
Customizing WebEnterprise
Designer Applications

iPlanet™ Unified Development Server

Version 5.0

August 2001

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, iPlanet, Unified Development Server, and the iPlanet logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, iPlanet, Unified Development Server, et le logo iPlanet sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

List of Figures . 11

List of Procedures . 13

Preface . 17
Product Name Change . 17
Audience for This Guide . 18
Organization of This Guide . 18
Text Conventions . 19
Other Documentation Resources . 20

iPlanet UDS Documentation . 20
Express Documentation . 21
WebEnterprise and WebEnterprise Designer Documentation . 21
Online Help . 21

iPlanet UDS Example Programs . 21
Viewing and Searching PDF Files . 22

Chapter 1 WebEnterprise Designer Application Architecture . 25
Logical Architecture . 26

Runtime Architecture . 27
Web Application Server Architecture . 28

Runtime Objects by Partition . 29
Use of Express Services . 31

WebEnterprise Designer Projects . 31
HTTP Library . 33
The ExpressHandlers Project . 34
The html_modelHandlers Project . 35

Customizable Subclasses in html_modelHandlers . 37
Generated HTML Templates . 37

4 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

WebEnterprise Designer Class Interactions . 39
Class Interaction Diagram . 39

Declared Type and Runtime Type . 40
Life of a Template Request . 42
Runtime Scenarios . 43

Object Interaction Diagram Conventions . 43
ExpressHTTPAccess . 44

Starting the AccessService Service Object . 44
Customizing ExpressHTTPAccess . 46

ExpressScanner . 47
Starting the ScannerService Service Object . 47

ExpressClassHandler . 48
Runtime Control Flow . 48
Referenced Objects . 51
Field Identification . 51
Data Transfer . 52
Result Sets . 52
Connections Between Handlers . 54

ExpressLogonHandler . 54
Customizing ExpressLogonHandler . 54

ExpressPageData . 55
Foreign Result Sets . 55

ExpressValueGenerator . 55
ExpressLookupInfo . 56

Modifying the Displayed Null Value . 56
WebEnterprise Designer HTML Template Elements . 56

Links . 56
URL Parameters . 57
Variables . 60

Chapter 2 Customizing WebEnterprise Designer Application Classes 63
Overview . 64

Before You Begin . 64
Creating Customizable Classes . 65

Creating a Single Customizable Page Handler Class . 66
Creating a Full Set of Customizable Page Handler Classes . 66

Customizing With the Page Handler Customization Wizard . 67
Customizing a Page Handler Class . 69
Customizing a Generated HTML Template . 72
Deleting Customizations . 72

Deleting Specific Customizations . 73
Deleting All Customizations in a Class . 74

Making Application-Wide Customizations . 76

5

A Roadmap to Customization Examples . 76
Page Handler Customization Wizard Help Files . 77
Page Handler Customization Wizard Customizations . 77

Customizing Manually . 79
Locating Where to Customize . 80
Overriding Methods in a Superclass . 80
Local and Global Customizations . 82
Error Reporting . 82

Working with Business Classes . 83
Business Class Record Status . 83
BusinessClass Attribute IDs (ATTR_) . 84
Changing the Value of an Attribute . 84
Checking the Status of a BusinessClass Object . 85
Undoing Changes Made to a BusinessClass Object . 85

Customization Techniques: ClassHandler Classes . 86
Creating a New Instance of a Business Class . 86
Getting the Result Set . 86
Getting the Initial Query . 87

Customization Techniques: Business Rules . 87
Where to Implement . 87
Business Rules on the Browser . 88

Customization Techniques: Data . 88
Formatting Fields . 88
Formatting Custom Fields . 89
Decoding or Validating Fields . 89
Processing Custom Fields on an HTML Form Submission . 89

Processing an Insert or Update Form . 90
Processing a Search Form . 90

Global Customization . 90

Chapter 3 Customizing Generated HTML Templates . 93
How WebEnterprise Designer Uses HTML Templates . 93

Common Templates . 94
Business Class Page Templates . 94
Link Page Templates . 97
Logon Page Templates . 97

Page Design Templates . 97
Simple Page Design Templates . 98
Fancy Page Design Templates . 98
Fancy Page Design Variations . 99

6 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Customizing HTML Templates . 100
Customization Types . 100
Where to Customize . 101
What Not to Customize . 101

Regenerating After Customizing . 102
Scenario 1: HTML Changes Only . 103
Scenario 2: HTML and Model Changes . 103
Scenario 3: Conflicting HTML and Model Changes . 104

Customization Examples . 106
Conventions Used with the Examples . 106
Example: Customizing a Field on a Search Page . 106
Example: Customizing a Font Size on a Data Page . 109

Chapter 4 Customizing Page Designs . 115
About Page Designs, Templates, and Pages . 115

Page Designs and Web Page Production . 116
When to Customize Page Designs . 117

Page Design Elements and HTML Template Generation . 117
Page Design File Names and Selectors . 118
Page Design Code Generation Processing . 122
Guidelines for Customizing Code Generation Directives . 124

Example: Customizing a Page Design . 124
Create a New Design Directory . 125
Identify the Design with a Bitmap and Text . 125
Clear Existing Generated HTML Templates . 126
Customize the Design Files . 127

Remove the Menu From the Data File . 127
Modify the Menu Design File . 129
Modify the Display Design File . 131

Generate and Inspect . 132
Fine-Tune the Customized Design . 136

Chapter 5 Customizing Page Styles . 137
HTML 4.0 and Style Sheets . 137

WebEnterprise Designer and Style Sheets . 138
Using HTML Style Elements with WebEnterprise Designer . 139

Identifying the Style Sheet to Use . 139
Using HTML Attributes . 139

The class Attribute . 139
The id Attribute . 141

Using HTML Style Elements . 142

7

Customizing Page Styles . 144
Outline of Basic Procedures . 145
Creating the New Style Sheet File . 146
Modifying Existing Elements . 146
Adding New Elements . 147
Identifying the Style with a Bitmap and Text . 148
Considering the Browser . 150

Browser Caching . 150
Browser Independence . 150

Chapter 6 Customizing Error Pages . 151
WebEnterprise Exception Handling . 151

Default Exception Processing . 152
WebEnterprise Exception Result Set Variables . 154

HTMLScannerException Class Variables . 154
HTTPAccessException Class Variables . 155
Variables for All Other Exceptions . 155

Customizing Error Pages . 156
Modifying Default Error Pages . 156
Creating Custom Error Pages . 156
Customizing a WebEnterprise Designer HTML Application . 157

The GetErrorTemplate Method . 158
Example: Application-Specific Error Template . 159
Example: Application-Specific Template with Custom Data . 160

Customizing HTTPAccessExceptions . 161
Errors in Error Customization . 162

Chapter 7 Customization Examples . 163
Introduction . 164

Methods for Editing Generated Files . 165
Using the Page Handler Customization Wizard . 165
Customizing TOOL Methods Manually . 165
Customizing Generated HTML and Text Files Manually . 166

Example: Adding a Lookup Reference Page . 166
What This Example Does . 167
Creating a Lookup Link . 168

Step 1. Add a Reference Page to the HTMLtutApp Model . 169
Step 2. Capture the Search Page URL . 170
Step 3. Create a Link with the Captured URL . 171
Step 4. Pass the Selected Field Value . 174

8 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Example: Adding a Lookup Reference Page (continued)
Testing Your Work Before the Final Step . 175

Step 5. Remove the CustomerOrder-CustomerList Link . 177
Usage Recommendations . 177

Example: Passing Data with a Command Link . 177
What This Example Does . 178
Creating the Customization . 179

Step 1. Add Insert and Update Commands (If Required) . 179
Step 2. Add a Variable to Hold the Value . 180
Step 3. Single Out One Instance of the Data . 182
Step 4. Populate the Order Number with Incoming Data . 183

Testing Your Work . 184
Example: Automatically Populating Data on an Insert Page . 185

What This Example Does . 186
Creating the Customization . 186

Step 1. Add a NewOrder Page to the HTMLtutApp Model . 187
Step 2. Add a Variable to Hold the Value . 189

Testing Your Work . 191
Example: Adding a Drop List for Entering and Formatting Dates . 191

What This Example Does . 192
Creating Date-Formatting Drop Lists . 193

Step 1. Define Drop Lists for Date Elements . 193
Step 2. Override the BeforeInsert Method . 195

Testing Your Work . 196
Example: Removing a JavaScript Validation from a Page Mode . 198

What This Example Does . 198
Creating the Customization . 199

Step 1. Apply the JavaScript to a Customer Page Field . 199
Step 2. Remove the JavaScript Validation from a Template . 200

Testing Your Work . 202
Example: Displaying the Record Just Inserted . 203

What This Example Does . 203
Creating the Customization . 204
Testing Your Work . 205

Example: Validating a Whole Form . 206
What This Example Does . 206
Creating a Field Constraint with JavaScript . 207

JavaScript Boilerplate . 207
Step 1. Add the JavaScript Validation to the Template . 208
Step 2. Add a Value Attribute to the Field Descriptions . 210
Step 3. Modify the Insert Button . 210

Testing Your Work . 211

9

Example: Making a Field Mandatory . 212
What This Example Does . 213
Creating a Field Constraint with TOOL . 214
Testing Your Work . 215

Drop List or Radio List Example: Entering Lookup Information Manually 216
What This Example Does . 216
Creating the Customization . 217

Step 1. Add a Drop List Validation to the Field . 217
Step 2. Generate the Lookup File . 218
Step 3. Customize the Lookup File with Your Values . 219

Testing Your Work . 221
Drop List and Radio List Example: Removing <Not Selected> and <None> 222

What This Example Does . 222
Creating the Customization . 223

Technique 1: Customizing the Page Mode Template . 223
Technique 2: Customizing the Scripts File . 225

Testing Your Work . 227

Chapter 8 Customizing Application Security . 229
Security and HTML Applications . 229
Authenticating Users . 231

Creating the Logon Page . 231
Code Generated for the Logon Page . 232
How the Logon Page is Activated . 233

Integrating the Application with an Authentication System . 234
Example: Adding LogonSession Code . 235

Restricting Access to Application Pages . 237
Sharing a Security Environment Across HTML Applications . 239

Avoiding Security Leaks . 239
Customizing Subsidiary HTML Models to Share Security . 240
Customizing the Main HTML Model to Share Security . 240
Restrictions . 241
Summary . 242

Session Timeout . 242
How Session Timeout Works . 242
Finding the Ideal Setting for Session Timeout . 243
Example: Customizing Session Timeout . 244

Other Security Customizations . 244

10 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 245
About Partitioning a
WebEnterprise Designer Application . 245

About HTML Application Projects and Service Objects . 246
business_modelServices Service Objects . 248
html_modelHandlers Service Objects . 249
Relationship Between the Service Objects . 250
Creating a Default Partitioning Configuration . 252
Modifying the Configuration . 254

Testing the Application in a Distributed Environment . 254
Deploying the Application . 256

Making the Application’s Template Files Accessible to the ScannerService SO 258
Copying the Application’s Template Files to the Scanner Partition . 258
Setting Document Root on the ScannerService Service Object Partition 259

Running the Application . 260
The AccessService Log File . 263
Memory Considerations . 264

Index . 265

11

List of Figures

Figure 1-1 Three-Tier Architecture . 26

Figure 1-2 Anatomy of a WebEnterprise Designer Application at Run-Time 27

Figure 1-3 HTMLtutApp Partitions and Objects at Runtime . 30

Figure 1-4 Code Generated from a WebEnterprise Designer HTML Application 32

Figure 1-5 HTTP Class Hierarchy . 33

Figure 1-6 ExpressHandlers Class Hierarchy and Suppliers . 34

Figure 1-7 Example Class Diagram . 40

Figure 1-8 WebEnterprise Designer Class Interaction Diagram . 41

Figure 1-9 Life of a Template Request . 42

Figure 1-10 Example Object Interaction Diagram . 44

Figure 1-11 Object Interaction Diagram of the Startup of the AccessService Service Object 45

Figure 1-12 Object Interaction Diagram of Startup of the ScannerService Service Object 48

Figure 1-13 Object Interaction Diagram of a Template Request . 49

Figure 2-1 Naming Conventions Before and After Creating Customizable Classes 65

Figure 2-2 Page Handler Customization Wizard Opening the Appropriate Method Workshop 68

Figure 2-3 Page Handler Customization Wizard’s Help on a Customization Topic 69

Figure 2-4 Page Handler Customization Wizard Help . 77

Figure 4-1 Page Design Identifiers . 126

Figure 4-2 Menu in simple and fancyMenu Designs . 128

Figure 5-1 Style Element Examples . 144

Figure 5-2 Style Identifiers . 149

Figure 6-1 Default Scanner Exception Page . 153

Figure 7-1 Lookup Link on Customer Order Insert Page . 167

Figure 7-2 Customer List Page . 167

Figure 7-3 Customer Number Returned with the Insert Page . 168

Figure 7-4 HTMLtutApp Model Modified for a Lookup Link . 177

Figure 7-5 Selected Customer on Master-Detail Page . 178

12 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 7-6 LineItem Insert Page Showing Passed Value . 178

Figure 7-7 Insert Mode of NewOrder Page . 186

Figure 7-8 HTMLtutApp Model with Additional CustomerOrder Page 188

Figure 7-9 Requested Date Field Formatted with Drop Lists . 192

Figure 7-10 Inserted Customer Order Showing the Date . 192

Figure 7-11 IsAlphabetic Validation Error . 199

Figure 7-12 Validation Working on Insert Page . 202

Figure 7-13 Entering a New Customer Record . 203

Figure 7-14 New Record Displayed . 204

Figure 7-15 Restricted Fields on Insert Page . 206

Figure 7-16 Restricted Field Error Message . 207

Figure 7-17 Restricted Field on Insert Page . 213

Figure 7-18 Restricted Field Error Page . 213

Figure 7-19 Customized Drop List . 216

Figure 7-20 Customized Drop List . 223

Figure 9-1 Relationship between AccessService, ScannerService, Service, and DBService 251

Figure 9-2 Default Configuration for HTMLtutApp . 253

Figure 9-3 Make Distribution Dialog . 257

Figure 9-4 Obtaining URL Elements from the Properties Dialog . 262

13

List of Procedures

To copy the documentation to a client or server . 22

To view and search the documentation . 22

To create customizable subclasses for every business class page in your model 66

To customize a page handler class using the Page Handler Customization Wizard 70

To delete a customization . 73

To delete all customizations (entire class) . 74

To override a method . 81

To customize ExpressHandlers classes . 91

The general steps for creating a customized page design are . 124

To create and populate a new design directory . 125

To identify a page design . 126

To clear generated HTML templates . 127

To remove the menu block from the data file . 128

To create and modify the Menu design file . 129

To modify the Display file to create the required display and call the Menu file 131

To verify your work by generating code . 132

To fix the error in the Menu file . 134

To create a new style sheet file . 146

To customize only existing elements in the new style sheet . 146

To customize a restricted style . 147

To customize generally available styles . 148

To identify the marketing style . 149

To customize an application’s error page using the Customization Wizard . 157

To customize a method of an ExpressHandlers class in a HTMLtutAppHandlers class 166

To set up the HTMLtutApp model for a lookup link . 169

To capture the URL of the Search page mode . 170

To customize the CustomerOrder page . 172

14 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

To customize the Data template of the Customer List page . 174

To test the work you have done so far . 176

To finish the customization . 177

To add the Insert and Update commands to a page (if necessary) . 179

To add a variable to the Insert command link of the LineItem page . 181

To add a forte iterate loop . 182

To customize the Insert mode of the LineItem page to display the data . 183

To test the customization . 184

To modify the HTMLtutApp model . 187

To populate the Customer Number value in the NewOrder Insert page . 190

To test the customization . 191

To define drop lists for the Requested Date field . 193

To override the BeforeInsert method for this customization . 195

To test the customization . 196

To set a validation on the Name field of the Customer page . 199

To remove the validation from the search template . 200

To test the customization of the JavaScript validation . 202

To code this customization with the Customization Wizard . 204

To test the DoInsert method customization . 205

To add a JavaScript validation script to restrict non-null field entry . 209

To add a value attribute to the validated fields . 210

To modify the Insert button . 211

To test the customization of the JavaScript validation . 211

To create a field constraint with TOOL . 214

To test the TOOL customization . 215

To add a drop list validation to the gifAddress field . 217

To generate a lookup file . 218

To customize the lookup file . 219

To test your manually customized lookup file . 221

To remove the <Not Selected> option from a drop list . 224

To remove the <Not Selected> option from a drop list . 226

To test your drop list customization . 227

To create a Logon page . 231

To activate the logon page . 233

To customize an application’s logon page using the Customization Wizard 235

To restrict access to a page . 237

To customize subsidiary models to share the security environment . 240

List of Procedures 15

To customize the main model to share the security environment . 240

To change the session timeout . 244

To partition an HTML application . 253

To test run an HTML application in distributed mode from the Partition Workshop 255

To test run your application in distributed mode from other workshops . 255

To deploy your HTML application . 256

To run a deployed HTML application . 260

16 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

17

Preface

This manual describes the architecture of applications created by WebEnterprise
Designer. The architecture includes both a hierarchy of TOOL classes and
generated HTML templates. Once you are familiar with the WebEnterprise
Designer architecture, you can begin to customize your applications.

This preface contains the following sections:

• “Product Name Change” on page 17

• “Audience for This Guide” on page 18

• “Organization of This Guide” on page 18

• “Text Conventions” on page 19

• “Other Documentation Resources” on page 20

• “iPlanet UDS Example Programs” on page 21

• “Viewing and Searching PDF Files” on page 22

Product Name Change
Forte 4GL has been renamed the iPlanet Unified Development Server. You will see
full references to this name, as well as the abbreviations iPlanet UDS and UDS.

Audience for This Guide

18 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Audience for This Guide
This manual is intended for application developers. We assume that you:

• have programming experience

• are familiar with SQL and your particular database management system

• are familiar with HTML

• understand the basic concepts of object-oriented programming as described in
A Guide to the iPlanet UDS Workshops

• have used the iPlanet UDS Repository Workshop

• have a basic understanding of WebEnterprise Designer as described in Getting
Started with WebEnterprise Designer

• understand the basic concepts of WebEnterprise as described in A Guide to
WebEnterprise

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “WebEnterprise Designer
Application Architecture”

Provides an overview of the architecture of
both supplied and generated WebEnterprise
Designer classes and how they interact.

Chapter 2, “Customizing
WebEnterprise Designer Application
Classes”

Describes how to use the Page Handler
Customization Wizard, and describes each of
the customizations you can implement with it.

Chapter 3, “Customizing Generated
HTML Templates”

Provides an overview of generated HTML
template files and how they interact. Also
provides guidelines and examples of
customizing them.

Chapter 4, “Customizing Page Designs” Provides guidelines for customizing the
provided page designs or creating your own.

Chapter 5, “Customizing Page Styles” Provides guidelines for customizing the
provided page styles or creating your own.

Chapter 6, “Customizing Error Pages” Provides guidelines for customizing the error
pages that display in the browser.

Text Conventions

Preface 19

Text Conventions
This section provides information about the conventions used in this document.

Chapter 7, “Customization Examples” Describes 12 practical customizations for
WebEnterprise Designer applications.

Chapter 8, “Customizing Application
Security”

Provides information on creating a secure
WebEnterprise Designer application, creating a
logon page, and integrating the application
with your own authentication system.

Chapter 9, “Partitioning and Deploying
a WebEnterprise Designer Application”

Describes how to partition and deploy a
WebEnterprise Designer application in a
complex environment.

Format Description

italics Italicized text is used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URLs.

ALL CAPS Text in all capitals represents environment variables
(FORTE_ROOT) or acronyms (UDS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase
text exactly as shown.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

Chapter Description

Other Documentation Resources

20 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Other Documentation Resources
In addition to this guide, there are additional documentation resources, which are
listed in the following sections. The documentation for all iPlanet UDS products
(including Express, WebEnterprise, and WebEnterprise Designer) can be found on
the iPlanet UDS Documentation CD. Be sure to read “Viewing and Searching PDF
Files” on page 22 to learn how to view and search the documentation on the iPlanet
UDS Documentation CD.

iPlanet UDS documentation can also be found online at
http://docs.iplanet.com/docs/manuals/uds.html.

The titles of the iPlanet UDS documentation are listed in the following sections.

iPlanet UDS Documentation
• A Guide to the iPlanet UDS Workshops

• Accessing Databases

• Building International Applications

• Escript and System Agent Reference Guide

• Fscript Reference Guide

• Getting Started With iPlanet UDS

• Integrating with External Systems

• iPlanet UDS Java Interoperability Guide

• iPlanet UDS Programming Guide

• iPlanet UDS System Installation Guide

• iPlanet UDS System Management Guide

• Programming with System Agents

• TOOL Reference Guide

• Using iPlanet UDS for OS/390

http://docs.iplanet.com/docs/manuals/uds.html

iPlanet UDS Example Programs

Preface 21

Express Documentation
• A Guide to Express

• Customizing Express Applications

• Express Installation Guide

WebEnterprise and WebEnterprise Designer
Documentation
• A Guide to WebEnterprise

• Customizing WebEnterprise Designer Applications

• Getting Started with WebEnterprise Designer

• WebEnterprise Installation Guide

Online Help
When you are using an iPlanet UDS development application, press the F1 key or
use the Help menu to display online help. The help files are also available at the
following location in your iPlanet UDS distribution:
FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as Fscript or Escript, type help from the
script shell for a description of all commands, or help <command> for help on a
specific command.

iPlanet UDS Example Programs
A set of example programs is shipped with the iPlanet UDS product. The examples
are located in subdirectories under $FORTE_ROOT/install/examples. The files
containing the examples have a .pex suffix. You can search for TOOL commands
or anything of special interest with operating system commands. The .pex files are
text files, so it is safe to edit them, though you should only change private copies of
the files.

Viewing and Searching PDF Files

22 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Viewing and Searching PDF Files
You can view and search iPlanet UDS documentation PDF files directly from the
documentation CD-ROM, store them locally on your computer, or store them on a
server for multiuser network access.

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or
server hard disk.

You can specify any convenient location for the doc directory; the location is
not dependent on the iPlanet UDS distribution.

2. Set up a directory structure that keeps the udsdoc.pdf and the uds directory in
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file udsdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search >
Query.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat
Reader with Search is recommended and is available as a free
download from http://www.adobe.com. If you do not use Acrobat
Reader with Search, you can only view and print files; you cannot
search across the collection of files.

NOTE To uninstall the documentation, delete the doc directory.

http://www.adobe.com

Viewing and Searching PDF Files

Preface 23

3. Enter the word or text string you are looking for in the Find Results Containing
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text.
If more than one document from the collection contains the desired text, they
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to
navigate through the search results, as shown in the following table:

To return to the udsdoc.pdf file, click the Homepage bookmark at the top of
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the
udsdoc.pdf home page or select Edit > Search > Results.

NOTE For details on how to expand or limit a search query using
wild-card characters and operators, see the Adobe Acrobat
Help.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

Viewing and Searching PDF Files

24 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

25

Chapter 1

WebEnterprise Designer
Application Architecture

This chapter discusses the architecture of a generated WebEnterprise Designer
application by examining the supplied and generated classes and illustrating how
they interact.

Topics covered in this chapter include:

• a description of the runtime interaction between the Web application services
and the business services

• a description of the generated WebEnterprise Designer project and its
suppliers

• a diagram describing the relationship between generated classes and supplied
classes

• the flow of control between methods and objects at runtime

• the flow of control between pages at runtime

• the effect of properties in the HTML Application Model Workshop on
generated classes

Throughout this chapter, examples of general topics are drawn from the HTML
Tutorial application. For example, you will see references to
CustomerOrderHandler and Display_CustomerOrder.html—these elements exist
in the generated HTMLtutAppHandlers project and HTMLtutApp HTML
document directory.

Logical Architecture

26 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Logical Architecture
WebEnterprise Designer supports a three-tier architecture. In a three-tier
architecture, the user interface, application services, and database processing are
divided into separate modules, as illustrated in Figure 1-1:

Figure 1-1 Three-Tier Architecture

Using WebEnterprise Designer, you build the first and second tiers of your
application. With the HTML Application Model Workshop, you create the user
interface and Web application server; with the Business Model Workshop, you
create the application business services, which provide access to database
information.

Service Objects

Web
pageUser Interface HTML Application Model

Application Logic HTML Application Model
and Business Model

Database Server

Logical Architecture

Chapter 1 WebEnterprise Designer Application Architecture 27

Runtime Architecture
Figure 1-2 illustrates the interactions of the parts of a WebEnterprise Designer
application at runtime.

Figure 1-2 Anatomy of a WebEnterprise Designer Application at Run-Time

In Figure 1-2, the Web Client at the left represents a client machine using a Web
browser to view a WebEnterprise Designer application. When the user requests
new information, the browser passes an HTTP request (a URL) to the Web server,
requesting a Web page.

On the Web server, the fortecgi program or an iPlanet UDS Web server plug-in
directs the HTTP request to the WebEnterprise Designer AccessService service
object, which passes the page request to the ScannerService service object, along
with any parameter values relevant to the page.

The ScannerService service object opens the requested HTML page template and
processes the iPlanet UDS tags to create the page. When the service object
encounters certain tags in the HTML template, it invokes the HandleTag and
HandleCondition methods of the handler class associated with the template. The
handler class uses the Business Service service object to access business services
(which access the database), and returns any data needed in a result set. The
handler class caches the result set in the AccessService for future use.

url

Web
Page

DB

HTML
Pages

url

Web
Page

HTML Request

Service SODB Service SO

opens
requested

page

Access Service
SO Scanner Service

SO

Result
Set

Method
Request

url

Web
Page

Requests HTML

Web Client
Web Server

HTTP Requests
url

Web
Page

Forté
NSAPI

fortécgi

Forté Environment

Logical Architecture

28 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

After the ScannerService service object populates the page template with the result
set, it returns the requested page back to the AccessService service object, which
delivers it to the Web server. The Web server in turn passes the page to the client
Web browser, which displays the page.

The AccessService service object maintains state for all the Web clients it serves. Its
dialog duration is session. Unlike normal session duration service objects, you may
load balance the AccessService service object. When you do, each new browser
request is routed to the next available replicate. Subsequent requests from the same
browser session will be directed back to the replicate that handled the first request.

Web Application Server Architecture
An application generated by WebEnterprise Designer is comprised of a set of
logical pages and associations between those pages. These logical pages are
implemented by a combination of HTML templates and TOOL code. A TOOL class
and a set of HTML templates are generated for each logical page.

The TOOL class generated for each logical page is the bus_class_pageHandler class,
referred to as the “handler” or “page handler,” and is generated into the
html_modelHandlers project. It is a subclass of the ExpressClassHandler class from
the ExpressHandlers project. The handler implements the logic intended by the
page, and formats any required data into a WebEnterprise result set for
substitution into the HTML page built by the WebEnterprise scanner.

In particular, the handler page implements the WebEnterprise TagHandlerIFace
interface and handles WebEnterprise tag requests made by the HTML templates
generated for the logical page. The html_modelScanner class that is generated for
the application instantiates each of the handler class objects defined by the
application and, when required, dispatches to them tag requests made by their
associated HTML templates.

HTML templates The set of HTML templates for each logical page defines how
the data for the page will be displayed, and implements the links to other logical
pages.

HTML templates are HTML files with embedded WebEnterprise tags. These tags
cause:

• invocations of either the HandleTag or HandleCondition methods of the
handler class associated with the template

• substitution of data generated by the handler class into the HTML page sent in
response to the request for the WebEnterprise HTML template

Logical Architecture

Chapter 1 WebEnterprise Designer Application Architecture 29

In addition, WebEnterprise Designer generates what is required—principally, the
Access and Scanner services—to invoke the appropriate handler class method
when requests for HTML templates are made. The Web application server designer
usually does not need to be concerned with the required mechanisms, but they are
essentially described in the object interaction diagram of the template request
process (see section “Runtime Control Flow” on page 48).

Customization guidelines Customizing a WebEnterprise Designer application
involves modifying the generated HTML templates, the generated handler classes,
or both. In general, you customize:

• the handler class when you want to affect the logic of the page

An example is when you want to modify the data returned by a search request.

• the HTML template when you want to affect the presentation of data or the
connection between pages

Examples are when you want to display some fields in bold font, or move the
location of a field on the page.

Often customization involves changes to both an HTML template and a handler
class. For example, adding a custom field requires adding a tag reference for the
field in the HTML template to display the data, and adding the logic to the
associated handler class to compute the value and place it in the result set for the
template.

Examples of all types of customizations are provided in Chapter 7, “Customization
Examples.”

Runtime Objects by Partition
Figure 1-3 illustrates the two partitions and their key objects that typically exist at
runtime in the deployed HTML Tutorial application.

NOTE You can customize every element in this diagram, except
aDBSession, by modifying its class definition or HTML template.
See Chapter 2, “Customizing WebEnterprise Designer Application
Classes,” for details.

Logical Architecture

30 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 1-3 HTMLtutApp Partitions and Objects at Runtime

Web Application
Server Partition

Business Services
Partition

aCustomerOrderClass aLineItemClass

aHTMLtutAppScanner

aSessionMgr

aHTMLtutAppAccess

aCustomerOrderHandler aLineItemHandler

aExpressPageData aExpressPageData

aHTTPSession

Queries

aCustomerOrderClient

Queries

aLineItemClient

ResultsResults

Database
Server

aHTMLtutorialServiceMgr

aLineItemMgraCustomerOrderMgr

aDBSession

aLineItemClassaCustomerOrderClass

Class

Data container

Class

Data flow

Object reference
Figure Legend

WebEnterprise Designer Projects

Chapter 1 WebEnterprise Designer Application Architecture 31

Multiple ovals means there may be many such objects (for example, an array of).
The prefix “a” means an instance of the class with that name (for example,
aLineItemHandler). Control flow arrows mean “invokes methods on.” The object
at the beginning of an object reference arrow references the object at the arrow end.

Use of Express Services
The classes generated by the HTML application model are used in the Web
application server partition. In addition, some of the classes generated by the
business model (the business_classClass, business_classQuery, and
business_modelClient classes) are also used in the Web application server tier. The
Web application server is a client of the business services generated by the business
model.

For a description of Express Services classes, see Customizing Express Applications.

WebEnterprise Designer Projects
This section describes WebEnterprise Designer projects, including the project
generated from the HTML application, the libraries and projects that supply the
generated project, and a brief overview of the HTML templates that are also
generated for the application (these are described fully in Chapter 3, “Customizing
Generated HTML Templates”).

Figure 1-4 gives you an idea of what all this code is generated for:

WebEnterprise Designer Projects

32 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 1-4 Code Generated from a WebEnterprise Designer HTML Application

Figure 1-4 shows that, for each business class page, WebEnterprise Designer
generates a set of HTML templates and a Handler TOOL class. In addition, it
generates a Scanner service object and an Access service object (and corresponding
classes that define each service object) for the whole application.

All of the TOOL code for the HTML application is generated into the
html_modelHandlers project. The supplier projects of the html_modelHandlers
project include:

• the HTTP library (a WebEnterprise project)

• the ExpressHandlers project (a WebEnterprise Designer project)

• the business models the HTML application uses and their suppliers, which
include the ExpressDomains and ExpressServices projects

This section provides class hierarchy diagrams of the HTTP library and the
ExpressHandlers project, followed by a detailed description of the
html_modelHandlers project. Complete descriptions of the HTTP library and the
ExpressHandlers project are found in iPlanet UDS online Help. Descriptions of
ExpressDomains and ExpressServices are found in Customizing Express
Applications.

Display_page.html
Data_page.html
Insert_page.html
Update_page.html
Search_page.html
etc.

HTML Templates
pageHandler

HandleTag
ProcessAction
Dostuff
Getstuff
etc.

TOOL class

html_modelScannerService

html_modelAccessService

TOOL classes

For each business class page
in the application:

For the application as a
whole:

WebEnterprise Designer Projects

Chapter 1 WebEnterprise Designer Application Architecture 33

HTTP Library
The HTTP library provides classes that are used to:

• define service objects for an iPlanet UDS Web application

• manipulate HTTP requests and responses

• process HTML templates to generate Web pages

• Create and track unique client sessions

Figure 1-5 shows the class hierarchy for the HTTP library.

Figure 1-5 HTTP Class Hierarchy

In addition to the classes shown in Figure 1-5, the HTTP Library contains the
TagHandlerIFace interface. This interface must be implemented in order for
WebEnterprise to process the iPlanet UDS tags in the HTML templates. The
ExpressHandler class (in the ExpressHandlers project, described in the next
section) implements this interface.

For descriptions of these classes, see iPlanet UDS online help.

Object

HTTPAccess

HTMLScanner

HTTPMessage

GenericException

HTMLScannerException

HTMLAccessException

SessionException

HTTPRequest

HTTPResponse

ExecContext

HTTPCookie

HTTPEnv

HTTPSession

ParameterList

ResultSet

SessionMgr

Superclasses of
the Access and
Scanner classes
generated for
WebEnterprise
Designer
applications

WebEnterprise Designer Projects

34 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The ExpressHandlers Project
The ExpressHandlers project contains a set of superclasses that provides generic
functionality for the classes generated from the HTML application model. For
example, the ExpressHandler class is the superclass for the bus_class_pageHandler
classes generated for each of the application’s pages. Refer to the online help
descriptions of the ExpressHandlers classes for descriptions of these classes and
their components.

Figure 1-6 shows the ExpressHandlers project’s class hierarchy and the key
superclasses of its supplier projects.

Figure 1-6 ExpressHandlers Class Hierarchy and Suppliers

It is the ExpressHandler class and its subclasses that implement the
TagHandlerIFace interface (see Figure 1-5 on page 33).

HTTP Library ExpressServices Project

ExpressHandlers Project

Object

HTTP.HTTPAccess HTTP.HTMLScanner

ExpressHandler

ExpressLookupInfo

ExpressPageData

ExpressTestRunner

ExpressValueGenerator

ExpressHTTPAccess ExpressScanner

ExpressServices.Error

ExpressHandlerError

ExpressClassHandler ExpressLogonHandler

Supplier Projects

WebEnterprise Designer Projects

Chapter 1 WebEnterprise Designer Application Architecture 35

The html_modelHandlers Project
The html_modelHandlers project contains TOOL classes generated from the HTML
application model. These classes provide the Web application server logic for the
pages in the model, and are subclasses of classes defined in the ExpressHandlers
project.

You generate the classes in the html_modelHandlers project with either the File >
Generate Web Application Server Code command in the HTML Application Model
Workshop, or the CompilePlan command in the Fscript utility.

For a description of classes generated from the business model, see Customizing
Express Applications.

WebEnterprise Designer generates the following classes in the html_modelHandlers
project to implement the user application defined in the HTML application model.

Generated Class Superclass Custom? Description

bus_class_pageHandler ExpressClassHandler No Contains the information
about the behavior of a
page in an application.
This class includes the
code generated to
implement the functions
and behavior that you
defined for this page.

logon_pageBaseHandler ExpressLogonHandler No Contains the information
about the behavior of a
logon page in an
application. This class
includes the code
generated to implement
the functions and
behavior that you
defined for this page.

logon_pageHandler logon_pageBaseHandler Yes Contains your
customizations for
logon_pageBaseHandler.
This class is not
regenerated when you
regenerate your HTML
application model code,
thereby preserving your
customizations.

WebEnterprise Designer Projects

36 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

A Yes in the Custom column means the class is a customizable class and will not be
regenerated when you regenerate the HTML application model, which preserves
your customizations.

html_modelBaseAccess ExpressHTTPAccess No Defines the Access
service object, which
contains the generated
Web connectivity
preferences for the
application.

html_modelAccess html_modelBaseAccess Yes Contains your
customizations for
html_modelBaseAccess.
This class is not
regenerated when you
regenerate your HTML
application model code,
thereby preserving your
customizations.

html_modelBaseScanner ExpressScanner No Defines the Scanner
service object, which
instantiates and holds the
handler objects.

html_modelScanner html_modelBaseScanner Yes Contains your
customizations for
html_modelBaseScanner.
This class is not
regenerated when you
regenerate your HTML
application model code,
thereby preserving your
customizations.

TestRunner ExpressTestRunner No A class that allows you to
test run your application
without deploying it.

Generated Class Superclass Custom? Description

WebEnterprise Designer Projects

Chapter 1 WebEnterprise Designer Application Architecture 37

WebEnterprise Designer also generates the following service objects in the
html_modelHandlers project:

For information about using and partitioning these service objects, see Chapter 9,
“Partitioning and Deploying a WebEnterprise Designer Application.”

Customizable Subclasses in html_modelHandlers
By default, WebEnterprise Designer does not generate customizable subclasses of
bus_class_pageHandler. For information about creating customizable subclasses of
these classes, see “Creating Customizable Classes” on page 65.

Generated HTML Templates
When you generate Web application server code for your HTML application,
WebEnterprise Designer also generates HTML files. These files correspond to the
pages in the model, implementing the flow between the pages and the presentation
of data in the pages. They are generated into the html_model directory under the
HTML document root directory.

WebEnterprise Designer generates the following HTML templates in the
html_model directory of the document root directory. Templates whose names
include bus_class_page are generated for business class pages; those with link_page
in the name are generated for link pages. “Logon” templates are generated for
logon pages

Generated Service Object Class Defined By Description

html_modelAccessService html_modelAccess Receives HTTP requests from the Web
server and passes them to the
ScannerService, then receives the
response from the ScannerService and
passes the page information back to
the Web server.

html_modelScannerService html_modelScanner Converts requests from the
AccessService service object into
pages.

WebEnterprise Designer Projects

38 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Generated HTML Template Description

Main_bus_class_page.html Top-level HTML definition of a business class page.

Data_bus_class_page.html Provides the tags used to put the data (but not nested
data) in the page to be displayed.

Display_bus_class_page.html Layout of the Data Display portion of the page,
including nested pages.

Insert_bus_class_page.html Insert mode of the page.

Menu_bus_class_page.html Menu area for the page (if the page design includes a
menu).

Search_bus_class_page.html Search mode of the page.

Update_bus_class_page.html Update mode of the page.

Header_bus_class_page.html Defines the headers of all the model’s pages (if the
page design includes them).

Footer_bus_class_page.html Defines the footers of all the model’s pages (if the page
design includes them).

Scripts_bus_class_page.html Scripts for the page.

Main_link_page.html Top-level HTML definition of a link page.

Display_link_page.html Layout of the data display portion of a link page.

Logon_logon_page.html The page displayed when a non-validated user
attempts access to any page in the application.

LogonFailed_logon_page.html The page displayed when a user is denied access to the
application.

Validate_logon_page.html The page used to validate the logon. This page is never
displayed; it redirects to the first page of the
application or the logon failed page as appropriate.

Start.html Defines a shortcut for a string used in deployment.

manifest.txt Lists all the HTML files generated and so serves as a
catalog of the directory.

report.txt Reports on the process of generating the HTML
templates, and what has been customized.

bus_class_page_qq_field_name.inc Contains stored and displayed values of a lookup
field, if one is specified in the model.

WebEnterprise Designer Class Interactions

Chapter 1 WebEnterprise Designer Application Architecture 39

For more information on these templates, see Chapter 3, “Customizing Generated
HTML Templates.” For brief information on the document root directory, see
“Setting Document Root on the ScannerService Service Object Partition” on
page 259. For more information on document root, see Getting Started with
WebEnterprise Designer or WebEnterprise Designer online help.

WebEnterprise Designer Class Interactions
This section provides information on the interactions between the classes described
in the previous sections. First, a class diagram of the class hierarchies and class
references is provided as a map of the territory. This is followed by a description of
the main functions of the key classes in the diagram.

Class Interaction Diagram
This section presents a class interaction diagram of the WebEnterprise Designer
class hierarchies. This class diagram uses OMT notation described in the book
Object-Oriented Modeling and Design (by Rumbaugh, Blaha, Premerlani, Eddy, and
Lorensen, published by Prentice Hall) to show the classes and their relationships.

The diagram conventions are:

• arrows between classes mean that the class at the starting end of the arrow
contains an attribute whose type is that of the class the arrow points to

• the label of the arrow identifies the attribute

• a dot at the end of an arrow indicates a reference to an array

• a class whose bounding box is a dotted line is a class described in another
diagram or manual, and details about the class are usually not given

• key classes display the attributes, constants, and methods referred to in the
subsequent discussion

These elements are indicated in the order shown in Figure 1-7. Constants are
indicated by the icon used for constants in the Workshop (the pi sign).

WebEnterprise Designer Class Interactions

40 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 1-7 Example Class Diagram

Declared Type and Runtime Type
If a class has an attribute that references a superclass in a hierarchy, then at runtime
the type of object referenced by that attribute will actually be the customizable
subclass. For example, in Figure 1-8 on page 41, the ExpressHandler class has an
attribute Scanner of type ExpressScanner. At runtime, the attribute will hold a
reference to the customizable HTMLtutAppScanner object.

This customizable subclass reference gives you control over the runtime
application behavior, because your subclass object and its customizations will be
present wherever you see a reference to the base class in the class diagrams in this
chapter.

You commonly customize by creating a method in the subclass that overrides the
method in the superclass. Overriding methods are called automatically.

Remember, though, to access attributes, methods, or events defined only for the
runtime class (and not in the superclass), you must cast the object. Casting means
identifying the class of a particular object. See the TOOL Reference Guide for more
information about casting.

OtherClass2

Method

RefClass2RefClass1
OtherClass1

Method

Subclassname

SuperclassName

Attribute1
Attribute2
Constant1
Constant2
Method1
Method2

π

WebEnterprise Designer Class Interactions

Chapter 1 WebEnterprise Designer Application Architecture 41

Figure 1-8 WebEnterprise Designer Class Interaction Diagram

Access Scanner

Handlers

ValueGenerator

LookupInfo

Query

Values

PageHandler

ForeignData

Data

BusinessQuery

BusinessClass

BusinessClass

bus_classClass

Client

bus_modelClient

BusinessClient

InUse Mutex

ExpressClassHandler

NumAssocs
NumLinks
PageName
PageType
VisibleRows
DecodeValue
DisplayPage
DoClear
DoDelete
DoFirst
FillResultSet
FindHandler
FormatValue
GetFieldAssocID
GetFieldAttrlD
GetFieldName
GetForeignPageInfo
GetPageData
GetVisibleRows
HandleCondition
HandleTag
ProcessAction
Select
UpdateClass

ManagedSessions

html_modelBaseScanner

GetDocumentRoot
GetMaxRecords

html_modelScanner

html_modelBaseAccess

HandleTemplateRequest
SetupAccess

html_modelAccess

HandleTemplateRequest

ExpressScanner

Handlers
FindHandler
GenerateLookupFiles
HandleTemplate

ExpressHandler

InUse
PO_DISPLAY
PO_INSERT
PO_SEARCH
PO_UPDATE
PT_FORM
PT_LINK
PT_LIST
PT_LOGON
GetPageMode
GetRequestParameter
RestrictAccess

π

ExpressValueGenerator

NewKey
NewValue

ExpressLookupInfo

DisplayedValueAttr
StoredValueAttr
GetDisplayedNullValue
GetValues
WriteValues

ExpressPageData

CurrentRow
FirstVisibleRow
Folder
AddForeignData
Invalidate

bus_class_pageHandler

LINK_bus_class_page1
GetFieldLookupInfo
GetFieldName
GetLinkName
NewField

π

ApplicationName
HasLogonHandler
StartPage
StartURL
ConnectManagedSessions
IsPrimarySession
Setup
SetupSessionManagement

ExpressHTTPAccess

WebEnterprise Designer Class Interactions

42 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Life of a Template Request
As a context for this information, this section reviews how the parts of a
WebEnterprise Designer application interact at runtime.

Runtime interactions of a WebEnterprise Designer application were discussed
earlier in “Runtime Architecture” on page 27. Figure 1-9 and the description that
follows provide further detail on how a request from a user’s browser is fulfilled in
an HTML application.

Figure 1-9 Life of a Template Request

The steps in the life of a template request, as depicted in Figure 1-9, are:

1. The incoming HTTP request from the Web browser is passed to the
AccessService service object html_modelAccessService.

2. The html_modelAccessService service object:

❍ registers itself as a WebEnterprise server

❍ defines the application’s session management security policies

❍ invokes the HandleTemplateRequest method on the Scanner service object
html_modelScannerService

3. The html_modelScannerService service object processes the named template
and builds an HTML stream.

4. When html_modelScannerService encounters a FORTE EXECUTE tag in the
template, it invokes the HandleTag method of the page’s handler class.

5. The HandleTag method invokes the ProcessAction method to perform the
requested action.

Web Access
Service Object

incoming
template
request

return
HTTPResponse

invoke
HandleTemplate

invoke
HandleTag

query or
update data

return assembled
Web page

Scanner
Service Object

Business
Service Object

return
data

return
result
sets

Tag
Handlers

AccessService
Service Object

ScannerService
Service Object

Business Service
Service Object

WebEnterprise Designer Class Interactions

Chapter 1 WebEnterprise Designer Application Architecture 43

6. If the action includes retrieving data from a database, the handler class uses the
Business Service service object to access the business services, and return data
in a result set.

7. The DisplayPage method of the page handler builds the result set for the Web
page.

8. If html_modelScannerService encounters a FORTE IF tag in the template, it
invokes the HandleCondition method of the page’s handler class.

9. The HandleCondition method determines whether the requested condition
holds and returns either True or False accordingly.

10. html_modelScannerService then produces an HTTPResponse object, which
contains the complete Web page, and passes this to the
html_modelAccessService service object.

11. html_modelAccessService returns the now-complete requested Web page back
to the client Web browser.

Runtime Scenarios
To provide even more detail of some of the steps described above, some of the
information on individual classes in the following sections includes object
interaction diagrams. Such diagrams are based on the Jacobson notation described
in the book Object-Oriented Software Engineering.

Object Interaction Diagram Conventions
Object interaction diagrams illustrate how objects interact during runtime
scenarios in a generated page that employs methods of the class under discussion.
These diagrams show only the key objects involved in a scenario and the methods
they invoke on each other. You can build diagrams like these on your own by
running your application and stepping through it in the TOOL debugger.

The diagram conventions are:

• vertical lines represent objects

The object name is given at the top of the vertical line—its name is identical
with its class name, but prefixed with the letter “a”.

• the methods that the objects invoke on each other are represented by
horizontal lines between objects with an arrow indicating the direction

• the label on the arrow is the name of the method invoked

WebEnterprise Designer Class Interactions

44 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

• time flows from top to bottom

• a method line that points back to the same object is an object that invokes a
method on itself

Figure 1-10 Example Object Interaction Diagram

ExpressHTTPAccess
Step 1 and Step 2 in “Life of a Template Request” on page 42 outline the functions
of the generated html_modelAccessService service object in WebEnterprise Designer
applications. The html_modelAccessService service object is based on the generated
html_modelAccess class, which is a subclass of ExpressHTTPAccess.

The ExpressHTTPAccess class extends the WebEnterprise HTTPAccess class by
defining a number of WebEnterprise Designer-specific attributes and a common
initialization method called Setup. Every WebEnterprise Designer application has
a generated ExpressHTTPAccess subclass and a generated service object based on
the generated class.

Starting the AccessService Service Object
The details of starting the html_modelAccessService service object are shown in
Figure 1-11. Startup is the result of invoking the html_modelAccess class’s Init
method.

MethodName(params)

 MethodName2(params)

 MethodName3()

 MethodName4()

aC
la

ss
1

aC
la

ss
2

aC
la

ss
3

WebEnterprise Designer Class Interactions

Chapter 1 WebEnterprise Designer Application Architecture 45

Figure 1-11 Object Interaction Diagram of the Startup of the AccessService Service Object

The Setup method drives the initialization of the html_modelAccessService service
object by invoking the following methods:

• SetupAccess method—registers the service object as a WebEnterprise server

• SetupSessionManagement method—defines the application’s session
management security policies

ah
tm

l_
m

o
d

el
A

cc
es

s

Startup (html_modelAccess.Init)

Setup ()

SetupAccess ()

Enable Access (serviceName, part, cgi, plugin)

SetupSessionManagement (URL, timeOut)

EnableSessionManagement ()

SetDefaultSessionProperty (newSessionProperty)

SetSessionTimeOut (timeOutInterval)

Start task ConnectManagedSessions()

if IsPrimarySession=TRUE

WebEnterprise Designer Class Interactions

46 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Customizing ExpressHTTPAccess
All ExpressHTTPAccess customizations are accomplished by overriding or
creating methods in the html_modelAccess class. Common customizations are:

• customizing the application’s server registration

WebEnterprise Designer applications, by default, employ autoregistration (in
which the service object automatically registers itself with fortecgi). To use
manual registration, override the html_modelAccess class’s SetupAccess
method and modify its EnableAccess method accordingly.

• customizing the application’s session management

The SetupSessionManagement method of the ExpressHTTPAccess class
defines the WebEnterprise session management characteristics of the
application. Depending on the setting of the HasLogonHandler attribute, you
can define the application’s HTML templates with the
SESSION_AUTOCREATE property (if no logon page is defined) or the
SESSION_REQUIRED property.

See Getting Started with WebEnterprise Designer for a description of
WebEnterprise Designer default session management.

• authenticating logon information

When a logon page is defined, you must override the LogonSession method of
the HTTPAccess class to validate the authentication information supplied by
the client user (typically a username and password).

See Chapter 8, “Customizing Application Security,” for information on
creating and using logon pages.

• setting up the primary application to perform session management for
included applications

By default, each HTML application manages its own WebEnterprise sessions,
including logon (if defined) and HTML template security. Another common
model is to have one (primary) HTML application perform session
management for itself and other (subsidiary) HTML applications. (An included
HTML application is a subsidiary application.)

To create such a configuration, you must customize the primary HTML
application and all of the subsidiary HTML applications as follows:

WebEnterprise Designer Class Interactions

Chapter 1 WebEnterprise Designer Application Architecture 47

Subsidiary HTML applications: In each subsidiary application, customize the
IsPrimarySession method to return FALSE. You can do this through the
application-wide “Is subsidiary application” customization point in the Page
Handler Customization Wizard. Just selecting this customization is enough; it
will generate the proper method code. You need not customize the method
code it generates.

Primary HTML application: You must customize the
ConnectManagedSessions method of the primary application to instantiate and
populate the ManagedSessions attribute with references to the
html_modelAccessService service objects of the subsidiary applications. You can
do this with the application-wide “Define subsidiary applications”
customization point. Modify the code generated by this customization point to
name your subsidiary application(s) in the line:

ManagedSessions.AppendRow(subsidiaryAccessService);

See Chapter 8, “Customizing Application Security,” for more details and an
example.

ExpressScanner
Procedures in “Life of a Template Request” on page 42 described how the
html_modelScannerService service object coordinates the assembly of the Web page
that fulfills the template request in WebEnterprise Designer applications. The
html_modelScannerService service object is based on the generated
html_modelScanner class, which is a subclass of ExpressScanner.

The ExpressScanner class extends the WebEnterprise HTMLScanner class by
defining a number of WebEnterprise Designer-specific attributes. Every
WebEnterprise Designer application has a generated ExpressScanner subclass and
a generated service object based on the generated class.

Starting the ScannerService Service Object
The details of starting the html_modelScannerService service object are shown in
Figure 1-12. Startup is the result of invoking the html_modelScanner class’s Init
method.

WebEnterprise Designer Class Interactions

48 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 1-12 Object Interaction Diagram of Startup of the ScannerService Service Object

ExpressClassHandler
The ExpressClassHandler class is the primary class used to implement application
logic in a WebEnterprise Designer Web application server. A subclass of the
ExpressClassHandler class is generated for every page in an HTML application
(see Figure 1-4 on page 32). In “Life of a Template Request” on page 42, it is the
methods of these “page handlers” that the scanner invokes to translate iPlanet UDS
HTML tags into runtime data.

Page handler classes use two methods to respond to iPlanet UDS tags: the
HandleTag method and the HandleCondition method. The method signatures for
these methods are predefined in the TagHandlerIFace interface (of the HTTP
library), which is implemented by the ExpressClassHandler class.

Helpful background to this section is the chapter on Creating Pages Using
Templates in A Guide to WebEnterprise, which describes what an iPlanet UDS
HTML template is and provides an example of how the FORTE EXECUTE and
FORTE ITERATE tags are used in a template to generate a frame.

Runtime Control Flow
The details of a template request are shown in Figure 1-13. This diagram provides
further details of the procedure described in “Life of a Template Request” on
page 42, and provides a starting point for the discussion that follows. It is offered
here, because it shows the role played by the ExpressClassHandler class (actually,
by the generated subclasses, or page handler classes) in this process.

Setup ()

RegisterTagHandler (handlerRef) (once for each handler)

ah
tm

l_
m

o
d

el
Sc

an
ne

r

Startup (html_modelScanner.Init)

WebEnterprise Designer Class Interactions

Chapter 1 WebEnterprise Designer Application Architecture 49

Figure 1-13 Object Interaction Diagram of a Template Request

HandleTemplate (request)

 GenerateLookupFiles ()

 HandleTemplate (request)

 HandleTag (tag,request, response, parameters, rsetcontext) Once for each FORTE
EXECUTE in the template

 Lock()

 FindHandler (name)

 ProcessAction (action, request, response, parameters, rset)

 DisplayPage (tag, request, response, parameters, rset, pagedata)

 Unlock ()

 HandleCondition (condName, request, response, parameters, context) Once for each FORTE IF
 in the template

 Lock ()

 Unlock ()

ah
tm

l_
m

o
d

el
A

cc
es

s

ah
tm

l_
m

o
d

el
Sc

an
ne

r

aE
xp

re
ss

Cl
as

sH
an

dl
er

aE
xp

re
ss

H
an

dl
er

.In
U

se
(F

ra
m

ew
or

k
m

ut
ex

)

Template Request

Once for each
ACTION in request

WebEnterprise Designer Class Interactions

50 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The generated html_modelScannerService service object instantiates the generated
bus_class_pageHandler objects and invokes their HandleTag or HandleCondition
methods when it encounters the following tags embedded in the templates
requested by Web clients:

Each EXECUTE tag invokes the HandleTag method of the associated
ExpressClassHandler object. Each IF tag invokes the HandleCondition method of
the associated ExpressClassHandler object.

The HandleTag method:

• invokes the FindHandler method to find the proper handler object to execute
this tag request (this will be the current object, unless this is a request from a
nested page)

• invokes the ProcessAction method to perform the action being requested

• invokes the DisplayPage method to format any result data into a
WebEnterprise result set

Formatting the data for the current logical page might require other logical
pages, if the current page has any nested or folder logical pages. For more
information, see the section “Foreign Result Sets” on page 55.

The HandleCondition method:

• determines whether the requested condition holds and returns either True or
False accordingly

<?forte execute ...>
<?forte if ...>

NOTE In this manual, as in A Guide to WebEnterprise, the tags are referred to
in text in abbreviated form (for example, “the FORTE EXECUTE
tag”), while the actual syntax requires a preceding question mark (as
above). For a full description of iPlanet UDS HTML tag syntax, see A
Guide to WebEnterprise.

WebEnterprise Designer Class Interactions

Chapter 1 WebEnterprise Designer Application Architecture 51

Referenced Objects
An ExpressClassHandler object (more particularly, a page handler object) holds a
reference to the html_modelScanner service that uses it. The scanner is used to
provide global services for the Web application server including key generation,
and generation of lookup files.

A page handler object, at initialization, creates and holds a reference to the
generated BusinessClient for the business class that the page is based on. The
generated BusinessClient is used to retrieve and modify business classes.

Field Identification
Each business class page has a number of attributes specified for display as fields
on one or more of its HTML page mode templates—Display, Search, Insert, and
Update. These may be attributes of the primary business class or of associated
business classes.

Primary and Associated Business Classes The business class that the page is
based on is the primary business class for that page. An associated business class is
one that is the target of an association from a primary business class, or from
another associated class in the business model. The association can be either
one-to-one, many-to-one, or optional.

Field Indexes and Association IDs
Each attribute is given a field index and association ID to identify it and place it in a
WebEnterprise result set, so that it can be properly rendered on the page. In fact, a
field index and association ID pair are given to all of the following items:

• each attribute that appears on any of the HTML page mode templates for the
business class page

• each attribute that is indirectly referenced by the business class page

• each association needed to navigate from the primary business class to all
associated business classes used by the page

The field index and association ID are integer quantities and are unique only to the
current business class page. Fields are numbered consecutively from 1, within an
association.

The association ID identifies the field or association uniquely within the business
class page, and, if it is a field, indicates whether it is from the primary or an
associated business class. A field from the primary business class has an ID of 0;
fields from associated business classes have IDs unique within the business class
page, numbered consecutively from 1.

WebEnterprise Designer Class Interactions

52 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Only associations that are actually used are assigned association IDs. An
association is used if:

• one or more of the attributes of the associated business class is used by the
business class page

• one or more attributes of any business class included in the associations
emanating from the associated business class is used by the business class page

Converting Between Field Index and Attribute ID
Every valid association ID and field index pair is associated with an attribute of the
business class indicated by the association ID. Use the GetFieldAttrID method to
find the attribute ID of this attribute.

You can also do the inverse conversion: to find the field index from the association
ID and attribute ID, use the GetFieldIndex method.

Data Transfer
Data displayed on an HTML page is rendered into text at some point and
WebEnterprise Designer applications perform this rendering automatically. The
only time you might need to affect this is when you want to modify the textural
representation of data to be placed on the form. Within the ExpressClassHandler,
result data is contained in business class objects that you can manipulate directly,
using the FormatValue and DecodeValue methods. (There are customization
points available for such customizations. For more information, see “Formatting
Fields” and “Decoding or Validating Fields” on page 89.)

Result Sets
Result data that is to be rendered on an HTML page is placed in a WebEnterprise
ResultSet object. Of the total result set data retrieved for the Web client, the
ResultSet object holds only that part that is to be rendered on the requested page.
For example, if a user submits a query that returns a result set of 50 rows, but the
page being rendered is a form with only one visible row, then one of the 50 rows is
placed in the ResultSet object, along with the information that the row is a specific
one of 50 rows.

For more information on result sets, see “ExpressPageData” on page 55.

NOTE This definition can be applied successively.

WebEnterprise Designer Class Interactions

Chapter 1 WebEnterprise Designer Application Architecture 53

Formatting Data into a WebEnterprise Result Set
DisplayPage and FillResultSet are the methods used to populate the ResultSet
object. DisplayPage determines the specific business class objects to be formatted
into the ResultSet object. FillResultSet fills the ResultSet object with a single
business class invoking FormatValue on each attribute added to the ResultSet
object.

DisplayPage is the last method invoked by the HandleTag method. Therefore,
whatever changes you make to data in the result set, they must be made before the
DisplayPage method is invoked.

For a descriptive list of all variables pertinent to a ResultSet object, see “Variables”
on page 60. For information on customizing DisplayPage, see “Formatting Custom
Fields” on page 89.

Decoding Data from a WebEnterprise Request
When an HTTP request is received, particularly a request from an HTML form,
there are often parameters that must be decoded. When a request comes from a
WebEnterprise Designer Insert or Update form, some of the parameters represent
new data values for attributes in the result set. These values are updated by the
UpdateClass method. When a request comes from a WebEnterprise Designer
Search form, some of the parameters represent query constraints that need to be
added to the Express query being run. Adding query constraints is done by the
AddConstraints method. Both UpdateClass and AddConstraints use the
DecodeValue method on each parameter. DecodeValue can then be used as a
common point to implement field validation.

Result Sets and Session Management
Since only one instance of a handler class is instantiated for each logical page in the
HTML application model, the handler class cannot hold any Web client-specific
state, such as result data. To maintain client-specific state, the handler class uses
WebEnterprise session management features. Each client’s result set is placed in an
ExpressPageData object, which is then held by the WebEnterprise session using the
page name as the key. To retrieve the result set associated with the current request,
the handler class uses the HTTPRequest object passed on the HandleTag or
HandleCondition request, and invokes the GetSessionData method on it, passing
the current page name as the key.

The result set for a given Web client therefore becomes a collection of result sets,
one for each logical page visited, and is maintained by the generated
html_modelAccess service.

WebEnterprise Designer Class Interactions

54 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Connections Between Handlers
There are no explicit connections between handlers for different logical pages, but
sometimes, for example with nested pages, one handler might need to access
another. Two mechanisms are available for obtaining a reference to another
handler:

• using the scanner’s Handlers attribute

A scanner’s Handlers attribute is an array that holds a reference to every
handler. You can therefore compute the required Handlers reference if you
know the its array index.

• using the scanner’s FindHandler method

You can use this method to find any handler based on its name.

ExpressLogonHandler
The ExpressLogonHandler class is the other “page handler” class of WebEnterprise
Designer applications. An application-specific subclass of the
ExpressLogonHandler class is generated only if a logon page exists in the
application. This class manages the process of user authentication for HTML
applications.

The ExpressLogonHandler class is the superclass for the HTML application’s
BaseLogonHandler class and its subclass, LogonHandler.

The HTML application’s SessionCreationURL attribute is set to the URL of the
logon page, causing that page to be presented to any “new” (meaning unvalidated)
client. When the page’s form is completed and submitted, the
ExpressLogonHandler class’s HandleCondition method is invoked to validate the
user’s authentication data and either start a WebEnterprise session or throw an
exception.

For further details on SessionCreationURL, see “How the Logon Page is Activated”
on page 233.

Customizing ExpressLogonHandler
Using a Logon page requires customization of the logon process. By default, no
validation of the Logon page’s user authentication fields is performed—the client is
always logged in.

WebEnterprise Designer Class Interactions

Chapter 1 WebEnterprise Designer Application Architecture 55

Overriding the application’s LogonSession method performs this customization.
You can do this by selecting the Logon Validation customization point in the Page
Handler Customization Wizard. For detailed information on customizing the
logon process, see Chapter 8, “Customizing Application Security.”

ExpressPageData
The ExpressPageData class holds the result set for a particular business class page
for a single Web client. The result set data is saved as WebEnterprise session data,
with the logical page name as the key. The ExpressPageData class keeps track of
the current row and the rows visible on the rendered HTML page by means of the
CurrentRow and FirstVisibleRow attributes. The CurrentRow attribute is used for
operations that act upon a single row, such as update and delete.

When search or select requests are processed by a page handler, the old data held
by the associated ExpressPageData object is invalidated (with the Invalidate
method) and replaced with the requested data. Insert, update, or delete requests
can modify data held by the ExpressPageData object.

Foreign Result Sets
Displaying a logical page containing nested or folder pages requires access to the
ExpressPageData objects for the nested or folder pages. Access to these objects is
achieved with the ExpressPageHandler class’s DisplayPage and
GetForeignPageInfo methods.

To retrieve data for nested or folder links, the DisplayPage method calls the
GetForeignData method to access the page handler for the nested or folder page.
The results are stored in the nested or folder page’s ExpressPageData object, which
is attached to the parent page as an associated result set by the
ExpressPageHandler class’s AddForeignData method.

ExpressValueGenerator
The ExpressValueGenerator class is used to generate new keys for business classes
when the insert command is used.

WebEnterprise Designer HTML Template Elements

56 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

ExpressLookupInfo
The ExpressLookupInfo class is used to validate fields that have drop-down or
radio-list validation. This class is the validation object used to retrieve and save the
displayed and stored values. It is tied to an attribute of a business class in one of the
included business models, and implements a lookup table object. The scanner
holds one validation object for each unique stored and displayed attribute
combination used by all fields in all pages in the application.

Normally, each field has its own validation object. However, if two fields use the
same business class and the same stored and displayed attributes, they will each
use a single copy of the validation object.

Modifying the Displayed Null Value
Override the GetDisplayedNullValue method if you want to display a string other
than the default string “<NULL>” to represent a null selection.

WebEnterprise Designer HTML Template
Elements

This section describes various features of WebEnterprise and HTML that are used
by WebEnterprise Designer templates. These features include:

• links

• variable references

• URL parameters

For further information on these features, see the “Planning Web Pages” chapter in
A Guide to WebEnterprise.

Links
Web pages use links to allow Web users to jump quickly from page to page. In the
HTML application model, you define links to connect the pages. In addition, the
commands that you specify for the individual pages are links to different modes of
the page (the Insert command links to the Insert mode of the page, for example).

WebEnterprise Designer HTML Template Elements

Chapter 1 WebEnterprise Designer Application Architecture 57

A link is an anchor (for example <a HREF=”....”) with a URL (universal resource
locator) that is embedded in an appropriate place in an HTML template. The two
types of links previously mentioned are automatically formatted by WebEnterprise
Designer. You can customize these or add your own to the page. This section
discusses some elements of link formatting that are specific to WebEnterprise
Designer.

A typical embedded URL reference in an HTML statement in a WebEnterprise
Designer HTML template might look like this:

<a HREF=”$$(FORTE.ExecURL)?ServiceName=eCoolService&TemplateName=eCool/Display_$$
(USER.TopPage).html&Action=MovieHandler.Last&Uniquifier=$$(FORTE.UniqueID)”
target=”_fortedisplay”>

URL Parameters
Some of the URL parameters used in WebEnterprise Designer URL references are
generic to WebEnterprise, and some are specific to WebEnterprise Designer. The
URL parameters below that are identified as WebEnterprise parameters are
described in detail in A Guide to WebEnterprise.

• ServiceName—(WebEnterprise) identifies the name of the Web access service

Syntax: &ServiceName=html_modelService

Example
ServiceName=HTMLtutAppService

This parameter is used by the interface (whether fortecgi or the iPlanet UDS
Web server plug-in). The fortecgi program or the plug-in looks up the specified
service name in the fortecgi.dat file.

If the service name appears in the fortecgi.dat file, the Web access service object
is enabled and registered; fortecgi or the plug-in forwards the Web request (the
URL) to the named service.

If the service name does not appear in the file, then it is either unknown or not
currently enabled. In this case, fortecgi or the plug-in returns a Request Failure
error to the Web user with the message “Service not found.”

• TemplateName—(WebEnterprise) identifies the name of the WebEnterprise
Designer template to be used to construct the page

Syntax: &TemplateName=html_model/page_mode_bus_class_page.html

WebEnterprise Designer HTML Template Elements

58 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Example
&TemplateName=HTMLtutApp/Update_Customer.html

This parameter is required and, on UNIX systems, is case-sensitive. Based on
this value, the Web access service passes the current request to either the page
handler or the ScannerService SO.

• Action—(WebEnterprise Designer) specifies the action requested

The ExpressHandlerClass class’s ProcessAction method processes actions. This
method compares the text value of the Action parameter with the known
actions and executes the indicated method. By convention, these methods are
named the same as the Action value with a “Do” prefix. For example the Next
action invokes the DoNext method.

Syntax: &Action=handler.action

The handler prefix is optional. If unspecified, the current handler is assumed.
However, sometimes the action must be executed by a handler other than the
current one, which typically happens with nested pages. To execute the “Next”
action on a nested page, the link must request the outer page (otherwise only
the nested page would be displayed). However, when the outer pages handler
gets the “Next” request, it must dispatch it to the nested handler. This is done
by specifying the nested page in the Handler parameter.

Example

The &Action=Next parameter of this URL causes the page to be redisplayed
after executing the handler class’s Next function. (The Next function causes the
result set to be scrolled to the next element.)

There can be several Action parameters. When there is more than one, each
action is performed in turn.

• LinkName—(WebEnterprise Designer) specifies the name of the link that
requested the current page

The name is formed by concatenating the name of the HTML application with
the name of the link (as seen in the Link Properties dialog title bar) separated
by a period.

http://www.myServer.com/page.html?ServiceName=AppService
&TemplateName=myApp/Display_Movie.html&Action=Next

WebEnterprise Designer HTML Template Elements

Chapter 1 WebEnterprise Designer Application Architecture 59

Syntax: LinkName=html_model.link_name

Example
LinkName=HTMLtutApp.CustomerLink1

• ReturnTemplate—(WebEnterprise Designer) used to remember the template
requesting a function

Typically, the ReturnTemplate is displayed after the page needed by the
requested function. For example, when requesting the Update action, the
update HTML template is displayed. After the update is complete, the original
page should be redisplayed.

Syntax: &ReturnTemplate=html_model/page_mode_bus_class_page.html

Example
c&ReturnTemplate=HTMLtutApp/Display_Home.html

• Selection—(WebEnterprise Designer) used to specify the fields on the page that
are being used to provide constraints for a select operation against the business
service

The Selection parameter is used with the Select action (&Action=Select) on a
search page. The fields specified in the Selection parameter then also appear as
parameters providing the values for the fields being constrained.

Syntax: &Selection=bus_class_page_qq_field

Example
&Selection=CustomerOrder_qq_CustomerNumber

• Uniquifier—(WebEnterprise Designer) specifies a unique value; used to defeat
caching done by the browser in some cases

This parameter and its variable are used when the requested page has been
used before, and therefore contains data, but a “fresh” page is desired. To
retrieve the fresh page, specify a unique number with the parameter, so that
the retrieved page is not the cached one.

For example, if the user activates the Next command, the page being requested
is exactly the same page as the current page, but with different data. If browser
caching is enabled, the browser will satisfy this request from the cache, which
means displaying the same data, not the new data. Using the Uniquifier
parameter with the FORTE.UniqueID variable creates a request that does not

WebEnterprise Designer HTML Template Elements

60 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

match any page in the browser’s cache. This forces the request to be passed on
to the application, which processes the Next command, thereby advancing the
result set to the next row. Then, when the page is populated with data, the next
row will be displayed.

Syntax: &Uniquifier=$$(FORTE.UniqueID)

Example
&Uniquifier=$$(FORTE.UniqueID)

Variables
To use a result set in a template, you first use the HandleTag method to generate
the result set. As each member of the result set is generated, it is assigned a name.
This allows you to refer to any member in a result set using an iPlanet UDS
variable. Variable references contained in HTML templates have the following
form:

result_set_name.result_set_member_name

The FORTE EXECUTE and FORTE ITERATE commands define the result set
names. The variable names are defined by the application logic.

FORTE result set WebEnterprise defines one special result set—the FORTE
result set—that always exists and into which WebEnterprise places various useful
variables, for example FORTE.ExecURL (described below).

Other special result sets In addition to FORTE, WebEnterprise Designer uses
three other result sets:

• USER—holds various static values for a request

• entry—used for all data that is being placed on the current page

• listentry—the iteration result set for the data rows for the current page

For more information on result sets and iPlanet UDS variables in WebEnterprise,
see the chapter “Creating Pages Using Templates” in A Guide to WebEnterprise.

• FORTE.ExecURL—(WebEnterprise) specifies the path to the Web server used
by the application

WebEnterprise uses the value of $$FORTE.ExecURL to expand all generated
URLs (including links in generated pages) to include the correct domain and
host name for the Web server, and the location of either the fortecgi program or
the iPlanet UDS Web server plug-in.

WebEnterprise Designer HTML Template Elements

Chapter 1 WebEnterprise Designer Application Architecture 61

EnableAccess starts the Web client’s access to the current Web access service.

A URL embedded in a template might appear as:

And the actual URL link would be expanded to:

• FORTE.UniqueID—(WebEnterprise Designer) returns a unique number; used
to defeat the caching mechanism

See the item “Uniquifier” in the section “URL Parameters” on page 57.

Example
&Uniquifier=$$(FORTE.UniqueID)

• USER.TopPage—(WebEnterprise Designer) defines the outermost logical page
being displayed

With nested or folder logical pages, the TopPage is not always the same as the
current logical page. This parameter is set by the Display_bus_class_page.html
template to bus_class_page. The various Data_bus_class_page.html templates
included by the Display page always refer to the TopPage parameter, rather
than explicitly using the bus_class_page name.

<a class="alink" HREF="$$(FORTE.ExecURL)?ServiceName=HTMLtutAppService&Templat
eName=HTMLtutApp/Search_Customer.html&ReturnTemplate=HTMLtutApp/Display_$$(USE
R.TopPage).html&Uniquifier=$$(FORTE.UniqueID)" target="_fortedisplay">

<a class="alink" HREF="http://www.forte.com/cgi-forte?ServiceName=HTMLtutAppSe
rvice&TemplateName=HTMLtutApp/Search_Customer.html&ReturnTemplate=HTMLtutApp/D
isplay_$$(USER.TopPage).html&Uniquifier=$$(FORTE.UniqueID)"
target="_fortedisplay">

WebEnterprise Designer HTML Template Elements

62 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Example
&TemplateName=HTMLtutApp/Display_$$(USER.TopPage).html

• entry.RequestStatus_busClassPage—the page’s request status

Each page has a request status formatted into this variable that describes the
outcome of the request. For successful search requests, this variable contains a
string that describes the current row number and the number of rows found by
the search request. (for example, “row 1 of 5”).

• entry.CurrentRow_busClassPage—the current row number for the indicated
page

When a search request returns more than one row, this variable indicates
which row a given action (for example, Update) will operate on.

• entry.CurrentRowIndex_busClassPage—the index, within the visible rows, of
the current row from the result set

For example, if the result set contains 10 rows, rows 3 through 7 are being
displayed, and row 4 is the current row, then this variable contains the value 2,
because row 4 is the second row from 3.

• entry.FirstVisibleRow_busClassPage—the row number of the first row being
displayed from the result set

For example, if the result set contains 10 rows, rows 3 through 7 are being
displayed, and row 4 is the current row, then this variable contains the value 3,
because row 3 is the first row from the result set being displayed.

• entry.list_busClassPage—a list of data rows

This variable contains a list of data rows that are iterated using the FORTE
ITERATE command.

• entry.Rows_busClassPage—number of rows in the result set

• entry.VisibleRows_busClassPage—number of rows being currently displayed

• listentry.qqRowNumber—value of the current iteration row of listentry

• listentry.busClassPage_qq_fieldName—the value of an individual field on a
particular page for the current iteration row of listentry

63

Chapter 2

Customizing WebEnterprise Designer
Application Classes

In general, you customize an application’s logic by using the Page Handler
Customization Wizard. The Page Handler Customization Wizard provides a set of
common customizations.

Topics covered in this chapter include:

• using the Page Handler Customization Wizard

• creating customizable classes

• deleting customizations and customizable classes

• online customization examples

• customizing generated handler classes

• adding business rules to a handler

• global customizations

Note that the examples and illustrations in this chapter use the example created in
Getting Started with WebEnterprise Designer, and make references to the class and
model names used there. Also, this chapter assumes some familiarity with
Chapter 1, “WebEnterprise Designer Application Architecture.”

Overview

64 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Overview
Read this overview to learn some basic facts about customizing WebEnterprise
Designer application classes. Before making customizations, make sure that the
behavior you want cannot be accomplished by simply setting options within the
HTML Application Model Workshop or Business Model Workshop and
regenerating your application.

Before You Begin
The following are suggestions you should take into consideration before you begin
your customizations.

• Use the Page Handler Customization Wizard (see “Customizing With the Page
Handler Customization Wizard” on page 67) if possible, rather than create
customizations directly in generated projects.

• You can choose to customize individual page handler classes, or make
application-wide customizations by modifying classes by modifying the
html_modelAccess or html_modelScanner classes.

• Always try to make your customizations in such a way that they continue to
work after you later make changes to and regenerate your HTML application
model. Test frequently after making changes.

• It is best not to create new classes in projects generated by WebEnterprise
Designer. Try to keep to only generated classes in these projects (you can of
course customize these classes—just do not add new ones). Add new classes in
a separate supplier project.

• Decide whether you need to customize a few classes or many. Your decision
will determine whether or not to turn on the Always Generate Custom Classes
toggle. When this is turned on, WebEnterprise Designer automatically
generates a “Base” class and a leaf-level (customizable) class for each business
class page in the model. This may speed development is you will customize
most or all generated classes.

Overview

Chapter 2 Customizing WebEnterprise Designer Application Classes 65

Creating Customizable Classes
WebEnterprise Designer generates both customizable and base (read-only) classes
for all components of the HTML application model except for page handler classes,
for which only base classes are generated. This strategy generates the minimum
number of classes required by the application, and therefore the smallest image
size for deployed applications.

To implement customizations that involve page handler classes requires first
generating customizable classes for the page handlers. You do this automatically
for an individual page when you start the Page Handler Customization Wizard for
that page. Alternatively, you can create a full set of customizable classes for all
pages in the model by enabling the Always Generate Custom Classes option on the
Custom Generation Options dialog. (This dialog is displayed when you choose the
File > Custom Generation Options... command).

When you create customizable page handler classes—whether a single one or a full
set—WebEnterprise Designer automatically expands the class hierarchy, with a
Base class above the leaf-level page handler class. All the components that were
generated into the base class are copied to the leaf-level class. The base class is
renamed to bus_class_pageBaseHandler, and the new, customizable leaf-level class
is named bus_class_pageHandler. Figure 2-1 illustrates this principle.

Figure 2-1 Naming Conventions Before and After Creating Customizable Classes

If you decide you do not want the customizable class, you delete it using the Page
Handler Customization Wizard (see “Deleting Customizations” on page 72). This
collapses the three-class hierarchy back into the two-class hierarchy and renames
the read-only Base class to its original name.

bus_class_pageHandler (customizable)

bus_class_pageBaseHandler (read-only)

Before: After:

new class

ExpressClassHandler (read-only)ExpressClassHandler (read-only)

bus_class_pageHandler (read-only)
renamed
class

Overview

66 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Creating a Single Customizable Page Handler Class
The Page Handler Customization Wizard allows you to customize individual
classes. When you invoke the Page Handler Customization Wizard for the first
time on a specific class, WebEnterprise Designer automatically expands the class
hierarchy for the particular class, as shown in Figure 2-1. For more information, see
“Customizing With the Page Handler Customization Wizard” on page 67.

Creating a Full Set of Customizable Page Handler Classes
If you know you will be customizing many classes, it might be more convenient to
generate the hierarchy at the onset of your development cycle. You do this by
setting the Always Generate Custom Classes toggle in the Custom Generation
Options dialog. When set, this option tells WebEnterprise Designer to create the
full hierarchy automatically for every business class page in your model. When
you use this option, note:

• Turning it on turns it on for all the business class pages in the HTML
application model; it can then be turned off only by deleting all the
customizations on each class using the Page Handler Customization Wizard.
You should not delete the individual classes manually from the generated
project.

In other words, you create customizable classes for all business class pages in
the model with one step, but you must remove individual customizable classes
separately.

• Turning it off will affect only new classes created from the time you turned it
off, resulting in some Base classes having “Base” in their names and some not.

➤ To create customizable subclasses for every business class page in your model

1. In the HTML Application Model workshop, choose the File > Custom
Generation Options… command.

The Custom Generation Options dialog appears.

Customizing With the Page Handler Customization Wizard

Chapter 2 Customizing WebEnterprise Designer Application Classes 67

2. Turn on the Always Generate Custom Classes toggle.

This toggle causes WebEnterprise Designer to generate customizable leaf-level
classes for every class in the business model or page in the HTML application
model.

3. Click OK.

4. Generate code by choosing the File > Generate Web Application Server Code
command.

See “Deleting Customizations” on page 72 for information on deleting
customizable classes.

Customizing With the Page Handler
Customization Wizard

The Page Handler Customization Wizard assists you in customizing your
WebEnterprise Designer applications. When you start the Page Handler
Customization Wizard on a business class page, you are presented with a list of
categories that contain common customizations. When you double-click on one of
the customizations, the Page Handler Customization Wizard automatically opens a
Method Workshop window, displaying the appropriate method where you will
place your customization code, as shown in Figure 2-2. The initial method code
contains documentation of the method parameters and return code, and, if
required, a super.method statement and a return statement.

Customizing With the Page Handler Customization Wizard

68 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 2-2 Page Handler Customization Wizard Opening the Appropriate Method
Workshop

In addition to locating your customization code for you, the Page Handler
Customization Wizard has online help associated with each customization. You
can access help by clicking the Help button while a customization is selected, as
shown in Figure 2-3, or by browsing through the Help system Index to the List of
all Page Handler Customizations.

Information about
the method

Double-clicking the customization
opens the Method Workshop for the item

Customizing With the Page Handler Customization Wizard

Chapter 2 Customizing WebEnterprise Designer Application Classes 69

Figure 2-3 Page Handler Customization Wizard’s Help on a Customization Topic

You also use the Page Handler Customization Wizard to delete customizations.
You can delete specific customizations, or entire subclasses. (You delete a subclass
by deleting all its customizations, an operation that deletes the subclass, renames
the Base class, and collapses the hierarchy to the “Before” structure in Figure 2-1 on
page 65.)

The following sections describe how to use the Page Handler Customization
Wizard.

Customizing a Page Handler Class
You use the Page Handler Customization Wizard to customize the page handler
classes that underlie the business class pages in your model. When you start the
Wizard for a previously uncustomized page handler class, a customizable subclass
is created for the page (this action is illustrated in the following procedure).

Help topic includes a
link to the method
being overridden,
and shows the
method code

Selecting the customization

opens the Help text for the item
and clicking on the Help button

Customizing With the Page Handler Customization Wizard

70 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

➤ To customize a page handler class using the Page Handler Customization
Wizard

1. Select the business class page you wish to customize.

2. Choose the Component > Customize… command.

The Page Handler Customization Wizard appears.

3. Click the arrow to the left of the categories to view specific customizations.

4. (Optional) Select the customization you wish to perform and press the Help
key.

A help screen appears as shown in Figure 2-3 on page 69.

5. Double-click the specific customization you wish to make (or click Customize).

If this is the first customization you are making to this class, WebEnterprise
Designer displays the following dialog:

Click on arrow
to display
contents

Customizing With the Page Handler Customization Wizard

Chapter 2 Customizing WebEnterprise Designer Application Classes 71

6. Click OK.

WebEnterprise Designer automatically expands the class hierarchy to include a
customizable class for the selected business class page, and the Method
Workshop opens, displaying an override of the appropriate method. The
example shown here is from the “Creating a new key” customization point
(under the category/subcategory Whole Object Operations/Inserting a new
record).

7. Modify or add code appropriate to the customization you wish to make.

8. Choose the File > Compile command to compile the method.

9. (Optional) Return to Step 3 and add more customizations to the class.

10. Close the Method Workshop and the Page Handler Customization Wizard
window.

Note that the Page Handler Customization Wizard window is not modal. In other
words, you can view customization information about a class, leave the window
open and select another window or business class, and the Page Handler
Customization Wizard will display the appropriate information for the newly
selected class.

Customizing With the Page Handler Customization Wizard

72 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Customizing a Generated HTML Template
iPlanet UDS generates the application’s HTML templates files (described in
Chapter 3, “Customizing Generated HTML Templates”) into a subdirectory of
the document root directory. You can edit these files by opening them with an
HTML editor or text editor, or you can use the Page Handler Customization
Wizard. The organization of the Wizard’s customization points guides you
conveniently to the correct location for your customization. For example, find the
file you wish to customize in the following Wizard categories:

• HTML Files category—for page mode templates of the selected page

• Application/HTML Files—for application-wide customizations, including
customizing the logon page, the start page, or the page responsible for
validations

Before you can edit generated files with the Customization Wizard, you must set
the FORTE_WW_HTMLEDITOR and FORTE_WW_EDITOR environment
variables with the full pathname of the editor of your choice. For example:

FORTE_WW_HTMLEDITOR
c:\PROGRA~1\WINDOW~1\Accessories\wordpad.exe

For more information on setting these variables, see the online help topic for the
variable. For information on using shortnames for file specification on Windows
NT, see the help topic, “Use a shortname for the Default Browser field.”

Deleting Customizations
Use the Page Handler Customization Wizard to delete specific customizations or
all customizations in a class.

Customizing With the Page Handler Customization Wizard

Chapter 2 Customizing WebEnterprise Designer Application Classes 73

Deleting Specific Customizations
A customization point that has been implemented has a method symbol next to it:

➤ To delete a customization

1. Select the class that contains the customization and choose Component >
Customize… to display the Page Handler Customization Wizard.

2. Select the customization you wish to delete and click the Delete button.

A customization
was made here

Customizing With the Page Handler Customization Wizard

74 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The Delete Customization dialog appears.

3. Check the Delete Selected Customization option and click OK.

WebEnterprise Designer deletes the selected customization.

Deleting All Customizations in a Class
Use the Page Handler Customization Wizard to delete all customizations in a class.
When it deletes all customizations, the Customization Wizard also deletes the
customizable class, renames the base class to its original name, and collapses the
class hierarchy (see the “Before” structure in Figure 2-1 on page 65).

➤ To delete all customizations (entire class)

1. If the Always Generate Custom Classes option is enabled, disable it.

Because the Customization Wizard will delete the customizable class after it
deletes all its customizations, you must disable this option so that the Wizard
will be able to delete the class.

2. Select the class you wish to delete and choose Component > Customize… to
display the Page Handler Customization Wizard.

Customizing With the Page Handler Customization Wizard

Chapter 2 Customizing WebEnterprise Designer Application Classes 75

3. Click the Delete button.

The Delete Customization dialog appears, with only the Delete All
Customizations toggle active. (This happens only when you click Delete
without selecting a specific customization to delete.)

4. Click OK.

The following dialog appears.

5. Click Defer or Generate Now, depending on whether you have more classes to
delete (Defer) or not (Generate Now).

Each time you delete all customizations in a class, WebEnterprise Designer
regenerates the model. If you plan to delete all customizations on several
classes, choose Defer to defer the model regeneration until you specifically
request it.

When you choose Generate Now, WebEnterprise Designer removes all
customizations (if any) in the leaf-level class, and returns the class hierarchy to
its original “Before” structure shown in Figure 2-1 on page 65.

Alternatively, you can defer all deletions and regenerate the model with the
File > Generate Web Application Server Code command.

NOTE If you exit the workshop without regenerating the model, you
will be prompted that the Delete All Customizations that you
specified will not occur. If you ignore this reminder and exit
without regenerating, the customized classes will not be deleted.

A Roadmap to Customization Examples

76 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Making Application-Wide Customizations
The Page Handler Customization Wizard has an “Application” customization
category. Application customizations are customizations that affect the application
as a whole, rather than a specific page in the model, such as logon.

Deleting application customizations When you delete all customizations for
business class pages, application customizations are not deleted. You must select
each application customization specifically and then delete it.

A Roadmap to Customization Examples
WebEnterprise Designer provides many customization tools to help you customize
your application. These are accessible through the Page Handler Customization
Wizard.

Customization tools fall into these categories:

• Page Handler Customization Wizard customization points

For the complete list, see “Page Handler Customization Wizard
Customizations” on page 77.

• customization examples

The main customization examples are in Chapter 7, “Customization
Examples,” but other chapters also provide examples, according to their
subject. Use the Table of Contents to locate them.

• customization techniques

Use the Table of Contents in this manual to help locate the sections in this
chapter that describe the type of customization you wish to make.

• WebEnterprise Designer example applications

For a complete description of example applications shipped with
WebEnterprise Designer, see Getting Started with WebEnterprise Designer.

A Roadmap to Customization Examples

Chapter 2 Customizing WebEnterprise Designer Application Classes 77

Page Handler Customization Wizard Help Files
At any point while you are using the Page Handler Customization Wizard, you can
press the Help key to display online information about the currently selected
customization.

Figure 2-4 Page Handler Customization Wizard Help

You can also access these item-specific customization examples directly by their
titles in the List of all Page Handler Customizations help topic.

Page Handler Customization Wizard
Customizations
The customizations available from the Page Handler Customization Wizard are:

Customization Section Customization

Individual Field Operations Formatting a field

Adding custom field to the ResultSet

Decoding or validating a field

Updating a field

Select customization

Click Help button

A Roadmap to Customization Examples

78 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Whole Object Operations Adding constraints to the search criteria

Updating the object

Inserting a new
record

Creating a new empty record

Creating a new key

Database
Operations

Delete: Before sending a delete object request

Insert: Before sending an insert object request

Search: Before sending a retrieve object request

Update: Before sending an update object request

Processing Commands Clear: Clearing the result set

Current: Return the current page without making any
changes

Delete: Deleting an object from the result set

First: Setting the current object to the first object in the
result set

Goto: Setting the current object based on an index

Insert: Inserting a new object in the result set

Last: Setting the current object to the last object in the
result set

Next: Setting the current object to the next object in the
result set

Previous: Setting the current object to the previous object
in the result set

Search: Filling the result set with new objects

SetCurrentFolder: Setting the current folder

Update: Updating the current object

Custom
Commands

your_command_name (as many as you have added)

Customization Section Customization

Customizing Manually

Chapter 2 Customizing WebEnterprise Designer Application Classes 79

Customizing Manually
You can perform customizations that do not appear in the predefined list of
common customizations in the Page Handler Customization Wizard. To do so,
open the project that contains the class you wish to customize and then override
the appropriate method or methods in that class. However, before you can
customize a class, the class hierarchy must include the customizable leaf-level
class. These are subclasses of the superclass whose name contains the word “Base.”
These are not automatically generated by default. To create customizable classes,
see either “Creating a Single Customizable Page Handler Class” on page 66 or
“Creating a Full Set of Customizable Page Handler Classes” on page 66.

Customizable classes are never regenerated, so any changes you make to them will
be preserved.

Security Restricting access to all page modes

Restricting access to the search page mode

Restricting access to the display page mode

Restricting access to the insert page mode

Restricting access to the update page mode

HTML Files Under this category are all HTML file templates for the
page

Lookup Files Under this category are the lookup files for drop list and
radio list validation for the page

Logon Validation This customization point opens the
HTTPAccess.LogonSession method for adding security
logic to your Logon page

Application Define HTML template for exceptions

Define subsidiary applications

Is subsidiary application

Modify session timeout

HTML Files AccessError page (AccessError.html)

Start page (Start.html)

Customization Section Customization

Customizing Manually

80 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The most common way to customize the behavior of a WebEnterprise Designer
application is to override a method inherited from a superclass with TOOL code of
your own.

Locating Where to Customize
Making customizations through the Page Handler Customization Wizard
automatically places them where you want them. If none of the customization
points provided by the Customization Wizard suits your needs, then this section
will help you locate common places to add customizations. If the type of
customization you want to make is not covered here, follow these suggestions:

• Review the class interaction diagram in Chapter 1 (“Class Interaction
Diagram” on page 39). The interconnections between objects can be useful in
figuring out where to make a customization. The class descriptions following
each class diagram can also be useful.

• Look through the class function descriptions in Chapter 1 (starting with
“ExpressHTTPAccess” on page 44). If processing similar to what you need is
covered in that section, then you will probably see which method you need to
override.

• Run your application under the Debugger to just before where you want to
change behavior. Set “Method Enter” breakpoints in the Debugger and
continue execution of your application. Step or continue from there until you
locate the best method to override.

Viewing inherited elements In addition, you can examine inherited class
elements to help you determine what and where to customize.

Overriding Methods in a Superclass
Whenever this document instructs you to override a method, you must include a
call to the method in the superclass (super.method) in your customized code.
Omitting this call in most cases will cause the overridden method to fail to perform
properly. In rare cases, you must not include a call to super.method—in these cases,
the instructions will point this out explicitly. Customizations provided by the Page
Handler Customization Wizard create initial code for the method that has a
super.method method call, if one is required.

Customizing Manually

Chapter 2 Customizing WebEnterprise Designer Application Classes 81

You override an existing method by creating a new method in the customizable
class (for example CustomerOrderHandler) identical in name, parameters, and
return values to the method in the superclass (CustomerOrderBaseHandler). Then,
invoke the superclass method (to access its functionality) and add your own
custom TOOL code.

When you want to create a method in a subclass that overrides a method defined in
a superclass, drag the method from the Class Workshop for the superclass to the
Class Workshop for the subclass.

➤ To override a method

1. Choose the View > Inherited command in the Class Workshop to help you find
which methods are defined in a superclass.

2. Use the File > Open SuperClass command in the Class Workshop to open the
Class Workshop for the superclass where the method is defined.

3. Drag-and-drop the method from the superclass to your customizable subclass.

This will create a method in the subclass with the correct name, parameters,
and return type.

4. Open the method in the subclass and delete all its code, replacing it with the
single statement:

return super.method_name(parameter_list);

For example, when overriding a method called NewSelectQuery, which has a
parameter named assocID and returns a value, replace the code in the newly
created subclass method with the following statement:

return super.NewSelectQuery(assocID=assocID);

5. Add your custom code in this overridden method.

If you were to override a superclass method by dragging the method into the
subclass and then modifying the code, you would not need to call super.method.
However, do not customize in this manner, because future versions of
WebEnterprise Designer may change the implementation of the original method,
causing your customized method to fail to compile or to execute improperly. Your
call to super.method encapsulates the method’s behavior, making WebEnterprise
Designer upgrades simpler.

NOTE Depending on your customization, you could add a call to super
after this.

Customizing Manually

82 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Local and Global Customizations
Most customizations affect a particular business class page and are thus “local” in
nature. However, you might need to make some customizations that will affect all
business class pages (for example, log certain actions). The coding techniques for
making local and global customizations are similar, but special steps must be taken
to cause a change to affect all future generated business class pages. These steps are
described in “Global Customization” on page 90.

Error Reporting
You can handle errors and raise exceptions in your customizations as you would in
a non-WebEnterprise Designer application (using the GetTextData method on the
MsgCatalog class, the AddError method on the ErrorMgr class, and so on). See the
TOOL Reference Guide and the Framework Library online Help for more
information.

You will see that classes in the ExpressHandlers project make use of the
ExpressHandlerError class. This class is not intended for you to customize or
subclass; you call it directly in your custom code. Most uses of the
ExpressHandlerError class are in raise statements, like the following:

In the above example, a new ExpressHandlerError object is instantiated and its
GetException method returns an exception object.

-- Raise used by WebEnterprise Designer code,
-- not intended for you to override.
raise ExpressHandlerError(originator=self,
 error=Error.GEN_UNIMPLEMENTED).GetException;

Working with Business Classes

Chapter 2 Customizing WebEnterprise Designer Application Classes 83

Working with Business Classes
This section discusses some basic concepts about working with business classes
that you need to know if you want to change field values and add or remove rows
from a result set.

Business Class Record Status
Records in the result set contained in the ExpressPageData object contain
InstanceStatus attributes. The values of these attributes indicate what changes have
been made to a record since it was loaded from the database. These status values
are used to determine which queries to run on behalf of a record after it has been
updated, inserted, or deleted. The following constants, defined in the
BusinessClass class, describe each numeric value for InstanceStatus:

Constant InstanceStatus
Value

Meaning

ST_READONLY 2 Record is read-only and cannot be modified. No
Update/Insert/Delete queries will be run on behalf
of this record.

ST_READWRITE 4 Record was loaded from the database and is
updateable, but has not been changed by the user.
Once changed, state will become ST_UPDATE.

ST_UPDATE 8 Record has been modified since being selected from
database. Update statement will be run.

ST_INSERT 16 Record is newly created, contains values entered by
the user, and is not yet in database. Insert statement
will be run.

ST_DELETE 32 Record has been deleted (not yet deleted from
database). Delete statement will be run.

ST_EMPTY 1 Empty record to be filled in by user—user has not
yet typed any values into the record. (When values
are entered, state will become ST_INSERT).

Working with Business Classes

84 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

BusinessClass Attribute IDs (ATTR_)
Many methods require an integer parameter to indicate the attribute ID of the
business class. The attribute IDs for each business class attribute are generated as
constants in class business_classBaseQuery. The constants are named the same as
the business_classClass.attribute name, but with the prefix “ATTR_”. For example,
the attribute CustomerClass.CustomerNumber has a corresponding constant
ATTR_CUSTOMERNUMBER defined in CustomerBaseQuery. (These classes are
found in the business_modelService project generated from the supplier business
model.)

Note that when two business classes contain an identically named field (often it is a
database join field), the values of the generated ATTR_ constants in the two
BaseQuery classes will not necessarily be identical. For example, do not assume the
following have the same value:

CustomerBaseQuery.ATTR_CUSTOMERNUMBER

CustomerOrderBaseQuery.ATTR_CUSTOMERNUMBER

Since these constants are inherited, the examples will refer to them through the
customizable leaf-level class. For example, the examples will refer to
CustomerQuery.ATTR_NAME, rather than CustomerBaseQuery.ATTR_NAME,
where it is defined.

Changing the Value of an Attribute
When you want to change the value of an attribute of a BusinessClass you should
use the UpdateAttr method of the ExpressPageHandler class. When changing the
value of an attribute of a BusinessClass there are several things you need to do.
This logic is encapsulated in the UpdateAttr method.

Working with Business Classes

Chapter 2 Customizing WebEnterprise Designer Application Classes 85

Checking the Status of a BusinessClass Object
When a BusinessClass object is updated, its UpdateQuery attribute is set. The
following example checks whether the BusinessClass object myCust has been
updated and if its Address attribute has been modified (the object pageData is of
type ExpressPageData):

Undoing Changes Made to a
BusinessClass Object
It is possible to undo changes made to a BusinessClass object by using the
BusinessClient’s Revert method:

myCust : CustomerClass = pageData.Data[1];

if (myCust <> NIL) then
if ((myCust.UpdateQuery = NIL)

or (mycust.UpdateQuery.Values = NIL)) then
task.Part.LogMgr.PutLine('Business class has not been updated.’);

else
task.Part.LogMgr.PutLine('Business class has been updated.');
if (myCust.UpdateQuery.GetUpdateAttr(attr=CUSTOMERQuery.ATTR_ADDRESS)

= NIL) then
task.Part.LogMgr.PutLine('Address field has not been updated.');

else
task.Part.LogMgr.PutLine('Address field has been updated.');

end if;
end if;

end if;

myCust : CustomerClass = pageData.Data[1];
if (myCust <> NIL) then
Client.Revert(myCust);

end if;

Customization Techniques: ClassHandler Classes

86 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Customization Techniques:
ClassHandler Classes

WebEnterprise Designer provides a set of commands and behavior as a result of
your specifications in the HTML Application Model Workshop. However, there
may be times when you need to modify the generated behavior.

This section shows examples and describes coding techniques you should employ
when customizing handler classes. In these examples, business class page names,
class names, and attribute names are used for illustration. You will need to change
these to be appropriate for your handler class. Also, the “method” statements
below should not be typed into the Method Workshop; they are provided for your
information.

Creating a New Instance of a Business Class
You can customize your application to insert data into the result set, but rather
than using “new()” to create an object, you should use the NewClass or
NewClassForInsert methods to create an object that is initialized for the current
business class page.

For example, if business class page CustomerOrder is based on class
CustomerOrderClass, then create a new instance of CustomerOrderClass using the
following code in a handler method:

record: BusinessClass = NewClass();

The new CustomerOrderClass object will instantiate and log the attributes used by
the associated business class page.

The differences between NewClass and NewClassForInsert are:

• NewClass instantiates attributes used by the associated business class page,
NewClassForInsert does not

• NewClassForInsert uses NewKey to assign values to the key attributes of the
business class

Getting the Result Set
Use the GetPageData method to get the current result set of the Web client issuing
the request for the associated business class page.

Customization Techniques: Business Rules

Chapter 2 Customizing WebEnterprise Designer Application Classes 87

Getting the Initial Query
Use the NewQuery method to get the query required to retrieve all the data that is
requested by the associated business class page. This is an unrestrained query;
therefore all rows in the database are returned unless constraints are applied on
some of the attributes.

Customization Techniques: Business Rules
Business rules are special data requirements that you want your application to
enforce automatically, or particular actions the application must perform based on
the state of the data.

Where to Implement
You can choose to implement business rules in the following places:

• on the browser

• in the Web application server

• in the business services

If you implement your business rules on the browser, the user gets immediate
feedback rather than after submitting the request. However, anything done on the
browser can potentially be defeated by the user. Therefore to ensure integrity, you
should always implement your business rules in either the Web application server
or in the business service. You may want to implement them on the browser as
well, to provide a better user interface.

NOTE Whether you implement a rule in the Web application server or the
business service will depend on the nature of the rule. When a rule
is applicable to the business service (and could be reused by other
applications, for example, enforcing that all user IDs be more than
six characters), implement it in the business service. When the rule is
specific to one specific application (for example, enforcing that user
IDs for the Travel application start with the letter T), implement it in
the Web application server. Usually, you will have a combination of
rules in both locations.

Customization Techniques: Data

88 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Business Rules on the Browser
In general, when you implement business rules on the browser, you must custom
code them for each HTML template. However, you can avoid this by creating a
JavaScript function that gets included and invoked wherever it is needed. The
“Example: Validating a Whole Form” on page 206 (in Chapter 7) demonstrates
how to use JavaScript to implement business rules on the browser.

Customization Techniques: Data
This section discusses a variety of customizations that concern processing data
from a result set and presenting it on a page.

Formatting Fields
At the end of processing a request, all the data from the user’s result set that is to
appear on a displayed HTML page is formatted into a WebEnterprise ResultSet
object. To change the formatting of this data, use either of the following:

• Page Handler customization—Formatting a field (Fields category)

See the customization list in “Page Handler Customization Wizard
Customizations” on page 77.

• Override handler method—FormatValue

This method is invoked on each field to be displayed. Parameters passed to it
include the DataValue object to be displayed and the field’s field index and
association ID. For information on field indexes and association IDs, see “Field
Identification” on page 51.

Customization Techniques: Data

Chapter 2 Customizing WebEnterprise Designer Application Classes 89

Formatting Custom Fields
Custom fields are fields that you have added to the HTML template yourself. The
generated application will not know about these fields; therefore, you have to add
them to the WebEnterprise ResultSet object yourself. To do this, use either of the
following:

• Page Handler customization—Adding data for a custom field to a page (Fields
category)

• Override handler method—DisplayPage method

Add your data to the rset parameter. See A Guide to WebEnterprise for specifics
on how to manipulate a ResultSet object like the rset parameter.

Decoding or Validating Fields
Processing a request from a Search, Update, or Insert form includes decoding the
fields on the page that represent business class attributes. To change the format
that data is accepted in these fields, or to perform data validation, use either of the
following:

• Page Handler customization—Decoding or validating a field (Fields category)

• Override handler method—DecodeValue method

This method is invoked on each field. Parameters passed to it include the
TextData object with the user-entered value and the field’s field index and
association ID. For information on field indexes and association IDs, see “Field
Identification” on page 51.

Processing Custom Fields on an HTML Form
Submission
The generated application will not know about fields you add to the HTML
template yourself. You have to decode such custom fields from the WebEnterprise
HTTPRequest object yourself.

Global Customization

90 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Processing an Insert or Update Form
To process values specified on an Insert or Update form, use either:

• Page Handler customization—Insert or Update (Database Operations
category)

• Override handler method—BeforeInsert or BeforeUpdate methods

Values will be found on the request parameter. See A Guide to WebEnterprise for
specifics on how to manipulate an HTTPRequest object like the request
parameter.

Processing a Search Form
There are two customization points you can use when processing custom fields on
a Search form.

If you want the custom fields to affect the generated query, then use either:

• Page Handler customization—Search (Database Operations category)

• Override handler method—BeforeSearch method

To change the way the request is processed, use either:

• Page Handler customization—Search (Actions category)

• Override handler method—DoSearch method

Global Customization
You can add global customizations by subclassing directly from the
ExpressHandlers project. Global customizations affect all classes generated from
that point forward. You make global customizations when you wish to affect
features throughout the application.

You can add global customizations by creating a project that contains subclasses of
specific classes in ExpressHandlers (the specific classes are listed below). Using
options in the HTML Application Model Workshop, you specify that
WebEnterprise Designer use these projects to provide the superclasses for the
generated classes.

Global Customization

Chapter 2 Customizing WebEnterprise Designer Application Classes 91

➤ To customize ExpressHandlers classes

1. In the Repository Workshop, create a new project to contain your customized
classes (CustomProject).

2. In the Project Workshop for CustomProject, choose the File > Supplier Plans
command and add ExpressHandlers and HTTP as suppliers to the project.

3. Create subclasses of the following superclasses in CustomProject:

ExpressClassHandler
ExpressHTTPAccess
ExpressLogonHandler
ExpressLookupInfo
ExpressPageData
ExpressScanner
ExpressTestRunner
ExpressValueGenerator

4. Name each subclass with the same custom prefix (for example, “New,” as in
NewClassHandler).

Each subclass must use the same suffix as its superclass. You must create
subclasses of all eight of the above classes, even if you do not plan to customize
all of them.

5. Using the Class and Method Workshops, add your customizations to any or all
of these classes.

6. In the HTML Application Model Workshop, choose the File > Custom
Generation Options command.

7. Enter your custom prefix name (for example, “New” in Step 4) in the
Superclass Prefix for Global Customization property.

This property will initially be set to “Express.”

8. Click OK to apply your change and dismiss the dialog.

9. Choose File > Supplier Plans and add CustomProject as a supplier plan to the
model.

Now when you generate code for the HTML application model, WebEnterprise
Designer searches the supplier projects of the application and looks for classes with
the prefix “New.” The generated HTML model classes will be subclasses of the
CustomProject classes.

Global Customization

92 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

To use your customizations in future HTML application models, just perform steps
6-9, as described above.

NOTE Supplier plans added to the HTML application model will be added
to the supplier plans for the generated project. These supplier plans
are not automatically removed from the generated project if you
remove the supplier plan as a supplier to the HTML application
model. For example, if you change your model supplier plans to
pick up customizations from a different project, then you must
manually change the supplier plans in the generated project.

93

Chapter 3

Customizing Generated
HTML Templates

This chapter provides information on how to customize the HTML files generated
from an HTML application model. These files are referred to as HTML templates.

HTML templates are .html files that contain embedded WebEnterprise tags.
WebEnterprise Designer processes HTML templates to produce HTML documents
displayed in a browser. Processing removes the tags, substitutes actual data values
for dynamic data references, and sometimes includes other HTML templates.

Topics covered in this chapter include:

• how WebEnterprise Designer uses HTML templates

• what and where to customize (and what not to customize) in the HTML
templates

• how your customizations are preserved after regeneration

At the end of the chapter are two annotated, customized HTML files that illustrate
principles of good customization.

How WebEnterprise Designer
Uses HTML Templates

When you generate code for an HTML application model, WebEnterprise Designer
generates HTML templates into a subdirectory of the document root directory that
has the same name as the HTML model. For example, the HTML templates for the
HTMLtutApp tutorial reside in the %{FORTE_ROOT}/html/docs/HTMLtutApp
directory.

How WebEnterprise Designer Uses HTML Templates

94 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The document root directory is the top-most directory of HTML template files used
by WebEnterprise Designer, and is specified in a number of ways, the most
common of which is with the FORTE_WW_DOCUMENT_ROOT environment
variable. For more information on specifying the document root, see “Setting
Document Root on the ScannerService Service Object Partition” on page 259.

For each logical page in the HTML application model, WebEnterprise Designer
generates a set of related HTML templates to support it. These generated HTML
templates are design-specific, but some are common to all designs.

Common Templates
This section describes the HTML templates common to all page designs, organized
by different page types, including:

• business class pages

• link pages

• logon pages

Business Class Page Templates
The following table lists the templates common to all business class pages.
Templates you generally customize have a “Yes” in the Customize column.

File Name Customize Description

Main_bus_class_page.html Usually not Top-level HTML definition of the page.

Data_bus_class_page.html Yes Provides the tags to be displayed for the
page (but not nested data).

Display_bus_class_page.html No Display mode of the page, which includes
data for this page and nested pages.

Insert_bus_class_page.html Yes Insert mode of the page.

Search_bus_class_page.html Yes Search mode of the page.

Update_bus_class_page.html Yes Update mode of the page.

Scripts_bus_class_page.html No Scripts for the page.

How WebEnterprise Designer Uses HTML Templates

Chapter 3 Customizing Generated HTML Templates 95

The Main template (for example, Main_Customer.html in the HTMLtutApp
application) has two main functions:

• it is the template referenced by other pages

When a page calls another page, it references the URL of the Main template.
The other templates are considered internal.

• it includes other templates as appropriate for the function being performed

If the function is to display data, the Main template includes the page’s Display
template. The Display template in turn includes the Data template. If there are
nested pages, the Display template includes the Data templates of all nested
pages.

The Scripts template defines any JavaScript functions required by the page.

Generated Maintenance Files and Directory
In addition to HTML templates, two text files are generated into the document
directory that are used to keep track of important information regarding the
generation:

A copy of the entire set of generated files is generated into the .base subdirectory,
which maintains these copies throughout successive regenerations. See the section
“Regenerating After Customizing” on page 102 for more details concerning the
report.txt file and the .base directory.

File Name Customize Description

manifest.txt No Lists each generated file, one per line.

report.txt No Describes details of the generation with respect to the
customization.

NOTE You should not modify the files in the .base directory.

How WebEnterprise Designer Uses HTML Templates

96 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Lookup Files
When you specify drop list or radio list validation for a page’s field, you can also
specify a Lookup class, and then further specify which of the class’s attributes is to
be the displayed field and which is to be the field where user input is stored (the
same attribute can serve as both). (For more information on setting up a drop or
radio list, see the Forte online Help.)

For every field that uses validation, WebEnterprise Designer generates a file that
contains the legal stored and displayed values:

If you specified a lookup class, then the lookup file is automatically populated from
the database when the application starts. If you did not specify a Lookup class,
then the file is generated without values and must be populated with data
externally. In this case, you may use the Page Handler Customization Wizard to
edit the file. Be sure to save a copy of this file, because it will be overwritten if you
change the model and have to regenerate. Alternatively, you can populate this file
at runtime.

For information on how to populate the generated file with data, see “Drop List or
Radio List Example: Entering Lookup Information Manually” on page 217.

Start Page
The final file generated by WebEnterprise Designer is a start page for the
application:

The start page allows the administrator to publish a simpler URL for the
application.

File Name Customize Description

bus_class_page_qq_field_name.inc Yes Contains stored and displayed values of
the field.

File Name Customize Description

Start.html Usually not Defines a shortcut for a string used in deployment.

How WebEnterprise Designer Uses HTML Templates

Chapter 3 Customizing Generated HTML Templates 97

Link Page Templates
If a link page is defined for the application, WebEnterprise Designer generates the
following HTML templates:

Logon Page Templates
If a logon page is defined for the application, WebEnterprise Designer generates
the following HTML templates:

Page Design Templates
Different HTML templates are generated for different page designs. This section
describes the template sets generated for two of the provided designs: simple and
fancy. The other provided page designs (fancyMenu, fancyNoBorder,
fancyNoCaption, and fancyNoFooter) are variations on the fancy page design.
How they differ from the fancy page design will be made clear in the section on the
fancy design.

File Name Customize Description

Main_link_page.html No Top-level HTML definition of the page.

Display_link_page.html Yes Layout of the data display portion of the page.

File Name Customize Description

Logon_logon_page.html Yes The page displayed when a non-validated
user attempts access to any page in the
application.

LogonFailed_logon_page.html Yes The page displayed when a user is denied
access to the application.

Validate_logon_page.html No The page used to validate the logon. This
page is never displayed; it redirects to the
first page of the application or the logon
failed page as appropriate.

How WebEnterprise Designer Uses HTML Templates

98 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Simple Page Design Templates
The simple page design creates a single HTML page and supports four modes of
operation: search, display, insert, and update. When the current page is to be
displayed in one of these modes, the Main template includes the template
corresponding to that mode.

Files generated for the Simple page design are:

Fancy Page Design Templates
The fancy page design extends the simple design by using frames to divide the
canvas into four sections:

• a header frame at the top

• a display frame in the middle divided into:

❍ a menu frame on the left

❍ a data frame on the right

• a footer frame at the bottom

The header, footer, and menu are defined statically. The data frame contains
dynamic data substituted in at runtime.

File Name Customize Description

Main_bus_class_page.html Usually not Top-level HTML definition of the page.

Data_bus_class_page.html Yes Provides the tags to be displayed for the
page (but not nested data).

Display_bus_class_page.html No Display mode of the page, which includes
data for this page and nested pages.

Insert_bus_class_page.html Yes Insert mode of the page.

Search_bus_class_page.html Yes Search mode of the page.

Update_bus_class_page.html Yes Update mode of the page.

Scripts_bus_class_page.html No Scripts for the page.

How WebEnterprise Designer Uses HTML Templates

Chapter 3 Customizing Generated HTML Templates 99

Files generated for the fancy design are:

Fancy Page Design Variations
All the other fancy page designs are based on the files just described, with certain
modifications. These designs are:

• fancyMenu has no header or footer templates

The Header_bus_class_page.html and Footer_bus_class_page.html templates
are not included.

• fancyNoBorder has no border around the panes

• fancyNoCaption has no page titles

The fancy page design places a caption in the display pane over the data. The
fancyNoCaption page design removes the caption and has only data. This is
good for nested pages when the data is self-descriptive and needs no
additional label.

• fancyNoFooter has no footer template

The Footer_bus_class_page.html template is not included. The logo normally
in the footer is moved to the upper right corner of the header.

File Name Customize Description

Main_bus_class_page.html Usually not Top-level HTML definition of the page.

Data_bus_class_page.html Yes Provides the tags to be displayed for the
page (but not nested data).

Display_bus_class_page.html No Display mode of the page, which includes
data for this page and nested pages.

Insert_bus_class_page.html Yes Insert mode of the page.

Menu_bus_class_page.html Yes Menu area for the page.

Search_bus_class_page.html Yes Search mode of the page.

Update_bus_class_page.html Yes Update mode of the page.

Header_bus_class_page.html Yes Header of the page.

Footer_bus_class_page.html Yes Footer of the page.

Scripts_bus_class_page.html No Scripts for the page.

Customizing HTML Templates

100 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Customizing HTML Templates
You are free to make changes to the HTML templates generated by WebEnterprise
Designer. You might want to customize the generated HTML for a variety of
reasons, such as:

• to change the font or other design elements

• to change the layout or containment hierarchy

• to add graphics or other HTML elements

WebEnterprise Designer allows you to customize any of the generated HTML
templates; it preserves customizations during any subsequent generation of the
HTML application model. This section describes how this process works, and gives
guidance as to how to avoid damaging your HTML templates through
customization.

Customization Types
You can customize HTML templates for a single application or for many
applications.

Single application When a specific change is required for an individual
application, you generate the HTML templates and then customize one or more of
them. This type of customization is the subject of this chapter.

Multiple applications When a change is required throughout one or more
applications, you effectively create a custom page design. This type of
customization is the subject of Chapter 4, “Customizing Page Designs.”

NOTE If your customizations are limited to font and style changes, you
should first look at creating custom page designs or styles, which is
usually easier and more reusable. See Chapter 4, “Customizing Page
Designs” and Chapter 5, “Customizing Page Styles,” for more
information.

Customizing HTML Templates

Chapter 3 Customizing Generated HTML Templates 101

Where to Customize
In general, when you are customizing the Simple or Fancy page design, you will
customize one of the page mode templates (data, search, insert, or update).

Because there are separate templates for each mode of the logical page, it is
possible to customize only a single mode. An example of this type of customization
is when you do not want some field validations applied when the user is entering
search criteria, but you do want them when the user is doing an insert or update. In
this case, you would customize by removing the unwanted field validations from
the page’s Search template.

If, on the other hand, you want to make changes in a single logical page, you must
make the same changes to all the templates in the set.

You can customize the Main and Display templates, but there is usually no need to
do so. An exception to this rule is when you want to affect the frame definition in
the Fancy design (for example, by changing where the frame boundaries are,
removing the header or the footer, and so forth). In that case, you might want to
customize the Main template.

You might also want to customize the Header, Footer, and Menu templates of the
Fancy design.

Within a template you can add, remove, or modify almost any of the normal
HTML tags. The next section, “What Not to Customize,” offers guidelines on what
to customize.

What Not to Customize
There are some items you must leave alone when customizing HTML templates.
WebEnterprise Designer templates are a combination of HTML tags,
WebEnterprise tags, and plain text. The following table provides guidelines on
customizing these three categories:

Type of Item Modify or Add Move Remove

HTML tags Always OK Usually OK Usually OK

Plain text Always OK Usually OK Usually OK

WebEnterprise tags Never OK Never OK Never OK

WebEnterprise variables Add OK OK OK

Regenerating After Customizing

102 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

WebEnterprise tags WebEnterprise tags are HTML-like tags that start with
“<?forte ...” and are usually embedded in an HTML comment, as in:

<!--<?forte iterate listentry entry.list_Movie start="1" max="1">-->

WebEnterprise variables WebEnterprise variables are plain text starting with
“$$” and usually enclosed by parentheses, as in:

$$(listentry.Movie_qq_MovieID)

WebEnterprise variables are described in “WebEnterprise Designer HTML
Template Elements” on page 56.

Hidden fields When customizing HTML templates, you must never remove or
modify any hidden fields on forms. Hidden fields are identified with “HIDDEN”
for input type, such as:

<input type="HIDDEN" name="ServiceName" value="movieService">

Regenerating After Customizing
You will usually regenerate the HTML application model after you have made
customizations to the HTML templates. When you do this, new HTML templates
are generated. Your customizations are preserved in one of three ways:

• by keeping the customized file in preference to overwriting the
newly-generated one

• by merging the customized file with the newly-generated one (when this can
be done without conflicts)

• by merging the customized file with the newly-generated one, but leaving the
customization commented out

Forte reports on what happened to each file during the regeneration by means of
the report.txt file. The following scenarios describe the details of this process.

NOTE In this manual, as in A Guide to WebEnterprise, the tags are referred to
in text in abbreviated form (for example, “the FORTE EXECUTE
tag”), while the actual syntax requires a preceding question mark (as
above). For a full description of Forte HTML tag syntax, see A Guide
to WebEnterprise

Regenerating After Customizing

Chapter 3 Customizing Generated HTML Templates 103

Scenario 1: HTML Changes Only
Consider the circumstance in which you have completely finished your model and
decide to change one or more HTML templates. Perhaps you wish to change the
background color of all the templates, or you might want to use a different font for
several labels.

HTML template change Changes to colors, fonts, and so forth, on certain
templates

HTML model change No changes that affect those pages

HTML code generation change Forte compares the newly-generated pages
corresponding to the changed pages to the equivalent pages in the Base Level
directory (the .base directory). It finds no differences between the new pages and
the Base Level page equivalents. It leaves the Top Level pages unchanged (the
HTML changes are preserved). The template is listed by name in the report.txt file,
along with any other templates that fall into this category, following the heading:

In addition, the count of files treated in this way will be listed at the end of the
report.txt file.

Scenario 2: HTML and Model Changes
Now consider the circumstance in which you have changed one or more HTML
templates, and now you change the model.

HTML template change Changes to colors, fonts, and so forth, on certain pages

HTML model change Attributes added or removed, links added or removed,
both field and command labels edited

NOTE: The following files had user customizations but no model changes.
The user customizations have been left. No changes are needed.

Regenerating After Customizing

104 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

HTML code generation change Forte compares and finds differences between
the new templates and equivalent templates in both the Base Level directory, and
detects user modifications in the Top Level files. Forte merges the new model
changes with the HTML changes. Base Level files are updated to reflect the new
HTML model. The template is listed by name in the report.txt file, along with any
other templates that fall into this category, following the heading:

In addition, the count of files treated in this way are listed at the end of the
report.txt file. Pre-merged files are preserved and the following files are
generated:

• htmlTemplate.old files—old Base Level files (not merged)

• htmlTemplate.cust files—old Top Level files (with HTML customizations, not
merged)

• htmlTemplate.gen files—Newly-generated files (not merged)

• htmlTemplate.html files—Newly-generated files with user customizations
merged in

Scenario 3: Conflicting HTML and Model
Changes
Now consider the circumstance in which you have changed one or more HTML
templates, and also changed the model in some conflicting way. For example,
perhaps you changed all Part Number labels to “Part No” in the model, but to
“PN” in the HTML files.

HTML template change Changes to labels

HTML model change Changes to labels, but different from the HTML changes

WARNING: The following files had user customizations and model changes
but were merged without conflicts. The previously generated file (i.e.,
the root ancestor) is left in <fileName>.old. The user customized
file based upon the previous generation is left in <fileName>.cust. The
generated file from the current generation before merging is left in
<fileName>.gen. The merged file is left in <fileName>.html. No changes
are needed but you may wish to inspect the file to confirm that the
merge produced the desired result.

Regenerating After Customizing

Chapter 3 Customizing Generated HTML Templates 105

HTML code generation change Forte compares and finds differences between
the new templates and equivalent Base Level templates and detects user
modifications in the Top Level templates. Forte attempts to merge the files, but
because there are conflicting changes, the merge results in an error. The template is
listed by name in the report.txt file, along with any other templates that fall into
this category, following the heading:

The count of files treated in this way are listed at the end of the report.txt file, and
the same files are generated as listed in “Scenario 2: HTML and Model Changes.”

After generation an error dialog alerts the user to the presence of merge conflicts
and directs the user to the report.txt file. The conflicts are indicated in the .html file
with blocks of text as shown below:

The first comment line points out the conflict block. The generated text follows as
regular HTML. The second comment line introduces a comment block that ends
only the end of the user-customized block (that is, the user-customized HTML is
left in the file as a comment).

ERROR: The following files had user customizations and model changes
that were merged with conflicts. These files will need to be reconciled.
The previously generated file (i.e. the root ancestor) is left in
<fileName>.old. the user customized file based upon the previous
generation is left in <fileName>.cust. The generated file from the
current generation before merging is left in <fileName>.gen. The
merged file is left in <fileName>.html with comments surrounding the
conflicting lines. These conflicts will need to be resolved manually.

<!-- >>>>>> BEGIN CONFLICT BLOCK -- GENERATED TEXT: -->
... generated information ...
<!-- ====== CUSTOMIZED TEXT: (left as comment)
... example of user-entered information ...
<!-- <<<<<< END CONFLICT BLOCK -->

Customization Examples

106 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Customization Examples
This section contains two examples that illustrate where to put certain
customizations, and what you should not modify or, in some cases, delete or even
move.

The examples are:

• “Example: Customizing a Field on a Search Page,” which follows

This customization shows how to remove a JavaScript validation from a Search
page and replace it with a simple input field. This example is fully described in
Chapter 7, “Customization Examples.”

• “Example: Customizing a Font Size on a Data Page” on page 109

This customization shows how to make the font of a field on a Data page two
points and bold.

Conventions Used with the Examples
In these examples, the following conventions are followed:

• bolded lines are customized lines

• unshaded lines are lines that should not be modified

Unless otherwise noted, you can delete or comment out the unshaded lines (or
move the whole block containing the line), but you should not edit the text of
the code.

For a description of WebEnterprise variables and HTML URL parameters and
links, see “WebEnterprise Designer HTML Template Elements” on page 56.

Example: Customizing a Field on a Search Page
This example shows a sample Search page from the tutorial application
(HTMLtutApp), which was customized to apply an IsAlphabetic validation to the
Customer Name field of the Customer page. This validation was inconvenient for
the Search page, where the user might want to use a wildcard. Therefore, on this
Search page, the validation has been commented out and a simple input field
inserted.

Customization Examples

Chapter 3 Customizing Generated HTML Templates 107

This customization is described in “Example: Removing a JavaScript Validation
from a Page Mode” on page 198.

<!-- Forte WebEnterprise Designer Search form definition for model
HTMLtutApp using page design fancy and style cool. Generated on
20-Feb-1999 13:05:14 -->

<!--<?forte if CustomerHandler.RestrictSearchAccess>-->
<!--<?forte redirect "HTMLtutApp/AccessError.html&PageName=Customer

&PageMode=Search">-->
<!--<?/forte if>-->
<html>
<head>
<title>
Search Customer

</title>
<link href="/forte/styles/cool.css" rel="stylesheet" type="text/css">

</head>

[Do not move or delete the following line.]
<!--<?forte include "HTMLtutApp/Scripts_Customer.html">-->
<body class="modify">
<caption align="left">
<div class="captionform">
Find Customer

</div>
</caption>

[Do not move or edit the following three lines.]
<form method="POST" action="$$(FORTE.ExecURL)">
<input type="HIDDEN" name="ServiceName" value="HTMLtutAppService">
<input type="HIDDEN" name="TemplateName" value="$$(FORTE.ReturnTemplate)">
<input type="HIDDEN" name="Action" value="CustomerHandler.Search">

<table border="0" cellspacing="3" cellpadding="5">

<tr>

<th class="labelmodify" style="width:20%">
Customer Number

</th>
<td class="dataform" style="width:80%">
<input type="text" name="Customer_qq_CustomerNumber" size=40>

</td>

</tr>
<tr>

<th class="labelmodify" style="width:20%">
Name

</th>
<td class="dataform" style="width:80%">

[Start comment.]
<!--

Customization Examples

108 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

[Call to JavaScript validation.]
<script language="JavaScript">

Select_Customer_qq_Name(’Customer_qq_Name’,’Name’,’qqNone’);
</script>

[End comment.]
-->

[Add input field.]
<input type="text" name="Customer_qq_Name" size=40>

</td>

</tr>
<tr>

<th class="labelmodify" style="width:20%">
Address

</th>
<td class="dataform" style="width:80%">
<input type="text" name="Customer_qq_Address" size=40>

</td>

</tr>
<tr>

<th class="labelmodify" style="width:20%">
Phone

</th>
<td class="dataform" style="width:80%">
<input type="text" name="Customer_qq_Phone" size=40>

</td>

</tr>
</table>

<table border="0" width="1" cellspacing="3" cellpadding="5">
<tr>
<td class="buttons">
<INPUT TYPE="submit" VALUE="SEARCH">

</td>
</tr>

</table>
</form>

</body>
</html>

Customization Examples

Chapter 3 Customizing Generated HTML Templates 109

Example: Customizing a Font Size
on a Data Page
This next example is a sample Data page from the Movie application provided in
the WebEnterprise examples directory. This example shows how you would make
the Movie field a larger font than the default and also bold, rather than regular.

<!-- Forte WebEnterprise Designer Display form definition for model
movieApp using page design fancy and style cool. Generated on
16-Feb-1999 22:50:51 -->

[Do not move the following line.]
<!--<?forte iterate listentry entry.list_Movie start=”1” max=”1”>-->

[Begin data display.]
<table width=”100%” border=”0” cellspacing=”3” cellpadding=”5”>
<caption align=”left”>
<div class="captionform">
Movie

</div>
</caption>
<tr>

[Start definition of Movie field.]
<th class="labelform" style="width:20%">
MovieID

</th>
<td class="dataform" style="width:80%">

[Begin modification.]
 <bold>
$$(listentry.Movie_qq_MovieID)

[End modification.]
</bold>

</td>

[End definition of Movie field.]
</tr>

[Start definition of Title field.]
<tr>

<th class="labelform" style="width:20%">
Title

</th>
<td class="dataform" style="width:80%">
$$(listentry.Movie_qq_Title)

</td>

[End definition of Title field.]
</tr>

Customization Examples

110 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

[Start definition of Rating field.]
<tr>

<th class="labelform" style="width:20%">
Rating

</th>
<td class="dataform" style="width:80%">
$$(listentry.Movie_qq_MPRating)

</td>

[End definition of Rating field.]
</tr>

[Start Critic Rating field.]
<tr>

<th class="labelform" style="width:20%">
Critic Rating

</th>
<td class="dataform" style="width:80%">
$$(listentry.Movie_qq_CriticRating)

</td>

[End Critic Rating Field.]
</tr>

[Start Description field.]
<tr>

<th class="labelform" style="width:20%">
Description

</th>
<td class="dataform" style="width:80%">
$$(listentry.Movie_qq_Description)

</td>

[End Description field.]
</tr>

[Start Web Address field.]
<tr>

<th class="labelform" style="width:20%">
Web Address

</th>
<td class="dataform" style="width:80%">
$$(listentry.Movie_qq_webaddress)

</td>

[End Web Address field.]
</tr>

[End data display table.]
</table>

Customization Examples

Chapter 3 Customizing Generated HTML Templates 111

[Do not move the following line.]
<?forte if $$(USER.TopPage)Handler.IsNestedPage(PageName="Movie")>

[Begin commands for nested page (because they can not appear in the command panel of the main page).]
<table width="40%" align="center" border="0" cellspacing="3"

cellpadding="5">
<tr>
<td> </td>

[Begin Search command.]
<td>
<a class="alink"

HREF="$$(FORTE.ExecURL)?ServiceName=movieAppService&TemplateName=movieApp/Sear
ch_Movie.html&ReturnTemplate=movieApp/Display_$$(USER.TopPage).html&Uniquifier
=$$(FORTE.UniqueID)" target="_fortedisplay">

Search

[End Search command.]
</td>

<td> </td>

[Begin Update command.]
<td>
<?forte if MovieHandler.HasCurrentRow>
<a class="alink"

HREF="$$(FORTE.ExecURL)?ServiceName=movieAppService&TemplateName=movieApp/Upda
te_Movie.html&ReturnTemplate=movieApp/Display_$$(USER.TopPage).html&Uniquifier
=$$(FORTE.UniqueID)&Action=MovieHandler.Current" target="_fortedisplay">

Update
<?forte else>
Update
<?forte if>

[End Update command.]
</td>
<td> </td>

[Begin Insert command.]
<td>
<a class="alink"

HREF="$$(FORTE.ExecURL)?ServiceName=movieAppService&TemplateName=movieApp/Inse
rt_Movie.html&ReturnTemplate=movieApp/Display_$$(USER.TopPage).html&Uniquifier
=$$(FORTE.UniqueID)" target="_fortedisplay">

Insert</a

[End Insert command.]
</td>
<td> </td>

Customization Examples

112 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

[Begin Delete command.]
<td>
<?forte if MovieHandler.HasCurrentRow>
<script language="JavaScript">
function confirm_delete(that,url,action)
{
ret = confirm("Delete this record?");
if (ret)
that.href = url + action;

else {
that.href = url;

}
}

</script>
<a class="alink" HREF="#1"

NAME="1"onclick="confirm_delete(this,’$$(FORTE.ExecURL)?ServiceName=movieAppSe
rvice&TemplateName=movieApp/Display_Movie.html&ReturnTemplate=movieApp/Display
_$$(USER.TopPage).html&Uniquifier=$$(FORTE.UniqueID)’,’&=ActionMovieHandler.De
lete’)" target="_fortedisplay">

Delete
<?forte else>
Delete
<?forte if>

[End Delete command.]
</td>
<td> </td>

[Begin First command.]
<td>
<a class="alink"

HREF="$$(FORTE.ExecURL)?ServiceName=movieAppService&TemplateName=movieApp/Disp
lay_$$(USER.TopPage).html&Action=MovieHandler.First&Uniquifier=$$(FORTE.Unique
ID)"target="_fortedisplay">

First

[End First command.]
</td>
<td> </td>

[Begin Previous command.]
<td>
<a class="alink"

HREF="$$(FORTE.ExecURL)?ServiceName=movieAppService&TemplateName=movieApp/Disp
lay_$$(USER.TopPage).html&Action=MovieHandler.Previous&Uniquifier=$$(FORTE.Uni
queID)" target="_fortedisplay">

Previous

Customization Examples

Chapter 3 Customizing Generated HTML Templates 113

[End Previous command.]
</td>
<td> </td>

[Begin Next command.]
<td>
 <a class="alink"

HREF="$$(FORTE.ExecURL)?ServiceName=movieAppService&TemplateName=movieApp/Disp
lay_$$(USER.TopPage).html&Action=MovieHandler.Next&Uniquifier=$$(FORTE.UniqueI
D)" target="_fortedisplay">

Next

[End Next command.]
</td>
<td> </td>

[Begin Last command.]
<td>
 <a class="alink"

HREF="$$(FORTE.ExecURL)?ServiceName=movieAppService&TemplateName=movieApp/Disp
lay_$$(USER.TopPage).html&Action=MovieHandler.Last&Uniquifier=$$(FORTE.UniqueI
D)"target="_fortedisplay">

Last

[End Last command.]
</td>
<?forte if MovieHandler.HasCurrentRow>
<td> </td>
<td>
<form method="POST" action="$$FORTE.ExecURL"

target="_fortedisplay">
<input type="HIDDEN" name="ServiceName"

value="movieAppService">
<input type="HIDDEN" name="TemplateName"

value="movieApp/Display_$$(USER.TopPage).html">
<input type="HIDDEN" name="Action" value="MovieHandler.Goto">
<input type="submit" VALUE="Go to">
<input type="text" name="Position" size=5>

</form>
</td>

<?/forte if>
</tr>

[End nested command panel.]
</table>

[Do not move this line.]
<?/forte if>

<table border="0">
<tr>
<th>

Customization Examples

114 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

[Displays requested row.]
<div id="reqstatus">$$(entry.RequestStatus_Movie)</div>

</th>
</tr>

</table>

[Do not move the following line.]
<!--<?/forte iterate listentry>-->

115

Chapter 4

Customizing Page Designs

WebEnterprise Designer contains a set of page designs—simple, fancy, and several
variations of fancy—that represent several common Web page layouts. You use
these to determine the layout of pages in your WebEnterprise Designer
applications.

This chapter provides information on WebEnterprise Designer page designs and
how to customize them, including:

• the internal structure of page designs

• strategies and considerations for customizing page designs

• a customization example

For information on WebEnterprise Designer styles and how to customize them, see
Chapter 5, “Customizing Page Styles.”

About Page Designs, Templates, and Pages
The production of a Web page by WebEnterprise Designer involves a number of
steps and several intermediate representations of the page. The ultimate source
that determines the layout the Web page when it is displayed in a browser is the
page design.

Page designs determine:

• whether HTML frames are used

• whether headers and footers are displayed

• how navigation menus are represented

• the basic structure of all documents

About Page Designs, Templates, and Pages

116 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The scope of a page design is the entire iPlanet UDS installation. Changes to a
design affect every HTML application that is subsequently generated from it.
Designs reside in subdirectories of the Express installation, under the
${FORTE_ROOT}/userapp/express/clx/designs directory.

Page Designs and Web Page Production
WebEnterprise Designer uses the following steps to render an HTML page:

1. When the page is defined in the HTML Application Model Workshop it is
associated with a page design.

This design specification is fundamentally a pointer to a directory. For
example, when you specify that the application will use the simple design, this
directs WebEnterprise Designer to use the files in the
${FORTE_ROOT}/userapp/express/clx/designs/simple directory for
generation.

2. When you generate code for the HTML Application, the metadata for each
page in the model, as well as the model itself, is input to the HTML Template
Generator.

The metadata, as defined in the HTML Application Model, includes attributes
that the generator uses to determine:

❍ which HTML templates to generate

❍ the effect of Code Generation Directives within the design files

The output of this phase is a set of application-specific HTML templates stored
under the HTML document root directory. (For information on the HTML
document root and its setting, see “Setting Document Root on the
ScannerService Service Object Partition” on page 259.)

3. When you run the HTML Application, the client requests a particular HTML
template, which the WebEnterprise runtime system reads and scans for
WebEnterprise template directives.

The directives represent both methods to be called and references to dynamic
application data. WebEnterprise resolves these references, substitutes data into
the template, and returns a “pure HTML” document to the Web server and the
user’s browser screen.

Page Design Elements and HTML Template Generation

Chapter 4 Customizing Page Designs 117

When to Customize Page Designs
Sometimes you might want to customize an application’s generated HTML
template. Such a customization affects only that one page in that particular
application. This type of customization is covered in Chapter 3, “Customizing
Generated HTML Templates.” If, however, your company wants all of its Web
applications to possess a similar structure and “look and feel,” you can best
accomplish this with WebEnterprise Designer by creating a custom page design, to
be used as the basis for pages in all applications.

Creating a custom design is, however, not a trivial task. Designs contain a mixture
of code generation directives, WebEnterprise template directives, and HTML. You
must take care to ensure that changes to page designs result in valid HTML pages.
This chapter offers guidelines and examples that will help you create custom
designs.

Page Design Elements and HTML
Template Generation

When you generate an HTML application, iPlanet UDS first generates the TOOL
project and its contents, and then creates the required HTML templates. During the
generation of HTML templates, the iPlanet UDS generator processes each
component of the HTML model sequentially, in the following order:

• the model object itself

• each page defined in the model

• any input validations or output-formatting JavaScript procedures

Design files are the main tools used to process the pages of the HTML model. Not
only do the contents of the files direct the processing, but the file names themselves
play a role in the process.

This section begins with a description of the elements of page design file names,
followed by a description of the functions of code generation directives that are the
contents of the files.

Page Design Elements and HTML Template Generation

118 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Page Design File Names and Selectors
Design file names (that is, the names of files that reside in the specific design
directory) play a crucial role in HTML template generation. Design file names have
two important functions:

• determining which design files are selected for generation

• defining the names of the generated HTML template files

For a description of generated templates, refer to “How WebEnterprise Designer
Uses HTML Templates” on page 93.

The best way to understand the design filename structure is to use an example, in
this case, the fancy page design files, found in
${FORTE_ROOT}/userapp/express/clx/designs/fancy. The following sections
describe each file in this directory, including descriptions of the different elements
of the filenames. These elements are called selectors, because they select elements of
the application.

_RC_IsAabModel_Start.html
_RC_IsAabModel_AccessError.html
These files select the Start and AccessError pages for processing. The selectors are:

Selector Use

IsAabModel Refers to the entire model and selects the file for generation.

RC Refers to one component (rather than an array of components to be
iterated); thus, every generated model results in a Start.html and
AccessError.html template file.

Start Selects the Start page, which is the page users normally request when they
enter the application, and which redirects them to the application’s
starting page, as defined in the model.

AccessError Selects the page that is returned if the application is customized to restrict
access to certain pages and that access is denied.

For information on customizing security in HTML applications, see
Chapter 8, “Customizing Application Security.”

Page Design Elements and HTML Template Generation

Chapter 4 Customizing Page Designs 119

_RC_IsFormWindow_Data__RR_Name_.html
_RC_IsListWindow_Data__RR_Name_.html
These files select each form and list page in the application for processing. The
selectors are:

_RC_IsDataWindow_Main__RR_Name_.html
_RC_IsDataWindow_Header__RR_Name_.html
_RC_IsDataWindow_Footer__RR_Name_.html
_RC_IsDataWindow_Menu__RR_Name_.html
_RC_IsDataWindow_Display__RR_Name_.html
_RC_IsDataWindow_Search__RR_Name_.html
_RC_IsDataWindow_Insert__RR_Name_.html
_RC_IsDataWindow_Update__RR_Name_.html
These files select all data pages for processing. The selectors are:

Selector Use

RC Refers to one component (rather than an array of components to be
iterated).

IsFormWindow Selects the form pages in the model.

IsListWindow Selects the list pages in the model.

Data Selects the Data template, which governs the layout and display of a
page’s data, whether the page is the only page displayed, a master
page, or a detail page.

_RR_Name_ Is replaced by the name of the page in the model, for example, a list
page named Customer generates a template file named
Data_Customer.html.

Selector Use

RC Refers to one component (rather than an array of components to be
iterated).

IsDataWindow refers to Data pages. Each Data page (which includes both form and list
pages) generates templates from each of these design files.

Main The fancy design employs HTML frames in which the Main file defines
the frame layout.

Header Defines the frame positioned across the top of the page.

Page Design Elements and HTML Template Generation

120 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

_RC_IsLinkWindow_Main__RR_Name_.html
_RC_IsLinkWindow_Display__RR_Name_.html
These files select link pages for processing. The selectors are:

Footer Defines the frame positioned across the bottom of the page.

Menu Defines the frame on the left side of the page.

Display

Search

Insert

Update

Defines the large center frame, depending upon the page mode.

_RR_Name_ Is replaced by the name of the page in the model, for example, a list
page named Customer generates a template file named
Menu_Customer.html.

Selector Use

RC Refers to one component (rather than an array of components to be
iterated).

IsLinkWindow Selects link pages. Each link page generates two HTML templates.

Display Defines the page that displays the link page (for example, the
Display_Home.html template for the Home page in the
HTMLtutApp tutorial).

Main Defines a shorthand page that simply includes the Display page (in the
same application, the Main_Home.html template).

_RR_Name_ Is replaced by the name of the page in the model, for example, a list
page named Customer generates a template file named
Main_Customer.html.

Selector Use

Page Design Elements and HTML Template Generation

Chapter 4 Customizing Page Designs 121

_RC_HasJavaScripts_Scripts__RR_Name_.html
This file defines the scripts file. The selectors are:

_RI_LookupFields_UniqueName_.inc
The file defines input validation lookup fields. Lookup template files are generated
for each input validation lookup field defined in the application. The selectors are:

Selector Use

RC Refers to one component (rather than an array of components to be
iterated).

HasJavaScripts Selects each page that has a JavaScript script defined for it. There are
two types of scripts: input validation scripts and output-formatting
scripts.

Scripts Defines the page that displays the link page (for example, the
Display_Home.html template for the Home page in the
HTMLtutApp tutorial).

_RR_Name_ Is replaced by the name of the page in the model, for example,
Scripts_Customer.html.

The specified JavaScript files are included by the
Scripts_Customer.html file.

Selector Use

RI Refers to an array of components. It is iterated, with each element’s
UniqueName attribute forming an output file.

LookupFields Refers to the lookup attributes defined for the validation.

UniqueName Refers to the unique naming scheme of the lookup field’s file name
(pagename_qq_field).

NOTE The files produced by code generation are merely “stubs,” without
any of the actual Express Business Class data. When the application
is actually executed, the database is queried and the actual lookup
files are created and written to the application’s HTML template
directory.

Page Design Elements and HTML Template Generation

122 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Page Design Code Generation Processing
Page design files contain a mixture of code generation directives, WebEnterprise
HTML template tags, and standard HTML V4.0 tags. When you generate code for
an HTML application, the code generator selects and processes design files (as
described in “Page Design File Names and Selectors” on page 118). This processing
involves two activities that result in an HTML template:

• code generation attribute references are replaced with the actual values of
those attributes

• code generation conditional and looping directives are executed

All code generation attributes and directives are enclosed within a pair of “curly
braces” (for example, {{attributes-and-directives}}). The code generator scans the
page design file for these and then processes the enclosed directive. The code
generation processor essentially has access to all attributes and properties that are
defined within the HTML application model. For example, consider the following
lines in the _RC_IsDataWindow_Display__RR_Name.html file:

These lines direct the code generator to fetch (%R) the current page object and print
(%P) its Name attribute. The result could be:

This example illustrates the simplest of code generation directives; many are much
more involved. The most powerful directives are those involving conditional and
looping logic. These directives span multiple lines and, in the case of page design
files, surround blocks of HTML template tags, HTML tags, and other code
generation directives.

<title>
Display {{%R(page)[%P(Name)]}}

</title>

<title>
Display Movies

</title>

Page Design Elements and HTML Template Generation

Chapter 4 Customizing Page Designs 123

Consider this block from _RC_IsListWindow_Data__RR_Name.html:

This code block contains the following notable items:

• The code generation directives are enclosed within standard HTML 4.0
comments (that is, “<!-- comment -->”).

This means that page design files can be edited with standard HTML editors.

• The “%F(NestedLinks)[“ directive on the first line actually is not completed
until the closing “]” on the last line.

The effect of this block is to iterate through all (if any) of the nested links
defined for the ListWindow, reproducing the lines between the <center> and
</center> HTML tags.

The generated HTML template block might be:

<!--{{%F(NestedLinks)[}}-->
<center>
<table width="80%" cellspacing="3" cellpadding="5" align="CENTER">
<!--<?Forte include

 "{{%R(page)[%E(Parent)[%P(Name)]]}}/Data_{{%E(Node)[%P(Name)]}}.html">-->
</table>

</center>
<!--{{]}}-->

<center>
<table width="80%" cellspacing="3" cellpadding="5" align="CENTER">
<!--<?Forte include "Movie/Data_Showings.html">-->

</table>
</center>
<center>
<table width="80%" cellspacing="3" cellpadding="5" align="CENTER">
<!--<?Forte include "Movie/Data_Reviews.html">-->

</table>
</center>

Example: Customizing a Page Design

124 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Guidelines for Customizing Code Generation
Directives
The general rule is: do not customize code generation directives! Code generation
directives are complex entities and not easily modified. However, if you
understand the purpose of a code generation directive, it may be possible to move
or delete it. Take great care to identify the entire scope of a directive and deal with
it as a whole, rather than treating a block within curly-braces as a unit.

If your customization requires change or movement of code generation directives,
the best practice is to make incremental changes, regenerate the application,
compare the new HTML templates with the old and, if acceptable, continue.

Example: Customizing a Page Design
In page design customizations, the most important consideration is whether the
design will use HTML frames and, if so, what that frame layout will be. Begin your
customization by selecting the existing design that most closely matches the new
design you wish to create. If your design is not based on frames, use the simple
design as a starting point. If your design is to be frame-based, use fancy or one of
its variants.

This section illustrates techniques for creating customized page designs with an
example that creates a design that does not use frames, but achieves a framelike
appearance by using HTML tables. This design consists of two panes: one for the
display of data, the other for a menu. We will name the design “brilliant.”

The remainder of this chapter describes how to create the brilliant page design. We
will not describe every detail of the complete customization, but only the first
major part of it, and then give guidelines for the rest. We will generate the
HTMLtutApp tutorial application with the newly-created brilliant design.

➤ The general steps for creating a customized page design are

1. Create a new design directory for the design files and populate it with copies of
files of the closest style.

2. Create the bitmap and text that identify and describe the design in the HTML
Application Model Wizard.

3. Clear the Document Directory of all existing generated HTML templates.

This is to prevent the code generator from merging the customizations with
existing designs.

Example: Customizing a Page Design

Chapter 4 Customizing Page Designs 125

4. Make the necessary customizations.

In this simple example, we describe how to customize the display of form
pages.

5. Generate the HTML and inspect it for errors.

6. Fine-tune the customized design.

Create a New Design Directory
This section describes how to create a directory for the new design and how to
populate it.

➤ To create and populate a new design directory

1. Create a brilliant directory under the
${FORTE_ROOT}/userapp/express/clx/designs directory.

2. Copy all the files in ${FORTE_ROOT}/userapp/express/clx/designs/simple
to the new brilliant directory.

Use the simple directory files as a starting point, because simple is not
frame-based, and therefore closest of all the available designs to our proposed
design.

Identify the Design with a Bitmap and Text
Two files within the design directory serve to identify the design in the Page
Design Properties dialog:

• a bitmap image of a thumbnail picture of a page created with the design

• a brief textual description of the design

(You access the Page Designs properties dialog by clicking the Page Design
browser button on either the HTML Application Properties dialog or on the Page
Options page of the Page Wizard.)

For our example, even though the definition of the simple design is closest to the
brilliant design, we want it to look more like the fancyMenu design. Therefore, we
will use the fancyMenu bitmap for our image identifier. The identifiers of the
fancyMenu design are shown in Figure 4-1:

Example: Customizing a Page Design

126 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 4-1 Page Design Identifiers

➤ To identify a page design

1. Copy the fancyMenu.bmp file from the fancyMenu directory to the brilliant
directory.

2. Rename the fancyMenu.bmp file brilliant.bmp.

3. Create a text file named brilliant.txt in the brilliant directory.

4. Add the following text to the brilliant.txt file:

5. Save and close the brilliant.txt file.

Clear Existing Generated HTML Templates
WebEnterprise Designer’s HTML template generator is designed to identify and
merge customizations made to the HTML templates. However, the process of
customizing a page design not only defeats the generator’s merge logic, but can
result in a large number of spurious errors. Therefore, before generating an HTML
application that uses a modified page design, first delete the entire contents of the
application’s HTML template directory.

A design using tables with two panes: menu and display. The display
pane has a caption followed by data. Commands are placed in the menu.

Bitmap image of design

Textual description of design

Example: Customizing a Page Design

Chapter 4 Customizing Page Designs 127

➤ To clear generated HTML templates

1. Delete the ${FORTE_ROOT}/html/docs/HTMLtutApp subdirectory.

This includes the .base subdirectory.

2. During the customization process, each time you modify a design used by an
HTML application, clear the old generated HTML templates before generating
a new set.

Once the design is stable, you can omit this step.

Customize the Design Files
Depending upon the nature of the customization, this step can be straightforward
or extremely complex. For example, removing the caption from the main pane is a
simple customization that requires only that you delete several lines from each
design file that displays captions (the Display, Update, Insert, and Search files).

In this section, you will customize the display of form pages. This is only the first
part of the task of customizing an entire design. Customization of the other parts of
this page design is left as an exercise for the reader.

To customize the display of form pages, you will:

1. Extract the navigation menu block from the form’s Data design file.

2. Place the extracted menu block in a new Menu file.

3. Modify the DataWindow Display design file, defining the pane table structure,
and including the new Menu design file.

Remove the Menu From the Data File
If you compare the list of files in the simple design directory with that of the fancy
design (and its variants), you will notice that, unlike the fancy designs, simple has
no Menu file (_RC_IsDataWindow_Menu__RR_Name_.html). This is because the
navigation menu for the simple design is in the Data file (the
_RC_IsFormWindow_Data__RR_Name_.html file).

In this example, you will create a Menu file for the brilliant design. One way to do
this is to take the menu block from the Data file and put it into a Menu file that you
create. But this menu is not in the correct form. The simple menu is a horizontal
line of menu items placed immediately below the form data. Our new design is
modeled on the fancy design family, where the menu is a vertical array of items.

Example: Customizing a Page Design

128 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 4-2 Menu in simple and fancyMenu Designs

Therefore, you can either modify the simple menu block so that it creates a vertical
menu, or, you can take advantage of the existing fancyMenu menu, which is
already vertically aligned. In this example, we will use the second option, because
the fancyMenu menu is closer to what we need.

First, however, you must remove the menu block from the
_RC_IsDataWindow_Menu__RR_Name_.html file.

➤ To remove the menu block from the data file

1. Open the _RC_IsFormWindow_Data__RR_Name_.html file in a text editor.

2. Find this menu block:

<table width="40%" align="center" border="0" cellspacing="3"
cellpadding="5">

<tr>
<!--{{%F(HTMLCommands)[}}-->
<!--{{%T(IsNext)[}}-->
<td> </td>

.

.

.
{{%P(Label)}}

</td>
<!--{{]}}-->

<!--{{]}}-->
</tr>

</table>

simple Design fancyMenu Design

Menu

Example: Customizing a Page Design

Chapter 4 Customizing Page Designs 129

3. Remove this entire block from the file.

4. Save and close the _RC_IsFormWindow_Data__RR_Name_.html file.

Modify the Menu Design File
In this section, you will create a Menu file for the brilliant design by copying the
Menu file from the fancyMenu directory to the brilliant directory. You will then
change the file from an HTML frame to an included part of a frameless page. This
requires two changes. You will:

• strip off all lines at the top and bottom that are required for frames

• eliminate all the frame-related “target” attributes

➤ To create and modify the Menu design file

1. Copy the _RC_IsDataWindow_Menu__RR_Name_.html file from the fancyMenu
design directory and paste it in the brilliant directory.

2. Open the _RC_IsDataWindow_Menu__RR_Name_.html file in a text editor.

3. Strip off lines at the top and bottom that are required for frames.

Include everything from the first line through the <body> tag at the top, and
the </body> and </html> tags from the end of the file.

Example: Customizing a Page Design

130 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Remove the bolded lines:

4. Eliminate all the “target=”_fortedisplay” attributes on the menu’s anchor tags
(<A>).

These are all frame-related and will have unpleasant effects in a frame-less
application. For example, remove the bold text from all lines like this:

5. Save and close the _RC_IsDataWindow_Menu__RR_Name_.html file.

<!-- Forte WebEnterprise Designer Menu form definition for model
{{%T(IsAabModel)[%P(Name)]%O[%E(Parent)[%P(Name)]]}} using page
design fancyMenu and style {{%P(HTMLStyle)}}. Generated on
20-Feb-1999 13:06:17 -->
<!--{{%A(page)}}-->
<!--<?forte assign USER.TopPage="{{%R(page)[%P(Name)]}}">-->

<html>
<head>
<link href="/forte/styles/{{%R(page)[%P(HTMLStyle)]}}.css"

rel="stylesheet" type="text/css">
</head>

[Note the following line for later.]
<body class="menu">
<p class="captionmenu">
{{%R(page)[%P(Name)]}} Menu:

</p>
.
.
.

</body>
</html>

<a class="amenu" HREF="$$(FORTE.ExecURL)?ServiceName={{%R(...
&Uniquifier=$$(FORTE.UniqueID)" target="_fortedisplay">

{{%P(Label)}}

Example: Customizing a Page Design

Chapter 4 Customizing Page Designs 131

Modify the Display Design File
The Display HTML template (the _RC_IsDataWindow_Display__RR_Name.html
file) is the main HTML page for displaying data. It creates the panes in the
browser’s page and places the menu on the left and the data in the rest. In this
section, you will create an HTML table for the entire page, a table row that is the
entire table, and then two table data elements (defined by the HTML <td> tag)
within that row.

The first <td> in the table you will create contains the menu. We’ll use the
class="menu" attribute (noted in the code of the fancyMenu menu’s <body> tag,
which you excised in the previous section) to get the proper menu style elements
(colors and font).

➤ To modify the Display file to create the required display and call the Menu file

1. Open the _RC_IsDataWindow_Display__RR_Name.html file in a text editor.

2. Find the display block.

3. Remove the line that includes the Menu.

Remove the bold line:

[Begin display block]
 <body class="display">

<!--<?forte execute {{%R(page)[%P(Name)]}}Handler.ProcessAction
resultset="entry">-->

<!--<?forte assign USER.TopPage="{{%R(page)[%P(Name)]}}">-->
<!--<?forte include "{{%R(page)[%E(Parent)[%P(Name)]]}}/Data_

{{%R(page)[%P(Name)]}}.html">-->

End display block
</body>

Example: Customizing a Page Design

132 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

4. Replace the deleted line with the following code:

5. Save and close the _RC_IsDataWindow_Display__RR_Name.html file.

Generate and Inspect
The next step is to generate the application and inspect for errors. Generation
errors are written to the Launcher log, and are also noted in the generated HTML
template, with syntax like:

*** BAD SELECTOR USED IN VARIABLE REFERENCE

➤ To verify your work by generating code

1. Open the HTMLtutApp application in the HTML Application Model
Workshop.

2. Choose File > Properties to open the HTML Application Properties dialog.

<table border=0 width="100%" cellspacing=0 cellpadding=0>
<tr>
<td valign=top width=155 rowspan=3 class="menu">
<!--<?Forte include

 "{{%R(page)[%E(Parent)[%P(Name)]]}}/Menu_{{%R(page)[%P(Name)]}}.html">-->
</td>
<td>
<!--<?Forte include

 "{{%R(page)[%E(Parent)[%P(Name)]]}}/Data_{{%R(page)[%P(Name)]}}.html">-->
</td>

</tr>
</table>

Example: Customizing a Page Design

Chapter 4 Customizing Page Designs 133

3. Click the browser on the Page Design field to display the available page
designs.

The brilliant design appears in the list:

4. Select brilliant and click OK.

5. Click OK to apply the changes and close the HTML Application Properties
dialog.

6. Generate the code for the application.

7. Inspect for errors by opening the Launcher window and running the
application and looking for “BAD SELECTOR” messages.

Our example does, in fact, have errors. The launcher window has a series of error
messages:

The template variable page is undefined.

Identifiers for the brilliant design

Example: Customizing a Page Design

134 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

And when you run the HTMLtutApp application, the windows contain a number
of “BAD SELECTOR” messages:

The problem is that the top of the _RC_IsDataWindow_Menu__RR_Name_.html
file (which you copied from fancyMenu in “Modify the Menu Design File” on
page 129) contains a code generation directive that is essential to the directives
contained within the menu block. This directive assigns a value to the code
generation page object. The menu uses this object, but you deleted it from the
menu design file, so you need to replace it.

➤ To fix the error in the Menu file

1. Open the _RC_IsDataWindow_Menu__RR_Name_.html file in a text editor.

2. Insert the following line (the assignment of the page object) at the top of the
file.

<!--{{%A(page)}}-->

(This line is also at the top of _RC_IsFormWindow_Data__RR_Name_.html, if
you want to copy it from another file.)

3. Delete the ${FORTE_ROOT}/html/docs/HTMLtutApp subdirectory, including
the .base subdirectory.

Remember, you have to do this every time you change a design template. See
“Clear Existing Generated HTML Templates” on page 126 for information.

“BAD SELECTOR”
error messages

Example: Customizing a Page Design

Chapter 4 Customizing Page Designs 135

4. Attempt to regenerate and run the HTMLtutApp application.

When you click on the Generate Web Application Server Code button, nothing
happens! This is because the code generator is sensitive to changes in the
WebEnterprise Designer definition of the model, but is unaware of the external
state of HTML templates and page designs. In order to force a code generation,
you must change something in the HTML Application.

5. Change the Title field of the HTML application in the property dialog, and
then change it back again.

For example, change the title from “HTML Tutorial” to “HTML Tutorial1” and
then change it back to “HTML Tutorial.”

6. Regenerate the application.

New HTML template files are created. The launcher window should show no
errors.

7. Run the HTMLtutApp application.

The application is displayed in the new brilliant design, that should also have
no errors:

Example: Customizing a Page Design

136 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Fine-Tune the Customized Design
The following steps are the minimum ones you must do to complete the new
design:

• using the Display page as a model, convert the other page modes (Search,
Update, and Insert) to panes using tables

• modify also the layout of list pages (this example only modified form pages)

Further fine-tuning could include incorporating the common features of your
company’s Web applications, for example, by adding the company logo to headers
and footers.

Testing a customized design requires a fairly rich HTML application, exercising all
the features of WebEnterprise Designer applications. Over time, as your own
applications evolve in complexity and power, your customized design will
improve until it is exactly what you want.

137

Chapter 5

Customizing Page Styles

WebEnterprise Designer contains two HTML style sheets—cool and steel—that
govern the presentation aspects of application pages. In the WebEnterprise
Designer Application Model Workshop, these are referred to as styles. This chapter
provides information on these styles and how to customize them, including:

• what HTML style sheets are

• the characteristics of WebEnterprise Designer native styles

• how to customize styles and add them to the WebEnterprise Designer
application environment

HTML 4.0 and Style Sheets
WebEnterprise Designer creates Web pages that conform to the HTML 4.0
standard defined by the World Wide Web Consortium (W3C). The HTML 4.0
specification is available at http://www.w3c.org/TR/REC-html40.

A recent aspect of the evolution of HTML is the separation, in HTML 4.0, of the
presentation aspects of Web documents (which include such properties as font
information, colors, and alignment) from the layout of the page. In HTML 4.0, the
presentation aspects are contained in style sheets, which are combined with HTML
documents to produce fully rendered pages in a browser. The tags and attributes of
earlier versions (HTML 2.0 and HTML 3.2), including “” and “bgcolor=”,
are now listed as “deprecated” features, in favor of style sheets as the
recommended mechanism for describing presentation.

HTML 4.0 and Style Sheets

138 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The browsers supported by WebEnterprise Designer, Netscape Navigator (version
4.0 and above) and Microsoft Internet Explorer (version 4.0 and above), both
support HTML 4.0 documents, including style sheets conforming to the W3C
Cascading Style Sheets, level 1 specification (CSS1). The HTML templates
generated for WebEnterprise Designer applications are designed to work in
concert with CSS1 style sheets. This specification is available at
http://www.w3c.org/pub/WWW/TR/REC-CSS1.

WebEnterprise Designer and Style Sheets
Each page defined in the HTML Application Workshop is associated with a page
design and a style. The design governs the layout of the application’s page. When
you generate the application’s Web server code, pages are processed through this
design, resulting in HTML templates. This process and its opportunities for
customization are the subject of Chapter 4, “Customizing Page Designs.”

WebEnterprise Designer styles are native style sheets used by the generated HTML
templates to format their HTML elements. There are two native styles, cool and
steel. Cool defines a colorful presentation using both serif and sans-serif fonts. Steel
creates pages devoid of color that use only sans-serif fonts.

The style sheets themselves are part of the WebEnterprise Web server installation
and are installed under the Web server root. When you specify them, you use URLs
relative to the Web server document root. For example, you specify the cool style
with /forte/styles/cool.css, and the steel style with
/forte/styles/steel.css. The actual locations of these files might be one of the
following:

• c:\Netscape\Suitespot\forte\styles\cool.css—location of the cool style on the
Netscape Web server root directory on NT

• /usr/netscape/suitespot/forte/styles/steel.css—location of the steel style on
the Netscape Web server root directory on UNIX

• c:\InetPub\forte\styles\steel.css—location of the steel style on Microsoft IIS
on NT

The rest of this chapter provides a description of style elements used in
WebEnterprise Designer HTML templates and offers guidelines for creating your
own styles to use with WebEnterprise Designer applications.

Using HTML Style Elements with WebEnterprise Designer

Chapter 5 Customizing Page Styles 139

Using HTML Style Elements with
WebEnterprise Designer

An HTML template generated by WebEnterprise Designer refers to style sheets in
two ways:

• to name the style (CSS1) file to use to process the page

• to use elements defined in the style sheet to format HTML elements of the page

Identifying the Style Sheet to Use
Use the HTML link tag in the document header to identify the style file to use for
processing the page. For example:

<link href="/forte/styles/cool.css" rel="stylesheet" type="text/css">

This line specifies the cool.css style sheet file. (File specification for style sheets are
relative to the Web server root directory; see “WebEnterprise Designer and Style
Sheets” on page 138 for a discussion of this.) The browser asks the Web server to
fetch the style sheet (unless it is already in the browser’s cache) and then uses its
contents to format the HTML page.

Using HTML Attributes
The HTML 4.0 and CSS1 specifications provide several ways to apply styles to a
document. WebEnterprise Designer employs two HTML 4.0 style sheet selectors:

• the class attribute, which assigns the style to all elements defined by the
specified tag

• the id attribute, which assigns the style to a single element

In HTML, the class and id attributes are element identifiers, and in particular,
document-wide element identifiers.

The class Attribute
You can use the class attribute with many HTML tags to specify a CSS1 style
element. For example, consider this class attribute specification within an HTML
<body> tag:

<body class="display">

Using HTML Style Elements with WebEnterprise Designer

140 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The class attribute in this case directs the browser to find the display element in the
current style sheet and apply its attributes to the HTML <body> tag.

In this example, the current style sheet is the cool.css file. The display element in
cool.css is specified as follows:

In the above code, the document’s background color is defined as white. A list of
fonts is specified for the document; the browser will choose the first one it
supports. In previous versions of HTML, you would specify these attributes with
the following tags:

The Scope of the class Attribute
An important aspect of the class identifier is that the attributes of the style element
identified by it (that is, display) apply to all HTML elements defined between the
<body> and </body> tags (in this case, the entire document). If the class attribute
were placed in the <table> tag, it would apply to all elements between the
<table> and </table> tags.

[HTML 4.0 specifications]
.display {

[background color]
background-color: rgb(255,255,255);

[document font]
font-family: "Times New Roman", Times, Georgia,

"Century Schoolbook", "Bookman Old Style", serif;
}

[Pre-4.0 background color]
<body bgcolor = "FFFFFF">

[Pre-4.0 document font]
<basefont face = "Times New Roman, Times, Georgia, Century Schoolbook,
Bookman Old Style, serif">

Using HTML Style Elements with WebEnterprise Designer

Chapter 5 Customizing Page Styles 141

Finally, one class may override another within its scope. Consider the following
HTML tags:

If the display class defines the background color as white and the mytables class
defines it as red, the document’s background color shifts from white to red and
then back to white, as specified by the labels in the column at the right of the code.

The id Attribute
Like the class attribute, the id attribute is an element identifier. The difference
between id and class is that id applies only to the current tag. For example:

<div id="statusline">Row 1 of 42</div>

In this line, id applies the statusline style elements only to the output string “Row 1
of 42." If other HTML tags are defined within the block defined within <div> and
</div>, they are not governed by statusline.

<body class="display"> WHITE
<p>Table of Contents</p> WHITE
<table class="mytables"> RED

<tr> . . . </tr>> RED
</table> RED
<table> WHITE

<tr> . . . </tr> WHITE
</table> WHITE

</body> WHITE

Using HTML Style Elements with WebEnterprise Designer

142 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Using HTML Style Elements
Both WebEnterprise Designer styles (cool and steel) use a common set of CSS1
elements. These elements are:

Style type Style element Use for formatting:

General page-level styles display The display frame body of the page’s display
mode.

modify The display frame body of the page’s Insert
and Update modes.

menu The body of the menu frame.

footer The body of the footer frame.

header The body of the header frame.

Anchors (links) amenu The anchors (links) in the menu frame.

alink The anchors (except for Data or Field Label
links) in the display frame.

adata The anchors in the display frame that are
attached to data items (links whose Activate
Link On property is set to Data).

alabel The anchors in the display frame that are
attached to the label of data items (links
whose Activate Link On property is set to
Field Label).

Page captions captionform The caption above the retrieved data on data
pages of form pages.

captionlist The caption above the retrieved data on data
pages of list pages.

captionlogon The caption above the data entry fields on
logon pages.

captionmenu The caption above the commands in the
menu frame.

Using HTML Style Elements with WebEnterprise Designer

Chapter 5 Customizing Page Styles 143

Figure 5-1 shows how some of these elements appear on a Web page.

Column labels rowidlist The row ids on list pages.

labellist The field labels above the data columns on
the data templates of list pages.

labelform The field labels on the data templates of form
pages.

labelmodify The input field labels on the data templates
of insert, update, and search mode pages.

Column data datalist The retrieved data on the data templates of
list pages.

dataform The retrieved data on the data templates of
form pages.

Form buttons buttons All buttons on all page modes of data pages
(for example, the Insert and Search buttons).

buttonlogon The button on logon pages.

Status line (accessed by
“id=”)

#reqstatus The status line of the data display (Record 1
of n).

Style type Style element Use for formatting:

Customizing Page Styles

144 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 5-1 Style Element Examples

Customizing Page Styles
The first step in customizing a page style is to assess the scope of your project. You
should ask yourself the following questions:

• Will you be modifying elements only or adding new ones as well?

If you modify only existing elements, you only need make changes to the style
sheet itself. If you add new elements, you must add them to both the generated
HTML templates and to the style sheet they will use.

captionform

labelform dataform

captionlist

libelist

datalist
rowidlist

captionmenu

amenu

#reqstatus

alink

alink

header

footer

menu

display

Customizing Page Styles

Chapter 5 Customizing Page Styles 145

• Will the new style be available to all applications, or will it be restricted?

If the use of the new style is restricted to specific applications, then you can
simply customize each application’s HTML templates to use the new style. If
any application is allowed to use the style, you must add the style to the list in
the Style browser in the HTML Application Model Workshop. You might also
want to add the elements to one or more page designs.

• Will the new style be usable with all available page designs or will it be
restricted?

If you do not add support for the new style elements to all page designs, this
can result in some invalid combinations of designs and styles. HTML
templates using a particular style element will display correctly only if the
style being used implements the element. You can either add the element to all
styles or document any restrictions to design/style combinations in the textual
descriptions that display in the Style and Page Design browsers.

The following sections provide customization guidelines under different scenarios
arising from how you answer these questions. All discussions and examples refer
to creating a new style, which is based on the cool style, and named the
“marketing” style.

Outline of Basic Procedures
The general steps for creating and implementing a customized style are:

1. Create a new style sheet file by copying the most similar existing one, and
rename it with the new style name.

Details are given in “Creating the New Style Sheet File” on page 146.

2. Determine whether you will add new elements to the style sheet or only
modify existing elements.

If you are only modifying existing elements, refer to “Modifying Existing
Elements” on page 146 for information.

If you are adding new elements, refer to “Adding New Elements” on page 147.

3. Determine whether use of the new style is to be restricted or not.

If you are restricting the style to certain applications, refer to “Adding New
Elements” on page 147.

Customizing Page Styles

146 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

If the style is to be made generally available, you will want to identify it in the
HTML Application Model Workshop. Refer to “Identifying the Style with a
Bitmap and Text” on page 148 for details.

4. Test the new style with different browsers and adjust accordingly.

Refer to “Considering the Browser” on page 150 for important information and
guidelines regarding browsers.

Creating the New Style Sheet File
The first step in creating the new marketing style is to create a marketing.css file in
the WebEnterprise Designer styles directory. The styles directory depends on
where your Web server directory is. See “WebEnterprise Designer and Style
Sheets” on page 138 for a description of several possibilities, or see your system
administrator for the exact location in your installation.

➤ To create a new style sheet file

1. Find the cool.css file in the Web_server_root/forte/styles directory.

2. Copy the cool.css file to a new marketing.css file in the same directory.

Now application pages that use the marketing style will look just like cool style
pages.

Modifying Existing Elements
When you make customizations that only modify existing elements, such
customizations generally require changes only to the style sheet itself. Guidelines
for this type of customization are as follows:

➤ To customize only existing elements in the new style sheet

1. Create a new style sheet, as described in “Creating the New Style Sheet File,”
above.

2. Modify a few elements in the new style sheet.

Refer to “Using HTML Style Elements with WebEnterprise Designer” on
page 139 for information on the elements used in the WebEnterprise Designer
style sheets. For a basic reference on HTML 4.0, see the HTML 4.0 specification
at http://www.w3c.org/TR/REC-html40.

Customizing Page Styles

Chapter 5 Customizing Page Styles 147

3. Test the style sheet by regenerating code and running the application.

If your changes do not appear, refer to “Browser Caching” on page 150 for a
solution.

4. Repeat Step 2 and Step 3 until your new style is perfected.

Remember to read “Considering the Browser” on page 150 for information
related to testing and use of your new style.

Adding New Elements
If you choose to add new style elements, you must add them to both the style sheet
and the generated HTML templates that refer to it. How you do this depends on
whether or not you want the style to be available to all applications or not.

➤ To customize a restricted style

1. Open the new CSS1 style sheet (marketing.css from “Creating the New Style
Sheet File,” above).

2. Make your changes, including adding new elements.

For information on elements used by WebEnterprise Designer, refer to “Using
HTML Style Elements with WebEnterprise Designer” on page 139. For a basic
reference on HTML 4.0, see the HTML 4.0 specification at
http://www.w3c.org/TR/REC-html40.

3. Save and close the marketing.css file.

4. Open each of the application’s HTML templates and change the <link> tag to
your new style.

Example

5. Modify the HTML, as appropriate, to use your new style elements.

See Chapter 3, “Customizing Generated HTML Templates,” for details on
customizing HTML templates.

<link href="/forte/styles/marketing.css" rel="stylesheet"
type="text/css">

Customizing Page Styles

148 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

If, however, multiple applications can use the new style elements, then you might
want to follow these procedures instead:

➤ To customize generally available styles

1. Identify the new style to the HTML Application Model Workshop, as
described in “Identifying the Style with a Bitmap and Text,” below.

This automatically customizes the <link> reference in the HTML templates of
any application that uses this style.

2. Customize your new style sheet, as in the previous procedure.

3. Instead of modifying the individual templates of an application, modify one or
more page designs.

See Chapter 4, “Customizing Page Designs,” for details.

Bear in mind, however, that adding support for new style elements to a restricted
number of designs or styles can result in some invalid combinations of designs and
Styles. For example, if a new design uses a new style element that is only
implemented in one new style, then application pages using the new design must
use the new style. Obviously, HTML templates using a particular style element will
only display correctly if the style in use implements the element. To avoid this
restriction, you could add the element to all styles, or you can document the
restrictions in the design and style description files (for example, the marketing.txt
files described next in “Identifying the Style with a Bitmap and Text”).

Identifying the Style with a Bitmap and Text
If you will be making the new style generally available to all applications, then you
need to identify and describe the style in the HTML Application Model Wizard.
Two files within the ${FORTE_ROOT}/userapp/express/clx/styles directory
identify the style in the Style Properties dialog:

• a bitmap image of a thumbnail picture of a page created with the style

• a brief textual description of the style

(You access the Styles properties dialog by clicking the Style browser button on
either the HTML Application Properties dialog or on the Page Options page of the
Page Wizard.)

Customizing Page Styles

Chapter 5 Customizing Page Styles 149

For example, Figure 5-2 shows the identifiers of the cool style in the Style
Properties dialog:

Figure 5-2 Style Identifiers

To make your new style available to the workshop, you must add two files to that
directory.

➤ To identify the marketing style

1. Make a copy of the cool.bmp file in the
${FORTE_ROOT}/userapp/express/clx/styles directory.

2. Rename the cool.bmp file marketing.bmp.

3. Create a text file named marketing.txt in the same directory.

4. Add the following text to the marketing.txt file:

The corporate standard style for external Web applications.

5. Save and close the marketing.txt file.

Now when you display the Style Property dialog, you will see three choices: steel,
cool, and marketing. If you select the marketing style, the generated HTML
templates will automatically contain a <link> tag referring to the marketing.css
file.

Bitmap image of style

Textual description of style

Customizing Page Styles

150 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Considering the Browser
This section discusses two important considerations regarding browsers and
customized style sheets.

Browser Caching
One difficulty with implementing a new style sheet is that browsers tend to cache
the style sheet in their local memory. Even though you have modified the style
sheet, the browser can choose to use its local, unmodified copy, instead. Browser
preference settings affecting cache behavior do not apply to style sheets in the same
way they apply to HTML documents. If you make style sheet changes, but the
appropriate changes are not displayed when you run the application, examine the
Web server log to see if the browser is re-fetching the old style file. If so, shut down
and restart the browser.

Browser Independence
An important objective of WebEnterprise Designer is that generated applications
be browser-independent. That is, application pages should look much the same
whether viewed with Netscape Navigator or Microsoft Internet Explorer.

The two style sheets included with WebEnterprise Designer achieve this objective.
However, it has been our experience that the support for CSS1 in the browser
products is not as robust as their support for HTML 4.0. Style sheet elements that
appear correct might, in fact, not display correctly.

For example, CSS1 supports specification of colors by keyword (such as “white”,
“red”, “blue”, and so forth). However, one of the browser products does not
currently implement this correctly. For this reason, we have adopted the “rgb”
(red, green, blue) syntax for color specification, which both products correctly
implement. An example of this is from the cool.css file:

It is vital that applications in general, and style sheets in particular, undergo testing
with both browser products.

.display (
background-color: rgb(255,255,255);

151

Chapter 6

Customizing Error Pages

When errors are detected during the processing of WebEnterprise Designer
applications, they are displayed in the browser as an error page. You can customize
the appearance of this error page or create your own.

This chapter provides information on how to:

• modify the appearance of the default HTML exception page

• create customized error pages

Most of the information in this chapter applies to WebEnterprise applications, as
well as WebEnterprise Designer applications.

WebEnterprise Exception Handling
WebEnterprise applications, including those created with WebEnterprise Designer,
are based on a request-response model, in which the browser client requests
iPlanet UDS services, which are returned in HTML form (Web pages in the
browser). When errors occur during the processing of these requests, iPlanet UDS
exceptions must be converted to an HTML representation and returned to the
client.

WebEnterprise uses dynamic exception mapping to format exceptions. Standard
template-driven HTML Scanner technology allows the developer to control the
appearance of error pages.

In addition, the WebEnterprise Designer Page Handler Customization Wizard
contains customization points that permit arbitrary application-specific processing
of exceptions.

WebEnterprise Exception Handling

152 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Default Exception Processing
The default WebEnterprise exception processing steps are as follows:

1. Exceptions raised within the WebEnterprise runtime system are caught and
processed at two distinct points:

❍ exceptions raised during the processing of an HTMLScanner template
request are processed within the HTMLScanner service object

❍ all other exceptions are processed within the HTTPAccess service object

2. When WebEnterprise catches an exception, it maps the exception class to an
error HTML template file to format the exception’s attributes.

The default error HTML templates all reside in the ${FORTE_ROOT}/
html/errors directory. Exceptions are mapped to templates as follows:

3. WebEnterprise then generates an internal HTTPRequest, with the appropriate
error template file as the requested template.

4. WebEnterprise converts the exception’s attributes to HTTPRequest
parameters, which are accessible to the HTML template within the FORTE
pseudo-result set.

Exception attributes are listed and described in the next section,
“WebEnterprise Exception Result Set Variables.”

5. WebEnterprise then processes the template file using standard HTMLScanner
procedures.

6. The default error templates display all exception attributes.

An example error page is shown in Figure 6-1.

Error Mapped to error template

HTMLScannerException htmlscanner.html

HTTPAccessException httpaccess.html

All other exceptions generic.html

WebEnterprise Exception Handling

Chapter 6 Customizing Error Pages 153

Figure 6-1 Default Scanner Exception Page

WebEnterprise Exception Handling

154 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

WebEnterprise Exception Result Set Variables
As described in the previous section, when WebEnterprise processes exceptions, it
converts exception attributes to HTTPRequest parameters, which are then
accessible from the HTML templates by means of the $$(FORTE.parameter_name)
specification. (For information on the syntax of iPlanet UDS variables, see A Guide
to WebEnterprise.)

The sections that follow provide a table listing each exception class’s attributes and
their associated HTMLScanner result set variable references. Attributes that are
undefined are assigned a default value (generally “0” for a numeric attribute and
“n/a” for text attributes).

HTMLScannerException Class Variables
The following table lists the attributes of the HTMLScannerException class and
their corresponding result set variables. These are the variables used in the
htmlscanner.html template.

Attribute Result set variable Description

Classname $$(FORTE.ExceptionClass) “HTMLScannerException”

Message $$(FORTE.Message) The error’s text

DetectingMethod $$(FORTE.DetectingMethod) The method raising the
exception

MethodLocation $$(FORTE.MethodLocation) Additional identifying
information

Severity $$(FORTE.Severity) The severity text description

$$(FORTE.SeverityGIF) The severity image file

CharOffset $$(FORTE.Charoffset) The byte offset in the line of the
error

LineNumber $$(FORTE.LineNumber) The line number in the HTML
template

SourceLine $$(FORTE.SourceLine) The text of the HTML template
line

ExceptionTraceback $$(FORTE.ExceptionTraceback) The method’s traceback

WebEnterprise Exception Handling

Chapter 6 Customizing Error Pages 155

HTTPAccessException Class Variables
The following table lists the attributes of the HTTPAccessException class and their
corresponding result set variables. These are the variables used in the
httpaccess.html template.

Variables for All Other Exceptions
The following table lists the attributes and corresponding result set variables used
for errors that are neither HTMLScannerException nor HTTPAccessException
errors. These are the variables used in the generic.html template.

Attribute Result set variable Description

Classname $$(FORTE.ExceptionClass) “HTTPAccessException”

Message $$(FORTE.Message) The error’s text

DetectingMethod $$(FORTE.DetectingMethod) The method raising the
exception

MethodLocation $$(FORTE.MethodLocation) Additional identifying
information

Severity $$(FORTE.Severity) The severity text description

$$(FORTE.SeverityGIF) The severity image file

ExceptionTraceback $$(FORTE.ExceptionTraceback) The method’s traceback

Attribute Result set variable Description

Classname $$(FORTE.ExceptionClass) The name of the exception class

Message $$(FORTE.Message) The error’s text

DetectingMethod $$(FORTE.DetectingMethod) The method raising the exception

MethodLocation $$(FORTE.MethodLocation) Additional identifying information

Severity $$(FORTE.Severity) The severity text description

$$(FORTE.SeverityGIF) The severity image file

Customizing Error Pages

156 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Customizing Error Pages
This section provides customization guidelines for WebEnterprise error pages. The
different levels of customization discussed include:

• modifying the default error pages

• creating a custom error page

• adding new result set variables

• using the error page customization point in the Page Handler Customization
Wizard

All but the last level are available to all WebEnterprise users; the last level is
available only to WebEnterprise Designer users.

Modifying Default Error Pages
The simplest way to customize WebEnterprise error pages is to modify the HTML
template files in the ${FORTE_ROOT}/html/errors directory. It is a
straightforward task to adjust the HTML tags to produce an installation-specific or
company-wide error page format.

For a basic reference on HTML 4.0, see the HTML 4.0 specification at
http://www.w3c.org/TR/REC-html40.

Creating Custom Error Pages
If you want your application to log errors, delete sessions, or take other
application-specific action beyond the default WebEnterprise exception handling
procedure, you can use two additional levels of customization that are supported
within WebEnterprise, namely:

• creating your own error HTML template files

You can use the variables described in “WebEnterprise Exception Result Set
Variables” on page 154 and customize the exception class mapping, as well.

• creating your own result set variables

With your own variables, you can include application-specific dynamic data
on the error page.

Customizing Error Pages

Chapter 6 Customizing Error Pages 157

While these customization levels are available to any WebEnterprise application,
WebEnterprise Designer provides customization points that simplify the creation
of custom error handlers. These are described in the next section.

Customizing a WebEnterprise Designer HTML
Application
WebEnterprise Designer’s Page Handler Customization Wizard contains a
customization point for customizing an application’s error pages. For complete
information on the Customization Wizard, see “Customizing With the Page
Handler Customization Wizard” on page 67.

➤ To customize an application’s error page using the Customization Wizard

1. Open your application in the HTML Application Model Workshop.

2. Select the business class page you wish to customize.

3. Choose the Component > Customize… command to open the Wizard.

If this is the first customization you are making to this class, WebEnterprise
Designer displays a dialog requesting permission to generate a customizable
class for the page. Click OK.

4. Open the Application group by clicking on the arrow next to it.

Customization point for creating
a customized error page

Customizing Error Pages

158 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

5. Select the “Define HTML template for exceptions” customization point and
click Customize.

The Method Workshop opens, displaying the GetErrorTemplate method. This
method overrides the HTMLScanner.GetErrorTemplate method defined.

6. Add your code to implement application-specific error processing in
GetErrorTemplate.

For information on GetErrorTemplate, click the Help button while this
customization point is selected. Documentation is also provided as comments in
the method body, as well. The Help topic description contains a link to a
description of the HTMLScanner.GetErrorTemplate method.

The following sections provide an expanded version of the Help documentation.

The GetErrorTemplate Method
The GetErrorTemplate method provides a means of modifying the HTML template
that should be used when an exception is generated during processing a user
request.

The arguments to the GetErrorTemplate method are:

GetErrorTemplate (e=GenericException, request=HTTPRequest, customParameter=array of
NamedElement)

Returns Framework.TextData

Parameter Required Input Output

e ● ●

request ● ●

customParameters ● ●

Argument Description

e : GenericException The actual exception object thrown by the application.

request : HTTPRequest The HTTPRequest object being processed when the exception
was thrown.

Customizing Error Pages

Chapter 6 Customizing Error Pages 159

Return Value
GetErrorTemplate returns a TextData object that contains the specification of the
HTML template file to be used to format and return the error. As with all HTML
template specifications, this file is assumed to reside within the WebEnterprise
document root. This makes it simple to access an application-specific error page.

WebEnterprise also provides the ability to directly access HTML documents
(including HTML templates) that reside under the installation’s html directory.
Any template specification that begins with the token “/forte/” is re-mapped to
the ${FORTE_ROOT}/html directory.

For example, the template name “/forte/errors/htmlscanner.html” resolves to
${FORTE_ROOT}/html/errors/htmlscanner.html. Using this syntax, a site can
easily create site-wide HTML template directories.

Example: Application-Specific Error Template
This example maps HTMLScanner exceptions to an application-specific (Movie)
error template and all other exceptions to the standard generic error template.

customParameters :
Array of NamedElement

An optional array of name-value pairs. If this is returned, the
elements are added to the error’s HTTPRequest parameters
and are therefore available to the error HTML template as
resultset variables.

// GetErrorTemplate(e: GenericException, request: HTTPRequest,
// output customParameters: Array of NamedElement) : TextData
//
errorTemplate : TextData = new;
customParameters = nil;
//
if e.IsA(HTMLScannerException) then
errorTemplate.SetValue(’Movie/Error_Scanner.html’);

else
errorTemplate.SetValue(’/forte/errors/generic.html’);

end if;
//
return errorTemplate;

Argument Description

Customizing Error Pages

160 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Example: Application-Specific Template with Custom Data
This example extracts the user name associated with the session (previously
attached to the session during Logon) and adds it to the customParameters object.
This will cause it to be added to the result set variables. A custom error HTML
template (not illustrated here) will then display the user name on a standard
application error page. (See Chapter 8, “Customizing Application Security,” for
details on capturing and storing user authentication information.)

The user name is available in the Movie/Errors.html template as the result set
variable $$(FORTE.ApplicationUsername).

// GetErrorTemplate(e: GenericException, request: HTTPRequest,
// output customParameters: Array of NamedElement) : TextData
//
// Every exception will be processed with the same template
//
errorTemplate : TextData = new;
errorTemplate.SetValue(’Movie/Errors.html’);
//
// Assume that the LogonSession method returned the username in the
// credentials object, where it was added to the SessionData.
//
customParameters = new;
p : NamedElement = new;
p.Name = ‘ApplicationUsername’;
if request.CurrentSession <> NIL then
 p.Object = TextData(request.CurrentSession.GetSessionData(

TextData(value=’Logon-Credentials’)));
else
p.Object = TextData(value=’No session’);

end if;
customParameters.AppendRow(p);
//
return errorTemplate;

Customizing Error Pages

Chapter 6 Customizing Error Pages 161

Customizing HTTPAccessExceptions
As noted above, the HTMLScanner.GetErrorTemplate method performs mapping
for exceptions raised during HTML template processing. This phase includes
exceptions raised in Business Services. Overriding GetErrorTemplate effectively
customizes these exceptions.

Some WebEnterprise exceptions occur outside of the HTMLScanner template
processor, for example, errors occurring during non-template requests
(“pagename” requests), HTTP parsing errors, and communications failures. Such
errors can raise exceptions that require a slightly different customization.

These exceptions are caught, mapped, and formatted within the HTTPAccess
subclass service object. By default, the HTTPAccess.GetErrorTemplate method
applies exactly the same mapping logic as HTMLScanner.GetErrorTemplate.
However, customizing the HTMLScanner method has no effect on the exceptions
processed within HTTPAccess. Unless you also customize
HTTPAccess.GetErrorTemplate, HTTPAccess exceptions will be processed
through the default htmlscanner.html, httpaccess.html, and generic.html
templates.

You customize HTTPAccess exception processing by customizing the
GetErrorTemplate method in the HTTPAccess subclass. Since this method has the
same signature as the HTMLScanner method, you can customize in several ways:

• copy your customized GetErrorTemplate method from your HTMLScanner
subclass to your HTTPAccess subclass

• override the HTTPAccess.GetErrorTemplate method and have it directly call
your HTMLScanner.GetErrorTemplate

Example

// MovieAccess.GetErrorTemplate(e: GenericException, request:
HTTPRequest,

// output customParameters: Array of NamedElement) : TextData
//
return MovieScannerService.GetErrorTemplate(e, request,
customParameters);

Customizing Error Pages

162 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

• override the HTTPAccess.GetErrorTemplate method, implementing different
custom exception logic

As a suggestion, you might use a general purpose
HTTPAccess.GetErrorTemplate method in every WebEnterprise application,
but a different HTMLScanner.GetErrorTemplate method for each application.

Errors in Error Customization
What happens if errors occur during the mapping and formatting of exceptions?
What if the error template object returned by GetErrorTemplate is syntactically
incorrect or refers to a file which does not exist? What if my customized
GetErrorTemplate refers to the request.CurrentSession object, but it is NIL because
no session exists?

In these cases, the “last chance exception processor” is invoked. The last chance
exception processor catches and dismisses the exception raised during exception
processing. It then creates an HTML error response containing the original
exception’s attributes. The format of this error page is fixed.

If, after customizing your error pages, exceptions are not returned using
customized pages (or, for that matter, the default pages in
${FORTE_ROOT}/html/errors), then it is likely that there is an error in the error
customization. Since the last chance exception processor’s mission is to hide these
errors, you can diagnose the problem by tracing handled exceptions (that is, by
enabling trc:lo:25 in the partition where either or both the HTMLScanner and
HTTPAccess service objects exist). The exception caused by customization should
then appear in the trace log.

CAUTION When customizing exceptions with GetErrorTemplate, check for
the existence of objects before you use them. This is particularly true
when the HTTPAccess.GetErrorTemplate calls a customized
HTMLScanner.GetErrorTemplate. For example, exceptions caught
in HTTPAccess might not have their HTTPRequest.CurrentSession
attribute set (because the error occurred before the session was
associated with the request). The GetErrorTemplate method that
processes the exception must be careful to test CurrentSession for a
NIL value before using it.

163

Chapter 7

Customization Examples

This chapter describes a number of desirable customizations for WebEnterprise
Designer applications. These examples illustrate how information described in the
previous chapters of this manual might be used in real-life situations.

The customizations in this chapter include:

• adding a Lookup reference page

• passing data with a command link

• automatically populating data on an Insert page

• adding a drop list for entering and formatting dates

• removing a JavaScript validation from a page mode

• displaying the record just inserted

• validating a whole form

• making a single field mandatory

• entering lookup information for drop lists or radio lists manually

• removing <Not Selected> and <None> from drop lists and radio lists

Introduction

164 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Introduction
The examples in this chapter are based on Tech Notes for WebEnterprise Designer
that are available on the iPlanet UDS Cybersupport Web site. Check this Web site
frequently for new information.

All customizations in this book start with the HTMLtutApp tutorial application,
described in Getting Started with WebEnterprise Designer. We recommend you create
your own tutorial application. Alternatively, you can import a finished version of
the tutorial by following the instructions provided in Appendix A of Getting Started
with WebEnterprise Designer.

The examples are as follows:

• “Example: Adding a Lookup Reference Page” on page 166

Creates a link to a list of customers from the Insert mode of the Customers
page. Selecting a customer from the lookup page passes the Customer Number
value back to the Insert page.

• “Example: Passing Data with a Command Link” on page 177

Similar to the previous example, but instead of a lookup page, uses a variable
to pass the record value of the selected record to the Insert page.

• “Example: Automatically Populating Data on an Insert Page” on page 185

Yet another way to pass a value to the Insert page. This example creates a new
Customer page and uses a WebEnterprise Designer variable to pass the value
to the Insert page.

• “Example: Adding a Drop List for Entering and Formatting Dates” on page 191

Creates three drop lists and uses stored values for date entry.

• “Example: Removing a JavaScript Validation from a Page Mode” on page 198

Removes an inappropriate field constraint from a Search mode template.

• “Example: Displaying the Record Just Inserted” on page 203

Moves the most recently inserted record to the top of the result set list, so that it
is displayed immediately after it is entered.

• “Example: Validating a Whole Form” on page 206

Uses a JavaScript script to validate a form. Also provides a JavaScript
boilerplate for further use.

Introduction

Chapter 7 Customization Examples 165

• “Example: Making a Field Mandatory” on page 213

Uses TOOL customization to force a user to enter data in a field.

• “Drop List or Radio List Example: Entering Lookup Information Manually” on
page 217

Shows how to enter displayed values and stored values in drop lists or radio
lists without referring to a business class.

• “Drop List and Radio List Example: Removing <Not Selected> and <None>”
on page 223

Shows how to remove unwanted default values from drop lists and radio lists
and specify new ones.

Methods for Editing Generated Files
The Page Handler Customization Wizard provides convenient and organized
access to any files generated for your HTML application model, including TOOL
files and HTML template files. When the method you want to customize does not
have a customization point defined for it in the Customization Wizard, you have to
customize manually, using the Method Workshop.

Using the Page Handler Customization Wizard
Complete information on using the Wizard is provided in “Customizing a
Generated HTML Template” on page 72. Before you can edit generated files with
the Customization Wizard, you must set the FORTE_WW_HTMLEDITOR
environment variable with the full pathname of the editor of your choice. For
example, if you were using the HTML editor FrontPage:

FORTE_WW_HTMLEDITOR D:\frontpage\bin\fpeditor.exe

For information on setting these variables, see the online Help topic for the
variable. For information on using shortnames for file specification on Windows
NT, see the help topic, “Use a shortname for the Default Browser field.”

Customizing TOOL Methods Manually
Chapters 1 and 2 of this manual offer general guidance concerning which methods
to customize for many types of customizations. Once you know which method to
override or customize, then you edit the method in the Method Workshop. If your
customization is to a page handler class, you must first create a customizable
version of the class. (Refer to “Creating Customizable Classes” on page 65.)

Example: Adding a Lookup Reference Page

166 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

For example, “Step 2. Override the BeforeInsert Method” on page 195 describes a
TOOL method customization that creates a BeforeInsert method in the
CustomerOrderHandler class that overrides the ExpressClassHandler.BeforeInsert
method. You can use the following alternative to the Customization Wizard:

➤ To customize a method of an ExpressHandlers class in a HTMLtutAppHandlers
class

1. In the Project Workshop for ExpressHandlers, open the Class Workshop for the
ExpressClassHandlers class.

2. Locate the BeforeInsert method in the Class Workshop.

3. In the Project Workshop for HTMLtutAppHandlers, open the
CustomerOrderHandler class.

4. Drag the BeforeInsert method (in Step 2) into the Class Workshop for the
CustomerOrderHandler class.

5. Open the new BeforeInsert method.

6. Proceed with the customizations described in “Step 2. Override the
BeforeInsert Method” on page 195.

Customizing Generated HTML and Text Files Manually
Chapter 3, “Customizing Generated HTML Templates,” describes all generated
page handler templates. These are all found in the ${FORTE_ROOT}/Document
Root/html_model directory. You can edit the HTML files with the Page Handler
Customization Wizard, but if you want to edit them manually, you can use either
an HTML editor or a text editor to edit files with an .html extension.

Example: Adding a Lookup Reference Page
In the HTMLtutApp tutorial application, adding a new order to a customer record
is somewhat clumsy and counter-intuitive. You navigate to the customer you wish
to add an order to, but when you choose Insert, the page displays with all fields
empty. Thus, there is no connection between the customer record you are viewing
and the Insert page. This example offers a solution.

Example: Adding a Lookup Reference Page

Chapter 7 Customization Examples 167

What This Example Does
This modifies the HTMLtutApp tutorial application, adding a lookup link from the
Insert mode of the CustomerOrder page to a customer list. Selecting a customer
from this list automatically passes the selected customer’s number back to the
Insert page.

The lookup link on the Insert page looks like this:

Figure 7-1 Lookup Link on Customer Order Insert Page

Clicking on the lookup link displays a master list of customers:

Figure 7-2 Customer List Page

Clicking on the Use link associated with the desired customer redisplays the
Customer Order Insert page with the selected customer’s number showing in the
appropriate field.

Lookup link

Use links

Example: Adding a Lookup Reference Page

168 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 7-3 Customer Number Returned with the Insert Page

Creating a Lookup Link
This section describes how to add a lookup link to the HTMLtutApp tutorial
application. The general steps of this procedure are as follows:

1. In the HTML application model, create a CustomerList page based on the
Customer class and link it to the Customer Order page; specify that the new
page will start in Search mode.

2. Run the application and capture the URL of the Insert mode of the
CustomerList page.

3. Customize the Insert template of the CustomerOrder page, adding a lookup
link to the URL captured in Step 2, and an iPlanet UDS variable for the selected
order’s CustomerNumber value.

4. Add a link to the Data template of the CustomerList page to its Insert page, and
pass the CustomerNumber of the selected customer with the link.

5. Remove the link between the CustomerOrder class and CustomerList class so
that it only appears on the Insert mode of the CustomerOrder page.

Example: Adding a Lookup Reference Page

Chapter 7 Customization Examples 169

Step 1. Add a Reference Page to the HTMLtutApp Model
This section describes how to modify the HTMLtutApp model as the first step in
creating a lookup link.

➤ To set up the HTMLtutApp model for a lookup link

1. Start the HTML Application Model Workshop for the HTMLtutApp
application.

2. Create a new list page based on the Customer class.

3. Enter CustomerList for the HTML Page Name, and make the title Customer
List.

The Page Options page of the Page Wizard should look like this:

4. Create a link between the CustomerOrder page and this page.

5. Double-click on the link to display the Link Properties dialog.

Example: Adding a Lookup Reference Page

170 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

6. Name the link Customer List and set the Called Page Options to start on the
Search Page.

The Link Properties dialog should look like this:

7. Click OK to apply your changes and dismiss the dialog.

Your model should look like this:

Step 2. Capture the Search Page URL
In this section, you run the application and capture the URL of the search mode of
the CustomerList page.

➤ To capture the URL of the Search page mode

1. Run the HTMLtutApp application.

Lookup Link
additions

Example: Adding a Lookup Reference Page

Chapter 7 Customization Examples 171

2. From the Home page, click the Customers link to get to the Tip-a-Canoe
Customers page.

3. From the Customers page, click the Orders for this Customer link to get to the
Customer Orders nested page.

4. Under the Customer Order portion of the page is the new Customer List link;
click on it.

The search mode of the CustomerList page should appear, as shown here.

5. In the data section of the page, right-click to bring up the menu, and choose
Open Frame in New Window.

This step is necessary, because the HTMLtutApp application uses a page
design with frames. If you do not perform this step when copying the URL,
later, when you run the application, you will get the frameless version.

6. Copy the URL (to the clipboard) in the new window and exit the application.

Step 3. Create a Link with the Captured URL
In this section, you use the URL string you copied in the previous section to create
a link in the CustomerOrder Insert template. You will also add a variable for the
CustomerNumber.

Before beginning this section, please review “Methods for Editing Generated Files”
on page 165.

Example: Adding a Lookup Reference Page

172 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

➤ To customize the CustomerOrder page

1. Using the HTML-editing option of your choice, open the
Insert_CustomerOrder.html file.

2. Find the section defining the Customer Number field.

The original code looks like this:

3. Add an iPlanet UDS variable for the CustomerNumber field:

value=”$$(FORTE.CustomerNumber)”

4. Also add an HREF line with the saved URL from the previous section.

The URL will look like this (this is all one unbroken string):

When you paste the URL into the HTML code, substitute the beginning of the
string up to the first question mark:

http://your_web_server/web.forte?ServiceName...

with the iPlanet UDS ExecURL variable:

$$(FORTE.ExecURL)?ServiceName...

<tr>
[Begin definition of Customer Number field]
<th class="labelmodify" style="width:20%">
Customer Number

</th>
<td class="dataform" style="width:80%">
<input type="text" name="CustomerOrder_qq_CustomerNumber"

size=40>
</td>

[End definition]
</tr>

http://your_web_server/web.forte?ServiceName=HTMLtutAppService
&TemplateName=HTMLtutApp/Search_CustomerList.html&ReturnTemplate=H
HTMLtutApp/Display_CustomerList.html&Action=Clear&Action=Search
&Selection=CustomerList_qq_CustomerNumber
&CustomerList_qq_CustomerNumber=1
&LinkName=HTMLtutApp.CustomerListLink4&Uniquifier=$$(FORTE.UniqueID)"

Example: Adding a Lookup Reference Page

Chapter 7 Customization Examples 173

5. And also substitute the final variable:

Uniquifier=32

with the iPlanet UDS UniqueID variable:

Uniquifier=$$(FORTE.UniqueID)

6. Then add a label (View Customer) for the link at the end of the line.

Your final code should look like this (changes in bold):

7. Close the Insert_CustomerOrder.html file and save your changes.

8. Test your work by repeating Step 1 to Step 4 on page 171.

9. In the Customer Orders nested page, click on the Insert command in the
command list (left panel).

The Insert mode page shown in Figure 7-1 on page 167 shows the new View
Customer link you just created.

<tr>

[Begin definition of Customer Number field]
<th class="labelmodify" style="width:20%">

Customer Number
</th>
<td class="dataform" style="width:80%">

[New iPlanet UDS variable added]
<input type="text" name="CustomerOrder_qq_CustomerNumber" size=40

value=”$$(FORTE.CustomerNumber)”>

[Modified URL link (this is one line]
<a href="$$(FORTE.ExecURL)?ServiceName=HTMLtutAppService&TemplateName=HTMLtutA
pp/Search_CustomerList.html&ReturnTemplate=HTMLtutApp/Display_CustomerList.htm
l&Action=Clear&Action=Search&Selection=CustomerList_qq_CustomerNumber&Customer
List_qq_CustomerNumber=1&LinkName=HTMLtutApp.CustomerListLink4&Uniquifier=$$(F
ORTE.UniqueID)">

[Add link label]
View Customer

[End definition]
</td>

Example: Adding a Lookup Reference Page

174 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

10. Click on the View Customer link.

The CustomerList page opens in Search mode:

11. Exit the application.

Step 4. Pass the Selected Field Value
In this section, you modify the Data template of the Customer List page, adding a
link to the CustomerOrder Insert page and passing the Customer Number of the
selected customer as a parameter, so that it displays in the Insert page.

➤ To customize the Data template of the Customer List page

1. Using the HTML-editing option of your choice, open the
Data_CustomerList.html file.

2. Find the first HREF statement.

The original HREF statement looks like this:

[First HREF instance]
<a class="rowidlist" HREF="$$(FORTE.ExecURL)?ServiceName=HTMLtutAppService&Tem
plateName=HTMLtutApp/Display_$$(USER.TopPage).html&Action=CustomerListHandler.
SetCurrentRow&Position=$$(listentry.qqRowNumber)&Uniquifier=$$(FORTE.UniqueID)
"
target="_fortedisplay"> $$(listentry.qqRowNumber)

Example: Adding a Lookup Reference Page

Chapter 7 Customization Examples 175

Modify the first HREF statement as follows (changes are in bold):

To summarize the changes:

❍ &TemplateName=HTMLtutApp/Insert_CustomerOrder.html identifies
the template as the Insert mode of CustomerOrder

❍ &ReturnTemplate=HTMLtutApp/Display_CustomerOrder.html specifies
the Display mode of the same page as the return template

❍ &Uniquifier=$$(FORTE.UniqueID) defeats the caching mechanism and
retrieves a “fresh” page

❍ &CustomerNumber=$$(listentry.CustomerList_qq_CustomerNumber)
passes the selected CustomerNumber value as a parameter

❍ Use—Adds a new label for each row

For more information on iPlanet UDS tags, see Chapter 3, “Customizing
Generated HTML Templates.”

3. Exit the Data_CustomerList.html file and save your changes.

Testing Your Work Before the Final Step
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly. After testing, you will perform the final step, in
“Step 5. Remove the CustomerOrder-CustomerList Link,” which follows this
section.

[First HREF instance specifies the target of]
<a class="rowidlist" HREF="$$(FORTE.ExecURL)?ServiceName=HTMLtutAppService&Tem
plateName=HTMLtutApp/Insert_CustomerOrder.html&ReturnTemplate=HTMLtutApp/Displ
ay_CustomerOrder.html&Uniquifier=$$(FORTE.UniqueID)&CustomerNumber=$$(listentr
y.CustomerList_qq_CustomerNumber)"

[the new “Use” link]
target="_fortedisplay">Use

Example: Adding a Lookup Reference Page

176 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

➤ To test the work you have done so far

1. Run the HTMLtutApp application.

2. Navigate to the Customer Orders page and click on the Insert command in
the command list (left panel).

3. In the Insert mode of the Customer Orders page, click on the View Customer
link.

This takes you to the CustomerList page in Search mode.

4. Click on the Search button.

This takes you to the CustomerList page in Display mode, shown in Figure 7-2
on page 167.

5. Click on the Use link of any customer record.

You are returned to the Insert mode of the Customer Orders page, as shown in
Figure 7-3 on page 168, with the selected customer’s Customer Number
showing.

6. Add an order number and date.

Enter the date in the format dd-mmm-yyyy hh:mm:ss (for example,
05-Mar-1999 00:00:00).

7. Click the Insert button.

You are returned to The Customer Order page.

8. Click on Last Order in the command list.

Your new order appears. (You may have to reload the page to display all the
fields.)

9. Exit the application.

Example: Passing Data with a Command Link

Chapter 7 Customization Examples 177

Step 5. Remove the CustomerOrder-CustomerList Link
In this section, you remove the link you created in Step 1. You do this because you
use the lookup link only when you are inserting a new customer order, as set up in
Step 3. Therefore, you only want the link to appear on the Insert mode of the
CustomerOrder page. (If the link remains, it is visible on all modes of the
CustomerOrder page.)

➤ To finish the customization

1. Open the HTML Application Model Workshop for the HTMLtutApp
application.

2. Delete the link between the CustomerOrder page and the CustomerList page.

Your model should look like Figure 7-4.

Figure 7-4 HTMLtutApp Model Modified for a Lookup Link

Usage Recommendations
To use this link properly, always select the customer first, by using the Customer
View link, then add the other customer order data on the Insert page. If you fill in
the other fields before using the Customer View link, all your data will be lost
when you return to the Insert page, except for the customer number.

Example: Passing Data with a Command Link
This customization is similar to the previous one (“Example: Adding a Lookup
Reference Page” on page 166), in that you customize the application to pass a value
from a selected record to an Insert page. In this example, there is no lookup list to
select from; instead, the primary key value of the selected order is passed to the
Insert page, so that the new record will automatically be inserted into the selected
order.

Page used
for Lookup Link

Example: Passing Data with a Command Link

178 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

What This Example Does
This example modifies the HTMLtutApp tutorial application to add data to a
command link. As in the uncustomized HTMLtutApp tutorial, the user can choose
a customer from the Customer page, then navigate to the master-detail page that
displays orders for that customer. At this point, the user can browse through the
orders until she comes to the one she wants to insert a line item to:

Figure 7-5 Selected Customer on Master-Detail Page

The user clicks on the Insert command under the Product Description section (the
nested LineItem page) to invoke the LineItem Insert page, which displays with the
order number showing:

Figure 7-6 LineItem Insert Page Showing Passed Value

Thus, the new line item will be added to the order selected by the user.

Insert command

Selected customer order

for Line Item

Example: Passing Data with a Command Link

Chapter 7 Customization Examples 179

Creating the Customization
This section describes how to customize the HTMLtutApp tutorial application to
add data to a command link. The general steps of this procedure are as follows:

1. Make sure the Insert and Update commands are defined for the page in
question.

2. Add a variable to the Data mode of the page to hold the value.

3. Enclose the whole link definition in a “forte iterate” loop to single out one
instance of the data.

4. Populate the appropriate field on the Insert page with the incoming data.

Step 1. Add Insert and Update Commands (If Required)
The Insert mode of the LineItem page must have Insert and Update commands
defined for it. These are already defined in the HTMLtutApp tutorial application,
as described in Getting Started with WebEnterprise Designer. However, if you have
not finished the tutorial, or are modifying your own application, make sure the
page in question has these commands.

➤ To add the Insert and Update commands to a page (if necessary)

1. In the HTML Application Model Workshop for the HTMLtutApp application,
open the Page Wizard for the LineItem page by double-clicking on the page.

2. Click Next until the Commands page displays.

Example: Passing Data with a Command Link

180 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

3. If there are no Insert and Update commands on the page, add them.

The Commands page should look like this (other commands can be missing,
but it should at least have the Insert and Update commands):

4. Click Finish to apply your changes and close the Page Wizard.

5. Generate code for the model.

Step 2. Add a Variable to Hold the Value
In this section, you will add code to the Data_LineItem.html template that adds a
variable to hold the order number data to the Insert command link.

Before beginning this section, please review “Methods for Editing Generated Files”
on page 165.

Example: Passing Data with a Command Link

Chapter 7 Customization Examples 181

➤ To add a variable to the Insert command link of the LineItem page

1. Using the HTML-editing option of your choice, open the Data_LineItem.html
file.

2. Find the section that defines the link to the Insert mode of the page.

The original code looks like this:

3. Add a variable to hold the order number data.

Example
&ORDERNUMBER=$$(listentry.LineItem_qq_OrderNumber)

where:

❍ ORDERNUMBER is a local variable

❍ listentry.LineItem_qq_OrderNumber is an iPlanet UDS variable that stores
the value of ORDERNUMBER

The customized code should look like this (changes in bold):

<td>
[Start link definition]
<a class="alink" HREF="$$(FORTE.ExecURL)?ServiceName=HTMLtutAppService&Templat
eName=HTMLtutApp/Insert_LineItem.html&ReturnTemplate=HTMLtutApp/Display_$$(USE
R.TopPage).html&Uniquifier=$$(FORTE.UniqueID)" target="_fortedisplay">

[End link definition]
 Insert
</td>

<td>

[Start link definition]
<a class="alink" HREF="$$(FORTE.ExecURL)?ServiceName=HTMLtutAppService&Templat
eName=HTMLtutApp/Insert_LineItem.html&ReturnTemplate=HTMLtutApp/Display_$$(USE
R.TopPage).html&Uniquifier=$$(FORTE.UniqueID)&ORDERNUMBER=$$(istentry.LineItem
_qq_OrderNumber)” target="_fortedisplay">

[End link definition]
 Insert
</td>

Example: Passing Data with a Command Link

182 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

4. Continue on to the next section without closing the Data_LineItem.html file.

Step 3. Single Out One Instance of the Data
Because LineItem is a list page that could have multiple line items, you need some
way to single out a single instance of the data. In this section, you will do this by
using a “forte iterate” loop to the Insert link definition.

➤ To add a forte iterate loop

1. Enclose the code you entered in the previous section in a “forte iterate” loop.

The syntax of the forte iterate loop is:

Your final modified code should look like this (changes in bold):

2. Close the Data_LineItem.html file and save your changes.

[Begin forte iterate loop]
<!--<?forte iterate listentry entry.list_LineItem start=”1” max=”1”>-->

Your application logic here

[End forte iterate loop]
<!--<?/forte iterate listentry>-->

<td>

[Begin forte iterate loop]
<!--<?forte iterate listentry entry.list_LineItem start=”1” max=”1”>-->

[Start link definition]
<a class="alink" HREF="$$(FORTE.ExecURL)?ServiceName=HTMLtutAppService&Templat
eName=HTMLtutApp/Insert_LineItem.html&ReturnTemplate=HTMLtutApp/&ORDERNUMBER=$
$(listentry.LineItem_qq_OrderNumber)”Display_$$(USER.TopPage).html&Uniquifier=
$$(FORTE.UniqueID) target="_fortedisplay">

[End link definition]
 Insert

[End forte iterate loop]
<!--<?/forte iterate listentry>-->
</td>

Example: Passing Data with a Command Link

Chapter 7 Customization Examples 183

Step 4. Populate the Order Number with Incoming Data
In this section, you modify the Insert template of the LineItem page to display the
value stored in the CUSTOMERORDER variable that you added to the link in
“Step 2. Add a Variable to Hold the Value” on page 180.

➤ To customize the Insert mode of the LineItem page to display the data

1. Using the HTML-editing option of your choice, open the
Insert_LineItem.html file.

2. Find the section that defines the OrderNumber field.

The original code looks like this:

3. Add code to populate Customer Number with values:

value=$$(FORTE.ORDERNUMBER)

where ORDERNUMBER is the variable defined in Step 3 of the previous
section.

Your code should look like this (changes are in bold):

[Begin table definition of Order Number field]
<tr>
<th class="labelmodify" style="width:20%">
Order Number

</th>
<td class="dataform" style="width:80%">
<input type="text" name="LineItem_qq_OrderNumber" size=40>

</td>

[End definition]
</tr>

[Begin table definition of Order Number field]
<tr>
<th class="labelmodify" style="width:20%">
Order Number

</th>
<td class="dataform" style="width:80%">
<input type="text" name="LineItem_qq_OrderNumber" size=40

Example: Passing Data with a Command Link

184 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

4. Close the Insert_LineItem.html file and save your changes.

Testing Your Work
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly.

➤ To test the customization

1. Run the HTMLtutApp application.

2. On the Home page, navigate to the Tip-a-Canoe Customers page.

3. Browse through the customer records and click the Orders for this Customer
link for some customer.

4. On the Customer Orders nested page, click the Insert link below the Product
Description.

The LineItem Insert page should display with the correct Order Number
showing:

[New variable]
value=$$(FORTE.ORDERNUMBER)>

</td>

End definition
</tr>

Example: Automatically Populating Data on an Insert Page

Chapter 7 Customization Examples 185

5. Add an Item Number, a PN, and a Quantity.

To test your work accurately, use values for Item Number and PN that exist in
your database. For example (from the tutorial database):

Item Number: 1
PN: 90003
Quantity: 3

6. Click the Insert button to return to the Customer Orders page.

7. Reload the page to populate the rest of the fields. If you entered the values
suggested in Step 5, your page should look like this:

Example: Automatically Populating Data
on an Insert Page

This example describes a technique different from the previous example
(“Example: Passing Data with a Command Link” on page 177) for passing a
customer number value from a selected Customer to the Insert mode of a
CustomerOrder page. This example creates an additional CustomerOrder page,
then uses a variable created by WebEnterprise Designer to pass the value to the
Insert and Update modes of this page.

New row

Example: Automatically Populating Data on an Insert Page

186 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

What This Example Does
In the uncustomized HTMLtutApp tutorial, if a user wants to add an order to a
particular customer, he invokes the Insert mode of the Customers page, which
displays with all fields blank. If he does not remember the number of the particular
customer he selected, he must return to the Customers page for the information.

In this customization, you add a new CustomerOrder page, called NewOrder, to
the application and link it to the Customers page. When you run the application
and navigate to the Tip-a-Canoe Customers page, you activate the link to the new
page, which goes to the Insert mode of the page and passes the customer number
value with the link. Figure 7-7 shows an example display:

Figure 7-7 Insert Mode of NewOrder Page

Creating the Customization
This section describes how to customize the HTMLtutApp tutorial application to
pass a CustomerNumber field value to the Insert mode of a CustomerOrder page.
The general steps of this procedure are as follows:

1. Add a new business class page, the NewOrder page, to the model, based on the
CustomerOrder business class; link it to the Customers page.

2. Customize the generated NewOrder Insert template to populate the
CustomerNumber field with an incoming value.

Use a variable automatically created by WebEnterprise Designer to hold the
value.

Selected customer’s number

Example: Automatically Populating Data on an Insert Page

Chapter 7 Customization Examples 187

Step 1. Add a NewOrder Page to the HTMLtutApp Model
This section describes how to modify the HTMLtutApp model as the first step in
automatically populating an Insert page.

➤ To modify the HTMLtutApp model

1. Open the HTMLtutApp application in the HTML Application Model
Workshop.

2. Create a form page based on the CustomerOrder class.

3. On the Page Options page of the Page Wizard, enter:

Business Class: CustomerOrder
HTML Page Name: NewOrder

(It does not matter what you enter in the Page Title field because you will only
access the Insert mode of this page, which does not display the page title.)

4. Click Next until you reach the Field Properties page.

5. Add spaces to the field labels as shown and click Finish:

6. Add a command link between the Customer page and the NewOrder page.

Add spaces
in the field labels

Example: Automatically Populating Data on an Insert Page

188 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

7. Open the Link Properties dialog and enter or set these values:

Label: Add Customer Order
Display: CustomerOrder record(s) associated with selected Customer
Activate Link On: Separate Label
Start on: Insert Page

The Link Properties dialog should look like this:

8. Click OK to apply these values and close the dialog.

Your model should look like this:

Figure 7-8 HTMLtutApp Model with Additional CustomerOrder Page

Added CustomerOrder
page

Example: Automatically Populating Data on an Insert Page

Chapter 7 Customization Examples 189

9. Generate the application code.

At this point, you can test the application and insert orders by clicking the Add
Customer Order link. However, none of the fields are populated with values yet, so
you have to enter them manually. The next step shows you how to populate the
Customer Number field with the value from the selected customer.

Step 2. Add a Variable to Hold the Value
As part of the generated HTML code, WebEnterprise Designer creates the variable
you will use to hold the CustomerNumber value. This variable is
NewOrder_qq_CustomerNumber, which is created in the Data template of the
Customer page as part of the coding required to satisfy the link’s display option
(CustomerOrder record(s) association with Customer). The code in
Data_Customer.html page looks like this:

You will use the NewOrder_qq_CustomerNumber variable to populate the
Customer Number field on the NewOrder Insert page with the Customer Number
value of the customer selected on the Customer page.

Before beginning this section, please review “Methods for Editing Generated Files”
on page 165.

<td>
<!--<?forte if CustomerHandler.HasCurrentRow>--><a class="alink"

href="$$FORTE.ExecURL?serviceName=HTMLtutAppService&;templateName=HTMLtutApp/M
ain_NewOrder.html&;StartingPage=Insert&;ReturnTemplate=HTMLtutApp/Display_NewO
rder.html&;Action=Clear&;Action=Search&;Selection=NewOrder_qq_CustomerNumber&;
NewOrder_qq_CustomerNumber=$$(listentry.Customer_qq_CustomerNumber)&;LinkName=
HTMLtutApp.NewOrderLink3&;Uniquifier=$$(FORTE.UniqueID)" target="_top">Add
Customer Order
<!--<?forte else>-->Add Customer Order<!--<?/forte if>-->

</td>

Example: Automatically Populating Data on an Insert Page

190 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

➤ To populate the Customer Number value in the NewOrder Insert page

1. Using the HTML-editing option of your choice, open the
Insert_NewOrder.html file.

2. Find the table definition for the CustomerNumber field.

The original code looks like this:

3. Add code to populate Customer Number with values:

value=$$(FORTE.NewOrder_qq_CustomerNumber)

where NewOrder_qq_CustomerNumber is the variable defined in the
Data_Customer.html template.

Your code should look like this (changes are in bold):

[Begin table definition of Customer Number field]
<tr>
<th class="labelmodify" style="width:20%">
Customer Number

</th>
<td class="dataform" style="width:80%">
<input type="text" name="CustomerOrder_qq_ReqCustomerNumberze=40>

</td>

[End definition]
</tr>

[Begin table definition of Customer Number field]
<tr>
<th class="labelmodify" style="width:20%">
Customer Number

</th>
<td class="dataform" style="width:80%">
<input type="text" name="LineItem_qq_OrderNumber" size=40

[New variable]
value=$$(FORTE.NewOrder_qq_CustomerNumber)>

</td>

End definition
</tr>

Example: Adding a Drop List for Entering and Formatting Dates

Chapter 7 Customization Examples 191

4. Close the Insert_NewOrder.html file and save your changes.

5. Regenerate the application’s code.

Testing Your Work
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly.

➤ To test the customization

1. Run the HTMLtutApp application.

2. On the Home page, navigate to the Tip-a-Canoe Customers page.

3. Browse through the customer records and choose one.

4. Click on the Add Customer Order link.

The Insert NewOrder page should display, as in Figure 7-7 on page 186, with
the Customer Number of the selected customer showing.

Example: Adding a Drop List for Entering
and Formatting Dates

In the uncustomized HTMLtutApp tutorial application, one of the fields on the
Customer Orders page requires a date value, but the application provides no help
on the Insert page regarding date format. If a user enters the date in any other than
a DD-MMM-YYYY HH:MM:SS format, she will get an error.

This customization solves this problem by creating drop lists with month, day, and
year values for entry of new customer orders.

Example: Adding a Drop List for Entering and Formatting Dates

192 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

What This Example Does
In this customization, when the user invokes the Insert mode of the Customer
Order page, it is displayed with drop lists in the Requested Date field for month,
day, and year:

Figure 7-9 Requested Date Field Formatted with Drop Lists

The user fills in the other fields, then uses the drop lists to specify the requested
date. When she clicks the Insert button, the Customer Order~LineItem page is
displayed, showing the new order with the correct date format:

Figure 7-10 Inserted Customer Order Showing the Date

Drop lists
for date elements

Correct
date format

Example: Adding a Drop List for Entering and Formatting Dates

Chapter 7 Customization Examples 193

Creating Date-Formatting Drop Lists
This section describes how to customize the HTMLtutApp tutorial application to
substitute drop lists for the date definition in the Insert template of the
CustomerOrder page. The general steps of this procedure are as follows:

1. Customize the Insert template of the CustomerOrder page, replacing the table
definition of the Requested Date field with HTML code that builds three drop
lists for Month, Day, and Year.

2. Customize the BeforeInsert method to:

❍ build the DateTimedata object with the values from the drop list

❍ modify the RequestedDate attribute in the underlying business class
(CustomerOrderClass)

❍ continue the normal WebEnterprise Designer processing

Step 1. Define Drop Lists for Date Elements
In this section, you will make changes to the Insert_CustomerOrder.html page to
include a drop list for the three parts of the date, and provide appropriate data for
each list.

Before beginning this section, please review “Methods for Editing Generated Files”
on page 165.

➤ To define drop lists for the Requested Date field

1. Using the HTML-editing option of your choice, open the
Insert_CustomerOrder.html file.

2. Find the table definition for the RequestedDate field.

The original code looks like this:

[Begin table definition of Requested Date field]
<tr>
<th class="labelmodify" style="width:20%">
Requested Date

</th>
<td class="dataform" style="width:80%">
<input type="text" name="CustomerOrder_qq_RequestedDate" size=40>

</td>

[End definition]
</tr>

Example: Adding a Drop List for Entering and Formatting Dates

194 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

3. Replace the definition line (beginning <input type=”text”) with HTML code
defining three drop lists.

Your code should look like this (changes are in bold):

[Begin table definition of Requested Date field]
<tr>
<th class="labelmodify" style="width:20%">
Requested Date

</th>
<td class="dataform" style="width:80%">

[Begin Month drop list definition]
<select name="Month" size="1">

[Begin Month values]
<OPTION value="Jan">Jan
<OPTION value="Feb">Feb
<OPTION value="Mar">Mar
<OPTION value="Apr">Apr
<OPTION value="May">May
<OPTION value="Jun">Jun
<OPTION value="Jul">Jul
<OPTION value="Aug">Aug
<OPTION value="Sep">Sep
<OPTION value="Oct">Oct
<OPTION value="Nov">Nov
<OPTION value="Dec">Dec

[End Month definition]
</select>

[Begin Day drop list definition]
<select name="Day" size="1">

[Begin Day values]
<option>01<option>02<option>03<option>04<option>05<option>06
<option>07<option>08<option>09<option>10<option>11<option>12
<option>13<option>14<option>15<option>16<option>17<option>18
<option>19<option>20<option>21<option>22<option>23<option>24
<option>25<option>26<option>27<option>28<option>29<option>30
<option>31

[End Day definition]
</select>

[Begin Year drop list definition]
<select name="Year" size="1">

[Year values]
<option>1999<option>2000<option>2001

Example: Adding a Drop List for Entering and Formatting Dates

Chapter 7 Customization Examples 195

4. Save and close the Insert_CustomerOrder.html file.

Step 2. Override the BeforeInsert Method
You want to prevent the user from inserting a blank value for the Requested Date
field. Therefore, you will make changes to the page handler’s BeforeInsert method.

In this section, you use a customization point in the Page Handler Customization
Wizard to create a BeforeInsert method for the CustomerOrderHandler class
(which will override the ExpressClassHandler.BeforeInsert method). You then
customize the method as described.

➤ To override the BeforeInsert method for this customization

1. Open the HTMLtutApp model in the HTML Application Model Workshop.

2. Start the Page Handler Customization Wizard for the CustomerOrder page, as
described in “Customizing a Generated HTML Template” on page 72.

3. Open the Whole Object Operations category, then the Database Operation
subcategory.

4. Double-click on the “Insert: Before sending an insert object request”
customization point.

If this is the first customization you are making to this class, WebEnterprise
Designer displays a confirmation dialog to expand the class hierarchy to
include a customizable class for this class page. Click OK.

The Method Workshop opens, displaying an override of the BeforeInsert
method.

[End Year definition]
</select>

</td>

[End definition]
</tr>

Example: Adding a Drop List for Entering and Formatting Dates

196 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

5. Add the following code to the end of the method body:

6. Compile the method, close the Method Workshop and the Customization
Wizard.

Testing Your Work
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly.

➤ To test the customization

1. Run the HTMLtutApp application.

2. On the Home page, navigate to the Tip-a-Canoe Customers page.

3. Browse through the customer records and click the Orders for this Customer
link for some customer.

Remember the customer number this customer.

TheMonth : Textdata = request.findNameValue(‘Month’);
TheDay : Textdata = request.findNameValue(‘Day’);
TheYear : Textdata = request.findNameValue(‘Year’);
TheDate : Textdata = new(Value=TheDate.value);
TheDate.concat('-');
TheDate.concat(TheMonth.value);
TheDate.concat('-');
TheDate.concat(TheYear.value);
InsertDate : DateTimedata = new (value=TheDate.value);
Client.LogAttr(source, attr=CustomerOrderQuery.ATTR_REQUESTEDDATE);
CustomerOrderClass(source).REQUESTEDDATE.Setvalue(InsertDate);

Example: Adding a Drop List for Entering and Formatting Dates

Chapter 7 Customization Examples 197

4. Click the Insert command in the left pane of the page.

The Customer Order Insert page is displayed and should show the new date
drop lists.

5. Enter the customer number from Step 4, and a fictitious order number.

Do not enter an order number from the tutorial database (1002-1006), because it
will raise an error.

6. Use the drop lists to enter a date and click the Insert button.

The nested Customer Order~LineItem page is displayed.

7. Navigate to the new order and reload the page.

The new order should resemble Figure 7-10 on page 192.

Example: Removing a JavaScript Validation from a Page Mode

198 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Example: Removing a JavaScript Validation
from a Page Mode

WebEnterprise Designer allows JavaScript for field validations, and provides
several sample validations for your use. Users can also create their own JavaScript
validations. All JavaScript validations must exist in the
$FORTE_ROOT/userapp/http/cl0/scripts/validate directory. The tutorial
chapter in Getting Started with WebEnterprise Designer describes how to add a
JavaScript validation as a possible enhancement to the HTMLtutApp application.

When you generate code for an application that has a field validation,
WebEnterprise Designer performs the following actions:

• generates a Scripts_bus_class_page.html file that contains all JavaScript
functions for the page, including:

❍ invoking the selected JavaScript

❍ adding a selected field to the Web page

• modifies the Insert, Search, and Update templates of bus_class_page page to call
the JavaScript functions (from the Scripts_bus_class_page.html file)

Sometimes you do not want the validation applied to all the pages by default. This
customization shows you how to remove the validation from a specific page mode
template.

What This Example Does
This example modifies the HTMLtutApp application by applying the IsAlphabetic
validation to the Customer Name field of the Customer page. This validation is a
JavaScript script that enforces that only alphabetical characters can be entered into
the field. This is a reasonable restriction when inserting or updating a name field,
but presents an inconvenience on the search page, where iPlanet UDS normally
allows the percent sign (%) as a wildcard character. If the IsAlphabetic validation is
enforced on the Search page, this character will raise an error

Example: Removing a JavaScript Validation from a Page Mode

Chapter 7 Customization Examples 199

Figure 7-11 IsAlphabetic Validation Error

This customization shows you how to avoid this problem by deleting the
unwanted validation from the Search template of the Customer page.

Creating the Customization
This section describes how to add a validation to a field in the HTMLtutApp
tutorial application, and then how to remove it from the Search template of that
page. The general steps of this procedure are as follows:

1. Add the IsAlphabetic JavaScript validation provided by WebEnterprise
Designer to the Name field of the Customer page.

2. Modify the Search template of the Customer page, commenting out the line
that invokes the validation script and substituting a plain field definition.

Step 1. Apply the JavaScript to a Customer Page Field
In this section, you apply the IsAlphabetic validation to the Name field of the
Customer page.

➤ To set a validation on the Name field of the Customer page

1. Open the HTMLtutApp application in the HTML Application Model
Workshop.

2. Double-click on the Customer page to open the Page Wizard.

3. Click Next until you reach the Field Validation page.

Entering a wildcard character
raises an error

Example: Removing a JavaScript Validation from a Page Mode

200 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

4. Select Name in the field name window.

5. Select JavaScript from the Validation Option’s drop list.

6. Select IsAlphabetic from the Script Name’s drop list.

The Field Validation page should look like this:

7. Click Finish to apply your changes and close the Page Wizard.

8. Generate the application’s code.

At this point, you can run the application and test the validation by attempting to
type a non-alphabetic character in the Name field on an insert, update, or search
page. Hint: the validation’s warning message pops up when you attempt to leave
the field after typing something in, including tabbing to the next field, or clicking
the cursor anywhere outside the field.

Step 2. Remove the JavaScript Validation from a Template
This section describes how to remove the JavaScript validation from the Search
template of the Customer page. Before beginning this section, please review
“Methods for Editing Generated Files” on page 165.

➤ To remove the validation from the search template

1. Using the HTML-editing option of your choice, open the
Search_Customer.html file.

Example: Removing a JavaScript Validation from a Page Mode

Chapter 7 Customization Examples 201

2. Locate the table definition for the Name field.

The original code looks like this:

3. Comment out the JavaScript call.

4. Add a new line to add the Name field to the Search page.

Your modified code should look like this (changes in bold):

[Begin table definition of Name field]
<tr>
<th class="labelmodify" style="width:20%">
Name

</th>
<td class="dataform" style="width:80%">

[Call to JavaScript validation]
<script language="JavaScript">
Select_Customer_qq_Name(’Customer_qq_Name’,’Name’,’qqNone’);

 [End call]
</script>

</td>

[End definition]
</tr>

[Begin table definition of Name field]
<tr>
<th class="labelmodify" style="width:20%">
Name

</th>
<td class="dataform" style="width:80%">

[Begin comment]
<!--
<script language="JavaScript">
Select_Customer_qq_Name(’Customer_qq_Name’,’Name’,’qqNone’);
</script>

[End comment]
-->

[Field definition added]
<input type="text" name="Customer_qq_Name" size=40>

</td>

Example: Removing a JavaScript Validation from a Page Mode

202 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

5. Close the Search_Customer.html file and save your changes.

6. Regenerate the application’s code.

Testing Your Work
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly.

➤ To test the customization of the JavaScript validation

1. Run the HTMLtutApp application.

2. Navigate to the Tip-a-Canoe Customers page.

3. To test that the validation still works on a page not customized, click Insert in
the command list.

4. Enter some non-alphabetic characters and press the Tab key.

The validation’s warning message should appear:

[End definition]
</tr>

NOTE The complete Search_Customer.html file is provided as an
example in “Example: Customizing a Field on a Search Page” on
page 106 of Chapter 3, “Customizing Generated HTML
Templates.”

Example: Displaying the Record Just Inserted

Chapter 7 Customization Examples 203

Figure 7-12 Validation Working on Insert Page

5. To test that the validation was removed from the search page, return to the
Customers page and click Search in the command list.

6. Enter a non-alphabetic character in the Name field, for example J%, and press
the Tab key.

If you entered J%, you are automatically returned to the Customers page,
showing that two records were returned (there are two customers with names
beginning with “J” in the HTMLtutApp database). This demonstrates that
your customization of the search page is working, and the validation was
removed.

Example: Displaying the Record Just Inserted
When a user inserts a new record, by default WebEnterprise Designer places it at
the end of the result set. When the display page is redisplayed, the record just
entered is at the end of the list and frequently not visible. In many cases, it would
be more convenient for the user to see the record he just entered immediately
displayed on the display page. This customization causes this to happen.

What This Example Does
This example uses the HTMLtutApp tutorial application, customizing the DoInsert
method to specify that the first visible row will be the newly-inserted record.

Example: Displaying the Record Just Inserted

204 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Thus, when you enter a new record:

Figure 7-13 Entering a New Customer Record

After you click the Insert button, this record is immediately displayed on the
Customer display page:

Figure 7-14 New Record Displayed

Creating the Customization
This section describes how to use the Customization Wizard to override the
ExpressClassHandler.DoInsert method in the page handler class of the Customer
page to specify that the most recently-entered record displays immediately after
insert.

Before beginning this customization, please review “Customizing With the Page
Handler Customization Wizard” on page 67. Alternatively, you can read the online
Help topic found under the Help index entry “Customize:Page Handler.”

Example: Displaying the Record Just Inserted

Chapter 7 Customization Examples 205

➤ To code this customization with the Customization Wizard

1. Open the HTMLtutApp application in the HTML Application Model
Workshop.

2. Start the Page Handler Customization Wizard for the Customer page.

3. Open the Processing Commands category.

4. Double-click on the “Insert: Inserting a new object in the result set”
customization point.

If this is the first customization you are making to this class, WebEnterprise
Designer displays a confirmation dialog to expand the class hierarchy to
include a customizable class for this class page. Click OK.

The Method Workshop opens, displaying an override of the DoInsert method.

5. Add the following code to the end of the method body:

pagedata.FirstVisibleRow = pagedata.data.items;

The whole method body should look like this (changes in bold):

6. Compile the method and close the Method Workshop.

7. Close the Page Handler Customization Wizard.

8. Regenerate code for the application.

Testing Your Work
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly.

➤ To test the DoInsert method customization

1. Run the HTMLtutApp application.

2. Navigate to the Tip-a-Canoe Customers page.

super.DoInsert(request=request, response=response,
parameters=parameters, rset=rset, pageData=pageData);

pagedata.FirstVisibleRow = pagedata.data.items;

Example: Validating a Whole Form

206 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

3. Click the Insert command in the command list (left pane).

The Insert Customer page appears.

4. Enter valid data in all the fields, for example:

Customer Number: 4
Name: Alfred E. Newman
Address: 123 Main St.
Phone: 456-1234

5. Click Insert.

The Customer display page should appear, showing this record, as shown in
Figure 7-14 on page 204.

Example: Validating a Whole Form
By default, WebEnterprise Designer allows a user to leave fields blank when
submitting an insert, update, or search. This section and the one that follows
present customizations that prevent a user from leaving a particular field blank
when submitting an insert. The example in this section uses a JavaScript script and
other modifications to the HTML template.

What This Example Does
This customization example modifies the HTMLtutApp tutorial application to
force a user to enter data in the PN (part number) and Description fields when
inserting a new record in the Tip-a-Canoe Products page.

NOTE This example validates multiple fields when the form is submitted
(when the user presses the appropriate command button). To
validate an individual field at data entry time (when the user tabs
out of the field after entering data), see “Example: Making a Field
Mandatory” on page 213.

Example: Validating a Whole Form

Chapter 7 Customization Examples 207

Figure 7-15 Restricted Fields on Insert Page

For example, if a user leaves one of these field blank, when she clicks the Insert
button, an error message pops up, specifying the constraint:

Figure 7-16 Restricted Field Error Message

Creating a Field Constraint with JavaScript
This section describes how to add a constraint to a field by using modifications to
an HTML template. The modifications include adding JavaScript code and
modifying the existing HTML code. The general steps of this procedure are as
follows (all modifications are to the Insert mode template of the Part2 page):

1. Add the JavaScript script to the HTML page.

2. Add a value attribute to the field descriptions.

3. Modify the Insert button

Restricted fields (cannot be null)

Example: Validating a Whole Form

208 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

JavaScript Boilerplate
The JavaScript code used for this example is based on the following a JavaScript
boilerplate script. You can use this boilerplate as a starting point for your own
validation script.

[Start script]
<SCRIPT LANGUAGE="JavaScript">

[Start Field Validation validation]
function fieldvalidation(form) {

[Contains allblanks function]
allblanks(form)
//Add functions as needed. Each function corresponds to a field
function1(form)
}

[Boilerplate for specifying a function affected by the validation.]
function allblanks(form) {
if((function1(form)) {
form.submit()
}

[Begin condition if field fails]
if((function1(form) == false{
compose(form)
}

}
function compose(form) {

var text = "You forgot to fill in correctly the following
field(s):"

[Begin condition if field fails]
if(function1(form) == false) {
text += "\n your Message"
}
alert(text)

[Creates error window]
}

[Text of error message]
function function1(form) {
if (form.FieldName.value == "") {

[Rest of text for function1]
return false
}
else {
return true

[Defines the function1 fn that checks that a specific field is not blank.]

Example: Validating a Whole Form

Chapter 7 Customization Examples 209

Step 1. Add the JavaScript Validation to the Template
In this section, you add a JavaScript validation script to the Insert_Part2.html
template.

Before beginning this section, please review “Methods for Editing Generated Files”
on page 165.

}
}

</SCRIPT>

Example: Validating a Whole Form

210 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

➤ To add a JavaScript validation script to restrict non-null field entry

1. Using the HTML-editing option of your choice, open the Insert_Part2.html
file.

2. At the top of the file, immediately after the <head> tag, enter the following
JavaScript code (modifications to the boilerplate script are in bold):

<SCRIPT LANGUAGE="JavaScript">

function fieldvalidation(form) {
allblanks(form)
ispartnumber(form)
isdescription(form)
}
function allblanks(form) {
if((ispartnumber(form) && isdescription(form))) {
form.submit()
}
if((ispartnumber(form) == false || isdescription(form) == false)) {
compose(form)
}

}
function compose(form) {
var text = "To correctly insert the Part you must enter the correct

value in the following field(s):"
if(ispartnumber(form) == false) {
text += "\n Part number"
}
if(isdescription(form) == false) {
text += "\n Description"
}
alert(text)
}
function ispartnumber(form) {
if (form.Part2_qq_PartNumber.value == "") {
return false
}
else {
return true
}

}
function isdescription(form) {
if (form.Part2_qq_Description.value == "") {
return false
}
else {
return true
}

}
</SCRIPT>

Example: Validating a Whole Form

Chapter 7 Customization Examples 211

3. Save your work, but do not close the file.

This script will be invoked every time the user submits an insert form. If all fields
pass the validation, the form is submitted; otherwise, the error message is
displayed.

Step 2. Add a Value Attribute to the Field Descriptions
In this section, you add a value attribute to each field that will be validated and
initialize it to “. We will later access this attribute in our JavaScript script.In this
example, you add the attribute to the PN and Description fields.

➤ To add a value attribute to the validated fields

1. Further along in the Insert_Part2.html template, find the section describing
the fields.

2. Add the value attribute as follows (modification is in bold):

3. Make the same change for the Description field.

4. Save your work, but do not close the file.

Step 3. Modify the Insert Button
In this section, you make changes to the Insert button so that it calls the JavaScript
script before the form gets submitted.

[Begin table definition of PN field]
<tr>
<th class="labelmodify" style="width:20%">
PN

</th>
<td class="dataform" style="width:80%">
<input type="text" name="Part2_qq_PartNumber value="" size=40>

</td>

[End definition]
</tr>

Example: Validating a Whole Form

212 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

➤ To modify the Insert button

1. Towards the end of the Insert_Part2.html template, find the line section
specifying values for the Insert button.

2. Add code that calls the validation script.

You code should look like this (changes in bold):

3. Save your work and close the Insert_Part2.html template file.

Testing Your Work
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly.

➤ To test the customization of the JavaScript validation

1. Run the HTMLtutApp application.

2. Navigate to the Tip-a-Canoe product list page.

3. Click the Insert command in the command list (left pane) to display the Insert
page.

[Begin table definition of PN field]
<tr>
<td class="buttons">
<INPUT TYPE="button" VALUE="INSERT"

[Add call to script]
onClick="fieldvalidation(this.form)">

</td>

[End definition]
</tr>

Example: Making a Field Mandatory

Chapter 7 Customization Examples 213

4. Enter data in every field except the PN or Description field.

For example:

5. Click the Insert button.

The error message window should pop up, as shown in Figure 7-16 on
page 207.

Example: Making a Field Mandatory
By default, WebEnterprise Designer allows a user to leave fields blank when
submitting an insert, update, or search. This section describes a customization that
prevents a user from leaving a particular field blank when submitting an insert.
The implementation described in this example uses a TOOL customization.

NOTE You could also write a JavaScript function to accomplish the same
thing. You would install it in the validation scripts directory
(${FORTE_ROOT}/userapp/http/clx/scripts/validate), and
then select it as a JavaScript validation option in the Validation
Options page of the Page Handler.

Example: Making a Field Mandatory

214 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

What This Example Does
This customization examples modifies the HTMLtutApp tutorial application to
ensure that a user enters data in the Customer Number field when inserting a new
record in the Tip-a-Canoe Customers page.

Figure 7-17 Restricted Field on Insert Page

For example, if a user inserting a record leaves the Customer Number field blank,
when she clicks the Insert button, an error page is displayed, specifying the
constraint:

Figure 7-18 Restricted Field Error Page

Restricted field (can not be null)

Original message:
Invalid value for
Customer Number field

Example: Making a Field Mandatory

Chapter 7 Customization Examples 215

Creating a Field Constraint with TOOL
This section describes how to add a constraint to a field by customizing TOOL
code. In this particular example, you will customize code to prevent the user from
inserting blank values into the Customer Number field of the Customer page.

You will use a customization point in the Page Handler Customization Wizard to
create a BeforeInsert method for the CustomerHandler class (which will override
the ExpressClassHandler.BeforeInsert method).

➤ To create a field constraint with TOOL

1. Open the HTMLtutApp application in the HTML Application Model
Workshop.

2. Start the Page Handler Customization Wizard for the Customer page.

3. Open the Individual Field Operations category.

4. Double-click on the “Decoding or validating a field” customization point.

If this is the first customization you are making to this class, WebEnterprise
Designer displays a confirmation dialog to expand the class hierarchy to
include a customizable class for this class page. Click OK.

The Method Workshop opens, displaying an override of the DecodeValue
method.

5. Add the following code to the beginning of the method body:

The GetFieldName method returns the name of the Customer Number field of
the Customer page.

6. Compile the method, close the Method Workshop and the Customization
Wizard.

if ((GetFieldName (assocID=assocID, fieldIndex=fieldIndex) =
‘Customer_qq_CustomerNumber’) and (value=NIL or value.value='')) then
e : GenericException = new;
e.SetWithParams (SP_ER_ERROR,

[Error message text.]
'Invalid value for Customer Number field');

task.ErrorMgr.AddError(e);
raise e;

end if;

Example: Making a Field Mandatory

216 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Testing Your Work
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly.

➤ To test the TOOL customization

1. Run the HTMLtutApp application and navigate to the Customer page.

2. Click the Insert command in the command list (left pane).

3. Enter data in every field except the Customer Number field.

For example:

4. Click the Insert button.

The error message page should display, as shown in Figure 7-18 on page 214.

Drop List or Radio List Example: Entering Lookup Information Manually

Chapter 7 Customization Examples 217

Drop List or Radio List Example:
Entering Lookup Information Manually

Drop lists and radio lists require a stored value and a display value for each option
in the list. When you specify this type of validation on a page field (in the Page
Wizard), you can use the attributes of a business class (a “Lookup class”) to supply
these values. These values are created at runtime. When you generate code for the
application, WebEnterprise Designer generates a file that is populated with the
stored and displayed values.

If you leave the Lookup class, display field, and stored field unspecified,
WebEnterprise generates a Lookup file without values, and you must populated
the file with data manually. This example describes how to do this.

What This Example Does
This customization modifies the HTMLtutApp tutorial application by adding a
drop list to the Picture field of the Product List (Part2) page, so that the user can
select a title from a drop list rather than having to type in a long file specification
string.

Figure 7-19 Customized Drop List

NOTE The next customization, “Drop List and Radio List Example:
Removing <Not Selected> and <None>” on page 223, shows you
how to remove the <Not Selected> option from the drop list.

Drop List or Radio List Example: Entering Lookup Information Manually

218 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Creating the Customization
This section shows you how to customize a drop list that is not linked to the
attributes of a business class. The general steps of this procedure are as follows

1. Add the drop list validation to the gifAddress field of the Part2 business class
page.

2. Generate code so that WebEnterprise Designer generates a lookup file.

3. Modify the lookup list in the lookup file, adding displayed and stored values
for each option.

Step 1. Add a Drop List Validation to the Field
In this section, you set up for the customization by adding a drop list validation on
the gifAddress (Picture) field of the Part2 page.

➤ To add a drop list validation to the gifAddress field

1. Open the HTMLtutApp application in the HTML Application Model
Workshop.

2. Double-click on the Part2 page to display the Page Wizard.

3. Click the Next button repeatedly until you reach the Field Validation page.

4. Select the gifAddress field in the field name pane.

5. From the Validation Option drop list, select Droplist.

Drop List or Radio List Example: Entering Lookup Information Manually

Chapter 7 Customization Examples 219

6. Leave Lookup Class, Displayed Field, and Stored Field unspecified. The Page
Wizard Field Validation page should look like this:

7. Click Finish to apply your changes and close the Page Wizard.

Step 2. Generate the Lookup File
Now, you must generate the lookup file.

➤ To generate a lookup file

1. Regenerate the application’s code.

2. Test the validation by running the application.

3. Navigate to the Tip-a-Canoe Products page.

4. Click on the Insert, or Update command in the command list (in the tutorial,
you removed this field from the Search page; otherwise, you could choose
Search, too).

The appropriate page mode appears. The Picture field on the Insert or Update
pages should contain three values:

Drop List or Radio List Example: Entering Lookup Information Manually

220 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

These are the default values defined in the lookup file when there is no lookup
class defined for the validation.

5. Exit the application.

Step 3. Customize the Lookup File with Your Values
In this section, you will modify the generated lookup file and add the values for
your list. You can use the Page Handler Customization Wizard to access the file.
For information, see “Methods for Editing Generated Files” on page 165.

There are five graphic files provided for the HTMLtutApp tutorial. You will use
the fully-defined file specification for the files as the stored values. The displayed
values will be labels for the five pictures.

➤ To customize the lookup file

1. Using the Page Handler Customization Wizard, open the
Part2_qq_gifAddress.inc file.

The file is found in the Lookup Data Files category of the Wizard. This category
only exists when the application contains a drop list or radio list validation.
Open the file by selecting it and clicking the Customize button.

The original code looks like this:

[Declare total number of values in the list.]
NumValues = 2;

[Initialize stored value array]
storedValues = new Array(NumValues);

displayedValues = new Array(NumValues);
[Initialize displayed value array]

[Null value stored value]
storedValues[0] = ’qqNULLqqZa047!#$%^_yJk523qqNULLqq’;

[Null value displayed value]
displayedValues[0] = ’<NULL>’;

[First non-null value stored value]
storedValues[1] = ’your stored value’;

[First non-null value displayed value]
displayedValues[1] = ’your displayed value’;

Drop List or Radio List Example: Entering Lookup Information Manually

Chapter 7 Customization Examples 221

2. Modify the NumValues value to the number of values you will have.

For this example, specify five values:

NumValues = 5;

3. Specify whether the lookup list will have a <NULL> value or not.

For this example, we do not want a <NULL> value, so comment out the null
value line(s):

4. Replicate the storedValues, and displayedValues lines, so that the total number
of paired lines matches the NumValues number (in this case, five pairs total).

5. Modify the elements’ indices so that they start at 0 and end in NumValues - 1.

6. Modify the values assigned to storedValues and displayedValues, entering
appropriate values to the array.

In this example, the storedValues strings are the file specifications for the five
graphic product files. All files are stored in the
/forte/examples/wedtut/images directory.

The displayedValues strings will be labels for the files, as follows:

// storedValues[0] = ’qqNULLqqZa047!#$%^_yJk523qqNULLqq’;
// displayedValues[0] = ’<NULL>’;

NOTE Graphics files for WebEnterprise Designer applications are
assumed to be stored under the Web server root directory, so
their specifications are relative to this directory.

File name displayedValues string

canoea.gif Medium Canoe

canoef.gif Large Canoe

paddle1.gif Small Paddle

paddle2.gif Large Paddle

2paddles.gif Pair of Paddles

Drop List or Radio List Example: Entering Lookup Information Manually

222 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Your modified code should look like this (changes are in bold):

7. Close the Part2_qq_gifAddress.inc file and save your changes.

Testing Your Work
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly.

➤ To test your manually customized lookup file

1. Start the HTMLtutApp tutorial application.

2. On the home page, click the Product List link to access the Products page.

3. Click Insert to display the Insert mode of the Products page.

4. Enter the following values on the Insert page:

PN: 90005
Description: Basswood Oars
Price 29.99

5. Select the Pair of Paddles option from the Picture drop list.

6. Click the Insert button to redisplay the Tip-a-Canoe Products page.

storedValues[0] = ’/forte/examples/wedtut/images/canoea.gif’;
displayedValues[0] = ’Medium Canoe’;

storedValues[1] = ’/forte/examples/wedtut/images/canoef.gif’;
displayedValues[1] = ’Large Canoe’;

storedValues[2] = ’/forte/examples/wedtut/images/paddle1.gif’;
displayedValues[2] = ’Small Paddle’;

storedValues[3] = ’/forte/examples/wedtut/images/paddle2.gif’;
displayedValues[3] = ’Large Paddle’;

storedValues[4] = ’/forte/examples/wedtut/images/2paddles.gif’;
displayedValues[4] = ’Pair of Paddles’;

NOTE Save a copy of the Part2_qq_gifAddress.inc file in another directory.
If you make changes to the model and regenerate code, this file is
replaced with the uncustomized version. After regeneration, replace
the new file with your saved version.

Drop List and Radio List Example: Removing <Not Selected> and <None>

Chapter 7 Customization Examples 223

7. Navigate to the last record.

Your page should look like this:

Drop List and Radio List Example:
Removing <Not Selected> and <None>

By default, the WebEnterprise Designer drop list and radio list include <Not
Selected> and <None> as options. In fact, <Not Selected> is the default option for
the drop list, and <None> is the default for the radio list. This example describes
how to remove these options, in case you do not want them in your drop list or
radio list.

What This Example Does
This example builds on the customization described in the previous section (“Drop
List or Radio List Example: Entering Lookup Information Manually” on page 217),
removing the <Not Selected> default from the drop list on the Insert and Update
modes of the Product List page. The resulting drop list looks like this:

New record with picture

Drop List and Radio List Example: Removing <Not Selected> and <None>

224 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 7-20 Customized Drop List

Creating the Customization
You can remove the default options in one of two ways:

• modify the default option specification in the generated page mode files

• modify the default option parameter in the Scripts_bus_class_page.html file

You use the same procedures to remove the <None> default from a radio list. The
only difference is whether in the HTML model you specify a radio list or a drop list
field validation.

This section describes both techniques. Although the drop list validation used for
this example was customized manually (in “Drop List or Radio List Example:
Entering Lookup Information Manually” on page 217), the techniques described
here work the same for a drop list or radio list that uses values from a Lookup
business class.

Technique 1: Customizing the Page Mode Template
In this section, you customize the Insert and Update templates of the Product List
page, changing the default selection string into either a nonsensical string or a legal
string (that is, one of the stored values in the list). If you use a nonsensical value,
the default option is not displayed; if you use a legal value, that one becomes the
default value.

Before beginning this section, please review “Methods for Editing Generated Files”
on page 165.

Drop list without the
<Not Selected> default option

Drop List and Radio List Example: Removing <Not Selected> and <None>

Chapter 7 Customization Examples 225

➤ To remove the <Not Selected> option from a drop list

1. Using the HTML-editing option of your choice, open the Insert_Part2.html
file.

2. Locate the table definition for the Picture field.

The original code looks like this:

The “qqNone” is passed to the script as a parameter for the default value to be
selected in the drop list or radio list.

[Begin table definition of Picture field]
<tr>
<th class="labelmodify" style="width:20%">
Picture

</th>
<td class="dataform" style="width:80%">

[Call to JavaScript validation]
<script language="JavaScript">
Select_Part2_qq_gifAddress(’Part2_qq_gifAddress’,’Picture’,’qqNone’);

[End call]
</script>

</td>

[End definition]
</tr>

Drop List and Radio List Example: Removing <Not Selected> and <None>

226 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

3. You could either:

❍ remove the
Select_Part2_qq_gifAddress(’Part2_qq_gifAddress’,’Picture’,’goaway’
parameter completely

❍ add any string value, for example:

❍ add a valid selection that you want to highlight, for example, replace
“qqNone” with one of the stored values used in “Step 3. Customize the
Lookup File with Your Values” on page 220:

4. Close and save the Insert_Part2.html file.

5. Repeat Step 1 through Step 4 for the Update_Part2.html file.

6. Close the Page Handler Customization Wizard.

7. Go to “Testing Your Work” on page 228 for a description of what your results
should look like.

Technique 2: Customizing the Scripts File
This section describes how to implement the same customization of the previous
section, but modifying the Scripts_Part2.html file instead of the page mode
templates.

Select_Part2_qq_gifAddress(’Part2_qq_gifAddress’,’Picture’
,’goaway’);

Select_Part2_qq_gifAddress(’Part2_qq_gifAddress’,’Picture’,
’/forte/examples/wedtut/images/paddle2.gif’);

Drop List and Radio List Example: Removing <Not Selected> and <None>

Chapter 7 Customization Examples 227

➤ To remove the <Not Selected> option from a drop list

1. Using the HTML-editing option of your choice, open the Scripts_Part2.html
file.

2. Locate the line containing the “qqNone” string.

The original code looks like this:

3. Comment this section out:

4. Close and save the Scripts_Part2.html file.

5. Close the Page Handler Customization Wizard.

if (Selected_Value == 'qqNone’)
document.writeln(‘<option selected value=””><Not Selected>’);

//if (Selected_Value == 'qqNone’)
//document.writeln(‘<option selected value=””><Not Selected>’);

Drop List and Radio List Example: Removing <Not Selected> and <None>

228 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Testing Your Work
Now it is time to test your work to verify that you made no mistakes and the
customization works correctly.

➤ To test your drop list customization

1. Run the customized HTMLtutApp application.

2. From the Home page, click on the Product List link to access the Tip-a-Canoe
Product List page.On the Product page, click on either the Insert or Update
command in the command list.

If you substituted a nonsensical string in your customization, the results
should look like this:

Drop list: No <Not Selected> option, and no default

Radio list: No <None> option, and no default

If you substituted a valid stored value string in your customization, the results
should look like this:

Drop list: No <Not Selected> option, and the default is the displayed value for
the paddle2.gif file

Radio list: No <None> option, and the default is the displayed value for the
paddle2.gif file

No default (displayed value
is first item in list)

Specified default value displayed

229

Chapter 8

Customizing Application Security

WebEnterprise Designer provides a number of application security models,
ranging from open access to all pages to restricted page-based access to
authenticated users.

This chapter provides information on all types of security customization,
including:

• WebEnterprise session management

• how to implement a logon procedure to restrict access to authenticated users

• how to grant application page access based on the authenticated user

• how to share WebEnterprise session management across several HTML
applications

• other common WebEnterprise security customizations, such as session timeout

Security and HTML Applications
WebEnterprise Designer's implementation of security is based on the session
management feature of WebEnterprise. For complete information on this feature,
see A Guide to WebEnterprise.

Normally, the HTTP requests issued by Web browsers are stateless, meaning each
request is atomic and does not require any knowledge of past (or future) requests.
Many simple read-only Web applications are built in this manner,

More sophisticated applications, such as those created with WebEnterprise
Designer, require knowledge of the browser client’s state, including such
information as intermediate data in a multiple-request operation, the username
and access rights of the browser client, and so forth.

Security and HTML Applications

230 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Storing state information In standard iPlanet UDS window-based applications,
you can store state information on both the client (using local objects) and the
server (using transaction or session dialog duration service objects). However, in a
Web application, you cannot use either of these mechanisms. Instead, you use
WebEnterprise session management to enable the application to associate all of the
browser’s application requests into a session, which contains this information. See A
Guide to WebEnterprise for more details on session management.

Embedding session ids in cookies vs. URLs Sessions are tracked in one of two
ways: using Web “cookies” containing a unique session id, or embedding the
session id directly in all the application URLs. WebEnterprise will attempt to use
cookies but, if the client’s browser has disabled cookies, will instead modify all
URLs with session ids. This “cookie detection” happens automatically when a
client first requests a page from an HTML application; no special action is required.

Managing shopping cart applications One type of sophisticated application,
generally known as a “shopping cart” application, permits users to enter data into
the system. Such applications do not restrict access to the individual HTML pages,
but must track a sequence of HTML requests together as a transaction. When the
transaction is completed (for example, by submitting a purchase form), the request
includes identifying data (such as name, address, and credit card information) to
ensure that the submission is valid.

The session management used in default WebEnterprise Designer applications
supports the creation of these shopping cart-style applications. All application
pages are accessible to all clients. No user logon process is required. Information
required to place an order (for example, name, address, credit card number, and so
forth) can be entered on an order form and submitted.

Managing secure Web applications Another type of sophisticated application
permits access to specified HTML pages only to validated users. Typically, these
applications present a logon page, which is presented to the user before he can
enter the application. The user supplies an “identity” (usually a username and
password), which, when validated, grants access to the application’s HTML pages.
The identity becomes a property of each Web request and can be used by the
application to restrict access to certain pages or activities.

This chapter describes how to customize an HTML application to build this third
type of “secure” application, including:

• creating a logon page

• integrating an application with your own user authentication system

Authenticating Users

Chapter 8 Customizing Application Security 231

• granting different levels of application access to different users

• sharing a WebEnterprise security environment across several HTML
applications

Authenticating Users
When a WebEnterprise Designer application does not have a logon page defined
for it, all generated HTML templates are defined with the
SESSION_AUTOCREATE session property. A WebEnterprise session is then
automatically created whenever a Web client requests an HTML template. This
“Web session” is persistent, binding subsequent Web requests from that browser
client together, until it eventually expires (based on the value of the
SessionTimeOut attribute). In this scenario, all application pages are accessible
without any logon or authentication procedure.

For information on the SessionTimeOut attribute, see online help or A Guide to
WebEnterprise. You can override the default (for WebEnterprise Designer, 60
minutes) in WebEnterprise Designer applications with the application-wide
“Modify session timeout” customization point of the Page Handler Customization
Wizard.

Creating the Logon Page
You create your application’s logon page with the HTML Application Model
Workshop’s Page Wizard.

➤ To create a Logon page

1. In the HTML Application Model Workshop for your application, click the New
HTML Page button.

The Page Wizard appears.

Authenticating Users

232 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

2. Select Logon Page in the page type list and click Next.

The Logon Page Options page is displayed.

3. Modify the fields on the Logon Page Options page as desired.

For information on all the fields on this dialog, press the Help key.

Notice that the default logon page contains two user-supplied fields. If your
site’s security framework requires additional (or fewer) logon fields, you will
need to customize the generated Logon.html file accordingly. See Chapter 3,
“Customizing Generated HTML Templates,” for details.

4. Click Finish to create the logon page.

Code Generated for the Logon Page
When you generate code for an application that contains a logon page,
WebEnterprise Designer generates a LogonHandler TOOL class in the
html_modelHandlers project, and three HTML templates for the logon page:

• Logon_logon_page.html

This template contains the HTML form that is presented to the
un-authenticated user when they attempt to access any page in the application.
You can customize your logon page by editing this file.

User-supplied
validation fields

Authenticating Users

Chapter 8 Customizing Application Security 233

• Validate_logon_page.html

This template is requested when the user submits the Logon form. It contains
the WebEnterprise tag that causes the user authentication data to be validated.

This page is never actually displayed and need not be edited.

• LogonFailed_logon_page.html

If the user's supplied authentication data fails validation, then this HTML page
is returned to the user. You can supply an application or company-specific
error page by editing this file.

If the user is successfully validated, the application’s start page is returned to his or
her browser. The user then has access to all of the HTML pages in the application.
(See below for how to add further granularity to your application’s security
model.)

How the Logon Page is Activated
For background on this subject, review “ExpressHTTPAccess” on page 44 and
“ExpressLogonHandler” on page 54.

Creating a logon page has the following effect on the HTML application: Every
HTML page in the application (except the logon page) is marked with the
WebEnterprise SESSION_REQUIRED property. This means that the page will not
be returned unless the client already has a valid WebEnterprise session. If a request
is received for one such page and there is no valid session (if the request has neither
a valid session cookie or session id in the URL), then WebEnterprise redirects the
request to the Logon_logon_page.html page, which is returned to the browser. The
Web address of the logon page becomes the WebEnterprise SessionCreationURL of
the application.

For additional information about the SessionCreationURL attribute, see online
help.

➤ To activate the logon page

1. The browser user requests the HTML application’s start page (Start.html).

2. If logon security is implemented in the application, the logon page is returned.

3. The user enters the appropriate user identification information and submits the
form (clicks the Logon button).

Authenticating Users

234 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

4. The application validates the information and, if authenticated, creates a
WebEnterprise session.

5. The application’s starting page is returned to the browser.

If the user information fails validation, no session is created and the
LogonFailed page is returned.

Integrating the Application with an Authentication
System
When the user fills out and submits the logon page, the
ExpressLogonHandler.HandleCondition method is invoked. This method calls the
application’s html_modelAccess.LogonSession method to authenticate the data
entered on the logon page. If the logon is successful, then:

• WebEnterprise creates a WebEnterprise session and attaches it to the Web
response

• if LogonSession returns a “credentials” object, then it is attached to the
WebEnterprise session using the name “Logon-Credentials.”

During processing of subsequent requests, these credentials can be retrieved
by means of the HTTPSession.GetSessionData method.

By default, the LogonSession method returns a value of TRUE, indicating that the
user is permitted to create a session and access the application’s pages. Adding
security to your HTML application requires you to customize the LogonSession
method.

Your html_modelAccessService.LogonSession method captures the parameters
entered on the logon page and passes them to your own user authentication
subsystem (such as an LDAP service, the Windows NT user authentication system,
or an X.500 server) for validation. LogonSession should return the boolean TRUE if
the user’s logon is validated, and FALSE if not. You can optionally return a
“credentials” object containing any user-specific data (username, group, and so
forth) that your application requires.

Use the Page Handler Customization Wizard to customize the logon page.

Authenticating Users

Chapter 8 Customizing Application Security 235

➤ To customize an application’s logon page using the Customization Wizard

1. Open your application in the HTML Application Model Workshop.

2. Select the logon page.

3. Choose the Component > Customize… command to open the Wizard.

The Page Handler Customization Wizard appears.

4. Select the “Logon Validation” customization point and click Customize.

The Method Workshop opens, displaying the LogonSession method. This
method overrides the HTTPAccess.LogonSession method.

5. Add your TOOL code to authenticate the user information and, optionally,
place persistent user information into the credentials object.

Example: Adding LogonSession Code
For this example, assume that a SecuritySO service object exists containing an
Authenticate method that can validate a username-password pair with an external
authentication subsystem. This method also returns a “Rights” object that contains
credential information. The Rights object might, for example, denote various levels
of permitted access that restricts some page access to certain users.

Customization point for logon page

Authenticating Users

236 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The LogonSession method might look like this:

LogonSession(request: HTTPRequest, output credentials: Object): boolean
//
// LogonSession
// The LogonSession method is used to validate a new session.
// LogonSession should return TRUE if the logon information is
// valid, signalling that the session may be created. FALSE
// should be returned if the logon information is invalid and
// the session creation request should be rejected.
//
// request
// The request parameter holds the HTTPRequest object of
// the HTTP request that is attempting to create a new
// session.
// Default logon forms will have ‘Username’ and ‘Password’
// parameters.
//
// credentials
// The credentials parameter is used to return authentication
// information. It will be attached to the session using the
// descriptor ‘Logon-Credentials’ if the session is
// successfully created. Subsequent requests may use the
// GetSessionData method of the HTTPSession object using
// the ‘Logon-Credentials’ descriptor to retrieve the
// credentials object.
// return value
// TRUE - logon validated; session may be created.
// FALSE - login rejected.
//
//
begin

credentials = NIL;

//
// First retrieve the data entered on the Logon page
//
userName : TextData = request.FindNameValue(‘Username’);
passWord : TextData = request.FindNameValue(‘Password’);

// Now call our authentication subsystem to validate the user
// (actual implementation is site-specific)
//
if SecuritySO.Authenticate(userName, passWord, credentials) = FALSE then

return FALSE;
end if;

//
// The credentials object will be stored with the HTTPSession.
// It can be retrieved via
// GetSessionData(IntegerData(value=’Logon-Credentials’))
//
return TRUE;
end method;

Restricting Access to Application Pages

Chapter 8 Customizing Application Security 237

Restricting Access to Application Pages
This section shows what you can do with authentication credentials for a
WebEnterprise Designer client after you have captured them.

A common application requirement is granting different levels of application
access to different users or groups of users. This section explores a technique for
solving this problem. Building on the example in the previous section, the example
in this section will restrict “update” and “insert” access to users who are managers.

Use the Page Handler Customization Wizard to customize the appropriate page of
the application.

➤ To restrict access to a page

1. Open your application in the HTML Application Model Workshop.

2. Select the page you wish to restrict access to.

3. Choose the Component > Customize… command to open the Wizard.

The Page Handler Customization Wizard appears.

Customization points for
restricting access to pages

Restricting Access to Application Pages

238 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

4. Select the “Restricting access to the insert page mode” customization point and
click Customize.

The Method Workshop opens, displaying the RestrictInsertAccess method in
the page handler class of the selected page. This method overrides the
ExpressHandler.RestrictInsertAccess method. The customizable section of this
method is near the bottom and looks like:

Assume that the “credentials” object saved in the above section is a TextData
object with values of either “Manager” or “Worker”. To permit access only to
managers, replaces the above block with the following code:

5. Add the identical customization for the “Restricting access to the update page
mode” customization point.

Only managers can now modify the application page.

You can customize each application page in this manner to restrict access to
individual page modes (namely, search, display, insert, and update) or to all page
modes. Users who request a page that is denied to them receive an appropriate
error page.

if (not restrict) then
//
// Add custom code here to compute restrictions:
//
// restrict = . . .
end if;

if (not restrict) then
credential : TextData =

TextData(response.CurrentSession.GetSessionData(
TextData(value=’Logon-Credentials’)));

if (credential.Compare(source=‘manager’,ignorecase=TRUE)
<> 0) then

restrict = TRUE;
end if;

end if;

Sharing a Security Environment Across HTML Applications

Chapter 8 Customizing Application Security 239

Sharing a Security Environment Across
HTML Applications

WebEnterprise Designer supports designs that span multiple HTML applications.
One HTML model can include another, thus providing links between related
applications. The WebEnterprise Help system describes how to include one HTML
application in another (refer to the topic “New Included HTML Application
Model”).

WebEnterprise supports several different security designs for included
applications. Consider an HTML Model “MainModel” that includes a second
HTML Model, “SubsidiaryModel.” Assume that MainModel implements a logon
page that restricts access to the application. For queries within MainModel, full
WebEnterprise security will be in effect. But what happens when a user clicks on
the link from a MainModel application page to the SubsidiaryModel page? It
depends.

Avoiding Security Leaks
The default WebEnterprise Designer security model grants open access to all pages
to all users. Therefore, unless you employ one of the mechanisms described below,
users jumping to a SubsidiaryModel page are not bound by MainModel’s
WebEnterprise security environment. When the user jumps back to the MainModel
application, the requested pages are again governed by the existing MainModel
session.

Alternative 1: Give both applications a logon page One alternative is to define
logon pages in both SubsidiaryModel and MainModel. In this case, each HTML
application then implements its own independent session management. When
users first accesses a MainModel page, they are required to logon. When they
subsequently jump to a SubsidiaryModel page, they are again required to logon,
this time starting a SubsidiaryModel session. When they return to a MainModel
page, they resume running within their existing MainModel session.

NOTE In this security model, because the two applications each implement
their own session management environment, they can use different
authentication subsystems and enforce security in completely
different ways.

Sharing a Security Environment Across HTML Applications

240 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Alternative 2: Let all applications share the session A more sensible security
model lets the SubsidiaryModel (and any other included applications) share the
WebEnterprise session initiated by the main application, MainModel. MainModel
defines a logon page, performs authentication, and implements session
management for itself and all applications sharing its session management
environment.

Sharing session management between a main HTML model and one or more
secondary models requires customization of each HTML model, as described next.

Customizing Subsidiary HTML Models
to Share Security
Follow these procedures with each subsidiary model.

➤ To customize subsidiary models to share the security environment

1. In each subsidiary application, create a logon page.

This page will never be returned to the user, so there is no need to customize
the generated LogonSession method.

2. Customize each subsidiary application’s logon page using the Page Handler
Customization Wizard.

Use the “Is subsidiary application” customization point under the Application
group. This action creates an html_modelAccess.IsPrimarySession method,
which does not require any change.

Customizing the Main HTML Model
to Share Security
Follow these procedures to customize the main HTML application model.

➤ To customize the main model to share the security environment

1. Implement an authenticated logon page in the MainModel, using the
procedures described in “Authenticating Users” on page 231.

Sharing a Security Environment Across HTML Applications

Chapter 8 Customizing Application Security 241

2. Customize the main application’s logon page using the Page Handler
Customization Wizard.

Use the “Define subsidiary applications” customization point under the
Application group. This creates an
html_modelAccess.ConnectManagedSessions method.

3. The lower part of the method contains a block of code that you must now
modify to add each subsidiary application to the ManagedSessions array.

For example, if the main application will manage two subsidiary applications,
Sub1 and Sub2, then add their Access service objects to ManagedSessions, as
shown:

Restrictions
Ensure that all HTML applications that share a common session manager are also
all accessed through the same Web server. The Fortecgi Location and, if specified,
Plug-in URL properties for all linked HTML applications must reference the same
Web server URL.

The ConnectManagedSessions method overridden in “Customizing the Main
HTML Model to Share Security,” above, must execute after each of the subsidiary
Access services has completed initialization. The ConnectManagedSession
template contains a method call to delay for 20 seconds before referencing the
subsidiary Access services:

ManagedSessions = new;
//
// User code should be added here to populate the managedSessions array
// with references to the ExpressHTTPAccess service objects of the
// subsidiary applications. Replace subsidiaryAccessService with
// subsidiary application’s AccessService service object. Add additional
// lines as necessary to specify other subsidiary applications.
//
ManagedSessions.AppendRow(Sub1AccessService);
ManagedSessions.AppendRow(Sub2AccessService);

super.ConnectManagedSessions;

//
// This is so that the managed applications’ ExpressHTTPAccess service
// have a chance to complete their startup.
// On some systems you may need to increase the delay to allow sufficient

Session Timeout

242 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

In some networked configurations, this delay might be insufficient. If the
referenced objects are not completely instantiated, then a distributed access
exception will be raised. In that case, you should increase the length of the delay
appropriately.

Summary
The above implementation will cause a single session manager to be created,
shared by the three HTML applications. A single logon page is presented to the
user, governing access to all application pages.

Session Timeout
In this section, you will learn how “session timeout” works in a WebEnterprise
Designer application, and how you can customize this feature.

How Session Timeout Works
WebEnterprise creates a session when a user at a browser first accesses a
WebEnterprise Designer application. Objects required to track the session,
including current database result sets, are then associated with the session and
reside within iPlanet UDS services.

Web applications generally do not have a “Logout” procedure; the user simply
moves on to a different Web site, or closes their browser, or goes home. In each
case, the Web application receives no notification that the user is done with the
application. Web applications, then, must decide for themselves when a user’s
session can be deleted.

WebEnterprise defines a SessionTimeOut for each application (or, set of
applications when the security environment is shared). Each client request updates
a timestamp in its HTTPSession object. WebEnterprise periodically scans all
managed sessions, identifies those that have been inactive for longer than the
SessionTimeOut value, and deletes the session and any data associated with it.

// time for the managed applications’ startup to complete.
//
task.delay(20000); // 20-second delay

Session Timeout

Chapter 8 Customizing Application Security 243

For information on the SessionTimeOut attribute, see online help for either
HTTPSession.SessionTimeOut or SessionMgr.SessionTimeOut. For additional
information, see A Guide to WebEnterprise.

Consider the case of a user sitting at a browser window using a WebEnterprise
Designer application. She has successfully gone through the Logon process and is
navigating through the application. She has entered a Search page and selected a
data set, the first 10 rows of which are displayed on her screen. She goes to lunch,
returning an hour later. She sits at her workstation and clicks the application’s Next
button. What happens?

Resuming a timed-out application While she was enjoying her Curried Prawns,
WebEnterprise realized that her session “timed out” and deleted her HTTPSession
object. It now receives a request that contains the previously-valid session id. But,
not finding it in its cache of sessions, WebEnterprise does what it always does
when a request without a valid session is received: it returns the logon page. Our
user, perceptively realizing that she must start over, re-enters her username and
password, is authenticated, enters search criteria, and resumes her work.

Finding the Ideal Setting for Session Timeout
The “ideal” setting for SessionTimeOut varies from application to application. If it
is set too low, users may find their session invalid when they answer a short phone
call. Requiring the user to logon again after a short distraction will not endear the
user to the application.

On the other hand, each active session does entail a cost, namely, the memory
required to store the HTTPSession object and any data associated with the session.
For WebEnterprise Designer applications, the data sets associated with business
queries may be substantial. The WebEnterprise partition may find itself running
out of memory if it must manage a large number of active sessions, each with a
large amount of session data.

You can adjust the memory profile of WebEnterprise Designer applications in a
variety of ways:

• boost the partition’s available iPlanet UDS memory by setting the
FORTE_GC_SPECIAL environment variable

• reduce the amount of session data by restricting the number of rows fetched
into the intermediate result set

By default, WebEnterprise Designer fetches and caches 100 rows of data.

Other Security Customizations

244 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

• when designing application pages, select very long fields in pages that are
used infrequently

• customize the application to reduce session timeout

See the next section for information on this suggestion.

Example: Customizing Session Timeout
The default session timeout for WebEnterprise Designer applications is one hour.
In practice, however, due to the frequency with which session expiration is
checked, an inactive session could remain in memory for slightly less than two
hours before it is deleted (if the user issued a request shortly after a check, it would
not be a candidate for the next check, since, by that time, 60 minutes had not yet
passed; therefore, it would not be deleted for yet another 60 minutes).

➤ To change the session timeout

1. Start the Page Handler Customization Wizard for the logon page, as described
in “Integrating the Application with an Authentication System” on page 234.

2. Open the Application category and select the “Modify session timeout”
customization point and click Customize.

The Method Workshop opens, displaying a customizable
SetSessionManagement method. This method overrides the
ExpressHTTPAccess.SetSessionManagement method.

3. Locate the line of code that defines the SessionTimeout value:

timeOut.SetValue(’00:00:00:01:00:00’);

timeOut is an IntervalData object. Change the value string to a different, valid
IntervalData value. When the application is next executed, all sessions will
observe the new session timeout interval.

Other Security Customizations
A WebEnterprise Designer application’s security framework is primarily defined
within a single method: ExpressHTTPAccess.SetupSessionManagement. If your
application requires security customizations not described in this chapter, then it
may be necessary to override and modify this method. For details on
WebEnterprise security and session management, see A Guide to WebEnterprise.

245

Chapter 9

Partitioning and Deploying a
WebEnterprise Designer Application

This chapter provides information about the elements of a distributed
WebEnterprise Designer application and how to partition and deploy a
WebEnterprise Designer application.

Topics in this chapter include:

• WebEnterprise Designer application projects

• WebEnterprise Designer application service objects

• how to make a default partitioning configuration

• how to test the application in a distributed environment

• how to deploy a WebEnterprise Designer application

• how to start a WebEnterprise Designer application

For complete information on iPlanet UDS partitioning and deployment, see A
Guide to the iPlanet UDS Workshops and the iPlanet UDS System Management Guide.

About Partitioning a
WebEnterprise Designer Application

After generating your code for your HTML application and making any desired
enhancements, use the Partition Workshop to:

• test the application in a distributed environment

• partition the final application for deployment and make the appropriate
application distributions

About Partitioning a WebEnterprise Designer Application

246 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The following sections provide background information about the projects and the
service objects in the HTML applications, and the default partitioning scheme
iPlanet UDS provides for WebEnterprise Designer applications.

About HTML Application Projects
and Service Objects
As described in Getting Started with WebEnterprise Designer, when you generate the
code for your HTML application model, two or more iPlanet UDS projects are
created:

Partitioning the application The “Handlers” project generated from the HTML
application model is the main project for the application. The “Services” project
generated from the business model functions as a supplier project to the main
project. Therefore, when it is time to test your application in a distributed
environment or partition the application for deployment, you must partition the
“Handlers” project.

WebEnterprise Designer applications frequently consist of multiple business
models and multiple HTML models. A Services project is generated for each
business model, and a Handlers project is generated for each HTML model.
Whenever an HTML model references a business model, the generated Handlers
project will include the generated Services project as a supplier. If an HTML model
includes another HTML model, then the generated Handlers project for the first
model will include the generated Handlers project for the second model as a
supplier.

When you partition your HTML application using the Partition Workshop, iPlanet
UDS creates a default configuration for the application based on the application’s
service objects. Both the “Handlers” and “Services” projects contain service objects
that affect this default configuration.

Project Name Description

html_modelHandlers The main project for the application.

business_modelServices A supplier project for the “Handlers” project. There is one
“Services” project for each business model that is a supplier to
the HTML application model.

About Partitioning a WebEnterprise Designer Application

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 247

Briefly, the service objects in your HTML applications are:

A pair of service objects is generated for each model in the application. The service
objects of included HTML models are by default partitioned with the
corresponding service objects of the main model, though they can be put in other
partitions.The following two sections provide further information about these
service objects.

Service Object Partition Visibility Dialog
Duration

Description

html_modelAccessService iPlanet
UDS Web
Access
Server

Environment Session

(can be
changed)

The application contains one
AccessService service object per
model, which provides the primary
link between a Web browser and the
iPlanet UDS application. It responds
to HTTP requests from the Web client
by returning the appropriate Web
page.

html_modelScannerService iPlanet
UDS Web
Access
Server

User Session The application contains one
ScannerService service object per
model, which responds to HTTP
requests from AccessService by
opening the HTML template file in
the request and processing the iPlanet
UDS tags to generate a Web page.
The Scanner will always be in the
same partition as the AccessService
with which it is associated.

service_nameService Applicatio
n Server

Environment Message The application contains one Service
service object for each Express service
defined in the Business Model
Workshop. You can change the
replication of this service object to
provide load balancing and/or
failover.

service_nameDBService Applicatio
n Server

User Session The application contains one
DBService service object for each
Service service object. The DBService
service object will always be in the
same partition as the Service service
object with which it is associated.

About Partitioning a WebEnterprise Designer Application

248 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

business_modelServices Service Objects
See A Guide to Express and Customizing Express Applications for complete
information about the business_modelServices service objects service_nameService
and service_nameDBService.

One business_modelService service object and one business_modelDBService service
object are generated for each business model. These are generated into the
business_modelServices project. The HTMLtutApp application’s one business model
supplier is the HTMLtutorial business model, whose generated service project is
therefore the HTMLtutorialServices project. Two service objects are generated into
this project, namely:

• HTMLtutorialService

• HTMLtutorialDBService

Replicating these services These service objects work together to manage
database interaction. You can replicate these services, which is desirable for any of
the following requirements:

• You want to distribute processing in the deployment environment.

• You want to provide different replication options (load balancing or failover)
for different service objects.

• You want your application to interact with more than one database.

Each service is bound to a particular database session, so you must create a
separate service for each database you wish to access. You can then assign the
corresponding service objects to the nodes that have the appropriate resources.

Creating new services You create new services in the Business Model Workshop,
using the Component > New Service command (described in A Guide to Express).
Each time you create a new service, Express adds a Service service object and a
DBService service object to your application.

If you have multiple business models in your application, you must consider your
application usage patterns to determine how best to partition the business model
services. Technote 10467, which you can access from the iPlanet UDS Support and
Services Web page, provides a discussion of this subject.

About Partitioning a WebEnterprise Designer Application

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 249

html_modelHandlers Service Objects
See Chapter 1, “WebEnterprise Designer Application Architecture” for information
on the superclasses on which the html_modelHandlers services are based, namely
HTMLScanner and HTTPAccess. These are found in the HTTP library. For
complete information on all WebEnterprise Designer and WebEnterprise projects
and libraries, see iPlanet UDS online help.

One html_modelAccessService service object and one html_modelScannerService
service object are generated for an HTML application. These are generated into the
html_modelHandlers project. These service objects work together to field HTTP
requests from the client browser by way of the Web server. The
html_modelAccessService and html_modelScannerService are bound together, and
will always be in the same partition. The ScannerService is user-visible and
therefore can be referenced only by the AccessService in the same partition. The
AccessService retains a reference to a session object for each user, which includes
the user’s result set. The ScannerService refers to the result set when processing a
page.

When you partition your HTML application, you must assign the partition that
contains the AccessService service object to an iPlanet UDS server node. You cannot
assign the AccessService service object to a client node.

Failover and load balancing The AccessService service object can be replicated
for load balancing or failover. (Failover happens whether you replicate or not if
Autostart is enabled; you might want to replicate for failover if Autostart is
disabled, however.) If the replicates are partitioned to different nodes, they can all
use the same unique port number (the WebEnterprise Listening Port number)
assigned to the application when it was created.

When there are multiple AccessService service object replicates partitioned to the
same node, each replicate must be assigned a unique port number. This is achieved
by specifying a range of port numbers with the FORTE_WW_PORTS environment
variable. If FORTE_WW_PORTS is set, the HTTPAccess service object randomly
selects a port number from the range and uses it as the listening port number.
When a user first accesses a WebEnterprise Designer application from a browser,
the request is routed to one of the replicates. A cookie is sent back to the browser
with the necessary information to get back to the same replicate. Subsequent
requests will include that cookie, so that the user will be routed to the replicate that
includes her session object.

The syntax for this environment variable is:

FORTE_WW_PORTS startrange-endrange

About Partitioning a WebEnterprise Designer Application

250 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The startrange and endrange numbers should be set to integer values between 1025
and 65535, and must designate ports that will not be in use on the node when the
deployed application is run. For example:

setenv FORTE_WW_PORTS 6100-6300

The ScannerService service object is bound to the AccessService service object. Each
replicate of the AccessService service object has its own copy of the ScannerService
service object.

If you have multiple HTML models, there will be a pair of service objects for each
model. If you are running the application on a machine with native threads, you
may choose to include the AccessService and ScannerService service objects from
multiple models in the same partition.

Relationship Between the Service Objects
The interactions between the four service objects in the HTML application are
shown in Figure 9-1, below:

1. The AccessService service object receives HTTP requests for pages from
fortecgi or an iPlanet UDS Web server plug-in on the Web server.

2. The AccessService service object invokes a method on the ScannerService
service object, requesting the appropriate page and passing any parameter
values relevant to the page.

NOTE We recommend that the partitions that contain the AccessService
and the ScannerService service objects be compiled, to provide
improved performance for the partition.

CAUTION If you compile the partition that contain an AccessService and a
ScannerService service object, you must be sure to install the
compiled HTTP library in the deployment environments where your
iPlanet UDS HTML application will be running. The partition that
contains these service objects needs to access the HTTP library, and
if that partition is compiled, the HTTP library that it uses must also
be compiled. See the WebEnterprise Installation Guide for information
about the compiled HTTP libraries that are provided as part of the
WebEnterprise product.

About Partitioning a WebEnterprise Designer Application

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 251

3. The ScannerService opens the requested HTML page template and processes
the iPlanet UDS tags to create the page, and executes methods, which may
request data from the database.

4. Database requests are sent to the business service application server where the
DBService provides the database session used by the Service service object to
access the database.

5. Result sets are returned to the ScannerService, which processes them and
populates the page template with the result set. The entire result set is cached
in the service in case the user needs to browse through the result set.

6. The ScannerService sends the requested page information back to the
AccessService service object.

7. The AccessService service object delivers the HTML information to the Web
server, which passes it to the client Web browser and displays the page.

Figure 9-1 illustrates:

Figure 9-1 Relationship between AccessService, ScannerService, Service, and DBService

DB

HTML
Pages

Business Service SODB Service SO

AccessService
SO ScannerService

SO

Web Client
Web Server

url

Web
Page

Forté Environment

1 2

67

4

3

5

Forté
NSAPI

fortécgi

Forté
ISAPI

About Partitioning a WebEnterprise Designer Application

252 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

On the application server partition, the DBService service object is a user-visible
DBSession service object, private to the partition. The Service service object is an
environment-visible, shared object in the application. The user-visible service
object can be accessed only through the environment-visible service object—other
partitions cannot access it directly. The DBService service object is protected from
inappropriate access, because no other partitions can access it.

The same relationship that exists between the two business model service objects
also exists between the HTML model service objects. The ScannerService service
object is user-visible and private to the partition, and the AccessService service
object is environment-visible and shared.

Creating a Default Partitioning Configuration
When iPlanet UDS partitions an application, it assigns all compatible service
objects to the same partition. iPlanet UDS assigns the Express business model
service objects to one partition and the WebEnterprise service objects to another.

Exceptions to default configuration The default partitioning will be altered if
any of the following conditions are true:

• any of the service objects have replication turned on

Replication is discussed in A Guide to WebEnterprise.

• external resource managers for the service objects differ in type or location

This could occur if pages are built from multiple business models that have
different resource managers. (See the iPlanet UDS System Management Guide or
Getting Started with WebEnterprise Designer for information on setting a resource
manager for a business model.) In this case, the Partition Workshop assigns
each server partition to the node where the required external resource is
installed.

See A Guide to the iPlanet UDS Workshops for information on the Partition Workshop
and partitioning in general.

About Partitioning a WebEnterprise Designer Application

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 253

➤ To partition an HTML application

1. In the Repository Workshop, select the html_modelHandlers project and click
the Partition button.

Alternatively, you can choose the Plan > Run > Partition command. Or, you
can open the html_modelHandlers project and click the Partition button or
choose Run > Partition from there.

The Partition Workshop is displayed with the default configuration for the
HTML application. Figure 9-2 shows the default configuration for the
WebEnterprise Designer tutorial example.

Figure 9-2 Default Configuration for HTMLtutApp

The client partition (html_modelHandlers_Cl0_Client) is used to keep the server
partitions running in the development environment and launch, if selected, the
browser window. In a deployed environment, it has no function. Because of this,
the process of deploying and running a WebEnterprise Designer application is
different from other iPlanet UDS applications. The WebEnterprise Designer
process is described in “Deploying the Application” on page 256.

Environment drop list

Logical partitions browser

Logical partitions

Assigned partitions browser

Testing the Application in a Distributed Environment

254 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Unassigned service objects If you have any DBService service objects in the
application that cannot be supported in the current environment (for example,
because the appropriate database resource is not defined in the environment), both
the DBService service object and its corresponding Service service object will be
unassigned. To run your application in this environment, you must either update
the DBService service object definition so it can be assigned to a partition, or you
must define the appropriate resource manager in your environment. (See A Guide
to Express for information about updating the DBService service object definition.)
You can then assign the partition to the appropriate node.

Common variants to the default configuration There are several changes you
might wish to make to the default configuration:

• replicate the AccessService service object for load balancing and/or failover
and mark the assigned partition to be compiled

• replicate business service object partitions for load balancing and/or failover,
and mark the assigned partitions to be compiled

Modifying the Configuration
The same methods and considerations that apply to other WebEnterprise
applications apply to WebEnterprise Designer applications. Please refer to Getting
Started with WebEnterprise Designer for information on modifying your HTML
application configuration. Remember to set the FORTE_WW_PORTS variable if
you replicate the AccessService SO partition on the same node. Refer to
“html_modelHandlers Service Objects” on page 249 for more information.

Testing the Application in a Distributed
Environment

Once you have put the HTML application through a test run from the HTML
Application Model Workshop, you should test it in a distributed environment from
the Partition Workshop.

Testing the Application in a Distributed Environment

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 255

➤ To test run an HTML application in distributed mode from the Partition
Workshop

1. In the Partition Workshop (displaying the html_modelHandlers configuration),
click the Run button.

Alternatively, you can choose the Run > Run command.

2. When you are done testing the application, exit it and close the Partition
Workshop.

If you are unable to exit the application, you can use the Run > Cancel Run
command at any time to cancel execution.

This command cancels the client partition for the application. The remote
partitions will still continue to run; use the Run > Stop Remote Partitions
command to stop remote partitions.

➤ To test run your application in distributed mode from other workshops

1. In the Repository Workshop, select the HTMLtutAppHandlers project and
choose Plan > Run > Run Distributed.

Alternatively, open the html_modelHandlers project and choose Run > Run
Distributed.

2. When you are done testing the application, exit it and close the Partition
Workshop.

If you are unable to exit the application, you can use Plan > Run > Cancel Run
(Repository Workshop) or Run > Cancel Run (Project Workshop) at any time to
cancel execution.

This command cancels the client partition for the application. The remote
partitions will still continue to run; use the Run > Stop Remote Partitions
command to stop remote partitions.

See A Guide to the iPlanet UDS Workshops for further information about testing
applications in a distributed environment.

NOTE You can only do this after you have partitioned your application
once.

Deploying the Application

256 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Deploying the Application
To deploy a WebEnterprise Designer application, you must partition the
application for each deployment environment in which it will run. After the
application is correctly partitioned, you must create a separate distribution for each
deployment environment.

The application distribution is a representation of the application outside the
repository—you use the application distribution to install the application in an
environment.

➤ To deploy your HTML application

1. In the Repository Workshop, double-click the main project (the
html_modelHandlers project) for your application.

This opens the Project Workshop for the html_modelHandlers project.

2. In the Project Workshop, choose the File > Configure as > Server command.

This opens the Partition Workshop for the html_modelHandlers project.

3. In the Partition Workshop, select the desired environment from the
environment drop list, if it is not already selected.

The Partition Workshop opens the configuration for the project or creates a
default configuration if one does not already exist.

4. Modify the configuration as desired.

See A Guide to WebEnterprise for information on modifying the default
configuration.

5. When your configuration is the way you want it, use the File > Make
Distribution command to make the application distribution.

iPlanet UDS displays the Make Distribution dialog.

NOTE If, after configuring for deployment, you want to modify this
application and run it from the development environment, you
must reconfigure the html_modelHandlers project as a client.
(And then you must redistribute your application.)

Deploying the Application

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 257

Figure 9-3 Make Distribution Dialog

6. Specify where you want the application distribution files placed by selecting
an item from the drop list.

7. Specify whether to perform a Partial Make or Full Make distribution.

The first time you make a distribution, you should choose the Full Make
option. Subsequently, you can choose Partial Make. A Partial Make creates the
distribution only for those components that have changed since the last make.

You should also make sure that you have marked the appropriate service
objects as compiled.

NOTE If any of your partitions are compiled and you wish to use the
Auto-Compile option of the Make Distribution command, you
must ensure that your environment is set up for automatic
compilation. (See the iPlanet UDS System Management Guide for
information on setting up your environment for automatic
compilation.) If your environment is not set up for automatic
compilation, you must compile the partitions by hand (see A
Guide to the iPlanet UDS Workshops for information about
compiling partitions).

Location where you want UDS to
place application distribution files.
The choice is Local or Remote.

Deploying the Application

258 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

8. Click the Make button.

iPlanet UDS creates the distribution files and installs them on your machine.
When finished, iPlanet UDS displays the following message to inform you that
the distribution is complete.

9. If you are deploying in more than one environment, select the next
environment, make modifications to the configuration if necessary, and use the
File > Make Distribution command to create the distribution.

Making the Application’s Template Files
Accessible to the ScannerService SO
Your HTML template files that iPlanet UDS generated in subdirectories of the
document root directory must be accessible to the ScannerService service object. If
you have replicated this service object, these files must be accessible to all
replications.

To make the application’s generated template files accessible to the ScannerService
service object, you must copy them to the node where the Scanner’s partition exists,
in the directory specified by the document root property for that application.

Copying the Application’s Template Files to the Scanner Partition
You can copy the document root directory containing the subdirectory of the
application’s templates from your development environment to the environment
of your Scanner Service partition using either of the following techniques:

• Copy the application’s template file directory from one environment to the
other using file copy, FTP, or any other methods of your operating system.

NOTE This does not apply to the document root/.base directory or its files.
These are for development purposes only. For information on the
.base directory, see “Generated Maintenance Files and Directory” on
page 95.

Deploying the Application

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 259

You can perform this copy either before or after deployment.

• After you make the distribution, but before you install it, copy the application’s
template file directory into the Scanner Service partition folder under the
$FORTE_ROOT/appdist/partition_id directory.

At deployment time, the files will be copied into the partition’s machine.

The partition_id directory name is constructed from the partition name in the
Partition Workshop. For example, the partition containing the ScannerService
service object in Figure 9-2 on page 253 is named
HTMLtutAppHandlers_Cl0_Part1. The partition_id directory will be named
HTMLtu1.

For complete information on this technique, see the iPlanet UDS System
Management Guide.

Once the template files are on the target node, either move them to the location
specified by the application’s document root, or set the document root to the
directory the files are in. The next section provides information on setting a
WebEnterprise Designer application’s document root.

Setting Document Root on the
ScannerService Service Object Partition
The Scanner Service must be aware of the top-most directory of the copied files.
This top-most directory is called the document root. You can set the value of an
HTML application’s document root using any of the following methods, given in
order of precedence:

1. Use the -docroot command-line argument when starting the partition
containing the ScannerService service object.

2. Set the value of the FORTE_WW_DOCUMENT_ROOT environment variable.

This must be defined in portable (not local) file syntax (such as
“%{FORTE_ROOT}/html/docs”).

3. Set the value of the DocumentRoot attribute of the ScannerService service
object in the HTML model properties.

4. Use the default value, which is “%{FORTE_ROOT}/html/docs.”

NOTE These methods and priorities regarding the value of document
root are slightly different than those discussed in A Guide to
WebEnterprise, and apply specifically to WebEnterprise
Designer.

Running the Application

260 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Running the Application
After you have deployed your application, you can run it.

➤ To run a deployed HTML application

1. Start the Environment Console.

If you did not enable the Install in Current Environment option when you
created your distribution (see Figure 9-3 on page 257), first load (using File >
Load Distribution) and then install (using Component > Install) the
application.

2. Double-click the node on which you made the distribution to open it.

Alternatively, select the node and choose Component > Open.

3. From the node window, click the triangular control to display the node’s
contents.

4. Select the application and click the Start Up button.

Alternatively, select a server partition and choose Component > Start Up.

When the partitions are marked “online,” your application is running. When
the AccessService service object starts up, it will register itself with the Web
server. Your Web server needs to be running when the AccessService partition
starts.

Running the Application

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 261

5. Start your browser, if it is not already running.

6. Type in a URL with the following syntax:

Note that this is all one string with no breaks. You obtain the values for the
variables in this string from the HTML Application Properties dialog, as
shown in Figure 9-4. It is also found in the log for the Access partition.

[pluginURL|fortecgiURL]?servicename=WebEservicename
&templatename=htmlappname/Start.html

Running the Application

262 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Figure 9-4 Obtaining URL Elements from the Properties Dialog

For example, a string using the values in Figure 9-4 would be:

http://henna.forte.com/web.forte?servicename=HTMLtutAppService
&templatename=HTMLtutApp/Start.html

pluginURL
fortecgiURL

WebEservicename

htmlappname

Running the Application

Chapter 9 Partitioning and Deploying a WebEnterprise Designer Application 263

See the iPlanet UDS Programming Guide for complete information about
partitioning applications and making distributions. See the iPlanet UDS System
Management Guide for information on using the Environment Console.

If you install the compiled HTTP libraries on NT, you need to add the
$FORTE_ROOT/userapp/http/cl0 directory to the “PATH” environment variable.

The AccessService Log File
When the partition that includes the AccessService is started, its log file will
include messages indicating that it has been successfully connected to the Web
server, and give the starting URL for the application. the partition log; for more
information, see the iPlanet UDS System Management Guide.

The following message indicates that this service started successfully:

Enable access to HTMLtutAppService at port 6203 from
http://henna.forte.com/cgi-forte/fortecgi.exe (plugInURL =
http://henna.forte.com/web.forte)

CAUTION Because all iPlanet UDS Web applications use the HTTP library, it
must be installed in all deployment environments where the Web
application is deployed. If any of the partitions in your Web
application that access the HTTP library are compiled, the compiled
form of the HTTP library must be installed in the deployment
environment. WebEnterprise provides the HTTP library in both
interpreted and compiled forms for installation in deployment
environments. See the WebEnterprise Installation Guide for
information. The library must be installed on any iPlanet UDS node
that runs a partition that includes an AccessService service object.

NOTE If you install the compiled HTTP libraries on UNIX, follow these
instructions: after you have compiled a partition that accesses the
compiled HTTP library, do not move the compiled HTTP library (for
example, by moving $FORTE_ROOT to a different disk or
directory). If you do move the library after the partition is compiled,
you must re-compile the partition so the partition and library can be
correctly linked.

Running the Application

264 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

The following message indicates the starting page for the application:

If your application includes multiple HTML models, there will be several such
messages. Your users will only need to know the starting URL for the main model.
If that model references other models, its links will have the proper URL.

Memory Considerations
Because of the nature of Web applications, the result set of data for a user is
maintained in memory in the partition that includes the AccessService. The
AccessService holds a session object for each user that includes that result set. The
session object will be cleared and garbage collected when the session times out
(which, by default, is irrespective of whether the user exits the browser or
otherwise quits the application). The default session timeout is set with the
ExpressHTTPAccess.SetupSessionManagement method. For a WebEnterprise
Designer application, the timeout default is one hour.

You can change the application’s timeout setting with the Page Handler
Customization Wizard customization point “Modify session timeout” under the
Application category.

When you set the maximum memory for partitions that include an AccessService,
you must take the timeout setting into account, as well as the number of concurrent
users you will have and the average size of the result sets they will work with. See
the iPlanet UDS System Management Guide for information on setting the memory
parameters for a partition.

*** URL of starting page = http://henna.forte.com/web.forte?ServiceName=
HTMLtutAppService&TemplateName=HTMLtutApp/Start.html

265

Index

A
AccessServer partition

and WebEnterprise Designer architecture 27
location on a server node 249
when to compile 249

AccessService SO
and error processing 152
and port numbers 249
description of functions 27, 250
load balancing considerations 249
replication status 249
startup (object interaction diagram) 44

Action URL parameter 58
adata style element 142
AddConstraints method 53
AddError method 82
AddForeignData method 55
Adding data to command link example 177
alabel style element 142
alink style element 142
Always Generate Custom Classes option

disabling to delete classes 74
effect on class hierarchy 66
enabling 67
of Custom Generation Options command 66

amenu style element 142
Association IDs

and business class page fields 51
and the GetFieldAttrID method 52
and the GetFieldIndexID method 52
description 51

Attributes
IDs and result sets 84
programmatically changing value of 84

Authenticating users
integrating with authentication system 234
using a logon page 231
using ExpressHTTPAccess.LogonSession 46
using logon information 54

B
Bad selector errors 134
.base directory

function 103
meaning of file extensions in 104

BeforeInsert method
and processing custom fields 90
customization 195, 214

BeforeSearch method 90
BeforeUpdate method 90
bus_class_pageHandler class, See Page handler classes
Business class pages

generated HTML templates, fancy 98
generated HTML templates, generic 94
generated HTML templates, simple 97
modeling as a lookup page 169
restricting access to 237
transferring data between classes and 52

Business classes, transferring data between pages
and 52

Section C

266 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Business models, generated service objects 246–252
Business rules, customizing 87
Business services, generated service objects 247–252
business_modelServices project 246
BusinessClass class

attribute IDs 84
InstanceStatus attribute 83
record status 83

BusinessClass objects
and attribute IDs 84
and InstanceStatus attributes 83
and their UpdateQuery attribute 85
checking whether updated 85
undoing changes 85

businessClass_qq_attribute.inc file 219
BusinessClient class, Revert method 85
buttonlogon style element 143
buttons style element 143

C
captionform style element 142
captionlist style element 142
captionlogon style element 142
captionmenu style element 142
class identifiers

and page styles 139
scope 140

Class interaction diagram of WebEnterprise
Designer classes 39

Code generation directives
and customization 124
and page design templates 122
description 122
page object 134

Component menu
New Service command 248
Open command 260
Start Up command 260

Configure as Server command 256
ConnectManagedSessions method 241
Cookies, in WebEnterprise applications 230

cool.css file, location 138
CSS1 style sheets, See Styles
CurrentRow attribute 55
Customizable classes

and ExpressHTTPAccess 46
automatically creating 66
deferring deletion 75
deleting page handler classes 72

Customization examples
adding a lookup link 166
adding data to command links 177
creating a drop or radio list manually 216
customizing a page design 124
customizing logon validation 235
customizing styles 144
displaying the record just inserted 203
entering and formatting dates 191
list of examples in examples chapter 164
managing subsidiary applications 241
mandatory field 212
modifying session timeout 244
populating data on an Insert page 185
removing a validation from a page mode 198
restricting access to pages 238
setting or removing a radio or drop list

default 222
whole field validation 206

Customizations, preserving
file types in .base directory 104
function of .base directory 103
HTML changes only 103
lookup files 221
model changes 103
model changes, conflicting 104
summary 102

Customizing application security
customizing login validation example 235
customizing main models 240
customizing session timeout example 244
customizing subsidiary models 240
integrating with an authentication system 234
restricting access to pages 237
sharing security environment across

applications 239
using logon pages 234

Section C

Index 267

Customizing error pages
and HTMLScanner.GetErrorTemplate

method 158
and HTTPAccess.GetErrorTemplate method 161
application-specific error template example 159
application-specific template with custom data

example 160
creating your own 156
default error processing steps 152
error class-error template mapping 152
error directory 152
errors in customization 162
modifying default error pages 156
page design templates for 118
result set variables 154
with the Customization Wizard 157

Customizing generated HTML templates
customizing a field on a search page 106
customizing font size on a data page 109
identifying hidden fields 102
identifying WebEnterprise tags 102
identifying WebEnterprise variables 102
linking to the Insert page URL 172
passing a selected value as a parameter 174
preserving customizations, See Customizations,

preserving
removing validation from a single template 198
setting or removing a radio or drop list

default 222
types of customization 100
using a variable from the calling page’s Data

template 189
when customizing styles 147
where and where not to customize 101
whole field validation 206
without the Customization Wizard 166

Customizing generated lookup files
manually customizing drop lists or radio lists 216
preserving customizations 221
without the Customization Wizard 166

Customizing generated scripts files
setting or removing a radio or drop list

default 222
without the Customization Wizard 166

Customizing page designs
bad selector errors 134
code generation errors 132
customizing menus 127
description of code generation directives 122
elements of design files 117
example 124
identifying a design in the Page Handler

dialog 125
role of data template 128
role of display template 131
when to customize 117

Customizing page handler classes
adding data to command links example 177
displaying the record just inserted 203
entering and formatting dates 191
lookup link example 166
making a field mandatory 212
populating data on an Insert page example 185
removing validation from a Search page 198
techniques with business rules 87
techniques with ClassHandler classes 86
where to 80
without the Customization Wizard 165

Customizing styles
adding new elements 147
basic procedures 145
browser caching problems 150
creating a new style sheet 146
identifying a style in the Page Handler dialog 148
making a style browser-independent 150
only modifying existing elements 146
scope considerations 144

Customizing WebEnterprise Designer classes
creating a single customizable page handler

class 66
creating customizable classes, overview 65
creating customizable page handler classes for all

pages 66
customization techniques 86
error reporting 82
general considerations 64
global customization 90
how to override methods 80
local vs. global 82
result sets, manipulating 88
techniques with business rules 87

Section D

268 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

D
Data templates

See also Page modes
customization examples 174, 181, 189
modifying the design of 128

Data types, declared type vs. runtime type 40
dataform style element 143
datalist style element 143
Dates, formatting

creating drop lists for 193
example 192
TOOL code for 195

DBService SO
See also service_name DBService
description of function 251
replicating 248

DecodeValue method 52, 53, 89
Decoding data, from a WebEnterprise request 53
Decoding or validating a field (customization) 214
Define HTML template for exceptions

(customization) 157
Define subsidiary applications (customization) 47,

240
Deleting customizable page handler classes 72
Deploying WebEnterprise Designer applications

as client or server 256
installing HTML template files on Scanner

partition 258
procedures 256–259
telling the Scanner SO where HTML pages

are 259
Diagrams

AccessService startup 44
class interactions, WebEnterprise Designer

classes 39
ExpressHandlers class hierarchy 34
HTML application runtime anatomy 27
HTTP class hierarchy 33
life of a template request 48
partitions and objects at runtime 30
scanner startup 47

display style element 142
Display templates, modifying design template

of 131

Displaying the record just inserted example 203
DisplayPage method 50, 53, 89
–docroot command-line flag 259
Document root

accessibility of directory to the ScannerService
SO 258

default specification 259
defined by

FORTE_WW_DOCUMENT_ROOT 259
DoInsert method, customization 203
DoSearch method 90
Drop list customizing examples

manually modifying lookup file 216
removing or setting the default 222

E
EnableAccess method 46
Entering and formatting dates example 191
entry result set 60
entry.CurrentRow_busClassPage variable 62
entry.CurrentRowIndex_busClassPage variable 62
entry.FirstVisibleRow_busClassPage variable 62
entry.list_busClassPage variable 62
entry.RequestStatus_busClassPage variable 62
entry.Rows_busClassPage variable 62
entry.VisibleRows_busClassPage variable 62
Environment variables

FORTE_WW_DOCUMENT_ROOT 259
FORTE_WW_EDITOR 72
FORTE_WW_HTMLEDITOR 72, 165
FORTE_WW_PORTS 249

error directory 152
Error handling

See also Customizing error pages
customization of 156
default process 151
error directory 152

Error pages, page design templates for 118
ErrorMgr class, AddError method 82
Express Services classes, and the Web application

server 31

Section F

Index 269

ExpressClassHandler class
AddConstraints method 53
BeforeInsert method 90
BeforeInsert method customization 195, 214
BeforeSearch method 90
BeforeUpdate method 90
DecodeValue method 52, 53, 89
decoding data from a WebEnterprise request 53
DisplayPage method 50, 53, 89
DoInsert method customization 203
DoSearch method 90
FillResultSet method 53
FindHandler method 50
formatting data into a result set 52
FormatValue method 52, 88
GetFieldAttrID method 52
GetFieldIndexID method 52
GetPageData method 87
HandleCondition method 27, 50
HandleTag method 27, 50
implementing the TagHandlerIFace interface 48
NewQuery method 86
ProcessAction method 50
referenced objects 51
role in class structure 48
transferring data between classes and pages 52
UpdateAttr method 84
UpdateClass method 53

ExpressHandler class, FindHandler method 54
ExpressHandlers project

class hierarchy 34
subclassing for global customization 90

ExpressHTTPAccess class
customizing 46
EnableAccess method 46
functional description 44
HasLogonHandler attribute 46
LogonSession method 46
SetSessionManagement method 244
Setup method 44
SetupAccess method 45, 46
SetupSessionManagement method 46, 264

ExpressLogonHandler class
functional description 54
HandleCondition method 54

ExpressLogonHandler class, HandleCondition
method 234

ExpressLookupInfo class
functional description 56
GetDisplayedNullValue method 56

ExpressPageData class
AddForeignData method 55
and foreign result sets 55
CurrentRow attribute 55
FirstVisibleRow attribute 55
functional description 55

ExpressScanner class
functional description 47
Handlers attribute 54

ExpressValueGenerator class 55
ExpressWindows project

class hierarchy 34

F
Field indexes

and business class page fields 51
and the GetFieldAttrID method 52
and the GetFieldIndexID method 52
converting between 52

Fields, hidden
examples 107
identifying in HTML templates 102

FillResultSet method 53
FindHandler method 50, 54
FirstVisibleRow attribute 55
Folder pages, and ExpressPageData 55
footer style element 142
Form pages, page design templates for 119
FormatValue method 52, 88
FORTE result set 60
FORTE tags (FORTE EXECUTE, FORTE IF, FORTE

ITERATE, etc.), See WebEnterprise tags
FORTE.ExecURL variable

description 60
example 107

Section G

270 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

FORTE.UniqueID variable
description 61
example 111

FORTE_WW_DOCUMENT_ROOT environment
variable
and deployment 259
constraints 259
setting 259

FORTE_WW_EDITOR environment variable 72
FORTE_WW_HTMLEDITOR environment

variable 72, 165
FORTE_WW_PORTS environment variable 249

G
Generated .base directory files 104
Generated classes

customizing 66
from business model, See Customizing Express

Applications
from HTML application model 35
modifying 79

Generated HTML pages, See Generated HTML
templates

Generated HTML templates
business class pages, fancy 98
business class pages, generic 94
business class pages, simple 97
customizing a field on a search page 106
customizing font size on a data page 109
identifying hidden fields 102
identifying WebEnterprise tags 102
identifying WebEnterprise variables 102
installing on Scanner partition 258
link pages, generic 97
logon pages, generic 97, 232
Main template 95
preserving customizations, See Customizations,

preserving
Scripts template 95
Start page 96
summary 37
where and where not to customize 101

Generated lookup files 96

Generated maintenance files 95
Generated TOOL code, for logon pages 232
generic.html file

corresponding exceptions 152
result set variables 155

GetDisplayedNullValue method 56
GetErrorTemplate method

html_modelAccess class 161
html_modelScanner class 158
HTMLScanner class 158
HTTPAccess class 161
warning 162

GetFieldAttrID method 52
GetFieldIndexID method 52
GetPageData method 87
GetTextData method 82
Global customization

and supplier plans 92
procedures 90
when to do 82

H
HandleCondition method

and logon pages 234
and runtime control flow 50
and the ScannerService SO 27
and user authentication 54
and WebEnterprise tags 48
defined in TagHandlerIFace 48

Handler classes, See Page handler classes
Handlers attribute 54
HandleTag method

and runtime control flow 50
and the ScannerService SO 27
and WebEnterprise tags 48
defined in TagHandlerIFace 48

HasLogonHandler attribute 46
header style element 142
HTML 4.0, and WebEnterprise Designer 137
HTML application model

classes generated from 35

Section I

Index 271

HTML applications
load balancing 28

HTML document root, See Document root
HTML templates

and page design elements 117
using links 56

html_model HTML templates, See Generated HTML
templates

html_modelAccess class
and customizing ExpressHTTPAccess 46
ConnectManagedSessions method 241
GetErrorTemplate method 161
IsPrimarySession method 240
LogonSession method 234
SetSessionManagement method 244

html_modelAccessService SO
See also AccessService SO
and error processing 152
and the deployment process 249
and the ExpressHTTPAccess.Setup method 45
description 247

html_modelHandlers project
customizable subclasses 37
description 35
HTML application’s main project 246
service objects of 249

html_modelScanner class
and the html_modelScannerService SO 47
description 28
GetErrorTemplate method 158

html_modelScannerService SO
See also ScannerService SO
and error processing 152
and runtime control flow 50
and the deployment process 249
description 247
object interaction diagram of startup 47

HTMLScanner class, GetErrorTemplate method 158
htmlscanner.html file

corresponding error class 152
result set variables 154

HTMLScannerException class
attribute-result set variable list 154
corresponding error file 152

HTTP library
and compiled partitions 250
class hierarchy 33
installing compiled 263

HTTPAccess class
GetErrorTemplate method 161
SessionCreationURL attribute 54, 233

httpaccess.html file
corresponding error class 152
result set variables 155

HTTPAccessException class
attribute-result set variable list 155
corresponding error file 152

I
id identifier, and page styles 141
Insert command

adding a JavaScript call to 211
adding data to 178, 186
and ExpressValueGenerator class 55
customizing BeforeInsert method 195, 214

Insert templates
See also Page modes
customization examples 172, 183, 190, 193, 206,

209, 224
InstanceStatus attribute 83
Is subsidiary application (customization) 47, 240
IsPrimarySession method 240

J
JavaScript examples

adding call to Insert button 211
boilerplate script 207
location of validation scripts 198
making a field mandatory 209
removing a default from a drop list 224, 226
removing a script call from a template 200

JavaScript fields, page design templates for 121

Section L

272 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

L
labelform style element 143
labellist style element 143
labelmodify style element 143
Link pages

HTML templates generated for 97
page design templates for 120

Link tags, identifying page styles with 139
LinkName URL parameter 58
List pages, page design templates for 119
listentry result set 60
listentry.busClassPage_qq_fieldName variable 62

example 109, 175, 181
listentry.qqRowNumber variable 62
Load balancing

and port numbers 249
with AccessService SOs 28, 249

Local customization 82
Logon pages

and SESSION_REQUIRED 233
code generated for 232
creating 231
customizing 234
how activated 233
HTML templates generated for 97
validation fields 232

Logon Validation (customization) 235
LogonSession method 46, 234
Lookup files

businessClass_qq_attribute.inc file 219
generated 96
manually customizing drop lists or radio lists 216
preserving customizations in 221

Lookup link example 166

M
Main projects

and partitioning 246
html_modelHandlers project 246

Main template 95
Make Distribution command 256

manifest.txt file 95
Memory considerations, and session timeout 264
Menu design templates, modifying 127
menu style element 142
Menus, creating in a page design 127
Methods, how to override 80
Modify session timeout (customization) 244, 264
modify style element 142
MsgCatalog class, GetTextData method 82

N
Nested pages

adding data to command links of 178
and ExpressPageData 55

New HTML Page command 231
NewClass class, compared to NewClassForInsert

class 86
NewQuery method 86

O
Object interaction diagrams

a template request 48
AccessService startup 44
scanner startup 47

P
Page design templates

description of template file names 118
fancy 98
for different page elements 119
for error pages 118
for form and list pages 119
for JavaScript scripts 121
for link pages 120
for lookup fields 121
for page modes 119

Section P

Index 273

Page design templates (continued)
for start pages 118
simple 97
variations on fancy 99

Page design templates, selectors
RC 118
_RR_Name_ 119
UniqueName 121
Data 119
HasJavaScripts 121
IsAabModel 118
IsDataWindow 119
IsFormWindow 119
IsLinkWindow 120
IsListWindow 119
LookupFields 121

Page designs
and code generation 122
and menus 127
directory of templates 116
identifiers 125
role in Web page production 116
scope 116
what they determine 115
when to customize 117

Page handler classes
and HandleTag and HandleCondition

methods 48
BeforeInsert method customization 195, 214
connections between 54
customization techniques 86
desciption 28
DoInsert method customization 203
finding by name 54
referencing other page handlers 54
RestrictInsertAccess method customization 238

Page Handler Customization Wizard
about 67
accessing online help 68, 77
application-wide customizations 76
automatically generating a customizable page

handler class 71
customizing error pages 157
deleting customizations 72
indicator that customization exists 73
list of all customization points 77

Lookup Data Files example 219
using 69

Page handler customizations
Application category 76
creating an initialized object in a page 86
customization techniques 86
customizing manually 79
Decoding or validating a field 214
Define HTML template for exceptions 157
Define subsidiary applications 47, 240
Fields category 88
getting the initial query 86
getting the result set 87
Insert (Database Operations) 195, 214
Is subsidiary application 47, 240
list of all customization points 77
local vs. global 82
Logon Validation 235
Modify session timeout 244, 264
Restricting access to page modes 238
summary of categories 76

Page modes
adding a variable to Insert command link in Data

template 181
adding customized link to Data template 174
adding drop lists in the Insert template 193
adding lookup link to Insert template 166
adding mandatory field validation to Insert

template 206
creating drop lists for date formatting on Insert

template 191
customizing 101
page design templates for 119
passing data to Insert template 177
populating a field in the Insert template 190, 209
populating data on an Insert template 185
removing default from a drop list 224
removing validation from a search template 200
restricting access to 238
validating a whole form from a search

template 206
Partition command 253
Partitioning WebEnterprise Designer applications

as client or server 253
canceling if unable to exit 255
default configuration 252
main project (html_modelHandlers) 246

Section R

274 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

Partitioning WED applications (continued)
partition_id directory name 259
procedures 245–254
service objects 246
starting server partitions 260
stopping remote partitions 255
supplier project (business_modelServices) 246
testing distributed 254
unassigned service objects 254

PDF files, viewing and searching 22
Populating data on an Insert page example 185
Port numbers

and AccessService SOs 249
and FORTE_WW_PORTS 249

ProcessAction method 50

R
Radio list customizing examples

manually modifying lookup file 216
removing or setting the default 222

Referenced objects, and ExpressClassHandler
class 51

Registration, customizing 46
report.txt file

and simple HTML changes 103
conflicting model changes 105
description 95
simple model changes 104

#reqstatus style element 143
Restricting access to page modes

(customization) 238
RestrictInsertAccess method 238
Result set variables

creating your own 156
description 154

Result sets
and attribute IDs 84
and BusinessClass.InstanceStatus attributes 84
and session management features 53
entry 60
foreign 55
formatting data into 52

FORTE 60
inserted record, changing default position 203
listentry 60
manipulating 88
USER 60

ReturnTemplate URL parameter 59
Revert method 85
rowidlist style element 143
Run menu

Cancel Run command 255
Partition command 253
Run command 255
Stop Remote Partitions command 255

S
ScannerServer partition

and WebEnterprise Designer architecture 27
installing HTML template files on 258
when to compile 249

ScannerService SO
accessibility to the document root directory 258
and error processing 152
and the HandleCondition method 27
and the HandleTag method 27
description of functions 27, 250
replication status 249

Scripts template 95
Search templates, customization examples 200, 206
Security environment, sharing

about 239
restrictions 241

Security, See Customizing application security
Selection URL parameter 59
Service objects

creating 248
description of interaction 250
generated from business model 246–252
generated from HTML model 247–252
html_modelAccessService 247
html_modelScannerService 247
service_nameDBService 247
service_nameService 247

Section S

Index 275

Service objects (continued)
unassigned 254
which can be replicated 249

Service SO
See also service_nameService
description of function 251
replicating 248

service_nameDBService 247
service_nameService 247
ServiceName URL parameter 57
Session management

and logon pages 233
and secure applications 230
and shopping cart applications 230
authenticating users 231
customizing 46
for included applications 46
how session ids are tracked 230
how session timeout works 242
ideal timeout setting 243
session property without logon page 231
sharing security environment across

applications 239
storing state information in Web applications 230
tracking sessions 230

Session properties
when SESSION_AUTOCREATE is used 231
when SESSION_REQUIRED is used 233

Session timeout
and AccessService service object 264
customizing 244, 264
default 264
finding the ideal setting 243
how it works 242
resuming the session 243

SESSION_AUTOCREATE property 231
SESSION_REQUIRED property 233
SessionCreationURL attribute 54, 233
SessionTimeOut attribute 242
SetSessionManagement method 244
Setup method 44
SetupAccess method 45, 46
SetupSessionManagement method

and session timeout 264
role in customization 46

Start page 96
Start pages, page design templates for 118
steel.css file, location 138
Style elements

#reqstatus 143
adata 142
alabel 142
alink 142
amenu 142
buttonlogon 143
buttons 143
captionform 142
captionlist 142
captionlogon 142
captionmenu 142
dataform 143
datalist 143
display 142
footer 142
header 142
labelform 143
labellist 143
labelmodify 143
menu 142
modify 142
rowidlist 143

Styles
and deprecated features 137
class identifier 139
conformation to HTML 4.0 137
customizing, See Customizing styles
definition of elements 142
description 138
id identifier 141
identifying in link tags 139
location of style sheet files 138
specifying in HTML template 139

Subsidiary applications, managing (example) 241
Supplier plans, See Supplier projects
Supplier projects

and partitioning 246
business_modelServices 246

Section T

276 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

T
TagHandlerIFace interface 28
TagHandlerIFace interface, implemented by

ExpressClassHandler 48
Template request, life of

detailed description 42
general overview 27
object interaction diagram of 48

TemplateName URL parameter 57
Testing distributed 254
Three-tier architecture 26

U
UniqueID variable 112
Uniquifier URL parameter 59, 112, 175
UpdateAttr method 84
UpdateClass method 53
UpdateQuery attribute 85
URL parameters

Action 58
LinkName 58
ReturnTemplate 59
Selection 59
ServiceName 57
TemplateName 57
Uniquifier 59
usage 57

USER result set 60
USER.TopPage variable

description 61
example 111

V
Validation

adding to a field 199
and ExpressLookupInfo 56
creating a drop or radio list manually 216
making a field mandatory 212

removing a default from a drop list 224
removing from a page mode 198
removing from a template 200
setting or removing a radio or drop list

default 222
whole field validation 206

Variables, environment, See Environment variables
Variables, WebEnterprise Designer, See

WebEnterprise Designer variables

W
Web application server

and Express Services classes 31
architecture 28
example 29

Web server
and Forte Web server plug-in 27
and fortecgi program 27

Web server root directory
and graphics files 220
and styles 138

WebEnterprise Designer
conformation to HTML 4.0 137
customization guidelines 29
customizing security, See Customizing

application security
error directory 152
error handling 151
logical architecture 26
projects 31
result set variables 60, 154
runtime architecture 27
runtime scenarios 43
session management, See Session management
styles, See Styles
URL parameters 57
variables 60

WebEnterprise Designer applications
deploying 256–259
deploying as client or server 256
distributed testing 254
generated service objects 246–252
main project (html_modelHandlers) 246

Section W

Index 277

WebEnterprise Designer applications (continued)
partitioning 245–254
partitioning, default configuration 252
supplier project (business_modelServices) 246

WebEnterprise Designer class structure
and server registration 46
and session management 46
authenticating logon information 46
diagram 39
role of ExpressClassHandler 48–54
role of ExpressHTTPAccess 44
role of ExpressLogonHandler class 54
role of ExpressLookupInfo class 56
role of ExpressPageData 55
role of ExpressScanner class 47
role of ExpressValueGenerator class 55

WebEnterprise Designer classes
customizable 66
working with business classes 83

WebEnterprise Designer projects
ExpressHandlers project 34
html_modelHandlers project 35
HTTP Library 33

WebEnterprise Designer URL parameters
Action 58
LinkName 58
ReturnTemplate 59
Selection 59
Uniquifier 59

WebEnterprise Designer variables
entry.CurrentRow_busClassPage 62
entry.CurrentRowIndex_busClassPage 62
entry.FirstVisibleRow_busClassPage 62
entry.list_busClassPage 62
entry.RequestStatus_busClassPage 62
entry.Rows_busClassPage 62
entry.VisibleRows_busClassPage 62
examples 172, 173, 175, 181, 189
FORTE.ExecURL 60
FORTE.parameter_name 154
FORTE.UniqueID 61
listentry.busClassPage_qq_fieldName 62, 175, 181
listentry.qqRowNumber 62
lookup link example 175
usage 60
USER.TopPage 61

WebEnterprise error handling 151
WebEnterprise Listening Port number

and FORTE_WW_PORTS 249
and load balancing 249

WebEnterprise tags
about 28
example of FORTE IF 107, 109
format convention used in book 50
identifying in HTML templates 102

WebEnterprise URL parameters
ServiceName 57
TemplateName 57
usage 57

WebEnterprise variables
examples 109
identifying in HTML templates 102

Section W

278 iPlanet Unified Development Server • Customizing WebEnterprise Designer Applications • August 2001

	Contents
	List of Figures
	List of Procedures
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Other Documentation Resources
	iPlanet UDS Documentation
	Express Documentation
	WebEnterprise and WebEnterprise Designer Documentation
	Online Help

	iPlanet UDS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation

	1 WebEnterprise Designer Application Architecture
	Logical Architecture
	Runtime Architecture
	Web Application Server Architecture
	Runtime Objects by Partition
	Use of Express Services

	WebEnterprise Designer Projects
	HTTP Library
	The ExpressHandlers Project
	The html_modelHandlers Project
	Customizable Subclasses in html_modelHandlers

	Generated HTML Templates

	WebEnterprise Designer Class Interactions
	Class Interaction Diagram
	Declared Type and Runtime Type

	Life of a Template Request
	Runtime Scenarios
	Object Interaction Diagram Conventions

	ExpressHTTPAccess
	Starting the AccessService Service Object
	Customizing ExpressHTTPAccess

	ExpressScanner
	Starting the ScannerService Service Object

	ExpressClassHandler
	Runtime Control Flow
	Referenced Objects
	Field Identification
	Data Transfer
	Result Sets
	Connections Between Handlers

	ExpressLogonHandler
	Customizing ExpressLogonHandler

	ExpressPageData
	Foreign Result Sets

	ExpressValueGenerator
	ExpressLookupInfo
	Modifying the Displayed Null Value

	WebEnterprise Designer HTML Template Elements
	Links
	URL Parameters
	Variables

	2 Customizing WebEnterprise Designer Application Classes
	Overview
	Before You Begin
	Creating Customizable Classes
	Creating a Single Customizable Page Handler Class
	Creating a Full Set of Customizable Page Handler Classes
	To create customizable subclasses for every business class page in your model

	Customizing With the Page Handler Customization Wizard
	Customizing a Page Handler Class
	To customize a page handler class using the Page Handler Customization Wizard

	Customizing a Generated HTML Template
	Deleting Customizations
	Deleting Specific Customizations
	To delete a customization
	Deleting All Customizations in a Class
	To delete all customizations (entire class)

	Making Application-Wide Customizations

	A Roadmap to Customization Examples
	Page Handler Customization Wizard Help Files
	Page Handler Customization Wizard Customizations

	Customizing Manually
	Locating Where to Customize
	Overriding Methods in a Superclass
	To override a method

	Local and Global Customizations
	Error Reporting

	Working with Business Classes
	Business Class Record Status
	BusinessClass Attribute IDs (ATTR_)
	Changing the Value of an Attribute
	Checking the Status of a BusinessClass Object
	Undoing Changes Made to a BusinessClass Object

	Customization Techniques: ClassHandler Classes
	Creating a New Instance of a Business Class
	Getting the Result Set
	Getting the Initial Query

	Customization Techniques: Business Rules
	Where to Implement
	Business Rules on the Browser

	Customization Techniques: Data
	Formatting Fields
	Formatting Custom Fields
	Decoding or Validating Fields
	Processing Custom Fields on an HTML Form Submission
	Processing an Insert or Update Form
	Processing a Search Form

	Global Customization
	To customize ExpressHandlers classes

	3 Customizing Generated HTML Templates
	How WebEnterprise Designer Uses HTML Templates
	Common Templates
	Business Class Page Templates
	Link Page Templates
	Logon Page Templates

	Page Design Templates
	Simple Page Design Templates
	Fancy Page Design Templates
	Fancy Page Design Variations

	Customizing HTML Templates
	Customization Types
	Where to Customize
	What Not to Customize

	Regenerating After Customizing
	Scenario 1: HTML Changes Only
	Scenario 2: HTML and Model Changes
	Scenario 3: Conflicting HTML and Model Changes

	Customization Examples
	Conventions Used with the Examples
	Example: Customizing a Field on a Search Page
	Example: Customizing a Font Size on a Data Page

	4 Customizing Page Designs
	About Page Designs, Templates, and Pages
	Page Designs and Web Page Production
	When to Customize Page Designs

	Page Design Elements and HTML Template Generation
	Page Design File Names and Selectors
	Page Design Code Generation Processing
	Guidelines for Customizing Code Generation Directives

	Example: Customizing a Page Design
	The general steps for creating a customized page design are
	Create a New Design Directory
	To create and populate a new design directory

	Identify the Design with a Bitmap and Text
	To identify a page design

	Clear Existing Generated HTML Templates
	To clear generated HTML templates

	Customize the Design Files
	Remove the Menu From the Data File
	To remove the menu block from the data file
	Modify the Menu Design File
	To create and modify the Menu design file
	Modify the Display Design File
	To modify the Display file to create the required display and call the Menu file

	Generate and Inspect
	To verify your work by generating code
	To fix the error in the Menu file

	Fine-Tune the Customized Design

	5 Customizing Page Styles
	HTML 4.0 and Style Sheets
	WebEnterprise Designer and Style Sheets

	Using HTML Style Elements with WebEnterprise Designer
	Identifying the Style Sheet to Use
	Using HTML Attributes
	The class Attribute
	The id Attribute

	Using HTML Style Elements

	Customizing Page Styles
	Outline of Basic Procedures
	Creating the New Style Sheet File
	To create a new style sheet file

	Modifying Existing Elements
	To customize only existing elements in the new style sheet

	Adding New Elements
	To customize a restricted style
	To customize generally available styles

	Identifying the Style with a Bitmap and Text
	To identify the marketing style

	Considering the Browser
	Browser Caching
	Browser Independence

	6 Customizing Error Pages
	WebEnterprise Exception Handling
	Default Exception Processing
	WebEnterprise Exception Result Set Variables
	HTMLScannerException Class Variables
	HTTPAccessException Class Variables
	Variables for All Other Exceptions

	Customizing Error Pages
	Modifying Default Error Pages
	Creating Custom Error Pages
	Customizing a WebEnterprise Designer HTML Application
	To customize an application’s error page using the Customization Wizard
	The GetErrorTemplate Method
	Example: Application-Specific Error Template
	Example: Application-Specific Template with Custom Data

	Customizing HTTPAccessExceptions
	Errors in Error Customization

	7 Customization Examples
	Introduction
	Methods for Editing Generated Files
	Using the Page Handler Customization Wizard
	Customizing TOOL Methods Manually
	To customize a method of an ExpressHandlers class in a HTMLtutAppHandlers class
	Customizing Generated HTML and Text Files Manually

	Example: Adding a Lookup Reference Page
	What This Example Does
	Creating a Lookup Link
	Step 1.�Add a Reference Page to the HTMLtutApp Model
	To set up the HTMLtutApp model for a lookup link
	Step 2.�Capture the Search Page URL
	To capture the URL of the Search page mode
	Step 3.�Create a Link with the Captured URL
	To customize the CustomerOrder page
	Step 4.�Pass the Selected Field Value
	To customize the Data template of the Customer List page

	Testing Your Work Before the Final Step
	To test the work you have done so far
	Step 5.�Remove the CustomerOrder-CustomerList Link
	To finish the customization

	Usage Recommendations

	Example: Passing Data with a Command Link
	What This Example Does
	Creating the Customization
	Step 1.�Add Insert and Update Commands (If Required)
	To add the Insert and Update commands to a page (if necessary)
	Step 2.�Add a Variable to Hold the Value
	To add a variable to the Insert command link of the LineItem page
	Step 3.�Single Out One Instance of the Data
	To add a forte iterate loop
	Step 4.�Populate the Order Number with Incoming Data
	To customize the Insert mode of the LineItem page to display the data

	Testing Your Work
	To test the customization

	Example: Automatically Populating Data on an Insert Page
	What This Example Does
	Creating the Customization
	Step 1.�Add a NewOrder Page to the HTMLtutApp Model
	To modify the HTMLtutApp model
	Step 2.�Add a Variable to Hold the Value
	To populate the Customer Number value in the NewOrder Insert page

	Testing Your Work
	To test the customization

	Example: Adding a Drop List for Entering and Formatting Dates
	What This Example Does
	Creating Date-Formatting Drop Lists
	Step 1.�Define Drop Lists for Date Elements
	To define drop lists for the Requested Date field
	Step 2.�Override the BeforeInsert Method
	To override the BeforeInsert method for this customization

	Testing Your Work
	To test the customization

	Example: Removing a JavaScript Validation from a Page Mode
	What This Example Does
	Creating the Customization
	Step 1.�Apply the JavaScript to a Customer Page Field
	To set a validation on the Name field of the Customer page
	Step 2.�Remove the JavaScript Validation from a Template
	To remove the validation from the search template

	Testing Your Work
	To test the customization of the JavaScript validation

	Example: Displaying the Record Just Inserted
	What This Example Does
	Creating the Customization
	To code this customization with the Customization Wizard

	Testing Your Work
	To test the DoInsert method customization

	Example: Validating a Whole Form
	What This Example Does
	Creating a Field Constraint with JavaScript
	JavaScript Boilerplate
	Step 1.�Add the JavaScript Validation to the Template
	To add a JavaScript validation script to restrict non-null field entry
	Step 2.�Add a Value Attribute to the Field Descriptions
	To add a value attribute to the validated fields
	Step 3.�Modify the Insert Button
	To modify the Insert button

	Testing Your Work
	To test the customization of the JavaScript validation

	Example: Making a Field Mandatory
	What This Example Does
	Creating a Field Constraint with TOOL
	To create a field constraint with TOOL

	Testing Your Work
	To test the TOOL customization

	Drop List or Radio List Example: Entering�Lookup�Information Manually
	What This Example Does
	Creating the Customization
	Step 1.�Add a Drop List Validation to the Field
	To add a drop list validation to the gifAddress field
	Step 2.�Generate the Lookup File
	To generate a lookup file
	Step 3.�Customize the Lookup File with Your Values
	To customize the lookup file

	Testing Your Work
	To test your manually customized lookup file

	Drop List and Radio List Example: Removing�<Not Selected> and <None>
	What This Example Does
	Creating the Customization
	Technique 1: Customizing the Page Mode Template
	To remove the <Not Selected> option from a drop list
	Technique 2: Customizing the Scripts File
	To remove the <Not Selected> option from a drop list

	Testing Your Work
	To test your drop list customization

	8 Customizing Application Security
	Security and HTML Applications
	Authenticating Users
	Creating the Logon Page
	To create a Logon page
	Code Generated for the Logon Page
	How the Logon Page is Activated
	To activate the logon page

	Integrating the Application with an Authentication System
	To customize an application’s logon page using the Customization Wizard
	Example: Adding LogonSession Code

	Restricting Access to Application Pages
	To restrict access to a page

	Sharing a Security Environment Across HTML Applications
	Avoiding Security Leaks
	Customizing Subsidiary HTML Models to Share Security
	To customize subsidiary models to share the security environment

	Customizing the Main HTML Model to Share Security
	To customize the main model to share the security environment

	Restrictions
	Summary

	Session Timeout
	How Session Timeout Works
	Finding the Ideal Setting for Session Timeout
	Example: Customizing Session Timeout
	To change the session timeout

	Other Security Customizations

	9 Partitioning and Deploying a WebEnterprise Designer Application
	About Partitioning a WebEnterprise Designer Application
	About HTML Application Projects and Service Objects
	business_modelServices Service Objects
	html_modelHandlers Service Objects
	Relationship Between the Service Objects
	Creating a Default Partitioning Configuration
	To partition an HTML application

	Modifying the Configuration

	Testing the Application in a Distributed Environment
	To test run an HTML application in distributed mode from the Partition Workshop
	To test run your application in distributed mode from other workshops

	Deploying the Application
	To deploy your HTML application
	Making the Application’s Template Files Accessible to the ScannerService SO
	Copying the Application’s Template Files to the Scanner Partition
	Setting Document Root on the ScannerService�Service�Object�Partition

	Running the Application
	To run a deployed HTML application
	The AccessService Log File
	Memory Considerations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

