reprocess

reprocess copywarnpost copysendpost postheadonly

reprocess-daemon

!

! process

process copywarnpost copysendpost postheadonly

process-daemon

!

! defragment

defragment copywarnpost copysendpost postheadonly

defragment-daemon

!

! conversion

conversion copywarnpost copysendpost postheadonly

conversion-daemon

!

! bitbucket

bitbucket copywarnpost copysendpost postheadonly

bitbucket-daemon

!

! deleted

deleted logging

deleted-daemon

!

! inactive

inactive logging

inactive-daemon

!

! hold

hold logging

Chapter 4 SIMS Configuration Files 267

hold-daemon

The imta.cnf file defines several channels. The default channels defined in the

sample default imta.cnf file are described in TABLE 4-9.

TABLE 4-9 The imta.cnf Channel Descriptions

Channel Description

l The local (l) channel is used to deliver messages to addresses on the local

host. Message files queued to the l channel are delivered to local users by the

local channel program l_master . The slave program

/opt/SUNWmail/imta/bin/sendmail is invoked to queue the message to

the appropriate queues.

sims-ms The sims-ms channel is used to deliver messages to the SIMS Message Store.

Message files queued to this channel are delivered by the ims_master
program

pipe Pipe channels are used to perform delivery via a site-supplied program or

script. Commands executed by the pipe channel are controlled by the

administrator via the imta program interface. Pipe channels are also used

by the autoreply program.

tcp_intranet
tcp_local
tcp_default_router

Implement SMTP over TCP/IP. The multithreaded TCP SMTP channel

includes a multithreaded SMTP server that runs under the control of the

IMTA SMTP Dispatcher. Outgoing SMTP mail is processed by the channel

program tcp_smtp_client , and run as needed under the control of the

IMTA Job Controller.

reprocess The intersection of all other channel programs—they perform only operations

that are shared with other channels. This is a channel queue whose contents

are processed and requeued to other channels.

defragment Provides the means to reassemble messages.

conversion Performs body-part-by-body-part conversions on messages flowing through

the IMTA.

bitbucket Used for messages that need to be discarded.

inactive/deleted Used to process messages for users who have been marked as

inactive/deleted in the directory.

hold Used to hold messages for users. For example, when a user is migrated from

one mail server to another.

268 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Address Rewrite Rules

Addresses are rewritten by rewrite rules in the imta.cnf file to convert addresses

to fully qualified domain addresses and to determine their corresponding channels.

The result of rewriting is a rewritten address and a routing system, that is the system

to which the message is to be sent.

Address Rewrite Example

The example in this section uses a mail message and takes it through the rewrite

rules.

1. A mail message arrives for jdoe@bridge.net .

2. The imta.cnf file is scanned to find a match for the domain part of the address.

If it matches any of the rules in the first rewrite rule section (rules to select local

user or l channel), the user is looked up in the alias database. In this example,the

address domain part matches rule four in the first section of rewrite rules.

3. The alias cache is searched for the jdoe entry.

4. The imta.cnf file is again scanned to find a match with the domain part of the

address returned by the alias database search.

269

APPENDIX A

Supported Standards

This appendix lists national, international, and industry standards related to

electronic messaging and for which support is claimed by Sun Internet Mail Server

(SIMS) 4.0. Most of these are Internet standards, published by the Internet

Engineering Task Force (IETF) and approved by the Internet Activities Board (IAB).

Standards for documents from other sources are noted.

Several of the documents are listed with an obsolete status. These are included

because they describe protocol features that were obsolete or replaced by later

documents, but are still in widespread use.

Messaging

The following documents are relevant to national and international standards for

messaging, specifically messaging structure.

Basic Message Structure

The structure of basic messages is explained in the documents listed in TABLE A-1.

TABLE A-1 Basic Message Structure

Standard Status Description

RFC 822 STD 11 Standard David H. Crocker, University of Delaware, Standard for the Format of
ARPA Internet Text Messages, August 1982.

RFC 1123 Standard Robert Braden (Editor), Requirements for Internet Hosts - Application and
Support, Internet Engineering Task Force, October 1989.

270 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Access Protocols and Message Store

The documents listed in TABLE A-2 contain information about access protocols and

message stores.

SMTP and Extended SMTP

The documents listed in TABLE A-3 contain information about Simple Mail Transfer

Protocol (SMTP) and Extended SMTP.

TABLE A-2 Access Protocols and Message Store

Standard Status Description

RFC 1731 Proposed

Standard

John G. Myers, (Carnegie-Mellon University), IMAP4 Authentication
Mechanisms, December 1994.

RFC 1733 Information Mark R. Crispin, (University of Washington), Distributed Electronic Mail
Models in IMAP4, December 1994.

RFC 1939 STD 53 John G. Myers (Carnegie-Mellon University) and Marshall T. Rose (Dover

Beach Consulting), Standard Post Office Protocol - Version 3, May 1996.

RFC 2060 Proposed

Standard

Mark Crispin (University of Washington), Internet Message Access Protocol -
Version 4rev1, December 1996.

RFC 2061 Information Mark R. Crispin (University of Washington), IMAP4 Compatibility With
IMAP2bis, December 1996.

RFC 2177 Proposed

Standard

Barry Leiba (IBM T.J. Watson Research Center), IMAP4 IDLE Command, June

1997.

TABLE A-3 SMTP and Extended SMTP

Standard Status Description

RFC 821 STD

10

Standard Jonathan B. Postel, USC/Information Sciences Institute, Simple Mail Transfer
Protocol, August 1982.

RFC 1047 Information Craig Partridge, CIC BBN Laboratories Inc., Duplicate Messages and SMTP,

February 1988.

RFC 1428 Information Greg Vaudreuil, Corporation for National Research Initiatives, Transition of
Internet Mail from Just-Send-8 to 8bit-SMTP/MIME, February 1993.

RFC 1652 Draft Standard John Klensin (United Nations University), Einar Stefferud (Network

Management Associates, Inc.), Ned Freed (Innosoft), Marshall Rose (Dover

Beach Consulting), David Crocker (Brandenburg Consulting), SMTP Service
Extension for 8bit-MIME transport, July 1994.

Appendix A Supported Standards 271

Message Content and Structure

The following documents specify message contents handling, most of which is

covered by the Multipurpose Internet Mail Extensions (MIME). There are also

several non-standard message content RFCs that are supported by the SIMS product,

which are listed separately in TABLE A-4.

RFC 1869

STD 10

Standard John Klensin (United Nations University), Ned Freed (Innosoft), Marshall

Rose (Dover Beach Consulting), Einar Stefferud (Network Management

Associates, Inc.), David Crocker (The Branch Office), SMTP Service
Extensions, November 1995.

RFC 1870

STD 10

Standard John Klensin (United Nations University), Ned Freed (Innosoft), Keith

Moore (University of Tennessee), SMTP Service Extension for Message Size
Declaration, November 1995.

RFC 1893 Proposed

Standard

Greg Vaudreuil (Corporation for National Research Initiatives), Enhanced
Mail System Status Codes, January 15, 1996.

RFC 1985 Proposed

Standard

J. De Winter, SMTP Service Extension for Remote Message Queue Starting,

August 1996.

RFC 2442 Information J. Belissent, The Batch SMTP Media Type, November 1998.

TABLE A-4 Message Content and Structure

Standard Status Description

RFC 1341 Obsolete Nathaniel Borenstein (Bellcore) and Ned Freed (Innosoft), MIME
(Multipurpose Internet Mail Extensions): Mechanisms for Specifying and
Describing the Format of Internet Message Bodies, June 1992.

RFC 1524 Information Nathaniel Borenstein (Bellcore), A User Agent Configuration Mechanism For
Multimedia Mail Format Information, September 1993.

RFC 1806 Experimental Rens Troost (New Century Systems), Steve Dorner (Qualcomm),

Communicating Presentation Information in Internet Messages: The Content-
Disposition Header, June 1995.

RFC 2017 Proposed

Standard

Ned Freed (Innosoft), Keith Moore (University of Tennessee), Definition of
the URL MIME External-Body Access-Type, October 1996.

RFC 2045 Draft Standard Nathaniel Borenstein (First Virtual Holdings) and Ned Freed

(Innosoft), Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies, November 1996.

RFC 2046 Draft Standard Nathaniel Borenstein (First Virtual Holdings) and Ned Freed (Innosoft),

MIME Part Two: Media Types, November 1996.

TABLE A-3 SMTP and Extended SMTP (Continued)

Standard Status Description

272 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Delivery Status Notifications

The list of documents in TABLE A-5 describe delivery status notification.

RFC 2047 Draft Standard Keith Moore (University of Tennessee), MIME Part Three: Message Header
Extensions for Non-ASCII Text, November 1996.

RFC 2048 Policy Ned Freed (Innosoft), John Klensin (MCI), Jon Postel (USC/Information

Sciences Institute), MIME Part Four: Registration Procedures, November

1996.

RFC 2049 Draft Standard Nathaniel Borenstein (First Virtual Holdings) and Ned Freed (Innosoft),

MIME Part Five: Conformance Criteria and Examples, November 1996.

TABLE A-5 Delivery Status Notifications

Standard Status Description

RFC 1891 Proposed

Standard

SMTP Service Extension for Delivery Status Notifications, Keith Moore

(University of Tennessee), January 15, 1996.

RFC 1892 Proposed

Standard

Greg Vaudreuil (Corporation for National Research Initiatives), The
Multipart/Report Content Type for the Reporting of Mail System Administrative
Messages, January 15, 1996.

RFC 1894 Proposed

Standard

Keith Moore (University of Tennessee), Greg Vaudreuil (Corporation for

National Research Initiatives), An Extensible Message Format for Delivery
Status Notifications, January 15, 1996.

TABLE A-4 Message Content and Structure (Continued)

Standard Status Description

Appendix A Supported Standards 273

Domain Name Service

The documents listed in TABLE A-6 specify the naming facilities of the Internet and

how those facilities are used in messaging.

Directory Server Specifications

The following documents are relevant to national and international standards for

directory server specifications.

TABLE A-6 Domain Name Service

Standard Status Description

RFC 920 Policy Jonathan B. Postel and Joyce K. Reynolds, USC/Information Sciences

Institute, Domain Requirements, October 1984.

RFC 974 Standard Craig Partridge, CSNET CIC BBN Laboratories Inc., Mail Routing and the
Domain System, January 1986.

RFC 1032 Information Mary K. Stahl, SRI International, Domain Administrators Guide, November

1987.

RFC 1033 Information Mark K. Lottor, SRI International, Domain Administrators Operations Guide,

November 1987.

RFC 1034 Standard Paul V. Mockapetris, USC/Information Sciences Institute, Domain Names -
Concepts and Facilities, November 1987.

RFC 1035 Standard Paul V. Mockapetris, USC/Information Sciences Institute, Domain Names -
Implementation and Specification, November 1987.

274 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Directory Server Specification

The material listed in TABLE A-7 describes international standards for server

specifications.

TABLE A-7 Server Specification

Standard Status Description

ITU X.520 International

Standard

ITU-T Recommendation X.520(1993), ISO/IEC 9594-6, Information
Technology - Open Systems Interconnection - The Directory: Selected
Attribute Types.

ITU X.521 International

Standard

ITU-T Recommendation X.521(1993), ISO/IEC 9594-7.X, Information
Technology - Open Systems Interconnection - The Directory: Selected Object
Classes.

RFC 1274 Proposed Standard Paul Barker and Steve Kille, University College London, The COSINE
and Internet X.500 Schema, November 1991.

RFC 1279 Information Steve Kille, University College London, X.500 and Domains, November

1991.

RFC 1781 Proposed Standard Steve Kille (ISODE Consortium), Using the OSI Directory to Achieve
User Friendly Naming, March 1995.

RFC 1801 Experimental Steve Kille (ISODE Consortium), MHS use of the X.500 Directory to
Support MHS Routing, June 1995.

RFC 1803 Information Russ Wright (Lawrence Berkeley Laboratory), Arlene F. Getchell

(Lawrence Livermore National Laboratory), Tim Howes (University of

Michigan), Srinivas R. Sataluri (AT&T Bell Laboratories), Peter Yee

(Ames Research Center), and Wengyik Yeong (PSI, Inc.),

Recommendations for an X.500 Production Directory Service, June 1995.

Appendix A Supported Standards 275

Access Protocols

The material listed in TABLE A-8 describes information about access protocols.

Text and Character Set Specifications

The following tables list documents that describe national and international

telecommunications and information processing requirements.

National and International

TABLE A-9 contains material pertaining to national and international

telecommunications and information exchange standards.

TABLE A-8 Access Protocols

Standard Description

RFC 1777 Wengyik Yeong (PSI, Inc.), Tim Howes (University of Michigan), and Steve Kille (ISODE

Consortium), Lightweight Directory Access Protocol, March 1995.

RFC 1778 Tim Howes (University of Michigan), Steve Kille (ISODE Consortium), Wengyik Yeong (PSI,

Inc.), and Colin Robbins (NeXor Ltd), The String Representation of Standard Attribute Syntaxes,

March 1995.

RFC 1779 Steve Kille (ISODE Consortium), A String Representation of Distinguished Names, March 1995.

RFC 1798 Alan Young (ISODE Consortium), Connection-less Lightweight Directory Access Protocol, June

1995.

TABLE A-9 National and International Information Exchange

Standard Status Description

IA5 International

Standard

ITU-T Recommendation T.50, Fascicle VII.3, Malaga-Torremolinos,

International Alphabet No. 5, International Telecommunication Union,

1984, Geneva, 1989.

ISO 2022 International

Standard

International Organization for Standardization (ISO), Information
processing - ISO 7-bit and 8-bit coded character sets - Code extension
techniques, Ref. No. ISO 2022-1986.

JIS X 0201 National

Standard

Japanese Standards Association, Code For Information Interchange, JIS X

0201-1976.

276 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Internet References

The documentation in TABLE A-10 describes Internet communications standards.

JIS X 0208 National

Standard

Japanese Standards Association, Code of the Japanese Graphic Character
Set For Information Interchange, JIS X 0208-1990.

JUNET Public Network JUNET Riyou No Tebiki Sakusei Iin Kai (JUNET User's Guide

Drafting Committee), JUNET Riyou No Tebiki (JUNET User's Guide),
First Edition, February 1988.

printableString

ASN.1

International

Standard

ITU-T X.680, aligned with ISO/IEC-8824-1 Abstract Syntax Notation

One (ASN.1). Appears in LDAP/X.500 attribute data types. Defined

jointly by the ISO, ITU-T standards bodies and have been reused in

Internet RFCs and ISO, ITU-T standards.

US ASCII National

Standard

American National Standards Institute, ANSI X3.4-1986, Coded
Character Set-7-bit American National Standards Code for information
interchange. New York, 1986.

US LATIN National

Standard

American National Standards Institute, ANSI Z39.47-1985, Coded
Character Set-Extended Latin alphabet code for bibliographic use. New

York, 1985.

TABLE A-10 Internet References

Standard Status Description

RFC 1345 Information Keld Simonsen, Rationel Almen Planlaegning, Internet Activities Board RFC

1345, Character Mnemonics & Character Sets, June 1992.

RFC 1468 Information Jun Murai (Keio University), Mark Crispin (University of Washington),

Japanese Character Encoding for Internet Messages, June 1993.

RFC 1502 Information Harald Tveit Alvestrand, SINTEF DELAB, Internet Activities Board RFC

1502, X.400 Use of Extended Character Sets, August 1993.

TABLE A-9 National and International Information Exchange

Standard Status Description

Glossary 277

Glossary

ACAP Application Configuration Access Protocol. A protocol that enhances IMAP by

allowing the user to set up address books, user options, and other data for

universal access.

access control rules Rules specifying user permissions for a given set of directory entries or

attributes.

access control list (ACL) A set of data associated with a directory that defines the permissions

that users and/or groups have for accessing it.

Administration Console
or Admin Console A GUI (graphical user interface) that enables you to configure, monitor,

maintain, and troubleshoot the SIMS components.

address mapping See forward address mapping or reverse address mapping.

address token The address element of a rewrite rule pattern.

Administration
Services A service daemon that administers components of SIMS through a GUI.

agent In the client-server model, the part of the system that performs information

preparation and exchange on behalf of a client or server application.

See also MTA.

alias An alternate name of an email address.

alias file A file used to set aliases not set in a directory, such as the postmaster alias.

APOP Authenticated Post Office Protocol. Similar to the Post Office Protocol (POP),

but instead of using a plaintext password for authentication, it uses an

encoding of the password together with a challenge string.

attribute The form of information stored and retrieved by the directory service.

Directory information consists of entries, each containing one or more

attributes. Each attribute consists of a type identifier together with one or more

values. Each directory read operation can retrieve some or all attributes from a

designated entry.

278 Sun Internet Mail Server 4.0 Reference Manual • July 1999

attribute index An index, or list, of entries that contains a given attribute or attribute value.

autoreply option file A file used for setting options for autoreply, such as vacation notices.

backbone The primary connectivity mechanism of a distributed system. All systems that

have connectivity to an intermediate system on the backbone are connected to

each other. This does not prevent you from setting up systems to bypass the

backbone for reasons of cost, performance, or security.

bang path An address for sending email using UUCP that specifies the entire route to the

destination computer. It separates each host name with an exclamation point,

which is also known as a bang. For example, the bang path

midearth!shire!bilbo!jsmith would go to the jsmith user account on

the bilbo host, which is reached by first going to midearth and then shire .

CA Certificate Authority. An organization that issues digital certificates (digital

identification) and makes its public key widely available to its intended

audience.

Certificate Authority See CA.

channel An interface with another SIMS component, another email system, or a mail

user agent.

character set labels A name or label for a character set.

ciphertext Text that has been encrypted. Opposite of plaintext.

client-server model A computing model in which powerful networked computers provide specific

services to other client computers. Examples include the name-server/name-

resolver paradigm of the DNS and fileserver/file-client relationships such as

NFS and diskless hosts.

cn LDAP alias for common name.

composition The process of constructing a message by the Mail User Agent (MUA).

See also MUA.

configuration file A file that contains the configuration parameters for a specific component of

the SIMS system.A file that contains the configuration parameters for a specific

component of the SIMS system.

congestion thresholds A disk space limit that can be set by the system administrator that prevents the

database from becoming overloaded by restricting new operations when

system resources are insufficient.

conversion channel Converts body of messages from one form to another.

cookie Cookies are text-only strings entered into the browser’s memory automatically

when you visit specific Web sites. Cookies are programmed by the Web page

author. Users can either accept or deny cookies. Accepting the cookies allows

the Web page to load more quickly and is not a threat to the security of your

machine.

Glossary 279

daemon A UNIX program that is not invoked explicitly, but lies dormant waiting for

some condition(s) to occur. The instigator of the condition need not be aware

that a daemon is lurking (though often a program will commit an action only

because it knows that it will implicitly invoke a daemon). Typical daemons are

print spoolers, email handlers, and schedulers that start up another process at

a designated time or condition.

data store A store that contains directory information, typically for an entire directory

information tree.

DC tree Domain Component tree. A directory information tree that mirrors the DNS

network syntax. An example of a distinguished name in an DC tree is:

cn=billbob,dc=bridge,dc=net,o=internet

defragmentation The Multiple Internet Mail Extensions (MIME) feature that enables a large

message that has been broken down into smaller messages or fragments to be

reassembled. A Message Partial Content-Type header field that appears in each

of the fragments contains information that helps reassemble the fragments into

one message. See also fragmentation.

delegated
administrator A person who has the privileges to add, modify, delete, and search for group

or user entries at a specified hosted domain.

Delegated Management
Console A Web browser-based software console that allows delegated administrators to

add and modify users and groups to a hosted domain. Also allows end users to

change their password, set message forwarding rules, set vacation rules, and

list distribution list subscriptions.

delegated management
server A daemon program that handles access control to the directory by hosted

domains.

denial of service
attack A situation in which an individual intentionally or inadvertently overwhelms

your mail server by flooding it with messages. Your server's throughput could

be significantly impacted or the server itself could become overloaded and

nonfunctional.

dereferencing an alias Specifying, in a bind or search operation, that a directory service translate an

alias distinguished name to the actual distinguished name of an entry.

destination channel The last element of a host/domain rewrite rule, in whose queue a message

should be placed in for delivery.

directory cache A temporary storage of information that has been retrieved from the directory.

directory context The point in the directory tree at which a search is begun.

280 Sun Internet Mail Server 4.0 Reference Manual • July 1999

directory entry A set of directory attributes and their values identified by its distinguished

name. Each entry contains an object class attribute that specifies the kind of

object the entry describes and defines the set of attributes it contains. Also

called the IMTA directory cache.

directory information
tree The tree-like hierarchical structure in which directory entries are organized.

Also called a DIT. DITs can be organized along the DNS (DC trees) or Open

Systems Interconnect networks (OSI trees).

directory schema The set of rules that defines the data that can be stored in the directory.

directory service A logically centralized repository of information. The component in SIMS that

stores user, distribution list, and configuration data.

directory
synchronization Because information stored in the directory service is updated as new entries

are added, modified and deleted, the information in the IMTA directory cache

must be periodically updated with the current information in the directory

service. This process is called directory synchronization. Sometimes called a

dirsync in reference to the imta dirsync command.

dirsync option file A file used to set options for the dirsync program that cannot be set through

the command line.

disconnected state The mail client connects to the server, makes a cache copy of selected

messages, then disconnects from the server.

distinguished name The comma-separated sequence of attributes and values that specify the

unique location of an entry within the directory information tree; often

abbreviated as DN.

distribution list A list of email addresses (users) that can be sent a message by specifying one

email address. Also called a group.

See also expansion, member, moderator, owner, and alias.

distribution list
owner An individual who is responsible for a distribution list. An owner can add or

delete distribution list members. See also distribution list, expansion, member, and

moderator.

DIT See directory information tree.

DN Distinguished name.

dn LDAP alias for distinguished name.

DNS Domain Name System. A distributed name resolution software that allows

computers to locate other computers on a UNIX network or the Internet by

domain name. DNS servers provide a distributed, replicated, data query

service for translating host names into Internet addresses.

Glossary 281

DNS database A database of domain names (host names) and their corresponding IP

addresses.

domain A group of computers whose host names share a common suffix, the domain

name. Syntactically, an Internet domain name consists of a sequence of names

(labels) separated by periods (dots), for example, tundra.mpk.ca.us .

domain quota The amount of space, configured by the system administrator, allocated to a

domain for email messages.

domain rewriting
rules See rewrite rules.

domain template The part of a rewrite rule that defines how the host/domain portion of an

address is rewritten. It can include either a full static host/domain address or a

single field substitution string, or both.

dsservd A daemon that operates that accesses the database files that hold the directory

information, and communicates with directory clients using the LDAP

protocol.

EMAPI Extended MAPI Service Provider. Transparently turns Microsoft Exchange

client into an Internet standard IMAP/LDAP client. See also IMAP, LDAP.

encryption Scrambling the contents of a message so that its contents cannot be read

without the encryption, or code key.

entries User, group, or organizational data used to configure message accounts.

envelope The part of an Internet mail message that contains the delivery information.

The envelope contains the originator and recipient information associated with

a message.

ESMTP Extended Simple Mail Transfer Protocol. An Internet message transport

protocol.

expander Part of an electronic mail delivery system that allows a message to be delivered

to a list of addressees. Mail exploders are used to implement mailing lists.

Users send messages to a single address (for example, hacks@somehost.edu) and

the mail exploder takes care of delivery to the individual mailboxes in the list.

Also called mail exploders.

expansion This term applies to the IMTA processing of distribution lists. The act of

converting a message addressed to a distribution list into enough copies for

each distribution list member.

expunge The act of marking a message for deletion and then permanently removing it

from you INBOX.

external channel An interface between the IMTA and either another SIMS component or another

component outside the SIMS email system.

282 Sun Internet Mail Server 4.0 Reference Manual • July 1999

failover The automatic transfer of a computer service from one system to another to

provide redundant backup.

Filesharing Transport This type of transport moves messages between the UNIX operating system

and the PC running a client through a shared file system available to both

platforms. When a channel is configured to use filesharing transport, the

shared directory to use for the file exchange must be specified.

firewall A dedicated gateway machine with special security precautions used to service

outside network, especially Internet, connections and dial-in lines. The idea is

to protect a cluster of more loosely administered machines hidden behind the

firewall from unwanted entry from outside the firewall.

folder Named place where mail is stored. Also called a mailbox. Inbox is a folder that

stores new mail. Users can also have folders where mail can be stored. A folder

can contain other folders in a hierarchical tree. Folders owned by a user are

called private folders. See also shared folders.

Folder Check A utility that checks the accessibility of messages and folders and verifies links.

This utility is used as part of the regular maintenance of SIMS.

forward address
mapping Message envelopes, TO:address , are processed to a mapping table. The result

of the mapping is tested. If necessary, the exact form of the envelope is

exchanged for another, which can then be processed by a different, and

perhaps non-compliant RFC 822, mail system.

FQDN See fully qualified domain name.

fragmentation The Multiple Internet Extensions (MIME) feature that allows the breaking up

of a large message into smaller messages. See also defragmentation.

full static host/domain
address The portion of a host/domain address elements set off by decimals as part of

the domain template. See also domain template.

fully qualified domain
name The full name of a system, consisting of its local host name and its domain

name. For example, class is a host name and class.sun.edu is an fully

qualified domain name. A fully qualified domain name should be sufficient to

determine a unique Internet address for any host on the Internet. The same

naming scheme is also used for some hosts that are not on the Internet, but

share the same name-space for electronic mail addressing. A host that does not

have a fully qualified domain name must be addressed using a bang path.

gateway The terms gateway and application gateway refer to systems that do translation

from one native format to another. Examples include X.400 to/from RFC 822

electronic mail gateways. A machine that connects two or more electronic mail

systems (especially dissimilar mail systems on two different networks) and

transfers messages between them. Sometimes the mapping and translation can

Glossary 283

be complex, and it generally requires a store-and-forward scheme whereby the

message is received from one system completely before it is transmitted to the

next system after suitable translations.

global log manager A utility that handles log information from each Sun Internet Mail Server

component.

group Same as a distribution list.

group folders Contain folders for shared and group folders. See shared folder.

header The part of an Internet mail message that is composed of a field name followed

by a colon and then a value. Headers include delivery information, summaries

of contents, tracing, and MIME information.

hosted domain An email domain that is outsourced by an ISP. That is, the ISP provides email

domain hosting for an organization by operating and maintaining the email

services for that organization. A hosted domain shares the same SIMS host

with other hosted domains. In earlier LDAP-based email systems, a domain

was supported one or more email server hosts. With SIMS, many domains can

be hosted on a single server. Hosted domains are also called virtual hosted
domains or virtual domains.

host name The logical name assigned to a computer. On the Web, most hosts are named

www; for example, www.mycompany.com . If a site is composed of several hosts,

they might be given different names such as support.mycompany.com and

sales.mycompany.com . support and sales are the host names,

mycompany is the subdomain name, and com is the top-level domain name.

IMAP4 Internet Message Access Protocol. IMAP4 provides advanced disconnected

mode client access.

IMTA Internet Message Transfer Agent. IMTA routes, transports, and delivers

Internet Mail messages within the email system.

internal channel An interface between internal modules of the IMTA. Internal channels include

the reprocessing, conversion, and defragmentation channels. These channels

are not configurable.

Internet protocol
address A 32-bit address assigned to hosts using TCP/IP. Also called the IP address and

Internet address.

invalid user An error condition that occurs during message handling. The message store

sends a communication to the IMTA, and the message store deletes its copy of

the message. The IMTA bounces the message back to the sender and deletes its

copy of the message

ISP Internet Service Provider. A company that provides Internet services to its

customers including email, electronic calendaring, access to the World Wide

Web, and Web hosting.

284 Sun Internet Mail Server 4.0 Reference Manual • July 1999

job controller An IMTA daemon responsible for scheduling message delivery. Job controller

also controls channel queues and determines the order of processing. Requests

are processed in the order in which they are received by the system.

knowledge
information Part of the directory service infrastructure information. The directory server

uses knowledge information to pass requests for information to other servers.

LDAP Lightweight Directory Access Protocol. LDAP is a protocol used for the

storage, retrieval, and distribution of information, including user profiles,

distribution lists, and configuration data.

LDAP referrals An LDAP entry that consists of a symbolic link (referral) to another LDAP

entry. An LDAP referral consists of an LDAP host and a distinguished name.

LDAP referrals are often used to reference existing LDAP data so that this data

does not have to be replicated. They are also used to maintain compatibility for

programs that depend on a particular entry that may have been moved.

LDAP Server A software server that maintains an LDAP directory and services queries to the

directory. The Sun Directory Services and the Netscape Directory Services are

implementations of an LDAP Server.

LDAP server failover A backup feature for LDAP servers. If one LDAP server fails, the system can

switch over to another LDAP server.

LDAP filter A way of specifying a set of entries, based on the presence of a particular

attribute or attribute value.

LDBM LDAP data base manager.

LDIF LDAP Data Interchange Format. A data format used to represent LDAP entries

in text form.

local channel A channel that allows you to determine delivery options of local users and

delivers mail to Solaris Operating Environment mailboxes.

lookup Same as a search, using the specified parameters for sorting data.

mailbox A place where messages are stored and viewed. See also folder.

managed object A collection of configurable attributes, for example, a collection of attributes

for the directory service.

mapping tables Two column tables that transform, map, an input string into an output string.

master directory
server The directory server that contains the data that will be replicated.

master message
catalog Contains message catalogs for the SIMS components.

master program A channel program that initiates a message transfer to another interface on its

own.

Glossary 285

member A user or group who receives a copy of an email addressed to a distribution

list. See also distribution list, expansion, moderator, and owner.

Message Access and
Store These are the SIMS components that store user messages and allow for

retrieval and processing of messages.

Message Access
Services Consists of protocol servers, software drivers, and libraries, which support

client access to the message store.

message catalogs The log messages, command line responses, and graphical user interface screen

text contained in the SIMS components.

message submission The client Mail User Agent (MUA) transfers a message to the mail server and

requests delivery.

MIB Management Information Base. A collection of objects that can be accessed

using a network management protocol. See also SMI.

MIME Multipurpose Internet Mail Extensions. A format for defining email message

content.

moderator A person who first receives all email addressed to a distribution list before A)

forwarding the message to the distribution list, B) editing the message and

then forwarding it to the distribution list, or C) not forwarding the message to

the distribution list. See also distribution list, expansion, member, and owner.

MTA Message Transfer Agent. An OSI application process used to store and forward

messages in the X.400 Message Handling System. Equivalent to Internet mail

agent. See also IMTA.

MUA Mail User Agent. The client applications invoked by end users to read, submit,

and organize their electronic mail.

mx record Mail Exchange Record. A DNS resource record stating a host that can handle

electronic mail for a particular domain.

name resolution The process of mapping an IP address to the corresponding name.

See also DNS.

namespace The space from which an object name is derived and understood. Files are

named within the file name space; domain components are named within the

domain namespace.

naming attribute The final attribute in a directory information tree distinguished name. See also

relative distinguished name.

286 Sun Internet Mail Server 4.0 Reference Manual • July 1999

naming context A specific subtree of a directory information tree that is identified by its DN. In

SIMS, specific types of directory information are stored in naming contexts. For

example, a naming context that stores all entries for marketing employees in

the XYZ Corporation at the Boston office might be called:

ou=mktg, ou=Boston, o=XYZ, c=US

NIS A distributed network information service containing key information about

the systems and the users on the network. The NIS database is stored on the

master server and all the replica or slave servers.

NIS+ A distributed network information service containing hierarchical information

about the systems and the users on the network. The NIS+ database is stored

on the master server and all the replica servers.

nondelivery report During message transmission, if the IMTA does not find a match between the

address pattern and a rewrite rule, the IMTA sends a nondelivery report back

to the sender with the original message, then deletes its copy of the message.

notary messages Text messages sent by the MTA to an email sender indicating delivery or non-

delivery status of a sent message.

object class A template specifying the kind of object the entry describes and the set of

attributes it contains. For example, SIMS specifies an emailPerson object

class that has attributes such as commonname, mail (email address),

mailHost , and mailQuota .

off-line state The mail client fetches messages from a server system to a client system, which

may be a desktop or portable system and may delete them from the server. The

mail client downloads the messages where they can be viewed and answered.

on-line state A state in which messages remain on the server and are remotely responded to

by the mail client.

option files IMTA option files contain global parameters used to override default values of

parameters that apply to IMTA as a whole, such as sizes for various tables into

which various configuration and alias files are read.

OSI tree A directory information tree that mirrors the Open Systems Interconnect

network syntax. An example of a distinguished name in an OSI tree would be

cn=billt,o=bridge,c=us.

ou LDAP alias for organizationalUnit.

permanent failure An error condition that occurs during message handling. When this occurs, the

message store deletes its copy of an email message. The Internet Message

Transport Agent (IMTA) bounces the message back to the sender and deletes

its copy of the message.

pipe channel A channel that performs delivery of messages by a per-user-site-supplied

program. These programs must be registered in SIMS by the system

administrator, and thus do not pose a security risk.

Glossary 287

plaintext Unencrypted readable text. The opposite of cypher text

plaintext
authentication Authentication that occurs by sending passwords over the network in

plaintext. Considered a security problem since plaintext passwords can be

easily captured over a network.

POP Post Office Protocol. POP provides remote access support for older mail clients.

populating the
directory Entering information for users and distribution lists to the SIMS directory

service.

protocol A formal description of messages to be exchanged and rules to be followed for

two or more systems to exchange information.

provisioning The process of adding, modifying or deleting entries in the SIMS directory

service. These entries include users and groups.

provisioning
commands SIMS commands that provide provisioning functions. These commands are

prefaced with imadmin .

proxy The mechanism whereby one system “fronts for” another system in responding

to protocol requests. Proxy systems are used in network management to avoid

having to implement full protocol stacks in simple devices, such as modems.

public key encryption A cryptographic method that uses a two-part key (code) that is made up of

public and private components. To encrypt messages, the published public

keys of the recipients are used. To decrypt the messages, the recipients use

their unpublished private keys known only to them.

purge The process of permanently removing messages that have been deleted and are

no longer referenced in user and group folders and returning the space to the

Sun Message Store file system. See also backup and restore.

quota See user quota.

referral A process by which the directory server returns an information request to the

client that submitted it, with information about the Directory Service Agent

(DSA) that the client should contact with the request.

See also knowledge information.

relative distinguished
name The final attribute and its value in the attribute and value sequence of the

distinguished name. See also distinguished name.

relaying A message is passed from one mail server to another mail server.

replica directory
server The directory that will receive a copy of all or part of the data.

288 Sun Internet Mail Server 4.0 Reference Manual • July 1999

reprocessing channel Performs deferred processing. The reprocessing channel is the intersection of

all other channel programs. It performs only the operations that are shared

with other channels.

restore The process of restoring the contents of folders from a backup device to the

Sun Message Store. See also backup and purge.

reverse address
mapping Addresses are processed to a mapping table, with a reversal database,

generally substituting a generic address, possibly on a central machine, for an

address on a remote or transitory system.

rewrite rules Also known as domain rewriting rules. A tool that the Internet Mail Transport

Agent (IMTA) uses to route messages to the correct host for delivery. Rewrite

rules perform the following functions: (1) extract the host/domain specification

from an address of an incoming message, (2) match the host/domain

specification with a rewrite rule pattern, (3) rewrite the host/domain

specification based on the domain template, and (4) decide in which IMTA

channel queue the message should be placed.

RFC Request For Comments. The document series, begun in 1969, describes the

Internet suite of protocols and related experiments. Not all (in fact very few)

RFCs describe Internet standards, but all Internet standards are published as

RFCs. Refer to http://www.imc.org/rfcs.html for information.

root entry The first entry of the directory information tree (DIT) hierarchy.

router A system responsible for determining which of several paths network traffic

will follow. It uses a routing protocol to gain information about the network,

and algorithms to choose the best route based on several criteria known as

“routing metrics.” In OSI terminology, a router is a Network Layer

intermediate system. See also gateway.

routability scope Specifications that enable the IMTA to send messages by the most direct route,

either to a specific user's folder, a group of folders, or to a mail host.

routing In an email system, the act of delivering a message based on addressing

information extracted from the body of the message. The Internet Message

Transfer Agent (IMTA) is the component responsible for routing messages.

safe file system A file system performs logging such that if a system crashes it is possible to

rollback the data to a pre-crash state and restore all data. An example of a safe

file system is Veritas File System, VxFS.

schema A set of rules that sets the parameters of the data stored in a directory. It

defines the type of entries, their structure and their syntax.

sendmail This program acts as a mail transport agent for Solaris software. It is

responsible for routing mail and resolution of mail addresses.

Glossary 289

shared folder or
shared mailbox A mailbox that can be viewed by members of a distribution list. Shared folders

have an owner who can add or delete members to the group and can delete

messages from a the shared folder. The can also have a moderator who can

edit, block, or forward incoming messages.

SIMS administrator An individual who has a valid log in and password for the SIMS Admin

Console. This person can also use this log in and password to execute the

provisioning CLIs.

single field
substitution string Part of the domain template that dynamically rewrites the specified address

token of the host/domain address. See also domain template.

SKIP Simple Key management for IP. A security system that encrypts or scrambles

the text of a message so only the receiving mail client or message server can

decrypt or unscramble the text.

slave program A channel program that accepts transfers initiated by another interface.

smart host The mail server in a domain to which other mail servers forward messages if

they do not recognize the recipients.

SMTP Simple Mail Transfer Protocol. The Internet electronic mail protocol. Defined in

RFC 821, with associated message format descriptions in RFC 822.

SMTP Dispatcher A multithreaded connection dispatching agent that allows multiple

multithreaded servers to share responsibility for a given service, thus allowing

several multithreaded SMTP servers to run concurrently and handle one or

more active connections.

SMTP Intranet or
Internet channel A channel dedicated to relaying messages between the IMTA and a group of

SMTP hosts within, or outside of, your mail network.

SMTP router channel SMTP channel that handles messages between the IMTA and firewall host.

sn LDAP alias for surname.

SNMP Simple Network Management Protocol. The network management protocol of

choice for TCP/IP-based internets.

subordinate reference The naming context that is a child of the naming context held by your

directory server. See also knowledge information.

Sun Directory
Services Sun Microsystems’ implementation of an LDAP directory server. Provides

storage of, and access to, user profiles, distribution lists, and other SIMS

information. The Sun Directory Services is one of the three main SIMS

components along with the IMTA and MS/MA.

290 Sun Internet Mail Server 4.0 Reference Manual • July 1999

Sun Internet Mail
Server An enterprise-wide, open-standards based, scalable electronic message-

handling system.

Sun Message Store The server from which mail clients retrieve and submit messages.

SSL Secure Sockets Layer is an open, non-proprietary security protocol for

authenticated and encrypted communication between clients and servers.

synchronization The update of data by a master directory server to a replica directory server.

table lookup With a table consisting of two columns of data, an input string is compared

with the data within the table and transformed to an output string.

tailor file An option file used to set the location of various IMTA components.

transient failure An error condition that occurs during message handling. The remote Internet

Message Transport Agent (IMTA) is unable to handle the message when it’s

delivered, but may be able to later. The local IMTA returns the message to the

channel queue and schedules it for retransmission at a later time.

transport protocols Provides the means to transfer messages between message stores.

uid User identification. A unique string identifying a user to a system. Also

referred to as a userid.

unsafe file system A file system that does not perform logging. If the system crashes, the state

cannot be recreated and some data may be lost. You must also perform

imcheck before activating message access to these files.

upper reference Indicates the directory server that holds the naming context above your

directory server’s naming context in the directory information tree (DIT).

user entry or
user profile Fields that describe information about each user, required and optional,

examples are: distinguished name, full name, title, telephone number, pager

number, login name, password, home directory, and so on.

user folders A user’s email mailboxes.

user quota The amount of space, configured by the system administrator, allocated to a

user for email messages.

user redirection The remote IMTA cannot accept mail for the recipient, but can reroute the mail

to a mail server that can accept it.

UUCP UNIX to UNIX Copy Program. A protocol used for communication between

consenting UNIX systems.

valid user A condition that occurs during message handling. After the message store

sends a communication to the IMTA, the IMTA deletes its copy of the message

and it is now the message store's responsibility.

Glossary 291

/var/mail The UNIX version 7 “From” delimited mailbox as implemented in the Solaris

operating system.

virtual hosted domains
or virtual domains See hosted domains.

workgroup Local workgroup environment, where the server performs its own routing and

delivery within a local office or workgroup. Interdepartmental mail is routed to

a backbone server. See also backbone.

X.400 A message handling system standard.

292 Sun Internet Mail Server 4.0 Reference Manual • July 1999

293

Index

SYMBOLS
! (exclamation point)

as a comment indicator, 91

in addresses, 73

! (exclamation points), 91

in comment lines, 91

$, 78

$!n, 78

$#n, 78

$$, 78

$&n, 78

$*n, 78

$?, 88

$? errmsg, 89

$[...], 79

$^, 78

$_, 78

${mapping,argument}, 85

$‰, 78

$ˆ, 78

$A, 81, 89

$B, 81, 89

$C, 80, 88

$C channel, 89

$D, 78

$E, 81, 89

$E control sequence, 88

$F, 81, 89

$F control sequence, 88

$H, 78

$L, 78

$M, 80, 88

$M channel, 89

$N, 80, 88

$N channel, 89

$P, 81, 89

$Q, 80, 88

$Q channel, 89

$R, 81, 89

$S, 81, 89

$T, 88

$T tag value, 87

$U, 78

$U substitution sequence, 77

$W, 78

$X, 81, 89

% (percent sign), 80

(A!B)‰C, 100

$, 78

< (less than sign), including files with, 69

@[0.1.2.3]:user@d.e.f, 73

@a,@[0.1.2.3]:user@b, 73

@a,@b,@c:user@d.e.f, 73

@a.b.c:user@d.e.f, 73

@a:user@b.c.d, 73

[] (square-brackets), 190

| vertical bar, 87

‰ (percent sign), 88

in addresses, 73

294 Sun Internet Mail Server 4.0 Reference Manual • July 1999

NUMERICS
7-bit characters, 121

8-bit capability, 120

A
A!(B‰C), 100

A!B%C, 100

A!BˆC, 100

A!user, 73

A!user%B, 73

A!user%B@C, 73

A!user@B, 73

A@B@C, 101

access controls, defining, 38

access protocols, 31

access protocols and message store

standards, 270

access protocols, directory server, 275

address

blank envelope return, 125

conventions, 93

destination, 106

envelope To:, 81

expansion, 107

incomplete, 119

interpretation, 100

multiple destination, 106

multiple recipient, 107

routing information, 100

types, 93

Address in Received:header, 125

address keywords, 93

address mapping, FORWARD, 170

address message headers

comments in, 127

personal names, 127

address rewrite rules, imta.cnf file, 268

address rewriting, 101

address rewriting, see imta test -rewrite, 57

address routing, 92

addresses

backward-pointing, 101

domain rewriting, 70

From:, 101

interpreting, 100

invalid, 109

Resent-From:, 81

Resent-to:, 81

rewriting, 70

Sender:, 81

To:, 81, 105

URL for attributes containing, 243

address-reversal database, 168

addrsperfile, 93, 106

addrsperjob, 93, 105, 106

addrsperjob keyword, 105

admin, defined, 205

adminBindDN, 261

after, 93

alias database, 136

alias file, 136

including other aliases, 137

aliases, 137

allowetrn, 93, 113

allowswitchchannel, 93, 118

altered addresses in notification messages, 111

alternate channel for incoming mail, 118

APOP parameters, 259

appropriate urgency, 102

at sign, 73, 80, 88

attribute syntax, 213

attributes

containing addresses, URL, 243

inherited, 228

mail processing, 246

values, 213

automatic character set labeling, 121

automatic fragmentation of large messages, 130

autoreply file options, 187

auxiliary object class, defined, 205

B
backward-pointing addresses, 101

bangoverpercent, 93, 100

bangoverpercent keyword, 73

bang-style (UUCP) addresses, 86

bang-style address conventions, 74

Index 295

basic message structure

messaging standards, 269

bidirectional, 102

bin attribute syntax, 213

binddn option, 40

bit flags, 125

blank envelope addresses, 125

blank envelope return addresses, 125

blank lines, in a configuration file, 91

BLOCK_SIZE, 130

blocketrn, 93, 113

blocklimit, 93, 131

C
cache disabling, 104

cacheeverything, 93, 103

cachefailures, 93, 103

cachesuccess, 93

cachesuccesses, 103

caching information, 103

caching strategy, 104

calling out a mapping table, 152

Cc:, 81

ces attribute syntax, 213

cgi-bin, 263

channel block, 92

channel connection information caching, 103

channel definitions, 92

channel descriptions, imta.cnf file, 267

channel directionality, 102

channel entries

IMTA cache database, 46

channel l, 91

channel master, debugging, 132

channel master program, 189

channel name, interpreting, 80

channel parameter, 54

channel processing

simultaneous requests, 189

channel protocol selection, 112

channel queuing, 92

channel service, 102

channel switching, 118

channel table, 118

channel table keywords, 193

channel/host table, 92

channel-by-channel size limits, 130

channels, service intervals, 103

channel-specific rule checks, 80

character set conversion, 121

character set conversion table, 46

character set labeling, automatic, 121

character specifications, 275

charset7, 93, 121

charset8, 93, 121

CHARSET-CONVERSION, 124

checkehlo, 93, 113

cis attribute syntax, 213

client tasks, IMTA, 187

client, defined, 205

command-line utilities, using, 25

commands, 25

dsprepush , 40

EHLO, 113

for Directory Services, 38

for Message Access, 31

for Message Store, 31

imbackup , 31

imcheck , 31

imdeluser , 32

imexpire , 32

imexportmbox , 33

imimportmbox , 33

iminitquota , 34

impurge , 34

imquotacheck , 34

imrestore , 35

imsasm , 35

imsinit , 35

imta cache -close , 45

imta cache -rebuild , 46

imta cache -sync , 46

imta cache -view , 46

imta chbuild , 46

imta cnbuild , 47

imta counters , 49

imta counters -clear, 49

imta counters -create , 49

296 Sun Internet Mail Server 4.0 Reference Manual • July 1999

imta counters -show , 49

imta counters -today , 49

imta crdb , 50

imta dirsync , 50

imta process , 51

imta program , 51

imta purge , 52

imta queue , 53

imta renamedb , 53

imta restart , 54

imta restart dispatcher, 199

imta restart job_controller, 188

imta return , 54

imta run , 54

imta start dispatcher, 199

imta startup , 55

imta stop dispatcher, 199

imta stop job_controller, 189

imta submit , 55

imta test -mapping , 56

imta test -rewrite , 57

imta version , 58

job controller, 189

kill , 194

ldapadd , 41

ldapdelete , 42

ldapsearch , 42

master, 192

mkbackupdir , 36

SMTP MAIL TO, 114

SMTP VRFY, 114

uninstall , 29, 62

commands setup-tty , 29, 59

comment lines, 260

in channel definitions, 92

comment lines in a configuration file, 69

commentinc, 93, 127

commentomit, 93, 127

comments

in address message headers, 127

commentstrip, 93, 127

commenttotal, 93, 127

configuration files

blank lines, 91

comment lines, 260

dispatcher.cnf, 195

imdmc.cnf file, 262

ims.cnf file, 255

IMTA, 66

imta.cnf, 68

imta.cnf
comment lines, 69

in rewriting rules structure, 70

structure, 68

imta.cnf file, 263

parameter lines, 260

sims.cnf file, 260

whitespace lines, 260

configuration modifications, 66

configuration of conversion channel, 146

configuration options

SMTP dispatcher, 196

configuration parameters for Message Store, 255

configuration settings, defining, 66

connectalias, 93, 101

connectcanonical, 94, 101

connection failures, 103

connection successes, 103

consumer of the mail schema, 204

control sequences, 88, 89

controlling error messages associated with

rewriting, 87

conversion channel, 145

configuration of, 146

conversion control, 147

environment variables, 150

traffic for conversion processing, 146

conversion channel

entry scanning and application, 150

conversion control, 147

conversion control parameters, 147

conversion entry scanning and application, 150

conversion processing, traffic for, 146

copysendpost, 94, 109

copywarnpost, 94, 110

correcting incomplete addresses, 119

corresponding channel characteristics, 118

country object class, 216

cron job, message return, 156

crontab, 102

customer-supplied routine, 79

Index 297

D
daemon, 94

database files, IMTA, 68

database substitutions, 84

date conversion, 128

date fields, 128

date specification

day of week, 128

datefour, 94, 128

dates, two-digit, 128

datetwo, 94, 128

day of week date specification, 128

dayofweek, 94, 128

DC, primary tree, 209

DC, secondary tree, 211

dcRoot, 261

debugging

channel master and slave programs, 132

local channel, 133

default channel service, 102

default datasize, 201

default error messages

rewrite and channel matching failures, 87

default SLAVE_COMMAND option, 191

defaultDomain, 261

defaultmx, 94

defaults, 109

defaults channel

in a configuration file, 91

defaults notices, 109

deferred, 94, 108

deferred delivery dates, 108

deferred message processing, 108

deferred messages, delivery of, 133

deferred processing, 107

defining access control, 38

defragment, 94, 130

defragmentation of message, 130

delete messages, 34

delivery of deferred messages, 133

delivery status notifications standards, 272

delivery utility (ims_master), 257

destination address, 106

destination channel-specific rewrite rules, 80

di_x_master.log file, 132

di_x_xlave.log file , 133

direction-specific rewrites, 81

directory information tree, 206

object classes, 215

shared auxiliary object class, 205

single domain component tree, 207

structural object class, 205

directory schema, 205

directory server access protocols, 275

directory server specifications, 273

Directory Service Agent (DSA), 213

directory services commands, 38 to 43

dirsync option file, 186

disabling caching, 104

dispatcher configuration file, 195

dispatcher.cnf file, 195

restarting, 54

distribution list entry, 38

DIT see directory information tree

DIT specification, 205

dn attribute syntax, 213

document-root, 263

Domain Component tree (DC tree), 207

domain database, 90, 135

domain literals, 83

domain name service

messaging standards, 273

domain object class, 221

domain rewriting rules, 70

applying, 71

-debug qualifier, 90

failure, 88

-noimage qualifier, 90

pattern, 88

structure, 70

testing, 90

domain specification, 71

domainetrn, 94, 113

domainvrfy, 94, 114

downgrade messages, 103

downgrade the priority of messages, 103

dsprepush , 40

dspushd, 40

298 Sun Internet Mail Server 4.0 Reference Manual • July 1999

dsserv config file, 40

dsserv daemon, 38

dsserv.acl.conf, 39

dsserv.at.conf, 39

dsserv.conf, 38

dsserv.oc.conf, 39

dsserv.replog, 39

dsservcmd , 40

E
ehlo, 94

EHLO command, 113

eight bit capability, 120

eightbit, 94, 120

eightnegotiate, 94, 120

eightstrict, 94, 120

email entry tools, 41

encoding, 122

encoding header, 124

entries, generating group, 41

envelope To addresses, 81

rewriting, 88

envelope to Address in Received: header, 125

environment variables

 for conversion, 150

names substitution, 152

err_x_master.log log file, 132

err_x_slave.log file, 132

Errors-to: header, 110

errsendpost, 94, 109

errwarnpost, 94, 110

/etc/opt/SUNWmail/imta, 54

/etc/opt/SUNWmail/imta/imta_tailor, 45, 47

/etc/opt/SUNWmail/imta/queue_cache, 45

ETRN command

sending, 114

ETRN commands, receiving, 113

exclamation point (!), 73

expandlimit, 94, 107

expansion of multiple addresses, 107

explicit routing, 100, 101

exproute, 94, 100

EXPROUTE_FORWARD option, 101

extended SMTP messaging standards, 270

F
failed delivery attempts, 110

failed mail messages, 109

failed messages, 109

failure of rewrite rules, 77

file system, managing space, 34

files

configuration

comment lines, 69

defaults channel, 91

permissions, 66

di_x_slave.log , 133

di_xmaster.log , 132

dispatcher.cnf, 196

dispatcher.cnf , 195

err_x_master.log , 132

err_xslave.log , 132

header options, 124

IMTA tailor, 45

imta.cnf
adding comments to, 69

blank lines, 69

comment lines, 69

sample, 91

imta.cnf , 70

imta_cnf
structure, 68

including in configuration files, 69

including in imta.cnf , 69

job controller configuration, 190

sample, 191

job_controller.cnf , 190

ph_x_master.log , 133

ph_x_slave.log , 133

return_bounce.txt , 54

user

removing from message store, 32

filesperjob, 94, 105

FORWARD address mapping, 170

forwardcheckdelete, 116

forwardchecknone, 116

forwardchecktag, 116

Index 299

four-digit dates, 128

fragmentation, 131

of long messages, 130

From: address, 101

fully qualified domain name (FQDN), 73

G
general database substitutions, 84

generate group entries, 41

generating character set labels, 121

groupOfUniqueNames object class, 244

H
header, maximum length, 132

header alignment, 129

header lines, trimming, 123

header option files, 179

format, 180

location, 180

header options files, 124

header trimming, 123

headerinc, 95

headerlabelalign, 95, 129

headerlinelength, 95, 129

headerread, 95, 123

headerread keyword, 124

headers

Errors-to:, 110

in an enclosing MESSAGE/RFC822 part, 151

message, 93

headertrim, 95, 123

heap size, 201

hold channel, 145

host location-specific rewrites, 81

host name, extracting, 73

host/domain specifications, 72

housekeeping facilities

SMTP dispatcher, automatic, 194

I
id2entryfile file, 42

IDENT lookups, 116

identnone, 95, 116

identnonelimited, 95, 116

identnonenumeric, 95, 116

identnonesymbolic, 95, 116

identtcp, 95, 116

identtcplimited, 95, 116

identtcpnumeric, 95, 116

identtcpsymbolic, 95, 116

ignoreencoding, 95

ignorencoding, 124

imaccessd , 31

imadmin, 26

imadmin add admin, 26

imadmin add group, 26

imadmin add ldapserver, 26

imadmin add user, 26

imadmin create domain, 26

imadmin delete domain, 26

imadmin delete group, 26

imadmin delete user, 27

imadmin modify currentldap, 27

imadmin modify domain, 27

imadmin modify group, 27

imadmin modify msglimits, 27

imadmin modify notary, 27

imadmin modify postmaster, 27

imadmin modify user, 27

imadmin purge domain, 27

imadmin purge group, 28

imadmin purge user, 28

imadmin remove admin, 28

imadmin search admin, 28

imadmin search group, 28

imadmin search msglimits, 28

imadmin search notary, 28

imadmin search postmaster, 28

imadmin search user, 28

imbackup , 31

imCalendarUser object class, 241

imcheck , 31

300 Sun Internet Mail Server 4.0 Reference Manual • July 1999

imdeluser , 32

imdmc.cnf file, 262

imedit, 29

imexpire , 32

imexportmbox , 33

imimportmbox , 33

iminitquota , 34

imldifsync , 41

immediate, 95, 102

immediate immnormal, 102

immnonurgent, 95, 102

immnormal, 95, 102

immonitor, 30

immonitor access, 30

immonitor queue, 30

immonitor reenqueue, 30

immonitor system, 30

immonitor users, 30

immurgent, 95, 102

implicit routing, 101

improute, 95, 100

impurge , 34

imquotacheck , 34

imrestore , 35

ims.cnf file, 255

ims-adm-root, 256

imsasm , 35

ims-augment-interval, 256

ims-auth-timeout, 258

ims-bind-address, 258

ims-caps-proxy, 257

ims-client-lookup, 258

ims-data-root, 256

ims-default-quota, 257

ims-hash-root, 256

ims-index-root, 256

imsinit , 35

ims-init-interval, 256

ims-ldap-failover-timeout, 258

ims-ldap-request-timeout, 258

ims-mail-host, 257

ims-maxconnections, 257

ims-md5auth-enable, 259

ims-owner, 256

ims-parse-level, 257

ims-popb4smtp-lib, 259

ims-popb4smtp-timeout, 259

ims-pop-exclusive, 258

ims-pop-timeout, 258

ims-proxy, 257

ims-quota, 257

ims-shared-root, 256

ims-user-root, 256

ims-varmail, 257

IMTA

commands, 43 to 58

imta.cnf file, 68

job controller, 187

rewrite rules, 70

service dispatcher, 54

SMTP dispatcher, 193 to 199

imta cache , 45, 45 to 46

IMTA cache database

current channel entries, 46

imta cache -rebuild , 46

imta cache -sync , 46

imta cache -view , 46

IMTA channels table, 189

imta chbuild , 46

imta clbuild, 47

IMTA client tasks, 187

imta cnbuild , 47

IMTA configuration file, 263

IMTA configuration file, See imta.cnf

IMTA configuration files, 66

imta counters , 49

imta counters -clear , 49

imta counters -create , 49

imta counters -show , 49

imta counters -today , 49

imta crdb , 50

IMTA database files, 68

imta dirsync , 50

imta find, 50

IMTA log directory, 132

IMTA mapping file, 156 to 171

IMTA multithreaded service dispatcher, 55

Index 301

IMTA option file options, 172

IMTA option files, 171

imta process , 51

imta program , 51

imta purge , 52

imta qm, 52

imta queue , 53

imta queue recover_crash, 44

imta queue retry_delivery channel_name, 44

imta renamedb , 53

imta restart , 54

imta restart dispatcher command, 199

imta restart job_controller command, 188

imta return , 54

imta run , 54

imta start dispatcher, 199

imta start dispatcher command, 199

imta startup , 55

imta stop, 55

imta stop dispatcher command, 199

imta stop job_controller command, 189

imta submit , 55

IMTA table directory, 124

IMTA tailor file, 45, 182

imta test -mapping , 56

imta test -rewrite , 57, 90

imta test -rewrite utility , 93

IMTA utilities, 44 to 58

imta version , 58

IMTA version number, displaying, 58

imta view, 58

imta.cnf configuration file

comment lines, 69

structure, 68

imta.cnf configuration file, 68 to 91

imta.cnf file, 68, 263

channel descriptions, 267

comments, 69

including other files, 69

structure, 68

/imta/queue/channel-name, 107

IMTA_ALIAS_FILE , 48

IMTA_CONFIG_DATA, 47

IMTA_CONFIG_FILE , 48

IMTA_CONVERSION_FILE, 48

IMTA_MAPPING_FILE, 48

IMTA_MAPPING_FILE option, 157

IMTA_OPTION_FILE , 48

IMTA_QUEUE_CACHE_DATABASE, 45

imta_tailor, 182

imxclean, 29

includefinal, 95, 111

including files in configuration files, 69

incoming connection, 118

incoming mail, alternate channel, 118

individual channel definitions, 92

industry standards

electronic messaging, 269

Internet mail distribution list object classes, 242

inetAdministrator object class, 240

inetDomain object class, 223

inetmail , 44

inetMailGroup object class, 245

inetMailUser object class, 236

inetOrgPerson object class, 232

inetSubscriber object class, 234

information caching, 103

inherited attributes, 228

inherited object classes, 228

in-memory channel counters, 49

clearing, 49

inner, 95

iinner header rewriting, 122

innertrim, 96, 123

Installation, 58

international standards for server

specifications, 274

Internet communications standards, 276

Internet mail routing and delivery, schema, 203

Internet mail user object classes, 227

Internet Message Transport Agent, See IMTA

interpretencoding, 96, 124

interpreting addresses, 100

invalid address, 109

IPv4 matching, 161

302 Sun Internet Mail Server 4.0 Reference Manual • July 1999

J
job controller, 187

configuration, 188

configuration file format, 190

examples of use, 189

limits, 188

queue limitations, 188

starting and stopping, 188

job controller commands, 189

job controller configuration file, 190

sample, 191

section types, 190

job controller process, creating, 189

job queue, usage and deferral, 108

job_controller.cnf file, 188, 190

editing files, 188

JOB_LIMIT option, 192

K
keywords

address, 93

queue channel, 189

kill command, 194

L
last resort host, 116

lastresort, 96, 116

LDAP utilities, 38

ldapadd , 41

ldapdelete , 42

ldapmodify , 42

ldapsearch , 42

ldapServer, 261

LDBM, conversion to LDIF, 43

ldbmcat syntax, 42

ldif , 42

ldif2id2children , 43

ldif2id2entry , 43

ldif2ldbm , 43

less than sign (, 69

line length reduction, 122

line length restrictions, 121

linelength, 96, 121

linelimit, 96, 131

literal at sign, 78

literal dollar sign, 78

literal percent sign, 78

local channel options, 139

local channel (l), 138

local channel debugging, 133

local host name, 119

localvrfy, 96, 114

localvrfy keyword, 115

location-specific rewrites, 81

log files, IMTA service dispatcher, 199

logging, 96, 132

logicalHostname, 261

loginSeparator, 261

long header lines, splitting, 129

long-term service failures, 109

M
mail forwarding, 115

mail processing attributes, 246

mail schema, 204

mailbox encoding, restricted, 122

mailbox specifications, 122

mailfromdnsverify, 96, 135

man pages, viewing, 25

managing space in the file system, 34

mapping, applying specified, 85

mapping entry patterns, 159

mapping entry templates, 162

mapping field, 85

mapping file, 156 to 171

file format, 157

locating and loading, 157

mapping operations, 159

mapping pattern wildcards, 160

mapping table, calling out, 152

mapping template substitutions and

metacharacters, 162

master, 96, 102

Index 303

master program, 102, 189

master_command, 192

master_debug, 96, 132

master-mode operations, 102

matching any address, 86

matching procedure, rewrite rules, 74

matching rule, 205

MAX_CONNS option, 194

MAX_HEADER_BLOCK_USE, 130

MAX_HEADER_LINE_USE, 130

MAX_PROCS, 194

maxblocks, 96, 130

maxheaderaddrs, 96, 129

maxheaderchars, 96, 129

maximum length header, 132

maxjobs, 96, 105

maxjobs keyword, 105

maxlines, 96, 130

maxperiodicnonurgent, 104

maxperiodicnormal, 104

maxperiodicurgent, 104

maxprocchars, 96, 132

maysaslserver, 134

message

dequeue, 101

submission, 187

Message Access configuration parameters, 255

message access and store, 31

Message Access Services commands, 31

Message Access utility (imaccessd), 257

message content and structure

messaging standards, 271

message defragmentation, 130

message delivery scheduling, 187

message header date fields, 128

message header lines, trimming, 123

message headers, 93

message logging, 132

message rejection, 131

message return cron job, 156

message size, 103

message size limits, 131

Message Store

commands, 31

configuration parameters, 255

delivery utility (ims_master), 257

file system, 256

paths, 256

MESSAGE/RFC822 part, headers in, 151

messages

deleting, 34

removing, 34

returning undelivered, 155

standards, 269

access protocols and message store, 270

metacharacters in mapping templates, 162

migrating users, 145

MIN_CONNS option, 194

MIN_PROCS, 194

minperiodicnonurgent, 104

minperiodicnormal, 104

minperiodicurgent, 104

missingrecipientpolicy, 119

mkbackupdir , 36

monitoring SIMS components, 30

multiple, 96, 106

multiple $M clauses, 80

multiple addresses, 106

multiple destination addresses, 106

multiple outgoing channels, 118

multiple recipient addresses, 107

multiple subdirectories, 107

multithreaded connection dispatching agent, 193

multithreaded service dispatcher, 55

multithreaded SMTP client, 112

multithreaded SMTP server, 55

multi-valued, 205

mustsaslserver, 134

mx, 96

mylookup routine, 79

myprocmail, with the Pipe channel, 144

N
names substitution, environment variable, 152

naming convention, 41

native channel, 138

304 Sun Internet Mail Server 4.0 Reference Manual • July 1999

network services, 189

new worker process creating, 194

nobangoverpercent, 97, 100

nobangoverpercent keyword, 73

nocache, 97, 103

nodayofweek, 97, 128

nodeferred, 97, 108

nodefragment, 97, 130

noehlo, 97, 113

noexproute, 97, 100

noheaderread, 97, 123

noheadertrim, 97, 123

noimproute, 97, 100

noinner, 97, 122

noinnertrim, 97, 123

nologging, 97

nomailfromdnsverify, 135

nomaster_debug, 97, 132

nomx, 97

nonrandommx, 97

nonstandard message formats, converting, 124

nonurgent priority, 103

nonurgentblocklimit, 97, 103

noreceivedfor, 97, 125

noreceivedfrom, 125

noremotehost, 97, 119

norestricted, 97

noreverse, 97, 122

normalblocklimit, 97, 103

norules channel keyword, 80

nosasl, 134

nosaslserver, 134

nosendetrn, 114

nosendpost, 97, 109

noserviceall, 133

noslave_debug, 97, 132

nosmtp, 97, 112

noswitchchannel, 98, 118

notices, 98, 108

notification message, 111

novrfy, 98, 114

nowarnpost, 98, 110

nox_env_to, 98, 124

number of addresses or message files per service

job or file, 105

O
object class

country, 216

domain, 221

groupOfUniqueNames, 244

imCalendarUser, 241

Inernet mail distribution list, 242

inetAdministrator, 240

inetDomain, 223

inetMailGroup, 245

inetMailUser, 236

inetOrgPerson, 232

inetSubscriber, 234

inherited, 228

Internet mail user, 227

organization, 217

organizationalPerson, 231

organizationalUnit, 219

person, 230

simsDomain, 225

top, 229

object classes used in SIMS, 215

/opt/SUNWmail/imta/sbin, 44

/opt/SUNWmail/sbin, 25

option file options, IMTA, 172

options

JOB_LIMIT, 192

MAX_CONNS, 194

MIN_CONNS, 194

SLAVE_COMMAND, 193

default, 191

ordinal values, 120

organization object class, 217

organizational unit

groups, 207

people, 207

services, 207

organizational units, 207

organizationalPerson object class, 231

organizationalUnit object class, 219

OSI, primary tree, 209

OSI, secondary tree, 211

Index 305

osiRoot, 261

P
parameter lines, 260

parameters channel, 54

partial messages, 130

pattern matching, rewrite rules, 72

patterns and tags for rewriting, 85

percent hack, 73

percent hack rules, 86

percent sign (%), 80

percent sign (‰), 73, 88

period, 98, 102

period keyword, 103

periodic, 98, 102

periodic message return job, 111

permissions, configuration file, 66

person object class, 230

personal names in address message headers, 127

personalinc, 98, 127

personalomit, 98, 127

personalstrip, 98, 127

ph_x_master.log file, 133

ph_x_slave.log file, 133

pipe channel, 144

popb4smtp parameters, 259

port, 98

postheadbody, 98, 111

postheadonly, 98, 111

preprocessing files, 66

primary tree, 209

prior connection attempts, history, 103

producer of the mail schema, 204

programs

master, 189

slave, 189

protected attribute syntax, 213

Q
queue, 98, 108

job controller limitations, 188

keywords, 188

queue cache database

naming conventions, 45

rebuilding, 46

queue channel keyword, 189

Quota Notification utility, 34

quoted local-parts, 122

R
randommx, 98

rebuilding queue cache database, 46

Received: headers, 116

receivedfor, 98, 125

receivedfrom, 125

regular expression, specifying, 38

remote host name, 119

remote system, 118

remotehost, 98, 119

repeated percent signs, 74

replication log file, 40

Resent-From: address, 81

Resent-to: address, 81

restricted, 98, 122

restricted channel keyword, 123

restricted mailbox encoding, 122

restrictions, line length, 121

RETURN_ADDRESS option, 57

return_bounce.txt file, 54

returned message content, 111

returned messages, 109

returnenvelope, 98, 125

returning undelivered messages, 155

reverse, 122

reverse database, channel-specific, 122

reverse mapping, 168

REVERSE mapping table flags, 169

rewrite inner header, 122

rewrite process failure, 72

rewrite rule, pattern matching, 72

rewrite rule control sequences, 88

rewrite rule templates, control sequences, 88

rewrite rules, 70, 91

306 Sun Internet Mail Server 4.0 Reference Manual • July 1999

blank lines, 91

domain, 71

Finishing the Rewriting Process, 76

handling large numbers, 89

operation, 71

structure, 70

rewrite rules templates, substitution strings, 76

rewriting inner header, 122

rewriting an address

extracting the first host/domain specification, 72

rewriting an envelope To addresses, 70

rewriting error messages, 87

rewriting rules

 See also domain rewrite rules

bang-style, 86

destination channel-specific, 80

direction-specific, 81

failure, 77

host location-specific, 81

location-specific, 81

match any address, 86

patterns and tags, 85

percent hacks, 86

scanning, 74

source channel-specific, 80

syntax checks after rewriting, 77

tagged rule sets, 86, 87

templates, 75

UUCP addresses, 86

rewriting rules structure, 70

routine substitutions

$[...], 79

routing

explicit, 100, 101

implicit, 101

routing information in addresses, 100

rules , domain rewriting, 70

rules channel keyword, 80

S
saslswitchchannel, 134

scanning rewrite rules, 74

schema, Internet mail routing and delivery, 203

secondary tree, 211

Sender: address, 81

sendetrn, 114

sendpost, 98, 109

sensitivitycompanyconfidential, 134

sensitivitynormal, 134

sensitivitypersonal, 134

sensitivityprivate, 134

server specifications, international standards, 274

service intervals channels, 103

service jobs to deliver messages, 108

serviceall, 133

setup-tty , 29, 59

seven bit characters, 121

sevenbit, 99, 120

shared auxiliary object class, 205

shared library, 79

silentetrn, 99, 113

SIMS configuration files, 255

SIMS Monitoring, 30

SIMS object classes, 215

SIMS OSI (Primary) DIT, 210

sims.cnf file, 260

sims_setup.dat file, 60

simsDomain object class, 225

single, 99, 106

single destination system per message copy, 106

single domain component tree, 207

single field substitutions, 83

single_sys, 99, 106

single_sys keyword, 105

site-supplied shared library, 79

size limits

message, 131

slave, 99, 102

slave program, 102, 189

slave programs

debugging, 132

SLAVE_COMMAND option, 193

slave_debug, 99, 132

SMS DC (Secondary) DIT, 212

SMTP messaging standards, 270

smtp, 99, 112

SMTP channel option files, 139

SMTP dispatcher, 193, 199

Index 307

configuration file format, 195

controlling, 199

process, 199

shut down, 199

shutting down, 199

SMTP dispatcher configuration file

dispatcher.cnf, 196

dispatcher.cnf , 195

SMTP dispatcher configuration options, 196

SMTP dispatcher operation, 194

SMTP ETRN command

receiving, 113

sending, 114

SMTP MAIL TO command, 114

SMTP VRFY commands, 114

smtp_cr, 99, 112

smtp_crlf, 99, 112

smtp_lf, 99, 112

source channel, 118

source channel-specific, rewriting, 80

source channel-specific rewrite rules, 80

source files, including, 69

sourceroute, 99

source-routed address, 73

specified mapping, 85

spmProgramNumber, 261

spmServer, 261, 263

standards

basic message structure, 269

character specifications, 275

delivery status notification, 272

directory server specifications, 274

domain name server, 273

message content and structure, 271

messaging, 269

server specifications, 274

SMTP and extended SMTP, 270

supported, 269

telecommunications and information

exchange, 275

text specifications, 275

sticky error message, 88

structural object class, defined, 205

subdirectories, multiple, 107

subdirs, 99, 107

subdirs channel keyword, 107

substitution strings in templates, 76

substitutions in mapping templates, 162

substitutions, general database, 84

substitutions, single field, 83

supported messaging standards, 269

suppressfinal, 111

switchchannel, 99, 118, 119

syntax checks after rewriting, 77

syntax, attribute, 213

system version number, 58

T
tag value, changing, 87

tagged rewrite rule sets, 86

tagged rule sets, 87

tailor file, IMTA, 182

TCP ports, 194

TCP/IP, 132

MX record support, 115

TCP/IP channels, 139

TCP/IP port number, 115

tel attribute syntax, 213

telecommunications and information exchange

standards, 275

templates

control sequences, 89

rewriting rules, 75

substitution strings, 76

substitutions, 77

terminology, 277

text specifications, 275

threaddepth, 99, 112

To:, 81

To: address, 105

top object class, 229

traffic for conversion processing, 146

triggering new threads in multithreaded

channels, 112

trimming message header lines, 123

two-digit dates, 128

two-digit years, 128

308 Sun Internet Mail Server 4.0 Reference Manual • July 1999

U
UDP port number, 191

undeliverable message notification, 108

undelivered messages, returning, 155

uninstall , 29, 62

unique naming convention, 41

uniqueid strings, 52

UNIX to UNIX copy program, See UUCP

unrecognized

domain specification, 88

host specification, 88

unrestricted, 99, 122

unrestricted channel keyword, 123

urgentblocklimit, 99, 103

URL, attributes containing addresses, 243

USE_REVERSE_DATABASE bit values, 179

user files, removing from message store, 32

user%%A%B, 73

user%A, 73

user%A%B, 73

user%A%B%C@D, 73

user%A@B, 73

user@[0.1.2.3], 73

user@a, 73

user@a.b.c, 73

usereplyto, 99, 126

useresent, 99, 126

utctime attribute syntax, 213

utilities, 25

IMTA, 44 to 58

LDAP, 38

UUCP (UNIX to UNIX Copy Program), 153

UUCP address rewrite rules, 86

V
validity checks, 121

var/mail channel option file, 138

/var/opt/SUNWmail/imta/queue/

subdirectories, 46

vertical bar (|), 87

viewing man pages, 25

virtual domain object classes, 215

VRFY commands, 114

vrfyallow, 115

vrfydefault, 115

vrfyhide, 115

W
warning messages, 108, 110

warnpost, 99, 110

whitespace lines, 260

wildcard characters, in mapping, 159

wildcard field substitutions, 163

worker processes

limitations, 194

new, 194

ws-port, 263

X
x_env_to, 99, 124

X-Envelope-to header lines, generating, 124

