Developer’s Guide

Netscape Application Server:
Process Automation Edition

Version 4.0

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs
offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and related
documentation is governed by the license agreement accompanying the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or compilation
works is prohibited and constitutes a punishable violation of the law. Netscape may revise this documentation from time to
time without notice.

THIS DOCUMENTATION IS PROVIDED "AS 1S" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY
ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS,
PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1999 Netscape Communications Corporation. All rights reserved.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape ONE,
SuiteSpot, and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in
the United States and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries. Other product and brand names are
trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

:I Recycled and Recyclable Paper

Version 4.0

Part Number 151-07663-00

Copyright 1999 Netscape Communications Corp. All rights reserved.
Printed in the United States of America. 00 99 98 5432 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

INEFOTUCTION ..ottt et ettt 23

ADOUL THIS GUIAE ..ot 23
ASSUMPLIONS ...ttt ettt sttt sb e e et ettt esbe e b e s e e enbe e nbeeneesaeas 24
Conventions Used iN ThiS GUITEcccooiiiiiiiiiiiniie e 24
Viewing Documentation ONHNEcccoioiiiiiiiniei e 25
Chapter 1 Introduction to Process Builder ..o, 27
About Processes and Process BUilder ... 27
WHAL IS 8 PrOCESS? ...eeiiiiticiie ittt e e e 28
What is Process BUIIEI?cociiuiiiiiiiiii e 28
Who Should Use Process BUIlAer? ... 28
What is @ Process INSANCE?ccuiiiieiiiiieiie et 28

PAN o To 0) QAN o] o] [Tor= 40 oL PR 29
Sample APPLICALIONSooviiiiiiee e e 29
Creating an APPLICALIONceocieieeciccee e 29
Deploying an APPlICALIONccoooiiiiiiiiie e e 30
Starting Process BUIIAETccviiieiie i 31
The preferences.ini FIle ... 31
SPECITYING @ CIUSLET ..o 31
Specifying a corporate direCtOrycoccoveeiieiiiiie i 32
Adding or Changing Local Application Folderscccoocvevieviciieinnnn, 32
Starting Process Builder on WIindows NT ..ot 33
Starting Process Builder 0N SOIAriSccccvecveiieiie i 33
USING Process BUIAETooiuiiiiiiiiie et 34
Process Builder APPlCAtiONScvciieiieiieiie e 36
APPLICAtiON Tre8 VIBW ...c.eiiiiiieie ittt e 38
(0Tt T Y 1V - T ST 39
MAP PAIEE ..o 39
ACHVILIES TAD .ottt 40

Contents iii

iv. Developer’s Guide

DocUMENLAION TaAD ...ocieciviiiii e 41

MESSAGES WINAOWeeiiiiiiiiiieiiieie ettt sbeesree s 41
MaIN TOOIDAI ..eiiiiiiiee e sbe e neeas 42
MENU COMMEANAS ...c.itiiiiiiii ettt e e se et s e e sae e sbeesreeas 43

FaY o] o] 17 11 o] o ST 43

o) USSR USSP 45
INSEIT .ttt ettt e e e et e re e r e e e ar e 45
FOIMAL .. 45
WINAOW ..ttt ettt s e e snb e sbeesneens 46

o 1= o TSP 47
HTML Page Editor TOOIDArcoccociiiiiiiiiii e 47
Chapter 2 Planning an Applicationccocccoceeiiiiciicscceeeens 49
PlanNing OVEIVIEWcocuiiiiiiie ettt sttt sttt e saeesbee s 50
Planning the ProCess MapPcccccieriireiieiiesicsie s see e eeseeetee s see e steesreesnaeeneeens 50
ENLIY POINES ..ot 51
USEE ACHIVITIES .ttt et et n et 51
AUtOMALEA ACLIVITIESeiiiiiiiie ettt 52
CUSLOM ACHIVITIES .eoviiiticiiitiiie e bbb e e 52
SUDPIOCESSES ...ttt ettt ettt ettt sb ettt b e st eeabe e sbeebeesaeeenbeene e e 52
DECISION POINTS ...oviiitiiie ittt st st sbe b 53
Parallel PrOCESSINGccuoiiiiiiiiiie ettt 53
EXIT POINES oottt et sr e e 53
TRANSIHIONS ...ttt ettt sttt ae e enb e e 54
NOEIICALIONS ..veiiiciiitiee bbb nreas 54
N (ol=] o] (o] 1 PSPPSR 54
Planning ASSIGNMENTSccivviieiieeie e sreee e s e e e sae e sreesrae s sneeeaesreenreeas 54
Planning Groups and ROIEScooiiiiiiiiiee e 55
Planning for MONITONINGcccocvveiiiiiiciee e 56
Planning Delegationscooiiiiiiiiee it 57
Determining the Data REQUIFEMENTSccceveiviiiieiiecee e 57
File AtACNMENTS ..c..eiiiiee e e 58
PIanNNiNg FOMMS ...cvviiiiiie ettt et st sn et s e e sreeenaeenreens 58
Planning ACCESS t0 FOIMMSccuuiiiieiie ettt 59

Planning CUStOM SCHPLS ...vcivveiiiiieeieesiie s e st e et nnae s 59

Planning SEAIrCNEScccooiiiiiieiie e 60
Planning DePIOYMENTocvieiiiie et 60
Chapter 3 Creating an Application ..., 61
Application Creation OVEIVIEWccccveiviiieiieeieerieerieeseestee e e seeesseesreesnaeaneeens 62
Getting Information from the AdmINIStratorcccoviiiiiiiie e 63
Creating a New APPHICAtIONoceiiiiiiiieee e e 63
The New Application Dialog BOXccccccevvviiviiienieesinsn e se e 64
Setting Application Propertiescoeiieiiieiin i 65
The Application Properties Dialog BOXcccccoviveiieirieeiin i ce e 66
Using Sample APPLlICAtIONSc.oiiiriiieiie e 68
Applications and the Corporate DIreCtorycccocevevverieiieesienieeree e s 69
Setting Your Corporate DIrECIOIYcocceeiiaiiriiiiie et 70
Deleting an APPlICAtIONcccveiiiii e 71
Chapter 4 Designing a Process Mapcccocoveeveieiceice e, 73
Drawing the ProCess Mapcccveceiiieiieeiiesee e sie e se e st e se e nte e s s e s e seeeneees 74
Saving a Process Map 10 @ File ..o 74
Adding Items with the Paletteccccoiiiiiiii s 75
Deleting IEEIMS ...t 77
112 o T o1 £ SR 77
USEE ACHIVITIES .eieee ittt ettt bttt et sb e s enbe e e e b s 78
Setting Activity EXPIFatiONSccovieiiieiie e st 79
Setting ACtiVity ASSIGNMENTSoiiiiiiiiie e 81
Using Parallel APProvalcccoviiiiiecie e 82
Parallel Approval Completion SCHPLccvviiiiiriieieee e 84
AULOMALE ACHIVITIES ..oveiiiiieeitieie e 84
SUDPIOCESSES ...ttt ettt ettt ettt ettt st et b e et e et e ss b e e nbe e nbe e be e saeeseae s 86
Connecting the Parent and Child ProCessccccoccvvvvivveiieenieesinse e 90
CUSLOM ACHVITIES ...ttt e et seee e 91
UsiNg @ CUSIOM ACLIVILY ..vvciieiciic e 91
Custom Activity Inspector WindOWcccoeiiiiiiiiniicie e 91
Inspector Window After Setting a Custom ACtIVItYccccovevvviveiveiieseecinne 94
Adding @ CUStOM Palettecoceiiiiiiiiiee e 95

Contents v

N ot=T o] (o) g I 1Y - Tq T Uo T SRS 97

Default EXCeption ManAgQElcccociieiieiiiiieeriee st 98
Creating an EXception ManagEerccccvvieeveerieiie e sieesee e e 98
Exception Manager PrOPertiescccoiiiiiiieenie e 99
DECISION POINESviiiiiiiieicie e 100
Split-Join (Parallel ProCeSSINg)occoiiriiiiiiiiiie et 101
Properties of @ Parallel ProCESScccociiiiiiiiiiiiie e 102
Adding a Parallel PrOCESScooveiueeiiisie e se e seese e ee st 102
NOLIFICATIONS ..ottt bbb 104
NOtIfication PrOPErtiESocivviieciee et eees 104
Built-in Email Notification SCrPtSccoviiiiiiiiiieee e 105
EXIE POINES ..o s 105
TFRANSILIONS ..ttt b e et sb e e b e e enbeenae s 106
BN =T oY I - U 3 £ o g SR 106
AddiNg @ TraNSIHIONcooiiiiiiiieiie e e 107
TranSition ProPertiesccciieiiiiiiiiie e e 107
Setting the Property for a Virtual Transitioncccceioiiiiiiicienen. 107
Setting the Property for a Conditional Transitioncccccceveveiivennnnn. 108
Example Using a True/False Field ... 108
Chapter 5 Defining Groups and Roles ..o, 111
Groups and ROIES OVEIVIEWooiieiieiiiiiiie ettt 112
Default Groups and ROIEScccvevviiieiiecie e 113
Creating Groups and ROIEScouiiiiiiiiiieiie e 114
The Create a New Role or Group Dialog BOXccccccveviveviveviviieesnenieene 115
Types of Groups and ROIESccceoiiiiiiiiie e 115
Adding a New Group or ROIEcccovveiiiiiie e 116

The Application Group Dialog BOXccceiiiiiiiiiiiieiierie e 117
The Corporate Group Dialog BOXccceveiveiieiieiiiiie e seee e 121
The Dynamic Group Dialog BOXccccciiiiiiiiiiiiiiiee e 125
The Field Role Dialog BOXcccccveiieiieiieciieseesie e sie e snee e e sie e e 127

vi Developer’s Guide

Prioritizing Groups and ROIEScccceiveirieircie st 128

Deleting Groups and ROIESccuoiiiiiiiiiiiie e e 130
Chapter 6 Defining Data Fields ... 131
Data Field OVEIVIEBWcoiuiiiiiiiiie e e 132
Creating @ Data Fieldcccooviiiiecie e 132
The Create a New Data Field Dialog BOXcccccevieeiiininiiiiiieniecie e 133
Creating a Custom Data Fieldcccoooiiiiiiii e 134
Creating a Predefined Data Fieldc..ccccoovveviiiiii v 135
Adding @ Data Field ... 135
Setting Field Properti€soccvecieiieieiie et 136
Custom Data Fields with Predefined Class IDSc.cccocoeiieininniinneiieeee e, 137
101 0 T=Tod 1= T) RO S T PRR 137
(070] 101 o]0 1 1= o H OO UPUPUR 138
DALE ittt 138
DALETIIME ..ttt ettt sb et e et sb e e sbe e s e e enbe e seeenee s 139
Digital SIGNAtUE ...oieeeiecce e 139
File AtACRMENT ... 140
Usage Tips for File Attachmentscccccvevievi e 140

File Attachment Propertiescoocoeiieiieiiiee e 141

JAVA APPIEL e 142
JAVA BRAN ..o 144
PASSWOIT ...ttt 144

o Lo [T =101 (o] o S USROS 145
SEIECTE LISt oot et 146
TEXEATEA ettt ettt bttt et e b e et e e be e e bn e e areeen 147
TEXIFIEIA oo e 148
URL ottt ettt ettt ettt e Rt e e nrenreenee 149
USErPICKEr WIAQEL ...eviieieeecie et e 150
Custom Data Fields with Your Own Class IDccccccoioeeiiiiiiieceenecee e 151
Predefined Data FIeldscccooiiiiiiiiiie e e 151
FaNe [0 £ RUP R 152
NBIMIE et 153
TeIEPNONE ..o 154

Contents vii

viii Developer’s Guide

Deleting Data FIeldscccoveiiiiieiecee e 155

Setting Up the CONteNt SLOTEooiiiie it 156
The Content Store Inspector WindOWcccevvevvevin e e 156
Troubleshooting the Content StOrecccceiiiiiiie e 157

Chapter 7 Designing FOrMS ... 159

PIanNNiNg FOMMS ..ot ettt sb e e 160

Creating FOMMS ...ttt e e be e sreens 160

1Y o To 11371 T T 0 1S 165
Using Process Builder's FOrm EditOrccocooiiiiiiiiiiniieeeee e 165
Using an EXternal EAItOrcccocovevieevieiiiiise e ssee e ee e 165
Using the HTML Page Editor TOoIbarcccccooiiieiiiiiieiee e 166
Using the Edit, Insert and Format Menusccccccveveeviieiieesesie e 167

T [SRR 167
INSert HTML EIBMENTooiiiiiiiie et 167
FOMMAL .ttt et a e e e 168
Using Right-Mouse-Button Menu Commandsccccevevevieevivenesniecneeennnn, 168
Changing Field Properties for a FOrm ... 169
Hints for Setting Field Propertiesccccvvvieiie e see s 170
Accessing the Data DICtIONAIYcccoviiiieiiiiie et 171
Using Scripts to Validate User INPULcccccoevieiiinie e 171

Adding @ Banner t0 FOIMSccuoiiiiiiiie e 171

Setting ACCESS 10 FOMMSccvviiiiciiiciee sttt e e e e e e sree e 172
FOrmMS fOr ASSIGNEES ..ottt et 173
Forms for Monitoring the ProCessccccvvieiieiiie s i 174
Forms for the ADMINIStratorc.coiieiiiiiii e 174
Setting Access t0 an ENtry POINEccccovive i 174

Chapter 8 UsSiNg SCrIPLS ..o 177

OVEIVIEW OF SCIIPLS ©.oivveiviiiii ettt e et e e e aneeans 178
KINAS OF SCHPLS ..ottt 178
WhEN 10 USE SCHPLS ..iovieieiiieieecieertiestecsiee s ee et ste et e et n e st nee e e nne s 180
ADOUL WItING SCHIPLS ..t 181

=T [T TeTo T T o) SR 181
ASSIGNMENT SCHIPLS .ttt e 181

(070] 191 0] 1=1 1o g ST 1) SR 184

Email NOtification SCHPLS ...cveiiiiiiiiee e 184
defaultNotificationHeader()cccoovvvieviesiise e 185
defaultNotificationSUDJECT()veeveeriiiiiie e 185
E€MAIIBYDN(DN) ooivieciiiiii et se e e e ee e sre e nree e 185
emMailBYIA(USErIA) ...cooeiiiiiiie e e 186
E€MATOFASSIGNEES() -eervveeeeetie ettt ettt 186
0 F T (@) (@A =T (o] { () I SRS 186
eMAailOfROIE(FOIE) ..o 186

Initialization and ShutdOWN SCIIPLS ...cvvvveeiieciire e 187

CrEAtING SCIIPLS ..eeveiitie ittt et e ae e snne e s 187
The Script EQItOr WiNAOWcccvveiiiiieiie e e 189
Setting a Script as a TemPIatecocooeiiiiiie e 190

(01 T oo IO 1= o] B o [T o] o) USSR 191

Chapter 9 Setting Up Searchingccccooiviiiiiciecce e 195

TYPES OF SEAICHING ...vvieiiicie e 196
Global SEArChiNgccoooiiiiie e 197
Application-Specific Searchingcccoccvvvevevis e 197

ENabling SEarchingcccoouiiiiii e 198

Allowing a Group t0 SEArCHccccceevieiiiieiiiie e 198

SEttiNg UP FOMMS ..ottt 198

Allowing Searching for Fieldsccccooeviiiiii i 200

Chapter 10 Deploying an Application ..o, 201

Before YOU DEPIOY ..ocvviiieciiiiec ettt 202

Set up and Configure PAE ...t 202

(D= o] (o) AT 0] o] o] o ot Tty I T) PR 202

Save the Process Map, If DeSired ..o 202

ST DAY o] o] FTor= Vi [o TN = (o] £ 203

Steps for Deploying an ApplCationcccocveoiiiiiiiiine e 203

The Deploy Application Dialog BOXc.cccceveriiiiieerinseeseeseeseesee e e 206

Revising a Deployed APPIICAtIONccooiiiiiiiiiii e 207

Summary of Allowed REVISIONScccciveivirieicie e 208
Changes to Activities and TransitioNSccccoeiiieiin e 208

Contents ix

X Developer’s Guide

Changes to Data EIEMENtScccccvevieiiecee e 209

Changes to Forms, Scripts, and Content StOreccccccevveevieiieneenn 209
Deployed Applications Compared with Local Copiescccccevvvvvivvriinenne. 210
Using a Backup of a Local Applicationccccceeieininiiiiienceie e 210
Saving a Local Application to Another Nameccccoecvvviveviveneviieccieen, 211
Redeploying an APPlICAtIONccciiiiiiiiiie e 212
Chapter 11 The Data Sheet Application ..o, 213
Data Sheet Application OVEIVIEWccccivviieviiiiiee e e 214
Data Sheet ProCesS MapPccoeoiiiiiiiiieiiesiie ettt e 214
Data Sheet Walkthroughcccooiv e e 216

The Data Sheet ENtry POINTccociiiiiieie e 216

The Title FIeldoooeiiee e 217
Add At ACLIVITY e e 217

ASSIGNMENT SCHPL ..oivieiece et eees 217

EXPiration SEtter SCHPLoooiiiiiie i 217

THE FOIMS et s 218
The Automated ACLIVILYcceoiiiiiiiicee e 219
The Approve Pricing (Product Manager) ACtIVItYcccccvevivevieeveeve e, 220

ASSIGNMENT SCRPL ..ot 220

FOIMIS et 221

NOLIFICAION ... 221
The VP Approval Decision POINtccccevveiiiiiiiee e 222
The Approve Price (VP) ACHIVILYoocooiiiiiiiieicee e 222

ASSIGNMENT SCHPL ..ot eees 223

FOIIMIS ettt ettt e et e e eeabeeenes 223
EXIT POINES oottt ettt sttt nneenee s 223

Groups and ROIES ...ttt 224
D1 r= B T Tox 1o) T Y/ OSSR 224
0] 0 £ TR UPPTUUPROTP 226
Kol o] B T Tox 1o] T 1Y SRR 229

The BUIIADS SCHPL ... e 229

The 100KUPCOAE SCrIPL ..viiieeiieiie e e e 230

The buildDataSheet SCrPLcooviiiirie e 231

The computeTitle SCHPLcvovie i 234

(O00] 01 (=] 0] BS] (o] (= T TP P RO PP TR RPPPTO 235
Finished Data Sheet EXampPleccccvviiiiiiiiiie s 235
The description.tXt File ... 235
The image.gif File ..o e 236
The printer.ntml Template File ... 237
The Finished Data SHEet ... e 239
Configuring the Data Sheet Applicationc.ccccocveviivviin i 241
Configuration HINESoiiiiiiii e 241
How Users Access the Data Sheetccovverieiniinn e 241
Process Express and Netscape Application Servercccocveveieennen. 242
Adding an Email Attribute for @ USErccccevivviiiiieie e 242
Using File Attachments and Content StOresccccvveiieiieiienieeiie e 243
Step 1: Administer the ENterprise SErVerccccocvvveveevieeseereereesnenes 244

Step 2: Edit the Access CONtrol LIStcccceveiiiiiniiiie e 244

Step 3: Assign the Content Store’s Stylecccvciveviveve v 245

Step 4: Set the Values for the Application’s Content Store 245
Chapter 12 The Office Setup Application ..o 247
Office Setup Application OVEIVIEWcccoiiiiiiiiiieiienie e 248
Office SetUP ProCeSS MaAP ...cicveiieiieeiee e siesse e st e e seste et e e ee e e sreennae e 248
Office Setup WalKthrough ..o 249
)L =) 1V = 11 | SR 249
Assign Office and Specify Computer Work Itemcccccvviiiiiininniennine 251
BasiC SEtUP SPIIt ..veeeeieecie e 253
Set Up Phone WOrk Itemcooioiiiie e 254
Install Network Connection Work Item ... 256
Order Computer WOrK IEEMoouiiiiiiiie e 258
Install Computer WOrk [emooovveiiiee e 260
BaSiC SEIUP JOIN ..o 262
CheckSetup WOrK ITeMooiiee e 262
Setup Complete EXit POINTooooiiiiiiiiiee e 264

Contents Xi

Xii Developer’s Guide

The Office SEtUP GIOUPS ...occvveivieiieciee e ere e e 264

D1 v W BT (o] 0 - YU UUR PSR 265
(o1 T T Tox 1o - Y/ SR 267
SCHPL DICHIONAIY ..ttt bbb sre e 269
(070] 101 0] 1=1 1o g ST 1 SR 269
SetReqUESTEIFIEIAoviiie e 269
VEITYSBIUD ottt e 270
TOOIKIT SCHIPLS .vvevieieiiie e et 271
DUITAEXIEINOLIFICAIION ...ooviiiiiiie e 271
Embedded Client-Side SCHPtccecveerieiiiise s 272
Customizing the Appearance of the FOrMS ..., 273
Configuring the Office Setup Applicationccccvvivivveieevcece e 274

Chapter 13 The Loan Management and Credit History Applications
275

Loan Management Application OVEIVIEWccccoviiriiiininneeniie e 276
Credit History Application OVEIVIEWcccceeiuieiiieeiie e e ses e see e neeens 276
Loan Management ProCess Mapcoocieiiiiiiiiiieniie ettt 276
Credit HiStory ProCess MaApPcccccveeveerieeeiieseesiessieesteeesteesteesseeessaeseeesseesnee s 277
Loan Management and Credit History Walkthroughccccooiiniiinnnnn. 278
New Loan Request ENtry POINtc.ccccviviiiii et 279
Verification WOrk ITEMooiiiiiii s 280
Check Credit HiStory SUDPIrOCESSccccvevieiiieiiiieeses e eee e see e 281
Check Credit History Subprocess Propertiescccccuveieeieeiieeiiennnn. 281

(D=1 7= 1Y/ =1 o o 11 o [PSSR 283
COoMPIELION SCIIPL oot 284

The Subprocess Failed Exception Managercccccveeeevvevieevevenvesneenns 284
Credit History Application as a SUDPIOCESScccoveereieieriieeniesieereee e 284
Check Authorization WOrk Itemccoceviviiiiniene e 285
LookUp Credit History Automated ACHIVIYccccoiiiiiiiiiieieeee s 287
Canceled EXIt POINt ..o 287

(O Q= (1 8 2o | | OSSPSR 288
Meeting Work Item (Parent ProCeSS)cceccvevieiiieeiieiieenieseeeeeseeeniee s 289
Loan Refused EXit POINTooiiiiiiiiiiiee et 291

Loan Approved EXit POINEccccvccieiiiiieie e 291

Groups aNd ROIESeiiiiiiieiee e e e 292
(D=1 r= B DT Tox 1o) T Y/ PSSR 292
Loan Management Script DICHIONAIYccoooeiiiiieeiienie e 293
storeCreditinformation Completion SCriptcccccevivvvievie e, 293
Customerld TOOIKIt SCIIPL ..oveiiiiieieie e 295
Credit History Script DICHONAIYcccociiiiiiiiiie et 295
LookUpCreditHistory Automation SCriptcccccvcvviiveviverin s 296
Configuring the Loan Management Applicationcccvveriiieciienicnieee. 296
Configuring the Credit History Applicationccccccvovviviivciieice e, 297
Chapter 14 The Insurance Claim Processing Application 299
APPLICAtION OVEIVIEWoiiiciie ettt e e e 300
PrOCESS IMAP .ttt 301
120 o T | PP 302
ACHIVITIES ..ttt sb ettt sabe e e 302
CUSEOM ACHIVITIES ...veiviieireireceeeeee e 302
LOOK UP DELAISeeiiieiieiie ettt 302

(8] 0o F=1 (= 1o o SRR 303

LOG DENIAL .. e 303
DECISION POINT ... 303
PArallel PrOCESSvieiiiiiie ittt 303
EXIE POINES .o e 304
NOLIFICALION ..o 304
Application Walkthroughccooiii e 304
The Entry Point (Enter POCY NO.) ...cooiiiiiiiiiiice e 304
Custom Activity (LOOk Up DEtailS)cccevveeiiiiiieiesee e 305
Activity (POliCY DetailS)ccooieeiiiiieiiee e e 305
Activity (Re-enter POIICY NO.) ..oooveciiiie e 305
Activity (Enter Claim DetailS)occoeieeiieiiiiie e 305
Activity (Confirmation)cccooveii e 306
ACHVILY (APPFOVED) ettt sttt et ss e e ente e saeesneesaee e 306
Activity (ClarifiCation)ccccoviiviieirecree e 306
Activity (INform CUSIOMEr) ..o e 307

Contents Xxiii

xiv Developer’s Guide

Parallel ACHIVILYoooeeceiee et 307

Activity (Send CheCK)ccooiiiiii e 307
Custom Activity (Update LOQ)ccceeverireeieeree e e ssesie e e e see e 307
Groups aNd ROIES ...ttt 307
Group and ROIE PriOFIEScocvveieiiiciie et 308
Data DICHIONAIY ..eeiieiiieiiiie ettt et b et 309
0] 0 £ O TP OO OP P UUPPOTP 311
ENIrY. NEMI e e 311
ReSUDMIL.NIMI L. 312
DetailS.nIMI ..o s 313
ENterClaim.html ... s 314
Confirmation. Mlcooiiiiii e 315
APPFOVEINEMI o 316
Clarify. ntml .o 317
INFCUStOMErNtMI ..o 318
SENAChECK.NIMI Lo e 319
ClaimApproved.html ... 319
ClaimDenied.html ..o 319
EXpirationEXIt.html ..o 319
Kol o] B T Tox 1o] T UV 320
EXPIration SCIPLS ...eeieieiieiiei ettt 320
Script at Policy Details ACHVILYccccoevveviiiiie e 320
Script at Enter Claim Details ACHIVItYccocoeiiiiiiiiiie e 320
Script at Confirmation ..o 321
Script at Resubmit POliCY NO.oooiiiiii e 321

(070] 101 o] 1=1 1o g STt 1 USRI 321
Completion Script at Policy Details ACtiVitycccocviieiiiiniiiieeeeen, 322
Completion Script at Enter Claim Details ACtiVitycccocvvviveviveiinnnnnn, 322
REQUITEd FlES ... 322
The database. Xml File ... e 322
The POLCY.10g File ..o 324
gL =T LT =T [4= Vo USSR 325
The Background IMAagEcccooiiriiiiieieie s 325

Configuring the Insurance Claim Processing Applicationcccccceeveveennen. 325

CUSLtOM ACHVILY COOR ..ottt e 326
The LogPerformer ACHIVILYccccoivvicieiiee e 326
The LogdenialPerformer ACLIVILYccoccoiiiiiiiiiiie e 326
The LookupPerformer ACHIVILYccocviieeiieie e 327
Code Walkthrough for LookupPerformer.javacccoceviineciieeneeneene. 327

Definitions and PaCKagesccoooveiiiiiiiiiiee e 327
The init, perform, and destroy Methodsccceevevieenievir e, 328
The GetPolicy MethOdooviiiiiiiiiiie e 331

Chapter 15 Advanced Techniques for Scriptingccccocooeveeenen. 333

INEFOAUCTION ...ttt 333

Getting Information about the Current ProCcessccccccvvveviveiieevieiieecinennen 334
Getting and Setting Data Field Valuescccocviiiiiiniiniiieceeece e, 335

Getting Data Field Values in Decision Point and Automation Script Transitions
336

Getting Information about Users and their Attributescccccoevveviivcceenen, 336
Finding Users and Accessing their Attributescccoceiiiiniiieciieieee 336
Modifying User AHIDULESccoceeiiiiii e 337
Verifying an Array Of USEr DNScccoiiiiiiiiiieeieee e 338
Adding and Deleting USEISccueiiveeieeiiesirie e stee s e e e s enes 339

Accessing the CONENt STOIEcoiiiiiiiiicie e 339
Example of Accessing a Stored IteMccccoevvevv e 339
Storing Files in the Content StOrecccooeeiiiiiiiiiisr e 341

Logging Error and Informational MeSSagescccevvverveerveivesieesieeseeseeseens 342

Verifying FOrm INPUL ..o s 342
Verifying Form Input with Client-Side JavaScriptcccccccovivevvevivenneninns 343

Event Handler EXample ..o 344
ONSUbMItFOrM EXaMPIE ..ocvviiieiice e 346
Verifying Form Data in Completion SCriptScooceiriiiriiinie e 347

Initializing and Shutting Down Applicationsccccccvvvevverie e 348

Debugging HiNtSoooiii e e 349
UNefined ITEMS ..o 349
Adding Helpful Messages to Script Failure Dialog BOXEScccoceeeuvennee. 350

Contents xv

xvi Developer’s Guide

Displaying the Progress of @ SCHPtcccovevveiiieii i 350

Testing Expiration Setter and Handler SCriptsccccooviiiiiiniiiinnienee 351
SAMPIE SCIIPLS wevvveeiiieie e rierie ettt e e sa et e st e s nee e sreetaesreeaneeans 351
ASSIGNMENT SCHPL ..ottt 352
EXPiration SEtter SCHPLoocviiieie e 353
Expiration Handler SCrPLooviiieiieiiie e 354
COMPIELION SCHIPL e 354
AULOMALION SCIIPL ©oecviieie et nne s 355
Chapter 16 Scripting with EJB Componentsccccceeeeeveeennene. 359
Calling EJB Components from JavaSCriptcccccveviveriesieeee e see e 360
A SAMPIE SCIIPL .t s 361
Handling EXCEPLIONSoovieiieiie et 363
Data CONVEISION ISSUBSooiuiiiieiieeiie ettt e 364
Chapter 17 Writing Custom ACLIVIties ..o, 365
INEFOAUCTION ...ttt ettt saeenee s 366
Comparison to Automated ACHIVITIEScccvevevviiere e 366
USAQGE OVEIVIBW ...ttt sttt ettt ettt sttt ettt e e anbe s sbeesbeesneeeneen 366
Implementing ISIMpleWOrKPerformercccoovevi e 367
Methods of ISImpleWOorkPerformer ..o 367
The iNit() MEthOdccveieecece s 367

The perform() Method ..o 368

The destroy() Methodcccovviieie e 369
SAMPIE JAVA CIASS ...eeiiiiiiieiie et 369
Creating HelloWorldPerformer.javaccccocevvvrieiiensieeseese e 370
Writing the XML DesCription File ..o 372
FIlE FOMMAEL ..eiiieiee et e st 373
WORKPERFORMER TaQ .icveviiiieieiiesieeiesieeie e e sieste e sie e snestesnsesse e 374
ENVIRONMENT SECHONooiiiiiiiiiiiiieriecieee i 374
INPUT SECHION .ottt 375
OUTPUT SECLION .ottt s s 376
AN I I Vo SRR 377
DESIGN SECHION ..ottt 378
Sample XML DesCription File ..o 378

Packaging a CusStom ACLIVILYcccoviieiieiiicie et 380

Adding a Custom Activity t0 the Process Mapccccccoeerieerieniinieeiieeneenieens 382
Adding a Custom Activity from a Custom Paletteccccccvevvvevivevieinnn, 382
Adding a Custom Activity without Using a Custom Palette 385

Working with @ CuStom ACLIVILYcovueiii e 386

IMPIEMENTALION TIPS ..ooiviiiiieiieiie et 387
AVOId INSLANCE DAooiviiiieiiiiiie et e e 387
Use Consistent Data TYPES ...vcvvvveveereeiieieesie e e seeesieesieesiseseeeseesreennee s 387
Avoid Non-default CONSIIUCLOrSccoeiiiiiiiiiieeieee e 387
When to Use @ CUStOM ACHIVILYcoovvviiiiicie s 388

Chapter 18 Writing Custom Fields ..o, 389

INEFOAUCTION ..ttt bbbt eas 389
Why Use a Custom Field? ..o 390
Functional View of a Custom Fieldcccocviviininnniieeeccee e 390
Steps for Creating a Custom Field ..o, 391

Defining Field Properties in a JSB Filecccoveviiiii i 391
JSB_DESCRIPTOR TaQ .vveiteiteeiiiiiiiesiesieeseesteereesiesteeseesresseessessaesaessessesssessenns 392
JSB_PROPERTY TAJ veieeiteitieieeiinieenie sttt sttt st sre sttt st enee e 393

JSB_PROPERTY ALNDULES ...vveiviieieeiiiiiiesie e 394
Required Data Field Propertiescccccvvverieiieeriee e e seese e e sve e 395

WIHIting the Java CIASSESooviiiiiiiie ittt e 396

Consider the DeSigN ISSUESccccueiiieerieeieesirseeseessieeseesseesnee e sseesessnees 396
Consider Your Data and Data SOUICESccccceviueeririieiiieiie e 396
Design a Data ManAgErcccccuvvieereineesieeee e eee e snese e e e e e e e s 397
Design a Thread-safe Classoccoiiiiiiiiieiieeeee e 399
USE AN ENLILY KBY .oviieeiiie ettt 400

Implement IPresentationElement and IDataElementccccooceeiienennee 400
Displaying @ WOork ItEMcccviiieiiiiie e 402
Initiating @ Process INSANCEoccoiiiiiiiiieiie e 403
Completing @ WOrk ITEMoccveiiice e 404
Accessing a Custom Field from a SCriptccoooeiiiiiiiiiie e 405

Contents xvii

Packaging a Custom Fieldcccovviiiiiiiiiecc e 405

Adding a Custom Field to an Applicationcccoceiiiiiiiinnie e 406
Method REFEFENCEooiiieiieiiiice s 408
IPresentationElement INterfaceccocoviiiiiiiiniine e 409

(o 115 0] - Y/ () S 409

(U] o0 - 1 =T TRV 410
IDataElement INTErfaceccooioiiiiiiie e 410

(o1 =T L1 () PR 411

K (0] (=] () TR PR STRRP 411

T =T [PRSP 412
ArCRIVE() et 413
BasSiCCUSIOMFIEIA ClASScoiveeiiiiiiierie e 413
loadDataElementPropertieS()coooeereerieeriieiie e 414
IPMEIement INLerfaceoccocioiiiiiii e 415
(0[S N T =T () T USSR 415
QEtPrettyNaME() vvveiee e e 416
Appendix A JavaScript APl Reference ..., 417
PrOCESSINSIANCEeiiiiiiie et 418
QELCONCIUSION() vviieie ettt 418
getCreatioNDAtE() ...cccveceeeiee e e e e 418
(0[S0 (=TT o] 4 N[USRI 419
(0[SO (T 1o | LT () SR 419
getData (fIeldNAME)oooviiiiiiii e 419
getEntityKey(fieldNamMe)ccoovveveiriceeee e 420
QetENtryNOAENAME() ..veeiiieieieitie et 420

(o [0 = (11N [o [=1 NN 1o =T 420
QEINSTANCEIA () .ooveeiiieeiiie e 421

o[0d o 11 () S 421
getROIEDN(rOIENAME) ...c.viiiiiiiiit s 421
getROIEUSEr(rOIENAME)ooiieceieece e 422
(0120 11 (= () TR USRI 422
setEntityKey(fieldName, valug)cccecveiieiiiiie e 423
setData (fieldName, fieldValue) ... 423

xviii Developer’s Guide

SELPFIONTY(VAIUE) .ot 424

setRoleByDN(roleName, USEIDN)cccocciiiiiiiiiiiiii e 425
setRoleByld(roleName, USerld)cccccovveviirieineeiee e 425
SELTIIE(HItIE) ..eeeee e s 426
WOPKITEM . 426
assigNTO(ASSIGNEEDNAITAY)eeiiiiiiiiieeiie et 427
L2y o1 (= TP UR P PRR 427
eXENA(NEWDALE)oiieeee e 428
QEtASSIGNEESDIN() .eeiiieeiie ittt e 428
getCreatioNDAte()ccccveceereirie e e 429
getCUrreNtACHIVIEYCN() ..eooeeeiieee e 429
QEtEXPIratioNDate() ...veccvveiieerieiie e e 429
] bt o] =T [() IR UR PR 429
1S (=AY €)1 S 430
ISSEAtERUNNING() .eveeieieieie ittt 430
[N I U] 011 T [=To [) IR 431
MOVETO(ACIVILYNAME) ..o 431
FESUME() wveeeieiieeiee st et e st e et e st e e e te et e st e snte e aeesaeesneeenaeenaeennaenreenres 431
setExpirationDate(eXPDAte)cccooviiiiiiieiie e 432
1) 0 1= T [() I SRR 432
(000101 (=] 0] 1 (0] (=T TSRO PRSPPI 433
COPY(SICURL, AStURL) ...veiiieciieiie et s 434
download(Url, file) ..o 434
EXISES(UIT) 1 435
QELBASEURL() -eeiiteeiiie ittt et 435
getBasEURL(PALN) ...voceiii i 435
getBaseURL(path, inStanceid)cccoooriiiiieeiieiee e 436
(o[(070] 01 (=Y o A (1 11 USSR 436
getException(result_String)c.occoooeeiiriiiiie e 437
(o [03 001 (1] H) TSRS 438
QEESIZE(UIT) e 438
QESTAtUS(FESUIL) ..eovveeiieeie e eees 438
QEEVEISION() vviuvitieieite ettt ettt ettt nre s 439

Contents Xix

xx Developer’s Guide

T T 4= (0] OSSP 439

ISEXCEPLION(EXCEPLION) ...eiiiiiiieiitie ettt s 440
T (U]) OSSR 440
MKAIr (URLSEIING) ooeeeiieeiie e s 441
move (String URLStringl, String URLSLHNG2) ...ccoovvvvvvieeiece e, 441
FEMOVE(UIT) o 442
[0 (o 1T (1) TR RUPRTR 442
store (CONLENt, UFT) .oovveeieeecee e 443
upload(file, Url) ..o 443
(070 1010 £= 1 (=TT =T (o] oY SRS 444
addUser (userDN, attributes, objectClasses)ccoerverrierrienriniiieeiieeneen, 444
deleteUSerBYCN(USEICN) ..oivvcieeieciie e e ettt 445
deleteUserBYDN(USEIDN)coviiiiiiiiiieeiee et 446
deleteUserBYId(Uid)oocveeveeiiiiie e e 446
getUSErBYCN(USEICN) .ottt e 447
getUSErBYDN (USEIDN)oociiiiiiiee et 447
getUSErBYId (UId) ...c.eooeeieieieeiie et 448
modifyUserByCN (userCN, attrName, attrValue, operation) 448
modifyUserByDN (userDN, attrName, attrValue, operation) 449
MOdifyUserByld (USErID)ccocveiieiiiee e se e 450
[0 LT SRRV P TP 450
o [0 1= o Lo 1) T SR 451
(0110] USRS 451
Logging and Error Handling Global FUNCLIONScccccovvivievic e 452
logErrorMsg (label, CONEXL)oooveiiiiiiieie e 452
logHistoryMsg (label, COMMENL)cccoovviviiiii s 453
logIinfoMsg(label, CONEXL)ooiiiiiiiiiii e 453
logSecurityMsg (label, CONEXL) ...occvveiiiiieie e 454
SELErTOrMSQg (ErTMESSAGE) ..eecuvieieeiie ettt ettt 455
Assignment, Completion, and Email SCHPLSc.cccceevvevievinvie e 456
checkParallelApproval (dataField, StOPACLION)ccocvvieiiiiieninienn 456
defaultNotificationHeader()ccccvvieevievie s 457
defaultNotificationSUDJECT()coovveriiieiiiee e 457

€MAIBYDN(DN) ..oiivieciiiiie e s e et e sre e e nree e 458

emMailBYIA(USErIA) ...cooeiiiiiiiei e 458
E€MAIOFASSIGNEES() wvvevvreieeitie et e s e enaeens 459
E€MATOFCIEALON() .eoveeieeeiie ettt ettt 459
emailOfROIE(FOIENAME)cveeiiceiee e 459
randomTOGroup(groUpNAME)coeuieiieiiirieiie et 460
(104 ¢=F- 1 o] { () IR U ORI 460
tOGroUP(GroUPNAIME) ..iivieieecieecieiecie st cstee s e e e sre et e e sreesreeseeaneeans 461
toManagerOf (USErId) ..o 461
toManagerOTfCreator() ..vcoveioveiieeeereere e ee e 462
toManagerOfROIE(FOIE)cooiiiiiiii e 462
toParallelApproval(arrayOfUserDNs, dataField)ccccocevivviviivennnns 462
tOUSErBYIA(USErIA) ..ottt 463
toUserFromField(dataField)ccccoveviiiiii e 464
Miscellaneous Global FUNCLIONSccocoiiiiiiiiiiecee e 464
checkUserDNs(arrayOfUSEIDNS)cccveiiviieieieeseesieeseeeieeseesressee e 464
ejbLoOKUP(INAINAME)eeiiiiiiiie e 465
evaluateTemplate(templateName)ccccoccveveeiieevece e 465
exPIrelN(Val, UNIt) ... e 466
(0117 AYox 1o SRS 467
(o [2272Y o] o] [Tex= 1 o] g\ F= Uy o T=1 () IR SRR 468
getApPPlicationPath()cccooviiie e 468
getApplicationPrettyName() ... 468
getBaseForFileName (Processld)ccccccevieiieiiieeiierie e 468
getConnector(CONNECIONKEY)c.ccuviieeiiiiie e 469
(0[5 (000] 01 (=T g1 3] (0] (T () USSR 469
getContentStore(httpURL,USEr,password)cccooceeieeieenieeiieeieee e 470
getCreatorUSErId () .oivveceeiecie et 470
getCorporateDireCtory () ..oiceoeieeriiieieiree et 471
_getINCIUdEPAtN () cvveieecieeee e 471
getINdiNamMINGCONTEXT() ...ovvevereeierieie e 471
gEtProcesSINSTANCE () .vvvvevveeieeiie et 472
QetSUDPIOCESSINSANCE () eveviriieiiieieiieii ettt 472

Contents xxi

xxii Developer’s Guide

JEIWOIKITEM () woeeieiiece ettt e 472

__includeFile (fIleNAME)ccciiiiiiie e 473
MAaPTO(fIEIANAME) ...eeeieeiece e 474
MOUNTGNAINGME) ..ot 474
setConnector(connKey, coNNODBJECE)ccccveveevveie e 475
__setIncludePath (includePath) ..., 476
setRedirectioNURL(SEINGURL)ccooiiiiiiiiieieeeete e 476
Url_OnDisplayHIStOrY() .c.eeooveerieeee e 477
url_OnDisplayProcessINStanCe()ccoooeieerieeiienie e 477
url_OnDisplayWOorkHst()ccecueireeieeiie s 478
Url_ONLiStAPPIICAtIONS() ..veeiereeeieeieeiie ettt 478
Url_ONLIStENIIYNOAES() vovvveveeerieerieeiiesie e ese e seeese e e e 478
Alphabetical Summary of JavaScript ObJectScccvviiiiiiiiee e, 479
Appendix B Migrating from Previous Releasesc.cceevvvne. 483
GELING SLAMEA ...t 483
Importing an Application to Process BUIldercccccoocvvvivevivevceiieccieeenen, 484
Assigning EXCeption NOEScccoviiiiiiiiieiitee e 484
ChecKing fOr EFTOIS ...cvvciiice et 485
Deploying the APPHCALIONcooiiiiiiiiiiiie e 486
Migrating SSJS-SPECific OBJECES ...ccvvviieeveecee e 486
Migrating CuStom FIeldScoceiiiiiiiiice e 487
Appendix C ResServed WOIrAS ... 489
GIOSSANY ...ttt sttt et b 491
FNAEX ettt 497

Introduction

This Developer’s Guide describes how to use Process Builder, a component of
Netscape Application Server: Process Automation Edition (PAE). Read this
guide to learn how to develop applications for PAE.

About This Guide

The information in this guide is organized into 18 chapters, 3 appendixes, a
glossary. The first 10 chapters describe the fundamentals of using Process
Builder:

Chapter 1, “Introduction to Process Builder”
Chapter 2, “Planning an Application”
Chapter 3, “Creating an Application”
Chapter 4, “Designing a Process Map”
Chapter 5, “Defining Groups and Roles”
Chapter 6, “Defining Data Fields”

Chapter 7, “Designing Forms”

Chapter 8, “Using Scripts”

Chapter 9, “Setting Up Searching”

Chapter 10, “Deploying an Application”

The next four chapters describe some of the sample applications included with
PAE:

Chapter 11, “The Data Sheet Application”

Chapter 12, “The Office Setup Application”

Chapter 13, “The Loan Management and Credit History Applications”
Chapter 14, “The Insurance Claim Processing Application”

The next four chapters describe advanced topics. To get the most out of these
chapters, you should be familiar with JavaScript and Java programming.

Chapter 15, “Advanced Techniques for Scripting”

23

Assumptions

= Chapter 16, “Scripting with EJB Components”
= Chapter 17, “Writing Custom Activities”
= Chapter 18, “Writing Custom Fields”

The remaining parts of this guide are reference material:

= Appendix A, “JavaScript APl Reference”

= Appendix B, “Migrating from Previous Releases”
< Appendix C, “Reserved Words”

« Glossary

Assumptions

This guide assumes you have installed PAE on your system. For installation
instructions, see the Installation Guide.

It is recommended that you understand JavaScript. In addition, for some
advanced topics, such as writing custom activities or custom fields, you must
know how to program in Java.

Conventions Used in This Guide

File and directory paths are given in Windows format (with backslashes
separating directory names). For Unix versions, the directory paths are the
same, except slashes are used instead of backslashes to separate directories.

This guide uses URLs of the form:
http://server.domain/path/file.html

In these URLSs, server is the name of server on which you run your application;
domain is your Internet domain name; path is the directory structure on the
server; and file is an individual filename. Italic items in URLs are placeholders.

This guide uses the following font conventions:

= The nonospace font is used for sample code and code listings, APl and
language elements (such as function names and class names), file names,
path names, directory names, and HTML tags.

24 Developer’s Guide

Viewing Documentation Online

= ltalic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

= Boldface type is used for glossary terms

Viewing Documentation Online

For your convenience, PAE manuals are replicated online in both PDF and
HTML formats. You can access the online documentation from the Help menu
of each PAE component. You can access context-sensitive documentation by
clicking a Help button or link in each PAE component.

25

Viewing Documentation Online

26 Developer’s Guide

Chapter

Introduction to Process Builder

This chapter provides an overview of Process Builder, along with basic
instructions for starting and using it.

This chapter contains the following sections:
= About Processes and Process Builder

= About Applications

= Starting Process Builder

= Using Process Builder

About Processes and Process Builder

This section contains the following topics:
= What is a Process?

= What is Process Builder?

= Who Should Use Process Builder?

< What is a Process Instance?

Chapter 1, Introduction to Process Builder 27

About Processes and Process Builder

28 Developer’s Guide

What is a Process?

A process is a series of steps that can be completed by one or more end users
who participate in the process. For example, your company may have a
process for requesting vacation time. The process participants would be an
employee who makes the request, the manager who must approve it, and the
payroll department who updates the employee’s records.

What is Process Builder?

Process Builder is a component of Process Automation Edition (PAE), a solution
for creating and deploying business process applications. For information about
PAE components and their relationships, see the Administrator’s Guide.

Process Builder is the graphical tool with which you create, maintain, and
deploy web-based applications. These applications can handle forms-based
processes and can also integrate with external systems.

Who Should Use Process Builder?

Process Builder is for people who design and deploy PAE applications. We
refer to these people as process designers. As a process designer, you'll need to
know JavaScript. In addition, if you want to extend PAE applications so that
they can access external systems, you'll need to program in Java.

What is a Process Instance?

You create a separate application for each process. For example, submitting a
vacation time-off request and submitting an expense report are two different
applications.

When you deploy applications to a cluster, end users can access them. For
more information about clusters, see the Administrator’s Guide.

About Applications

When users submit their first request in a PAE application, they initiate what is
called a process instance. Each user’s request generates a unique process
instance. The point where a user initiates a process instance is called an entry
point. The process instance ends at an exit point.

About Applications

This section contains the following topics:
= Sample Applications
= Creating an Application

= Deploying an Application

Sample Applications

Process Builder includes a set of sample applications that you can use as
models when you create your own applications. For information on using and
configuring them, see the following chapters:

= Chapter 11, “The Data Sheet Application”
= Chapter 12, “The Office Setup Application”
« Chapter 13, “The Loan Management and Credit History Applications”

= Chapter 14, “The Insurance Claim Processing Application”

Creating an Application

To create an application using Process Builder, you create a graphical view of
the application’s steps, from beginning to end. This view is called the process
map. You must also define everything that relates to the steps, such as their
forms, data fields, scripts, and access to forms.

In summary, you must create the following application elements:

= the process map, which defines the steps in the process

Chapter 1, Introduction to Process Builder 29

About Applications

30 Developer’s Guide

= the data dictionary, which captures process data

= the HTML forms, along with the people who can access these forms
= the scripts that perform functions within an application

= the groups and roles of the people who will be using the application

= the content store, which specifies where files are stored on the Enterprise
Server

Application elements are represented in a window called the application tree
view. This window resembles a typical file system view: it uses folders to
represent element categories, and the folders contain the corresponding
application elements. Initially, the folders in the application tree view are
empty, or they contain default values.

To create the steps in the process, you drag icons from the Palette onto a
process map. You connect steps by drawing arrows between them. These
connections are called transitions.

As you construct the process map and insert new data fields, forms, and scripts,
these items are also added to the application tree view. In this way, the folders
are filled with items represented on the process map. Since all application
elements are represented in the application tree view, you can easily access and
edit any element’s properties.

Deploying an Application

Once you have created an application, you can save it to a local folder, or
deploy it to a cluster.

When you save the application on your local machine, all your definitions (the
process map items, the data dictionary, the forms, etc.) are stored in a local
applications folder in the bui | der folder.

Deployed applications are stored in clusters. When you launch Process Builder,
you get a list of all the clusters specified in the pr ef er ences. i ni file, as well
as a list of any applications saved locally in the default directory.

When you deploy the application, you copy all its definitions to the cluster as
entries in the configuration directory. There are two deployment stages:
development and production. Deploy to development if you are still testing the

Starting Process Builder

application and would like to be able to make the fullest possible range of
changes. Deploy to production when you are ready to give end users access to
the application.

For information on deploying applications, see Chapter 10, “Deploying an
Application.”

Starting Process Builder

Before you can use Process Builder, you must install it on your local system.
For installation instructions, see the Installation Guide.

The preferences.ini File

The pref erences. i ni file specifies the available clusters and the corporate
user directory, as well as some of the folders that appear by default in your
initial Process Builder window. The installer puts pr ef er ences. i ni in the
bui | der folder.

After the administrator creates a cluster, you need to add lines to the file
specifying the cluster(s) and the corporate user directory you are accessing.
Process Administrator displays these lines when a cluster is created, so you can
cut them from there and paste them in your pr ef erences. i ni file.
Otherwise, use the examples below to edit your pr ef er ences. i ni file by
hand.

Specifying a cluster

To access a cluster from Process Builder, add a line to the pr ef er ences. i ni
file in the following format. (Although shown below as multiple lines, be sure
to type it as one line in the file, with no space after the @ symbol.)

cluster = I dap:// Unrestricted _User: Password@
Configuration_Directory: portl/cluster DN

For example:

cluster = I dap://cn=Directory Manager: password@
directory.nozilla.com 389/ cn=cluster, o=airius.com

Chapter 1, Introduction to Process Builder 31

Starting Process Builder

Warning

32 Developer’s Guide

Specifying a corporate directory

To access a corporate user directory from Process Builder, add a line to the
preferences.ini filein this format:

corp_dir = Idap://corporate_Directory Server:port/corp_Directory Suffix
For example:
corp_dir = ldap://directory.nozilla.com 389/ o0=airius.com

You may want to add a cor p_di r line to your pr ef erences. i ni file even
if you do not know what cluster you will be deploying to. By adding a

cor p_di r line, the corporate user directory is available to you as you design
applications, even without a deployment cluster.

Typically, your corporate directory does not require user authentication.
However, if your corporate directory requires authentication, you can add a
line in this format (be sure it's all on one line):

corp_dir = ldap:// Unrestricted _User: Password@
corporate_Directory_Server:port|/corp_Directory Suffix

The pref erences. i ni file also includes parameters that define the Java
Virtual Machine. Do not modify this part of the file.

Adding or Changing Local Application Folders

You can also change some of the default local application folders in
pr ef erences. i ni . The file ships with the following lines defining folders:

| ocal _fol der = Sanple Applications; Sanples

| ocal _fol der = Scratch Folder; Tnp

These two lines define two folders in your builder folder. The Samples folder
stores the sample applications that ship with the product, and the scratch folder
is a folder you can use for temporary content.

To add additional folders, use the following syntax:

| ocal _fol der = nane_of_fol der; pathname_of_fol der

The pathname assumes you start in the builder folder.

Starting Process Builder

Starting Process Builder on Windows
NT

When you install Process Builder on your Windows NT machine, you choose a
folder to install it in. By default, this folder is NAS_Root/ bui | der,

NAS Root indicates the root directory of your Netscape Application Server
installation.

To start Process Builder, go to the folder where you installed Process Builder
and double-click on the PMBuIi | der . exe file. This file launches Process
Builder.

Starting Process Builder on Solaris

When you install Process Builder on your Solaris machine, you choose a folder
to install it in. By default, this folder is NAS_Root/ bui | der , where

NAS Root indicates the root directory of your Netscape Application Server
installation.

To start Process Builder, go to the directory where you installed it and type the
following at the command prompt:

PMBuUi | der . sh

Chapter 1, Introduction to Process Builder 33

Using Process Builder

Using Process Builder

34 Developer’s Guide

When you start Process Builder, you see a window like the one shown in
Figure 1.1.

Figure 1.1 Select an Application window

Select an Application

Netscape

N Process Builder 4.0
Existing Applications
ENE Availahle applications

! [3-;.‘? Stress Cluster {on © karna.mcom.com) i
| -0 Applications Open
| B3 Application Templates
LG4 Default R,
-[I User Applications (danielg) Browse
| E-C3 Sample Applications
| -4 ClaimProcess Delete

-4 CreditHistory
-G DataSheet

i el

i -4 HelloWarld
| -5 Loankgrmt Rk
I -4 OfficeSetup

-G4 TimeOfRequest Help

~[ZI0 Scratch Falder

In the left pane, this window lists all clusters, the applications deployed to
them, and applications saved locally in the application directories. The
applications in the clusters have labels indicating whether they were deployed
in the development stage or in the production stage.

Before a cluster appears in this window, the PAE administrator must create it,
and you must have edited your pr ef er ences. i ni file to contain the correct
cluster information. For more information on clusters in your environment,
contact your administrator. Some of the local folders are also defined in the
preferences.ini file.

For more information about the pr ef er ences. i ni file, see “The
preferences.ini File” on page 31.

Using Process Builder

The following local folders are provided by default:
Applications The main folder for storing applications.

Application Templates The folder where you store applications that you
base other applications on. For example, if your applications share many
elements in common, you might want to designate a template application, save
it to this folder, and use it as a basis for future applications. A sample template
application, Default, is included in this folder as an example.

User Applications A folder for applications stored by user. On Unix, this
folder is your default user home directory.

Sample Applications A folder that contains all the applications shipped as
samples with Process Builder. This folder is defined in your
preferences.ini file.

Scratch Folder A folder for storing temporary, or scratch, versions of your
applications. This folder is defined in your pr ef er ences. i ni file.

The right pane contains the following buttons:
New Creates a new application.
Open Opens the application selected in the tree.

Import. Use this button to import an existing application into your Process
Builder. The application must be a .zip file, for example, an application zipped
and sent via email. The import function unzips the application into the selected
folder and opens the application for editing.

Browse Navigates through the file system to open applications stored outside
your local applications folders. Choose the LDIF file of the application you
want to open. (LDIF is a file format for storing directory entries). LDIF files have
the same names as the application and the folder the application is stored in.

Delete Deletes the selected application. You cannot delete applications that
have been deployed. Deployed applications can be deleted only by the
administrator.

Cancel Closes the window, but leaves Process Builder running.

Sometimes a cluster icon has a red “x” in it, as shown in Figure 1.2;

Chapter 1, Introduction to Process Builder 35

Using Process Builder

Figure 1.2 Cluster error

Select an Application

Netscape

N Process Builder 4.0
Existing Applications
= [Available applications

Cluster! (on: karna.mcoom.com)

[y

-0 Applications Cipen I
-3 Application Templates
% cations (ani _mpot_|
-0 User Applications (danielm)
E-C3 Sample Applications Browse i
-G ClaimProcess
G4 CreditHistary Delete I
-4 DataSheet
-5 HelloWarld
% Loanhogmt
-G OfficeSetup _m_j
-4 TimeOffReguest Help I

-3 Scratch Folder

This icon indicates that Process Builder is unable to access a cluster, and
appears when Process Builder cannot access the configuration directory. If you
see this icon:

= verify that the cluster information in pr ef er ences. i ni is correct.
= verify that the configuration directory is up and running

Your administrator can also help you solve cluster problems.

Process Builder Applications

Figure 1.3 shows a sample view of Process Builder when you open an existing
application (the CreditHistory application in this case).

36 Developer’s Guide

Using Process Builder

Figure 1.3 A Process Builder application

E%EledilHislmy - Hetzscape Process Builder - 4.0
Anplication Edit Insert Format Window Help

el ol Ok a) o4 A

[ey Cpen Save Check Deploy Falette Inspector
INormaI _'_" white _‘JIB _']A A A R iZi= &
[N apphcation Treeview. B3| ; N. Process Map

i] JEVEL | Credit History Sample Process
| -0 Process Definition]
IZ}- Mew Credit History Repuli
? 48 Check Authorization '
=@ Look Up Credit Histary |
canceled |t
B ok !
-/ Default Exception |

|

| This process illustrates the use of automated activites |
using JavaScript. This processis also used Withinthe;
LoanMgmt sample process as a SubProcess.

| !

| |

1 ! @ |
i -\ Lookup Exception 1 . Jlreate Wa.me.m.._..
| (8 croups & Roles | Report Lo ok |
3 =2 Data Dictionary Y Chedt Up |
1 gj CrEd!t—djate | Autharizatior :i::; :
| -4 credit_histary * !
; I3 parson | Caicel |
; I title ; Regort ;
I E}-EE Form Dictionary | |
| =3 Script Dictionary i
| ." PG e - 'l ! i | bl |
l..'..!.' E”l% jir A, | N Map Palette

N ‘Messages
T Activities

I " s I : | Documentation1

’Ermr: Anplication 'CreditHistory'- Property 'Corporate Directory! (tmpI
Warning: Application Group ‘admin'- The members listis empty. | i
Wiarning: Application Group trusted users'- The members listis e @ @ L..‘é.l
}Warning: Form Layout refused.himl'- There are no fields in the thi

B ! iy
}Dinfus,3warnings,1 Brrars. & @ "\"[’}‘ iﬁ 53

Within each application, Process Builder provides the following views and
tools:

= tree view of your application’s elements
= process map

= amap palette

= Messages window

= main toolbar

= menu commands

Chapter 1, Introduction to Process Builder 37

Using Process Builder

38 Developer’s Guide

e HTML editor toolbar

You use these views and tools to create and edit applications. In addition, some
commands are available by right-clicking on an element in the application tree
view or process map.

Application Tree View

The application tree view lists all the elements in an application. Each
application has a set of default elements, shown as a set of standard folders and
icons. When you create a new application, the element folders are empty or
contain defaults. As you construct the process map and insert new data fields,
forms, and scripts, the folders fill up with subitems that you can directly access
at any time to inspect or customize their properties.

These are the default folders and icons:

Process Definition This folder contains all the items in an application. See
“Map Palette” on page 39 for more information on these items.

Groups and Roles This folder contains the application’s groups and user
roles. See Chapter 5, “Defining Groups and Roles,” for more information.

Data Dictionary This folder contains the data fields created for the
application. These fields define data that is to be captured when users run the
application. See Chapter 6, “Defining Data Fields,” for more information.

Form Dictionary This folder contains the HTML forms created for the
application. Forms define how information is presented to a user. See
Chapter 7, “Designing Forms,” for more information.

Script Dictionary This folder contains the JavaScript scripts available to the
application, organized by script type. Scripts are either predefined or created by
you. See Chapter 8, “Using Scripts,” for more information.

Form Access This icon brings up a window which lets you specify which
HTML form is displayed for a specific role during each step. You set up access
to forms by dragging forms from the application tree view into the window. See
Chapter 7, “Designing Forms,” for more information.

Using Process Builder

Content Store The content store icon brings up a window where you specify
the URL on the Enterprise Server where you store attached files, and also the
public user that can access these files. When end users attach files to forms as
they complete steps in the process, the files are stored in the content store. See
Chapter 6, “Defining Data Fields,” for more information.

Process Map

The process map provides a visual representation of an application. It shows
the steps needed to complete the process, and how they are connected to each
other.

When you create a new application, the Process Map window is blank. If you
are revising an existing process, the current version of the process appears in
the Process Map window. To design a process in the Process Map, you drag
activity icons from the palette and connect them with transitions.

Map Palette

Figure 1.4 shows the Map Palette, also called the palette. When you create a
new application or when you open an existing one, the palette is open by
default. You can also click the Palette button to open it.

Figure 1.4 The Map Palette

ML Map Palette E

Activvities l Documentation l

BOE =B
A& B U

By default, the palette has two tabs: Activities and Documentation. If you use
custom activities, you may also have one or more custom tabs on your palette.
For more information on adding custom palettes, see “Adding a Custom Palette”
on page 95.

Chapter 1, Introduction to Process Builder 39

Using Process Builder

Activities Tab

The Activities tab displays icons that you can drag onto the process map to
design a process application. Each of the palette items represents a type of step
in the process, a notification, or an error response. Table 1.1 shows the icons
on the palette and what they represent.

Table 1.1 Icons in the Activities tab

Icon Description

Entry Point. A point at which a user can initiate a process. An application
@ can have several entry points. For example, if the first few steps create an

ID number for the user, a returning user who already has an ID can skip
those steps.

User Activity. A step within the process that requires a user to perform a
task. Each user activity has an assigned user who performs the task
(assignee) and a form the user needs to fill out in Process Express. After
you place activities in the process map, you define the sequence in which
they are to be executed by connecting them with transition lines.

Q

Automated Activity. An automated step performed through a JavaScript
script without user intervention.

Subprocess. A step that calls a process from within another process. The
process that calls the subprocess is considered to be the main, or parent
process, and the subprocess is considered to be its subordinate or child
process. A parent process can have several children processes, each of
which is a stand-alone process complete with entry and exit points.

e

Exception Manager. A step that allows the administrator to intervene
manually if errors occur when users run the application.

Decision Point. A conditional step that causes the process to use different
steps based on a condition. For example, you might have a decision point
that directs the process to different steps depending upon the cost of an
item.

@ >

Split-Join (parallel processing). A step within the process that branches
in two or more branches so that two or more activities can execute in
parallel.

Exit Point. A step at which the process ends. An application can have
several exit points. For example, in a vacation time off request application,
an exit point could be the approved vacation request, and another could
be a vacation that was not approved.

B &

40 Developer’s Guide

Using Process Builder

Table 1.1 Icons in the Activities tab

Icon Description

Custom Activity. A step at which a PAE application connects to external
Ea components or services.

" Notification. An email notification that is triggered when a user activity is
= E started. The email can serve many purposes. For example, it can inform the
person who started the process or other users of the process’s progress.

Documentation Tab

Use this tab (shown in Figure 1.5) to drag documentation notes or graphics to
the process map.

Figure 1.5 Documentation Tab on the Map Palette

M. Map Palette [x|

Aotivities Docurmentstion l

BN RN ENN

For example, different developers may include notes on a process map coded
by color, or the notes could explain features of the process for use when you
roll-out the process.

You can also add images to a process map by dragging the image icon to the
map and then browsing to the image you want to include.

Messages Window

The Messages window is where error, warning, and information messages are
displayed when you check the application syntax using the Check button. The
syntax is also checked automatically when you attempt to deploy an
application.

The window is blank until the syntax is checked, after that it contains
messages, as shown in Figure 1.6.

Chapter 1, Introduction to Process Builder 41

Using Process Builder

42 Developer’s Guide

Figure 1.6 Messages Window

EErrUr: Werification (class: Activity) Property ‘Exception Manager' (exceptionZh) has no value set.
|Errar: Meeting fclass: Activitd Property Exception Manager (exceptionCh) has no value set.

EErrUr: Loan Refused (class: ExitFoint) Property ‘Exception Manager' (exceptionCh) has no value set.
EErru:ur: Loan Approved (class: ExitPaint) Propery Exception Manager' {exceptionCM) has novalue set.
\Warning: admin (class: Application Group) The members listis empty.

IZI infas, 1 warnings, 4 errors.

£l - |

You must fix all errors before you can deploy an application. You can deploy
an application that contains warnings, but you may encounter difficulties later
when you try to use the application.

The last line of the window summarizes the information found by the syntax
check.

If you right-click in the Messages window, a dialog box appears. You can use
this dialog box to selectively display different types of messages (for example,
errors only or warnings only). You can also clear the Messages window.

Main Toolbar

The main toolbar (see Figure 1.7) contains frequently-used commands.

Figure 1.7 Process Builder main toolbar

Gooogl Bl G W 8 B

] s Open Save Check - Deploy - Palette Inspectar

The toolbar contains the following buttons:

New Launches the New Application dialog box, where you create a new
application which is not based on a previous application.

Open Opens an existing application.

Save Saves the application locally. Use this command to save your work as
you are creating or editing an application.

Using Process Builder

Check Checks the application code and displays errors, warnings, and
information messages in a separate window. You need to fix all errors in your
application before you can deploy it. You can deploy an application for which
you receive warnings, but it may lead to problems in the future. The last line of
the window gives you a summary of how many of each type of message the
check produced.

Deploy Deploys the application to a cluster.
Palette Displays the palette.

Inspector Displays the Inspector window for the selected element. This
window allows you to set the properties of any element. You can also double-
click the element’s name in the application tree view to open the Inspector
window. Some elements have evaluation order Inspector windows as well as
property Inspector windows. Typically, an evaluation order window allows you
to reorder conditions or roles into a specific hierarchy or sequence.

Menu Commands

Several menus provide commands for use as you design a PAE application. The
menus are Application, Edit, Insert, Format, Window, and Help.

Application

New Creates a new application. If you have an application open, this closes
the current application after asking if you want to save it first, and launches a
new application with a fresh tree view and an empty process map.

Open Takes you to the “Select an Application” dialog box, from which you
can open an existing application. If an application is already open, Process

Builder closes the application. If the open application has unsaved changes,
you are first prompted to save the application.

Import from ZIP Imports an existing zipped application. If you have an
application open, this closes the current application after asking if you want to
save it first. Browse to the zip file and import it into the current Application
folder.

Chapter 1, Introduction to Process Builder 43

Using Process Builder

44 Developer’s Guide

Delete Takes you to the “Select an Application” dialog box, from which you
can delete an application. If an application is already open, Process Builder

closes the application. If the open application has unsaved changes, you are
first prompted to save the application.

Save Saves the currently displayed application to your local machine.
Save As Saves the current application with a different name.

Import File Brings up a dialog box, from which you can copy a file into the
application’s directory. Enter the path name of the file to import, or use the
Browse button to browse to it. Then specify where you want the file copied.
The file is automatically copied to a specific location, depending on the file
category you select. (See Table 1.2.) If a subdirectory doesn't exist, it will be
created.

Table 1.2 Destination folders for imported files

File Category Destination Folder

Top Folder The same directory as the current application. For
example: bui | der/ Appl i cati ons/ app_nane

Client Images i mages subdirectory

Client JavaScript j s subdirectory

Server JavaScript WFScr i pt s subdirectory

Server JAR Files | i b subdirectory

Mail Notification Templates | t enpl at es subdirectory

Check Errors Checks the application code and displays errors, warnings, and
information messages in a separate window. You need to fix all errors in your
application before you can deploy it. You can deploy an application for which
you receive warnings, but it may lead to problems in the future. The last line of
the window gives you a summary of how many of each type of message the
check produced.

Deploy Deploys the application to a cluster.

Using Process Builder

Save Process Map as JPEG Saves the process map as a .j pg file. Use this
option when you want to show the whole process map outside of Process
Builder. For example, by saving the process map as an image, you can print it
or insert it into an HTML document. This option saves the image as

appl i cati on_nane. j pg in the folder of the application.

Exit Quits Process Builder. If you have unsaved changes in an application, it
gives you the option of saving them.

Edit

Cut Cuts an HTML layout element from a form, or cuts text from a scipt.
Copy Copies an HTML layout element into a form, or copies text into a script.
Paste Pastes an HTML layout element into a form, or pastes text into a script.

Delete Deletes a single element such as an activity, a data field, or a form from
the application tree view. You cannot delete folders from the application tree
view, or default item such as predefined scripts and default users and groups.
Also, if the application has been deployed in the production stage, you may not
be able to delete certain items.

Insert

Group & Role Inserts a new group or role.

Data Field Inserts a new field.

Form Inserts a new HTML form.

Script Inserts a new script.

HTML Element Inserts the HTML element that you select from the associated
submenu. For more information, see “Insert HTML Element” on page 167.

Format

These are standard HTML editing commands. Use them to edit HTML forms in
the HTML editor.

Size Applies the font size you select to the text.

Chapter 1, Introduction to Process Builder 45

Using Process Builder

46 Developer’s Guide

Style Formats text as bold, italic, underline, or strikethrough.
Remove All Styles Removes size and style formatting from text.
Heading Applies an HTML heading tag to the text.

List Applies an HTML list tag to the text. You can choose either a bulleted list
or a numbered list.

Align Aligns text at the left, right, or center of the page.
Decrease Indent Decreases the amount of indenting on the text.

Increase Indent Increases the amount of indenting on the text.

Window

Select one of these menu items to display the window, or, if it is already
displayed, bring it to the foreground.

Project Window Displays the application tree view.
Process Map Displays the process map.
Palette Window Displays the palette.

Messages Window Displays the error and informational messages produced
when you check the application syntax using the Check button.

In addition, you can reorganize the windows with either of the following menu
items:

Auto Arrange Windows Arranges windows to fit side-by-side within the main
window. Four windows will be displayed: the application tree view, process
map, Messages window, and the palette. The resulting arrangement is not
updated when you resize the main Process Builder window.

Always Arrange Windows Similar to Auto Arrange Windows, except that the
arrangement is always updated. Whenever you resize the main window, the
individual component windows are resized to maintain their side-by-side
arrangement.

Using Process Builder

Help

Help contents Accesses Process Builder full table of contents. Click a link to
go to the topic you are interested in, or use the Index to find a topic. If you
click the Contents button within the window, you can access the “Other
Documentation” link, which gives you access to the PAE documentation set.

Custom Help Displays help you have customized for Process Builder at your
site. For example, you might use this feature to add links to your Process
Express site or to explain site-specific customizations to Process Builder. To add
your own help, edit the file cust om hel p. ht M, found in the support/
ht m directory of your PAE installation.

About Displays the software version information.

HTML Page Editor Toolbar

The HTML Page Editor toolbar allows you to format the HTML forms that you
create. Figure 1.8 shows the HTML Page Editor toolbar.

Figure 1.8 HTML Page Editor toolbar
[Mormal Tl wnte <l | A A AMIZIZEEES E = |

The drop-down lists and the icons assign HTML formatting to the text you
select in your HTML forms. See “Using the HTML Page Editor Toolbar” on
page 166 for more information.

Chapter 1, Introduction to Process Builder 47

Using Process Builder

48 Developer’s Guide

Chapter

Planning an Application

This chapter describes the issues to consider when you are planning an
application.

This chapter includes these sections:

Planning Overview

Planning the Process Map

Planning Assignments

Determining the Data Requirements
Planning Forms

Planning Custom Scripts

Planning Searches

Planning Deployment

Chapter 2, Planning an Application 49

Planning Overview

Planning Overview

Process Builder provides a powerful and intuitive visual environment to create
and deploy PAE applications. This chapter describes the things to think about
before you develop your application. For an explanation of completed
applications, see the sample application chapters in this book.

To plan your PAE application, you need to do the following tasks:

1. Decide on the sequence of steps involved in a process and whether you
need to create subprocesses or custom activities.

2. Define who the people involved in the process are and what roles they
play.

3. Decide whether you want to give people who aren’t directly involved in the
process access to some of the process information.

4. Decide what data you want the application to track on forms, internally
within scripts, and what you need to pass to subprocesses and to other
programs using custom activities.

5. Define a useful set of forms to allow users to complete each step, and if you
like, to allow users to monitor the process.

6. Decide which users and groups should have access to which forms.
7. Decide if you need to write any special scripts for your application.

8. Decide if you want users to be able to search the application, and if so, for
which information.

Planning the Process Map

Before you can create a PAE application, you must understand the process you
want the application to handle.

The best way to create an application is to examine your current process,
automated or manual, figure out the steps involved, and then improve the
process with PAE’s automation and database capabilities.

50 Developer’s Guide

Planning the Process Map

For more information on Process Maps, see Chapter 4, “Designing a Process
Map.”

Entry Points

After analyzing the existing process, you should decide at what point(s) in the
process you want to start your application. You can have more than one entry
point, depending upon the process, but you need to find starting points that
still let you capture all the data you need to capture. If you start halfway
through a process, you may not have all the data you need to carry the process
through.

For example, if you have a process for posting documents on a web site, you
might have one entry point for documents that need to be converted to HTML,
and another entry point farther through the process for documents that are
already in HTML.

For more information on entry points, see “Entry Points” on page 77.

User Activities

Each step in the process that a user needs to perform is called a user activity.
When you figure out the steps in the process, you need to decide which steps
need to be performed by a person and which can be performed automatically.

For example, in the application that handles an employee’s vacation request,
you might have three activities:

= Manager approval, where the manager either approves the request or asks
for clarification.

= Clarification, where the employee provides any requested clarification
< HR approval, where HR approves the request

Since these all require a user to take action, they are all user activities, not
automated activities. For more information, see “User Activities” on page 78.

Chapter 2, Planning an Application 51

Planning the Process Map

52 Developer’s Guide

Automated Activities

If a step can happen automatically, you’ll want to create an automated activity,
instead of an activity that requires a user to perform an action.

For example, the Data Sheet sample application uses an automated activity to
build the data sheet. The automated activity runs a script that looks up price
information and creates an HTML form based on this information. This saves a
user from having to enter the data. The next step of the process is an activity
that presents a user with the data for approval.

For more information on automated activities, see “Automated Activities” on
page 84.

Custom Activities

You need to determine if you want to create a custom activity to connect to
external services, to integrate information from other services into your PAE
application, or to extend Process Manger to other services. For example, you
can use custom activities to connect to Netscape Application Server Extensions
for CICS or SAP. A developer needs to write a Java class, write an XML file that
describes the Java class, and put the two together in a .zip or .jar file. You need
to decide what data you need to transfer to the external component, and what
data you need to receive back.

For more information on custom activities, see “Custom Activities” on page 91.

Subprocesses

You need to determine if you want to create a subprocess that can be used
across your environment. A subprocess is a fully functional PAE application that
can be called from within another PAE application. The Loan Management
sample application, which controls the process of approving a loan, calls the
subprocess Credit History. Credit History can be run either as a subprocess of
the Loan Management application or as a stand-alone application. For more
information on subprocesses, see “Subprocesses” on page 86.

Planning the Process Map

Decision Points

You need to determine if the process has a single set of steps, or if it branches
because of conditions. Decision points are where the process branches. For

example, in the Data Sheet sample application, there is a decision point where
if the price of the product on the data sheet is less than $1000, the data sheet is
immediately published. However, if the price is greater than or equal to $1000,
the data sheet must be approved by the Vice President before being published.

For more information about decision points, see “Decision Points” on page 100.

Parallel Processing

You need to determine if you want to use parallel processing, which allows
your process to have two or more branches so that two or more activities can
execute in parallel. In the Office Setup sample application, which controls the
process of setting up an office for a new employee, each subtask is grouped
into a processing branch that progresses independently of the other subtasks.
For example, the MIS department can set up the phone while the purchasing
department is ordering the computer. Problems completing one task won'’t
affect the progress of a parallel task. In complex processes, there can be several
levels of nested parallel branches.

For more information about parallel processing, see “Split-Join (Parallel
Processing)” on page 101.

Exit Points

You also need to decide where to end the process. You may have more than
one exit point. For example, in the Time Off Request sample application, an
employee’s request for vacation time can end three ways: the vacation is
approved or denied by management, or cancelled by the employee. Those
three outcomes translate into three exit points in the application.

For more information on exit points, see “Exit Points” on page 105.

Chapter 2, Planning an Application 53

Planning Assignments

Transitions

Once you have the basic steps of the process in place, you need to determine
the flow between them. The connections between steps are called transitions,
and are represented on the process map by arrows connecting the steps. Since
a decision point requires the process to branch, each branch has a transition
leading to a different step.

For more information on transitions, see “Transitions” on page 106.

Notifications

Once you have the steps and transitions in place, you need to think about
where in the process you want to set up email notifications, what information
the notification contains, and who needs to receive the notifications. The
notifications are sent as soon as the process reaches the step.

For example, in the Time Off Request sample application, the employee is
notified if the vacation is approved or denied at the exit points for approved
vacation and denied vacation. At the exit point where the employee cancels the
vacation, no notification is required.

For more information on notifications, see “Notifications” on page 104.

Exceptions

Exception handling allows the administrator to intervene manually if errors
occur. Every process step (other than an entry point) must be assigned an
Exception. See “Exception Manager” on page 97 for more information on
exception handling.

Planning Assignments

54 Developer’s Guide

You need to look at each activity and determine who needs to do it. The
person who performs an activity is called the assignee. You determine an
activity’s assignee by asking the following questions:

Planning Assignments

= Who needs to perform this step?

= Should this step be assigned to a single individual, or to a group of
individuals so that any one of the group can perform the work item?

= Is this an activity where a number of individuals need to approve some
information before the process continues (parallel approval)?

= Does the person who performs the activity vary depending upon the
process instance? For example, a vacation request might have an activity for
the manager’s approval. The manager who needs to approve the vacation,
depends on which employee requested the vacation for a particular process
instance. In other cases, the assignee might be the same regardless of the
process instance. For example, if every purchase over a certain amount
needs to be approved by the Chief Financial Officer, the assignee of that
approval activity is the same regardless of the process instance.

= |If the assignee depends upon the particular process instance, what
information do you need to have in order to determine who the assignee
should be?

Once you have the answers to these questions, you know who needs to be
assigned to activities, and that information helps you set up the groups and
roles you need for an application.

For more information on assignments, see “Setting Activity Assignments” on
page 81.

Planning Groups and Roles

Once you have figured out who needs to participate in the process and what
they need to do in the process, you need to think about your groups and roles.
If a user activity can be performed by any one person in a group, you must set
up a group to assign the activity to.

For example, in the Office Setup sample application, one user activity is “Order
Computer.” Anybody in the purchasing group can perform this step, so the
activity is assigned to a group called Purchasing.

If you have an assignee that varies by process instance, and the information
needed to identify this person is stored in a data field for each process instance,
you can set up a field role. For example, in a process where a web designer is

Chapter 2, Planning an Application 55

Planning Assignments

56 Developer’s Guide

working with a graphic artist on a web page, you could create a field role for
the artist. The form initiating the web page art could have a field on it where
the designer fills in the artist's name. The application then stores the artist for a
particular process instance, and uses it throughout the process.

To figure out what groups and roles you need, ask the following questions:
< Who in the company can initiate a process?
= |If approval is needed, what needs approval and who needs to do it?

< If you need to use a group of people in your application, is the group
already defined in the corporate user directory?

There are four default groups and roles for an application:

creator (the person who initiates a process instance)

admin (people allowed to administer the application)

all (any interested party)

trusted users (people allowed to connect to the subprocess)

If you need additional groups and roles, you need to create them. If the group
already exists in your corporate user directory, you can create a group for your
application that is tied to the group in the corporate user directory.

For more information on groups and roles, see Chapter 5, “Defining Groups
and Roles.”

Planning for Monitoring

In addition to the assignees in an application, you can also let other people
who aren’t directly involved in the application monitor the progress or view
information on a read-only basis. If you want to give these nonparticipants
access to information, you may need to create additional groups and roles.

Determining the Data Requirements

Planning Delegations

For some activities, you may want the assignee to be able to delegate the work
item to another user. If you want the assignee to be able to delegate, you must
set the activity’s Allow Delegation property to yes. Before allowing delegation,
though, you need to think about whether the activity should be delegated. For
example, if you had a process for approving departmental salary increases, you
may want the head of the department to approve the increases personally. In
this example, you would not allow delegation.

Determining the Data Requirements

After you have defined the steps in your process, you need to define what data
you need to track. Once you've determined the data you need, then you can
create the process’ data dictionary using Process Builder. The following
questions help you determine what data fields you need:

= What information do assighees need to see to perform each step?

= What information do you need to gather from assignees at each step?
< What data do you want to have a record of?

= What information do the scripts in the application require?

< If you're using subprocesses, what information is passed between a parent
and child process?

= If you're using a custom activity, what information is passed between the
PAE application and the external component or service?

For each data field you create, you need to think about how to present it to
users on the form (for example, is it a text field, radio buttons, or a file users
need to attach?). You also need to think about how it will be stored in the
database (is the data type text, a date, or an integer?)

For more information on data fields, see Chapter 6, “Defining Data Fields.”

Chapter 2, Planning an Application 57

Planning Forms

If the standard data field classes provided with PAE do not fit your needs, you
can create your own. For example, you can use custom data fields to access
external data sources and to generate dynamic content at entry points. To use
custom data fields you need to write Java classes that implement the field.

File Attachments

Some information your application gathers may be files users contribute by
attaching them to forms. You create specific data fields for file attachments. If
you are using file attachment data fields in your application, you must plan for
their use:

= You must define a URL on your Enterprise Server to store these documents.

= You must set the Enterprise Server’s access privileges for the URL, so that
the documents are available to a public user.

Setting up the public user allows all users to upload documents to that area.
Web Publishing must be turned on in your Enterprise Server.

For more information on file attachments and the Enterprise Server, see “Setting
Up the Content Store” on page 156.

Planning Forms

58 Developer’s Guide

Once you have thought through the process steps, the data requirements, and
the people involved you need to think about the forms to use to collect the
data, move it from person to person, and display the data to people involved in
the process.

You can design a different form for each role or group at each step in the
process. Different forms let you display only the information needed by a
particular person or group. For example, the assignee of an activity often has a
special form which has more information on it than the forms for other people
involved in the process, or people who are monitoring the process. Often the
creator of the process instance has forms so he or she can follow the process
instance’s progress.

Planning Custom Scripts

You create forms in a form wizard in Process Builder. You add fields to the
forms in a form editor by dragging them from the data dictionary to the form.
You need to decide which fields to put on a form, and whether they can be
edited by the assignee or not.

For more information on forms, see Chapter 7, “Designing Forms.”

Planning Access to Forms

Using form access you control which users see which forms. To plan form
access for a process, use the following questions:

= At what step in the process is the form used?

= Who views the form (is the viewer the assignee, a participant in the
process, or an observer?) If the viewer is a participant in the process, what
group or role do they belong to?

< Do you want the form to be viewed by multiple groups and roles?

When you have the answers to these questions, you create the association
between an activity, the role or group, and the form in the Form Access
window.

For more information on form access, see “Setting Access to Forms” on
page 172.

Planning Custom Scripts

Many of an application’s actions are performed by JavaScript scripts. For
example, JavaScript assignment scripts determine which user is assigned to a
step. Process Builder includes some standard scripts; however you may find
you need to write additional JavaScript scripts to perform actions specific to
your application. In planning these scripts, consider what kind of scripts you
need to write and whether you already have similar scripts you can base them
on. Scripts you plan to reuse or plan to call from other scripts are stored in the
Toolkit folder.

For more information on using scripts, see Chapter 8, “Using Scripts.”

Chapter 2, Planning an Application 59

Planning Searches

Planning Searches

If you want users to be able to search for information about process instances,
or for specific field information, you need to design your application so that
searching is allowed. Use the following questions to help you plan your
searches:

< Who do | want to allow to search application data?

= What fields do | want to allow people to use for searching? For example, in
an application for publishing documents to a web site, you might want to
be able to search based on the author’'s name or the document title.

For more information on searching, see Chapter 9, “Setting Up Searching.”

Planning Deployment

60 Developer’s Guide

After you have completed the application, you may want to deploy it for testing
before rolling it out to a production server. In test mode, the person who
designed the application can do a walkthrough to see that all steps are correct
and that the information flows through the system correctly. In test mode, all
activities are assigned to the creator of a process instance, so you cannot test
form access fully until you deploy in non-test mode. Only then does the
application use all the groups and roles.

PAE has two deployment stages: development and production. When you
deploy to development, you can still change everything about an application.
However, once you deploy to production, some information about the
application can no longer be changed.

After you have tested the application and made any necessary fixes, you can
deploy it for use in real-world environments. Once the application is deployed
to end users, it usually leaves the builder’s control. However, even after end
users are using it, the builder and the process administrator need to
communicate whether the application needs changes, if it needs to be replaced,
or if it is made obsolete.

For more information on deploying applications and editing deployed
applications, see Chapter 10, “Deploying an Application.”

Chapter

Creating an Application

This chapter takes you through the process of creating a new application. First
it outlines the process.

This chapter includes these sections:

Application Creation Overview

Getting Information from the Administrator

Creating a New Application

Using Sample Applications

Deleting an Application

Chapter 3, Creating an Application 61

Application Creation Overview

Application Creation Overview

After planning your process application, you're ready to create it. Here are the
main steps:

1. Get information from the PAE administrator.

See “Getting Information from the Administrator” on page 63 for more
information.

2. Launch Process Builder and create a new application.
See “Creating a New Application” on page 63 for more information.

3. Design a process map, including all activities that users need to perform.
See Chapter 4, “Designing a Process Map,” for more information.

4. Define the groups and user roles for process steps participants and non-
participants (observers).

See Chapter 5, “Defining Groups and Roles,” for more information.
5. Define the assignees for a step.

See “Setting Activity Assignments” on page 81 for more information.
6. Define the data fields, and set up the file attachments you need.

See Chapter 6, “Defining Data Fields,” for more information.

7. Design the forms to display the appropriate data fields and to attach the
necessary files.

See Chapter 7, “Designing Forms,” for more information.

8. Set the form access, thereby associating the form with the appropriate step
and with the appropriate participants for that step.

See Chapter 7, “Designing Forms,” for more information.

9. Decide which users, if any, are allowed to perform searches. Also decide
which fields are searchable.

62 Developer’s Guide

Getting Information from the Administrator

See Chapter 9, “Setting Up Searching,” for more information.

Getting Information from the Administrator

Creating

In order to successfully develop and deploy an application, you need to work
with the PAE administrator to set certain values for the application. In general,
information dealing with clusters, the Enterprise Server, and the database may
be set by your administrator. For example you may need to work with your
administrator to set appropriate values for the following fields:

= the application properties DB User and DB Password, the database user
and password which has the privileges to create database tables

= the content store properties URL, Public User and Public Password. These
properties are the URLs on the Enterprise Server to which the attached files
are posted, and the user and password for accessing the URL

= the person or people allowed to administer the application (the people you
add to the "admin" group)

= the PAE administration user and password needed when you deploy the
application to a cluster

For more information on these values, see “Setting Application Properties” on
page 65, “Setting Up the Content Store” on page 156, “Default Groups and
Roles” on page 113, and “The Deploy Application Dialog Box” on page 206.

a New Application

Since each process is handled by its own application, the first thing you need to
do after planning the process is to create a new PAE application for it.

To create a new application, follow these steps:
1. Launch Process Builder.
2. In the Select an Application dialog box, click New Application.

3. Fill out the dialog box fields.

Chapter 3, Creating an Application 63

Creating a New Application

64 Developer’s Guide

See “The New Application Dialog Box” on page 64 for details.

4. Click OK. This displays a default set of empty resource folders and a blank
process map.

See Chapter 4, “Designing a Process Map” for details.

5. Set the application’s properties in the Inspector window.

The New Application Dialog Box

The New Application dialog box (see Figure 3.1) is where you enter the name
and location of a new application. The location you enter here is the location

on your local system. Typically you have a “working” copy of the application

on your local system. Once you deploy an application, you generally use the

deployed application as the basis of any modifications you want to make.

Figure 3.1 The New Application dialog box

[New Application [] :

Application name
l

Corporate user directon

Mo user directory available. Ji

Application folder
Applications (DoMetscapetSernverdibuildenspplications) "j

OK | cancel | Help |

A T R A e R T R LR T R P S R s 1

...... = ey TR

Application name Enter a name for your application.The field is required. It
can contain only the following characters: Ato Z;ato z;0to 9 and _
(underscore). All other characters are not allowed.

Corporate user directory This directory contains all valid users and groups
for the corporation, and is the source of the user information you need in order
to set up user groups and roles for the application. The available directories
that appear in the drop-down list are defined in the pr ef erences. i ni file.

Creating a New Application

Application folder This is the full physical path to where you want to save
this application on your local machine. By default the path is the main
applications folder on your local machine, NAS Root/ bui | der/

Appl i cati ons. The following folders are available from the drop-down list:

Applications: The main folder for storing applications.

Application Templates: The folder where you store applications that you
base other applications on. For example, if your applications share many
elements in common, you might want to designate a template application,
save it to this folder, and use it as a basis for future applications. A sample
template application, Default, is included in this folder as an example.

User Applications: A folder for applications stored by user. On Unix, this
folder is your default user home directory.

Sample Applications: A folder that contains all the applications shipped as
samples with Process Builder. This folder is defined in your
preferences.ini file.

Scratch Folder: A folder for storing temporary, or scratch, versions of your
applications. This folder is defined in your pr ef er ences. i ni file.

Setting Application Properties

The application has properties that you need to set. These properties affect the
application as a whole.

To set the application properties:

1.

Double-click the application’s name at the top of the application tree view
or select the application’s name and click the Inspector icon, or right-click
the application’s name and choose Properties.

Fill in the fields.

See “The Application Properties Dialog Box” on page 66.
When you're done, close the window by clicking the close box.

The changes you make are saved automatically.

Chapter 3, Creating an Application 65

Creating a New Application

66 Developer’s Guide

The Application Properties Dialog Box

The Application Properties dialog box (see Figure 3.2) includes the properties

you set for the application as a whole. Note that you cannot change fields that
are grayed out. The fields that are grayed out vary depending on whether you
deployed your application in the Development or Production stage. For more

information on deployment, see Chapter 10, “Deploying an Application.”

Figure 3.2 The Application Properties dialog box

é N Inspector - CreditHistory
F’rnpertiesl

1l |
i | MName CreditHistory
1 Description This application looks up the credit history of & user :
2 Display Mame CreditHistary :
5 Application Unigue 1D {D2E34FAD-BC52-1103-B921-020701166016} '
| Priarity Field credit_date x|
Title Field title sl
l Corparate Directory [dapfizugar-ntd meom.com:388f0=airius.com L]-
I |

Name The name of the application that appears in the list of applications. This
field is required.

Description A longer description of the application. This description appears
in Process Express. The user has to have enough information between the
Display Name and the Description to identify the application they want from a
list of applications, so it's important to make these two fields descriptive.

Display Name The longer, more descriptive name displayed by Process
Express. If you are updating an existing application by saving it with a new
application name, you can still keep the same Display Name, so that the name
users see can be the same from version to version of the application.

Application Unique ID An internal unique ID generated automatically to
track each application. This ID identifies the application, and differentiates
applications with the same name. If you do a “Save As” on an application, you
can save the application using the same name, but the unique 1D will be

Creating a New Application

different. If you attempt to deploy an application that has the same name as an
existing deployed application, but a different unique 1D, you are prevented
from deploying.

Priority Field To set up your application so that process instances can be
prioritized, use this property. First you need to create a data field of class ID
Select List to represent the priority. The field must have the value of an integer
between 1 and 5 (1 is the highest priority; 5 is the lowest). Next you choose this
field to be your priority field using this property. Then you put the priority field
in a form so that the person responsible for prioritizing work items can select a
priority value for the application’s work items. If you do not use it, all process
instances have a priority of 3 (normal). The behavior of your application is not
affected by the value of this field.

Title Field The data field that contains the title of a process instance. This field
is required. This field appears in Process Express as the title of the process
instance, so you need to set this property to a field that has a value that
describes the process instance and that end users will find helpful. This field
will also be the title of any email notifications sent. It is often best to create a
special field to be the title field. The field must already exist before you can fill
it in here. This field is required.

Corporate Directory The corporate LDAP directory this application uses for
user and group information. A pop-up window lets you choose a directory,
either based on a cluster or by name. The listed directories are derived from the
corporate user directory values in your pr ef er ences. i ni file. The directory
you choose must be the same as the directory of the cluster to which you will
deploy the application. If you choose the directory based on a cluster, your
directory will be up-to-date, even if the administrator changes the directory for
the cluster. However, if the administrator changes the directory for the cluster,
you have to make sure your users and groups correspond in both directories.

Chapter 3, Creating an Application 67

Using Sample Applications

Using Sample Applications

PAE ships with sample applications that demonstrate how to build applications,
as well as showing the kinds of tasks you can perform in an application. The
available samples are listed in Table 3.1.

Table 3.1 Sample Applications

Application Description

DataSheet Creates a product data sheet, including setting pricing
and getting signed approval by two levels of
management. For more information, see Chapter 11,
“The Data Sheet Application.”

OfficeSetup Sets up an office for a new employee, including
assigning an office space, ordering a computer, and
installing the phone and computer. For more
information, see Chapter 12, “The Office Setup
Application.”

LoanMgmt Submits an application for a loan, including launching a
subprocess (CreditHistory) to check the applicant’s credit
history. For more information, see Chapter 13, “The Loan
Management and Credit History Applications.”

CreditHistory Checks a loan applicant’s previous credit history with the
company. Used as a subprocess by the LoanMgmt
application. For more information, see Chapter 13, “The
Loan Management and Credit History Applications.”

ClaimProcess Submits an insurance claim, including checking policy
details from a flat file, and going through the approval
process at the insurance company. For more information,
see Chapter 14, “The Insurance Claim Processing
Application.”

HelloWorld Demonstrates how to use a custom activity in an
application. The custom activity displays a greeting
based on the language specified for the greeting. For
more information, see Chapter 17, “Writing Custom
Activities.”

TimeOffRequest Submits an employee’s request for time off for approval
by the manager and by human resources (HR).

68 Developer’s Guide

Using Sample Applications

You can use these applications as models for your own application. To base an
application on one of these existing applications, use Save As and make sure
your new application has a unique name and a unique database table.

After configuring a sample application, you can deploy it in development mode
to your own cluster. In this way, you can see how applications are managed in
Process Administrator. You can also see how end users run them in Process
Express.

Applications and the Corporate
Directory

When you install PAE, the default installation uses the same Directory Server for
both the configuration directory and the corporate user directory. This user
directory contains a small set of sample users, along with users defined as
administrative users during the PAE installation. For example, if you define
adm n as the administrative user, the installer adds this to the sample set of
users in the directory.

If you do a default installation, using the admi n user, you can easily set up the
sample applications to deploy.

If you do a custom install or otherwise change your configuration, you may
need to make adjustments to the samples before you can deploy them. For
example, if you defined a different user directory (such as your company’s own
corporate directory) or if you want to use other users, you must adjust the
sample applications.

Most of the sample applications define adm n as their default user. If you use
your company'’s corporate directory, then you must do either of the following
before deploying the sample applications:

= Make sure your company’s corporate directory contains an admi n user.
= Use another user ID, such as your own or a test user ID.

If you change your corporate directory after your cluster has been created,
there are several changes that you and the server administrator must make
before you can deploy applications with the new directory. For information on
changing your user directory, see the Administrator’s Guide.

Chapter 3, Creating an Application 69

Using Sample Applications

Setting Your Corporate Directory

Before you can add or change the default users for the sample applications,
you must define a corporate directory for each application. Otherwise, you
cannot browse or search the directory of users. To define a directory, perform
the following steps:

1. Open the application.

2. In the application tree view, highlight the name of the application, right-
click, and choose Properties.

3. Click the right arrow in the Corporate Directory property field. A selection
dialog box appears for the corporate user directory.

4. Choose whether to set the directory based on the cluster or not.

< If you have a cluster available during the design phase, choose the
cluster-based directory, and select the cluster you want.

= If you don't have access to a cluster, choose to point to a specific
directory. A drop-down list appears, listing all corporate directories
identified in the pr ef er ences. i ni file. Note that if you point to a
specific directory, you may need to change this value when you deploy
the application. This will be necessary if your deployment cluster uses a
corporate directory different from the one you chose.

5. Click OK.

70 Developer’s Guide

Deleting an Application

Deleting an Application

You can delete applications only when they are stored on your local machine.
To delete an application, perform the following steps:

1. In the Select an Application window, select an application.

If this window is not open, you can open it as follows. From the
Application menu, choose Delete.

2. In the Select an Application window, click the Delete button.

A confirmation dialog box appears.

3. Click Yes to delete the application.

Chapter 3, Creating an Application 71

Deleting an Application

72 Developer’s Guide

Chapter

Designing a Process Map

This chapter describes the elements of a process map, their properties, and
how to use them to design a process map.

This chapter includes the following sections:

Drawing the Process Map
Saving a Process Map to a File
Adding Items with the Palette
Deleting Items

Entry Points

User Activities

Automated Activities
Subprocesses

Custom Activities

Exception Manager

Decision Points

Split-Join (Parallel Processing)

Chapter 4, Designing a Process Map 73

Drawing the Process Map

« Notifications
e Exit Points

= Transitions

Drawing the Process Map

When you create a new application, Process Builder displays an initial set of
empty resource folders and a blank process map. As you draw the map,
Process Builder adds items to the folders in the application tree view.

To design a process map, follow these steps:

1. Create a new application.

2. Drag items from the Palette to the Process Map pane.

3. Update the properties of the items you add to the process map.
4. Add transitions between the items.

A process map is the visual representation of an application’s steps. You also
need to create all the other items, forms, data fields, and so on, in order to
make a working application.

Saving a Process Map to a File

74 Developer’s Guide

Sometimes you want to export the process map—in other words, save the map
outside of Process Builder. For example, by saving the process map as an
image, you can later print it or insert it into an HTML document.

To export the process map, open the Application menu and choose “Save
Process Map as JPEG.” This menu item saves the process map as

appl i cati on_nane. j pg in the folder of the application. After the process
map is saved, a dialog box appears, as shown in Figure 4.1. You can click OK
to close this dialog box, or you can click “JPEG image” to display the new
image file that was created.

Adding Items with the Palette

Figure 4.1 After saving the process map, you can view it by clicking “JPEG image”

M. Image Saved E
The JPEGi{r_}:}age of the process map has heen saved.

0K |

Adding Items with the Palette

You create a process map by dragging items from the palette (shown in Figure
4.2) to the process map.

Figure 4.2 The palette

M. Map Palette E

Activities

Locumentation]

L ON IR
L v B

Using the palette, you can add the map items described in Table 4.1

Table 4.1 Icons in the Activities tab

Icon

Description

B

Entry Point. A point at which a user can initiate a process. An application
can have several entry points. For example, if the first few steps create an
ID number for the user, a returning user who already has an ID can skip
those steps.

&)

User Activity. A step within the process that requires a user to perform a
task. Each user activity has an assigned user who performs the task
(assignee) and a form the user needs to fill out in Process Express. After
you place activities in the process map, you define the sequence in which
they are to be executed by connecting them with transition lines.

Chapter 4, Designing a Process Map 75

Adding Items with the Palette

Table 4.1 Icons in the Activities tab

Icon Description

Automated Activity. An automated step performed through a JavaScript
I & script without user intervention.

Subprocess. A step that calls a process from within another process. The
e process that calls the subprocess is considered to be the main, or parent
process, and the subprocess is considered to be its subordinate or child
process. A parent process can have several children processes, each of
which is a stand-alone process complete with entry and exit points.

Exception Manager. A step that allows the administrator to intervene
manually if errors occur when users run the application.

steps based on a condition. For example, you might have a decision point
that directs the process to different steps depending upon the cost of an
item.

'
=
: Decision Point. A conditional step that causes the process to use different

Split-Join (parallel processing). A step within the process that branches
in two or more branches so that two or more activities can execute in
parallel.

\‘317
Exit Point. A step at which the process ends. An application can have
several exit points. For example, in a vacation time off request application,
an exit point could be the approved vacation request, and another could
be a vacation that was not approved.

Custom Activity. A step at which a PAE application connects to external
components or services.

20
u
" Notification. An email notification that is triggered when a user activity is
= E started. The email can serve many purposes. For example, it can inform the
person who started the process or other users of the process’s progress.

To add items to your process map from the Palette, follow these steps:

1. Click the Palette icon in the strip below the menu bar to display the Palette,
if it's not displayed already.

2. Drag an item from the palette to the process map.

For notifications, you must drag the item into the user activity or exit point
that already exists on the process map.

76 Developer’'s Guide

Deleting Items

3. Double-click the item or highlight it and click the Inspector icon.
4. In the Inspector dialog box, define the item’s properties.

You can also right-click the items in the process map or application tree
view. Since notifications do not appear on the process map, you must select
them from the application tree view. For more information on the
properties of specific items, see the section in this chapter for the type of
item you added.

Deleting Items

To delete a process map item, you can do one of the following in the
application tree view or the process map:

= highlight the item and press the Delete key
= right click the item and choose Delete from the menu
= highlight the item from the Edit menu and choose Delete

When you delete an item that is connected to other items by transitions
(actions), you must also delete the transitions. If you attempt to delete an item
with transitions, a dialog box appears asking if you also want to delete the
transitions.

Entry Points

An entry point is a point at which a user can create a process instance. You can
have more than one entry point; for example, if you are designing an
application to create a data sheet, you might have two entry points. One entry
point might be for data sheets for which you have to create art. Another entry
point, later in the process, might be for data sheets for which you already have
art prepared.

Entry points have the following properties:

Name The name of the entry point that appears in Process Builder and Process
Express.

Chapter 4, Designing a Process Map 77

User Activities

Description An optional longer description of the entry point that appears in
Process Express.

Completion Script A script that runs when the step is completed. You must
have already written the completion script you want before filling in this

property.

User Activities

78 Developer’s Guide

A user activity is a task that must be performed by a participant (the assignee)
as part of a process. For example, a manager may have to approve an
employee’s time off. A form associated with the activity enables the assignee to
take the required action so that the process moves to the next step.

User activities have the following properties:

Name The name of the activity that appears in Process Builder, and in Process
Express. Since this name appears on users’ work lists, make it descriptive of the
action they need to take.

Description An optional longer description of the activity that appears in
Process Express.

Allow to Save True/false. When set to true, this option allows users to save a
work item so that they can complete it at a later time. If you set this property to
true, a Save button appears on the work item’s form in Process Express.
Defaults to false

Allow to Add Comment True/false. When you set this option to true, end
users are allowed to add comments to the activity. The comment field appears
automatically on forms presented to users for that activity in Process Express.
The assignee can add comments, which are then displayed in Process Express
as part of the process instance’s history. Defaults to true.

Allow to Delegate True/false. When set to true this option allows users to
delegate a step so that someone else can handle it for them. If a step is
delegated, the person it is delegated to becomes the step assignee, with the
associated access to forms. If you set this property to true, a “Delegate” button
appears on the work item’s form in Process Express. Defaults to false.

User Activities

Assignment Script The script that assigns a user or group of users to a work
item. When a user is assigned a work item, it appears in the user’s work list in
Process Express. See “Setting Activity Assignments” on page 81 for further
details about the script properties. You can use a predefined assignment script
or create your own. If you create your own, the script must already exist before
you can enter it in this property.

Expiration Setter Script The script that sets an expiration date or time for a
work item. See “Setting Activity Expirations” on page 79 for further details
about the script properties. The script must already exist before you can enter it
in this property.

Expiration Handler Script The script that runs when a work item has not
been completed by its expiration date or time. The script must already exist
before you can enter it in this property.

Completion Script A script that runs when the step is completed. The
completion script must already exist before you can enter it in this property.

Exception Manager If an error occurs, the Exception Manager invokes a new
work item for correcting the error. Errors can occur in two cases: if a
completion script returns false, or if a runtime error occurs in a script (for
example, in an assignment, expiration setter, or expiration handler script). See
“Exception Manager” on page 97.

Setting Activity Expirations

When you create a user activity, you can set an expiration date or time for it in
the Expiration Date Selection window, either by specifying an expiration or a
script to set the expiration. To set an expiration, follow these steps:

1. Open the Inspector Window for an activity by double-clicking the activity
or highlighting it and clicking the Inspector icon, or right-click and choose
Properties.

2. From the Expiration Setter Script field, click the right arrow button.

The Expiration Date Selection dialog box appears, as shown in Figure 4.3.

Chapter 4, Designing a Process Map 79

User Activities

80 Developer’s Guide

Figure 4.3 The Expiration Date Selection dialog box

Bl Expiration Date Selection E

Choose an expiration date for the activity

) Mever expire

J Expirein | | =
2 Defined by a script

| =

Replace each parameter with a value or a script, or
enter your own script,

Ok | Revert | Cancel |

3. Click the radio button for the type of expiration you want.

4. Click OK to close the dialog box.

The following options are available:

Never expire The activity never expires. This is the default value.

Expire in The activity expires in a specified amount of time. You set the
number and a unit of measurement (Months, Weeks, Days, Hours, Minutes).

Defined by a script The script that determines when the activity expires. The
product contains no built-in scripts of this type. You can write your own
JavaScript scripts, which will then be available in the drop-down list below the
Defined by a script radio button.

If you need to set parameters for your script, you define them in the last field in
the dialog box. You can give the parameter values, or the names of scripts that
return the value. You can also enter your own script here. Enter your own
script if you want to use a script that you haven't written yet, or if you want to
use a script that is not a expiration setter script (for example, a toolkit script). If
you write your own script, it must follow the conventions for expiration setter
scripts.

User Activities

If you set an expiration time or date, you can also set an Expire Manager Script
for the activity. An Expire Manager script runs when the activity expires. This
script is optional. You must create your own JavaScript script, since none of
these scripts are built-in.

Setting Activity Assignments

You can set a user to be assigned to an activity through an assignment script,
many of which are built into Process Builder. You may need to set up some
groups and roles before you can assign activities. See Chapter 5, “Defining
Groups and Roles,” for more information.

To assign an activity, follow these steps:

1. Right-click the activity in the process map or application tree view and
choose “Set assignee script”. You can also access the property page and
click the Assignment Script field.

The Assignment Selection dialog box appears, as shown in Figure 4.4.

Figure 4.4 The Assignment Selection dialog box

B Assignment Selection []

Choose the activity assignes

4 The creatar

2 Agroup orrole

| =l

) Define by a script

{toManageroRole =

Replace each parameter with a value or a script, or
enter yaur owh script.

totManagerCf =rolename="

OK | Revert | cancel |

Chapter 4, Designing a Process Map 81

User Activities

82 Developer’s Guide

2. Click the radio button beside the type of assignment you want.
3. Click OK to close the dialog box.
There are three ways to specify an assignment:

The creator Assigns this activity to the creator (the person who initiated the
process instance).

A group or arole Select one of the roles or groups in the drop-down list. The
list contains all the default roles and groups, as well as the ones you've created.
If you assign a task to a group, the person in the group who first accepts the
work item in Process Express performs the task. The other members of the
group do not perform the task. If you want to assign a task to every member of
a group for approval, see “Using Parallel Approval” on page 82.

Defined by a script Assigns this activity using a script—either a built-in script
specified in the drop-down list, or a script whose name you specify in the text
field below the radio button.

If you select the “Defined by a script” radio button, you must supply values for
parameters contained in angle brackets. For example, using the assignment
script t oManager O Rol e, you are asked to complete the parameter in
toManagerOfRole("< rol enane>") . You must replace <r ol enanme> with
the field role: for example, toManagerOfRole(“product_mgr”) . You can
also replace parameters with scripts that return the parameter value.

For details on the available assignment scripts you can specify, see “Assignment
Scripts” on page 181.

Using Parallel Approval

Usually only one user is assigned an activity. However, in some cases you
might want to have several users perform the same activity consecutively, for
example, if you want several people to approve a document or action before it
moves on to the next step. To implement an activity of this sort, you use
parallel approval.

You implement parallel approval by creating an activity with specific
assignment and completion scripts, and a data field to store necessary
information.

User Activities

To set up a parallel approval activity, follow these steps:

1.

10.

11.

12.

13.

Create a data field fi el dnane to keep track of who has already performed
the review and who still needs to perform it. This field must be a computed
field with length of 2000.

Add an activity to the process map.

Right-click the activity in the application tree view and choose Properties to
go to the Properties window for this activity (which will be your parallel
approval activity).

Click the arrow on the Assignment Script property to bring up the window
for setting the assignment script.

Choose t oPar al | el Approval from the drop-down list.

Replace the parameters ar rayOf User DNs and f i el dnane with
appropriate values.

Click OK to return to the activity’s Properties window.

Click the arrow on the Completion Script property to bring up the window
for setting the completion script.

From the drop-down list, choose checkPar al | el Appr oval .

Replace the parameters fi el dNane and | abl e St opper Act i on with
appropriate values, as described in the next section.

Click OK.
Fill in any other properties you need to for the activity.

Close the window. Your changes are saved automatically.

From the end user point of view, a parallel approval item is assigned to all
users in the group that need to give approval. If a user starts the work item and
approves it, PAE stores the result in the data field and reassigns the work item
to every user but the user who has approved the work item. This continues
until all users have approved the item, or until one of the users has not

Chapter 4, Designing a Process Map 83

Automated Activities

approved the item. If all users have approved the item, the process continues in
one direction. If one of the users has not approved the item, the process
continues in another direction.

Parallel Approval Completion Script

To use parallel approval, you must use the completion script
checkPar al | el Approval (fi el dNane, | abel OF St opper Acti on) .

This script runs when the parallel approval activity is completed. If any user
chooses the “stopper action” (that is, refuses to approve the item) the
completion script performs the appropriate action. If all users complete the
activity without choosing the “stopper action” (that is, all approve the item) this
script performs the appropriate action.

The parameters are fi el dNane and | abel OF St opper Acti on.

e Thefi el dName is the field that keeps track of who has performed the
approval and who still needs to do so. The field is a computed field of
length 2000 that you have to add to the data dictionary.

e The |l abel OF St opper Act i on is the name of the action or transition that
a user can select that stops the approval.

Automated Activities

84 Developer’s Guide

Automated activities are steps performed by PAE without user intervention,
through one or more JavaScript scripts. Automated activities are triggered as
soon as the process instance reaches the activity, unless the activity is deferred.
If the activity is deferred, it is triggered at its specified date and time.

Automated activities have the following properties:
Name The name of the automated activity that appears in Process Builder.
Description An optional longer description of the activity.

Schedule The schedule for deferred activity. You need to set the Deferred
property to true to use this schedule. You set the schedule property in a pop-
up dialog box, shown in Figure 4.5.

Automated Activities

Figure 4.5 Automated Activity Schedule dialog box
B futomated Activity Schedule []

Setthe schedule for this automated activity.
The farmat is HHMM, using 24-haours clock Separate
multiple times with commas (0620, 2030)

Sunday

Monday

Tuesday

Thursday

Friday

|
|
|
Wednesday |
|
|
|

Saturday

Ok | Revert | cancel |

Enter a time into any of the day fields to have the automated activity run at that
time on that date. Enter times in the 24-hour clock format (for example, 1300
for 1:00 pm To enter more than one time for a day, separate the times with a
comma. If you enter only two digits, Process Builder assumes they are the hour.

Deferred This property specifies if the activity should be performed as soon as
the process reaches the automated activity, or if it should be deferred. If you set
the property to true, the automated activity is deferred to the time you specify
in the Schedule property. If this property is set to False, the automated activity
is performed immediately. The default is false.

Automation Script The script that performs the automated step. The script
must already exist before you can enter it in this property.

Completion Script A script that runs when the step is completed. The script
must already exist before you can enter it in this property. For automated
activities, the step is completed when the automation script has finished
running, so the completion script runs immediately after the automation script.

Chapter 4, Designing a Process Map 85

Subprocesses

An automated activity also has a Transition Order window, where you can
rearrange the possible transitions when there is more than one. You display the
Transition Order window by clicking the Transitions tab in the Inspector
window.

Transitions out of automated activities always default to true, because a true
outcome means the process instance moves on to the transition. When you
have more than one transition out of an automated activity, the activity operates
in the same way as a decision point, which evaluates multiple conditions (for
example, if the price is over $100 or less than or equal to $100) in a specific
order. You set the order in the Transition Order window, by clicking the up
and down arrows. The top condition in the window is evaluated first. PAE uses
the first transition condition that is true to route the process instance.

Exception Manager If an error occurs, the Exception Manager invokes a new
work item for correcting the error. Errors can occur in two cases: if a
completion script returns false, or if a runtime error occurs in a script (for
example, in an assignment, expiration setter, or expiration handler script). See
“Exception Manager” on page 97.

Subprocesses

86 Developer’s Guide

A subprocess is a fully functional process that is called from within another
process. The process that calls the subprocess is considered to be the parent
process and the subprocess is considered to be its child process. A parent
process can have several children processes, each of which is a stand-alone
process complete with entry and exit points.

Subprocesses allow process designers to reuse processes across their
environment. For example, if a bank has many different loan management
processes, all of which require a credit check at a certain point in the process,
each of the loan management processes can use the same credit check
subprocess. Chapter 13, “The Loan Management and Credit History
Applications,” describes the Loan Management sample application and its
subprocess the Credit History application; the two sample applications show
how to use a subprocess in your applications.

Another advantage of subprocesses is that the logic flow of the main process
map may be simpler to follow because a certain portion of its processing is
hidden behind the subprocess icon. For example, in the Loan Management

Subprocesses

sample application, the Check Credit History processing is handled in the
Credit History subprocess and is not exposed in the main Loan Management
process map.

You can use a subprocess in the same way as an automated activity (see
“Automated Activities” on page 84). You can place it anywhere on the process
map, have multiple transitions coming out of it, and place complex scripts
within the subprocess to perform actions that are hidden from the main
process.

A timer agent coordinates how the parent and child process interact together.
The parent process initiates a child process; when the child completes, it sets a
value, wf_observer_url, in a Process database table. This is the URL of the
parent process. A timer agent periodically checks this database table (by
default, every five minutes). If there’s a value in the wf_observer_url field, the
timer agent attempts to connect the child to the parent process. Once the child
successfully connects back to the parent, the value in the database table is set
to null so the timer agent does not attempt to reconnect again.

If there’s a problem in connecting to the child or to the parent, an exception is
thrown and the exception manager allows the administrator to intervene. See
“Exception Manager” on page 97 for more information.

To set up a subprocess, follow these steps:

1. Create a child process.

2. Open the parent process map.

3. Drag a subprocess icon onto the parent process map.
4. Right-click the subprocess icon and choose Properties.

The Subprocess Inspector Window appears, as shown in Figure 4.6.

Chapter 4, Designing a Process Map 87

Subprocesses

88 Developer’s Guide

Figure 4.6 The Inspector Window for a subprocess

Joe Completion Script

B Inspector - Subprocess1
Froperties Transitionsl
MHame Suhprocessi
Description =ho description=
Subprocess Entry 2 3|
El
&5 Subprocess Action v
Wait to complete true bt
¥= Data Mapping i |
F Initiate as (userid) getCreatorlserdd LA
]
4

A Eyvception Manager Default Exception

5. Fill in the properties for the subprocess.

6. Close the window. Your changes are saved automatically.
All subprocesses have the following properties:

Name The name of the subprocess.

Description An optional longer description of the subprocess.

Subprocess Entry The entry point in which the parent process enters the
child process. To enter the subprocess entry:

1. Click the right arrow next to the subprocess icon. The Subprocess Entry
Chooser window appears.

2. Inthe list of applications, click the plus (+) sign of the application you want
to make a subprocess.

Subprocesses

3. Choose an action or an entry point and click OK.

Subprocess Action The action that you follow from the Subprocess Entry
field.

Data Mapping The data that must be mapped between the child and parent
process so that values can be passed easily between them. To define the data

mapping:

1. Click the right arrow in the Data Mapping field. The Data Mapping Setting
window appears.

2. In the Mapping Script column, click the arrow for each row. The Field
Mapping window appears.

3. Enter a static value, select a corresponding field from the parent data
dictionary, or define a script and click OK.

4. When you have mapped all the data fields, click OK.
Initiator User Id The initiator of the subprocess.

You can use a dynamically derived value as the initiator. For example, in a
hiring application that uses a child process to set up a secure 1D card for each
new hire, you identify a different new employee in each instance of the parent
process and you want to use the new user IDs in the child process. In this case,
you use a script to pull the new user ID from the corporate directory.

You can use the App User Id of the parent process as the creator of the child
process. In this case, you leave the Initiator User Id blank because the default is
to use the same user as the creator of the main process.

You can also use a static value as the initiator, which is especially useful when
testing. The sample application, for example, uses a static value (“admin”) to
simplify setting up and deploying the application.

Completion Script The script that runs when the child process is completed.
The script must already exist before you can enter it in this property.

Exception Manager If an error occurs, the Exception Manager invokes a new
work item for correcting the error. Errors can occur in two cases: if a
completion script returns false, or if a runtime error occurs in a script (for
example, in an assignment, expiration setter, or expiration handler script). See
“Exception Manager” on page 97.

Chapter 4, Designing a Process Map 89

Subprocesses

90 Developer’s Guide

Connecting the Parent and Child
Process

When a parent process arrives at a child activity, it tries to connect to the
subprocess and launch it. To do this, the parent process must have a user ID
that can be authenticated with the subprocess.

To connect the parent and child process:

1.

2.

4.

5.

Open the parent process map.

Right-click the application in the application tree view and choose
Properties to go to the Properties window.

In the App User ID field, enter the name of the trusted user that can access
the child process in order to set the initiator of the child process to match
the Initiator User ID in the Subprocess Properties window.

In the App User Password field, enter the user’s password.

Close the window. Your changes are saved automatically.

You may also want to add the App UserlID of the parent process to the trusted
user group of the child process so the parent process can redefine the initiator
of the child process:

1.

2.

Open the child process.

Add a trusted user to the child process. For more information about adding
a trusted user, see “Creating Groups and Roles” on page 114.

Close the window. Your changes are saved automatically.

Custom Activities

Custom Activities

Custom activities are Java classes created by a developer that you can use in
Process Builder applications to perform complex automated tasks, such as
connecting PAE applications to external applications and databases.

Custom activities are similar to automated activities, in that they perform tasks
without user intervention. However, custom activities, because they are Java
classes, can be used for more complicated tasks than the JavaScript scripts of
automated activities.

This section presents an overview of custom activities. For a detailed example,
see Chapter 17, “Writing Custom Activities.”

Using a Custom Activity

After you add a custom activity to the palette, you can use the custom activity
in your process map. To do so, perform these main steps:

1. Drag the custom activity icon from the palette to the process map.

2. Right-click the custom activity icon on the process map and choose
Properties. The Inspector Window appears.

3. Click the Input and Output tabs to make sure the data is mapped correctly
between the custom activity and the application’s fields.

Custom Activity Inspector Window

Figure 4.7 shows the Inspector window for a custom activity when you first
drag the activity to the process map.

Chapter 4, Designing a Process Map 91

Custom Activities

92 Developer’s Guide

Figure 4.7 Custom Activity Inspector

E M. Inspector - Custom Activity1

Properties Transitions]
|
Mame Custam Activityl
Description =ha description=
Custom Activity browse |
Yersion

Implemented By
Schedule
Defarred falze

| f Completion Script

L=lell=

/& Exception Manager Cefault Exception

Note that there are only two tabs in the window: Properties and Transitions.
The Properties tab displays the following properties:

Name The name of the custom activity that appears in Process Builder, and in
Process Express. Since this name appears on users’ work lists, make it
descriptive of the action they need to take.

Description An optional longer description of the activity that appears in
Process Express.

Custom Activity The file that contains the Java class and its xml descriptor.
Use Browse to go to an .xml, .zip, or .jar file to use. After you set this property,
the Inspector window changes to reflect information defined by the custom
activity you selected.

Version The custom activity’s version number.
Implemented By The Java class that implements this custom activity.

Schedule The schedule for deferred activity. You need to set the Deferred
property to true to use this schedule. You set the schedule property in a pop-
up dialog box, shown in Figure 4.8.

Custom Activities

Figure 4.8 Custom Activity Schedule dialog box
B futomated Activity Schedule []

Setthe schedule for this automated activity.
The farmat is HHMM, using 24-haours clock Separate
multiple times with commas (0620, 2030)

Sunday

Monday

Tuesday

Thursday

Friday

|
|
|
Wednesday |
|
|
|

Saturday

Ok | Revert | cancel |

Enter a time into any of the day fields to have the custom activity run at that
time on that date. Enter times in the 24-hour clock format (for example, 1300
for 1:00 pm To enter more than one time for a day, separate the times with a
comma. If you only enter two digits, Process Builder assumes they are the hour.

Deferred This property specifies if the activity should be performed as soon as
the process reaches the custom activity, or if it should be deferred. If you set
the property to true, the custom activity is deferred to the time you specify in
the Schedule property. If this property is set to false (the default), the activity is
performed immediately.

Completion Script A script that runs when the step is completed. The script
must already exist before you supply it as a property. The completion script
runs immediately after the custom activity finishes executing.

Exception Manager If an error occurs, the Exception Manager invokes a new
work item for correcting the error. Errors can occur in two cases: if a
completion script returns false, or if a runtime error occurs in a script (for
example, in an assignment, expiration setter, or expiration handler script). See
“Exception Manager” on page 97.

Chapter 4, Designing a Process Map 93

Custom Activities

94 Developer’s Guide

Inspector Window After Setting a
Custom Activity

Once you set the Custom Activity field, the Inspector window changes. An
example is shown in Figure 4.9:

Figure 4.9 Custom Activity Inspector, after setting the Custom Activity property

e
Froperties Inputl Dutput] Transitinns]
i
E { Marme Custorm Activity1 .
! | Description HelloWwarld - A simple work performer Custam Activity. I
i | Custorn Activity HelloWarld zip brawse |
g I Yersion 1.1
| Implemented By com.netscape.pm.sample Hellowor dPerfarmet
Schedule LJ
Defarrad false =
{ Language English’' " |
#% Completion Script LJ
| i\ Bxception Manager Default Exception i

After setting the custom activity, if an environment parameter is set in the
custom activity file, the parameter appears in the properties window. In Figure
4.9, Language is an environment parameter.

Two new tabs also appear: Input and Output.

The Input tab shows the parameter names in the custom activity’s input
hashtable, and shows how the parameter value is derived. Figure 4.10 shows an
example of the Input tab.

Custom Activities

Figure 4.10The Input tab
B Inspector - Custom1

Froperties Input Dutput]Transitinns]

Fo Claimid getDataclaimid™ A |
x Claim getDataClaim™ .5
Fa ClarifyComments getDatal"ClarifyComments"_ k]

For example, the value for the input parameter cl ai nl d comes from getting
the value in the application’s cl ai ni d data field.

The Output tab shows the mapping between the output parameters in your
custom activity and the data field in your application. Figure 4.11 shows an
example of the Output tab.

Figure 4.11The Output tab

B Inspector - Log Denial E

F‘mpertiesl Input ':"-l'tF‘Utl Transitionsl

Claimld | craimid |

In this example, the value from the output parameter, cl ai il d, is put into the
application’s data field cl ai ni d.

Adding a Custom Palette

If you frequently use custom activities, you can add them to your palette,
thereby giving you easy access to ready-made components.

To add a custom palette, follow these steps:

1. Right click on the Map Palette window and choose “Add custom palette.”

A dialog box appears, as shown in Figure 4.12:

Chapter 4, Designing a Process Map 95

Custom Activities

Figure 4.12New Palette Dialog Box
Hew palette name E{

Enter palette name:

ok | cancel | Help |

2. Enter the name of the palette and click OK

A tab containing the custom palette is added to the Map Palette, as shown
in Figure 4.13.

Figure 4.13Blank custom palette

M. Map Palette [¢]

Acthritiesl Documentation Insurance Paolicy

3. Add an item to the custom palette by right-clicking on the custom palette an
choosing “Add custom activity.”

4. Browse to the .xml, .jar, or .zip file that contains your custom activity.

An icon representing the custom activity appears on the custom palette, as
shown in Figure 4.14.

96 Developer’s Guide

Exception Manager

Figure 4.14Custom palette with custom activity
ML Map Palette

Activitiesl Documentation InSurance Policy

5. To add the custom activity to your application, drag the icon from the
custom palette to the process map.

For information about writing the XML and Java code for a custom activity, see
Chapter 17, “Writing Custom Activities.”

Exception Manager

Exception managers allow users to intervene if errors occur in the application.
You create an exception manager by dragging the exception manager icon to
the process map. Most process map items represent steps in the process and
are connected by transitions. Exception managers, however, are usually placed
off to the side on process maps. They are not connected to other steps; instead,
they are called by activities when an error occurs. You set up which exception
manager is used at each activity using the Exception Manager property in the
activity.

If a problem occurs while the work item is being processed, the exception
manager assigned to that activity is called. The exception manager then
generates a work item based on the exception manager properties. The work
item is assigned to a user by the assignment script. Often the person assigned
the work item is an administrator or the creator of the process instance,
because these people are in a good position to diagnose what went wrong with
the process.

Chapter 4, Designing a Process Map 97

Exception Manager

98 Developer’s Guide

You can attach a notification to the exception manager, which sends mail to the
administrator when an exception is thrown. See “Notifications” on page 104 for
more information.

Default Exception Manager

Every new process automatically has a default exception manager that appears
in the application as soon as you create an activity that requires an exception
manager. When you create new process map items that have Exception
Manager properties, the properties default to the default exception manager.

To see the properties of the default exception manager, right-click the default
exception manager in the application tree view and choose Properties. The
default exception assigns the exception work item to the creator of the process
instance. You can change the properties of the default exception handler, or
you can create your own exception handler.

Creating an Exception Manager

To add your own an exception manager, follow these steps:

1. Drag an exception manager icon from the map palette onto the process
map.

2. Right-click the exception manager icon and choose Properties. Update any
properties as needed.

3. Assign this exception manager to a user activity, custom activity, automated
activity, subprocess activity or end point.

Right-click the activity icon and choose Properties to go to the Properties
window. In the Exception Manager field, choose the exception manager
from the drop-down list.

4. Either create a new form for the exception manager, or use an existing
form. Because exception handlers don’t have transitions, the button names
are assigned automatically: Retry and Continue.

Exception Manager

Retry resubmits the work item where the error occurred. Continue skips the
step in the process instance that caused the error. This option should be
used with caution.

5. Assign the form to the exception manager using the Form Access window.

Exception Manager Properties

All exception managers have the following properties:
Name The name of the exception manager.
Description An optional longer description of the exception manager.

Allow to Save True/false. When set to true, this option allows users to save a
work item so that they can complete it at a later time. If you set this property to
true, a Save button appears on the work item’s in Process Express. Defaults to
false.

Allow to Add Comment True/false. When you set this option to true, end
users are allowed to add comments to the activity. The comment field appears
automatically on forms presented to users for that activity in Process Express.
The assignee can add comments, which are then displayed in Process Express
as part of the process instance’s history. Defaults to true.

Allow to Delegate True/false. When set to true this option allows users to
delegate a step so that someone else can handle it for them. If a step is
delegated, the person it is delegated to becomes the step assignee, with the
associated access to forms. If you set this property to true, a “Delegate” button
appears on the work item’s form in Process Express. Defaults to false.

Assignment Script The script that assigns a user or group of users to a work
item. When a user is assigned a work item, it appears in the user’s work list in
Process Express. You can use a predefined assignment script or create your
own. If you create your own, the script must already exist before you can enter
it in this property. See the programming information in this book for more
information on creating scripts.

Expiration Setter Script The script that sets an expiration date or time for a
work item. See “Setting Activity Expirations” on page 79 for further details
about the script properties. The script must already exist before you can enter it
in this property.

Chapter 4, Designing a Process Map 99

Decision Points

Expiration Handler Script The script that runs when a work item has not
been completed by its expiration date or time. The script must already exist
before you can enter it in this property.

Completion Script A script that runs when the step is completed. The
completion script must already exist before you can enter it in this property.

Decision Points

100 Developer’s Guide

Decision points are places where the process branches into different steps
depending upon conditions. For example, if a price is above a certain amount,
the process might branch to include an approval step that is unnecessary if the
price is below a that amount.

Decision points have the following properties:
Name The name of the decision point that appears in Process Builder.
Description An optional longer description of the decision point.

Completion Script A script that runs when the step is completed. The script
must already exist before you can enter it in this property.

You add possible outcomes to the decision point by adding transitions with
conditions. For example, you could create two transitions, one if the price
stored in the pri ce_fi nal field is over $1000, and another if the price is less
than or equal to $1000. Make sure that all possible outcomes are covered in
your transitions. For example, if you made transitions with the conditions that
the price had to be greater than $1000 or less than $1000, you have not covered
the condition of the price being equal to $1000. If you do not have options that
cover all cases, the transaction rolls back and the user receives an error
message.

Decision points also have a Transition Order window, where you can rearrange
the transitions leading from the decision point. You display the Transition
Order window by clicking the Transitions tab at the top of the Inspector
window. An example from the DataSheet sample application is shown in Figure
4.15:

Split-Join (Parallel Processing)

Figure 4.15The decision point Transition Order window
t
H ‘ML Inspector - VP Approval ?

Prc-p aies Transitions

Tran5|t|on Order

H

i Use the arrow huttons to define the order inwhich to
evaluate transitions. The first transition to return true’
will be used to route the process instance.

E

711 price_final = 1000.00 {pricelndert 000}
5 73. price_final == 1000.00 {priceCver1 000} 1]

4|

The top item in the window is evaluated first, but you can rearrange items by
using the arrow icons. PAE uses the first transition condition that is true to route
the process instance. So for the example above, the process checks first to see
if the price_final field is less than 1000.00. If that is true, the process
continues with that transition. If the pri ce_fi nal field is more than 1000.00,
the first condition is false, so the second condition is now evaluated. If the
second condition is true, the process continues with that transition.

For more information on transitions, see “Transitions” on page 106.

Split-Join (Parallel Processing)

Parallel processing allows a process to branch in two or more directions so that
two or more activities can execute in parallel. In complex processes, you can
nest parallel processes within a larger parallel process. Note that the activities in
the nested process are considered to be part of the nested process, not the
larger process; that is, if you nest process “a” within process “A”, each with its
own pair of split-join icons, the activities in the nested process must progress
from split “a” to join “a” not to join “A.”

Chapter 12, “The Office Setup Application,” describes the Office Setup sample
application, which controls the process of setting up an office for a new
employee. In this sample application, each subtask is grouped into a processing
branch that progresses independently of the other subtasks. For example, the

Chapter 4, Designing a Process Map 101

Split-Join (Parallel Processing)

102 Developer’s Guide

MIS department can set up the phone while the purchasing department is
ordering the computer. Problems completing one task won't affect the progress
of a parallel task.

Properties of a Parallel Process

Parallel processes have the following properties:
Name The name of the split or join.
Description An optional longer description of the split or join.

Completion Script A script that runs when the step is completed. The script
must already exist before you can enter it in this property.

Parallel processing also has evaluation order windows, where you can
rearrange the transitions leading from the split or join icons. You reach the
evaluation order window by clicking the evaluation order tab at the top of the
inspector window. The top item in the evaluation order window is evaluated
first. Rearrange items using the arrow icons.

Adding a Parallel Process

To use parallel processing in your application, follow these steps:
1. Drag a split-join icon onto the process map.
2. Between the split and the join icons, add the desired activities.

3. Drag transitions from the split to the activities. The transitions are similar to
the conditions out of decision points and default to a value of true. For
more information, see “Decision Points” on page 100.

4. You can reorder the evaluation order of the conditions as you would for
conditions out of a decision point. For more information, see “Decision
Points” on page 100.

5. Drag transitions from each of the activities in all branches from a split so
that they eventually end up in the corresponding join.

Split-Join (Parallel Processing)

The rules for using parallel processing activities are as follows:

= A branch (or thread) of activities out of a split must eventually complete in
its corresponding join. Activities that are part of a processing branch out of
a given split must progress through that branch until the corresponding
join.
— They cannot exit out of the processing branch directly to an exit point.

— They cannot transition out of the processing branch to an activity that is
part of another processing branch.

— They cannot transition out of the processing branch to an activity that is
part of a subordinate nested parallel process, which would be therefore
part of another processing branch.

— If they are in a nested parallel process within a larger, higher-level
parallel process, they cannot transition to an activity that is in the
higher-level parallel process.

— They cannot transition back into the split icon that started the
processing branch they are a part of.

— They cannot transition back to the activity that precedes the split icon.

= If you delete a split or a join, the corresponding half icon is also deleted
(you must also delete any transitions in or out of a split or join at the same
time).

= After you deploy an application to test or production, you cannot delete a
split or a join.

<= You cannot loop on a split or a join.

= You can have conditions set on transitions that come out of a join.
However, if the join fails, then the transaction rolls back to the most recent
activity in the process block. Similarly, if no condition out of a split
evaluates to true, then the process rolls back to the most recent activity.

= By default, when you first create a new split or join, the other half icon is
given the same name. You can change this later to display different names.

Chapter 4, Designing a Process Map 103

Notifications

Notifications

104 Developer’s Guide

Notifications are email messages sent when the process reaches an activity. One
use of notifications is to notify the person who needs to perform the next step
in the process. Another use is to give a status (for example, information about
the document’s progress within the process) to the person who created the
document. You can attach notifications only to user activities and end points.

When the end user receives a notification, the title of the notification is the
application’s title field, followed by the priority field. For more information on
these fields, see “The Application Properties Dialog Box” on page 66.

Notification Properties

Notifications have the following properties:
Name The name of the notification that appears in Process Builder.

Description An optional longer description of the notification. For example, it
could describe the step in the application where the notification happens.

Email Address(es) The email address for the notification. This can be a static
email address, but more commonly would be a script that assigns an email
address based on the instance of the process. For example, a script like

emai | O Cr eat or sends a notification to the email address of the person who
created the process instance. If you want to use a static email address, you must
put quotation marks (“) around it. Multiple addresses are separated by
commas.

Content Type The format the email message’s content is in. You can choose
between t ext / ht m (messages sent in HTML format) and t ext / pl ai n
(messages sent in plain text format). If your mail system does not support
HTML mail, choose t ext / pl ai n, or your notifications may not work. In both
cases, the character set is us- asci i .

Email Body The content of the email notification you want to send. If you
enter static text, you must put quotation marks (“ ”) around it. You can also
enter the name of a script that returns the email message string.

Exit Points

Built-in Email Notification Scripts

As shown in Table 4.2, Process Builder provides built-in scripts that you can
use for addressing notifications.

Table 4.2 Built-in Email Scripts

Script Definition

emai | OF Rol e(rol eNane) | Sends email to the user who is performing a field
role for a process instance.
rol eNane is the name of the field role.

emai | OF Assi gnees() Sends email to the user assigned to the process step.

emai | OF Creat or () Sends email to the creator of the process instance.

emai | ByDN(user DN) Sends email to the specified user DN (distinguished
name).

enui | Byl d(user| D) Sends email to the specified user ID

Exit Points

Exit points are steps at which a user can exit a PAE process. An application can
have several exit points. For example, a vacation request process might end
with the vacation being approved or denied.

Exit points have the following properties:
Name The name of the exit point that appears in Process Builder.
Description An optional longer description of the exit point.

Exception Manager If an error occurs, the Exception Manager invokes a new
work item for correcting the error. Errors can occur in two cases: if a
completion script returns false, or if a runtime error occurs in a script (for
example, in an assignment, expiration setter, or expiration handler script). See
“Exception Manager” on page 97.

Chapter 4, Designing a Process Map 105

Transitions

Transitions

Note

Note

106 Developer’s Guide

After you place items from the Palette on your process map, you must connect
them to show how data flows or how actions flow. You connect steps with
transition lines that have directional arrows indicating their destination item.

You cannot use transitions with exception handling. For more information, see
“Exception Manager” on page 97.

Types of Transitions

There are two basic types of transitions:

= regular transitions (which do not depend upon conditions and are
represented on the process map as blue lines)

= conditional transitions (which depend upon conditions and are represented
on the process map as green lines)

Regular transitions originate from activities and do not have a property where
you can set conditions for their use. If you have multiple regular transitions
from an activity, the process branches. The user chooses between transitions
them by selecting a button on a form.

Conditional transitions originate from automated activities and decision points.
They are not executed until a condition is met. If you have multiple conditional
transitions, they are executed based on evaluation order and condition. PAE
evaluates the conditions in the order specified and the first condition of a
transition that it finds to be true is the transition it executes.

In addition to continuing on to the next step in a process, a transition can loop
back to a previous step. To draw a looping transition on a process map, drag
the arrow icon backwards to a previous step. For example, if at one step in a
process a graphic artist produces a graphic, and the next step is manager
review of the graphic, two transitions can lead from the manager's approval
step. The first transition, if the manager approves the graphic, continues to the
next step in the process. The second transition, if the manager does not
approve the graphic, loops back to the previous step so that the graphic artist
works on the graphic again.

Transitions

Adding a Transition

To add a transition, follow these steps:

1. From the arrow just beyond the upper-right edge of an icon on the process
map, drag the arrow to another icon. Do not release the mouse button until
you've moved the arrow to the inside of the destination icon.

An arrow connecting the two steps appears on the process map. The
arrows are blue if they begin in an entry point or activity, green if they
begin in an decision point or automated activity.

2. Give the transition a descriptive name.

This name appears as a button on the form (unless the transition is from an
automated activity or a decision point).

3. Define the transition’s properties in the Inspector Window.

Transition Properties

All transitions have the following properties:

Name The transition’s name is the name of the button on the form for the
activity at from which the transition originates. The name typically describes
something about the activity that is the destination of the transition. For
example, a line that goes from “Create Graphics” to “Review Datasheet” might
be called “Publish for Review” because when the graphics are done, the art
department wants to publish the new datasheet for review.

Description An optional longer description of the transition.

Setting the Property for a Virtual Transition
Transitions that lead from a user activity also have the following property:

Virtual Action If set to true, no button associated with this transition will
appear on the assignee’s HTML form. A common use for a virtual transition is
for activities that expire. If you set up an activity so that it expires after a certain
amount of time, the expiration handler script might use this virtual transition to
advance the process to another step. The advance occurs through JavaScript,

Chapter 4, Designing a Process Map 107

Transitions

108 Developer’s Guide

without the involvement of the assignee. For more information on using
JavaScript to move from one process step to another, see the
noveTo(acti vityNanme) function in Appendix A, “JavaScript API
Reference.”

Setting the Property for a Conditional Transition

Conditional transitions (from automated activities and decision points) also
have the following property:

Condition The condition the activity must meet before executing the
transition. Conditional transitions can be scripts that return true or false (you
can type either the name of the script or type the script itself into the condition
property). Conditions can also be based on values of data fields. For example,
if your condition is that the price field be over 1000, then your condition can be
pri ce>1000, where pri ce is the price field. If the value of the price field is
over 1000, then this condition is true.

The condition defaults to true for automated activities and for custom activities.
If there is more than one condition, you can prioritize the conditions in the
evaluation order window. For more information on prioritizing conditions, see
“Decision Points” on page 100.

Example Using a True/False Field

If you have a field with true and false as its valid values, you can use the field
name as a transition’s condition. An example is shown in Figure 4.16. Suppose
you have a field named exceeds_budget , and the value can be true or false.
In that case, the first condition is “exceeds_budget ,” and the second
condition is “true.”

Figure 4.16Example of condition set to a field

exceedsbudget

@

@

Cver

budget? troe

Transitions

To make sure these conditions are evaluated in the proper order, open the
decision point’s Inspector window and click the Transitions tab. This opens the
Transition Order window, as shown in Figure 4.17.

Figure 4.17Example of the Transition Order window for a decision point

?z. exceeds_budget (exceeds budge
T5 frue (does not exceed budget) 1]

L

L0 [»]

The process evaluates the first condition, “exceeds_budget,” to see if the value
of the field is true or false. If the value of the field is true, then the condition is
true, and the process continues with the “exceeds_budget” transition. If the
value of the exceeds_budget field is false, the process evaluates the next
condition. In this example, the next condition is true. Therefore, its outcome is
always true, but it is evaluated last. A final condition of true works like an “else
statement.” That is, the true condition automatically advances the process if
none of the previous conditions are true.

Chapter 4, Designing a Process Map 109

Transitions

110 Developer’s Guide

Chapter

Defining Groups and Roles

This chapter explains creating groups and roles and defining their properties.

This chapter includes these sections:

Groups and Roles Overview

Creating Groups and Roles

Prioritizing Groups and Roles

Deleting Groups and Roles

Chapter 5, Defining Groups and Roles 111

Groups and Roles Overview

Groups and Roles Overview

112 Developer’s Guide

For a PAE application, user roles and groups determine which users see which
forms and which users perform which tasks. Scripts can also use the groups
and roles. Groups are a collection of users in an application. Roles are the parts
users play in a specific process instance. For example, you could have a group
composed of all employees in the company. If someone in that group submits a
time off request, for that particular process instance that employee has the role
of creator. The creator role is defined automatically when you create a new
application, however, you can create other roles. The user and group
information in the corporate user directory is the source of user information
when you set up groups and roles.

The following types of groups and roles are available:

Application Group A group defined in a particular application that points to
user data in the corporate user directory. The group information is stored in the
configuration directory, and the user information is stored in the corporate user
directory. Because these groups are stored in the configuration directory, you
do not need to have write access to the corporate user directory to create one.
The context of this group is the application, since it cannot be used by other
applications.

Corporate Group A group that points to a group defined for the corporation
in the corporate user directory. The application’s corporate group is exactly the
same as the group in the corporate user directory; when the group in the
corporate user directory is updated, the corporate group automatically uses
those changes. Using corporate groups you can leverage the groups already
defined in the corporate user directory. The context of this group is in the
corporation; it can be used for many things besides applications.

Dynamic Group This group uses a filter to list members in the corporate user
directory that match the attributes in the search filter. Unlike a corporate group,
which is already defined as a group in the corporate user directory, the
dynamic group uses corporate user directory information to create a group
dynamically. This group is defined in the context of the corporation (it changes
based on changes in the corporate user directory) but it also is used only for
the application.

Groups and Roles Overview

Field Role A role represented as a data field. The value of the field varies by
process instance, so the role’s context is the particular process instance. For
example, the creator role (the person who starts a particular process instance)
is a field role. The field role can only be one user; you cannot use a field role to
assign an activity to a group.

Internal Group/Role An internal group or role is defined by default in PAE.
For example, the all group, which represents all users in the corporate user
directory, is an internal group.

There are three high-level steps in creating groups and roles:
1. Choose the type of group or role you want.

You can do this by asking yourself what the context of the group or role is.
Is it just for this application, or is it a group that has corporation-wide
implications?

2. Choose valid users for the group or role.
3. Prioritize all of the groups and roles in an application.

You need to prioritize the groups and roles so that if a user is assigned to
multiple roles, the form access system can determine what precedence to
give each role. For more information, see “Prioritizing Groups and Roles”
on page 128.

Default Groups and Roles

When you create an application, the following groups and roles are created by
default:

all The group of all users in the corporate user directory.
creator The person who initiates a particular process instance.

admin The group of people allowed to administer the application’s process
instances using Process Business Manager. You need to add the names of the
people who can administer the application to the application's default “admin”
group. These people must also belong to the WF Admin Auth ACL for the
Enterprise Servers. Anyone who is allowed to administer by the WF Admin

Chapter 5, Defining Groups and Roles 113

Creating Groups and Roles

Auth ACL can administer the application at the application level, but only users
who belong to the application’s “admin” group can administer the application
at the process instance level.

trusted users A group that can start a subprocess as another user. The parent
process redefines the initiator of the child process. If no one will need to start a
subprocess as someone else, you need not assign anyone to the trusted users

group.

You can customize some aspects of these groups and roles, but you cannot
delete them. If you don’t need them for your particular application (for
example, if your application deals with sensitive information that you do not
want to expose to the “all” group) you don’t need to define forms for particular
groups or roles. See “Setting Access to Forms” on page 172 for more
information.

In addition to the above groups and roles, each application has an assignee
role. It is set for every step in the process in which someone must perform an
action. However, since it is a special role, it doesn’t appear in the application
tree view and you cannot set properties for it. It works in concert with other
groups and roles. For example, a step may be assigned to a group, but the
actual user from that group who performs the task in a particular process
instance is the assignee.

Creating Groups and Roles

114 Developer’s Guide

To begin defining a role or group, follow these steps:
1. From the Insert menu, choose Group & Role.

2. In the Create a New Role or Group dialog box, choose the type of role and
fill in the fields.

See “The Create a New Role or Group Dialog Box” on page 115 for details.
3. Click either the Add button or the “Add & Define” button.

= Click Add & Define if you want to define the new item right away. A
dialog box for the type of group or role you chose (for example, an
application group) appears.

Creating Groups and Roles

= Click Add to define the item later. The Create a New Role or Group
dialog box remains open, and you can add additional items.

4. If you clicked Add & Define, fill in the fields of the next dialog box that

appears.

When you close the dialog box, your changes are saved automatically.

The Create a New Role or Group Dialog

Box

To supply basic information about the role or group you want to create, enter
this information in the “Create a New Role or Group” dialog box, as shown in

Figure 5.1.

Figure 5.1 The Create a New Role or Group dialog box

|
| Create a New Role or Group B

Choose a role or group type :

5 o) & Application group
z D 55 Corporate group
i J % Dynamic group
% J aa Fieldrole
Mame |
Description !
Add | Add&Define | cClose |

Help

Types of Groups and Roles

There are four different types of groups and roles you can create:

Chapter 5, Defining Groups and Roles 115

Creating Groups and Roles

116 Developer’s Guide

Application group A group defined in a particular application that points to
user data in the corporate user directory. The group information is stored in the
configuration directory, and the user information is stored in the corporate user
directory. Because these groups are stored in the configuration directory, you
do not need to have write access to the corporate user directory to create one.
The context of this group is the application. Therefore, this group cannot be
used by other applications.

Corporate group A group that points to a group defined for the corporation
in the corporate user directory. The application’s corporate group is exactly the
same as the group in the corporate user directory; when the group in the
corporate user directory is updated, the corporate group automatically uses
those changes. Using corporate groups you can leverage the groups already
defined in the corporate user directory. The context of this group is in the
corporation; it can be used for many things besides applications.

Dynamic group This group uses a filter to list members in the corporate user
directory that match the attributes in the search filter. Unlike a corporate group,
which is already defined as a group in the corporate user directory, the
dynamic group uses corporate user directory information to create a group
dynamically. This group is defined in the context of the corporation (it changes
based on changes in the corporate user directory) but it also is used only for
the application.

Field role A role represented as a data field. The value of the field varies by
process instance, so the role’s context is the particular process instance. For
example, the creator role (the person who starts a particular process instance)
is a field role. The field role can only be one user; you cannot use a field role to
assign an activity to a group. Because it's related to a datafield, you cannot
create a Field Role if your application has been deployed for testing or
production.

Name Enter the name of the role or group. This field cannot contain the
following characters: quotation marks (*), commas (,), plus signs (+), and
semicolons (;). If you are creating a field role, the name cannot be more than
18 characters long, because the name is also used as the name of the field.

Description An optional longer description of the role or group.

Adding a New Group or Role

To add a new group or role, click either the Add button or the “Add & Define”
button.

Creating Groups and Roles

Use the Add button to add several items in succession, without defining their
properties. Each item will be added to the application tree view, but the “Create
a New Role or Group” dialog box will remain open so that you can add
subsequent items. After adding the desired items, you can define them by
double-clicking them in the application tree view.

Use the “Add & Define” button to add an item and then immediately define it.
Each item is added to the application tree view, but then a new dialog box
appears, depending on the kind of group or role you are adding. One of the
following dialog boxes will appear:

= The Application Group Dialog Box
= The Corporate Group Dialog Box
= The Dynamic Group Dialog Box

« The Field Role Dialog Box

The Application Group Dialog Box

The Application Group dialog box, shown in Figure 5.2, is where you identify
which users are assigned to an application group. For example, if you are
designing a time-off request application and have a role for HR approval, you
could create an application group with the names of everyone in HR who is
allowed to approve a time-off request.

Chapter 5, Defining Groups and Roles 117

Creating Groups and Roles

118 Developer’s Guide

Figure 5.2 The Application Group dialog box with Browse tab

B Inspector Window E

Search Browse l

B 3 aitius corm -~
“[3 Special Users
|pubs =3 Peaple
|puh|ishing department - scarter
tmortis
kvaughan
ahergin
dmiller
dfarmer
lkwinters
trigden
cschrmith
jmiallace
jwalker
el
rdaugherty
jredter
tmason

bhall |

Application Group

Marme

Cescription

Allow cache]

Allow search [

Listofusers : E
& trigden
& pwallace
& tolow

The dialog box contains the following fields, which contain the values you
entered in the Create a New Role or Group dialog box:

Name The name of the group.
Description The group’s description.

Allow cache If checked, allows group information to be cached. You must
also set the User Cache Policy property for the application to All or Members to
enable caching. See “Setting Application Properties” on page 65 for more
information.

Allow search If checked, allows users in this group to search. If you do not
make the group searchable, members of the group will not be able to use the
search functionality to check the status of process instances or to find process
instances related to specific criteria. They can still use the global search,
though. See Chapter 9, “Setting Up Searching,” for more information.

Note

Creating Groups and Roles

List of users The list of people that are part of this group. This list displays the
user RDNs (relative distinguished name) as stored in the corporate user
directory. You can add users to the List of Users from the corporate user
directory list in the right pane. You can use the Search tab in the right pane to
find users, or user the Browse tab to find them.

If no users are appearing in your Browse tab or when you search, make sure
you have set a corporate user directory in the application’s properties.

To see users in the Browse tab, expand the directory and groups by clicking
the expansion icons (plus signs). The first time you click the icons the data
loads from the corporate user directory. After that, a single click reloads cached
data. To reload the information from the corporate user directory, double-click
the directory and groups.

If you use the Browse tab, drag the users to the List of Users.

If you use the Search tab, use the buttons at the bottom of the right pane to add
users to the List of Users. There are also Select All and Deselect All buttons.

To delete a user from the list of users, select the user name in the List of Users
area and click the “X” box above the list.

To use the Search tab to quickly find and add users based on a wildcard
pattern, follow these steps:

1. Click the Search tab, which is shown in Figure 5.3.

Chapter 5, Defining Groups and Roles 119

Creating Groups and Roles

Figure 5.3 The Application Group dialog box with Search tab

Application Group sesrch | Bromss |

Search |j* _&]
Marme Ipuhs 2 1.ajensen (Allison Jensen) =
Description | publishing department -bjablons (Barbara Jablonski)
.bjense (Bjorn Jensen)
Allowe cache _J . bjensen (Barbara Jensen)

Allow search _ _giensen (Gern Jensan

1
2
3
4
4. ejohnsan (Emanuel Johnsan)
B
7. jbourke (Jan Baurke)

8

]

1

List of users ; P . jbrowen (Judy Brown)
& trigden . iburrell (James Burrell)
& fwallace 0. jeampai (Jeffrey Campaigne) 1|
& tolow

Retrieved 1 - 34 matching records.

Records to retrieve |1DDD More

Add SelectAll | Deselect Al |

2. Enter a search pattern (such as j* or *jan*).

This pattern can be for any part of the user’s name, such as first name, last
name, or user ID.

3. Click the Search icon to get a list of all users that match the pattern.

By default, the list displayed is sorted by user RDN (relative distinguished
name). You can specify the sort order in the pr ef er ences. i ni file,
which is located in the bui | der folder. Add the following line to the file:

sortAttribute = attribute
where attribute is any LDAP attribute, such as cn or ui d, that you want to
appear first in each line of the list. For instance, if you entered

sortAttri bute = cn, the common name appears first in each line
displayed.

120 Developer’s Guide

Creating Groups and Roles

The search returns the number of records specified in the “Records to
retrieve” box. By default, the amount of records retrieved is 1000. You can
modify this default in the pr ef er ences. i ni file; add the following line
to the file:

def aul t Sear chSi ze = nunber
where number is the amount of records you want displayed by default.
4. Select one or more users from the list.

To select multiple users, highlight a user and without releasing the mouse
button brag to the last user you want to add, then release.

5. Click Add.

The Corporate Group Dialog Box

The Corporate Group dialog box, shown in Figure 5.4, is where you identify a
corporate user directory group or set of groups as a group in your application.
For example, if you want to have a group called “HR” that consists of all
employees in the HR department, and a group like that already exists in the
corporate user directory, you can create your group quickly by using the
corporate group. Because it is tied to the corporate group, any changes made
to the group in the corporate user directory are reflected in the application.
Also, since the corporate groups are defined outside of applications, you can
use the same group easily for multiple applications.

However, you cannot add or delete users from a corporate group in your
application. You must use the corporate group exactly as it is set up in the
corporate user directory. To manage your corporate directory, use the
administration features of your Directory Server.

Chapter 5, Defining Groups and Roles 121

Creating Groups and Roles

122 Developer’s Guide

Figure 5.4 The Corporate Group dialog box with Browse tab
M Inspector Window

Corporate Group search Brovse

B £F aitius.com
- Special Users

Mame finance
| E-E3 People
Deseription |ﬂnance departrment r—}-EB Groups
-, PD Managers
Allovy cache _ g OA Managers

F:r_l-:-;. HR Managers
F;r_l-i:. Arcounting Managers
El-i'-:. Directary Administratars

Allow search |

ISl B s Pal F-E3 Metscape Servers
& PO Managers [, Adrinistrators
- & admin
- & scarter
- & scarerd

The dialog box contains the following fields:
Name The name of the group.
Description The group’s description.

Allow cache If checked, allows group information to be cached. You must
also set the User Cache Policy property for the application to All or Members to
enable caching. See “Setting Application Properties” on page 65 for more
information.

Allow search If checked, allows users in this group to search. If you do not
make the group searchable, members of the group will not be able to use the
search functionality to check the status of process instances or to find process
instances related to specific criteria. They can still use the global search,
though. See Chapter 9, “Setting Up Searching,” for more information.

Note

Creating Groups and Roles

List of groups The list of groups that are part of this group. You can add a
group or groups from the corporate user directory list in the right pane to the
List of Groups. You can use the Search tab in the right pane to find groups, or
use the Browse tab to find them.

If no users are appearing in your Browse tab or when you search, make sure
you have set a corporate user directory in the application’s properties.

To see users in the Browse tab, expand the directory and groups by clicking
the expansion icons (plus signs). The first time you click the icons the data
loads from the corporate user directory. After that, a single click reloads cached
data. To reload the information from the corporate user directory, double-click
the directory and groups.

If you use the Browse tab, drag the groups to the List of Groups.

If you use the Search tab, use the buttons at the bottom of the right pane to add
groups to the List of groups. There are also Select All and Deselect All buttons.

To delete a group from the List of groups, select the user name and click the
“X” box above the List of groups area.

You can use the Search tab to quickly find and add groups based on a wildcard
pattern. To do this:

1. Click the Search tab, which is shown in Figure 5.5.

Chapter 5, Defining Groups and Roles 123

124 Developer’s Guide

Creating Groups and Roles

Figure 5.5 The Corporate Group dialog box with Search tab

M Inspector Window

Corporate Group

Marme |ﬂnance
Deseription |ﬂnance departrment
Allow cache |

Allow search |

List of groups E

& PO Managers

Search Brouusel

Search |af)
ITI:.Accuunting Managers

iz admin

& sdrmin

s Administrators

Retrieved 1 - 4 matching records.,

1000 | More |

Add SelectAll | Deselectal |

Recards to retrieve

2. Enter a search pattern (such as a* or *adm®).

3. Click the Search icon to get a list of all users that match the pattern.

By default, the list displayed is sorted by user RDN (relative distinguished
name). You can specify the sort order in the pr ef erences. i ni file,
which is located in the bui | der folder. Add the following line to the file:

sortAttribute = attribute

where attribute is any LDAP attribute, such as cn or ui d, that you want to
appear first in each line of the list. For instance, if you entered
sortAttri bute = cn, the common name appears first in each line

displayed.

The search returns the number of records specified in the “Records to
retrieve” box. By default, the amount of records retrieved is 1000. You can
modify this default in the pr ef er ences. i ni file; add the following line

to the file:

Creating Groups and Roles

def aul t SearchSi ze = nunber

where number is an integer number of records you want displayed by

default.

4. Select one or more groups from the list.

To select multiple users, highlight a user and without releasing the mouse
button brag to the last user you want to add, then release.

5. Click Add.

The Dynamic Group Dialog Box

The Dynamic Group dialog box, shown in Figure 5.6, is where you define
groups that are created dynamically. The application searches the corporate
user directory using an LDAP filter, letting you take advantage of attributes in
the corporate user directory.

Figure 5.6 The Dynamic Group dialog box

M Inspector Window

Mame

Deseription
Allow cache

Allow search

LDAP Filter

Dynamic Group

|users_w
|usersW
divenname=winstan Show Members

& 1 wehurchill dvinstan Churchill 3

Retrieved 1 matching record

Records to retrieve |1IZIDD tdare

Chapter 5, Defining Groups and Roles 125

Creating Groups and Roles

126 Developer’s Guide

The dialog box contains the following fields:
Name The name of the group.
Description The group’s description.

Allow cache If checked, allows group information to be cached. You must
also set the User Cache Policy property for the application to All or Members to
enable caching. See “Setting Application Properties” on page 65 for more
information.

Allow search If checked, allows users in this group to search. If you do not
make the group searchable, members of the group will not be able to use the
search functionality to check the status of process instances or to find process
instances related to specific criteria. They can still use the global search,
though. See Chapter 9, “Setting Up Searching,” for more information.

LDAP Filter Enter an LDAP filter and click Show Members to see a list of
matches. You do not need to use the Show Members button, but it shows you
what your filter fins. Process Builder does not check that the filter you enter is
valid. If, after entering the filter string, nothing appears when you click Show
Members, either your filter is invalid or it is a valid filter but there are no results
that meet the criteria.

A search filter lets you search for an attribute in the corporate user directory.

Here are a few sample searches you might use in this field:

e manager=uid=smith*
Searches for all users whose manager’s user ID is smith* This syntax only
works if the corporate user directory is set up to with the user ID as the
RDN's first attribute. If the common name is first, the filter is
manager=cn=smith*

« DepartmentNumber=444
Searches for users whose department number is 444

e (&(manager=uid=smith*)(employeetype=employee*))

Searches for people whose manager’s user ID is smith* and whose
employee type is employee. The ampersand character (&) is the and
operator.

* (l[(manager=uid=smith*)(manager=uid=jones*))

Creating Groups and Roles

Searches for people whose managers are either smith* or jones*. The pipe
(]) character is the or operator.

* (&(givenname>=j*)(givenname<=0*))
Searches for people whose names begin with j, k, I, m, n, and o. The less
than (<) and greater than or equal to (<=) characters specify the range.

For more information on LDAP filters, see the Netscape Directory Server
Administrator’s Guide.

Records to retrieve The search returns the number of records specified in the
“Records to retrieve” box. To obtain the next specified number of records, you
click the More button. By default, the amount of records to retrieve is 1000.
You can modify this default in the pr ef er ences. i ni file, which is located in
the bui | der folder. To modify this value, add this line to the file:

def aul t Sear chSi ze = nunber

where number is the amount of records you want displayed by default.

The Field Role Dialog Box

A field role is a role represented as a data field. For a particular process
instance, the application uses the value in the data field to determine the user
associated with the field role. When you create a field role, Process Builder
automatically creates a data field to store the user role.

A field role can be used in an application in either of two ways:

= You can have the end user select a user for the role through the userpicker
widget on a form.

= You can set the field role using the functions set Rol eByl d or
set Rol eByDN.

Figure 5.7 shows the Field Role dialog box:

Chapter 5, Defining Groups and Roles 127

Prioritizing Groups and Roles

Figure 5.7 The Field Role dialog box
B Inspector Window E

Field Based Role

Mame Iartist

Description |graphic artist

Mappedtofiald |artist

The dialog box contains the following fields:

Name The name of the role. This name also becomes the name of the mapped
field. The value of this property must be unique among the groups, roles, and
data fields that are defined within a given application.

The name can contain only alphanumeric characters with no spaces. It cannot
be longer than 18 characters. It's best to use all lower case, and use the
underscore character () as a separator. Also, do not use a hame that is a
reserved SQL keyword (for example, select, integer, etc.), or the LiveWire
reserved words project, request, server, and client.

Description The role’s description.

Mapped to field The database field to which you are mapping this role. This
field is created automatically, and has the same name as the role. It has the
class ID TextField.

Prioritizing Groups and Roles

128 Developer’s Guide

After setting up your groups and roles, you can prioritize them. Usually they are
prioritized from most specific to most general. A user can belong to more than
one group or role in the same application. Therefore, the priorities determine
which forms the user gets.

Prioritizing Groups and Roles

The priority you set for Groups and Roles determines what order they appear
in the Form Access window. See “Setting Access to Forms” on page 172 for
more information. To set the order, perform the following steps:

1. In the application tree view, double-click the Groups and Roles folder.
The Inspector window appears.
2. In the Inspector window, click the Transitions tab.

You see all the groups and roles listed, as shown in Figure 5.8:

Figure 5.8 Group and Role Order window

[N Inspector - GroupDictionary E

Properties Transitions

Group and Role Order

i Llze the arrow buttons to specify the arder of groups and rmles in the
Form Access window,

» assighes

creatar

admin ﬂ
mls Dept

Furchasing
Admin Assistant

all ﬂ

:!' :E' :!' :E' ;!' "[35

The assi gnee role is always at the top of the list, and the al | role is at
the bottom. You cannot change the priorities for these two.

3. To change the priority of a group or role, select it.

4. Click the Up and Down arrows to move the groups and roles. Items at the
top of the list have the highest priority.

For example, a user who belongs to both the HR Dept group and the
Manager group in the example above gets the form for the HR Dept if it
exists. If not, then the user gets the form for the Manager group. If that form
doesn't exist, then the user gets the form for “all.”

Chapter 5, Defining Groups and Roles 129

Deleting Groups and Roles

5. Close the window when you're done. Your changes are saved
automatically.

The order you set in this window shows up in the Form Access window for
forms.

Deleting Groups and Roles

130 Developer’s Guide

To delete a group or role, follow these steps:
1. In the application tree view, select the group or role.
2. Right-click and choose Delete, or choose Delete from the File menu.

After deleting a field role, you must also delete the corresponding field.
However, you cannot delete a field if you have already deployed your
application to the Production stage.

Chapter

Defining Data Fields

This chapter explains how to create data fields for an application and describes
the classes of data fields that are available to you.

This chapter includes these sections:

Data Field Overview

Creating a Data Field

= Setting Field Properties

= Custom Data Fields with Predefined Class 1Ds
= Custom Data Fields with Your Own Class ID
= Predefined Data Fields

= Deleting Data Fields

= Setting Up the Content Store

Chapter 6, Defining Data Fields 131

Data Field Overview

Data Field Overview

Note

The application’s data dictionary contains all the data fields that are used by the
application and stored in the database. Once you've defined your process map
and groups and roles, you start defining the information that is captured and
routed throughout the application. If you have a process that currently uses
paper forms, a good start is to look at the information gathered on those forms.

A data field can be a structured field in a database, a document, or a file. The
data dictionary contains all fields used by an application, regardless of which
users see them at which steps in the process.

A field defines how the user interacts with the data (the class), and how the
data is stored in the system (the type). Process Builder has some predefined
field class IDs, but you can also create your own to extend the field framework.

If you are using subprocesses or custom activity you may need to map the data
between the parent and child process. See “Subprocesses” on page 86 and
“Custom Activities” on page 91 for more information.

Creating a Data Field

132 Developer’s Guide

To add a field to the data dictionary, you should first ask yourself how the field
interacts with the user (which determines the class) and what kind of
information the field will store (which determines the type).

To define a field, follow these steps:
1. From the Insert menu, choose Data Field.
2. Fill out the fields in the Create a New Data Field dialog box.

Each data field must have a unique name. The steps are described briefly
below; see “The Create a New Data Field Dialog Box” on page 133 for more
information.

3. Add a new data field using one of these options:

= Add a custom data field from predefined classes. Click the radio button
Custom Data Field and choose a Class ID from the drop-down list.

Creating a Data Field

= Add a custom data field from a class you create yourself. Click Add New
Class, browse to the .zip or .jar file that contains the class you created,
and click Open. The class appears in the drop-down list. For
information on writing a custom field, see Chapter 18, “Writing Custom
Fields.”

= Add a predefined data field from a template. Click the radio button
Predefined Data Field and choose a predefined type from the drop-
down list.

4. Choose a class ID or template.
5. Click either the Add button or the “Add & Define” button.

= Click Add & Define if you want to define the new item right away. The
Inspector window appears for the data field you added.

= Click Add to define the item later. The Create a New Data Field dialog
box remains open, and you can add more items.

6. If you clicked Add & Define, define the properties in the Inspector window
that appears.

When you close the window, your changes are saved automatically.

The new data field is now listed in the Data Dictionary folder in the application
tree view.

The Create a New Data Field Dialog Box

The fields you fill out in this dialog box (see Figure 6.1) depend upon whether
you are creating a custom data field or a predefined data field. After you add a
field, you can define its properties in the Inspector window.

Chapter 6, Defining Data Fields 133

Creating a Data Field

134 Developer’s Guide

Figure 6.1 The Create a New Data Field dialog box

E Create a New Data field E

2 Custom data field

Hame icustnmer

Zlass D Texdfield 4 Add Mew Class

4 Predefined data field

Mame ;
Template Address §
Add | Add&Define | Close | Help |

Creating a Custom Data Field
To create a custom data field, enter values for the following fields:

Name of this Field The name of the data field. It is also used to name the
database column that is going to store this field information. The value of this
property should be uniqgue among the data fields that are defined within a
given application.

The name can contain only alphanumeric characters with no spaces. It cannot
be longer than 18 characters. It's best to use all lower case, and use the
underscore character () as a separator. Also, do not use a name that is a
reserved SQL keyword (for example, select, integer, etc.), or the LiveWire
reserved words project, request, server, and client, or the word comment.

Class ID The class of the field you are creating. Technically, the class ID is the
Java component that implements the field’s format, but you don'’t need to
understand the Java components unless you want to create your own Class ID.
To add your own class IDs, click the Add New Class button and add your class
to the drop-down list of class IDs. For information on writing a custom field,
see Chapter 18, “Writing Custom Fields.”

Creating a Data Field

Creating a Predefined Data Field
To create a predefined data field, enter values for the following fields:

Name of this Field defines the name of the data field. It is also used to name
the database column that is going to store this field information. The value of
this property should be unique among the data fields that are defined within a
given application.

The name can contain only alphanumeric characters with no spaces. It cannot
be longer than 18 characters. It's best to use all lower case, and use the
underscore character () as a separator. Also, do not use a hame that is a
reserved SQL keyword (for example, select, integer, etc.).

Template A predefined field created with default data that you can modify.
These templates make defining a field easier if you are inserting a field of a
specific type: address, telephone number, or name.

Adding a Data Field

To add a new data field, click either the Add button or the “Add & Define”
button.

Use the Add button to add several items in succession, without defining their
properties. Each item will be added to the application tree view, but the “Create
a New Data Field” dialog box will remain open so that you can add subsequent
items. After adding the desired items, you can set their properties by double-
clicking them in the application tree view.

Use the “Add & Define” button to add an item and then immediately define it.
Each item is added to the application tree view, but the Inspector window also
appears.

Chapter 6, Defining Data Fields 135

Setting Field Properties

Setting Field Properties

136 Developer’s Guide

Data fields are listed in the Data Dictionary folder in the Application Tree View
window. To set or modify field properties, follow these steps:

1. In the application tree view, in the Data Dictionary folder, double-click the
field name, or highlight it and click the Inspector icon.

2. Update the properties.

Some properties are grayed out and you cannot change them. Other
properties contain values in angle brackets (<>). Those values are
placeholder values. Replace the brackets and the values inside them with
your own data.

3. Close the window. Your changes are saved automatically.

The following properties are available for all fields. In addition, fields have
properties determined by their class ID. For more information about those
additional properties, see the documentation for those properties.

Data Type (Required) Defines the data type of the field (how it is stored in the
database). Valid values depend on the Field Class ID and include TEXT,
LONGTEXT, INT, FLOAT, DATE, DATETIME, and FILE. These data types map
directly to the SQL data types with the exception of FILE. For more information,
see your database documentation.

Display Name The name used in Process Express when end users are allowed
to search on a field. Use a name that will be clear and meaningful for the end
user.

Field Class ID (read only) This property describes the format of the data field
as it appears on the form.

Help Message A help message associated with a data field. When users click
the field in a form, this message will appear as text at the bottom of the
browser window (below the scroll bar).

Name (read only) The data field’s name.

Short Description A description of the field. Currently, this property is
unused.

Custom Data Fields with Predefined Class IDs

Custom Data Fields with Predefined Class IDs

Use this option to design your own fields using the class IDs that are
predefined in Process Builder:

= CheckBox

< Computed

= Date

= DateTime

< Digital Signature
= File Attachment
= Java Applet

= Java Bean

« Password

= Radio Buttons

« Select List

= TextArea

« TextField

e URL

= UserPicker Widget

The following sections describes these class IDs in more detail.

CheckBox

Use this class ID to create fields in the form of checkboxes. In addition to the
properties listed in “Setting Field Properties” on page 136, CheckBox fields
have the following properties:

Default Value The default value of the CheckBox field. Valid values are
checked and unchecked.

Label The label that appears to the right of the checkbox. If you would like to
create the label by typing it on the form in the form editor, leave this property
blank. However, any label you type into this property is automatically included
any time you put the field on a form. If you choose to type the label on the
form, you need to type it on each form that uses this field.

Chapter 6, Defining Data Fields 137

Custom Data Fields with Predefined Class IDs

138 Developer’s Guide

On click A script that runs every time the user clicks on a checkbox. The
script is client-side Javascript that is associated with the onClick event handler
of the field.

Computed

This class ID is for fields whose values are computed by the application, not
entered by the users. In addition, users cannot view these fields. If you want
the field to be viewable, use a text field instead.

In addition to the properties listed in “Setting Field Properties” on page 136,
Computed fields have the following properties:

Allow Search Specifies if the field can be used as a search criteria. Valid
values are true or false.

Default Value Defines the default value of the field.

Length A required property that defines the length of the field and the length
of the database column that will be used to store values of that field. It must be
an integer between 0 and 2000. Use a value between 0 and 255 for the TEXT
data type, and between 0 and 2000 for the LONGTEXT data type. If you want
the field to be searchable, use the TEXT type.

Date

This class ID lets the user enter and validate a date.

In addition to the properties listed in “Setting Field Properties” on page 136,
Date fields have the following properties:

Allow Search Specifies if the field can be used as a search criteria. Valid
values are true or false

Date Format Represents the formatting of the date. Valid values are DD/MM/
YYYY or MM/DD/YYYY.

Default Value Defines the default value of the field.

Custom Data Fields with Predefined Class IDs

DateTime

This class ID lets the user enter and validate a date and time.

In addition to the properties listed in “Setting Field Properties” on page 136,
DateTime fields have the following properties:

Allow Search Specifies if the field can be used as a search criteria. Valid
values are true or false

DateTime Format Represents the formatting of the date and time. Valid
values are MM/DD/YYYY HH:MI:SS or YYYY/DD/MM HH:MI:SS. MM is the
month, DD is the day of the month, YYYY is the year. HH is the hour, Ml is the
minutes, and SS is the seconds of the time. Note that the user must put a space
between the date and the time.

Default Value Defines the default value of the field.

Digital Signature

The Digital Signature field is used for signing data. If the user has a certificate,
the data is encrypted. For example, you would want a Digital Signature field if
a Vice President has to approve a price. In this example, the price field is a user
input field that is included in the List of Signed fields for the VP Signature field.
When the VP updates the signature field, all the fields listed in the List of
Signed fields are signed.

A Digital Signature field can be signed only by one person for a process
instance. Once someone signs the field, the next time the field appears, it
shows the name of the person who signed it.

In addition to the properties listed in “Setting Field Properties” on page 136,
Digital Signature fields have the following properties:

List of Signed Fields The list of data fields that require an electronic
signature. Separate fields with a semicolon (;) between them. All fields included
in this list must be on the same form as the Digital Signature field.

Chapter 6, Defining Data Fields 139

Custom Data Fields with Predefined Class IDs

Warning

140 Developer’s Guide

File Attachment

Use the File Attachment class ID when the data field is actually a file you want
users to attach. This data field provides menus in Process Express that allow
end users to upload, download, and view files in a process. Users can use this
field if they are accessing Process Express with Netscape Communicator 4.x, or
Microsoft Internet Explorer 4.x or 5.x.

A File Attachment field appears in the HTML form as a signed applet. This
applet attaches a file to the form. When the end user decides to attach a file to
the form, the user clicks the icon for the applet and the applet uploads the file
to a special location on the Enterprise Server. All files for a process instance are
grouped in the same folder so you can locate and manage them easily.

You specify this location in the URL property of the Content Store. See “Setting
Up the Content Store” on page 156 for more information. You specify what
kind of file is uploaded in the data field’s File Name property. For each kind of
file you want users to be able to attach, you must create a separate data field.

Usage Tips for File Attachments

If you want to use file attachments with Secure Sockets Layer (SSL), your server
must be SSL-enabled. To use SSL, end users must use Netscape Communicator
to access Process Express. For information on how to enable SSL on your
server, see the Enterprise Server Administrator’s Guide.

If you have Netscape Application Server installed on the same system as
Process Express, you will not be able to use Netscape Communicator with file
attachments. To avoid this situation, you can install NAS and Process Express
on different systems, or you can use Microsoft Internet Explorer to access
Process Express.

You must have the Web Publisher or Remote File Manipulation turned on in
your Enterprise Server in order to use file attachments.

You cannot use the Web Publisher’s access control functions for Enterprise
Servers version 3.5 or earlier. As a result, any user who knows a file’s URL can
access, read, and modify the content of a file that is stored on Enterprise Server
3.5 or earlier.

Custom Data Fields with Predefined Class IDs

File Attachment Properties

In addition to the properties listed in “Setting Field Properties” on page 136,
File Attachment fields have the following properties:

Alignment Defines the alignment of the file representation in the HTML form.
Valid values are: CENTER, TEXTTOP, ABSCENTER, ABSBOTTOM. These
position the file representation in the HTML form as centered, aligned with the
top of the tallest text on the line, aligned with the center of the text, and
aligned with the bottom of the text. The text may be moved to accommodate
the alignment. Only one line of text is aligned with the data field. Subsequent
lines of text appear below the data field. If no alignment value is specified, the
alignment is handled by the browser.

Background Color The background color for the data field display area.
Specify an HTML color code in the format #RRGGBB. For example, for pure
blue, specify #0000FF. For more information about specifying colors with this
format, see the “Color Units” chapter in the HTML Tag Reference at:
http://devel oper. net scape. com docs/ manual s/ ht m gui d/ i ndex. ht m

Border Width The thickness of the border to draw around the data field
display area in pixels.

Debug Mode If this is set to true, the data field displays debug information in
the browser's Java console.

Display Height The height in pixels of the data field display area. If you
change this height, the size of the icon in the data field does not change. The
display area gets more or less background space around the icon.

Display Width The width in pixels of the data field display area. If you
change this width, the size of the icon in the data field does not change. The
display area gets more or less background space around the icon. The optimal
width is 100 pixels, but this depends on the size of the font and the value of the
File name property.

File Name The file name which is displayed under the data field as a label in
the HTML page. The extension of the File Name determines what kind of file
can be uploaded via this file attachment data field. For example, if the File
Name is attachment.html, then the data field can handle HTML files. If it is
attachment.gif, then the data field can handle GIF files.

Font Name The font used for all text in the data field display area and also for
the menu associated with the data field in Process Express.

Chapter 6, Defining Data Fields 141

Custom Data Fields with Predefined Class IDs

142 Developer’s Guide

Font Size The font size used for all text in the data field display area and also
for the menu associated with the data field in Process Express.

Foreground Color The foreground color for the data field display area. The
foreground color is used for text and other foreground elements. Specify an
HTML color code in the format #RRGGBB. For example, for pure blue, specify
#0000FF. For more information about specifying colors with this format, see the
“Color Units” chapter in the HTML Tag Reference at:

http://devel oper. net scape. com docs/ manual s/ ht m gui d/ i ndex. ht m

Help URL A URL that points to a help page. If this property is defined, then
when the data field is displayed in Process Express it has an additional menu
item, User Help, that displays the page located at the Help URL. This URL must
be an absolute URL. The intention here is that you can provide helpful
information to your end users about the file to attach, such as what it is for or
what kind of file it should be.

Icon Height The default height for the icon used in the data field display area.
You cannot change this value.

Icon Width The default width for the icon used in the data field display area.
You cannot change this value.

MAX URL Length The maximum length of the URL for files that are saved
with this data field. It defaults to 100 characters. This URL is computed from the
content store URL. Hence, this width should be at least (content_store_url) + 32
+ length(File name) characters long.

Java Applet

You can use a Java Applet to represent a specific field. Each applet has a
matching hidden field automatically added in the HTML form. To pass the
values back to PAE, the applet developer must update the form each time the
field gets updated. This happens automatically when a user fills out a form, but
if you update a Java Applet field without having the user fill out the form, you
need to update the form. To do this update, use the provided Java Class,
WFFor m that has a static UpdateField method. You need to package an applet
ina.jar file. Give the applet and the .j ar file the same name. Specify this
name as the value of the Applet Class ID property.

Custom Data Fields with Predefined Class IDs

The properties Field Class ID and Applet Class ID are not the same. The Field
Class ID specifies the format of the field (in this case

com net scape. wor kf | ow. fi el d. Appl et). The Applet Class ID specifies
which applet is used (for example the applet User Pi cker which is a directory
widget).

In addition to the properties listed in “Setting Field Properties” on page 136,
Java Applet fields have the following properties:

Applet Class ID A required field that defines the applet that is going to be
used to represent the field in the form. Applets need to be packaged ina. j ar
file. The Applet Class ID matches the name of the . j ar file.

Additional Parameters This required field defines the additional parameters
of this applet. Format additional parameters in the " <PARAM NAME=. . .
VALUE=. . . >" format. They cannot include any semicolons (;).

Alignment Defines the alignment of the applet in the HTML form. Valid
values are: CENTER, TEXTTOP, ABSCENTER, ABSBOTTOM. These position the
file representation in the HTML form as centered, aligned with the top of the
tallest test on the line, aligned with the center of the text, and aligned with the
bottom of the text. If none is specified, the alignment is handled by the
browser.

Default Value Defines the default value of the field.

Data Length A required property that defines the length of the field and the
length of the database column that will be used to store values of that field.
Note that if this length is longer than the Display Size, some characters may not
be displayed on the form. The Maximum Length must be an integer between 0
and 2000. Use a value between 0 and 255 for the TEXT data type, and between
0 and 2000 for the LONGTEXT data type. If you want the field to be searchable,
use the TEXT type.

Height This required field defines the display height of the applet in the HTML
form.

Width This required field defines the display width of the applet in the HTML
form.

Chapter 6, Defining Data Fields 143

Custom Data Fields with Predefined Class IDs

144 Developer’s Guide

Java Bean

You can use a Java Bean to represent a specific field. The bean needs to be
compliant with the specifications presented in the “Java Objects in Crossware”
white paper, available on the Netscape DevEdge site at the following URL:

http://devel oper. net scape. conml docs/ wpaper s/ i ndex. ht m

In addition to the properties listed in “Setting Field Properties” on page 136,
Java Bean fields have the following properties:

Additional Parameters This required field defines the additional parameters
of this bean. Format additional parameters in the " <PARAM NAME=. . .
VALUE=. . . >" format. They cannot include any semicolons (;).

Alignment Defines the alignment of the bean in the HTML form.

Class ID This required field defines the Java Class that is going to be used to
represent the field in the form. This is the full class name of the bean (including
package information).

Data Length A required property that defines the length of the field and the
length of the database column that will be used to store values of that field.
Note that if this length is longer than the Display Size, some characters may not
be displayed on the form. The Maximum Length must be an integer between 0
and 2000. Use a value between 0 and 255 for the TEXT data type, and between
0 and 2000 for the LONGTEXT data type. If you want the field to be searchable,
use the TEXT type.

Default Value Defines the default value of the field.

Height This required field defines the display height of the bean in the HTML
form.

Width This required field defines the display width of the bean in the HTML
form.

Password

The Password class ID is used for password fields. When the user enters data

into this field, or when it is viewable, the field value is shown as asterisks
(*****).

Custom Data Fields with Predefined Class IDs

In addition to the properties listed in “Setting Field Properties” on page 136,
Password fields have the following properties:

Default Value Defines the default value of the field.

Display Size This required field defines the size of the text field in the HTML
form.

Maximum Length A required property that defines the length of the field and
the length of the database column that will be used to store values of that field.
Note that if this length is longer than the Display Size, some characters may not
be displayed on the form. The Maximum Length must be an integer between 0
and 2000. Use a value between 0 and 255 for the TEXT data type, and between
0 and 2000 for the LONGTEXT data type. If you want the field to be searchable,
use the TEXT type.

On Blur The script that is run every time the field loses the focus within the
HTML form. The script is client-side Javascript that is associated with the onBlur
event handler of the field.

On Focus The script that is run every time the field gets the focus within the
HTML form. The script is client-side Javascript that is associated with the
onFocus event handler of the field.

On Value Change The script that is run every time the value of the field is
changed. The script is client-side Javascript that is associated with the
onChange event handler of the field.

Radio Buttons

The class ID Radio Buttons produces radio buttons, which appear on the end
user forms as the button and the text next to them. This class ID is useful when
the list of values is well known. You may also consider using the class ID Select
List for this kind of information. Select List produces a drop-down list. See
“Select List” on page 146 for more information.

In addition to the properties listed in “Setting Field Properties” on page 136,
Radio Button fields have the following properties:

Allow Search Specifies if the field can be used as a search criteria. Valid
values are true or false.

Chapter 6, Defining Data Fields 145

Custom Data Fields with Predefined Class IDs

146 Developer’s Guide

Default Value Defines the default value of the field.

Maximum Length A required property that defines the length of the field and
the length of the database column that will be used to store values of that field.
It must be an integer between 0 and 2000. Use a value between 0 and 255 for
the TEXT data type, and between 0 and 2000 for the LONGTEXT data type. If
you want the field to be searchable, use the TEXT type.

On Blur The script that is run every time the field loses the focus within the
HTML form. The script is client-side Javascript that is associated with the onBlur
event handler of the field.

On Focus The script that is run every time the field gets the focus within the
HTML form. The script is client-side Javascript that is associated with the
onFocus event handler of the field.

On Value Change The script that is run every time the value of the field is
changed. The script is client-side Javascript that is associated with the
onChange event handler of the field.

Options A required field that represents the radio button options. To create
them, type in all available values separated by semicolons (;). For example, to
have a Yes and No radio buttons, in the Options text field, type:

Yes; No

Do not put spaces before or after the semicolon.

Select List

The Select List class ID produces a drop-down list. It useful when the list of
values are well known. Another good class type for this kind of information is
Radio Buttons, which produces radio buttons. See “Radio Buttons” on page 145
for more information.

In addition to the properties listed in “Setting Field Properties” on page 136,
Select List fields have the following properties:

Allow Search Specifies if the field can be used as a search criteria. Valid
values are true or false.

Default Value Defines the default value of the field.

Custom Data Fields with Predefined Class IDs

Length A required property that defines the length of the field and the length
of the database column that will be used to store values of that field. It must be
an integer between 0 and 2000. Use a value between 0 and 255 for the TEXT
data type, and between 0 and 2000 for the LONGTEXT data type. If you want
the field to be searchable, use the TEXT type.

On Blur The script that is run every time the field loses the focus within the
HTML form. The script is client-side Javascript that is associated with the onBlur
event handler of the field.

On Focus The script that is run every time the field gets the focus within the
HTML form. The script is client-side Javascript that is associated with the
onFocus event handler of the field.

On Value Change The script that is run every time the value of the field is
changed. The script is client-side Javascript that is associated with the
onChange event handler of the field.

Options A required field that represents the values of the options in the drop-
down list. To create the options, type in all values separated by a semicolon (;).
For example, to have a Yes and No be the options in a drop-down list, in the
Options text field type:

Yes; No

Do not put spaces before or after the semicolon.

TextArea

Use this class ID to create large areas where the user can enter text.

In addition to the properties listed in “Setting Field Properties” on page 136,
text area fields have the following properties:

Default Value Defines the default value of the field.

Number of columns This required field defines the number of columns of
this text area. The number of rows multiplied by the number of columns must
be between 0 and 2000 (for LONGTEXT) or 0 and 255 (for TEXT).

Chapter 6, Defining Data Fields 147

Custom Data Fields with Predefined Class IDs

148 Developer’s Guide

Number of rows This required field defines the number of rows of this text
area. The number of rows multiplied by the number of columns must be
between 0 and 2000. The number of rows multiplied by the number of columns
must be between 0 and 255 for the TEXT, and between 0 and 2000 for
LONGTEXT.

On Blur The script that is run every time the field loses the focus within the
HTML form. The script is client-side Javascript that is associated with the onBlur
event handler of the field.

On Focus The script that is run every time the field gets the focus within the
HTML form. The script is client-side Javascript that is associated with the
onFocus event handler of the field.

On Value Change The script that is run every time the value of the field is
changed. The script is client-side Javascript that is associated with the
onChange event handler of the field.

TextField

Use this class ID to create text fields. Use the Date and DateTime class IDs for
dates and times, not TextField. For longer text areas, use the TextArea class ID

In addition to the properties listed in “Setting Field Properties” on page 136,
TextFields have the following properties:

Allow Search Specifies if the field can be used as a search criteria. Valid
values are true or false

Default Value Defines the default value of the field.

Display Size This required property defines the size of the TextField in the
HTML form.

Maximum Length A required property that defines the length of the field and
the length of the database column that will be used to store values of that field.
Note that if this length is longer than the Display Size, some characters may not
be displayed on the form. The Maximum Length must be an integer between 0
and 2000. Use a value between 0 and 255 for the TEXT data type, and between
0 and 2000 for the LONGTEXT data type. If you want the field to be searchable,
use the TEXT type.

Custom Data Fields with Predefined Class IDs

On Blur The script that is run every time the field loses the focus within the
HTML form. The script is client-side Javascript that is associated with the onBlur
event handler of the field.

On Focus The script that is run every time the field gets the focus within the
HTML form. The script is client-side Javascript that is associated with the
onFocus event handler of the field.

On Value Change The script that is run every time the value of the field is
changed. The script is client-side Javascript that is associated with the
onChange event handler of the field.

URL

A URL field is an input field in edit mode and a link in view mode. It is used for
data that corresponds to a URL and is understood by a browser, for example
the protocols http, ftp, Idap, etc.

In addition to the properties listed in “Setting Field Properties” on page 136,
URL fields have the following properties:

Default Value Defines the default value of the field.

Display Size This required field defines the size of the text field in the HTML
form.

Maximum Length A required property that defines the length of the field and
the length of the database column that will be used to store values of that field.
Note that if this length is longer than the Display Size, some characters may not
be displayed on the form. The Maximum Length must be an integer between 0
and 2000. Use a value between 0 and 255 for the TEXT data type, and between
0 and 2000 for the LONGTEXT data type. If you want the field to be searchable,
use the TEXT type.

On Blur The script that is run every time the field loses the focus within the
HTML form. The script is client-side Javascript that is associated with the onBlur
event handler of the field.

On Focus The script that is run every time the field gets the focus within the
HTML form. The script is client-side Javascript that is associated with the
onFocus event handler of the field.

Chapter 6, Defining Data Fields 149

Custom Data Fields with Predefined Class IDs

Note

150 Developer’s Guide

On Value Change The script that is run every time the value of the field is
changed. The script is client-side Javascript that is associated with the
onChange event handler of the field.

Target This required field defines the window in which the URL is open in
view mode. For example, NewWindow opens the URL in a new window. The
Target property takes the same values as the TARGET attribute in HTML.

UserPicker Widget

UserPicker fields appear as an input field and an Address Book button on a
form. The input field is where users enter the user information the field calls
for. By using the Attribute property, you can specify what the user needs to put
in the field (for example, distinguished name, user ID, email address and so
on).

If the user already knows the information they want to put in the field, they
type it in. If they don’'t know exactly what to type, they can search the
corporate user directory by pressing the Address Book button. This button
brings up a screen for searching the corporate user directory. Once the user
finds the information they want, it appears in the input field. That information
is stored in the database with the type of TEXT.

Because the values are automatically stored with a Data Type of TEXT, there is
no Data Type property to specify for this class ID.

In addition to the properties listed in “Setting Field Properties” on page 136,
UserPicker fields have the following properties:

Allow Search Specifies if the field can be used as a search criteria. Valid
values are true or false

Attribute the LDAP attribute you want to search on. Valid values include the
distinguished name (dn), user ID (uid), common name (cn), email address
(mail), department number, and manager.

Default Value Defines the default value of the field.

Custom Data Fields with Your Own Class ID

Maximum Length A required property that defines the length of the field and
the length of the database column that will be used to store values of that field.
Note that if this length is longer than the Display Size, some characters may not
be displayed on the form. The Maximum Length must be an integer between 0
and 255.

Custom Data Fields with Your Own Class ID

If the standard data field classes provided with PAE do not fit your needs, you
can create your own. For example, you can use custom data fields to access
external data sources and to generate dynamic content at entry points. To use
custom data fields you need to write Java classes that implement the field.

For example, you could write a database-driven Select List field such that all the
options available to the end user are extracted from a database using an SQL
query. Another example is a field that gathers database information from an
external source

For more information about implementing your own custom fields, see
Chapter 18, “Writing Custom Fields.”

Predefined Data Fields

The predefined data fields are templates that have been configured with default
data that you can modify after you create the field. For example, the Address
data field is a TextField with a default size. Select a template data field from the
template list box, enter the name of the field, and click Create.

Process Builder contains the following predefined data fields:
e Address
= Name

= Telephone

Chapter 6, Defining Data Fields 151

Predefined Data Fields

152 Developer’s Guide

Address

The predefined data field for addresses has the following predefined property
values. You can change all but the field class ID.

Table 6.1 Predefined address properties

Property Value

Data Type Text

Display Name Address

Field Class ID TextArea
Short Description Some Address

In addition to the properties listed in “Setting Field Properties” on page 136,
Address fields contain the following properties:

Default Value Defines the default value of the field.

Display Size This required field defines the size of the text field in the HTML
form.

Help Message A help message associated with a data field. The user sees it as
text displayed in the bottom of the browser window (below the scroll bar).

Number of columns This required field defines the number of columns of
this text area. The number of rows multiplied by the number of columns must
be between 0 and 2000 (for LONTEXT) or 0-255 (for TEXT).

Number of rows This required field defines the number of rows of this text
area. The number of rows multiplied by the number of columns must be
between 0 and 2000. The number of rows multiplied by the number of columns
must be between 0 and 255 for the TEXT, and between 0 and 2000 for
LONGTEXT.

On Blur The script that is run every time the field loses the focus within the
HTML form. The script is client-side Javascript that is associated with the onBlur
event handler of the field.

Predefined Data Fields

On Focus The script that is run every time the field gets the focus within the
HTML form. The script is client-side Javascript that is associated with the
onFocus event handler of the field.

On Value Change The script that is run every time the value of the field is
changed. The script is client-side Javascript that is associated with the
onChange event handler of the field.

Name

The predefined data field for names has the following predefined property
values. You can change all but the field class ID.

Table 6.2 Predefined name properties

Property Value
Data Type Text
Display Name Name
Field Class ID TextArea
Short Description Some

Name fields contain the following properties:

Allow Search Specifies if the field can be used as a search criteria. Valid
values are true or false

Default Value Defines the default value of the field.

Display Size This required field defines the size of the text field in the HTML
form.

Help Message A help message associated with a data field. The user sees it as
text displayed in the bottom of the browser window (below the scroll bar).

Maximum Length A required property that defines the length of the field and
the length of the database column that will be used to store values of that field.
Note that if this length is longer than the Display Size, some characters may not
be displayed on the form. The Maximum Length must be an integer between 0

Chapter 6, Defining Data Fields 153

Predefined Data Fields

154 Developer’s Guide

and 2000. Use a value between 0 and 255 for the TEXT data type, and between
0 and 2000 for the LONGTEXT data type. If you want the field to be searchable,
use the TEXT type.

On Blur The script that is run every time the field loses the focus within the
HTML form. The script is client-side Javascript that is associated with the onBlur
event handler of the field.

On Focus The script that is run every time the field gets the focus within the
HTML form. The script is client-side Javascript that is associated with the
onFocus event handler of the field.

On Value Change The script that is run every time the value of the field is
changed. The script is client-side Javascript that is associated with the
onChange event handler of the field.

Telephone

The predefined data field for telephone numbers has the following predefined
property values. You can change all but the field class ID.

Table 6.3 Predefined telephone properties

Property Value

Data Type Text

Display Name Telephone
Default Value (XXX) XXX-XXXX
Field Class ID TextField

Telephone fields contain the following additional properties:

Allow Search Specifies if the field can be used as a search criteria. Valid
values are true or false

Display Size This required field defines the size of the text field in the HTML
form.

Help Message A help message associated with a data field. The user sees it as
text displayed in the bottom of the browser window (below the scroll bar).

Deleting Data Fields

Maximum Length A required property that defines the length of the field and
the length of the database column that will be used to store values of that field.
Note that if this length is longer than the Display Size, some characters may not
be displayed on the form. The Maximum Length must be an integer between 0
and 2000. Use a value between 0 and 255 for the TEXT data type, and between
0 and 2000 for the LONGTEXT data type. If you want the field to be searchable,
use the TEXT type.

On Blur The script that is run every time the field loses the focus within the
HTML form. The script is client-side Javascript that is associated with the onBlur
event handler of the field.

On Focus The script that is run every time the field gets the focus within the
HTML form. The script is client-side Javascript that is associated with the
onFocus event handler of the field.

On Value Change The script that is run every time the value of the field is
changed. The script is client-side Javascript that is associated with the
onChange event handler of the field.

Short Description A description of the field.

Deleting Data Fields

To delete a data field, follow these steps:
1. In the application tree view, select the field.
2. Right-click and choose Delete.

If you delete a field that you have already added to forms, you must also edit
the forms to remove the field.

If the field is used by a field role, you must first delete the role, then delete the
field.

Chapter 6, Defining Data Fields 155

Setting Up the Content Store

Setting Up the Content Store

The content store is an HTTP URL where your application stores attached
documents (documents are attached by File Attachment data fields).

Before deploying your application, if you have File Attachment data fields you
need to set properties in your content store.

To set the properties of the content store, follow these steps:

1. In the Application Tree View window, right-click the content store and
choose Properties, or double-click content store, or highlight it and click
Inspect.

2. Edit the properties.
3. Close the window.

The changes are saved automatically.

The Content Store Inspector Window

Figure 6.2 shows the Inspector window for the content store.

Figure 6.2 Inspector window for the content store

Bl Inspector Window
Properties

Mame ContentStore

Description =Initialize your description=

LIRL hitp:fannh.mcom.comidocs

Fublic User admin

Fuhlic Passwiord R

Name The name of the content store. You cannot change this property.

Description The description of the content store. This field does not appear
in Process Express or Process Administrator.

156 Developer’s Guide

Warning

Setting Up the Content Store

URL The URL to the Enterprise Server document directory where you want to
put the file attachments, such as ht t p: / / ser ver _nane/ st or e. The files for
each process instance will be placed in the folder you specify. If the folder does
not exist, PAE creates it automatically when the application is deployed. Within
the application folder, the documents (numbered by process instances) will be
broken into subfolders, each able to contain a maximum of 64000 documents.
For example, the first 64000 documents for the application go into a folder
named part001, the second 64000 documents go into a folder named part002,
etc.

Public User The Enterprise Server user name used to access the URL where
the file attachments are stored. This user must be defined within the Enterprise
Server, and must have all access permissions for the directory where the
documents are stored.

Public Password The password for the Enterprise Server user defined in the
Public User property.

Troubleshooting the Content Store

If users have trouble attaching files in their applications, it could be a problem
with access control on the content store. The Enterprise Server location of the
content store must have its access permissions set so that the public user can
write to it. If you are using a Unix system, you should also check to make sure
that the Unix permissions on the folders are set so that the Enterprise Server
public user has write access. The Enterprise Server error log may also help you
diagnose content store errors.

Because you cannot use the Web Publisher’s access control functions for
Enterprise Servers version 3.5 or earlier, any user who knows a file’s URL can
access, read, and modify the content of the file. However, you can use SSL for
the content store.

Chapter 6, Defining Data Fields 157

Setting Up the Content Store

158 Developer’s Guide

Chapter

Designing Forms

This chapter explains how to define forms in Process Builder, and how to use

the HTML editing features.

This chapter includes these sections:

Planning Forms

Creating Forms

Modifying Forms

Adding a Banner to Forms

Setting Access to Forms

Chapter 7, Designing Forms 159

Planning Forms

Planning Forms

Creating

160 Developer’s Guide

As part of your application, you need to design the forms that the users are
going to use to complete work items or monitor the process. You can assigh a
custom form for each activity or reuse the same form at multiple activities. You
can create separate forms for the people participating in the process and the
people monitoring the process. The forms define the data the users get to see
and how they can interact with the data.

Before you create a form, you need to know the answers to the following
questions:

What data field should be included in the form?

Should the data be editable, viewable, or hidden? If a field is designated as
editable, only the assignee can edit it. It will be viewable to others.

Is the form for editing data or monitoring the process?

How should the form look, and where should the data appear in the form?

Forms

To create a form, perform the following steps:

1.

From the Insert menu, choose Form.

The New HTML Form Wizard appears, as shown in Figure 7.1.

Creating Forms

Figure 7.1 New Form Layout, Step 1

Hew Form Layout - Step 1 of 3 E

The new form wizard helps yau to create a new
form by generating the initial version of that form.
/g
New Form narme:
HTML
Form
Wizzard
Previous | - Next | - Cancel Finish |

2. Enter a name for your form.

Because the form contains HTML, the name typically ends in .html. The
name must not exceed 18 alphanumeric characters, including the file
extension.

3. Click Next.

Page 2 of the wizard appears, as shown in Figure 7.2.

Chapter 7, Designing Forms 161

Creating Forms

Figure 7.2 New Form Layout, Step 2
Hew Form Layout - Step 2 of 3

Each form has a heading and hrief introduction.
Y¥ou can type in an HTML marked up text - it will
he taken by the wizard and placed on the form

/‘:@] exactly as you type it in.

New Title: |
HTML
Introduction:
Form
Wizzard
Previous | MNest | cCancel | Finish |

4. Enter the title that you want to have appear on the top of the form. Enter
some introductory text that explains the form to the users.

5. Click Next.

Page 3 of the wizard appears, as shown in Figure 7.3.

162 Developer’s Guide

Creating Forms

Figure 7.3 New Form Layout, Step 3

Hew Form Layout - Step 3 of 3 E

Each formm may display a humber of the data
element fram your data dictionary. Select the
elements to display in the form.
<
New Data Elerments to place on form:
HTML user_login
Form first_name 1]
Wizzard last_narne
email
4
Previous | - mMext | - Cancel: | = Finish |

6. A list of available fields appears, listed in the order they will appear on the
form. Highlight the field you want to add to the form.

= Click the up and down arrow keys to change the placement order of
fields on the form.

= To select multiple data fields, press and hold the mouse, and drag it
across the additional field names.

7. Click Finish.

The form opens in the form editor for additional editing, as shown in Figure
7.4.

Chapter 7, Designing Forms 163

Creating Forms

164 Developer’s Guide

Figure 7.4 Form created by New Form Layout wizard

B userdata.htm <]
: -
Body [
i_]ser Login
Enter your login information.
user login: |
>

i [Document complete

8. To make additional changes, edit the form using the HTML editor tools

provided in the toolbar.

See “Using the HTML Page Editor Toolbar” on page 166 for an explanation

of these tools.

9. Add more data fields by dragging them from the Data Dictionary (in the

application tree view) to the form.

10. Set the display mode of the field to edit, view, or hidden.

For more information, see “Changing Field Properties for a Form” on

page 169.

11. When you are finished, close the form window and save it.

Modifying Forms

In addition to the information you create for a form, PAE automatically adds
two form elements: a header that describes the work item to the end user, and
an action bar at the end of the form. These elements appear when the user sees
the form in Process Express. The action bar contains two items: the actions
included in the activity, and buttons showing the text of the transitions between
actions.

If you have designated the activity as “Allow to Add Comment,” the form also
displays a text field for users to add their comments to a process instance. The
comments are included in the process instance history.

Modifying Forms

You can modify forms either in Process Builder’s form editing tool or in an
external editor.

Using Process Builder’s Form Editor

To modify a form, double-click its name in the application tree view. The form
appears in the Page Editor. Each form appears in its own Page Editor window.

You can edit the text on the form using the HTML editor toolbar. You can copy
text and fields from one form and paste them in another. You can also use your
right mouse button to bring up a menu of editing commands.

Using an External Editor

You can use an external HTML editor to edit the layout of PAE forms for your
application with the following cautions:

= You must not change any HTML tags that you or your editor do not
understand, and you must leave these tags in all caps: HEAD, BODY,
HTML, and SERVER.

< If you use dynamic HTML or JavaScript in a form created with an external
HTML editor, you may find that Process Builder corrupts them and you
have to use your external editor to clean up the form.

Chapter 7, Designing Forms 165

Modifying Forms

166 Developer’s Guide

The HTML forms for each application are stored in the folder on your local file
system where the application is stored.

To edit PAE forms using an external HTML editor:

1.

Create a form using Process Builder (see “Creating Forms” on page 160) or
use a form already created in an external HTML editor.

Use Process Builder to add data fields. When you are finished, close the
form window and save it.

Open the form in your HTML editor.

Make and save your changes.

Using the HTML Page Editor Toolbar

The HTML Page Editor toolbar, shown in Figure 7.5, lets you edit and format
the HTML forms that you create.

Figure 7.5 HTML Page Editor Toolbar

[riormal]| wnte -l]A A AMIZISEEE E Z |

The drop-down lists and icons assign HTML formatting to the text you choose.
You can point your mouse over a toolbar icon to see a “tool tip,” or brief
description, of these items. In addition, the drop-down lists and icons are
described as follows, from left to right:

The Style drop-down list lets you format text as normal text, HTML
headings, or HTML list items.

The next two drop-down lists let you choose a color and font size for the
text.

The next three icons (letter A) make text bold, italic, or underlined. The
icon following it removes changes to the font size or font style (bold, italic,
or underline).

To the right of the style icons are several formatting icons for creating lists,
changing indentation, and changing alignment.

Modifying Forms

= The last two icons display the form in layout mode (the default) or as HTML
source. Layout mode displays the form approximately as you would see it
in a browser, with all elements laid out. The source view shows the HTML
tags. In this view, you can click a “Reformat Source” button. This makes the
HTML code more readable by automatically inserting line breaks as
appropriate.

Using the Edit, Insert and Format Menus

The menus at the top of Process Builder also contain commands you can use to
modify forms. Since the keyboard shortcuts supported by your operating
system may not be available, these menus provide you with editing
functionality.

Edit

Use the following Edit Menu items to edit your HTML forms.
Cut Cuts an HTML element from a form.

Copy Copies an HTML element on a form.

Paste Pastes an HTML element into a form.

Delete Deletes the highlighted element or text from the form.

Insert HTML Element

The item on this menu that applies to editing HTML page is HTML Element.
You can choose to insert an item from the submenu:

Link Adds an HTML link. To edit the link, use your right mouse button. When
you deploy an application, the structure remains the same as in the local
Applications folder, so you can use relative links.

Image Adds an image to the HTML page. You can double-click on the image
to get a property sheet where you can fill out the image name, source, etc. The
image must already be in the application directory, or you can import it using
the Import command from the file menu. When you deploy an application, the
folder structure remains the same as in the local Applications folder, so you can
use relative paths when you import images.

Chapter 7, Designing Forms 167

Modifying Forms

168 Developer’s Guide

Horizontal Line Adds a horizontal line to the HTML page.

Table (table, row, column, cell) Lets you add a new table (if you are not
editing an existing table), or add a row, column, or cell to an existing table.

Client JavaScript Adds client-side JavaScript to the form. Double-click the
Script icon in the form, or use your right-mouse button to get to the properties
window. In the properties window, click the ellipsis (...) next to the JavaScript
Code property to access the editor window. Type your JavaScript there.
Format

These are standard HTML editing commands. Use them to edit forms.

Size Applies the font size you select to the text.

Style Formats text as either bold, italic, underline, or strikethrough.

Remove all styles Removes size and style formatting from text.

Heading Applies an HTML heading tag to the text.

List Applies an HTML list tag to the text. You can choose either a bulleted or a
numbered list.

Align Aligns text at the left, right, or center of the page.
Decrease Indent Decreases the amount of indention.

Increase Indent Increases the amount of indention.

Using Right-Mouse-Button Menu
Commands

When you edit your HTML forms, your right mouse button lets you perform
commands.

When you right-click on a data field on a form, you get a pop-up menu with
these commands:

Cut Cuts selected object.

Modifying Forms

Copy Copies selected object.
Paste Pastes previously copied or cut object.

Table Displays extra commands for HTML tables, including commands for
cutting, copying, and pasting; for deleting rows, columns and cells; and for
setting table, row, and cell properties.

Data Dictionary Displays the data field’s inspector window so that you can
set any properties. Note that this changes the field’s properties on all forms that
use it. This option is the same as double-clicking the field in the application
tree view.

Properties Accesses properties of the field on the form. It allows you to
change its display mode: EDIT, VIEW, and HIDDEN. It also shows the Field
name and the ID of the component. It lists events and methods associated with
the field.

Changing Field Properties for a Form

After adding a field to a form, you can change the field’s properties on that
form. These changes affect only the field on the form; they do not affect other
occurrences of the field within the application.

To display the field properties for that form, double-click the field on the form.
The Inspector window appears, as shown in Figure 7.6:

Figure 7.6 Field properties on a form
-

5 M. Inspector Window

|

| Properties

i Display Format default

; Display Mode EDIT -
Field Mame dfCuberlo

%
5

Display Format The display format of the field. This property is unused for
built-in fields. For custom fields that you have implemented through your own
Java classes, you can optionally define a display format. Typically, the “default”
setting is sufficient.

Chapter 7, Designing Forms 169

Modifying Forms

170 Developer’s Guide

For information on defining a nondefault display format, see
“IPresentationElement Interface” on page 409.

Display Mode The drop-down list contains the following values: VIEW, EDIT,
and HIDDEN.

= In view mode, a user can see the field but cannot change it.

= In edit mode, users can edit the field if they are the assighee for that work
item. For other users, an edit field appears as a view field.

= In hidden mode, the user cannot see the field. However, the value of the
hidden field can be accessed by other fields in the form or by client-side
JavaScript scripts. One use for the hidden mode is a signature field, which
retrieves the values of the fields that need to be signed and presents these
values to the user for signature.

Field Name The name of the field, which you cannot change.

Hints for Setting Field Properties

As you change the display mode, the form updates itself to show the correct
visual mode for the field. Editable fields are in boxes on a white background,;
view-only and hidden fields are on a gray background.

Note that in Process Builder, hidden fields appear on a form. This lets process
designers change the mode. It is easier to edit a form if you put all hidden
fields at the end of the document. In this way, your view of the form is as close
as possible to the user’s view.

If you define the same field as editable on more than one form, the value that is
stored in the database at the end of the process instance is the last value
entered.

Computed fields are always hidden from the user, even in view mode. If you
want to display a computed field’'s information to the user, use a text field
instead.

Warning

Adding a

Adding a Banner to Forms

Accessing the Data Dictionary

By right-clicking a field in the form, you get a drop-down list that has a Data
Dictionary option. If you choose the Data Dictionary option, you access the
properties of the field.

The properties you edit in the data dictionary are shared by all instances of the
field. If you change the properties of a field, you change all occurrences of a
field on all forms.

Using Scripts to Validate User Input

You can use client-side JavaScript to validate user input on a form as the user
submits it. To validate this input, write a client-side JavaScript script called
onSubmi t For m() and insert it into the form. This script is invoked just before
the form is submitted.

= If the input is not valid, the script returns f al se, and the form input is not
submitted.

< If the input is valid, the script returns t r ue, and the form input is
submitted.

Banner to Forms

When an end user sees a form, a banner is included at the top. To create a
banner, follow these steps:

1. Create a file to be your banner and name it banner . gi f .

2. In Process Builder, open the application to which you want to add the
banner.

3. From the File menu, choose Import.
4. Click Select and navigate to the banner. gi f file to import.

5. Enter “images” in the “into folder” field.

Chapter 7, Designing Forms 171

Setting Access to Forms

6. Click Import.

The banner. gi f file is imported into the images folder. If the images
folder does not already exist, Process Builder creates it.

Note The file must be named banner . gi f and must be in the folder bui | der/
Appl i cations/ app_nanel i mages/ banner. gi f.

Setting Access to Forms

Form Access associates forms with specific users and activities at certain steps
in the process. To set access control for your forms, click Form Access, which is
located near the bottom of the application tree view. As a result, you see the
Form Access window. This window displays form access information in a table,
as shown in Figure 7.7.

Figure 7.7 Form Access window
N Inspector - AccessControl

approvePri
cingWP.htm
|

addArt.htm wiewAWIP bt
| ml

approvePri
cing.html

admin

B) B a B B

newbataShe | wiewtIF.ht | wiewhd P bt | wiewiIP ht published. cancelled.
et.html ml ml ml html html

172 Developer’s Guide

Setting Access to Forms

The row at the top represents steps in the application. The kind of step
involved is indicated by an icon. The column on the side represents the groups
and roles used by the application. The groups and roles are in the priority order
you set when defining groups and roles.

To assign a form to a group or role at a process step, drag a form from the
application tree view into the appropriate square in the process map. If you
drag a form to the title box of an activity (top row), it shows up in every square
in that column that does not already contain a form. If you drag a form to a
role/group name box on the left, the form shows up in every square in the row
that does not already contain a form. You cannot drag a form to a box that has
an X through it.

At each step in the process, the application looks from top to bottom for the
appropriate form to present to the user.

For example, in Figure 7.7, in the “Create New Data Sheet” step, the application
presents the same form to everyone (all), regardless of their role in the process.
Anyone can initiate a datasheet. However, at the “Approve Pricing” step, the
assignee (the product manager who needs to approve the pricing) sees a form
for approving pricing. Everyone else is only able to see a form that gives read-
only information about the work in process.

To remove a form from the table, click the square the form is in and press the
delete key.

Forms for Assignees

The forms for the assignees must contain all the information, both editable and
view-only, that assignees need in order to complete a step. You must have a
special form for the assignee for every activity. Because entry and exit points
do not have work items, they do not require an assignee form. These boxes are
crossed out, indicating that you cannot add a form to them. For example, in
Figure 7.7 you can see that there is a special form for the assignee in all steps
except for entry and exit points.

Chapter 7, Designing Forms 173

Setting Access to Forms

174 Developer’s Guide

Forms for Monitoring the Process

Often people who are not necessarily participants in the process may want to
monitor its progress. In those cases you might create a special form for all
interested parties and assign it to the “all” group, or another group that contains
people interested in the process.

In other cases, you do not want to give a honparticipant view because the
process involves sensitive information. For example, in an employee time off
request application, an employee’s vacation request is private, and should not
be available for others to view. In these cases you restrict access by only
assigning forms for the people who should have access to the information, for
example the assignee and the creator.

Forms for the Administrator

The administrator can perform the following functions on a process instance:

delegate the work item to a different user

extend the expiration date of the work item

change the state of a process instance

move the work item to a different activity

In order to perform these functions, the administrator must belong to an
application’s “admin” group. Usually, you make sure the “admin” group has
access to a form at each step of the process, so that the administrators have
access to the field information they need to make changes to work items. The
form can be either a special form for the “admin” group, or a form for the “all”

group.

Setting Access to an Entry Point

For many processes, all employees in a company need to be able to initiate a
process instance. For example, every employee needs to be able to submit a
time off request. In these cases you set up a form for initiating a process
instance and assign it to the “all” group (as shown in Figure 7.7).

Setting Access to Forms

In other cases you do not want all users to be able to initiate a process instance.
For example, if you had a web site that contained the marketing material for a
product suite, you might want only people from the marketing department to
be able to add documents to the web site. In that case you might make the
form for initiating a process instance available only for a “marketing” group.

Please note that you cannot set a form for the creator at the entry point, since
the creator role is not used until after the entry point.

Chapter 7, Designing Forms 175

Setting Access to Forms

176 Developer’s Guide

Chapter

Using Scripts

This chapter describes how to use the scripts available in Process Builder. It
also briefly discusses creating your own scripts.

This chapter includes these sections:

= Overview of Scripts

Predefined Scripts

Creating Scripts

Using Client-side Scripts

Chapter 8, Using Scripts 177

Overview of Scripts

Overview of Scripts

Note

178 Developer’s Guide

By using scripts, you can customize and configure your application’s activities,
automated activities, entry points, exit points, decision points, and transitions.
For example, scripts let you assign users to activities and set expiration dates of
activities.

Kinds of Scripts

Some scripts are provided with Process Builder, but you can also create your
own. All scripts for an application are stored in the Script Dictionary in the
application tree view. Table 8.1 describes the available scripts. Each type has its
own purpose and its own return value.

Each type of script has its own folder within the Script Dictionary. You can drag
scripts from one folder to another, but you must update the script so that it
returns the data required by the new type before the script will work.

Table 8.1 Available JavaScript scripts

Overview of Scripts

Kind of Script

Purpose

Return Value

Assignment Assigns a user or users to Returns an array containing the

perform a work item. distinguished names (DNs) of
the users to whom this work
item is assigned.

Automation Performs an automated activity. | Returns t r ue if the activity is
It is executed when the process | successful, otherwise returns
reaches the automated activity. | fal se.

Completion Executes when a work item is Returns t r ue if the activity is
completed. successful, otherwise returns

fal se.

Expiration Sets the expiration date of a Returns a Date object.

Setter work item.

Expiration Runs when a task has not been | Returns t r ue if the expiration

Handler completed before its expiration | is successfully handled,

date is reached.

otherwise f al se.

Email Address
in Notification

Specifies an email address to
which a notification will be
sent, either in the To: line or
Cc: line.

Returns a valid email address,
or a comma-delimited list of
valid email addresses. Values
can be passed as a string or as
a JavaScript array.

Email Subject
in Notification

Specifies the subject of an email
message.

Returns a string specifying the
subject of the email message.

Email Body in
Notification

Specifies the body content of
an email message.

Returns a string specifying the
body of the email message.

Decision point
or automation
script condition

Specifies a condition that is
used to determine which path
to follow in the process.

Returns t r ue if the condition is
met otherwise f al se

Initialization
script

Specifies tasks to perform when
the application first starts.

Returns t r ue if the
initialization is successful,
otherwise f al se

Chapter 8, Using Scripts 179

Overview of Scripts

180 Developer’s Guide

Table 8.1 Available JavaScript scripts

Kind of Script

Purpose

Return Value

Shutdown
script

Specifies tasks to perform when
the application shuts down.

Returns t r ue if the shutdown
is successful, otherwise f al se

Toolkit script

A library function. It can be
called by other functions or
used as the value of any script
for which it returns the
appropriate kind of value.

Returns whatever is
appropriate.

When to

Use Scripts

To edit a script, double-click it in the application tree view, or highlight it and
click Inspector. The script text appears in a text edit window. You can also edit
scripts using other tools by opening the files where they are stored on your
local machine (usually in the bui | der/ Appl i cati ons folder).

Table 8.2 shows what kinds of scripts are available for you to use at each

process step.

Table 8.2 Script Types by Process Step

Script Type Entry Point User Activity Automated
Activity

Assignment Available

Automation Available

Expiration setter Available

Expiration handler Available

Completion Available Available Available

Predefined Scripts

About Writing Scripts

You can define your own server-side scripts for any situation where scripts are
used. The scripts must be written in JavaScript. You can write them in the script
editor in Process Builder. Or you can write them in the editor of your choice,
but you must later import them into Process Builder.

Scripts can use any core JavaScript language and objects, such as array or
dat e. Scripts can also use additional objects that are provided by PAE. These
objects include processl nst ance, wor kl t em cor por at eDi rect ory and
cont ent St or e. These scripts cannot use client-side objects such as
docunent and wi ndow.

Predefined Scripts

PAE provides a set of predefined server-side scripts, all of which can be
accessed from Process Builder. The scripts fall under the following categories:

= Assignment Scripts
= Completion Scripts
= Email Notification Scripts

= Initialization and Shutdown Scripts

Assignment Scripts

Table 8.3 lists the predefined assignment scripts that are available in Process
Builder. The documentation below explains what they do, and what parameters
you need to supply when you use them to assign a user to an activity. See
“Setting Activity Assignments” on page 81 for more information on using
assignment scripts in activities. For details on creating assignment scripts, see
Appendix A, “JavaScript APl Reference.”

Chapter 8, Using Scripts 181

Predefined Scripts

Table 8.3 Assignment scripts

Script

Description

randomlroGr oup

This script selects a user randomly from the users that
belong to the group specified by gr oupnane.

The parameter to edit is gr oupnare, which is the name
of the group that is defined in the Groups and Roles
folder. It can be an application group, a corporate group,
or a dynamic group. You can improve performance by
making the group that is passed as a parameter able to
be cached.

t oCr eat or

This script returns a JavaScript array with the
Distinguished Name (DN) of the user who created the
process instance. t oCr eat or is the default assignment
script for a user activity. This script accepts no
parameters.

toG oup

This script returns a JavaScript array of Distinguished
Names (DNs) of all members of the group specified by
the gr oupNane parameter. If this parameter does not
correspond to an actual group in the application’s
Groups and Roles folder, this script returns nul | .

t oManager O Cr eat or

This script assigns the work item to the manager of the
user who created the process instance. The manager
relationship is based on the manager entry of the user in
the corporate user directory. For this script to return the
manager of the user, the manager attribute of the user in
the corporate user directory must contain the
distinguished name (DN) of the manager. No parameters
need to be edited in this script.

t oManager O Rol e

This script assigns the work item to the manager of the
person defined in a field role. The manager relationship
is based on the manager entry of the user in the
corporate user directory. For this script to return the
manager of the user, the manager attribute of the user in
the corporate user directory must contain the
distinguished name (dn) of the manager.

The parameter to edit is r ol enane, which is the name
of the field role defined in Groups and Roles folder.

182 Developer’s Guide

Predefined Scripts

Table 8.3 Assignment scripts

Script Description

t oManager O This script assigns the work item to the manager of the
user specified by its user ID. The manager relationship is
based on the manager entry of the user in the corporate
user directory. For this script to return the manager of
the user, the manager attribute of the corporate user
directory entry of the user must contain the distinguished
name (dn) of the manager.

The parameter to edit is user | D, which is the user ID of
the person whose manager you want to assign an
activity to.

toUserByl d This script assigns the work item to a user based on the
user ID. The parameter to edit is user | D, which is the
user ID of the person to whom you want to assign the
activity.

toUser FronFi el d This script assigns the work item to the user whose user
ID is stored in the dat af i el dname field of the process
instance data. The DN of the user is stored in this field. If
you have a field role, using this script has the same affect
as assigning the work item to the field role on the
Assignment Selection dialog box using the “A group or
role” radio button.

The parameter to edit is dat af i el dnane, which
specifies the name field where the user ID has been
stored. This field has to exist in the application data
dictionary and has to contain the user ID of the user the
work item should be assigned to.

t oPar al | el Appr oval This script assigns the activity to all the people specified
in arrayO User DNs, and tracks if they approve or
reject the item they are approving. You also need to use
the checkPar al | el Approval completion script.

The parameters to edit are arr ayOf User DNs and

Fi el dNanme. The arrayOf User DNs is a JavaScript
array which contains the DNs of the people who need to
perform the approval. The Fi el dNane is the field that
keeps track of who has performed the approval and who
still needs to do so. The field is a computed field of
length 2000 that you have to add to the data dictionary.

Chapter 8, Using Scripts 183

Predefined Scripts

184 Developer’s Guide

Completion Scripts

There is one predefined completion script, checkPar al | el Appr oval . It is
used for parallel approval.

This script runs when the parallel approval activity is completed. If any user
chooses the “stopper action” (that is, refuses to approve the item) the
completion script performs the appropriate action. If all users complete the
activity without choosing the stopper action (that is, all approve the item) this
script performs the appropriate action.

The parameters are Fi el dName and | abel OF St opper Act i on. The

Fi el dNare is the field that keeps track of who has performed the approval
and who still needs to do so. The field is a computed field of length 2000 that
you have to add to the data dictionary. The | abel OF St opper Act i on is the
name of the action that a user can take that stops the approval.

For more information on parallel approval, see “Using Parallel Approval” on
page 82.

Email Notification Scripts

This section describes the predefined email notification scripts:
» defaultNotificationHeader()

» defaultNotificationSubject()

« emailByDN(DN)

* emailByld(userld)

« emailOfAssignees()

* emailOfCreator()

« emailOfRole(role)

For examples of using these scripts, see “Assignment, Completion, and Email
Scripts” on page 456.

Predefined Scripts

defaultNotificationHeader()

Returns the default notification header for a notification message body. The
header contains information about the current work item, such as the current
activity name, the process instance ID, the creation date of the process instance
and the expiration date (if any).

This function may be used as the notification body script by itself, or may be
embedded in your own notification body script. You may also use this
function from a template evaluated using eval uat eTenpl at e(). The
function may only be used successfully from a script associated with a
notification; if used anywhere else, an empty string is returned.

The text returned from this function will depend upon the content-type of the
notification. If the content-type is t ext/ ht m , the header will be a series of
HTML tags; if the content-type is t ext / pl ai n, the header will be plain text.

defaultNotificationSubject()

Returns the default notification subject for the notification subject line. The
subject contains information about the current process instance, such as the
process instance ID the priority and the title string.

This function may be used as the notification subject script by itself, or may be
embedded in your own notification subject script. The function may only be
used successfully from a script associated with a notification; if used anywhere
else, an empty string is returned.

emailByDN(DN)

Returns a string of comma-delimited email addresses for the user with the given
distinguished name (DN). The mai | attribute for the user must contain a valid
email address in the corporate user directory. If the mai | attribute of the user
does not have a value, this function logs an error and returns nul | . This
function is intended for use as a notification script, but can be used anywhere
that a string of email addresses is needed.

Chapter 8, Using Scripts 185

Predefined Scripts

186 Developer’s Guide

emailByld(userld)

Returns a string of comma-delimited email addresses for the user with the given
user ID. The mai | attribute for the user must contain a valid email address in
the corporate user directory. If the mai | attribute of the user does not have a
value, this function logs an error and returns nul | . This function is intended
for use as a notification script, but can be used anywhere that a string of email
addresses is needed.

emailOfAssignees()

Returns a string of comma-delimited email addresses for all the assignees of the
work item. The nai | attribute for each assignee must contain a valid email
address in the corporate user directory. If the mai | attribute is empty for any
assignee, no address is added to the string for that assignee. If no assignee has
a value in their mail attribute, the function logs an error message and returns
nul | . This function is intended for use as a notification script, but can be used
anywhere that a string of email addresses is needed.

emailOfCreator()

Returns a string of the email address of the user who created the process
instance. The user’s mai | attribute must contain a valid email address in the
corporate user directory. If the mai | attribute of the user does not have a
value, this function logs an error and returns nul | . This function is intended
for use as a notification script, but can be used anywhere that a string of email
addresses is needed.

emailOfRole(role)

Returns a string of the email address of the user performing the given role. The
user’s mai | attribute must contain a valid email address in the corporate user
directory. If the mai | attribute of the user does not have a value, this function
logs an error and returns nul | . This function is intended for use as a
notification script, but can be used anywhere that a string of email addresses is
needed.

Creating Scripts

Initialization and Shutdown Scripts

In addition to the predefined assignment scripts, every new application you
create has an initialization script and a shutdown script in the script dictionary.
The initialization script is called when the application is initialized, and the
shutdown script is called when the application stops.

You can use the initialization script to set variables and create objects that are
needed for the duration of the application. You use the shutdown script to
release any resources allocated by the initialization script, and perform any final
cleanup needed.

Creating Scripts

In addition to using the predefined scripts described in this chapter, you can
also create your own scripts.

To create a script, perform the following steps:

1. From the Insert menu, choose Script. The Create a New Script dialog box
appears, as shown in Figure 8.1.

2. Name the script. The nhame must contain only alphanumeric characters.
3. Choose the type of script you want to create:

= Assignment Script

= Automation Script

= Expiration Setter Script

= Expiration Handler Script (also known as an Expire script or an On
Expire script)

= Completion Script

= Toolkit Script

Chapter 8, Using Scripts 187

Creating Scripts

188 Developer’s Guide

Figure 8.1 The Create a New Script dialog box

H Create a new Script 3]

|
|
|

Mame 1|

Script Type assignment script .a‘

) Create fram a blank window

J Create fram a template Function

no ternplate available ..]

W Create from an imported File

Browse

Create | Cancel | Help |

4. Click a radio button to choose how you want to create the script.

“Create from a blank window” lets you type your script into a blank
window, without basing it on an existing script. If you choose this radio
button, go to Step 5.

“Create from a template function” lets you base your script on another
script of the same type which you have previously designated as a
template. If you choose this radio button, choose a template from the
drop-down list, and go to Step 5.

“Create from an imported file” lets you import an existing script from
outside the application, or copy one from within the application. If you
choose a script from outside the application, you can save the script
with the same name. If you choose a script from the current application,
you must give the script a unique name. Click Browse to navigate to the
.] s file you want, and then click Open. Then go to Step 5.

5. Click Create. Your new script appears in the Script Editor Window.

Note

Creating Scripts

The . j s files you import must follow the conventions for . j s files in PAE. The
name of the file must be the same as the name of the script, and each file can
contain only one script.

The Script Editor Window

The script editor window appears when you are creating a new script or editing
an existing script. If you are creating a new script from a blank window, the
script editor appears with comments in the window pertaining to the type of
script you are creating.

The script editor has a text area for typing in your script, and several buttons at
the top, as shown in Figure 8.2.

Figure 8.2 A portion of the script editor window
I Inspector - setRequesterField B

! OK | | Revert | Close | Help | Goto. | Find.. | CheckSyntax |

s‘
%
|
|

f***#*******#*******#*******#*******#*******#*******#*******#*******#*******#* -

Completion Script *

Bdezacription This script is executed when the activity is cowpleted. It
can be used to walidate the input of the user but also force
the action that should be performed.

false if the transition should rollback

*

*

*

*

*

*

* [@returns true if the completion has been successtul.

*

*

* [oontext ProcessInstance (through getProcessInstance())
* WorkItem (through getiWorkItem())

*

* [@services bocess to Corporate Directory (getCorporatelirectory())

hLocess to Content Store (getContentitore())
#****************************#***************************************#*;

= # # 4 # # # # # H# H

function setRequesterField(){
f# Get the process instance.
war pl = getProcessInstance();

f4 Get the distinguished name of the creator of the

HPonrnraeaa dinarance from the TiHirectnrs Seruer

OK Saves changes to the script and closes the window.

Revert Rolls back any changes you've made since the last time you saved the
script. The window remains open.

Close Closes the window without saving changes.

Chapter 8, Using Scripts 189

Creating Scripts

190 Developer’s Guide

Help Launches a web page containing help about this script.
Goto Lets you specify a line number to go to in the script.
Find Lets you specify a text string to search for in the script.

Check Syntax Checks the syntax of the script you've created, and displays an
error message if there is an error.

Setting a Script as a Template

If you want to use a script as the basis of future scripts within the current
application or other applications, you need to designate it as a template. To set
it as a template, follow these steps:

1. In the application tree view, right click on the script name.
2. From the menu, choose “Set as template”.

The script is added to the drop-down list of templates that appears when you
insert a new script. You can only use a template to create the same type of
script. For example, an assignment script template only appears in the drop-
down list if you are creating a new assignment script.

If you choose to create a script based on a template, the new script must have
a different name from the template script.

When inserting a new script, if you choose to define it from a template
function, the body of the template function will be used as the body of the new
script. You can then modify the new script to suit your needs.

For example, suppose you define a function called checkPageCount () that
checks if the value of the pageCount field is a number. Then you set it as a
template function. Next time you need a script to check that the value of a
different field is a number, you could create the new script from the
checkPageCount () template script, and replace references to pageCount
by the desired field.

Using Client-side Scripts

Using Client-side Scripts

Most of this chapter describes server-side scripts that run at various stages in
the life cycle of a process instance. However, you may also need to know
something about client-side scripts. This section describes information that you
may find useful.

Process Builder supports the following client-side scripts:

= Embedded client-side scripts. These are attached by using Process Builder’s
Insert menu, then the HTML element submenu, and then choosing the
Client JavaScript menu command.

= Event handlers for form elements. Event handlers include scripts such as
onVal ueChange and ond i ck.

Client-side scripts run in the web page and can access other objects, such as
form elements, in the current page. Client-side scripts can use the standard
JavaScript language and client-side objects such as f or m wi ndow and
docunent that are available to all client-side JavaScript scripts.

Every web page displaying a work item contains a single form, which client-
side scripts can access using f or ms[0] . For example, the following statement
sets the variable budget to the value currently showing in the form element
named budget :

var budget = docunent.forns[0]. budget. val ue;

Every data field represented on a form has an associated form element of the

same name. For example, if the Aut hor Nane field is represented on the form,
then the form contains a form element whose name is Aut hor Name. In some
cases, this form element is hidden, but in all cases, such a form element exists.

Thus, client-side scripts can access the value of any data field as it is currently
displayed in the form. This is done by accessing the value of a form element
that has the same name as the data field. Client-side scripts cannot get the value
of a data field that is not represented in the form.

For example, the following embedded client-side script displays a message
indicating how much money is left on the budget:

var budget = docunent. forns[0].budget.val ue;
var anount Spent = docunent. forns[0].anpunt Spent. val ue;
var anpunt Left = budget - anopunt Spent;

Chapter 8, Using Scripts 191

Using Client-side Scripts

192 Developer’s Guide

docurment . wri t e(" $" + amountLeft + " </ FONT> ");

Figure 8.3 shows the definition of this embedded script in Process Builder, and
Figure 8.4 shows the results of this embedded script in Process Express.

Figure 8.3 Defining an embedded client-side script in Process Builder

Eody

Your budget is: § Lol

Amount spent so far: § amountSpent

SCRIPT:
Tou have J (= laft on your budgat.

N Inspector Yy Indow E3

Properies

Javascript Code var budget = ducument.furms[ﬂ].bucﬂ

Prope rty Edhor Window E3
var budget = document.forms[0]. budget.value; &=

var amountipent = document forms[0] amountspent.value;
var amountleft = budget - amountpent;
documentwrite("< B> <FONT COLOR="#_CS5EE'= $" +
amountLeft + " < /FONT =< /E> ;

[4]

Ol I RE\.rertI Cancell

Figure 8.4 Results of an embedded script in Process Express

Your budget is: $ 5000
Amount spent so far: § 1678

You have § 83322 laft an your budgst

Using Client-side Scripts

Note that embedded scripts can access only those form elements that precede it
physically in the page, because scripts are executed as the page is laid out. By
contrast, event handlers can access other form elements no matter where they

are in the page.

Chapter 8, Using Scripts 193

Using Client-side Scripts

194 Developer’s Guide

Chapter

Setting Up Searching

If you want end users to be able to search their process instance data, you
need to design the application to enable the search capability.

This chapter includes these sections:
= Types of Searching

= Enabling Searching

Chapter 9, Setting Up Searching 195

Types of Searching

Types of Searching

You can make applications and data searchable if you want to allow end users
to search applications in Process Express. In each application, you can
configure two levels of searching: global searching and application-specific
searching. The search page is similar to the one shown in Figure 9.1.

Figure 9.1 The Process Express Search Page

rocess Express - Netscape

File Edit “iew Go Communicator Help

- - i B!
L work ltem List T New Process %/ Search %

Search for Processes You Initiated

@ Show your last 17 processes
0 Show all your open processes

' Show the processes you initiated between and

(MR dd ey)
Search i

Search for All of an Application’s Processes

Select an application: iDataSheet '1 Search]

Search for a Specific Process

Process ID i _§§Er_C_PLj
Help
| =R= 'Document: Done _ EL A s

In addition, the user can search by their request number, but you do not have
to set up anything in the application to allow that kind of search. It is set up
automatically for every application.

196 Developer’s Guide

Types of Searching

Global Searching

Global searching is always available to users when they search using the
following options:

= the most recent process instances they created
= all the process instances they created that are still open
= all the process instances they created within a date range

Each search option generates a list of process instances that match its search
criteria. Each entry in a list contains a link that displays the process instance
and another link that displays the history of the process instance.

Application-Specific Searching

You can also configure an application so that participants can search for
particular data within it. For example, if you have a data sheet application, you
can configure it so that the user can search all instances of the data sheet
process by product model number.

The PAE software automatically generates a search form for an application. The
search form lets users search for values of fields if you made the fields
searchable when you created the field. For example, if your application
includes nine data fields, but you only made two searchable, the user can
search for the values in those two fields.

The search form generates a list of process instances that match the search
criteria. Each entry in the list contains a link to display the process instance and
a link to the history of the process instance.

Chapter 9, Setting Up Searching 197

Enabling Searching

Enabling Searching

198 Developer’s Guide

To set up searching for an application, you must do the following:
= Set up the appropriate groups to allow members to perform searches.

= Set up forms so that all users for whom you enable searching have forms at
all activities.

= Set the appropriate fields to be searchable.

Allowing a Group to Search

To allow members of a group to perform searches, you must set the group to
allow searching. If you do not allow searching, members of the group will not
be able to use the search functionality to check the status of process instances
or to find process instances related to specific criteria. You can allow searching
for Application, Corporate, and Dynamic groups. If users are members of more
than one group, they can search as long as one of the groups they belong to
allows searching.

To allow members of a group to search, follow these steps:
1. In the application tree view, open the Groups and Roles folder.
2. Double-click a group icon, or highlight the group and click Inspect.

3. In the dialog box for the appropriate group, check the Allow Search
checkbox.

4. Close the dialog box. Your changes are saved automatically.

Setting Up Forms

To allow users to get information about a specific step in a process instance,
they must have a form they can access for that step. For example, if the creator
of a process instance searches for information about it, and the process instance

Enabling Searching

is at a step where there isn’t a form the creator can access, he or she cannot get
more information about the step beyond its listing in the search results. If the
user has a form for that step, the listing has a link to view more information.

One way to make sure that there is always a way for users to see more
information on a process instance is to create forms which give a status of the
process and set them up for the “all” group. However, for sensitive work items,
you might not want to allow all users to see information during the process. In
those cases you would set up forms for users who need to have access to the
data.

If you want users to be able to see more than the search listing in the search
results, follow these steps:

1. In the application tree view, double-click the Form Access icon, or highlight
the icon and click Inspect.

The Form Access window appears.

2. Scan the vertical columns to make sure every user you want to view the
data has a form they can see for every activity.

Note that you do not need to assign a form specifically for every role. For
example, if you have created a form for the “all” role, the creator and other
groups and roles will be able to access that form.

3. If you want to add a form to a column, drag the form from the Application
Tree View window to the appropriate box in the Form Access window.

If the form you need hasn’t been created, you need to create one and come
back to this step. You may have to create a new form if you have not
created an appropriate form already.

4. Close the Form Access window.

Chapter 9, Setting Up Searching 199

Enabling Searching

Note

200 Developer’s Guide

Allowing Searching for Fields

In order for users to be able to use a field as a criterion when they search, you
need to make the field searchable. The following predefined field types can be
made searchable:

Computed

Date

DateTime

Radio Button

Select List

TextField

= UserPicker Widget
To make a field searchable, perform the following steps:

1. In the application tree view, double-click the field you want to make
searchable, or highlight it and click Inspect.

2. In the Inspector window, set the Allow Search property to true.
3. Close the window. Your changes are saved automatically.
If a field is searchable, the field length must not exceed 2000 characters.

If you have created your own field class IDs instead of using the predefined
ones, you must include the Allow Search property in the JSB file.

Chapter

Deploying an Application

This chapter describes how to deploy an application. Deployment is specified
through the Deployment Dialog Box. After you deploy an application and test
it, you'll typically need to change the application and redeploy it.

This chapter describes the following topics:
= Before You Deploy

= Steps for Deploying an Application

= The Deploy Application Dialog Box

= Revising a Deployed Application

= Redeploying an Application

Chapter 10, Deploying an Application 201

Before You Deploy

Before You Deploy

202 Developer’s Guide

Deploying an application makes it available to test and use. However, before
you deploy an application, make sure the following tasks have been
performed:

= Set up and Configure PAE
= Deploy Subprocesses First
= Save the Process Map, If Desired

= Fix Application Errors

Set up and Configure PAE

Before you can deploy an application, you must have all the pieces of PAE
installed and configured, including the corporate user directory, the database,
and Process Administrator. In addition, you must have a cluster set up to
deploy it to. For more information on creating a cluster, see the Administrator’s
Guide.

You must also have your cluster information included in your
preferences.ini file. For more information, see “The preferences.ini File”
on page 31.

Deploy Subprocesses First

If you are using subprocesses, the child process must be deployed before you
use it in a parent process. In this way, all expected components are in place
when you deploy the parent process.

Save the Process Map, If Desired

When an administrator is viewing the Work Items List produced by the Work
Items Statistics page, it's convenient for the administrator to have an image of
the process map. If you want to provide this image, you must save the process

Steps for Deploying an Application

map as a jpeg file before you deploy the application. To save the process map
as a jpeg file, open the process map and choose “Save Process Map to JPEG”
from the Applications menu.

Fix Application Errors

Once you have built an application and filled in the necessary configuration
information, you can begin deploying the application. During the deployment
process, your application syntax is checked. If errors are generated, you must
correct them before you can deploy the application. If only warnings are
generated (and no errors are generated), you are allowed to deploy the
application. However, doing so might lead to problems using the application.

Steps for Deploying an Application

To deploy an application, perform the following steps:

1.

Click Deploy, or open the Application menu and choose Deploy.

If errors are reported, you must fix them first. If no errors are reported, the
Deploy Application dialog box appears. For details about this dialog box,
see “The Deploy Application Dialog Box” on page 206.

From the drop-down menu, select the cluster to which you want to deploy
the application.

If this is the first time you are deploying an application, the Authorization
Required dialog box appears, prompting you to enter a Process Express
username and password.

Enter your PAE administration username and password.

As an alternative, you can enter the username and password of someone
with deployment privileges. By default, any administrator can deploy an
application. A sample entry is shown in Figure 10.1:

Chapter 10, Deploying an Application 203

Steps for Deploying an Application

Figure 10.1The Authorization Required dialog box

Authorization Reguired B

| Process Express

| Username [admin
| Pasgword ; !mw

4. Click OK to close the Authorization Required dialog box.

5. In the Deploy Application dialog box, the database user and database
password fields are filled in automatically. Change them if necessary.

6. Select a stage for deployment. If you are still designing the application, you
typically want to deploy it to Development. If the application is ready for
people to use, deploy it to Production.

7. Choose whether the application is in testing mode or not.

If testing mode is set to true, all work items in the application are assigned
to the creator of the process instance. If set to false, the work items are
assigned to the groups and user roles defined in the application.

8. Click OK.

If deployment succeeds, an Information dialog box appears. A sample is
shown in Figure 10.2:

204 Developer’s Guide

Steps for Deploying an Application

Figure 10.2A successful deployment brings up the Information dialog box
ML Information

Successiul deployment.

or the list of entry points for TimeOffReguest in Process

Go to the Process Express Worklist or the Application List
Express.

ok |

9. From the Information dialog box, you have two main choices:

= Click OK to close the dialog box and resume working in Process
Builder.

= Click one of the highlighted links (Process Express Worklist, Application
List, or the application name) to launch Process Express at a particular
location.

Solaris Only Note: In order for the links to work on Solaris, you must add the following
line in your preferences.ini file:

browser = netscape_root/ netscape -renpote openURL{(0)}

where net scape_r oot is the directory in which your Netscape browser is
installed. Without the previous line, your browser will not open when you
click the links in the Information dialog box.

After you deploy the application, it is available for use.

Chapter 10, Deploying an Application 205

The Deploy Application Dialog Box

The Deploy Application Dialog Box

206 Developer’s Guide

Figure 10.3 shows the Deploy Application dialog box, where you enter
deployment information.

Figure 10.3The Deploy Application dialog box
Deploy Application

Netscape
N Process Builder 4.0

Selectthe deploy cluster;

Stress Cluster{karna.mcorm.com) il
Mame DataSheet
Description This application represents the editing, validation, at
Display Mame DataShest
Datahase Tahle DataSheet_data
Database User stress
Datahase Password o
Deployment Stage DEVELOPMEMNT ¥
Testing Mode true n

Ok | Cancel | Help |

Name The name of the application that appears in the list of applications. You
cannot edit this field.

Description A longer description of the application. This description appears
in Process Express. The user has to have enough information between the
Display Name and the Description to identify the application they want from a
list of applications, so it's important to make these two fields descriptive.

Display Name The longer, more descriptive name displayed by Process
Express. If you are updating an existing application by saving it with a new
application name, you can still keep the same Display Name, so that the name
users see can be the same from version to version of the application.

Revising a Deployed Application

Database Table The table in the database where the data for the application is
stored. This table is created automatically when you deploy the application.
The table name for each application must be unique. This field defaults to the
application name. Because the table name can be no more than 15 characters
long, if your application name is longer, it truncates the application name. This
field is required.

Database User The user name for accessing the database where the
application’s data is stored. This field is required. This user can be your cluster
database user, or you can use a more restrictive application-specific database
user. The default is the cluster database user.

Database Password The password used to access the database. This field is
required. The default is the cluster database user password.

Deployment Stage Indicates whether the application is in Development or in
Production. The deployment stage governs what you can change in the
application. In Development, you can change all application information. In
Production, there are some application changes you are not allowed to make.

Testing Mode This property designates whether the application is in testing
mode or not. If set to true, the application is in testing mode. In testing mode
all work items are assigned to the process initiator. You can deploy in testing
mode in either the Development or Production stage. This field is required.

Revising a Deployed Application

The deployment stage affects the types of revisions you can make to an
application. You can deploy an application either to Development or to
Production:

= Development

When you deploy with the deployment stage set to Development, you can
test the deployed application. After testing, you can change anything about
the application. For example, you can deploy an application, test it, and
decide to add or delete data fields. Because the application is still in
development, PAE assumes that you do not need to preserve data or open
work items. As a result, PAE replaces the whole application when you
redeploy it.

Chapter 10, Deploying an Application 207

Revising a Deployed Application

208 Developer’s Guide

For example, suppose you create some process instances using Process
Express. Later, if you decide to change a data field in Process Builder and
redeploy the application, all existing process instances of that application
will be deleted from the database.

e Production

After you deploy an application with a deployment stage of Production, you
can still change certain application information if you need to. For example,
you can add new activities to an application that is deployed to Production.

Summary of Allowed Revisions

This section lists the different aspects of an application that you can change.
The summary lists are grouped as follows:

= Changes to Activities and Transitions
= Changes to Data Elements

= Changes to Forms, Scripts, and Content Store

Changes to Activities and Transitions

Table 10.1 summarizes the revisions allowed to activities and transitions,
depending on the application’s deployment stage.

Table 10.1 Changes allowed to application’s activities and transitions

Task Development Stage Production Stage
Add activity Allowed Allowed

Add transition Allowed Allowed
Remove activity Allowed Not allowed
Remove transition Allowed Allowed
Rename activity Allowed Not allowed
Rename transition Allowed Allowed
Remove entry or exit point Allowed Allowed

Revising a Deployed Application

Changes to Data Elements

Table 10.2 summarizes the revisions allowed to data elements, depending on
the application’s deployment stage.

Table 10.2 Changes allowed to application’s data elements

Task Development Stage Production Stage

Add data field Allowed Allowed

Remove data field Allowed Not allowed

Rename data field Allowed Not allowed

Change data field type Allowed Not allowed

Change data field size Allowed Not allowed

Change data field properties Allowed Allowed only on the
following properties:
Allow Search
Default Value
Display Name
Description

Help Message

On Blur

On Focus

On Value Change

Changes to Forms, Scripts, and Content Store

Table 10.3 summarizes the changes allowed to forms, scripts, and the content
store in deployed applications. These changes are allowed in both the
development stage and in the production stage.

Chapter 10, Deploying an Application 209

Revising a Deployed Application

Note

210 Developer’s Guide

Table 10.3 Changes allowed in both development and production stages

Allowed form changes Allowed script Allowed content store changes
changes

Add form Add scripts Change content store URL

Edit form Edit scripts Change content store authorization

Delete form Delete scripts

Allow user access to form

Remove user access to form

Deployed Applications Compared with
Local Copies

In most cases, you want to edit the deployed version of an application, not the
version stored locally. You'll want to do this because the deployed version is
usually the most current. If you edit the local version and then deploy it, you
will overwrite your current deployed version.

If your local version has a unique application ID that differs from that of your
deployed version, you will not be allowed to deploy the local version.

Using a Backup of a Local Application

When you open a deployed application, Process Builder saves a copy of the
application locally, in the bui | der /Appl i cati ons/ appl i cati on_nane
folder. But you may already have a version of the same application stored
locally. In that case, opening the deployed version will launch a dialog box that
asks whether you want to overwrite the local version with the deployed
version.

If you choose to overwrite the local version, Process Builder saves a copy of
the local version in a file called app/ i cat i on_nane_backup. zi p. In this
way, you'll have a backup of your local version in case you need to revert to it.

Revising a Deployed Application

For example, the deployed version might be corrupted, or it might not contain
recent changes that you made to the local version. To revert to the local backup
version, unzip the file.

Saving a Local Application to Another
Name

Sometimes you want to make changes to an application, but the changes are
not allowed at the deployment stage. In that case, use Save As to rename the
application, and then make the changes in the new application.

To rename an application, perform the following steps:

1. Open the most recent version of the application (usually the one deployed
to the cluster).

2. From the Application menu, choose Save As.
3. In the dialog box that appears, rename the application.

Note that you can use the same name if you save the application to a
different local folder, but the new application will have a different unique
ID. You will not be able to overwrite the deployed version of the
application with your updated version, even though the name is the same,
because the unique ID is different.

4. Inthe application tree view, double-click the application name to access the
properties.

5. Make any changes required to the application, and redeploy under its new
name.

Chapter 10, Deploying an Application 211

Redeploying an Application

Redeploying an Application

212 Developer’s Guide

After you have deployed an application, you can change it and redeploy it.

= |If the deployment stage is Development, redeploying deletes any open
work items and data (if they are affected by the application revisions you
made).

< If the deployment stage is Production, your open work items and data are
preserved.

When you redeploy an application, the application’s stage (shown in Process
Administrator) is set to the stage of the deployed application, not the locally
stored application. For example, if the application in the cluster had a stage of
Open, and the local application had a stage of Testing, the redeployed
application’s stage is set to Open. For more information on application stages,
see the Administrator’s Guide.

Chapter

The Data Sheet Application

This chapter describes the Data Sheet sample application that is shipped with
this product. It includes a general walkthrough of the Data Sheet application,
and specific information on the sample application functions.

This chapter includes these sections:

Data Sheet Application Overview
= Data Sheet Process Map

= Data Sheet Walkthrough

= Groups and Roles

= Data Dictionary

= Forms

= Script Dictionary

= Content Store

= Finished Data Sheet Example

=« Configuring the Data Sheet Application

Chapter 11, The Data Sheet Application 213

Data Sheet Application Overview

Data Sheet Application Overview

Note

This application automates the process of creating a product data sheet,
including the following steps:

= uploading text files and graphics

- formatting the data sheet automatically

= approving the data sheet through two levels of management
= publishing on a web site

The application contains all the necessary forms, user roles, and database fields
to complete the process.

If you want users to be able to digitally sign the approval form, you must use
Netscape Communicator to run this application.

Data Sheet Process Map

214 Developer’s Guide

The data sheet’s process map, shown in Figure 11.1, graphically describes the
application’s steps.

The process map shows the following steps:

Entry Point The process map contains one entry point for creating a new
datasheet.

Activities There are three activities: Add Art, Approve Pricing (Product Mgr)
where the Product Manager approves pricing, and Approve Pricing (V.P),
where the V.P. approves pricing.

Automated Activity There is one automated activity, called Build Data Sheet,
where the data sheet is built.

Decision Point There is one decision point, called VP Approval, which
depends upon price. If the price is less than $1000 dollars, the release is
approved. If the price is $1000 or more, the vice president needs to approve the
data sheet before it can be released.

Data Sheet Process Map

Exit Points There are two exit points in the Data Sheet application, Data Sheet
Cancelled that occurs if the V.P. or Product Manager does not approve the data
sheet, and Data Sheet Published that occurs if the data sheet passes all

approvals and it is published.

Notification There is one notification in the data sheet application. It occurs
partway through the process at the product manager approval step.

Figure 11.1The data sheet process map
B Process Map

trie

Bui

[ata
Sheet
Q}end
+
iv @
i
Cepatment
Create Add
MNew art

Data
Sheet

=
\'_’) price_final
. ﬁ
A000.00
WP Data
Approval Sheat
¥ Fublished
price_final
T
1000.00
Approve
Data
Sheet
@ﬁ
Approve Approwe
Fricing Fricing
[Froduct [.F.]
higr] Cangel
ol Diata
[rata Sheet
She
Data
Sheet
Cancelled
4
i3

Chapter 11, The Data Sheet Application 215

Data Sheet Walkthrough

Data Sheet Walkthrough

216 Developer’s Guide

This walkthrough takes you through the process described by the product
datasheet application, describing the portions of the application involved in
each step.

The Data Sheet Entry Point

Users initiate a data sheet at the Create New Datasheet entry point. When they
initiated the data sheet in Process Express, they see the newDataSheet.html
form. On this form users enter product and pricing information. The product
information includes the model number, which is the title field. Process Express
displays the title field to identify the process instance.

Note that if you are testing this application yourself, and you sign into Process
Express as adni n, then the creator who initiates the process is set to admni n.

The following fields are on the newDataSheet.html form:
= Product Type (type)

= Model Number (model)

< Product Description (description)

= Base Price (price)

= VAR Discount (discount_code)

The product description needs to be in the form of an attached text file. The file
is stored in the content store and used to create the data sheet.

When users have filled out the form, they click the Send to Art Department
button to continue. The button takes its name from the name of the connecting
line drawn on the process map between two steps.

Data Sheet Walkthrough

The Title Field

The application has a title field, which shows up in Process Express wherever a
particular process instance is identified. The process instance title is stored in a
special data field, called title. It is also set in the application’s properties. To see
the Title Field in the application’s properties, follow these steps:

1. In the application tree view, right click the application name (DataSheet)
and choose Properties, or double-click the name, or highlight it and click
Inspect.

2. The application’s properties appear. The Title Field property set to the “title”
data field.

The value of the title field for a process instance is set by the entry point’s
completion script, conput eTi t | e, which puts process instance information
intotheti t1 e field. For more information on the script, see “The computeTitle
Script” on page 234.

Add Art Activity

The next step is to get the art from the art department. To see the properties for
this activity, double-click the activity in the application tree view, or highlight
the activity and click Inspect.

Assignment Script

For demonstration purposes, the data sheet activity is assigned to a user with
the t oCr eat or assignment script. This is one of the standard assignment
scripts that ships with Process Builder. It assigns the work item to the creator of
the process instance.

Expiration Setter Script

The work item for this step has an expiration date. It uses a hard-coded length
of time (1 day) for the expiration date, set by a standard Process Builder script,
expi r el n. It takes the parameters of a number, and a unit of time (days,
weeks, etc.). You do not select this script from a drop-down list (as the
assignment script is selected). Instead, when you access the wizard for setting
expiration dates, you have radio buttons for “Never expire,” “Expire in,” and

Chapter 11, The Data Sheet Application 217

Data Sheet Walkthrough

218 Developer’s Guide

“Defined by a script.” If you choose “Expire in,” there’s a field for a number,
and a drop-down list for the unit of time, which you use to set the parameters
for the expi r el n script.

The Forms

Two forms are visible to users at this activity. The assigned user sees the form
addArt.html. All other users see the viewWIP.html (View Work in Progress)
form. The various forms are assigned to different groups and users in the Form
Access window. See Figure 11.2. You access this window from the application
tree view, by double-clicking the Form Access icon.

Figure 11.2The Data Sheet Form Access window

M Inspector - AccessControl

addéurt.htm il Pt
| ol

approwePri
cingWF.htm
|

approvePri
cing.html

admin

B B B B B B

newDataShe | wiewil P ht wiewhWIF. bt | i ewi| P bt published. cancelled.
et.html ml ml ml html html

By reading the grid you can see what role or group sees what form at each step
of the application. The groups and roles are in the order specified in the
evaluation order in the Groups and Roles properties. For this example, you can
see that at the Add Art activity, the assignee sees one form (addArt.html), while
the “all” group sees another (ViewWIP.html).

Data Sheet Walkthrough

On the addArt.html form, some fields are display-only, and some the assignee
can edit. To see whether or not a field can be edited, select the field on the
form and hold down the right mouse button. From there, select the Properties
item, and you see a list of the properties of that field in that form. (the Data
Dictionary item on this menu allows you to access field properties that are
application-wide). The Display Mode property shows whether the field is set to
EDIT, VIEW or HIDDEN.

When a field is set to EDIT, only the assignee can actually edit it. If another
user views the form, they see the field in VIEW mode.

The only fields that the assignee can edit on this form are layout and art.

The other fields are view-only. The art field is a file attachment field, which
means that to complete this field the user attaches a .gif file. The file is stored in
the URL specified in the Content Store Properties window. After completing the
form, users click the Build Data Sheet button.

On the viewWIP.html form, all fields are view-only. This form is available to
“all” so everybody but the assignee sees it. One of the fields, stageURL, gives
the URL for the current version of the data sheet, so anyone can monitor its
progress.

The Automated Activity

After the user pushes the Build Data Sheet button, the next step is an
automated activity called Build Data Sheet. Because this is an automated
activity, no user is assigned, and it never becomes a work item on a user’s work
list.

To see the properties of the automated activity, in the application tree view,
double-click the name of the activity, or highlight it and click Inspect.

When the process reaches the automated activity in the data sheet application,
the action takes place immediately (the Schedule and Deferred properties are
blank). In addition, the Completion Script property (where another script
would be run after the automation script ended) is also blank. In your own
applications, those fields can be used to schedule the time the activity takes
place, and to perform some additional action when the automated activity is
completed.

Chapter 11, The Data Sheet Application 219

Data Sheet Walkthrough

220 Developer’s Guide

The Automation Script for this activity is called bui | dDS() . No automation
scripts are included in the default script dictionary that is built when you create
a new application. The bui | dDS script is unique to the data sheet application.

To look at the script, follow these steps:
1. In the application tree view, open the Script Dictionary.
2. Open the Automated Scripts folder.

3. Double-click bui | dDS, or highlight it and click Inspect. In the Inspector
window, you can read and edit the actual text of the script. In addition, you
can check the script’s syntax to make sure it executes properly.

If the script returns t r ue (that is, if it was successfully completed) the process
moves on to the next step.

For more information on how the script works, see “The buildDS Script” on
page 229.

The Approve Pricing (Product Manager)
Activity

In this activity, the product manager approves the pricing on the data sheet.

Assignment Script

For demonstration purposes, the data sheet activity is assigned to a user with
the t oCr eat or assignment script. This is one of the standard assignment
scripts that ships with Process Builder. It assigns the work item to the creator of
the process instance. If you are testing this application as the admi n user, the
creator is set to admi n.

In a non-demonstration situation, the parameter would either be set to the
Product Manager’s user ID, or a different assignment script could determine the
vice president for the product using the corporate user directory and/or the
data in the database.

Data Sheet Walkthrough

Forms

There are two forms visible to users at this activity. The assignee sees the form
approvePricing.html. All other users see the viewWIP.html form.

On the approvePricing.html form, the product manager can see all the pricing
data and approve it. The product manager provides authentication by clicking
the Sign It button. The field is signed_by pm.

After signing the form, the manager clicks one of two buttons, Approve Product
Pricing or Cancel Data Sheet. If the manager chooses Cancel Data Sheet, the
data sheet is not published, and it reaches an exit point.

If the manager approves the price, the application moves on to the next step,
the decision point.

In this sample, the application does not check to see if the product manager
has signed the form. You could build this functionality into your own
application by adding a client script to the form called onSubmi t For () .

Notification

At the Approve by Process step, a mail notification is sent to the person who
started the process instance (the person who filled out the original form at the
entry point to create a data sheet). If you are testing this application as the
admi n user, make sure that this user has an email address. For information
about providing an email address, see “Adding an Email Attribute for a User” on
page 242.

To see the notification’s properties, follow these steps:
1. In the application tree view, open the Process Definition folder.

2. In the Process Definition folder, expand the Approve Pricing (Product Mgr.)
activity.

3. You see three items, the two transitions (Cancel Data Sheet and Approve
Product Data Sheet) and NotifyApproving. Double-click NotifyApproving,
or highlight it and click Inspect to see the notification’s properties.

In the application tree view, in the Pricing Approval by Process activity, there is
a notification called NotifyApproving. If you double-click the notification, or
highlight it and click Inspect, you see the notification’s properties.

Chapter 11, The Data Sheet Application 221

Data Sheet Walkthrough

222 Developer’s Guide

The Email Address(es) property instructs the application who to send the
notification to. In this case, there is a script called emai | O Cr eat or () that
mails the message to the person who started the process instance. The message
is contained in the Email Body property, which in this example contains some
sample text.

The VP Approval Decision Point

If the manager approves the data sheet and price, the process takes a different
path depending upon the price. If the price is $1000 or more, the vice president
must approve it and it goes to the Approve Pricing (VP) activity.

If the price is less than $1000, the data sheet is released and published, and
reaches an exit point.

The decision point looks at the value in the price_final field to determine the
price. To see the conditions of the decision point, follow these steps:

1. In the application tree view, in the Process Definition folder, expand the VP
Approval ? decision point.

2. You see two transitions, priceOver1000 and priceUnder1000. Right click
priceOver1000 and choose Properties.

3. The transition’s properties appear, including the Condition property. The
condition property is set to price_final >= 1000.00, which means that if the
value of the price_final field is greater than or equal to 1000.00, this
transition is the one that is used.

There is no form, since the decision point takes place automatically.

The Approve Price (VP) Activity

In this activity, the vice president approves the pricing on the data sheet.

Note

Data Sheet Walkthrough

Assignment Script

For demonstration purposes, the data sheet activity is assigned to a user with
the t oCr eat or assignment script. This is one of the standard assignment
scripts that ships with Process Builder. It assigns the work item to the creator of
the process instance.

In a non-demonstration situation, the parameter would either be set to the vice
president’s user ID, or a different assignment script could determine the vice
president for the product using the corporate user directory and the data in the
database.

Forms

There are two forms visible to users at this activity. The assigned user sees the
approvePricingVP.html form. All other users see the viewWIP.html form.

On the approvePricingVP.html form, the vice president can see the pricing data
and approve it. The vice president provides authentication by clicking the Sign
It button. The field is signed_by vp.

Digital signing is not supported by Microsoft Internet Explorer.

After signing the form, the vice president clicks one of two buttons, either
Approve Data Sheet, or Cancel Data Sheet. If the V.P. selects Cancel Data Sheet,
the data sheet does not get published, and it comes to an exit point.

If the manager selects Approve, the data sheet is released and published at the
exit point.

Exit Points

This application has two exit points: Data Sheet Cancelled, and Data Sheet
Published. If the product manager or vice president does not approve the
pricing on the data sheet, the data sheet is canceled and the process ends at
Data Sheet Cancelled.

If the product manger and the V.P. (if necessary) approve the pricing, then the
data sheet is released and published and the process ends at that exit point.

Chapter 11, The Data Sheet Application 223

Groups and Roles

The exit points each have a form associated with them, cancelled.html and
published.html. These forms allow users to see whether the data sheet was
published or not. They also have links to the data sheet on the server, so users
can see the final product.

Groups and Roles

The following groups and roles are defined for this application:
- all

= creator

« admin

These are the default groups and roles that are created for every application.

Data Dictionary

224 Developer’s Guide

The data dictionary contains all the data fields that are used by the application
and stored in the database. Table 11.1 lists the data dictionary for the DataSheet
sample application. To see the properties for these fields, do the following. In
the application tree view, inside the Data Dictionary folder, double-click the
name of the field.

Fields are defined to have a class ID, which in turn determines the properties
the field has. For more information on the properties for specific field class IDs,
see Chapter 6, “Defining Data Fields.”

Data Dictionary

Table 11.1 Data Sheet Application Fields

Field Field Class ID
approved_by pm computed
approved_by vp computed

art

discount
discount_code
discount_desc
description
layout

model

price
price_final
signed_by pm
signed_by vp
stageURL

title

type

file attachment
textfield

select list
textfield

file attachment
select list
textfield
textfield
textfield
signature
signature

URL

textfield

radio buttons

When you add fields, you can either add them with predefined class IDs, or
you can create your own class IDs. All of the class IDs for fields in the data
sheet application are predefined class IDs.

Chapter 11, The Data Sheet Application 225

Forms

Forms

226 Developer’s Guide

The Data Sheet application contains the following forms:

newDataSheet.html

< addArt.html

= approvePricing.html

« viewWIP.html

= approvePricingVP.html
= cancelled.html

< published.html

The walkthrough contained information about what forms users see at what
step of the application. To view this information, in the application tree view,
double-click Form Access.

To view a form, follow these steps:
1. In the application tree view, double-click the Form Dictionary to open it.

2. In the Form Dictionary, open the form you want by double-clicking it. You
see a portion of the form that you can edit.

In addition to the editable part of the form, the user will also see header
information and buttons to press.

Figure 11.3 shows the approvePricing.html form as it appears in Process
Builder.

Forms

Figure 11.3The approvePricing.html form in Process Builder
B approvePricing.html

o[

Body

Product Manager Approval

Product Information,,

Please review and sign the discount and pricing information related ta the product listed
hera. Ifthe discounted price ofthis praduct is higher than §1,000 then the Yice President of
the department will need to approve this pricing.

Froduct: | Printer AS2015

Complete

DiiSuteSpotidocs
Datasheet:

Affix Signature

signed

Product Manager Validation

Base Price: price

Discount

Lo discount desc
Description -

Discount discount

Final Price: price_ﬂnal

=|

| |Document complete

You can see only the body portion of the form. Figure 11.4 shows how the
same form appears in Process Express.

Chapter 11, The Data Sheet Application 227

Forms

Figure 11.4The approvePricing.html form in Process Express

PM Express for annh o
- e - - . Process’ Ma”

Process Management AVALON
Data Sheet indusiries

Product Manager Approval

Product Information
Please review and sign the discount and pricing information related to the product listed here. Ifthe discounted price of this

product is higher than $1,000 then the Vice President of the department will need to approve this pricing,

Product: PrinterAS2015

Complete Datashest: D/SutteSpot/docs

Affix Signature

Product Manager Validation |

Base Price: 2000
Dizcount Description
Digcount

Fital Price:

You can add additional comrments here that will appear in the Details & Histary page:

-]

]

After completing the above form, select one of the following actions.

Save Build Data Sheet Delegate

228 Developer’s Guide

Script Dictionary

The form in Process Express has a banner and buttons added to it. In addition,
a form may also have a section for comments. The comments are controlled by
the Activity’s Allow to Add Comments property. If the property is set to true,
the comments section appears. Otherwise, it does not appear on the form.

The banner is a file called banner. gi f found in the application’s images
folder (bui | der/ Appl i cati ons/ Dat aSheet /i mages). The banner is
created automatically when you create an application, and attached
automatically when the form is displayed in Process Express. In your own
applications, to change the banner, replace the banner. gi f file with your
own banner file. The file must still be called banner. gi f.

The buttons are created using the transition names from the process map.

Script Dictionary

The script dictionary contains all the scripts that exist by default in any Process
Builder application, and also the additional ones included in the data sheet
application.

The data sheet application contains the following scripts in addition to the
standard ones:

« bui | dDS (automation script)

< | ookupCode (toolkit script)

< bui |l dDat aSheet (toolkit script)
= conput eTi t| e (completion script)

These scripts demonstrate how to create scripts of some of the types you will
need to create in your own application. They also show how to take advantage
of the global scripts, for example, get Pr ocessl nst ance() , which returns a
Pr ocessl nst ance object which can be used to retrieve information about
the process instance.

The buildDS Script

The automated activity that builds the database uses bui | dDS. If you double-
click bui | dDS in the application tree view, you see the text of the script.

Chapter 11, The Data Sheet Application 229

Script Dictionary

230 Developer’s Guide

// Building the datasheet
/1 1. LookUp discount infornation
/1 2. Create and publish datasheet
function buil dDS()
{
return | ookupCode() &bui | dDat aSheet () ;

}

This script calls other scripts in the toolkit. You add scripts to the toolkit if you
want to be able to reuse them within the application.

This script executes each of the following scripts:
< | ookUpCode () -- sets the final price.
e buil dDat aSheet () -- builds the datasheet as an HTML file.

The use of the && operator means that the functions are evaluated in order left
to right, and so long as each function returns t r ue, the next function is
evaluated. If all the functions return t r ue, the statement returns t r ue. If any
of the functions return f al se, the remaining functions will not be evaluated,
and the function returns f al se.

The lookupCode Script

The | ookupCode script computes the value of the pri ce_fi nal field using
the price and discount code that the user entered.

function | ookupCode (){
/1 The global function getProcesslnstance()
/Il returns the process instance.
var pi = getProcesslnstance();
/1 The nethods getData and setData of the process instance are used
I/l to read the data field and set the value of the datafield. Wen
/] setting a value, you have to provide the right JavaScript type.
/! Retrieve the discount_code (which is set in the creation forn.
var di scount _code= pi.getData("di scount_code");
/1 Note that discount_code is an elenment of the data dictionary.
/] Construct the discount description using the discount_code.
var desc = "Preferred VAR discount (code " + discount_code + ")"
/1 The discount_codeis sonething like '10 A'.
/1 Extract the numerical discount fromthe di scount_code.
/1 Note that parselnt(’10 A') returns 10.

Script Dictionary

var disc = parselnt(discount_code);
/1 1f the discount is not a nunmber (isNaN)
/] add an entry in the error log and return fal se.
if (isNaN(disc)){
var e = new bject();

e.inFunction = "l ookUpCode";
e. di scount Code = di scount _code;
e. conput edDi scount = di sc;

| ogError Msg(" ERROR_DI SCOUNT_I S_NOT_VALI D", e);
/1 Return false to ask the engine to rollback the transaction.
return fal se;
}
/'l Update the process instance data by adding the
/1 discount description, discount rate, and final price.
pi . set Dat a("di scount _desc", desc);
pi . setData("di scount",disc.toString());
pi.setData("price_final", Math.round(
par seFl oat (pi . get Dat a("price"))*(100-disc))/100);
/! Return true because the script has been successfully perforned.
return true ;

The buildDataSheet Script

This script creates a data sheet as an HTML file. It gets the data from the type,
model, price, and discount code values that the user entered in the
newDataSheet.html form at the entry point to this process. Additionally, the
script opens a file that contains a description of the item in question, and adds
the description to the data sheet. The script uses an HTML template file as the
template for the datasheet, and ultimately publishes the datasheet as an HTML
file.

The HTML template contains place holders identified by $$ to indicate places
where values of data fields should be plugged into the template. For example,
the place holder $$npdel 3 will be replaced by the value of the nodel data
field.

For a sample of the descri pti on. t xt file, see “The description.txt File” on
page 235. For a sample of the printer. ht M template file, see “The
printer.html Template File” on page 237

function buil dDat aSheet (){
/1 Use the global function getProcesslnstance to get a reference to

Chapter 11, The Data Sheet Application 231

Script Dictionary

232 Developer’s Guide

/1 the process instance.

var pi = getProcesslnstance();

/1 Get the value of the description data field, which is a URL
/1 pointing to where the description text file is |ocated.

var descriptionURL = pi.getData("description");

/1 Use the global function getContentStore to get a reference
/1 to the content store.

var cStore = getContentStore();

/!l Read the content of the description file.

var descriptionContent = cStore.getContent(descripti onURL);

/1l Get the path name of the application.

var appPath = get ApplicationPath();

/] Create a connection to the file containing the tenplate to be
/1 used to format the datasheet. The filename is sonmething like
/'] appPat h/ nodel s/ printer. htm

var tenplate =new File (appPath + "npdel s/"+ pi.getData("type")
+ ".htm");

/1 Get the nodel.
var nodel = pi.get Dat a("nmodel ") ;
/1 Construct the URL where the datasheet will be published.
/1 The gl obal function getBaseForFileNanme returns the base URL of the
/1 location in the content store reserved for the process instance.
var dsURL = get BaseFor Fi | eNane(pi.getlnstanceld()) + nodel
+ " htm";

/Il Create the string to hold the content for the datasheet.
var dsContent = "<!-- Content of the dataSheet -->";
/1l Open the tenplate in read-only node. If the file is not opened
/'l successfully, log an error and return fal se.
if (!tenplate.open("r")){

tenpl ate. cl ose();

var e = new bj ect();

e. nodel = nodel ;

e.tenplate = tenplate;

e. stagi ngURL= dsURL;

| ogError Msg(" ERROR_COULD_NOT_OPEN_TEMPLATE_FOR_READ', €e) ;

return fal se ;
}
/'l Merge the tenplate with data field values and with the content in
/1 the description.txt file. Values of data fields are plugged into
/'l corresponding placeholders in a tenplate. For exanple, $$nodel $$
/1 in the tenplate is replaced by the value of the nodel data field.
/'l Paragraphs in the description.txt file are substituted into

Script Dictionary

/1 the tenplate in place of $$n$$ pl acehol ders. For exanple, $$2$$ in
/1 the tenplate is replaced by the second paragraph in
/1 description.txt.
var partArray = descriptionContent.split("----");
while (!tenplate.eof ()){
// Read a line fromthe tenplate file and split it into strings
/1l using $$ as the separator. Create an array of the strings.
/] paranf0] is the first string, paranf1l] is the second string, etc.
/1 For exanple:
/1 <TD W DTH="30% > $ $$pri ce_fi nal $$</ FONT></ TD>
/1 parani0] = <TD W DTH="30% > $
/1 paran{1] = price_final
/1 paran{2] = </TD>
var line = tenplate.readln();
var param = line.split("$$");
/1 1f there are 3 sections, substitute either a description
/'l paragraph or a datafield value for the mddle string.
if (paramlength == 3){
var ind = parselnt(paran{1]); // Returns O if not an integer.
// 1f ind is > 0 get a paragraph from description.txt
/1 else get a data field val ue.
var subthis =ind > 0 ? partArray[ind-1] pi.getData(paran{1]);
// Wite the first string into the datasheet.
dsContent += paraniO];
// Wite the substituted string into the datasheet.
dsContent += subthis;
// Wite the last string into the datasheet.
dsContent += paran2];
}
/1 1f there are not 3 strings, it neans the |line contains no
/1 placehol ders, so wite the whole line into the datasheet.

el se {

dsContent += line;
}
dsCont ent +="\n";

}
/1 Close the tenplate.

tenpl ate. cl ose();

/'l Use the store nmethod of the contentStore object to publish the
/] datasheet to the destination URL that was defined earlier.

var status = cStore.store(dsContent, dsURL);

/'l Keep track of where the datasheet has been published by storing

Chapter 11, The Data Sheet Application 233

Script Dictionary

234 Developer’s Guide

// the URL in a data field.
pi . set Data("stageURL", dsURL) ;
return true;

The computeTitle Script

This script is invoked every time a data sheet is initiated. It is responsible for
initializing the title of the process instance. The title of the process instance
shows up in the work list when the application is running in production mode.

This script relies on the fact that the application contains a field calledtitl e
that is used as the title field for the application (that is, in the application’s
properties, the title property is set to title.)

Users enter the values for the type and model during the entry point. This script
runs as a completion script for the entry point. The script simply gets the value
of the type and model data fields, and combines them to specify the name of
the process instance. For example, if the type is printer and the model is 2345,
the title of the process instance is “printer 2345”.

function conmputeTitle()({
/1 Use the global function getProcesslnstance() to get a reference to
/'l the process instance.
var pi = getProcesslnstance();
/'l Read the value of the field "nmpbdel" which was set by the
/] participant in the newDat aSheet formin the entry point.
var nodel = pi.getData("nodel");
/!l Read the value of the field "type" which was set by the
/1 participant in the newDat aSheet formin the entry point.
var type = pi.getData("type");
/1 Set the value of the field "title" to be an aggregation
/1 of the type and the nodel.
pi.setData ("title", type + " " + nodel);
/'l The execution has been successful.
return true;

Content Store

Content Store

The Content Store has information about where attached files are stored on the
Enterprise Server. Before deploying the application, you must fill in the URL,
Public User, and Public Password properties. For more information on
configuring the Data Sheet sample application for deployment, see
“Configuring the Data Sheet Application” on page 241. For more information on
content store properties, see “Setting Up the Content Store” on page 156.

Finished Data Sheet Example

The data sheet uses two files that the user adds during the process. These files
reside in the bui | der/ Sanpl es/ Dat aSheet / deno folder:

< description.txt
e image.gif

There are also some files shipped with the sample application in the
builder/Samples/DataSheet/models folder:

e bar.gif
e Printer.html
e thumb_printer.gif

When these files are combined by the application they create a data sheet. The
following examples show a sample description.txt file, a sample
image.gif file, and the finished data sheet using these files and the files in
the /models folder.

The description.txt File

The user uploads a text file as part of completing the form to initiate a new data
sheet. Here is an example:

Start with superior, high-resolution |laser print quality, versatile
paper handling and 12 page-per-minute print speed driven by a fast
processor. \What you get is the Aurora LaserJet 2015 printer, Super

Chapter 11, The Data Sheet Application 235

Finished Data Sheet Example

236 Developer’s Guide

Fast </ B>del i veri ng out standi ng val ue for individual or shared use from
the market |eader in laser printing for the office.

The 12 page-per-m nute engi ne and fast processor get performance off to
a great start. Wth the instant-on fuser that elim nates warmup tine,
you get a quick 19-second first page out speed. Printing efficiency is
further increased with a nmulti-sheet feeder.

Megabyt es of nenory effectively doubled with Aurora’s Menory Enhancenent
technol ogy (MEt), and two parallel ports for seanl ess network
conpatibility and functionality.

Prof essional, high-quality printing. Qutstanding performance:
Conpatible, Reliable Aurora printers with the best Image Quality and
Hi gh Speed printing on the Paper types you want.

<P>True 600 x 600 dpi resolution delivers clear lines, blacker blacks
and perfect gradients in all your text and graphics. Brilliant graphics
with at | east 128 levels of gray for snmoother gray transitions and
photoreal i stic images

The image.qif File

The user also adds artwork to the data sheet in the Add Art activity. Figure 11.5
shows an example of the kind of file a user might add:

Finished Data Sheet Example

Figure 11.5Sample image.gif

Q AVALO N 2015 Printer u DATA SHEET
Product Features
““*--n e = Level 2 PCL Printer Language
... . Optional 0
Frofessional looking decuiments, - § Font Cartridge Slots
inereased productivity, and room to expand = 10MB Total Memory

* AR-335-\W/FR-566-B
& Centronics Parallel

This file appears at the top of the finished data sheet.

The printer.html Template File

The printer template file is in the bui | der/ Sanpl es/ Dat aSheet / nodel s
folder. The data sheet application uses it to format the data sheet. The HTML
template file contains placeholders identified by $$ to indicate places where

datafield values or paragraphs from the descri pti on. t xt will appear.

For example, the placeholder $$nodel $$ will be replaced by the value of the
nodel data field. The place holders indicated as $$1$$, $$2$$, and so on,
indicate places where paragraphs in the descri pti on. t xt file will be
plugged into the template. For example, $$1$$ indicates where the first
paragraph of the description will be placed in the data sheet.

The HTML template must have no more than one placeholder per line. Any
lines that do not contain placeholders are used in the datasheet without
modification.

Chapter 11, The Data Sheet Application 237

Finished Data Sheet Example

<HTM.>
<HEAD>

<META HTTP- EQUI V="Cont ent - Type" CONTENT="text/htnl; charset=i so-
8859-1">

<META NAME="GENERATOR' CONTENT="Mbzilla/4.04[en](X11; U, SunCS 5.5.1
sun4u)[Netscape]”>

<TITLE>$$model$$

$$type$$ Data Sheet</TITLE>

</HEAD>
<BODY BGCOLOR="white">
<CENTER>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=10 WIDTH="650">
<TR ALIGN=LEFT VALIGN=TOP>
<TD COLSPAN=3 VALIGN=CENTER HALGIN=CENTER></TD>
</TR>
<TD ALIGN=LEFT VALIGN=TOP>
$$1$%
</TD>
<TD ALIGN=LEFT VALIGN=TOP>
$$2$%
</TD>
<TD ALIGN=LEFT VALIGN=TOP>
$$3$3
</TD> </TR>
</TABLE>

<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=10 WIDTH="650">
<TR><TD COLSPAN=2></TD></TR>

<TD VALIGN=TOP><IMG SRC="/wfDataSheet_b2/models/thumb_printer.gif"
ALIGN=LEFT></TD>

<TD>

$$4$3

</TD> </TR>

</TABLE>

<TABLE BORDER=0 CELLPADDING=2 WIDTH="650">

<TR>
<TD WIDTH="70%" ALIGN=RIGHT>Unit Price:</[FONT></TD>
<TD WIDTH="30%"> US $ $$price$$ </TD>

</TR>

<TR>
<TD WIDTH="70%" ALIGN=RIGHT> VAR Discount:</[FONT></TD>
<TD WIDTH="30%" >$$discount_code$$</TD>

238 Developer’s Guide

Finished Data Sheet Example

</ TR>

<TR>
<TD W DTH="70% ALl G\N=RI GHT>Fi nal Pri ce: </ FONT></ TD>
<TD W DTH="30% > $ $$pri ce_fi nal $$</ FONT></ TD>

</ TR>

<TR><TD COLSPAN=2><| MG SRC="/ wf Dat aSheet _b2/ nodel s/ bar. gi f " ></ TD></ TR>

</ TABLE>

</ CENTER>

</ BODY>

</ HTML>

The Finished Data Sheet

When the data sheet is built, all the pieces come together. Figure 11.6 shows a
sample data sheet which uses the descri pti on. t xt file and the
i mage. gi f file in earlier examples.

Chapter 11, The Data Sheet Application 239

Finished Data Sheet Example

Figure 11.6 The finished data sheet

3456 Printer Data Sheet - Hetscape
File Edit ¥Yiew Go Communicator Help

P R P

= DATA SHEET

Product Features

by = Level @ PCL Printer Language
. Optional IO

= 5 Font Cartridge Slots

= 10ME Total Memory

= AR-335-W/FR-566-B
& Centronics Parallel

Professional fooking documents,
inereased productivity, and room o expand

Start with supenor, gh-resolution
laser print quality, versatile paper
handling and 12 page-per-minute
print speed drven by a fast
processor. "What you get is the
Aurora LaserJet 2015 printer,
Super Fastdelvering outstanding

The 12 page-per-minute engne and
fast processor get performance off
to a great start. With the mstant-on
fuser that eliminates warm-up time,
vou get a quick 19-second first
page out speed. Printing efficiency
1z further increased with a

Wlegabytes of memory
effectively deubled with
Aurora's Memory
Enhancement technology
(IEL), and two parallel ports
for seamless network
compatibiity and

value for mdiwidual or shared use multi-sheet feeder. finctionality.
from the market leader in lager

printing for the office.

Professional, gh-qualtty printing. Cutstanding performance: Compatible, Reliable
Aurora printers with the best Image Quality and High Speed printing on the Paper types
you wat,

True 600 x 600 dpt resclution delivers clear bnes, blacker blacks and perfect gradients n
all your text and graphics. Briliant graphics with at least 128 levels of gray for smoother
gray transitions and photorealistic inages
Unit Price: US $ 2000
VAR Discount: 14 B

Final Price: $ 1720

[[[Mar menk Tiame =T NS |

240 Developer’s Guide

Configuring the Data Sheet Application

The pricing information comes from information entered by users into forms
and approved by the product manager and the vice president, if required.

Configuring the Data Sheet Application

Before you can deploy the Data Sheet application on your own system, you
must configure the application. The main steps are as follows:

1. Set the corporate directory as described in “Setting Your Corporate
Directory” on page 70.

2. Make sure that your admi n user has an email address. For details on
creating an email address for the admi n user, see “Adding an Email
Attribute for a User” on page 242.

3. Configure the content store. For details, see “Using File Attachments and
Content Stores” on page 243.

For demonstration purposes, all the activities are assigned to the creator of the
process instance. As a result, if you deploy this application as currently set up,
you can create a process instance and participate in all the steps.

Configuration Hints

This section describes the following configuration hints:
< How Users Access the Data Sheet

= Process Express and Netscape Application Server

How Users Access the Data Sheet

In the DataSheet application, make sure that the st ageURL data field points to
the right URL. For example, if you point your content store at htt p: //

ki nba. ncom coni CS, then the st ageURL field must point to a folder on
that server, such as ht t p: / / ki mba/ docs. Note that docs is the default
primary document directory for an Enterprise Server.

Chapter 11, The Data Sheet Application 241

Configuring the Data Sheet Application

242 Developer’s Guide

In addition, when you build a sample data sheet in Process Express, PAE stores
the data sheet in a folder specific for each process instance. For example,
suppose you have a default Windows NT installation. If your process is titled
"AS2015-test” and its ID is 58, then the new data sheet is stored here:

C:\ Net scape\ Sui t eSpot \ docs\ CS\ Dat aSheet \ 58\ AS2015-t est . ht m

The URL displayed to end users in Process Express is then:
http://ki nba/ CS/ Dat aSheet / 58/ AS2015-t est. ht i

Process Express and Netscape Application Server

If you have Netscape Application Server installed on the same system as
Process Express, you will not be able to use Netscape Communicator with file
attachments. To avoid this situation, you can install NAS and Process Express
on different systems, or you can use Microsoft Internet Explorer to access
Process Express.

For additional information about using the File Attachment data field, see “File
Attachment” on page 140

Adding an Email Attribute for a User

Some sample applications require a user to have an email account. For
example, both the TimeOffRequest and DataSheet applications require the
admi n user to have email. If this user doesn’t have email, you will get an error
in the logs.

To add email for a user, follow these steps:
1. Launch Netscape Console.

On Windows NT, you can do this by using the Start/Programs menu
command and looking for the Netscape Server Family menu item.

2. In the authentication dialog box, enter this information:
< administrative user name

= administrative password

Configuring the Data Sheet Application

= administration URL for the new directory server’s Administration Server,
including the port number

3. Click the User and Groups tab.
4. Enter "admin" or "adm*" in the user field, then click Search.

5. Select the admin user ID from the list of users displayed. By default, this is
the NAS Administrator user.

6. Click Edit.

7. Enter an email account. If you are the administrator yourself, and you are
just testing the system, enter your own email address to see what email
notifications you can receive.

8. Click OK.

9. Close the Netscape Console.

Using File Attachments and Content
Stores

If you want to deploy and use the DataSheet application (or other applications
that use file attachments), you must set a new access control list (ACL) for the
content store. You must then define the content store properties in Process
Builder. In summary, you must perform the following main steps:

= Step 1: Administer the Enterprise Server

= Step 2: Edit the Access Control List

=« Step 3: Assign the Content Store’s Style

= Step 4: Set the Values for the Application’s Content Store

These steps are described in detail in the sections that follow.

Chapter 11, The Data Sheet Application 243

Configuring the Data Sheet Application

244 Developer’s Guide

Step 1. Administer the Enterprise Server

You set up an access control list (ACL) through the Enterprise Server. To
administer the Enterprise Server, perform the following steps:

1. Go to the Server Administration page for your Enterprise Server.

2. Click the button for your Enterprise Server instance. You'll go to its Server
Manager pages.

3. Click the Configuration Styles button.

4. Click the New Style link.

5. Enter Cont ent St or e as the Style Name field and click OK.
6. In the page that appears, click the “Edit this style” button.

7. Click the Restrict Access link. This displays the Access Control List
Management page.

8. Make sure that “the style ContentStore” is displayed, then click the “Edit
Access Control” button. This displays the Access Control user interface.
Step 2: Edit the Access Control List
Within the Access Control user interface, perform the following steps:
1. Click the New Line button twice. This creates two new ACL lines.
= Leave the first line unchanged.

= Inthe second line, click Deny. A second pane appears in the lower part
of the page.

2. Click Allow in the lower pane.

3. Click Update to update the top pane’s values.

4. In the second line, click “anyone”.

5. In the lower pane, click the “Authenticated people only” radio button.

6. Click the “All in the authentication database” radio button.

10.

11.

12.

Configuring the Data Sheet Application

Make sure that the Default authentication method is selected.

Under “Authentication Database” at the bottom of the pane, select your
corporate directory from the dropdown list, then click the radio button next
to it.

Click Update in this frame to update the top pane.
In the top frame, click Submit to set the change.
Click OK to save your changes.

Click Save and Apply to apply your changes to the server.

Step 3: Assign the Content Store’s Style

After editing the ACL, assign the content store’s style by performing the
following steps:

1.

2.

Under Configuration Styles, click the Assign Style link.

Enter CS/ * as the URL prefix wildcard. This causes the URL to be:
http://<your Server>/ CS/ *

Select ContentStore from the drop down list and click OK.
Click OK again to save your changes.

Click Save and Apply to apply your changes to the server.

Step 4: Set the Values for the Application’s Content
Store

After working with Enterprise Server (as described in Steps 1, 2, and 3), you
must make changes in Process Builder. You must set the content store values
by performing the following steps:

1.

2.

3.

If necessary, start Process Builder.
Locate the ContentStore entry in the application tree view.

Open the Inspector window for the ContentStore entry.

Chapter 11, The Data Sheet Application 245

Configuring the Data Sheet Application

4. Enter a URL with the format ht t p: / / <your Ent er pri seSer ver>/ CS.

5. Enter the administrative user and password for the Enterprise Server. For
example, enter adni n and adm n.

For more information on content store properties, see “The Content Store
Inspector Window” on page 156.

246 Developer’s Guide

Chapter

The Office Setup Application

This chapter describes the Office Setup sample application that is available
with PAE.

This chapter contains the following sections:

Office Setup Application Overview

Office Setup Process Map

Office Setup Walkthrough

The Office Setup Groups

Data Dictionary

Form Dictionary

Script Dictionary

Customizing the Appearance of the Forms

Configuring the Office Setup Application

Chapter 12, The Office Setup Application 247

Office Setup Application Overview

Office Setup Application Overview

This application controls the process of setting up an office for a new
employee. This application illustrates parallel processing.

This application contains a number of tasks that different people must perform
to get an office ready. Some of the tasks must be carried out sequentially; for
example, the purchasing department must order the computer before the MIS
department can install it. Some of the tasks can be carried out in parallel; for
example, the MIS department can set up the phone while the purchasing
department is ordering the computer.

Office Setup Process Map

The process map for the Office Setup application is shown in Figure 12.1.

Figure 12.1Process Map for the Office Setup application

@ \?J
Start Complete
hone

Start Ready
Office Set Install
Frepanation Up et e
FPhone Connection
Mehuor:
Instal|ed

Setup

true

£ L@
£ N ®
&) q 7 &

i e

Hasign i
Dﬁige Azzigne i :atslc
i Bazic 2tup CheckSetup
! Satup Join
Specify
Computar trize
Computer
Ingtalled
2 @
@Computer @
ﬁrdered ’
Order Install
Computar Computer

248 Developer’s Guide

Office Setup Walkthrough

Office Setup Walkthrough

This section walks through the complete process, which contains the following
entry points, activities (work items), splits, joins, and exit points:

= Start Entry Point

= Assign Office and Specify Computer Work Item
= Basic Setup Split

« Set Up Phone Work Item

= Install Network Connection Work Item

= Order Computer Work Item

= Install Computer Work Item

= Basic Setup Join

= CheckSetup Work Item

« Setup Complete Exit Point

Start Entry Point

The process begins at the Start entry point, as shown in Figure 12.2:

Figure 12.2The Start entry point
8

Start

Start
Offlice
Freparation

To start the process, the hiring manager fills in an entry point form specifying
the new employee’s name and start date in the form for the Start entry point,
pr epar eFor NH. ht m . This form is shown in Figure 12.3:

Chapter 12, The Office Setup Application 249

Office Setup Walkthrough

Figure 12.3The prepareForNH.html form

Process Management AVALON"
Setup Office for New Employee rdusiries

New Hire Set Up Request

To see the process map, click here.

|Wko usos this form: |The hiting manager for a new employee.

Use this form to start the process for setting up the new

‘Wﬁen to use His form: employes's office.

Enter information about the new employee:

Employee Information
Name |
Start Date: I— (MLDDYYYY)
Report To: |
Department: | Engineering j

When you have entered the data about the new emplayee, press the buttoan below. The next
step in the process is for the administrative assistant fo assign the affice number for the new
emplayee and fo specify the computer ta be ordered for the employee.

After completing the above form, select one of the following actions.
Start Office Preparation

This form sets the values of the following data fields:

dfEmpName The name of the new employee.

250 Developer’s Guide

Office Setup Walkthrough

dfStartDate The new employee’s start date. This must be in the format MM/
DD/YYYY.

dfMgr The hiring manager.

dfDeptName The department that the new employee will be joining. This
datafield is a SELECT data field with a menu offering the choices Engineering,
Human Resource, Marketing, and Sales.

This entry point has a completion script, set Request er Fi el d, that sets the
value of the df Request er Nane data field based on the process instance
creator.

Assign Office and Specify Computer
Work Item

The next step is for the manager’s administrative assistant to assign an office
and specify a computer, as shown in Figure 12.4:

Figure 12.4The Assign Office and Specify Computer work item

+ ?
&

ffice

AEEION poigned
Office

and
specify
Computer

The administrative assistant enters the office location and computer for the new
employee, as shown in Figure 12.5. This form sets the values of the following
data fields:

dfCubeNo The new employee's office number.
dfFloor The floor containing the office.
dfBldg The building where the office is located.

dfComputer A description of the computer to order for the new employee.

Chapter 12, The Office Setup Application 251

Office Setup Walkthrough

Figure 12.5The assignCube.html form

Process Management QAVALON
Setup Office for New Employee industries

Assign Office Number and Specify Computer for New
Employee

|W7i0 uses this form: |The administrative assistant for a hiring manager who has a new employee starting soon.

Enter information about the cube number and location for the new employee. Also enter a

Fhat to do with this
orm: dezcrliption of the computer to order for the employee.

Here 1z the mformation about the new employee:

Employee Information
Watme: Tohn Sruth
Start Date: 011971959
Eeport To: Jane Dece
Department. Engineering
Eequested By SutteSpot Admimstrator

Please enter the following information about the new employee's office location:

Office Location

Office Number: I

Floor: |1
Building: IEIuiIding 1 'I
Enter information about the computer to order for the employee.

Computer

Computer Description:

252 Developer’s Guide

Office Setup Walkthrough

Basic Setup Split

At the Basic Setup split, the process splits into two parallel branches, as shown
in Figure 12.6:

Figure 12.6 The Basic Setup split

¢

Basic
Setup

TrLe

©

tre

One branch controls the process of installing the phone and network
connection. The other branch controls the process of ordering and installing the
computer.

The split has two conditional transitions leading off from it. As with decision
points and automated activities, you can specify conditions to determine
whether a route leading from a split is followed or not. By default, the
condition for all routes leading out of a split are set to true, so that they are all
active.

When you place a split icon on the process map, the icon splits and appears on
the map in two halves. The split part appears where you placed it, and the
corresponding join icon appears to the right. The distance between the split
and join icons allows for the insertion of two activities between them. When
you place the split icon, you may need to scroll your process map to the right
to bring the join icon into view.

Each route leading away from a split must ultimately end at the corresponding
join. It cannot go to an exit point or to a join for another split. Each branch of
the split represents a series of activities that are be performed in parallel and
ultimately merge back into a single path.

A split icon does not represent an activity, so there are no forms for it.

Chapter 12, The Office Setup Application 253

Office Setup Walkthrough

Set Up Phone Work Item

In the network installation branch, the first step is for the MIS department to
assign a phone number and set up the phone. The process map for this step is
shown in Figure 12.7:

Figure 12.7The Set Up Phone work item

Fhore

| r—
<::::::Sﬂ Feady
Set
Up
Phote

The MIS person uses the set upPhone. ht M form, as shown in Figure 12.8.
This form sets the values of the following data field:

dfPhone The new employee’s phone number.

254 Developer’s Guide

Office Setup Walkthrough

Figure 12.8 The setupPhone.html form

Process Management QAVALON
Setup Office for New Employee industries

Set up Phone

Fho uses this form: |MIS personnel,
Youneed to set up the phone for a new employee.
Fhat to do with this form: When vou hawve finished setting up the form, submit this
form.

Here are the details of the new employee:

Employee Name
MName: John Stmuth
Start Date: 01/19/1299
Eeport To: Jane Doe
Department: Engmeenng
Eequested By: SuiteBpot Admimstrator

Here 1z the mformation about the employee's office locaton:

Office Location
Office Mumber: 1234
Flocr: 1
Building: Buiding 1

Enter the employee's phone number:

Phone Information

FPhone: |[(555) 555-5555

Chapter 12, The Office Setup Application 255

Office Setup Walkthrough

Install Network Connection Work Item

The next step, also done by the MIS department, is to install the network
connection, making sure that the office has network cables and hardware. The

process map for this step is shown in Figure 12.9:
Figure 12.9The Install Network Connection work item
@ﬂ
Install
Metvwark
Connection

Metiwark
Installed

The MIS department uses the set upNet wor k. ht m form for this work item,
as shown in Figure 12.10. This form sets the values of the following data field:

dfNetworkAddress The network address.

256 Developer’s Guide

Figure 12.10The setupNetwork.html form

Office Setup Walkthrough

Process Management

Setup Office for New Employee

Set Up Network Connection

@ AVALON"

|Who uses His foru: |MIS Fersoninel

Fhat to do with this form:

Subidt this form to indicate that you have set up the network
cotiection for a new employee.

Employee Name
MNatme: JTohn Smith
Start Date: 01/19/195%
Eeport To: Jane Doe
Department: Engineenng
Eequested By SuiteSpot Administrator

Office Location
Office Mumber: 1234
Floor: 1

Building: Building 1

Phone Information
Phone: (555) 555-5555

Network
Information

IF Address:

Chapter 12, The Office Setup Application 257

Office Setup Walkthrough

258 Developer’s Guide

Order Computer Work Item

There is no need to wait for the phone and network setup to be finished before
ordering and installing a computer in the office. Thus a parallel branch of the
process controls the purchase and installation of the computer. In the computer
installation branch, the first step is for someone in the purchasing department
to order a new computer. The process map for this step is shown in Figure
12.11:

Figure 12.11The Order Computer work item
Cemputer
@Lt}Ordered

Order
Computer

This work item has the form or der Comput er . ht m , as shown in Figure
12.12. This form sets the values of the following data fields:

dfCompOrderDate The date on which the computer was ordered. This value
must be a date such as 12/12/1998. This value is set by a client-side script, but
the person ordering the computer can overwrite it. For more information on the
client-side script, see “Embedded Client-Side Script” on page 272.

dfCompOrderID The ID or PO number for the order.

Office Setup Walkthrough

Figure 12.12The orderComputer.html form

Process Management @#\AVALON"
Setup Office for New Employee industries

Order Computer

Who wses this form: Purchasing depattiment.

What to do with this form: Use this form to indicate that wou have ordered a computer for
anew employes.

Here are the details of the new emplovee:

Employee Name
Matme: John Smmith
Start Date: 01/15/1995
Eeport To: Jane Doe
Department: Engineering
Eequested By Suite Spot & dmimstrator

Here iz information about the emplovee's office:

Office Location
Office Mumber: 1234
Floor: 1
Bullding: Building 1
The hiring manager should have entered the computer description. If the description field 15 blank, please
contact the hiring manager. Please order the computer and enter the order date and order TD number.

Computer

Order Date: |1/19f1999 (MDD Y Y T 1)
Order ID: I

Description: [NT 4.0 & gig hard disk

After wem hawe ardered the remmniter rreas the hittan hielonr ta anbemit this frrmm Thie fiewt ot in the

Chapter 12, The Office Setup Application 259

Office Setup Walkthrough

260 Developer’s Guide

Install Computer Work Item

The next step is for the MIS department to install the computer. The process
map for this step is shown in Figure 12.13:

Figure 12.13The Install Computer work item

Compliter
Ihstalled

@Qj

Install
Computer

-

This work item uses the i nst al | Conp. ht Ml form, as shown in Figure 12.14.
This form does not set any data field values. Its purpose is to enable the MIS
department to specify when the computer is installed so that the office setup
process can progress to the next step.

Office Setup Walkthrough

Figure 12.14The installComp.html form

Process Management QAVALON
Setup Office for New Employee industries

Install Computer

|H’?ﬁo uses this form: |MIS Fersontiel

Youneed to install a computer for a new employee. When the
computer is installed, subimit this form.

What to do with fhis form:

Here are the details of the new emplovee:

Employee Name
Matme: John Smmith
Start Date: 01/15/1995
Eeport To: Jane Doe
Department: Engineering
Eequested By Suite Spot & dmimstrator

Here iz information about the emplovee's office:

Office Location
Office Number: 1234
Floor: 1

Building: Building 1
Here is the information about the computer to be nstalled.

Computer
Crder Date: 01/15/1592
Order I 12345
Descrption: NT 4.0 6 gig hard disk

Chapter 12, The Office Setup Application 261

Office Setup Walkthrough

Basic Setup Join

When the network setup and computer installation is finished, the two parallel
branches merge back together into the main branch of the process at the join.
The process map for this step is shown in Figure 12.15:

Figure 12.15The Basic Setup join

\
<
7
Basic

e
Setup .

’ Jain

As with a split, the transitions leading away from a join can be conditional. The
default condition for each transition is true, and the first transition evaluated
that is true is the one followed for a particular process instance.

CheckSetup Work Item

The final step is for the administrative assistant to double-check that the office
has been set up properly and has a chair and new package. The process map
for this step is shown in Figure 12.16:

Figure 12.16The CheckSetup work item

@J
CheckSetup

This work item has the checkSet up. ht M form, as shown in Figure 12.17.

262 Developer’s Guide

Office Setup Walkthrough

Figure 12.17The checkSetup.html form

Setup

Process Management '\AVALON

Office for New Employee

Check Office Setup

Fho uses this form:

& dministrative assistant for a hiting manager who has a new employee starting
soon.

Fhat to do with this form:

When you recieve this work item in ywour work item list it means that the computer
for the new employee has been installed.

Vouneed to check that the installation was correct -- check that the right kind of
cotnputer was installed in the right office.

Ifthe set up is correct, put a chair and a "Mew Hire" stationery kitin the employee's
office, then submit this form.

Employee Name
Hatme
Start Date
Eeport To
Department
Eequested By

Office Location

Computer
Order Date
Order I

Here are the detals of the new emplovee:

Here 1z information about the employee's office location:

Office Mumber:
Floor:

Building;

Here 1z the mformation about the computer.

. John Srth
c01/18/1999
. Jane Doe

. Engineering
- Suite Spot Administrator

1234
1

Building 1

o 01191999
o 12345

Chapter 12, The Office Setup Application 263

The Office Setup Groups

This work item has a completion script, ver i f ySet up, that ensures that the
administrative assistant has checked “yes” for the following entries:

Chair in office? This is the df Chai r Pr esent radio button data field.

New Hire Stationary Packet on desk? This is the df NewHi r ePacket radio
button data field.

Computer starts correctly? This is the df Conput er OK radio button data
field.

Setup Complete Exit Point

This application has one exit point, which is reached after the administrative
assistant successfully submits the Check Setup form. The exit point is shown in
Figure 12.18:

Figure 12.18The Setup Complete exit point

Setup
Complete

This exit point has a notification that sends mail to the process instance creator
telling them that the process instance has finished. The body of the notification
is constructed by the bui | dExi t Not i fi cat i on toolkit script.

The Office Setup Groups

264 Developer’s Guide

This application contains the following application groups:

Purchasing The purchasing department performs the Order Computer work
item.

Admin Assistant The administrative assistant performs the Assign Office and
Specify Computer work item, as well as the CheckSetup work item.

Data Dictionary

MIS Dept The MIS department performs the Set Up Phone, Install Network
Connection and Install Computer work items.

admin This is the general administrative group.

To make it easier to install and use the sample application in “test” mode, a
single adni n user has been put into each of these groups. If you want to add
additional users or change the user, see “Configuring the Office Setup
Application” on page 274 for more information.

Data Dictionary

The data dictionary has the following data fields:

dfBldg The building where the new employee's office is located. This is set by
the administrative assistant in the Assign Office and Specify Computer work
item.

dfChairPresent This is a radio button with choices “yes” and “no” to indicate
whether or not the administrative assistant has checked that a chair is present in
the new employee's office. This value is set by the administrative assistant in
the Check Setup work item.

dfCompOrderDate The date on which the new computer was ordered. This
value is set automatically by a client-side script in the Order Computer work
item.

dfCompOrderID The order number for the new computer. This value is set
by the purchasing department in the Order Computer work item.

dfComputer A description of the computer to order for the new employee.
This is set by the administrative assistant in the Assign Office and Specify
Computer work item.

dfComputerOK This is a radio button with choices “yes” and “no” to indicate
whether or not the administrative assistant has checked that the computer in
the new employee's office starts up. This value is set by the administrative
assistant in the Check Setup work item. (Although the MIS personnel who
installs the computer would be expected to check the installation, the
administrative assistant also starts it once to do a double check.)

Chapter 12, The Office Setup Application 265

Data Dictionary

266 Developer’s Guide

dfCubeNo The new employee’s office number. This is set by the
administrative assistant in the Assign Office and Specify Computer work item.

dfDeptName The department that the new employee will be joining. This is
set by the hiring manager in the entry point.

dfEmpName The new employee’s name. This is set by the hiring manager in
the entry point.

dfFloor The floor where the new employee’s office is located. This is set by
the administrative assistant in the Assign Office and Specify Computer work
item.

dfMgr The new employee’s manager. This is set by the hiring manager in the
entry point.

dfNetworkAddress The IP address for the new employee’s network
connection. This is set by the MIS department in the Install Network
Connection work item.

dfNewHirePacket This is a radio button with choices “yes” and “no” to
indicate whether or not the administrative assistant has put a new hire
stationery packet in the new employee's office. This value is set by the
administrative assistant in the Check Setup work item.

dfPhone The phone number for the new employee. This is set by the MIS
department in the Set Up Phone work item.

dfRequesterName The name of the person requesting the office setup. This
would usually be the same as the new employee's hiring manager. This is set
by the hiring manager in the entry point. This data field would be useful to
keep track of the requestor in cases where someone other than the hiring
manager is starting the process.

dfStartDate The start date for the new employee. This is set by the hiring
manager in the entry point.

Form Dictionary

Form Dictionary

The application uses the following forms:
= assignCube.html

= checkSetup.html

= orderComputer.html

< installComp.html

e prepareForNH.html

= setupNetwork.html

= setupPhone.html

= status.html

All of these forms except the st at us. ht M form are described in “Office
Setup Walkthrough” on page 249.

The st at us. ht M form, shown in Figure 12.19, is used to show the status of
the office setup to interested parties. It shows the data gathered on the other
forms in the areas of new employee details, office location, phone information,
network information, and computer. It is available to members of “all”
beginning with the Assign Office and Specify Computer step and throughout
the rest of the process.

Chapter 12, The Office Setup Application 267

Form Dictionary

Figure 12.19The status.html form

Process Management QAVALON -

Setup Office for New Employee ndsiries

Set Up Office for New Hire Process

Anyhody who wants to look at the progress of the cube set

Who wses this form:
up for a new employee.

New Employee Details
Marme: John Sruth
Start Date: 01/19/1959
Eeports To: Jane Doe
Department: Engineering
Office Set up Eequested By Sutte Spot Admmitstrator

|0fﬁce Location
| Office Number: 1234
| Floor: |1

| Building. Building 1

|Phone Information
| Phone: (555) 555-5555

Network
Information

| IP Address: [388.88.838

268 Developer’s Guide

Script Dictionary

Script Dictionary

The process uses customized scripts of the following kinds:
= Completion Scripts
= Toolkit Scripts

The process also uses one client-side script to automatically set the order date
when a new computer is ordered.

< Embedded Client-Side Script

Completion Scripts

This process uses two completion scripts: set Request er Fi el d and
veri fySet up.

= setRequesterField
= verifySetup

setRequesterField

This runs as a completion script on the entry point. It checks the Directory
Server for the person that initiated the request, and puts their common name as
the value of the df Request er field. If the creator is not found in the Directory
Server, the df Request er field is not set. The purpose of setting this field is to
store the process instance creator in a data field.

The code for this script is as follows:

function set RequesterFiel d(){
/] Get the process instance.
var pi = getProcesslnstance();

/1 Get the distinguished nane of the creator of the

/] process instance fromthe Directory Server.

var creator = pi.getCreatorUser();

// 1f we can’t find the creator in the Directory Server, |og
// an error, but it’'s not a show stopping error so keep going.
if (creator == null || creator == "undefined") {

Chapter 12, The Office Setup Application 269

Script Dictionary

270 Developer’s Guide

| ogError Msg("creator can not be |ocated");
}
/1 1f we found the creator in the Directory Server
// put their comon nane in the df Requester data field.
el se {
var creatorName = creator.cn;
pi . set Dat a(" df Request er Nane", creatorNane);
}
/1 Return true so that the activity succeeds
// and the process continues.
return true;

}

verifySetup

This runs as a completion script on the Check Setup work item. This script
checks that the df Chai r Her e, df Conmput er OK, and df NewHi r ePacket
radio button data fields are all set to “yes.” If any of them are not set to “yes,”
the completion script returns false, which means the work item cannot be
completed.

The plan is that the administrative assistant checks these buttons after checking
that the new employee's office has a chair, the computer starts up, and a new
hire stationery packet is on the desk.

The code for this script is as follows:

function verifySetup(){
var pi = getProcesslnstance();
/! Return false if any of the df ChairPresent, df NewHirePacket
// or df ComputerOK data fields are not set to yes.
if ((pi.getData("dfChairPresent") != "yes") ||
(pi.getData("df NewH rePacket") != "yes") ||
(pi.getData("df ConputerOK") !'= "yes"))
{
/1 Tell the user why the formcould not be submtted.
set Error Message("You nust ensure that the conputer is OK " +
+ "and there is a chair and new hire packet in the office.");
return fal se;
}
/1 1f everything's OK, return true.
return true;

}

Script Dictionary

Toolkit Scripts

There is one toolkit script, bui | dExi t Noti fi cati on.

buildExitNotification

This scripts builds a string to use as the body of an email that gets sent by the
exit point to the process instance creator.

This email informs the process instance creator that the process instance has
terminated.

The code is as follows:

function buil dExitNotification(){
/] Get the process instance.
var pi = getProcesslnstance();

Il Get the current work item
var wi = getWorkltem();
var nodeCN = wi.getCurrentActivityCN();

// Construct a string to use as an email body such as:

/1 "The office setup request you initiated on 10/10/ 1998 for
/1 new hire N kki Beckwell has finished at the Setup Conplete
/] exit point.

var body = "The office setup request you initiated on "

+ pi.getCreationDate()
+ " for new hire "
+ pi . get Dat a(" df EnpNane")
+ " has finished at the "
+ nodeCN
+ " exit point.";

return body;

}

Chapter 12, The Office Setup Application 271

Script Dictionary

272 Developer’s Guide

Embedded Client-Side Script

The or der Comput er . ht ml form uses a client-side script to automatically set
the date on which the computer is ordered. The purchasing department can
override this date.

This script makes use of the fact that every data field shown in the form has a
corresponding form element of the same name. Thus by setting the value of the
df ConpOr der Dat e form element, we are effectively setting the value of the
df ConpOr der Dat e data field.

function getDate()

{
var currDate = new Date();
/* Get the current year.

NOTE: according to the JavaScript Reference,

The get Year nmethod returns either a 2-digit or 4-digit year:

For years between and including 1900 and 1999, the val ue returned
by getYear is the year minus 1900. For exanple, if the year is 1976,
the value returned is 76.

For years |l ess than 1900 or greater than 1999, the val ue returned
by getYear is the four-digit year. For exanple, if the year is 1856,
the value returned is 1856. If the year is 2026, the value returned
is 2026.

*/

var currYear = currDate().getYear();
if(currYear < 100)
currYear += 1900;

// Jan is 0, Feb is 1 etc... so add 1 to the nonth.
var dateString = (currDate.getMnth() + 1) + "/"

+ currDate.getDate() + "/"

+ currYear;

return dateString;

}

/1 Put the current date in the df ConpOrderDate
/1 element in the form
docunent . forns[0] . df ConpOr der Dat e. val ue = getDate();

Customizing the Appearance of the Forms

Customizing the Appearance of the Forms

The forms used in this sample application were edited in an external HTML
editing tool to fine-tune their appearance.

All HTML forms link to a single style sheet, nyst yl es. ht m , that defines a
class that is used to define the purple border for the paragraph at the bottom of
each form.

The html pages for forms appear at the top level of the subdirectory of
Applications that contains your application.

To edit these forms, use an HTML editor that meets the following requirements:

= The editor must ignore all tags and attributes it does not understand,
because the data fields are implemented as customized SERVER tags. Some
HTML authoring tools will delete tags and attributes that are not standard
HTML.

= The editor must leave the following tags upper case: HEAD, BODY, HTML,
and SERVER.

HTML editors that meet these requirements include Netscape Communicator
(versions 4.5 or later) and Microsoft Internet Explorer (versions 4.0 and later).

If you edit the forms in an external editor, be sure not to modify any of the
customized SERVER tags, or you the data fields on the forms will not work.

If you edit a web page for a form while it is also open in Process Builder, be
sure to click on the form again in Process Builder before saving the application.
When you click on a form that has been edited externally, Process Builder asks
if you want to load the modified form with the latest changes.

Note that the web page for the form only contain a portion of the information
the end-user sees on the form. The Process Engine inserts the banner, buttons,
and comment areas of the form, as well as the <FORM> tag itself.

For more information on using an external editor with Process Builder, see
“Modifying Forms” on page 165.

Chapter 12, The Office Setup Application 273

Configuring the Office Setup Application

Configuring the Office Setup Application

274 Developer’s Guide

Before you can deploy the Office Setup application, you must make sure your
environment meets the following requirements:

= Set the corporate directory as described in “Setting Your Corporate
Directory” on page 70.

= Make sure that at least one valid user is present in each of the following
groups: Purchasing, MIS Dept, admin, and Admin Assistant.

Typically, you don’t need to add users to the above groups, because an admi n
user is added to each of those groups by default. However, you must add users
if:

= You do not have an admi n user in your corporate database.

= You would like to use someone other than the adm n user or in addition to
the adm n user.

To add users, perform the following steps:

1. Make sure that you have defined a corporate directory for the application.
For more information, see “Applications and the Corporate Directory” on
page 69.

2. In Process Builder, open the application tree view.

3. In the Groups and Roles folder, right-click the group name you want to
change, and then choose Properties.

4. Using the Browse option, find the users you want to add, and drag them to
the List of users. Or using the Search option, highlight the users and click
Add.

5. Close the dialog box.

After you have saved the application, you are ready to deploy it.

Chapter

The Loan Management and Credit
History Applications

This chapter describes the Loan Management sample application and its
subprocess, the Credit History application. These two sample applications
show how to use a subprocess in your applications.

This chapter includes the following sections:

= Loan Management Application Overview

= Credit History Application Overview

= Loan Management Process Map

< Credit History Process Map

= Loan Management and Credit History Walkthrough
= Groups and Roles

= Data Dictionary

= Loan Management Script Dictionary

= Credit History Script Dictionary

= Configuring the Loan Management Application

= Configuring the Credit History Application

Chapter 13, The Loan Management and Credit History Applications 275

Loan Management Application Overview

Loan Management Application Overview

The Loan Management application controls the process of approving a loan,
from the first request to the final approval.

As part of the process, this application contains a subprocess step (Check Credit
History) which launches the subprocess application Credit History. This
application checks to see how much credit the person applying for the loan has
been extended in the past, and returns the information to the Loan
Management application. The Loan Management and Credit History
applications are specifically designed to show how subprocesses work.

Note that the names for the Check Credit History subprocess and Credit History
application are slightly different to distinguish the two. Check Credit History
refers to the subprocess icon on the Loan Management process map and to the
subprocess item’s properties. Credit History refers to the actual application that
is called by Loan Management as a subprocess.

Credit History Application Overview

The Credit History application can be run either as a subprocess of the Loan
Management application or as a stand-alone application. It shows the process
of checking a customer's previous credit. In the real world, that check would
probably be done against a database of customer history, but for the purpose of
this sample application the amount is hardcoded into the application.

Though the entry point for the Credit History application appears on the
process map, it is not included in the walkthrough portion of this chapter. The
entry point is only seen by a user if the user runs the Credit History application
as a stand-alone application, instead of as a subprocess. Because the
walkthrough shows the Credit History application called as a subprocess, the
entry point is handled automatically when the Loan Management application
starts the subprocess.

Loan Management Process Map

Figure 13.1 shows the process map for the Loan Management application:

276 Developer’s Guide

Credit History Process Map

Figure 13.1The Loan Management process map
B Process Map

=
-
@ D he 3
Histony
Werification Ched
Mew redit
Loan getConclusion isto
Request == & e
ngp
&
@ ’ r‘ N F
Subprocess .
Failed Meeting
Loan
Refused
Applove
Loan
Approved _I
-
Kl i

Credit History Process Map

Figure 13.2 shows the process map for the Credit History application.

If run as a stand-alone application, the user starts at the New Credit History
Report entry point. If run as a subprocess, the New Credit History Report Entry

point happens automatically when this application is called from the Loan
Management application.

Chapter 13, The Loan Management and Credit History Applications 277

Loan Management and Credit History Walkthrough

Figure 13.2The Credit History process map

Bl Process Map

\-_’JIE . = Ereate r
apart

Ched

Hew Autharizatior

Credit
Histony Caneel
Feapart Report

Canceled

Loan Management and Credit History

Walkthrough

This section walks through the complete process, including both the Loan
Management and Credit History applications, step by step. The complete
process contains the following entry points, work items (activities),

subprocesses, and exit points:

= New Loan Request Entry Point

= Verification Work Item

= Check Credit History Subprocess

= Credit History Application as a Subprocess
= Check Authorization Work Item

= LookUp Credit History Automated Activity

278 Developer’s Guide

Loan Management and Credit History Walkthrough

= Canceled Exit Point

= OK Exit Point

= Meeting Work Item (Parent Process)
= Loan Refused Exit Point

= Loan Approved Exit Point

New Loan Request Entry Point

The Loan Management process starts when a user puts in a new loan request.
This user is someone at a bank who is responsible for helping customers with
their loan applications.

Figure 13.3The New Loan Request entry point
8"
Submit— -

MHew
Loan
Request

To start a new loan request, the person at the bank accesses the
creation. htm form in Process Express, as shown in Figure 13.4.

Chapter 13, The Loan Management and Credit History Applications 279

Loan Management and Credit History Walkthrough

280 Developer’s Guide

Figure 13.4The creation.html form

Application Banner

Customize this banner by importing an image called banner.gil’ in the
<application root=/ images folder using file | impent in the Builder Tool

Title: |

Customer: | Address Book

Asmount: I

After completing the above form, select one of the following actions.

This form sets the values of the following data fields:

title The title of the process instance. Since it appears on the work list, this
field needs a value that is meaningful to the end users, for example, the kind of
loan requested.

customer The name of the customer who is requesting the loan. This is a user
picker widget. The customer name is used for the field role Customer. This user
needs to be in the corporate directory.

amount The amount of money the loan is for.

Verification Work Item

The next step is for the creator of the loan application to verify the information
entered to make sure that it is correct. The process map for this step is shown
in Figure 13.5.

Loan Management and Credit History Walkthrough

Figure 13.5The Verification work item

@
@ Check
—Credit——
- Histany
Wearification

This step uses the same form as the entry point, cr eati on. ht ml , shown in
Figure 13.4. The only additional field is the “comments” text area, where the
creator can enter comments that will appear in the details and history. The
comments section appears because the Allow to Add Comments property for
the Verification activity is set to true.

Check Credit History Subprocess

At this step the Loan Management application calls a subprocess, the Credit
History application. The process map for this step is shown in Figure 13.6:

Figure 13.6 The Check Credit History subprocess

e |G

Ched

Credit

Hiztony
getCanclusion()

true
e

This subprocess checks the credit history of the customer. If the subprocess
terminates in the OK exit point, the loan request moves forward to the next
step. If the Credit History application does not end at the OK exit point, the
loan is denied.

Check Credit History Subprocess Properties

The Check Credit History subprocess in Loan Management has the properties as
shown in Figure 13.7. (You can view properties by right-clicking the
subprocess item in the process map and choosing Properties.)

Chapter 13, The Loan Management and Credit History Applications 281

Loan Management and Credit History Walkthrough

The end user does not see these properties, but they govern how the Loan
Management application starts the Credit History application as a subprocess.

Figure 13.7Check Credit History subprocess properties dialog box

| B Inspector - Check Credit History E

1
| Properties

Tra nsitionsl

Mame Check Credit History |

Il Description This iz 2 credit report subprocess ’
Subprocess Entry 22 CreditHistary s |

fit Mew Credit Histors Repart
[1 creation.html

| &5 Subprocess Action Subrmit -
Il waitto complete true -
= Data Mapping titlte=getDatafitle"); person=getDatacustomer, ZE]
n F Initiate as (user id) | |
[f Completion Script stare Creditinfarmationd ol
| [\ Exception Manager Subprocess Failed i

The Subprocess Entry shows that the subprocess application is CreditHistory,
that the entry point accessed for this application is the New Credit History
Report entry point, and that the form at this entry point is cr eati on. ht m . A
subprocess must use an entry point that only has one form. The fields on
creation. ht m that would ordinarily be filled in by the user at the entry
point are filled in automatically using data mapping. For more information, see
“Data Mapping” on page 283.

The Subprocess Action is Submit, which is the transition that leads from the
entry point to the first activity on the Credit History process map.

The Initiator User ID is the ID of the user who initiates a subprocess. In many
cases this field would use a script to determine the user by process instance.
However, in this sample it is hardcoded to the static value of the admi n user. If
you are not using the adm n user, or want a different user, you can replace this
value. For information about revising the defined users, see “Configuring the
Credit History Application” on page 297.

282 Developer’s Guide

Loan Management and Credit History Walkthrough

The Data Mapping, Completion Script, and Exception Manager properties are
covered in the following sections.

The Transitions tab shows the order in which to evaluate the transitions out of
the subprocess. First, the application evaluates the transition named
getConclusion() ==“OK” . This transition checks if the subprocess ended
at the OK exit point. If that is true, the process continues to the Meeting work
item. If the subprocess did not end at the OK exit point, the next transition is
evaluated. Because the next transition is true , it acts as an “else” statement. If
the subprocess ended anywhere except the OK exit point, the process follows
this transition to the Loan Refused exit point.

Data Mapping

In the Data Mapping dialog box, the parent process fields are mapped to the
subprocess fields that are required to complete the form at the subprocess’s
entry point. Figure 13.8 shows the dialog box for this sample application.

Figure 13.8Data Mapping setting dialog box

Bl Data Mapping setting window

Make your datamapping

Subprocess Field Mapping Script]

1= title getDataitle™ 3

1= person Customerldi) b
Ok | Revert | Cancel |

In this sample application, the cr eati on. ht i form (the form at the entry
point of the Credit History application) contains two fields that must be filled
in:title,and person.

The titl e field in the subprocess is mapped to the value in the parent
process’s titl e field. The script Cust oner | d() populates the subprocess
data field per son with the user ID of the customer stored in the parent
process’s cust oner field. For more information on this script, see “Customerld
Toolkit Script” on page 295.

Chapter 13, The Loan Management and Credit History Applications 283

Loan Management and Credit History Walkthrough

284 Developer’s Guide

Completion Script

The completion script st or eCr edi t | nf or mat i on takes the values from the
Credit History application and stores them in the appropriate data fields in the
Loan Management application. It also determines at what exit point the
subprocess ended. For more information, see “storeCreditinformation
Completion Script” on page 293.

The Subprocess Failed Exception Manager

If the subprocess fails for some reason, the application calls an exception
manager hamed Subprocess Failed. The tree view shows this exception
manager as a yellow triangle. It also appears on the process map, as shown in
Figure 13.9, but it is not connected by transitions to any other items.

Figure 13.9Exception manager

A

Subprocess
Failed

The exception manager is similar to an activity, in that you assign it to someone
(usually the administrator), and that person can view a form and take action.
For the Loan Management application, the exception manager is assigned to the
creator by default, and the assignee views the cr eat e. ht ml form.

The Subprocess Failed exception appears on a work list only if the subprocess
fails. In most cases it won't appear.

Credit History Application as a
Subprocess

When the process reaches the Check Credit History step, the Credit History
application is started as a subprocess of the Loan Management application.

The process map for the Credit History application is shown in Figure 13.10.
The process map displays the steps that take place before returning to the Loan
Management parent process.

Loan Management and Credit History Walkthrough

Figure 13.10The Credit History process map
B Process Map

B e @%—“‘S&i

Chedk bk
NEU\! Authorizatior
Credit
Histary Cancel
Report Report

Canceled

L]l |

When Loan Management calls Credit History, the New Credit History Report
entry point happens automatically. The fields in the form creati on. ht ml are
filled in by data mapping, and the Submit action is performed automatically.

Check Authorization Work Item

The next step in the process is the first activity in the Credit History application,
Check Authorization. The process map for this step is shown in Figure 13.11.

Chapter 13, The Loan Management and Credit History Applications 285

Loan Management and Credit History Walkthrough

Figure 13.11The Check Authorization work item

@
@ Create
- Eepnrt L

Check
Authorizatior

Cancel
FReport

This work item is completed by the person responsible for authorizing credit
reports. However, for the purposes of the sample application, this work item is
assigned by default to the creator. The form associated with this step is

form ht m . This form contains a read-only field, per son, which is the field
role associated with the customer requesting the loan. This field role is picked
up from the parent process, Loan Management. In Figure 13.12, the request has
been made for the user’s SuiteSpot Administrator.

Figure 13.12The form.html form

Application Banner
Custemize this banner by importing an image called banner.gil in the
<application root= images folder using file | import in the Builder Tool

A credit history has been requested for John Smith. Do you authorize it 7

fou can add additional comments here that will appear in the Details & History page:

-]

[|

After completing the above form, select one of the following actions.

Cancel Report Create Report

286 Developer’s Guide

Loan Management and Credit History Walkthrough

The choices available from this step are Cancel Report and Create Report.

If you choose Cancel Report, the Credit History application continues to the
Canceled exit point. If you choose Create Report, the process continues to the
automated activity LookUp Credit History.

LookUp Credit History Automated
Activity

The next step is the automated activity Look Up Credit History. The process
map for this step is shown in Figure 13.13.

Figure 13.13The Look Up Credit History automated activity

trie

LoakUp
Credit
Histony

In a real-world situation, this automated activity would look up a customer’s
credit history in a database. However, for the purpose of this sample
application, the values are hardcoded. The value of the data field
credit_history is setto 10000.95. The Loan Management process uses this
amount, along with the date, when the Credit History subprocess returns to the
Loan Management application.

After this automated activity runs, the process continues to the OK exit point for
the Credit History application.

Canceled Exit Point

If the report is canceled at the Check Authorization step, the process goes to
the Canceled exit point, shown in Figure 13.14.

Figure 13.14The Canceled exit point

Canceled

Chapter 13, The Loan Management and Credit History Applications 287

Loan Management and Credit History Walkthrough

288 Developer’s Guide

This step displays the form r ef used. ht ml . This form contains no fields, just
the message that the credit history report is not authorized. From this exit point,
the subprocess returns to the Loan Management process and continues to the
Loan Refused exit point.

OK Exit Point

If the request for the report is approved, the process goes to the OK exit point,
shown in Figure 13.15.

Figure 13.15The OK exit point
ak

This step displays the form conpl et ed. ht m , shown in Figure 13.16.

Figure 13.16The completed.html form

Application Banner
Customize this banner by importing an image called banner.gil in the
<application root=/ images folder using file | import in the Builder Tool

Credit History Report

User: John Smith
Credit: 10000.85

Credit Last Modified: 01/15/1999 12:41:20

This form shows the information gathered by the LookUpCr edi t Hi st ory
script. It has the following fields:

person The person for whom the credit history is gathered. The same as
customer in the Loan Management application.

credit_history The amount of money the person has been loaned in the past.

Loan Management and Credit History Walkthrough

credit_date The date the credit history check was performed.

From this exit point, the subprocess returns to the Loan Management process
and continues to the Meeting work item.

Meeting Work Item (Parent Process)

The Check Credit History subprocess has a completion script,
storeCreditlnfornation. If this script finds that the subprocess
concluded at the OK exit point, the subprocess proceeds to the Meeting step,
shown in Figure 13.17.

Figure 13.17The Meeting work item
2
@
Meeting

Approve

In the Meeting step, the person making the loan meets with the customer to
review the loan contract’s details. For this sample application, the Meeting
activity is assigned by default to the creator of the process instance.

At this point, the customer can either approve or refuse the terms. If the
customer approves the terms, the process continues to the Loan Approved exit
point. If the customer refuses the terms, the process continues to the Loan
Refused exit point.

The form displayed at this step is sunmar y. ht ml , shown in Figure 13.18.

Chapter 13, The Loan Management and Credit History Applications 289

Loan Management and Credit History Walkthrough

Figure 13.18The summary.html form

Application Banner
Customize this banner by importing an image called banner.gil in the
<application root=/ images folder using file | impont in the Builder Tool

title: car loan
customer: John Smith
amount: 4

credit; 10000.95 (since 01/15/1999 12:41:20)

You can add additional comments here that will appear in the Details & History page:

-
[-

After completing the above form, select one of the following actions.

Accept | Refuse |

Based on the results of the meeting, the two actions available to the person
making the loan are Accept or Refuse. Clicking Accept sends the process to the
Loan Approved exit point, whereas clicking Refuse sends the process to the
Loan Refused exit point.

Note that this form is also used throughout the process for the group "all," so
that everyone can see a summary of the loan process. This form is also used at
the “Subprocess Failed” exception manager.

This form contains the following read-only data fields. They are the data fields
from the original loan creation form, along with information gathered in the
subprocess:

title The title of the process instance. Since it appears on the work list, this
field needs a value that is meaningful to the end users, for example, the kind of
loan requested.

290 Developer’s Guide

Loan Management and Credit History Walkthrough

customer The name of the customer who is requesting the loan. This is a user
picker widget. The customer name is used for the field role Customer. This user

needs to be in the corporate directory.
amount The amount of money the loan is for.

credit The amount of credit the customer has had, as determined by the
Check Credit History subprocess.

last modified The date the credit was checked.

Loan Refused Exit Point

If the customer refused the loan terms at the Meeting step, or if the Credit
History process ended at the Canceled exit point, the next step is the Loan
Refused exit point, shown in Figure 13.19.

Figure 13.19The Loan Refused exit point

Loan
Refuzed

The form for the exit point is summary. ht ml , shown in Figure 13.18.

However, since the process is at an exit point, the fields are display-only, and

no action can be taken.

Loan Approved Exit Point

You reach the Loan Approved exit point, shown in Figure 13.20, if the loan is

approved in the Meeting step.

Figure 13.20The Loan Approved exit point

Loan
Approved

Chapter 13, The Loan Management and Credit History Applications 291

Groups and Roles

The form for the exit point is sunmar y. ht ml , shown in Figure 13.18.
However, since the process is at an exit point, all the fields are display-only,
and no action can be taken.

Groups and Roles

The Loan Management application has the following non-default role:

customer A field-based role representing the customer who requested the
loan. The data field cust oner is mapped to the per son data field in the
Credit History application, and so has the same value.

The Credit History application has the following non-default groups and roles:

person A field-based role representing the person who requested the loan.
The data field per son is mapped to the cust onmer data field in the Loan
Management application, and so has the same value.

trusted users An application group that is composed of users trusted by the
application to start the application as a subprocess. These user IDs are the App
User IDs of the parent processes that would call the process as a subprocess.
For the Credit History application, this group by default contains one user,
“admin,” which is the default App User ID for the Loan Management
application. You may have changed this value when you configured the Loan
Management application. For more information on trusted users, see “The
Corporate Group Dialog Box” on page 121.

For more information about configuring the groups and roles for these sample
applications, see “Configuring the Loan Management Application” on page 296
or “Configuring the Credit History Application” on page 297.

Data Dictionary

The Loan Management application has the following data fields in its data
dictionary:

amount The amount of the loan that the customer is applying for.

292 Developer’s Guide

Loan Management Script Dictionary

credit The amount of credit the customer was last given, based on the credit
history.

customer The name of the customer who is requesting the loan. This is a user
picker widget. The customer name is used for the field role Customer. This user
needs to be in the corporate directory.

last modified The date the credit history was last modified.

title The title of the process instance. Since it appears on the work list, this
field needs a value that is meaningful to the end users, for example, the type of
loan requested.

The Credit History application has the following fields in its data dictionary:
credit_date The date the credit report was last updated.

credit_history The amount of credit the customer was last given.

person The user ID of the person whose credit history is requested.

title The title of the process instance. Since it appears on the work list, this
field needs a value that is meaningful to the end users, for example, the kind of
credit history requested.

Loan Management Script Dictionary

The Loan Management application contains two scripts:
= storeCreditinformation Completion Script

= Customerld Toolkit Script

storeCreditinformation Completion
Script

This script runs after the subprocess is complete. It finds out which exit point
the subprocess reached. The script also gets the values of the fields set in the
subprocess (credit _hi story and credi t _dat e) and sets the values of the
data fields in the parent process (credit and | ast _nodi fi ed) to those

Chapter 13, The Loan Management and Credit History Applications 293

Loan Management Script Dictionary

294 Developer’s Guide

values. Notice that this script takes advantage of the
get SubPr ocessl nst ance function to get the subprocess instance data and
state. The script’s code is as follows:

function storeCreditlnformation(){
/] Get Handl e on subprocess instance
var spi = get SubProcessl nstance();

/] Get Handl e on process instance
var pi = getProcesslnstance();

/1 getConclusion returns the nane of the exit point reached
/1 by the subprocess
switch(get Conclusion()){

case "OK":

/1 The subprocess instance has been successfully conpl eted

/'l Read data fromthe subprocess instance.

/] Please note that "credit_history" and "credit_date"
/1 are names of fields defined in the child process.
var credit_history = spi.getData("credit_history");
var credit_date = spi.getData("credit_date");

/] Store data in process instance.

/'l Please note that "credit" and "last_nodified"
/1 are names of fields defined in this process.
pi.setData("credit", credit_history);
pi.setData("l ast_nodi fied", credit_date);

/'l Success
return true;

defaul t:
/1 No data transfer required
return true;

Credit History Script Dictionary

Customerld Toolkit Script

This script is used during the data mapping from the parent process to the
subprocess. It takes the value of the cust omer field in the Loan Management
application and finds the associated user ID for that customer. The user ID is
then entered into the per son field in the subprocess application, Credit
History.

This script is needed because field roles are entered as user IDs but are stored
as distinguished names. Therefore, the value from the cust oner field must be
converted from a distinguished name to a user ID before it can be entered into
the per son field.

The script’s code is as follows:

function Customerld(){
/'l Get a handle on the process instance;
var pi = getProcesslnstance();

/1 Get the customer user.
var cus = pi.getRol eUser("custoner");

/1 Verify that the role has been popul ated correctly.

if ((cus == "undefined") || (cus == null)){
| ogError Msg(" CUSTOVER_NOT_DEFI NED") ;
return null;

/1 return the user ID of the custoner
return cus. uid;

Credit History Script Dictionary

The Credit History application has one script, an automation script called
LookUpCredit Hi story.

Chapter 13, The Loan Management and Credit History Applications 295

Configuring the Loan Management Application

LookUpCreditHistory Automation
Script

This script is used by the automated activity LookUp Credit History. This script
determines the values for the credit _hi story and credi t _dat e fields. In
a real-world situation, this data might be contained in a database. However, for
the purpose of this sample application, the values are hardcoded into the script.

function LookUpCreditHistory()({
/'l Get a handle on the Process |nstance.
var pi = getProcesslnstance();

/1 Get the information about the user whose
// credit history is requested.

var user = pi.getRol eUser ("person");

var userld = user.uid;

// Based on the userld, determne the

// credit_history and the credit_date.

/'l These val ues are hardcoded, but we could instead
// access an external database for nore information.
pi .setData("credit_history", 10000.95);

pi .setData("credit_date" , new Date());

return true;

Configuring the Loan Management
Application

296 Developer’s Guide

Before you can deploy the Loan Management application, you must make sure
your environment meets the following requirements:

= Set the corporate directory as described in “Setting Your Corporate
Directory” on page 70.

= Add a user to the adni n group.

Configuring the Credit History Application

To add a user to the admi n group, follow these steps:

1. In the application tree view, right-click the adni n group and choose
Properties. Or highlight the group and click the Inspector button from the
toolbar.

2. Using the Browse option, find the users you want to add, and drag them to
the List of users. Or using the Search option, highlight the users and click
Add.

3. Close the dialog box.

After you have set these properties, you can deploy the Loan Management
application. However, you cannot run the application until you also deploy the
application it uses as a subprocess, Credit History.

Configuring the Credit History Application

Before you can deploy the Credit History application, you must make sure your
environment meets the following requirements:

= Set the corporate directory as described in “Setting Your Corporate
Directory” on page 70.

« Add users in two groups: admin and trusted users. The admin can be
anyone, but the default is the adm n user. The trusted user must be the
same user as defined in the Loan Management application for the Credit
History subprocess.

To check this user value, perform the following steps:
1. Open the LoanMgmt application.
2. Open the Inspector window for the “Check Credit History” activity.

3. Check the value for the "Initiated As (user id)" property. By default, this is
set to admi n.

Chapter 13, The Loan Management and Credit History Applications 297

Configuring the Credit History Application

To add a user to the admin or trusted user group, perform the following steps:

1. In the application tree view, right-click the group and choose Properties.
(YYou can also double-click the group, or highlight the group and click
Inspector from the toolbar.)

2. Using the Browse option, find the users you want to add, and drag them to
the List of users. Or using the Search option, highlight the users and click
Add.

3. Close the dialog box.

After you have saved the application, you are ready to deploy it.

298 Developer’s Guide

Chapter

The Insurance Claim Processing
Application

This chapter describes the Insurance Claim Processing sample application that
is shipped with this product. It includes a general walk through of the sample
application and describes its functions. You can use the applications as a
learning tool to see how applications are designed.

This chapter contains the following sections:

Application Overview

Process Map

= Application Walkthrough

= Groups and Roles

= Data Dictionary

< Forms

= Script Dictionary

= Required Files

= Configuring the Insurance Claim Processing Application

= Custom Activity Code

Chapter 14, The Insurance Claim Processing Application 299

Application Overview

Application Overview

Note

300 Developer’s Guide

This application automates the process of making an insurance claim for
automobile damage from the time the customer enters the claim information to
the time when the claim is either approved or denied. The application
demonstrates how you can implement a number of advanced PAE features
including the following:

Accessing a flat file

The application takes the policy humber from the customer and reads a flat
file (an XML file with customer records) and parses it to get the policy
details record for the customer. If the record is not found the application
prompts the user to re-enter the policy number.

Step by Step wizard like interface

The application uses a step-by-step interface that makes the application
simpler to use and understand.

Expiration for customer forms

The Application uses expiration setter and handler scripts in order to
discard forms that are not accessed for a certain time.

Email natification for claim approval/denial

The application sends email to the person who initiated the insurance claim
when the claim is approved or denied.

The application contains all the necessary forms, user roles, and database fields
to complete the process.

You must use Netscape Communicator to run this application.

Process Map

Figure 14.1 shows the application’s steps:

Figure 14.1The Insurance Claim Process Map

Process Map

tre

Look Folicy
Ent
PO"HE' Up details
e Details
o.
Fuo MHop=="

Resubmit
Mo Falicy
Tranzactions No.
Inform
Customer
Default
Exception
@
true
5
true
Farallel
Activity
Update
Log

@
@ =

é)
Enter
Claim
Enter
Expired Claim
Details
Expired
Expiration
Exit

ot Ty @
“‘\,/M/' @

Expited Confir‘mation

Confirmed

Complated
true

Claim
Approved

Approver
Clayify

true

D @
- @
Any

Clarification
Change
ClarifyCamments

Il
ClarifyComments

true

Claim
Denied

Lag
Denial

The process map shows the following steps.

Chapter 14, The Insurance Claim Processing Application 301

Process Map

302 Developer’s Guide

Entry Point

The process map contains one entry point for entering the Policy number in
order to get the record from the flat file database.xml.

Activities
There are eight activities:

= Policy Details. Displays the customer personal information and policy
details

= Re-Enter Policy No. Prompts the user to re-enter the policy number if it was
not found in the flat file.

= Enter Claim Details. Prompts the user to enter the claim details.

= Confirmation. Displays customer personal information, policy details and
the claim and prompts for confirmation if everything is correct.

= Approver. Approves insurance claim if correct else sends for clarification of
the claim

= Clarification. Checks for policy changes after talking to the customer.
< Inform Customer. Informs the customer that the claim was approved.

= Send Check. Displays that the check was sent.

Custom Activities

There are three custom activities, which perform different functions.

Look Up Details

This custom activity is the most important of the three custom activities. It takes
the policy number, entered by the customer at the entry point, as the INPUT. It
then opens the flat file (database.xml) and parses the file to get the matching
policy number as entered by the customer.

Note

Process Map

If it finds a matching Policy number, it fetches the records and sends all the
details to the OUTPUT of the custom activity. All this is done in the perform()
function of the custom activity Java file. The record is mapped to the variables
in Process Builder and hence when we view the next form we can see all the
details.

If it does not find a matching policy number, it prompts the customer to re-
enter the policy number until it finds the matching policy number in the flat
file.

It maintains a log file (Policy.log) which is created if not present. This log file
has the information about all the access to the policy and the results.

The flat file (database.xml) must be in the current user directory in order to
make the application work.

Update Log

This custom activity updates the Policy.log file whenever the claim is approved.
It is associated with a parallel activity.

Log Denial

This custom activity updates the Policy.log whenever the claim is denied.

Decision Point

This decision point checks if the customer details have changed. If there are
changes in the policy details, it sends back to the approver else sends for
denial. This is because if there are no changes you then the claim is not correct
and hence denied.

Parallel Process

The purpose of this parallel activity is to speed the process where we have an
activity of Send Check and an Update Log custom activity. This too can be
performed parallel as they do not require any manual process.

Chapter 14, The Insurance Claim Processing Application 303

Application Walkthrough

Exit Points

There are four exit points in the application:
= Claim Approved. Exits whenever a claim is approved.
< Claim Denied. Exits whenever a claim is denied.

= Expiration Exit. Exits whenever an Expiration handler gets activated it
destroy the process instance.

= No Transactions. Exits when there is no access to the policy details such as
when the user exits after entering wrong Policy number.

Notification

There are three notifications in the application. They send email to the
customer when:

= A claim is approved.
= Aclaim is denied.

= A claim process has expired.

Application Walkthrough

304 Developer’s Guide

This walkthrough takes you through the process described by the application,
describing the portions of the application involved in each step.

The Entry Point (Enter Policy No.)

Users (customers) initiate an insurance claim at the Enter Policy No. entry point.
When they initiate the application in Process Express, they see the Entry.html
form. On this form customer enters the policy number for which they are
claiming the insurance.

Application Walkthrough

Custom Activity (Look Up Details)

When users have filled out the form, they click Next to perform the function of
the class file associated in the custom activity - Look Up Details. The function of
this custom activity is to open database.xml (which is the flat file), parse it, and
look for a matching policy number.

A main function of this application is to log all the activities carried out
whenever a new process is initiated. This helps the insurance company
personnel check all insurance claims entered through this application. At this
custom activity, the application adds the customer name and a randomly
generated claim ID to a file called Policy.log.

Activity (Policy Details)

If the custom activity finds a matching Policy number, it displays the policy
details on the form Det ai | s. ht m . This activity has two scripts associated
with it:

= Script at Policy Details Activity

= Completion Script at Policy Details Activity

Activity (Re-enter Policy No.)

If the custom activity does not find the policy number in the flat file, it will
prompt the customer to re-enter the policy number until it finds a policy record.
It prompts the customer by displaying a form, called Resubmit.html.

Activity (Enter Claim Details)

The form at this activity, Ent er G ai m ht ni , allows the customer to enter the
claim. It has predefined claim such as vehicle damage, window damage etc.
The customer clicks the appropriate check box to select the type of claim and
describes the claim in detail in the text area provided.

Chapter 14, The Insurance Claim Processing Application 305

Application Walkthrough

306 Developer’s Guide

This activity also has two scripts associated with it: an Script at Enter Claim
Details Activity and a Completion Script at Enter Claim Details Activity.

Activity (Confirmation)

After entering all the details in the EnterClaim.html form, the form at this
activity Confirmation.html shows all the details associated with the customer
and the policy, including the claim details which the customer had entered in
the previous form. This form prompts the customer to check all the details
displayed and then continue if correct.

If the customer feels that there is a error in the claim details a 'BACK’ button
takes the customer back to the Enter Claim Details activity, where the customer
can enter the corrects claim details and continue.

This activity also has an Script at Confirmation associated with it.

Activity (Approver)

After the confirmation from the customer, the process continues to the next
step, approving the claim. This activity is carried out by the insurance company
employee who has the rights to approve the claim. The form Approver.html
displays all the information shown previously in the Confirmation.html, the
customer personal information, the policy details, and the claim. In addition to
this information, the form contains a text area for comments from the approver.

The approver can approve the claim at this point or, if there are some
comments or doubts about the claim or the customer, the approver can send it
on for clarification.

Activity (Clarification)

If the approver in the previous activity has some doubts about the claim or the
customer, the approver can send it for clarification. The form, Clarify.html, has
the same contents as Approver.html, and an additional field for the clarification

Groups and Roles

comments. The clarifier talks with the customer and looks for any changes in
the policy. If there are any changes he writes them in the Clarification
Comments text area and submits it to the approver.

If there are no changes in the policy, then the approver’s comments hold good
and there is something wrong with the claim. In this case, the claim is denied.

Activity (Inform Customer)

If the approver approves the claim, this activity displays a confirmation form
(InfCustomer.html) that the claim with Customer Name, Policy No. and Address
to which the claim check will be sent is approved.

Parallel Activity

After the Inform Customer activity, we have a parallel activity which carries out
two different tasks at the same time: Sent Check and Update Log.

Activity (Send Check)

The first part of the parallel activity informs the insurance claim personnel that
the check for the approved claim was sent. This is displayed in the
SendCheck.html form.

Custom Activity (Update Log)

The other part of the parallel activity is a custom activity - Update log. This
custom activity updates the log file, which was appended to when the process
was initiated. This custom activity writes the claim ID, which was randomly
generated during the process initiation, and the claim, which was approved, in
the log file.

Groups and Roles

The following groups and roles are defined for this application:

Chapter 14, The Insurance Claim Processing Application 307

Groups and Roles

308 Developer’s Guide

- all

creator

admin

trusted users

These are the default groups and roles that are created for every application.
For demonstration purposes, all activities in this application are assigned to the
creator of the process instance. In order for a group to be able to search, the
Allow Search option must be checked in the Inspector window for that group.

Group and Role Priorities

The group and role priorities determine the order in which the application
processes groups and roles to determine what forms the users see. Because a
user can belong to more than one group or role in the same application, the
application needs the builder to specify which group or role to evaluate first.
The evaluation order you set in the Groups and Roles properties window is the
order used in the Form Access window.

The assignee role is always at the top of the list and the “all” group is always at
the bottom. You cannot reprioritize these two.

To see the group and role priorities, follow these steps:

1. In the application tree view, double-click the Groups & Roles folder, or
highlight the folder and click Inspect.

2. In the Inspector Window, click “evaluation order” if it's not already selected.
The groups and roles are listed in the following order:

= assignee

creator

admin

< all

Data Dictionary

The application first checks to see if a user is the assignee of a particular
activity. If so, it finds the appropriate form to display to the assignee. If the user
is not the assignee, the application checks down the list, and when it finds a
role or group the user belongs to, it displays the appropriate form as configured
in the Form Access window. Figure 14.2 shows a portion of this window:

Figure 14.2Form Access Window

Form Access
Drag a farrm from the application tree view ta & box in this forrm,

ClaimEntny Dretails.ht Confirmati Approver.h InfCustome SendChed. Clarify.ht Re=submit.h
htmil ml an.html tml r.html html ml tml

admin

B

Entry.html

Data Dictionary

The data dictionary contains all the data fields that are used by the application
and stored in the database. To see the properties for these fields, in the
application tree view, inside the Data Dictionary folder, double-click the name
of the field.

Chapter 14, The Insurance Claim Processing Application 309

Data Dictionary

Fields are defined to have a class ID, which in turn determine the properties the
field has. When you add fields, you can either add them with predefined class
IDs, or you can create your own class IDs.

310 Developer’s Guide

Table 14.1 shows the Data Dictionary for the Insurance Claim Processing

application:

Table 14.1 Data dictionary for Insurance Claim Processing application

Data Field

Purpose

Customer_Name

Stores the customer name

Customer_Address

Stores the customer address.

Customer_Email

Stores the customer email, so that the email can be sent to
the customer whenever a claim is approved, denied or a
process is expired.

Customer_PhoneNo

Stores the customer phone number, which can be needed in
case you need to contact the customer for clarifications.

Policy_No Stores the policy number of the customer.
Start_Date Stores the policy start date.

End_Date Stores the policy end date.

Policy_Amt Stores the policy amount

Deductible Stores the policy deductible amount.
Vehicle_Model Stores the vehicle model

Vehicle_IDN Stores the identification number for the vehicle
AppCommets Stores the approver's comments

CalrifyComments

Stores the clarifier’'s comments.

Claim

Stores the customer’s claim

claimid

Stores a randomly generated claim 1D

Window_damage

checkbox for predefined claim - window damage

Body_damage

checkbox for predefined claim - body damage

Engine_damage

checkbox for predefined claim - engine damage

Accessories_damage

checkbox for predefined claim - accessories damage

Forms

Forms

The following sections describe the forms included in the Insurance Claim
application.

Entry.html

Customers enter the Policy Number to begin the Insurance Claim process in this
form, as shown in Figure 14.3.

Figure 14.3Entry.html

Enter Policy Number

Welcome ! This is the BPM Insurance Claim Process Management System.

To clamm your Insurance, we would ke you to go through certam steps before we could process your request.

In order to get your claim approved, please provide us with your Insurance Policy o, as on your Policy Dacuments.

Insurance Policy I¥o. ; IP_1_2_3_ !5_5|_

After completing the above form, select one of the following action

Chapter 14, The Insurance Claim Processing Application 311

Forms

Resubmit.html

This form, shown in Figure 14.4, is displayed whenever the Policy Number,
which the customer entered in Entry.htm, is not found in the flat file.

Figure 14.4Resubmit.html

Process Map

Re-enter Policy Number

ERROR !

Policy Number Not Found !!

In order to get your clawn approved, please AF A your Insurance Policy MNo. and your Name as on your Policy

Insurance Policy No. : |

You can add additional comments here that will appear in the Details & Histor

|Eonnect: Host onguard contac_ted._Waitihg for reple...

312 Developer’s Guide

Forms

Details.html

This form, shown in Figure 14.5, displays the customer’s personal information
and the policy information that was found in the flat file.

Figure 14.5Details.html

Policy Holder Information

Your Record has heen Located.

Personal Information

| Customer Name : ke Sijacic
| Customer Address : 655 MNorth Far Cales, Suite 9, Sunnyvale, CA-94086 -
| Customer Phone No. : (408)545-4442

| Customer Email : syjacic@netscape. com

Policy Details

| Policy Number : P12365

| Policy Start Date : 1-1-1998 | Policy End Date : 31-12-1999
| Policy Amount : 12000.0 | Policy Deductible : 1000.0
| Vehicle Model : BMW 535 | Vehicle IDN : THE CAR

| Connect: Host onguard contacted. \waiting for rephy...

Chapter 14, The Insurance Claim Processing Application 313

Forms

EnterClaim.html

Customers enter the claim in this form, shown in Figure 14.6. It has a
predefined claim check boxes and a text area where the customer can enter a
small description of the claim.

Figure 14.6EnterClaim.html

Enter Claim Details

Please Enter your Claim Details.

||7 Wehicle Body Damage
Il_ Engine Damage

||— Accesories Damage
||_ Window Damage

Please fill n & brief descniption of the damage.

Rear Buwper hroken. ;l
Lights have been damaged.

[<help for Claimy

314 Developer’s Guide

Forms

Confirmation.html

This form, shown in Figure 14.7, displays customer details from Details.html
and claim details from EnterClaim.html.

Figure 14.7 Confirmation.html

J’ E _W;fr_!sétém_t_i.sz_ "‘w" i-l.e”\-\..-. i':'r.;.;;;; \J _ Search \

Before Processing you Claim, please confirm the following :

Personal Information

| Customer Name : MMike Sijacic
| Customer Address : 655 Morth Farr Oales, Swte 9, Slmn_yvale, CA-94086 -
| Customer Phone Mo, : (408)545-4442

| Customer Email : syacic@netscape.cotmn

Policy Details

| Policy Number : 12365

| Policy Start Date : 1-1-1998 | Policy End Date : 31-12-1999
| Policy Amount: 12000.0 Policy Deductible : 1000 0
| Vehicle Maodel : BRIOW 535 | Vehicle IDN : THE CAR
Claim Details
||7Vehicle Body Damage
|rEngne Damage

|rAccesorie; Damage
Irwmdow Damage

Claim Description

Eear Bumper broken,
Lights have been damaged.

| Connect: Host onguard contacted: waiting for reply. .

Chapter 14, The Insurance Claim Processing Application 315

Forms

316 Developer’s Guide

Approver.html

This form, shown in Figure 14.8, is same as Confirmation.html with an
additional text area for the approver’s comments.

Figure 14.8 Approver.html

ok itern List. X.s.f Hew Process E‘F Search E

Policy Details

| Policy Number : P12355

| Policy Start Date : 1-1-1998

| Policy End Date : 31-12-1592

| Policy Amount : 12000.0

| Policy Deductible : 1000.0

| Vehicle Model : BMW 535

| Vehicle IDN : THE CAR

Changes in the Policy{ if any }

Claim Details
||7‘urehicle Body Damage
|rEngne Damage
||—Accesories Damage
||_'Window Damage
Claim Description
Eear Bumper broken.
Lights have been damaged.
Comments
Check the deductible in the Policy. _d
.o

[<help for &4ppCommentss

Forms

Clarify.html

This form, shown in Figure 14.9, is similar to Approve.html but has an
additional text area for the clarifier's comments.

Figure 14.9Clarify.html

WorkitemList_ \/ Mew Process \./ Searsh |
| Policy Number : P12365

| Policy Start Date : 1-1-1998 | Policy End Date : 31-12-1999
! Policy Amount : 120000 | Policy Deductible : 1000.0
| Vehicle Model : BLIW 535 | Vehicle IDIN : THE CAE.
Claim Details
||7Vehicle Body Damage
||_Eng;'ne Damage
||_Accesories Damage
||_Window Damage
Claim Description
Eear Bumper broken.
Lights have been damaged.
Approver Comments
Check the deductible m the Policy,
Changes to the Policy (if any)
Deductible changed. ;!

I<heln for ClarifuCormmentss

Chapter 14, The Insurance Claim Processing Application 317

Forms

InfCustomer.html

This form, shown in Figure 14.10, is displayed whenever a claim is approved. It
shows the customer’s name, customer’s address, and the policy number.

Figure 14.10InfCustomer.html

Process Map
Inform Customer

Congratulations, WMike Sijacic !!

Tour Insurance Claim for Insurance Policy Mo, : P12365 has been cleared.

The BPI Insurance Company will be posting vou your check at 655 North Fair Oaks, Suite 9, Sunnyvale, CA-¢

Thank You for you co-operation and patience. We look forward to serve you better.

{ frow have any quesfionsicomments abouf this process, feel free fo call 1-800-BEFM-AFPFS)

You can add additional comments here that will appear in the Details & His:

iEunnect: Host onguard contacted. ‘wWaiting for reply...

318 Developer’s Guide

Forms

SendCheck.html

This form (see Figure 14.11) tells the customer that the claim check was sent.

Figure 14.11SendCheck.html

Process Map

Check Sent

System Message

CHECE SENT for Policy No. P12365 m the name of Mike Sijacic at 655 North Fair Oaks, Suit

You can add additional comments here that will appear in the Details & Histor

| it
| Eonnect: Host ohguard contacted. Watting forreply...

ClaimApproved.html

This exit form is displayed whenever a claim is approved and the process is
successfully completed.

ClaimDenied.html

This exit form is displayed whenever a claim is denied and the process is
successfully completed.

ExpirationExit.html

This exit form is displayed whenever a form has expired and it goes to the exit
point.

Chapter 14, The Insurance Claim Processing Application 319

Script Dictionary

Script Dictionary

The script dictionary contains the scripts used by the application. They are
divided into categories based on the purpose they serve in the application.

Expiration Scripts

The expiration scripts run whenever a form has not been used or accessed for a
period of time set by an expiration handler. When the period of time has
elapsed without the form being accessed, the expiration handler script is
executed.

The activities with expiration scripts in this application are set to expire in five
minutes if the form is not accessed. In each activity’s property window, the
expiration setter is set to five minutes. Each activity has an expiration handler
script that is called when the five minutes has passed. The script advances the
process to the Expiration exit point.

The following sections show the expiration scripts at the activities where they

occur:

Script at Policy Details Activity

function exppolicydetails ()

{
var pi = getProcesslnstance ();
var wi = getWorkltem ();
/1 handl e expiration
/1 nove process instance to Expiration Exit point.
wi . set NodeNanme ("Expiration Exit") ;
return true;
}

Script at Enter Claim Details Activity

function expenterclaim()

var pi
var w

get Processl nstance ();
getWorkltem ();

/1 handl e expiration
/1 nove process instance to Expiration Exit point.

320 Developer’s Guide

Script Dictionary

wi . set NodeNarme ("Expiration Exit") ;
return true;

Script at Confirmation

function expconfirmation ()
var pi = getProcesslnstance ();
var wi = getWorkltem ();

/1 handl e expiration

/1 nove process instance to Expiration Exit point.
Wi . set NodeNane ("Expiration Exit") ;

return true;

Script at Resubmit Policy No.

function expresubmt ()
var pi = getProcesslnstance ();
var Wi = getWorkltem ();

/1 handl e expiration

/1 nove process instance to Expiration Exit point.
wi . set NodeNarme ("Expiration Exit") ;

return true;

Completion Scripts

Completion scripts are executed whenever an activity goes on to the next step.
This is particularly helpful whenever you want to do a particular task such as
displaying the form or setting some value in a data field as soon as the activity
is completed.

In this application, after displaying at the policy details in Details.html, the
application displays the EnterClaim.html form directly, without returning the
user to their work item list. The completion script displays the form
automatically to the user by using a function to redirect the URL.

The following sections show the completion scripts at the activities where they
occur:

Chapter 14, The Insurance Claim Processing Application 321

Required Files

Required

322 Developer’s Guide

Completion Script at Policy Details Activity

function Enterclaim()

{
var pi = getProcesslnstance();
var process_id = pi.getlnstanceld();

url = "http://onguard/cgi-bin/gx.cgi/

AppLogi c+wf mySanpl eApp. npn?event | d=OnDi spl ayWorkltem&__i nst ancel d="
+ process_id +
"& forkl d=0& nodeNane=Ent er %20C ai n?20Det ai | s"

set Redi recti onURL(url);
return true;

Completion Script at Enter Claim Details Activity

function Confirmation ()

{
var pi = getProcesslnstance();
var process_id = pi.getlnstanceld();

set Redi recti onURL("http://onguard/cgi-bin/gx.cgi/

AppLogi c+wf mySanpl eApp. npnPevent | d=OnDi spl ayWr kl tem& i nst ancel d="
+ process_id +
"& _forkld=0& _nodeName=Confirmation");

return true;

Files

The following sections show the additional required files for the Insurance
Claim application.

The database.xml File

The following is an example of the database.xml file you need in order to run
the application. The policy numbers listed in the file are the ones you need to
enter in order to process an application.

<xm version="1.0" encodi ng="us-ascii">
<PCLI CYSET>

Required Files

<PQOLI CY>
<CUSTOVER_NAME>M ke Sij aci c</ CUSTOVER NAME>
<CUSTOVER_ADDRESS>
876 North Fair Caks, Suite 9, Sunnyvale, CA-94086
</ CUSTOVER_ADDRESS>
<CUSTOVER_PHONE_NUNMBER>(408) 123- 4442
</ CUSTOVER_PHONE_NUVBER>
<EMAI L> si j aci c@et scape. com </ ENMAI L>
<POLI CY_NUMBER>P12365</ POLI CY_NUVBER>
<START_DATE>1- 1- 1998</ START_DATE>
<END_DATE>31-12-1999</ END_DATE>
<POLI CY_AMOUNT>12000</ POLI CY_AMOUNT>
<PCLI CY_DEDUCTI BLE>1000</ POLI CY_DEDUCTI! BLE>
<VEHI CLE_MODEL>BMW 535</ VEHI CLE_MODEL >
<VEHI CLE_NUMBER>THE CAR</ VEHI CLE_NUVBER>
</ POLI CY>
<PQOLI CY>
<CUSTOVER_NAME>M CHAL CHM ELEWSKI </ CUSTOVER _NAME>
<CUSTOVER_ADDRESS>
3248 LAKEVI EW APTS, San Jose, CA-94086
</ CUSTOVER_ADDRESS>
<CUSTOVER_PHONE_NUVBER>(408) 123- 4372
</ CUSTOVER_PHONE_NUVBER>
<EMAI L> m chal @et scape. com </ EMAI L>
<POLI CY_NUMBER>P32345</ POLI CY_NUVBER>
<START_DATE>1- 1- 1998</ START_DATE>
<END_DATE>31-12-1999</ END_DATE>
<POLI CY_AMOUNT>12000</ POLI CY_AMOUNT>
<PCLI CY_DEDUCTI BLE>1000</ POLI CY_DEDUCTI! BLE>
<VEHI CLE_MODEL>BMW 747</ VEHl CLE_MODEL >
<VEHI CLE_NUMBER>seeCAR23</ VEHI CLE_NUMBER>
</ POLI CY>
<PQOLI CY>
<CUSTOVER_NAME>Souvi k Das</ CUSTOVER_NAME>
<CUSTOVER_ADDRESS>
844 Salt Lake, Moutain View, CA-94043
</ CUSTOVER_ADDRESS>
<CUSTOVER_PHONE_NUMBER>(650) 123- 2343
</ CUSTOVER_PHONE_NUVBER>
<EMAI L> souvi k@et scape. com </ EMAI L>
<POLI CY_NUMBER>P12346</ POLI CY_NUVBER>
<START_DATE>1- 1- 1998</ START_DATE>

Chapter 14, The Insurance Claim Processing Application 323

Required Files

<END_DATE>31-12-1999</ END_DATE>
<POLI CY_AMOUNT>12300</ POLI CY_AMOUNT>
<PCLI CY_DEDUCTI BLE>400</ POLI CY_DEDUCTI BLE>
<VEHI CLE_MODEL>HONDA Accord V6 LE</VEH CLE_MODEL>
<VEHI CLE_NUMBER>PF12335</ VEHI CLE_NUVBER>

</ POLI CY>

<PQOLI CY>
<CUSTOVER_NAME>Al bert TAM</ CUSTOVER_NAME>
<CUSTOVER_ADDRESS>884 Mary Blvd., Muntain View, CA-94043
</ CUSTOVER_ADDRESS>
<CUSTOVER_PHONE_NUMBER>(650) 123- 4578
</ CUSTOVER_PHONE_NUVBER>
<EMAI L> at am@net scape. com </ EMAI L>
<POLI CY_NUMBER>P12347</ POLI CY_NUVBER>
<START_DATE>1- 1- 1998</ START_DATE>
<END_DATE>31-12-1999</ END_DATE>
<POLI CY_AMOUNT>12000</ POLI CY_AMOUNT>
<POL| CY_DEDUCTI BLE>1000</ POLI CY_DEDUCTI BLE>
<VEHI CLE_MODEL>BMW 535 v6</ VEHI CLE_MODEL>
<VEHI CLE_NUMBER>BPM GROUPI E3</ VEHI CLE_NUMBER>

</ POLI CY>

</ POLI CYSET>

The Policy.log File

The following is an example of the log file that is created when you run the
application. It contains the ID numbers and claim information of process
instances.

[Tue Aug 17 16:32:30 PDT 1999]

The Insurance Claimwith Claimid : 1715745114 for Policy No. : P12346
was initialized by : Souvik Das

[Tue Aug 17 16:33:27 PDT 1999]

ClaimI|D: 1715745114 Wth Caim: ' Broken fuel tank ' was subnitted

[Tue Aug 17 16:33:27 PDT 1999]

Claim|D: 1715745114 was APPROVED.

[Tue Aug 17 16:34:04 PDT 1999]

The Insurance Claimwith Claimid : 618655790 for Policy No. : P12365
was initialized by : Mke Sijacic

[Tue Aug 17 16:34:52 PDT 1999]

Claim|D: 618655790 Wth Claim: ' Al w ndows broken ' was denied
REASON : ' null ~’

324 Developer’s Guide

Configuring the Insurance Claim Processing Application

The Banner Image

The application uses a banner image, shown in Figure 14.12, on all displayed
forms.

Figure 14.12 The banner.gif file

The Background Image

The application uses a background image, shown in Figure 14.13, on all
displayed forms.

Figure 14.13 The background image is called Gray_Textured1040.gif

Configuring the Insurance Claim Processing
Application

Before running the Insurance Claim Processing application, make sure the

dat abase. xmi file resides in the correct location in your environment. This
file contains sample policy data. The application retrieves this data for a policy
that the user enters.

Chapter 14, The Insurance Claim Processing Application 325

Custom Activity Code

On Solaris, dat abase. xnl must reside in the home directory of the user who
is running the application server. On Windows NT, you must place

dat abase. xnl in the root of the drive of where Windows NT is installed. For
example, if Windows NT is installed on the E: drive, then dat abase. xni file
must reside at E: \ dat abase. xni .

Note that the policy.log file will be created in the same location as
dat abase. xni .

Custom Activity Code

326 Developer’s Guide

This section summarizes the three custom activities in the Claim Processing
sample application;

= The LogPerformer Activity
= The LogdenialPerformer Activity
= The LookupPerformer Activity

For information on writing and packaging a custom activity, see Chapter 17,
“Writing Custom Activities.”

The LogPerformer Activity

The LogPerformer custom activity writes specific information to a log file. This
custom activity is represented by the LogPer f or mer . j ar archive, which
contains the following files:

/ LogPer f or mer . xm
/ coml nodel / sanpl eapp/ | ogper f or mer/ Logger. cl ass
/ com nodel / sanpl eapp/ | ogper f or mer/ LogPer f or mer . cl ass

The LogdenialPerformer Activity

The LogdenialPerformer custom activity writes a claim process denial to a log
file. This custom activity is represented by the Logdeni al Perf ormer. j ar
archive, which contains the following files:

Custom Activity Code

/ Logdeni al Per f or mer. xm
/ com nodel / sanpl eapp/ | ogdeni al per f ormer/ Logger. cl ass
/ com nodel / sanpl eapp/ | ogdeni al per f or mer/ Logdeni al Perf orner. cl ass

The LookupPerformer Activity

The LookupPerformer custom activity takes the policy number as input,
searches a database of policies, and returns the policy details back to the
process. This custom activity is represented by the LookupPer f or mer . j ar
archive, which contains the following files:

/ LookupPer f or mer . xm

/ coni nodel / sanpl eapp/ | ookupper f or mer/ Logger . cl ass

/ conl nodel / sanpl eapp/ | ookupper f or mer/ LookupPer f or mer . cl ass
/ conml nodel / sanpl eapp/ | ookupper f or mer/ MyPar ser . cl ass

/ conl nodel / sanpl eapp/ | ookupper former/ Policy. cl ass

/ coml nodel / sanpl eapp/ | ookupper f or mer/ Pol i cySet . cl ass

Code Walkthrough for
LookupPerformer.java

This section describes the steps for creating the LookupPer f or ner . j ava
file. This file contains three main parts:

= Definitions and Packages
= The init, perform, and destroy Methods

= The GetPolicy Method

Definitions and Packages
The first part of LookupPer f or ner . j ava is written as follows:

1. Define a package for your class:

package com nodel . sanpl eapp. | ookupper f or ner;

2. Import the required Java packages:

Chapter 14, The Insurance Claim Processing Application 327

Custom Activity Code

i mport java.lang.*;
import java.util.*;

i mport com nodel . sanpl eapp. | ookupper f orner. *;
i mport com net scape. pm nodel . *;
import java.io.*;

3. A custom activity must implement the | Si npl eWbr kPer f or mer interface,
so you define the LookupPer f or ner class to do so:

public class LookupPerforner inplenments
com net scape. pm nodel . | Si npl eWor kPer f or ner

4. Next, define the variables to use within the custom activity:
private String CustonerNane ;
private String CustonerAddress ;
private String CustonerPhoneNo ;
private String CustonerEmail ;
private doubl e PolicyAnt;
private String PolicyNo ;
private String StartDate ;
private String EndDate ;
private doubl e Deductible ;
private String Vehicl eMdel ;
private String VIN ;

private String nFileNane ;

The init, perform, and destroy Methods

1. Thei ni t method is used to set up anything you'll need globally within the
custom activity. In this example, the method initializes the name and
location of the file to use to search for policies.

public void init(Hashtable env) throws Exception {
nFi | eNane = "dat abase. xm ";

}
2. The per f or mmethod does the main work of the custom activity.

public void perfornm Hashtabl e input, Hashtable output)
throws Exception {

328 Developer’s Guide

Custom Activity Code

This method takes data from an input hashtable (which is passed in from
the process), does the necessary work, and then puts the data back into an
output hashtable (which is passed back to the process).

The data hashtable from the process is in the i nput variable. Similarly, the
hashtable in which to pass data back to the process is in the out put
variable.

/1 Read the Policy_No attribute fromthe input hashtable
bj ect value = input.get ("Policy_No")

Next, you check to see whether the value from the hashtable is in the
proper format, a string.

if (value instanceof com netscape.javascript.NativeJavahject) {
i nput. put (
"Policy_No", ((com netscape.javascript.NativeJava(bject)
val ue).unwrap().toString()) ;

}
String mPolicyNo = (String) input.get("Policy_No");

A call to Get Pol i cy will parse the dat abase. xml file and return the
details of the policy.

Policy ourPolicy = GetPolicy (nmPolicyNo)

Check whether the policy number received by the custom activty is blank.
If so, return an empty policy number in the output hashtable. You'll check
whether the policy number returned within the process is empty and show
an error screen there.

if (ourPolicy == null){
/1 throw new Exception("Policy No not found");
PolicyNo = " "
out put. put ("PolicyNo", PolicyNo)
return;

}
Next, generate a random number to assign as the claim number.

String RanNum = nul | ;
Random rgen = new Random ();
RanNum = I nteger.toString (rgen.nextlnt());

if (RanNum startsWth ("-")) {

Chapter 14, The Insurance Claim Processing Application 329

Custom Activity Code

RanNum = RanNum substring (1)
}

8. Now construct a message line for logging. The message contains the claim
number and some of the policy details.

String PNo = (String) input.get("Policy_No");
StringBuffer tenmpl = new StringBuffer
("The Insurance CCaimwith laimid : ");
tenpl. append (RanNum)
tenpl. append (* for Policy No. : " + PNo);
Cust oner Name = our Pol i cy. get CustonerNane () ;
tenpl. append (" was initialized by : " + CustonerNane);

9. Open a Logger object that writes the information to a log file.

Logger | ogger = new Logger ();
| ogger . open();

logger.log (templ.toString())
| ogger.close();

10. Define variables based on the our Pol i cy object, which contains the
details of the customer and policy.

Cust oner Nanme = our Pol i cy. get Cust oner Nanme () ;

Cust oner Address = our Pol i cy. get Cust oner Address () ;
Cust oner PhoneNo = our Pol i cy. get Cust omer PhoneNo () ;
Custoner Emai |l = ourPolicy.getCustomerEmail () ;

Pol i cyNo = ourPolicy.getPolicyNo() ;

Pol i cyAnt = ourPolicy.getPolicyAnt() ;

StartDate = ourPolicy.getStartDate() ;

EndDat e = ourPolicy. get EndDate() ;

Deducti bl e = ourPolicy. get Deductible() ;

Vehi cl eMbdel = ourPolicy. get Vehi cl eModel () ;

VIN = ourPolicy.getVIN);

11. Next, populate the output hashtable with the information from the policy.

/1 Set the output hashtable

out put. put ("CustomerNane", CustomrerNanme)

out put. put ("Customner Address", CustonerAddress)
out put. put ("Customer PhoneNo", CustonerPhoneNo)
out put. put ("CustomerEnmil", CustonerEmail)

out put.put ("PolicyNo", PolicyNo)

330 Developer’s Guide

Custom Activity Code

output.put ("PolicyAm", Double.toString(PolicyAnt))
output.put ("StartDate", StartDate)

out put.put ("EndDate", EndDate)

out put. put ("Deductible", Double.toString(Deductible))
out put. put ("Vehicl eModel ", Vehicl eMbdel)

output.put ("VIN', VIN)

output.put ("Caimd"', RanNum);
/1 End of perform et hod

12. The dest r oy method is invoked when the application is unloaded from
the application server. It is the opportunity to clean up resources that are
used by the server. In this case, there is nothing to do.

public void destroy(){
}

The GetPolicy Method

The Get Pol i cy method returns a policy object that contains the information
on a given policy. The method itself opens up the dat abase. xm file and
parses through it to find the appropriate policy. Here is the code for this
method:

private Policy GetPolicy (String PNO

{

try

{
String fileName = "dat abase. xm ";
int Pfound = O;
int MAX_LENGTH = 50000 ;
char [] xml = new char [MAX_LENGTH]
java.io.File f = new java.io.File (fileName)
Fil eReader fr = new FileReader (f)
Buf f eredReader in = new BufferedReader(fr);
int count = O ;
while ((count =in.read (xm , count , MAX LENGTH)) !'=-1) {

}

String xm Str = new String (xm) ;

Chapter 14, The Insurance Claim Processing Application 331

Custom Activity Code

332 Developer’s Guide

MyPar ser parser = new MyParser (xm Str)

Pol i cySet tenpPolicySet = parser.parse ()
int j;

Policy policy = null
for (j=0; j < tenpPolicySet. GetSize(); j++)
{
policy = (Policy) tenmpPolicySet.elementAt(j)
if (policy.getPolicyNo().equals (PNO))
{
Pfound = 1 ;
Systemout.println("PNOin GET POLICY IS
Systemout.println("Policy No Found!!");
return policy;

}

return null; // 1f Policy not found ...

} catch (Exception ignore) {

return null;

}

"+ PNO);

Chapter

Advanced Techniques for Scripting

This chapter describes how to write your own scripts for use with Process
Builder.

This chapter has the following sections:

= Introduction

= Getting Information about the Current Process

= Getting Information about Users and their Attributes
= Accessing the Content Store

< Logging Error and Informational Messages

= \erifying Form Input

= Initializing and Shutting Down Applications

= Debugging Hints

= Sample Scripts

Introduction

When writing a PAE script, consider the types of information your script will
use. PAE scripts can use the following sources of information:

= Information about the process in progress.

Chapter 15, Advanced Techniques for Scripting 333

Getting Information about the Current Process

This data is stored in PAE’s database, and is available through the
processl nst ance object. This information includes data such as the date
the process instance was created and the current value of fields such as the
speci al Di scount field.

Information about the work item in progress.

Information about the current work item is available through the wor ki t em
object. This information includes data such as the user to whom the work
item is assigned.

Information about users.

This information is stored in the Directory Server, and is available through
the cor por at eDi r ect ory object, discussed in “Getting Information about
Users and their Attributes”. This data includes information about users, such
as the assignee’s address or the name of their manager.

Items stored in the content store.

Scripts can access items stored in the content store by using the
cont ent St or e object (discussed in “Accessing the Content Store”).

Getting Information about the Current

Process

334 Developer’s Guide

PAE provides two JavaScript objects, pr ocessl nst ance and wor kil t em that
scripts can use to access information about the process in progress:

processl nst ance holds information about the process instance in
general, such as its creation date and the current values of any data fields.
Scripts can use the global function get Pr ocessl nst ance() to get the
object. Scripts can then call methods on the processl nst ance to get and
set data relevant to the process instance.

wor kI t em holds information about the current work item, such as its
assignee and its expiration date. Scripts can use the global function
get Workl t en() to get the object. Scripts can then call methods on the
wor kI t emobject to get and set data relevant to the work item.

See Appendix A, “JavaScript APl Reference” for details on these methods.

Getting Information about the Current Process

Getting and Setting Data Field Values

When a user submits a form for a work item, the value of each data field in the
form is put into the corresponding data field in PAE’s database. For example, if
the user sets the value of the field docurment Nane to Jo Wit er then when
the form is submitted the field docunment Name in PAE’s database gets the
value "Jo Witer". (You could think of the field in the form as being a
window to the field in the database.)

There are several ways to verify the data that users enter in the form fields, as
discussed in “Verifying Form Input”.

Scripts can use the following methods on the pr ocessl nst ance object to get
and set data field values:

e getData (fiel dNange)
This method returns the value of the named field.
« setData (fieldNane, fieldVval ue)

This method sets the value of the named field to the given value. This
method is particularly useful for setting values in automation scripts.

The following function is an example of a completion script that gets and sets
field values:

function setOrderPrice () {
/1 Get the process instance.
var pi = getProcesslnstance ();
/'l Get the value of the itemprice field.
var price = pi.getData ("itemprice");
/'l Get the value of the nunber_ordered field.
var numOrdered = pi.getData ("nunber_ordered");
/1 Calculate the total price.
var total Price = price * nunOrdered;
/1 Put the total price in the order_price field.
pi.setData ("order_price", total Price);
/'l Successful conpletion scripts return true.
return true;

Chapter 15, Advanced Techniques for Scripting 335

Getting Information about Users and their Attributes

Getting Data Field Values in Decision
Point and Automation Script Transitions

The value of a condition for a decision point or an automated script can be any
expression that returns t rue or f al se.

These expressions can use a shorthand notation to refer to field values by
simply using the name of the field. For example:

itemPrice < 100
is shorthand for

get Processl nstance().getData("itemprice") < 100

This expression evaluates to t r ue if the value of the i t em pri ce field is less
than 100, otherwise it evaluates to f al se.

Note that only scripts used in conditions can use this shorthand for accessing
data fields.

Getting Information about Users and their
Attributes

336 Developer’s Guide

Scripts can use the global function get Cor por at eDi rectory() to get an
object that represents the corporate directory in the Directory Server that PAE
uses.

The Directory Server contains a database of users and their attributes, such as
their distinguished name, their common name, their phone number, their
address, their email address, and so on. Given the cor por at eDi rectory
object, scripts can get information about the users in the corporate directory.

Finding Users and Accessing their
Attributes

The cor por at eDi r ect ory object has three methods that allow scripts to
search for users in the corporate directory:

Getting Information about Users and their Attributes

e getUserByCN (user CN
e getUserByDN (user D\
e getUserByld (userl D

These methods all return a JavaScript object that represents the user if they can
be found; otherwise the methods return null . The object has variables for all
the user’s attributes. See Appendix A, “JavaScript APl Reference” for details.

Scripts can also use the following two methods on the processl nst ance
object to get user attributes from the Directory Server:

e get CreatorUser () returns a JavaScript object containing the attributes
of the user that created the process instance.

< get Rol eUser (rol eNane) returns a JavaScript object containing the
attributes of the user assigned to the given role.

For example, the following assignment script assigns the work item to the user
whose distinguished name is the value of the peer Revi ewer DN attribute of the
person who created the process instance.

assi gnToPeer Revi ewer () {
var pi = getProcesslnstance ();
var creator = pi.getCreatorUser ();
/1 Assignment scripts return an array of distinguished nanes.
return new Array (creator.peerRevi ewerDN);

}

Note that this script works only if the peer Revi ewer DN attribute is defined in
the Directory Server and is initialized for the creator user.

Modifying User Attributes

The cor por at eDi r ect ory object has the following methods for adding,
replacing, or deleting user attribute values in the Directory Server:

e nodifyUserByld (userl D attrNane, attrVal ue, operation)
 nodi fyUserByCN (userCN, attrNane, attrVal ue, operation)

e nodi fyUserByDN (user DN, attrNane, attrVal ue, operation)

Chapter 15, Advanced Techniques for Scripting 337

Getting Information about Users and their Attributes

338 Developer’s Guide

These methods specify the user either by ID or common name as appropriate.
The at t r Name parameter is the name of the attribute to be modified. If

oper at i on is ADD, the value att r Val ue is added to any existing values. If
operation is REPLACE, all existing values are replace by att r val ue. If
operation is DELETE, then at t r Val ue is deleted from the attribute. The
functions return t r ue if the operation is successful, otherwise they return

fal se.

For example, the following code puts the value ni kki @onpany. comto the
mai | attribute of the user whose common name is Ni kki Beckwel | :

var corpdir = getCorporateDirectory();
corpdir. modi fyUser ByCN ("N kki Beckwell", "mail", "nikki @onpany.cont,
" REPLACE") ;

Although scripts can modify attribute values, they cannot create attributes that
have not already been defined in the Directory Server schema.

Verifying an Array of User DNs

Scripts, particularly assignment scripts, can use the global function
checkUser DNs() to verify that each element of an array is a valid
distinguished name (DN). This script returns t r ue if each element of the array
is a valid distinguished name, or if the array is empty. It returns false if any
element is not a valid distinguished name.

The following example script creates an array containing two distinguished
names. It checks that each element of the array is a valid distinguished name,
and if so, returns the array. Otherwise the script returns an array containing the
distinguished name of the creator. It is unlikely that a script would manually
build distinguished names in this way, but the point of this script is to illustrate
the use of checkUser DNs() .

assi gnToJackAndTopper () {
var topper = "uid=topper, o = airius.com cn = Topper Kent";
var jack = "uid=jack, o = airius.com cn = Jack Al ford";
var assigneeArray = new Array (topper, jack);
/] Check that this array is valid.
if ((assigneeArray.length !'= 0) &% (checkUserDNs (assigneeArray)))
return assi gneeArray;
el se

Accessing the Content Store

return new Array (pi.getCreatorDN());

Adding and Deleting Users

The cor por at eDi r ect ory object has the following methods for adding and
deleting users to the corporate directory:

e deleteUserByCN (userCN

» deleteUserByDN (user DN

» deleteUserByld (userl D

e addUser(wuserDN, attributes, objectd asses)

See Appendix A, “JavaScript APl Reference” for details.

Accessing the Content Store

Scripts can use the global function get Cont ent St or e() to get a
cont ent St or e connected to the content store for the process.

The following global function is useful for constructing a file name when you
want to add an item to the object store:

= get BaseFor Fi | eNane() returns the folder name that the current
process instance uses to contain its stored content.

For more information about methods on the content store, see Appendix A,
“JavaScript APl Reference.”

Example of Accessing a Stored Item

For an example of accessing the content store, consider a process that writers
use for submitting documents for review. Before starting the process, the writer
must create a file containing a synopsis of the document.

Chapter 15, Advanced Techniques for Scripting 339

Accessing the Content Store

340 Developer’s Guide

The entry point form contains a File data field named docDescri pti on. The
writer selects a file containing the document synopsis and uploads it by
pressing the File icon in the form. The next activity after the entry point is an
automated activity that uses the following automation script. This script gets the
document synopsis by getting the content of the file that the writer selected.
The script then puts the synopsis into the docSynopsi s TextArea datafield.
The intention here is that the next form in the process displays the synopsis to
the users assigned to review the document.

function getDocDescription (){
/'l Use the getProcesslnstance() global function to get a reference
/1 to the process instance.
var pi = getProcesslnstance();

/! Retrieve the URL where the file containing the docunent

/1 descriptionis stored in the content store. This was set when
/1 the witer selected a File containing a docunment description.
var descriptionURL = pi.getData("docDescription");

/Il Get a reference to the content store service through the
/'l global function getContentStore().
var contentStore = getContentStore();

/]l Get the content of the file.
var docDescription = content Store. get Content(descriptionURL);

/1 Put the docunment description in a text field called docSynopsis.
pi . setData ("docSynopsis", docDescription);

/1l Return true to proceed to the next activty.

return true;

}

Note: This script requires that the content store URL defined for the application
is a valid URL, such as:

http://pm conpany. coml pnst or e

If the content store URL is not defined correctly, the st or e() method will not
work.

Accessing the Content Store

Storing Files in the Content Store

Each Process Engine uses a series of directories named part O, part 1, part 2
and so on to contain items in the object store. Each process instance has a
unique identity, such as pi 0001. Each process instance uses a part n
subdirectory to store all its content. For example, all the stored files associated
with process instance pi 0001 would be stored in PAE_r oot/ part 0/

pi 0001. When part O gets full, the Process Engine starts using part 1, and so
on.

When a script needs to save content to the content store, it can use the

get BaseFor Fi | eNane() function to get the pathname for the content store
directory for the current process instance. The script can then use the st or e()
method on the cont ent St or e object to save content to a file in the correct
content store directory for the current process instance.

For example, the following automation script code creates a path name for the
file nyNewFi | e. ht ni in the content store, then saves some content to a new file
in the content store.

function storeSonething () {

var pi = getProcesslnstance();
/] Create a pathname for a newfile in the content store.
var pi = getProcesslnstance ();

var pid = pi.getlnstanceld();
var contentStorePath = get BaseForFil eNane (pid);
var newFi |l eNane = contentStorePath + "nmyNewFile.htm";

/1 Create a string containing sone content to be saved to the file.
var newContent = "Do sonething that generates a content string here";

/1l Store the content in the file myNewFile.htm .
var myStore = getContentStore ();

myStore.store (newContent, newril eNane);

/1l Return true to proceed to the next work item
return true;

Chapter 15, Advanced Techniques for Scripting 341

Logging Error and Informational Messages

Logging Error and Informational Messages

Verifying

342 Developer’s Guide

PAE provides several global functions for providing messages. Scripts can use
these functions to log error messages, to add entries to the history log, and to
add informational messages for the user when a script fails.

These functions are:
* logErrorMsg()

* loginfoMsg()

* logSecurityMsg()
* logHistoryMsg()
e setErrorMsg()

As a convenience, PAE provides a duplicate name for each of these functions,
using Message instead of Msg in the name. For example, | ogl nf oMsg() and
| ogl nfoMessage() are equivalent. For more information about these global
functions, see Appendix A, “JavaScript APl Reference.”

Form Input

This section has the following subsections:

= \rifying Form Input with Client-Side JavaScript
= \rifying Form Data in Completion Scripts

When you create a form in Process Builder, you place data fields on it. If the
data field is in edit mode, it displays the current value, if any, and allows the
user to modify the value. If a data field is in view mode, it displays the value of
the field but does not allow the user to change it.

When the user submits the form by pressing an action button, the values in the
data fields in the form are put in the fields in the process instance’s table in the
database. By default, PAE verifies that the data entered in each field is the
correct type, and if there are obvious errors, it rejects the work item or entry
point and displays a warning dialog box. For example, if the user enters the

Verifying Form Input

string value " whenever " into a data field whose type is Dat e, PAE catches the
error and rejects the work item. (Note however that the Dat e verification is not
very strict, if the user enters 6666/7777/8 as a Dat e, PAE accepts it.)

There will be times when your form needs to perform additional data
verification, such as checking that a number falls within a certain range of
numbers. PAE provides two ways to verify that users enter valid data for a field:

= use client-side JavaScript scripts to define onCl i ck or onVal ueChange
properties for those data fields that have them, or to define
onSubmi t For mscripts.

= use onConpl et i on scripts to perform data type verification.

Using client-side scripts to check data field values allows you to write scripts
that give the user a chance to fix the values before the form is submitted.

If the data verification occurs in a completion script, then if the script fails the
result is that the form disappears, all the data that the user entered is lost, and
the web page displays an error message. The user then has to open the form
again, re-enter all their data, and try the submission again.

Verifying Form Input with Client-Side
JavaScript

Process Builder provides two ways to write client-side scripts to verify form
input:

= using an embedded script that defines an onSubmi t For mfunction that
gets invoked when the form is submitted.

= using onVal ueChange and onC i ck event handlers for specific form
elements.

For every data field represented in a form, the form contains a form element
that has exactly the same name as the data field. Client-side scripts can access
data field values as they are currently displayed in the form. The scripts do this
by accessing form elements that have the same name as the data field.

Chapter 15, Advanced Techniques for Scripting 343

Verifying Form Input

344 Developer’s Guide

If the form contains an embedded client-side script that defines an

onSubni t For mfunction, that function is invoked when the user presses an
action button on the form. You can define an onSubmi t For mfunction to
check values of form elements and offer the user a chance to enter new values
in cases where the current values are invalid. If the onSubni t For mfunction
returns f al se, the form is not submitted. See the section “onSubmitForm
Example” for a coded example of an onSubmi t For mfunction.

You can also define client-side scripts to check the value of individual form
elements. Some data fields have an ond i ck or onVval ueChange property. The
value of this property is a JavaScript expression. These properties correspond to
event handlers in the associated form elements. For information about form
elements, see the “Forms” chapter in the HTML Tag Reference at:

http://devel oper. net scape. conl docs/ manual s/ ht m gui d/ i ndex. ht m

The ond i ck script is fired when the form element is clicked. For elements
whose value is changed by clicking, such as radio buttons, the

onVal ueChange script behaves just like an ond i ck script, and is fired
whenever the user clicks the form element. For other elements, such as text
fields, the onVal ueChange script is fired when the form element loses focus
after its value has changed, which usually happens when the user presses the
return key or clicks elsewhere in the form. To see exactly which data fields
have onC i ck and onVal ueChange scripts, see the properties for the
different kinds of data fields in Process Builder.

You can define ond i ck, onVal ueChange, and onSubni t For mscripts that
display an alert box or a confirm box to warn the user that an invalid value has
been entered. Use the al ert () function to display an alert box, and use the
confirm() function to display a confirm box.

To obtain information about JavaScript errors, enter the URL j avascri pt: in
your version of Netscape Communicator.

Event Handler Example

The following onVal ueChange script for a text field checks if the value of the
text field is a number. If the value is not a number, it displays a dialog box with
a warning and resets the page count value to 100 in case the user ignores the
warning. If the value is a number, it does nothing. (Note that in event handlers,
such as in client-side scripts, you must use single quotes instead of double
quotes.)

Verifying Form Input

var pageCount Num = parselnt (val ue);
if (isNaN (pageCount Num) {

alert (’You nust enter a number as the page count’);
val ue = 100;

}

Figure 15.1 shows the definition of this onVal ueChange event handler in the
Inspector window in Process Builder.

Figure 15.1A definition for an onValueChange event handler

[N Inspector Window |
Maximum Length 20 | A
MName of this field pageCount
on Elur
oh Focus

Qe var pagelCounthum = parselnt (va - J
= = |

Property Ed bor Window

var pageCounthum = parselnt {value);
if (isMaM (pageCountMurm)) {

alert ("You must enter a number as the page count™;
wvalye = 100;

OF I Reuer't] Cancel]

Figure 15.2 shows a sample alert window in Process Express:

Figure 15.2A sample alert window in Process Express

[JavaScript Application] [E3

& Y'ou must enter a number az the page count

This script can be used directly as the value of the onVal ueChange property of
the text field. The script uses par sel nt () to convert the value of the text field
from a string to a number. The val ue argument to the par sel nt function is the

Chapter 15, Advanced Techniques for Scripting 345

Verifying Form Input

346 Developer’s Guide

name of a property of the text field. Since this script is used directly in the text
field object, there is no need to say t hi s. val ue, although the script would also
work if written as:

var pageCount Num = parselnt (this.value);
Il etc...

For information about the par sel nt () method, see Chapter 13, Global
Functions in the JavaScript reference at:

http://devel oper. net scape. conml docs/ nanual s/ communi cator/jsref/

onSubmitForm Example

The following example shows an embedded client-side script that defines an
onSubni t For mfunction. In this case, the script checks that the value entered
in the daysFor Revi ew form element is a number. If not, the script displays a
warning dialog box, sets the value of the daysFor Revi ew form element to 10,
and returns f al se to give the user a chance to change the value and submit
the form again.

function onSubmitForm () {
var daysFor Revi ew = docunent. forns[0] . daysFor Revi ew. val ue;
var reviewPeri odNum = parselnt (daysForReview);
if (isNaN (reviewPeriodNum) {
alert ('Enter a nunber of days in the review period);
docunent . f or ns[0] . daysFor Revi ew. val ue = 10;
return fal se;

}

el se return true;

}

Figure 15.3 shows an embedded client-side script that defines an
onSubmi t For mfunction in Process Builder:

Verifying Form Input

Figure 15.3A script that defines an onSubmi t For mfunction

How many days in the review period? I

IE SCRIPT: |

N Inspector Window E
Properties

Javatcript Code function onsubmitForm § {[...] J

Property Editor Window

function ansubmitFarm { {

var daysForREeview = document.forms[0] daysForkeview value;

var reviewPeriodMNum = parselnt (daysForE eview);

if {isMal (reviewPericdMum)) {
alert {'Enter a number of days in the review period';
document.forms[0] daysFarReview value = 10;
return false;

H

else return true;

0] Eevert | Cancel

Verifying Form Data in Completion
Scripts

Some data fields do not have ond i ck or onVal ueChange properties, so you
cannot use client side JavaScript scripts to verify their values. Instead, you can
use a completion script to verify their data.

When the user presses an action button to submit a form, the values of the data
fields on the form are installed into the global pr ocessl nst ance object. When
the completion script runs, it can access data field values by using the

get Dat a() method of the global pr ocessl nst ance object. However, if the
completion script fails, the newly installed values are removed from the process
instance and the previous values are re-installed.

Chapter 15, Advanced Techniques for Scripting 347

Initializing and Shutting Down Applications

If the completion script of an entry point fails, the process instance is not
created, and the user must start over again to create the process instance. If the
completion script of an activity fails, the user must start over again entering the
data for that activity. Whenever a completion script fails, the web page displays
an error message and rejects the work item.

Completion scripts can use the set Err or Message() global function provided
by PAE to display additional information in the error dialog box, such as adding
an explanation as to why the completion script failed.

Initializing and Shutting Down Applications

348 Developer’s Guide

When defining a process definition, you can write initialisation and shutdown
scripts for the application. The initialisation script is invoked when the
application first starts, and the shutdown script is invoked when the application
is shut down. Note that the initialization and shutdown scripts are not invoked
each time a process instance starts or finishes, but only when the application
starts or finishes. The application lifespan (start to finish) is defined within the
scope of each Java engine running within the application server. Therefore, the
initialization scripts are invoked on a per-engine basis.

Initialization scripts and shutdown script are not associated with individual
process instances, therefore they cannot use pr ocessl nst ance or

wor kI t emobjects. They can however use the methods on the

cont ent St or e object. For example, the initialisation script could use the
st ore() method on the cont ent St or e object to create a file that can be
accessed by all process instances in the application.

You can use the initialization script to perform tasks that need to be done once
in the lifetime of the application, such as creating files or initiating connections
to be shared by all process instances.

The shutdown script should close any connections that were opened in the
initialization script. Other uses for a shutdown script include cleaning up
external database tables, sending email to the administrator, releasing other
resources, and performing any tasks that need to be done when the application
is shut down.

Debugging Hints

Debugging Hints

To check for syntax errors in your scripts, enter j avascri pt: as your URL. In
addition, this section provides hints on debugging and troubleshooting scripts.
It has the following subsections:

Undefined Items

Adding Helpful Messages to Script Failure Dialog Boxes
Displaying the Progress of a Script

Testing Expiration Setter and Handler Scripts

Undefined Items

A script may contain undefined items such as functions, variables, or constants.
When a script runs in Process Express and encounters an undefined item, PAE
displays an error dialog box mentioning the item’s name.

For example, Figure 15.4 shows the dialog box that appears if a completion
script misspells get Pr ocessl nst ance() .

Figure 15.4Error message for undefined function

Script Execution Error

A syntax error occured while executing your completion
sctipt called checkPageCount().

Exror Message
getProcesinstance is not defined

Chapter 15, Advanced Techniques for Scripting 349

Debugging Hints

350 Developer’s Guide

Adding Helpful Messages to Script
Failure Dialog Boxes

If a script returns false, PAE displays a dialog box. By default, this dialog box
simply says that an error occurred and that you should see the administrator.
However, scripts can use the set Er r or Message() global function to add an
informative explanation to the dialog box. For example:

/'l conpletion script will return fal se

{

/1 Set the error nmessage and return fal se.

set Error Message ("You did not enter a nunber for the pageCount field");
return fal se;

}

Displaying the Progress of a Script

There are several global functions for printing messages that are very useful for
debugging scripts. The | ogEr r or Msg() function adds an entry to the error
log. The | ogl nfoMsg() function adds an entry to the informational log. The
| ogSecuri tyMsg() function adds an entry to the security log.

To view these logs, go to the Process Administrator page (Administrator.apm).
For example, if PAE is installed at pm conpany. com go to:

pm conpany. conf Admi ni strator. apni

This page displays Process Administrator. Select the Applications tab (if it is not
already selected) to see the list of applications. Select View Logs from the pop
up menu for the application of interest, then press the Apply button. You may
need to enter your user name and password to gain access to PAE and the
Enterprise Server.

When the View Logs Server Selector window appears, select the desired cluster,
then press the View Log File button. In the View Application Logs window that
appears, you can select the Error, Security, or Information log. After making
your selection, press the View Log button.

Sample Scripts

Testing Expiration Setter and Handler
Scripts

When Process Express displays work items in the work item list, it shows the
expiration date for each work item. To test an expiration setter script, simply
deploy the application and test it out. Check the expiration date for the relevant
work item in the work item list in Process Express. For example, Figure 15.5
shows the due date in Process Express.

Figure 15.5Testing a due date

I-- Helect an action -- ﬂ J

Hequired Action Priority Due Date

P e

normal - 09841992
document

At regular intervals (about once every minute) PAE tests for expired work items
by comparing the expiration date and time of every work item to the current
time. If the expiration time has passed for any work item, PAE invokes the
work item’s expiration handler script if it has one.

If your expiration handler re-assigns the work item, you should view the details
and history for the process instance to check if the re-assignment worked in test
mode. The title of the process does not change in test mode even if the
assignee changes.

Sample Scripts

This section gives an example of the following kinds of scripts:

= Assignment Script

= Expiration Setter Script

= Expiration Handler Script
= Completion Script

= Automation Script

Chapter 15, Advanced Techniques for Scripting 351

Sample Scripts

Assignment Script

The following assignment script assumes that the process instance has data
fields r evi ewer 1 and r evi ewer 2 that contain the common name for two
reviewers. If one or both of the r evi ewer 1 and r evi ewer 2 fields contain
common names for valid users, the work item is assigned to the valid named
reviewers. Otherwise it is assigned to the process instance creator.

The default value for the r evi ewer 1 and r evi ewer 2 fields is an empty
string. The script checks that the reviewers exist as users in the corporate
directory, and if so, gets their distinguished names (DNs) and puts them in an
array. Then just for good measure, the script double-checks that the array
contains valid user DNs only, and if it does, returns the array. If the array does
not contain valid DNs, the script assigns the work item to the creator of the
process instance.

function assi gnToNanedRevi ewers ()
{
/] Get the process instance.
var pi = getProcesslnstance ();
var corp = getCorporateDirectory ();

/]l Create an array to contain the assignees.
var assigneeArray = new Array ();

/'l Cet the common names of reviewerl and reviewer2.

/1 The default value of these fields is an enpty string.
var reviewerl = pi.getData ("reviewerl");

var reviewer2 = pi.getData ("revi ewer2");

/1 1f reviewerl has a nanme, find themin the corporate directory.
if (reviewerl !'="") {
var reviewer1lCN = corp. getUser ByCN (revi ewerl);
/1 1f we have a user for reviewerl, get their DN
// and add it to the assignee array.
if (reviewerlCN != null) {
var revi ewer1DN = revi ewer 1CN. dn;
assi gneeArray. push (revi ewer 1DN);

}
/1 Do the same thing for reviewer2.
if (reviewer2 '="") {

352 Developer’s Guide

Sample Scripts

var reviewer2CN = corp. get User ByCN (revi ewer2);
if (reviewer2CN !'= null) {

var revi ewer2DN = revi ewer 2CN. dn;

assi gneeArray. push (revi ewer 2DN);

}

/1 1f the assignee array is not enpty and each element is a valid dn
/1 return the assignee array otherw se
/1 return an array of the dn of creator of the process instance.

if ((assigneeArray.length !'= 0) &% (checkUserDNs (assigneeArray))) {
return assi gneeArray;
}

el se {
return new Array (pi.getCreatorDN());

Expiration Setter Script

This expiration setter script gets the value of the pageCount field and uses it
to determine whether reviewers need a long or short review period. If the page
count is greater than 100, the review period is long (14 days), otherwise the
page count is short (7 days).

function set EndCf Revi ewPeri od() {
/] Get the process instance.
var pi = getProcesslnstance();

/1 Get the page count.
var pageCount = pi.getData ("pageCount");

/1 The review period is based on the page count.
/1 For pages < 100, expire in 7 days.

/'l For pages > 100, expire in 14 days.

var revi ewPeri od;

if (pageCount > 100) {

revi ewPeriod = 14;

}

el se {

reviewPeriod = 7;}

Chapter 15, Advanced Techniques for Scripting 353

Sample Scripts

354 Developer’s Guide

var now = new Date();

var nowTi me = now. getTime(); //UNI X epoch tine

var expTime = nowlime + (reviewPeriod * 24 * 60 * 60 * 1000);
return new Date(expTine);

Expiration Handler Script

This expiration handler script reassigns the work item to the creator. In this
particular case, the task of the work item is to review a document, whose name
is stored in the docname data field.

function revi ewPeri odExpi red() {

/] Get the process instance and the work item
var pi = getProcesslnstance ();
var Wi = getWorkltem();

/! Re-assign the work itemto the creator
var creatorArray = new Array (pi.getCreatorDN());
Wi . assi gnTo(creatorArray);

/1 Cet the document name.

var docname = pi.get Data("docnanme");

/1 getCurrentActivityCN() is a work itemnnethod that returns
/1 the name of the work item

var activityNane = wi.getCurrentActivityCN();

/! Return true to indicate successful expiration.
return true;

Completion Script

The following completion script checks that the value of the pageCount data
field is a number between 1 and 3000 inclusive. If the pageCount is too high,
too low, or is not a number, the completion script adds an informative error
message to the error dialog box and returns f al se.

Sample Scripts

functi on checkPageCount (){
var pi = getProcesslnstance ();
var pageCount = pi.getData("pageCount");

/1 The standard JavaScript function parselnt gets an integer
/1l froma string if it has one, otherwi se returns O.

/'l For exanple, parselnt("33hello") returns 33.

/1 If the first character cannot be converted to a nunber,
/] parselnt returns "NaN'.

var pageCount Num = par sel nt (pageCount);

/1 The standard JavaScript function isNaN
/] tests if a value is not a nunber.
if ((isNaN (pageCountNum) ||

(pageCount Num < 1) || (pageCountNum > 3000)) {
set Error Message ("You entered " + pageCount +
' as the page count. This value is invalid. " +

"Pl ease enter the page count as a nunber " +
"between 1 and 3000 inclusive.");
return fal se;

}

el se return true;

Automation Script

This script updates a link to a newly submitted document in a file that lists all
documents available for review.

This script could be used as an automation script in a process that enables
writers to submit documents for review. In the entry point form, the writer uses
a File attachment data field called docFi | eNane to attach the document. Many
different writers can use the application to submit documents. The file

docLi st. ht Ml contains an active link for every document that has been
submitted with this application. The file docLi st. ht nl lives in the top level
of the content store so that all process instances in the application can access it.

Two files are involved in the document list. The file docLi st. ht ml is an
HTML-formatted list of the documents with an active link for each document.
The file showLi st. ht ml contains opening HTML tags, the list of documents

Chapter 15, Advanced Techniques for Scripting 355

Sample Scripts

356 Developer’s Guide

(which is the same as docLi st . ht m), and closing HTML tags. This script
uses two files so that it can add the closing HTML tags after adding the
information for the newly submitted document.

functi on updat eDocRevi ewWébPage() {
/1 Get the process instance.
var pi = getProcesslnstance();

/1 docList.htm and showlList.html are stored at the
/1 top level in the content store.

/1 Get the root URL for the content store.
var nmyStore = getContentStore();
var storePath = nyStore. get Root URL();

/1 Get the full pathnanes to docList.htm and showlist.htnl.
var doclListPath = storePath + "docList.htm";
var showlLi stPath = storePath + "showList.htm";

/] Get the contents of the doc list.
var docList = nyStore. getContent(docLi stPath);

/1 Get the pathname to the doc that was submtted for review
var docURL = pi.getData("docFil eNane");

/] Get info about the newy submtted docunent.
var docnane = pi.getData("docnanme");

var witer = pi.getData("witernane");

var witerComments = pi.getData("witerComent");

// Add a link to the newly submtted doc in the doc list.

docLi st += "";

docLi st += "<H2>" + docnanme +" </ H2></ FONT></ A>";
docLi st += "<P>Author: " + writer + "</P>";

docLi st += "<P>Aut hor coments: </P>";

docLi st += "<BLOCKQUOTE>" + writerComments + "</ BLOCKQUOTE><HR>";

/1 Store the doclist back into docList.htnl
nyStore.store (docList, docListPath);

/1l Create the final content, which contains the heading tags,
/1 the doc list, and the closing tags.

Sample Scripts

var final Content = "<HTM.><HEAD><TI| TLE>Docunents avail able for review' +
"</ TI TLE></ HEAD>";
final Content += "<BODY><CENTER><H1>Documents Avail able for Review' +
"</ H1></ CENTER>" +
"<P>We encourage feedback on these docunments from everyone. </ P>" +
docLi st + "</ BODY></HTM.>";
nyStore.store (final Content, showListPath);

return true;

}

Figure 15.6 illustrates the showLi st . ht M web page. This page is updated
each time a document is submitted for review.

Figure 15.6 A web page that is updated automatically

Documents Available for Review

We encourage feedback on these domuments from everyons.

Author: Tma Writer
Author conuments:

Please review the PM Prograrumers Guade by Friday. Please check the
samhiple scripts cavefally.

Anthor: Jane Editor
Author comments:

This 15 the st¥le guide for writers wrnting abont Hetscape Process
Manager. I wonld like all weiters to read at.

Chapter 15, Advanced Techniques for Scripting 357

Sample Scripts

358 Developer’s Guide

Chapter

Scripting with EJB Components

This chapter describes how to call an Enterprise JavaBean (EJB) from
JavaScript. You should be familiar with EJBs to understand the information in
this chapter.

This chapter describes the following topics:
= Calling EJB Components from JavaScript
= A Sample Script

= Handling Exceptions

« Data Conversion Issues

Chapter 16, Scripting with EJB Components 359

Calling EJB Components from JavaScript

Calling EJB Components from JavaScript

Your JavaScript process automation script can create an instance of an EJB and
call the EJB’s methods to perform business logic. For example, an order-entry
application might create an instance of an EJB that represents a credit card
authorization gateway. The application would call methods to check the credit
card number, authorize the transaction, and create a charge on the account, as
shown in Figure 16.1:

Figure 16.1Programming logic for calling an EJB component

Create order

Authorize - — — — — — — — Authorization
Gateway EJB
‘ N Contact customer]
Fulfill order

360 Developer’s Guide

A Sample Script

A Sample Script

To use an EJB, the calling JavaScript must perform the following actions:

Look up the bean using the home interface’s JINDI name
Create an instance of the bean

Call the bean’s methods to perform tasks supported by the bean

The following JavaScript function shows an example of these actions:

function billCC ()

{

var pi = getProcesslnstance ();

var wi = getWorkltem();

pi .setData("ccError",null);

var ccNunber = pi.getData("ccNunber");

/'l Get bean home, create it, and call the check nmethod on it.
var home = ej bLookup(" Net scape/ Credit CardServer");

var ccs = hone.create (pi.getData("ccType"));

var result = ccs.check (ccNunber);
if (result.equals
(Packages.com net scape. pm sanpl e. | Credi t CardServer. CARD X)

== fal se)

{
pi.setData("ccError", result);
return true;

}

result = ccs.authorize (ccNunmber, 100, 25);

if (result.startsWth (

Packages. com net scape. pm sanpl e. | O edi t CardServer. CREDI T_LI M T_EXCEEDED)
|| result.startsWth
Packages. com net scape. pm sanpl e. | Credi t Car dSer ver. CREDI T_DENI ED)

pi .setData("ccError", result);
return true;
}
// Charge the card the anmount shown.
result = ccs.charge (ccNunber, result);
if (result.startsWth
(Packages. com net scape. pm sanpl e. | Credi t Car dSer ver . OPERATI ON_(K)
== fal se)
{
pi .setData("ccError", result);
return true;

Chapter 16, Scripting with EJB Components 361

A Sample Script

362 Developer’s Guide

}

pi . set Dat a("ccAut hcode", result);
return true;

}

You call the ej bLookup() function to create a reference to the EJB. This
method uses the bean’s JINDI name to determine the EJB to use. In this
example, the name is Net scape/ Cr edi t Car dSer ver . You can examine the
bean’s BeanHoneNane property to determine the JNDI name.

You call the bean’s factory method, which is defined in the bean’s home
interface class, to create the instance of the bean. In this example, the method
is creat e(). You can examine the bean’s Honel nt er f aceCl assNane
property to determine the home interface class.

You can then call the bean’s methods, which are defined in the bean’s remote
interface class, to perform specific tasks. In this example, the JavaScript calls the
bean’s check(), aut hori ze(), and char ge() methods. You can examine
the bean’s Renot el nt er f aceCl assNane property to determine the remote
interface class.

Handling Exceptions

Handling Exceptions

Java exceptions cannot be handled in JavaScript. You can implement your bean
so that the script receives error information without needing to deal with an
exception, as in the following example:

catch (...Exception e) {
e. Print StackTrace();
return true;
}
}

If an exception is thrown, the process instance moves to the exception manager
that you specify in the Inspector window, as shown in Figure 16.2:

Figure 16.2Setting an exception manager in Process Builder

M. Inspector - Look Up Credit History
Froperties Transitionsl
MHarme Loaok Up Credit Histany
Description =Initialize your description=
Schedule na
Deferred false ;]
o Perfarmer Script LookpCreditHistard i3
Foe Completion Seript N3
; Exception Manager Lookup Exception [T

Lookup Exception
Default Exception

Chapter 16, Scripting with EJB Components 363

Data Conversion Issues

Data Conversion Issues

Note

364 Developer’s Guide

PAE uses LiveConnect’s rules to convert between Java and JavaScript data
types. When you call a Java method from JavaScript, JavaScript does not
convert the data type of the data until it is manipulated by the script. For
example, the r esul t variable in the script contains a Java string data type after
executing the Java EJB check() method in the following statement:

var result = ccs.check (ccNunber);

You must compare the variable’s contents using Java methods; comparing with
JavaScript functions will not work as expected. The following statement shows
the comparison using Java:

if (result.equals
(Packages. com net scape. pm sanpl e. | Credi t CardServer. CARD K)
== false) { ... }

To access Java data, you must qualify the package name with the Packages
keyword unless the Java data is from the j ava package. JavaScript recognizes
the j ava package without qualification. You can also create an instance of an
object by specifying the new operator, as in the following examples:

var aResult = new java.lang. String;
var CARD K = new
Packages. com net scape. pm sanpl e. | Credi t Car dSer ver . CARD_OK

Conversion between Java and JavaScript is implicit and occurs when the value
is manipulated as a JavaScript data type. For example, if r esul t contains a
Java string data type, the following statement causes it to be converted to a

JavaScript string data type: result = result + ;

Chapter

Writing Custom Activities

This chapter describes how to write and use custom activities. The sections in
this document are:

Introduction

Implementing ISimpleWorkPerformer
Writing the XML Description File

Packaging a Custom Activity

Adding a Custom Activity to the Process Map
Working with a Custom Activity

Implementation Tips

Chapter 17, Writing Custom Activities 365

Introduction

Introduction

366 Developer’s Guide

PAE lets you create custom activities as Java classes and bring them into your
process definitions.

Custom activities are useful when you want to do more than can easily be done
in an automation script, such as when the programming logic or data resides
outside of PAE. For example, you might build a custom activity to interface
with external applications and databases. Custom activities might also run local
applications and then interact with mail gateways or FAX servers.

Comparison to Automated Activities

Custom activities are similar to automated activities. In both cases:

< You place them on the process map by dragging and dropping them from
the Palette.

= They can have completion scripts.

= They are triggered as soon as the process instance reaches the activity,
unless the activity is deferred. A deferred activity is triggered at its specified
date and time.

Automated and custom activities have one main difference: an automated
activity is carried out by an automation script, whereas a custom activity is
carried out by a Java class.

Usage Overview

Creating and using a custom activity involves the following major steps:

1. Write and compile a Java class that implements the
I Si mpl eWor kPer f or mer interface.

2. Define an XML description file for the activity.
3. Package the Java class and the XML description file as a zip or jar file.

4. Bring the custom activity into an application.

Implementing ISimpleWorkPerformer

Implementing ISimpleWorkPerformer

The first step in creating a custom activity is to write a Java class that
implements | Si npl eWor kPer f or er, an interface in the package
com.netscape.pm.model. The Java class must reside in the server class path.
Note also that the | Si npl eWbr kPer f or mer class you create will be stateless.

I Si npl eVor kPer f or ner defines a custom activity that:
1. gets data field values as input

2. performs some task

3. sets data field values as output

Other than getting and setting data field values, your | Si npl eWor kPer f or mer
class has no access to information on the work item or the process instance.

This section describes the following topics:
= Methods of I1SimpleWorkPerformer

= Sample Java Class

Methods of ISimpleWorkPerformer

| Si npl eVor kPer f or mer has three methods:

= The init() method is called when the application starts.

= The perform() method is called each time the custom activity is executed.
This method must be thread-safe.

= The destroy() method is called when the application is unloaded or
removed.

The init() method

public void init (Hashtable environnent) throws Exception

Chapter 17, Writing Custom Activities 367

Implementing ISimpleWorkPerformer

368 Developer’s Guide

The i ni t () method performs initialization tasks that the custom activity
requires when the application starts. For example, use i ni t () to set up
database connections that are shared by all instances of the activity, or use

i nit() to define variables that are constant across all instances of the activity.

The i ni t () method does not execute each time a custom activity is created in
a process instance. Instead, this method is called only once—when the
application starts.

As its input argument, i ni t () takes a hashtable of environment variables. A
hashtable is a java.util.Hashtable object that contains a series of parameter-
value pairs. The parameters in the environment hashtable are defined in the
ENVIRONMENT section of an XML description file.

A process designer sets the values of the hashtable parameters while creating
the process map.

For example, suppose a Language parameter is defined in the environment
hashtable of a custom activity. In Process Builder, the Language parameter
would appear as a property for the custom activity (you would open the
Inspector window and view the Properties tab).

In your Java class, define the i ni t () method to perform the desired
initialization tasks. Then, to obtain the value of a parameter in the environment
hashtable, call the get () method on the environment hashtable. The get ()
method returns either the value of the parameter, or nul | if the parameter
doesn't exist.

The perform() method

public void perform (Hashtable in, Hashtable out) throws Exception

The per f or n{) method does whatever tasks must be done for the activity. This
method takes two java.util.Hashtable arguments. The input hashtable contains
values taken from data fields, and the output hashtable contains values to put
into data fields.

The parameters in the input and output hashtables are defined in the INPUT
and OUTPUT sections, respectively, of an XML description file.

Implementing ISimpleWorkPerformer

The Input Hashtable

To obtain the value of a parameter in the input hashtable, call the get ()
method on the input hashtable. The get () method returns either the value of
the parameter, or nul | if the parameter doesn'’t exist. Note that the get ()
method returns a Java object, so you must cast this object to the object class
type that your custom activity is expecting. For example:

String sizeOrder = (String) input.get(“order”);

The Output Hashtable

To set data field values, the per f or n{) method must put values into the output
hashtable by calling put () on the output hashtable. When the per f or n()
method finishes executing, you then assign the values to the corresponding
data fields.

The destroy() method

public void destroy()

The dest roy() method is called when the application that uses the custom
activity is unloaded or removed. Typically, you use the dest r oy() method to
clean up resources that were used by the i ni t () method.

Sample Java Class

The following code samples are from Hel | oWor | dPer f or ner . j ava, the class
that implements the HelloWorld custom activity. HelloWorld is included in PAE
as a sample custom activity, so you can view the source code directly.

HelloWorld constructs a welcome message in either French or English. The
message value is derived from two things: the value of the cust omer Narme data
field in the process instance, and the Language property of the Hel | oWor | d
activity instance. The HelloWorld activity puts the welcome message in the

gr eeti ng data field.

Chapter 17, Writing Custom Activities 369

Implementing ISimpleWorkPerformer

Note

370 Developer’s Guide

Creating HellowWorldPerformer.java

Using your favorite Java editor and compiler, create and compile a Java class
that implements the | Si npl eWor kPer f or mer interface. The compiled class file
must reside in the server class path. When you use Process Builder to add a
custom activity, PAE automatically places the custom activity’s class file in the
server's class path.

Don't define any constructors in classes implementing ISimpleWorkPerformer,
because PAE does not use them. A Java exception will be thrown. Defining a
class without any constructors is the same as defining one with just a default
constructor.

Here are the steps for creating Hel | oWor | dPer f or mer . j ava:

1. Define a package for your class:

package com net scape. pm sanpl e;

N

Import the required standard Java packages:

i mport java.lang.*;
import java.util.*;

3. Define the class HelloWorldPerformer to implement
com net scape. pm nodel . | Si npl eWor kPer f or mer, as follows:

public class Hel |l owr| dPerf orner
i mpl ements com net scape. pm nodel . | Si npl eWor kPer f or mer

4. Define two variables to hold the English and French parts of the greeting.
Define another variable to hold the complete greeting when it has been
derived (such as “Bonjour Nikki.”)

/'l Greeting Messages

public static final String GREETI NG FRENCH
public static final String GREETI NG ENGLI SH

" Bonj our";
"Hel |l o";

/1 Holds the greeting nessage once the | anguage has been specified
String nGreeting;

5. Define the i ni t () method to get the value of the Language environment
variable and to set the language-specific part of the greeting. In addition,
throw an exception if the language is not provided, or if the language is
neither English nor French. For example:

| **

Implementing ISimpleWorkPerformer

* The Hel loWwbrld custom activity knows to generate both French
* and English greetings. The Language argunent defines which
* | anguage should be used.
*/
public void init(Hashtable env) throws Exception
{
String lang = (String) env.get("language");
if(lang == null)

{
t hrow new Exception("-- |language not defined.")

}

el se i f(lang. equal sl gnoreCase("French"))

{
nGreeti ng = GREETI NG_FRENCH;

}

el se if(lang. equal sl gnoreCase("English"))

{
mGr eeti ng = GREETI NG_ENGLI SH;

}

el se

{

t hrow new Exception("-- Unknown | anguage:"+ |lang +

We currently support English or French--")

}

}

Later, you will set the exact value of the Language environment. You'll do
this in Process Builder, when you set up the custom activity in a process
definition.

Define the per f or m() method to construct a welcome message consisting
of the language-specific part of the greeting and the user’s name, for
example “Hello Billy.” The value of the user Name parameter is derived
later—from a data field in a process instance that uses the custom activity.

= Use the get () method on the input parameter to get the value of an
input parameter.

/**

* Reads the userNane el enent of the input hashtable,

* generates greetings, and sets the Geeting el ement of out.

*/

public void perforn{ Hashtable input, Hashtable output)

Chapter 17, Writing Custom Activities 371

Writing the XML Description File

throws Exception

// Read the userNanme attribute fromthe input hashtable
String userName = (String) input.get("userNanme");

if(userName == null)

{

throw new Exception("userNane has not been initialized!")

/] Generate greetings
String msg = m&eeting + " " +userNane;

= Use the put () method on the output parameter to set the value of an
output parameter.

/1 Put the greeting into the wel coneMsg paraneter of
/1 the output hashtable.
out put. put ("wel coneMessage" , nsg);

7. Finally, define the destroy() method, which is invoked when the
application is unloaded from the application server. In this case, the method
does nothing because no resource cleanup is needed.

public void destroy()
{
}

/1 End of class

}

8. Compile Hel | oWor | dPer f or mer . j ava to get a class file,
Hel | oWor | dPer f or ner . cl ass.

Writing the XML Description File

After you write and compile the Java class that implements
ISimpleWorkPerformer, your next step is to define an XML description file for
the class. This XML file specifies the environment, input, and output parameters

372 Developer’s Guide

Writing the XML Description File

that the class uses. In addition, the XML file specifies some optional design
parameters. Design parameters control the custom activity’s appearance in
Process Builder.

This section describes the following topics:
= File Format

= Sample XML Description File

File Format

The XML description file starts with a tag indicating the XML version, such as:

<?XM. version = "1.0" ?>
The body of the description is contained between an opening
<WORKPERFORMER> tag and a closing </ WORKPERFORMER> tag. Within the

WORKPERFORMER section you define four sections, as summarized in
Table 17.1.

Table 17.1 Sections within the WORKPERFORMER Tags

XML Section What this section describes

ENVIRONMENT Environment hashtable used by i ni t () method.
INPUT Input hashtable used by per f or m() method.
OUTPUT Output hashtable used by per f or n{) method.
DESIGN Appearance of custom activity icons in Process Builder.

Here is the structural overview of an XML description file:
<?XML version = "1.0" ?>
<WORKPERFORMER >

<ENVI RONVENT>
<PARAMETER> ... </ PARAMETER> ...
</ ENVI RONVENT>

<| NPUT>
<PARAMETER> ... </ PARAMETER> ...
</ | NPUT>

Chapter 17, Writing Custom Activities 373

Writing the XML Description File

374 Developer’s Guide

<QUTPUT>
<PARAMETER> ... </ PARAMETER> ...
</ QUTPUT>

<DESI G\>
<PARAMETER> ... </PARAMETER> ...
</ DESI G\>

</ WORKPERFORVER>

WORKPERFORMER Tag

The <WORKPERFORVMER> tag has four attributes: TYPE, NAME, CLASS | D, and
VERSI ON.

= TYPE is the full package name for the Java class for this type of activity. For
a simple custom activity, TYPE is always this:

com net scape. pm nodel . | Si npl eWor kPer f or mer

= NAME is the name of the custom activity (which is the same as the name of
the XML description file and the jar file that contains the custom activity).
This name is not currently used anywhere.

= CLASS | Dis the full package name for the Java class that implements the
custom activity.

= VERSI ONis the version of the custom activity. VERSI ON is currently unused,
but you could use it to keep version information about the description file.

Here is a sample <WORKPERFORMER> tag:

<WORKPERFORMER
TYPE="com net scape. pm nodel . | Si npl eWor kPer f or mer "
NAME="Hel | oWor | d"
CLASS | D="com net scape. pm sanpl e. Hel | oWor | dPer f or mer "
VERSI ON="1. 1" >

ENVIRONMENT Section

The <ENVI RONMENT> tag defines environment parameters that are constant
within all instances of the custom activity. For example, suppose that in an
application named HelloWorld, you set the value of the Language environment
parameter to French. Then, the value is always French in every process instance
of that application.

Warning

Writing the XML Description File

The ENVI RONMVENT section contains embedded <PARAMETER> tags. Each
<PARAMETER> tag describes a parameter in the environment hashtable—the
argument used by the i ni t () method. The <ENvVI RONMENT> tag has a
corresponding closing </ ENVI RONMVENT> tag , and each <PARAMETER> tag has a
closing </ PARAMVETER> tag.

When you add the custom activity to the process map in Process Builder, each
parameter in the <ENVI RONMENT> tag will appear as a field in the Inspector
Window.

Here’s a sample ENVI RONMENT section:

<ENVI RONVENT>
<PARAMETER NAME="Language" >"Fr ench" </ PARAMETER>
</ ENVI RONMENT>

Parameter values (such as “French” in the example above) are actually
JavaScript expressions, so you can supply the value as a string, integer, or
function. However, be sure to quote any string expression. Note that Fr ench
(without quotes) and " Fr ench" (with quotes) mean different things.

For details on the syntax of the <PARAMETER> tag, see the section “PARAMETER

Tag”.

INPUT Section

The <I NPUT> tag contains embedded <PARAMETER> tags. Each <PARAMETER>
tag describes a parameter in the input hashtable, the input argument of the
per f or () method. The <I NPUT> tag has a corresponding closing </ | NPUT>
tag , and each <PARAMETER> tag has a closing </ PARAMETER> tag.

To set the value of the parameter to the value of a data field in the process
instance, embed a call to get Dat a() in the <PARAMETER> tag. For example, the
following code sets the value of the user Name parameter in the input hashtable
to the value of the cust omer Nare data field in the process instance.
<l NPUT>
<PARAVETER
NAME=" user Nane"
DI SPLAYNAME="User Nane"
TYPE="j ava. |l ang. Stri ng"
DESCRI PTI ON="Last Nane">
get Dat a(" cust orrer Nanme")
</ PARAVETER>
</ | NPUT>

Chapter 17, Writing Custom Activities 375

Writing the XML Description File

376 Developer’s Guide

For details on the syntax of the <PARAMETER> tag, see the section “PARAMETER

Tag”.

The corresponding code in your Java class file uses the per f or n{) method to
get the value of the user Name parameter. Within the per f or n{) method, you
call the get () method. Here is a code fragment:

public void perfornm(Hashtabl e input, Hashtable output)
t hrows Exception

{
/! Read the userNane attribute fromthe input hashtable
String userNanme = (String) input.get("userNanme");
if(userName == null)
{
t hrow new Exception("userNane has not been initialized!'") ;
}
/'l Generate greetings
String neg = meeting + " " +user Nane;
OUTPUT Section

The <OQUTPUT> tag contains embedded <PARAMETER> tags. Each <PARAMETER>
tag describes a parameter in the output hashtable, the output argument of the
per f or () method. The <QUTPUT> tag has a corresponding closing </
QUTPUT> tag , and each <PARAMETER> tag has a closing </ PARAMETER> tag.

The output hashtable contains parameters whose values will be automatically
installed in data fields in the process instance. For each parameter, embed a call
to mapTo() to indicate which data field in the process instance is to receive the
value of the parameter.

For example, the following code specifies that when the per f or m() method
has finished executing, the value of the wel comeMsg parameter in the output
hashtable is automatically installed in the gr eet i ng data field in the process
instance.
<QUTPUT>
<PARAVETER

NAVE=" wel coneMsg"

DI SPLAYNAVE=" Wl cone Message"

TYPE="j ava. |l ang. Stri ng"

DESCRI PTI ON="Greeting for the user">

Writing the XML Description File

mapTo("greeting")
</ PARAMETER>
</ QUTPUT>

For details on the syntax of the <PARAMETER> tag, see the section “PARAMETER

Tag”.

The corresponding code in your Java class file uses the perf orn{) method to
put a value in the wel coneMsg parameter of the output hashtable. Within the
per f or () method, call the put () method:

out put. put ("wel coneMessage" , nsg);

PARAMETER Tag

The <PARAMETER> tag has the attributes as summarized in Table 17.2. When
you define parameters within the DESIGN section of the XML description file,
only the NAME and DESCRIPTION attributes apply. However, within the
ENVIRONMENT, INPUT, or OUTPUT sections, all of the attributes apply.

Table 17.2 PARAMETER tag attributes

Attribute Meaning
NAME Name of the parameter.
DESCRIPTION The text for the tool tip (also called bubble help) that

appears when you place the mouse over the item in
Process Builder.

TYPE The Java object class of the parameter. This attribute is
optional. The value can be given as a complete class
name, such as j ava. | ang. Stri ng or

com net scape. pm Shoppi ngCart.

VALUESET A comma-delimited list of possible values for this
parameter. These values appear as a pop up menu in the
Inspector Window. This attribute is optional.

EDITOR The type of editor window to use. For example, use this
attribute to set a Browse button, text area, drop down
list, dialog box. This attribute is optional.

EDITABLE A boolean that determines whether the parameter value
can be edited in the Inspector Window. The default is
true. This attribute is optional.

Chapter 17, Writing Custom Activities 377

Writing the XML Description File

378 Developer’s Guide

DESIGN Section

The <DESI G\> tag contains embedded <PARAMETER> tags. Each <PARAMETER>
tag describes a parameter in the output hashtable, the output argument of the
per f or () method. The <DESI G\> tag has a corresponding closing </

DESI G\> tag , and each <PARAMETER> tag has a closing </ PARAMETER> tag.

Use the DESIGN section to define the custom activity’s user interface within
Process Builder. In the DESIGN section, the <PARAMETER> tag accepts two
attributes: NAME and DESCRIPTION.

By setting the NAME attribute, you define a particular aspect of the custom
activity’s user interface. Table 17.3 summarizes the available values for the
NAME attribute:

Table 17.3 NAME attributes for the DESIGN parameter

NAME Attribute Meaning

Icon The image file to use for the icon in the custom palette.
Label A text label that appears under the icon.

BubbleHelp The text for the tool tip that appears when the mouse

pointer is over the icon.

HelpUrl The URL for the online help for this custom activity,
accessible from a right-click.

Maplcon The image file to use for the icon in the process map. In
typical usage, this is the same as Icon.

SelectedMaplcon The image file to use for the icon in the process map,
when the activity is selected.

TreeViewlcon The file to use for a small image that represents the

activity in the Application Tree View.

Sample XML Description File

Define a file called Hel | oWor | d. xm as shown below. Things to note are:

= This file specifies user Name as a parameter in the input hash table.
However, the value of this parameter is obtained from the cust omer Name
data field in the process instance.

Writing the XML Description File

= Similarly, the file specifies wel coneMsg as a parameter in the output
hashtable, and maps its value back into the gr eet i ng data field in the
process instance.

Here is the entire code for the Hel | oWor | d. xm description file:

<?XML version = "1.0" ?>
<WORKPERFORMER
TYPE="com net scape. pm nodel . | Si npl eWor kPer f or mer "
NAME=" Hel | oWor | d"
CLASS | D="com net scape. pm sanpl e. Hel | oWor | dPer f or mer "
VERSI ON="1. 1" >
<ENVI RONVENT>
<PARAMETER
NAME=" Language"
VALUESET=""Engl i sh’,’ French' "
TYPE="j ava. |l ang. Stri ng" >
" English’
</ PARAMETER>
</ ENVI RONVENT>
<| NPUT>
<PARAMETER
NAME="user Nane"
DI SPLAYNAME=" User Nane"
TYPE="] ava. |l ang. String"
DESCRI PTI ON="Last Nane" >
get Dat a(" cust oner Nane")
</ PARAMETER>
</ | NPUT>
<QUTPUT>
<PARAMETER
NAME=" wel comeMsg"
DI SPLAYNAVE=" W&l cone Message"
TYPE="] ava. |l ang. String"
DESCRI PTI ON="Greeting for the user">
mapTo("greeting")
</ PARAMETER>
</ QUTPUT>
<DESI G\>
<PARAMETER
NAME="1 con"
DESCRI PTI ON="A 32x32 icon that is placed on the palette">
drap_uk2. gif

Chapter 17, Writing Custom Activities 379

Packaging a Custom Activity

</ PARAMETER>
<PARAMETER
NAME=" Label "
DESCRI PTI ON="The DI SPLAYNAME used for this palette elenment.">
Hel lo World
</ PARAMETER>
<PARAMETER
NAME=" Bubbl eHel p"
DESCRI PTI ON="Bubbl e help for the palette el enent">
Hel loWworld - A sinple work perfornmer Custom Activity.
</ PARANVETER>
<PARAMETER
NAME=" Hel pURL"
DESCRI PTI ON="URL explaing this palette el ement">
http:// peopl e. net scape. com m chal /
</ PARAMETER>
<PARAMETER
NAME=" Mapl con"
DESCRI PTI ON="1con for the process map (48x48)">
drap_uk2. gi f
</ PARAMETER>
<PARAMETER
NAME=" Sel ect edMapl con"
DESCRI PTI ON="1con for the process map (48x48)">
drap_fr2.gif
</ PARANVETER>
<PARAMETER
NAME="Tr eeVi ewi con"
DESCRI PTI ON="1con for the tree view (48x48)">
mail er_tree_view.gif
</ PARAMETER>
</ DESI G\>
</ WORKPERFORVER>

Packaging a Custom Activity

After you create the Java class file and the XML description file, the next step is
to package the custom activity. A custom activity consists of the following files:

380 Developer’s Guide

Packaging a Custom Activity

= One or more Java classes. At least one of these classes must implement
| Si npl eWor kPer f or mer.

< An XML description file.
= Optional image files to use as icons in Process Builder.

Create a zip or jar archive that contains these files. The archive must have the
same root name as the XML file. For example, if the XML file is
Hel | oWor | d. xml , then name the zip file Hel | oWor | d. zi p.

As you create the archive, check that the directory structure reflects the package
structure of the class. For example, the Hel | oWor | dPer f or mer class is in the
package com net scape. pm sanpl e. Therefore, the class file must be in the
directory coni net scape/ pni sanpl e, as shown in Figure 17.1. The

Hel | oWor | d. xm file must be at the top level.

Figure 17.1Directory structure for the HelloWorld activity
Esl) 'WinZip - HelloWorld. zip

File Actions Option: Help

Dor Q|7 i

=10 Open | Favontes | Add E utract YWiew | CheckOut] ‘wizard

Mame Date Time Size Raho Packed Pasth
.JT drap fi2. gif 09/24/93 10:34 2054 22% 1 E09
A drap_uk2. gif 03/24/93 10:34 2478 4% 2383
=] Hellobworld. xml 039/23/93 1822 1.763 EBX Bd
é] Hello'WorldPerfarmer.class 06418793 1246 2004 48% 1,049 com\netscapespmhzample’

Selected O files, O bytes Total 4 files, 9KEB g3

B

Note the two image files, drap_fr 2. gi f and drap_uk2. gi f. These images
will be used by Process Builder in the process map. The images, shown in
Figure 17.2, will correspond to the selected state of the Language property,
either French or English.

Figure 17.2Image files in the HelloWorld activity

By

Chapter 17, Writing Custom Activities 381

Adding a Custom Activity to the Process Map

Adding a Custom Activity to the Process Map

382 Developer’s Guide

There are two ways to add a custom activity to the process map:

= In one case you create a custom palette. This approach is useful if you
intend to use a custom activity often, either within a single application or
across several applications.

= In the other case, you don't create a custom palette, and you simply use the
Custom Activity icon provided with Process Builder. This approach might
be better if you rarely use custom activities, and you don’t want to create a
custom palette for them.

Adding a Custom Activity from a
Custom Palette

To use a custom activity from a custom palette, do the following:

1. In the palette, right-click the area below the title bar, and choose “Add
custom palette,” as shown in Figure 17.3. This adds a new tab to the palette.

Add custam pallete

<|7 __l;j Help

What's This?

2. In the “New palette name” dialog box (shown in Figure 17.4), type the label
for the new tab. For example, enter “HelloWorld”.

Adding a Custom Activity to the Process Map

Figure 17.4Enter a name for the new palette

;' Mew palette name %]

Enter palette name:

oK | Cancel | Help |

A new tab is added to the palette.

Click your new custom tab to make it active. Note that the area contains no
icons.

Right-click in the empty area under the tabs, and select “Add Custom
Activity ...”. See Figure 17.5.

Figure 17.5Add a custom activity to the palette

M. Map Palette

I

Activities l Documentation HelloWworld

Add Custorm Activity ..

Rebuild Falette ...

Help

What's This®

A file selection window appears.

Using the file selection window, locate the archive file that represents the
custom activity, and select the file. For example, Figure 17.6 show the
selection of Hel | oWor | d. zi p:

Chapter 17, Writing Custom Activities 383

Adding a Custom Activity to the Process Map

384 Developer’s Guide

Figure 17.6Select the file that represents a custom activity

Select the Custom Activity definition

Lookjn: | 4 builder

I &pplications
1 bin

1 classes

I cam

E3 images

[jdk116

[manual
L___i netzcape
3 Samples
[sounds
E.:.! suppoark
3 Trmip

File name:]Hellu:uWurld.zip Open l

Files of twpe: [l Files) = Cancel |

The custom activity is added to your new palette. For example, as shown in
Figure 17.7, the HelloWorld activity appears on the palette like this:

Figure 17.7 A custom activity icon appearing on the HelloWorld custom palette

|
I
|
|
Il

M. Map Palette

Activities l Documentation HelloWorld

==

Hello ot

[Hellowarld - & simple work perfarmer Custom Activity |

Note that the custom activity’s appearance in Process Builder is controlled
by the DESIGN section of the XML file. In the HelloWorld tab pictured
above, you see the effects of setting the Icon, Label, and BubbleHelp
parameters in the DESIGN section.

To add the activity to your application, drag the icon from the custom
palette to the process map.

Adding a Custom Activity to the Process Map

Adding a Custom Activity without Using
a Custom Palette

If you don’t have a custom palette or don’t want to create one, you can add a
custom activity as follows:

1. In the palette, drag the Custom Activity icon to the process map.
2. Select the custom activity and open the Inspector window.

3. On the Properties tab of the Inspector, locate the property named Custom
Activity.

4. Click the Browse button to bring up a file selection window, and locate the
zip or jar file that represents the custom activity. An example is shown in
Figure 17.8.

Figure 17.8Setting the Custom Activity property

Select the Custom Activity defimtion

Look in: 1 £ builder

I Applications [manual
"1 bin 3 netzcape
1 classes 3 Samplez
7 com ([sounds
f| imagez 3 support
(k116 (A Tmp

File narme:]Hellu:uWurld.zip Open i
Files of bype: jAII Files [*.%] _‘:j Cancel i

5. Click Open to associate the selected file with the Custom Activity icon. The
Custom Activity icon now has the characteristics defined by the file.

Chapter 17, Writing Custom Activities 385

Working with a Custom Activity

Working with a Custom Activity

386 Developer’s Guide

After you place a custom activity on the process map, you can view or set its
properties in the Inspector window. For example, Figure 17.9 shows the
Inspector window’s Input tab for Helloworld.

Figure 17.9Input properties for a custom activity

ML Inspector - Customn B

| Properties Input

Output l Transitions l

e User Mame |getData("custnmerName") EEl

The Input tab shows the parameter names in the input hashtable, and shows
how the value for each parameter is derived. In this case, the value for the
input parameter user Name is derived by getting the value of the cust omer Nane
datafield.

The INPUT section of the XML description file determines the appearance of
the Input tab in the Inspector window. For example, note that the user Nanme
parameter displays as "User Name," which was specified through the
DISPLAYNAME attribute in the XML file.

Similarly, the Output tab shows the parameter names in the output hashtable,
and shows how the value for each parameter is mapped back into the process
instance. In this case, the value for the output parameter wel coneMsg is put in
the gr eet i ng data field.

As you design the process, be sure to add the data fields that are used by the
custom activity. For example, the HelloWorld activity uses two Textfields:
greeting and cust omer Nane.

Implementation Tips

Implementation Tips

This section describes some of the design tips you should consider as you
create and implement a custom activity.

Avoid Instance Data

Custom activities, like custom fields, are stateless entities. There can be only
one instance of a custom activity per Java Virtual Machine. The custom activity
must be multithreaded. This means the activity must safely handle calls from
concurrent requests.

As a result, it’'s recommended that you avoid using instance data in the class
that implements a custom activity, particularly if the per f or n{) method is
likely to change this data. If you can’t avoid using instance data, be sure to
synchronize the data. With unsynchronized data, a variable set during one
request might not exist for the next request.

Use Consistent Data Types

Watch for is consistent data typing. Make sure that the data types you specify in
the XML file are consistent with the corresponding values you pass to the input
and output hashtables. Although PAE performs some basic data matching for
you, inconsistent data is likely to generate an error.

Avoid Non-default Constructors

In classes that implement ISimpleWorkPerformer, avoid defining non-default
constructors (meaning constructors with non-zero arguments). Otherwise, you
may encounter problems during dynamic loading. The problem may arise
because PAE dynamically loads the class that implements your custom activity.
In other words, PAE has no prior awareness of non-default constructors and
therefore cannot call them.

Chapter 17, Writing Custom Activities 387

Implementation Tips

388 Developer’s Guide

When to Use a Custom Activity

Custom activities are useful when you want to integrate an existing legacy
process into a PAE process through a well-defined interface. For example, use a
custom activity in a PAE process that exchanges data with external resources
such as a CORBA server, a CICS system, or the business logic in an EJB
component.

By contrast, custom activities are not a good solution if you must represent a
complex data structure from an external source. For example, to represent
result sets or other data types from Oracle databases or SAP R/3 systems, you
are better off using a custom field. Reserve custom activities for situations
where data can be easily parsed and stored (either directly in a data field or in
the content store).

Chapter

Writing Custom Fields

This chapter describes how to write custom fields for use in Process Manager
applications.

This chapter includes the following sections:

Introduction

= Defining Field Properties in a JSB File

= Writing the Java Classes

= Packaging a Custom Field

« Adding a Custom Field to an Application

« Method Reference

Introduction

A data field contains information relevant to a process instance, such as the
maximum value of the budget or the name of a document. Process Builder
offers a set of predefined data-field classes, such as Dat e and Textfi el d.

Chapter 18, Writing Custom Fields 389

Introduction

Why Use a Custom Field?

Sometimes you need to create a new class of data field, called a custom field. A
custom field is a data field that provides the following additional features:

= support for data types that are more complex than the data types available
with built-in fields.

= a convenient way of representing multi-dimensional values, or other high-
level data objects, in a process. For example, custom fields can represent a
“shopping cart,” an account, or a service order.

= away of accessing data objects that are stored in resources external to
Process Manager, such as PeopleSoft or CICS.

Functional View of a Custom Field

The functional model of a custom field consists of two parts: a presentation
component and a data component. Figure 18.1 shows the functional view of a
custom field, and it's relationship to an HTML form and an external datasource.

Figure 18.1Functional view of a custom field

=

Se IDataElement

HTML Form Custom Field External Datasource

390 Developer’s Guide

Defining Field Properties in a JSB File

The presentation component is represented by the IPresentationElement
interface. This interface defines the way a custom field will appear in an HTML
form. For example, a custom field may appear as a select list, a check box, or a
group of radio buttons. IPresentationElement also handles reading from and
writing to the HTML form.

The data component is represented by the IDataElement interface. This
interface handles the external storage of the custom field’s data. By using a
component-based model for custom fields, it will be possible to represent the
IDataElement object as an entity bean in future releases of PAE.

Steps for Creating a Custom Field

The major steps for creating a custom field are as follows:

= Define the field properties that will be visible in Process Builder. Field
properties are defined in a JavaScript bean (JSB) file. For details, see
“Defining Field Properties in a JSB File”.

= Write the Java classes that implement the custom field. At a minimum, you
must implement two interfaces, IDataElement and IPresentationElement.
For details, see “Writing the Java Classes”.

= Package the JSB and Java classes into a zip or jar archive. For details, see
“Packaging a Custom Field”.

= In Process Builder, insert a data field and add the archive file as a new class.
For details, see “Adding a Custom Field to an Application”.

Defining Field Properties in a JSB File

The first step in implementing a custom field is to write a JSB file. This file
defines the custom'’s fields properties that will be set at design time, through
Process Builder.

In Process Builder, these properties are visible through the field’s Inspector
window. For each property shown in the Inspector window, a corresponding
property is defined in the JSB file.

Chapter 18, Writing Custom Fields 391

Defining Field Properties in a JSB File

392 Developer’s Guide

To create a JSB file for a new custom field class, you can copy an existing JSB
file and modify it to suit your needs. For example, you can copy the JSB files
for Process Builder's predefined data fields, or you can copy a template JSB file.
These files are located in the following path of your Process Builder installation:

bui | der\ com net scape\ wor kfl ow\ fi el ds

Warning: Do not modify the original JSB files for predefined data fields. If you
do, the data fields may no longer work.

The JSB file and the custom field class must have the same name. For example,
a custom field class named Shoppi ngCart Fi el d. cl ass must have a JSB file
named Shoppi ngCart Fi el d. j sb.

A JSB file has the following general structure:

<JSB>
<JSB_DESCRI PTOR ... >
<JSB_PROPERTY ...>
<JSB_PROPERTY ...>

</ JsSB>
The file is surrounded by an opening <JSB> tag and a closing </ JSB> tag. The
other two tags are described in the following sections:

- JSB_DESCRIPTOR Tag

= JSB_PROPERTY Tag

JSB_DESCRIPTOR Tag

After the <JSB> tag is a <JSB_DESCRI PTOR> tag, which specifies the name,
display name, and a short description of the data field class.

For example, Shoppi ngCart Fi el d.j sb uses the foll ow ng
<JSB_DESCRI PTOR> tag:

<JSB_DESCRI PTOR
NAME="com net scape. pm sanpl e. Shoppi ngCart Fi el d"
DI SPLAYNAME=" Shoppi ng Cart Field"
SHORTDESCRI PTI ON=" Shopping Cart Field">

The NAME attribute is the full path name for the data field class, using a dot (.)
as the directory separator.

Defining Field Properties in a JSB File

The DI SPLAYNAME attribute is the name that Process Builder uses for the field,
such as the field’s name in the Data Dictionary.

The SHORTDESCRI PTI ON attribute is a brief description of the field.

JSB_PROPERTY Tag

After the <JSB_DESCRI PTOR> tag comes a series of <JSB_PROPERTY> tags, one
for each property that appears in the Inspector window. For example, here is
one section of <JSB_PROPERTY> tags for the Shoppi ngCart Fi el d. j sb file:

/**

* Properties related to this specific format of field
*/

<JSB_PROPERTY NAME="dbt ype"
TYPE="string"
DI SPLAYNAVE="DB Type"
SHORTDESCRI PTI ON="DB Type"
DEFAULTVALUE=" ORACLE"
VALUESET=" ORACLE, SYBASE" >

<JSB_PROPERTY NAME="dbi dentifier"
TYPE="string"
Dl SPLAYNAME="DB | dentifier"
SHORTDESCRI PTI ON="DB | dentifier">

<JSB_PROPERTY NAME="dbuser"
TYPE="string"
Dl SPLAYNAME="DB User"
SHORTDESCRI PTI ON="DB User ">

<JSB_PROPERTY NAME="dbpassword"
TYPE="string"
DI SPLAYNAMVE="DB Passwor d"
SHORTDESCRI PTI ON="DB Passwor d" >

The JsSB_PROPERTY attributes and required property hames are described in the
next two sections.

Chapter 18, Writing Custom Fields 393

Defining Field Properties in a JSB File

JSB_PROPERTY Attributes

The attributes for the JSB_PROPERTY tag are shown in Table 18.1:

Table 18.1 Attributes for the JSB_PROPERTY Tag

Attribute Name

Purpose

NAME

The name of the property.

DI SPLAYNAVE

The display name for this property, as it appears in
the Inspector window.

SHORTDESCRI PTI ON

A short description of the property.

DEFAULTVALUE

The default value of the property. This attribute is
optional.

VALUESET

A comma-delimited list of the possible values for
this property. These values appear as a pop up
menu on the property in the Inspector window.
This attribute is optional.

TYPE

The type of the datafield column in the application
table in the database.

| SDESI GNTI MEREADONLY

When specified, this attribute indicates that the
property cannot be changed in Process Builder. This
attribute is optional. By default, a property value
can be changed any time.

This attribute does not have an attribute=value
specification. You simply give the value, for
example:

<JSB_PROPERTY NAME="myname”
ISDESIGNTIMEREADONLY>

| SEXPERT

When specified, this attribute indicates that the
property can be changed in Process Builder while
the application is in design mode. This attribute is
optional. By default, a property value can be
changed any time.

This attribute does not have an attribute=value
specification. You simply give the value, for
example:

<JSB_PROPERTY NAME="myname” ISEXPERT>

394 Developer’s Guide

Defining Field Properties in a JSB File

Required Data Field Properties
Each data field must have the properties listed in Table 18.2:

Table 18.2 Standard Data Field Properties

Property Name Default Display Purpose
Name

cn Name of this The common name of the data field
field instance. (Note this is not the name of

the data field class.) The name is set
when you create the data field in Process

Builder.
description Short A description of the data field.
Description
prettyname Display Name | The field’s display name which is the
name that Process Builder uses for the
field.
hel p Help Message | A help message for the field.

fieldclassid | Field Class ID | This is the package name of the data
field class. This is used to ensure that
each data field type is unique. This value
uses the same convention as the Java
naming convention for packages. For
example, if Shoppi ngCartFi el d is
stored in \ com net scape\ pm sanpl e,
then its fi el dcl assi d is:

com net scape. pm sanpl e. Shoppi ngCa
rtField

fieldtype Data Type The datatype that the field uses when it
is stored in the PAE database. The value
must be ENTITY.

In addition to these required properties, each data field has properties that are
specific to itself. For example, a Textfield has properties for size and length; a
radio button data field has a property for options; an applet data field has
properties for a class id and parameter; and so on.

Chapter 18, Writing Custom Fields 395

Writing the Java Classes

When you define the properties for a custom field, consider the purpose of the
field. For example, if the custom field must access an external database, you
may want to define connection properties. These properties might include the
database type (ORACLE, SYBASE), a username and password, or a connection
string.

Not all properties you define in a JSB file will necessarily be used. It depends
on how your Java class interprets these properties. For example, the JSB file
could contain a col or property that is totally ignored in the Java class. In this
case, no matter what color the designer specifies for their field, it will have no
effect.

Writing the Java Classes

396 Developer’s Guide

To write the Java classes for a custom field, perform the following steps:
1. Consider the Design Issues

2. Implement IPresentationElement and IDataElement

Consider the Design Issues

There are several design issues to bear in mind as you write your custom field
classes. This section describes the following design issues:

= Consider Your Data and Data Sources
= Design a Data Manager
= Design a Thread-safe Class

= Use an Entity Key

Consider Your Data and Data Sources

To write your Java classes, you must know something about the data these
classes will work with. Consider the following questions:

Writing the Java Classes

= What data types do you want the custom field to accept? For example, in
what format will the data be? This could well depend on where the data is
coming from.

= What data sources will the custom field be required to access? For example,
will the custom field access a PeopleSoft application? an SAP R/3
application? a relational database?

Design a Data Manager

A custom field does not represent the data that you are trying to model.
Instead, the custom field acts merely as the manager of that data. This concept
is shown in Figure 18.2.

Figure 18.2A custom field acts as a data manager

Custom Field Process Instance

The data can take the form of any Java object. This data is passed from the
process instance to the custom field when it is time to store the data. The
custom field knows how to store this data into the external repository.
Similarly, when the custom field needs to load the data, the field will retrieve

Chapter 18, Writing Custom Fields 397

Writing the Java Classes

the data from the external repository and pass it to the process instance. The
important idea is that the process instance is stateful, and the custom fields
specify only the logic to manage the data, not the data itself.

As an example, suppose you have a “shopping cart” custom field, and the data
to manage is a set of items stored in a relational database system. Let’s assume
that the items are stored as rows in a database table.

To display the shopping cart’s contents, the custom field must retrieve the items
from the database. To do so, the custom field will “wrap” the rows with a Java
object, thereby providing a well-defined API. As a result, the rest of your
process can access the items.

Java Code

Here is the Java code to implement the shopping cart items:

public class |tenBet

{
Hashtabl e mtens = new Hashtabl e();
public void addlten{ Itemitem) {
mtems.put(itemagetlitemd(), item); }
public Itemgetlten{ String itemd) {
return mtens.get(itemd); }
public Enuneration items() {
return mtens.elements(); }
}
public class Item
{

String mtemd;
i nt muantity = O;
float nPrice = 0.0f;

public Itenm{ String itemd, int quantity, float price)

{
mtemd = itemd,
muantity = quantity;
nPrice = price;

}

public String getltemd() { return mtenmd; }

398 Developer’s Guide

Writing the Java Classes

public int getQuantity() { return muantity; }
public float getPrice() { return nPrice; }

}

JavaScript Code

The data stored in the process instance will be an instance of I t enSet . To
retrieve information about each item in the set, you can write an automation
script. This script will access the shopping cart custom field by using

get Dat a(), as shown here:

function automationScript()

{
var pi = getProcesslnstance();
var items = pi.getData("shopping_cart");
for(var e = items.elenents(); e.hasMreEl ements();)
{
/1 we have a reference to an |Item object
var item = e. nextEl enent();
var itemd = itemgetltend();
}
return true;
}

When it is time to store the set of items, the custom field will retrieve the
current set from the process instance. The field will then translate the items
from their Java object representation to a set of SQL rows.

Design a Thread-safe Class

Custom fields, like custom activities, are stateless entities. There can be only
one instance of a custom field per Java Virtual Machine. The custom field must
be multithreaded. This means the field must safely handle calls from concurrent
requests. As a result, it's recommended that you avoid using instance data in
the class that implements a custom field. (But it's safe to have instance variables
that store read-only configuration information.) If you can’t avoid using
instance data, be sure to synchronize the data. With unsynchronized data, a
variable set during one request might not exist for the next request.

Chapter 18, Writing Custom Fields 399

Writing the Java Classes

400 Developer’s Guide

Use an Entity Key

When a custom field loads data from an external data source, the custom field
relies on an entity key to identify the data it is looking for. This entity key is
stored with the process instance, and the key serves as a handle to the external
data. Contrast this with built-in fields. They store the field value with the
process instance, and there is no need to access external sources.

To work with entity keys, use the following two methods on the
IProcesslinstance interface:

« getEntityKey(fieldName)

This call returns the entity key for the custom field whose name is
fieldName. The entity key is available once the process instance has been
loaded. When calling this method, you must convert the retrieved string
value into the particular object type you require.

« setEntityKey(fieldName, key)

Defines key as the entity key for the custom field whose name is
fieldName . You must call setEntityKey() before you store your data.
Otherwise, you might not have a handle back to your data. When setting
the entity key for a custom field, the key can be any arbitrary object, but the
key is stored as a string.

As an example, suppose you have a shopping cart custom field whose entity
key is called basket_id. This ID number is a unique identier, distinguishing one
basket in the shopping cart table from another basket. If you wanted to use the
process instance ID as the basket ID, you would use the following code:

| ong basket|I D = pi.getlnstanceld();

Implement IPresentationElement and
IDataElement

IDataElement has two methods: display() and update()
IPresentationElement has four methods: create() , store() ,load() ,and
archive() . You must implement these methods in the Java class for your
custom field.

Writing the Java Classes

By implementing the methods on IPresentationElement and IDataElement, you
define how your custom field will manage its data objects. However, there are
additional methods to implement so that PAE treats your custom field just like
any other data field. PAE provides these method implementations for you,
through the BasicCustomField class.

This class also provides empty stubs for the IPresentationElement and
IDataElement methods that you must fill in.

Therefore, to write your custom field class, use BasicCustomField as your base
class. For example:

i mport com net scape. pm nodel . Basi cCust onFi el d;

public class nyCustonfield

}

ext ends Basi cCust onfi el d

For implementation details on IDataElement, IPresentationElement, and
BasicCustomField, see the section “Method Reference” on page 408.

The methods of IPresentationElement and IDataElement are invoked in a
particular order, depending on which of the following actions is performed:

Displaying a Work Item
Initiating a Process Instance
Completing a Work Item

Accessing a Custom Field from a Script

Chapter 18, Writing Custom Fields 401

Writing the Java Classes

Displaying a Work Item

When a user displays a work item that includes a custom field, the method
invocation is shown in Figure 18.3.

Figure 18.3Methods invoked when displaying a work item

display() 4

Y iPresentationElement

\ iDataElement

1. The di spl ay() method (on IPresentationElement) displays the custom
field in the HTML form.

2. Thel oad() method (on IDataElement) fetches the value that the field will
display.

402 Developer’s Guide

Writing the Java Classes

Initiating a Process Instance

When a user wants to initiate a process instance, the method invocation is
shown in Figure 18.4.

Figure 18.4Methods invoked when initiating a process instance

display() 1

Y IPresentationElement

§~f update()

4 store()

i

.
create() {DataElement

1. The di spl ay() method (on IPresentationElement) displays the custom
field at the entry point step. Optionally, the | oad() method (on
IDataElement) fetches an initial value to display.

2. When the user clicks the submit button, the HTTP POST or HTTP GET
request is submitted to PAE. This results in a call to cr eat e() . Note that all
fields have their cr eat e() method invoked, regardless of whether the
field exists on the entry point form.

3. Assuming the field is set for EDIT mode, the field’s updat e() method is
called.

4. When the process instance is ready to store itself, the field’'s st or e()
method is called. The st or e() method is called only if the field’s data was
modified by a previous use of set Dat a() .

Chapter 18, Writing Custom Fields 403

Writing the Java Classes

404 Developer’s Guide

Completing a Work Item

Completing a work item is similar to the entry point form submission, described
in the previous case. However, because the process instance already exists, the
creat e() method isn't called. The method invocation is shown in Figure 18.5.

Figure 18.5Methods invoked when completing a work item

Vi {PresentationElement

| [DataElement

1. Assuming the field is set for EDIT mode, the field’s updat e() method is

called.

2. When the process instance is ready to store itself, the field’s st or e()

method is called. The st or e() method is called only if the field’s data was
modified by a previous use of set Dat a() .

Packaging a Custom Field

Accessing a Custom Field from a Script

A user’s JavaScript script might use get Dat a() to access the data objects of a
custom field. The method invocation for this situation is shown in Figure 18.6.

Figure 18.6Methods invoked when accessing a custom field from a script

7 |PresentationElement

load()

1 , store()

\ iDataElement

1. The |l oad() method is called to fetch the data.

2. Thel oad() method typically uses set Dat a() . Whenever a set Dat a()
is performed, the st or e() method is called when the process instance is
ready to store itself. As a result, the st or e() method may be called even
though the field’s data has not changed.

Packaging a Custom Field

After you compile your custom field Java classes and define the JSB file, the
next step is to package these files into a zip or jar archive. For example, Figure
18.7 shows an archive that contains the following files:

= Shoppi ngCart Fi el d. j sb is the JSB file for this custom field.
= Shoppi ngCart Fi el d. cl ass is the class file for this custom field.

= Shoppi ngCart.cl ass and Shoppi ngCartltem cl ass are class files
representing data objects.

= Shoppi ngCart Par ser. cl ass is an auxiliary class that is used to output
data in XML format.

Chapter 18, Writing Custom Fields 405

Adding a Custom Field to an Application

Note

Adding a

406 Developer’s Guide

When you use the j ar command to create an archive, a file named

mani f est . nf is automatically created by default. This file contains
information about the other files within the archive. The mani f est . nf file has
no effect on the custom field.

Figure 18.7Directory structure for the ShoppingCartField custom field
WinZip - ShoppingCartField.jar

File Actionz Optionz Help

ol | 9|75 | S|

S
Mews Open | Fawontes | Add Ewtract Yiew | CheckOut] ‘wizard

Mame Date Time Size FRatio Packed Fath
aﬂ rmahifest.mf 10412433 2253 243 AVE 66 meta-inf,
=8| ShoppingCart.class 10/M12/93 00:06 2039 B1% 1,034 com'netscape'pmbhzample’s

a ShoppingCartField.class 10/12/33 0008 9,785 46
a ShoppingCartField.jsh 1010799 16:43 2688 71
a ShoppingCartitern.clasz 10/12/33 00:06 734 a3
a ShoppingCartParzer.class 10/12/33 0006 3913 44

5,263 comhnetscapehpmhsample’,
773 combhnetzcapehprtsample’
451 comhnetzcapehprtsample’

2177 comhnetscapehpmhsample’,

Note that the archive file, JSB file, and custom field class must all have the same
root name. In the example shown in Figure 18.7, this name is
Shoppi ngCart Fi el d.

As you create the archive, check that the directory structure reflects the package
structure of the class. For example, the class files are in the package

com net scape. pm sanpl e. Therefore, the class files must be in the directory
com net scape/ pni sanpl e, as shown in Figure 18.7. The JSB file must be at
the same level as the class files.

Custom Field to an Application

After you package a custom field as an archive file, you can add the field in
Process Builder, as described in “Creating a Data Field” on page 132.

The specific steps for adding a custom field are as follows:

1. From the Insert menu, choose Data Field.

2. In the “Create a New Data Field” dialog box, enter a name for the new field
and then click Add New Class. An example is shown in Figure 18.8:

Adding a Custom Field to an Application

Figure 18.8Creating a data field from a new class

Create a New Data field B

23 Custom data field

Marne Imyr_caﬂ

Class ID Testfield JH Add Mew Class

4 Predefined data field

Mame I
Template Address q
Add | Add&Define | Close | Help |

3. In the “Select the field JAR Package” dialog box, select the archive that
represents your custom field class, then click Open. An example is shown
in Figure 18.9:

Figure 18.9Selecting the archive that represents a custom field class
Select the field JAR Package x|

Lockin: |24 buider

Applications [manual
birn 3 netzcape
classzes [Samplez
com [sounds
Images 2 support
idk11E [Trp

File name: ISthpingEartFieId.iar Open I
Files of tppe: IAII Files [*.%] j Cancel |

4. In the “Create a New Data Field” dialog box, add the field to the Data
Dictionary in either of two ways:

Chapter 18, Writing Custom Fields 407

Method Reference

= Click Add to add the field without setting its properties first. The Create
a New Data Field dialog box remains open, and you can add more
items.

= Click Add & Define to add the field and set its properties immediately.
The Inspector window appears for the data field you added, as shown
in Figure 18.10

Figure 18.10Setting properties for the new custom field

EPruperties

| Data Storage Tvpe | ENTITY
DB ldentifier
DB Password
0B Type ORACLE hd
DB User
Dizsplay Mame my_cart
Field Class ID com.hetscape. pm.sample. ShoppingCarField
Help Message =help for my_car= o |
Mame of this field my_cart
Short Description =hno description= o |

5. Set the properties and close the window when you are done.

The new data field, with the properties you defined, now appears in the Data
Dictionary folder in the application tree view. You can now use the data field
as you would use a typical data field in Process Builder.

Method Reference

This section summarizes the methods available in the following objects:
= |PresentationElement Interface

< |DataElement Interface

= BasicCustomField Class

« |PMElement Interface

408 Developer’s Guide

Summary

Syntax 1

Syntax 2

Arguments

Return Value

Description

Method Reference

IPresentationElement Interface

The IPresentationElement interface has two methods, di spl ay() and
updat e() . Your custom field class must implement these methods, which are
summarized in the following sections.

display()
Displays the field in the HTML page.
This version displays the field after a process instance has been created.

public void display(
| Processl nstance pi,
| HTM_Page htm ,
i nt di spl ayMode,
String displayFormat) throws Exception

This version displays the field when the user is viewing the entry point form.

public void display(
| HTM_LPage htnml ,
i nt di spl ayMode,
String displayFormat) throws Exception

pi Object representing the process instance.
html Object representing the HTML page to be returned to the user.

displayMode Mode that the field should be displaying itself in. Possible
values are MODE_EDIT, MODE_VIEW and MODE_HIDDEN.

displayFormat Additional formatting information available to the field. This
value is specified from the “Display Format” property of the Inspector window
of the field when it is placed in the form. This value is specific to a process
designer. One possible use is to distinguish between a secure viewing mode
and a non-secure viewing mode, such as for credit card information. In such a
case, the display format could contain either the value “secure” or “not secure.”

None.

The version of di spl ay() shown in Syntax 1 will be called after the process
instance has been created. In other words, it is called everywhere but the entry
point node. The process instance will contain the data that is associated with

Chapter 18, Writing Custom Fields 409

Method Reference

Summary

Syntax

Arguments

Return Value

Description

410 Developer’s Guide

your custom field; your implementation of di spl ay() will need to fetch the
data object via the get Dat a() method of the process instance class before
displaying it.

The di spl ayMode and di spl ayFor mat arguments are defined by the
process designer through the Inspector window.

If a call to this method fails, you can throw a j ava. | ang. Excepti on at any
time to signal an error. The error message will be displayed to the user.

update()

Translates the HTTP POST or HTTP GET string parameters for this field into the
usual data object associated with the field.

public void updat e(
| Processl nst ance pi,
| PMRequest rqg) throws Exception

pi Obiject representing the process instance.
html Object representing the HTTP request.
None.

The updat e() method is called after the user has submitted a request to the
PAE server. Since all requests take the form of an HTTP GET or HTTP POST,
this method translates the form parameters of the request into the usual data
object associated with your custom field. For example, suppose the form
includes values for an item ID and an item quantity. The updat e() method
would convert the item quantity to a numeric value, and the method would
create an | t emobject out of the item ID. The | t emobject could then be
bound to the process instance via set Dat a() .

If a call to this method fails, you can throw a j ava. | ang. Except i on at any
time to signal an error. The error message will be displayed to the user.

IDataElement Interface

The IDataElement interface has four methods: creat e(), store(), | oad(),
and ar chi ve() . Your custom field class must implement these methods,
which are summarized in the following sections.

Summary

Syntax

Arguments
Return Value

Description

Summary

Syntax

Arguments
Return Value

Description

Method Reference

create()

Initializes a newly created process instance with a default value for the custom
field.

public void create(
| Processl nstance pi) throws Exception

pi Object representing the process instance.
None.

Most of the time, the cr eat e() method creates a default value and stores it in
the process instance through a call to set Dat a() . However, not all custom
fields require these actions. This decision is up to the process designer.

If a default value does not need to be set, it is recommended that you do not
implement the cr eat e() method. Leave it blank instead. The st or e()
method for custom fields is called only when set Dat a() has been performed
on the field.

The cr eat e() method for all fields, whether predefined or custom fields, is
called when the user initiates a process instance from the entry point.

If a call to this method fails, you can throw a j ava. | ang. Except i on at any
time to signal an error. The error message will be displayed to the user, and the
process instance will not be created.

store()
Stores the data associated with the custom field to a persistent resource.

public void store(
| Processl nstance pi) throws Exception

pi Obiject representing the process instance.
None.

It's up to the designer of the custom field to decide which external persistent
datastore will store the custom field data. Note, however, that data from a
custom field cannot be stored in the application-specific table, where built-in
data fields are stored.

Chapter 18, Writing Custom Fields 411

Method Reference

Summary

Syntax

Arguments
Return Value

Description

412 Developer’s Guide

The custom field is responsible for storing the data, whereas PAE is responsible
for storing the custom field’s primary key. This key is stored in the application-
specific database table.

The st or e() method is called only if the field’s value has been modified,
through a call to set Dat a() . Note that the | oad() method typically calls
setData(). As a result, the st or e() method is called whenever | oad() is
called.

Currently, PAE does not support global transactions. If the custom field stores
its data in an external datasource that is both XA-compliant and managed by a
resource manager, the custom field could participate in a global transaction.
However, transactions initiated by PAE are not made through an XA resource
manager, so they cannot be a part of the larger transaction.

If a call to this method fails, you can throw a j ava. | ang. Excepti on at any
time to signal an error. The current work item is converted to an exception
work item, and all data field values are reset to their values prior to the request.

load()

Loads, from a persistent resource, the data associated with the custom field.

public void | oad(
| Processl nstance pi) throws Exception

pi Object representing the process instance.
None.

The | oad() method is invoked whenever the data value associated with the
custom field is accessed through get Dat a() off the process instance. Note
that built-in fields are loaded whenever the process instance is loaded, but
custom fields are loaded only when their data value is explicitly asked for. This
behavior is called lazy loading.

Warning: Within the | oad() method, do not call get Dat a() on the custom
field. The | oad() method is already invoked as a result of a call to

get Dat a() . As a result, a call to get Dat a() within the | oad() method
causes an infinite loop.

Summary

Syntax

Arguments

Return Value

Description

Method Reference

If a user script accesses or modifies the data associated with a custom field, the
script must implicitly know the object’s data type. For example, a script would
need to know the API for objects such as | t enset and | t emin a shopping
cart custom field.

If a call to | oad() fails, you can throw a j ava. | ang. Excepti on at any
time to signal an error. If the current action is to display a form, an error
message will be displayed to the user. If the user has completed a work item,
an exception work item will be created.

archive()
Writes the data associated with the custom field to an output stream.

public void updat e(
| Processl nstance pi,
Qut put Stream os) throws Exception

pi Object representing the process instance.
0s The output stream to write the data to.
None.

When an archive operation is initiated from the administration pages, the data
elements associated with the process instance write their data values to an
output stream. Built-in data elements archive themselves, simply by writing
their values out as bytes. By contrast, you can determine how custom fields
write their data to an output stream. For example, you can stream bytes or
encapsulate the values in XML.

If a call to this method fails, you can throw a j ava. | ang. Except i on at any
time to signal an error. The error message will be displayed to the
administrator.

BasicCustomField Class

By implementing the methods on IPresentationElement and IDataElement, you
define how your custom field will manage its data objects. However, there are
additional methods to implement so that PAE treats your custom field just like
any other data field. PAE provides these method implementations for you,
through the BasicCustomField class.

Chapter 18, Writing Custom Fields 413

Method Reference

Summary

Syntax

Arguments
Return Value

Description

Example

414 Developer’s Guide

This class also provides empty stubs for the IPresentationElement and
IDataElement methods that you must fill in.

Therefore, to write your custom field class, use BasicCustomField as your base
class. For example:

i mport com net scape. pm nodel . Basi cCust onFi el d;

public class nmyCustonField
ext ends Basi cCustonfield

}

In addition, BasicCustomField provides the
| oadDat aEl enent Properti es() method, described next.

loadDataElementProperties()

Loads the design-time properties for the field specified in Process Builder’s
Inspector window.

protected void | oadDat aEl ement Properti es(
Hashtabl e entry) throws Exception

entry The hashtable containing field configuration properties.
None.

This method is called after the custom field has been created (while the
application is being initialized). The hashtable entry parameter contains the
field’s configuration information, as it is stored in the LDAP repository. This
information includes the properties you specified in the custom field’s JSB file.

If a call to this method fails, you can throw a j ava. | ang. Except i on at any
time to signal an error. The error message will be displayed to the user, and the
application will stop being initialized.

Suppose your JSB file contains the following entry:

<JSB_PROPERTY
NAME="dbi denti fier"
TYPE="string"
DI SPLAYNAVE="Ext ernal DB ldentifier"
SHORTDESCRI PTI ON="Local alias used to connect to external DB server"
| SEXPERT>

Method Reference

Given the previous JSB code, the following Java code implements the

| oadDat aEl enent Properti es() method. The method will first read the
property and then, based on the value, set the instance variable

nDBI denti fier.

protected void | oadDat aEl enent Properti es(Hashtable entry)
throws Exception

{
String dbldentifier = (String) entry.get("dbidentifier");
if(dbldentifier == null)
throw new Exception("DB Identifier not specified");
el se
nDBl dentifier = dbldentifier;
}

IPMElement Interface

The BasicCustomField class implements the IPMElement interface, which has
two methods: get Nanme() and get Prett yNane() . These methods make it
easier to implement your custom field.

getName()
Summary Returns the name of the current element.
Syntax public String getNanme()
Arguments None.
Return Value A String object representing the name of the current element.
Description The returned name is used to access the field's primary key and data value.

Example The following code uses get Nane() inside the cr eat e() method:

public void create(|Processlnstance pi)
throws Exception

{
/1 Assign a default value for this field.
Just an enpty shopping cart...
/1
pi . set Dat a(get Nane(), new ShoppingCart());
}

Chapter 18, Writing Custom Fields 415

Method Reference

Summary
Syntax
Arguments
Return Value

Description

416 Developer’s Guide

getPrettyName()

Returns the “pretty name” of the current element.

public String getPrettyNane()

None.

A String object representing the pretty name of the current element.

In previous releases of PAE, every element had a name as well as a “pretty
name,” the display name of the element. In the current release, an element’s
pretty name and its name are equivalent.

Appendix

JavaScript API Reference

This appendix is an API reference of the objects and methods you can use
when writing JavaScript scripts for PAE. The PAE Object Model includes the
following obijects:

Pr ocessl nst ance contains methods for accessing information about the
current process.

Wor k1 t emcontains methods for accessing information about the current
work item.

Cont ent St or e contains methods for accessing the content store.

Cor por at eDi r ect ory contains methods for accessing data about users
in the Directory Server.

User exposes the user attributes that make up an LDAP user entry as
publically accessible properties.

The following global functions are also available for use in scripts:

Logging and Error Handling Global Functions
Assignment, Completion, and Email Scripts
Miscellaneous Global Functions

All functions and methods are listed here:

Alphabetical Summary of JavaScript Objects

Appendix A, JavaScript APl Reference 417

ProcessInstance

Processlinstance

A script can use the global function get Pr ocessl nst ance() to get the
processinstance for process in which the script is running.

Example:

var pi = getProcesslnstance ();

The following methods can be called on the processinstance object:

= getConclusion = getExitNodeName = setData

= getCreationDate = getlnstanceld = setEntityKey
= getCreatorDN = getPriority « setPriority

= getCreatorUser = getRoleDN = setRoleByDN
= getData = getRoleUser = setRoleByld
= getEntityKey - getTitle = setTitle

= getEntryNodeName

getConclusion()

Returns the name of the exit point node where the process instance is
completed. Data is returned as a JavaScript string if the process instance is
complete. If the process instance is still active, nul | is returned.

Example:

var pi = getProcesslnstance();
var exitNodeNane = pi.get Concl usion();
i f(exitNodeNane != null)
java.lang.System.out.println(“Process instance completed at: “ +

exitNodeName);
It is recommended that you use get Exi t NodeNane rather than
get Concl usi on as get Concl usi on may be deprecated in future releases.

getCreationDate()

Returns a JavaScript date that represents the date when the process instance
was first created.

418 Developer’s Guide

ProcessInstance

Example:

var pi = getProcesslnstance();

java.lang.System.out.printin(“Process isntance created on: “ +
pi.getCreationDate());

getCreatorDN()

Returns the distinguished name (DN) of the user who first created the process
instance.

Example:

“uid=topper, o=airius.com"

getCreatorUser()

Returns an object that contains the attributes of the creator user in the corporate
directory.

Example:
var pi = getProcesslnstance ();
var creator = pi.getCreatorUser ();

java.lang.System.out.println(“Process instance creator id: “ +
creator.getUserID());

getData (fieldName)

Returns the value of the data field or undefined if the field is not defined. The
returned value is in JavaScript format.

Parameter Data Type Description
fi el dName String Name of the field whose value is
returned.
Example:

var pi = getProcesslinstance ();
var cust_name = pi.getData(“customer_name”);
java.lang.System.out.printin(“The value of Customer Name: “ + cust_name

);

Appendix A, JavaScript APl Reference 419

ProcessInstance

420 Developer’s Guide

getEntityKey(fieldName)

Returns the entity key associated with the custom field whose name is passed
as an argument. This key is stored in the process instance and is set using the
set Enti t yKey method. The entity key is the primary key for the field,
uniquely identifying it from other instances of the same custom field.

Parameter Data Type Description

fi el dName String Name of the custom field for which you
want to fetch the entity key.

Example:

var pi = getProcesslnstance()
pi . getEntityKey("nySi gnature") ;

getEntryNodeName()

Returns a JavaScript string containing the name of the entry point node where
the current process instance was initiated. All process instances must start from
an entry node, ensuring that this method never returns nul | .

Example:

var pi = getProcesslnstance();

java.lang.System.out.println(“Process instance entry node if “ +
pi.getEntryNodeName());

getExitNodeName()

Returns a JavaScript string containing the name of the exit point node where
the process instance has completed. If the process instance has not yet
completed, returns nul | .

Example:

var pi = getProcesslinstance();
var exitNodeName = pi.getExitNodeName();
if(exitNodeName != null)

java.lang.System.out.println(“Process instance completed at: “ +
exitNodeName);

ProcessInstance

getinstanceld ()

Returns the ID of the process instance, such as " 2345" . The id is generated
by the engine to be unique across all process instances of all applications
defined in the same cluster.

Example:

var pi = getProcesslnstance();
var pid = pi.getlnstanceld();
java.lang.System.out.printin(“The Process Instance ID: “ + pid);

getPriority()

Returns a JavaScript number representing the priority value of the current
process instance. The priority value ranges from 1 (highest) to 5 (lowest). The
priority value is derived from the value of a data element. If the data element’s
type is INT/FLOAT, the priority value is fetched from the data element’s value.
Otherwise, the default value 3 is returned.

Example:

var pi = getProcesslnstance();
var priority = pi.getPriority();
if(priority ==1)
java.lang.System.out.printin(“The process instance has hight
priority”);
else if(priority ==5)
java.lang.System.out.printin(“The process instance has low
priority”);
else
java.lang.System.out.printin(“The current priority is “ + priority

);

getRoleDN(roleName)

Returns a string containing the distinguished name (DN) of the user that has
been assigned to the role r o/ eNane. You can fetch the DN for the current user
using this method.

Parameter Data Type Description

rol eNane String Name of the role whose full DN is returned.

Appendix A, JavaScript APl Reference 421

ProcessInstance

422 Developer’s Guide

Example:

var pi = getProcesslnstance ();

var cd = get CorporateDirectory();

var userDN = pi.getRoleUser(“rolel” 0;

if(userDN != null)

{
var u = cd.getUserByDN(userDN);
java.lang.System.out.printin(“Role user id: “ + u.getUserld());

getRoleUser(roleName)

Returns a JavaScript User object that contains the attributes of the user that has
been assigned to the role r ol eNane. If a user is not associated with the role
roleName yet, null is returned.

Parameter Data Type Description
rol eNane String Name of the role whose full DN is returned.
Example:

var pi = getProcesslinstance ();
var u = pi.getRoleUser(“rolel”);
if(u = null)
java.lang.System.out.printin(“role user id: “ + u.getUserld());

getTitle()

Returns the current title string associated with the process instance. Calling this
method is similar to calling get Dat a() on the title data field and casting the
value to a string. If the title data field has a type other than TEXT/LONG TEXT,
returns a textual representation of the data element’s value.

Example:

var pi = getProcesslnstance();
java.lang.System.out.printin(“The current title is: “ + pi.getTitle()

);

ProcessInstance

setEntityKey(fieldName, value)

Sets the entity key of a custom field. The entity key is the primary key for the
field, uniquely identifying it from other instances of the same custom field. The
entity key is always available from the process instance, and is stored with the
rest of the application data.

Parameter Data Type Description
fiel dName String Name of the custom field you want to modify.
val ue Object Value of the custom field’s entity key.
Example:
var pi = getProcesslnstance() ;
pi.setData ("nmySignature" , pi.getData("signature")) ;
pi .setEntityKey("nySi gnature" , "bob") ;

setData (fieldName, fieldValue)

Associates the object fi el dVal ue with the data element i el dNane. The
object passed by fi el dVal ue can be any valid JavaScript object (such as
String, Date, Array). The object can be a Java object if the data element is a
custom field.

Parameter Data Type Description

fi el dName String Name of the data element whose value is
modified.

fiel dval ue Object Value associated with the data element f i el dNane.

Since each data element is configured with a particular dta type which is set at
design time in Process Builder, be aware of the following data conversion
guidelines:

Data element type fieldValue type fieldValue converted to...
TEXT/LONGTEXT any type String
INT String int

Appendix A, JavaScript APl Reference 423

ProcessInstance

424 Developer’s Guide

Data element type fieldValue type fieldValue converted to...
INT Integer int
FLOAT String float
FLOAT Integer float
DATE/DATETIME String Date
DATE/DATETIME Date Date

Example:

var pi = getProcesslnstance ();

pi . set Dat a(“customer_name”, “Joe”);
/ISet value for custom field

"

var custAcct = new Packages.com.acme.Account();
pi.setData(“customer_acct”, custAcct);

setPriority(value)

Changes the current priority value for the process instance to the integer value
val ue. A valid priority value can range from 1 (highest) to 5 (lowest). If a
value smaller than 1 is passed, the priority is set to 1. If a value larger than 5 is
passed, the priority is set to 5. If a non-integral value is passed through vluae,
an attempt is made to convert that value to an integer. If the value cannot be
converted to an integer, the priority is left unchanged.

Parameter Data Type Description
val ue Integer Integer value set as the current priority for the
process instance.
Example:

var pi = getProcesslinstance();
pi.setPriority(3.141592); //priority := 3
pi.setPriority(-1); //priority := 1

pi.setPriority(“99"); //priority := 5

ProcessInstance

setRoleByDN(roleName, userDN)

Changes the user associated with the role r ol eNane by specifying the new
user’s Distinguished Name (DN) user DN. If user DN corresponds to an actual
user in the corporate directory, the user associated with r o/ eNane is changed
and t r ue is returned. If the user DN does not correspond to an actual user
entry, f al se is returned and r o/ eNane is left unchanged.

Parameter Data Type Description

rol eNane String Name of the role to alter.

user DN String DN of the user to associate with r ol eNarre.
Example:
var pi = getProcesslnstance ();

if(pi.setRoleByDN(“uid=joe, ou=People, o=acme.com”))
java.lang.System.out.printin(“role has been changed”);
else
java.lang.System.out.printIn(“role has not been changed”);

setRoleByld(roleName, userld)

Changes the user associated with the role r ol eNane by specifying the new
user's ID via user | d. Returns t r ue if user | d corresponds to an actual user
in the corporate directory and the user associated with r o/ eNane is changed.
Returns f al se if user/ d does not correspond to an actual user entry and

r ol eNane is left unchanged.

Parameter Data Type Description

rol eNane String Name of the role to alter.

user DN String DN of the user to associate with r ol eNane.
Example:
var pi = getProcesslnstance ();

if(pi.setRoleByld(“joe”))

java.lang.System.out.println(“role has been changed”);
else

java.lang.System.out.printin(“role has not been changed”);

Appendix A, JavaScript APl Reference 425

Workltem

setTitle(title)

Changes the current title for the process instance to the value contained in
title.

titl e can be any valid JavaScript object, but the resulting title is the textual
representation of the passed object. Calling set Titl e(titl e) does not
change the value of the title data element; the binding is uni-directoional from
the data element to the process instance title.

Parameter Data Type Description
title Object Value set as the current title for the process
instance.
Example:
var pi = getProcesslnstance();

pi.setTitle(“a new title”); //title := “a new title”
pi.setTitle(new Date()); //title := “Tue Oct 19 13:04:50 CDT 1999"
pi.setTitle(3.141592); //title := “3.141592"

Workltem

A script can use the global function get Wor kil t en() to get the work item in
which the script is running.

Example:

var wi = getWorkltem();

The following methods can be called on the workltem object:

= assignTo = getCurrentActivityCN = isStateSuspended
= expire = getExpirationDate = moveTo

= extend = hasExpired = resume

= getAssigneesDN < isStateActive = setExpirationDate
= getCreationDate = isStateRunning = suspend

426 Developer’s Guide

Workltem

assignTo(assigneeDnArray)

Re-assigns the work item to the users specified in the assi gneeDnAr r ay,
which must be an array of valid distinguished names (DNs). This function
automatically sets the work item back to running if it has expired.

Parameter Data Type Description
assi gneeDnArr ay Array Lit of assignee DNs to assign to the work
item.

The following script re-assigns the work item to the user whose uid is

j ocel ynb. The toUser Byl d() function returns an array containing the
distinguished name of the user whose uid is specfied. For more information
about t oUser Byl d() see the the section “Miscellaneous Global Functions.

”

Example:

var wi = getWorkltem();

var cd = get CorporateDirectory();

var joe = cd.getUserByld("joe");

var bob = cd. get UserByl d("bob");

var assignees = new Array(joe.getDN(), bob.getDN());
wi . assi gnTo(assignees);

expire()

This function adds a flag indicating that the work item has expired. The
function does not render the work item inactive.

Example:

var wi = getWorkltem();
wi . expire();
if(wi.hasExpired())
java.lang.System.out.printin(“The workitem has expired”);
else

Appendix A, JavaScript APl Reference 427

Workltem

extend(newDate)

Extends the duration of the work item by pushing out its expiration date. If the
work item was expired, this function removes the expired flag.

Parameter Data Type Description
newDat e Date New expiration date for the work item.
Example:

var wi = getWorkltem();
var now = new Date();

/'l Set extension date to 1 hour in the future
var newDate = new Date(now.getTinme() + (1 * 60 * 60 * 1000));
wi . extend(newDate);

getAssigneesDN()

For work items that are running, this method returns a JavaScript array of the
distinguished names of the assignees. Since automated activities are performed
by Process Engine and do not require an assignee, use this method only from a
user activity.

Example:

var wi = getWorkltem();
var cd = get CorporateDirectory();

/1 Set the assignees for the workitem

var joe = cd.getUserByld(“joe”);

var bob = cd.getUserByid(“bob”);

var assignees = new Array(joe.getDN(), bob.getDN());
wi.assignTo(assignees);

var nAssignees = wi.getAssigneesDN();
for(var i = 0; i < nAssignees.length; i++)
java.lang.System.out.printin(“Assignee “ +i + “is “ + nAssignees|

i1)

428 Developer’s Guide

Workltem

getCreationDate()
Returns a JavaScript date that represents the creation date of the work item.

Example:

var wi = getWorkltem();

java.lang.System.out.printin(“Work item created on: “ +
wi.getCreationDate());

getCurrentActivityCN()

Returns a JavaScript string containing the name of the activity where the work
item is positioned. When called from an exception activity, returns the name of
that exception activity rather than the name of the activity where the exception
condition occurred.

Example:

var wi = getWorkltem();

java.lang.System.out.printin(“Work item positioned at node “ +
wi.getCurrentActivityCN());

getExpirationDate()

Returns a JavaScript Dat e object that represents the expiration date of the work
item.
Example:

var wi = getWorkltem();

java.lang.System.out.printin(“Work item set to expire at “ +
wi.getExpirationDate());

hasExpired()

Returns t r ue if the work item has expired or f al se if it has not expired. If the
work item has already expired, but has been extended via the ext end()
method, hasExpi r ed() returns false if called again.

Example:

var wi = getWorkltem();
if(wi.hasExpired() == false)
wi.expire(); /lexpire immediately

Appendix A, JavaScript APl Reference 429

Workltem

430 Developer’s Guide

isStateActive()

Returns t r ue if the work item is active or f al se if the work item is inactive. A
work item is considered active if there is only one assignee currently assigned
to it. If a work item has been assigned to a group, the work item is not active,
but running. Once one member of the group elects to work on the item, it is
considered active.

Example:

var wi = getWorkltem();
if(wi.isStateActive() O
java.lang.System.out.printin(“Work item is active”);

else
{
var nAssignees = wi.getAssigneesDN();
if(nAssignees.length > 1)
java.lang.System.out.printin(“Work item is running”
);
else
; Ilwork item could be suspended
}

isStateRunning()

Returns t r ue if the work item is running or f al se if it is not running. A work
item is running if more than one user is assigned to it. Once a user starts the
work item, the work item changes state from running to active.

Example:

var wi = getWorkltem();
if(wi.isStateRunning())

{
var nAssignees = wi.getAssigneesDN*();
if(nAssignees.length > 1)
java.lang.System.out.printin(“Work item is assigned to a group”);
else
}

Workltem

iIsStateSuspended()

Returns t r ue if the work item is suspended or f al se i f itis not suspended.
You can suspend a work item through Process Administrator or by calling
suspend().

Example:

var wi = getWorkltem();
if(wi.isStateSuspended())
wi.resunme(); //resume the work iteminmediately

moveTo(activityName)

Move the current work item to the activity specified in act i vi t yNane. Only
activities associated with a virtual transition can use this method. noveTo()
can only be called from expriation handler scripts and completion scripts.

Note that nroveTo() doesn’t actually involve “moving.” Rather, the current
work item is destroyed and a new work item is created at the new activity.

Parameter Data Type Description
activityName | String Activity to which to move the work item.
Example:

var wi = getWorkltem(); //inside the expiration handler script
var activityName = "expired item”;
if(wi.moveTo(activityName))
java.lang.System.out.printin(“Successfully moved to activity “ +
activityName);
else

java.lang.System.out.printin(“Failed to move to activity “ +
activityName) ;

resume()

This function reactivates a suspended work item. If the work item is assigned to
more than one user, the work item’s state is set to running. If there is only one
assignee, the work item’s state is set to active.

Example:

Appendix A, JavaScript APl Reference 431

Workltem

432 Developer’s Guide

var wi = getWorkltem();
if(wi.isStateRunning())

{
Wi .resune(); //resume work itemimediately
if(wi.isStateRunning())
java.lang.System.out.printin(“Work item is assigned to a group:);
else
java.lang.System.out.printin(“work item is assigned to one user”
)i
}

setExpirationDate(expDate)

Sets the expiration date of the work item. If the work item has expired, use the
ext end() function instead of set Expi rati onDat e() to extend the
expiration date, since ext end() removes the expired flag and

set Expi rati onDat e() does not.

Parameter Data Type Description
expDat e Date Expiration date for the work item.
Example:

var wi = getWorkltem();
var now = new Date();

//Set expiration date to 1 hour in the future

var expDate = new Date(now.getTime() + (1 * 60 * 60 * 1000)
);

wi.setExpirationDate(expDate);

suspend()

This function makes the work item inactive. Users cannot work with the work
item until it has been resumed through Process Administrator or via a call to
resume().

Example:

var wi = getWorkltem();

ContentStore

wi . suspend();
if(wi.isStateSuspended())

wi.resune(); //resume the work itemimmediately

ContentStore

Scripts can use the global function get Cont ent St ore() to get a
cont ent St or e object connected to the content store of the application. There
are three different ways to call the function:

getContentStore ();

Without parameters, this function returns the content store defined by the
application. The returned object is configured with the URL, username, and
password that are specified in Process Builder.

getContentStore (httpURL, username, password);

When called with the above three parameters, getContentStore()
creates a new content store with the specified parameters passed in. The
returned object is a content store rooted at the specified httpURL. The
content store uses the username and password to authenticate against.

getContentStore (httpURL, username, password, timeout);

This form is identical to the previous form except for an additional timeout,
specified in seconds, on HTTP connections.

The following methods can be called on the cont ent St or e object:

copy - getSize < move
download e getStatus = remove
exists = getVersion = rmdir
getBaseURL < initialize - store
getContent = isException = upload
getException e list

getRootURL = mkdir

Appendix A, JavaScript APl Reference 433

ContentStore

434 Developer’s Guide

copy(srcURL, dstURL)

Copies the content at the sr cURL to the dst URL. Both URLs have to be on the
same content store. If dst URL already exists, it is overwritten.

Parameter Data Type Description

srcURL String An HTTP URL or URI of the content in the content store

object.

dst URL String An HTTP URL or URI of the content in the content store

object.

Example:

var cs = getContentStore();

var result = cs.copy(cs.getBaseURL ("shoppi ng/docunents") +
"nmyFile.htm",

cs.getBaseURL ("shopping/old") + "nyFile.htm") ;
var httpcode = cs.getStatus (result);

if (httpcode == 200)

{

}

download(url, file)

Downloads the content at the url into the specified file. If a username and
password is specified for this content store, they are used in the request to
retreive the content.

Parameter Data Type Description
url String An HTTP URL or URI of the content in the content store
object.
file File where the content is stored; if exists, it will be
overwritten.
Example:

var cs = getContentStore();
var result = cs.downl oad (cs.getBaseURL() + "nyFile.htm" , "C//

ContentStore

nyFile.htm");

var httpcode = cs.getStatus(result);
if (httpcode == 200)

{

/] it went OK ...

}

exists(url)

Checks if the URL exists on the content store.

Parameter Data Type Description

url String An HTTP URL or URI of the content in the content store
object.

Example:

var c¢s = getContentStore();

var result = cs.exists(cs.getBaseURL ("shoppi ng/ docunments”) +
"myFile.htm");

var httpcode = cs.getStatus (result);
if (httpcode == 200)

{
Il it exists OK ...
}

getBaseURL()

Returns the root URL of this content store.

See get Root URL () for examples.

getBaseURL(path)

Returns a base container url which includes the path as postfix to the content
store root url.

Parameter Data Type Description

pat h String A relative path segment.

Appendix A, JavaScript APl Reference 435

ContentStore

Example:

var cs = getContentStore();

java.lang. Systemout.println("ContentStore ROOT URL " +
cs. get BaseURL(" shoppi ng/ docunents"));

getBaseURL(path, instanceid)

Returns a base container URL which includes the path and the i nst ancei d as
postfix to the content store root URL.

Parameter Data Type Description

pat h String A relative path segment.

i nstancei d Integer An integer instance id of the process.
Example:
var pi = getProcesslnstance();

var c¢s = getContentStore();

java. lang. System out.println("ContentStore ROOT URL " +
cs. get BaseURL(" shoppi ng/ docurment s", pi.getlnstanceld()));

getContent (url)

Returns a String of the content at the specified url, where ur | describes either
an HTTP URL or URI of the content in the content store object. A URI is a path
segment only, specified as an absolute or relative pathname.

Parameter Data Type Description

url String An HTTP URL or URI of the content in the
content store object.

On an HTTP content store, getContent() is implemented as a GET request
against the server. If a username and password have been specified for this
content store, they will be used in the request to retrieve the content.

If the content cannot be retrieved or doesn't exist, getContent() returns null.
Call the exists(') method to check whether the URL exists in the content store.
See also store() and upload().

436 Developer’s Guide

ContentStore

Example:

var cs = getContentStore();

/1 Relative URI

var content = cs.getContent ("nmyFile.htm");

/1 Absolute URI

var content = cs.getContent ("/CS/CheckCut/basket.xm");
// 1f URL, then the host and port portion of the URL nust be
/1 that of the content store URL. This is typically returned
/1 by the getBaseURL() nethod.

var content = cs.getContent (cs.getBaseURL() +

" CheckQut / basket.xm ")

getException(result_string)

Gets the exception in string format that has occured in the operation nove(),
copy(), upl oad(), downl oad(),store(),exists(),initialize(),
renove(), nkdir(),rimdir().

Parameter Data Type Description
result_string String Result string from one of the methods
listed above.
Example:

var c¢s = getContentStore();

var result = cs.renove(cs.getBaseURL ("shoppi ng/ docunments”) +
"myFile.htm");

if (cs.isException (result))

{

/1 it sonmething went really wong

java. |l ang. System out. println("Exception: " + cs.getException (result
)

}

else if (cs.getStatus (result))

{

} else if (cs.getStatus (result))

{

}

Appendix A, JavaScript APl Reference 437

ContentStore

getRootURL ()

Returns a string of the root URL of the content store, including the ending / .
This is a string version of the URL for the content store as specified in Process
Builder.

Example:

var c¢s = getContentStore();

java. |l ang. System out. println("ContentStore ROOT URL " +
cs. get Root URL());

getSize(url)

Returns the size in bytes of the content of the specified URL at the content
store. On any error, -1 is returned.

Note that in certain rare circumstances, the length of the content of such a URL
cannot be established.

Parameter Data Type Description

url String An HTTP URL or URI of the content in the content
store object.

Example:

var c¢s = getContentStore();

var result = cs.getSize(cs.getBaseURL ("shoppi ng/ docunents") +
"myFile.htm");

if (result < 0)
{
}

getStatus(result)

Returns the status of the last successful Content Store operation by one of the
methods: nove(), copy(), upl oad(), downl oad(), store(),
exists(),initialize(),remve(),nkdir(),rndir().

438 Developer’s Guide

ContentStore

Parameter Data Type Description
resul t String Result string from one of the methods
listed above.
Example:

var c¢s = getContentStore();

var result = cs.renove(cs.getBaseURL ("shoppi ng/ docunments”) +
"myFile.htm");

if (cs.getStatus(result) != 200)
{
}

getVersion()

Returns the version string of the the ContentStore implementation. Currently,
this value is 0.1999100221-001.

Example:

var cs = getContentStore();

java.lang. Systemout.println("ContentStore Version " +
cs.getVersion());

initialize(url)

Initializes the URL with basic content so the URL exists on the Content Store.
This method returns either the status code from the content store for the
operation or an exception. Note that no exception is actually thrown. To see if
an exception is returned, call i sExcept i on() on the return value from this
method and call get St at us() to get the numeric HTTP protocol status of this
content store request.

Parameter Data Type Description

url String An HTTP URL or URI of the content in the content
store object.

Example:

Appendix A, JavaScript APl Reference 439

ContentStore

440 Developer’s Guide

var pi = getProcesslnstance();
var cs = getContentStore();

var result = cs.initialize (cs.getBaseURL ("shoppi ng/ documents") +
"myFile.htm");

var httpcode = cs.getStatus (result);
if (httpcode == 201 || httpcode == 204)

ISException(exception)

Checks if the result string from nmove(), copy(), upl oad(), downl oad(),
store(),exists(),initialize(),renove(),nkdir(),rndir() is
an exception.

Parameter Data Type Description

exception String The result string from methods of Content
Store that can return an exception.

Example:

var c¢s = getContentStore();

var result = cs.renove(cs.getBaseURL ("shoppi ng/ docunments”) +
"myFile.htm");

if (cs.isException (result))

{
}

else if (cs.getStatus (result))

{
}

list(url)

Gets the container content (folder) listing of this content store container.

ContentStore

Parameter Data Type Description

url String An HTTP URL or URI of the content in the content
store object.

mkdir (URLString)

Creates the appropriate folder structure on the web server being used as the
content store. The URLSt ri ng must be a full path name to the new directory.
If the specified directory already exists, nothing happens.

Parameter Data Type Description

URLStri ng String An HTTP URL or URI of the content in the content
store object.

Example:
var cs = getContentStore();

var result = cs.nkdir(cs.getBaseURL ("shoppi ng/ docurments"”));
var httpcode = cs.getStatus (result);

if (httpcode == 200)

{

}

move (String URLStringl, String URLString2)

moves the file from the URLSt ri ng1 to URLSt r i ng2, overwriting any file
that already exists at the destination file name. If the file to be moved
URLSt ri ngl1, does not exist, this function gives an error.

Both file names must be full pathnames. The following code moves the file
t enpdoc. ht M from the t enp directory to docl1. ht ml inthe docs directory
on the web server pm conpany. com

Example:

var nmyStore = getContentStore ();
var pi = getProcesslnstance ();
var pid = pi.getlnstanceld();

Appendix A, JavaScript APl Reference 441

ContentStore

442 Developer’s Guide

nyStore. nove("http://pm conpany. conltenp/tenpdoc. htm ",
"http://pm conpany. com docs/ docl. htm ");

Note that the nove() function does not create directories -- use nkdi r () to
create a directory before moving a file to it.

remove(url)

Deletes the content at the specified URL.

Parameter Data Type Description

url String An HTTP URL or URI of the content in the content

store object.

Example:

var cs = getContentStore();

var result = cs.renmove(cs.getBaseURL ("shoppi ng/ docunents") +
"myFile.htm");

var httpcode = cs.getStatus (result);
if (httpcode == 200)

{

}

rndir(url)

Removes the container (folder) at the specified URL. The folder must be empty
to be removed or an error is returned.

Parameter Data Type Description

url String An HTTP URL or URI of the content in the content
store object.

Example:

var c¢s = getContentStore();

var result = cs.rndir(cs.getBaseURL ("shoppi ng/ documents"”));
var httpcode = cs.getStatus (result);

ContentStore

if (httpcode == 200)
{
}

store (content, url)

Stores the content specified by cont ent in the given url. If a username and
password has been specified for this content store, they are used in the request
to store the content.

Parameter Data Type Description

cont ent String Content to store in the content store as this URL.

ur | String An HTTP URL or URI of the content in the
content store object.

Example:
var cs = getContentStore();

var content = "<body>Hello world ... </body>";

/1 Relative URI

var result = cs.store (content, "nyFile.htm");

/1 Absolute URI

var result = cs.store (content, "/CS/nyFile.htm");

/1 Absolute URL (for historical reasons)

var result = cs.store (content, cs.getBaseURL () + "nmyFile.htm");

upload(file, url)

Uploads the file content to the URL specified. If a username and password has
been specified for this content store, they are used in the request to upload the
file.

Parameter Data Type Description

file File to upload.

url String An HTTP URL or URI of the content in the content
store object.

Appendix A, JavaScript APl Reference 443

CorporateDirectory

Example:

var cs = getContentStore();

var result = cs.upload ("C/nyFile.htm", cs.getBaseURL() +
"myFile.htm");

var httpcode = cs.getStatus(result);

if (httpcode == 201 || httpcode == 204)

{

}

CorporateDirectory

444 Developer’s Guide

Scripts can use the global function get Cor por at eDi rectory() to geta
cor por at eDi rect ory object that is connected to the corporate directory in
the Directory Server for the cluster.

Example:

var corp = getCorporateDirectory ();

Scripts can then use the cor por at eDi r ect or y object to access and modify
information about users in the corporate directory.

The following methods can be called on the cor por at eDi r ect ory object:

= addUser = getUserByCN = modifyUserByCN
= deleteUserByDN = getUserByDN = modifyUserByDN
= deleteUserByCN = getUserByld = modifyUserByld

deleteUserByld

addUser (userDN, attributes, objectClasses)

Adds a user to the directory. The user’s Distinguished Name (DN) is specified
by user DN The attributes for the user are specified as a JavaScript associative
array indexed by attribute name. The obj ect O asses parameter specifies
any additional object classes as a JavaScript array. If the addition of the user is
successful, returns t r ue, otherwise returns f al se.

Parameter Data Type Description

user DN String DN for the new user entry.

CorporateDirectory

attributes Object Table of key/value pairs specifying user
attributes.
obj ect Ol asses Array List of object classes with which the user entry
is compliant.
Example:
var attrs = new Object();
attrs["uid"] = "joe";
attrs["cn"] = "Joe Cool";
attrs["sn"] = "Cool";
attrs["mail"] = "joe@cne.coni;
attrs["favoriteColor"] = "green";

/1 Specify additional objectclasses

var OCs = new Array("favoriteCol orOC');

i f(cd.addUser("uid=joe, ou=People, o=acne.con', attrs, OCs) == fal se
)

{

java.lang. Systemout. println("Problens adding user entry joe"

)

}

deleteUserByCN(userCN)

Deletes the user entry specified by the Common Name (CN) user CNfrom the
corporate directory. Returns t r ue if the deletion is successful. Returns f al se
if the deletion failed.

Parameter Data Type Description
user CN String CN deleted by the user entry.
Example:

var cd = get CorporateDirectory();
var joe = cd.getUserByld(“joe”);
if(cd.deleteUserByCN(joe.cn))
java.lang.System.out.printin(“User entry joe deleted”);
else
java.lang.System.out.printin(“Problems deleting user entry joe”);

Appendix A, JavaScript APl Reference 445

CorporateDirectory

deleteUserByDN(userDN)

Deletes the user entry specified by the Distinguished Name (DN) user DNfrom
the corporate directory. Returns t r ue if the deletion is successful. Returns
f al se if the deletion failed.

Parameter Data Type Description
user DN String DN deleted by the user entry.
Example:

var cd = get CorporateDirectory();
var joe = cd.getUserByld(“joe”);
if(cd.deleteUserByDN(joe.getDN))
java.lang.System.out.printin(“User entry joe deleted”);
else
java.lang.System.out.printin(“Problem deleting user entry joe”);

deleteUserByld(uid)

Deletes the user entry specified by userID from the corporate directory. Returns
t r ue if the deletion is successful. Returns f al se if the deletion failed.

Parameter Data Type Description
user DN String DN deleted by the user entry.
Example:

var cd = getCorporateDirectory();

var joe = cd.getUserByld(“joe”);

if(cd.deleteUserByCN(joe.getUserld()))
java.lang.System.out.printin(“User entry joe deleted”);

else
java.lang.System.out.printin(“Problem deleting user entry joe”);

446 Developer’s Guide

CorporateDirectory

getUserByCN(userCN)

Returns the user entry corresponding to the Common Name (CN) user CNas a
JavaScript User object. User object is a PAE-specific object. Returns nul | if no
user entry corresponds to user DN,

Parameter Data Type Description
user CN String CN retrieved by the user entry.
Example:

var cd = get CorporateDirectory();
var joe = cd.getUserByCN(“Joe Cool”);
if(joe == null)
java.lang.System.out.printin(“Cannot find entry for user joe”);
else
java.lang.System.out.printin(“Found user joe”);

getUserByDN (userDN)

Returns the user entry corresponding to the Distinguished Name (DN) user DN
as a JavaScript User object. User object is a PAE-specific object. Returns nul | if
no user entry corresponds to user DN.

Parameter Data Type Description
user DN String DN retrieved by the user entry.
Example:

var cd = getCorporateDirectory();
var joe = cd.getUserByDN(“uid=joe, ou=People, o=acme.com”);
if(joe == null)

java.lang.System.out.printin(“Cannot find entry for user joe”);
else

java.lang.System.out.printin(“Found user joe”);

Appendix A, JavaScript APl Reference 447

CorporateDirectory

getUserByld (uid)

Returns the user entry corresponding to the user id user /I d as a JavaScript
User object. The User object is a PAE-specific object. Returns nul | if no user
entry corresponds to user/ d.

Parameter Data Type Description
uid String User ID retrieved by the user entry.
Example:

var cd = get CorporateDirectory();
var joe = cd.getUserByID(“joe”);
if(joe == null)
java.lang.System.out.printin(“Cannot find entry for user joe”);
else
java.lang.System.out.printin(“Found user joe”);

modifyUserByCN (userCN, attrName, attrValue,
operation)

See nodi f yUser ByDN (user DN, attrNane, attrVal ue,
operation).

Parameter Data Type Description

user CN String CN modified by the user entry.

att r Nane String Name of the user entry attribute to modify.

attrVal ue String Value of the user entry attribute to modify.

operation String Modification operation performed.
Example:

var cd = getCorporateDirectory();
if(cd.modifyUserByCN(“uid=joe, ou=People, o=acme.com”,
“favoriteColor”, “blue”, “ADD”) == false)

{

java.lang.System.out.printin(“Failed to modify user joe”

448 Developer’s Guide

CorporateDirectory

}
else if(cd.modifyUserByCN(“uid=joe, ou=People, o=acme.com”,
“favoriteColor”, “red”, “REPLACE") == false)

{

java.lang.System.out.println(“Failed to modify user joe”);

}

elseif(cd.modifyUserByCN(“e, ou=People, o=acme.com”, “favoriteColor”,
“ “DELETE") == false)

{

java.lang.System.out.printin(“Failed to modify user joe”);

modifyUserByDN (userDN, attrName, attrValue,
operation)
Modifies the user entry specified by the Distinguished Name (DN) user DNin

the corporate directory. Returns true if the modification is successful. Returns
false if the modification fails.

Parameter Data Type Description

user DN String DN modified by the user entry.

att r Nane String Name of the user entry attribute to modify.
attrVal ue String Value of the user entry attribute to modify.
operation String Modification operation performed.

The type of modification is specified by the operation, which can have the
following values:

ADD: adds the attribute attrName with the value attrValue to the user entry. If
attrName has multiple values, the operation can result in multiple instances of
attrName in the user entry. attrName should be a valid attribute of one of the

object classes with which the user entry complies.

REPLACE: replaces the value currently associated with attrName with the new
value attrValue.

DELETE: deletes attrName from the user entry.

Example:

Appendix A, JavaScript APl Reference 449

User

var cd = get CorporateDirectory();
i f(cd.modifyUserByDN(“uid=joe, ou=People, o=acme.com”, “favoriteColor”, “blue”,
“ADD") == false)
{
java.lang.System.out.printin(“Failed to modify user joe”
);
}

else if(cd.modifyUserByDN(“uid=joe, ou=People, o=acme.com”, “favoriteColor”,
“red”, “REPLACE”) == false)

{

java.lang.System.out.printin(“Failed to modify user joe”);

}

else if(cd.modifyUserByDN(“e, ou=People, o=acme.com”, “favoriteColor”, ",
“DELETE”) == false)

{

java.lang.System.out.printin(“Failed to modify user joe”);

modifyUserByld (useriD)

See nodi f yUser ByDN (user DN, attrNane, attrVal ue,
operation).

Parameter Data Type Description
user|D String User ID modified by the user entry.
Example:

See nodi f yUser ByDN (user DN, attrNane, attrVal ue,
oper ati on). You must pass in a user ID rather than a DN.

User

The User obiject has publically accessible methods and exposes the user
attributes making up an LDAP user entry. You can treat the User object as a
hashtable of attribute key/value pairs where the keys are the attribute names as
they apear in the LDAP entry. In the following code sample, you can also
access the attribute f avori t ecol or, which is an attribute available from the
user j oe’s entry.

450 Developer’s Guide

Example:

var cd = get CorporateDirectory();
var u = cd.getUserByld(“joe”);
java.lang.System.out.println(“joe’s email is “ + u.mail);

java.lang.System.out.printin(“Joe’s favorite color is “ +
u.favoritecolor);

The following methods can be called on the User object:

= getUserld
= getDN

getUserld()

Returns the user ID for the current user. The user ID attribute can also be
accessed directly as the i d property of the user object.

Example:

var cd = getCorporateDirectory();

var u = cd.getUserByDN(“uid=joe, ou=People, o=acme.com”);
java.lang.System.out.printin(“Joe’s user id is “ + u.getUserID());
var pi = getProcesslinstance();

u = pi.getCreatorUser();

java.lang.System.out.printin(“Creator’s user id is “ + u.getUserld());

getDN()

Returns the Distinguished Name (DN) for the current user. The user DN

User

attribute can also be accessed directly as the dn property of the user object.

Example:

var cd = getCorporateDirectory();

var u = cd.getUserByld(“joe”);

java.lang.System.out.printin(“Joe’s user DN is “ + u.getDN());
var pi = getProcesslinstance();

u = pi.getCreatorUser();

java.lang.System.out.printin(“Creator’s user DN is “ + u.getDN())

Appendix A, JavaScript APl Reference

451

Logging and Error Handling Global Functions

Logging and Error Handling Global Functions

452 Developer’s Guide

The following global functions are available for adding entries to error,
informational, and history logs. Note that the two forms, Msg and Message, are
identical. The duplicate names are provided for convenience only.

= logErrorMsg = logErrorMessage

= logHistoryMsg = logHistoryMessage
= logIinfoMsg = loginfoMessage

= logSecurityMsg = logSecurityMessage
= setErrorMsg = setErrorMessage

logErrorMsg (label, context)

Adds an entry in the error log of the application. This information is displayed
to the administrator when viewing the error log.

Parameter Data Type Description

| abel String Label for the error log’s entry.

cont ext Object (Optional) Hashtable of key/value pairs to print in
the log entry.

The following code could be used in a completion script or automation script
to log an error message when a user tries to submit a document for review
when the document is too long.

Example:

/1 LOG AN ERROR MESSAGE

var pi = getProcesslnstance():

var author = pi.getData("author");

var docNane = pi.get Data("docNanme");

var pageCount = parselnt (pi.getData("pageCount"));

if (pageCount > 5000) {
var errorl = new Qbject ();
errorl.author = author;
errorl. docName = docNane;

Logging and Error Handling Global Functions

errorl. pageCount = pageCount;
| ogErrorMsg ("PAGE_COUNT_TOO LONG', errorl);

logHistoryMsg (label, comment)

Adds a row in the history log. This information is displayed to users when
viewing Details & History in a work item list.

Parameter Data Type Description
| abel String Label for the entry in the history log.
comrent String (Optional) Additional comment for the history event.

The | abel is a string to be used as the label for the entry in the history log,
and the optional argument conment is a string describing the entry.

Use this function to add information for the users about the work items. The
following code could be used in a completion script to add details when an
author submits a document for review.

Example:

/1 LOG A HI STORY MESSAGE
var pi = getProcesslnstance():
var author = pi.getData("author");
var docNane = pi.get Data("docNane");
var pageCount = parselnt (pi.getData("pageCount"));
| ogHi storyMsg ("Doc Submitted for Review',
" \nAuthor: " + author +
" \'nDocunent nane: " + docNane +
' \'nPage count: " + pageCount);

loginfoMsg(label, context)

Adds an entry in the info log of the application. This information is displayed to
the administrator when they view the info log.

Parameter Data Type Description

Appendix A, JavaScript APl Reference 453

Logging and Error Handling Global Functions

| abel String Label for the entry in the history log.

cont ext String (Optional) Hashtable of key/value pairs to print in
the log entry.

The I abel is a string to be used as the label for the entry in the info log, and
the optional argument cont ext is an object that has a variable for each
property of the info message.

Use this function to show information about the execution of scripts. This is
particularly useful for viewing the progress of script execution while debugging
scripts. The following code could be used in a completion or automation script
to log information about a document that has been submitted for review.

Example:

/1 LOG AN | NFO MESSAGE

var pi = getProcesslnstance():

var author = pi.getData("author");

var docNane = pi.getData("docNane");

var pageCount = parselnt (pi.getData("pageCount"));

var infol = new Object ();

i nfol. aut hor = aut hor;

i nfol. docNane = docNane;

| ogl nfoMsg (" DOC_SUBM TTED FOR _REVI EW, infol);

logSecurityMsg (label, context)

Adds an entry in the security log of the application. This information is
displayed to the administrator when they view the security log.

Parameter Data Type Description

| abel String Label for the entry in the security log.

cont ext String (Optional) Hashtable of key/value pairs to print in
the log entry.

The I abel is a string to be used as the label for entry in the security log, and
the optional argument cont ext is an object that has a variable for each
property of the error message.

454 Developer’s Guide

Logging and Error Handling Global Functions

The following code could be used in a completion script or automation script
to log a warning when an unauthorized user tries to perform a task that
accesses an external database.

Example:

/1 LOG A SECURI TY MESSAGE

var pi = getProcesslnstance():

var usernanme = pi.getData("usernane");

var password = pi.getData("password");

var external DB = pi.get Dat a("ext er nal DBNane") ;

var securityErrorl = new Object ();

securityErrorl.username = usernane;

securityErrorl. password = password;

securityErrorl. external DB = external DB;

| ogSecurityMsg ("EXTERNAL_DB ACCESS NOT_ALLOWED', securityErrorl);

setErrorMsg (errMessage)

This function enables the designer to add additional information that describes
why a script failed. This information is displayed to the participant as part of
the error dialog box.

Parameter Data Type Description

err Message String Added to the error dialog box when an error occurs
during processing.

The following code could be used in a completion script to add a message
explaining that the completion script failed because the submitted document
has too many pages.

Example:

function checkPageCount () {

/1 ADD A COWPLETI ON SCRI PT ERROR MESSAGE

var pi = getProcesslnstance():

var docNane = pi.get Data("docNanme");

var pageCount = parselnt (pi.getData("pageCount"));

i f (pageCount > 5000) {
setErrorMsg ("The page count for " + docNane +

Appendix A, JavaScript APl Reference 455

Assignment, Completion, and Email Scripts

' is " + pageCount +

" which exceeds the maxi num page count allowed. " +
' Did you really wite such a | ong document?");
return fal se;

}

el se return true;

Assignment, Completion, and Email Scripts

456 Developer’s Guide

This section lists the predefined assignment, completion, and email scripts
available in Process Automation Edition. These predefined scripts (which are
also global functions) can be called from other scripts. For example, an
expiration handler script could call the predefined function t oUser Byl d() .
The value returned by t oUser Byl d() could in turn be passed to the

assi gnTo() method on a work item. The assi gnTo() method would then
re-assign the work item to a user with a given user ID.

checkParallelApproval (dataField, stopAction)

This function is meant for use as a completion script for work items that use the
t oPar al | el Approval () assignment script. The dat aFi el d must be the
name of the data field that was specified in t oPar al | el Approval (), and is
used to keep track of who has completed the work item so far. The

st opAct i on is the name of the action that a user can take to stop the
approval process.

Parameter Data Type Description
dat aFi el d String Name of a data field.
st opActi on String Name of an action.

If an activity (work item) uses the toPar al | el Appr oval () assignment script,
the activity should have two possible actions for the assignees to take when
they complete the work item. One should indicate approval, and the other
should indicate disapproval. The activity should also use the

checkPar al | el Approval () completion script, which performs the

Assignment, Completion, and Email Scripts

“disapproval’ action as soon as any one assignee selects it, the theory being that
it takes everyone to approve the work item, but only one dissenter to
disapprove it.

Example:

checkParallelApproval(“trackerField”, “Reject”);

defaultNotificationHeader()

Returns the default notification header for a notification message body. The
header contains information about the current work item, such as the current
activity name, the process instance ID, the creation date of the process instance
and the expiration date (if any).

This function may be used as the notification body script by itself, or may be
embedded in your own notification body script. You may also use this
function from a template evaluated using eval uat eTenpl at e(). The
function may only be used successfully from a script associated with a
notification; if used anywhere else, an empty string is returned.

The text returned from this function will depend upon the content-type of the
notification. If the content-type is t ext/ ht ml , the header will be a series of
HTML tags; if the content-type is t ext / pl ai n, the header will be plain text.

Example:

function emailBody()

{

var body = "Email message body
";
body += defaultNotificationHeader();
return body;

}

defaultNotificationSubject()

Returns the default notification subject for the notification subject line. The
subject contains information about the current process instance, such as the
process instance ID the priority and the title string.

This function may be used as the notification subject script by itself, or may be
embedded in your own notification subject script. The function may only be
used successfully from a script associated with a notification; if used anywhere
else, an empty string is returned.

Appendix A, JavaScript APl Reference 457

Assignment, Completion, and Email Scripts

458 Developer’s Guide

Example:

function email Subject()

{

var subject = "Subject: " + defaultNotificationSubject();
return subject;

}

emailByDN(DN)

Returns a string of comma-delimited email addresses for the user with the given
Distinguished Name (DN). The mai | attribute for the user must contain a valid
email address in the corporate user directory. If the mai | attribute of the user
does not have a value, this function logs an error and returns nul | . This
function is intended for use as a notification script, but can be used anywhere
that a string of email addresses is needed.

Parameter Data Type Description
user DN String DN of the user whose email address is returned.
Example:

function get Emai | ByDN()

var cd = get CorporateDirectory();
var u = cd.getUserByld("joe");
return emai | ByDN(u.getDN());

}

emailByld(userld)

Returns a string of comma-delimited email addresses for the user with the given
user ID. The mai | attribute for the user must contain a valid email address in
the corporate user directory. If the mai | attribute of the user does not have a
value, this function logs an error and returns nul | . This function is intended
for use as a notification script, but can be used anywhere that a string of email
addresses is needed.

Parameter Data Type Description

userld String User whose email address is returned.

Assignment, Completion, and Email Scripts

Example:

emai | Byld("joe");

emailOfAssignees()

Returns a string of comma-delimited email addresses for all the assignees of the
work item. The mai | attribute for each assignee must contain a valid email
address in the corporate user directory. If the mai | attribute is empty for any
assignee, no address is added to the string for that assignee. If no assignee has
a value in their mail attribute, the function logs an error message and returns
nul | . This function is intended for use as a notification script, but can be used
anywhere that a string of email addresses is needed.

Example:

enmi | Of Assi gnees();

emailOfCreator()

Returns a string of the email address of the user who created the process
instance. The user’s mai | attribute must contain a valid email address in the
corporate user directory. If the mai | attribute of the user does not have a
value, this function logs an error and returns nul | . This function is intended
for use as a notification script, but can be used anywhere that a string of email
addresses is needed.

Example:

var pi = getProcesslnstance();
var creatorEmail = enmmil OfCreator();
pi .setData("creatorEmail", creatorEmail);

emailOfRole(roleName)

Returns a string of the email address of the user performing the given role. The
user’s mai | attribute must contain a valid email address in the corporate user
directory. If the mai | attribute of the user does not have a value, this function
logs an error and returns nul | . This function is intended for use as a
notification script, but can be used anywhere that a string of email addresses is
needed.

Appendix A, JavaScript APl Reference 459

Assignment, Completion, and Email Scripts

460 Developer’s Guide

Parameter Data Type Description
rol eNane String Role whose email address is returned.
Example:

emai | O Rol e("reviewer");

randomToGroup(groupName)

This function returns an array containing a Distinguished Name (DN) of one
member of the group. The group member is selected at random. This function
is intended to be used as an assignment script but can be used anywhere that
an array of DNs is needed.

Parameter Data Type Description
gr oupName String Name of a group.
Example:

var userDNArray = randomToGroup(“helpDesk”);

java.lang.System.out.printin(“The DN of a helpdesk user is: “ +
userDNArray[0]);

toCreator()

Returns a JavaScript array with the Distinguished Name (DN) of the user who
created the process instance. This method is the default assignment script
assigned to user activities when a node is created on the Process Map.

Example:

var creatorDNArray = toCreator();
java.lang.System.out.printin(“Creator’s DN is “ + craetorDNArray[O]

);

Assignment, Completion, and Email Scripts

toGroup(groupName)

Returns a JavaScript array of Distinguished Names (DNs) of all members of the
specified group. If the parameter gr oupNane does not correspond to an actual
group in the application’s Groups and Roles folder, returns nul | .

Parameter Data Type Description
gr oupName String Name of the group.
Example:

var groupDNs = toGroup(“reviewers”);
if(groupDNs !=null)
{

java.lang.System.out.printin(“Number of members in the group” +
groupDNs.length);

for (var i = 0; i <= groupDNs.length; i++)
{

java.lang.System.out.printin(“Member #” + i + “: “ + groupDNSsJi]

}

else
java.lang.System.out.println(“No such group reviewers”);

toManagerOf (userld)

This function returns an array containing the Distinguished Name (DN) of the
manager of the user with the given user ID. The manager attribute of the
given user must contain a DN in the corporate user directory. This function is
intended to be used as an assignment script but can be used anywhere that an
array of DNs is needed.

Parameter Data Type Description
userld String A user ID.
Example:

var managerDNArray = toManagerOf(“sijacic”);
java.lang.System.out.printin(“Manager of user sijacic is: “ +

Appendix A, JavaScript APl Reference 461

Assignment, Completion, and Email Scripts

462 Developer’s Guide

manager DNArray[0]);

toManagerOfCreator()

This function returns an array containing the Distinguished Name (DN) of the
manager of the creator of the process instance. The manager attribute of the
creator user must contain a DN in the corporate user directory. This function is
intended to be used as an assignment script but can be used anywhere that an
array of DNs is needed.

Example:

var manager DNArray = toManager Of Creator();

java.lang.System.out.printin(“Manager of the process creator is: “ +
ManagerDNArray[0]);

toManagerOfRole(role)

This function returns an array containing the Distinguished Name (DN) of the
manager of the user defined as the given role. The manager attribute of the
user fulfilling the role must contain a DN in the corporate user directory. This
function is intended to be used as an assignment script but can be used
anywhere that an array of DNs is needed.

Parameter Data Type Description
role String Name of the role.
Example:

var managerDNArray = toManagerOfRole(“reviewer”);

java.lang.System.out.printin(“Manager of the reviewer is: “ +
managerDNArray[0]);

toParallelApproval(arrayOfUserDNs, dataField)

This function should be used as an assignment script to assign a work item to
several users who must all complete the work item. The arr ayOf User DNs
argument is an array of distinguished names, and dat aFi el d is a data field
that keeps track of who has performed the work item and who still needs to do
it. This field is a computed field of length 2000 that must add to the data
dictionary.

Assignment, Completion, and Email Scripts

Parameter Data Type Description
arrayCOf User DNs String Name of the role.
dat aFi el d String Name of a data field in the current process.

If an activity (work item) uses the toPar al | el Appr oval () assignment script,
the activity should have two possible actions for the assignees to take when
they complete the work item. One action should indicate approval, and the
other should indicate disapproval. The activity should also use the

checkPar al | el Approval () completion script, which performs the
“disapproval” action as soon as any one assignee selects it. The idea is that it
takes everyone to approve the work item, but only one dissenter to disapprove
it.

Example:

var cd = get CorporateDirectory();

var userl = cd.getUserByld(“userl”);

var user2 = cd.getUserByID(“user2”);

var user3 = cd.getUserByID(“user3”);

var approvers = new Array(userl.getDN(), user2.getDN(), user3.getDN()
)i

toParallelApproval(approvers, “trackerField”);
toParallelApproval(toGroup(“approvers”), “trackerField”);

toUserByld(userld)

This function returns an array containing the Distinguished Name (DN) of the
user with the given user ID. This function is intended to be used as an
assignment script but can be used anywhere that an array of DNs is needed.

Parameter Data Type Description
userld String A user ID.
Example:

var userDNArray = toUserByld(“sijacic”);
java.lang.System.out.printin(“The DN of the user is: “ + userDNArray[O

1)

Appendix A, JavaScript APl Reference 463

Miscellaneous Global Functions

toUserFromField(dataField)

This function returns an array containing the Distinguished Name (DN) of the
user whose user ID is the value of the given data field. This function is
intended to be used as an assignment script but can be used anywhere that an
array of DNs is needed.

Parameter Data Type Description
dataFiel d String Name of a data field.
Example:

var userDNArray = toUserFromField(“approver”);
java.lang.System.out.printin(“The DN of the user is: “ + userDNArray[O

1)

Miscellaneous Global Functions

464 Developer’s Guide

This section summarizes the global functions that are neither log and error
functions nor predefined scripts.

checkUserDNs(arrayOfUserDNs)

Verifies that all the DNs defined in the ar r ayOFf User DNs are valid and exist in
the corporate directory. Return t r ue if all the DNs are valid (or if the array is
empty) otherwise returns f al se.

Parameter Data Type Description
arrayCf User DNs Array List of DNs.
Example:

var dnArray = new Array("uid=sijacic, o=mcom.com"”,
"uid=atam, o=mcom.com",
"uid=souvik, o=mcom.com",
"uid=michal, o=mcom.com",
"uid=raghavan, o=mcom.com");

Miscellaneous Global Functions

/1 Check to see if all of the DNs are valid

i f(checkUserDNs(dnArray))

java.lang. Systemout.printin("All DNs are valid");

el se

java.lang. Systemout.printin("One of the DNs is not valid");

ejbLookup(jndiName)

Looks up an EJB that can be found under the given JNDI name. If no EJB exists
under this name, an EJB exception, j avax. nanmi ng. Nam ngExcepti on, is
thrown. PAE handles this exception by moving the process instance into the
designated Exception Manager node.

If the bean can be found under the given JNDI name, the home interface of that
bean is returned. The home interface is used to create new instance of the EJB
or find existing instnaces of the given EJB. The definition of the home interface
is completely application-dependent; it typically consists of several cr eat e()
and f i nder () methods. This function call is equivalent to the

get Jndi Nam ngCont ext () .| ookup(j ndi Name) function call.

Parameter Data Type Description
j ndi Nane String IJNDI name of the EJB to look up.
Example:

var home = ej bLookup(" Netscape/ Credit CardServer");
I/l Create a credit card server that can do card authorizations.
var creditCardServer = hone.create ("mastercard");

evaluateTemplate(templateName)

Used primarily in email notifications, but can be used for any template-like
evaluation.

For email notifications, use eval uat eTenpl at e() in the email body. When
you create an email notification in Process Builder, specify

eval uateTenpl ate("tenpl ateFil e") asthe body script, where

t enpl at eFi | e is the name of the template file relative to the application
directory on the server. From Process Builder, you should include your

Appendix A, JavaScript APl Reference 465

Miscellaneous Global Functions

466 Developer’s Guide

template files in a folder called templates, a directory located in the application
directory of Process Builder. When you deploy, the same directory structure is
replicated on the server.

eval uat eTenpl at e() also evaluates JavaScript segments contained in the
template file. These segments are identified by <scri pt
| anguage="Rhi no" > tags.

In an HTML page containing client-side JavaScript, you can replace
<script |anguage="JavaScri pt">

with

<script | anguage="Rhi no">

The PAE engine will evaluate the JavaScript in the same manner the browser
does.

You can access the entire engine API (e.g., get Processl nst ance(),
get Wor kil Tem(), etc.) from within these segments. To send output to an
HTML file, use docurnent . wri t e() with the output you want to send
provided as an argument.

eval uat eTenpl at e() returns a string. The string is made up of the
contents of the template file with the Rhino segments evaluated. If there are no
Rhino segments in the file, the string simply contains the file contents. If there
are Rhino segments, the string contains the evaluated JavaScript rather than the
Rhino segments.

Example:

var fileContents = evaluateTenplate("tenplateFile");
var cs = getContentStore():
cs.upload(fileContents, url):

expireln(val, unit)

Returns a JavaScript Dat e object set to the absolute dat et i me when the
current work item will expire.

Parameter Data Type Description

Miscellaneous Global Functions

val Integer Numeric value specifying the number of units
in which to expire the workitem.

unit String Specifies the unit of time measurement value
represents.

This function is normally used to specify the expiration time for a particular
activity, and is usually set by the designer through Process Builder. In the
event that you choose to specify the arguments for this function manually, the
parameter unit can contain the following values:

= minutes
< hours

= days

= weeks
= months

Note that a month is presumed to contain 30 days. Asking a work item to
expire one month from the date January 1st results in an expiration date of
January 30th, not February 1st.

Example:

expireln(6, "mnutes"); /] expire in 6 mnutes
expireln(30, "days"); /'l expire in 30 days
expireln(1, "month"); /'l expire in 30 days
getAction()

Returns the name of the action (the button name) used to complete the current
activity. The action name corresponds to the name of the button clicked when
the work item form is submitted. This function can be used in any script, but is
best used from the completion script of a user activity.

Example:

function conpletion()

{

var pi = getProcesslnstance();
pi . setData("submttedAction", getAction()):

Appendix A, JavaScript APl Reference 467

Miscellaneous Global Functions

return true;

}

getApplicationName()

Returns the name of the application (for example: “wf Dat aSheet *) as a
string.

Example:

var appNanme = get Applicati onNanme();
java.lang.System.out.printin(“The application name is: “ + appName);

getApplicationPath()

Returns the pathname of the directory containing the files for this application as
a string.

Example:

var appPath = getApplicationPath();
java.lang.System.out.printin(“The application path is: “ + appPath);

getApplicationPrettyName()

Returns the pretty name of the application (for example: " Dat aSheet
Managenent ") as a string.
Example:

var appPN = getApplicationPrettyName();
java.lang.System.out.printin(“The application pretty name is: “ + appPN

);

getBaseForFileName (processld)

Given a unique process instance ID, this function returns a string of the base
file name for the content store for that process instance.

Parameter Data Type Description

processld String A process ID.

468 Developer’s Guide

Miscellaneous Global Functions

The following code creates a path name for the file nyFi 1 e. htni in the content
store. Note that this code does NOT create the file, it simply creates a string that
can be used as the file name by methods on a contentStore object, such as
nmove() and store().

Example:

var pi = getProcesslnstance();

var pid = pi.getlnstanceld();

var content StorePath = get BaseForFil eNane (pid);
var newFil eName = contentStorePath + "nyFile.htm";

getConnector(connectorKey)

Given a connector key, returns a connector object from the list of connector
objects available for use by scripts.

Parameter Data Type Description

connect or Key String A connector ID (previously set by
set Connect or ()).

Example:

function initialisationScript()

{
var ¢ = new Packages.com acne. DBConnecti on();
set Connector ("dbConnector");
return true;

}

var ¢ = get Connector("dbConnector");

getContentStore ()

Returns a cont ent St or e object connected to the content store. See the
section ContentStore for details of the methods on this object.

Example:

var cs = getContentStore();

Appendix A, JavaScript APl Reference 469

Miscellaneous Global Functions

getContentStore(httpURL,user,password)

General purpose content store method. This method enables you to
authenticate to arbitrary HTTP servers for file manipulation. You must have a
content store object to use any of the content store methods.

Parameter Data Type Description
htt pURL String URL of an HTTP server capable of acting as a
content store.
user String User ID of the user who will authenticate the
content store specified by ht t pURL.
password String Password for the specified user.
Example:

var publishCS = get Cont ent St or e(
“http://publish.netscape.com/CS”, “sijacic”, “password”);

getCreatorUserld ()
Returns the user ID for the creator user of the current process instance.

This function is intended to be used as the i ni ti at e- as script for sub-
process nodes. When the child process instance is created, its creator must be
determined. Normally, the creator of the child process instance is the same
user that authenticated with the server at the time the sub-process node was
executed. However, it may be desirable (or necessary) to set the child creator
to the same user as the creator of the parent process instance.

If you choose to use this function to change the child creator user, the
authenticating (or current) user must be a member of the trusted users group in
the child application.

Example:

var pi = getProcesslinstance();
var creatorUser = pi.getCreatorUser();
var creatorUserld = creatorUser.getUserld();

470 Developer’s Guide

Miscellaneous Global Functions

getCorporateDirectory ()

Returns a cor por at eDi r ect or y object connected to the corporate directory
in the Directory Server. See the section Cor por at eDi r ect or y for details of
the methods on this object.

Example:
var corpDir = getCorporateDirectory();

__getincludePath ()

Returns the current inclusion path used by the server to search for JavaScript
source files. This search path resembles in behavior the PATH mechanism used
in Windows NT and UNIX to search for executables and libraries when a file
name is not absolute.

The directory i nstal I Di r/ resour ces/ server/js (whereinstall D r
is PAE installation directory on the server machine) is included in the search
path by default.

Example:

/! Returns the current search path
var includePath = __getlncludePath();

// Add our own directory to the search path
includePath += ";’ + "d:\\tnp";

/'l Set the search path
__setlIncludePat h(includePath);

getIndiNamingContext()

Returns the current NAS JNDI naming context used to look up the home
interface of an EJB.

Use this function to access EJBs from within a Custom Activity. You can pass
the instance of the naming context to the Custom Activity and use the
| ookup() method on this context to obtain home interfaces of the beans.

Example:

var nam ngCont ext = get Jndi Nam ngCont ext ()

Appendix A, JavaScript APl Reference 471

Miscellaneous Global Functions

472 Developer’s Guide

getProcessinstance ()

Returns a JavaScript Processinstance object associated with the current work
item.

See the section Processinstance for details of the methods on this object.

Example:

var wi = getWorkltem();
var pi = getProcesslnstance();

java.lang.System.out.printin(“The Process Instance ID: “ +
pi.getinstanceld());

getSubProcesslinstance ()

Returns a ProcessInstance object corresponding to the completed child process
instance. This function should only be used from the completion script of a
sub-process node. The object returned by this function has all the same
methods expected of a Processinstance object, except that the information
contained within corresponds to the completed child process instance instead
of the parent. If this function is called from any location other than the
completion script of a sub-process node, nul | is returned.

Example:

/I Completion script of sub-process node

function parentCompletion()

{

var pi = getProcessinstance(); /I parent process instance
var spi = getSubProcesslinstance(); // child process instance

/I Map some of the data elements from the child back to the
/l parent process instance

pi.setData(“childStatus”, spi.getData("status"));

pi.setData("numApprovers", spi.getData("numApprovers"));
return true;

}

getWorkltem ()

Returns a wor kI t emobiject that represents the current work item. See the
section Workltem for details of the methods on this object.

Miscellaneous Global Functions

Example:
var wi = getWorkltem();

__includeFile (fileName)

Reads in the contents of a JavaScript source file and evaluates the contents. Any
JavaScript functions and objects defined within the file are available to all user
scripts.

__includeFil e() and its “helper” functions, __get | ncl udePat h() and
__setlncludePat h(), are used by the server to define the built-in
JavaScript functions available to user scripts.

If you want to access JavaScript functions or objects from user scripts and do
not want to include the script files with every application you develop, you can
externalize the functions in a separate JavaScript file and include the functions

in the server's global run-time scope using __i ncl udeFi |l e().

Parameter Data Type Description

fil eNanme String Pathname of the JavaScript file to evaluate.
Example 1:

/] Sanple JavaScript file

function checkCreator(userld)

{

var pi = getProcesslnstance();

var u = pi.getCreatorUser();

/1 1f the process instance creator matches the
// userld, return true, else false.

if(userld == u.getUserld())

return true;

el se

return fal se;

}

Example 2
// Sanmple includeList.js file

var nylncludePath = "d:\\tnmp";
var includePath = __getlncludePath() + ';’ + nylncludePath;

Appendix A, JavaScript APl Reference 473

Miscellaneous Global Functions

474 Developer’s Guide

__setlncludePat h(includePath);
__includeFile("myFunctions.js");

mapTo(fieldName)

Used only from a custom activity as a means of mapping values from the
output hashtable back to the process instance. The fi el dName parameter
specifies the name of a data element in the process instance. This data element
receives the value of the current output parameter. When the custom activity’s
perform() call is complete, the server iterates through the hashtable, one
element at a time, and attempts to map the element’s value to a field in the
process instance. Returnstr ue if data mapping succeeds. Returnsf al se if a
problem has occurred.

Parameter Data Type Description
fiel dName String Name of a data element in the process
instance.
Example:

mapTo("custoner Nane");

mount(jndiName)

Looks up and creates an instance of a stateless session bean, or EJB, found
under the given JNDI name. If no bean exists under this name, a

j avax. nam ng. Nam ngExcepti on is thrown. PAE handles this exception
by moving the process instance into the designated Exception Manager node. If
the EJB can be found under the given JNDI name, an instance of it is created by
calling the cr eat e() method on the returned home interface of the bean. This
function call is equivalent to the ej bLookup(j ndi Nane) . creat e()
function call.

Parameter Data Type Description
j ndi Nane String IJNDI name of the EJB to "mount.”
Example:

Miscellaneous Global Functions

var creditServer = mount ("Netscape/CreditCardServer");

setConnector(connKey, connObject)

Adds a connector object (such as a database connection) indexed by key to the
list of connector objects that can be used by scripts.

Parameter Data Type Description

connKey String Key used to retrieve the associated object
(through get Connect or ()).

conn(hj ect Object Object stored and associated with the
specified key.

JavaScript objects saved inside the Connector , such as those created using var
obj = new Object (), are converted into Java objects based on the
mapping table below before being stored in the connector

JavaScript Data Type Converted Java Data Type

string java.lang.String

number java.lang.Double

boolean java.lang.Boolean

date java.util.Date

array java.lang.Object(]

object java.util.Hashtable

function java.lang.String (decompiled source)

script java.lang.String (decompiled source)

java.lang.Object (wrapped) | java.lang.Object (unwrapped)

java.lang.Object java.lang.Object (pass-through)
Example:

function initialisationScript()

{
var ¢ = new Packages.com acne. DBConnection();
set Connector ("dbConnector", c);

Appendix A, JavaScript APl Reference 475

Miscellaneous Global Functions

return true;

}

// This DB connection can now be used in any script.
var ¢ = get Connector("dbConnector");

__setIncludePath (includePath)

Allows the user to specify the path the server uses to search for JavaScript
source files. The path is a delimited list of absolute directory path names. The
delimiter depends upon the system:

« : (acolon) for UNIX
< ; (a semicolon) for Windows

Searches start from the first directory and proceed to the last directory until the
file is located. The directory i nstal | Di r/ r esour ces/ server/js (where
i nstal | Di r is where PAE is installed on the server machine) is included in
the search path by default. However, once you set your own path using this
function, the current search path is overwritten. Thus, calls to

__set I ncl udePat h should specify the entire search path by appending the
new search directory to the current search path.

Parameter Data Type Description

i ncl udePat h String Ssearch path the server uses to locate
JavaScript source files.

Example:
var includePath = __getlncludePath();
includePath += ";’ + "d:\\tnp";

/1 Set the search path. Note how the variable includePath al so

/] specifies the existing search path. Every call to __setlncludePath
/1 overwites the previous search path.

__setlIncludePat h(includePath);

setRedirectionURL(stringURL)

Redirects the participant’s browser to the specified location in stri ngURL.

476 Developer’s Guide

Miscellaneous Global Functions

Invoke this method from a completion script. set Redi recti onURL() is
typically used for multiple-screen data entry where the same person may enter
data across several screens or user activities. The process subsequently
becomes a wizard-like forms entry screen.

Parameter Data Type Description
stringURL String A valid URL.
Example:

function scriptConplete()

{

/'l Redirect to the Netscape Honme Page

set Redi recti onURL("http://hone. net scape. cont');

/1 This will cause the sanme process instance to display after the
// user clicks an action button

set Redi recti onURL(url _OnDi spl ayProcessl nstance());

/1 Don’t forget to return true; this is still a conpletion script
return true;

}

url_OnDisplayHistory()

Returns a string containing the URL that points to the history list for the current
process instance. This function is usually used in conjunction with

set Redi recti onURL() to redirect a user to the history page of the current
process instance.

Example:

function scriptComplete() {

/'l Redirect to the History Page of this process instance
set Redi recti onURL(url _OnDisplayHistory());

}

url_OnDisplayProcessinstance()

Returns a string containing the URL that points the current process instance.
This function is usually used in conjuction with set Redi r ecti onURL() to
redirect a user to the current process instance.

Appendix A, JavaScript APl Reference 477

Miscellaneous Global Functions

478 Developer’s Guide

Example:

function scriptConplete()
{

/1 Redirect to the current process instance
set Redi recti onURL(url _OnDi spl ayProcessl nstance());

}

url_OnDisplayWorklist()

Returns a string containing the URL that points to the user’s work list. This
function is usually used in conjuction with set Redi recti onURL() to
redirect a user to their work list.

Example:

function scriptConplete()

{

/!l Redirect to the user to their work |ist
set Redi recti onURL(url _OnDi splayWorklist());

}

url_OnListApplications()

Returns a string containing the URL listing applications installed on the PAE
cluster. This function is usually used in conjunction with

set Redi recti onURL() to redirect a user to the list of applications installed
on the cluster.

Example:

function scriptConplete()

{

/1 Redirect to the list of applications on this cluster
set Redi recti onURL(url _OnListApplications());

}

url_OnListEntryNodes()

Returns a string containing the URL that points to the list of entry points in the
current application. This function is usually used in conjunction with

set Redi recti onURL() to redirect a user to the list of entry points in the
current application.

Alphabetical Summary of JavaScript Objects

Example:

function scriptConplete()
{

/1 Redirect to the list of entry points of the current application
set Redi recti onURL(url _OnLi st EntryNodes());

}

Alphabetical Summary of JavaScript Objects

The following table lists the JavaScript methods and functions available in
Process Automation Edition (PAE):

JavaScript method or function Where Used in PAE
__getincludePath global function
__includefFile global function
__setIncludePath global function
addUser corporateDirectory
assignTo workltem
checkParallelApproval predefined script
checkUserDNs global function
deleteUserByCN corporateDirectory
deleteUserByDN corporateDirectory
deleteUserByld corporateDirectory
download contentStore
emailByDN predefined script
emailByld predefined script
emailOfAssignees predefined script
emailOfCreator predefined script
emailOfRole predefined script
evaluateTemplate global function
exists contentStore

Appendix A, JavaScript APl Reference 479

Alphabetical Summary of JavaScript Objects

480 Developer’s Guide

JavaScript method or function

Where Used in PAE

expire workltem
expireln global function
extend workltem

getApplicationName

global function

getApplicationPath

global function

getApplicationPrettyName

global function

getAssigneesDN

workltem

getBaseForFileName

global function

getConclusion

global function

getConnector global function
getContent contentStore
getContentStore global function

getCorporateDirectory

global function

getCreationDate

processinstance

getCreationDate

workltem

getCreatorDN

processinstance

getCreatorUser

processinstance

getCreatorUserld

global function

getCurrentActivityCN workltem
getData processinstance
getEntryNodeName processinstance

getException

contentStore

getExitNodeName

processinstance

getExpirationDate

workltem

getinstanceld

processinstance

getPriority

processinstance

getProcessInstance

global function

getRoleDN

processinstance

Alphabetical Summary of JavaScript Objects

JavaScript method or function

Where Used in PAE

getRoleUser

processinstance

getRootURL

contentStore

getStatus

contentStore

getSubProcessInstance

global function

getTitle processinstance
getUserByCN corporateDirectory
getUserByDN corporateDirectory

getUserByld

corporateDirectory

getVersion

contentStore

getWorkltem

global function

hasExpired workltem
initialize contentStore
isException contentStore
isStateActive workltem
isStateRunning workltem
isStateSuspended workltem
logErrorMsg global function

logHistoryMsg

global function

logInfoMsg global function
logSecurityMsg global function
mapTo global function
mkdir contentStore
modifyUserByCN corporateDirectory
modifyUserByDN corporateDirectory

modifyUserByld

corporateDirectory

mount global function
move contentStore
moveTo workltem

Appendix A, JavaScript APl Reference 481

Alphabetical Summary of JavaScript Objects

482 Developer’s Guide

JavaScript method or function

Where Used in PAE

randomToGroup predefined script
resume workltem

rmdir contentStore
setConnector global function
setData processinstance
setErrorMessage global function
setErrorMsg global function

setExpirationDate

workltem

setPriority

processinstance

setRedirectionURL

global function

setRoleByDN

processinstance

setRoleByld processinstance
setTitle processlnstance
store contentStore
suspend workltem
toCreator predefined script
toGroup predefined script
toManagerOf predefined script
toManagerOfCreator predefined script
toManagerOfRole predefined script

toParallelApproval

predefined script

toUserByld

predefined script

toUserFromField

predefined script

upload

contentStore

Appendix

Migrating from Previous Releases

This appendix describes how to run or edit Process Manager 1.x applications in
the PAE 4.0.

This appendix contains the following topics:
= Getting Started
= Migrating SSJS-specific Objects

= Migrating Custom Fields

Getting Started

Before users can begin working with a Process Manager 1.x application, you
must first import the application into PAE 4.0’s Process Builder, then deploy
that application to a cluster. The major steps are as follows:

1. Import the application to Process Builder.
2. Run Check Errors on the application.

3. Add an exception node, if necessary.

Appendix B, Migrating from Previous Releases 483

Getting Started

484 Developer’s Guide

4. If the application uses SSJS-specific objects, you must perform the
recommended migration action specified in “Migrating SSJS-specific
Objects” on page 486.

5. Deploy the application as usual.

Importing an Application to Process
Builder

To begin migrating an application to PAE 4.0, you must import the Process
Manager 1.x application to Process Builder by performing the following steps:

1. From the Application menu of Process Builder, choose Import from ZIP.
The Import Application from Zip File dialog box appears.

2. Using the Browse button, navigate to the Applications folder where your
Process Manager 1.x files are stored.

3. Select the application you want to open.
The application file name should begin with wf and end with . zi p.

4. From the Application Folder drop-down menu, choose the folder where
you want Process Builder to extract the application files.

5. Click OK.

Process Builder expands the .zi p file into the selected folder.

Assigning Exception Nodes

In Process Manager 1.x, exception nodes were required when your application
used subprocesses. However, in PAE 4.0, these nodes are assigned to every
step in the process. Therefore, an exception node must be assigned to each
step in your imported process. When you import a Process Manager 1.x
application, Process Builder detects that the application is lacking exception
nodes and will automatically create a default exception and assign each step to
this exception node for you.

Getting Started

The application is now in PAE 4.0 format and you can open it as usual.

Checking for Errors

Now that your Process Manager 1.x application has been imported to PAE 4.0,
you must run Check Errors before you can deploy the application for use. To
run Check Error, perform the following steps:

1. Open the application in Process Builder.
2. From the Application menu of Process Builder, choose Check Errors.
The Checking Application dialog box appears.

3. The Messages window appears, displaying any errors, warnings, or
information pertaining to the application.

You may see exceptions for JavaScript errors in the Messages window. Previous
versions of Process Manager did not perform automatic syntax checking.

If JavaScript errors appear regarding email notification, be sure you have
selected both a Content Type (text/html or text/plain) and a Character Set (e.g.,
us-ascii) in the Inspector window for the notification.

If a “No exception node” exception appears in the Messages window, you must
manually assign an exception node to each step in your imported process (see
“Assigning Exception Nodes” on page 484). To do so, perform the following
steps:

1. Drag an exception node from the Palette to your process map.
2. Double-click or right-click the new node and enter a name for the node.

3. Right-click an action in your process map to bring up the Properties
window.

4. From the Exception Manager drop-down menu, choose the new exception
node.

The action is now assigned to the exception node you created in Step 1.

Appendix B, Migrating from Previous Releases 485

Migrating SSJS-specific Objects

5. Repeat Step 3 and Step 4 for each action in your process map that is not
assigned to an exception node.

Assign a form to the new exception node.This process is described in
Chapter 7, “Designing Forms.”

6. Click Save to save the changes to your application.

Deploying the Application

When you have successfully imported your Process Manager 1.x application,
checked for errors, and assigned exception nodes as necessary, and if your
application does not use SSJS-specific objects or custom fields written in
JavaScript, you are ready to deploy your application as usual. See Chapter 10,
“Deploying an Application” for instructions.

If your application does use SSJS-specific objects or custom fields written in
Java, see the following sections, “Migrating SSJS-specific Objects” and
“Migrating Custom Fields” for more information.

Migrating SSJS-specific Objects

486 Developer’s Guide

Server Side JavaScript (SSJS) is no longer supported by PAE. You can still use
standard JavaScript in your applications, but if you imported an application
developed with SSJS-specific objects, you must rewrite those portions of your
application. The following table describes the recommended migration path
from SSJS-specific objects to code compatible with PAE 4.0:

Migrating Custom Fields

SSIS object Recommended migration

Dat abase Each of these objects relates to database access. In PAE 4.0, you

DbPool should access the database with Java DB access methods

Connecti on (JDBC) using the Custom Activity or Custom Fields features or

Resul t Set using JavaScript to access the JDBC methods using Live

St or edPr oc Connect. For more information on Live Connect, see

Cur sor http://devel oper. net scape. conml docs/ nanual s/ j s/ core/
j sgui de
Note that this does not concern access to the main process
instance database in the course of normal process development
or operation. PAE handles this access transparently. Rather, the
SSIS objects listed in the left column were occasionally used in
Process Manager 1.x to access databases external to PAE or in
other extraordinary circumstances.

File Use Custom Activities to mimic the File Object functionality.
You can also use j ava.io.file.

SendMai | Use Custom Activities to mimic the SendMai | functionality.
You can also use the SMTP SDK.

Pr oj ect These objects were often used to store data for server-side

Server information. You can now store information in the Process

Request Instance data or in a Custom Field.

dient

More information, see Chapter 17, “Writing Custom Activities.”

Migrating Custom Fields

Developers should note that Custom Fields in PAE 4.0 are different than those
in Process Manager 1.x. If your imported application uses Custom Fields, you

may have to rewrite portions of code.

In Process Manager 1.x, Custom Fields were written in JavaScript. In PAE 4.0,
they are written in Java. There are two parts of a Custom Field: a . j sb file, also
called a properties file, that contains information about a field, and a . j s file,

Appendix B, Migrating from Previous Releases 487

Migrating Custom Fields

also called an implementation file. The .j sp or properties file remains the same
in PAE 4.0 as in Process Manager 1.x, but you must substitute the content of the
. | s file with a Java implementation.

488 Developer’s Guide

Appendix

Reserved Words

This appendix lists reserved words in PAE.

The following words are used internally by PAE and must not be used as the
names of data fields. Using reserved words as field names may generate an
error when an application is deployed.

Appendix C, Reserved Words 489

Reserved Words in PAE

abort cascade datetime | for on start
accept case dba force open stop

add change dec form or table
admin char decimal format order tables
all character declare from positive tablespace
allocate check default function | project task
alter checkpoint | definition |global public temporary
analyse client delay go quota text

and close delete goto raise then

any cluster delta grant range this
append cobol disable group real time
archive column dismount | groups rename trigger
array columns dispose if replace true

as comment distinct image request type
assert commit do index resume union
assign compile double indexed |reverse unique
at compress drop insert revoke unlimited
audit connect each int role update
authorization | constant else key roles use

avg constraint enable layer row user
backup contain end link schema using
badfile contents entry list server values
become continue erase log set varchar
before contraints escape longtext |share varchar2
begin count events manual | shared variance
between crash exit max size view
blob create explain min smallint views
block current false new snapshot | when
body cursor file next some while
boolean cycle fixed not sort with

by data float number |space xor
cache database flush off sql yes
cancel date

490 Developer’s Guide

activity
application
applet
assignee

automated
activity

bean
builder

child process

class ID

CGl

A step in an application where an assighee needs to perform an action.

In Process Builder, the application the builder creates to handle a process.
A Java component designed to run in a web browser.

The person assigned to an activity for a particular process instance.

A step in an application where an action is performed automatically, without
being assigned to a user.

A reusable software component for visual development environments.
The person who creates the application using Process Builder.

In subprocesses, the subordinate process that is called by the main or parent
process.

The identifier of a group of fields with some common properties.

Common Gateway Interface. The specification for communication between an
HTTP server and gateway programs on the server. Allows web interfaces to
databases and enables the dynamic generation of HTML documents by
gateway programs.

Glossary 491

cluster

configuration
directory

content store

corporate user
directory

creator
custom activity

database

decision point

deploy

entry point

exception handler

exit point

extranet

form

492 Developer’s Guide

The combination of a configuration directory, a corporate user directory, a rela-
tional database, a web server, and one or more Netscape Application Servers.
This combination of components is the environment for deployed applications,
which are run by the application servers.

The Directory Server where PAE application and cluster information is stored.

The place on the Enterprise Server where file attachments are stored, and the
user and password needed to access them.

The Directory Server used to store the user and group information for a corpo-
ration. PAE uses it to set up users and groups and assign users work items by
leveraging the directory users and groups and other attributes.

The person who initiates a process instance. Sometimes called the initiator.

The database you are using to store the information generated by process
instances. For example, the database could be Informix, Oracle, or Sybase.

A point at which a process map branches depending upon conditions defined
in the decision point.

To copy an application stored locally to a cluster. It can be deployed for
storage only, or it can be deployed for development or production. Application
information is deployed to the configuration directory, and the application is
activated on the Netscape Application Server.

A point in the process where a user can initiate a process instance.

Used in subprocesses, a step in an application that allows the administrator to
intervene manually if errors occur in the interaction between a parent and child
process.

A point in the process where the process ends.

An extension of a company’s intranet onto the Internet, to allow customers,
suppliers, and remote workers access to the data.

A part of an application a user fills out to complete a process instance, or uses
to view information on a process.

group

HTML

HTTP

initiator

intranet

LDIF

nested parallel
process

PAE

parallel
processing

parent process
participant

Process Adminis-
trator

Process Automa-
tion Edition

process

Process Builder

A set of users set up either in the corporate user directory or in an individual
application. A group is used to assign work items to users and control which
forms which users are able to see.

HyperText Markup Language. A markup language (derived from SGML) used to
create web documents.

HyperText Transfer Protocol. A protocol for communication between web
clients and servers.

The person who initiates a process instance. Sometimes called the creator.

A network which provides similar services within an organization to those
provided by the Internet outside it but which is not necessarily connected to
the Internet.

A format for storing directory entries.

A parallel process nested within a larger parallel process. The activities in the
nested process are considered to be part of the nested process and not the
larger process.

An acronym for Process Automation Edition.

A step in an application that branches between two or more branches so that
two or more activities can execute in parallel.

In subprocesses, the main process that calls the subordinate or child process.
A user of Process Express.

The component of PAE that administrators use to administer PAE and PAE
applications. Process Administrator is the 1T administrator’s interface described
in the Administrator’s Guide. Process Business Manager is the business
manager’s interface, described in the Business Manager’s Guide.

The Netscape process management solution.

A process is a series of steps, or work items, that can be completed by partici-
pants using an application.

The component of PAE where you can design and deploy applications.

Glossary 493

Process Business
Manager

Process Engine

Process Express

process instance

process map

processing branch

property

role

script

subprocess

trusted user

URL

494 Developer’s Guide

The component of PAE that business managers use to administer PAE work
items and process instances. Process Business Manager is the business
manager’s interface, described in the Business Manager’s Guide. Process
Administrator is the IT administrator’s interface described in the Administrator’s
Guide.

The part of PAE that contains Process Express, Process Administrator, Process
Business Manager and the engine that runs PAE. It contains all PAE compo-
nents, with the exception of Process Builder.

The component of PAE that end user use to initiate process instances,
complete work items, and search for process instances.

A particular example of a process; for example, in a time off process applica-
tion, a process instance would be a particular request by an employee for
vacation time off for a specific period of time.

The visual representation of the process that is handled by a PAE application.

A set of activities that progress from a given split to its corresponding join. Also
called a thread.

An attribute of an item or component used in an application that contains infor-
mation about the item. For example, an activity has properties containing infor-
mation such as the name of the activity, what script is run when it is completed,
and so on.

A role is the part a user plays in a specific process instance.

A JavaScript file. A script can include a function, but this is not a defining char-
acteristic.

A fully functional process that is called from within another process. The
process that calls the subprocess is the parent process and the subprocess is its
child process.

A group that allows a secure handshake between a parent and a child process.

Uniform Resource Locator. The address system used by servers and clients to
request web documents. It is often called a “location.” The format of a URL is:

[protocol]://[machine:port]/[document]
For example:

http://home.netscape.com/index.html

transition The links between steps in a process. On the process map, they are repre-
sented by lines with arrows that lead from one item to another. Transitions can
be regular or they can depend upon a condition being true before they are

executed.

web publishing A feature that lets users access and manipulate server files with a server client,
so that they can edit and publish documents to the web server.

work item An individual task in a process instance as it appears to the end user on a work
list.

Glossary 495

496 Developer’s Guide

Symbols example of creating

__getincludePath() 471 aszjigt?iizs 15
__includeFile() 473 =

assigning
_ setIncludePath() 476 work items 427

assigning exception nodes 484

A assignment scripts 179, 456
activities example 337, 352
automated 84 predefined 181
Data Sheet sample 217 assignments
expiration 79 forms 173
planning assignments 54 assignTo() 427

setting assignments 81
address field 152
addUser() 444

attributes
modifying for users 337

automated activities

admin Data Sheet sample 219
forms 174 deferring 85
group 113 planning 52

all group 113 properties 84

applet fields 142 automation scripts 179

example 355

application menu 43 example of writing to content store 341

application tree view 38

applications B
creating 63
deleting 71 banners 171
editing a deployed application 207 base file name
fOIt(tj'er 65 468 getting for content store 468
getting pa : ;
initializing 348 BasmC_ustomFleId class 413
sampl_es 68 buildDataSheet script 231
selecting 34 buildDS script 229

shutting down 348
archive() method 413
arrays

Index 497

C

cache
allow for application group 118
allow for corporate group 122
allow for dynamic group 126

checkbox fields 137
checkParallelApproval() 456
checkUserDNs() 338, 464

class IDs
creating your own 151
predefined 137

client-side scripts 191
onSubmitForm function 344
verifying form input 343

cn
data field property 395

comments, allow to add 78, 99

completion scripts 179, 456
example 335, 354
parallel approval 84
predefined 84, 184
verifying form input 347
computed fields 138
computeTitle script 234
condition scripts 179
conditions, for transitions 108

content store
accessing 339
example of saving file 341
getting base file name 468
getting content 436
getting root URL 438
making directories 441
moving files 441
setting up 156
storing 443
storing files 341

content type, in email notifications 104

contentStore object
reference 433

498 Developer’s Guide

copy() 434

corporate user directory
defining for application 67

corporateDirectory object 444
create() method 411
creator 113

Credit History
configuring 297
data fields 293
description 68
exit points 287
groups and roles 292
scripts 295
trusted users 292

custom activities 366
deferring 93
planning 52

custom data fields 134

custom fields 389
migrating 487
packaging 405
steps for creating new class 391

D

data fields
form elements for 191, 343
getting values 335, 419
required properties 395
setting values 335, 423

data mapping
Loan Management sample 283

Data Sheet
activities 217
automated activity 219
configuring 241
decision point 222
description 68
description.txt file 235
entry point 216
exit points 223
fields 224
finished example 239

forms 226
image.gif file 236
process map 214
scripts 229

date fields 138

dates
adding days example 353

datetime fields 139
debugging hints
for scripts 349

decision point scripts 179
getting data field values 336

decision points
Data Sheet sample 222
planning 53
properties 100

defaultNotificationHeader() 185, 457
defaultNotificationSubject() 185, 457
deferring automated activities 85
deferring custom activities 93

delegation 78, 99
planning 57

deleteUserByCN() 445
deleteUserByDN() 446
deleteUserByld() 446
deleting users 445

deploying 202
planning 60

description
data field property 395

description.txt file 235
DESIGN tag 378
destroy() method 369

development hints
for scripts 349

dialog boxes
for script failures 350

digital signature fields 139
directories

making in content store 441

Directory Server 445
adding users 444
getting users 447
methods for accessing 444
modifying attributes 448

display() method 409

distinguished names 338
getting process instance creator dn 419

dn
see distinguished names

download() 434

E

edit menu 45, 167

EJB components 360
ejbLookup() 465

email notification scripts 105, 179
email scripts 456

emailByDN() 185, 458
emailByld() 186, 458
emailOfAssignees() 186, 459
emailOfCreator() 186, 459
emailOfRole() 186, 459

entry points
access to forms 174
Data Sheet sample 216
Loan Management sample 279
Office Setup sample 249
planning 51
properties 77

ENVIRONMENT tag 374

error checking
Java Script exceptions 485

error checking in Process Builder 485

error messages 342
for script failures 350
viewing 350
evaluateTemplate() 465

Index 499

event handlers 191
example 344
exception manager 97
properties 99
exception nodes
assigning 485
Credit History sample 284
exception nodes, assigning 484
exists() 435
exit points
Credit History sample 287
Data Sheet sample 223
Loan Management sample 291
Office Setup sample 264
planning 53
properties 105
expiration 79

expiration date
setting 432

expiration handler scripts 179, 351
example 354

expiration setter scripts 179, 351
example 353

expire() 427

expireln() 466

expiring
work items 427

extend() 428

extending
work item expiration date 428

F

fieldclassid

data field property 395
fields

address 152

allowing searches for 200

checkbox 137

class ID 134

computed 138

500 Developer’s Guide

creating 132

Credit History sample 293
custom 134

Data Sheet sample 224
data types 136

date 138

datetime 139

deleting 155

digital signature 139
display mode 170

file attachment 140

help message 136

Java applet 142

Java bean 144

Loan Management sample 292
name 153

Office Setup sample 265
password 144

planning 57

predefined 135, 151
radio buttons 145

roles 128

select list 146

telephone 154

template 135

textarea 147

textfield 148

URL 149

userpicker widget 150

fieldtype
data field property 395

file attachment fields 140

files
moving in content store 441
storing in content store 341

form elements 343
for data fields 191
verifying input 342

format menu 45, 168

forms
allowing searches in 198
banners 171
comments on 165
creating 160

customizing Office Setup samples 273

Data Sheet sample 226
display mode 170
modifying 165
onSubmitForm function 344
planning 58
setting access to 172
verifying input 342

forms[] array 191

G

getAction() 467
getApplicationName() 468
getApplicationPath() 468
getApplicationPrettyName() 468
getAssigneesDN() 428
getBaseForFileName() 339, 341, 468
getBaseURL() 435
getConclusion() 418
getConnector() 469
getContent() 436
getContentStore() 339, 433, 469
getCorporateDirectory() 336, 444, 471
getCreationDate() 418, 429
getCreatorDN() 419
getCreatorUser() 419
getCreatorUser() method 337
getCreatorUserld() 470
getCurrentActivityCN() 429
getData() 419

getData() method 335

getDN() 451

getEntityKey() 400
getEntryNodeName() 420
getException() 437
getExitNodeName() 420
getExpirationDate() 429

getinstanceld() 421
getIndiNamingContext() 471
getName() method 415
getPrettyName() method 416
getPriority() 421
getProcessinstance() 334, 418, 472
getRoleDN() 421
getRoleUser() 422
getRoleUser() method 337
getRootURL() 438

getSize() 438

getStatus() 438
getSubProcessinstance() 472
getTitle() 422
getUserByCN() 447
getUserByDN() 447
getUserByld() 448
getUserld() 451

getVersion() 439
getWorkltem() 334, 426, 472

global functions
checkUserDNs() 338
getBaseForFileName() 339
getContentStore() 339
getCorporateDirectory() 336
getProcessinstance() 334
getWorkltem() 334
logErrorMsg() 452
logHistoryMsg() 453
loginfoMsg() 453
logSecurityMsg() 454
miscellaneous 464
setErrorMsg() 455

groups 112
application group 117
corporate group 121
creating 114
defaults 113
deleting 130
dynamic group 125

Index 501

planning 55
prioritizing 128

H

hasExpired() 429

help
data field property 395
menu 47
messages for fields 136

helpful messages
explaing script failures 350

hidden form elements
for data fields 191

HTML editor 165

I
id
getting 421
IDataElement 400, 410
image.gif file 236
init() method 367
initialization scripts 179, 187, 348
initialize() 439
initializing
applications 348
INPUT tag 375
insert menu 45, 167

instance id
getting 421

IPMElement interface 415
IPresentationElement 400, 409
isException() 440
ISimpleWorkPerformer 367
isStateActive() 430
isStateRunning() 430
isStateSuspended() 431

502 Developer’s Guide

J

Java applet fields 142
Java bean fields 144
jpeg file

saving 203
JSB File 391
JSB_DESCRIPTOR tag 392
JSB_PROPERTY tag 393, 394

L
LDAP
filters 126
list() 440
load() method 412
loadDataElementProperties() method 414

Loan Management

configuring 296

data fields 292

data mapping 283

description 68

entry point 279

exit points 291

groups and roles 292

scripts 293

subprocess 281
local application folder 65
logErrorMsg() 452
logging error messages 342
logHistoryMsg() 453
loginfoMsg() 453
logs

viewing 350
logSecurityMsg() 454
lookupCode script 230

M

mapTo() 474
menus 43

messages
explaining script failures 350
migration
custom fields 487
error checking 485
exception nodes 484, 485

importing applications to Process Builder 484

Java Script exceptions 485

server-side Java Script objects 486

miscellaneous global functions 464
mkdir() 441

modifyUserByCN() 448
modifyUserByCN() method 337
modifyUserByDN() 449
modifyUserByDN() method 337
modifyUserByld() 450
modifyUserByld() method 337
mount() 474

move() 441

moveTo() 431

moving files
in content store 441

N

name fields 153

notifications 104
built-in scripts 105
planning 54

numbers
checking for 355

@)

Office Setup
configuring 274
data fields 265
description 68
entry point 249
exit point 264
form customization 273

forms 267

groups and roles 264
parallel processing split 253
scripts 269

onClick event handler 343

onCompletion scripts
see completion scripts

onSubmitForm() 344, 346
onValueChange event handler 343
OUTPUT tag 376

P

palette 39, 75
parallel approval 82

parallel processing 101
Office Setup example 253
planning 53
properties 102
using 102

PARAMETER tag 377
parselnt() 345, 355
password fields 144

path
getting for application 468

perform() method 368
pid
getting 421

predefined data fields 151
creating 135

pre-defined scripts 456
preferences.ini file 31

prettyname
data field property 395

priority field 67
Process Administrator
common information 63

Process Builder
starting up 31

process instances 334

Index 503

how they use the content store 341
id 421

process map
creating 74
Credit History sample 277
Data Sheet 214
deleting items from 77
Loan Management sample 276
planning 50
scripts available 180
processinstance object 334, 418
public password 157

public user 157

R

radio button fields 145
randomToGroup() 460
remove() 442

required properties
of data fields 395

resume() 431
rmdir() 442

roles 112
creating 114
defaults 113
deleting 130
field role 127
planning 55
prioritizing 128
root URL
of content store 438

S

sample applications
configuring
Credit History 297
Data Sheet 241
Loan Management 296
Office Setup 274
Credit History 276

504 Developer’s Guide

Data Sheet 214
Insurance Claim 300
list of 68
Loan Management 276
Office Setup 248
save work item 78
saving a jpeg file 203
scripts 177
accessing current process 334
assignment 181
client-side 191
Credit History sample 295
Data Sheet sample 229
debugging hints 349
displaying progress of 350
explaining failures 350
getting information about users 336
initialization 187, 348
Loan Management sample 293
Office Setup sample 269
setting work item assignees 427
shutdown 187, 348
searches 196
allow for application group 118
allow for corporate group 122
allow for dynamic group 126
planning 60
select list fields 146
server-side Java Script object
migrating 486
setConnector() 475
setData() 423
setData() method 335
setEntityKey() 400
setErrorMessage() 350
setErrorMsg() 455
setExpirationDate() 432
setPriority() 424
setRedirectionURL() 476
setRoleByDN() 425

setRoleByld() 425

setTitle() 426
shutdown scripts 180, 187, 348
signature fields 139

SSL
enabling 140

starting Process Builder 31
store() 443

store() method 341, 411
submitting forms 344
subprocesses 86

connecting the parent and child 90

Credit History sample 281
planning 52
properties 88
setting up 87
suspend() 432

T

telephone fields 154

templates
fields 135

textarea fields 147
textfield fields 148
timer agents 87

title field 67

toCreator() 460
toGroup() 461
toManagerOf() 461
toManagerOfCreator() 462
toManagerOfRole() 462
toolbar 42

toolkit scripts 180
toParallelApproval() 462
toUserByld() 463
toUserFromField() 464

transitions 106
condition 108
planning 54

troubleshooting
scripts 349

trusted users
Credit History sample 292

U

update() method 410
upload() 443

URL fields 149
url_OnDisplayHistory() 477

url_OnDisplayProcessinstance() 477

url_OnDisplayWorkltem() 478
url_OnDisplayWorklist() 478
url_OnListApplications() 478
url_OnListEntryNodes() 478

user activities
properties 78

user dns
verifying array of 338

userpicker widget fields 150
users

adding to directory server from scripts 444

deleting 445

getting 447

getting information about 336
modifing attributes 448
modifying attributes 337

\Y

verifying form input 342
in completion scripts 347

W%

window menu 46

work items
assignTo() 427
expiring 427
extending 428
getting assignees 428

Index 505

reassigning 427
workltem object 334, 426
WORKPERFORMER tag 374

506 Developer’s Guide

	Introduction to Process Builder
	Planning an Application
	Creating an Application
	Designing a Process Map
	Defining Groups and Roles
	Defining Data Fields
	Designing Forms
	Using Scripts
	Setting Up Searching
	Deploying an Application
	The Data Sheet Application
	The Office Setup Application
	The Loan Management and Credit History Applications
	The Insurance Claim Processing Application
	Advanced Techniques for Scripting
	Scripting with EJB Components
	Writing Custom Activities
	Writing Custom Fields
	JavaScript API Reference
	Migrating from Previous Releases
	Reserved Words
	Index

