
Developer Guide
iPlanet Trustbase Transaction Manager
Version 3.0
October 2001

Copyright © 2000 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, iPlanet, JDK, JVM, EJB, JavaBeans, HotJava, JavaScript, Java Naming
and Directory Interface, Solaris, Trustbase and JDBC are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and
Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of the product or this document may be reproduced in any form by any means
without prior written authorization of the Sun Microsystems, Inc. and its licensers, if any.

THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright © 2000 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, Java, iPlanet, JDK, JVM, EJB, JavaBeans, HotJava, JavaScript, Java Naming
and Directory Interface, Solaris, Trustbase et JDBC logos sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et d'autre pays.

L'utilisation de ce produit est soumise à des conditions de licence. Le produit décrit dans ce document est
distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la distribution et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par
quelque moyen que ce soit, sans l'autorisation préalable écrite de Sun, et de ses bailleurs de licence, s'il y en a.

CETTE DOCUMENTATION EST FOURNIE « EN L'ÉTAT », ET TOUTES CONDITIONS EXPRESSES OU
IMPLICITES, TOUTES REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE
IMPLICITE D'APTITUDE À LA VENTE, OU À UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT
EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

Contents

List of Figures 9

Introduction 1

Overall Layout . 2
Related Documents . 3
Introduction . 4

iPlanet Trustbase Transaction Manager Platform . 4
Identrus Transaction Coordinator . 5

Product Features . 6

Chapter 1 iPlanet Trustbase Transaction Manager Architecture . 7
Overview . 8
External interfaces . 10

Transport protocols . 10
Enterprise connectivity . 11
Server to server connectivity . 12
Routing . 12
Authorisation . 13
Services . 13

Chapter 2 Presentation logic . 15
Overview . 16
Protocol handlers . 18

Identrus protocol handler . 18
Message Readers . 20

Default Message Reader, HTTP/HTML Reader . 20
Using the default HTTP Reader . 21
Default Message Reader, Identrus Reader . 21
Default Message Reader, Identrus Error Reader . 22
3

Message Writers . 23
Default HTML Message Writer . 23
Script Tags . 25
Using the ScriptWriter tags . 28
Default Identrus Message Writer . 32
Default Identrus Error Writer . 33

Connection Manager . 34
Protocol Map Manager . 36
URL Connection Implementation . 39

Chapter 3 Routing . 41
Messages . 42

Message Attributes . 42
Identrus Message Attributes . 44

Router Architecture . 45
Authentication and Authorisation . 47

Authentication . 47
Authorisation . 48

Default routing . 49
Router Rules . 49
Routing to service . 49
Return path . 49

Advanced Routing . 51
Routing Rulesets . 51
Router Rule Syntax . 53
Complete Router Rule DTD . 59

Chapter 4 Configuration Management . 61
Configuration Objects . 62
Configuration Manager . 63
Configuration Store . 65
Configuration Services . 66

Chapter 5 Standard Services . 67
Overview . 68

Chapter 6 iTTM Logging: Error, Audit and Raw . 71
Overview . 72
Audit logs . 73

Audit Logging an Event . 73
Defining New Audit Types . 74
4 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Error handling and logging . 78
Error Logging . 78
Defining a New Error . 81
Exception Handling . 82
Raw Logging . 85

Chapter 7 Identrus logging . 87
Overview . 88
Data definitions . 89

Connection information . 89
Identrus log tables . 92
Billing records . 94

Chapter 8 Building Identrus solutions . 95
Methodology . 96

Development process . 96
Class generation . 97
Service development . 100
Service Building . 102
Service Deployment . 102

Chapter 9 Ping Example . 105
Create DTD Definitions . 106
API . 108
PingService Source Code . 109
Creating the Identrus Service JAR . 112
Deploying pingsample.jar within iPlanet Trustbase Transaction Manager 113

Chapter 10 Message Handler Example . 117
Introduction . 118

What is the iTTM Standard Message Path ? . 118
What needs to be in place before the Standard Message Path may be used ? 118
What restrictions does the Standard Message Path place on messaging protocols ? 119
What basic functions does the default implementation of the Standard Message Path provide ? . .
119

Development Life Cycle . 121
Design Messaging Structures and Protocols . 122
Generate Classes and Service descriptor with JAXHIT . 125
Write service Java code . 128
Compile . 131
Make JAR file . 132
Deploy into iTTM . 133
5

Changing the Standard Message Path Default Implementation . 134
Base Message Class ITTMMessage . 134
Protocol Handler . 135
Message Reader . 138
Message Writer . 141

Example Application . 145
The Example Credit Check Messaging Protocol . 145
Public Key Infrastructure . 145
Message Protocol . 146
Three Party Variant . 146
Message Definition . 148
Building & Installing the Example . 150

Glossary and References 155
Software Platform . 156
Transport Protocols . 157
Security Related Protocols . 158
Trading Protocols . 159
Message Protocols . 160
Security related terms . 161
Java Related terms . 165
Server Definitions . 170

Index 175

Appendix A The JAXHIT Class Generation Tool . 1
What is JAXHIT? . 2

JAXHIT Operation . 2
Command Line . 2
Configuration File Format . 3
DTDFile Element . 4
ElementBase Element . 4
DefaultElementBase Element . 5
AdvancedOptions Element . 6
PreParseFragment Element . 6
PostParseFragment Element . 7
ClassDoc Element . 7
ImplementsInterface Element . 8
ExtendsClass Element . 8
AttributeType Element . 8
ServiceConfig Element . 9
RootElement Element . 10
6 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Example Config File . 11
The Generated Interface . 12
Using the Generated Classes . 14
FAQ . 15
7

8 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

List of Figures

Figure 1-1 Three Tier Architecture . 8

Figure 1-2 iPlanet Trustbase Transaction Manager Interfaces . 10

Figure 2-1 Presentation layer components . 16

Figure 2-2 Connection Manager Architecture . 34

Figure 3-1 Router Architecture . 45

Figure 3-2 Default routing rules . 50

Figure 3-3 Rule Sets . 52

Figure 5-1 Component replication . 68

Figure 6-1 iPlanet Trustbase Transaction Manager log manager . 72

Figure 6-2 iPlanet Trustbase Transaction Manager Exception Hierarchy . 83

Figure 8-1 Development process . 96

Figure 8-2 Message path processing . 101

Figure 8-3 Deploying PingService within iPlanet Trustbase Transaction Manager 103

Figure 8-4 Assigning a role to a service . 104

Figure 9-1 Deploying PingService within iPlanet Trustbase Transaction Manager 114

Figure 9-2 Service Registry Configuration . 115

Figure 9-3 Assigning a role to a service . 116
9

10 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Introduction

This document forms one of the iPlanet Trustbase Transaction Manager framework
documentation set. This document is aimed at designers and developers looking to
produce applications that utilise the iPlanet Trustbase Transaction Manager
framework. The guide is divided into three main sections:

• Introduction to the environment iPlanet Trustbase Transaction Manager has
been designed for

• An overview of the Framework and how the components interact

• Development of a iPlanet Trustbase Transaction Manager application
1

Overall Layout
Overall Layout
The complete documentation set comprises of:

• iTTM3.0-Install-Configuration-Guide.pdf is designed for operators looking to
produce applications that utilise the iPlanet Trustbase Transaction Manager
framework. It is designed to provide information for operators looking to
install the iPlanet Trustbase Transaction Manager platform. This guide
identifies hardware and software required prior to installation, how to install
iPlanet Trustbase Transaction Manager from CD-ROM

• iTTM3.0-Developer-Guide.pdf (this Document) that indicates how to build and
deploy your own services. At the end of this manual there are two worked
examples on how to build your own applications and an appendix on how to
operate your own PKI using the command line tool TokenKeyTool

• API reference <install_dir>/Trustbase/TTM/current/apidocs is a softcopy
Java documentation set that is provided as part of the iPlanet Trustbase
Transaction Manager installation. It is designed to provide application
developers with the information to utilise the framework and tools provided
within the iPlanet Trustbase Transaction Manager framework.

This manual assumes the reader is familiar with Java standards described in
http://www.javasoft.com and XML described in
http://www.w3.org/TR/REC-xml.

The manual also assumes that the reader has attended the iPlanet Trustbase
Transaction Manager Developer Training course.
2 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

http://www.javasoft.com
http://www.w3.org/TR/REC-xml

Related Documents
Related Documents
• Solaris 8 and Java Development Kit 1.2.1

http://docs.sun.com

http://java.sun.com/products/jdk/1.1/docs/index.html

• iPlanet Application Server 4.1

http://docs.iplanet.com/docs/manuals/ias.html

• iPlanet Web Server 6.0

http://docs.iplanet.com/docs/manuals/enterprise.html

• iPlanet Certificate Management System

http://docs.iplanet.com/docs/manuals/cms.html

• Oracle 8i Installation and Configuration Guides

http://www.oracle.com

• Hardware Security nCipher KeySafe 1.0 and CAFast

http://www.ncipher.com

• Identrus Message Specifications

http://www.identrus.com

Transaction Coordinator requirements (IT-TCFUNC)

Core messaging specification (IT-TCMPD)

Certificate Status Check Messaging specification (IT-TCCSC)
3

http://docs.sun.com
http://java.sun.com/products/jdk/1.1/docs/index.html
http://docs.iplanet.com/docs/manuals/ias.html
http://docs.iplanet.com/docs/manuals/enterprise.html
http://docs.iplanet.com/docs/manuals/cms.html
http://www.oracle.com
http://www.ncipher.com
http://www.identrus.com

Introduction
Introduction
The iPlanet Trustbase Transaction Manager platform provides a message oriented
middleware platform capable of supporting a variety of banking and trade
facilitation applications. This platform is specifically designed to enable Financial
Institutions to make use of the Identrus Network by providing all of the function
required to process messages that conform to the Identrus messaging specification.

iPlanet Trustbase Transaction Manager Platform
The iPlanet Trustbase Transaction Manager Platform operates at a high level as
follows:

• Incoming messages are received from dedicated security services that support
secure channel communication - including HTTP over SSLv3 and SMIMEv2
over SMTP.

• Requests are passed through a message parsing and verification engine that
verifies that the incoming message is requesting a service that is offered by the
platform, is complete and correctly formatted and builds the service request
message request for processing through the system. The platform supports a
range of standards for message coding including XML and HTML. A naming
service identifies the application logic that the message object will be routed to
for processing.

• Application Logic. The platform can support a range of application logic and
can be extended by both the deploying and third party organisations.

• Third party services. Applications executed on the iPlanet Trustbase
Transaction Manager platform may apply to third party systems during the
decision making process. These include an organisation's operational systems
and third party services.

• Response Management. A response to the relying party is constructed and
returned to the requesting party based on the policy defined for each particular
transaction supported by the platform.

All stages of the transaction processing process can be recorded in the repository's
audit facilities.
4 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Introduction
Identrus Transaction Coordinator
The iPlanet Trustbase Transaction Manager provides an implementation of the
Identrus Transaction Coordinator as specified in the following Identrus
documents:

The iPlanet Trustbase Transaction Manager is designed to be an extensible
platform that not only performs the core CSC function of an Identrus Transaction
Coordinator, but also allows the developer to produce applications that conform to
the Identrus messaging specification.

The iPlanet Trustbase Transaction Manager makes producing Identrus compliant
applications simple for the Developer by providing the following functionality:

• Standard presentation of messages independent of the transport mechanism.

• Standard Authentication and Authorisation of requests.

• Common validation and error handling of all Identrus Network layer
information within messages.

• Tools for generation of new application message types that conform to the
Identrus specifications.

The early sections of this guide identify these common components and the
functions supported by each. The later sections of the guide show how an Identrus
application may be produced and deployed on the iPlanet Trustbase Transaction
Manager infrastructure.

Title Description and Document Reference

Transaction Coordinator Transaction Coordinator requirements

(IT-TCFUNC)

Transaction Coordinator Messaging
Protocol Definition

Core messaging specification (IT-TCMPD)

Transaction Coordinator Certificate Status
Check Protocol Definition

Certificate Status Check Messaging
specification (IT-TCCSC)
5

Product Features
Product Features
iPlanet Trustbase Transaction Manager provides a platform for the delivery of
business to business E-Commerce solutions. The principal challenges to be
addressed are as follows:

Product features

Identity The solution recognises different types of credential and uses them
as the basis for authentication requests, sometimes to remote
and/or third party services.

It supports the establishment of multi-party trust relationships,
including those based on iPlanet Trustbase Transaction Manager
Third Parties and other external CA services.

Entitlement Once the identity of trading partners has been established, the
platform provides a means for a business to determine which
services it should provide to a potential customer.

The e-commerce platform specifies and enforces terms for the
provision of services based on the user type, credential type, access
channel, credit worthiness, and so on.

Dispute Resolution Using certificate-based technology, the platform provides services
for transaction signing, audit logging and non-repudiation.

Integration iPlanet Trustbase Transaction Manager integrates with existing
back and mid-office solutions such as Customer Relationship
Management and Cash Management solutions.

It supports a flexible e-commerce model, catering for '2-to-n'-party
transactions.

Availability It provides Business to business commerce on a global basis that
allows 24x7x365 availability.

Scalability It services an increasing customer base catering for unpredictable
performance requirements.

Security E-commerce solutions must provide total security for all parties.
This includes identification and authentication services, data
confidentiality and integrity, transactional security, and security
management services.
6 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 1

iPlanet Trustbase Transaction
Manager Architecture

The iPlanet Trustbase Transaction Manager is designed to fulfil the need for
Identrus enabled message oriented middleware for Financial Institutions. The
platform provides a means of offering Financial Services Applications over the
Internet that are consistent and re-useable.
7

Overview
Overview
Within a multi-tiered architecture, the iPlanet Trustbase Transaction Manager
component is the middle tier infrastructure that provides the ability to offer new
function, but shields first tier clients from the complexity of the existing enterprise
infrastructure (see Figure 1-1).

Figure 1-1 Three Tier Architecture

In order to achieve this, the iPlanet Trustbase Transaction Manager is designed to
be:

• Highly available

• Secure

• Reliable and scalable

It achieves this by using server side standards such as Servlets and EJB and
leverages the existing reliability and scalability functions of the iPlanet Application
Server.

Tier 2-TTM

Tier 3
Data sources

Tier 1 Client

Tier 3
Legacy systems

Tier 3
External systems

Open
Network
8 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Overview
The iPlanet Trustbase Transaction Manager Platform extends the iPlanet
Application Server function by providing a message-handling pipeline that may be
extended to process specific message types and formats. This message-handling
pipeline contains four major components:

• Transport listeners

• Presentation and formatting handlers

• Routing and authorisation management

• Business logic plug ins

The message pipeline is populated with a set of components that provide all of the
necessary pre-processing to support applications using the Identrus messaging
protocol and HTML based communication.

The operational side of the iPlanet Trustbase Transaction Manager platform is
augmented by a toolkit that allows the developer to generate message classes and
deploy the completed application. This is designed to reduce the development
effort required to produce applications that conform to the Identrus requirements
to an absolute minimum.
Chapter 1 iPlanet Trustbase Transaction Manager Architecture 9

External interfaces
External interfaces
The iPlanet Trustbase Transaction Manager is a middleware component that
provides a means of accessing and using existing legacy data sources over the
Internet. In order to provide this function the platform must be capable of:

• Listening and processing web protocols - HTTP, HTTPS, SMIME

• Accessing existing legacy systems via JDBC, CORBA, RMI

• Using resources provided by other servers on the Web

Figure 1-2 shows how these external interfaces relate to the iPlanet Trustbase
Transaction Manager component.

Figure 1-2 iPlanet Trustbase Transaction Manager Interfaces

Transport protocols
The iPlanet Trustbase Transaction Manager supports three basic transport
protocols:

• SMTP - Asynchronous mailed based communication

• HTTP - Synchronous insecure communication

• SSL - Secure synchronous communication

iPlanet Trustbase
Transaction Manager

Web Client
Legacy systems

External systems

SMTP Proxy

Web Server

HTTPS Proxy

Database
Log
10 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

External interfaces
iPlanet Trustbase Transaction Manager listeners proxy the SMTP and SSL
transport protocols to provide both a means of processing, and a means of logging
transport specific data. Any HTTP data is listened for directly by the Web Server.

These three transport protocols provide a means of carrying a variety of
application level messaging. The iPlanet Trustbase Transaction Manager contains
presentation components that deal directly with:

• SMIME wrapped XML or HTML

• HTML

• Identrus compliant XML application messages

The iPlanet Trustbase Transaction Manager platform may be extended to support
other application messaging protocols as required.

Enterprise connectivity
The iPlanet Trustbase Transaction Manager business logic is designed so that the
business logic implemented by the developer may use all of the standard
connectivity components available within the J2EE platform. Standard J2EE
connectivity components include:

• JDBC - Access to relational databases

• RMI and CORBA - Access to remote objects and EJB's

• JNDI - Access to directory and naming services

• JMS - Message oriented interfaces for use with message queues e.g. MQ Series

The iPlanet Trustbase Transaction Manager business logic is also capable of
utilising the underlying connectivity components provided by the iPlanet
Application Server for access to internal systems. These enterprise connectors
include interfaces for:

• R/3 - Enterprise Resource Planning

• CICS - IBM Mainframe integration

• BEA Tuxedo - Transactional data systems

• Peoplesoft - Enterprise Resource Planning
Chapter 1 iPlanet Trustbase Transaction Manager Architecture 11

External interfaces
Server to server connectivity
The iPlanet Trustbase Transaction Manager platform provides a means of
abstracting the transport and presentation formats used by the incoming message
within the presentation component. The same mechanism (through a different
API) is used to allow a business service to make requests of other servers.

The Identrus Certificate Status Check (CSC) service uses this connector
functionality to provide a means of determining the validity of a certificate at a
particular point in time. (See Chapter 2, “Presentation logic”.)

Routing
The router provides a mechanism for imposing structure and ordering on the
execution of services in a secure way. It acts as a gatekeeper to ensure that services
are only executed by authorised individuals and in an appropriate context. A user
of the system will connect to the server and then exchange messages. At the highest
level, the user will be trying to accomplish a task. Some tasks will require
authorisation (and therefore authentication) prior to being performed; services
may also perform tasks in a slightly different fashion depending on the identity of
the user making the request.

The Router has been designed with the following in mind:

• Authentication and authorisation is kept separate from business logic.

• Configuration and management of the routing table is easily implementable
and not error prone.

• Complex solutions can be built where required

• Implementing a simple solution is not difficult

• Services can implement atomic business level functions and are independent of
one another.

The function of the router is central to the iPlanet Trustbase Transaction Manager
platform. All messages are passed through a router, and, based on the current
context of the message and its contents, the router will accept or reject the message
for processing.
12 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

External interfaces
In order to define a flexible mechanism for routing, capable of working within a
variety of complex environments, iPlanet Trustbase Transaction Manager provides
rule based routing. This allows a means of modifying, and extending, the
behaviour of the iPlanet Trustbase Transaction Manager installation over a period
of time without the need to modify existing modules or services. See also
Chapter 3, “Routing” for more details on this.

Authorisation
The basic requirement of being able to gate service access is met by the ability to
route a message based not only on the message type, but also on its current level of
authorisation. Within iPlanet Trustbase Transaction Manager, authorisation is
considered an extension of authentication i.e. in understanding who a person is, we
can determine what they are allowed to do.

The authentication mechanisms of iPlanet Trustbase Transaction Manager are not a
separate component. Authentication data is gathered by the default iPlanet
Trustbase Transaction Manager framework. This can then be added toby domain
specific services. The platform provides a default authorisation service that is
capable of mapping both a username and password, or a digital certificate onto a
user group or role. The router then ensures that when a service is accessed, the role
has been authorised for access to that service.

Developers are at liberty to replace the default authorisation service with a
mechanism that maps user information onto existing repositories such as an
enterprise directory service. See also Chapter 3, “Routing” for more information on
this.

Services
Business services are at the heart of an e-commerce application, and the iPlanet
Trustbase Transaction Manager provides a means of registering services written by
the developer into the platform. These services need not be concerned with
processing transport specific information, presentation specific information,
authentication of the user, or authorisation of a users request. This allows the
developer to concentrate on the function of the application, and integration of
existing systems into a web enabled infrastructure. See also Chapter 5, “Standard
Services” for more information on this.
Chapter 1 iPlanet Trustbase Transaction Manager Architecture 13

External interfaces
14 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 2

Presentation logic

When an iPlanet Trustbase Transaction Manager implementation, on receiving a
message, routes the message through to its appropriate service, and the service
cannot directly act upon this message, iPlanet Trustbase Transaction Manager
utilises the Connection Manager component to process messages appropriately.
15

Overview
Overview
The iPlanet Trustbase Transaction Manager presentation components comprise of
a set of protocol handlers, message readers and message writers. The purpose of
the protocol handlers is to extract the transport specific headers and footers,
determine the MIME type and message type, and to forward the message content
to an appropriate message handler.

The message handlers are selected on the basis of the MIME and Message type
determined by the protocol handlers. The iPlanet Trustbase Transaction Manager
provides two default message handlers, these are:

• Identrus XML messages

• HTML messages

In the case of the Identrus XML message, the appropriate Identrus network
processing is performed as described in the following sections.

Figure 2-1 Presentation layer components

In the case of HTML requests, the message reader converts all of the fields in the
HTML form into an XML structure represented by a set of DOM nodes.

Presentation

HTTP
Protocol
handler

XML
Message

reader

Presentation

HTML
Message

reader

XML
Message

Writer

HTML
Message

Writer

XML
Message

reader

HTML
Message

reader

XML
Message

Writer

HTML
Message

Writer

HTTP
Protocol
handler

Service

Connection
ManagerRouter Service

Service
16 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Overview
In both the cases of XML and HTML the output to the router is wrapped with the
session information into an iPlanet Trustbase Transaction Manager message. These
iPlanet Trustbase Transaction Manager messages are then sent, by the router, to the
appropriate service.

The services perform the appropriate message transformation or construction and
return an iPlanet Trustbase Transaction Manager message back to the router. The
router will then send the iPlanet Trustbase Transaction Manager message back to
an appropriate message writer. In the case of the HTML message writer this will
extract the DOM values in the message into an HTML template determined by the
message type. The template may contain a set of directives that allow conditional
or recursive construction of form data.
Chapter 2 Presentation logic 17

Protocol handlers
Protocol handlers
When the platform receives a message, the protocol handler is selected on the basis
of the MIME type of the incoming message and is then invoked. The function of
this component is to determine the application protocol information, specifically:

• Message type

• Context ID

Each MIME type, and therefore protocol handler, represents a class of messages
e.g. application/OCSP. The client must be capable of generating the appropriate
MIME type.

• HTML Protocol Handler If the client is a Web browser it normally generates a
MIME type of application/x-www-form-url-encoded. iPlanet Trustbase
Transaction Manager comes supplied with the default Protocol Handler for use
in this situation. Its default actions are to:

• Search the form fields for:

❍ Message Type - Identifying the message type

❍ Context ID - Identifying the Context Identifier

• To set the response MIME type to text/html indicating to the Browser that the
reply is a standard HTML page.

Identrus protocol handler
The protocol handler does the initial message processing for all messages arriving
at the TC with a mime-type that begins with the following string:
"application/identrus-".

Once at the protocol handler the following actions are carried out in the following
order:

• The raw XML stream is read from the client.

• The raw XML is parsed into the internal iPlanet object structure (known as the
message tree)

• The message tree is then validated against the DTD for that message that is
specified by the DOCTYPE in the XML message.
18 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Protocol handlers
• The message tree is traversed and any ID attributes are checked to ensure that
there are no duplicates. This is a mandatory XML processing step, and is
especially important where XML structures will be digitally signed.

• The system identifier from the DOCTYPE tag is placed into a iPlanet Trustbase
Transaction Manager Message Attribute identified by
IdentrusConstants.SYSTEM_ID_ATTR.

• Elements from the NIB are extracted ready for Raw Message Logging.

• The Certificate Bundle is extracted from the message and all of the certificates
are logged in the Certificate Log.

• The message, minus its Certificate Bundle, is sent to the Raw Message Log.

• The Raw Log Id is returned from the log and placed into a iPlanet Trustbase
Transaction Manager Message Attribute identified by
IdentrusConstants.RAW_RECORD_MARKER

• The iPlanet Trustbase Transaction Manager Message type is set to be
IdentrusConstants.IDENTRUS_MESSAGE

• The message tree is attached to the iPlanet Trustbase Transaction Manager
Message as serialised content, ready to be sent to the appropriate message
reader.

NOTE The variable DOCTYPE is an XML concept. See for instance
http://www.w3.org/TR/REC-xml. The constants
SYSTEM_ID_ATTR, RAW_RECORD_MARKER and
IDENTRUS_MESSAGE are Identrus Constants. See
com.iplanet.trustbase.identrus.IdentrusConstants for more
information on Identrus constants.
Chapter 2 Presentation logic 19

http://www.w3.org/TR/REC-xml

Message Readers
Message Readers
The appropriate message reader is invoked based on the information gathered by
the protocol handler. Each Message Reader will have an implicit understanding of
the class of messages it can convert into an internal iPlanet Trustbase Transaction
Manager message.

Default Message Reader, HTTP/HTML Reader
iPlanet Trustbase Transaction Manager comes with a pre-registered HTTP/HTML
Message Reader that takes an application/x-www-form-url-encoded type. This
is registered as a default message reader, meaning that if the message reader
registry is unable to make a specific match to the message type detected by the host
environment adapter then the default HTTP/HTML message reader will be
returned. If the MIME type is anything other than
application/x-www-form-url-encoded an error is returned.

Once the appropriate message reader has been found it is then passed an iPlanet
Trustbase Transaction Manager Message object and the input stream containing
the remaining unprocessed message content. The message reader reads and parses
this message content from the input stream and creates a data block containing an
internal representation of the message content. This is then stored in the iPlanet
Trustbase Transaction Manager Message object for use by the appropriate
service(s).

Once the message reader has parsed the input stream, and completed construction
of the iPlanet Trustbase Transaction Manager Message, the message analyser
passes the iPlanet Trustbase Transaction Manager Message on to the Router, and
handles any errors or exceptions that result from the subsequent processing of the
iPlanet Trustbase Transaction Manager Message.
20 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Message Readers
Using the default HTTP Reader
The HTTP reader performs a relatively simple extraction of information from the
input stream. Each input field is extracted from the HTTP Post or Get string and
placed into a DOM structure. Once all the fields have been extracted this DOM
Object is stored within the iPlanet Trustbase Transaction Manager Message. If the
user does not specify the structure of the DOM object then each field is stored as an
attribute of a node HTTP_VALUES,

However it is possible for the developer to force the fields to be stored in a more
complex structure using certain escape sequences.

In order to create your own DOM structure the HTTPReader class has the ability to
recognise an escape sequence contained in place of an input field name: <input
name="$|xml:<node1>…<noden>|$">. For example:

This will lead to a set of nodes being created under the root HTTP node containing
the following data:

Default Message Reader, Identrus Reader
This message reader will handle messages with a mime-type that begins with
"application/identrus-" and a message type of
IdentrusConstants.IDENTRUS_MESSAGE.

HTTP
HTTP_VALUES Attributes [<field_name> = <value>]*

<input name="$|xml:message.user.name|$">
<input name="$|xml:message.user.address|$">
<input name="$|xml:message.user?jobtitle|$">

HTTP
HTTP_VALUES Attributes [<field_name> = <value>]*
message
user Attribute jobtitle=<value>
name = <value>
address = <value>
Chapter 2 Presentation logic 21

Message Readers
Once at the message reader the following actions are carried out:

• Signature check the mandatory DSIG signature

• Verify the certificate chain in the message, and ensure that the root certificate
of the chain is in the database. Ensure that the root of the chain has a Certificate
Store attribute of IdentrusConstants.IR_CA.

• Set the security context on the iPlanet Trustbase Transaction Manager Message
ready for the authorisation phase in the router.

• Make a billing log entry for the message

The message is then sent for routing.

Default Message Reader, Identrus Error Reader
This message reader will handle messages with a mime-type of
"application/identrus-identrustransporterror" and a message type of
IdentrusConstants.IDENTRUS_TRANSPORT_ERROR

Once at the message reader the following actions are carried out:

• There is no signature to check on an incoming "Identrus Transport Error", so
the security context on the iPlanet Trustbase Transaction Manager Message is
left unset. Messages arriving through this reader should only be coming
through the connector, so they should never go to the router.
22 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Message Writers
Message Writers
Once a message has been routed through to one or more services and returned to
the Router, it is passed back to the Message Analyser (this assumes no exceptions
or errors are thrown). At this point the message analyser is required to determine
which Message Writer to be used to process the returned iPlanet Trustbase
Transaction Manager Message into a suitable form for return to the user. As with
message readers the analyser uses the Messages returned type and response MIME
type values to select the appropriate message writer.

The message writer is responsible for extracting information contained in the
iPlanet Trustbase Transaction Manager Message and processing it into a format
that can be written back to the client.

To register the message writer with the registry iPlanet Trustbase Transaction
Manager is supplied with an HTML management interface. This allows the
developer to register new Message Writer sub-classes in the internal configuration
store associated with iPlanet Trustbase Transaction Manager. Alternatively
registration may be undertaken by adding the appropriate entries to the
tbase.properties file. To achieve this, new Message Writers should be added to the
[MessageWriter] section and take the form:

where the <name> is a name given by the developer and the <classpath> is the
fully qualified classpath of the new MessageWriter instance. It is important to note
that if you add new Message Writers through the management interface and at a
later date it becomes necessary to restart iPlanet Trustbase Transaction Manager
using the properties file then all changes will be lost. So it is as well to add entries
to the properties file even if you are using the management interface.

Default HTML Message Writer
iPlanet Trustbase Transaction Manager comes with a pre-registered HTML
message writer that takes a text/html MIME type. This is registered as a default
message writer, meaning that if the message writer registry is unable to make a
specific match to the message type and MIME type detected by the host
environment adapter then the default HTML message reader will be returned. If
the MIME type is anything other than text/HTML an error is returned.

message.writer=<name>:<classpath>
message.writer=
Script:uk.co.jcp.tbaseimpl.parse.message.http.ScriptWriter
Chapter 2 Presentation logic 23

Message Writers
This MessageWriter is capable of translating XML fields contained in the message
into an HTML form using pattern matching and templates similar to many other
Dynamic HTML writers.

The ScriptWriter, the default HTML Message Writer, uses a scripting language that
is intended to provide a simple way to display uncomplicated information quickly
and efficiently without having to recourse to a full XSL.

This is intended for use where the response is expected to contain text (usually
HTML), and the information returned by the router is simple enough to allow
straightforward substitution of values from the returned XML into the Template.

The ScriptWriter class works by taking the DOM object contained in the returned
message and extracting all the fields therein. These fields are then substituted into
the template that is selected by using the type and format of the returned message
type. The substitution is achieved using a series of Script Tags that allow the
developer to specify which parts of the returned message are to be placed where in
the template. The templates used by the ScriptWriter may be configured in one of
two ways, either through the iPlanet Trustbase Transaction Manager HTML
management interface or by adding the appropriate entries to the tbase.properties
file in the [ScriptWriter] section as illustrated below:

Where the <format> is text/html, <type> is the message type that will have been
set by the service that last processed the message before it was returned, and
<template> is the name of the template file. This file may either be an absolute path
or a relative path, if it is a relative path then an entry is required to specify the
location of the 'root':template.directory=.\ (note the trailing '\' which is required)

writer.typeandformat=<format>:<type>:<template>
writer.typeandformat=text/html:TimeServiceTimeResponse:Config\Templates\
TimeService\TimeServiceTimeResponse.html
24 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Message Writers
Script Tags
There are four main tags used in the script templates:

• $$xml:<XML Variable Name>$$

This represents the single substitution of a variable from the XML Document into
the template. <XML Variable Name> is the fully qualified 'location' of a node in the
XML Document returned by the router which is expected to contain a string value
that may be substituted into the template. For instance, to retrieve the name from
an XML Document one might specify the tag,

This tag is also capable of specifying an attribute from a given XML node using the
"?" escape sequence to select the given attribute. For example, in order to retrieve
users middle initials that are stored as an attribute of their name, one might specify
the following tag,

• $$repeat:<XML Array Name>[<UserDefined Tag
Name>:<Iterations>]$$…$$/repeat$$

Represents the start point for a repeating array of values contained in XML
Document.

<XML Array Name> is the fully qualified 'location' of an array in the XML
Document.

<UserDefined Tag> Name allows the template author to provide a shorthand
name for this array location, e.g. If the array represents the address of a user,
Response.Content.User.Address, then the author could tag this as address for ease
of use within the repetition block.

<Iterations> tag allows the author to specify which 'parts' of the array are to be
displayed.

Table 2-1 XML Repeat Iterators

$$xml:message.content.user.name$$

$$xml:message.content.user.name?middle_initials$$
Chapter 2 Presentation logic 25

Message Writers
Every repeat block is terminated with a $$/repeat$$ statement.

• $$xif:<XML Variable Name>[="<value>"]$$... $$/xif$$

Represents a conditional tag. In its simplest form this tag says iterate everything
contained within the conditional statement if the node (or attribute - using the
same "?" escape sequence) is found to exist within the XML.

If the "=" is used however, not only does the node or attribute have to exist but the
value has to be an exact (case sensitive) match of the one specified. For example one
might specify a conditional block say only print the user details if the job title
matches "SysAdmin" as follows:

Associated with the $$xif:…$$ tag there is also an $$xelse:…$$ tag to provide
optional switching. This tag has two modes of use:

Iterator Description Example

* Iterate over all items contained in the specified
array

*

<n> Select the nth element of the array, if the array has
less than n elements then nothing is displayed

2

<m>-<n> Select from the mth to the nth elements (inclusive),
if the array has less than n elements then this
selects from m to the end, if the array has less than
m elements then nothing is displayed

3-5

<m>-* Select all elements from the mth up to the last
element in the array

2-*

<attribute>=<value> Select ALL the elements in the array where the
specified attribute equals the given value

location=

London

, Allow multiple iterators to be specified together 0,3-5,9,post
code=EC1

$$xif:message.content.user?jobtitle="SysAdmin"$$

$$xelse$$
26 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Message Writers
Simple usage, if the $$xif:…$$ condition is unfulfilled then this condition is used
instead. One might use this sequence if it is necessary to use two different display
formats based on the contents of an XML node.

Uses the same format as the xif statement to determine if this branch should be
executed. This provides extra conditional switching which can be used to make
more complex decisions about which sections of the template are to be used.

• $$xprop:[<section>]<property>[=<default_value>]$$

This is a special tag that is used to incorporate property's values from the
tbase.properties file into the template. This allows different application server
environments to be supported by the same template by changing the property
value for each server type. The $$xprop:…$$ tag is also special in that it is
pre-processed before any of the other tags are dealt with, thus it is possible to
include other tag information (except $$xprop:…$$ itself) in the properties.

• <section> the name of the section that contains the property, if this is left out,
the section used is the ScriptWriter section.

• <property> the name of the property that is to be used.

• <default_value> a default value to be used if the property is not found, if this
is not specified and the property is not found then an empty string is returned.

$$xelse:<XML Variable Name>[="<value>"]$$
Chapter 2 Presentation logic 27

Message Writers
Using the ScriptWriter tags
• $$xml:…$$ substitution

As documented above this tag represents a straightforward substitution of a single
value contained in the returned XML Document, into the HTML Template. In the
following template snippet, we can see that the author expects the XML Document
returned from the router to contain data indicating an administrative support mail
address.

• $$xml:…$$ filtering

It is also possible to introduce an attribute filter into the qualified path, as shown in
the code snippet below:

Here the XML Document contains an array of one or more user's details and each
user contains a node that contains their email address. We use the user title
attribute to determine which of the users job description is System Administrator
and use the resultant user to extract the email address.

• $$repeat:…$$ loop

<P>

Please try our
Support
Desk
if you have any enquiries

</P>

<P>
Email the
<A
HREF="mailto:$$xml:response.content.user?title="SysAdmin".email$$"
>System Administrator
if you have any enquiries regarding your login details.
</P>
28 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Message Writers
The following example shows the complete usage of a repeat block, including the
$$/repeat$$. Here the author is indicating the XML Document response will
contain an array of transactions, under the node http_response.content.transaction.
This section of the XML Document tree is then tagged as txn.

Inside the repeat block, one then uses the standard $$xml:…$$ notation to select
data contained in each member of the array returned.

Each transaction will contain three nodes date, description and amount. These will
be filled into a single table row and the table will contain as many rows as there are
transactions returned.

<table BORDER="1" BGCOLOR="#fff0a0">
<th COLSPAN="3" BGCOLOR="ffd080"><i><font SIZE="+1"

COLOR="#00a000">Statement Details</i></th>
<tr>

<td WIDTH="50" ALIGN="center">Date</td>
<td WIDTH="400" >Description</td>
<td WIDTH="200" ALIGN="center">Amount</td>

</tr>
$$repeat:message.content.transaction[txn:*]$$

<tr>
<td>$$xml:[txn].date$$</td>
<td>$$xml:[txn].description$$</td>
<td ALIGN="right">$$xml:[txn].amount$$</td>
</tr>

$$/repeat$$
</table>
Chapter 2 Presentation logic 29

Message Writers
• Nesting $$repeat:…$$ blocks

It is also possible to nest repeat blocks, if we consider the users example again it
might be that each user node contains an array of address nodes (one per line of
their address) and hence we might wish to iterate over the address lines for each
user. The following template snippet shows how this might be done:

<table BORDER="1" BGCOLOR="#fff0a0">
<th COLSPAN="3" BGCOLOR="ffd080"><i><font SIZE="+1"

COLOR="#00a000">System Users</i></th>
<tr>

<td WIDTH="100" ALIGN="center">Name</td>
<td WIDTH="400" ALIGN="center">Address</td>
<td WIDTH="100" ALIGN="center">Telephone</td>

</tr>
$$repeat:message.content.user[user:*]$$

<tr>
<td>$$xml:[user].name$$</td>
<td>
$$repeat:[user].address[addr:*]$$

$$xml:[addr]$$

$$/repeat$$
</td>
<td>$$xml:[user].telno$$</td>
</tr>

$$/repeat$$
</table>
30 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Message Writers
• $$xif:…$$

In this case, we will extend the repeat example to show how we might need to
perform a conditional display. In this case the phone number column either
displays a home phone number for all teleworkers or an internal extension for
those based in the office.

<table BORDER="1" BGCOLOR="#fff0a0">
<th COLSPAN="3" BGCOLOR="ffd080"><i><font SIZE="+1"

COLOR="#00a000">System Users</i></th>
<tr>

<td WIDTH="100" ALIGN="center">Name</td>
<td WIDTH="400" ALIGN="center">Address</td>
<td WIDTH="100" ALIGN="center">Telephone</td>

</tr>
$$repeat:http_response.content.user[user:*]$$

<tr>
<td>$$xml:[user].name$$</td>
<td>
$$repeat:[user].address[addr:*]$$

$$xml:[addr]$$

$$/repeat$$
</td>
<td>

$$xif:[user].workType="Teleworker"$$
$$xml:[user].homePhone$$

$$xelse$$
$$xml:[user].workExtn$$

$$/xif$$
</td>
</tr>

$$/repeat$$
</table>
Chapter 2 Presentation logic 31

Message Writers
• $$else:…$$

Lastly, it is possible to perform a multiple conditional statement using the
extendedlse construct. Taking the previous example we can extend the switch to
include an extra case for salesmen.

• $$xprop:…$$ property substitution

The code snippet below shows how to get a property from the tbase.properties file
into a template:

Default Identrus Message Writer
This message writer will handle messages with a mime-type that begins with
"application/identrus-" and a message type of
IdentrusConstants.IDENTRUS_MESSAGE.

Once at the message writer the following actions are carried out:

• Sign the message with the IdentrusConstants.L1_IP_SC certificate, unless the
iPlanet Trustbase Transaction Manager Message attribute identified by
IdentrusConstants. SIGNING_CERT_ATTR is present. If this attribute is
present then its value is taken as the purpose Id of the certificate/key used to
sign the outgoing message.

<td>
$$xif:[user].workType="Teleworker"$$

$$xml:[user].homePhone$$
$$xelse:[user].workType="Sales"$$

$$xml:[user].mobile$$
$$xelse$$

$$xml:[user].workExtn$$
$$/xif$$

</td>

<hr>
<form METHOD=post
ACTION="$$xprop:[ApplicationServcer]form.string$$/appservlet">

<h3>
Please enter your card details so that we may confirm your
identity:
</h3>
32 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Message Writers
• The outgoing message is DTD validated according to its DOCTYPE, this
prevents malformed messages from leaving the TC.

• The DOCTYPE tag is set and the mime-type of the message is determined from
the DOCTYPE

• The Certificate Bundle is extracted from the message and logged with the
Certificate Log

• The XML of the outgoing message, minus the Certificate Bundle, is recorded in
the message log

• The message is written back to the client.

Default Identrus Error Writer
This message writer will handle messages with a mime-type of
"application/identrus-identrustransporterror" and a message type of
IdentrusConstants.IDENTRUS_TRANSPORT_ERROR

Once at the message writer the following actions are carried out:

• The outgoing message is DTD validated according to its DOCTYPE, this
prevents malformed messages from leaving the TC.

• The DOCTYPE tag is set and the mime-type of the message is determined from
the DOCTYPE

• The XML of the outgoing message is recorded in the raw log

• The message is written back to the client.
Chapter 2 Presentation logic 33

Connection Manager
Connection Manager
On receiving a message iPlanet Trustbase Transaction Manager routes this
message to an appropriate service which can process the message accordingly, and
can, if required return a message in response. A problem arises when the particular
iPlanet Trustbase Transaction Manager implementation, on receiving a message,
routes the message through to its appropriate service, and the service cannot
directly act upon this message. It needs additional information from another source
in order to complete the task presented to it by the received message. Hence,
iPlanet Trustbase Transaction Manager needs the facility to create new messages
using specific message transport protocols and send these messages to specific
external destinations. To accomplish this, the service needs to call the "Connection
Manager".

Figure 2-2 Connection Manager Architecture

Connector

XML
Message

reader

HTML
Message

reader

XML
Message

Writer

HTML
Message

Writer

HTTP
Protocol
handler

Service

Connection
Manager

Service

Service

External
Server

URL
Connection
34 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Connection Manager
The Connection Manager is essentially a service that can be used to send and
receive messages to and from external entities. The Connection Manager is passed
a iPlanet Trustbase Transaction Manager message and Destination Object. It uses
this information to send and receive messages related to the specific
message/destination object supplied. The Connection Manager Message Process
works as follows:

• The Service calls the Connector, passing the iPlanet Trustbase Transaction
Manager Message containing the request to the external resource, and a
Destination Object describing the external resource. Destination Objects are
application-defined implementations, and are recognised by ProtocolMap
objects that are application defined plug-in components to the Connector. A
null Message parameter may be passed, in which case no attempt will be made
to write data to the URLConnection object when a connection has been
established.

• The Connector calls the ProtocolMapManager to translate the Destination
Object it was supplied with into a ProtocolDescriptor Object that specifies a
URL for the connections, and a mime-type for the request content. The
ProtocolMapManager determines which ProtocolMap from those registered
with it (an administration activity) is responsible for dealing with the supplied
Destination implementation, and passes the Destination Object to the
ProtocolMap.

• The ProtocolMap translates the Destination Object into a ProtocolDescriptor .
This action may be simple and local, or it may be complex and involve further
external requests.

• The Connector makes a connection to the external resource using the URL in
the ProtocolDescriptor to form a URLConnection.

• If a Message was passed to the Connector, it sets the doOutput variable on the
URLConnection to true, to signify it's intention to write data to the connection.
The Connector then selects a MessageWriter from its registry of
MessageWriters, according to the type of the Message to be written (in the
message Type attribute), and the required format, as specified in the

NOTE Please consult your API for more information about this:

• uk.co.jcp.tbase.connector

• uk.co.jcp.tbase.xurl

• uk.co.jcp.tbaseimpl.connector
Chapter 2 Presentation logic 35

Connection Manager
ProtocolDescriptor. The MessageWriter is called to translate the Message to the
appropriate format, and write it to the OutputStream of the URLConnection.
Should no Message have been passed to the Connector, the doOutputfield of
the URLConnection is set to false, then nothing is written to the
URLConnection..

• The Connector hands the InputStream of the URLConnection to the
ConnectionProtocolAnalyser, along with the mime-type of the response
[determined from the URLConnection]. The ConnectionProtocolAnalyser
determines a ProtocolHandler to call, using the mime-type of the response.

• The ConnectionProtocolAnalyser gives the selected ProtocolHandler a new
iPlanet Trustbase Transaction Manager Message, and the InputStream . The
ProtocolHandler reads from the InputStream to determine the Message type of
the response, which it sets on the Message (it may also set a Context identifier,
although this will be ignored in this setting), before returning.

• The Connector selects a MessageReader based on the response Message type,
and the response InputStream mime-type. The MessageReader is called to
complete the parsing of the response. After the MessageReader completes, the
Connector releases any resource used in making the external connection, and
returns the parsed Message to the requesting Service.

Protocol Map Manager
The Connection Manager provides the ability for Services in the iPlanet Trustbase
Transaction Manager framework to communicate with other external entities. To
do this the Service passes a message and Destination to the Connector (Connection
Manager), which routes the message to the specific external entity. To find the
address of the communicating party, the supplied Destination is passed to the
ProtocolMapManager. This ProtocolMapManager then passes the Destination to its

NOTE iPlanet Trustbase Transaction Manager provides a default connector
that implements the connector interface defined in
uk.co.jcp.tbaseimpl.connector.DefaultConnector. Most of these
classes are supplied as part iPlanet Trustbase Transaction Manager.
Some are not. For instance, java.net.URLConnection is part of the
core Java API.
36 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Connection Manager
associated ProtocolMap registered with the ProtocolMapManager. The specific
ProtocolMap then returns a ProtocolDescriptor object associated with this
Destination. Each specific ProtocolMap decides which ProtocolDescriptor to return
for any supplied Destination.

To create a new application specific protocol mapping system, the following steps
have to be followed:

• Creation of a Specific ProtocolMap.

• Creation of a Specific Destination

• Registering the new ProtocolMap with the ProtocolMapManager.

• Populating the ProtocolMap with data.

These are now described in turn.

• Creation of a Specific ProtocolMap

All ProtocolMap objects must implement the ProtocolMap interface. They must
also provide an empty/default constructor, due to the fact that the
ProtocolMapManager will dynamically instantiate the ProtocolMap object in order
to register the class with itself.

The ProtocolMap enforces the following methods:

Returns a list of the package qualified class names of the Destination
implementations that this ProtocolMap recognises.

NOTE Please consult the framework uk.co.jcp.tbase.connector and the
default connection manager class implementation can be found in
uk.co.jcp.tbaseimpl.connector.

public Enumeration getDestinationTypes()

public ProtocolDescriptor getProtocolDescriptor(Destination
destination)

throws InvalidDestinationException
Chapter 2 Presentation logic 37

Connection Manager
Translates an application's specified Destination object into a ProtocolDescriptor,
specifying the URL and mime type for the connection.

• Creation of a Specific Destination

All Destinations must implement the Destination interface. This interface does not
enforce any methods, leaving all methods and data purely application specific,
thus relying on its associated ProtocolMap to have prior knowledge of its format.

• Registering the new ProtocolMap with the ProtocolMapManager.

Once an application specific ProtocolMap and Destination have been constructed,
the ProtocolMap has be registered with the ProtocolMapManager before any
Service in iPlanet Trustbase Transaction Manager can utilise its function.

NOTE The application specific ProtocolMap must not contain any objects
that are not serializable, as the ProtocolMapManager has
persistence. Consult your API
uk.co.jcp.tbase.connector.ProtocolMap for more information on this.

NOTE The application specific Destination must not contain any objects
that are not serializable, as the ProtocolMapManager has
persistence. Consult your API uk.co.jcp.tbase.connector.Destination
for more information on this.

NOTE If a new application specific ProtocolMap contains a reference to a
specific Destination used by an existing ProtocolMap registered
with the ProtocolMapManager then the new ProtocolMap will be
prevented from registering with the ProtocolMapManager.
38 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Connection Manager
Protocol Maps can be registered in the tbase.properties file that contains a property
section called "ProtocolMapManager". In this section the application specific
ProtocolMap objects can be supplied. For instance,

URL Connection Implementation
Internally in the Connection Manager, once the ProtocolMapManager returns a
ProtocolDescriptor from a supplied Destination, the URL string representation is
obtained from the ProtocolDescriptor. From this string representation of a URL, an
URLConnection object is obtained, from which the output and input streams are
used to send and receive the message from the Connection Manager (Connector).
This conversion of a string representation of a URL to a URLConnection object is
carried out through the XURLxxxxx classes. The classes used are:

• XURL

• XURLStreamHandler

• XURLStreamHandlerFactory

These classes are needed, due to the fact that the existing URL class hierarchy
supplied by javasoft is not extensible in an EJB format. This is because in the
existing framework, if the URL class does not recognise an URL format then it
looks to see if a XURLStreamHandlerFactory is loaded, which could supply the
unknown URL format. This factory can only be set once, so in an EJB environment
it is impossible to ascertain whether URLStreamHandlerFactory has been
instantiated, so making this framework unusable. Hence, we have produced an
extensible framework that can work in any environment. These objects are
identified as XURL, XURLStreamHandler, and XURLStreamHandlerFactory.

The process flow is as follows:

[ProtocolMapManager]
protocol.map=uk.co.jcp.tbase.connector.SimpleProtocolMap

NOTE This tbase.properties file will only be read once unless the
configuration object associated with the instance of iPlanet
Trustbase Transaction Manager is removed. Note also, the full
package name must be supplied.
Chapter 2 Presentation logic 39

Connection Manager
• A XURL object is constructed using the string representation of the URL
supplied by the ProtocolDescriptor.

• To obtain the URLConnection object the XURL's method openConnection() is
called.

• Inside this method the XURLStreamHandlerFactory is called.

• The XURLStreamHandlerFactory, if not called before initialises itself from the
tbase.properties file, registering XURLStreamHandler classes in the section
"XURLStreamHandlerFactory", each class mapped against the value
"url.stream.protocol".

• The XURLStreamHandlerFactory is searched using the protocol that will be
used to connect to the specified URL as the key.

• If the protocol supplied maps to a XURLStreamHandler registered with the
XURLStreamHandlerFactory, then the XURLStreamHandler object is called in
order to provide the URLConnection object required.

• If the protocol does not match any XURLStreamHandlers stored within the
XURLStreamHandlerFactory, then an URL object is created from the supplied
string representation in the XURL, and the URLConnection object is obtained
directly from that.

Providing this extra framework, JCP supplies the ability to override existing
protocol formats, in order to introduce any specific enhancements, i.e. HTTPS,
where our SSL is directly tied in with our Certificate Storage interfaces.

NOTE Please consult your API for more information this:
uk.co.jcp.tbase.xurl.
40 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 3

Routing

The router component has two specific functions:

• Provide a means of authorising requests to particular services

• Provide a means of controlling the flow of transactions

The router has a rule based architecture that allows the developer to modify the
behaviour of a transaction in many cases without recourse to writing Java Code.
This is achieved by producing a set of XML rules that determine the flow of a
message through the system, and comparing these rules to the values held in the
v's message.

The following sections define the concepts used in the router architecture, the
function of the router, and the default implementation for Identrus message
processing.
41

Messages
Messages
An iPlanet Trustbase Transaction Manager message is an entity that moves from
one part of iPlanet Trustbase Transaction Manager to another. The message is an
encapsulation of the message sent to iPlanet Trustbase Transaction Manager
together with internal data about the message. The basic components of an iPlanet
Trustbase Transaction Manager message are as follows:

• Message Type

• Attributes

• Data Content

The Message Type and Attributes determine how the framework itself will handle
the iPlanet Trustbase Transaction Manager Message. Anything in the Data Content
is treated as opaque by the iPlanet Trustbase Transaction Manager framework; i.e.
any changes to the Data Content will not be visible to the iPlanet Trustbase
Transaction Manager framework.

The Router determines the state of a message by interacting with the message's
attributes. The router uses a set of pre-conditions based on attribute values to
determine the state of the message and therefore which actions should be applied
to that message. These pre-conditions and actions are stored in the form of router
rules that are described later.

Message Attributes
Message Attributes are just name-value pairs in the same way as Java properties.
Attribute names and values are always string types.

A protocol handler, message reader, message writer, the router or a service may
read and write message attributes. This allows each stage in the message
processing pipeline to add its own state information.

NOTE Further details of the content of an iPlanet Trustbase Transaction
Manager message can be found in the API documentation for
uk.co.jcp.tbase.environment.Message.
42 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Messages
Attributes may be defined by any user application code, but a number of standard
attributes are used by the iPlanet Trustbase Transaction Manager framework.
These are defined below:

• messageType
This attribute is treated specially by the Message API class, the message type is
used in conjunction with the message MIME type to determine which Message
Readers, Message Writers and Protocol Handlers should be used in the
processing of this message. It is the responsibility of the Protocol Handler for
the MIME type to set this attribute correctly. The messageType attribute may
change during the processing of a message.

• security.role
This attribute contains the security role to which this message has been
attributed. The authenticator service sets this attribute to one of the following
values: the role name for successful authentication, default when no role can be
assigned

• security.cert.dn.<n> [1 <= n <= cert chain length]

security.cert.sn.<n> [1 <= n <= cert chain length]

These attributes describe the certificate chain authenticating a message. Each
certificate in the chain [starting with the subject cert, numbered 1] is identified
by it’s issuer Distinguished Name and serial number

• security.cert_encoding
This is always BASE64.

• security.cert_present
Is there a valid certificate present for authentication purposes?

• security.username
A username for authentication purposes.

• security.password
A password for authentication purposes.

• security.user_pass_present
Is there any valid username/password evidence for authentication present on
this message.

• security.auth_failed
Authorisation failed when an executeServiceDirective was called, this means
that there was no role/serviceName mapping in iPlanet Trustbase Transaction
Manager. This means that the message is not authorised to be sent to the
requested service.
Chapter 3 Routing 43

Messages
Identrus Message Attributes
In the case of the Identrus message processing, the following additional message
attributes are used:

• DocType
The DOCTYPE of the XML message that will identify the type of message. e.g.
CSCRequest or PingRequest

• SigningCertPurposeId
This optional attribute is only interpreted by the default Identrus Message
Writer, if present it specifies the Certificate Store Attribute to be used to extract
the signing certificate and private key. If this is not present then the message
writer assumes that the Level 1 Inter-participant Signing Certificate is to be
used.

• XMLSystemId
This contains the 'system identifier' attribute from the incoming XML message
- it is used by the Identrus Message Writer to fill in the XML System identifier
on the corresponding response message.

NOTE The attribute names for security specific attributes are declared as
constants in uk.co.jcp.tbaseimpl.authenticator.SecurityContext Also
see uk.co.jcp.tbase.environment.attribute.

NOTE The attribute names for Identrus specific attributes are declared as
constants in com.iplanet.trustbase.identrus.IdentrusConstants.
44 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Router Architecture
Router Architecture
The Router performs the core rule based message routing which is central to the
flexibility offered by iPlanet Trustbase Transaction Manager, but it is also
responsible for gating access to services on the basis of authentication information
and authorisation settings. Figure 3-1 shows the basic elements involved with
getting a message through iPlanet Trustbase Transaction Manager and into the
service that can process it.

Figure 3-1 Router Architecture

• The message arrives at iPlanet Trustbase Transaction Manager and makes its
way through the presentation layers (protocol handlers and message readers),
during which time the messageType is identified and set and a number of
other standard attributes are also set. These attributes form the basis of the
authentication evidence for the message.

Message
Arrives over
Transport

Services

Router
Rules

Router
Presentation

Layer
Authorisation

Gate

Authorisation
Settings

Authenticator
Service
Chapter 3 Routing 45

Router Architecture
• The message then arrives at the router. All messages are initially sent to the
service identified by the name "Authenticator". There is a default
'Authenticator' service that comes with iPlanet Trustbase Transaction Manager,
but this may be replaced by an alternative implementation if required.

• The message is sent to the default Authenticator Service that examines the
attributes on the message to assess the authentication level of the message. The
function of this service is defined in more detail below.

• The message arrives back at the router with a security context attribute
(security.role) set, this context attribute determines the Role into which the
message has been authenticated.

• The target service is located by processing the message through the routing
rules and then the message is sent to the service. The detailed definition of
these rules is given later on in this section.

• Before the message arrives at the service it must pass through an authorisation
gate, this authorisation gate checks that there is a mapping between the role
attribute assigned to the message and the target service. If such a mapping
exists then the message is passed to the service, if no such mapping exists then
the message is sent to an authorisation error service.

The stages described above are the basic stages which all iPlanet Trustbase
Transaction Manager messages go through. The processing pipeline has been
streamlined from the developers point of view when working with Identrus XML
messages and is defined in the “Default routing” section in this chapter.
46 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Authentication and Authorisation
Authentication and Authorisation
The authentication mechanisms of iPlanet Trustbase Transaction Manager are not a
separate component. Authentication data is gathered by the default iPlanet
Trustbase Transaction Manager framework, this can be added by domain specific
services. These services must map an identity onto a particular set of attributes,
and iPlanet Trustbase Transaction Manager then uses these attributes to impose
access control on other services.

Authentication
In order to ensure that the authentication and authorisation mechanisms are
suitable for the widest variety of organisation, the iPlanet Trustbase Transaction
Manager framework does not perform the authentication operations itself, but
expects a service to be capable of verifying identity and mapping this to a
particular role or roles. The system comes supplied with a basic identity that uses a
digitally signed data item and an accompanying X509 digital certificate. The
service is capable of mapping this data into a role or set of roles The basic
authentication information may be presented in one of two ways:

• Implicitly - within the Transport protocol e.g. SSL

• Explicitly - within the message content e.g. signed message block of an
Identrus XML message

The architecture is designed to reduce both of these to explicit authentication by
removing the certificate used in the SSL handshake and using it to decorate the
message passed to the authentication service. This allows the target system to
impose different levels of authentication that would be difficult to achieve with an
implicit 'black box' approach to transport level authentication.

The default service also provides a means of mapping a username and password
onto a role for use by the router when authorising requests. This mechanism is
commonly used when presenting configuration and administration information
using the HTMl templating mechanism. It is recommended that the closed
community mechanism be replaced by an enterprise wide username and password
mechanism if the platform is to be used for large scale HTML based applications.
Chapter 3 Routing 47

Authentication and Authorisation
Authorisation
Given that we can identify the originator of a message, either through the digital
certificate or an alternative means, we now require a mechanism of:

• Identifying the appropriate level of authorisation for the user

• Enforcing access to each service on the basis of authorisation

The identification of the proper authorisation level (or role) is performed by a
service named 'Authenticator' in iPlanet Trustbase Transaction Manager. This
service has a default implementation that uses the username/password tables and
certificate tables in the authorisation database to determine a mapping for the
security attributes on the message. The mapping of this information is described in
the iPlanet Trustbase Transaction Manager Configuration & Installation Guide.
Enforcing the access to each service is done automatically by the router. If a routing
rule is matched and the body contains an 'executeServiceDirective' then before that
directive is executed the router establishes if there is a mapping between the role
assigned to the message and the required service. These mappings are held in the
authorisation table and this table's use is described in the Trustbase Configuration
& Installation Guide. If the mapping exists then the message is passed to the
service. If no mapping exists then a new attribute is added to the message
"security.auth_failed" and the message is sent back to the router. The routing rules
should always detect an authorisation failure and execute an appropriate service to
send an 'unauthorised' response to the client. Services may be executed
unconditionally by using the 'unauthorisedExecuteServiceDirective' that does not
attempt check for authorisation.
48 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Default routing
Default routing
In order to provide a simple development path for Identrus Messaging services,
iPlanet Trustbase Transaction Manager provides a default routing mechanism for
Identrus Messages. This default routing is applied to all Identrus Services
developed and deployed as described in Chapter 8, “Building Identrus solutions”
of this document.

It is anticipated that this default routing will be sufficient for most Identrus
Services in the near term. Where the default routing is inadequate, the developer
must write new routing rules.

Router Rules
The updates made to the Router for version 2.2 of the iPlanet Trustbase Transaction
Manager allow a very simple approach to basic rules handling to be taken. In
previous versions of the system, all services had to define a set of rules that
explicitly mapped the transport of a message to and from the service. Now that
rules can be defined dynamically by the system, this basic behaviour can be
automatically defined. We now discuss how this is achieved.

Routing to service
The deployment descriptor contained in the service JAR file will name the service
that it contains. At system startup, the rules handler will determine which services
are to be loaded, and for each service in the list will dynamically create a routing
rule that forwards messages with the specified doctype to the service. If a service
has a user-defined ruleset, the dynamically created rule will pass the message to
this ruleset instead of directly to the service. This user defined ruleset lives in the
JAR file with the service implementation and will normally not be required for
services with simple message flows.

Return path
In order that the routing be kept as simple as possible, a message will be returned
to a user if a specified attribute has been set on the message. This "ReturnToUser"
attribute should be set by the service once processing is complete. This also applies
to error messages produced at the service level.
Chapter 3 Routing 49

Default routing
Figure 3-2 Default routing rules

RootRuleset
If Attribute "ReturnToUser" = "true"

Then return to user, EndContext
If Attribute "Identrus" = "Identrus"

Then StartContext IdentrusRuleset

IdentrusRuleset
If Attribute "ReturnToUser" = "true"

Then EndContext
If Attribute "security.auth_failed" = "true"

Then ExecuteService "AuthErrorService"
If Attribute "message.unknown" = "true"

Then ExecuteService "AuthErrorService"
Default

StartContext IdentrusDynamic

IdentrusDynamic
If Attribute "ReturnToUser" = "true"

Then EndContext
If Attribute "DocType" = "PingRequest"

Then ExecuteService PingRequestService
If Attribute "DocType" = "doctype1"

Then ExecuteService Service1
Default

SetAttribute "message.unknown" = "true"
EndContext
50 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Advanced Routing
Advanced Routing
This section describes routing rules in detail, for simple Identrus services the
developer should not have to write any routing rules in order to get messages to
their service. If the default routing is inadequate or non-Identrus message
processing is required then developers must resort to writing their own rules.

Routing Rulesets
The routing tables have two logical areas, one private and one public. Public rule
sets may be added or configured through the management interface, private rule
sets are used by iPlanet Trustbase Transaction Manager to provide basic services
and may not be configured by the developer or systems administrator. At the top
of this structure is the Root Rule Set which governs the way in which the private
rules are executed and if none of the private rules match the parameters then the
Public Root Rule Set is executed. System developers may then link their own task
Rule Sets from this Rule Set (See Rule set definition in the next section)
Chapter 3 Routing 51

Advanced Routing
Figure 3-3 Rule Sets

Each area contains a number of rule sets. Each public rule set will have a name,
usually indicating the business task performed by the set of rules. The public rule
sets are loaded from disk each time the platform starts up, and may be loaded
explicitly by name as the result of a rule execution in the root rule set.

When a message is passed to the router, it will have already been associated with a
context. Each context has an association with a rule set. This implies:

• The message is operating in its root context, and has the root rule set associated
with it.

• The message is operating in a sub-context, and has a rule set from the public
rules area associated with it.

• The exception to this is if an iPlanet Trustbase Transaction Manager message is
being processed in which case a private rule set will be associated.

Rules Compiler

Rule set
repository

Rule set

Private rules

Rule set

Rule set

Rule set

Rule set

Rule set

Public Root
RulesSet

Private Root
RulesSet

Public rules
52 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Advanced Routing
Rule Sets are processed sequentially, and the first rule to match the current
conditions is used. The router takes each rule from the rule set in turn, starting with
the first, and attempts to match the message type with a rule pre-condition. If a
match is found then the action is executed. If no match is found then an error
condition is returned. It is important to bear in mind that because rules are
processed sequentially it is necessary to keep the more explicit rules at the
beginning of the rule set with more general rules occurring later. Otherwise it is
entirely possible that a general rule could preclude other rules from ever being
executed.

It is considered good practice to keep the root rule set as small as possible. To
achieve this, a rule in the root rule set should only match the first message in a
business task i.e. an unsolicited message. The action should always be to start a
new context, indicating the name of a rule set (and potentially the rule name to
start at), that the message should be executed in. In doing this, the router will create
a new context and associate the named rule set with it. The message will now be
processed in the same manner.

A rule set is a single complete XML document that conforms to the DTD outlined
in the next section. When the router starts up it looks in the Router section of the
iPlanet Trustbase Transaction Manager initialisation file for the directory to find
the rules that have been written by hand. It then looks for .xml files, and compiles
these into the public rule set area. Each Rule Set contains zero or more rules as
shown in the DTD fragment shown below:

Each rule in the ruleset has a structure that is defined in the next section.

Router Rule Syntax
This section works through the Rule set DTD describing the purpose of each
component. Each rule has three components:

• An attribute which names the rule. This is optional; the name may be used
when starting new contexts if a specific rule should be evaluated.

• A set of pre-conditions that must all be met before the execution of the
directives in the body.

<!ELEMENT ruleSet (rule*)>
<!ATTLIST ruleSet name CDATA #REQUIRED>
Chapter 3 Routing 53

Advanced Routing
• The body of the rule, this is the list of actions to be carried out if the
pre-conditions are all met.

A typical rule name is illustrated below.

The preconditions are made up of zero or more Attribute conditions. Each
attributeCondition must be satisfied for the body to be executed.

Each AttributeCondtion is evaluated by iPlanet Trustbase Transaction Manager as
though it were in the form:

The valueType is normally defaults to 'string' and is not required in rules that have
a value field. Where there is a requirement to test for the presence of an attribute, or
if it needs to be tested against null, then the valueType field is used and the value
field is ignored/not required.

<!ELEMENT rule (preconditions, body)>
<!ATTLIST rule name CDATA #IMPLIED>
<!ELEMENT preconditions (attributeCondition*)>

<!ELEMENT attributeCondition EMPTY>
<!ATTLIST attributeCondition name CDATA #REQUIRED>
<!ATTLIST attributeCondition operator (greaterThan |
greaterThanEqualTo | lessThan | lessThanEqualTo | notEqual |
startsWith | contains | endsWith | equals) "equals">
<!ATTLIST attributeCondition valueType (any | null | string) "string">
<!ATTLIST attributeCondition value CDATA #IMPLIED>

IF (name operator value) then pre-condition met

<!ELEMENT body ((setAttribute | executeServiceDirective |
unauthorisedExecuteServiceDirective)*, (startContextDirective |
endContextDirective | returnToUserDirective)?)>
54 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Advanced Routing
Once the pre-conditions have been met the body of the rule can be executed. The
body of the rule may contain multiple actions that are carried out sequentially in
the order that they appear. There are three actions, that are considered to be
'terminal' actions, which may only appear once in a rule and they must appear as
the final action. Table 3-1 shows each of the allowable body directives.

Table 3-1 DTD Rule Body

The setAttribute action allows the router to add attributes to either the message or
the context. The name, value, location and type fields are all the same as the
settings for creating an attribute via the API.

Directive Description

SetAttribute Sets a iPlanet Trustbase Transaction Manager
attribute on a message

executeServiceDirective Transfers control from the router to the named
service, ensuring that the mandatory authorisation
checks are passed

unauthorisedExecuteServiceDire
ctive

Transfers control from the router to the named
service, without performing any of the mandatory
authorisation checks.

ForkContextDirective Duplicates an execution environment

EndProcessDirective Discards the current execution environment, and
returns control to the user

StartContextDirective Transfers router control from one rule set to another

EndContextDirective Ends the current context, and starts rule search again

ReturnToUserDirective Returns control from the router to the system user

<!ELEMENT setAttribute EMPTY>
<!ATTLIST setAttribute name CDATA #REQUIRED>
<!ATTLIST setAttribute value CDATA #REQUIRED>
<!ATTLIST setAttribute location (MESSAGE | CONTEXT) "CONTEXT">
<!ATTLIST setAttribute type (ASCEND_TRANSITIVE | NONE |
INHERIT_TRANSITIVE | INHERIT) "ASCEND_TRANSITIVE">
Chapter 3 Routing 55

Advanced Routing
An executeServiceDirective must specify the name of the service to invoke. This
form of executing a service will always perform an authorisation check before
passing the message to the requested service.

The name of the service relates to the name given to the service in the
ServiceRegistry section of the tbase.properties file where each new
service.description entry consists of a service name and a classpath for that
particular service.

An unauthorisedExecuteServiceDirective must specify the name of the service to
invoke. This form of executing a service will not perform any authorisation check
before passing the message on to the service.

The name of the service relates to the name given to the service in the
ServiceRegistry section of the tbase.properties file where each new
service.description entry consists of a service name and a classpath for that
particular service.

NOTE See API documentation for
uk.co.jcp.tbase.environment.attribute.Attribute for more details.

<!ELEMENT executeServiceDirective EMPTY>
<!ATTLIST executeServiceDirective name CDATA #REQUIRED>

<!ELEMENT unauthorisedExecuteServiceDirective EMPTY>
<!ATTLIST unauthorisedExecuteServiceDirective name CDATA #REQUIRED>

<!ELEMENT startContextDirective EMPTY>
<!ATTLIST startContextDirective ruleset CDATA #REQUIRED>
<!ATTLIST startContextDirective rule CDATA #IMPLIED>
56 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Advanced Routing
In executing a startContextDirective the router discards the current rule set it has
been searching and loads the rule set named in the directive. If an individual rule is
also named in the directive then the router attempts to find that rule in the new
rule set, otherwise the router begins at the start of the rule set and searches for the
first rule with fulfilled preconditions.

A start context directive must contain a name for the rule set to be used. It may
optionally contain a rule name to be executed in the specified rule set.

An end context directive has no attributes or children.

A return to user directive tells the router whether to end the current context or not.

In some cases the context serves no further purpose once a service has been
executed on behalf of the user and may therefore be discarded. However it is
possible to envisage scenarios e.g. whenever authentication is required for a user to
run services, where one would wish to maintain the 'Authorised' context between
user interactions, thus allowing the user to repeatedly use services without being
required to be authorised every time.

<!ELEMENT forkContextDirective EMPTY>

A ForkContextDirective produces a new environment identical to the current
context.The message returned to the user will have the contextID set to the original
context id, but will also contain a property FORKED_CONTEXT, with the new
context id. This allows the client to subsequently interact with both environments.

<!ELEMENT endContextDirective EMPTY>

<!ELEMENT returnToUserDirective EMPTY>
<!ATTLIST returnToUserDirective endContext (true | false) #REQUIRED>

<!ELEMENT forkContextDirective EMPTY>
Chapter 3 Routing 57

Advanced Routing
EndProcessDirective terminates the current environment. It is designed to take
some of the burden off the garbage collection by explicitly terminating an
environment and removing it from persistent storage.The EndProcessDirective is
also a ReturnToUserDirective.

<!ELEMENT endProcessDirective EMPTY>

NOTE Example rules and rulesets for core Trustbase services that comply
with these data structures can be found in
<install_dir>/TTM/current/Config/Rules/Public.
58 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Advanced Routing
Complete Router Rule DTD
The complete DTD that specifies all of the allowable routing rules within iPlanet
Trustbase Transaction Manager is shown below.

<!-- A rule set is zero or more rules -->
<!ELEMENT ruleSet (rule*)>
<!ATTLIST ruleSet name CDATA #REQUIRED>
<!-- A rule optionally has a name attribute and precodonditions and body elements -->
<!ELEMENT rule (preconditions, body)>
<!ATTLIST rule name CDATA #IMPLIED>
<!-- preconditions element is a set of zero or more attribute condition elements -->
<!ELEMENT preconditions (attributeCondition*)>
<!-- an attributed condition is an empty tage with name, valueType and value attributes -->
<!-- the name is mandatory. The valueType may be any, null or string. if string is selected -->
<!-- then value must be present. If any is selected then the value matches any value and if -->
<!-- null is selected then the value is disregarded and assumed to be null -->
<!ELEMENT attributeCondition EMPTY>
<!ATTLIST attributeCondition name CDATA #REQUIRED>
<!ATTLIST sttributeCondition operator (greaterThan | greaterThanEqualTo | lessThan | lessThanEqualTo |
notEqual | startsWith | contains | endsWith | equals) \equals\>
<!ATTLIST attributeCondition valueType (any | null | string) \string\>
<!ATTLIST attributeCondition value CDATA #IMPLIED>
<!-- The body contains one of four directives -->
<!ELEMENT body ((setAttribute | executeServiceDirective | unauthorisedExecuteServiceDirective)*,
(startContextDirective | endContextDirective | returnToUserDirective)?)>
<!-- A setAttribute directive -->
<!ELEMENT setAttribute EMPTY>
<!ATTLIST setAttribute name CDATA #REQUIRED>
<!ATTLIST setAttribute value CDATA #REQUIRED>
<!ATTLIST setAttribute location (MESSAGE | CONTEXT) \CONTEXT\>
<!ATTLIST setAttribute type (ASCEND_TRANSITIVE | NONE | INHERIT_TRANSITIVE | INHERIT)
\ASCEND_TRANSITIVE\>
<!-- A start context directive must contain a name for the rule set to be used -->
<!-- it may optionally contain a rule name to be executed in the specified rule set -->
<!ELEMENT startContextDirective EMPTY>
<!ATTLIST startContextDirective ruleset CDATA #REQUIRED>
<!ATTLIST startContextDirective rule CDATA #IMPLIED>
<!-- An end context directive has no attributes or children -->
<!ELEMENT endContextDirective EMPTY>
<!-- An execute service directive must specify a name for the service to be executed -->
<!ELEMENT executeServiceDirective EMPTY>
<!ATTLIST executeServiceDirective name CDATA #REQUIRED>
<!-- An unauthorisedExecute service directive must specify a name for the service to be executed -->
<!ELEMENT unauthorisedExecuteServiceDirective EMPTY>
<!ATTLIST unauthorisedExecuteServiceDirective name CDATA #REQUIRED>
<!-- A return to user directive has one attribute specifying whether to end the current context -->
<!ELEMENT returnToUserDirective EMPTY>
<!ATTLIST returnToUserDirective endContext (true | false) #REQUIRED>
<!-- A fork context directive has no attributes or children -->
<!ELEMENT forkContextDirective EMPTY>
<!-- An end process directive has no attributes or children -->
<!ELEMENT endProcessDirective EMPTY>
Chapter 3 Routing 59

Advanced Routing
60 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 4

Configuration Management

There are two elements to the Configuration Manager sub-system, the
Configuration Manager itself and its Configuration Store. The Configuration
Manager is the central access point for all configuration requests and is responsible
for maintaining Configuration Objects in a store. The Configuration Manager
co-ordinates access to these objects for both read and update purposes.
61

Configuration Objects
Configuration Objects
Configuration Objects hold persistent data for Services and their Configuration
Services. A given Service may reference any number of Configuration Objects, and
any number of Services or Configuration Services may reference a given
Configuration Object. Note that iPlanet Trustbase Transaction Manager
components themselves use Configuration Objects. A Configurable Entity is any
Service or component that uses Configuration Objects and the Configuration
Manager. A Configuration Service is a Service that implements a read-write
interface to the Configuration Object, which usually involves some graphical or
HTML based interface allowing a user to change the values stored in the
configuration object.

All configuration objects must implement the ConfigurationObject interface to
ensure that the ConfigurationManager can manipulate them correctly.
Configuration Objects are indexed in the store by ConfigUID objects.

NOTE Further details of the interface that a ConfigurationObject must
present can be found in the API documentation for
uk.co.jcp.tbase.config.ConfigurationObject.
62 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Configuration Manager
Configuration Manager
A Service uses the SingletonConfigManager class to gain a reference to the
Configuration Manager.

The Configuration Manager allows callers to get readable or writeable versions of
Configuration Objects identified by ConfigUID objects.

There are two methods for getting a Configuration Object:

• The first returns a readable deep copy of the Configuration Object that can be
used to set up a Service or for populating Configuration Service views.
Configuration Objects gained by this method cannot have their changes
applied back to the Configuration Store - this is because the returned
Configuration Object does not contain a valid ConfigurationLock object. This
form of Configuration Object will always be provided, regardless of whether
there is an outstanding lock on the requested object, i.e. requests for read-only
copies of ConfigurationObjects are never refused by the
ConfigurationManager.

• The second method provides a deep copy of the Configuration Object that
contains a configuration lock valid for a fixed period of time. This lock period
will, itself, be configurable. After this period the lock will become invalid and
any attempt to apply a change to the Configuration Store will be denied. The
lock expires to provide a simple solution to deadlocking issues caused by
developers not releasing allocated locks.

Updates and deletions of Configuration Objects can only be performed with a
Configuration Object that contains a valid lock object.

Configurable Entities may register for notification when a Configuration Object
changes. When a change occurs, registered entities receive an event object that
contains a read-only copy of the changed Configuration Object.

NOTE A Service can only register a Configuration Object with a given
ConfigUID if one does not already exist with that ConfigUID.
Chapter 4 Configuration Management 63

Configuration Manager
NOTE Further details of the methods that the ConfigurationManager.
provides to manipulate ConfigurationObjects can be found in the
API documentation for
uk.co.jcp.tbase.config.SingletonConfigManager
uk.co.jcp.tbase.config.ConfigManager.
64 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Configuration Store
Configuration Store
The Configuration Store is responsible for maintaining persistent storage of
Configuration Objects. The version supplied with iPlanet Trustbase Transaction
Manager uses an underlying JDBC implementation to store data. Alternative
Configuration Stores may be implemented to store Configuration Objects in any
given format.

The Configuration Store implements only primitive read, write and delete methods
to access Configuration Objects via their ConfigUID key - the Configuration
Manager handles higher level semantics such as locking.

The default JDBC store implementation cannot be replaced by developers and its
interface is not public.
Chapter 4 Configuration Management 65

Configuration Services
Configuration Services
A Configuration Service is the element that knows of the configurable attributes of
a ConfigurationObject. It provides the functionality to present these attributes to an
administrator via user interface, iPlanet Trustbase Transaction Manager itself uses
HTML forms to present configuration data.

The Configuration Services supplied with iPlanet Trustbase Transaction Manager
use the HTTP Reader and ScriptWriter classes to generate HTML pages/forms that
allow information to be changed by the administrator. The Configuration Service is
capable of configuring all the individual iPlanet Trustbase Transaction Manager
components, including protocol analysers, message analysers, readers and writers,
router and services. Upon receipt of updated attributes the Configuration Service is
responsible for registering the changes with the Configuration Manager that will in
turn notify other interested parties.

At least one Configuration Service will exist for each Configurable Entity
registered in the platform. Note that there will only be a single runtime instance of
any given Configuration Service per deployment, no matter how many instances of
the actual entities that it configures are in existence.

NOTE There are no API classes associated with a Configuration Service, it
is a normal iPlanet Trustbase Transaction Manager service and
therefore must implement the uk.co.jcp.tbase.service.Service
interface.
66 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 5

Standard Services

Services provide actions in decision making process. Each service is a plug in
component to the iPlanet Trustbase Transaction Manager's framework providing
an implementation of the iPlanet Trustbase Transaction Manager's Service
interface (See Installation and Configuration Guide for more details.

iPlanet Trustbase Transaction Manager is designed to run on a variety of
platforms, in particular application servers. These provide a solution with the
ability to service a large number of users at any single point in time. This is
achieved by replicating the components i.e. running classes over a number of Java
Virtual or physical machines. The iPlanet Trustbase Transaction Manager's
Framework has been designed to fulfil all of these requirements. Each of the major
sub-systems is capable of being replicated a number of times over a number of
physical machines, but to achieve high volume processing the iPlanet Trustbase
Transaction Manager's Framework imposes a number of constraints on a service.
67

Overview
Overview
A service should be:

• Stateless - Each component should be capable of processing a message
irrespective of the context of the message

• Granular - Each component must perform a limited number of tasks, reducing
the risk of a single point of failure

Figure 5-1 Component replication

A service is directly related to the processing of a message and must be stateless to
allow replication.

These services usually fall into one of three major categories:

• Authentication and Authorisation

• Business processing including integration into existing systems

• User interaction

In dividing the function into discreet services that service one of these areas a
variety of applications may be built over the same common infrastructure.

Machine B

Router

Machine C

Machine D

Machine E

Machine A

Parser Services

ServicesParser
68 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Overview
In particular, a common set of authentication and authorisation services will be
used across the enterprise so devising services that only perform one or both of
these tasks reduces the work required for each application.
Chapter 5 Standard Services 69

Overview
70 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 6

iTTM Logging: Error, Audit and Raw

iPlanet Trustbase Transaction Manager provides a set of libraries for use with both
error and audit logging. The default implementation of these libraries allow the
framework and business components to store information within a relational
database for use by external browsers and error management consoles.

Both error and audit logs are controlled by a log manager. The log manager stores
the data in an appropriate location depending upon its current configuration. This
design provides a location independent mechanism for recording error and audit
information, and allows components to be re-used between different iPlanet
Trustbase Transaction Manager implementations. This log manager is activated
each time iPlanet Trustbase Transaction Manager boots. Initially the configuration
of the log manager is read from an initialisation file, but in subsequent boot
sequences this is read from the persistent configuration object generated by the
manager.
71

Overview
Overview

Figure 6-1 iPlanet Trustbase Transaction Manager log manager

The data to be logged by the log manager is supplied by the requesting component
in the form of an error or audit log object. The log manager will check the type but
not the content of the object being logged. The type checking involved ensures that
the object passed is a sub-class of the iPlanet Trustbase Transaction Manager
defined error log and audit log classes. This allows the developer to define new
error and audit log types for use specifically by the solution e.g. Billing logs.

The Log manager is abstracted from the storage of the data by a Store API. This
allows different implementations of a Log e.g. Billing information logs to be stored
in different physical repositories, or particular log types e.g. Errors to generate
events that are passed to Third Party monitoring systems.

Connectivity

Log Manager

Store API

RDBMS

Audit API Error API

Presentation Routing Services
72 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Audit logs
Audit logs
Audit logs are generated at particular points in the lifetime of the iPlanet Trustbase
Transaction Manager platform, specifically:

• Service start up events

• Service shutdown events, both normal and abnormal

• All configuration changes

• All security domain changes

These standard iPlanet Trustbase Transaction Manager audit log types are defined
in the uk.co.jcp.tbaseimpl.log.audit.type package.

Audit Logging an Event
To cause an entry to be made in the iPlanet Trustbase Transaction Manager Audit
Log, create a new instance of the AuditObject type that you wish to log (which
must be a sub-type of uk.co.jcp.tbaseimpl.log.audit.AuditObject) and pass the
instance to the static method AuditLog.log(...).

An example of an Audit being logged is shown below

The three parameters supplied to construct all AuditObjects are as follows:

• this.getClass()
The first parameter is a class object, whose name will be used as the first part of
the internationalisation bundle key for the message. This is normally the class
that is logging the audit, to make it easy to relate audit messages to packages.
But this may be any class object.

package com.iplanet.trustbase.app;
public class DummyService
{
......
private static final String SERVICE_STARTED = "START";

// Audit the occurrence of this event in the Audit Log
AuditLog.log(new OperationBeginAudit(this.getClass(),
SERVICE_STARTED, new String[]{ serviceName.toString() });
......
}

Chapter 6 iTTM Logging: Error, Audit and Raw 73

Audit logs
• SERVICE_STARTED
This is any string which when concatenated with the class name provides a
unique bundle key to locate the text of the message for audit purposes. See
below for a description of the AuditBundle keys and values.

• new String[] { serviceName.toString() }
This is an array of strings which are parameters that are combined with the
AuditBundle message using the standard java.text.MessageFormat class to
provide the final audit message.

As mentioned above, there needs to be an AuditBundle file on the class path and
registered with the bundle manager (see “Defining New Audit Types” section) so
that the actual audit message can be looked up. For the example above there would
be a file AuditBundle.properties created in …./com/iplanet/trustbase/app which
contained the following line:

This is the fully qualified class name provided by the 'this.getClass()' parameter
followed by a '_' character, followed by the SERVICE_STARTED string.

The message that would be associated with this audit would be 'The service {0} has
begun.' Where the java.text.MessageFormat class will replace '{0}' with entry 0 in
the String array passed to the audit constructor.

Defining New Audit Types
The developer may define new audit log types to allow application or domain
specific messages. These must be a sub-class of the
uk.co.jcp.tbaseimpl.log.audit.AuditObject class.

The most common use of these extended audit types is to log information about
messages processed by the iPlanet Trustbase Transaction Manager Service.

com.iplanet.trustbase.app.DummyService_START=The service {0} has begun.

NOTE The API classes associated with Audit Logging are
uk.co.jcp.tbaseimpl.log.audit.AuditLog,
uk.co.jcp.tbaseimpl.log.audit.AuditObject and a number of standard
concrete Audit Classes in uk.co.jcp.tbaseimpl.log.audit.type.
74 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Audit logs
Having implemented the new Audit type, the following steps must be completed
in order to get the audit type to appear in the standard iPlanet Trustbase
Transaction Manager Audit log.

• Create the new Audit class and put it into the JAR file for the service that will
utilise the Audit. More details of deploying an iPlanet Trustbase Transaction
Manager service can be found in later chapters.

• Create the relevant resource bundles for the audit messages. In order to allow
simple localisation of messages into various languages, all audit type strings
that appear in the iPlanet Trustbase Transaction Manager audit log are defined
in resource bundles. These bundles are located in the same package (i.e. same
directory) as the new AuditType class. The format of the name of this resource
bundle must be the same as that defined by the standard Java
java.util.ResourceBundle class. The format of the bundle is a series of
name/value pairs. Where the name is constructed as
fully-qualified-audit-type-classname_bundleKey, and the value is the String
which should be placed in the AuditType field of the Audit Log.

• Create an entry in tbase.properties to register the new Audit Resource Bundle.
To do this, add an entry in the section [BundleProviderManager/Audit] that
references the fully qualified name of the new Audit Resource Bundle.

• Finally enable the new Audit Type in tbase.properties by adding an entry in
the following section
[uk.co.jcp.tbaseimpl.log.present.audit.AuditLogPresentationConfigService]
for each of the new Audit Type classes defined by the service.

• Restart iPlanet Trustbase Transaction Manager to activate the new Audit
Types, this is required to enable a new service and is therefore not an action
normally associated with new Audit Types.
Chapter 6 iTTM Logging: Error, Audit and Raw 75

Audit logs
An example of an AuditObject implementation is shown below:

The following file defines the Resource bundle and is located in the package
hierarchy in the same place as the OperationBeginAudit class and will be called
TheNewAuditBundle_en.properties.

package uk.co.jcp.tbaseimpl.log.audit.type;
import uk.co.jcp.tbaseimpl.log.audit.*;

/** This class represents an audit object for recording that an
operation has begun
*/
public class OperationBeginAudit extends AuditObject
{

public OperationBeginAudit (Class auditClass , String
bundleKey , String [] params)

{
super (auditClass , bundleKey , params);

}
public static String getAuditTypeString()
{

// The bundleKey is added to this class name to determine
the

// actual string to be writteninto the AuditType field of
the log

String bundleKey = "OPERATION_BEGIN";
return

uk.co.jcp.tbaseimpl.log.audit.AuditObject.getAuditTypeString (
uk.co.jcp.tbaseimpl.log.audit.type.OperationBeginAudit.class,
bundleKey);

}
}

uk.co.jcp.tbaseimpl.log.audit.type.OperationBeginAudit_OPERATION_BEGIN
= OPERATION_BEGIN
76 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Audit logs
The new bundle is registered in tbase.properties with the following entry, note
how the locale extension '_en' is not used in the bundle registration and the
.properties extension is not required - this is in line with the standard Java
java.util.ResourceBundle class:

The new Audit type is enabled by adding the following entry into tbase.properties.

[BundleProviderManager/Audit]
bundle=uk.co.jcp.tbaseimpl.log.audit.type.TheNewAuditBundle

[uk.co.jcp.tbaseimpl.log.present.audit.AuditLogPresentationConfigS
ervice]
auditlog.type.enabled=uk.co.jcp.tbaseimpl.log.audit.type.Operation
BeginAudit
Chapter 6 iTTM Logging: Error, Audit and Raw 77

Error handling and logging
Error handling and logging
Errors that occur in the iPlanet Trustbase Transaction Manager platform fall into
two categories:

• Logic errors - Something about the data or processing is incorrect and the
processing needs to reject a request gracefully.

• Exceptions - An unexpected condition has occurred, that breaks the processing
logic

In both cases, iPlanet Trustbase Transaction Manager will use the Log manager to
record that an error has occurred so that operational staff may perform appropriate
analysis and corrective action.

Error Logging
iPlanet Trustbase Transaction Manager uses a single error log class that takes a
severity, the class of object defining the error, and a programmer defined message,
plus a set or zero or more string arguments which may be substituted into the
message. The default error logging implementation,
uk.co.jcp.tbaseimpl.log.error.ErrorLog, defines four constants that indicate the
various severity levels:

Table 6-1 Error Severity Types

Constant Description

INFORMATION This constant is to be used to log informational events, such as
unlikely sections of code being executed that are not necessarily
errors - this should be used sparingly. This has a value of 0.

WARNING This constant is to be used for error conditions that are expected and
handled, but require logging for behaviour analysis. This has a value
of 1.

ERROR This constant is to be used for serious errors which indicate that
something is inherently incorrect with the system or the information
it contains, but that allow processing to continue, or be retried. This
has a value of 2.

FATAL This constant is to be used for fatal errors from which processing
cannot recover, these errors would result in the abandoning of
processing. This has a value of 3.
78 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Error handling and logging
Logging an error from within iPlanet Trustbase Transaction Manager is as simple
as calling ErrorLog.log(....) with an instance of an ErrorObject. There are many
constructors for ErrorObject, but all of them have at least a string parameter that
identifies the unique error code for this error.

The iPlanet Trustbase Transaction Manager error logging mechanism requires that
every different occurrence of an error be given a code which unique throughout
iPlanet Trustbase Transaction Manager. All of the error information for the Error
Logging sub-system in iPlanet Trustbase Transaction Manager is contained in the
following database tables:

All unique error codes have their details stored in Table 6-2:

Table 6-2 Error_codes

NOTE The API classes associated with Error Logging are
uk.co.jcp.tbaseimpl.log.error.ErrorLog,
uk.co.jcp.tbaseimpl.log.error.ErrorObject.

error_codes table

errorcode This is the unique errorcode string that identifies the error; this must
be 7 characters exactly. The normal for an error code is XXXnnnn.
Where XXX is a three-letter code for the service or subsystem and
nnnn is a unique number. e.g. IPH0009 is an error in the Identrus
Protocol Handler.

classname The class from which this error is logged. This places a constraint that
each error code may only be used from one place.

severity This is the severity level of the error, described previously. Constants
for each of the error severities can be located in the
uk.co.jcp.tbaseimpl.log.error.ErrorLog class.

message This is the localised version of the error message that will appear in
the error log. Parameters may be used in this message as described
by the standard Java class java.text.MessageFormat. The values to be
placed in these parameters are passed in an array of strings that one
of the ErrorObject constructors allows.
Chapter 6 iTTM Logging: Error, Audit and Raw 79

Error handling and logging
The actual error log table is described below, this table is not normally viewed by
the administrator directly, instead there is an Oracle view called errorview that
provides a resolved view of the errors that have been logged.

Table 6-3 Error

When an error is logged it is often accompanied by some free form string data
which helps to store the context in which the error occurred to aid diagnosis. The
most common example of such data is exception stack traces.

Table 6-4 Error Support

Error table

errorid This is a unique id for the error log entry; it is generated from a
monotonic sequence that means that this field may be used to
accurately order error messages in the order that they were logged.

errorcode This is the errorcode of the error being logged, see the “error_codes
table” description.

message The final message string that is generated from the message string in
the error_codes table combined with the variable parameters from the
runtime system substituted in.

timestamp This is an ORACLE DateTime field that identifies when the error was
logged.

severity This is the severity integer that is taken from the error_codes entry for
this error.

classname This is the classname that logged the error.

machineid This is a string representing the IP address of the iPlanet Trustbase
Transaction Manager that logged the error - this may be different in a
multi-node IAS installation.

contextid This context id field is for future expansion.

error_support table

errorid This links this entry to an entry in the “Error table”
80 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Error handling and logging
The tables described above encapsulate the whole data driven error logging
mechanism that iPlanet Trustbase Transaction Manager supports.

Defining a New Error
Defining a new error is very simple; it involves making a new entry in the
error_codes table. There are currently no tools to support this operation, but it may
be accomplished through the use of basic SQL. The only consideration is that the
error_code field must be unique - this is enforced by an ORACLE level table
constraint, so if the new code is inserted without error then the code is unique.

A sample error code is inserted using the SQL defined below:

This error may then be logged using the following piece of code:

datatype This datatype is an arbitrary string identifier that categorises the data
in the data field. The only value for this field defined by iPlanet
Trustbase Transaction Manager is "STACKTRACE" which identifies
the contents of the data field to be a Java Exception Stack Trace.

data Free form string data

INSERT INTO error_codes values
(
'TST0001',
'com.iplanet.trustbase.sample.service',
'1',
'This is the only exception in the test service'
);

.....
}
catch (Exception exc)
{

ErrorLog.log(new ErrorObject("TST0001", exc);
}
.....

error_support table
Chapter 6 iTTM Logging: Error, Audit and Raw 81

Error handling and logging
This will result in an entry being made in the error table as well as the related stack
trace being logged in the error_support table.

Exception Handling
Exception handling, as with the logging of logical errors, should also log
information before the appropriate exception is thrown, in order to enable users
and developers of the system to analyse the situation that caused them to arise.

The iPlanet Trustbase Transaction Manager exception hierarchy is designed to
allow the various components to throw exceptions back to their calling component
without the calling component having to explicitly include handling code. This is
achieved by having each successive 'level' of exceptions (as related to each
successive 'level' of the code) derive from the previous level. For instance consider
the example of a service throwing an exception derived from ServiceException. If
the service does not explicitly handle the exception it will be passed back to the
Router (as the calling component), and because ServiceException is derived from
RoutingException we can expect the router to be able to handle the exception
gracefully.
82 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Error handling and logging
Figure 6-2 iPlanet Trustbase Transaction Manager Exception Hierarchy

It is imperative that developers of extension to the system maintain this
hierarchical approach to exception inheritance in order that the handling code built
into the current iPlanet Trustbase Transaction Manager system will function
correctly.

NoRouteException

ParseException

ProtocolAnalyserException

MessageAnalyserException

RoutingException

ServiceException

ProtocolHandlerException

MessageReaderException

MessageWriterException
Chapter 6 iTTM Logging: Error, Audit and Raw 83

Error handling and logging
The hierarchical nature of the iPlanet Trustbase Transaction Manager exceptions
allows the exception handling to be done differently depending upon where the
exception occurs. The components and the associated actions performed are shown
in Table 6-5:

Table 6-5 Exceptions

Component Base Exception Actions

Servlet TbaseRuntimeException Catches TbaseRuntimeExceptions and
generates the appropriate HTTP error

Protocol
Analyser

ProtocolAnalyserException may throw ParseException which will
result in an HTTP error in the servlet

Message
Analyser

MessageAnalyserException Generated if a RemoteException has
occurred, will result in an HTTP error
in the servlet.

Message
Readers

MessageReaderException Is caught in the MessageAnalyser if it
contains an embedded Message, then
that Message is processed, otherwise
the exception is propagated through to
the servlet.

Message Writers MessageWriterException Is propagated back through the
MessageAnalyser to the servlet that
returns an HTTP error.

Router RoutingException Is propagated back through the
MessageAnalyser to the servlet that
returns an HTTP error

Services ServiceException May or may not contain a message,
and is propagated back through the
router to the MessageAnalyser where
it is handled in the same fashion as the
MessageReaderException
84 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Error handling and logging
Raw Logging
The iPlanet Trustbase Transaction Manager provides a facility for logging the raw
data comprising an applications inbound and outbound messages. Separate logs
are maintained for each application that requires raw logging, and these logs are
currently held in database tables. Logs may [optionally] be digitally signed, to
make tampering with the logged data after-the-fact difficult.

The iPlanet Trustbase Transaction Manager is configured, by default, with a single
raw log for Identrus data. In combination with the Identrus log, this meets the
requirements for logging in an Identrus Transaction Coordinator.

An application which requires raw logging facilities must use it’s own raw log,
which is created with the AddLoggerWizard. The AddLoggerWizard creates the
appropriate database tables and associates them in iPlanetTrustbase Transaction
Manager configuration with a name : the raw log store name. An application can
thereafter store data in the new raw log by referring to it by that name, as this
simple example shows:

/*

* MY_MIME_TYPE – is the mime type of your message. This is

* present only for historical purposes.

* rawxml – the XML String comprising raw message data

* storename – is the name of raw log store you wish to log to.

*/

MessageLogger mlg = SingletonMessageLoggerManager.getMessageLogger (
MY_MIME_TYPE);

MessageElements me = new MessageElements ();

me.put(MessageElements.RAW_DATA, rawxml);

/** the returned Vector of Strings will only contain a single
String, which

* is the recordid field of the logged record, and can be used as a
foreign key for

* logging further application specific data which refers to the raw
data */

Vector ids = mlg.log (storeName , rawxml);
Chapter 6 iTTM Logging: Error, Audit and Raw 85

Error handling and logging
The result of the log operation is a String identifier [contained in a Vector for
historical reasons], which is the value of the recordid field in the database record
created. This identifier can be used as a foreign key in an application specific log
table, permitting the application specific log to refer to the raw log.

The raw log inserts a row into a relational database table for each log operation.
The structure of the database table is described here. All raw log tables have the
same structure, although each raw log uses a different table, whose name is
determined when the raw log is created with the AddLoggerWizard.

The raw logging facility records raw incoming and outbound message data.

Table 6-6 Raw log

raw_data table

Sessionid The id of the raw log session that wrote this record

Logconnectionid The id of the connection within the session

Recordid The id of the record within the connection

recordmarker A unique monotonically increasing identifier

timestamp An integer which represents the UNIX time at which the
record was logged.

rawdata The Identrus Message XML, without the CertBundle
fields. The certificates from the bundle are logged
separately in the “cert_data_table”

digestofrecord A SHA-1 digest of this record.

signeddigestofcalculation An RSA signature of this record and data from the
previous record.
86 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 7

Identrus logging

The Identrus Transaction Coordinator specifications identify two specific logging
actions, these being:

• Logging of all messages sent and received by the Transaction Coordinator
(Raw logging)

• Generation of data for billing purposes
87

Overview
Overview
The iPlanet Trustbase Transaction Manager fulfils both of these requirements as a
default action of processing an Identrus message. The data is stored within the
RDBMS specified at installation time, and the tables are available for developers
via standard JDBC to provide services that use this information.The following
sections define the tables stored in the RDBMS and identify the relationships
between each table. The iPlanet Trustbase Transaction Manager will utilise all of
the tables described below for all Identrus messages; there should be no
requirement for a developer to write to any of these tables.
88 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Data definitions
Data definitions

Connection information
The SSL proxy and the SMTP mail listener both log data about the connections
made through them. Table 7-1 provides the column definitions for the SSL Proxy:

Table 7-1 SSL Connection

The tables below provide the column definitions for the SMTP/SMIME connection
logs: Data in Table 7-2 is extracted from the SMIME v2 signature body part on the
message.

Table 7-2 SMIME Transport

ssl_connection table

ConnectionId Unique connection identifier

ClientCertIssuerDN The connecting clients certificate Issuer DN

ClientCertSerialNumber The connecting clients certificate serial number

CipherSuite The cipher suite used for the SSL session

ConnectTime The time at which the connection was made, this is an
ORACLE DateTime field

TimeStampType The type of timestamp

ConnectIPAddr The connecting client's IP address

ConnectionFailed Integer value indicating if the connection failed - a value
of 1 indicates a failure.

ConnectionFailedReason If a failure occurred, what was the SSL error code

smime_transport table

ConnectionId Provides a link back to the “smtp_message table”

peer_issuer_dn The issuer_dn of the certificate that was used to verify the
message
Chapter 7 Identrus logging 89

Data definitions
Table 7-3 SMTP Connection

Table 7-4 SMTP Message

peer_cert_serial_number The serial number of the certificate used to verify the
message.

message_protection The type of protection used to secure the message

time_stamp_type The type of timestamp LOCAL or NETWORK

time_stamp The time at which the entry was made

smtp_connection table

stream_id Provides a link back to the “smtp_message table”

peer_ip_addr The ip address of the submitting SMTP agent

timestamptype The type of timestamp LOCAL or NETWORK

timestamp The time at which the entry was made

smtp_message table

stream_id A unique id for the smime_transport

connection_id A unique id for the smtp connection

recipients The recipients of this message

sender The sender of this message

timestamptype The type of timestamp LOCAL or NETWORK

message_valid Is the message valid? 1 indicates it is valid

message_invalid_reason The reason for the invalidity of the message

timestamp The date and time at which the entry was made

smime_transport table
90 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Data definitions
The ssl_connection and smtp_message tables both have connection_id fields that
are passed to the iPlanet Trustbase Transaction Manager running in the application
server. This connection_id is stored within the Identrus Log table allowing queries
that link the originator information with the actual requests made.

Table 7-5 OCSP

ocsp_data table

ocspid A unique identifier for the record

type OCSPREQUEST or OCSPRESPONSE

message A text summary of the contents of the request or response

machine The URL to which the request was submitted to or the
response was received from

timestamp The date and time that the entry was made

data Base64 encoding of the request or response
Chapter 7 Identrus logging 91

Data definitions
Identrus log tables
The default presentation handlers for Identrus messages record the following data
for each message that is sent or received.

In order to reduce the volume of data logged with each Identrus message the
certificates contained with the message header are stripped out and stored in a
certificate table. If the iPlanet Trustbase Transaction Manager has already logged a
particular certificate in the table it will not be logged again. The information stored
within the table is:

Table 7-6 Certdata

This data is designed to be tamper evident, and services should under no
circumstances modify data within the Identrus Log or Tamper tables. The tamper
checking is achieved by producing a continuous hash that is stored with each
record, and the current hash is stored within a signed record within a separate
tamper table. The Tamper table fields are not described here, see the Installation
and Configuration Guide for information on how to check the tamper status of
records in the raw log.

cert_data table

IssuerDN The issuer distinguished name of the certificate, RFC 2253
format string.

SerialNumber The serial number of the certificate

CertData The Base64 certificate data.

SubjectDN The subject distinguished name from
the certifcate, in RFC2253 format
92 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Data definitions
The Identrus data table records identrus specific message data, which can be
related to the raw log records in the raw_data table, using the rawrecordid foreign
key [see the chapter Logging: Error, Audit and Raw for a description of raw
logging]

identrus_data

rawrecordid the id of the associated raw log record

msggrpid the Identrus MsgGrpId from the NIB of the message

doctype the DOCTYPE of the message. e.g.CSCRequest,
PingRequest etc..

connectionid The connection id to link this record to the SSL or SMIME
connection logs

protocoltype The protocol over which the messge arrived e.g. HTTP or
SMTP

input Was this message inbound to the iPlanet Trustbase
Transaction Manager or outbound ? A value of 1 indicates
it was incoming
Chapter 7 Identrus logging 93

Data definitions
Billing records
Billing records are a sub-set of the information within the raw message log that
provides sufficient information to determine who made each transaction. These
tables are designed for used by third party tools that generate the actual Bill for the
customer. The definitions for the bill table columns are as follows:

Table 7-7 Bill data

bill_data table

RawRecordId This will be the RawRecordId of the associated raw log
table record.

SubjectDN This will be the originator distinguished name extracted
from the mandatory Identrus level 1 message signature.
This will determine who should be billed.

IssuerDN This will be the issuer distinguished name extracted from
the mandatory Identrus level 1 message signature. This is
to enable the identification of the exact key used to sign
this message - in conjunction with the serial number field
below.

SerialNumber This will be the originator certificate serial number that
may be used to identify the exact key used to sign the
message - in conjunction with the issuer distinguished
name.
94 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 8

Building Identrus solutions

The iPlanet Trustbase Transaction Manager platform and associated development
tools provide a means of developing Identrus applications starting from the base
DTD through to installing the service for use in a run-time environment.

The following sections walk through the generation of an Identrus application
called Ping. This application is designed to highlight the following concepts:

• Overall development process

• Use of iPlanet Trustbase Transaction Manager developer tools

• The class generation tool JAXHIT

• Using configuration objects

• Using the log manager
95

Methodology
Methodology

Development process
The development of an application requires a base input of an Identrus compliant
DTD. This is passed through a class generator that produces Java Classes for all of
the elements in the DTD along with a set of stub rules and a service definition
within a JAR file. The developer is then at liberty to extend this base data by
implementing the appropriate business logic in the form of a set of Java classes
called by the service stub that perform the appropriate actions.

The set of generated files and associated developer files are then packaged into a
single JAR and deployed into an iPlanet Trustbase Transaction Manager directory
structure. The iPlanet Trustbase Transaction Manager (when re-started) will locate
a package descriptor within the JAR file and offer this new service for activation
within the running environment. The overall process is outlined in Figure 8-1.

Figure 8-1 Development process

DTD

TTM
Message &

Stub Service
Generator

Tool

User
Develops
Message

Processing
Classes

TTM
Service
Mgmnt
Service

JAR
File

Service
JAR

TTM
Processes

New Message
Format

TTM
Service

Deployment
Tool
96 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Methodology
Class generation
The iPlanet Trustbase Transaction Manager class generation tool is designed to
produce a set of classes that may be used at two points in the message processing
pipeline. We now provide a brief overview. (more details can be found in “The
JAXHIT Class Generation Tool,” on page 1 of the appendix at the end of this
document). These are:

Presentation - The iPlanet Trustbase Transaction Manager XML parser uses the
classes to validate incoming XML against the DTD.

Services - Business logic that accesses elements of the message

In order to access the class generation tool, a JDK 1.2.x or greater must be installed;
a JRE does not contain the correct compilers to build an iPlanet Trustbase
Transaction Manager service. Also the classpath must be correctly set, executing
the following on your iPlanet Trustbase Transaction Manager installation can do
this:

This sets the CLASSPATH environment variable to the correct value for the iPlanet
Trustbase Transaction Manager tools.

The class generation tool is available as a command line option and is invoked
using the following:

cd ……./Trustbase/TTM/Scripts
. ./jaxhit

jaxhit [-options] [<public Id> <DTD file>]
Chapter 8 Building Identrus solutions 97

Methodology
Where options include:

And PublicID is the name of the service stub that will be generated. The Public Id is
a mandatory requirement for all Identrus DTD's, and is in the standard form
shown below:

Where service name represents the Identrus service declared by the DTD. The
Public ID is case sensitive and should be carefully entered as it forms part of the
package name for the generated classes.

The tool will only generate classes for DTD elements that do not already have
classes available on the classpath. Therefore, the core Identrus classes are not
regenerated with each new Identrus service because they are already available in
Trustbase jars.

-help displays help

-config <file> Specify the name of the
configuration file. (See
“Message Handler
Example,” on page 117
for more options on this

-cp <classpath> Specify the classpath to
use for compilation

-y Do not confirm before
overwriting existing
files

-stub Generate a stub service

-quiet quiet output

-v verbose output

-debug debug output

-//IDENTRUS//service_name//EN
98 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Methodology
A '-root' entry must be made for each of the elements in the DTD that can be the
root XML element in a message. This is necessary to allow the automatic
processing of the Identrus Message by the default presentation layer in the iPlanet
Trustbase Transaction Manager.

A '-stub' option must be used if the tool is required to generate a stub iPlanet
Trustbase Transaction Manager service for the new message types. The Java source
file for this stub class is placed in the current directory when the tool completes. Do
NOT re-package the stub class once generation has completed - the fully qualified
name of the stub class is recorded in the tbasesvc.properties file in the generated jar
file.

The Class generator will attempt to recursively load the referenced DTD(s). The
references may be:

• Unqualified - The DTD must be located in the directory in which the class
generator is run in

• Local - The file:/// qualifier is used

• Fully qualified - The HTTP://www qualifier is used

An invocation of the JAXHIT tool will produce the following output:

• A .zip containing

❍ A set of generated classes, one for each entity in the DTD

❍ A set of DTD's that represent the input actually used by the XML parser for
generating the classes

❍ A tbasesvc.properties file used by iPlanet Trustbase Transaction Manager
to register the service

• A service stub in the current directory - only if the '-stub' option is used

Each of the generate classes implements the TbaseElement interface. This interface
provides two specific roles:

• Parser - Allows the iPlanet Trustbase Transaction Manager parsing
mechanisms to validate incoming XML messages

• Service - Provides a standard means of getting data from incoming messages
and constructing valid responses without explicitly producing the XML.

There is a sub-class of TbaseElement called TbaseIdentifiedElement that represents
elements that have an attribute named 'id' with a type of 'ID'. This allows a
type-safe method of checking ID compliance when generating or validating XML
DSIG signatures.
Chapter 8 Building Identrus solutions 99

file:///qualifier
HTTP://www

Methodology
The service role of the TbaseElement provides the following function:

• Constructing the XML document hierarchy

• Reading and writing the element attributes by name

• Validating the object representation of the XML document

• Generating the String representation of the XML document described by the
object hierarchy

All elements that are identified by a '-root' option at class generation time, will end
up extending the base class
com.iplanet.trustbase.identrus.message.IdentrusMessage. This enforces that the
message has a valid structure (as defined by Identrus Core Network Messaging
Definition) and the framework can carry out that mandatory processing of the
message. An example of using this interface is shown in the example section at the
end of this document.

Service development
Development of a service is the act of completing the service stub into a functional
business component.

Every service must be stateless so that it may be replicated by the platform. This
means that a service must be capable of processing messages from different
transactions and different users without holding information about a previous
Session State Transaction. If a service is required to hold information about a
session or transaction state, this must be persisted in a database, as the subsequent
messages in a transaction are not guaranteed to be passed to the same host machine
within a cluster.

NOTE The API classes for
com.iplanet.trustbase.identrus.message.IdentrusMessage,
com.iplanet.trustbase.xml.message.TbaseElement and
com.iplanet.trustbase.xml.message.TbaseIdentifiedElement provide
more information on their function.
100 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Methodology
All Identrus network message processing is performed by the iPlanet Trustbase
Transaction Manager platform prior to and after the invocation of the
ProcessIdentrusMessage method in the service stub class generated by the Class
Generation tool. Figure 8-2 shows the message processing path with a Developer
written Identrus Service using the generated message libraries and proxied by the
iPlanet Trustbase Transaction Manager message process stub.

Figure 8-2 Message path processing

This means that for most Identrus services, the developer only needs to modify the
generated stub class to implement the business processing of the incoming
message and generate the core content of the outbound message.

The business processing does not need to do any of the mandatory message
processing such as mandatory signature verification or generation on the message.
These core processing tasks are completed by the iPlanet Trustbase Transaction
Manager presentation layers.

To develop the service, include the generated jar file on the classpath during
development, along with the core iPlanet Trustbase Transaction Manager libraries.

Client response

Generated Libraries

Message conversion

Client request

Presentation

Identrus network
block processing

Routing

Authorisation and
rule processing

Authorisation Service

Role mapping

TTM Service
TTM message

Packaging

Identrus Service

Business processing
Chapter 8 Building Identrus solutions 101

Methodology
Service Building
Having successfully generated the messaging classes and developed the message
processing logic extensions to the stub service, the next task is to build a iPlanet
Trustbase Transaction Manager service jar.

Building the iPlanet Trustbase Transaction Manager service jar is a simple matter
of the following steps:

• Using the standard JDK 'jar' tool, unpack the generated jar file into a directory.

• Beneath the 'DumpDirectory' copy in all of the classes which are required for
the processing of the message. Ensure that the correct package structure is
maintained for all these classes. n.b. Remember that the service stub class must
not have been re-packaged since the class generation created it.

• Using the standard JDK 'jar' tool, repack the archive

• The jar file is now ready for deployment.

Service Deployment
Once the service jar file has been built it can be deployed into iPlanet Trustbase
Transaction Manager. This is done in three stages:

• Copy the jar file into the directory: …../Trustbase/TTM/current/deploy

• Use the administrator console to deploy the service into the running iPlanet
Trustbase Transaction Manager

• Re-start iPlanet Trustbase Transaction Manager to activate the service

mkdir DumpDirectory
cd DumpDirectory
jar -xvf ../jarfile.jar
cd ..

jar -cvf jarfile.jar -C DumpDirectory DumpDirectory/*
102 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Methodology
To deploy the service, logon to iPlanet Trustbase Transaction Manager as
'administrator' and select the 'Deployment' option from the services menu. If you
have copied the service jar into the 'deploy' directory then the new service should
appear on the left hand side of the deployment screen.

• To deploy the service select followed by

Figure 8-3 Deploying PingService within iPlanet Trustbase Transaction Manager
Chapter 8 Building Identrus solutions 103

Methodology
Services may also require authorisation. Select <Authorisation><Add Service>.
The service itself will need to be assigned a role, as illustrated below:

Figure 8-4 Assigning a role to a service

NOTE If no role is available you may have to define a role. Consult the
Configuration and Installation Guide for more details about this.
104 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 9

Ping Example

The following sections use the Ping DTD as defined in the Identrus messaging
specification to walk through the steps in the development cycle as described in the
previous chapter. Developing a service prior to deploying it involves a number of
steps.

1. Create your DTD definitions that specify the syntactic structure of the
messages you wish to send round the system.

2. Use JAXHIT to generate your java classes from your DTD definitions.

3. Write the Java code for the service using the Identrus API that assists the
Identrus processing and validating of messages, certificates, keys and digital
signatures.

4. Use the JDK JAR tool to build the final iPlanet Trustbase Transaction Manager
service jar file.

5. Deploy the service within iPlanet Trustbase Transaction Manager by selecting
the relevant configuration options as described below in this guide.

6. Finally, once it has been deployed within iPlanet Trustbase Transaction
Manager itself you can run your service.
105

Create DTD Definitions
• This example uses the 'Ping' DTD defined in the Identrus Messaging

specification and included below for completeness. Thus, create your DTD
definitions which can be found in ping.dtd. (See IT-TCMPD, the Identrus TC
Messaging Specification for the structure and definition of ping.dtd)

<!--PUBLIC ID for this DTD is: "-//IDENTRUS//PING DTD//EN"-->

<!ENTITY % CoreNetwork.dtd PUBLIC "-//IDENTRUS//CORE NETWORK
INFRASTRUCTURE DTD//EN" "corenetworkinfrastructure.dtd">
%CoreNetwork.dtd;

<!ELEMENT PingRequest (NIB, Signature, CertBundle, PingData)>
<!ATTLIST PingRequest

id ID #REQUIRED
>
<!ELEMENT PingResponse (NIB, Signature, CertBundle, PingData)>
<!ATTLIST PingResponse

id ID #REQUIRED
>
<!ELEMENT PingError (NIB, Signature, CertBundle, ErrorInfo)>
<!ATTLIST PingError

id ID #REQUIRED
>
<!ELEMENT PingData (#PCDATA)>
<!ATTLIST PingData

id ID #REQUIRED
>

<!ELEMENT ErrorInfo (VendorData*)>
<!ATTLIST ErrorInfo

id ID #REQUIRED
errorCode NMTOKEN #REQUIRED

>
<!ELEMENT VendorData (#PCDATA)>
<!ATTLIST VendorData

id ID #REQUIRED
dataType CDATA #REQUIRED

>

106 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

• These link to other dtd files that are supplied with iPlanet Trustbase
Transaction Manager and are listed below:

XMLDSIG.dtd
corenetworkinfrastucture.dtd
Foundation.dtd

NOTE All dtd's can be found in
<install-dir>/Trustbase/samples/ping/resources
Chapter 9 Ping Example 107

API
Before writing your Java code you'll need to know some of the core API that is
supplied with iPlanet Trustbase Transaction Manager for handling Identrus
Messages:

This package allows access to Identrus message Specification

This package provides the necessary routines to allow Identrus message processing

This package processes certificates and keys

Searches tree

Generates and validates XML Digital signatures, this package is not required if the
only signatures on the messages are the mandatory level 1 signatures. These
mandatory signatures are checked/generated automatically by iPlanet Trustbase
Transaction Manager.

This package interfaces with configuration objects

com.iplanet.trustbase.identrus

com.iplanet.trustbase.identrus.message

com.iplanet.trustbase.identrus.security

com.iplanet.trustbase.util.tree

com.iplanet.trustbase.xml.dsig

uk.co.jcp.tbase.config
108 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

PingService Source Code
PingService.java - the generated service stub is an implementation of the abstract
IdentrusService in which the ProcessIdentrusMessage method parameter is the
message received by the TTM platform.

By the time the message arrives at this ProcessIdentrusMessage method, it has
already passed mandatory signature validation checks and been raw logged.
Chapter 9 Ping Example 109

The method must create a response message to the incoming request. Using the
supplied Identrus API's this is simple.

package com.iplanet.trustbase.sample;
import com.iplanet.trustbase.identrus.message.IdentrusMessage;
import uk.co.jcp.tbase.service.ServiceException;
import com.iplanet.trustbase.generated.IDENTRUS.PING_DTD.*;
import
com.iplanet.trustbase.generated.IDENTRUS.CORE_NETWORK_INFRASTRUCTURE_DTD
.*;
import com.iplanet.trustbase.identrus.IdentrusService;
import com.iplanet.trustbase.identrus.message.*;
import uk.co.jcp.tbaseimpl.log.error.*;
import uk.co.jcp.tbase.service.*;
/*** Stub Identrus service implementation. */
public class PingService extends IdentrusService
{

public IdentrusMessage processIdentrusMessage(IdentrusMessage
message)

{
if (message instanceof PingRequest)
{

// Handle PingRequest
PingResponse pr = new PingResponse();
PingData pd = new PingData();
pd.setPCDATA("The ping was successful");
pr.setPingData(pd);
try
{
NIBAccessor niba = NIBAccessor.getInstance(

message.getNetworkInfoBlk(), "2");
pr.setNetworkInfoBlk(niba);
}
catch (NIBAccessorException nie)
{
ErrorLog.log(new ErrorObject("IDT0052", nie));
}
return pr;

}
if (message instanceof PingResponse)
{

// Handle PingResponse
}
if (message instanceof PingError)
{

// Handle PingError
}

return message;
}
}

110 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Having written this simple service it may be compiled ready to be built into a
Service JAR.
Chapter 9 Ping Example 111

Creating the Identrus Service JAR
The following instructions assume that you are using a Bourne Shell or derivative,
and that you have a JDK (at least v1.2.2) installed.

1. From the Trustbase installation directory change into the Scripts sub-directory:

cd Scripts

2. Set the shell CLASSPATH environment variable to include all of the iTTM
libraries

. ./setcp

3. Change directory into the Ping Sample resource directory

cd ../samples/ping/resources

4. Generate the classes from the ping.dtd file, using the JAXHIT tool

../../../Scripts/jaxhit –config IdentrusPingMessaging.xml -y

5. Change directory to the parent directory and compile the generated classes

cd ..

javac –d build
src/com/iplanet/trustbase/generated/IDENTRUS/PING_DTD/*.java

6. Compile the ping service classes

javac –d build –classpath $CLASSPATH:build
src/com/iplanet/trustbase/identrus/ping/*.java

7. Compile the ping client classes

javac –d build –classpath $CLASSPATH:build
src/com/iplanet/trustbase/identrus/tools/*.java

8. Build all of the classes and the service descriptor file
(build/config/tbasesvc.properties) into a JAR file which can be deployed into
iTTM.

jar –cvf pingsample.jar –C build com –C build config

9. Make the new service JAR file available for deployment in iTTM

cp pingsample.jar ../../current/deploy
112 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Deploying pingsample.jar within iPlanet
Trustbase Transaction Manager
• Logon to iPlanet Trustbase Transaction Manager as Administrator

• Deploy PingService within iPlanet Trustbase Transaction Manager. Select
<Services> followed by <Deployment>.

• Since Ping.jar has been placed in the deploy directory automatically by the
builder, iPlanet Trustbase Transaction Manager picks up all the relevant
information and places this in the screen headed "Available services" as
illustrated below.

• To deploy the service select followed by
Chapter 9 Ping Example 113

Figure 9-1 Deploying PingService within iPlanet Trustbase Transaction Manager

• Services require registration. This is done automatically when the jar file is
built from the builder tool. PingService can in fact be seen from the
Configuration Console by selecting <Services> <Registry Configuration> as
illustrated below:
114 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Figure 9-2 Service Registry Configuration
Chapter 9 Ping Example 115

• Services may also require authorisation. Select <Authorisation><Add
Service>. The service itself will need to be assigned a role, as illustrated below:

Figure 9-3 Assigning a role to a service

NOTE If no role is available you may have to define a role. Consult the
Configuration and Installation Guide for more details about this.
116 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Chapter 10

Message Handler Example
117

Introduction
Introduction
To explain the scope and function of the Standard Message Path features of iTTM,
the following sections define all of the requirements and restrictions placed upon
users of the Standard Message Path functionality. A number of common questions
are answered below.

What is the iTTM Standard Message Path ?
The Standard Message Path is the name given to a class of XML application
messaging protocols which conform to the restrictions laid out below. The iTTM
product implements a default set of iTTM processing pipeline components which
provide a basic level of service to all compliant XML messages. A tool for
generating XML message parsing classes and an outline message processing
service for deployment in the iTTM platform.

What needs to be in place before the Standard
Message Path may be used ?
The most important components which must be in place before starting to produce
a Standard Message Path service are the XML messaging protocol and its
associated DTD. It is important to have both the message structure definitions (i.e.
DTD) and the messaging protocol (i.e. what actions and response messages are
provoked by a given request message) defined before trying to create a Standard
Message Path service to process the messaging protocol.
118 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Introduction
What restrictions does the Standard Message
Path place on messaging protocols ?
The messaging is defined by DTD’s, the Standard Message Path messaging does
not prescribe a specific DTD or XML Schema for messages, instead it makes a
number of features mandatory for third parties when they are defining their own
message structures. Taking this approach allows the consumers of Standard
Message Path maximum flexibility in the design of their messaging protocols. The
full restrictions are defined below, but can be summarised as:

❍ The messages must contain a transaction identifier’ which relates all
requests and responses in a messaging exchange.

❍ There must exist an XML DSIG signature as an immediate child of the
document rood element. This signature must sign at least one of the
messaging elements.

❍ The use of the XML ‘ID ‘ attribute type is mandatory for all elements which
may need to be inculded in the creation of a signature. The values of these
ID attributes take a prescribed format.

❍ All DTD’s must be assigned a public identifier, this identifier is unique for
each version of the messaging. i.e. revision 2 of a given DTD must have a
different identifier to revision 1. This allows multiple versions of
messaging to be simultaneously supported.

❍ The mime type of all Standard Message Path compliant messages must
adhere to the structure defined below.

What basic functions does the default
implementation of the Standard Message Path
provide ?
The default iTTM message pipeline components that implement the default
Standard Message Path processing behaviour provide the following services to all
compliant messages:

XML Parsing and structural check

XML message validation against the DTD which defines them, ensuring
grammatical correctness
Chapter 10 Message Handler Example 119

Introduction
Logging into a database of the ‘Raw’ XML bytes

Message signature checking of the mandatory message signature

Use of the certificate which validates the mandatory signature to establish
an authentication level which is then used by the iTTM authorisation component to
gate access to the processing service to legitimate requestors only.

The idea of the default components are that they provide enough basic service and
message processing semantics that the user need only concentrate on the
implementation of the message ‘payload’ processing, leaving the administrative
processing to iTTM Standard Message Path components.

• Which tools are required to create a Standard Message Path service ?

There are a minimum number of tools required to create a Standard Message Path
service, these a listed below:

❍ JDK v1.2.x or greater, this contains a Java compiler and the JAR tool for
creating the final deliverable.

❍ JAXHIT class generation tool, which is provided by the iTTM installation

❍ An editor for writing Java source code

• Can the default implementation of the Standard Message Path be changed ?

The default implementation is designed to produce useful basic set of functions, but

sometimes these will need to be augmented for specific application needs. Each of the

iTTM Standard Message Path components has been designed to allow for sub-classing

which allows specific areas of function to be added, augmented or removed. This includes

the basic error handling framework provided by each of the components.
120 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Development Life Cycle
Development Life Cycle

This section defines the development lifecycle of Standard Message Path service,
this lifecycle utilises tools that allow basic services to be deployed and tested very
quickly. The basic lifecycle is shown below and each stage is further detailed in the
following sections.

Design Messaging � Generate Classes and Service descriptor with JAXHIT � Write
service Java code � Compile � Make JAR file � Deploy into iTTM � Test service
Chapter 10 Message Handler Example 121

Design Messaging Structures and Protocols
Design Messaging Structures and Protocols
The most important input to the lifecycle is the design of the messaging structures
and protocols. The messaging protocol defines which requests will result in which
actions and responses etc. The messaging protocol will be implemented by the
‘service’ Java code written by the developer. The message structures are defined
in DTD’s which are used as input to the next stage of the lifecycle. This section
concentrates on the design of the messaging structures, the protocols are not
restrained by the Standard Message Path.

The iTTM Standard Message Path does not prescribe a specific DTD or XML
Schema for messages, instead it makes a number of features mandatory for third
parties when they are defining their own message structures. Taking this approach
allows the consumers of iTTM the maximum flexibility in the design of their
messaging protocols, including extending or wrapping existing XML messages in a
Standard Message Path compatible form.

The following terms are used in the definition of the messaging rules:

• Level 1 element.
This is used to refer to the top level, or root, XML tag defined for the message.

• Level n element.
This is used to refer to an XML tag that is the child of a level n-1 XML tag,
where level 1 represents the top level element.

The following points are all mandatory for any XML message to be deemed iTTM
Standard Message Path compliant:

• Somewhere in the message structure there must exist a message identifier
whose life is as long as the transaction and is globally unique. This message
identifier is used by iTTM to relate all the messages in a transaction. If this
identifier is not present then the Standard Message Path components will
allocate and identifier whose life will be a single request/response message
pair. i.e. multi-request transactions will not resume their messaging context.

• There must exist an XML DSIG <Signature> element as a level 2 element, this
Signature element must comply with the following:

• All of the certificates required to verify the signature must be included as
children of the signature in the standard DSIG manner. This includes the
entire certificate chain from child to root.

• The signature must sign at least one element.
122 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Design Messaging Structures and Protocols
• The signature must only refer to elements within the current message. e.g.
‘detached’ external document signatures are not allowed.

• Must be defined by the DTD included with the iTTM distribution, it has the
revision URL of http://www.w3.org/2000/09/xmldsig#. For the purposes of
entity inclusion in the application messaging DTD’s its public identifier must
be: http://www.w3.org/2000/09/xmldsig#. E.g. to include the XML DSIG
DTD inside a messaging DTD add the following lines to the top of the
messaging DTD and place the XML DSIG DTD supplied in the iTTM
distribution in the same directory as the messaging DTD(s):

<!ENTITY % XMLDSIG.dtd PUBLIC "http://www.w3.org/2000/09/xmldsig#"
"./xmldsig.dtd">

%XMLDSIG.dtd;

• Whitespace processing for the purposes of signature generation/validation
must be defined by canonicalisation algorithm used in the DSIG signature.
Where this algorithm is not prescriptive enough (e.g. DOMHASH), in order to
remove ambiguity created by whitespace characters contained between nodes,
all non-significant whitespace should be removed prior to signature generation
or validation.

• Where a messaging protocol contains base 64 encoded elements, the line
breaking in the base 64 representation is not prescribed – but for the purposes
of signature calculation all whitespace in the encoding is considered
significant.

• The use of XML ID attributes is mandatory for any element which needs to be
signed, the generation of these ID values is critical because the following must
be true:

❍ Each ID is unique within a single document

❍ Once a block is signed, the ID may not be changed without invalidating the
signature. This is significant if blocks are to be copied from one document
to another along with their associated signature.

• In order to allow all iTTM messages to interoperate and to remove the burden
of ID generation from the developer, the following scheme will be used for the
generation of ID values when signing a message. This scheme is not
mandatory, but any elements that do not have an ID value already assigned
before an attempt to generate a signature is made will be completed using this
Chapter 10 Message Handler Example 123

http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2000/09/xmldsig#

Design Messaging Structures and Protocols
scheme. It would be advisable for all users of iTTM Standard Message Path
messaging to adopt this scheme. Each ID value will be constructed from the 3
following elements, in the following order, separated by underscore (‘_’)
characters.

1. Element Name

2. A 20 byte securely generated random number, represented as a hexadecimal
string, where the most significant byte of the number is the first character, all
letters in the number will be uppercase.

3. To guarantee uniqueness of the ID within the message, a further integer is
added as the final component of the ID. The first occurrence of an
ElementName will have a value of 1, all subsequent occurrences will be
incremented by one. The integer is not mandatory if there is only one
occurrence of an element name within a message. If the integer is not present
then the final underscore separator is also omitted.

An example for the PingRequest element:

PingRequest_0102030405060708090A0B0C0D0E0F10111213_1 or
PingRequest_0102030405060708090A0B0C0D0E0F10111213

• All DTD’s must be assigned a public identifier, this identifier must identify a
particular version of a message definition. i.e. each version of each DTD must
be assigned a different public identifier. This ensures that iTTM can easily
distinguish different message versions and support multiple message versions
simultaneously. The structure for a public identifier is defined to be:
-//organisation//description//language
The public identifier is case sensitive and is typically defined all in upper case.
There must always be a system identifier defined for a DTD, this must be a
valid URL from which the DTD can be fetched. As a further constraint, when a
request/response message protocol is defined, the DTD that defines the
top-level request element must be the same as the DTD that defines the
appropriate response element. Entity inclusion may be used to ‘import’ other
DTDs that define sub-ordinate elements.

• When sending a message to iTTM, it must have the following mime-type
“application/ittm-doctype” where doctype is the XML DOCTYPE of the message
in lowercase. That is the element name of the level 1 element in the message.
e.g. application/ittm-pingrequest. This mime-type will ensure that the default
protocol handler, message reader and message writer process the message
along the iTTM Standard Message Path pipeline. If a different mime-type is
required then customers will need to override each of the processing pipeline
elements to implement their specific mime-type.
124 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Generate Classes and Service descriptor with JAXHIT
Generate Classes and Service descriptor with
JAXHIT

The use of this tool is defined in “The JAXHIT Class Generation Tool,” on page 1 of
the appendix at the end of this document, the tool can be started with a script
called jaxhit which is found in the …../Trustbase/Scripts directory of the
distribution. An example configuration file is described in the Appendix and
another example is used in the sample Credit Check application supplied with the
distributions and described in a later section of this document.

When using the jaxhit tool, all Standard Message Path messages must have a
standard class as their <ElementBase> and must also define a <ServiceConfig>.
The example JAXHIT configuration file for the sample CreditCheck application is
described below:

<Config

srcDir="src"

basePackage="com.iplanet.trustbase.generated"

build="false">

The first lines define the location of the generated classes and their base Java
package root, the build flag is set to flase to stop the JAXHIT tool from trying to
compile the generated classes.

<DTDFile file="creditcheck.dtd" publicId="-//IPLANET//ITTM CREDIT
CHECK//EN"/>

This next line defines the base DTD files to have classes generated, if a DTD is
entity included by a DTD named in a <DTDFile> element, then it will have its
classes generated as the tool recurses through all included DTD files. The classpath
that is defined when the JAXHIT tool is run is very important, before a class is
generated, the classpath is checked to see if a class already exists. This feature
allows for library DTD’s such as XMLDSIG to be generated just once and then used
by many application DTD’s. This behaviour can be overridden by using the
‘force=”true”’ attribute on the <Config> element. See “The JAXHIT Class
Generation Tool,” on page 1 of the appendix at the end of this document.

<DefaultElementBase/>
Chapter 10 Message Handler Example 125

Generate Classes and Service descriptor with JAXHIT
<ElementBase name="CreditCheckRequest">

<ExtendsClass
name="com.iplanet.trustbase.standardpath.message.ITTMMessage"/>

</ElementBase>

<ElementBase name="CreditCheckResponse">

<ExtendsClass
name="com.iplanet.trustbase.standardpath.message.ITTMMessage"/>

</ElementBase>

<ElementBase name="CreditCheckError">

<ExtendsClass
name="com.iplanet.trustbase.standardpath.message.ITTMMessage"/>

</ElementBase>

The lines above define the three allowable Document Root Elements, it tells
JAXHIT that each of the Java classes should extend the existing
“com.iplanet.trustbase.standardpath.message.ITTMMessage” class which is
delivered as part of the iTTM distribution. If the behaviour of the ITTMMessage
class has been overridden by a sub-class (see the ‘Changing Standard Message Path
Default Implementation’ section later in this document) then the sub-class should
be used in the ExtendsClass attribute. ONLY sub-classes of ITTMMessage are
valid in Standard Message Path elements.

<ServiceConfig name="CreditCheckService"

className="com.iplanet.trustbase.standardpath.sample.creditcheck.Cr
editCheckService">

<RootElement name="CreditCheckRequest"/>

<RootElement name="CreditCheckResponse"/>

<RootElement name="CreditCheckError"/>

</ServiceConfig>

</Config>

The final lines define the contents of the Standard Message Path service descriptor
file, The name of the service is used for authorisation once the service is deployed
into iTTM, the class name defines the class that will be executed by iTTM to process
the message ‘payload’. This must implement the ‘uk.co.jcp.tbase.service.Service’
interface (see the next section). Each of the acceptable document root elements is
enumerated as a <RootElement>, each of these entries will result in an iTTM
routing rule which routes messages with that document type to the named service.

The result of using the jaxhit tool are the following items:
126 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Generate Classes and Service descriptor with JAXHIT
• Java Classes
These classes represent the XML elements defined by the messaging DTD, and
are capable of parsing the appropriate message elements (by being called by a
SAX parser) and are also capable of validating the parsed elements against
their DTD definition.

• Service Descriptor
A properties file that defines the name of the service, the main class that
implements the service and the list of XML document types that the service
will process.
Chapter 10 Message Handler Example 127

Write service Java code
Write service Java code
This is the Java code which acts upon the incoming message, processes the content
and generates the ‘payload’ for the response message. The service class must
implement the ‘uk.co.jcp.tbase.service.Service’ interface. A skeleton service class is
shown below and a small but complete service is provided with the credit check
sample in the distribution.

package com.test.package;

import uk.co.jcp.tbase.service.Service;

import uk.co.jcp.tbase.service.ServiceException;

import uk.co.jcp.tbase.environment.Message;

import com.iplanet.trustbase.standardpath.message.ITTMMessage;

import com.iplanet.trustbase.standardpath.util.ITTMUtil;

import com.iplanet.trustbase.standardpath.util.ITTMConstants;

import uk.co.jcp.tbase.environment.attribute.Attribute;

import uk.co.jcp.tbase.environment.attribute.AttributeList;

import uk.co.jcp.tbase.environment.attribute.AttributeConstants;

import com.iplanet.trustbase.xml.message.TbaseIdentifiedElement;

import com.iplanet.trustbase.xml.message.TbaseElement;

import com.iplanet.trustbase.xml.message.TbaseElementException;

import uk.co.jcp.tbaseimpl.log.error.ErrorLog;

import uk.co.jcp.tbaseimpl.log.error.ErrorObject;

import java.rmi.RemoteException;

import java.io.IOException;

public class A_Service implements Service

{

/** See parent class

*/

public Message process(String serviceName, Message message)

throws ServiceException, RemoteException

{

// Get the content and de-serialize it
128 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Write service Java code
ITTMMessage request = null;

ITTMMessage response = null;

try

{ request = (ITTMMessage)ITTMUtil.deserializeMessageContent(
message);}

catch (IOException iox)

{

ErrorObject error = new ErrorObject("AAA0001",iox);

ErrorLog.log(error);

}

catch (ClassNotFoundException cnfx)

{ ErrorObject error = new ErrorObject ("AAA0002", cnfx);

ErrorLog.log(error); }

catch (ClassCastException ccx)

{ ErrorObject error = new ErrorObject ("AAA0003", ccx);

ErrorLog.log(error); }

response = processITTMMessage(request);

// Set the ReturnToUser attribute to signal to the router that the

// message is to be sent back to the user

message.getAttributes().addAttribute(new Attribute("ReturnToUser",
"true", null));

// Remove he Request message DOC_TYPE attribute and replace it with

// the correct Response message DOC_TYPE

message.getAttributes().removeAttributes(
ITTMConstants.DOC_TYPE);

message.getAttributes().addAttribute(new Attribute(
ITTMConstants.DOC_TYPE,((TbaseElement) response).elementName(),
null));

// Serialize the content into the TBASE message

ITTMUtil.serializeMessageContent(message, response
); return message;}

}:
Chapter 10 Message Handler Example 129

Write service Java code
The above skeleton service implementation provides for a call to
‘processITTMMessage(….)’ which takes the Java object tree that represents the
request and processes it to produce a response message. Reading the Java API
documentation for ITTMMessage and its associated classes will provide an insight
into what sort of operations can be performed on the request. It must also be
remembered that ‘request’ can be cast down into the actual message type class e.g.
CreditCheckRequest, there are a number of different abstractions that may apply to
a given generated class. Generating Java API documentation for the generated
classes will help to provide a better understanding of the make up of each message
class.
130 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Compile
Compile
Any Java compiler is acceptable for the generation of Standard Message Path
classes, it is recommended that the chosen compiler be 1.2.x compliant, all
examples in this document assume that the JDK from JavaSoft is being used.
Chapter 10 Message Handler Example 131

Make JAR file
Make JAR file
Any Java compliant JAR tool is acceptable, all examples in this document assume
that the JDK from JavaSoft is being used.
132 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Deploy into iTTM
Deploy into iTTM
Deploying a the new service into iTTM is as simple as copying the final JAR file
into the …./Trustbase/current/deploy directory and then logging on to iTTM as
administrator and use the Services --> Deployment menu option. If the service
already exists then uninstall the old version before installing the new version. If
the new service is not visible, then the service JAR file is probably incorrectly
constructed.
Chapter 10 Message Handler Example 133

Changing the Standard Message Path Default Implementation
Changing the Standard Message Path Default
Implementation

The basic ITTMProtocolHandler, ITTMMessageReader and ITTMMessageWriter
provide a default implementation that will be adequate for most purposes, but
each of these classes has been designed to allow partial or total rewrite of their
functionality via sub-classing. The following sections define the control flows and
methods which may be overridden to change the behaviour of the standard
pipeline for specific message types.

Base Message Class ITTMMessage
The base com.iplanet.trustbase.standardpath.message.ITTMMessage class must be
the base class of all root document elements in a messaging DTD, it implements all
of the generic message signature creation and validation function. A message may
be signed and verified as an opaque entity (i.e. without a semantic understanding
of its ‘payload’). If this class is sub-classed and the sub-class is used as the base
class for root document elements then the basic signature and verification
behaviour may be affected.

1. Overridable Methods

• getElementsToSign()
This method returns the elements of the XML message which must be signed
in the signature.

• getMessageRootElementName()
Gets the name of the XML root element of this iTTM message

• getSigningCertificate()
Get the child certificate which validates the message signature

• getSigningChains()
Get all of the signing chains that validate the message signature - normally this
will only be a single chain, but in a cross-signed PKI it may be multiple chains

• getValidatingTokenKeyStore()
Establish which TokenKeyStore a.k.a. Trust Domain

• getXmlSignature()
Get the mandatory level 2 DSIG signature
134 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Changing the Standard Message Path Default Implementation
• setXmlSignature(...)
Set the signature on the message, this will overwrite any signature that may
currently be associated with the message

• signMessage(...)
Create the mandatory level 2 signature and set it into the message.

• traverseTreeAndSetIds(...)
Traverse the XML message tree and set all ID attributes in elements to a value
if they are not already set.

• validateSignature(java.util.Date atDate)
Validate the mandatory level 2 signature, using the appropriate trust domain.

Protocol Handler
The protocol handler
(com.iplanet.trustbase.standardpath.protocol.ITTMProtocolHandler) is the first
component in the incoming messaging pipeline and it can be sub-classed to change
its behaviour. The control flow sections defines which methods are called in which
order, allowing scope for changing the specific methods whilst leaving the control
flow untouched.

Control Flow

The basic ITTM message processing pipeline provides an implementation of a
protocol handler that accepts wild card mime types beginning with
application/ittm-. This default handler performs the following functions in the
following order, method names for each function are specified:

• readRawXML(...) - Read the Raw XML from the stream into an array.

• checkInputLength(...) - Check input length read in against the content specified
length.

• preProcessXML(...) - Call a raw bytes pre-processing function. The default
implementation performs no function here, it is an override point.

• getXMLEncodingIdentifier(...) - Extract the XML character encoding identifier
from the raw bytes. The default implementation performs no function here, it
is an override point.
Chapter 10 Message Handler Example 135

Changing the Standard Message Path Default Implementation
• parseXmlMessage(...) - Use the class generator message factory to XML parse
the message and create the internal object tree representation of the message
which is made up of classes created by the Class Generator tool. Apart from
structural XML encoding, no validation of the message occurs at this point.

• validateXmlMessage(...) - Validate the message, this validation checks that the
message is structurally compliant with the DTD that describes it.

• rawLog(...) - Raw log the complete message string, this will result in a unique
raw log identifier being returned to the protocol handler. This unique
identifier is added as a iTTM attribute ITTMConstants.RAW_LOG_ID to the
message, this enables other stages of message processing to relate their storage
back to the original raw log record for the message.

• setContextId(...) - Extract a unique identifier from the message for use as an
TTM external context identifier this identifier is very important in multiple
request message protocols, it allows a context to be stored in TTM which lives
longer than just the first request/response pair. It is a requirement of a
compliant iTTM message that this identifier is present in all messages,
although its form and location are not specified. The default implementation
of this will generate a random identifier whose life will be one
request/response pair, thus precluding any multiple message protocols.

• setDocType(...) - Set the ITTMConstants.DOC_TYPE attribute in the iTTM
message with the DOCTYPE of the XML message.

• Set the iTTM message type to be IITMConstants.ITTM_MESSAGE_TYPE.

Overridable Methods
• checkInputLength(...)

Check that the input length of the raw XML message matches the expected
message content length

• getContentTypes()
Get content types recognized by the ProtocolHandler.

• getRawLogStoreName()
This returns the name of the raw log that will be used to store the message, by
default this is the 'identrus' raw log

• getXMLBytes(...)
To allow i18n, convert a Unicode string into raw XML bytes in a known
character encoding

• getXMLEncodingIdentifier(...)
Returns a java character encoding string for the message
136 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Changing the Standard Message Path Default Implementation
• getXMLString(...)
To allow i18n, convert raw XML bytes in a known character encoding into a
Unicode string

• handle(...)
Extract the Message type, determine response content type, and create an
execution environment for the Message

• parseXmlMessage(...)
Parse the XML message into the Java object tree and checks that the message is
XML compliant structurally.

• preProcessXML(...)
Before the XML is parsed this method is called to allow any pre-processing of
the raw message bytes.

• processParsingException(...)
An exception occurred whilst reading/parsing the XML, this does not include
DTD validation

• processProcessingException(...)
An exception has ocurred in the general processing of the XML message, e.g.

• processRawLoggingException(...)
An exception occurred whilst trying to Raw log the XML

• processUnspecifiedException(...)
An general exception has occurred

• processValidationException(...)
An exception occurred whilst validating the incoming XML message against its
DTD

• rawLog(...)
Log the content of the TbaseElement into the database.

• readRawXML(...)
Read raw XML message from the InputStream into the byte array.

• setContextId(...)
This method sets the context id of the message.

• setDoctype(...)
Set the DOCTYPE attribute in the iTTM message based on the DOCTYPE of the
Xml message

• validateXmlMessage(...)
Validate the message against its original DTD.
Chapter 10 Message Handler Example 137

Changing the Standard Message Path Default Implementation
Error Handling
All errors in the main control flow are caught, error logged and then one of the
process….(…) methods is called, to allow a point where error handling behaviour
may be changed by sub-classing. There is an example of this sub-classing in the
Credit Check Sample that is supplied with the distribution.

The protocol handler error processing methods need to return a
ProtocolHandlerException, if this exception has been constructed with a response
message bytes and response mime-type, then the response message is returned to
the user without further processing. If no response message bytes are provided
then an HTTP level error is returned on the connection e.g. FileNotFound.

Message Reader
The message reader
(com.iplanet.trustbase.standardpath.message.ITTMMessageReader) is the final
component in the incoming messaging pipeline and it can be sub-classed to change
its behaviour. The control flow sections defines which methods are called in which
order, allowing scope for changing the specific methods whilst leaving the control
flow untouched.

Control Flow
A MessageReader parses the content of a Message from an InputStream.
MessageReader may be a part of an application, and have specific knowledge of
Message types, or they may be general purpose and have general knowledge of
Message formats.

The basic ITTM message processing pipeline provides an implementation of a
message reader that accepts wild card mime types beginning with application/ittm-
and a message type of ITTMConstants.ITTM_MESSAGE_TYPE. This default
handler performs the following functions in the following order, method names for
each function are specified:

• Default implementation accepts wild card mime types beginning with
'application/ittm-' and a message type of ITTM_MESSAGE (defined by
ITTMConstants.ITTM_MESSAGE_TYPE)
138 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Changing the Standard Message Path Default Implementation
• Deserialise the XML message structure from the iTTM message

• Set the 'security.role' attribute to be 'unset'

• checkXMLSignature(...) - Check the mandatory iTTM message signature
applied to the message, this includes certificate chain checks at the current date
and that the root of the chain is trusted in a single domain.

• processSignature(...) - This is a hook to allow further signature processing to be
added in a child class. The default implementation does nothing in this
method.

• setTrustDomain(...) - This sets the ITTMConstants.PKI_IDENTIFIER attribute
to be the name of the trust domain into which the message validated. This sets
a trust domain context for all further crytographic operations on this message,
including the signing of the response.

• setSecurityContext(...) - This method sets the message attributes which allow
the authorisation component of iTTM to determine the authentication level of
the message. This adds a number of attributes to the message, two for each
certificate in the validating certificate chain. These are an attribute named
SecurityContext.CERTIFICATE_DN+"."+counter, whose value is set to the
issuer dn of the certificate at position 'counter' in the chain. 'counter' is 1 based,
child certificate first. For each of these attributes there is also an attribute
named SecurityContext.CERTIFICATE_SN+"."+counter, whose value is the
serial number of the certificate at position 'counter' in the chain.

• doBilling(...) - This method provides a hook point for child classes to
implement a billing stage in the message processing. The default method
implementation does nothing.

• Serialise the XML message structure into the iTTM message ready to be routed
to a service.

Overridable Methods
• checkXMLSignature(...)

This method checks the mandatory level 2 XML signature on the message,
including checking the certificate chain is valid at todays date and that its root
certificate exists in one and only one trust domain.

• doBilling(...)
Provide access the billing system to perfrom billing for the processed message.

• getTypeAndFormats()
get a list of the Message types and formats supported by this MessageReader.
Chapter 10 Message Handler Example 139

Changing the Standard Message Path Default Implementation
• processIncompleteCertChain(...)
The certificate chain for validating the message signature was not supplied and
could not be re-created from the certificates in the TokenKeyStore

• processInvalidCertChain(...)
The certificate chain used to validate the message is invalid, signatures maybe
corrupt or certificates may be out of the valid date range

• processInvalidSignature(...)
Called if the mandatory level 2 signature check fails, this indicates that the
message or signature has been tampered with.

• processProcessingException(...)
An exception occurred during the processing of the mandatory level 2
signature

• processSignature(...)
Allow further processing of the message signature such as the OCSP check, the
default implementation of this method does nothing.

• processSignatureTrustFailure(...)
Called if the root certificate in the mandatory level 2 signature certificate chain
doesn't exist in any trust domain or if it exists in more than one domain.

• processUnspecifiedException(...) A general exception occurred during the
processing of the message

• read(...)
parse the content of a Message from the InputStream

• setSecurityContext(...)
Set certificate chain attributes on the iTTM message, in preparation for the
authorisation stage to check the authentication level of the message.

• setTrustDomain(...)
Set the private key identifier to the ITTMConstants.PKI_IDENTIFIER message
attribute.

Error Handling
All errors in the main control flow are caught, error logged and then one of the
process….(…) methods is called, to allow a point where error handling behaviour
may be changed by sub-classing. There is an example of this sub-classing in the
Credit Check Sample that is supplied with the distribution.
140 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Changing the Standard Message Path Default Implementation
The message reader error processing methods need to return a
MessageReaderException, if this exception has been constructed with a response
message, then the response message is returned to the user via the appropriate
(based on the value of the message type and mime-type) message writer. If no
response message is provided then an HTTP level error is returned on the
connection e.g. FileNotFound.

Message Writer
The message writer
(com.iplanet.trustbase.standardpath.message.ITTMMessageWriter) is the only
component in the outbound messaging pipeline and it can be sub-classed to change
its behaviour. The control flow sections defines which methods are called in which
order, allowing scope for changing the specific methods whilst leaving the control
flow untouched.

The ITTMMessageWriter component implements the DirectionalMessageWriter
interface which is derived from the more generic MessageWriter interface. The
ITTMMessageWriter component handles messages with mime types beginning
with 'application/ittm-' ie ITTMMessages. It specifically handles messages whose
type is either: ITTMConstants.ITTM_MESSAGE_TYPE or
ITTMConstants.ITTM_AUTH_ERROR_MESSAGE_TYPE. The
ITTMMessageWriter signs the outbound XML message using the XML DSIG
profile specified for ITTMMessage, it then does an XML validation of the message,
logs it and writes it to the client stream.

• Default implementation accepts wild card mime types beginning with
'application/ittm-'

• Check to see if the message is an authorisation failure, i.e. if its message type is
set to ITTMConstants.ITTM_AUTH_ERROR_MESSAGE_TYPE - if so then call
processAuthorisationError(...)

• Deserialise the XML message structure from the iTTM message

• checkDoNotSignAttribute(...) - Check for the existence of the
ITTMConstants.ITTM_DO_NOT_SIGN message attribute, if this is present
then don't sign the message. It must be noted that if the attribute is present but
no signature element is on the message then it will fail XML validation before it
is sent out.
Chapter 10 Message Handler Example 141

Changing the Standard Message Path Default Implementation
• getSigningChain(...) & getSigningKey(...) - Create a message signature
structure and add it to the message, always overwrite any existing structure in
the default implementation. The XML DSIG profile used by the default
implementation will use reference objects for all level 2 elements except the
signature - these references will be bare-name x-pointers. Select a private key
which has an attribute of ITTMConstants.ITTM_SIGNING_KEY associated
with, or if the iTTM message attribute ITTM_SIGNING_KEY_ATTRIBUTE is
present then select a private key with the named attribute. Use the iTTM
message attribute ITTMConstants.PKI_IDENTIFIER to retrieve the trust
domain name for the signing key to be used.

• Call an XML validation on the outbound message - check that it complies with
its DTD.

• getXMLEncodingIdentifier(...) - Get the XML encoding identifier

• addDocType(...) - Set the DOCTYPE of the message, along with its system
identifier (which can be extracted from XML_SYSID iTTM message attribute).

• rawLog(...) - Raw log the response message – passing in the original request
raw log identifier (iTTM Message attribute RAW_LOG_IDENTIFIER). Using
the message attribute will allow multiple message protocols to have all of their
message related back to the original request – except in the case where no
implementation has been provided for extracting an external context identifier.

• Set the mime-type of the response message.

• getXMLBytes(...) - Get the XML bytes and write to client stream.

Overridable Methods
• addDocType(...)

Add tag to the message, identifying the public and system identifiers of the
document.

• checkDoNotSignAttribute(...)
Checks for existence of ITTMConstants.ITTM_DO_NOT_SIGN message
attribute

• getContentType(...)
Gets the actual mime-type to assign to data to a Message to be translated to an
OutputStream by a call to write().

• getRawLogStoreName()
This returns the name of the raw log that will be used to store the message, by
default this is the 'identrus' raw log
142 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Changing the Standard Message Path Default Implementation
• getSigningChain(...)
Retrieve the chain to be used for validation of the XML signature which will be
added to the document.

• getSigningKey(...)
Retrieve the private key to be used for signing the XML document

• getTypeAndFormats()
Gets a list of the Message types and formats supported by
ITTMMessageWriter.

• getXMLBytes(...)
To allow i18n, convert a Unicode string into raw XML bytes in a known
character encoding

• getXMLEncodingIdentifier(...)
Returns a java character encoding string for the message

• getXMLString(...)
To allow i18n, convert raw XML bytes in a known character encoding into a
Unicode string

• processAuthorisationFailureException(...)
Called if there was an authorisation failure in the router whilst attempting to
process the original request.

• processKeyStoreException(...)
Called if there is a problem recovering the signing key or certificate chains
from the stores

• processProcessingException(...)
Called if there is a problem in the general processing of the response message

• processRawLoggingException(...)
Called if there is a problem writing the response message to the raw log

• processSignatureCreateException(...)
Called if there is a problem generating the mandatory level 2 signature
structure for the response message

• processUnspecifiedException(...)
A general exception occurred during the processing of the message

• rawLog(...)
Raw Logs the response XML bytes into the Database

• write(...)
Translates a Message to an external format, and write to an OutputStream
Chapter 10 Message Handler Example 143

Changing the Standard Message Path Default Implementation
Error Handling
All errors in the main control flow are caught, error logged and then one of the
process….(…) methods is called, to allow a point where error handling behaviour
may be changed by sub-classing. There is an example of this sub-classing in the
Credit Check Sample that is supplied with the distribution.

The message writer error processing methods need to set the content of the iTTM
message to be the message to be returned. This message content is then written
directly to the return stream by the error processing method. If no response
message is written to the output stream and instead a MessageWriterException is
thrown, then an HTTP level error is returned on the connection e.g. FileNotFound
144 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Example Application
Example Application

The Example Credit Check Messaging Protocol

The example messaging protocol will implement a very simple credit check
function between a merchant and his bank, regarding the customer. The
messaging will be supported by a very simple PKI that can be easily extended to
interoperate with another bank.

Public Key Infrastructure
The standard 3 party transaction need only have the following very simple PKI:

Subject DN
Issuer DN
Public Key
Signed By

Subject DN
Issuer DN
Public Key
Signed By

Subject DN
Issuer DN
Public Key
Signed By

Subject DN
Issuer DN
Public Key
Signed By

C1B1
B1Root
C1B1Public
B1RootPrivate

BB1
B1Root
BB1Public
B1RootPrivate

B1Root
B1Root
B1RootPublic
B1RootPrivate

M1B1
B1Root
M1B1Public
B1RootPrivate

Bank 1 Root Certificate

Customer 1 of Bank 1 Certificate
Bank 1 Bank Certificate

Merchant 1 of Bank 1 Certificate
Chapter 10 Message Handler Example 145

Example Application

146
This PKI has certificates for the following specific uses:

1. Bank 1 Root is only for issuing other certificates, this certificate is available to
all customers and merchants.

2. Customer 1 of Bank 1 certificate is used to verify all signatures made by that
customer, the private key remains in the possession of the customer, who signs
requests and presents this certificate for the recipient to validate the requests.

3. Merchant 1 of Bank 1 certificate is used to verify all signatures made by that
merchant. The merchant only ever sends requests to his associated bank, all of
these requests must be signed by the merchant’s private key.

4. Bank 1 Bank certificate is used when bank 1 contacts any other bank or any of
its merchants.

Message Protocol
The basic 3 party model is described below

Three Party Variant
The three party variant of the transaction is defined by the following sequence of
messages and occurs when the customer in the transaction is a customer of Bank 1
(i.e. it has a certificate issued by Bank 1).

Customer
C1B1
Web Browser

Merchant
M1B1
Web Server

Bank 1
iTTM

1

2 3

4

iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Example Application
1. This message would normally be a set of request parameters together with a
PKCS#7 signature, generated by a smartcard signing plug-in. The request
parameters are signed using the C1B1 private key and the C1B1 certificate and
B1Root certificate are included in the PKCS#7 and the whole lot is sent to the
merchant web-server.

2. This message would be generated by the merchant once the merchant has
examined the request parameters and verified the PKCS#7 signature. The
merchant would then generate a CreditCheckRequest message to be sent to
Bank 1, asking for a credit rating for customer C1B1. This message contains the
C1B1 certificate and is signed by the M1B1 private key.

3. This message would be generated by the bank once the bank has done the
following:

a. Verify the signature of M1B1 on the CreditCheckRequest. If the signature
check fails then a CreditCheckError message is returned with the status of
‘signature_fail’.

b. Verify the certificate status of M1B1 certificate with its local OCSP
responder. If the certificate is revoked or its status is unknown then a
CreditCheckError message is returned with a status of ‘certificate_invalid’.

c. Check that M1B1 is authorised to make CreditCheckRequests. If the
merchant is not authorised to make a CreditCheckRequest then a
CreditCheckError message is returned with the status of ‘unauthorised’

d. The Customer Certificate contained in the CreditCheckRequest is extracted
and examined. If this certificate was issued by this bank then a local OCSP
responder check is made to establish if the certificate is still valid. If the
certificate status is revoked or unknown then a CreditCheckResponse
message is returned with a CreditRating of ‘Unknown’.

e. Once this has passed then a call to an external credit reference database is
made to establish the rating of the customer. The credit rating is returned
in a CreditCheckResponse Message containing the appropriate
CreditRating.

f. The returned message (CreditCheckError or CreditCheckResponse) is
always signed with the BB1 private key.

4. This message is merchant specific and is based on the credit rating received by
the merchant from his bank. This message is only sent once the merchant has
verified the bank signature on the response message and is satisfied that the
message can be traced back to the B1Root certificate that the merchant
implicitly trusts.
Chapter 10 Message Handler Example 147

Example Application
Message Definition
This section contains the DTD’s that describe the credit check messaging. These
DTD’s may be used by the iTTM Class Generator to create the message parsing
classes for the implementation.

The construction of the messages should be self-explanatory if the DTD is read in
conjunction with message protocol definition, but a few extra notes about message
construction:

• The txid attribute in the TxBlock of the message should be the same for all
messages associated with a given transaction. This txid would be generated by
the merchant and would remain with all messages. This txid can also be used
by iTTM as an external context identifier. Although, this message protocol
does not require the use of contexts within iTTM that last longer than a single
request/response pair.

• The ClientCertificate is optional is the CreditCheckResponse, it may be useful
to return this so that credit ratings can be easily cached against certificates. It
may also be useful if a CreditCheckResponse is being contained within another
protocol that may require access to the certificate that was used to get the credit
rating.

• The ClientCertficate element contains a base 64 encoded X.509 certificate.

• The construction of the signature element can be done in any number of ways
providing it adheres to the basic requirements of iTTM standard messaging.

• The vendorcode attribute of the ErrorInfo element is there to allow a vendor to
attach a specific reason code to a failure.
148 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Example Application
The Following is the full DTD for this example

<!--PUBLIC ID for this DTD is: "-//IPLANET//ITTM CREDIT
CHECK//EN"-->

<!ENTITY % XMLDSIG.dtd PUBLIC "http://www.w3.org/2000/09/xmldsig#"
"./xmldsig.dtd">

%XMLDSIG.dtd;

<!ELEMENT CreditCheckRequest (TxBlock, Signature, ClientCertificate
)>

<!ATTLIST CreditCheckRequest

id ID #REQUIRED>

<!ELEMENT CreditCheckResponse (TxBlock, Signature, CreditRating,
ClientCertificate?)>

<!ATTLIST CreditCheckResponse

id ID #REQUIRED>

<!ELEMENT CreditCheckError (TxBlock, Signature, ErrorInfo)>

<!ATTLIST CreditCheckError

id ID #REQUIRED>

<!ELEMENT TxBlock EMPTY>

<!ATTLIST TxBlock

id ID #REQUIRED

txid CDATA #REQUIRED

txtime CDATA #REQUIRED>

<!ELEMENT ClientCertificate (#PCDATA)>

<!ELEMENT CreditRating EMPTY>

<!ATTLIST CreditRating

id ID #REQUIRED

rating (AAA | AA | A | B | C | D | Unknown) #REQUIRED>

<!ELEMENT ErrorInfo EMPTY>

<!ATTLIST ErrorInfo id ID #REQUIRED

errorCode (unparsable_content | unknown_dtd | signature_fail |
certificate_invalid | unauthorized | unspecified_error) #REQUIRED

vendorcode CDATA #IMPLIED>
Chapter 10 Message Handler Example 149

http://www.w3.org/2000/09/xmldsig#

Example Application
Building & Installing the Example
The following instructions assume that you are using a Bourne Shell or derivative,
and that you have a JDK (at least v1.2.2) installed.

1. From the Trustbase installation directory change into the Scripts sub-directory:

cd Scripts

2. Set the shell CLASSPATH environment variable to include all of the iTTM
libraries

. ./setcp

3. Change directory into the Credit Check Sample resource directory

cd ../samples/creditcheck/resources

4. Generate the classes from the creditcheck.dtd file, using the JAXHIT tool

../../../Scripts/jaxhit –config CreditCheckExample.xml -y

5. Change directory to the parent directory and compile the generated classes

cd ..

javac –d build
src/com/iplanet/trustbase/generated/IPLANET/ITTM_CREDIT_CHECK/*.jav
a

6. Compile the credit check sample classes

javac –d build –classpath $CLASSPATH:build
src/com/iplanet/trustbase/standardpath/sample/creditcheck/*.java

7. Build all of the classes and the service descriptor file
(build/config/tbasesvc.properties) into a JAR file which can be deployed into
iTTM.

jar –cvf creditchecksample.jar –C build com –C build config

8. Make the new service JAR file available for deployment in iTTM

cp creditchecksample.jar ../../current/deploy

9. Install the additional error codes that the sample uses into the iTTM error
database. This is done by executing the SQL script
resources/credit_check_error_codes.sql against the database and user that
iTTM uses.

10. Log on to iTTM as administrator and use the service deployment tool to deploy
the service, using the Services --> Deployment menu option.
150 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Example Application
11. Change directory to the directory which contains the iTTM scripts, redefine the
CLASSPATH environment variable to include the newly added creditcheck
JAR using the setcp script.

cd ../../Scripts

. ./setcp

12. Stop iTTM

./stopias

13. Use the token key tool to mark one of the existing private keys as suitable for
use by the Standard Message Path components to use to sign outbound
messages.

./runtokenkeytool

> listkeys

> addalias –newalias ITTM_SIGNING_KEY –issuer “…issuer_dn…” –serial
serial_number

> quit

14. Start iTTM

./startias

15. Execute the test client which will submit a valid credit check request message
to iTTM, the command line below assumes that you are running on a machine
called foo.bar.com and that you have a key store password of ‘a_password’.
The java code for this client is available in the ../samples/creditcheck/src tree.
This will result in an error, because the certificate used to sign the message is
not one of those authorised to use the new Credit Check Service – no
authorisation entries have been made yet.

java
com.iplanet.trustbase.standardpath.sample.creditcheck.CreditCheckCl
ient –url http://foo.bar.com/NASApp/NASAdapter/TbaseNASAdapter
–domainuri file:../foo –password a_password –trustdomain identrus

16. The result of the previous step is an HTTP level error (FileNotFound), this is
the behaviour of the default Standard Message Path Components. This HTTP
level error is not normally acceptable for a messaging protocol, most protocols
will define an error message which provides the client with a more acceptable
response. As part of the CreditCheck sample messaging, a response message
type of CreditCheckError is supposed to be returned under error conditions.
In order to meet this requirement a new protocol handler, message reader and
message writer will need to be installed to override the error handling
behaviour of the default standard message path equivalents. Implementations
Chapter 10 Message Handler Example 151

http://foo.bar.com/NASApp/NASAdapter/TbaseNASAdapter

Example Application
of these can be found in ../samples/creditcheck/src, they are installed by
logging on to iTTM as administrator and selecting the Parser � Configuration
menu option. Add the following entries in the three sub sections of the
configuration screen:

a. Message Readers, add an entry in Name: CreditCheckMessageReader, add
entry in class:
com.iplanet.trustbase.standardpath.sample.creditcheck.CreditCheckMessa
geReader, press the Add button.

b. Message Writers, add an entry in Name: CreditCheckMessageWriter, add
entry in class:
com.iplanet.trustbase.standardpath.sample.creditcheck.CreditCheckMessa
geWriter, press the Add button.

c. Protocol Handlers, add an entry in Name: CreditCheckProtocolHandler,
add entry in class:
com.iplanet.trustbase.standardpath.sample.creditcheck.CreditCheckProto
colHandler, press the Add button.

Press the Submit button to commit all of the changes to iTTM.

17. Restart iTTM to apply the configuration changes

./stopias

./startias

18. Re-run the client tool as described in step 15. This time a properly formed,
XML DSIG signed CreditCheckError message is returned and displayed on the
screen.

19. The final stage is to add an authorisation for the message, so that it can be
legitimately routed to the CreditCheckService that has been written. In order
to authorise the message, three configurations need to be added. This
configuration is done by logging on to iTTM as administrator.

A role into which credit check requests may be authenticated, select
Authorisation � Add Role menu option and add a new role, with a description,
leaving the Active checkbox ticked.
152 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Example Application
A service authorisation entry which maps access to the CreditCheckService to
any client that authenticates into the newly defined role, select Authorisation �

Add Service menu option. complete the form, it is important to make sure that
the service name is exactly right, the service name can be discovered by
looking at the ‘Service’ entry shown on the Services � Deployment screen, for
the example this is CreditCheckService (case is important).

A certificate authentication entry, which maps any client whose XML DSIG
signature can be verified by the named certificate into the newly defined role,
select Authorisation � Add Certificate. Entries made on this form describe a
certificate in the PKI from which this authentication will occur, this may be an
individual child certificate or at the other end of the scale it may be a root
certificate. The Issuer DN is an RFC2253 formatted name string and the serial
number is a decimal version of the certificate serial number. These two pieces
of information can be displayed about any certificate in the PKI using the
tokenkeytool (see step 13). The maximum depth indicates the number of child
levels below the described certificate that will be authenticated by this entry,
this allows a root certificate to be entered and then restrict the depth of
allowable child certificates. For the example, an entry for the root certificate
can be made with the correct depth to include the certificate which signs the
request message (The one marked with the ITTM_SIGNING_KEY alias in step
13). The role must be set to the newly defined role, and the access checkbox
should be left checked. Press the Add button and then press the Submit
button.

20. Restart iTTM to apply the configuration changes

./stopias

./startias

21. Re-run the client tool as described in step 15. This time a properly formed,
XML DSIG signed CreditCheckResponse message is returned and displayed
on the screen.
Chapter 10 Message Handler Example 153

Example Application
154 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Glossary and References

The objectives of this chapter are to cover

• Software Platform

• Protocols

❍ Transport Protocols

❍ Security Related Protocols

❍ Trading Protocols

❍ Message Protocols

• Glossary

❍ Security related terms

❍ Java Related terms

❍ Server Definitions
155

Software Platform
Software Platform

Solaris 8 and JDK
http://www.sun.com/software/solaris/cover/sol8.html

Java
http://www.javasoft.com

iPlanet Application Server 4.1
http://www.iplanet.com/products/infrastructure/app_servers/index.html

iPlanet Web Server 6.0
http://www.iplanet.com/products/infrastructure/web_servers/index.html

Oracle 8i
http://www.oracle.com

Hardware Security nCipher KeySafe 1.0 and CAFast
http://www.ncipher.com
156 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

http://www.sun.com/software/solaris/cover/sol8.html
http://www.javasoft.com
http://www.iplanet.com/products/infrastructure/app_servers/index.html
http://www.iplanet.com/products/infrastructure/web_servers/index.html
http://www.oracle.com
http://www.ncipher.com

Transport Protocols
Transport Protocols

HTTP
HTTP/1.0 or 1.1 protocol:

http://www.w3.org/Protocols/rfc1945/rfc1945.txt

http://www.ietf.org/rfc/rfc1945.txt

SMTP RFC821
ftp://ftp.isi.edu/in-notes/rfc821.txt http://www.imc.org/ietf-smtp/
157

http://www.w3.org/Protocols/rfc1945/rfc1945.txt
http://www.ietf.org/rfc/rfc1945.txt
ftp://ftp.isi.edu/in-notes/rfc821.txt
http://www.imc.org/ietf-smtp/

Security Related Protocols
Security Related Protocols

S/MIME Version 2 Message Specification
ftp://ftp.isi.edu/in-notes/rfc2311.txt

http://www.imc.org/ietf-smime

http://www.ietf.org/rfc/rfc2311.txt

DOMHASH
http://www.ietf.org/rfc/rfc2803.txt

OCSP
http://www.ietf.org/rfc/rfc2560.txt

Certificate requests and responses
PKCS10 requests RFC2314 can be found in

http://www.ietf.org/rfc.html

PKCS7 responses RFC2315 can be found in

http://www.ietf.org/rfc.html
158 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

ftp://ftp.isi.edu/in-notes/rfc2311.txt
http://www.imc.org/ietf-smime
http://www.ietf.org/rfc/rfc2311.txt
http://www.ietf.org/rfc/rfc2803.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html

Trading Protocols
Trading Protocols

Identrus
http://www.identrus.com

Transaction Coordinator requirements (IT-TCFUNC)

Core messaging specification (IT-TCMPD)

Certificate Status Check Messaging specification (IT-TCCSC)
159

http://www.identrus.com

Message Protocols
Message Protocols

DOM
http://www.w3.org/TR/REC-DOM-Level-1/

DTD
http://www.w3.org/XML/1998/06/xmlspec-v20.dtd

XML
http://www.w3.org/TR/REC-xml

XML Syntax Processing specification
http://www.w3.org/TR/xmldsig-core

HTML
HTML 3.2 as specified in

http://www.w3.org/TR/REC-html32.html
160 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/XML/1998/06/xmlspec-v20.dtd
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/REC-html32.html

Security related terms
Security related terms
3DES Similar to DES.

Application protocol An application protocol is a protocol that normally layers directly on top of the
transport layer (e.g., TCP/IP). Examples include HTTP, TELNET, FTP, and
SMTP.

Asymmetric cipher See “Public key cryptography”.

ASN.1 Abstract Syntax Notation One.

Authentication Authentication is the ability of one entity to determine the identity of another
entity.

base64 A representation of characters in digital format using a 65 character subset of
U.S. ASCII.

BBS A random number generating algorithm.

BER Basic encoding Rules used with X509.

Block cipher A block cipher is an algorithm that operates on plaintext in groups of bits,
called blocks. 64 bits is a typical block size.

Bulk cipher A symmetric encryption algorithm used to encrypt large quantities of data.

Cipher Block Chaining
Mode (CBC) CBC is a mode in which every plaintext block encrypted with the block cipher

is first eXclusive-OR-ed with the previous ciphertext block (or, in the case of
the first block, with the initialization vector).

Certificate As part of the X.509 protocol (a.k.a. ISO Authentication framework), certificates
are assigned by a trusted Certificate Authority and provide verification of a
party's identity and may also supply its public key.

Client The application entity that initiates a connection to a server.

Client write key The key used to encrypt data written by the client.

Client write MAC
secret The secret data used to authenticate data written by the client.

Connection A connection is a transport (in the OSI layering model definition) that provides
a suitable type of service. For SSL, such connections are peer to peer
relationships. The connections are transient. Every connection is associated
with one session.

CRL Certificate
Revocation List A certificate that is not valid but still within its expiry date.
161

Security related terms
Data Encryption
Standard (DES) DES is a very widely used symmetric encryption algorithm. DES is a block

cipher.

DER Distinguished Encoding rules used in X509.

DH A public-key cryptographic algorithm for encrypting and decrypting data.

Digital Signature
Standard (DSS) A standard for digital signing, including the Digital Signing Algorithm,

approved by the National Institute of Standards and Technology, defined in
NIST FIPS PUB 186, "Digital Signature Standard," published May, 1994 by the
U.S. Dept. of Commerce.

Digital signatures Digital signatures utilise public key cryptography and one-way hash functions
to produce a signature of the data that can be authenticated, and is difficult to
forge or repudiate.

DSA Digital Signature Algorithm.

Handshake An initial negotiation between client and server that establishes the parameters
of their transactions.

Initialization Vector
(IV) When a block cipher is used in CBC mode, the initialisation vector is

eXclusive-OR-ed with the first plaintext block prior to encryption.

IDEA A 64-bit block cipher designed by Xuejia Lai and James Massey.

Message Authentication
Code (MAC) A Message Authentication Code is a one-way hash computed from a message

and some secret data. Its purpose is to detect if the message has been altered.

Master secret Secure secret data used for generating encryption keys, MAC secrets, and IVs.

MD5 MD5 is a secure hashing function that converts an arbitrarily long data stream
into a digest of fixed size.

MIME MultiPURPOSE Internet Mail Extension

Message digest A digest algorithm converts data of any size, via a one-way hashing function,
into a small fixed size unique representation. Message digests are used
extensively in the generation of digital signatures and integrity checking of
data.

PBE Password based encryption

PEM Privacy enhanced mail

Public Key
Infrastructure (PKI) Defines protocols to support online interaction.
162 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Security related terms
Public key
cryptography A class of cryptographic techniques employing two-key ciphers. Messages

encrypted with the public key can only be decrypted with the associated
private key. Conversely, messages signed with the private key can be verified
with the public key.

One-way hash function A one-way transformation that converts an arbitrary amount of data into a
fixed-length hash. It is computationally hard to reverse the transformation or
to find collisions. MD5 and SHA are examples of one-way hash functions.

OSI Open Systems Inter-Connection.

RC2, RC4 Proprietary bulk ciphers from RSA Data Security, Inc. RC2 is block cipher and
RC4 is a stream cipher.

RFC A series of authoritative discussion documents. Requests for Comments.

RSA A very widely used public-key algorithm that can be used for either encryption
or digital signing.

Salt Non-secret random data used to make export encryption keys resist
pre-computation attacks.

Server The server is the application entity that responds to requests for connections
from clients. The server is passive, waiting for requests from clients.

Server write key The key used to encrypt data written by the server.

Server write MAC
secret The secret data used to authenticate data written by the server.

Session A SSL session is an association between a client and a server. Sessions are
created by the handshake protocol. Sessions define a set of cryptographic
security parameters, which can be shared among multiple connections.
Sessions are used to avoid the expensive negotiation of new security
parameters for each connection.

Session identifier A session identifier is a value generated by a server that identifies a particular
session.

SHA The Secure Hash Algorithm is defined in FIPS PUB 180-1. It produces a 20-byte
output

SSL Secure sockets layer

Stream cipher An encryption algorithm that converts a key into a cryptographically-strong
keystream, which is then eXclusive-OR-ed with the plaintext.

Symmetric cipher See “Bulk cipher”.

TSL Transport security layer
163

Security related terms
X690 The ASN.1 specification

X509 An authentication framework based on ASN.1 BER and DER and base64.
164 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Java Related terms
Java Related terms
Abstract class A class that contains one or more abstract methods, and therefore can never be

instantiated. Abstract classes are defined so that other classes can extend them
and make them concrete by implementing the abstract methods.

Abstract method A method that has no implementation.

API Application
Programming Interface The specification of how a programmer writing an application accesses the

behaviour and state of classes and objects.

Applet A program written in Java to run within a Java-compatible web browser, such
as HotJava™ or Netscape Navigator™.

Atomic Refers to an operation that is never interrupted or left in an incomplete state
under any circumstance.

Bean A reusable software component. Beans can be combined to create an
application.

Class In Java, a type that defines the implementation of a particular kind of object. A
class definition defines instance and class variables and methods, as well as
specifying the interfaces the class implements and the immediate superclass of
the class. If the superclass is not explicitly specified, the superclass will
implicitly be Object.

Classpath A classpath is an environmental variable that tells the Java Virtual Machine
and other Java applications (for example, the Java tools located in the
JDK1.1.X\bin directory) where to find the class libraries, including
user-defined class libraries.

Codebase Works together with the code attribute in the <APPLET> tag to give a complete
specification of where to find the main applet class file: code specifies the name
of the file, and codebase specifies the URL of the directory containing the file.

Core class A public class (or interface) that is a standard member of the Java Platform.
The intent is that the Java core classes, at minimum, are available on all
operating systems where the Java Platform runs. A 100%-pure Java program
relies only on core classes, meaning it can run anywhere.

Critical section A segment of code in which a thread uses resources (such as certain instance
variables) that can be used by other threads, but that must not be used by them
at the same time.

Deprecation Refers to a class, interface, constructor, method or field that is no longer
recommended, and may cease to exist in a future version.

Derived from Class X is "derived from" class Y if class X extends class Y. See also “Extends”.
165

Java Related terms
Exception An event, during program execution, that prevents the program from
continuing normally; generally, an error. Java supports exceptions with the try,
catch, and throw keywords. See also “Exception handler”.

Exception handler A block of code that reacts to a specific type of exception. If the exception is for
an error that the program can recover from, the program can resume executing
after the exception handler has executed.

Extends Class X extends class Y to add functionality, either by adding fields or methods
to class Y, or by overriding methods of class Y. An interface extends another
interface by adding methods. Class X is said to be a subclass of class Y. See also
“Derived from”.

GUI Graphical User Interface. Refers to the techniques involved in using graphics,
along with a keyboard and a mouse, to provide an easy-to-use interface to
some program.

HotJava™ Browser An easily customisable Web browser developed by Sun Microsystems that is
written in Java.

HTML HyperText
Markup Language This is a file format, based on SGML, for hypertext documents on the Internet.

It is very simple and allows for the embedding of images, sounds, video
streams, form fields and simple text formatting. References to other objects are
embedded using URLs.

HTTP Hypertext
Transfer Protocol The Internet protocol, based on TCP/IP, used to fetch hypertext objects from

remote hosts. See also “TCP/IP”.

IDL Java Interface
Definition Language Java API's that provide standards-based interoperability and connectivity with

CORBA (Common Object Request Broker Architecture).

Instance An object of a particular class. In Java programs, an instance of a class is
created using the new operator followed by the class name.

Interface In Java, a group of methods that can be implemented by several classes,
regardless of where the classes are in the class hierarchy.

IP Internet Protocol The basic protocol of the Internet. It enables the unreliable delivery of
individual packets from one host to another. It makes no guarantees about
whether or not the packet will be delivered, how long it will take, or if multiple
packets will arrive in the order they were sent. Protocols built on top of this
add the notions of connection and reliability. See also “TCP/IP”.
166 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Java Related terms
JAR file format JAR (Java Archive) is a platform-independent file format that aggregates many
files into one. Multiple Java applets and their requisite components (.class files,
images, sounds and other resource files) can be bundled in a JAR file and
subsequently downloaded to a browser in a single HTTP transaction. It also
supports file compression and digital signatures.

JavaBeans™ A portable, platform-independent reusable component model.

Java Database
Connectivity (JDBC™) An industry standard for database-independent connectivity between Java and

a wide range of databases. The JDBC™ provides a call-level API for SQL-based
database access.

Java™ Development Kit
(JDK™) A software development environment for writing applets and application in

Java.

Java™ Foundation
Class (JFC) An extension that adds graphical user interface class libraries to the Abstract

Windowing Toolkit (AWT).

Java Platform The Java™ Virtual Machine and the Java core classes make up the Java
Platform. The Java Platform provides a uniform programming interface to a
100% Pure Java program regardless of the underlying operating system.

Java Remote Method
Invocation (RMI) A distributed object model for Java-to-Java applications, in which the methods

of remote Java objects can be invoked from other Java virtual machines,
possibly on different hosts.

Java Runtime
Environment (JRE) A subset of the Java™ Development Kit for end-users and developers who

want to redistribute the JRE. The JRE consists of the Java Virtual Machine, the
Java Core Classes, and supporting files.

JavaScript™ A Web scripting language that is used in both browsers and Web servers. It's
only loosely related to Java and the name causes unnecessary confusion. Like
any scripting language, it's used mostly to tie other components together or to
accept user input.

Java™ Virtual Machine
(JVM) The part of the Java Runtime Environment responsible for interpreting Java

bytecodes.

JDK™ Java™
Development Kit A software development environment for writing applets and application in

Java.
167

Java Related terms
JFC Java™ Foundation
Class An extension that adds graphical user interface class libraries to the Abstract

Windowing Toolkit (AWT).

JRE Java Runtime
Environment A subset of the Java Developer Kit for end-users and developers who want to

redistribute the JRE. The JRE consists of the Java Virtual Machine, the Java
Core Classes, and supporting files.

Just-in-time (JIT)
Compiler A compiler that converts all of the bytecode into native machine code just as a

Java program is run. This results in run-time speed improvements over code
that is interpreted by a Java Virtual Machine.

JVM Java Virtual
Machine The part of the Java Runtime Environment responsible for interpreting Java

bytecodes.

Multithreaded Describes a program that is designed to have parts of its code execute
concurrently. See also “Thread”.

NCSA National Center for Supercomputer Applications.

Package A group of types. Packages are declared with the package keyword.

Process A virtual address space containing one or more threads.

RPC Remote Procedure Call. Executing what looks like a normal procedure call (or
method invocation) by sending network packets to some remote host.

Sandbox Comprises a number of co-operating system components, ranging from
security managers that execute as part of the application, to security measures
designed into the Java Virtual Machine and the language itself. The sandbox
ensures that a distrusted, and possibly malicious, application can't gain access
to system resources.

Secure Socket Layer
(SSL) A protocol that allows communication between a Web browser and a server to

be encrypted for privacy. It can also provide communication between other
entities.

Synchronized A Java keyword that, when applied to a method or code block, guarantees that
at most one thread at a time executes that code.

TCP/IP Transmission Control Protocol based on IP. This is an Internet protocol that
provides for the reliable delivery of streams of data from one host to another.
See also “IP Internet Protocol”.

Thin Client A system that runs a very light operating system with no local system
administration and executes Java applications delivered over the network.
168 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Java Related terms
Thread The basic unit of program execution. A process can have several threads
running concurrently, each performing a different job, such as waiting for
events or performing a time-consuming job that the program doesn't need to
complete before going on. When a thread has finished its job, the thread is
suspended or destroyed. See also “Process”.

Unicode A 16-bit character set defined by ISO 10646. All Java source is written in
Unicode.

URL Uniform Resource Locator. A standard for writing a text reference to an
arbitrary piece of data in the WWW. A URL looks like
"protocol://host/localinfo" where protocol specifies a protocol to use to fetch
the object (like HTTP or FTP), host specifies the Internet name of the host on
which to find it, and localinfo is a string (often a file name) passed to the
protocol handler on the remote host.

Virtual machine An abstract specification for a computing device that can be implemented in
different ways, in software or hardware. You compile to the instruction set of a
virtual machine much like you'd compile to the instruction set of a
microprocessor. The Java Virtual Machine consists of a bytecode instruction set,
a set of registers, a stack, a garbage-collected heap, and an area for storing
methods.

Wrapper An object that encapsulates and delegates to another object to alter its interface
or behaviour in some way.
169

protocol://host/localinfo

Server Definitions
Server Definitions
API Application Programming Interface,

ASP Active Server Pages

Attribute An attribute is a string value that may be used in conjunction with a set of
rules by the router to determine the next action to perform. Attributes are used
to populate contexts with information about a message.

Business Logic Business logic is the 'user' code in the system. Business logic executes tasks
such as 'debit account', 'retrieve balance' etc.

Configurable Entity Is any Service or component that uses Configuration Objects and the
Configuration Manager.

Configuration Object Configuration Objects hold persistent configuration data for services.

Configuration Service Is a Service that implements a read-write interface to the Configuration Object.

Connection Manager Describes the process with which iPlanet Trustbase Transaction Manager
communicates with external entities. It utilises the following objects to
accomplish this task... Protocol Maps, Protocol Analysers, Handlers, Message
Readers and Writers.

Connector The Connector is the main Connection Manager interface. It makes requests
external to iPlanet Trustbase Transaction Manager. It takes a iPlanet Trustbase
Transaction Manager Message containing the request, and a Destination Object
describing the endpoint for the request.

Context Keeps a record of the current state of a given transaction.

Context Directive The action components that make up a ruleset.

CORBA Common Object Request Broker Architecture.

CSS Cascading Stylesheet.

Destination Represents the destination of an external request, made by the Connector. An
application specifies an implementation of Destination, and a ProtocolMap that
can transform the destination into a ProtocolDescriptor for the Connector,
which can then make and manage the actual connection.

Directive The 'action' part of a rule that is executed when the preconditions are true.

DMZ De-militarised Zone.

DOM Domain Object Model.

DTD Data Type Definition or Document Type Definition.

EJB Enterprise Java Bean.
170 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Server Definitions
Environment A set of contexts that are associated with a particular message.

Host Environment
Adaptor The environment adapter forms the interface between a host such as a web

server or application server and iPlanet Trustbase Transaction Manager itself.

HSM Hardware Security Module.

HTML HyperText Markup Language.

IDL Interface Definition Language.

JDBC Java Database Connectivity.

JWS Java Web Server.

lastService An attribute containing the nameof the most recently executed service.

MessageType An attribute contained within a message which holds the type of a given
message. Message types are externally defined by the user.

Message An internal representation of a request from the user or a response from the
server. Messages are routed within the system.

Message Analyser Provides the logic to identify which message reader or writer to use for a
particular message based on the transport and the external format of the
content.

Message Log Manager Instantiates and allows access to Message Loggers. The message loggers are
accessed according to which mime type they have registered interest in.

Message Logger Logs incoming and outgoing messages in their raw unprocessed form. The log
can then be later queried and manipulated through the logManager or directly
through the back end database engine.

Message Reader A Message Reader parses the remaining content of a Message from the
InputStream, into the Message's content field. Message Readers may be a part
of an application, and have specific knowledge of Message types, or they may
be general purpose and have general knowledge of Message formats

Message Registry A section of the tbase.properties file that provides a mapping between a
message type and the message readers and writers used to process it.

Message Writer A Message Writer translates processed Message objects into the clients required
presentation protocol, and write the results onto an Output Stream, which is
provided by the Protocol Analyser.

NAS Netscape Application Server

NSK Non Stop Kernel

OAS Oracle Application Server.
171

Server Definitions
PKI Public Key Infrastructure.

Precondition A precondition is a boolean expression which must be true for its
corresponding directive to be executed. Preconditions are expressed in terms of
attributes and their values. There are two types of precondition; an assertion
that an attribute with a particular name exists and an assertion that the
attribute with a given name not only exists but has a specific value.

Private Rule Set
Repository A collection of rule sets that ships with the iPlanet Trustbase Transaction

Manager and allows built in services (such as the configuration services) to
function.

Protocol Analyser Provides the logic to identify which protocol handler to use for a particular
message type.

Protocol Descriptor Holds a description of the endpoint, transport and presentation protocols for a
connection, in the form of a URL, and the format of the message to be sent, and
as a mime type Implements Destination. It can be used with the
SimpleProtocolMap for direct Destination addressing.

Protocol Handler The protocol Handler Component extracts the message type and context ID
from the header of a message. There is usually one protocol handler for a
particular message class e.g. iPlanet Trustbase Transaction Manager messaging,
OFX etc. The protocol handler then routes appropriate protocol to the Message
Analyser.

Protocol Map An application specifies ProtocolMap implementations to map it's Destination
implementations to URLs and mime types that the Connector can use to make
an actual connection.

Protocol Map Manager Manages a set of ProtocolMap implementations, selecting an appropriate
ProtocolMap to translate a particular Destination implementation into a
ProtocolDescriptor.

Public Rule Set
Repository A user configurable collection of user-defined Rule Sets Rules in the private

Rule Set Repository take precedence over rules in the public Rule Set
Repository.

RMI Remote Method Invocation.

Role Role is not set of attributes, it is the name of a particular attribute which the
system recognises. There are several such attributes including:

lastService - the nameof the most recently executed service
messageType - the type of a given message
role - a string representing the capacity in which the user is

using the system, e.g. role - operator, role =administrator etc.
172 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Server Definitions
Router The router provides a mechanism for imposing structure and ordering on the
execution of services in a secure way which doesn't necessitate code changes.

Rule A Rule contains three components: a Rule Name, Precondition and Directive. If
the precondition is true then the directive is executed.

Rule Name Every rule has a name. The rule is referred to by its name in the context of a
ruleset.

Ruleset A collection of rules that route messages to one or more services to achieve a
given task.

Service An object implementing business logic. Services are written by the user.

Service Registry A registry of services! Used to provide a lookup between service names and
the classes that implement them.

Session A session is the container for all of the tasks a user is performing over a period
of time.

Skeleton The server/remote portion of a distributed object under CORBA and RMI. The
skeleton is invoked by the Stub. See also “Stub”.

SP Service Provider

State A collection of attributes associated with a task at a given instant in time.

Stub The client portion of a distributed object using mechanisms such as CORBA or
RMI. The Stub is designed to hide the fact that the implementation of it's
related object is not locally located. See also “Skeleton”.

Task A unit of work at the business level. A ruleset defines how a task will be
executed.

TISS Transport Independent Stub Service

URL Uniform Resource Locator

X500 Set of Open Standards for directory services. See, for instance, Country code
that is defined as an ISO standard http://www.iso.ch and X500 standard
http://www.itu.int/itudoc/itu-t/rec/x/x500up/x500.html

XML Extensible Markup Language

XSL Extensible Stylesheet Language
173

http://www.iso.ch
http://www.itu.int/itudoc/itu-t/rec/x/x500up/x500.html

Server Definitions
174 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Index

NUMERICS
3DES, 161

A
Abstract class, 165
Abstract method, 165
Advanced Routing, 51
API, 2, 12, 35, 36, 38, 40, 42, 55, 56, 62, 64, 72, 74, 79,

100, 105, 108, 165, 170
API packages

com.iplanet.trustbase.identrus, 19, 44, 100, 108
com.iplanet.trustbase.identrus.message, 100, 108
com.iplanet.trustbase.util.tree, 108
com.iplanet.trustbase.xml.dsig, 108
uk.co.jcp.tbase.config, 62, 108
uk.co.jcp.tbase.connector, 35, 37, 38
uk.co.jcp.tbase.xurl, 35, 40
uk.co.jcp.tbaseimpl.connector, 35, 36, 37
uk.co.jcp.tbaseimpl.log.audit.type, 73, 76, 77

Applet, 165
Application protocol, 161
ASN.1, 161, 164
ASP, 170
Assigning a role to a service, 104, 116

Asymmetric cipher, 161
Atomic, 165
Attribute, 19, 44, 56, 170
Audit, 73, 74, 75, 77
Audit Logging an Event, 73
Audit logs, 73
AuditObject, 73, 74, 76
Authentication, 5, 13, 47, 68, 161
Authentication and Authorisation, 5, 47, 68
Authorisation, 13, 43, 48, 104, 116

B
base64, 161, 164
BBS, 161
Bean, 165, 170
BER, 161, 164
bill_data table, 94
Billing records, 94
Block cipher, 161
Building Identrus solutions, 49, 95
Bulk cipher, 161
Business Logic, 170
175

C
cert_data table, 92
CertData, 92
Certificate, 3, 5, 12, 19, 22, 33, 40, 44, 159, 161
Certificate requests and responses, 158
Chapter Single Template, 1
Cipher Block Chaining Mode, 161
CipherSuite, 89
Class, 165
Class generation, 97
Classes

Attribute, 19, 21, 42
Audit, 73
AuditObject, 73, 76
Certificate, 3, 5, 12, 19, 33, 40, 159
ConfigUID, 62
ConfigurationLock, 63
ConfigurationObject, 62, 66
ConnectionProtocolAnalyser, 36
Connector, 35, 39
DefaultConnector, 36
Destination, 35, 38
ErrorLog, 78, 81
ErrorObject, 79, 81
HTTPReader, 21
IdentrusConstants, 19, 21, 32, 44
IdentrusMessage, 100
InvalidDestinationException, 37
Message, 11, 19, 20, 23, 42, 84
MessageAnalyserException, 84
MessageReader, 36
MessageReaderException, 84
MessageWriter, 23
MessageWriterException, 84
OperationBeginAudit, 73
ParseException, 84
ProtocolAnalyserException, 84
ProtocolDescriptor, 35, 37
ProtocolHandler, 36
ProtocolMap, 35, 37
ProtocolMapManager, 35, 36
Router, 12, 42, 45, 49, 59, 82, 84
RoutingException, 82, 84
ScriptWriter, 23, 28, 66
SecurityContext, 44

Service, 35, 36
ServiceException, 82, 84
Signature, 22
SimpleProtocolMap, 39
SingletonConfigManager, 63
TbaseElement, 99
TbaseIdentifiedElement, 99
TbaseRuntimeException, 84
XURL, 39
XURLStreamHandler, 39
XURLStreamHandlerFactory, 39

classname, 79, 80
Classpath, 165
Client, 161
Client write key, 161
ClientCertIssuerDN, 89
ClientCertSerialNumber, 89
com.iplanet.trustbase.identrus, 19, 44, 100, 108
com.iplanet.trustbase.identrus.message, 100, 108
com.iplanet.trustbase.identrus.security, 108
com.iplanet.trustbase.util.tree, 108
com.iplanet.trustbase.xml.dsig, 108
Complete Router Rule DTD, 59
Component replication, 68
ConfigManager, 64
ConfigUID, 62, 63, 65
Configurable Entity, 62, 66, 170
Configuration Management, 61
Configuration Manager, 62, 63, 65, 66
Configuration Object, 62, 63, 65, 170
Configuration Service, 66, 170
Configuration Store, 61, 65
ConfigurationLock, 63
ConfigurationObject, 62, 66
Connection, 15, 34, 35, 39, 89, 90, 161, 170
Connection information, 89
Connection Manager, 15, 34, 35, 36, 39, 170
Connection Manager Architecture, 34
connection_id, 90, 91
ConnectionFailed, 89
ConnectionFailedReason, 89
ConnectionId, 89
ConnectionProtocolAnalyser, 36
176 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

ConnectIPAddr, 89
Connector, 35, 36, 39, 170
ConnectTime, 89
Context, 18, 36, 170
Context Directive, 170
contextid, 80
CORBA, 10, 11, 166, 170, 173
Core class, 165
Create DTD Definitions, 106
Critical section, 165
CRL, 161
CSS, 170

D
data, 6, 10, 42, 81, 168
Data definitions, 89
Data Encryption Standard, 162
datatype, 81
Default HTML Message Writer, 23
Default Identrus Error Writer, 33
Default Identrus Message Writer, 32
Default Message Reader, HTTP Reader, 20
Default Message Reader, Identrus Error Reader, 22
Default Message Reader, Identrus Reader, 21
Default routing, 49, 50
Default routing rules, 50
DefaultConnector, 36
Defining a New Error, 81
Defining New Audit Types, 74
Deploying ping.jar within iPlanet Trustbase

Transaction Manager, 113
Deploying PingService within iPlanet Trustbase

Transaction Manager, 103, 114
Deprecation, 165
DER, 162, 164
DES, 161, 162
Destination, 35, 37, 38, 39, 170, 172
Development process, 96
DH, 162

digestofrecord, 86
Digital Signature Standard, 162
Digital signatures, 108, 162
Directive, 55, 170, 173
DMZ, 170
doctype, 49, 91
DOM, 16, 21, 24, 170
DSA, 162
DTD, 18, 33, 53, 59, 95, 105, 106, 170
DTD Rule Body, 55

E
EJB, 8, 11, 39, 170
Enterprise connectivity, 11
Environment, 171
Error and Audit Logging, 71
Error handling and logging, 78
Error Logging, 78, 79
Error Severity Types, 78
Error table, 80
error_codes table, 79, 80, 81
error_support, 80, 82
errorcode, 79, 80
errorid, 80
ErrorLog, 78, 79, 81
ErrorObject, 79, 81
Exception, 81, 82, 166
Exception handler, 166
Exception Handling, 82
External interfaces, 10

G
Glossary and References, 155
GUI, 166
177

H
Handshake, 162
Hardware Security nCipher KeySafe 1.0 and

CAFast, 3, 156
Host Environment Adaptor, 171
HSM, 171
HTML, 4, 9, 16, 23, 28, 62, 66, 160, 166, 171
HTTP, 4, 10, 21, 84, 99, 157, 161, 166
HTTPReader, 21

I
IDEA, 162
Identrus, 3, 4, 5, 7, 9, 11, 12, 16, 32, 41, 44, 46, 47, 79,

87, 95, 105, 159
Identrus logging, 87
Identrus Message Attributes, 44
Identrus Message Specifications, 3
Identrus protocol handler, 18
Identrus Transaction Coordinator, 5, 87
IdentrusConstants, 19, 21, 22, 32, 33, 44
IdentrusMessage, 100
IdentrusService, 109
IDL, 166, 171
Initialization Vector, 162
input, 20, 21, 96, 167
Interface, 165, 166, 170, 171
Introduction, 1
InvalidDestinationException, 37
IP, 32, 80, 89, 166
iPlanet Application Server 4.1, 3, 156
iPlanet Certificate Management System, 3
iPlanet Trustbase Transaction Manager

Architecture, 7
iPlanet Trustbase Transaction Manager

Interfaces, 10
iPlanet Trustbase Transaction Manager log

manager, 72
iPlanet Trustbase Transaction Manager Platform, 4
iPlanet Web Server 6.0, 3, 156
IssuerDN, 92, 94

J
JAR, 49, 75, 96, 105, 167
Java, 2, 36, 41, 77, 81, 96, 105, 108, 156, 167
Java Database Connectivity, 167, 171
Java Platform, 165, 167
Java Remote Method Invocation, 167
Java Runtime Environment, 167, 168
JavaBeans, 167
JavaScript, 167
JDBC, 10, 11, 65, 88, 167, 171
JDK, 97, 102, 105, 167
JFC, 167, 168
JRE, 97, 167, 168
Just-in-time, 168
JVM, 167, 168
JWS, 171

M
machineid, 80
Master secret, 162
MD5, 162, 163
Message, 18, 20, 21, 22, 23, 32, 84, 99, 101, 162, 170,

171
message, 4, 7, 9, 79, 80
Message Analyser, 23, 84, 171, 172
Message Attributes, 42
Message Authentication Code, 162
Message Log Manager, 171
Message Logger, 171
Message path processing, 101
Message Reader, 20, 43, 84, 170, 171
Message Readers, 84
Message Registry, 171
Message Writer, 23, 32, 43, 44, 84, 171
message_invalid_reason, 90
message_protection, 90
message_valid, 90
MessageAnalyserException, 84
MessageReader, 36
178 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

MessageReaderException, 84
Messages, 42
MessageType, 171
messageType, 43, 45
MessageWriter, 23, 24
MessageWriterException, 84
Methodology, 96
MIME, 16, 18, 20, 23, 43, 162
msggrpid, 91
msgid, 91
Multithreaded, 168

N
NCSA, 168
NSK, 171

O
OAS, 171
OCSP, 18, 158
One-way hash function, 163
OperationBeginAudit, 73, 76, 77
Oracle 8i, 3, 156
Oracle 8i Installation and Configuration Guides, 3
OSI, 161, 163
Overall Layout, 2

P
ParseException, 84
PBE, 162
peer_cert_serial_number, 90
peer_ip_addr, 90
peer_issuer_dn, 89
PEM, 162
Ping Example, 105, 117

PingService Source Code, 109
PKI, 162, 172
Precondition, 172, 173
Presentation layer components, 16
Presentation logic, 12, 15
Private Rule Set Repository, 172
Product Features, 6
Protocol Analyser, 84, 170, 171, 172
Protocol Descriptor, 172
Protocol Handler, 18, 43, 79, 172
Protocol Map, 36, 170, 172
Protocol Map Manager, 36, 172
ProtocolAnalyserException, 84
ProtocolDescriptor, 35, 36, 37, 38, 39, 40
ProtocolHandler, 36
ProtocolMap, 35, 37, 38, 170
ProtocolMapManager, 35, 38, 39
Public key cryptography, 163
Public Key Infrastructure, 162, 172
Public Rule Set Repository, 172

R
Raw log tables, 92
raw_data table, 86, 91
rawdata, 86, 91
RawRecordId, 94
RC2, 163
RC4, 163
recipients, 90
recordmarker, 86, 91
Related Documents, 3
Return path, 49
RFC, 92, 163
RMI, 10, 11, 167, 172, 173
RMI Remote Method Invocation., 172
Role, 46, 172
Router, 12, 23, 42, 45, 49, 53, 59, 82, 84, 173
Router Architecture, 45
Router Rule Syntax, 53
179

Router Rules, 49
Routing, 9, 12, 13, 41, 46, 49, 51
Routing Rulesets, 51
Routing to service, 49
RoutingException, 82, 84
RPC, 168
RSA, 86, 163
Rule, 51, 52, 53, 59, 172, 173
Rule Name, 173
Rule Sets, 51, 52, 53
Ruleset, 173

S
Salt, 163
Sandbox, 168
Script Tags, 24, 25
ScriptWriter, 23, 24, 28, 66
Secure Socket Layer, 168
Security related terms, 161
SecurityContext, 44
sender, 90
SerialNumber, 92, 94
Server, 8, 11, 12, 163, 171
Server Definitions, 170
Server to server connectivity, 12
Server write key, 163
Server write MAC secret, 163
Service, 35, 36, 46, 62, 63, 102, 116, 170, 173
Service Building, 102
Service Deployment, 102
Service development, 100
Service Registry, 173
ServiceException, 82, 84
Services, 7, 13, 48, 49, 62, 84
Session, 100, 163, 173
severity, 78, 79, 80
SHA, 163
Signature, 22, 106
signeddigestofcalculation, 86

SimpleProtocolMap, 39
SingletonConfigManager, 63, 64
Skeleton, 173
smime_transport table, 89
smtp_connection table, 90
smtp_message table, 90, 91
Software Platform, 156
Solaris 8 and Java Development Kit 1.2.1, 3
SP, 173
SSL, 10, 40, 47, 89, 161, 163, 168
ssl_connection, 89, 91
Standard Services, 67
State, 100, 173
Stream cipher, 163
stream_id, 90
Stub, 173
SubjectDN, 94
SUN Microsystems Java Related terms, 165
Synchronized, 168

T
Tables

bill_data table, 94
cert_data table, 92
CertData, 92
CipherSuite, 89
classname, 79, 80
ClientCertIssuerDN, 89
ClientCertSerialNumber, 89
connection_id, 90, 91
ConnectionFailed, 89
ConnectionFailedReason, 89
ConnectionId, 89
ConnectIPAddr, 89
ConnectTime, 89
contextid, 80
data, 6, 10, 42, 168
datatype, 81
digestofrecord, 86
doctype, 91
Error table, 80
180 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

error_codes table, 79, 80, 81
error_support, 80
errorcode, 79, 80
errorid, 80
input, 20, 39, 167
IssuerDN, 92, 94
machineid, 80
message, 4, 7, 9, 39, 41, 78
message_invalid_reason, 90
message_protection, 90
message_valid, 90
msggrpid, 91
msgid, 91
peer_cert_serial_number, 90
peer_ip_addr, 90
peer_issuer_dn, 89
raw_data table, 86, 91
rawdata, 91
RawRecordId, 94
recipients, 90
recordmarker, 91
sender, 90
SerialNumber, 92
severity, 78, 79, 80
signeddigestofcalculation, 86
smime_transport table, 89
smtp_connection table, 90
smtp_message table, 91
ssl_connection, 89, 91
SubjectDN, 94
time_stamp_type, 90
timestamp, 80
TimeStampType, 89
timestamptype, 90

Task, 173
TbaseElement, 99
TbaseIdentifiedElement, 99
TbaseRuntimeException, 84
TCP/IP, 161, 166, 168
Thin Client, 168
Three Tier Architecture, 8
time_stamp, 90
time_stamp_type, 90
timestamp, 80, 86, 89, 90, 91

TimeStampType, 89
timestamptype, 90
TISS, 173
Transport protocols, 10
TSL, 163

U
uk.co.jcp.tbase.config, 62, 64, 108
uk.co.jcp.tbase.connector, 35, 37, 38, 39
uk.co.jcp.tbase.xurl, 35, 40
uk.co.jcp.tbaseimpl.connector, 35
uk.co.jcp.tbaseimpl.log.audit.type, 73, 74, 76, 77
uk.co.jcp.tbaseimpl.parse.message.http, 23
URL, 35, 38, 39, 169, 172, 173
URL Connection Implementation, 39
Using the default HTTP Reader, 21
Using the ScriptWriter tags, 28

V
Virtual machine, 169

W
Wrapper, 169

X
X500, 173
X509, 47, 161, 162, 164
X690, 164
XML, 2, 4, 16, 24, 25, 28, 33, 41, 46, 47, 53, 97, 99, 173
XML Repeat Iterators, 26
181

XSL, 24, 173
XURL, 39
XURLStreamHandler, 39, 40
XURLStreamHandlerFactory, 39, 40
182 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

Appendix A

The JAXHIT Class Generation Tool
1

What is JAXHIT?
What is JAXHIT?
The purpose of the classgen tool is to create a Java language binding for an XML
DTD. This means that it will generate Java classes representing the structures
defined in the DTD, with a correspondence of one Java class per element in the
DTD. The resulting classes can be used to parse existing XML into a Java
representation, or to create a new XML document by constructing it
programmatically.

JAXHIT Operation
The JAXHIT tool takes information from two sources; the DTD file and a
configuration file. The configuration file specifies all the options and parameters
used in the code generation.

Command Line
jaxhit [-options] [<public Id> <DTD file>]

where options include:

The public id and DTD file must be specified in the config file or on the command
line.

-help displays help

-config <file> Specify the name of the configuration file

-cp <classpath> Specify the classpath to use for compilation

-y Do not confirm before overwriting existing files

-stub Generate a stub service

-quiet quiet output

-v verbose output

-debug debug output
2 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

What is JAXHIT?
Configuration File Format
The configuration file for the class generator is an XML document. The Config
element is the root element of the configuration document. It holds global settings
for the generation. It contains the following attributes:

Name Description Default Required

srcDir The directory in which to keep the gener-
ated source files

- No

libDir The directory in which to keep the compiled
classes

- No

outputJar The name of the output Jar file to create - No

basePackage The root package under which all generated
classes will be located

com.iplanet.
trust-
base.gener-
ated

No

baseDir A root location from which all other file ref-
erences are taken to be relative

Current
directory

No

recurse Whether to attempt to generate classes for
all DTD files referenced as ENTITY inclu-
sions from the top level DTD

false No

force Whether to generate classes that are already
present on the system classpath

false No

build Whether to attempt to compile the gener-
ated classes

true No

createService Whether to generate the stub service false No

classPath The semicolon seperated class path to be
used when compiling the generated classes.
As the compiler cannot pick up the system
class path when the class generator is
invoked with the java –jar <jarfile> syntax,
the classpath must be specified here instead.

- No
Appendix A The JAXHIT Class Generation Tool 3

What is JAXHIT?
Content
The Config element can contain the following child elements:

DTDFile Element
This element specifies the location and public ID for a DTD

Attributes

Content
The DTDFile element has no content.

ElementBase Element
This element specifies element-specific options used in the generation process.

Element Occurrences

DTDFile 0 or more

DefaultElementBase 0 or 1

ElementBase 0 or more

ServiceConfig 0 or 1

Name Description Default Required

file The path to the DTD - Yes

publicId The Public Id of the DTD - Yes
4 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

What is JAXHIT?
Attributes

Content
The ElementBase element can contain the following child elements:

DefaultElementBase Element
This element specifies the default options used in the generation process.

Attributes

Name Description Default Required

name The name of the element to process - Yes

inherit Whether to inherit values from the Default-
ElementBase (if present)

true No

methodPrefix A string to prepend to the generated
get/set/add/remove methods

- No

Element Occurrences

ExtendsClass 0 or 1

ImplementsInterface 0 or more

AdvancedOptions 0 or 1

AttributeType 0 or more

Name Description Default Required

methodPrefix A string to prepend to the generated
get/set/add/remove methods

- No
Appendix A The JAXHIT Class Generation Tool 5

What is JAXHIT?
Content
The DefaultElementBase element can contain the following child elements:

AdvancedOptions Element
This element specifies advanced options used in the generation process.

Attributes
The AdvancedOptions element has no attributes

Content
The AdvancedOptions element can contain the following child elements:

PreParseFragment Element
This element specifies Java code to be included in the generated class, and called
prior to the parse of sub elements. Because the code is called within the SAX parse
process, the only exception that the code may throw is org.xml.sax.SAXException

Element Occurrences

ExtendsClass 0 or 1

ImplementsInterface 0 or more

AdvancedOptions 0 or 1

AttributeType 0 or more

Element Occurrences

PreParseFragment 0 or 1

PostParseFragment 0 or 1

ClassDoc 0 or 1
6 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

What is JAXHIT?
Attributes
The PreParseFragment element has no attributes

Content
The textual content is the Java code to be inserted

PostParseFragment Element
This element specifies Java code to be included in the generated class, and called
after parsing of the sub elements. Because the code is called within the SAX parse
process, the only exception that the code may throw is org.xml.sax.SAXException

Attributes
The PostParseFragment element has no attributes

Content
The textual content is the Java code to be inserted

ClassDoc Element
This element specifies text to be included in the Class JavaDoc for a generated class.
Note that as text specified using this mechanism is included in a Javadoc comment,
usage of "*/" and "/*" character combinations is likely to cause problems.

Attributes

Content
The ClassDoc element can also contain textual content. If the file attribute and the
textual content are present, then the text will be appended to the file text before
inclusion.

Name Description Default Required

file The file name of a file containing the text to
be used

- No
Appendix A The JAXHIT Class Generation Tool 7

What is JAXHIT?
ImplementsInterface Element
This element specifies an interface for a generated class to implement.

Attributes

Content
The ImplementsInterface element has no content.

ExtendsClass Element
This element specifies a base class for a generated class to extend.

Attributes

Content
The ExtendsClass element has no content.

AttributeType Element
By default, the accessor methods for attributes take and return the Java String type.
This element allows an attribute’s accessor methods to operate on a different type.
The primitive types supported are:

• int

• long

Name Description Default Required

name The fully qualified name of an interface - Yes

Name Description Default Required

name The fully qualified name of a class - Yes
8 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

What is JAXHIT?
• float

• double

• boolean

It is also possible to specify the fully qualified name of a class that has the following
properties:

• a public constructor taking a single String argument, and throwing no caught
exceptions

• an orthogonal toString() implementation.

Attributes

Content
The AttributeType element has no content.

ServiceConfig Element
This element specifies options specific to the generation of the service stub. For
each root element that the service is expected to process, there should be a
corresponding RootElement child element.

Attributes

Name Description Default Required

name The name of the attribute - Yes

type The type to use - Yes

Name Description Default Required

name The friendly name of the service - No

className The fully qualified class name of the service - Yes

RoutingAttribute The name of the message attribute to use for
routing

DocType No
Appendix A The JAXHIT Class Generation Tool 9

What is JAXHIT?
Content
The ServiceConfig element can contain the following child elements:

RootElement Element
This element identifies a root element (i.e. a top level element) in the messaging
scheme.

Attributes

Content
The RootElement element has no content.

Element Occurrences

RootElement 1 or more

Name Description Default Required

name The name of the root element - Yes

RoutingValue A value that the RoutingAttribute may take.
When the RoutingAttribute takes this value
the message will be routed to the service.

The name of
the root ele-
ment

No
10 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

What is JAXHIT?
Example Config File
<!—- This config file causes the generated source to be retained in
the "src" subdirectory of the current directory. The source is
compiled and the generated classes are retained in "output.jar". A
service stub is generated. -->

<Config

srcDir="src"

force="true"

outputJar="output.jar"

createService="true">

<-- Load the DTD "test.dtd" -->

<DTDFile file="jaxhit.dtd" publicId="-//classgen//generated"/>

<-- Specify that the class generated for the "TestMessage" element
defined in the DTD should implement the interface
"org.foo.test.Message" -->

<ElementBase name="TestMessage">

<ImplementsInterface name="org.foo.test.Message">

</ElementBase>

<-- Specify that the service stub should be "org.foo.Service". It
accepts only one message type, that being "RootMessage"-->

<ServiceConfig name="MyService" className="org.foo.Service">

<RootElement name="TestMessage"/>

</ServiceConfig>

</Config>
Appendix A The JAXHIT Class Generation Tool 11

What is JAXHIT?
The Generated Interface
There is a one to one mapping between elements in the DTD and generated classes.
Each generated class implements the TbaseElement interface from the package
com.iplanet.trustbase.xml.message, and those classes mapping to elements that
have an ID attribute implement TbaseIdentifiedElement, from the same package.

In addition to the methods specified in the TbaseElement interface, the following
methods are generated.

Attributes
Each attribute defined in the ATTLIST declaration for the element will have a get
method and a set method generated. The method signatures will be

public String getAttr();

public void setAttr(String attr);

where "attr" is replaced by the name of the attribute. Any characters in the attribute
name that are not a legal Java identifier part will be replaced by the underscore
character '_'.

If the attribute is mapped to a Java type with the AttributeType configuration
options, then the generated method signatures will reflect the type specified.

Content
For the purposes of generation, the content model of an element is considered to
consist of two types of content. Singly addressable elements are those that can not
be specified more than once. Elements that can be specified more than once are
considered to be part of a group.

For example, the content model (A, B, C*) consists of the singly addressable
elements A and B, and the group containing the element C.

For each singly addressable element, a get / set pair is produced:

public A getA();

public void setA(A a);

For each member of a group, the following methods are produced:

public void addC(C c);

public void removeC(C c);

public C[] getC();
12 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

What is JAXHIT?
Other methods
• Each generated class has a convenience construction method that takes input

from a stream and returns an instance of the class if one can be constructed
from the stream.
public static <type> fromXML(Reader reader, boolean validate) throws
SAXException,
where <type> is the type of the class in which the method is defined, reader is
a reader for the XML stream and validate is whether to validate during parse.

• public static <type> fromXML(Reader reader) throws SAXException
This is the same as above, except that it does validation by default

• A copy method is provided that does a deep copy of the hierarchy.
public TbaseElement copy();

Constructors
The generated classes have up to 4 constructors.

The default constructor

A constructor taking all the attributes of the element (excluding fixed attributes), if
there are any

A constructor taking all the attributes and all the content of the element. Whether
this constructor is generated depends on whether there are any groups (* or +) in
the content model. If noe (i.e. all the elements in the content are directly
addressible), this constructor will be generated

The constructor used during the SAX parse process. This should not be used in
user code.
Appendix A The JAXHIT Class Generation Tool 13

What is JAXHIT?
Using the Generated Classes

Constructing instances of generated classes from XML
1. If you have a complete document (complete with DOCTYPE declaration)

Use com.iplanet.trustbase.xml.message.MessageBuilder.buildMessage(),
passing in a Reader for the XML. This will return an instance of TbaseElement
which you can cast to the correct type.

2. If you know in advance the type of the element you wish to read
Use the static fromXML() method provided on the generated class you wish to
construct. This will return an instance of the generated class

3. If you do not know the type of the element in advance, and the XML does
not have a DOCTYPE header
Get an instance of MessageBuilder with one of the static getInstance() methods.
Set the public Id by calling resolveEntity(publicId, null).
Call the parse() method with a Reader for the XML. This will return an instance
of a generated class which you can cast to the correct type.

4. If you have no idea what you're trying to read (but it is well formed XML)
Use com.iplanet.trustbase.xml.message.TbaseAnyElement.fromXML(),
passing in a Reader. This will return an instance of TbaseAnyElement. The
structure created by this method will not be typed in any way, by will contain
all the data present in the document. Structures created in this manner can be
reparsed into generated classes with the reParse() method, which takes the
public Id of the DTD in which the element was defined. This method returns a
TbaseElement which can be cast appropriately.

Outputting XML from generated classes
Call the toXMLString() method on any generated class. This will return a string
representation of the XML structure. Note that the resulting XML will not have a
DOCTYPE declaration. If you want to use the XML string as an entire document,
you should insert the DOCTYPE declaration with the following format:

<DOCTYPE elementName PUBLIC "publicId" "systemId">

Where elementName is the name of the root element in the message, publicId is the
public Id of the DTD (which can be obtained from the generated class using the
publicId() method) and systemId is a URI that locates the DTD. The system Id need
only be a valid identifier if the message is to be read by a non-Trustbase system.
14 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

What is JAXHIT?
FAQ

1. How do I keep the generated source code?
Specify the srcDir Attribute in the configuration file. All the generated source
code will be retained in the specified directory

2. Where is the source for my stub service?
In the directory specified by srcDir. If you did not specify srcDir, then you will
not have a stub service class.

3. Why is the stub service class not compiled along with the other source files?
The stub service is not useful by itself – you need to provide a meaningful
implementation!

4. Why do I need to supply a public ID?
The public ID is used to generate a package name for the generated code. This
is useful because it allows common elements to be represented by a single
codebase.

5. What does JAXHIT actually stand for?
Java Architecture for XML Handling in Trustbase

6. I want all but a few of the generated classes to implement a certain interface.
Is there a way to override the settings in DefaultElementBase for these
elements?
Yes. For each element that should not inherit the settings in
DefaultElementBase, create an ElementBase with the "inherit" attribute set to
"false". Only the settings specified explicitly will be applied to the generated
class.

7. The compilation step fails. Why?
There are a number of possible reasons for this. Most likely is a problem with
the base interfaces and / or classes that you specified in the config file. If you
are relying on the generated interface matching a certain pattern, make sure
that this is in fact the case. Also, certain element or attribute names can cause
conflicts with Object. For example, if you had an attribute called Class, the
accessor method would be getClass() - clearly this will fail. This problem can be
solved by using the methodPrefix attribute in the ElementBase config for the
affected element, such that the generated method name becomes, for example,
xGetClass().

8. Attributes with enumerated values are supposed to have type-safe get / set
methods. Why doesn't this appear to work?
Because the default parser used with JAXP (Crimson) has a bug. Use the Xerces
parser instead, using the following command line:
Appendix A The JAXHIT Class Generation Tool 15

What is JAXHIT?
java
-Djavax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXPars
erFactoryImpl -jar jaxhit.jar <options>

and make sure that the Xerces jar is in the same place as jaxhit.jar.
16 iPlanet Trustbase Transaction Manager Developer Guide • October 2001

	Overall Layout
	Related Documents
	Introduction
	iPlanet Trustbase Transaction Manager Platform
	Identrus Transaction Coordinator

	Product Features
	Overview
	External interfaces
	Transport protocols
	Enterprise connectivity
	Server to server connectivity
	Routing
	Authorisation
	Services

	Overview
	Protocol handlers
	Identrus protocol handler

	Message Readers
	Default Message Reader, HTTP/HTML Reader
	Using the default HTTP Reader
	Default Message Reader, Identrus Reader
	Default Message Reader, Identrus Error Reader

	Message Writers
	Default HTML Message Writer
	Script Tags
	Using the ScriptWriter tags
	Default Identrus Message Writer
	Default Identrus Error Writer

	Connection Manager
	Protocol Map Manager
	URL Connection Implementation

	Messages
	Message Attributes
	Identrus Message Attributes

	Router Architecture
	Authentication and Authorisation
	Authentication
	Authorisation

	Default routing
	Router Rules
	Routing to service
	Return path

	Advanced Routing
	Routing Rulesets
	Router Rule Syntax
	Complete Router Rule DTD

	Configuration Objects
	Configuration Manager
	Configuration Store
	Configuration Services
	Overview
	Overview
	Audit logs
	Audit Logging an Event
	Defining New Audit Types

	Error handling and logging
	Error Logging
	Defining a New Error
	Exception Handling
	Raw Logging

	Overview
	Data definitions
	Connection information
	Identrus log tables
	Billing records

	Methodology
	Development process
	Class generation
	Service development
	Service Building
	Service Deployment
	Create DTD Definitions
	API
	PingService Source Code
	Creating the Identrus Service JAR
	Deploying pingsample.jar within iPlanet Trustbase Transaction Manager

	Introduction
	What is the iTTM Standard Message Path ?
	What needs to be in place before the Standard Message Path may be used ?
	What restrictions does the Standard Message Path place on messaging protocols ?
	What basic functions does the default implementation of the Standard Message Path provide ?

	Development Life Cycle
	Design Messaging Structures and Protocols
	Generate Classes and Service descriptor with JAXHIT
	Write service Java code
	Compile
	Make JAR file
	Deploy into iTTM
	Changing the Standard Message Path Default Implementation
	Base Message Class ITTMMessage
	Protocol Handler
	Control Flow
	Overridable Methods
	Error Handling

	Message Reader
	Control Flow
	Overridable Methods
	Error Handling

	Message Writer
	Overridable Methods
	Error Handling

	Example Application
	The Example Credit Check Messaging Protocol
	Public Key Infrastructure
	Message Protocol
	Three Party Variant
	Message Definition
	Building & Installing the Example

	Software Platform
	Solaris 8 and JDK
	Java
	iPlanet Application Server 4.1
	iPlanet Web Server 6.0
	Oracle 8i
	Hardware Security nCipher KeySafe 1.0 and CAFast

	Transport Protocols
	HTTP
	SMTP RFC821

	Security Related Protocols
	S/MIME Version 2 Message Specification
	DOMHASH
	OCSP
	Certificate requests and responses

	Trading Protocols
	Identrus

	Message Protocols
	DOM
	DTD
	XML
	XML Syntax Processing specification
	HTML

	Security related terms
	Java Related terms
	Server Definitions
	What is JAXHIT?
	JAXHIT Operation
	Command Line
	Configuration File Format
	Content

	DTDFile Element
	Attributes
	Content

	ElementBase Element
	Attributes
	Content

	DefaultElementBase Element
	Attributes
	Content

	AdvancedOptions Element
	Attributes
	Content

	PreParseFragment Element
	Attributes
	Content

	PostParseFragment Element
	Attributes
	Content

	ClassDoc Element
	Attributes
	Content

	ImplementsInterface Element
	Attributes
	Content

	ExtendsClass Element
	Attributes
	Content

	AttributeType Element
	Attributes
	Content

	ServiceConfig Element
	Attributes
	Content

	RootElement Element
	Attributes
	Content

	Example Config File
	The Generated Interface
	Attributes
	Content
	Other methods
	Constructors

	Using the Generated Classes
	Constructing instances of generated classes from XML
	Outputting XML from generated classes

	FAQ

