
Programming Guide
iPlanet™ Unified Development Server

Version 5.0

August 2001

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, iPlanet, Unified Development Server, and the iPlanet logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, iPlanet, Unified Development Server, et le logo iPlanet sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

List of Figures . 23

List of Tables . 27

List of Procedures . 29

List of Code Examples . 33

Preface . 37
Product Name Change . 37
Audience for This Guide . 38
Organization of This Guide . 38
Text Conventions . 41
Other Documentation Resources . 42

iPlanet UDS Documentation . 43
Express Documentation . 43
WebEnterprise and WebEnterprise Designer Documentation . 43
Online Help . 44

iPlanet UDS Example Programs . 44
Viewing and Searching PDF Files . 44

Chapter 1 How to Structure a Graphical User Interface . 47
About iPlanet UDS Windows . 47

Inherited Windows . 49
Named Event Handlers and Inherited Windows . 50

Nested Windows . 51
Named Event Handlers and Nested Windows . 53

Inherited Windows or Nested Windows? . 54
Windows as Page Templates . 54

Page Formatting . 55

4 iPlanet Unified Development Server • Programming Guide • August 2001

Structuring the User Interface . 57
Opening and Closing Windows . 57

Writing a Display Method . 58
Creating the Window Object . 59
Displaying the Window . 59
Blocking the Calling Window . 60
Displaying a Nested Window . 61

Using Dialog Boxes . 63
Writing the Window Event Loop . 64

Using Event Handlers . 65
Child Events . 65
Input Focus Event Chain . 65
Field Selection Event Chain . 67
Close Window Event Chain . 68
Event Loop for Inherited Windows . 68
Event Loop Using a Nested Window . 69

Chapter 2 Using Complex Widgets . 71
About Tab Folders . 71

Creating Tab Folders in the Window Workshop . 73
Using the New > TabFolder Command . 73
Using the Group Into > TabFolder Command . 74
Editing the Tab Folder . 76
Setting Tab Folder Properties . 79

Creating Tab Folders Dynamically . 81
About Outline, List View, and Tree View Fields . 84
Using Outline Fields . 88

Interacting with Outline Fields . 88
Data for Outline Fields . 88

Node Hierarchy . 89
Event Handling . 90

Outline Field Properties . 90
Providing Controls . 90
Displaying the Root Node . 90
Turning Scrollbars On and Off . 90
Controlling Row Highlights and Scroll Policy . 90
Displaying Column Titles . 91

Individual Column Properties . 91
Column Content . 91
Column State . 92
Column Sizing and Alignment . 92
Column Indenting . 92

Creating an Outline Field in the Window Workshop . 93

5

Using Outline Fields (continued)
Providing Data for an Outline Field . 96

Using a Subclass of DisplayNode . 97
Creating and Assigning the Node Hierarchy . 98

Using List View Fields . 102
List View Styles . 102

Styles and Portability . 103
Styles and Sorting . 103

Interacting with List View Fields . 104
Data for List View Fields . 104
List View Properties . 105

List View Style . 105
Scrollbars . 105
Row Highlights and Scroll Policy . 106
Column Titles . 106

Individual Column Properties . 107
Column Content . 107
Column State . 107
Column Sizing and Alignment . 107

Creating a List View Field in the Window Workshop . 108
Setting List View Style . 108
Column Names and Other Column Properties . 108

Providing Data for a List View Field . 112
Small Icon and Simple List Fields . 112
Image List View Field . 112
Detail List View Field . 112
Using a DisplayNode Array . 112
Using a Subclass of DisplayNode . 113
Creating and Assigning the Node Array . 114

Using Tree View Fields . 115
Interacting with Tree View Fields . 116
Data for Tree View Fields . 116

DVSmallIcon and DVSelectedIcon Attributes . 117
DVNodeText Attribute . 117
Node Hierarchy . 117
Event Handling . 118

Tree View Properties . 118
Providing Controls . 118
Allowing Dragging . 118
Displaying the Root Node . 118
Turning Scroll Bars On and Off . 119
Row Highlights and Scroll Policy . 119

6 iPlanet Unified Development Server • Programming Guide • August 2001

Using Tree View Fields (continued)
Creating a Tree View Field in the Window Workshop . 120
Providing Data for a Tree View Field . 121

Attributes for Positioning Nodes . 122

Chapter 3 Creating a Portable User Interface . 127
Designing a Portable User Interface . 127

Widget Differences . 128
Tab Folders . 128
List Views and Tree Views . 128
Fonts . 129
Image Resolution . 130
Styles . 131

Tools for Portable Displays . 134
Grid Fields . 134
Field Size Partnerships . 135
Field Size Policies . 136

Using Grid Fields . 137
Nesting Grid Fields . 137
Resizing Fields Within a Grid Field . 138
Row and Column Alignment . 140
Specifying the Window’s Border . 143
Using Column and Row Partnerships . 145

Chapter 4 Implementing Online Help . 147
Overview . 147

Context-Sensitive Help . 149
Default Help File . 149
DefaultHelpFile Attribute . 149

Float-Over Help . 152
Enabling Float-Over Help . 152
Providing Float-Over Help Text . 153
Float-Over Help for Palette Lists . 154
Suppressing Float-Over Help Text . 155

Status-Line Help . 155
Status-Line Help for Palette Lists . 158

Status-Line Help for Menu Widgets . 159
Using the Prefabricated Help Commands . 160

Default Help File . 162
Implementing the About Command . 162

7

Chapter 5 Testing the User Interface . 163
Using the TestClient Utility . 163

Starting the TestClient Utility . 164
Portable Syntax . 164
OpenVMS Syntax . 164

The TestClient Window . 165
Setting TestClient Options . 166
Leaving the TestClient Utility . 166
Testing the Client . 166

Using the AutoTester Project . 167
Capturing Input in an Input Capture Class . 167
Setting Up for Input Capture . 169
Capturing Input . 170

Dumping State Information . 172
Making Portable File References . 174

Playing Back Captured Input . 175
Analyzing the Results . 178
Automating Regression Tests . 179
Creating Your Own Test Utility . 180

Chapter 6 Using iPlanet UDS Logging Tools . 181
About iPlanet UDS Logging . 181

Logging Requirements . 183
iPlanet UDS Logging Tools . 184

iPlanet UDS Logging Filters . 185
Message Types . 185
Service Types . 186

Shortcuts for Specifying all Service Types . 187
iPlanet UDS Internal Service Types . 187

Group Numbers . 188
Level Numbers . 188
Useful Message Filters . 189

Implementing Your Logging Scheme with LogMgr Methods . 190
Referencing the LogMgr Object . 191
Logging Application Information with PutLine . 191

Logging Message Text . 192
Logging State Information . 192
Put and PutLine Examples . 192

Altering the Flow of Control of an Application . 194
Test Method Example . 194

Changing Logging Filters . 195
Flushing Current Log Files . 195

Flush . 196

8 iPlanet Unified Development Server • Programming Guide • August 2001

Setting up Logging with iPlanet UDS . 196
Tools for Setting Log Flags . 197

The FORTE_LOGGER_SETUP Environment Variable . 197
The Log Flags Page of the iPlanet UDS Control Panel . 197
The -fl Flag of iPlanet UDS Commands . 198
The Utility > Modify Log Flags Command . 198
The Component > Properties Command . 198
The Component > Modify Log Flags Command . 198
Modifying Log Flags with Fscript and Escript . 199
The LogMgr.ModifyFlags Method . 199

Order of Precedence for Log-Setting Procedures . 200
Precedence Details on NT . 200

Setting Log Flags with Command Line Syntax . 201
Log Flag Syntax . 201
FORTE_LOGGER_SETUP Example . 203
Command-Line Log Flags Example . 205

Setting Log Flags with a Window Interface . 206
Specifying Message and Service Types . 207
Specifying Group Levels . 208

Choosing a Testing Mode . 209
Local Testing . 209
Distributed Testing . 209

Distributed Testing and Test Service Object Names . 210
Locating Logging Output . 210

Changing Log File Names for Active Partitions . 211
Rules for Log File Names . 211

Logging Examples . 214
Auction Example . 214

Setting up Logging . 216
Running the Example . 218

Logging for Performance Example . 219
Log Flags Used . 219
Example Method That Times Itself . 220
Example Timer Output Method . 221

Chapter 7 Deployment Concepts . 223
An Overview of Deploying Applications and Libraries . 223

Distributed Applications and Application Distributions . 224
Libraries . 225
Environments . 225

9

Configuring Applications . 225
Client Configuration . 226

Applets . 226
Server Configuration . 226
Relationship Between Partitions and Projects . 226
Relationship Between Partitions and Libraries . 227
Automatic Partitioning . 227
Testing a Configuration . 228
Deploying Applications . 228

About Partitions . 228
Logical Partitions . 229

Client Partition . 229
Server Partition . 229
Replicated Server Partition . 229
Router Partition . 229
Non-replicated Server Partition . 230
Reference Partition . 230

Configuring Libraries . 233
About Environments . 234

Development Environment . 234
Deployment Environment . 234

Simulating Deployment Environments . 235
Connected Environments . 235
Nodes . 236

Chapter 8 Deploying iPlanet UDS Applications and Libraries . 237
About Deploying Applications and Libraries . 237

iPlanet UDS Utilities for Deploying Applications and Libraries . 239
Examples . 239
Getting Started . 240

Creating a Default Application Configuration . 240
How the Default Configuration is Generated . 242

How Client Partitions Are Assigned . 242
How Server Partitions Are Assigned . 243
Why Some Service Objects Are Unassigned . 243
Why Service Objects Are Not Replicated . 243

Examining the Logical Partitions . 244
Examining Nodes in an Application Configuration . 245
Examining the Assigned Partitions . 246

10 iPlanet Unified Development Server • Programming Guide • August 2001

Customizing the Application Configuration . 247
Choosing a Simulated Environment Definition . 249
Redefining Logical Partitions . 249

Moving Service Objects Between Partitions . 250
Creating a New Logical Partition . 250
Making a Reference Partition . 251
Using Reference Partitions with Connected Environments . 254
Defining a Client Partition as an Applet . 256
Combining Service Objects and Partitions . 257

Modifying a Service Object Definition . 260
Failover and Load Balancing . 261
Setting the Export Name and External Type . 262
Specifying the Environment Search Path . 262

Changing Partition Assignments . 264
Adding Partition Assignments . 264
Moving Partitions . 264
Deleting Partitions . 265

Changing Assigned Partition Properties . 265
Assigned Client Partition Properties . 265
Assigned Server Partition Properties . 266

Changing Configuration Properties . 268
Viewing and Setting the Configuration Properties . 268
Recreating the Default Configuration . 269

Making an Application Distribution . 269
Understanding Application Distributions . 270

Standard Partitions . 270
Compiled Partitions . 270
Launching Applets and Other Applications . 271
Adding an Icon File for Windows to the Distribution . 272

Application Distribution Directory . 272
File Naming Conventions . 275

Using the Make Distribution Command . 276
Local/Remote Option . 277
Auto-Compile Option . 277
Full or Partial Make Options . 277
Install in Current Environment Option . 278

The Make Distribution Command and Compiled Partitions . 279
Environment Variables and Path . 279
Using the fcompile Command for Compiled Partitions . 281
Compiling a Partition for Use on Several Computing Platforms . 283

11

Making an Application Distribution (continued)
Packaging an Application Distribution . 284

Installing Additional Files with Your Application Distribution . 284
Documenting a Distribution . 285

Installing an Application Distribution . 286
Transferring a Distribution to a Deployment Environment . 287
Loading a Distribution into an Environment Repository . 288

When a Distribution Conflicts with an Installed Application . 291
Modifying a Partitioning Configuration . 292

Reassigning Partition Assignments . 292
Modifying Installed or Assigned Partition Properties . 295

Installing the Application . 296
Installing Applications on Server Nodes . 298
Installing Applications on Client Nodes . 299

Generating Icons for Standard Client Partitions . 301
Generating Icons for Compiled Client Partitions . 302
Creating Icons by Hand . 303

Installing Applications with Reference Partitions . 303
Completing Partial Installations . 303

Deploying a Library . 304
Creating an Library Configuration . 304
Creating a Default Library Configuration . 305
Examining Library Configurations . 306

Examining the Projects . 306
Examining Nodes in a Library Configuration . 307
Examining Assigned Libraries . 308

Modifying a Library Configuration . 308
Adding Projects to the Configuration . 309
Removing Libraries from a Node . 310
Standard or Compiled Libraries . 311

Making a Library Distribution . 312
About Library Distributions . 312
Using the Make Distribution Command . 315
Compiling Libraries . 315

Installing a Library Distribution . 317
Removing and Updating Applications and Libraries . 319

Removing an Application or Library . 319
Upgrading Applications . 320

Upgrading Installed Applications . 320
Upgrading Reference Partitions . 321
Upgrading Libraries . 322
Partial Upgrades . 323

12 iPlanet Unified Development Server • Programming Guide • August 2001

Chapter 9 Class Runtime Properties . 325
Class Runtime Properties . 325

Class Runtime Property Defaults and Performance . 327
Setting Runtime Properties for a Class . 328
Setting Runtime Property Attributes for an Object . 329

Runtime Attributes on Nested Objects . 329
Runtime Attributes on Cloned Objects . 330

Distributed Objects . 330
Named and Unnamed Anchored Objects . 332
Non-Distributed Anchored Objects . 332
Invoking Methods on Distributed Objects . 332
Accessing Attributes of Distributed Objects . 333

Note on DataValue Subclasses in Framework . 335
Shared Objects . 335

Automatic Locking: Mutexes . 336
Nonshared Objects and Concurrent Access . 337
Waiting for Events and Shared Objects . 337
Nested Method Invocations . 339
Common Mutex Deadlock . 339

Avoiding Common Mutex Deadlock . 340
Distributed Mutex Deadlock . 340
Distributed Recursive Deadlock . 341
Distributed Shared Objects . 342
Cloning Shared Objects . 343

Transactional Objects . 343
Transactional Logging . 345

Common Transactional Logging Error . 346
Shared Transactional Objects and Transactional Locking . 347

Updating Non-Shared Transactional Objects . 348
Read Locks . 349
Write Locks . 350
Lock Promotion . 351

Transactional Deadlock . 351
Lock Promotion Deadlock . 352
Locking in Nested Transactions . 355
Transaction Task Participants and Locking . 355
Transactional Objects Not in Transaction . 356
Cloning Transactional Objects . 356
Distributed Transactions and the Transactional Property . 356

Monitored Objects . 357

13

Chapter 10 Using Interfaces . 359
About Interfaces . 359

Interface Elements . 360
Implementing an Interface . 360

Using an Interface as a Data Type . 360
Dynamic Class Loading . 361
Multiple Interface Inheritance . 361
Polymorphism . 361
Interface Hierarchies . 362

Creating an Interface . 362
Implementing an Interface . 364

Implementing Multiple Interfaces . 366
Using an Interface as a Declared Type . 367
Interface Elements . 368

Virtual Attributes . 368
Methods . 369
Events . 370
Event Handlers . 370
Constants . 370

Dynamic Class Loading . 371
Application Developer: Using Dynamic Loading within Application Code 372
Step 1. Defining the Interface . 373
Step 2. Providing the Mechanism for Registering Implementing Classes 375
Step 3. Loading the Class and Creating the Object . 376
Step 4. Making the Interface Library . 380
Step 5. Testing the Application . 381
Step 6. Delivering the Application and Interface Library . 381
Class Implementer: Providing Implementations for Dynamic Loading . 382
Step 1. Importing the Interface Library . 383
Step 2. Creating the Implementation Project . 384
Step 3. Creating the Implementing Class . 384
Step 4. Making the Implementation Library . 386
Step 5. Deploying the Implementation Library . 387
Step 6. Registering the Implementation Library . 388
Step 7. Testing the Interface . 389

Using Multiple Interface Inheritance . 389
Declared Type and Runtime Type for Interfaces . 391
Example of Multiple Inheritance . 391

Signature Conflicts . 392

14 iPlanet Unified Development Server • Programming Guide • August 2001

Chapter 11 Working With Service Objects . 393
About Service Objects . 393

TOOL Class Service Objects . 394
Service Objects for Database Access . 395

DBResourceMgr Service Objects . 396
DBSession Service Objects . 396

Setting Properties of Service Objects . 397
Class Runtime Properties . 398
Service Object Properties . 398

Setting Service Object Visibility . 399
Environment Visibility . 400
User Visibility . 401

Assigning a Dialog Duration to Service Objects . 402
Dialog Duration and State Information . 403
Dialog Duration and Error Handling . 404
Message Duration Service Objects . 405

State Information for Message Duration . 406
Error Handling for Message Duration . 406
Transactions and Message Duration . 406
Events for Message Duration . 407

Transaction Duration Service Objects . 407
State Information for Transaction Duration . 408
Error Handling for Transaction Duration . 408
Transactions and Transaction Duration . 409
Events for Transaction Duration . 409

Session Duration Service Objects . 409
State Information for Session Duration . 410
Error Handling for Session Duration . 410
Transactions and Session Duration . 410
Events for Session Duration . 411

Replicating Servers for Failover and Load Balancing . 411
Replication for Failover . 412
Replication for Load Balancing . 412
Replication for Failover and Load Balancing . 412

Providing Failover . 413
Enabling Failover . 413
Failover in the Local Environment . 414
Cross-Environment Failover . 416

Deploying Applications with Cross Environment Failover . 417
Combining Local and Cross-Environment Failover . 418
Relationship between Dialog Duration and Failover . 419

15

Providing Load Balancing . 420
Enabling Load Balancing . 421

Setting the Number of Replicates . 422
Relationship between Dialog Duration and Load Balancing . 423

The Router Partition . 424
Single-Threaded and Multi-Threaded Routers . 425
Failover for the Router . 425

Sharing Service Objects Between Applications . 426
Sharing a Service Object in a Single Environment . 427
Sharing a Service Object in Connected Environments . 428
Including a Shared Service Object in an Application . 429

Deploying the Shared Service . 429
Making a Distribution for the Server Application in the Local Environment 430
Including the Supplier Project . 430
Making the Reference Partition . 431

Using the Environment Search Path . 432
Specifying an Environment Search Path . 433
Specifying Auto-Start for a Partition . 434

Chapter 12 Advanced Options for Structuring Client Applications 435
 Writing Applications That Use the Launch Server and Applets . 435

Setting up the AppletSupport Library . 436
Advantages of Using the AppletSupport Library . 436
Restrictions . 437
Building Applications by Starting Multiple Smaller Applications . 437

Using the LaunchService Service Object . 438
Using LaunchMgr Methods . 439
A Scenario . 439

Configuring and Deploying the Main Client Application . 441
Testing . 443

Customizing the Launcher Application . 443
Deploying Applications That Launch Other Applications And Applets . 443
Troubleshooting Client Applications That Use Applets . 444

Developing Applications with Nomadic Clients . 445
Connecting to the Environment . 447
Disconnecting the Client Partition from the Distributed Environment . 448

Releasing the Connection to Service Objects and Anchored Objects . 448
Releasing the Connection to the Environment . 449

Example of Connecting and Disconnecting to the Environment Manager 450
Starting a Nomadic Client Application . 450
Testing Nomadic Client Applications . 451
Restrictions on Nomadic Clients . 452

16 iPlanet Unified Development Server • Programming Guide • August 2001

Chapter 13 Upgrading Deployed Applications . 453
Choosing an Upgrade Approach . 453

Types of Upgrades . 454
Factors Influencing Upgrade Possibilities . 456

When is a Rolling Upgrade Necessary? . 456
Changes Allowed Between Upgrades . 459
About Class Versions and Compatibility Levels . 460
About Interoperable Upgrades . 462

Upgrading Clients . 462
Upgrading Servers . 463

About Compatibility Level Upgrades . 463
About Compatibility Level Rolling Upgrades . 464

About Class Version Upgrades . 465
About Converters . 467

New Method Converters . 470
Obsolete Method Converters . 470
Converters for Modified Methods . 471
Event Converters . 471

The Banking1-2 Example . 472
Performing an Interoperable Upgrade . 475

Summary of Upgrade Steps . 475
Changes Allowed in an Interoperable Upgrade . 476

Using Distributed Object References . 476
Adding New Attributes to Objects that are not Distributed . 477
Updating Window Classes . 477

Making the Distribution . 477
Using Compatibility Levels to Upgrade . 478

Summary of Upgrade Steps . 478
Using New Compatibility Levels of Libraries and Shared Service Objects 479

Using Class Versions and Converters for a Rolling Upgrade . 481
Planning a Class Version Upgrade . 481

Special Requirements for High Availability Servers . 482
Summary of Upgrade Steps . 482
Updating Classes and Writing Converters . 483

Viewing Converters . 483
Guidelines for Writing Converters . 485
Writing Method Converters . 487
Writing Event Converters . 489
Modifying Converters . 491
Deleting Converters . 491

Using Class Version Numbers . 492
Testing Converters . 493
Making a Distribution . 493

17

Using Class Versions and Converters for a Rolling Upgrade (continued)
Installing and Starting Updated Partitions . 493

Using Failover . 495
Using Load Balancing . 495

Recording Information About the Update . 496
Removing Versions of Classes . 496

Chapter 14 TOOL Reflection Classes . 497
The Power of Reflection . 497

Learning About Reflection . 498
Restrictions . 498

TOOL Class Reflection . 499
Accessing Reflection Objects . 500
Getting Information About a Class or Interface . 501

Accessing Arrays . 503
Accessing Simple Data Types . 504

Working With Attributes . 504
Getting the AttributeDesc Object . 504
Determining the Data Type of an Attribute . 505
Getting or Setting the Attribute Value on an Object . 505
Getting or Setting the Value of a Primitive Type . 506

Working With Methods . 508
Getting Parameter and Return Value Information . 509
Invoking the Method . 509

Reflection Examples . 510
Object Inspector . 510
Class Browser . 513

Chapter 15 XSLT Processor Library . 517
Features of the iIS XSLT Processor . 517

Restrictions . 517
Introducing XML and XSL . 518

What is XML? . 518
Representing an XML Document in a TOOL Application . 519

What are XSL Transformations? . 519
What is an XSLT Processor? . 521

Using an XSLT Processor in a TOOL Application . 522
Using the Results Document in a TOOL Application . 523

Using Protocol Handlers . 523
The XSLT Processor Library Classes . 526

18 iPlanet Unified Development Server • Programming Guide • August 2001

Chapter 16 Source Code Management for iPlanet UDS Projects . 527
Overview of Source Code Management . 528
Source Code Management Service . 528

Features and Limitations . 528
Using the GenericRepository Library . 529

Using SCMServer . 529
Using the SourceCodeManager Library . 531

Features and Limitations . 531
Creating an SCM Service . 532

SCM Service Example . 533
Export Formats . 533

Compatibility Format . 533
Multi-File Format . 534

Chapter 17 Performance-Based Load Balancing . 537
Using Performance-Based Load Balancing . 537

Providing Performance Information About a Node . 538
Using the Environment Console . 538
Using Escript . 539

Specifying the Number of Replicates . 539
Partitioning the Replicates . 541

Chapter 18 Creating HTTP Applications . 543
HTTP Overview . 543

Clients . 544
Servers . 544

The HTTPSupport Model . 544
Messages . 546

Headers . 546
Message Body . 547
Requests . 548
Responses . 548

Sessions . 548
Application Sessions . 549
Network Sessions . 550
Secure Sessions . 550

HTTPSupport Classes and Interfaces . 551

19

Creating HTTP Clients . 553
HTTP Client Requests . 553
Specifying Request Details . 554

SetMethod . 554
SetURL . 554
SetQueryString . 554
Message Body . 555
Entities . 555
Message Headers . 555

Sending Messages . 556
Send Method . 556
Dispatching Requests . 556
Sessions . 557
Reusing Sessions . 558

HTTP Servers . 559
Creating iPlanet UDS HTTP Server Applications . 559
MessageReceiver Interface . 560
HTTPReceiver Interface . 560
Listening For Requests . 561

Advertise Method . 561
SetServiceEOSInfo Command . 562

Responding to Requests . 562
Sessions . 563
Processing Cookies . 563
Message Headers . 564
Message Body . 564
Entities . 565
HTTPFactory . 566

Using Multi-Threaded Server Processes . 567
Configuring HTTP Sessions . 567

Configuring HTTP Clients . 567
System-Wide Configuration . 569
Session-By-Session Configuration . 570

Configuring HTTP Servers . 570
HTTPConfigManager . 572
HTTPHelper . 572
Configuring Request Dispatching With HTTPServerManager . 573

Configuring Secure Sessions . 575
Secure Client Sessions . 575
Secure Server Sessions . 578

Related Topics . 579
Encoding and Decoding With Base64 . 579
Character Sets in Messages . 579

20 iPlanet Unified Development Server • Programming Guide • August 2001

Chapter 19 Enabling Security . 581
About SSL . 581

How SSL Works . 582
SSL Services . 583
SSL Classes . 584

Working with Certificates . 586
Creating a Root Certificate . 587
Creating a Leaf Certificate . 588

Code Examples . 589

Chapter 20 Using the XMLDOM2 Library . 593
What Are XML Namespaces? . 594
Tree-Based APIs . 595

Advantages of Using Tree-Based APIs . 595
Restrictions When Using Tree-Based APIs . 595

The Document Object Model . 595
DOM Trees . 595

DOM Tree Examples . 596
Creating DOM Trees . 597
Reading DOM Trees . 598
Manipulating DOM Trees . 598
The DOM API Classes . 600
DOM Level 2 Features . 601

Upgrading from DOM Level 1 . 602

Chapter 21 Using the XMLSAX2 Library . 603
XML Namespaces . 604
SAX and the Event Handling Model . 604

What Are Events? . 605
Examples of Events . 606
StartDocument() and EndDocument() Methods . 608
StartElement() and EndElement() Methods . 608
Character Events . 608

Filtering Events . 609
The FilterImpl Class . 609

Exception Handling in SAX Level 2 . 610
New Features in SAX Level 2 . 610

Support for Namespaces . 610
Configurable Parsers . 610
Other Features . 611

Upgrading from SAX Level 1 . 611
The XMLSAX2 Classes and Interfaces . 611

21

Chapter 22 Accessing Internet Directory Services . 615
LDAP Overview . 615

LDAP Directory Information . 616
LDAP Directory Trees . 616
Accessing and Updating an LDAP Directory . 616

Using the iPlanet UDS LDAP Library . 617
Establishing an LDAP Session . 617

Connecting to an LDAP Server . 618
Message IDs . 618
Authentication . 618

Searching an LDAP Directory . 619
Building LDAP Filters . 621

Updating an LDAP Directory . 623
Adding an LDAP Entry . 623
Modifying an Attribute for an LDAP Entry . 625
Deleting an LDAP Entry . 627

Closing an LDAP Session . 628

Appendix A iPlanet UDS Example Applications . 629
How to Install iPlanet UDS Example Applications . 629
Overview of iPlanet UDS Example Applications . 630
Application Descriptions . 631

AdaptableAuction . 632
AppletBanking . 633
Auction . 634
AutoTester . 635
Banking1-2 . 636
HTTPSupport . 636
InheritedWindow . 639
InternatBank . 640
NestedWindow . 641
NomadicOrderClient . 642
PrintSample . 643
TabFolders . 644
TimeItV1-4 . 645

TreeList . 647

Index . 649

22 iPlanet Unified Development Server • Programming Guide • August 2001

23

List of Figures

Figure 1-1 Example Superclass Window . 49

Figure 1-2 Example Subclass Windows . 49

Figure 1-3 Example Subwindow . 51

Figure 1-4 Main Windows Displaying Nested Windows . 52

Figure 1-5 Page Template Window . 54

Figure 1-6 Printed Version of Page Template . 56

Figure 2-1 Tab Folder . 72

Figure 2-2 Tab Folder Components . 72

Figure 2-3 Header Style Property . 79

Figure 2-4 Layout Policy . 80

Figure 2-5 TabFolder Properties Dialog . 80

Figure 2-6 Outline Field . 85

Figure 2-7 List View Field . 86

Figure 2-8 Tree View Field . 87

Figure 2-9 Tree View Field and List View Field Used Together . 87

Figure 2-10 Data in an Outline Field . 89

Figure 2-11 OutlineField Properties Dialog . 96

Figure 2-12 Nodes in a Node Hierarchy . 99

Figure 2-13 List View Field Styles . 103

Figure 2-14 Data for List View Field . 104

Figure 2-15 Data in a Tree View Field . 117

Figure 2-16 Nodes in a Node Hierarchy . 123

Figure 3-1 Nested Grid Fields . 138

Figure 3-2 Simple Text Editor Window . 139

Figure 3-3 First Grid Field . 139

Figure 3-4 Second Grid Field . 140

Figure 3-5 Width Policy Adjustment . 140

24 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 3-6 Size Properties Dialog for the Parent Grid Field . 143

Figure 3-7 Testing the Window in Figure 3-2 . 144

Figure 3-8 Adjusting the Border of a Window . 144

Figure 5-1 TestClient Window . 165

Figure 5-2 AutoTester Control Panel . 170

Figure 5-3 Capture Window . 171

Figure 6-1 Log Filter Syntax . 203

Figure 6-2 The Log Flags Page of the Control Panel and the Modify Log Flags Dialog 206

Figure 6-3 Using a Drop List for the Message Type . 207

Figure 6-4 Specifying All Service Types . 208

Figure 6-5 Specifying All or a Single Group Level . 208

Figure 6-6 Auction Example Starting Window . 214

Figure 6-7 Paintings Listed in the Starting Window . 215

Figure 6-8 Auction Example View Window . 215

Figure 6-9 Auction Example Bid Window . 216

Figure 7-1 Partitions in a Distributed Application . 224

Figure 7-2 Relationship between Partitions and Projects . 227

Figure 7-3 Reference Partition for Current Environment . 231

Figure 7-4 Reference Partition for Connected Environment . 232

Figure 8-1 Deploying an Application or Library . 238

Figure 8-2 Logical Partition Browser . 244

Figure 8-3 Logical Partitions Dialog . 244

Figure 8-4 Node Properties Dialog . 246

Figure 8-5 Choosing the Name of a Simulated Environment . 249

Figure 8-6 Assigned Partition Properties Dialog (Client Partition) . 265

Figure 8-7 Assigned Partition Properties Dialog (Server Partition) . 266

Figure 8-8 Configuration Properties Dialog . 269

Figure 8-9 Application Distribution Directory Structure . 273

Figure 8-10 Transferring a Distribution to a Deployment Environment . 287

Figure 8-11 Loading Distribution into Environment Repository . 289

Figure 8-12 Installing an Application on a Server Node . 299

Figure 8-13 Installing an Application on a Client Node . 301

Figure 8-14 Windows Command Icon . 302

Figure 8-15 Project Browser . 306

Figure 8-16 Logical Partition Dialog for a Project . 306

Figure 8-17 Node Properties Dialog . 307

Figure 8-18 Compilation Properties for Node Dialog . 308

List of Figures 25

Figure 8-19 Default Library Configuration . 309

Figure 8-20 Library Distribution Directory Structure . 313

Figure 9-1 Class Properties Dialog: Runtime Properties Tab Page . 328

Figure 9-2 Using Distributed References for Distributed Objects . 331

Figure 10-1 TaxCalculationIFace Interface . 364

Figure 10-2 TaxCalculationImp Implementation of TaxCalculationIFace Interface 366

Figure 10-3 Interface Definition . 374

Figure 10-4 TaxCalculationImp Implementation of TaxCalculationIFace Interface 386

Figure 10-5 Single Inheritance . 389

Figure 10-6 Multiple Interface Inheritance . 390

Figure 11-1 TOOL Class Service Object General Properties Tab Page . 395

Figure 11-2 DBResourceMgr Service Object Database Tab Page . 396

Figure 11-3 DBSession Service Object Database Tab Page . 397

Figure 11-4 Environment-Visible Service Object . 400

Figure 11-5 User Visible Service Object . 402

Figure 11-6 Message Dialog Duration . 405

Figure 11-7 Transaction Dialog Duration . 408

Figure 11-8 Session Dialog Duration . 410

Figure 11-9 Service Object Dialog with Failover . 413

Figure 11-10 Hardware Failover . 414

Figure 11-11 Software Failover . 415

Figure 11-12 Cross-Environment Failover . 416

Figure 11-13 Service Object Properties Environment Search Path Tab Page 417

Figure 11-14 Load Balancing on a Single Node . 420

Figure 11-15 Load Balancing on Multiple Nodes . 421

Figure 11-16 Load Balancing with Transaction Dialog Duration . 424

Figure 11-17 Router with Failover . 426

Figure 11-18 Reference Partition for Single Environment . 427

Figure 11-19 Reference Partition for Connected Environment . 428

Figure 12-1 Running an Application using Nomadic Clients . 446

Figure 13-1 Upgrade Approach Decision Tree . 458

Figure 13-2 Interoperable Upgrade with Failover . 462

Figure 13-3 Compatability Level Step Upgrade . 464

Figure 13-4 Compatability Level Rolling Upgrade . 465

Figure 13-5 Class Version Upgrade . 466

Figure 13-6 Interoperable Upgrade with Failover . 468

Figure 13-7 Before Upgrade . 472

26 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 13-8 Caller is Newer: New Converter Executes Caller . 474

Figure 13-9 Caller is Older: Obsolete Converter Executes on Callee . 475

Figure 14-1 TOOL Reflection Class Hierarchy . 499

Figure 14-2 Using ClassType Objects to Enable Reflection . 501

Figure 15-1 XSLT Processor Document Flow . 521

Figure 17-1 Node Properties Dialog . 538

Figure 17-2 Service Object Properties Dialog . 539

Figure 17-3 Assigned Partition Properties Dialog (Server Partition) . 541

Figure 18-1 HTTPSupport Model . 545

Figure 19-1 SSL Class Hierarchy . 585

Figure 20-1 Simple XML DOM Tree . 596

27

List of Tables

Table 6-1 Message Types . 186

Table 6-2 Service Types . 187

Table 6-3 Useful Message Filters . 189

Table 6-4 Syntax for Specifying Log Files . 202

Table 6-5 Platform-specific Syntax for FORTE_LOGGER_SETUP . 204

Table 6-6 Platform-specific Location for Setting FORTE_LOGGER_SETUP 204

Table 6-7 Standard Output . 210

Table 13-1 Changes Allowed During a Class Version Upgrade . 467

Table 16-1 Classes in the GenericRepository Library . 529

Table 16-2 Methods in the GenericRepository.SCMServer class . 530

Table 16-3 Methods in the SourceCodeManager.SCM class . 531

Table 16-4 Types of Files Exported in Multi-file Format . 534

Table 16-5 Files Exported Based on Component Type . 535

Table 18-1 Typical HTTP request message . 546

Table 18-2 HTTPSupport Classes . 552

Table 18-3 Typical HTTP response message from an HTTP server . 559

Table 18-4 Configuration options for iPlanet UDS HTTP client applications 569

Table 18-5 Configuration options for Advertise . 573

Table 18-6 SSL options for SetConfigValue and SetSessionValue . 576

Table 18-7 Certificate configuration settings for secure sessions . 577

Table 18-8 Secure Session Configuration Options for Advertise . 578

Table 20-1 Methods for Creating Objects . 597

Table 20-2 Methods for Fetching Objects . 598

Table 20-3 Methods for modifying objects or their contents . 598

Table 20-4 Methods for adding, removing, and copying nodes . 599

Table 20-5 The DOM API classes . 600

Table 20-6 New Exception Codes for DOM Level 2 . 601

28 iPlanet Unified Development Server • Programming Guide • August 2001

Table 21-1 The XMLSAX2 classes and interfaces . 611

Table 22-1 LDAPSession.Search Parameters . 619

Table 22-2 Modification Types . 625

29

List of Procedures

To copy the documentation to a client or server . 45

To view and search the documentation . 45

To display a window . 57

To create a new tab folder . 74

To create a tab folder . 75

To copy an existing tab page with the Edit > Copy command . 77

To create a new tab page . 77

To delete a tab page . 78

To move a tab page . 78

To edit a tab label . 79

To create a tab folder . 81

To create an outline field . 94

To use the DisplayNode subclass . 97

To create the node hierarchy . 99

To create a list view field . 109

To use the DisplayNode subclass . 113

To create a tree view field . 120

To create the node hierarchy . 123

To specify the DefaultHelpFile attribute . 150

To provide context-sensitive help . 151

To provide float-over help for a field . 153

To provide float-over help for a palette list . 154

To create a status line widget . 156

To create status-line help for palette lists . 158

To provide status-line help . 159

To include a Help menu on a window . 161

To use the About command . 162

30 iPlanet Unified Development Server • Programming Guide • August 2001

To test an application . 166

To set up for input capture . 169

To capture input . 171

To prepare for playback . 175

To play back the PencilPlay tests . 176

To implement logging in iPlanet UDS . 182

To edit a shortcut icon and start iPlanet UDS . 205

To run the iPlanet UDS command with log flags . 206

To run the iPlanet UDS command with log flags . 206

To change a log file name for a compiled active partition or iPlanet UDS executor partition 212

To change the log file name for an interpreted active server partition . 213

To test logging instrumentation on the Auction application . 218

To create a default application configuration for client applications . 241

To create a default application configuration for server applications . 241

To open a configuration . 248

To move a service object . 250

To create a logical partition . 250

To include the project that defines the service object . 252

To make a reference partition . 252

To make the distribution for the application that contains the service object 254

To create the reference partition with an environment search path . 255

To create an applet . 256

To modify a service object definition . 260

To assign a logical partition . 264

To delete a disabled, assigned partition . 265

To change the configuration of an installed application
without changing the contents of any logical partitions . 278

To make a distribution for a configuration containing compiled partitions . 279

To run fcompile for a compiled partition . 283

To install an application distribution . 286

To load a distribution . 290

To reassign a partition . 293

To copy a partition assignment . 294

To assign an unassigned partition . 294

To set properties of an assigned or installed partition . 295

To install an application . 297

To create a Windows NT client icon . 303

List of Procedures 31

To create a default library configuration . 305

To add a project to the configuration . 310

To remove a restricted external library . 310

To turn on compilation for a library . 311

To make a library distribution . 315

To compile multiple libraries . 316

To run fcompile for a compiled library . 317

To deploy a library distribution . 318

To uninstall an application or library distribution . 319

To change the configuration of an installed application without
changing the contents of any logical partitions . 321

To upgrade an installed application . 321

To make the reference partition reference the partition of the
newer release of a changed application . 322

To make the application reference the newer release of the library . 323

To create an interface . 363

To implement an interface in the Class Workshop . 365

To use dynamic class loading with an interface . 372

To create an interface . 374

To load the class and create the object . 376

To configure a library . 380

To provide implementations for the interface . 382

To import a library . 383

To include a library as a supplier . 384

To implement an interface in the Class Workshop . 385

To configure a library . 387

To combine local and cross-environment failover . 418

To turn on load balancing for a service object . 422

To specify the number of replicates for a particular configuration . 423

To include a shared service object in an application . 429

To make a distribution for the server application . 430

To transfer a project from one repository to another . 431

To configure an application as an applet . 442

To update the Banking application . 473

To upgrade the Banking application . 474

To upgrade a deployed application using a new application distribution . 476

To make the distribution for the updated, interoperable application . 478

32 iPlanet Unified Development Server • Programming Guide • August 2001

To upgrade a deployed application using a new application distribution . 479

To use a new compatibility level of a library . 480

To use a new compatibility level of a service object . 480

To upgrade a deployed application, using class versions and converters . 482

To see all converters defined for a class . 483

To see the text of an individual converter . 484

To create a method converter . 487

To replace an event and write the associated event converters . 490

To replace the event BugAddedOld with a new event BugAddedNew . 490

To set a class version number . 492

To upgrade a client partition . 494

To upgrade a high availability server partition . 494

To use load balancing for a server having multiple versions . 495

To create an SCM service . 532

To configure an iPlanet UDS HTTP client . 568

To configure an iPlanet UDS HTTP server . 571

To configure a secure client session . 576

To configure a secure HTTP session . 578

To use Adaptable Auction . 632

To use AppletBanking . 634

To use Auction . 635

To use AutoTester . 635

To use Banking1-2 . 636

To use HTTP examples . 637

To use InheritedWindow . 640

To use InternatBank . 640

To use NestedWindow . 642

To use NomadicOrderClient . 642

To use PrintSample . 644

To use TabFolders . 644

To use TimeItV1-4 . 645

To use TimeItV1 . 645

To use TimeItV2 . 646

To use TimeItV3 . 646

To use TimeItV4 . 647

To use TreeListExample . 648

33

List of Code Examples

How to Nest a Window . 53

A Typical Display Method . 58

Creating a Window Object . 59

Blocking the Calling Window . 60

Using the start task Statement to Display a Window . 61

Displaying a Nested Window . 62

Using Window.MessageDialog . 64

Registering Named Event Handlers for a Superclass . 68

Using the register Statement . 69

Creating a Tab Folder Dynamically . 82

Handling the AfterTabSelect Event . 83

Filtering Message . 192

Logging Debugging Message . 193

Testing LogMgr Settings . 194

Testing for log flags and writing log output . 217

Method that times itself . 220

LogTime method from Code Example 6-5 . 221

Accessing attributes of a remote object . 333

Wrapper method to access classes that are not distributed . 335

Using a mutex lock . 336

Using a lock in an event loop . 338

Using a nested lock . 339

Example of a common mutex deadlock . 340

Example of a distributed mutex deadlock . 341

Distributed recursive deadlock . 342

Marking a cloned object as a shared object . 343

Making nested attributes transactional . 344

34 iPlanet Unified Development Server • Programming Guide • August 2001

Effect of transactional logging . 345

Common transactional logging error . 346

Transactional read lock . 349

Transactional write lock . 350

Transactional deadlock . 351

Lock promotion deadlock . 352

Two transactions in lock promotion deadlock . 353

Setting the IsTransactional attribute for a cloned transactional object . 356

Declaring a local variable using an interface as a data type . 367

Using the FindLibrary and FindClass methods . 378

Checking applet availability using the ListApplets method . 440

Starting an applet using the RunApplet method . 440

Shutting down applets using the Shutdown method . 441

Connecting a client partition to the environment . 447

Disconnecting from a service object . 448

Disconnecting from an environment . 449

Connecting and disconnecting a client partition . 450

Using the GetClassType method . 502

Accessing class information about an object . 503

Using ArrayDesc to get information about array elements . 503

Using PrimitiveDesc to determine the data type of a return value . 504

Getting the data type of attributes . 505

Using GetValue to retrieve an attribute value . 506

Determining the primitive data type of an attribute . 507

Getting a method’s signature and invoking the method . 508

Using the ObjectInspector class . 510

Using the ClassBrowser class . 514

A typical XML document generated by an application . 518

Using XSLT to transform a document . 520

Using the XSLT processor in an application . 522

Implementing a custom protocol handler . 525

Building an HTTP client request . 553

Creating a session . 558

Reusing a session object . 558

Advertising a server . 561

Processing the body of a message . 564

Registering a user-defined entity using HTTPFactory . 566

List of Code Examples 35

Registering a user-defined HTTP request . 566

Configuring an iPlanet UDS client application . 568

Configuring an iPlanet UDS server application . 571

Creating a root certificate for testing SSL . 587

Creating a leaf certificate for testing SSL . 588

Requesting server authentication . 589

Secure server supplying certificate for authentication . 590

Setting up an AcceptableRoots certificate . 591

Simple XML Sample . 596

Simple XML Document . 606

Output generated by parsing simple XML document . 606

Connecting to an LDAP server . 618

Authenticating a session with the LDAP server . 618

Specifying an LDAP directory search . 620

Building an “equals” filter . 621

Building a “lexicographic greater than” filter . 622

Building a substring filter . 622

Building a substring filter . 622

Building an “any attribute value” filter . 623

Adding an entry to an LDAP directory . 624

Modifying an LDAP directory entry . 626

Deleting an LDAP directory entry . 627

Unbinding from an LDAP server . 628

Closing a session with the LDAP server . 628

Importing iPlanet UDS examples into a repository . 629

Removing examples from a workspace . 630

36 iPlanet Unified Development Server • Programming Guide • August 2001

37

Preface

The iPlanet UDS Programming Guide provides both conceptual and how-to
information about a number of topics that application developers will find useful
when designing and building iPlanet UDS applications.

This preface contains the following sections:

• “Product Name Change” on page 37

• “Audience for This Guide” on page 38

• “Organization of This Guide” on page 38

• “Text Conventions” on page 41

• “Other Documentation Resources” on page 42

• “iPlanet UDS Example Programs” on page 44

• “Viewing and Searching PDF Files” on page 44

Product Name Change
Forte 4GL has been renamed the iPlanet Unified Development Server. You will see
full references to this name, as well as the abbreviations iPlanet UDS and UDS.

Audience for This Guide

38 iPlanet Unified Development Server • Programming Guide • August 2001

Audience for This Guide
The iPlanet UDS Programming Guide is intended for application developers. We
assume that you:

• have TOOL programming experience

• are familiar with your particular window system

• understand the basic concepts of object-oriented programming as described in
A Guide to the iPlanet UDS Workshops

• have used the iPlanet UDS workshops to create classes

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “How to Structure
a Graphical User Interface”

Explains how you design and display windows and how
to respond to user interactions.

Chapter 2, “Using Complex
Widgets”

Explains the use of iPlanet UDS’s complex widgets,
including detailed information about creating the
widgets in the Window Workshop, assigning data to the
widgets, and manipulating the widgets dynamically in
TOOL code.

Chapter 3, “Creating a
Portable User Interface”

Provides information about creating a portable user
interface, and how to use the portability features that
iPlanet UDS provides. Topics include grid fields, field
partnerships, and widget sizing properties.

Chapter 4, “Implementing
Online Help”

Explains how you use built-in support for implementing
an on-line help system, for providing on-line help, and
for providing status-line help.

Organization of This Guide

Preface 39

Chapter 5, “Testing the User
Interface”

Provides information about testing iPlanet UDS
applications and explains the use of the TestClient utility
(which allows you o to simulate client action) and the use
of the AutoTester project (which allows you to capture
user input from a test session and replay it while
capturing state information).

Chapter 6, “Using iPlanet
UDS Logging Tools”

Describes the use of iPlanet UDS logging tools. Logging
information from other iPlanet UDS manuals is
summarized here and provided with new examples and
example scenarios.

Chapter 7, “Deployment
Concepts”

Provides an overview of the deployment process
including deploying applications and libraries,
configuring applications and libraries, and working with
connected environments.

Chapter 8, “Deploying
iPlanet UDS Applications
and Libraries”

Describes the various ways you can configure and deploy
applications and libraries. Explains how you package
applications and libraries by making a distributions, and
how you install applications and libraries in your
environment.

Chapter 9, “Class Runtime
Properties”

Explains how you set class runtime properties, which
determine how objects of each class are treated at
runtime.

Chapter 10, “Using
Interfaces”

Provides complete information about how to use iPlanet
UDS interfaces. Explains how you use interfaces with
dynamic class loading and how you use interfaces for
multiple interface inheritance.

Chapter 11, “Working With
Service Objects”

Explains how you work with service objects including
how you set the service object’s visibility and dialog
duration, how you provide failover and load balancing,
how you use reference partitions to share service objects
with other applications, and how you set the service
object’s environment search path.

Chapter 12, “Advanced
Options for Structuring
Client Applications”

Explains how you can design iPlanet UDS applications
that use applets and nomadic clients.

Chapter Description

Organization of This Guide

40 iPlanet Unified Development Server • Programming Guide • August 2001

Chapter 13, “Upgrading
Deployed Applications”

Describes how to upgrade iPlanet UDS user applications
that are currently deployed. It covers advanced topics of
interest to iPlanet UDS system managers as well as
application developers, including:

• when to use interoperable upgrades, compatibility
level upgrades, and class version upgrades;

• how to perform each type of upgrade;

• how to use compatibility levels and class versions;

• how to write converters to modify a deployed
application;

• and how to track changes in releases of an
application.

Chapter 14, “TOOL
Reflection Classes”

Introduces the TOOL classes that implement reflection. A
running program can use reflection to examine or to
change objects that are running in a local or remote
partition.

Chapter 15, “XSLT Processor
Library”

Provides a conceptual overview of the XSLT Processor
library. The iPlanet Integration Server (iIS) Backbone
product provides a built-in processor for performing
such transformations between backbone-integrated
applications. If you are not using iIS, you can use the
TOOL XSLT Processor library to transform data
exchanged between any TOOL applications.

Chapter 16, “Source Code
Management for iPlanet UDS
Projects”

Introduces the GenericRepository Library and the
SourceCodeManager Library.

Chapter 17,
“Performance-Based Load
Balancing”

Explains how to implement performance-based load
balancing.

Chapter 18, “Creating HTTP
Applications”

Provides an overview of the HTTPSupport library.

Chapter 19, “Enabling
Security”

Introduces the classes that implement Secure Sockets
Layer (SSL) services. SSL is a standard security protocol
that uses encryption and authentication techniques to
protect communication on corporate intranets and
internets. iPlanet UDS’s runtime services support the SSL
connection as well as the building of certificates for
encryption and authentication.

Chapter Description

Text Conventions

Preface 41

Text Conventions
This section provides information about the conventions used in this document.

Chapter 20, “Using the
XMLDOM2 Library”

Describes the XMLDOM2 library, an API used to
implement tree-based parsing of well-formed XML
documents, enabling the programmatic
manipulation of individual document elements.

Chapter 21, “Using the
XMLSAX2 Library”

Describes the XMLSAX2 library, an API used to
implement event-based parsing of well-formed
XML documents, and generation of parse events for
which application event handlers can register.

Chapter 22, “Accessing
Internet Directory Services”

Describes the iPlanet UDS LDAP library, an API
used to create, populate, modify, and query
Internet directory services implemented with the
Lightweight Directory Access Protocol.

Appendix A, “iPlanet UDS
Example Applications”

Provides instructions on how to install the examples, a
brief overview of the applications to help you locate
relevant examples, and a section describing each example
in detail.

Format Description

italics Italicized text is used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URLs.

ALL CAPS Text in all capitals represents environment variables
(FORTE_ROOT) or acronyms (UDS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase
text exactly as shown.

Chapter Description

Other Documentation Resources

42 iPlanet Unified Development Server • Programming Guide • August 2001

Other Documentation Resources
In addition to this guide, iPlanet UDS provides additional documentation
resources, which are listed in the following sections. The documentation for all
iPlanet UDS products (including Express, WebEnterprise, and WebEnterprise
Designer) can be found on the iPlanet UDS Documentation CD. Be sure to read
“Viewing and Searching PDF Files” on page 44 to learn how to view and search the
documentation on the iPlanet UDS Documentation CD.

iPlanet UDS documentation can also be found online at
http://docs.iplanet.com/docs/manuals/uds.html.

The titles of the iPlanet UDS documentation are listed in the following sections.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

Format Description

http://docs.iplanet.com/docs/manuals/uds.html

Other Documentation Resources

Preface 43

iPlanet UDS Documentation
• A Guide to the iPlanet UDS Workshops

• Accessing Databases

• Building International Applications

• Escript and System Agent Reference Manual

• Fscript Reference Manual

• Getting Started With iPlanet UDS

• Integrating with External Systems

• iPlanet UDS Java Interoperability Guide

• iPlanet UDS Programming Guide

• iPlanet UDS System Installation Guide

• iPlanet UDS System Management Guide

• Programming with System Agents

• TOOL Reference Manual

• Using iPlanet UDS for OS/390

Express Documentation
• A Guide to Express

• Customizing Express Applications

• Express Installation Guide

WebEnterprise and WebEnterprise Designer
Documentation
• A Guide to WebEnterprise

• Customizing WebEnterprise Designer Applications

• Getting Started with WebEnterprise Designer

• WebEnterprise Installation Guide

iPlanet UDS Example Programs

44 iPlanet Unified Development Server • Programming Guide • August 2001

Online Help
When you are using an iPlanet UDS development application, press the F1 key or
use the Help menu to display online help. The help files are also available at the
following location in your iPlanet UDS distribution:
FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as Fscript or Escript, type help from the
script shell for a description of all commands, or help <command> for help on a
specific command.

iPlanet UDS Example Programs
A set of example programs is shipped with the iPlanet UDS product. The examples
are located in subdirectories under $FORTE_ROOT/install/examples. The files
containing the examples have a .pex suffix. You can search for TOOL commands
or anything of special interest with operating system commands. The .pex files are
text files, so it is safe to edit them, though you should only change private copies of
the files.

Viewing and Searching PDF Files
You can view and search iPlanet UDS documentation PDF files directly from the
documentation CD-ROM, store them locally on your computer, or store them on a
server for multiuser network access.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat
Reader with Search is recommended and is available as a free
download from http://www.adobe.com. If you do not use Acrobat
Reader with Search, you can only view and print files; you cannot
search across the collection of files.

http://www.adobe.com

Viewing and Searching PDF Files

Preface 45

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or
server hard disk.

You can specify any convenient location for the doc directory; the location is
not dependent on the iPlanet UDS distribution.

2. Set up a directory structure that keeps the udsdoc.pdf and the uds directory in
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file udsdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search >
Query.

3. Enter the word or text string you are looking for in the Find Results Containing
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text.
If more than one document from the collection contains the desired text, they
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

NOTE To uninstall the documentation, delete the doc directory.

NOTE For details on how to expand or limit a search query using
wild-card characters and operators, see the Adobe Acrobat
Help.

Viewing and Searching PDF Files

46 iPlanet Unified Development Server • Programming Guide • August 2001

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to
navigate through the search results, as shown in the following table:

To return to the udsdoc.pdf file, click the Homepage bookmark at the top of
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the
udsdoc.pdf home page or select Edit > Search > Results.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

47

Chapter 1

How to Structure a Graphical
User Interface

The graphical user interface of an iPlanet UDS application consists of windows.
The basic procedures for creating windows are described in A Guide to the iPlanet
UDS Workshops. This chapter describes what you need to consider when designing
your windows, how to display them, and how to specify what happens when the
end user interacts with them.

In this chapter, you will learn about the different types of windows, and how to:

• open and close windows

• display nested windows

• use dialog boxes

• write window event loops

For information on how to create tab folders, outline fields, list view fields, and tree
view fields, see Chapter 2, “Using Complex Widgets.” For information on making
your graphical user interface portable, see Chapter 3, “Creating a Portable User
Interface.”

About iPlanet UDS Windows
You use windows in iPlanet UDS to create a graphical user interface for an
application or as page templates for printing. Before you create a window in the
Window Workshop, you must consider how the window is going to be used by
your application, because this will influence how you design the window, for
example, whether you include a menu bar on the window, whether you create a
generic window that can be reused, and so on.

About iPlanet UDS Windows

48 iPlanet Unified Development Server • Programming Guide • August 2001

The window you create in the Window Workshop can be any of the following:

Standard window A standard window is a new, independent window that you
create for your user interface. To create a standard window, simply create a
window class that is a subclass of the iPlanet UDS UserWindow class. This window
class provides a empty window for which you create the form and menu bar from
scratch.

Inherited window An inherited window is a window that inherits part of its
appearance and behavior from an existing window. If you want your new window
to inherit from an existing window, you can create a new window class that is a
subclass of another custom window class (rather than the UserWindow class).
When you define a subclass of a custom window class, your new window class
inherits the form and menu bar from its superclass in addition to its methods,
attributes, event handlers, and events. You can then extend the inherited form and
menu bar by adding new widgets to the subclass window.

Nested window A nested window is a window that is designed to be displayed
as part of one or more other windows. When you nest one window in another
window, iPlanet UDS displays the nested window inside the main window so that
it appears to be part of the main window. Creating a nested window is a good way
to reuse a standard form or “subwindow” that is needed by several other
windows.

Page templates A page template is a window that is designed specifically for
printing. In the Window Workshop, creating a page template is the same as
creating a window for a user interface—the fact that you are going to print the
window instead of display it affects only the way you design the windows. The
difference between printing a window and displaying a window is the way you
handle the window in your code; you use the iPlanet UDS printing classes to print
the window rather than opening it for display.

The following sections provide information about inherited windows, nested
windows, and page templates.

About iPlanet UDS Windows

Chapter 1 How to Structure a Graphical User Interface 49

Inherited Windows
When you build a new window, you can create a subclass window that inherits its
initial appearance and behavior from another window. The ability to create a
subclass window enables you to define one window superclass that provides
application or company-wide window formatting. You can then create subclasses
of the generic window as many times as you wish, and customize each subclass
window as appropriate for the application. The following example shows a simple
data entry window skeleton with a logo and buttons.

Figure 1-1 Example Superclass Window

The following example shows two subclass windows that have inherited the
superclass window’s widgets, and that also have additional data fields:

Figure 1-2 Example Subclass Windows

To see these windows in context, see the iPlanet UDS example program
InheritedWindow.

About iPlanet UDS Windows

50 iPlanet Unified Development Server • Programming Guide • August 2001

To create an inherited window, you declare your window class as a subclass of any
existing window class. The new subclass window automatically inherits the form
and menu bar defined for the existing window class (as well as the methods,
attributes, events, and event handlers in the superclass). When you open the
Window Workshop, the inherited window will be displayed. You can use the
Window Workshop to add widgets to the inherited window or even to modify the
inherited widgets.

iPlanet UDS also allows you to modify the superclass window at any time, even
after creating the subclass windows. Any changes you make to the superclass are
automatically inherited by its subclasses—you will see the inherited changes the
next time you open the subclass window. If any of the subclasses have modified
the inherited widgets, iPlanet UDS automatically merges the superclass changes
with the subclass changes. Of course, you need to carefully coordinate changes
made to the superclass window to ensure that the subclass windows still work
properly. See the chapter on working with windows in A Guide to the iPlanet UDS
Workshops for information about creating and modifying inherited windows.

Named Event Handlers and Inherited Windows
iPlanet UDS named event handlers provide a very convenient way for you to
provide event handling code in the superclass window that is inherited by the
subclass windows. This works very effectively to allow both the widget and the
widget’s behavior to be defined in the superclass and then inherited by the
subclasses. See A Guide to the iPlanet UDS Workshops for information about named
event handlers and the Event Handler Workshop.

The following example shows the ExitHandler event handler for the
DataEntryWindow, which is inherited by the ArtistDataEntryWindow and the
ArtDataEntryWindow. This code provides the functionality associated with exiting
the window.

About iPlanet UDS Windows

Chapter 1 How to Structure a Graphical User Interface 51

Nested Windows
A nested window is a window that is designed to be displayed inside another
window. When the application is running, the nested window appears to be a
compound field on the main window. You can nest the same window on any
number of other windows throughout your application (or in multiple
applications). Nesting windows provides a way to reuse a standard “subwindow”
(and the event handling code associated with it) in more than one window.

Figure 1-3 shows the original window as it was designed in the Window
Workshop.

Figure 1-3 Example Subwindow

Figure 1-4 shows how the nested window looks when the application is running
and the nested window is displayed on top of two different main windows.

-- Exit without validation. The Finalize Input box is not
-- checked in this PushButton’s property sheet.
when <cancel_button>.Click do
exit;

-- Validate the data. If ok, get out. The Finalize Input box
-- is checked in this PushButton’s property sheet, forcing both
-- field and cross-field validation.
when <ok_button>.Click do
exit;

-- No validation will occur on task shutdown.
when task.Shutdown do
exit;

Project: InheritedWindow • Class: DataEntryWindow • Event Handler: ExitHandler

About iPlanet UDS Windows

52 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 1-4 Main Windows Displaying Nested Windows

To see these windows in context, see the iPlanet UDS example program
NestedWindow.

You can make any window into a nested window. The only restriction is that the
nested window cannot have a menu bar. Typically, you display the nested window
within a compound field in the outer window, for example, within an empty cell of
a grid field. When you are designing the nested window, you should consider
exactly where it will be displayed on the outer window. You should take this into
account when planning the size and content of the outer window.

After creating the nested window in the Window Workshop, you can display it on
any number of other windows at runtime. To nest a window in another window,
you set the value of the nested window’s Parent attribute to the compound field in
the outer window where you wish to display the nested window. For example:

About iPlanet UDS Windows

Chapter 1 How to Structure a Graphical User Interface 53

Whenever you specify a parent for a window, iPlanet UDS displays the nested
window without its frame (the title bar, close box, and so on) so that it does not
look like a separate window. For information on how to write the Display method
for a nested window, see “Displaying a Nested Window” on page 61.

Named Event Handlers and Nested Windows
iPlanet UDS named event handlers provide a very convenient way for you to
define event handling code for the nested window that can be used by the window
that displays the nested window. When the nested window definition includes
named event handlers, the outer window can easily include the event handlers
defined for the nested window as part of its own event handling code, making the
two windows work together as one seamless window. See A Guide to the iPlanet
UDS Workshops for information about named event handlers and the Event
Handler Workshop.

Note that a dialog box is not the same thing as a nested window. A dialog box is
simply a standard window without a menu bar. The way your program opens the
dialog box, the format of the dialog box (usually containing OK and Cancel
buttons), and the behavior of the dialog box (it usually blocks the window that
opens it) is what differentiates a dialog from other windows in your user interface.

Code Example 1-1 How to Nest a Window

-- This fragment shows how to nest a window.
artobjectWindow : ArtObjectWindow = new;

-- Nest the Art Object Window. First assign a row
-- and column position. Give it a compound field as
-- a parent. Remove its frame so it will look like a
-- seamless part of the parent window.

artObjectWindow.Window.Row = 3;
artObjectWindow.Window.Column = 1;
artObjectWindow.Window.Parent = <main_grid>;
artObjectWindow.Window.FrameWeight = W_NONE;

self.Open();
...

Project: NestedWindow • Class: PurchaseWindow • Method: Display

About iPlanet UDS Windows

54 iPlanet Unified Development Server • Programming Guide • August 2001

Inherited Windows or Nested Windows?
Obviously, inherited windows duplicate some of the functionality of nested
windows, that is, the ability to reuse window formatting and event handling code
for more than one window. When should you use inherited windows? Inherited
windows are most useful when you want to modify the form and menu inherited
from the superclass. When should you use nested windows? Nested windows are
most useful when you have a self-contained, modular form that you wish to reuse
without modifications.

One advantage of inherited windows is the ability to view and customize the
subclass windows in the Window Workshop. You cannot display a nested window
on top of another window in the Window Workshop. Nested windows are
displayed on their parent windows only when the application is running. To
customize a single instance of a nested window, you must do so dynamically from
your TOOL code.

Windows as Page Templates
You can design a window to be used as a standard page in a report. The window
functions as a form, which will be filled in with data at runtime. In your
application, you can write TOOL code to fill in the data and print the report page.
You can also prompt the end user to select printing options that control how the
page is printed.

Figure 1-5 illustrates a window in the Window Workshop that is intended for
printing a report with header and footer information.

Figure 1-5 Page Template Window

To see this window in context, see the ReportTemplateWindow class in the iPlanet
UDS example program PrintSample.

About iPlanet UDS Windows

Chapter 1 How to Structure a Graphical User Interface 55

A page template window can be any window class, either a standard subclass of
UserWindow or any inherited window. There is nothing special you need to do
when you create the page template window in the Window Workshop, except
consider how the window layout will look when it is printed.

Page Formatting
The window you design for printing can be any size. The PrintPage class allows
you to “tile” a large window onto multiple pieces of paper. The PrintPage class
provides attributes that control the page format, as well as a set of methods that
allow you to draw text and graphics on the working page (see PrintPage class in
the Display Library online Help for information.) Also, you can include any
widgets on a page template, even widgets, such as array fields, that do not display
all their data at once. The printing classes provide the option of expanding these
fields at print time.

After you have created your page template in the Window Workshop, you can
print it by using the printing classes in the Display library. See the PrintDocument
class in the Display Library online Help for information about printing. Figure 1-6
illustrates how the window shown above will look when it is printed. (Note that
data repeats in the sample page because the sample data set is so small.)

While this section provides information about creating windows especially for
printing, remember that you can allow your end user to print any iPlanet UDS
window by providing a print command that uses the Display library printing
classes to print the current window.

NOTE When printing a window with a menu bar, iPlanet UDS ignores the
menu bar and prints the window without it. Therefore, if you are
designing a window specifically for printing, you should not
include a menu bar on it.

About iPlanet UDS Windows

56 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 1-6 Printed Version of Page Template

Artist Report

Page 1

Leonardo da Vin Italy His notebooks, unknown to his
contemporaries, have revealed to the
modern world his astonishing
observations.

Henri Rousseau France He was naive, distressingly gullible,
pompous and absurd.

Edgar Degas France His scultpure of the little 14-year
old dancer was considered by Renoir to
 be the greatest sculpture of the
century.

Jaspar Johns United His flags and targets were simple, but
 profound.

Pablo Picasso Spain His long and prolific life has left
and indelible impression on the world
of art.

Leonardo da Vin Italy His notebooks, unknown to his
contemporaries, have revealed to the
modern world his astonishing
observations.

Henri Rousseau France He was naive, distressingly gullible,
pompous and absurd.

Edgar Degas France His scultpure of the little 14-year
old dancer was considered by Renoir to
 be the greatest sculpture of the
century.

Jaspar Johns United His flags and targets were simple, but
 profound.

Pablo Picasso Spain His long and prolific life has left
and indelible impression on the world
of art.

Leonardo da Vin Italy His notebooks, unknown to his
contemporaries, have revealed to the
modern world his astonishing
observations.

Henri Rousseau France He was naive, distressingly gullible,
pompous and absurd.

Edgar Degas France His scultpure of the little 14-year
old dancer was considered by Renoir to

Structuring the User Interface

Chapter 1 How to Structure a Graphical User Interface 57

Structuring the User Interface
When you define your classes in the Project Workshop, you can create any number
of windows. To display these windows, you must open them in your TOOL code.
iPlanet UDS lets you open any number of concurrent windows. Usually, you
display the application’s first window (or windows) in the start method. After the
first window is open, you can open more windows and close the open ones in
response to the end user’s commands. iPlanet UDS also provides prefabricated
dialog boxes, such as a question dialog and a file selection dialog, that you can
display over an open window.

Once a window is open, you must respond to the end user’s interactions with it,
such as entering data or selecting commands. The event loop that you write for the
window provides code that is executed when the end user triggers events in the
user interface.

The following sections provide information about opening and closing windows,
using dialog boxes, and writing the window’s event loop.

Opening and Closing Windows
To display a window, you must invoke a method on a window object that opens
the window.

➤ To display a window

1. Write a method for the window’s class that opens the window.

Usually this method initializes the data for the window, opens the window on
the screen, and handles the events from the window. Although this method
does not need to be called “Display,” iPlanet UDS provides a default Display
method for your window classes that you can use for this purpose.

2. In the code where you plan to invoke your display method, create a window
object.

3. When you are ready to display the window, invoke your display method,
either directly or by using the start task statement to run a concurrent window.

The following sections provide information about these basic steps.

Structuring the User Interface

58 iPlanet Unified Development Server • Programming Guide • August 2001

Writing a Display Method
The New Window Class command in the Project Workshop provides a default
Display method for the window. You can use this method to display the window
or you can create your own display method with any appropriate name. Typically,
the display method for a window initializes the data for the window and displays
it on the end user’s screen. In addition, it includes the event loop statement for the
window, which handles all the events on the window.

Opening the Window
After the data is initialized, you are ready to display the window to the end user.
To do this, simply invoke the Open method of the UserWindow class. This displays
the window on the end user’s screen.

When the window is actually running, the event loop statement provides code that
is executed in response to the end user’s interactions with a window. This is where
you respond to the end user’s commands and actions. In the sample Display
method, the event loop statement provides processing in response to the end
user’s click on the Cancel button. See “Writing the Window Event Loop” on
page 64 for information about writing this event loop.

Closing the Window
After the event loop has completed, you can close the window by invoking the
Close method on window object. The sample Display method uses this method to
close the open screen. In addition, the AfterFinalize or Shutdown event is posted
when the end user closes the window using the window system’s close box. In
your event loop, you can provide code that is executed in response to these events,
so that, for example, the end user is prompted to save his changes before the
window closes.

Code Example 1-2 A Typical Display Method

-- ... OverviewWindow Display method...
-- Actually open the window on screen
self.Open();
event loop
when task.Shutdown do
exit;

when <CancelButton>.Click do
exit;

end event;
-- Close the open window on screen.
self.Close();

Structuring the User Interface

Chapter 1 How to Structure a Graphical User Interface 59

Creating the Window Object
Before you can display a window to the end user, you must create the window
object. You create a window object the same way you create any object, by using an
object constructor.

The object constructor creates a new object of the specified class and optionally sets
its initial values. At this point, you can set any of the window’s attributes, such as
the window usage, title, and so on. In the following example, AddPaintingWindow
is a window class. The declaration for the add_painting_window variable
constructs the window object.

Displaying the Window
iPlanet UDS lets you display any number of windows at the same time. When a
window is being displayed, it can be in one of two states:

Code Example 1-3 Creating a Window Object

--from Display method of PaintingListWindow class
...
when <AuctioneerOnly.AddPaintingWindow>.Click do
add_painting_window : AddPaintingWindow = new;
add_painting_window.Window.Title =
TextData(value = ‘New painting’);

...

State Description

active The user can interact with the window (for example, enter data or give
commands).

inactive The user cannot interact with the window. When the user moves a
cursor on top of an inactive window, it changes to indicate that the
window is currently inactive.

Structuring the User Interface

60 iPlanet Unified Development Server • Programming Guide • August 2001

When a window is active and you want to open a second window, you have the
following choices:

• Make the first window inactive. The new window blocks the first window. The
end user can interact with the new window, but not with the first window.

• Leave the first window active. This creates two concurrent windows. The end
user can interact with either window.

Blocking the Calling Window
If you want the new window to block the first window, simply invoke the Display
method on the new window. Because the invoking method waits while the
invoked method is executing, the end user will only be able to interact with the
new window. The calling window will be inactive (it accepts no input from the end
user) until the Display method completes and control returns to the invoking
method. The first window will then become active again.

The following example illustrates invoking the Display method to display a
window that blocks the calling window.

Because the invoking method waits for the Display method to complete, you can
use the method’s return value and output parameters to communicate with the
calling window.

Code Example 1-4 Blocking the Calling Window

-- From Display method of PaintingListWindow class.
...
when <AuctioneerOnly.AddPaintingWindow>.Click do
add_painting_window : AddPaintingWindow = new;
add_painting_window.Window.Title =
TextData(value = ‘New painting’);

-- Synchronous invocation will block
add_painting_window.Display
(auctionMgr = self.AuctionMgr);

...

Structuring the User Interface

Chapter 1 How to Structure a Graphical User Interface 61

Creating Concurrent Windows
In iPlanet UDS, you create concurrent windows by using multitasking. If you
invoke the Display method on a window using the start task statement, the first
window and the second window will run as independent tasks. Because they are
separate tasks, the end user can interact with both windows simultaneously.

When you run two windows as separate tasks, use events to communicate between
the windows. For example, an update in one window can post an event. The
second window can then respond to the event by making corresponding updates.

Displaying a Nested Window
A special kind of concurrent window is a nested window. If you nest one window
in another window, iPlanet UDS displays the nested window inside the parent
window so that it becomes part of the parent window. Because the two windows
are concurrent, the end user can interact with both windows as if they were one; in
fact, the end user probably will not be able to tell they are separate windows. The
nested window appears to be a compound field on the parent window. This
provides a way to reuse a standard “subwindow” (and the event handling code
associated with it) in more than one window.

To nest a window in another window, simply set the value of the nested window’s
Parent attribute to a field on the window where you wish to display the nested
window. You can make any existing window into a nested window. The only
restriction is that the nested window cannot have a menu bar.

Code Example 1-5 Using the start task Statement to Display a Window

-- From Display method of PaintingListWindow class.
...
when <AuctioneerOnly.AddPaintingWindow>.Click do
add_painting_window : AddPaintingWindow = new;
add_painting_window.Window.Title =
TextData(value = ‘New painting’);

-- Asynchronously, both windows will be active
start task add_painting_window.Display
(auctionMgr = self.AuctionMgr);

...

Structuring the User Interface

62 iPlanet Unified Development Server • Programming Guide • August 2001

The Display method for the outer window should do the following:

1. Create the outer window object.

2. Create the nested window object.

3. Set the Parent attribute of the nested window object to be any compound field
on the outer window.

4. The event loop for the outer window should use the register statement to
register the named event handlers for the nested window.

Whenever you specify a parent for a window, iPlanet UDS displays the window
without its frame (the title bar, close box, and so on) so that it does not look like a
window.

Any window whose Parent attribute is set to NIL does not have a parent window
and is therefore considered a main window. iPlanet UDS displays a main window
with its frame so that it looks like a standard window. A main window can have a
menu bar.

The following example illustrates the Display method for a window that displays a
nested window:

Code Example 1-6 Displaying a Nested Window

begin
-- This method shows how to nest a window and register its
-- event handler.

artobjectWindow : ArtObjectWindow = new;

-- Nest the Art Object Window. First assign a row
-- and column position. Give it a compound field as
-- a parent. Remove its frame so it will look like a
-- seamless part of the parent window.

artObjectWindow.Window.Row = 2;
artObjectWindow.Window.Column = 1;
artObjectWindow.Window.Parent = <main_grid>;
artObjectWindow.Window.FrameWeight = W_NONE;

self.Open();

event loop

preregister
-- Include the ArtObjectWindow’s event handler in this
-- event loop.
register artObjectWindow.artObjectHandler

(artType = ’Performance’);

Structuring the User Interface

Chapter 1 How to Structure a Graphical User Interface 63

Using Dialog Boxes
iPlanet UDS provides five dialog boxes that you can display over a window. These
are useful for displaying error messages or warnings, prompting a user to answer a
question, or enabling the end user to select a file. All five dialog boxes
automatically block the rest of the windows in the application (that is, all the
windows in the application are inactive until the dialog box is closed).

The dialog boxes are:

To display one of these dialog boxes, you must invoke the appropriate Window
class method on the window object. The dialog box is centered over the window,
and its size is adjusted to fit the contents.

when task.Shutdown do
exit;

...
end event;
self.Close();

Project: NestedWindow • Class: SellWindow • Method: Display

Dialog Box Type Description

file selection Displays a list of files from which the end user can make one selection.

message Displays the message you specify along with an icon indicating the
message type.

question Displays the question you specify, along with buttons the end user can
click to answer the question.

print Displays the window system’s standard print dialog.

print setup Displays the window system’s standard print (or page) setup dialog.

Code Example 1-6 Displaying a Nested Window (Continued)

Structuring the User Interface

64 iPlanet Unified Development Server • Programming Guide • August 2001

In the following example, the Display method displays a message dialog, which
explains an error condition to the user.

See the Display Library online Help for details on these methods.

Writing the Window Event Loop
To respond to the end user’s interactions with a window, you use an event loop in
a method on the window. For example, a when clause in your event loop can
respond to the Click event on a Close button by prompting the end user to save his
changes and then closing the window.

When you select the events that you wish to respond to, remember that one action
by the end user typically triggers two or more events. First of all, there is the basic
event on the field itself. Second, iPlanet UDS raises child events for all the parent
fields.

Under certain circumstances, one end user action triggers a whole series of events,
called an event chain. For example, when the end user moves the input focus from
one field to another, this triggers a chain of events, which affects both the field that
is being left as well as the field to which the end user is moving. These events are
always triggered in a certain, fixed order. You can respond to any or all of them in
your code.

Code Example 1-7 Using Window.MessageDialog

-- From Display method of PaintingListWindow class
...
when <BidderOnly.BecomeAuctioneerButton>.Click do
case self.AuctionManager.RequestAuctioneerStatus
(password=self.AuctioneerPassword,
name=self.UserName) is

when 1 do
-- Bad password
self.Window.MessageDialog
(‘Bad password.
Enter new password and try again.’);

...
end case;

...

Structuring the User Interface

Chapter 1 How to Structure a Graphical User Interface 65

Using Event Handlers
Remember that besides listing events directly in the event statement, you can use
the register statement to include a named event handler within the event
statement. The event handler provides reusable, modular event handling code that
you can include in any number of event statements. The discussions in this section
about the events triggered by end user’s interaction with the user interface are as
relevant for named event handlers as for event statements.

The following sections provide further information on working with child events,
along with details about the three event chains: the input focus event chain, the
field selection event chain, and the close window event chain. This discussion is
followed by information about writing the event loop for an inherited window and
for a window that displays a nested window.

Child Events
Every time an event is triggered on a field, iPlanet UDS raises a corresponding
event for all the parents of that field. For example, when the end user clicks the
push button contained by the panel, this triggers a Click event for the push button
and a ChildClick event for the panel (meaning one of the panel’s children was
clicked). Because the window is the parent for all the widgets that it contains, this
also posts a ChildClick event for window. The child events are always triggered in
a certain, fixed order. The original event is always first, followed by the child event
for the inner-most parent, moving “out” to the outermost parent (the window
itself).

Menu widgets also produce child events. For example, when a menu command
gets an Activate event, all its parent compound menus receive corresponding
ChildActivate events.

For event chains (described below), iPlanet UDS triggers all the child events for the
first event in the chain before moving on to the second event in the chain.

Input Focus Event Chain
iPlanet UDS triggers a chain of events when the end user moves from a field that
has the input focus to another field that can accept the input focus. The purpose of
this event chain is to let you detect when the first field is being left and the target
field is being entered. This is most useful for doing data validation on a set of
related fields within a compound field. Since you can detect when the end user
leaves any field in the compound field, you can do data validation for the entire
compound field each time the user makes a change.

Structuring the User Interface

66 iPlanet Unified Development Server • Programming Guide • August 2001

A field that can accept the input focus is a field that can accept the input from the
keyboard. Your window system indicates which field has the input focus by
displaying the text insertion cursor or by using another indicator. Only certain
fields can have the input focus, and this differs between window systems. For
example, all window systems give the input focus to text fields. However, only
some window systems give the input focus to push buttons. We therefore
recommend that you use the AfterValueChange event for data validation rather
than the AfterFocusLoss event.

The chain of events that is triggered when the input focus changes fields affects
both the field that is being left and the target field. The purpose of the event chain is
to allow you to validate the data in the field the end user is leaving and, if
necessary, prevent the end user from leaving the field. Event chains are useful
mainly for the character fields (text field, text edit field, data field, and fillin field).

When the end user moves the input focus from one field to another, the following
events are posted (in order):

1. AfterValueChange (for the field being left).

This event is triggered only if the end user actually changed the data. At this
point, the focus is still in the field the user is leaving.

2. ChildAfterValueChange (for all parents of the field being left).

At this point, the focus is still in the field the user is leaving.

3. BeforeFocusLoss (for field being left).

At this point, the focus is still in the field the user is leaving.

4. BeforeFocusLoss (for any parent of the field being left that does not also
contain target field).

At this point, the focus is still in the field the user is leaving.

5. AfterFocusGain for target field.

The focus is now in the target field.

6. AfterFocusGain (for any parent of the target field that does not also contain the
field being left).

The focus is now in the target field.

7. Traverse event (for all compound fields that contain both the previous field
and the target field).

This event indicates there has been a change of focus within the compound
field. The focus is now in the target field.

Structuring the User Interface

Chapter 1 How to Structure a Graphical User Interface 67

If the target field cannot accept the input focus, the focus events and Traverse
events are not triggered. Because only certain fields can have the input focus, and
this differs between window systems, we recommend that you use the
AfterValueChange event (rather than the BeforeFocusLoss event) to do the data
validation for all fields except the character fields.

If the data is not valid and you want to prevent the focus from moving to the target
field, you can use the PurgeEvents method on the window to remove the
remaining events in the chain from the event queue. If you invoke this method in
response to the BeforeFocusLoss event, this removes the AfterFocusGain and
Traverse events from the queue and the focus remains in the original field.

The Traverse event is very useful for performing data validation for a section of the
window. However, because there is no guarantee that the end user will interact
with the fields in sequential order, you must still do data validation for the entire
window before you save changes or close the window (see “Close Window Event
Chain” on page 68 for information on this).

Field Selection Event Chain
Another important event chain occurs whenever the end user selects a field that is
in a selectable state. This effects both the field that was previously selected (and is
now “unselected”) as well as the field that the end user is selecting. This event
chain is very useful for keeping track of which fields on the window are currently
selected. For example, you may wish to activate or deactivate menu items based on
the types of fields that are currently selected.

When the end user selects a field or group of fields, the following events are posted
(in order):

1. AfterDeselect event for the all fields that are no longer selected.

2. ChildAfterDeselect events for the parents of all fields that are no longer
selected.

3. AfterSelect event for the field or fields being selected.

4. ChildAfterSelect event for all the parents of the field or fields being selected.

5. SelectionChanged event for the window. This event indicates that the
window’s selection list (stored in the SelectedFields attribute) has changed.

Note that if the field is not already selected, moving or resizing a field will
automatically select the field and therefore trigger the field selection event chain.

Structuring the User Interface

68 iPlanet Unified Development Server • Programming Guide • August 2001

Close Window Event Chain
A special event chain is triggered when the user closes the window using the
window system’s close box. The purpose of this chain is to ensure that data
validation is done for the last field that the user modified before the window is
actually closed. For information about this, see the RequestFinalize method on the
Window class in the Display Library online Help.

Event Loop for Inherited Windows
When you write the event loop for an inherited window, you need to provide event
handling code for the widgets that the window has inherited from its superclass.
Defining named event handlers in the superclass window provides a very easy
solution to this problem.

When the superclass window provides named event handlers for the events on its
widgets, the subclass windows can easily inherit all the event handling code they
need for the inherited widgets. To use the inherited event handlers, a subclass
window uses the register statement within its event loop. The subclass windows
that inherit the ExitHandler event handler can add this event handling code to
their event loops by using the register statement.

The following example illustrates an event loop for an inherited window that uses
the register statement to register named event handlers from its superclass:

Code Example 1-8 Registering Named Event Handlers for a Superclass

-- This window is inherited from DataEntryWindow. The fields
-- related to the ArtObject object were added. This event loop
-- registers event handlers on self (that relate to the
-- art object) and event handlers on super (which handle
-- generic button events).
event loop
preregister
register self.ArtObjectHandler();
register self.ResetHandler();
 -- Use the inherited event handler to handle exit
 -- button events.
register super.ExitHandler();

end event;

Project: InheritedWindow • Class: ArtDataEntryWindow • Method: Display

Structuring the User Interface

Chapter 1 How to Structure a Graphical User Interface 69

Event Loop Using a Nested Window
When you write the event loop for a window that is displaying a nested window,
you need to provide event handling code for the widgets on the nested window.
Defining named event handlers in the nested window is a good way to provide
event handling code that can be reused by any other window that runs the nested
window.

When the nested window provides event handlers for the events on its widgets,
you can simply include these event handlers within the event loop for the outer
window by using the register statement. For example, if the nested window
defines an artObjectHandler event handler, you can include the artObjectHandler
event handler within the outer window’s event loop as follows:

Code Example 1-9 Using the register Statement

event loop

preregister
-- Include the ArtObjectWindow’s event handler in this
-- event loop.
register artObjectWindow.artObjectHandler

(artType = ’Performance’);

when task.Shutdown do
exit;

Project: NestedWindow • Class: SellWindow • Method: Display

Structuring the User Interface

70 iPlanet Unified Development Server • Programming Guide • August 2001

71

Chapter 2

Using Complex Widgets

This chapter describes how to use some of iPlanet UDS’s complex widgets,
including detailed information about creating the widgets in the Window
Workshop, assigning data to the widgets, and manipulating the widgets
dynamically in your TOOL code.

The following widgets are covered:

• tab folders

• outline fields

• list view fields

• tree view fields

About Tab Folders
A tab folder is a widget that displays one or more pages with labeled tabs. The end
user views one tabbed page at a time by clicking on the tab for the page he wishes
to display. Typically, a tab folder provides a set of dialogs, each of which displays a
separate group of properties or settings.

Figure 2-1 illustrates a tab folder:

About Tab Folders

72 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 2-1 Tab Folder

In iPlanet UDS, a tab folder is a compound widget that consists of an array of
panels. Each panel has a caption associated with it, and the panel’s caption is used
as the tab label. The contents of the panel provide the contents of the tab page.
When a panel is included in a tab folder widget, it is referred to as a “tab page.”
However, in the Window Workshop you can open the panel’s properties dialog
while it is in the tab folder and set any of the panel properties as usual.

Figure 2-2 illustrates the tab folder components:

Figure 2-2 Tab Folder Components

Tab Page

Tab
Tab

Header

About Tab Folders

Chapter 2 Using Complex Widgets 73

The end user starts interacting with a tab folder by clicking on the tab for the page
he wishes to display. After the selected page is displayed, the end user can then use
the mouse to move freely from one individual field on the page to another. On
Windows, iPlanet UDS provides mouseless support for tab folders—the end user
can use the standard keys that Windows provides for the native tab folder control
to navigate through the tab page.

The following sections provide detailed information about creating tab folders in
the Window Workshop and creating tab folders dynamically. The Display Library
online Help provides complete information on the TabFolder class.

Creating Tab Folders in the Window Workshop
There are two ways to create a tab folder in the Window Workshop:

• Use the Widget > New > TabFolder command or New Tab Folder tool.

When you use the Widget > New > TabFolder command or the Tab Folder tool
on the palette, iPlanet UDS creates a default tab folder, with three empty tab
pages. You can then design each of the tab pages, and add or remove tab pages
if desired.

• Use the Widget > Group Into > Tab Folder command.

Before using the Widget > Group Into > Tab Folder command, you must create
the panels or other widgets you wish to include in the tab folder. After
grouping the widgets into a tab folder, you can edit them as you wish.

The following two sections provide detailed instructions for using these two
commands.

Using the New > TabFolder Command
The New > TabFolder command creates a tab folder widget that contains three
empty tab pages. The tabs have the following default labels: Tab 1, Tab 2, and Tab
3.

After creating the tab folder, you can design each of the tab pages by adding
widgets to them as you would to any panel. The Window Workshop allows you to
select the tab page you wish to edit by clicking on its tab—clicking on its tab brings
the tab page to the top.

You can also add or delete tab pages, and reorder the pages as you wish. For
information about adding, deleting, and reordering tab pages, see “Editing the Tab
Folder” on page 76. For information on setting the properties on the tab folder
itself, see “Setting Tab Folder Properties” on page 79.

About Tab Folders

74 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To create a new tab folder

1. Choose the Widget > New > TabFolder command or click the New Tab Folder
tool.

2. On the form, draw a rectangle to indicate the tab folder’s size.

3. Design each of the tab pages by adding widgets to them. Use a grid field within
the panel to maintain portability.

Adding Tab Labels
The label on an individual tab is determined by the Caption property for the panel
on the tab page. When you create a new tab folder, iPlanet UDS provides default
labels for each tab. To reset the default labels, you must use the Caption property
for the individual panels. See “Editing the Tab Folder” on page 76 for information.

By default, the tabs for the tab folder are set with the following properties:

• scrolling

If there are more tabs than can fit across the tab folder, iPlanet UDS provides a
horizontal scroll mechanism. On Windows NT 4.0/3.51, you can reset this
property to provide multirow tabs.

• packed

The Packed setting creates tabs that are sized individually to accommodate
their labels. You can reset this property to provide evenly spaced tabs. The
Evenly Spaced setting creates tabs with a uniform size—the tab size is
determined by the longest label.

For information about setting the tab folder properties, see “Setting Tab Folder
Properties” on page 79.

Using the Group Into > TabFolder Command
The Group Into > TabFolder command lets you group existing panels, compound
widgets, and simple widgets into a tab folder. The Group Into > TabFolder
command creates tab pages from the selected widgets as follows:

• every panel becomes an individual tab page

• every compound widget is grouped into a new panel, which in turn, becomes
an individual tab page

• all simple widgets are grouped into a single panel, which in turn, becomes a
single tab page

About Tab Folders

Chapter 2 Using Complex Widgets 75

The order of the tab pages in the tab folder is determined by the order in which the
widgets were originally added to the form. The first compound widget is the first
tab page, the second compound widget is the second tab page, and so on. After
creating the tab folder, you can reorder the tab pages as you wish (see “Editing the
Tab Folder” on page 76 for information).

Generally, you design the tab pages in the form of panels before giving the Group
Into > TabFolder command. Be sure to use grid fields within the panels to ensure
portability. If you wish to specify the tab label for each panel before giving the
Group Into command, you can do so by setting each panel’s Caption property on
the panel’s properties dialog.

➤ To create a tab folder

1. On your form, create the widgets you wish to use as or include on tab folder
pages.

2. Select all the widgets you want to include in the tab folder.

3. Choose the Widget > Group Into > TabFolder command.

After creating the tab folder, you can edit each of the tab pages by adding widgets,
deleting widgets, or changing widgets on them as you would on any panel. The
Window Workshop allows you to select the tab page you wish to edit by clicking
on its tab—clicking on its tab brings the tab page to the top.

You can also add or delete tab pages, and reorder the pages as you wish. For
information about adding, deleting, and reordering tab pages, see “Editing the Tab
Folder” on page 76. For information on setting the properties on the tab folder
itself, see “Setting Tab Folder Properties” on page 79.

The Group Into > TabFolder command uses a default size for the tab folder. After
creating the tab folder, you can resize it by using the widget’s resize handles or by
using the Widget > Size Properties... command.

The label on an individual tab is determined by the Caption property for the panel
on the tab page. When you group widgets into a tab folder, iPlanet UDS provides a
default caption for each panel that does not already have one. To reset the default
captions, you must use the Caption property for the individual panels. See
“Editing the Tab Folder” on page 76 below for information.

By default the tabs for the tab folder are set with the following properties:

• scrolling

If there are more tabs than can fit across the tab folder, iPlanet UDS provides a
horizontal scroll mechanism. On Windows NT 4.0/3.51, you can reset this
property to provide multirow tabs.

About Tab Folders

76 iPlanet Unified Development Server • Programming Guide • August 2001

• packed

The Packed setting creates tabs that are sized individually to accommodate
their labels. You can reset this property to provide evenly spaced tabs. The
Evenly Spaced setting creates tabs with a uniform size—the tab size is
determined by the longest label.

For information about setting the tab folder properties, “Setting Tab Folder
Properties” on page 79.

Editing the Tab Folder
You can use the Edit menu to copy, cut, delete, and paste the individual tab pages
within the tab folder the same way you use the Edit menu commands to
manipulate other widgets.

After creating a tab folder, you can make any of the following edits:

• add new tab pages

• delete tab pages

• reorder the pages in the tab folder

• change the labels on the tabs

Adding a Tab Page
There are two different ways you can add a new tab page to a tab folder: copy an
existing tab folder page or create a new panel.

Copying an existing tab page is useful when the basic design of your tab pages is
similar. When you copy an existing tab page, everything on the tab page is
duplicated, including the tab label and all widgets on the panel. To copy an
existing tab page, you can use the Edit > Copy command or the Edit > Duplicate
command. Using the Edit > Copy command enables you to paste the new tab page
exactly where you want it. The Edit > Duplicate command always inserts the new
tab page at the beginning of the set.

About Tab Folders

Chapter 2 Using Complex Widgets 77

➤ To copy an existing tab page with the Edit > Copy command

1. Select the tab page you wish to copy.

2. Choose the Edit > Copy command.

3. Choose the Edit > Paste command.

4. Indicate the position for the new tab page.

You can either select a tab page for the new page to precede or you can select a
tab page for the new tab page to follow. To indicate which tab page you want
your new tab page to precede, click on the left side of the tab. To indicate which
tab page you want your new tab page to follow, click on the right side of the
tab.

5. Edit the new tab page as desired.

Creating a new panel is useful when you want to design the tab page format from
scratch. To provide the label for the new tab page, you can set the panel’s Caption
property.

➤ To create a new tab page

1. Place the simple and compound widgets for the tab page directly on the form.

2. Choose the Widget > Group Into > Panel command to group the widgets into a
panel.

3. Choose the Edit > Cut command.

4. Choose the Edit > Paste command.

5. Indicate the position for the new tab page.

You can either select a tab page for the new page to precede or you can select a
tab page for the new tab page to follow. To indicate which tab page you want
your new tab page to precede, click on the left side of the tab. To indicate which
tab page you want your new tab page to follow, click on the right side of the
tab.

The Header Style property (described under “Setting Tab Folder Properties” on
page 79) lets you control how the user views the tabs, with scrolling or in multiple
rows. However, we strongly recommend that you limit the number of tabs so that
all the tabs are visible without using scrolling or multiple rows.

About Tab Folders

78 iPlanet Unified Development Server • Programming Guide • August 2001

Deleting a Tab Page
To delete a tab page, you simply remove the panel from the tab folder using the
Edit > Delete command.

➤ To delete a tab page

1. Click the tab for the page you wish to delete.

Clicking the tab brings the selected page to the top of the tab folder.

2. Select the tab page you wish to delete by selecting its panel.

3. Choose the Edit > Delete command.

If you wish to remove the page from the tab folder but save it for use elsewhere,
you can use the Edit > Cut command, and then paste the panel wherever you want
it.

Reordering Tab Pages
To reorder the tab pages in a tab folder, you must use the Edit > Cut and Paste
commands. Use the Cut command to remove the tab page you wish to move, and
use the Paste command to paste the tab page into the correct position.

➤ To move a tab page

1. Select the tab page you wish to move.

2. Choose the Edit > Cut command.

3. Choose the Edit > Paste command.

4. Indicate the new position for the tab page.

You can either select a tab page for the moved page to precede or you can select
a tab page for the moved tab page to follow. To indicate which tab page you
want your moved tab page to precede, click on the right side of the tab. To
indicate which tab page you want your moved tab page to follow, click on the
left side of the tab.

About Tab Folders

Chapter 2 Using Complex Widgets 79

Editing the tab Label
To edit a tab label, you must reset the Caption property for the top-most panel.

➤ To edit a tab label

1. Double-click the panel, or select the panel and choose the Widget >
Properties... command.

2. On the Panel Properties dialog, enter the tab label in the Caption field.

Setting Tab Folder Properties
Tab folders have two special properties that let you specify how the tabs are sized
and displayed: Header Style and Layout Policy.

By default, when there are more tabs than can fit on the tab header at one time, the
tab folder provides a horizontal scroll bar to let the end user view all the tabs. On
Windows NT 4.0/3.5.1, you have the option of displaying multirow tabs. The
Multirow setting for the Header Style property displays the tabs in multiple rows,
which lets the end user view all the tabs at once and provides the appearance of a
file drawer. The Scrolling setting (the default) for the Header Style property
provides a horizontal scroll bar which the end user can use to scroll through the
tabs.

Figure 2-3 Header Style Property

The Layout Policy property specifies whether the tabs are packed or evenly spaced.
The Packed setting (the default) creates tabs that are sized individually to
accommodate their labels. The Evenly Spaced setting creates tabs with a uniform
size—the tab size is determined by the longest label.

Multirow Scrolling

About Tab Folders

80 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 2-4 Layout Policy

Selecting the Tab Folder
To set the properties on the tab folder, you must select the tab folder widget. You
can do this by clicking on the background of the tab folder (click in the area to the
right of the last tab) or by using Ctrl-Click to select the parent of one of the tab
pages (a panel).

The following figure illustrates the TabFolder Properties dialog:

Figure 2-5 TabFolder Properties Dialog

Evenly Spaced Packed

About Tab Folders

Chapter 2 Using Complex Widgets 81

The following table describes the tab folder properties.

Creating Tab Folders Dynamically
To create a tab folder dynamically, you use the SetPages method of the TabFolder
class. The SetPages method adds an array of panels to the tab folder. Each panel in
the array becomes an individual tab page, the Caption attribute for each panel
provides the label for each tab, and the order of the panels within the array
determines the order of the tab pages within the tab folder. See the Display Library
online Help for information on the SetPages method.

➤ To create a tab folder

1. Create a TabFolder object.

2. Create an array of panels.

3. For each panel in the array, add the widgets you wish to display on the tab
page.

Be sure to use grid fields to align the widgets within the panel—this ensures
portability.

Use This Property For This Purpose

Attribute Name To set an attribute name for the tab folder.

Mapped Type To set the tab folder to map to a class. This is an optional setting; you
need not map a tab folder to a class. However, if you do map the tab
folder to a class, the named attributes of the widgets contained by the
tab folder must match the attribute names and types of the tab
folder’s class.

Header Style To specify how the tabs are displayed when there are more tabs than
can fit on one line across the top of the widget, Scrolling or Multirow.

Layout Policy To specify how the size of the tabs is determined, Evenly Spaced or
Packed.

Help Text To open the Help Text dialog.

Size Policy To open the Size Policy dialog.

About Tab Folders

82 iPlanet Unified Development Server • Programming Guide • August 2001

4. For each panel in the array, set the Caption attribute to the label you wish to
display on the tab.

5. Use the SetPages method to add the array of panels to the tab folder.

6. Load the data into the tab folder, either into all the pages at once or into the
first page only. (See below for further information on this.)

The following code sample illustrates creating a tab folder dynamically:

Loading Data into the Tab Folder
You can load the data into the tab folder using two different techniques. The
simplest technique is, on window start-up, to load the data for all the tab pages at
once. The end user can then freely move from one tab page to another as desired.
This technique requires no special coding.

Code Example 2-1 Creating a Tab Folder Dynamically

-- Create a TabFolder dynamically.
foTabFolder : TabFolder = new;
panelArray : array of Panel = new;
index : integer;

-- These three panels were created in the Window Workshop.
panelArray[1] = <BirdPanel>;
panelArray[2] = <MammalPanel>;
panelArray[3] = <TreePanel>;

-- SetPages moves the panels into the TabFolder. They will appear
-- on the window only within the TabFolder.
foTabFolder.SetPages(pages = panelArray);

-- Set the header style.
foTabFolder.HeaderStyle = TH_MULTIROW;

-- You must always parent the TabFolder.
tabFolder.Parent = self.Window.Form;

self.Open();
event loop
...

Project: TabFolders • Class: DynamicTabFolderWindow • Method: Display

About Tab Folders

Chapter 2 Using Complex Widgets 83

The second technique is, on window start-up, to load the data into the first tab page
only. Then, as the end user clicks on a given tab, you can load the data into the
corresponding tab page. This provides improved performance at start-up,
although it requires extra coding. First, you must handle the AfterTabSelect event,
loading the data into the tab page when the end user clicks on the corresponding
tab. And second, you should set a flag so you do not load the data for a given tab
page more than once.

The AfterTabSelect event is posted on the tab folder when the end user clicks on
one of its tabs. By default, when the end user clicks on a tab, iPlanet UDS
automatically moves the selected tab page to the top of the folder, where the end
user can interact with it. If all the data is already loaded into the tab page and you
do not wish to provide special processing, you do not need to handle the
AfterTabSelect event. However, you might wish to provide special processing
when the end user clicks on the tab, for example, to load data from a database or
external system that you wish to display on the tab page only when the end user
actually selects that tab page. In this case, you can explicitly handle the
AfterTabSelect event (see the Display Library online Help for information):

Controlling Tab Size and Appearance
To control the size and appearance of the tabs on the tab folder, you can use the
HeaderStyle and Layout Policy attributes. The HeaderStyle attribute specifies
whether the tabs provide a horizontal scroll bar (the default) or whether they are
displayed in multiple rows. The LayoutPolicy attribute specifies whether the tabs
are uniformly sized to fit the longest tab label or whether the tabs are individually
sized to fit their labels (the default).

Although the HeaderStyle attribute lets you control how the user views the tabs
when there are more tabs than can fit on one row, we strongly recommend that you
limit the number of tabs so that all the tabs are visible without using scrolling or
multiple rows.

Code Example 2-2 Handling the AfterTabSelect Event

-- When the user selects the Mammal Tab Page, display a message.
when foTabFolder.AfterTabSelect(Page = Page) do
if Page = <MammalPanel> then
self.Window.MessageDialog(
messageText = ‘Congratulations on seeing a mammal.’,
messageType = MT_INFO);

end if;

Project: TabFolders • Class: DynamicTabFolderWindow • Method: Display

About Outline, List View, and Tree View Fields

84 iPlanet Unified Development Server • Programming Guide • August 2001

Adding, Deleting, and Replacing Tab Pages
After creating a tab folder, you can add, delete, and replace tab pages from your
TOOL code. The AddPage method inserts a new tab page into the tab folder at the
specified position. The DeletePage method removes the specified tab page from the
tab folder. The ReplacePage method replaces the specified tab page with a new tab
page.

Merging Two Tab Folders
If you wish to merge two tab folders into one, you can use the GetPages method to
return the arrays of panels in both of the existing tab folders. You can then merge
both these arrays into a single new array. After preparing the new array as
necessary (setting Caption attributes and so on), use the SetPages method to
transfer the panels in the new array into a tab folder.

See the Display Library online Help for complete information on the attributes and
methods available on the TabFolder class.

About Outline, List View, and Tree View Fields
iPlanet UDS outline, list view, and tree view fields allow you to create the standard
browsers your end users have grown accustomed to in a wide variety of
window-based applications.

An outline field provides a browser for multi-column data. It can display a hierarchy
of data as an indented outline, or it can display one level of multi-column
information. If the data structure is larger than the outline field, the outline field
provides a scrollbar that lets the end user scroll through the data. The following
figure illustrates an outline field:

About Outline, List View, and Tree View Fields

Chapter 2 Using Complex Widgets 85

Figure 2-6 Outline Field

A list view field displays a set of items, each consisting of an icon with a label, from
which the end user can make selections. There are four styles for list view fields:
image (large icon), small icon, list, and detail. The following figure illustrates a
detail style list view field:

About Outline, List View, and Tree View Fields

86 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 2-7 List View Field

Note that the small icon, image (large icon), and list styles are available only on
Windows NT.

A tree view field displays hierarchical information in an indented outline, providing
controls that let the end user expand and collapse the outline. Unlike an iPlanet
UDS outline field, a tree view field has a standardized two-column format, with
one small icon column and one text column. The following figure illustrates a tree
view field:

About Outline, List View, and Tree View Fields

Chapter 2 Using Complex Widgets 87

Figure 2-8 Tree View Field

Very often, user interface designers use list view and tree view fields together. A
tree view field on the left allows the user to search through a hierarchy for the item
he wants, and a list view field on the right provides the detail information for the
selected item in the tree view field. The following figure illustrates:

Figure 2-9 Tree View Field and List View Field Used Together

The following sections provide detailed information about outline fields, list view
fields, and tree view fields. For each field, there is a section that provides
background information, a section about how to create the field using the Window
Workshop, and a section about how to provide the data for the field.

Using Outline Fields

88 iPlanet Unified Development Server • Programming Guide • August 2001

Using Outline Fields
An outline field provides a browser for multi-column data. It can display a
hierarchy of data as an indented outline, or it can display one level of multi-column
information. If the data structure is larger than the outline field, the outline field
provides a scrollbar that lets the end user scroll through the data.

On Windows NT, list view fields and tree view fields use the window systems’
native list view and tree view controls and use a standard format. An outline field,
however, is a widget created by iPlanet UDS. You can therefore use it to create a
customized widget that displays information in any format you choose.

A tree view field displays information in a hierarchical format, however, you are
limited to two standard columns, one icon and one label. A list view field displays
any number of columns, however, the list view field provides a flat list, without
showing hierarchical relationships. An outline field has none of the restrictions of
either the tree view or list view fields, and is therefore useful when you wish to
display multiple columns of hierarchical information. Generally, if a list view field
or tree view field provides the functionality that you need, you should use those
fields. When you need more flexibility, use an outline field.

Interacting with Outline Fields
The end user interacts with an outline field by:

• single-clicking an item to select it

• double-clicking an item to open it

When controls are turned on for the outline field, the end user can use the controls
to expand and collapse the outline.

Data for Outline Fields
The DisplayNode class defines a data object specifically for display in an outline
field, list view field, or tree view field. The data for an outline field consists of a
hierarchy of DisplayNode objects. The DisplayNode objects in the hierarchy are
displayed in the outline field as rows, with each row indented in the outline to
indicate the position of the object in the hierarchy. Each column in the outline field
corresponds to a single attribute in the DisplayNode class or subclass that is the
mapped type of the outline field.

Using Outline Fields

Chapter 2 Using Complex Widgets 89

The following figure illustrates the data in an outline field:

Figure 2-10 Data in an Outline Field

To provide the data for an outline field, you can use either the DisplayNode class
or a user-defined subclass of the DisplayNode class. Which class you use, the
DisplayNode class or a user-defined subclass, depends on whether the outline field
has one column or has multiple columns. See “Providing Data for an Outline Field”
on page 96 for information on providing the data for single- and multi-column
outline fields.

Node Hierarchy
To construct the hierarchy that is displayed in the outline field, you create the
DisplayNode objects and link them together using node positioning attributes
defined in the GenericNode class. You then assign the root node of the hierarchy to
the mapped attribute for the outline field. For information on how to construct the
node hierarchy, see “Creating and Assigning the Node Hierarchy” on page 98.

Row (one

Column (one attribute

DisplayNode

DisplayNode subclass

subclass object)

Using Outline Fields

90 iPlanet Unified Development Server • Programming Guide • August 2001

Event Handling
You can handle events on individual rows within the outline field. To tell which
row in the outline field was the source of the event, you can use the LocateNode
method defined for the OutlineField class, which allows you to determine which
row (or node) the cursor was positioned on when an event was posted. In addition,
a number of outline field events provide a node parameter, which gives you the
current row.

Outline Field Properties
The Window Workshop provides several properties that let you control the
appearance and behavior of the outline field as a whole.

Providing Controls
By default, the outline field provides controls that allow the end user to expand
and collapse the outline. You can suppress the controls by turning off the Has
Controls property.

Displaying the Root Node
As described under “Creating and Assigning the Node Hierarchy” on page 98, the
data displayed in the outline field is a node hierarchy, branching from a single root
node. By default, the root node of the node hierarchy is not displayed in the outline
field. If you wish to display it, you can set the Root Displayed property on. The root
node will then be displayed at the top level of the outline.

Turning Scrollbars On and Off
The Has Horizontal Scrollbar and Has Vertical Scrollbar properties let you specify
whether or not the outline field provides horizontal and vertical scroll bars. Keep
in mind that if you turn both scroll bars off and then information displayed in the
outline field exceeds the size of the outline field, the end user has no way to display
it.

Controlling Row Highlights and Scroll Policy
You can control the behavior of an individual row in the outline field when it is
selected by the end user. The Has Row Highlights property specifies whether or
not an individual row in the list is highlighted when it is selected. Highlighting is
reverse video.

Using Outline Fields

Chapter 2 Using Complex Widgets 91

The Scroll Policy property specifies where the individual row is scrolled when
TOOL code selects the row. (The Scroll Policy property does not take effect when
the end user selects a row.) The options are:

Displaying Column Titles
You can specify whether or not column titles are displayed by using the Has
Column Titles property. The three other list view styles do not display column
titles. To specify the title for an individual column, you use the Column Title
property (see “Individual Column Properties” on page 107 for information).

Individual Column Properties
Unlike tree view fields, outline fields do not have a standardized appearance. For
each column in the outline field, the Window Workshop allows you to set
properties that control the appearance and behavior of the individual column.

Column Content
To display data in the outline field, you must use the Column Name property. This
property specifies the attribute name in the DisplayNode class or subclass that
maps to the particular column in the list view field. See “Providing Data for a List
View Field” on page 112 for information.

For outline fields, you can set the Column Title property to provide a title for an
individual column. After entering the column title, you must be sure to turn on the
Has Column Title property for the outline field.

Scroll Policy Option Description

Automatic Automatic scrolling—moves the node into view. This is the default.

Top Scrolls the selected node to the top of the list view field. On
Windows NT, the selected node is kept in view.

Bottom Scrolls the selected node to the bottom of the list view field. On
Windows NT, the selected node is kept in view.

Middle Scrolls the selected node to the middle of the list view field. On
Windows NT, the selected node is kept in view.

No Scrolling Does not scroll the selected node. On Windows NT, the selected
node is kept in view.

Using Outline Fields

92 iPlanet Unified Development Server • Programming Guide • August 2001

Column State
By default, the items within an individual column in a outline field are visible, but
not draggable. To enable end users to drag the items within a given column, you
must set the Column State property to Draggable.

Column Sizing and Alignment
You control the column sizing and alignment by using the Size Policy, Width, and
Alignment properties for the column. The Size Policy property specifies how the
column is sized: Fixed or Sized to Text (the default). The Width property specifies
the maximum number of characters to display in the column. The Alignment
property specifies the alignment of the data within the column: Left, Right, Center,
or Default (appropriate for data type).

In TOOL, you can set these column properties using the corresponding attributes
in the OutlineColumnDesc class. There is one OutlineColumnDesc object for each
column in the list view field. For information, see the OutlineColumnDesc class in
the Display Library online Help.

Column Indenting
An outline field can have any number of columns, based on the attributes in the
DisplayNode subclass to which it maps. By default, only the first column in the
field uses indenting to indicate the position of the row within the hierarchy.

You may wish to turn on indenting for more than one column. For example, if your
first column is an icon and your second column is a text label, you may wish to
indent both the first and second columns, so the icon and the text are aligned. The
First and Last properties on the column allow you to indicate which column is the
first to use indenting and which is the last to use indenting. By default, the first
column is both the First and Last column to use indenting.

To indicate which column should be the first to use indenting, you can turn on the
First property for the column. Any preceding columns will use not use indenting.
To indicate which column should be the last to use indenting, you can turn on the
Last property for the column. Any succeeding columns will not use indenting. For
example, to align the icon and text label so that both are indented, you would turn
on the First property for the icon and the Last property for the text label.

Using Outline Fields

Chapter 2 Using Complex Widgets 93

Creating an Outline Field in the Window
Workshop
To create a outline field in the Window Workshop, you can use the Widget > New
> OutlineField command or the New Outline Field tool.

By default, the mapped type for an outline field is DisplayNode.

For an outline field with multiple columns, you must use a subclass of DisplayNode
for the mapped type. The DisplayNode subclass must define the attributes that
provide the data for each column you wish to include. The user-defined
DisplayNode subclass must be defined before you can completely define the
outline field using the Window Workshop. See “Providing Data for an Outline
Field” on page 96 for information on defining the DisplayNode subclass.

The OutlineField Properties dialog provides an array field that allows you to define
each of the columns in the outline field. The Column Name property in the array
field specifies the name of the attribute that defines the particular column. The
column name must be an existing attribute in the DisplayNode class
(DVNodeText) or subclass (a user-defined attribute). For each Column Name that
you enter, iPlanet UDS creates a corresponding column in the outline field. The
other properties in the array field allow you to control the appearance and
behavior settings for the individual columns.

Using Outline Fields

94 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To create an outline field

1. In the Window Workshop, choose the Widget > New > OutlineField command
or click the New Outline Field tool.

2. On the form, draw a rectangle to indicate the size of the outline field you wish
to create.

Double-click the outline field to open its properties dialog.

3. On the OutlineField Properties dialog, set the Mapped Type property. Specify
either DisplayNode or a user-defined subclass of DisplayNode. Set other
outline field properties as desired (see summary below).

4. Define the individual columns. You must enter the Column Name property for
each column you wish to display. The other properties are optional.

If you are using DisplayNode, use DVNodeText for the first column in the
outline view field. If you are using a user-defined subclass of DisplayNode,
you can use DVNodeText for any column in the outline field and use your
user-defined attributes for the remaining columns.

The OutlineField Properties dialog allows you to set the following properties for an
outline field:

Property Description

Attribute Name Sets an attribute name for the outline field.

Mapped Type Sets the data type for the outline field contents. The mapped type
must be the DisplayNode class or a subclass of DisplayNode.

Using Outline Fields

Chapter 2 Using Complex Widgets 95

Scroll Policy Determines where the individual row is scrolled when TOOL code
selects the node. (This property does not take effect when the end
user selects a node.) Values are: Automatic, Top, Bottom, Middle,
and No Scrolling.

Has Controls Turns the controls for opening and closing folder nodes on or off.

Has Column Titles Turns the outline field’s column titles on or off.

Has Row
Highlights

Turns row highlighting for the current node on or off. Highlighting
is reverse video.

Root Displayed Specifies whether or not the root node is displayed.

Has Horizontal
Scrollbar

Turns the horizontal scrollbar on or off.

Has Vertical
Scrollbar

Turns the vertical scrollbar on or off.

Column Title Set
Number

Specifies the set number for the column titles’ message numbers.
This is for use when creating a multilingual window.

Column Title Sets the title for an individual column in the outline field.

Column Name Specifies the name of the attribute in the DisplayNode subclass that
defines the data to be displayed in the current column.

Msg Number Sets the message number for the individual column title. A value of
0 means the current value for the Column Title property. This is for
use when creating a multilingual window.

Width Sets the maximum number of characters that can be displayed in
the current column.

Size Policy Sets the size policy for the current column. Values are Default,
Fixed, and Size to Text.

Alignment Sets the alignment of the data displayed in the field. Values are:
Left, Right, and Center.

First/Last Sets the column as the first or last indent level in the outline field.

State Sets the state of a column in the outline field: Draggable, Visible, or
Invisible.

Insert/Delete Inserts or deletes a column in the outline field.

Help Text Opens the Help Text dialog for the field.

Size Policy Opens the Size Policy dialog for the field.

Property Description

Using Outline Fields

96 iPlanet Unified Development Server • Programming Guide • August 2001

Providing Data for an Outline Field
To provide the data for an outline field, you can use either the DisplayNode class
or a user-defined subclass of the DisplayNode class. Which class you use, the
DisplayNode class or a user-defined subclass, depends on whether the outline field
has one column or has multiple columns.

If the outline field has only one text column, to provide data for the outline field,
you can use the DVNodeText attribute of the DisplayNode class. You do not need
to create a subclass of DisplayNode.

To use the DVNodeText attribute, in the OutlineField properties dialog, specify
DisplayNode as the mapped type for the outline field and DVNodeText as the
Column Name Property for the first column in the column list. Figure 2-11
illustrates:

Figure 2-11 OutlineField Properties Dialog

If the outline field has more than one column, to provide the data for the outline
field, you must create a subclass of the DisplayNode and, in the new class, define
one attribute for each column in the outline field. See “Using a Subclass of
DisplayNode” on page 97 for information.

To assign the data to the outline field, you must link the DisplayNode subclass
objects into a hierarchy and assign the root node of the hierarchy to the mapped
attribute of the outline field. See “Creating and Assigning the Node Hierarchy” on
page 98 for information.

Using Outline Fields

Chapter 2 Using Complex Widgets 97

Using a Subclass of DisplayNode
For an outline field that has more than one column, you must create a subclass of
the DisplayNode class to define the columns to be displayed in the field. The
DisplayNode subclass defines one attribute for each column that you wish to
display. For example, in the iPlanet UDS example program SimpleOutline, the
BrowserDisplayNode class defines two columns to be displayed: a TextData
attribute and an ImageData attribute.

After creating the DisplayNode subclass, you must use the Window Workshop to
set the mapped type for the field to the DisplayNode subclass and map the
individual attributes in the subclass to their corresponding columns in the field.

➤ To use the DisplayNode subclass

5. In the Project Workshop, create a new class whose superclass is DisplayNode.

6. In the Class Workshop, define one attribute for each column you wish to
include in the outline field.

7. In the Window Workshop, open the properties dialog for the outline field.

8. In the Properties dialog for the outline field, set the Mapped Type property to
the DisplayNode subclass.

Also in the Properties dialog, set the Column Name property for each column
to the name of the attribute in the DisplayNode subclass that provides the data
for that particular column.

You are now ready to link the DisplayNode objects into a hierarchy and assign the
hierarchy to the outline field.

Using Outline Fields

98 iPlanet Unified Development Server • Programming Guide • August 2001

Creating and Assigning the Node Hierarchy
To link DisplayNode objects into a hierarchy, you start by creating a root node.
Then, for each additional node that you create, you set the appropriate
DisplayNode attribute to position the node within the hierarchy.

he root node for the node hierarchy is a single DisplayNode object that is assigned to
the mapped attribute for the field. By default, the root node for the hierarchy is not
displayed in the outline field, although you can display it by toggling on the Root
Displayed property.

The root node must have its IsFolder attribute set to TRUE. Setting IsFolder to
TRUE allows the root node to have child nodes assigned to it. In addition, you will
usually need to set the IsFilled and IsOpened attributes to TRUE. Setting IsFilled to
TRUE specifies that child nodes are loaded and setting IsOpened to TRUE specifies
that the nodes in the folder (the root) are being displayed. You must set these three
attributes in the following order:

• IsFolder

• IsFilled

• IsOpened

Positioning Nodes
The GenericNode class, the superclass of DisplayNode, defines the attributes that
allow you to position a given node within a hierarchy. (See the Framework Library
online Help for complete information on GenericNode.) Briefly, the positioning
attributes are:

Attribute Description

Parent The immediate parent node for the current node. Before you can make
another node the parent of the current node, the future parent node’s
IsFolder attribute must be set to TRUE.

FirstChild The first child node in the set of immediate child nodes for the current
node.

LastChild The last child node in the set of immediate child nodes for the current
node.

NextSibling The next sibling in the set of siblings for the current node.

PrevSibling The previous sibling in the set of siblings for the current node.

Using Outline Fields

Chapter 2 Using Complex Widgets 99

When you use the Parent attribute to specify a parent for a new node, the new node
becomes the last child of the parent node. When you use a “sibling” attribute to
specify a sibling for a new node, the new node becomes a child of the sibling’s
parent. When you use a “child” attribute to specify a child for a new node, the new
node becomes the new parent of the node. The following figure illustrates these
relationships:

Figure 2-12 Nodes in a Node Hierarchy

The following procedure outlines the basic steps for creating the node hierarchy.
To provide streamlined code examples, the code used in the procedure illustrates a
very simplistic use of outline field with the DisplayNode class as the mapped type.
For more sophisticated (and perhaps realistic) examples of outline fields, see the
iPlanet UDS example programs SimpleOutline and FileBrowser.

➤ To create the node hierarchy

1. Create a local variable and assign to it a new object of the DisplayNode class or
subclass. This is your root node. The following code illustrates:

-- Initialize a local DisplayNode variable, which we
-- will later assign to the mapped attribute
-- for the Outline field. It is more
-- efficient to build up a local variable and
-- assign it to the mapped attribute, than to directly
-- build the nodes in the mapped attribute.
-- This will become the root node of the Outline.
ourBirdOutline : DisplayNode = new;

Root Node

Child
Node 1

Sibling
Node 2

Sibling
Node 1

Child
Node

Root node has NIL Parent attribute

These nodes
are children

of the root node

First Child Node

Last Child Node
(has a NIL child attribute)

Using Outline Fields

100 iPlanet Unified Development Server • Programming Guide • August 2001

2. Set the IsFolder, IsFilled, and IsOpened attributes for the root node to TRUE.

3. Write a loop to create the rest of the nodes. For each DisplayNode object you
create, use one of the positioning attributes to assign it to its place within the
hierarchy.

-- Always set the IsFolder, IsFilled, and IsOpened attributes
-- to TRUE in the root node. Always set them in this order.
ourBirdOutline.IsFolder = TRUE;
ourBirdOutline.IsFilled = TRUE;
ourBirdOutline.IsOpened = TRUE;

ourBirdOutline.DVNodeText = ’ROOT NAME’;

-- We add three levels to the ourBirdOutline
-- DisplayNode. We load them with data from
-- the OrderList array, which is populated in
-- the Init method of this class. This is an
-- appropriate technique when you have small
-- amounts of data. An alternative technique,
-- if you have a lot of data to display, would
-- be to create the first level of the hierarchy
-- only, connect each node at this level to the data
-- in the next level down with DisplayNode’s Related
-- attribute, and build out the lower levels at
-- runtime. Note that when you use the alternate
-- technique, you should always set the IsFolder
-- attribute to TRUE, regardless of whether the node
-- has a child node. Doing so will allow the user to
-- click the control, generating an event which you can
-- handle to build the child node.

Node : DisplayNode;
ChildNode : DisplayNode;
GrandChildNode : DisplayNode;

for order in OrderList do
Node = new;
Node.DVNodeText = new;
Node.DVNodeText.SetValue(order.Name);
Node.IsFolder = FALSE;
Node.IsFilled = TRUE;
Node.IsOpened = TRUE;
-- Parent ’Order’ level node to the root node.
Node.Parent = ourBirdOutline;

if order.FamilyList <> nil then
Node.IsFolder = TRUE;
for family in (order.FamilyList) do

Using Outline Fields

Chapter 2 Using Complex Widgets 101

4. When the node hierarchy is complete, assign the local variable for the root
node to the mapped attribute for the outline field.

ChildNode = new;
ChildNode.DVNodeText = new;
ChildNode.DVNodeText.SetValue(family.Name);
ChildNode.IsFolder = FALSE;
ChildNode.IsFilled = TRUE;
ChildNode.IsOpened = FALSE;
-- Parent the ’Family’ level node to the ’Order’ level node.
ChildNode.Parent = Node;

if family.GenusList <> nil then
ChildNode.IsFolder = TRUE;
for genus in family.GenusList do
GrandChildNode = new;
GrandChildNode.DVNodeText = genus.Name;
GrandChildNode.IsFolder = FALSE;
GrandChildNode.IsFilled = TRUE;
GrandChildNode.IsOpened = FALSE;
-- Parent’Genus’ level node to the ’Family’ level node.
GrandChildNode.Parent = ChildNode;

-- If genus has species data associated with it, we will
-- display species information in the ListView field,
-- when a user clicks on that genus. For now, we use the
-- Related attribute to connect a node with its species
-- list. We will build species display node when it’s
-- requested.
if genus.SpeciesList <> nil then

ourGenusInfo : GenusInfo = new;
ourGenusInfo.SpeciesList = genus.SpeciesList;
GrandChildNode.Related = ourGenusInfo;

end if;
end for;

end if;

end for;
end if;

end for;

-- Assign the local variable to the mapped attribute, now that the
-- structure is complete.
BirdOutline = ourBirdOutline;

Using List View Fields

102 iPlanet Unified Development Server • Programming Guide • August 2001

Using List View Fields
As described above, the list view field displays a set of items, each consisting of an
icon and a text label. On Windows NT, iPlanet UDS uses the native list view
control. On all other window systems, iPlanet UDS creates a custom widget.

The ListView class, which defines the list view widget, is a subclass of the
OutlineField class, and it provides a simplified version of the outline field. The
advantages of using a list view field over an outline field are:

• iPlanet UDS provides the look and feel of a list view control

• it is easier to define the data

The DisplayNode class provides attributes that define the first two columns of
the list view field, DVSmallIcon, DVLargeIcon, and DVNodeText. For the
small icon, image (large icon), and list styles, and for some detail list view
fields, these attributes are all you need.

• it is easier to assign the data

You do not need to create a node hierarchy for a list view field as you do with
an outline field. Instead, you can simply assign an array of nodes to the list
view field.

• on Windows NT, the native list view control provides automatic column
sorting and resizeable columns

List View Styles
When you create a list view field, you can choose one of four styles. For the small
icon, image (large icon), and list styles, there are always two standard columns, one
icon and one text column. (Figure 2-13 shows how each of these styles displays the
two “columns.”) For the detail style, you can create any number of resizeable
columns. The following figure illustrates the list view field styles:

Using List View Fields

Chapter 2 Using Complex Widgets 103

Figure 2-13 List View Field Styles

The Detail example in Figure 2-13 shows no icons because non were defined. All
styles can display icons if they are defined in the DisplayNode array, as described
in “Providing Data for a List View Field” on page 112.

Styles and Portability
The small icon, image (large icon), and list styles are available on Windows NT
only. Therefore, if you plan to deploy your application on more than one window
system, we recommend that you use only the detail style. Using the detail style
ensures visual consistency between the various platforms.

Styles and Sorting
On Windows NT, the detail list view field provides automatic sorting, in ascending
order, when the end user clicks on the list view field’s header. If you wish to
provide a descending sort, you can handle the list view field’s RequestSort event
(see the Display Library online Help for information).

The following sections provide detailed information about how end users interact
with list view fields, about how you provide the data for the list view field, and
about the properties of a list view field.

Detail

List

Image (Large Icon)

Small Icon

Using List View Fields

104 iPlanet Unified Development Server • Programming Guide • August 2001

Interacting with List View Fields
The end user interacts with a list view field by single or double-clicking the items
in the list. Your application controls what happens in response to these clicks.

On Windows NT, detail style list view fields provide the following special features:

• the end user can click in the header area to sort the items in the list

• the end user can resize the columns by dragging the column boundaries

Data for List View Fields
The DisplayNode class defines a data object specifically for display in an outline
field, list view field, or tree view field. The data for a list view field consists of an
array of DisplayNode objects. The DisplayNode class defines a single data node in
the list view field. Each item or “row” in the list view field corresponds one to one
with a DisplayNode object.

The following figure illustrates the data in a list view field:

Figure 2-14 Data for List View Field

Row (one DisplayNode

Column (one attribute of

subclass object)

DisplayNode subclass)

Using List View Fields

Chapter 2 Using Complex Widgets 105

To provide the data for a list view field, you construct an array of DisplayNode
objects (or DisplayNode subclass objects) and assign it to the list view field using
the SetViewNodes method. See “Providing Data for a List View Field” on page 112
for information about constructing and assigning the array.

Note that you can display a node hierarchy (rather than a node array) in the list
view field the same way you do in a tree view field. However, only the immediate
children of the root node will be displayed in the list view field. Other nodes lower
in the hierarchy will be ignored. See “Providing Data for a Tree View Field” on
page 121 for information on assigning a node hierarchy to the field.

You handle events on the list view field the same way you do with outline fields.
To tell which particular node in the field was the source of the event, you can use
the LocateNode method defined for the OutlineField class, which allows you to
determine which node the cursor was positioned on when an event was posted. A
number of list view field events provide a node parameter, which gives you the
current node.

List View Properties
The Window Workshop provides several properties that let you control the
appearance and behavior of the list view field as a whole.

List View Style
The default style for a list view field is the detail list view style. For the Windows
NT, you can set the style to the following settings: small icon, image (large icon), or
list. On all other platforms, iPlanet UDS uses the detail style, no matter which list
view style setting you specify.

Scrollbars
The Has Horizontal Scrollbar and Has Vertical Scrollbar properties let you specify
whether or not the list view field provides horizontal and vertical scroll bars. On
platforms other than Windows NT, you control the horizontal and vertical
scrollbars individually.

On Windows NT, the window system provides scroll bars only when they are
necessary. In addition, you cannot control the horizontal and vertical scrollbars
individually. Therefore, if you turn on either Has Horizontal Scrollbar or Has
Vertical Scrollbar, Windows NT displays both scroll bars, but only when the
information in the field exceeds the size of the field. To turn off the scrollbars, you
must set both Has Horizontal Scrollbar and Has Vertical Scrollbar off.

Using List View Fields

106 iPlanet Unified Development Server • Programming Guide • August 2001

Keep in mind that if you turn both scroll bars off and then information displayed in
the list view field exceeds the size of the list view field, the end user has no way to
display it.

Row Highlights and Scroll Policy
You can control the behavior of an individual row in the list view field when it is
selected by the end user. The Has Row Highlights property specifies whether or
not an individual row in the list is highlighted when it is selected. Highlighting is
reverse video. Note that row highlighting is not available for Windows NT.

The Scroll Policy property specifies where the individual row is scrolled when it is
selected. The options are:

Column Titles
For detail list view fields, you can specify whether or not column titles are
displayed by using the Has Column Titles property. The three other list view styles
do not display column titles. To specify the title for an individual column, you use
the Column Title property (see “Individual Column Properties” on page 107 for
information).

Scroll Policy Option Description

Automatic Automatic scrolling—moves the node into view. This is the default.

Top Scrolls the selected node to the top of the list view field. On
Windows NT, the selected node is kept in view.

Bottom Scrolls the selected node to the bottom of the list view field. On
Windows NT, the selected node is kept in view.

Middle Scrolls the selected node to the middle of the list view field. On
Windows NT, the selected node is kept in view.

No Scroll Does not scroll the selected node. On Windows NT, the selected
node is kept in view.

Using List View Fields

Chapter 2 Using Complex Widgets 107

Individual Column Properties
Unlike tree view fields, list view fields do not have a standardized appearance. For
each column in the list view field, the Window Workshop allows you to set
properties that control the appearance and behavior of the individual column.

Column Content
To display data in the list view field, you must use the Column Name property.
This property specifies the attribute name in the DisplayNode class or subclass that
maps to the particular column in the list view field. See “Providing Data for a List
View Field” on page 112 for information.

For detail list view fields, you can set the Column Title property to provide a title
for an individual column. After entering the column title, you must be sure to turn
on the Has Column Title property for the list view field. For list view styles other
than detail, the column titles are not displayed, even if you enter the titles and turn
Has Column Titles on.

Column State
By default, the items within an individual column in a list view field are visible, but
not draggable. To enable end users to drag the items within a given column, you
must set the Column State property to Draggable.

Column Sizing and Alignment
You control the column sizing and alignment by using the Size Policy, Width, and
Alignment properties for the column. The Size Policy property specifies how the
column is sized: Fixed or Sized to Text (the default). The Width property specifies
the maximum number of characters to display in the column. The Alignment
property specifies the alignment of the data within the column: Left, Right, Center,
or Default (appropriate for data type).

In TOOL, you can set these column properties using the corresponding attributes
in the OutlineColumnDesc class. There is one OutlineColumnDesc object for each
column in the list view field. For information, see the OutlineColumnDesc class in
the Display Library online Help.

Using List View Fields

108 iPlanet Unified Development Server • Programming Guide • August 2001

Creating a List View Field in the Window
Workshop
To create a list view field in the Window Workshop, you can use the Widget > New
> ListView command or the New List View Field tool.

Setting List View Style
The New > ListView command creates a detail list view field. For Windows NT, if
you want to use a different list view style, the ListView Properties dialog provides
a List Style property, which allows you to choose Small Icon, Image (large icon), or
List. Keep in mind, however, on all window systems except Windows NT, the only
style that is available is the detail style. Therefore, even if you choose a different
style, the list view field will be displayed in the detail style on platforms other than
Windows NT.

By default, the mapped type for a list view field is DisplayNode. You can use the
DisplayNode class as the mapped type for the following list view styles:

• small icon style list view field

• image (large icon) style list view field

• list style list view field

• detail style list view field with only one text column

For a detail list view field with multiple columns, you must use a subclass of
DisplayNode for the mapped type. The DisplayNode subclass must define the
attributes that provide the data for each column you wish to include. The
user-defined DisplayNode subclass must be defined before you can completely
define the list view field using the Window Workshop. See “Providing Data for a
List View Field” on page 112 for information on defining the DisplayNode
subclass.

Column Names and Other Column Properties
The ListView Properties dialog provides an array field that allows you to define
each of the columns in the list view field. The Column Name property in the array
field specifies the name of the attribute that defines the particular column. The
column name must be an existing attribute in the DisplayNode class
(DVNodeText) or subclass (a user-defined attribute). For each Column Name that
you enter, iPlanet UDS creates a corresponding column in the list view field. The
other properties in the array field allow you to control the appearance and
behavior settings for the individual columns.

Using List View Fields

Chapter 2 Using Complex Widgets 109

➤ To create a list view field

1. In the Window Workshop, choose the Widget > New > ListView command or
click the New List View tool.

2. On the form, draw a rectangle to indicate the size of the list view field you wish
to create.

3. Double-click the list view field to open its properties dialog.

4. On the ListView Properties dialog, use the List Style property to set the style of
the list view field. (Small Icon, Image (large icon), and List styles take effect
only on Windows NT.)

5. For the Mapped Type property, specify either DisplayNode or a user-defined
subclass of DisplayNode. Set other list view field properties as desired (see
summary below).

Using List View Fields

110 iPlanet Unified Development Server • Programming Guide • August 2001

6. Define the individual columns. You must enter the Column Name property for
each column you wish to display. The other properties are optional.

If you are using DisplayNode, use DVNodeText for the first column name in
the list view field. If you are using a user-defined subclass of DisplayNode, you
can use DVNodeText for any column in the list view field and use your
user-defined attributes for the remaining columns.

The List View Properties dialog, shown the figure above, allows you to set the
following properties for a list view field:

Property Description

Attribute Name Sets an attribute name for the list view field.

Mapped Type Sets the data type for the list view field contents. The type must be
the DisplayNode class or a user-defined subclass of DisplayNode.

Scroll Policy Determines where list view field scrolls a node when it becomes
the current node. Values are: Automatic, Top, Bottom, Middle,
and No Scroll.

List Style Sets the style of the list view field: Detail, Image (large icon), Small
Icon, and List. Image, Small Icon, and List styles are available only
on Windows NT.

Using List View Fields

Chapter 2 Using Complex Widgets 111

Column Title Set
Number

Sets number for the column titles’ message numbers. This is for
use when internationalizing the application.

Has Column Titles Turns the list view field’s column titles on or off.

Has Row Highlights Sets row highlighting for the current node in the list view field.
Highlighting is reverse video.

Has Horizontal
Scrollbar

Turns the horizontal scroll bar on or off.

Has Vertical
Scrollbar

Turns the vertical scroll bar on or off.

Column Title Sets the title for an individual column in the list view field.

Column Name Specifies the name of the attribute in the DisplayNode class (or
subclass) that defines the data to be displayed in the current
column. The attribute is either the DVNodeText attribute or a
user-defined attribute in the DisplayNode subclass (the mapped
type).

Msg Number Specifies the message number for the individual column title. A
value of 0 means the current value for the Column Title property.
This is for use when internationalizing the application.

Width Sets the maximum number of characters that can be displayed in
the current column.

Size Policy Sets the size policy for the current column. Values are Default,
Fixed, and Size to Text.

Alignment Sets the alignment of the data displayed in the field. Values are:
Default (appropriate for the type), Left, Right, and Center.

State Sets the state of a column in the list view field: Default, Draggable,
Visible, or Invisible.

Insert/Delete Inserts or deletes a column in the list view field.

Help Text Opens the Help Text dialog for the field.

Size Policy Opens the Size Policy dialog for the field.

Property Description

Using List View Fields

112 iPlanet Unified Development Server • Programming Guide • August 2001

Providing Data for a List View Field
The way you provide data for list view fields depends on the list view field style.
For small icon, image, list, and detail list view fields with a single text column, you
can use the DisplayNode class without subclassing. For detail list view fields with
multiple columns, you must create a subclass of the DisplayNode class.

Small Icon and Simple List Fields
For the small icon and simple list view fields, the DVSmallIcon attribute in the
DisplayNode class defines the icon column and the DVNodeText attribute in the
DisplayNode class defines the text column.

To use these attributes, in the ListView properties dialog, specify DisplayNode as
the mapped type for the list view field and DVNodeText as the Column Name
Property for the first column in the column list.

Image List View Field
For the image (large icon) list view field, the DVLargeIcon attribute in the
DisplayNode class contains the large icon and the DVNodeText attribute in the
DisplayNode class contains the text label for the icon. As shown above for small
icon and simple list fields, you must specify DisplayNode as the mapped type for
the list view field and DVNodeText as the Column Name Property for the first
column in the column list.

Detail List View Field
For a detail list view that displays a single text column, you can use the
DisplayNode class as described above for the small icon and simple list views.
However, for a detail list view field that displays multiple columns, you must
create a subclass of the DisplayNode class to define the individual columns in the
list. In the DisplayNode subclass, you must create one attribute for each column in
the list. See “Using a Subclass of DisplayNode” on page 113 for information.

Using a DisplayNode Array
A list view always displays information in a non-hierarchical format. Therefore, it
is not necessary for you to construct a node hierarchy the way you must with
outline fields and tree view fields. All you need to do is to create an array of the
DisplayNode objects (or DisplayNode subclass objects) and assign that array to the
list view field using the SetViewNodes method defined for the ListView class. See
“Creating and Assigning the Node Array” on page 114 for information.

Using List View Fields

Chapter 2 Using Complex Widgets 113

If you wish to assign a node hierarchy to the list view field, you can do so as
described under “Providing Data for a Tree View Field” on page 121. However,
only the immediate children of the root node will be displayed in the list view field.
Other nodes lower in the hierarchy will be ignored. Using the SetViewNodes
method is much easier.

Using a Subclass of DisplayNode
For detail list view fields that have more than one column, you must create a
subclass of the DisplayNode class to define the columns to be displayed in the
field.

For detail list view fields, the DisplayNode subclass provides one automatic
column for the list, the icon column. The DVSmallIcon attribute, inherited from the
DisplayNode class, defines this icon column. In addition, you can use the
DVNodeText attribute, inherited from the DisplayNode class, to define one of the
text columns. You must create new attributes for the remaining columns you wish
to display.

After creating the DisplayNode subclass, you must use the Window Workshop to
set the mapped type for the field to the DisplayNode subclass and map the
individual attributes in the subclass to their corresponding columns in the field.

➤ To use the DisplayNode subclass

1. In the Project Workshop, create a new class whose superclass is DisplayNode.

2. In the Class Workshop, define one attribute for each column you wish to
include in the list view field.

3. In the Window Workshop, open the properties dialog for the list view field.

Using List View Fields

114 iPlanet Unified Development Server • Programming Guide • August 2001

4. In the Properties dialog for the list view field, set the Mapped Type property to
the DisplayNode subclass.

Also in the Properties dialog, set the Column Name property for each column
to the name of the attribute in the DisplayNode subclass that provides the data
for that particular column.

You are now ready to create the array of DisplayNode subclass objects and use the
SetViewNodes method to assign the array to the list view field.

Creating and Assigning the Node Array
To construct the node array, simply create an array of DisplayNode or of your
user-defined DisplayNode subclass. Then, create the DisplayNode objects in the
array, in the order in which you wish to display them. (The order of the rows in the
array determines the order in which the nodes are displayed in the list view field.)
The following code illustrates:

-- In this example, SpeciesList is an array of SpeciesInfo.
-- SpeciesInfo is a small class, with four attributes:
-- Name, Length, Weight, and Status. SpeciesDisplayNode is a
-- subclass of DisplayNode with three additional attributes:
-- Length, Weight, and Status. SpeciesList has been initialized
-- and assigned values in the Init method.

-- Loop through the SpeciesList array, and assign its data
-- to our SpeciesDisplayNode.
i : integer = 1;
ourSpeciesNodeList : array of SpeciesDisplayNode = new;

Using Tree View Fields

Chapter 2 Using Complex Widgets 115

After creating the node array, you assign it to the list view field using the
SetViewNodes method defined for the ListView class. The SetViewNodes method
has a single parameter, columns, which provides a reference to the node array. (See
the Display Library online Help for information on the SetViewNodes method.)
The following code illustrates using the SetViewNodes method:

Using Tree View Fields
As described earlier, the tree view field displays hierarchical information in
standardized two-column, indented outline format. On Windows NT, iPlanet UDS
uses the native list view control. On all other window systems, iPlanet UDS creates
a custom widget.

The TreeView class, which defines the tree view widget, is a subclass of the
OutlineField class, and it provides a simplified version of the outline field. The
advantages of using a tree view field over an outline field are:

• iPlanet UDS provides the look and feel of a tree view control

• it is easier to define the data

The DisplayNode class provides attributes that define both columns of the tree
view field. These attributes are all you need.

while i <= SpeciesList.Items do
ourSpeciesNodeList[i] = new;
ourSpeciesNodeList[i].DVNodeText = new;

ourSpeciesNodeList[i].DVNodeText.SetValue(SpeciesList[i].Name);
ourSpeciesNodeList[i].Length = SpeciesList[i].Length;
ourSpeciesNodeList[i].Weight = SpeciesList[i].Weight;
ourSpeciesNodeList[i].Status = SpeciesList[i].Status;
i = i + 1;

end while;

Project: TreeList • Class: MainWindow • Method: Display

-- Populate the ListView field with the data in the array of your
-- subclass of DisplayNode.
<BirdListView>.SetViewNodes(ourSpeciesNodeList);

Using Tree View Fields

116 iPlanet Unified Development Server • Programming Guide • August 2001

The following sections provide detailed information about how end users interact
with tree view fields, about how you provide the data for the tree view field, and
about the properties of a tree view field.

Interacting with Tree View Fields
The end user interacts with a tree view field by:

• single-clicking an item to select it

• double-clicking an item to open it

When controls are turned on for the tree view field, the end user can use the
controls to expand and collapse the outline.

Data for Tree View Fields
The DisplayNode class defines a data object specifically for display in an outline
field, list view field, or tree view field. The data for a tree view field, like an outline
field, consists of a hierarchy of DisplayNode objects. The DisplayNode objects in
the hierarchy are displayed in the tree view field as rows, with each row indented
to indicate the position of the object in the hierarchy.

The following figure illustrates the data in a tree view field:

Using Tree View Fields

Chapter 2 Using Complex Widgets 117

Figure 2-15 Data in a Tree View Field

Unlike an outline field, a tree view field always displays hierarchical information
in a standard format, with two standard columns, a small icon column and a text
data column. Therefore, the DisplayNode class provides the attributes you need for
these two columns: DVSmallIcon, DVSelectedIcon, and DVNodeText. You do not
need to create a subclass of DisplayNode.

DVSmallIcon and DVSelectedIcon Attributes
The DVSmallIcon and DVSelectedIcon attributes set the icons that are displayed in
the first column. The DVSmallIcon attribute sets the icon that is displayed when
the node is unselected. The DVSelectedIcon sets the icon that is displayed when the
node is selected.

DVNodeText Attribute
The DVNodeText attribute sets the text that is displayed in the second column.

Node Hierarchy
To construct the node hierarchy, you create the DisplayNode objects and link them
together using node positioning attributes defined in the GenericNode class. You
then assign the root node of the hierarchy to the mapped attribute for the tree view
field. See “Providing Data for a Tree View Field” on page 121 for information on
how to construct the node hierarchy for a tree view field.

Row (one DisplayNode object)

Column (one attribute in DisplayNode class)

Using Tree View Fields

118 iPlanet Unified Development Server • Programming Guide • August 2001

Event Handling
You handle events on the tree view field the same way you do with outline fields.
To tell which particular node in the field was the source of the event, you can use
the LocateNode method defined for the OutlineField class, which allows you to
determine which node the cursor was positioned on when an event was posted. A
number of tree view field events provide a parameter which gives you the current
node. The iPlanet UDS example program TreeList uses the node parameter on the
AfterCurrentNodeChange event to access the current node.

Tree View Properties
The Window Workshop provides several properties that let you control the
appearance and behavior of the tree view field as a whole.

Providing Controls
By default, the tree view field provides controls that allow the end user to expand
and collapse the outline. You can suppress the controls by turning off the Has
Controls property.

Allowing Dragging
You may or may not want your end users to be able to drag the individual nodes in
the tree view field. By default, the nodes in the tree view field are visible, but not
draggable. To allow the end user to drag the nodes, turn on the Is Draggable
property.

Displaying the Root Node
As described under “Providing Data for a Tree View Field” on page 121, the data
displayed in tree view field is a node hierarchy, branching from a single root node.
By default, the root node of the node hierarchy is not displayed in the tree view
field. If you wish to display it, you can set the Root Displayed property on. The root
node will then be displayed at the top level of the outline.

Using Tree View Fields

Chapter 2 Using Complex Widgets 119

Turning Scroll Bars On and Off
The Has Horizontal Scrollbar and Has Vertical Scrollbar properties let you specify
whether or not the tree view field provides horizontal and vertical scroll bars. On
platforms other than Windows NT, you control the horizontal and vertical
scrollbars individually.

On Windows NT, the window system provides scroll bars only when they are
necessary. In addition, you cannot control the horizontal and vertical scrollbars
individually. Therefore, if you turn on either Has Horizontal Scrollbar or Has
Vertical Scrollbar, Windows NT displays both scroll bars, but only when the
information in the field exceeds the size of the field. To turn off the scrollbars, you
must set both Has Horizontal Scrollbar and Has Vertical Scrollbar off.

Keep in mind that if you turn both scroll bars off and then information displayed in
the tree view field exceeds the size of the tree view field, the end user has no way to
display it.

Row Highlights and Scroll Policy
You can control the behavior of an individual row in the tree view field when it is
selected by the end user. The Has Row Highlights property specifies whether or
not an individual row in the list is highlighted when it is selected. Highlighting is
reverse video. Note that row highlighting is not available for Windows NT.

The Scroll Policy property specifies where the individual row is scrolled when it is
selected. The options are:

Scroll Policy Option Description

Automatic Automatic scrolling—moves the node into view. This is the default.

Top Scrolls the selected node to the top of the tree view field.

Bottom Scrolls the selected node to the bottom of the tree view field.

Middle Scrolls the selected node the middle of the tree view field.

No Scroll Does not scroll the selected node.

Using Tree View Fields

120 iPlanet Unified Development Server • Programming Guide • August 2001

Creating a Tree View Field in the
Window Workshop
To create a tree view field in the Window Workshop, you can use the Widget >
New > TreeView command or the New Tree View Field tool.

➤ To create a tree view field

1. In the Window Workshop, choose the Widget > New > TreeView command or
click the New Tree View tool.

2. On the form, draw a rectangle to indicate the size of the tree view field you
wish to create.

3. Double-click the tree view field to open its properties dialog.

On the TreeView Properties dialog, set the tree view field properties as desired
(see summary below).

The following table describes the tree view field properties:

Property Description

Attribute Name Sets an attribute name for the tree view field.

Mapped Type Sets the data type for the tree view field contents. The mapped type
must be the DisplayNode class or a subclass of DisplayNode.

Scroll Policy Determines where list view field scrolls a node when it becomes the
current node. Values are: Automatic, Top, Bottom, Middle, and No
Scroll.

Has Controls Turns the controls for opening and closing folder nodes on or off.

Has Row
Highlights

Turns row highlighting for the current node on or off. Highlighting
is reverse video.

Using Tree View Fields

Chapter 2 Using Complex Widgets 121

Providing Data for a Tree View Field
As described under “Data for Tree View Fields” on page 116, the data for a tree
view field consists of a hierarchy of DisplayNode objects.

To link DisplayNode objects into a hierarchy, you start by creating a root node.
Then, for each additional node that you create, you set the appropriate
DisplayNode attribute to position the node within the hierarchy.

The root node for the node hierarchy is a single DisplayNode object that is assigned
to the mapped attribute for the field. By default, the root node for the hierarchy is
not displayed in the tree view field or outline field, although you can display it by
toggling on the Root Displayed property.

The root node must have its IsFolder attribute set to TRUE. Setting IsFolder to
TRUE allows the root node to have child nodes assigned to it. In addition, you will
usually need to set the IsFilled and IsOpened attributes to TRUE. Setting IsFilled to
TRUE specifies that child nodes are loaded and setting IsOpened to TRUE specifies
that the nodes in the folder (the root) are being displayed. You must set these three
attributes in the following order:

• IsFolder

• IsFilled

• IsOpened

Root Displayed Specifies whether or not the root node is displayed.

Has Horizontal
Scrollbar

Turns the horizontal scroll bar on or off.

Has Vertical
Scrollbar

Turns the vertical scroll bar on or off.

Is Draggable Allows the end user to drag the individual nodes in the tree view
field.

Help Text Opens the Help Text dialog for the field.

Size Policy Opens the Size Policy dialog for the field.

Property Description

Using Tree View Fields

122 iPlanet Unified Development Server • Programming Guide • August 2001

Attributes for Positioning Nodes
The GenericNode class, the superclass of DisplayNode, defines the attributes that
allow you to position a given node within a hierarchy. (See the Framework Library
online Help for complete information on GenericNode.) Briefly, the positioning
attributes are:

When you use the Parent attribute to specify a parent for a new node, the new node
becomes the last child of the parent node. When you use a “sibling” attribute to
specify a sibling for a new node, the new node becomes a child of the sibling’s
parent. When you use a “child” attribute to specify a child for a new node, the new
node becomes the new parent of the node. The following figure illustrates these
relationships:

Attribute Description

Parent The immediate parent node for the current node. Before you can make
another node the parent of the current node, the future parent node’s
IsFolder attribute must be set to TRUE.

FirstChild The first child node in the set of immediate child nodes for the current
node.

LastChild The last child node in the set of immediate child nodes for the current
node.

NextSibling The next sibling in the set of siblings for the current node.

PrevSibling The previous sibling in the set of siblings for the current node.

Using Tree View Fields

Chapter 2 Using Complex Widgets 123

Figure 2-16 Nodes in a Node Hierarchy

➤ To create the node hierarchy

1. Create a local variable and assign to it a new object of the DisplayNode class or
subclass. This is your root node. The following code illustrates:

2. Set the IsFolder, IsFilled, and IsOpened attributes for the root node to TRUE.

-- Initialize a local DisplayNode variable, which we
-- will later assign to the mapped attribute
-- for the TreeView field. It is more
-- efficient to build up a local variable and
-- assign it to the mapped attribute, than to directly
-- build the nodes in the mapped attribute.
ourBirdTreeView : DisplayNode = new;

-- Always set the IsFolder, IsFilled, and IsOpened attributes
-- to TRUE in the root node. Always set them in this order.
-- This will become the root node of the TreeView.
ourBirdTreeView.IsFolder = TRUE;
ourBirdTreeView.IsFilled = TRUE;
ourBirdTreeView.IsOpened = TRUE;

ourBirdTreeView.DVNodeText = ’ROOT NAME’;

Root Node

Child
Node 1

Sibling
Node 2

Sibling
Node 1

Child
Node

Root node has NIL Parent attribute

These nodes
are children

of the root node

First Child Node

Last Child Node
(has a NIL child attribute)

Using Tree View Fields

124 iPlanet Unified Development Server • Programming Guide • August 2001

3. Write a loop to create the rest of the nodes. For each DisplayNode object you
create, use one of the positioning attributes to assign it to its place within the
hierarchy.

-- We add three levels to the ourBirdTreeView
-- DisplayNode. We load them with data from
-- the OrderList array, which is populated in
-- the Init method of this class. This is an
-- appropriate technique when you have small
-- amounts of data. An alternative technique,
-- if you have a lot of data to display, would
-- be to create the first level of the hierarchy
-- only, connect each node at this level to the data
-- in the next level down with DisplayNode’s Related
-- attribute, and build out the lower levels at
-- runtime. Note that when you use the alternate
-- technique, you should always set the IsFolder
-- attribute to TRUE, regardless of whether the node
-- has a child node. Doing so will allow the user to
-- click the control, generating an event which you can
-- handle to build the child node.

Node : DisplayNode;
ChildNode : DisplayNode;
GrandChildNode : DisplayNode;

for order in OrderList do
Node = new;
Node.DVNodeText = new;
Node.DVNodeText.SetValue(order.Name);
Node.IsFolder = FALSE;
Node.IsFilled = TRUE;
Node.IsOpened = TRUE;

-- Parent ’Order’ level node to the root node.
Node.Parent = ourBirdTreeView;

if order.FamilyList <> nil then
Node.IsFolder = TRUE;
for family in (order.FamilyList) do
ChildNode = new;
ChildNode.DVNodeText = new;
ChildNode.DVNodeText.SetValue(family.Name);
ChildNode.IsFolder = FALSE;
ChildNode.IsFilled = TRUE;
ChildNode.IsOpened = FALSE;

-- Parent the ’Family’ level node to the ’Order’ level node.
ChildNode.Parent = Node;

if family.GenusList <> nil then
ChildNode.IsFolder = TRUE;
for genus in family.GenusList do
GrandChildNode = new;

Using Tree View Fields

Chapter 2 Using Complex Widgets 125

4. When the node hierarchy is complete, assign the local variable for the root
node to the mapped attribute for the tree view field.

GrandChildNode.DVNodeText = genus.Name;
GrandChildNode.IsFolder = FALSE;
GrandChildNode.IsFilled = TRUE;
GrandChildNode.IsOpened = FALSE;

-- Parent 'Genus' level node to ‘Family' level node.
GrandChildNode.Parent = ChildNode;

-- If genus has species data associated with it, we will
-- display the species information in ListView field,
-- when a user clicks on that genus. For now, we use the
-- Related attribute to connect this node with its
-- species list. We will build the species display node
-- when it’s requested.
if genus.SpeciesList <> nil then
ourGenusInfo : GenusInfo = new;
ourGenusInfo.SpeciesList = genus.SpeciesList;
GrandChildNode.Related = ourGenusInfo;

end if;
end for;

end if;

end for;
end if;

end for;

-- Assign the local variable to the mapped attribute, now that the
-- structure is complete.
BirdTreeView = ourBirdTreeView;
-- It’s a good practice to do all this before the open.
self.Open();
...

Project: TreeList • Class: MainWindow • Method: Display

Using Tree View Fields

126 iPlanet Unified Development Server • Programming Guide • August 2001

127

Chapter 3

Creating a Portable User Interface

This chapter provides background information about the issues you need to
consider when creating a portable user interface, and how to use the portability
features that iPlanet UDS provides.

In this chapter, you will learn how to:

• use grid fields

• use field partnerships

• use widget sizing properties

For information on how to structure your user interface, see Chapter 1, “How to
Structure a Graphical User Interface.” For complete information on creating tab
folders, outline fields, list view fields, and tree view fields, see Chapter 2, “Using
Complex Widgets.”

Designing a Portable User Interface
All the windows you create using the Window and Menu Workshops will run on
any window system that iPlanet UDS supports. However, because of differences
between the window systems, the same window may look different from system to
system. When you design a user interface that will run on more than one window
system, you need to ensure that the interface will look good on all the window
systems. To do this, there are several issues you must consider.

The following sections provide information about the window system differences
you need to be aware of when designing your user interface and, when
appropriate, describes the features that iPlanet UDS provides to help you create a
portable user interface.

Designing a Portable User Interface

128 iPlanet Unified Development Server • Programming Guide • August 2001

Widget Differences
To provide a user interface that has the native look and feel of each window
system, iPlanet UDS always uses the widgets (also called controls) provided by the
native window toolkit. The advantage of this technique is that a widget always
looks the way the end user expects it to.

Tab Folders
If there are more tabs than can fit across the tab folder, iPlanet UDS provides a
horizontal scroll mechanism. On Windows NT 4.0/3.51, you can reset this property
to provide multi-row tabs. If you use multi-row tabs, they will default to scroll bars
on all other platforms.

List Views and Tree Views
List views and tree views are exceptions to the rule of using widgets from the
native window toolkit, because iPlanet UDS only uses native list view and tree
view widgets on Windows NT. On all other platforms, iPlanet UDS uses a custom
widget, the outline field. (Outline fields are defined by the OutlineField class; the
ListView and TreeView classes are subclasses of—and restricted versions of—the
OutlineField class.)

A complete discussion on the advantages and disadvantages of using tree or list
views versus outline fields is found in Chapter 2, “Using Complex Widgets.” To
summarize what to expect of list views on non-Windows platforms:

• look like outline fields, not the platform’s native list views, if any exist

• display only in the Detail style

No matter what style is specified for the list view in your application, iPlanet
UDS will use an outline field display that resembles the Detail style of a list
view.

• do not allow column resizing by the user

• do not allow column sorting by the user

• highlight whole rows, not separate columns

Additional information is available in Chapter 2, “Using Complex Widgets,” and
in the Display Library online Help in the sections describing the ListView,
TreeView, OutlineField, and DisplayNode classes.

Designing a Portable User Interface

Chapter 3 Creating a Portable User Interface 129

Fonts
For widgets that contain or display text, iPlanet UDS provides a choice between
system and portable fonts.

The system font is the default font that a window system uses to display text on
windows, including the menu bar, the fields, the data displayed by the fields, and
so on. Each window system uses a different system font.

By default, all widgets in an iPlanet UDS application use the current window
system’s system font. Using the system font for your widgets guarantees that the
application is consistent with the native window system. However, because the
system font is different on each window system, the size of the text will vary from
system to system. Font differences will affect alignment of widgets (especially
when you are using text graphics) and may create sizing problems for widgets with
labels. For example, if you create a push button with a text label that fits perfectly
on the button on one window system, it may not fit the same button size on
another system because the system font is larger on that system.

To ensure that data fields, text fields, and text edit fields always display the
required number of characters, you can set their size using the Size Policy
command. On the Size Policies properties dialog, set the field’s Height and Width
Policy properties to Natural to ensure that the field is always large enough to
display its content. Then, set the Visible Rows and Visible Columns properties to
the number of rows and columns that the field needs to display. This way, no
matter what the font is, the required number of characters will always be
displayed.

Note that for character fields that are in size partnerships or whose Width and/or
Height Policy properties are set to Parent, you can set the minimum number of
rows and columns needed for the character field. See “Resizing Fields Within a
Grid Field” on page 138 for information about setting a field’s minimum size.

To ensure that widgets stay aligned, you should use grid fields as described under
“Using Grid Fields” on page 137. To ensure that widgets that display text labels,
such as push buttons, are sized appropriately, use the Natural setting for Height
and Width Policy properties as described under “Field Size Policies” on page 136.

A portable font is a traditional typeface, such as Helvetica or Times Roman, that is
generally available on all the different window systems. When you use a portable
font, you select the type face, point size, and style. Using a portable font guarantees
that the type used in the application will look similar on all window systems.
However, because there are subtle variations between the same fonts on different

Designing a Portable User Interface

130 iPlanet Unified Development Server • Programming Guide • August 2001

window systems, using a portable font does not solve the alignment and sizing
problems described above. You should still use grid fields to ensure that widgets
stay aligned, you should still use size policies to ensure that the widget is sized
appropriately, and you should still set minimum sizes for character fields.

Image Resolution
The size of an image that is being displayed depends on two things: the number of
pixels in the image and the resolution of the monitor that is displaying the image.
The number of the pixels for a given image is fixed (unless you use iPlanet UDS
scaling options described in the table below). However, the resolution of a monitor
can vary from workstation to workstation. The lower the resolution of the monitor,
the larger the image will be. Even if all your end users are working with the same
window system, you may still need to take differences in monitor resolution into
account.

Image Size Policy for Picture Fields and Graphics
For picture fields and picture graphics, iPlanet UDS allows you to ensure that the
entire image is always displayed by scaling the image to fit the field. Or, you can
ensure that the field does not change size by clipping the image to fit into the field.

The image size policy settings are the following:

Typically, it is best to use the Natural setting for an image. This not only ensures
that the image looks better (it is not distorted), but it provides better performance.
The scaling required for the Field, Field Height, and Field Width settings requires
significant processing; therefore, you should use these settings only when
necessary.

Value Definition

Natural The image size never changes (the true image size is retained). If the field is
too small for the image, the image is cropped. If the field is larger than the
image, the setting of the ImageGravity attribute is used to position the image
within the field.

Field The image is scaled to fit into the field, possibly distorting the image.

Field
Height

The image height is scaled to fit the field height. The width will be adjusted to
preserve the aspect ratio.

Field
Width

The image width is scaled to fit the field width. The height will be adjusted to
preserve the aspect ratio.

Designing a Portable User Interface

Chapter 3 Creating a Portable User Interface 131

Picture Buttons and Palettes
iPlanet UDS does not provide scaling for picture buttons and palette lists because
these typically contain line art, which does not scale well. To ensure that images for
picture buttons and palette lists are the correct size, you can provide separate
images for each monitor type by creating the fields dynamically. You can use the
following attributes of task.part.WindowSystem (described in the Display Library
online Help) to get information about the current screen size and resolution:

Styles
Each window system has its own conventions for the placement of elements in
dialog boxes. iPlanet UDS provides two alternatives for dealing with this problem:

• dialog methods on the Window class provide portable dialog box formats,
which always use the conventions of the host window system

• the WindowSystem object, which allows you to make dynamic modifications
to a window based on the current window system

Dialog Methods
The dialog methods on the Window class provide five options for creating dialog
boxes in a portable format. The dialog box that you display using any of these
methods will automatically use the conventions of the host window system. The
dialog methods (described in the Display Library online Help) are:

Attribute Description

HeightInPixels A read-only attribute that shows the height of the screen of an
application’s client partition, in pixels.

HorzPixelsPerInch A read-only attribute that shows the number of pixels per inch on
the screen of an application’s client partition, horizontally.

VertPixelsPerInch A read-only attribute that shows the number of pixels per inch on
the screen of an application’s client partition, vertically.

WidthInPixels A read-only attribute that shows the width of the screen of an
application’s client partition, in pixels.

Method Description

FileOpenDialog Provides a dialog that prompts the end user to select a file to be
opened.

Designing a Portable User Interface

132 iPlanet Unified Development Server • Programming Guide • August 2001

When you need a special dialog that cannot be created with a dialog method, for
example, a property sheet, you may wish to customize the window for each
window system on which it will run. You can do this dynamically by using the
WindowSystem object for the partition. There are two ways to get the
WindowSystem object:

• within UserWindow subclass methods, use the following syntax:

self.Window.WindowSystem

• within any method, use the following syntax:

task.Part.OperatingEnvironment

See the Display Library online Help for a description of the UserWindow class.

Note that you must cast the OperatingEnvironment object to a WindowSystem
object to invoke WindowSystem methods on it or set its WindowSystem attributes.

Each window system also has different conventions for placing standard menus on
the menu bar and for labeling the commands on them. The iPlanet UDS Menu
Workshop provides two features to ensure that your menus are portable:
prefabricated submenus and prefabricated commands.

When you include a prefabricated submenu on your menu bar, iPlanet UDS
ensures that the appearance of the submenu (that is, its label and position on the
menu bar) is consistent with the standard for each window system on which your
application runs. For example, if you include the prefabricated Help submenu, it
will appear in the correct position on the menu bar.

FileSaveDialog Provides a dialog that prompts the end user to select the file name for
saving.

MessageDialog Provides a dialog that displays a message to the end user and waits
for him to close the dialog.

PrintDialog Provides a print setup dialog and a print job dialog.

QuestionDialog Provides a dialog that displays a question to the end user and waits
for his answer.

Method Description

Designing a Portable User Interface

Chapter 3 Creating a Portable User Interface 133

The three prefabricated submenus are:

When you include a prefabricated command on a menu, iPlanet UDS ensures that
the appearance of the command (that is, the text and shortcut key) and, in some
cases, its behavior is consistent with the standard for each window system on
which your application runs.

The prefabricated commands fall into four categories:

Submenu Description

File Uses the window system’s standard File menu title and position on the menu
bar.

Edit Uses the window system’s standard Edit menu title and position on the
menu bar.

Help Uses the window system’s standard Help menu title and position on the
menu bar.

Categories Description

Edit menu
commands

Cut, Copy, Paste, Delete, Undo, Redo, Find, Find Next, Replace,
Replace Next, and Select All commands that look and behave
according to your window system standards.

The automatic behavior for the Cut, Copy, Paste, Delete, and Select
All commands takes effect for subclasses of CharacterField (text field,
text edit field, data field, and fillin field). The automatic behavior for
the Undo and Redo commands take effect only for the text edit field.

Print commands A Print command that prints the current window and a Print Setup
or Page Setup command that opens a print setup dialog. These
commands are described in further detail below.

Help commands Help Contents and Help Search commands, which automatically
access the default Help file. A Help on Help command, which
automatically accesses the appropriate Windows Help screen. An
About command, which has no default behavior.

File menu
commands

Close and Exit commands for inclusion on a File menu. These
provide the window system standard name and shortcut key.
However, you must implement the behavior of the command.

Designing a Portable User Interface

134 iPlanet Unified Development Server • Programming Guide • August 2001

See the chapter on the Menu Workshop in A Guide to the iPlanet UDS Workshops for
information about using prefabricated submenus and commands.

Tools for Portable Displays
One result of the technique of using native widgets is that when you put a widget
on a window using one window system and then run the window on a second
window system, the widget will not only look different than it looked on the first
window system, but it will probably not be the same size as it was on the first
window system. Obviously, the size and shape differences between widgets will
affect the alignment and spacing on your forms. If you do not take the necessary
precautions, a form that looks well designed on one window system may end up
looking sloppy on another window system.

iPlanet UDS provides three features to help you solve this problem:

• grid fields

• width and height partnerships

• width and height policies

Grid Fields
Grid fields were designed specifically to enable you to align widgets on a form so
that the form is completely portable. When you place your widgets in a grid field,
the positioning of the widgets within the grid is relative, rather than fixed. For
example, you could specify that the widgets in the second column of the grid field
are all aligned on the left. Because the grid field ensures that the first column is
always wide enough to accommodate the widest widget in the column, the
widgets in the second column will always be aligned properly, no matter what
window system displays them.

You can also use grid fields to automatically resize the widgets they contain. You
do this by setting the width and height policies for widgets in the grid field to
Parent.

For complete information about using grid fields, see “Using Grid Fields” on
page 137.

Designing a Portable User Interface

Chapter 3 Creating a Portable User Interface 135

Field Size Partnerships
iPlanet UDS allows you to link any number of fields together in a height or width
partnership. When fields are in a size partnership, their height or width is
determined by the largest minimum height or width of the fields in the
partnership. A field partnership is useful, for example, for ensuring that a set of
related push buttons or data fields are always the same size. In the simple dialog
window shown in Figure 3-1 on page 138, the two buttons are in a width
partnership.

The Arrange > Fields into Height Partnership and Arrange > Fields into Width
Partnership commands in the Window Workshop allow you to select a group of
fields to include in a height or width partnership. The fields in the partnership can
be simple or compound, resizeable or fixed size.

If you include fixed-size widgets in a size partnership, the fixed-size field itself is
not resized, but its minimum size affects the resizeable widgets. For example, if a
radio list, which has a fixed size, is in a width partnership with a push button,
which is resizeable, the radio list will never be resized but the push button will be
sized in relation to the radio field. If all are fixed, the partnership is legal, but
meaningless. All compound fields are sizeable, and can be included in size
partnerships. See the section on creating simple widgets in A Guide to the iPlanet
UDS Workshops for a list of the sizeable and fixed-sized simple fields.

When you add a field to a height partnership, its Height Policy property is
automatically set to Size Partner. The height partnership is completely
independent of the width partnership. Likewise, when you add a field to a width
partnership, its Width Policy property is automatically set to Size Partner. The
width partnership is completely independent of the height partnership.

When two or more fields are in a size partnership, iPlanet UDS uses the height or
width of the field with the largest minimum height or width in the partnership to
determine the height or width for all the fields in the partnership. You specify the
minimum height or width by using the Size Policy command on the Widget menu.

The Minimum Height property specifies the absolute minimum height for the field.
Setting a minimum height for a field ensures that iPlanet UDS will never resize the
field below this minimum. Likewise, the Minimum Width property specifies the
absolute minimum width for the field. For text fields, text edit fields, and data
fields, you specify the minimum dimensions in rows and columns. For all other
resizeable fields, you specify the minimum dimensions in mils. See “Resizing
Fields Within a Grid Field” on page 138 for further information about minimum
height and width.

Designing a Portable User Interface

136 iPlanet Unified Development Server • Programming Guide • August 2001

Do not confuse the minimum height or width (which is usually 0 by default) of a
sizeable widget with its explicit height or width (which you set when you draw the
widget). At least one of the widgets in a size partnership must have a minimum
height or width of non-zero, or both will shrink to a value of 1 when you set them
into a size partnership.

The Window Workshop provides the following commands on the Arrange menu
for setting size partnerships:

Note that when the fields are contained by the grid field, you can often use the
Height and Width Policy settings for Parent to get the same effect as a size
partnership. See “Resizing Fields Within a Grid Field” on page 138 for information
about the Parent setting for Height and Width Policy properties.

Field Size Policies
The Height and Width Policy properties for fields provide a range of alternatives
for adjusting the field size, allowing you to control whether the field size is static,
whether iPlanet UDS adjusts the field size to accommodate its content, or whether
the field size is determined by the grid that contains it.

The Natural setting for a field’s Height and Width property is especially useful for
solving the problem of widget differences between various window systems.
When the Height or Width Policy of a field is set to Natural, iPlanet UDS
automatically adjusts the height or width of the field to accommodate the field’s
content. For example if the width of a push button is Natural, the button will
always be large enough to display its label.

For further information about Height and Width Policy properties, see “Resizing
Fields Within a Grid Field” on page 138.

Command Description

Fields Into Height Partnership All selected fields are grouped into a height
partnership.

Fields Into Width Partnership All selected fields are grouped into a width
partnership.

Remove Field From Height
Partnership

All selected fields are removed from the height
partnership.

Remove Field From Width
Partnership

All selected fields are removed from the width
partnership.

Designing a Portable User Interface

Chapter 3 Creating a Portable User Interface 137

Using Grid Fields
The grid field is the most important feature that the Window Workshop provides
to help you create portable user interfaces. The following sections provide
information on different aspects of using grid fields.

Nesting Grid Fields
To ensure portability, all the fields on your form should be contained by a grid
field. Typically, a portable window contains nested grid fields—subsections on the
form consist of grid fields that control the positioning of the individual fields
within them, and the form as a whole is contained by a grid field that controls the
positioning of its child grid fields.

Top-level Grid Field
A basic rule of thumb is that you should always have one grid field at the top level
of the form. In other words, the immediate child of the form should be a single grid
field. This ensures that all the fields within the grid field will maintain their
alignment with each other.

If your window is resizeable, it is a good idea to set the Height and Width Size
Policy settings for the top-level grid field to Parent. This ensures that when the
window is resized (and the form automatically resized with it), the grid field
contained by the window will automatically be resized to fit its parent. Naturally,
you must also set the size policies of the individual child fields within the grid field
to resize appropriately. See “Resizing Fields Within a Grid Field” on page 138 for
information.

Child Grid Fields
The grid fields nested within the top-level grid define relationships between the
fields they contain. Generally, you should group fields into a grid field if you want
them to maintain a visual relationship with each other, for example to stay aligned
on the right, even if their size changes due to font or widget differences on various
platforms.

A simple example is a dialog that contains two entry fields and two buttons. To
keep the two entry fields aligned with each other, you would group the two data
fields and their labels into one grid field. To keep the two buttons aligned with
each other, you would group the two buttons into a second grid field. Finally, you
would group the first and second grid fields into another grid field, the window’s
top-level grid field. Figure 3-1 illustrates nested grid fields:

Designing a Portable User Interface

138 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 3-1 Nested Grid Fields

Usually, the best way to arrange the grid fields is to start by creating the innermost
grid fields and finish by creating the top-level grid field. Turn on the View 7
Compound Field Lines toggle so you can see each grid field clearly outlined.

Aligning Labels with Data Fields
It is not necessary to align each label in Figure 3-1 with each data field separately.
Just create a grid field around all four elements and they will align themselves
horizontally and vertically. You can then change the justification of the labels (for
example, if you want them all justified right instead of left) by selecting each label
and using the Cell Gravity Tool to specify the alignment.

Resizing Fields Within a Grid Field
When you include a resizeable field in a grid field, you can specify that its size is
determined by the size of the grid field cell that contains it. This way, if the grid
field expands or shrinks, either because of window system differences or because
the end user explicitly resizes the grid, the fields within the grid field will expand
or shrink correspondingly.

The Size Policy command Widget lets you set the field’s Height and Width Policy
properties. The Parent setting for the Height and Width Policy properties specifies
that the height or width of the field is determined by the height or width of its
parent.

Grid field 1
Grid field 3

Grid field 2

Designing a Portable User Interface

Chapter 3 Creating a Portable User Interface 139

If the field is in a grid field, this setting uses the grid field cell size to determine the
field’s height or width. When the grid field cell changes size, the height or width of
the child field will automatically be resized to fit the cell. The Parent setting is
available for resizeable fields only; fixed-size fields cannot be resized by their grid
field cells.

An example of the use of the Parent setting for Height and Width Policy is a simple
editor window that contains a toolbar at the top, a text edit field in the center, and a
status line at the bottom. The following example illustrates the completed window:

Figure 3-2 Simple Text Editor Window

To build this example, first create the toolbar by grouping the two picture buttons
and text graphic into one grid field with a frame and setting default cell gravity to
Middle Left:

Figure 3-3 First Grid Field

Next, create the text edit field and status line (a data field) and group them with the
toolbar into the second grid field:

Toolbar = grid field of two picture buttons and a text graphic

Designing a Portable User Interface

140 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 3-4 Second Grid Field

Notice that the widths of the toolbar, text edit window, and status line are not
coordinated. Use one of the cells as the focus for width, so when it is resized, the
rest are resized accordingly. In this case, use the text edit field as focus. Set the
other widgets’ Width Policies to Parent. Figure 3-5 shows the result:

Figure 3-5 Width Policy Adjustment

Row and Column Alignment
The Row and Column Alignment properties for a grid field specify how extra
space is allocated between rows and columns in the grid field when the grid field is
enlarged. If the grid field Height and Width Policy properties are not set to
Natural, the grid field can be resized above its minimum. The two Alignment
properties specify how the extra space is allocated.

By default, iPlanet UDS justifies the rows and columns in the grid field, adding
extra space evenly to the left, right, and between the columns, and evenly above,
below, and between the rows. (Note the distribution of widgets in the toolbar in
Figure 3-5.) However, you can request that the space be allocated as follows.

Toolbar grouped with
text edit field and
data field (status line)

Text edit field as width parent
of toolbar and status line

Designing a Portable User Interface

Chapter 3 Creating a Portable User Interface 141

For the Column Alignment property, you have the following options:

For the Row Alignment property, you have the following options:

The justify weight for a grid field column or row is used to calculate the percentage
of extra space allocated to the particular column or row when the grid field that
contains the column or row is enlarged.

By default, the justify weight for all columns and rows is zero. When all columns or
rows have a zero justify weight, any extra horizontal space is distributed evenly
between the them. However, if you want certain columns or rows in the grid field
to get a larger percentage of the space, you can specify the distribution explicitly.

Value Description

Left All space is added to the right of the columns.

Right All space is added to the left of the columns.

Center Half the extra space is added to the left of the columns and half to the right.

Justify The default. Space is added between and around all columns, according to
column’s justify weight. If the justify weight is set to 0 for all the columns (the
default), the space added to the grid field is evenly distributed between all the
columns.

Value Description

Top All space is added below the rows.

Bottom All space is added above the rows.

Center Half the extra space is added above the rows and half below.

Justify The default. Space is added above, below, and between the rows, according to
justify weights set for the rows. If the justify weight is set to 0 for all of the rows
(the default), the space added to the grid field is evenly distributed between all
the rows.

Designing a Portable User Interface

142 iPlanet Unified Development Server • Programming Guide • August 2001

For example, as the width of the toolbar in Figure 3-5 was stretched to the size of its
parent (the text edit field), the spacing for its three widgets was distributed evenly,
which is not the most attractive display. To make the buttons stay adjacent to each
other flush left and the text graphic take up the rest of the width, set the Column
Weight property for the text graphic (Column 3) to non-zero, and leave the others
at 0. This gives the text graphic 100 percent of the extra space:

The result of this setting looks like this:

Also, in the grid field that includes the whole window, the text edit field is the only
field that needs to expand vertically when the grid field that contains it is enlarged.
To accomplish this, set the row weight property for the text edit field to non-zero,
and the two other fields to 0:

Text graphic column

Spacing problem solved by
weighting the text graphic column
over the others in the toolbar grid field

Designing a Portable User Interface

Chapter 3 Creating a Portable User Interface 143

The Size Policy dialog for the grid field lets you specify the justify weights for each
of the columns and rows in the grid field. You can use any numbers you like to
represent percentages. The weights are converted by adding them up and
calculating a percentage based on the total (normalization). If you do not set the
justify weight for all of the columns or rows, the columns or rows whose justify
weight you do not set keep the default justify weight of zero, and so get zero
percent of the extra space.

To ensure that a field whose size is controlled by its parent never gets too small,
you should specify its minimum height and width. Setting a minimum height for a
field ensures that iPlanet UDS will never resize the field below this minimum.
Setting minimum size also ensures that the grid field size will always be large
enough to display the entire field at its specified minimum height and width. The
grid field will never “clip” its children.

On the Size Properties dialog for the field, the Minimum Height property specifies
the absolute minimum height for the field. For character fields, you specify the
minimum height in rows and for all other fields in mils. Likewise, the Minimum
Width specifies the absolute minimum width for the field. For character fields, you
specify the minimum in characters and for all other fields in mils. Figure 3-6 shows
a possible minimum height and width for the example window.

Figure 3-6 Size Properties Dialog for the Parent Grid Field

Specifying the Window’s Border
If you test the example window as it appears in Figure 3-2 on page 139, you will see
more space around the window than you intended. This is because the border of
space around the window is determined by how much space exists in the upper
left corner of the space of the window in the Window Workshop, as shown in
Figure 3-7:

Height/width policy
in characters

Designing a Portable User Interface

144 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 3-7 Testing the Window in Figure 3-2

To set the border to be flush with the window, reduce the dimensions of the corner
space to zero. In other words, move the window to the upper left corner of the
Window Workshop window, as shown in Figure 3-8:

Figure 3-8 Adjusting the Border of a Window

W W

H

H

W

H

Test window

Window in the Window Workshop

Window in Window Workshop

Test window

Designing a Portable User Interface

Chapter 3 Creating a Portable User Interface 145

To move a grid field, position the cursor on the frame or background of the grid
field and drag it to the new position. However, some grid fields do not have a
background or frame, which is the case of the window in Figure 3-8. In this case,
create a small frame by adding margins to the grid field. You do this by adding
values to the Default Cell Margin fields in the grid field’s property sheet.

Using Column and Row Partnerships
All the columns in one grid field can be in a width partnership with all the columns
in another grid field. Likewise, all the rows in one grid field can be in a height
partnership with all the rows in another grid field. These work the same way as the
simple width and height partnerships described under “Field Size Partnerships”
on page 135.

Column and row partnerships are very useful when your form contains two grid
fields that are separated by other widgets. When one grid field is above another,
you can make their corresponding columns exactly the same width by joining the
two grid fields into column partnerships. (This is the type of relationship we use in
our array fields, with the column titles the same width as the body columns.) When
the grid fields are side by side, you can make their corresponding rows the same
height by joining the two grid fields into a row partnership.

It is important to realize that a column or row partnership only guarantees that the
sizes of the columns or rows are the same, not their physical alignment on the form.
To physically align them, you can nest both grid fields in a parent grid field. Or, for
column partnerships, align both grid fields to the same left margin, and for row
partnerships, align both grid fields to the same top margins.

The column and row partnership commands are:

Command Description

GridFields Into Row Partnership Links selected grid fields into a row partnership.

GridFields Into Column Partnership Links selected grid fields into a column
partnership.

Remove GridField From Row
Partnership

Removes selected grid field from a row
partnership with other grid fields.

Remove GridField From Column
Partnership

Removes selected grid field from a column
partnership with other grid fields.

Designing a Portable User Interface

146 iPlanet Unified Development Server • Programming Guide • August 2001

147

Chapter 4

Implementing Online Help

iPlanet UDS provides support for implementing an online help system, as well as
float-over and status-line help.

This chapter provides information about the following topics:

• creating float-over and status line help for fields

• creating status-line help for menu items

• building a context-sensitive online help system

• using pre-fabricated help commands

Overview
iPlanet UDS supports two kinds of online help:

• terse help text that is displayed in status lines and in float-over tips

• screens of text that users can access from within an iPlanet UDS application,
but are created and stored outside of the application

You create and store float-over and status-line help text within your iPlanet UDS
application. You can develop your online help source text using any of a wide
variety of third-party tools.

iPlanet UDS provides several features that support the development of online help.
Most of your online help requirements can be met using features built in to the
iPlanet UDS Workshops. However, iPlanet UDS also provides a programmatic
interface to the Windows Help API if you wish to use any of the special features
that Windows help provides, such as positioning the help window, or raising the
“Search” window.

Overview

148 iPlanet Unified Development Server • Programming Guide • August 2001

The following is a brief summary of iPlanet UDS’s support for implementing
online help:

• Widget > Help Text command in the Window Workshop

Allows you to assign a topic in the default help file to a field. iPlanet UDS
displays this help topic when the input focus is on the field and the end user
presses the Help key. See “Context-Sensitive Help” on page 149 for
information.

Also allows you to specify both float-over and status-line help for the field.
Float-over help is displayed alongside the field when the mouse pauses over
the field. Status-line help is displayed in the window’s status line when the
mouse pauses over the field.

• Window.StatusText attribute

Used in conjunction with a status-line widget, allows you to create status-line
help text when the cursor pauses over a widget or menu item.

• Prefabricated Help menu

The Menu Workshop provides three prefabricated commands for inclusion on
the Help menu: Help Contents, Help Search, and Help on Help. The Help
Contents and Help Search commands open the appropriate Help dialog, using
the default help file you have specified for the window, or if none exists for the
window, for the partition. The Help on Help command displays Windows
standard Help on Help window.

You can override the automatic behavior of the three iPlanet UDS Help
commands by providing your own TOOL code to handle the Activate events
on these commands.

iPlanet UDS also provides an About command, for which you can provide the
appropriate processing. See “Using the Prefabricated Help Commands” on
page 160 for information about implementing a Help menu for your window.

• Methods and events

The WinHelp method defined on the WindowSystem class provides an
interface to the Windows Help API. You can use this method to access any
Windows Help documents. See WinHelp method on Window class in the
Display Library online Help for further information.

The HelpRequest event defined on the Window class is posted when the end
user presses the Help key. You can provide any processing you wish in
response to this event. See HelpRequest event on Window class in the Display
Library online Help for further information.

Overview

Chapter 4 Implementing Online Help 149

Context-Sensitive Help
Context-sensitive help is a help screen of information relevant to the field that has
input focus when the user presses the Help key. You create context-sensitive help
by first developing a help file that contains a set of help topics. Each topic is
uniquely identified and associated with a piece of your application.

When the end user presses the Help key, iPlanet UDS checks the field that has the
input focus to see if a value was provided for its help topic (stored in its HelpTopic
attribute). If there is a help topic associated with the field that has the input focus,
iPlanet UDS displays the field’s help topic. If there is no help topic associated with
the field that has the input focus, iPlanet UDS checks the field’s parent, the parent’s
parent, and so on, all the way up the containment hierarchy to the window, until it
finds a help topic. If there is no help topic associated with the window, iPlanet UDS
displays the Contents page for the default help file.

Only certain fields can have the input focus—these fields differ between window
systems. For example, all window systems give the input focus to text fields.
However, only some window systems give the input focus to push buttons. If you
are creating context-sensitive help that uses input focus events, you need to be
aware of the differences between the window systems. See the Display Library
online Help for more information about input focus.

Default Help File
The default help file is any Windows help document in the appropriate format.
You can provide an individual help file for each window in your application or one
file for the application as a whole. When you are implementing context-sensitive
help, the help file should include a topic for each field that needs one and a topic ID
number, and, if desired, a key word associated with each topic.

DefaultHelpFile Attribute
You must specify the default help file for the window or partition in your TOOL
code. The DefaultHelpFile attribute of the Window object specifies the default help
file for an individual window, and the DefaultHelpFile attribute of the Partition
object provides the default help file for the application as a whole. See the Display
Library online Help for information about the DefaultHelpFile attribute. If there is
no default help file, context-sensitive help for the field will not be displayed.

Overview

150 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To specify the DefaultHelpFile attribute

1. Create a Windows Help document in the appropriate format.

2. Set the DefaultHelpFile attribute to the name of the help file.

Remember that you can set the DefaultHelpFile attribute for the Partition
object to specify a default help file for the entire application, or set the attribute
for each of the Window objects to specify a default help file for each window.

In the example that follows, the default help file is specified using portable
naming conventions, so that the file is portable across platforms. See the
Framework Library online Help for information about the SetLocalName
attribute.

Overview

Chapter 4 Implementing Online Help 151

➤ To provide context-sensitive help

1. Enter the Window Workshop.

2. Select the widget for which to provide help and choose the Widget > Help Text
command.

The Help Properties dialog appears:

3. Specify the topic ID number or help key word for the topic in the help file you
wish to display and click OK.

4. Repeat Step 2 and Step 3 for each widget that has an associated help topic.

Topic ID # or keyword

Overview

152 iPlanet Unified Development Server • Programming Guide • August 2001

The help topic you assign to a widget can either be the ID number of a help topic in
the default help file or, if you have set up key words for the help topics, a key word
that is associated with one or more topic ID numbers in the default help file. If you
specify a topic ID number, iPlanet UDS displays the help message associated with
the ID number. If you specify a key word, iPlanet UDS displays the help message
for the first topic ID associated with the key word. The following table shows the
syntax for both help topic assignments:

Float-Over Help
Float-over help is a help message that is displayed next to the field whenever the
mouse pauses over the field. To provide float-over help for the fields on your
window, you must ensure that float-over help is turned on for the window system,
and you must provide the float-over help text for the individual fields on the
window.

Enabling Float-Over Help
The IsFloatOverEnabled attribute of the WindowSystem class specifies whether or
not the float-over help for the window system is displayed. The default value of the
IsFloatOverEnabled attribute is determined by the
FORTE_ISFLOATOVERENABLED environment variable, whose default value is
TRUE. You should use the IsFloatOverEnabled attribute in your TOOL code to
ensure that float-over help is turned on when appropriate, and to give the end user
the option of turning it off and on. See the Display Library online Help for
information on the IsFloatOverEnabled attribute.

Help Topic Specification Description

#topic_ID A pound sign followed by a topic ID number specifies the
identification number of a help topic in the default help file.

string A string specifies a previously defined help key word that is
associated with a topic ID number in the default help file. If the
key word is associated with more than one help topic ID,
iPlanet UDS uses the first topic.

Overview

Chapter 4 Implementing Online Help 153

Providing Float-Over Help Text
The float-over text for an individual widget is stored in the FloatOverText attribute
defined on the FieldWidget class. See the Display Library online Help for
information. You enter the actual help text in the Window Workshop using the
Widget > Help Text command.

➤ To provide float-over help for a field

1. Enable float-over help in your TOOL code by using the
WindowSystem.IsFloatOverEnabled attribute and setting its value to TRUE.

The default value is derived from the FORTE_ISFLOATOVERENABLED
environment variable, whose default value is TRUE.

2. In the Window Workshop, select the widget you wish to provide float-over
help for and choose the Widget > Help Text command.

The Help Properties dialog appears.

3. Enter the float-over help message in the Float-Over Text field.

4. Repeat steps 2 and 3 for each widget that will use float-over help.

Overview

154 iPlanet Unified Development Server • Programming Guide • August 2001

Float-Over Help for Palette Lists
To provide float-over help for individual regions (or icons) in a palette, you must
use the Float-Over Text property on the palette’s Properties dialog for each list item
in the palette list. See A Guide to the iPlanet UDS Workshops for information about
creating palette lists.

➤ To provide float-over help for a palette list

1. Create your palette list field.

2. Double-click on the palette list, or select the palette list and choose the Widget
> Properties command.

The PaletteList Properties dialog appears.

3. Enter the float-over help text for each item in the Float-Over Text array field.

4. Click OK.

When you pause the cursor over a list element, the corresponding text you entered
in the Float-Over Text field is displayed.

Overview

Chapter 4 Implementing Online Help 155

Suppressing Float-Over Help Text
If you wish to disable the float-over help text for the individual list elements, you
can do so using the ShowRegionFloatOver attribute on the PaletteList class. By
default, this property is set to on. You may want to set this property to off if you are
using the Float-Over Help property of the palette list for your own use and do not
want to display the text to the end user.

See the Display Library online Help for information about the
PaletteList.ShowRegionFloatOver attribute.

Status-Line Help
Status-line help is help text that is displayed in the window’s status line when the
mouse pauses over the field.

To provide status-line help for a window, you must do the following:

• use a data field widget to add a status line to the window and map this field to
a TextData attribute in the widget’s Properties dialog

• map the TextData attribute associated with the status line field to the
StatusText attribute of the Window object

• provide the status-line help text for individual fields by using the Help Text
command on the Widget menu

Once you have set up your status line field, each time a user moves the mouse onto
a new field, iPlanet UDS automatically sets the value of the
WindowSystem.StatusText attribute to the status-line help text value that was
specified for the current field. The window is automatically refreshed, and the new
value of the StatusText attribute is displayed in the window’s status line field. If the
Window.StatusText attribute is NIL, there will be no status-line help for the
window. See the Display Library online Help for information about the StatusText
attribute on the WindowSystem class. See A Guide to the iPlanet UDS Workshops for
information about creating a status line field.

Overview

156 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To create a status line widget

1. Create a data field widget on window where you wish to display status-line
help.

2. Double-click the data field, or select the data field and choose the Widget >
Properties command.

The DataField Properties dialog appears

data field
widget

Overview

Chapter 4 Implementing Online Help 157

3. Map the data field widget to a TextData attribute.

4. In your code, set the value of Window.StatusText to the TextData attribute that
is mapped to your data field.

map to TextData

Overview

158 iPlanet Unified Development Server • Programming Guide • August 2001

5. In the Window Workshop, for each field that needs status-line help, select the
widget and choose the Widget > Help Text command. In the Status-Line Text
field on the Help Properties dialog, enter the status-line help message.

Note that the status-line text for an individual widget is stored with its float-over
help in the FloatOverText attribute defined on the FieldWidget class. See the
Display Library online Help for information.

Status-Line Help for Palette Lists
To provide status-line help for individual regions (or icons) in the palette, you
must use the Status Line property on the Palette List’s properties dialog for each
picture graphic or picture button in the palette.

➤ To create status-line help for palette lists

1. Create a status line widget on your window and map it to the StatusText
attribute of the Window object, as described in “Status-Line Help” on page 155.

2. In the Window Workshop, create a palette list.

See A Guide to the iPlanet UDS Workshops for information about creating palette
lists.

Overview

Chapter 4 Implementing Online Help 159

3. Double-click on the palette list, or select the palette list and choose the Widget
> Properties command.

The PaletteList Properties dialog appears.

4. Enter status-line text for each list item and then click OK.

Status-Line Help for Menu Widgets
You can provide status-line help for individual menu items that is displayed on the
Windows and Motif window systems. On all other platforms, the status text
associated with a menu item is ignored. Status-line help for a menu item is
displayed when the mouse pauses over the menu item and status-line help for the
window is turned on.

➤ To provide status-line help

1. Create a status line widget on your window and map it to the StatusText
attribute of the Window object, as described in “Status-Line Help” on page 155.

2. In the Menu Workshop, create the menu for your window.

For information about creating menus, see A Guide to the iPlanet UDS
Workshops.

Using the Prefabricated Help Commands

160 iPlanet Unified Development Server • Programming Guide • August 2001

3. Select a menu command for which you wish to provide status-line text and
choose Item > Status Text.

The Status Text dialog appears.

4. Enter the status-line text in the Status Line Text field and click OK.

5. Repeat steps 3 and 4 for each menu command.

Each time the mouse moves onto a menu item, iPlanet UDS automatically sets the
value of the WindowSystem.StatusText attribute to the status text value you
specified for the menu item with the Item > Status Text command in the Menu
Workshop. The window is automatically refreshed, and the new value of the
StatusText attribute is displayed in your window’s status line field.

If Window.StatusText is NIL, there is no status line help displayed for the window.

Using the Prefabricated Help Commands
The Menu Workshop provides a prefabricated Help menu and four prefabricated
Help commands. iPlanet UDS uses the title and position on the menu bar that is
customary on each particular window system, so using the prefabricated Help
menu ensures that your Help menu is portable.

The iPlanet UDS Help commands that you can include on the Help menu are the
following:

Help Command Description

Help Contents Displays the Help Contents window of the default help file.

Help Search Displays the Help Search window of the default help file.

Using the Prefabricated Help Commands

Chapter 4 Implementing Online Help 161

The iPlanet UDS prefabricated Help menu commands get their help topics from the
default help file. Therefore, you should be sure to include the information needed
for both the Help commands and for context-sensitive help in your Help
document.

Of course, if you wish to provide your own help facilities, you can override the
default behavior of any of these commands by registering for their Activate events.
When you explicitly handle the Activate event on the Help Contents, Help Search,
and Help on Help commands, iPlanet UDS’s automatic help facilities are ignored.
If you wish to interact directly with Windows Help, you can use the iPlanet UDS
WinHelp method defined on the WindowSystem class. See the Display Library
online Help for information.

➤ To include a Help menu on a window

1. Create one Windows Help document for the application, or one for each
window in the application.

The Help document should include the information needed by the Help
Contents and Help Search commands.

2. Add the Help submenu to the menu bar for each window where you wish to
provide help.

iPlanet UDS positions the Help menu in the appropriate place for the window
system, and provides the correct title.

3. Add the Help Contents, Help Search, and Help on Help prefabricated
commands to the Help menu.

You can also include the About command, but must take extra steps after
doing so (described under “Implementing the About Command” on page 162).

4. Set the DefaultHelpFile attribute for the Partition or for each of the Window
objects to the help file you wish to use.

Help on Help Displays the standard Help on Help window provided by Windows.

About Provides an About command in the appropriate location. You must
register for the AboutMenuActivate event and provide processing to
display the appropriate window.

Help Command Description

Using the Prefabricated Help Commands

162 iPlanet Unified Development Server • Programming Guide • August 2001

Default Help File
To use the Help Contents and Help Search commands, you must provide a default
help file, either for the application as a whole or for each of the individual windows
in the application that include the Help commands. (The Help on Help command
uses the appropriate help screen that Windows provides.) See “Default Help File”
on page 149 and “DefaultHelpFile Attribute” on page 149.

If there is no default help file, the Help Contents and Help Search commands
cannot provide access to Help.

Implementing the About Command
iPlanet UDS provides a prefabricated About command. Most applications use an
About command to display information that describes the application. iPlanet UDS
does not provide automatic behavior for the About command, but if you use the
command on your Help menu, iPlanet UDS ensures that it will be portable across
platforms.

To allow you to implement the behavior of the About command, iPlanet UDS
provides a special AboutMenuActivate event, which allows your application to
detect when the end user chooses the About command. You must register for the
AboutMenuActivate event and provide processing to open the appropriate
window.

The label for the About command consists of two parts: the word “About” and the
title of your application. You specify the application title by using the AppTitle
attribute on the Partition object.

➤ To use the About command

1. Include the About command on the Help menu.

2. Set the AppTitle attribute on the Partition object to the application title you
wish to have displayed in the About command menu item.

3. Create an About window for the application.

4. Register for the AboutMenuActivate event on the About menu item and
provide processing to display the About window you created in the previous
step.

163

Chapter 5

Testing the User Interface

This chapter provides information about testing iPlanet UDS applications that are
in development. It describes how to use the following utilities to test an
application’s user interface:

• the TestClient utility, which allows you to start one or more clients to simulate
client activity

• the AutoTester project, which allows you to capture user input from a test
session that you can replay while capturing state information

The AutoTester project is included on the iPlanet UDS installation media and is
described in Appendix A on page 629.

Using the TestClient Utility
The iPlanet UDS TestClient utility allows you to test a shared service object by
running the application on multiple clients. The TestClient utility enables a client
node to participate in the testing of a distributed application that is currently being
tested from a Partition Workshop. After you start the TestClient utility on a client
node in the environment, you can select any application currently being
partitioned in the environment to test.

The TestClient utility can test only one application at a time. However, you can
start the TestClient utility multiple times on a client to test different applications
simultaneously.

Using the TestClient Utility

164 iPlanet Unified Development Server • Programming Guide • August 2001

Starting the TestClient Utility
To start the TestClient utility, use the tclient command or the tclient icon on
Windows. Use the tclient command flags to identify the node name or model node
name, the space to use for the memory manager, and any logger flags.

Portable Syntax
tclient [-fnd node_name] [-fmn model_node_name] [-fm memory_flags] [-fst integer]

[-fl logger_flags] [-fns name_server_address] [-fterm] [-fcons]

OpenVMS Syntax
VFORTE TCLIENT

[/NODE=node_name]
[/MODEL_NODE=]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/NAMESERVER=name_server_address]
[/FTERM]
[/FCONS]

Flag Description

-fnd node_name
/NODE=node_name

Specifies the node name to use for the session. If you do not
specify one, the default depends on the operating system. On
Windows and Mac, the default is set by the
FORTE_NODENAME environment variable. On all other
platforms, the actual node name is used.

-fmn model _node_ name
/MODEL_NODE=model_node_name

Specifies the model node name to use for the session. If you do
not specify one, iPlanet UDS uses the value of the
FORTE_MODELNODE environment variable. If the
environment variable is not set, the node is not treated as a
model node.

-fm memory _flags
/MEMORY=memory_flags

Specifies the space to use for the memory manager.

-fst integer
/STACK=integer

Specifies the thread stack size in bytes for iPlanet UDS and
POSIX threads. This specification overrides default stack size
allocation. For more information, refer to the iPlanet UDS System
Management Guide.

Using the TestClient Utility

Chapter 5 Testing the User Interface 165

When you start TestClient, the TestClient Window appears.

The TestClient Window
The TestClient Window displays a list of the applications currently being
partitioned by developers in the Partition Workshop. This list is automatically
updated every 5 seconds. You can change the refresh interval using the Options
dialog (see “Setting TestClient Options” on page 166).

Figure 5-1 illustrates the TestClient Window.

Figure 5-1 TestClient Window

-fl logger_flags
/LOGGER=logger_flags

Specifies the logger flags to use for the session.

-fns name_server_address
/NAMESERVER=name_server_address

Specifies the name server to use for the session.

-fterm
/FTERM

(Clients only) Specifies that the client session run as always
attached to the terminal so that it always responds to terminal
commands such as Control-c.

-fcons
/FCONS

Displays the trace window. By default, the trace window is
iconized on Windows. Use this flag to display the trace window
on startup.

Flag Description

Using the TestClient Utility

166 iPlanet Unified Development Server • Programming Guide • August 2001

Setting TestClient Options
In the TestClient Window, the list of applications being partitioned is automatically
refreshed every 5 seconds. If you wish to change the refresh interval, click the
Options… button. In the Client Test Options dialog, enter the interval in the
Refresh Interval field. The refresh interval can be any positive integer representing
a number of seconds.

Leaving the TestClient Utility
When you finish testing the application, you can exit the TestClient utility by
clicking the Quit button in the TestClient window. However, as long as you are
testing an application, the application blocks the TestClient window. So you must
first click the Cancel button in the Wait dialog to end the test for the client; then you
can then exit the TestClient utility.

Testing the Client
The TestClient window displays a list of all the applications currently being
partitioned in Partition Workshop in the current environment. The client that is
running the TestClient utility can participate in testing any of these applications.

To test the application from the client, you select the application you wish to test.
You then click the Wait For… button to notify the Partition Workshop that you are
ready to participate in the test.

➤ To test an application

1. In the TestClient window, select the application you wish to test.

2. Click the Wait For… button.

The Wait dialog opens, which provides the Cancel button for cancelling the
test if necessary.

3. When the developer uses the Run command for the selected application from
the Partition Workshop, the client partition for the application will start up on
your client.

4. Test the application from the client until the application exits or until the
developer running the Partition Workshop uses the Stop Remote Partitions…
command, which shuts down TestClient and the Wait dialog.

Using the AutoTester Project

Chapter 5 Testing the User Interface 167

While the distributed application is running, the user interface displays on your
client. You can exit the test at any time by clicking the Cancel button on the Wait
dialog.

As long as the application continues to run on the client, you can interact with it to
simulate end user activity. When the test is over, TestClient is still running and you
can participate in another test if you wish.

Using the AutoTester Project
The iPlanet UDS AutoTester project helps automate the testing of iPlanet UDS GUI
applications. The AutoTester project allows you to capture user input, replay
captured input, and dump state information on widgets. You can capture output
from selected runs of the test project as “canonical” output—that is, output against
which you can compare the results of subsequent runs. For example, you can
dump a particular widget’s state after several actions to verify that its current value
is what you expect, based on the canonical output.

The AutoTester project is provided with the iPlanet UDS example programs, in
.pex file format. You can modify the AutoTester project for your specific testing
needs. For more information on installing AutoTester, see Appendix A, “iPlanet
UDS Example Applications” on page 629.

Also see the Capture and Playback classes in the Display Library online Help for
more information about methods and attributes used in AutoTester.

The remainder of this chapter describes how to create a suite of tests for an iPlanet
UDS application using the AutoTester project. It describes how to prepare for the
process, capture input, replay captured input, analyze the results, and create
automated regression test suites.

Capturing Input in an Input Capture Class
The AutoTester project is used to capture (save) input from one or more test runs of
an application in development. These test runs can then be replayed and used for
comparison, on different platforms, and with optional state information.

AutoTester captures and replays input as TOOL code. Specifically, the input
capture process records every action taken by a user during one unique test,
expressed as one or more method invocations against the iPlanet UDS Display
system.

Using the AutoTester Project

168 iPlanet Unified Development Server • Programming Guide • August 2001

The actual output of the input capture process is an input capture class, which is
exported as a class (.cex) file. Each input capture class contains two methods that
you see when you later import the file:

• the InputDriver method, which contains all the user actions on the Display
system

• the Runit method, which replays those actions against the test target
application

This .cex file is suitable for direct inclusion into a test driver application.

Because AutoTester expresses all captured information in mils relative to a
FieldWidget object, the captured input is portable and can be used on different
platforms. You can add code to verify the application’s state at key points. A test
can directly access the application itself during playback; thus you can check
internal features for correctness at the appropriate points.

iPlanet UDS creates Session ID strings to uniquely identify a field at runtime.
During input capture, every window is assigned a unique sequence number at
open time. Similarly, at playback time, a unique sequence number is assigned to
each window as it is reopened in the same sequence. Inside each window, every
field can be uniquely identified by its heritage in the containment hierarchy. For
example, a field might be the seventh child of the third child of the fourth window.
A name is added, if the field has one:

"CancelButton{4:1.3.7}Cancel"

When the input capture class is written, all fields are identified by a Session ID
instead of an actual object address, because there is no way to remember that
address until playback time.

At playback, the field name component of the Session ID is used to identify the
field, if possible. The numeric part of the Session ID is used only if the field name is
not adequate to uniquely identify the field.

Using the AutoTester Project

Chapter 5 Testing the User Interface 169

Setting Up for Input Capture
To create a test for an iPlanet UDS application, you need the following projects:

To illustrate how to use AutoTester, we will use the iPlanet UDS example program
PencilPlay as the target test project.

➤ To set up for input capture

1. Start up iPlanet UDS.

2. Make sure your workspace contains the AutoTester project and the iPlanet
UDS example program PencilPlay.

If one or both of these projects is not in your workspace, you can import them
from the iPlanet UDS example program directory. Select > Plan/Import… and
choose autotest.pex and/or pencil.pex from the directory named
$FORTE_ROOT/install/examples/display.

3. Create a project named PencilPlayTester, by selecting the Plan > New Project
command.

In the Project Properties dialog, turn off the Database toggle (leave the Display
toggle on).

4. In the PencilPlayTester project, include PencilPlay and AutoTester as supplier
projects, by selecting the File > Supplier Plans… command.

5. Copy the MyDriver class from the AutoTester project into the PencilPlayTester
project.

The easiest way to do this is to open both the PencilPlayTester and AutoTester
Project Workshops, then drag and drop the MyDriver class from AutoTester to
PencilPlayTester.

Project Description

Target test project This is the project you wish to test.

AutoTester project This project is the engine of the test suite creation process.
AutoTester is provided with the iPlanet UDS example programs.

TestDriver project The TestDriver project drives the target test project in capture and
playback mode. You create this project and include the other two
projects as supplier plans (the target test project and the
AutoTester project).

Using the AutoTester Project

170 iPlanet Unified Development Server • Programming Guide • August 2001

6. Select the File > Start Class Method command, and set the start class of the
PencilPlayTester to MyDriver. Then set the starting method to Runit.

7. Open the MyDriver class and edit the RunApp method to look like the
following (you must uncomment the last two lines):

8. Compile and save the PencilPlayTester project.

Now you can run PencilPlay and capture input.

Capturing Input
To run your application in input capture mode, you run the TestDriver project.

To test the PencilPlay project and capture input, you run the PencilPlayTester
project. The following window appears:

Figure 5-2 AutoTester Control Panel

This window allows you to select Capture or Replay modes.

If you click on the Capture button, the Capture Window appears:

-- Create an instance of the Target App’s starting class
-- and invoke its starting method.
--
-- a : TestProjectName.StartingClass = new;
-- a.StartingMethod();
--
a : PencilPlay.Window1 = new;
a.Display();

Using the AutoTester Project

Chapter 5 Testing the User Interface 171

Figure 5-3 Capture Window

This window allows you to specify the name and location of the .cex file for the
input capture class. This window has the following fields:

➤ To capture input

1. In the Capture Window, click on the Run button to start input capture.

The target test project (PencilPlay) application starts.

2. Simulate activity in the target test project.

In the PencilPlay application, create some geometric forms, move them
around, and delete them. Your input is recorded in the designated “.cex” file.

Field Description

Test Class Name Specifies the name of the class to hold the test run you are about to
create. When you first enter the Capture Window, this field is set
to its default value: Test 1. You can change the value for this field
to any value from 1 to 99.

CEX File Name Specifies the name of the .cex file to contain the new test class. The
test class will be exported to the .cex file automatically. When you
first enter the Capture Window, this field is set to test1.cex.

Directories Designates the directory to hold the exported .cex file. This field
defaults to the current directory. You can change the value for this
field directly or you can click on the Directories button to choose
from available directories.

Using the AutoTester Project

172 iPlanet Unified Development Server • Programming Guide • August 2001

3. Exit PencilPlay by closing the window.

You return to the Capture Window. You can run another test or quit.

To run another test, create a new input capture class file and repeat these steps.
If you click on the Next button, both the Test Class Name value and
corresponding CEX File Name value increment by 1. Or, you can enter any
value between 1 and 99 in the Test Class Name field, and the CEX File Name
field value changes accordingly.

4. Quit the Capture Window.

Dumping State Information
You can dump state information and perform other runtime validations using
AutoTester.

During input capture, you can use special key sequences to insert code into the
input capture class file (.cex file). The code invokes the DumpState method,
described below. Then, during playback, the DumpState method invokes the
DumpWidget method, which writes state information for the current widget to the
dump file (.out file). Thus, you can obtain state information of varying types
during each playback of captured input.

The following table shows the key sequences to use on each client platform:

For example, pressing Ctrl-Shift-5 on a PC might insert the following line in a .cex
file:

Client Window System Key Sequence

Windows Ctrl-Shift-0 to Ctrl-Shift-9

Motif Ctrl-0 to Ctrl-9

self.Dumpstate(type=5, mouseOver=’{1:1.1.2.3}’,
windowSystem = ws);

Using the AutoTester Project

Chapter 5 Testing the User Interface 173

The DumpState method is not defined for a predefined iPlanet UDS class. Instead,
the class GenericDriver in the AutoTester project defines a sample DumpState
method, with the following parameters:

The type parameter indicates which key sequence was used.

The mouseOver parameter encodes the SessionID of the field the mouse was
floating over at the time the key sequence was used.

The windowSystem parameter specifies the window system on which to play back
the task.

The DumpState method as defined by the GenericDriver class follows:

You can also write your own DumpState methods for other custom validation
purposes.

pb : Playback = ws.Playback;
pb.PlaybackTask = task;

case Type is
when 0 do
pb.DumpWidget(mouseOver, TW_STATE);

when 1 do
task.part.logmgr.put(’CTRL-1 not implemented’);

when 2 do
pb.DumpWidget(mouseOver, TW_GEOMETRY);

when 3 do
pb.DumpWidget(mouseOver, TW_VISUALS);

when 4 do
pb.DumpWidget(mouseOver, TW_VALUE);

when 5 do
pb.DumpWidget(mouseOver, TW_TEXT_VISUALS);

when 6 do
pb.DumpWidget(mouseOver, TW_ALL);

when 7 do
task.part.logmgr.put(’CTRL-7 not implemented’);

when 8 do
task.part.logmgr.put(’CTRL-8 not implemented’);

when 9 do
task.part.logmgr.put(’CTRL-9 not implemented’);

end case;

Using the AutoTester Project

174 iPlanet Unified Development Server • Programming Guide • August 2001

This DumpState method calls the DumpWidget method defined on the Playback
class in the Display library. The DumpWidget method takes two parameters:
widget and outputMask. Depending on which outputMask is passed,
DumpWidget provides the following diagnostic data on the widget and all its
descendants:

TW_VALUE and TW_STATE are both good choices for producing canonical
output that will be valid across multiple platforms. Use the special key sequences
ending in 0 and 4 to get AutoTester’s Dumpstate method to call DumpWidget with
the TW_STATE and TW_VALUE masks.

Making Portable File References
If you want to make portable references to external files when you capture and
playback input, you can set the FORTE_AUTOTESTER_ROOT environment
variable. Note that when you use the FileSaveDialog or FileOpenDialog methods
on the Window class, the captured file names are relative to the path specified by
FORTE_AUTOTESTER_ROOT, if possible.

When you do not set FORTE_AUTOTESTER_ROOT, the capture and playback
mechanisms assume the file names set in FileSaveDialog and FileOpenDialog are
in a local, fully qualified form. It is unlikely that these names will be portable across
platforms.

Value for outputMask Definition

TW_STATE State information.

TW_GEOMETRY Information on size and position.

TW_VISUALS Information on visual attributes (for example, color).

TW_VALUE The widget’s current value, if any.

TW_TEXT_VISUALS Visual Text attributes (for example, PushButton label).

TW_ALL All the above information.

Using the AutoTester Project

Chapter 5 Testing the User Interface 175

However, if you set FORTE_AUTOTESTER_ROOT during capture, the file names
are captured in a portable form. You must set FORTE_AUTOTESTER_ROOT to a
portable description of a directory. For example:

setenv FORTE_AUTOTESTER_ROOT /forte1/d/test/stuff

When you run in capture mode, you could select the following file from either of
the file selection dialogs:

/forte1/d/test/stuff/pictures/logo.bmp

This file will be captured as the following portable file name:

%{FORTE_AUTOTESTER_ROOT}/pictures/logo.bmp

At playback time, this file name is rendered relative to the current setting of
FORTE_AUTOTESTER_ROOT. This allows you to build tests that refer to external
files that are portable across platforms and file systems.

In capture mode, if you select a file outside the path defined by
FORTE_AUTOTESTER_ROOT, it is recorded with its local, literal name. The
following file is an example:

/forte1/d/another.bmp

Playing Back Captured Input
Before you can run in playback mode, you must take the following preparation
steps.

➤ To prepare for playback

1. Import the input capture class (.cex) files that were created during input
capture.

2. In the Project Workshop, open the PencilPlayTester project.

3. Select the component > Import Class command. The .cex files are in the
directory you designated in the Capture Window.

4. Select the .cex files you wish to import; note that they will overwrite existing
classes with the same name (test1 and so on).

Using the AutoTester Project

176 iPlanet Unified Development Server • Programming Guide • August 2001

5. Modify the LoadTestClassArray method in the MyDriver class of the
PencilPlayTester project.

This method assigns the classes for tests 1 through 99 to rows in the
TestClassArray array, but every line is commented out. Remove the comment
characters on all the lines that correspond to class files you just imported. Note
that you must always add tests to this array sequentially and starting with 1.
This will enable the replay mechanism to allocate instances of each test that
you want to run.

6. Compile and save the project.

Now you can play back one or more of the selected test runs.

➤ To play back the PencilPlay tests

1. Run the PencilPlayTester project. The AutoTester Control Panel window
appears.

TestClassArray = new;

-- TestClassArray[1] = Test1;
-- TestClassArray[2] = Test2;
-- TestClassArray[3] = Test3;
-- TestClassArray[4] = Test4;
-- TestClassArray[5] = Test5;
...
-- TestClassArray[98] = Test98;
-- TestClassArray[99] = Test99;

Using the AutoTester Project

Chapter 5 Testing the User Interface 177

2. Choose the Replay button. The Replay Window, used to replay the captured
input, displays as follows:

The Delay field allows you to override the setting for the environment variable
FORTE_AUTOTESTER_DELAY. (See below for more information on this
variable.)

3. Click the Run or Run All buttons to play back the tests.

You can replay one test case, a group of tests (the scroll list allows multiple
selections), or all the test cases in the TestDriver project.

Playback generates a dump file called test#.out for each test case. Set the
Directories field to the directory where you want these files to go. The dump
files contain descriptions of user actions and dump state information.

Using the AutoTester Project

178 iPlanet Unified Development Server • Programming Guide • August 2001

Analyzing the Results
Validate the test results by comparing the dump (.out) files. You can use the dump
file from any run of the PencilPlayTester project as canonical output. You can
rename the canonical files (from test1.out to test1.ref, for example). You can
compare the results of subsequent runs of the same test to the original output,
using standard “diff” utilities for your operating system.

For each application, there may be key points in the test where you want to invoke
the DumpState method to dump information about the current widget or perform
other runtime validation. There may also be certain fields for which you want to
avoid dumping state information, such as fields displaying current date or time
data.

If you are testing on multiple platforms, use the key sequences that cause
DumpState to pass the DumpWidget method its outputMask parameter as
TW_VALUE and TW_STATE to produce the most portable dump state
information.

Using the AutoTester Project

Chapter 5 Testing the User Interface 179

Automating Regression Tests
You can write scripts to run several GUI application tests with the push of a single
button. The format of the .cex file makes this possible. Each .cex file contains two
methods. The InputDriver method contains all the user actions on the display
system. The Runit method replays those actions against the target application.

The inclusion of the Runit method in the .cex file allows you to run the .cex file
using Fscript. First, you must create a tester project, following the steps described
under “Setting Up for Input Capture” on page 169.

You can define the environment variable FORTE_AUTOTESTER_DELAY to set the
PlaybackDelay attribute to the value of your choice. By default this value is 1000
milliseconds. If you set it to 0, the tests will run too quickly to be seen, but it is a
good choice for batch mode runs.

You must specify the input and output files. You can use the following commands
as a template for the file you input to Fscript:

The results of the test are written to the dump file you specify for Fscript. Use your
local operating system tools to compare the results from this run to the canonical
output.

See the Fscript Reference Manual for information about using Fscript.

UsePortable
CommentOn
Open
YourTesterProject is set up like the PencilPlayTester project
FindPlan YourTesterProject
Compile %{YOUR_VAR}/your_path/test1.cex
SetProjStart Test1 Runit
Run
Quit

Using the AutoTester Project

180 iPlanet Unified Development Server • Programming Guide • August 2001

Creating Your Own Test Utility
If you have special testing needs that are not covered by the AutoTester project,
you can create your own automated testing facility using iPlanet UDS Display
Library classes. In particular, see the Capture and Playback classes in the Display
Library online Help. Also see the TraceWidget method in the Widget class, and the
Capture, Playback, and PlaybackDelay attributes in the WindowSystem class.
Review the AutoTester project for a better understanding of how you can
customize and use these features.

181

Chapter 6

Using iPlanet UDS Logging Tools

This chapter describes iPlanet UDS logging tools and how you use them. Logging
information from other iPlanet UDS manuals is summarized here and provided
with new examples and example scenarios.

This chapter includes the following information:

• how to categorize logging functions with iPlanet UDS log filters

• how to use LogMgr methods

• how to turn on logging

• how to find the logged output

For complete information on the primary mechanism for iPlanet UDS logging—the
LogMgr class—see the Framework Library online Help. System administrative
tasks that use logging are more fully explained in the iPlanet UDS System
Management Guide.

About iPlanet UDS Logging
The most basic purpose of logging is to send output to a device. This simple
function provides a window with which you can view information about an
application while it is running. The information you gather can serve any number
of purposes, such as debugging, gathering performance information, analyzing
application flow, or changing the behavior of the program.

About iPlanet UDS Logging

182 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To implement logging in iPlanet UDS

1. Decide what kind of logging information you need.

Logging is a flexible tool with a wide range of possibilities. Some brief words
on how to focus your logging efforts are given in “Logging Requirements” on
page 183.

2. Decide how you want to filter logging information.

iPlanet UDS provides extensive and flexible filtering to allow you to gather
exactly the information you need at a given run of the application. For a
description of the filters (also called log flags), see “iPlanet UDS Logging
Filters” on page 185.

3. Implement your logging requirements with LogMgr methods.

You use methods on the LogMgr class to send information to log files and
displays, test for or return current log flag values, and modify those flags. For a
description of LogMgr methods, see “Implementing Your Logging Scheme
with LogMgr Methods” on page 190 or the Framework Library online Help.

4. Turn on the desired log flags and tell iPlanet UDS where to write the output.

The LogMgr methods only manipulate logging information when the
corresponding flags are currently set in the environment. For information on
the many approaches available for specifying what to log and where to log it,
see “Setting up Logging with iPlanet UDS” on page 196.

5. Modify log flag settings, if necessary, during runtime using the Environment
Console or Escript ModLogger or ModLoggerRemote commands.

For more information, see “Modifying Log Flags with Fscript and Escript” on
page 199.

6. Test run your application.

How you test your application is influenced by the configuration of your
development environment, as well as the application itself. For information on
testing modes, see “Choosing a Testing Mode” on page 209.

7. Examine the logging output.

Where and how you set the log flags determines where iPlanet UDS puts
logging information. For information, see “Locating Logging Output” on
page 210.

About iPlanet UDS Logging

Chapter 6 Using iPlanet UDS Logging Tools 183

8. Remove or disable any logging instrumentation from your application when it
is of no further use.

Logging is I/O intensive. To realize the full performance potential of your
application, you will probably want to remove the logging instrumentation,
when you no longer need it.

Logging Requirements
Logging provides you with tools to monitor your application. You will typically
want to implement logging when you do the following:

• define internal and external interfaces of your application

• test the structural design of your application

• examine performance and flow at the “hot spots” of your application’s design

Generally, your goal is to create logging code so that the application can give
reliable performance and debugging information. Since logging involves I/O,
using it affects performance. Therefore you should strive to minimize the impact of
your logging code on how the application runs. Understand that you will have to
disable much of the code eventually to realize the full performance of the
application.

Typical logging requirements are:

• tracking the flow of the application

You can use logging to mimic the functions of a debugger. A simple way to do
this is to have each method log its name to a file whenever it is called. The
resulting logging output shows the flow of the application.

• monitoring performance

A simple way to log performance information is to set a timer to time a
database transaction, then log the result to a file. Or you can use a timer to set
an acceptable time limit to a transaction duration, then log which transactions
exceed the limit.

• checking state changes

You can use logging to monitor the changing values of a data in a variable or
an array before and after significant events, much as you do with the
Debugger.

About iPlanet UDS Logging

184 iPlanet Unified Development Server • Programming Guide • August 2001

• changing the behavior of a program

You can use any number of methods to alter a program based on logged
information. The Test and GetLevel methods on LogMgr provide ways to
change behavior based on which log filters are currently active.

iPlanet UDS Logging Tools
The tools of the iPlanet UDS logging mechanism include:

• a hierarchy of logging filters to distinguish logging functions:

❍ message types

❍ service types

❍ group numbers

❍ level numbers

For a description of these flags, see “iPlanet UDS Logging Filters” on page 185.

• a TOOL log manager class (LogMgr) with methods that do the following:

❍ send logging information to a file or display (LogMgr.Put and
LogMgr.PutLine)

❍ modify log filters during runtime (LogMgr.Modify)

❍ check current settings of log filters (LogMgr.Test)

For a description of the LogMgr class, see “Implementing Your Logging
Scheme with LogMgr Methods” on page 190 or the Framework Library online
Help.

• options for turning on the log flags and directing the output to a file, including:

❍ the FORTE_LOGGER_SETUP environment variable

❍ the -fl iPlanet UDS command flag

❍ the Log Flags page of the iPlanet UDS Control Panel

❍ the Modify Log Flags command (Repository Workshop or Environment
Console)

❍ some system administrator Environment Console or Escript commands

For descriptions of these options, see “Setting up Logging with iPlanet UDS”
on page 196.

iPlanet UDS Logging Filters

Chapter 6 Using iPlanet UDS Logging Tools 185

iPlanet UDS Logging Filters
iPlanet UDS provides four levels of logging filters for organizing your logging
information. Logging filters are also referred to as log flags. When you code logging
instructions, you specify these filters as parameters of LogMgr methods. To
activate logging, you specify which filters are to be active with the
FORTE_LOGGER_SETUP environment variable, or the -fl command flags. For
log-activating tools that have a user interface (such as the Log Flags page of the
iPlanet UDS Control Panel and the Modify Log Flags command of the Repository
Workshop or Environment Console), you enter these flag values in the proper
fields of the window.

The iPlanet UDS logging filter types, from most general to least, are:

• message types (mandatory)

• service types

• group numbers

• level numbers

This section describes the log flag types, but not how you activate them. For setting
log flags, see “Setting up Logging with iPlanet UDS” on page 196.

Message Types
The message type filter is mandatory and specifies the most general logging
categories. You use message types to differentiate messages such as errors,
debugging information, or performance data. The table below lists all the message
types in the three different ways you specify them, namely:

• String: the string you use in command line syntax

• Label: the label you select in the Message field in the iPlanet UDS Control
Panel or the Modify Log Flags window

• Constant: the runtime LogMgr constant you use with the more complex
variations of the Put and PutLine methods

iPlanet UDS Logging Filters

186 iPlanet Unified Development Server • Programming Guide • August 2001

For example, the following FORTE_LOGGER_SETUP specification logs trace
(debugging) messages to standard output, error messages to standard output and
an error log file, and performance information to a performance log file:

%stdout(trc:user err:user) err.log(err:user) perf.log(prf:user)

Service Types
You can subdivide message types into service types to represent the large
subdivisions you make within your program. Service types typically map to
projects or other large portions of an application, such as inventory control,
accounts receivable, or employee administration.

Service types are optional. There are 10 user-defined service types available for
your use, “user1” to “user10.” The table below shows the different forms of these
labels, similar to the table for message types. The columns designate:

• String: the string you use in command line syntax

• Label: the label you select in the Service field in the iPlanet UDS Control Panel
or the Modify Log Flags window of the Environment Console

Table 6-1 Message Types

String Label Constant Meaning

aud Audit SP_MT_AUDIT Audit messages

cfg Configuration SP_MT_CONFIGURATION Configuration setting

err Error SP_MT_ERROR Error messages

prf Performance SP_MT_PERFORMANCE Performance
information

res Resource SP_MT_RESOURCE Resource information

sec Security SP_MT_SECURITY Security messages

trc Debug SP_MT_DEBUG Debugging information

iPlanet UDS Logging Filters

Chapter 6 Using iPlanet UDS Logging Tools 187

• Constant: the runtime LogMgr constant you use with the more complex
variations of the Put, PutLine, and Test methods

Shortcuts for Specifying all Service Types
The bottom row of table above indicates that when you specify a service type on a
command line, you can use the special string “user” or an asterisk (*) to represent
all service types. However, there are no equivalents to these shortcuts when you
are using the Control Panel or the Modify Log Flags window, or when you are
specifying a parameter in a LogMgr method, where you must use the full
enumeration.

For a service type example, you might assign different service type numbers to
inventory control, accounts receivable, or personnel, or you might use different
service types for different projects. The following specification sends all tracing to
standard output, plus tracing from service types “user1” and “user3” to a file
named trc1_3.log:

%stdout(trc:user) trc1_3.log(trc:user1 trc:user3)

For information on the log flag syntax used in this example, see “Setting Log Flags
with Command Line Syntax” on page 201.

iPlanet UDS Internal Service Types
A number of non-user service types for iPlanet UDS internal and Support use only
are also visible in the drop-down list above the User1 - User10 selections of the
Service field of the Log Flags page of the iPlanet UDS Control Panel or the Modify
Log Flags window of the Environment Console. These types are sometimes
specified as part of a release note for backward compatibility, but in general, are for
iPlanet UDS internal use and should only be used with proper authorization.
“Useful Message Filters” on page 189 illustrates the uses for some of these service
types.

Table 6-2 Service Types

String Label Constant Meaning

user1,
user2,...
user10

User1,
User2,...
User10

SP_ST_USER1,
SP_ST_USER2,...
SP_ST_USER10

User-defined

user, * User1,
User2,...
and User10
(use all 10)

SP_ST_USER1,
SP_ST_USER2,...
SP_ST_USER10 (use all 10)

All user-defined service
types

iPlanet UDS Logging Filters

188 iPlanet Unified Development Server • Programming Guide • August 2001

Group Numbers
You can subdivide service types into groups designated by numbers between 1 and
63, inclusive. Groups are optional, and typically map to groups of related facilities.

For example, you could subdivide service “user3” into three groups called
“transactions in progress,” “queued work lists,” and “problem reports.” If
“transactions in progress” is group 2, and “problem reports” is group 4, the
following specification logs performance information from group 2 into one file
and trace information from group 4 into another file:

xactprog.prf(prf:user3:2) probrep.trc(trc:user3:4)

The group number you specify in a Put method can be a constant that you define as
equivalent to a numeric literal you specified in FORTE_LOGGER_SETUP. For
example, assuming the literal 2 indicates the “transaction in progress” group and
the value of the TOOL constant TRANSACT_IN_PROGRESS is 2, you could
specify the following:

For a description of the PutLine method, see the iPlanet UDS online Help.

You can also specify a range of group numbers using the syntax group#-group#. In
the previous example, if you want trace information from groups 2 through 4 to go
to a specific file, you would use the following statement:

some_trc.log(trc:user3:2-4)

Level Numbers
You can subdivide groups into levels designated by numbers from 1 to 255,
inclusive. Levels are optional, typically used to specify particularly detailed levels
of information. The greater the level number value, the more detailed the
information.

As with group numbers, the level number is determined by the application.
Typically, developers use level numbers to filter out trace messages. The following
example indicates that all level 1 trace data from group 2 (transactions in progress)
of the “user3” service should be printed to standard output.

 task.Part.LogMgr.PutLine(SP_MT_PERFORMANCE,
 SP_ST_USER3,TRANSACT_IN_PROGRESS,1,perfTextData);

iPlanet UDS Logging Filters

Chapter 6 Using iPlanet UDS Logging Tools 189

%stdout(trc:user3:2:1)

Given the log setting above, the following fragment prints only one line:

Useful Message Filters
The following table describes a number of iPlanet UDS runtime system message
filters you might find useful in diagnosing system management problems:

log: LogMgr = task.Part.LogMgr;
-- Printed (level >= 1)

log.Put(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS, 1,
’Browsing account # ’);

log.PutLine(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS,
1,acc.Number);

-- Not printed (level >= 2)
log.Put(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS,

2,acc.Owner);
log.Put(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS,

2,acc.LastChangeDate);

Table 6-3 Useful Message Filters

Filter Function

trc:cm:*:4 This filter is most useful if there are communication problems when first
setting up your environment.

trc:db:1–8 Used to diagnose problems in accessing a database.

trc:lo:25 Always set this filter when tracking down problems, otherwise key
exceptions may not be displayed. However, most users should not have this
filter set because they may be alarmed at the number of harmless exceptions
logged.

trc:os:1:1 Mostly used by developers to track object memory requirements. Logs
automatic memory management activities.

trc:os:4:5 Mostly used by developers to track object memory requirements. Used with
trc:os:1:1 to collect information on objects.

trc:os:5:5 Mostly used by developers to track object memory requirements. Used with
trc:os:1:1 to collect information on pages and objects.

trc:os:10 When this filter is set, the value of environment variables will be logged
when any iPlanet UDS process is started.

Implementing Your Logging Scheme with LogMgr Methods

190 iPlanet Unified Development Server • Programming Guide • August 2001

Implementing Your Logging Scheme
with LogMgr Methods

At the heart of iPlanet UDS logging is the LogMgr class. iPlanet UDS creates a
LogMgr object each time a TOOL program is invoked. You use methods on the
LogMgr object to control the logging information that results from the execution of
a TOOL program.

This section presents a summary of LogMgr class methods. For a complete
description of the LogMgr class, see the Framework Library online Help.

This section discusses how to:

• reference the LogMgr object

• send information to log files or displays using the Put, PutLine, PutHex, and
PutHexLine methods

• alter the flow of control of an application using the Test and GetLevel methods

• change log filters using the ModifyFlags method

• flush current log files to disk using the Flush method

The term “current logging flag settings” means the values that are current in the
running environment, namely, the values established for the iPlanet UDS process
at the time the process was started. Environment variables changed after the
process is started are not picked up by the process. For information on the
mechanisms for setting environment variable values and their order of precedence,
see “Setting up Logging with iPlanet UDS” on page 196.

trc:os:14 Used to show dynamically loaded libraries.

trc:rp:2:50 Used to show user operations on the local client that can affect the
repository. trc:rp:2:75 provides more detailed information.

Table 6-3 Useful Message Filters (Continued)

Filter Function

Implementing Your Logging Scheme with LogMgr Methods

Chapter 6 Using iPlanet UDS Logging Tools 191

Referencing the LogMgr Object
Never create an object of type LogMgr; instead, reference task.Part.LogMgr. (The
task key word references the TaskHandle object; the Part attribute is a read-only
TaskHandle attribute that contains the current Partition object for the task. For
information on the TaskHandle class, see Framework Library online Help.) For
example, to print messages to the trace text display, you can use statements such
as:

You may find it more convenient to declare a variable of type LogMgr and assign
to it the value of the global LogMgr, as follows:

Logging Application Information with PutLine
When logging, you can set messages to be displayed that reflect the state of your
application or to add information about an exception that occurred while your
application was running. This is especially useful when a user receives a critical
error message displayed in a user window and you want to write more details
about the error in a log file.

You use the PutLine method, or one of its related methods, to send information to
log files or displays. The PutLine-related methods are:

• Put

• PutLine

• PutHex

• PutHexLine

task.Part.LogMgr.PutLine(’Initializing analysis screen...’);
 ...
task.Part.LogMgr.PutLine(’Closing analysis screen...’);

 log: LogMgr = task.Part.LogMgr;
 log.PutLine(’Initializing analysis screen...’);
 ...
 log.PutLine(’Closing analysis screen...’);

Implementing Your Logging Scheme with LogMgr Methods

192 iPlanet Unified Development Server • Programming Guide • August 2001

Both Put and PutLine methods are overloaded. One variation is used to log
message text; the other is used to log state information. PutHex and PutHexLine
have only one variation, and are used to log message text that may be very large
integer values or machine addresses of object references in hexadecimal format.

Logging Message Text
To write textual values to all logging windows and log files, call the simple Put or
PutLine method. This variation converts its source input parameter to a text value
and prints it to all log files (if the FORTE_LOGGER_SETUP or -fl flag is set).

Logging State Information
To write log messages that reflect the state of your application, you can add your
own trace flags to your application with the complex variation of the Put or
PutLine methods. These methods can flag an area in your application to generate
logging information when the custom trace flags are turned on. To log messages
for an application area, you set the message filters the same as the parameters. The
log message is written only to the log files satisfying the filter setting.

Put and PutLine Examples
The Put and PutLine methods allow you to filter out certain messages according to
their level of detail or type. For example, the following fragment is printed only if
you specified its level in the current logging flag setting.

Code Example 6-1 Filtering Message

event loop
 ...

when <SaveButton>.click do
task.Part.LogMgr.PutLine(SP_MT_DEBUG,
 SP_ST_USER1,
 EMP_DEBUG_GROUP,
 5, ’Saving employee data’);
self.Save();

 ...
end event;

Implementing Your Logging Scheme with LogMgr Methods

Chapter 6 Using iPlanet UDS Logging Tools 193

This example specifies that the string “Saving employee data” is logged if the
following conditions are true:

• debugging is on for User1 Service

• debugging is on for the employee module debugging group (defined through a
user-defined integer constant EMP_DEBUG_GROUP)

• the level of detail is at least 5

If, at runtime, the settings specified in the above PutLine method invocation are not
included in the settings specified in the current logger flag settings, then the
message is not printed.

The following example assumes that current logger flag settings have been set to
log debugging messages (for example, “%stdout(trc:user)”). The Put and PutLine
methods use the simpler variation and do not filter any message, service or group
type, or detail level. When a user clicks the TraceEmpInfo button, the program
displays a detailed description of the current employee object to all trace log output
files (including the trace window).

Code Example 6-2 Logging Debugging Message

log: LogMgr = task.Part.LogMgr;
event loop
...
when <TraceEmpInfo>.Click do
log.Put(’Employee # ’); log.PutLine(emp.Num);
log.Put(’ Name : ’); log.PutLine(emp.Name);
log.Put(’ Age : ’); log.PutLine(emp.Age);

...
log.PutLine(’ Review History: ’);

for review in emp.ReviewHistory do
log.Put(’ Review by: ’); log.PutLine(review.MgrName);
log.Put(’ On : ’); log.PutLine(review.Date);
log.PutLine(review.Text);

end;
...

end event;

Implementing Your Logging Scheme with LogMgr Methods

194 iPlanet Unified Development Server • Programming Guide • August 2001

Altering the Flow of Control of an Application
You can use the GetLevel and Test methods to alter the flow of control of an
application or to alter debugging calls in your TOOL code. Test allows you to check
whether specific logger flags are currently set in the environment; GetLevel lets
you check what level is set, given a specific message, service, and group setting. See
the iPlanet UDS online Help for detailed information about the GetLevel and Test
methods.

Test Method Example
The following code tests the LogMgr object for a particular performance setting
that could have been set using either FORTE_LOGGER_SETUP or the ModifyFlags
method.

Code Example 6-3 Testing LogMgr Settings

if task.Part.LogMgr.Test(SP_MT_PERFORMANCE,
SP_ST_USER1, ACCOUNT_SCAN_RATE, 1) then
self.CollectStatistics = true;

end;
...
event loop

when <RetrieveAccount>.Click
account = self.RetrieveAccount(accountNum);
if account <> nil and self.CollectStatistics then

-- Track the number & name of all accounts retrieved.
self.Retrieved = self.Retrieved+1;
self.AccountsRetrieved[self.Retrieved] = account;

end if;
... -- Do the same for accounts scanned, corrected, etc.

end event;
if self.CollectStatistics then

task.Part.LogMgr.Put(SP_MT_PERFORMANCE,SP_ST_USER1,
 ACCOUNT_SCAN_RATE, 1,’List of accounts scanned by ’);

task.Part.LogMgr.PutLine(SP_MT_PERFORMANCE,SP_ST_USER1,
 ACCOUNT_SCAN_RATE, 1,userName);

 ...
end if;

Implementing Your Logging Scheme with LogMgr Methods

Chapter 6 Using iPlanet UDS Logging Tools 195

Changing Logging Filters
The ModifyFlags method allows you to specify which messages are to be logged
while the application is running. The ModifyFlags method is overloaded. One
variation is based on modifying a source parameter; the other variation is based on
log flag specifications. See the iPlanet UDS online Help for detailed information
about the ModifyFlags method.

Flushing Current Log Files
By default, iPlanet UDS flushes output to stdout immediately. However, if you
redirect logging output to additional files, iPlanet UDS uses the native operating
system’s usual file buffering, which batches the output in approximately 1K blocks,
depending on the particular operating system. This is of particular importance to
client partitions, because their stdout is sent to the Launch Server window (except
on UNIX, where the stdout for the Launch Server is sent to the ftlaunch log).
Therefore, if you wish to direct any of the output into a file, you need to flush all
the output to ensure the information is logged immediately.

There are three ways to guarantee that all logging output is sent out to the log files:

• Explicitly flush output using the LogMgr.Flush method (described in the
iPlanet UDS online Help).

• Issue the FlushLogFiles command on the active partition agent of interest.

See the section on logging and log files in the iPlanet UDS System Management
Guide for specific information on log file buffering with the FlushLogFiles
command.

• Gracefully exit the Launch Server by using the ftcmd shutdown server
command or shut down the Launch Server using Escript.

If you quit the Launch Server (rather than exiting it as described above), it will
not flush to the log files.

To navigate to the Launch Server’s agent in Escript, use the following
commands:

findactenv
findsubagent nodename
findsub ftlaunch_cl0_client
showag

Setting up Logging with iPlanet UDS

196 iPlanet Unified Development Server • Programming Guide • August 2001

At this point, you are at the Launch Server and the active instances of it on the
given node are listed, such as:

Type exit here at the Escript prompt to exit the Launch Server.

See the Escript and System Agent Reference Manual for information on Escript
commands.

Flush
See the Auction example in “Logging Examples” on page 214 for an illustration of
using the Flush method.

Setting up Logging with iPlanet UDS
There are several ways to set up message logging for your application. Some are
designed for use by developers during development sessions, and some are for
system managers managing development or deployment environments. Though
this chapter is directed at the developers of applications, system management tools
are included, because testing an application takes place in a distributed
environment.

This section describes how to set logging parameters on the command line and
with the graphical interface tools.

Current Agent:
Type: Installed Partition
Name: FTLaunch_cl0_Client_HENNA
Status: ONLINE
Parent Agent: Node Agent - HENNA (ONLINE)
Instruments: None
Sub Agents:

Active Partition Agent - FTLaunch_cl0_Client_0x113:0x1 (ONLINE)
escript >

Setting up Logging with iPlanet UDS

Chapter 6 Using iPlanet UDS Logging Tools 197

Tools for Setting Log Flags
This section describes the many ways to set log flags.

The FORTE_LOGGER_SETUP Environment Variable
The FORTE_LOGGER_SETUP environment variable sets the default log flags and
output file for a given node.

iPlanet UDS sets the default settings during installation. To modify the default
settings, use your platform’s procedure and syntax for setting environment
variables.

See also “Precedence Details on NT” on page 200, for an important point to
understand about precedence on NT.

The Log Flags Page of the iPlanet UDS Control Panel
The iPlanet UDS Control Panel allows you to view the iPlanet UDS environment
variable settings from all platforms. For Windows, the Control Panel allows you
edit the settings, as well. Log flag settings that you edit with the Control Panel
override the log flag settings you set with the FORTE_LOGGER_SETUP
environment variable.

On Windows, when you change the settings in the Control Panel, iPlanet UDS edits
the setting in the iPlanet UDS environment variable file. There may be several files
from which you can set environment variables, but the file that specifically relates
to the Control Panel is:

NOTE We strongly urge you to consult the section on how to set
environment variables without the iPlanet UDS Control Panel in
either A Guide to the iPlanet UDS Workshops or the iPlanet UDS System
Management Guide. Those sections provide detailed platform-specific
procedures for setting environment variables. In cases where
multiple procedures are available, the order of precedence is given.
The order of precedence is crucial for determining what settings are
current at the time of your test.

Platform Environment Variable File

NT Registry Editor’s CurrentUser Tree file
HKEY_CURRENT_USER/Software/ForteSoftwareInc/Forte

Setting up Logging with iPlanet UDS

198 iPlanet Unified Development Server • Programming Guide • August 2001

The Control Panel does not allow you to specify log file names. Therefore, the flags
you set with the Control Panel are logged in the default log file, “stdout.” For
clarification on the location of stdout, see “Locating Logging Output” on page 210.

The -fl Flag of iPlanet UDS Commands
The -fl command-line flag overrides the FORTE_LOGGER_SETUP and Control
Panel settings for the partition in which you issue the command using the flag.

You can run any iPlanet UDS system management service or iPlanet UDS system
application, such as the Environment Console, Escript, and ftexec) with the logger
flag (-fl) option.

For a complete list of iPlanet UDS commands and a summary of command syntax,
see the iPlanet UDS System Management Guide.

The Utility > Modify Log Flags Command
If you wish to change the default filter settings at any point during your
development session, you can use the Utility > Modify Log Flags command in the
Repository Workshop. The command opens a window, where you view and
change the filter settings in an array field.

Like the iPlanet UDS Control Panel, the Modify Log Flags dialog does not allow
you to specify a target log file.

For details on the Modify Log Flags command of the Repository Workshop, see A
Guide to the iPlanet UDS Workshops.

The Component > Properties Command
System managers use the Component > Properties command in the Environment
Console to set log flags for a partition in an application.

When started, the partition will overwrite its existing log files. To preserve the old
log file, either back it up or change its name before you start the partition.

For information on specifying logger flags for a partition, see the iPlanet UDS
System Management Guide.

The Component > Modify Log Flags Command
System managers use the Component > Modify Log Flags command to
dynamically change the current message filters for an active application or Node
Manager partition.

Setting up Logging with iPlanet UDS

Chapter 6 Using iPlanet UDS Logging Tools 199

The modified filters apply to the first log file specified in either the
FORTE_LOGGER_SETUP environment variable or the -fl logger flag in the startup
command for the given partition.

For details on modifying logger flags, see the iPlanet UDS System Management
Guide.

Modifying Log Flags with Fscript and Escript
As you can with other iPlanet UDS commands, you can specify logging parameters
with the fscript and escript commands. When you specify logging parameters
when starting fscript and escript, you are affecting logging for the Fscript or
Escript session. Within the session, you can modify logging filters dynamically,
using the ModLogger and (with Escript) ModLoggerRemote commands. The
difference between these commands is:

• ModLogger modifies log flags for the current Fscript or Escript session

• ModLoggerRemote modifies log flags for agents you have started with the
Escript tool

Note on the “remote” in “ModLoggerRemote”
When you are in an Escript session, navigating the application agents of your
running application, your Escript session is the agent managing that partition, but
is not really on that partition itself. Therefore, the “remote” in ModLoggerRemote
refers to the fact that you are modifying logger flags elsewhere (on the partition),
not in the current process (Escript).

When you use the ModLogger and ModLoggerRemote commands to modify
logger flags, you can change only the log output to the stdout specification. You
cannot change the log flags that write to any log file that you might have specified
with the -fl flag or the FORTE_LOGGER_SETUP variable. (Note that “stdout” for a
server partition is its log file, because it has no terminal window associated with it.
See “Setting up Logging with iPlanet UDS” on page 196 for clarification about
output log specifications.)

The LogMgr.ModifyFlags Method
Flags set programmatically with the LogMgr.ModifyFlags method change current
settings as specified within the application code.

For further information, see the iPlanet UDS online Help.

Setting up Logging with iPlanet UDS

200 iPlanet Unified Development Server • Programming Guide • August 2001

Order of Precedence for Log-Setting Procedures
Knowing which log flag setting is in effect can be confusing. The following list
gives the basic order of precedence for the various ways you can set log flags:

1. Flags set during runtime

These include flags set with the Modify Log Flags command of Environment
Console, the ModLogger or ModLoggerRemote commands, or flags modified
programmatically with LogMgr.ModifyFlags method.

Flags set during runtime override all other settings until you exit iPlanet UDS
(including the Launch Server and the Environment Manager) or reset them
using one of these commands or procedures.

2. Flags set for a specific process

These include flags set with the logger flag (-fl) command option or the
Environment Console Component > Properties command.

3. Flags set with the iPlanet UDS Control Panel

This applies to Windows platforms only, because the Control Panel is
read-only for all other platforms.

4. Flags set with the FORTE_LOGGER_SETUP environment variable

See the section on setting environment variables without the iPlanet UDS
Control Panel in A Guide to the iPlanet UDS Workshops.

Precedence Details on NT
The order of precedence given above (specifically of items 3 and 4) assumes you
have set FORTE_LOGGER_SETUP in the NT Registry. Since the iPlanet UDS
Control Panel also sets values in the NT Registry, the new values of log flags set
with the iPlanet UDS Control Panel changes the previous value set for
FORTE_LOGGER_SETUP in the Registry.

However, it is also possible to set environment variables in the NT Control Panel.
Since settings in the NT Control Panel override the settings in the Registry, they
override settings made with the iPlanet UDS Control Panel, giving item 4 higher
precedence than item 3.

Therefore, we recommend that you do not use the NT Control Panel to set your
environment variables. Setting environment variables in too may places can make
your setup confusing and inconsistent.

Setting up Logging with iPlanet UDS

Chapter 6 Using iPlanet UDS Logging Tools 201

Setting Log Flags with Command Line Syntax
You use command line syntax for setting logger flag parameters using the
following:

• the FORTE_LOGGER_SETUP environment variable

• iPlanet UDS commands

• the Component > Properties command in the Environment Console

The Fscript and Escript ModLogger and (Escript only) ModLoggerRemote
commands also use log_flags syntax, but cannot specify output files.

Log Flag Syntax
The command line syntax for setting logging parameters is:

Portable syntax
iPlanet UDS_command [-fl file_name(log_filter)[file_name(log_filter)...]]

OpenVMS syntax
VFORTE iPlanet UDS_command
[/LOGGER=file_name(log_filter)[file_name(log_filter)...]]

File Name Parameter
The file_name parameter is the valid file name of the file in which you want to log
messages. The special file names “%stdout” and “%stderr” log the messages to
standard output or standard error, respectively.

You can specify several files for logging messages. Multiple logging files are useful,
for example, in an application where you want to display general tracing on
standard output (%stdout), but want detailed tracing logged to a file for later
review.

On Windows only, you can use the name “%stdwin” to create a simple, scrollable
output window for textual output. “%stdwin” is particularly useful to specify an
alternative file for the output from Fscript or the iPlanet UDS Workshops.

Setting up Logging with iPlanet UDS

202 iPlanet Unified Development Server • Programming Guide • August 2001

File Naming Conventions You must specify file names using the format native
to the system on which you invoke an iPlanet UDS command. The following
example shows how you could specify a file named “testlog.log” in the
My_Project/log directory on different platforms:

Log Filter Parameter
Each file name is associated with a log_filter whose syntax is as follows:

Syntax
message_type[:service_type[:group_number[:level_number]]]

Arguments that contain parentheses must be enclosed by double quotes.

Figure 6-1 offers a visual clarification of log filter syntax. For a description of each
log filter option, see the previous section, “iPlanet UDS Logging Filters” on
page 185.

Table 6-4 Syntax for Specifying Log Files

Operating System Specifying an example log file

Windows c:\My_Project\log\testlog.log

UNIX /My_Project/log/testlog.log

VMS [My_Project.log]testlog.log

Setting up Logging with iPlanet UDS

Chapter 6 Using iPlanet UDS Logging Tools 203

Figure 6-1 Log Filter Syntax

FORTE_LOGGER_SETUP Example
This section shows how to set the FORTE_LOGGER_SETUP environment variable,
given the following specification:

• file name: FORTE_ROOT/log/testlog

• message type: debugging (trc)

• service type: user1

• group number: 1

• level number: 1

Message types

aud Audit messages
dfg Configuration
err Error messages
prf Performance info
res Resource information
sec Security messages
trc Debugging information
* All of the above

(message-type [:service_type [:group_number [level_number]]])

Service types
user1 through user10
* or user = all ten

Groups
1 through 63

Levels
1 through 255

Setting up Logging with iPlanet UDS

204 iPlanet Unified Development Server • Programming Guide • August 2001

Use the following syntax:

The table below shows the file where you set the FORTE_LOGGER_SETUP
variable (or logical name on OpenVMS).

Table 6-5 Platform-specific Syntax for FORTE_LOGGER_SETUP

Platform Syntax

Windows FORTE_LOGGER_SETUP
“FORTE_ROOT\log\testlog(trc:user1:1:1)”

UNIX setenv FORTE_LOGGER_SETUP
“$FORTE_ROOT/log/testlog(trc:user1:1:1)”

OpenVMS DEFINE FORTE_LOGGER_SETUP
“FORTE_ROOT:[LOG]TESTLOG(TRC:USER1:1:1)”

Table 6-6 Platform-specific Location for Setting FORTE_LOGGER_SETUP

Platform Location of FORTE_LOGGER_SETUP

Windows NT Machine-wide: Registry Editor’s
HKEY_CURRENT_USER/Software/ForteSoftwareInc/Forte file

User-specific: Registry Editor’s
HKEY_LOCAL_MACHINE\SOFTWARE\ForteSoftwareInc\Forteversio
n_number file

UNIX C-Shell: FORTE_ROOT/fortedef.csh file

Bourne-Shell: FORTE_ROOT/fortedef.sh file

OpenVMS Machine-wide:
FORTE_ROOT:[INSTALL.SCRIPTS]FORTE_LOGIN.COM file

User-specific: FORTE_ROOT:[INSTALL.SCRIPTS]SITE_LOGIN.COM
file

Setting up Logging with iPlanet UDS

Chapter 6 Using iPlanet UDS Logging Tools 205

Command-Line Log Flags Example
This example shows how to start a standard client partition of iPlanet UDS on the
command line, given the following specification:

• file name: FORTE_ROOT/log/my_log.log

• message type: debugging (trc)

• service type: user1

• group number: 3

• level number: 1-5

Windows Platforms
To use flags with an iPlanet UDS command on a Windows platform, you must edit
the properties of the appropriate icon.

Windows NT You edit the shortcut of either the iPlanet UDS Standalone
(ftexec.exe) command or of the iPlanet UDS Distributed (ftcmd.exe) command.

➤ To edit a shortcut icon and start iPlanet UDS

1. Select the appropriate shortcut in C:\Winnt\Profiles\user\Start
Menu\Programs\Forte.

2. Choose the File > Properties command.

The Properties command opens the properties dialog for the shortcut. The
Target field contains the ftcmd (or ftexec) command line.

3. Add the following syntax to the Target command line:

-fl "FORTE_ROOT\log\my_log.log(trc:user1:3:1-5)"

4. Click OK to close the Properties dialog.

5. Start iPlanet UDS by selecting the shortcut icon.

Setting up Logging with iPlanet UDS

206 iPlanet Unified Development Server • Programming Guide • August 2001

UNIX Platform

➤ To run the iPlanet UDS command with log flags

1. Enter the following string in a shell window.

ftexec -fl “FORTE_ROOT/log/my_log.log(trc:user1:3:1-5)”

OpenVMS Platform

➤ To run the iPlanet UDS command with log flags

1. Enter the following string on the command line.

VFORTE FTEXEC
/LOGGER=”FORTE_ROOT:[LOG]MY_LOG.LOG(TRC:USER1:3:1-5)"

Setting Log Flags with a Window Interface
Two tools provide a user interface (a window) for specifying iPlanet UDS log flags:

• the Log Flags page of the iPlanet UDS Control Panel (Windows only)

• the Modify Log Flags dialog (raised by the Utility > Modify Log Flags
command of the Repository Workshop and the Component > Modify Log
Flags command of the Environment Console)

The Control Panel and Modify Log Flags dialog allow you to specify log flags, but
not output files.

Figure 6-2 shows the Control Panel and Modify Log Flags windows.

Figure 6-2 The Log Flags Page of the Control Panel and the Modify Log Flags Dialog

Setting up Logging with iPlanet UDS

Chapter 6 Using iPlanet UDS Logging Tools 207

Specifying Message and Service Types
For the Message and Service types, you can either type the value directly into the
field, or use the drop list as shown in Figure 6-3.

Figure 6-3 Using a Drop List for the Message Type

In command-line syntax, the following two specifications are equivalent:

trc:user:1:1

trc:*:1:1

Both use the shortcuts “user” and the asterisk wildcard (*) to represent all Service
types (User1 to User10). There is no equivalent to these shortcuts in the Control
Panel or Modify Log Flags windows. To specify all 10 service types, you must
create 10 individual rows with the same Message, Group, and Level settings for
Service types User1 to User10.

Figure 6-4 illustrates how to specify the equivalent of the command-line shortcuts.

Drop list

Setting up Logging with iPlanet UDS

208 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 6-4 Specifying All Service Types

Specifying Group Levels
In command-line syntax, you can also use an asterisk wildcard (*) to represent all
group levels. On the window, group levels have two boxes with a dash between
them, so that you can easily specify a range. To specify “all groups,” specify “1-63,”
as shown in Figure 6-5.

To specify a single group level, specify a “range” of 1-1.

Figure 6-5 illustrates how to specify all or only one group.

Figure 6-5 Specifying All or a Single Group Level

Equivalent of
“user” or “*”

Equivalent of ‘1’ for
Group Level

Equivalent of “*” for
Group Level

Choosing a Testing Mode

Chapter 6 Using iPlanet UDS Logging Tools 209

Choosing a Testing Mode
You can test your logging code, or use it to test parts of your application, while you
are developing your application. You can test in the following modes:

• local testing

• distributed testing

The configuration of your development environment influences the testing mode
you can use. For example, if you are running iPlanet UDS Standalone, local testing
is the only option, and all log files will be on your local machine. If you are in a
distributed environment that includes developer clients and test server nodes, both
testing options are available. If you have access to the Environment Console, you
have more options for modifying and reading server log files than otherwise.

Local Testing
You test your application locally by using the Run command either from the
Repository or Project Workshops. This is useful for testing your GUI windows
before you create service objects. It is also advantageous when your machine does
not have access to a network. You can test locally from either iPlanet UDS
Standalone or iPlanet UDS Distributed.

If you are running standalone, the application is not partitioned; it runs entirely on
the local machine.

If you are running distributed, iPlanet UDS places only service objects that require
a server-resident resource on the server. For example, a service object that contains
a DBResourceMgr or DBSession service object may run on the server if the client
machine does not contain the database resource manager. All other objects are
placed on the client.

Distributed Testing
You test your application in distributed mode by using the Run command from the
Partition Workshop. If you have already partitioned your application at least once,
you can also test distributed by using the Run Distributed command from the
Project Workshop.

Locating Logging Output

210 iPlanet Unified Development Server • Programming Guide • August 2001

Distributed testing is used to test the operation and functionality of an application
distributed across multiple nodes, though it is possible to have all “distributed”
partitions all on the same iPlanet UDS node or on multiple nodes on the same
physical machine. You must use iPlanet UDS distributed to test in this mode.

Distributed Testing and Test Service Object Names
Multiple testers can test the same application simultaneously, because iPlanet UDS
creates unique instances of all the application’s services for each instance of the
application.

Locating Logging Output
When you set log flags where you can also specify an output file, knowing where
the logging output will be written is simple: it is written to the specified log file. If
you specify log flags in the iPlanet UDS Control Panel or the Modify Log Flags
window, you know only that the generated output is written to “standard output”
(or “stdout”) on the node of the partition where you set the flags. What is
“standard output” exactly?

Each iPlanet UDS partition has a default log file, called standard output, whose
name depends on the iPlanet UDS partition for which logging is being performed.
For example:

• on a client partition, standard output is usually a window

• on other partitions, standard output is a file, whose name depends on the type
of partition

Standard Output names are listed in the table below:

Table 6-7 Standard Output

iPlanet UDS
Partition

Standard Output Log File in FORTE_ROOT/log/

Client partition Windows: Launch Server window

UNIX: ftlaunch_port.log, where port is the socket number for the
Launch Server.

OpenVMS: The DECterm window from which you started iPlanet
UDS.

Active standard
partition

forte_ex_process_ID.log (for example, forte_ex_13456.log)

Locating Logging Output

Chapter 6 Using iPlanet UDS Logging Tools 211

Changing Log File Names for Active Partitions
You can change the default log file name for an Active Partition agent. Changing
the default log file name makes iPlanet UDS close the current log file and open a
new file with the name you specify.

You change the default log file name of an active partition using the Environment
Manager. Please consult the iPlanet UDS System Management Guide for a complete
description of the Environment Manager and background information for the steps
for changing log file names given here.

Rules for Log File Names
When you specify the new name of the log file, you need to use a portable file name
syntax (UNIX style). If the Log Filename does not start with a /, then the file is
given relative to the FORTE_ROOT/log directory on the node on which the service
is executing. If the Log Filename does start with a /, then it specifies an absolute
path on the node on which the service is running.

Active compiled
partition

filename_process_ID.log

Launch Server Windows: Launch Server window

UNIX: ftlaunch_port.log, where port is the socket number for the
Launch Server.

OpenVMS: there is no Launch Server.

Node Manager node_name.log, where node_name is the first 8 characters of the node
name.

NOTE You can only specify log file names for Active Partitions agents for
compiled server partitions and iPlanet UDS executor partitions.
Client partitions can only log information to trace windows.

You can change the log file name for an Active Partition agent by
navigating to its agent and opening the Instruments window. You
can then either change the instrument logging options by using the
Instrument Logging Properties dialog or by directly changing the
values of the instruments that control these options.

Table 6-7 Standard Output (Continued)

iPlanet UDS
Partition

Standard Output Log File in FORTE_ROOT/log/

Locating Logging Output

212 iPlanet Unified Development Server • Programming Guide • August 2001

The steps described in this section for changing the log file names using the
Environment Console correspond to changing the values of the LogFile instrument
for the Active Partition agent. For information about changing instrument values,
see the Escript and System Agent Reference Manual.

The steps for changing the log file name are different depending on whether you
are changing the log file name for a compiled active partition or an interpreted
active partition. Although all active server partitions can log data to log files,
compiled partitions each have their own log files, while interpreted partitions log
data to the log files of their instances of the iPlanet UDS interpreter (iPlanet UDS
Executor). Therefore, to change the log file name for an interpreted partition, you
need to change the log name for the active partition of its iPlanet UDS Executor
instance, as described below.

➤ To change a log file name for a compiled active partition or iPlanet UDS executor
partition

1. In the Environment Console’s Active Environment window, select the View >
Node Outline command.

2. Find the compiled Active Partition agent whose log file name you want to
change by expanding the browser outline view.

3. Open the Agent window for the active partition by selecting the agent, then
choosing the Component > Open command.

4. Open the Instruments window for the current agent by choosing the File >
Instruments command in the current Agent window.

5. Open the Instrument Logging Properties dialog by choosing the File >
Instrument Logging command.

Locating Logging Output

Chapter 6 Using iPlanet UDS Logging Tools 213

6. In the Instrument Logging Properties dialog, enter the new log file name for
the active partition’s log file in the Active Partition Log field. You can also
change the name of the Environment Manager’s log file by entering the new
name of the log file in the Environment Log field.

➤ To change the log file name for an interpreted active server partition

1. In the Environment Console’s Active Environment window, choose the View >
Node Outline command.

2. Locate the Forte_executor_nodename agent, which is a subagent of the Node
agent for the node where the standard partition is running.

3. Click the expansion arrow next to the Forte_executor_nodename agent, then
double-click the Active Partition agent whose name matches the name of the
standard partition.

The Agent window for the Active Partition agent opens.

4. Open the Instruments window for the Active Partition agent by choosing the
File > Instruments command of the current Agent window.

5. Open the Instrument Logging Properties dialog by choosing the File >
Instrument Logging... command the Instruments window.

6. In the Instrument Logging Properties dialog, enter the new log file name for
the active partition and the instance of the iPlanet UDS executor in the Active
Partition Log field. You can also change the name of the Environment
Manager’s log file by entering the new name of the log file in the Environment
Log field.

Logging Examples

214 iPlanet Unified Development Server • Programming Guide • August 2001

Logging Examples
This section provides two logging examples. The first, the Auction example
distributed with your iPlanet UDS software, shows a simple way to log application
flow. The second shows how to set up methods to time themselves and send the
results to another method that logs the data in three different formats, depending
on what log flags are set.

Auction Example
The Auction example included in your iPlanet UDS distribution offers a simple
example for logging that follows application flow. See Appendix A, “iPlanet UDS
Example Applications” for information on how to set up and run the example.

The application provides a list of paintings available for bidding. Bidders located at
their respective computers can bid on paintings being offered by an auctioneer
located at some other computer. Bidders bidding on the same painting are notified
when the someone has changed the price by placing a higher bid.

When you first start the Auction application, a window opens displaying an empty
array field for listing artists’ names and painting titles, radio buttons to select
Bidder or Auctioneer role, Auctioneer options to start the auction or delete a
painting, and a button to view the painting, as shown below.

Figure 6-6 Auction Example Starting Window

Logging Examples

Chapter 6 Using iPlanet UDS Logging Tools 215

The Auctioneer starts by selecting the Be Auctioneer toggle, then clicking the Start
Auction button, which fetches the list of artists and their paintings and displays
them in the array field, as shown in Figure 6-7. At any time, the Auctioneer can
delete paintings from the array.

Figure 6-7 Paintings Listed in the Starting Window

The Bidder action starts by selecting the Be Bidder toggle, then selecting a painting,
and clicking the View Painting button. This displays a view window with a
description of the painting, an image of the painting, a Bid and a Cancel button,
shown in Figure 6-8.

Figure 6-8 Auction Example View Window

Clicking the Bid button brings up the Bid window, showing title of the painting,
the current value, and the time of the last bid and the name of the bidder issuing it.
The Bid window is shown in Figure 6-9.

Logging Examples

216 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 6-9 Auction Example Bid Window

The bidder can then increase the bid, set the bid, or cancel the bid. While the bid
window is up for one bidder, other bidders bidding on the same painting are
informed on their View Painting window that a bid is in progress.

Setting up Logging
To follow application flow, the logging strategy in the Auction application uses a
simple scheme, consisting of:

• a single log flag setting (trc:user1:1:1) to turn logging on

• a test if the log flag is set, then a PutLine call to log the data pertinent to the
method

• flushing all logging after the PutLine method is called

The strategic actions that are logged are:

• when the Auctioneer/Bidder roles are selected

• when the artist/painting array field is filled

• when a painting is deleted from that array field

• when a bid starts and ends

Logging Examples

Chapter 6 Using iPlanet UDS Logging Tools 217

The application is comprised of four projects: Auction, AuctionServerProject,
ImageProject, and Utility. Methods that perform the strategic actions exist in two of
these projects. The table below lists these projects, the classes and methods that
include the logging, and the corresponding .pex files, where you can find the
complete code. (Example .pex files are found in subdirectories of the
FORTE_ROOT/install/example directory.)

Logging Template
The logging code used in the Auction application follows a coding template that
tests for the log flags, sets up the parameters to output, invokes PutLine, then
invokes Flush. The AuctionMgr.RequestAuctioneerStatus method is a good
example:

Project Class Method with Logging .pex file

AuctionServerProject Bid CompleteBid tool/aucserv.pex

StartBid

AuctionMgr RequestAuctioneerStatus

AddBid

DeleteBidForPainting

RelinquishAuctioneerSta
tus

ImageProject ImageMgr GetImage tool/imageprj.pex

Code Example 6-4 Testing for log flags and writing log output

method AuctionMgr.RequestAuctioneerStatus(input password: string,
input name: string): integer

begin
...

-- If debugging is on

-- Test whether the trc:user1:1:1 log flag is set
if task.Part.LogMgr.Test(
 type=SP_MT_DEBUG, serviceId=SP_ST_USER1, group=1, level=1) then

-- Set up the string to output
t : TextData = new;
t.ReplaceParameters(
 ’AuctionMgr.ReqAuctStatus: Name: <%1> Return status is <%2>.’,
 TextData(value = name),

Logging Examples

218 iPlanet Unified Development Server • Programming Guide • August 2001

Running the Example
To test your logging, you must set the log flags, run the application, then read the
logged output.

➤ To test logging instrumentation on the Auction application

1. Set the current log flags settings to trc:user1:1:1.

For example, add this string to your FORTE_LOGGER_SETUP variable
specification:

c:\forte\log\testlog.txt(trc:user1:1:1)

This will send the logging to a file in the FORTE_ROOT log directory on a
Windows client.

Alternatively, you could set these flags using the iPlanet UDS Control Panel, or
the Modify Log Flags dialog in the Repository Workshop. This would send
logging output to stdout.

See “Setting up Logging with iPlanet UDS” on page 196, for information on
setting the log flags. See “Locating Logging Output” on page 210 for
information on the definition of stdout, given the method you use to run the
application (local or distributed testing).

2. Run the application.

Run it either from the Repository Workshop or the Partition Workshop. See
“Choosing a Testing Mode” on page 209 for information on different methods
for testing your application.

3. Read the output.

Depending on your platform, and how you ran the application, the output will
be in a file or a client stdout window.

 IntegerData(value = retval));

-- Use PutLine to log the string, then Flush the log buffer
task.Part.LogMgr.PutLine(t);
task.Part.LogMgr.Flush();

end if;
...

end method;

Proj: AuctionServerProject • Class: AuctionMgr• Method: RequestAuctioneerStatus

Code Example 6-4 Testing for log flags and writing log output (Continued)

Logging Examples

Chapter 6 Using iPlanet UDS Logging Tools 219

Logging for Performance Example
This example illustrates a method for logging performance information on specific
methods, such as those that access a database. In this example, methods to be
observed time their transactions and then call a method to log the result to one of
three possible output formats:

• normal output to a log

• comma-delimited output to a log

• a posted event with a message

Each method to be timed uses methods on the Framework.StopWatchclass to
record the elapsed time. These methods then pass the results to a log timer method
to log the output.

Since every method set up to be logged runs a timer, whether or not the output
method is triggered log the data, this technique involves a certain performance
cost. Unless such a mechanism is part of the functionality of the application, this is
the sort of logging you will want to remove once you have finished using it.

Log Flags Used
This example sets up log flag constants for different functions and levels of detail.
Any method can call the timer method on the condition the appropriate flags are
set. The log flags used in this example are:

• message type (provided by iPlanet UDS; see “Message Types” on page 185)

❍ SP_MT_PERFORMANCE

• service types (provided by iPlanet UDS; see “Service Types” on page 186)

❍ SP_ST_USER5—for output to a log file in normal, human-readable format

❍ SP_ST_USER6—for output to a log file in comma-delimited format (for
reading into a spreadsheet)

❍ SP_ST_USER7—for posting an event with a parameter containing the
message

• group number and its corresponding value

❍ K_DB_GROUP = 1 (for database operations)

Logging Examples

220 iPlanet Unified Development Server • Programming Guide • August 2001

• level numbers and their corresponding values

❍ K_HIGH_DETAIL = 255

❍ K_MED_DETAIL = 125

❍ K_LOW_DETAIL = 1

Example Method That Times Itself
The following example method shows how the method times itself and passes the
results to the method that outputs the information (LogTime).

Code Example 6-5 Method that times itself

method CustomerMgr.DeleteCustomer(
input custNo: Framework.IntegerNullable): Framework.integer
begin

-- Delete a customer from the database
try : integer - 0
swatch : StopWatch = new; // Create StopWatch object
methodName : string = ’DeleteCustomer’;
rows : integer;
swatch.Fire(); // Start the timer

retry : while (try < K_MAX_RETRIES) do //Start doing stuff
begin transaction
...
end transaction;

end while; // Finish doing stuff

// Stop the timer and
// call LogTime to log the results
self.LogTime(self.ClassName, methodName, swatch.split(),

K_MED_DETAIL);
methodName = ’’;
swatch = NIL;

return rows;
end method;

Logging Examples

Chapter 6 Using iPlanet UDS Logging Tools 221

Example Timer Output Method
The LogTime method called by the previous method is shown here.

Code Example 6-6 LogTime method from Code Example 6-5

method My_Class.LogTime(input className: Framework.TextData,
input methodName: Framework.TextData,
input elapsedTime: Framework.integer,
input level: Framework.integer)

begin
-- Send performance information to the log
-- if the right log flags are set

logger : LogMgr = task.part.LogMgr;

//Logs to a normal log output if User5 is the service set in the
log flag setting.
if logger.test(SP_MT_PERFORMANCE, SP_ST_USER5, K_DB_GROUP,

 level) then
msg : TextData = new(value = ’===> Class: %1,\tMethod: %2,

\tElapsed time: %3’);
msg.replaceParameters(source = msg, parameter1 = className,

parameter2 = methodName,
parameter3 = IntegerData(value = elapsedTime));

logger.putline(SP_MT_PERFORMANCE, SP_ST_USER5, K_DB_GROUP,
level, msg);

end if;

// Logs to a spreadsheet format if User6
// is the service type requested
if logger.test(SP_MT_PERFORMANCE, SP_ST_USER6, K_DB_GROUP,

 level) then
msg : TextData = new(value = ’%1,%2,%3’);
msg.replaceParameters(source = msg, parameter1 = className,

parameter2 = methodName,
parameter3 = IntegerData(value = elapsedTime));

logger.putline(SP_MT_PERFORMANCE, SP_ST_USER6, K_DB_GROUP,
level, msg);

end if;

// Posts an event that logs to a screen message if User7
// is the service type specified in the log flags
if logger.test(SP_MT_PERFORMANCE, SP_ST_USER7, K_DB_GROUP,

 level) then
msg : TextData = new(value = ’===> Class: %1,\tMethod: %2,

\tElapsed time: %3’);
msg.replaceParameters(source = msg, parameter1 = className,

parameter2 = methodName,
parameter3 = IntegerData(value = elapsedTime));

post self.elapsedTime(msg);

end if;
end method;

Logging Examples

222 iPlanet Unified Development Server • Programming Guide • August 2001

223

Chapter 7

Deployment Concepts

This chapter provides an overview of the information you need to deploy iPlanet
UDS applications.

Included in this chapter is conceptual information about the following topics:

• deploying applications and libraries

• configuring applications

• configuring libraries

• environments

Chapter 8, “Deploying iPlanet UDS Applications and Libraries,” leads you step by
step through the process for deploying an application and a library.

An Overview of Deploying Applications
and Libraries

This chapter explains some concepts and parts of iPlanet UDS that you need to be
familiar with to be able to deploy iPlanet UDS applications and libraries (which are
a special case of applications).

When you develop a TOOL application, you can write many parts of your
application without considering exactly what the deployed configuration of your
application will be or on what physical network and machines your application
runs.

An Overview of Deploying Applications and Libraries

224 iPlanet Unified Development Server • Programming Guide • August 2001

Distributed Applications and Application
Distributions
iPlanet UDS applications are typically distributed applications, which means that
different parts of the application run on different machines in the environment.
When you configure the application, you define the logical sections, called
partitions. Each partition is an independent process that can run on its own
machine. When you configure the application, you also define on what machines
these partitions will run. You can then create an application distribution, which
contains the application files needed to run the application on all the defined
machines. Finally, you can install the application in any environment that contains
machines like those specified in the configuration.

The server partitions run on server nodes, which might be serving one client or any
number of clients. The client partitions run on client nodes, which might be
communicating with any number of servers. Figure 7-1 illustrates the partitions in
a distributed application.

Figure 7-1 Partitions in a Distributed Application

Chapter 8, “Deploying iPlanet UDS Applications and Libraries,” describes the
detailed steps for configuring and deploying applications.

ur
l

We
b

Pag
e

ur
l

We
b

Pag
e

ur
l

We
b

Pag
e

ur
l

We
b

Pag
e

Client
Partition

Client
Partition

Client
PartitionClient

Partition

Image Service

Auction Service

Configuring Applications

Chapter 7 Deployment Concepts 225

Libraries
A library is a named collection of classes and other component definitions that can
be shared by any number of iPlanet UDS applications. iPlanet UDS provides
several libraries for your use in developing applications, including Framework,
GenericDBMS, and Display. You can also create your own libraries for use within
your organization or for distribution or sale to other companies. For example, you
could create a library that provides access to an external service, such as a stock
market service, or a collection of statistical routines.

When the library is installed in a development environment, the library can be
imported into any of the development repositories in the environment. Then, any
projects being developed in those repositories can include the library as a supplier
plan. The ability to include libraries as supplier plans allows multiple projects
within different development repositories to share a single library.

“Deploying a Library” on page 304 describes in detail how to configure and deploy
a library.

Environments
When you prepare to deploy your application, you need to define a configuration
and map your application configuration to the definition of a network. In iPlanet
UDS, the definition of a physical network where you can install and run iPlanet
UDS applications is called an environment definition, which is described in
“Configuring Applications” on page 225.

Configuring Applications
To distribute an application, iPlanet UDS divides the application into logical
sections, called partitions. Each partition is an independent process that can run on
its own machine. You build a configuration to customize your application for the
particular hardware and software in that environment by assigning the partitions
to nodes in the environment. A configuration also allows you to replicate certain
partitions for load balancing or failover. The result is a distributed application from
which you can generate the files to be installed in the environment.

There are two kinds of application configurations: a client configuration and a
server configuration

Configuring Applications

226 iPlanet Unified Development Server • Programming Guide • August 2001

Client Configuration
A client configuration defines a client application, which is an application that the
end user can run from his or her workstation. A client configuration contains one
client partition, which includes the user interface for the application (if there is one)
and the startup code. A client configuration can also contain one or more server
partitions.

Applets
Using the Partition Workshop, you can configure any client configuration as an
applet, rather than as a client application. An applet is an application that can be
launched from another application using the AppletSupport library, but cannot be
run as an independent client application. Except for this limitation in the way it can
be started, an applet is the same in every way as a client application. For complete
information on applets, see “Writing Applications That Use the Launch Server and
Applets” on page 435.

Server Configuration
A server configuration defines an iPlanet UDS server application, which provides
processing for one or more client applications. A server configuration has one or
more server partitions, and no client partition.

Relationship Between Partitions and Projects
An application consists of a main project and all of its supplier plans. When iPlanet
UDS partitions your application, it assigns all of the service objects in the main
project and its supplier projects to partitions. If any class within a project is needed
by a service object on a partition, iPlanet UDS also includes that project definition
on the partition. Therefore, a single project may appear on any number of
partitions.

For example, in the Art Auction application, the Painting class needs to be
available on the client partition because it is displayed to the end user on the
window; it also needs to be available on the server partition where the Image
Server is running because that is where the paintings are stored. Therefore, the
project that defines the Painting class needs to be on both partitions. Figure 7-2
illustrates the relationship between partitions, service objects, and projects:

Configuring Applications

Chapter 7 Deployment Concepts 227

Figure 7-2 Relationship between Partitions and Projects

Relationship Between Partitions and Libraries
The supplier libraries for the application must also be installed on the partitions
that need to access them. However, the application configuration does not include
the supplier libraries (only the supplier projects). Therefore, you must make a
separate library distribution that contains the libraries needed by the application,
and install the library distribution along with the application distribution. See
“Configuring Libraries” on page 233 for information.

Automatic Partitioning
iPlanet UDS automatically partitions your application for each of your
environment definitions. Most of your service objects can run only on a certain
node. Therefore, iPlanet UDS automatically assigns the service objects to specific
partitions and assigns the partitions to the nodes in the environment definition that
have the appropriate resources and capabilities. For further details on automatic
partitioning, see “Creating a Default Application Configuration” on page 240.

After iPlanet UDS partitions the application, you can examine it and make
adjustments. If necessary, you can assign service objects to different partitions or
assign partitions to different nodes. For partitions that contain replicated service
objects, you can replicate the partitions to provide load balancing or failover.

 url

W
eb
Pa
ge

Auction Client
Partition

ImageService
Service Object

Auction Server
Partition

AuctionService
Service Object

AuctionServerProject

Utility

DisplayProject

Auction

ImageProject

AuctionServerProject

Projects

Image Server
Partition

About Partitions

228 iPlanet Unified Development Server • Programming Guide • August 2001

When you examine a partition in the Partition Workshop, you see only the service
objects assigned to the partition, not the projects. However, iPlanet UDS ensures
that the project definitions needed by each service object are always included on
the partition. If you move a service object, the projects it needs are moved along
with it.

(Note that you can use the ShowApp command in Fscript to see which projects are
included on a partition. See the Fscript Reference Manual for information on the
ShowApp command.)

Testing a Configuration
After you adjust your configuration, you can test it by running the partitioned
application in the development environment. This lets you test the distributed
application as it will appear to end users when it is installed.

Deploying Applications
The completed configuration is your “distributed application.” When your
configuration is ready, you can generate the distribution, that is, the files necessary
to install the application for production deployment. The Partition Workshop
provides a Make Distribution command for this purpose. See “Making an
Application Distribution” on page 269 for information.

About Partitions
A partition is a logical section of an application that represents either the client
portion of the application or one of the servers. When iPlanet UDS partitions an
application, it assigns all the service objects in the application to partitions; these
are the logical partitions. iPlanet UDS then assigns the logical partitions to
appropriate nodes in the environment definition; these are the assigned partitions.

The Partition Workshop shows both the logical partitions into which your
application is divided and the assigned partitions that represent the processes that
will be installed in the environment. The following sections provide information
about the properties of logical and assigned partitions.

About Partitions

Chapter 7 Deployment Concepts 229

Logical Partitions
When iPlanet UDS partitions your application, it divides the application into one
client partition and any number of server partitions.

Client Partition
A client partition contains the user interface for the application (if there is one) and
the application startup code. In addition, if the application contains any service
objects with user visibility, iPlanet UDS will put them on the client partition if the
client nodes in the environment can support them. If you used the Configure as >
Server command to create a server configuration, iPlanet UDS does not create a
client partition for the application.

Server Partition
A server partition contains one or more service objects and the projects accessed by
the service objects. There are two types of server partitions: replicated and
non-replicated.

Replicated Server Partition
A replicated server partition is a partition that contains a service object that was
defined as being replicated for load balancing or failover. When a logical partition
is replicated, you can assign it to any number of nodes in the environment. For
each assigned partition, you can specify a startup replicate count, as described
under “Assigned Server Partition Properties” on page 266.

Router Partition
When the service object in a partition is replicated for load balancing, iPlanet UDS
automatically creates an extra partition called a router partition. The purpose of a
router partition is to route the traffic between the partitions that are load balancing
work for the service object. Although the router partition is usually assigned to the
same node as one of the server partitions that it is managing, it can be on any server
node in the environment.

If the service object is replicated for both failover and load balancing, iPlanet UDS
replicates the router partition for failover and replicates the server partitions for
load balancing. As a result, if the first router partition fails, the second router
partition can take over and manage the partitions that are sharing the work load,
and so on for each replicated router partition. See “The Router Partition” on
page 424 further information about the router.

About Partitions

230 iPlanet Unified Development Server • Programming Guide • August 2001

Although the router partition appears in the Partition Workshop as a standard
partition, we strongly recommend that you do not move any service objects onto
this partition.

Non-replicated Server Partition
A non-replicated server partition is a partition containing service objects that were
not defined as being replicated. When a logical partition is non-replicated, you can
assign only one enabled partition in the environment. Other copies you make of the
non-replicated server partition will be automatically disabled, as described under
“Assigned Server Partition Properties” on page 266.

In the Partition Workshop, you can change whether or not a partition is replicated
by modifying the definition of the service object that it contains. See “Modifying a
Service Object Definition” on page 260 for information.

Reference Partition
A special kind of logical partition is a reference partition. A reference partition allows
you to share an existing service object in another application (or in another
environment) rather than starting a new instance of the server partition in the
current application.

To share a service object between applications, you first deploy the service object in
one application. The application that deploys the service object can be either a
server application or a client application—it makes no difference.

Then, in the other applications that need to access that deployed service object, you
create a reference partition. Instead of containing a new service object, the reference
partition points to the existing service object that was originally deployed as part of
the first application.

Sharing Services Objects in the Current Environment
Reference partitions allow you to create business services that are shared by any
number of applications in the current environment. For example, if you want your
application to interact with an image server that is already provided by another
application in the environment, you can include the project that defines that service
object as a supplier and then create a reference partition that points to the existing
service object. This way your application will be sharing the existing service object
with any other applications that are using it, rather than creating a new instance of
the service object. Figure 7-3 illustrates a reference partition:

About Partitions

Chapter 7 Deployment Concepts 231

Figure 7-3 Reference Partition for Current Environment

Sharing Services Objects Between Connected Environments
If your deployment environments are connected, you can create business services
that are shared across environments. For example, you may have a service object
that can run only in one environment, such as a service object that uses a
specialized satellite feed or stock ticker that can be accessed through a callout to an
external service running in one location. Or, imagine you have a service object that
handles personnel data. This service object only resides in the headquarters
environment because that is where the personnel database is. All other applications
installed in their own local environments must access the personnel database
located at headquarters.

Applications in other environments can access the specialized service object in the
connected environment by using a reference partition. The following figure
illustrates:

Client PartitionClient Partition

Client Partition Client Partition

Auction Service

Image Service

Image Tester

Reference partition for
Image Tester Application

About Partitions

232 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 7-4 Reference Partition for Connected Environment

The advantages of using reference partitions include:

• modularity

The ability to share a single service object between multiple applications means
that you need to create and manage only that single service object. Without
reference partitions, you would need to create more than one version of the
service object.

• efficient use of resources

Only one service object needs to be running to provide services needed by
multiple applications. Without reference partitions, you would need to run the
service object within every application that needs its services.

For complete information about reference partitions, see “Making a Reference
Partition” on page 251.

Environment North America Environment Europe

Client Partition

Client Partition

Client Partition

Client Partition

Configuring Libraries

Chapter 7 Deployment Concepts 233

Configuring Libraries
A library can be installed in both deployment environments and development
environments. When the library is installed in a deployment environment, any
number of applications running in the environment can reference it. This provides
the ability for multiple applications to share a single library, which makes
installation easier and more efficient.

A library distribution is a set of related libraries packaged together for distribution.
This provides a convenient way to bundle any number of related libraries together
for deployment and installation. When you bundle libraries into a library
distribution, you can make a single library distribution to use for deployment.

To create a library, you must define a project that contains the definitions you want
to be shared and then configure that project as a library. A project becomes a
“library” rather than a project when you include that project in a library
distribution. There is a one-to-one correspondence between the projects you include
in a library distribution and the libraries that are available when that library
distribution is deployed. Each project in the library distribution gets compiled into
a separate shared library.

For assigned libraries, you can specify whether the library on a given node is
standard or compiled. The option of providing compiled libraries provides
improved performance. A compiled library uses C++ code generation to create a
compiled shared library. Normally, the libraries running on server machines are
compiled. However, by default, all libraries are standard because installation and
management of standard libraries is simpler.

The ability to share a library rather than duplicating its definitions provides
efficiency gains. You can improve performance further by providing compiled
libraries. A compiled library uses C++ code generation to create a compiled shared
library. Normally, the libraries running on server machines are compiled.
However, by default, all libraries are standard because installation and
management of standard libraries is simpler.

If a given library has supplier libraries, you must be sure to set the compilation
options correctly for the main library and its suppliers. Once you designate a given
library on a particular node as compiled, you must ensure that all its supplier
libraries are also compiled. For a standard library, the supplier libraries can either
be standard or compiled.

When deciding whether or not a library is compiled, you also need to take into
account whether or not the partition that will be using the library is compiled. If the
partition is compiled, the library that it accesses must also be compiled. If the
partition is standard, the library that it access can be either standard or compiled.

About Environments

234 iPlanet Unified Development Server • Programming Guide • August 2001

A library distribution has a compatibility level based on the compatibility level of
the project for which you give the Configure as > Library command. Like an
application’s compatibility level, the library distribution’s compatibility level
allows you to release different versions of the same library within a single
environment. The rules for when you need to raise the compatibility level of a
library distribution are the same as those for an application. See Chapter 13,
“Upgrading Deployed Applications” for information.

About Environments
An environment is the distributed system on which you run a distributed iPlanet
UDS application. An iPlanet UDS environment may consist of one or hundreds of
computers. A local- or wide-area network might contain several iPlanet UDS
environments. An iPlanet UDS developer or system manager uses the
Environment Console to define an environment by describing a set of nodes, each
of which corresponds to a particular machine in the environment. Only after an
environment has been defined can you partition the application to run in that
environment. When you partition the application, you can select the environment
definition you want to use.

There are two kinds of environments in iPlanet UDS: development environments
and deployment environments.

Development Environment
A development environment is an environment in which the development version
of iPlanet UDS is installed. You create and test all your iPlanet UDS applications in
the development environment. In the Partition Workshop, you can partition your
application in the development environment for initial testing of the distributed
version of the application.

Deployment Environment
A deployment environment is an environment in which the runtime version of
iPlanet UDS is installed. You can have any number of environment definitions that
represent the deployment environments in which you plan to install the
production version of your application. Each deployment environment can consist
of a different number of nodes, with varying architectures. In the Partition
Workshop, you partition your application for each of the deployment

About Environments

Chapter 7 Deployment Concepts 235

environments for final testing. When your application is complete, you use the
Partition Workshop to create an application distribution for each of the
deployment environments. An application distribution contains the files necessary
for actually deploying the applications.

Simulating Deployment Environments
Because you cannot run the Partition Workshop in the deployment environments
(and you may not even have physical access to them), iPlanet UDS simulates the
deployment environments by using nodes in your development environment as
stand-ins for nodes in the deployment environment. Every node in an environment
definition is assigned to a “testing node,” which is the node in the development
environment that is used to simulate the deployment node for testing. (Of course,
to simulate your deployment environments, your development environment must
include at least one of each machine type that will be included in all your
deployment environments.)

In the Partition Workshop, you select the environment into which you wish to
partition your application. This environment can either be the development
environment or a deployment environment; a deployment environment is
simulated within the development environment. While you are working in the
Partition Workshop, you can examine the node definitions for the environment in
which you are partitioning your application, as described in “Examining Nodes in
an Application Configuration” on page 245. However, you cannot change the node
definitions or any other part of the environment definition from the Partition
Workshop. The Environment Console or the Escript utility, its command-line
counterpart, are the only utilities that allow creation and modification of
environment definitions.

Connected Environments
iPlanet UDS environments can be connected, that is, partitions in one environment
can find service objects in other iPlanet UDS environments and access them. See
“Using Reference Partitions with Connected Environments” on page 254 and
“Specifying the Environment Search Path” on page 262 for information about
using service objects from other environments.

About Environments

236 iPlanet Unified Development Server • Programming Guide • August 2001

Nodes
A node is a machine in your network that is capable of running an iPlanet UDS
partition. In the Partition Workshop and Fscript, you can examine the nodes in the
environment by viewing the node’s properties dialog. You cannot, however,
change node definitions from the Partition Workshop or Fscript.

Every node has the following properties:

For more information about nodes and environments, see A Guide to the iPlanet
UDS Workshops and the iPlanet UDS System Management Guide.

Node Property Description

Name The name assigned to the node when the environment was
defined.

Architecture The node type.

Testing Node The name of the node in the development environment used to
simulate the current node for testing.

Client Specifies that you plan to install client partitions on the current
node. A node where you plan to install only server partitions is
considered a server node.

Use as Model Specifies that the current node represents a number of identical
client nodes.

Use for Testing Specifies that the node can be used for simulating a node in a
deployment environment.

Resource Managers The list of resource managers available on the current node.

Installed Protocols The list of communication protocols that the node can use to
communicate with other iPlanet UDS nodes.

Installed Libraries The list of restricted, user-defined external projects installed on
the current node.

237

Chapter 8

Deploying iPlanet UDS
Applications and Libraries

After you develop your application or library, you need to configure the
application or library and deploy it onto the network.

This chapter describes how to deploy your applications and libraries, and includes
the following information:

• an overview of the various ways you can configure and deploy an application

• how to configure applications and libraries

• how to package libraries and applications by making a distribution

• how to install applications and libraries in your environment

About Deploying Applications and Libraries
When you develop iPlanet UDS applications and libraries, you first need to design
and write the necessary TOOL code. Finally, after you have thoroughly tested the
application or library, you need to perform the following tasks to provide the
application to users, as illustrated in Figure 8-1:

1. Define a configuration (also called partitioning).

When you define an application configuration, you make decisions about what
parts of your application are going to run together as a partition, and on what
kinds of machines. You can also specify settings, such as whether the partition
is compiled.

About Deploying Applications and Libraries

238 iPlanet Unified Development Server • Programming Guide • August 2001

2. Make a distribution.

The files that make up the installable iPlanet UDS application or library are
collectively called the distribution for that application or library. You can then
move and copy a distribution to distribute and install the library or
application.

3. Install the application or library.

iPlanet UDS provides system management tools that let you install and
manage applications and libraries on a network that is defined as an iPlanet
UDS environment.

Figure 8-1 Deploying an Application or Library

Application
Distribution

Client

Client

Client

Server Server

Installed Application

About Deploying Applications and Libraries

Chapter 8 Deploying iPlanet UDS Applications and Libraries 239

iPlanet UDS Utilities for Deploying
Applications and Libraries
iPlanet UDS provides the following utilities that enable you to deploy iPlanet UDS
applications and libraries:

Partition Workshop An iPlanet UDS workshop that is available only when you
run the iPlanet UDS workshops in distributed mode. You can define an application
or library configuration in the Partition Workshop. You can also make a
distribution and install the application or library in the current development
environment. The Partition Workshop is described in detail in A Guide to the iPlanet
UDS Workshops.

Fscript A command-line utility that lets you interact with the development
repositories and the iPlanet UDS configuration features. You can write scripts to
automate these commands. Fscript is described in the Fscript Reference Manual.

Environment Console An application that graphically represents the parts of an
iPlanet UDS environment. You can use the Environment Console to install,
monitor, and manage applications in the environment. The Environment Console
is described in the iPlanet UDS System Management Guide.

Escript A command-line utility that lets you interact with the iPlanet UDS system
management features. You can write scripts to automate these commands. Escript
is described in the Escript and System Agent Reference Manual.

Examples
The example used in this chapter is the Auction example, which is described in
“Auction” on page 634.

Creating a Default Application Configuration

240 iPlanet Unified Development Server • Programming Guide • August 2001

Getting Started
This chapter provides a step-by-step description of how to define a simple
application configuration using the iPlanet UDS workshops and the Environment
Console. For information about how to use Fscript and Escript commands to
perform the same tasks, see the Escript and System Agent Reference Manual and the
Fscript Reference Manual.

Before you can configure or deploy an application, you must be running the iPlanet
UDS Workshops in distributed mode, which means you have clicked the iPlanet
UDS Distributed icon or used the forte command without specifying the -fs flag.
For more information about how to start the iPlanet UDS Workshops in distributed
mode, see A Guide to the iPlanet UDS Workshops.

To deploy an application, you need to have write access to the volumes where you
want to place the application distribution and where you want to install the
application.

Creating a Default Application Configuration
At this point, you should have written and test run your application in the iPlanet
UDS Workshops or Fscript. You now need to define a configuration for your
application so that you can install it in a deployment environment for testing and,
eventually, customer use.

To create an application configuration, you need to define to which partitions
different parts of the application belong. This task is described in “Configuring
Applications” on page 225, and is also referred to as partitioning.

The simplest way to define a configuration is to let iPlanet UDS create a default
configuration, as described in the next section. However, you will usually want to
customize your application configuration, as described in “Customizing the
Application Configuration” on page 247.

You can configure applications that contains both client and server partitions
(client applications) or applications that contain only server partitions (server
applications).

Creating a Default Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 241

➤ To create a default application configuration for client applications

1. In the Project Workshop for the main project of the application, choose File >
Configure as > Client.

The Partition Workshop opens, showing the default logical partitions for the
application on the left and the default assignments of the partitions onto the
nodes in the development environment.

The following figure shows a default configuration for the Auction client
application.

➤ To create a default application configuration for server applications

1. In the Project Workshop for the main project of the application, choose File >
Configure as > Server.

The Partition Workshop opens, showing the default logical partitions for the
application on the left and the default assignments of the partitions onto the
nodes in the development environment.

Creating a Default Application Configuration

242 iPlanet Unified Development Server • Programming Guide • August 2001

The following figure shows a default configuration for the Auction server
application.

In the above figures, the nodes of the environment definitions are:

hillary a server node running AIX

MIMI a client and server node running Windows NT

You can choose to use the default configuration, but you probably want to
customize this configuration.

If you have already defined a custom configuration, but want to have iPlanet UDS
replace that configuration with the default configuration, use the File > Repartition
command.

How the Default Configuration is Generated
When iPlanet UDS partitions an application, it assigns all the service objects in the
main project and all its supplier projects to logical partitions.

How Client Partitions Are Assigned
If the application has a client (that is, if you used the Configure as > Client
command to create the configuration), iPlanet UDS creates a client partition to
contain the user interface for the application and the application startup code. In
addition, if the application contains any user-visible service objects, iPlanet UDS
will put them on the client partition if the client nodes in the environment can
support them. The client partition is then assigned to every client node in the
environment.

Creating a Default Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 243

How Server Partitions Are Assigned
If a service object has environment visibility, iPlanet UDS assigns it to a server
partition. If a service object has user visibility and cannot run on the client
partition, iPlanet UDS assigns it to a different server partition than the one that
contains the environment-visible service objects. Each server partition is then
assigned to an appropriate node in the environment. If the partition requires a
database resource manager or a restricted C project, iPlanet UDS assigns the
partition to the node where the required resource or library is installed. If you have
previously specified a default node and/or excluded nodes for the configuration
(described in “Changing Configuration Properties” on page 268), this will be taken
into account when the application is partitioned.

By default, iPlanet UDS assigns all compatible service objects to the same partition.
However, when you are ready to deploy the application, you may need to move
some of the service objects to partitions on different nodes in the deployment
environment. You should do this before making the application distribution for the
deployment environment. See “Customizing the Application Configuration” on
page 247 for information on how to make new partitions and move service objects.

Why Some Service Objects Are Unassigned
If you have any service objects in the application that cannot be supported in the
current environment (for example, because a DBMS resource manager service
object is defined for an external manager that is not present in the environment, or
because a restricted 3GL project has not been installed in the environment), these
will be unassigned. To run your application in this environment, you must either
update the service object definition or the system manager must update the
environment definition so the service object can be assigned to a partition. You can
then assign the partition to the appropriate node.

Why Service Objects Are Not Replicated
iPlanet UDS does not automatically replicate your service objects for load
balancing or failover. Instead, in the Partition Workshop, you must replicate the
partitions to which the service objects are assigned. You can replicate a partition
either by assigning it to an additional node (as described under “Adding Partition
Assignments” on page 264) or by setting the replication count for an individual
assigned partition on a single node (described under “Changing Assigned Partition
Properties” on page 265).

For each service object that is replicated for load balancing, iPlanet UDS
automatically creates a router partition. The router partitions are assigned to the
default server node for the environment.

Creating a Default Application Configuration

244 iPlanet Unified Development Server • Programming Guide • August 2001

Examining the Logical Partitions
The Logical Partition browser portion of the Partition Workshop, shown in
Figure 8-2, displays a two-level hierarchy that lists the names of the logical
partitions for the environment and the service objects contained in each partition.

For logical partitions, the browser displays the logical partition names. Icons
indicate whether the partition is a client partition or a server partition. You can
identify a router partition by its name.

Figure 8-2 Logical Partition Browser

To view a list of the nodes to which the partition is assigned, double-click on the
partition name. A dialog appears, as shown in Figure 8-3, which lists the nodes
where the partition is assigned and indicates whether the partition is enabled or
disabled.

Figure 8-3 Logical Partitions Dialog

Client partition icon

Service object icon

Server partition icon

Creating a Default Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 245

For service objects, the Logical Partition browser displays the service objects’
names. To examine the service object definition, double-click on the service object
name. The Service Object Properties dialog opens, displaying the full definition of
the service object.

If the service object is in a reference partition, the Service Object Properties dialog
does not display the full definition of the service object. Instead, the dialog displays
the name of the referenced application and referenced partition. (If the service
object in the reference partition is in another environment, the Service Object
Properties dialog shows the environment search path.)

To display the full definition of the service object, you must examine the
configuration for the project where the service object was originally defined.

If there is a mismatch between the service objects defined in the application and the
external managers or installed C projects provided by the environment, iPlanet
UDS will not be able to assign all the service objects to logical partitions. In this
case, the unassigned service objects will be displayed on the “Unassigned” list.
Because you cannot run the application with unassigned service objects, you must
fix this problem either by modifying the service object definition or having the
system manager modify the environment definition. See “Modifying a Service
Object Definition” on page 260 for information on modifying the service object
definition.

Examining Nodes in an Application
Configuration
The Nodes browser displays the assigned partitions within the environment. By
default, the browser displays a topological view of the environment. The View >
Node Outline command lets you display the same information in an outline form.

For each node in the environment, the browser displays a three-level hierarchy. At
the top level is the node name. At the second level are the partitions assigned on
that node. At the third level are the service objects assigned to each partition.

To examine the node properties, double-click the node name, or select the node
and choose the Component > Properties… command. The Node dialog appears,
shown in Figure 8-4, displaying the node properties described under “About
Environments” on page 234. These properties are the settings that were specified
for the node when the environment was created in the Environment Console, and
you cannot change them from the Partition Workshop. See the iPlanet UDS System
Management Guide for further information on the properties of a node.

Creating a Default Application Configuration

246 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 8-4 Node Properties Dialog

Examining the Assigned Partitions
For each assigned partition, you can examine information about the partition as
well as information about any DBSession service objects on the partition. To open
the Assigned Partition Properties dialog, double-click the assigned partition name
or select the partition and choose the Component > Properties… command. See
“Changing Configuration Properties” on page 268 for information about the
properties available for assigned client partitions and for assigned server
partitions.

You cannot use the Partition Workshop to see which projects in your application
are assigned to a particular partition. However, you can use Fscript to do so. The
ShowApp command in Fscript shows the current configuration information for the
current application in the current environment. See the Fscript Reference Manual for
information on the ShowApp command.

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 247

Customizing the Application Configuration
You can customize application configurations in any of the following ways:

• choose a simulated environment definition, as described in “Choosing a
Simulated Environment Definition” on page 249

• redefine logical partitions, as described in “Redefining Logical Partitions” on
page 249, which affects all assigned copies of that partition

• modify a service object definition, as described in “Modifying a Service Object
Definition” on page 260

• change partition assignments and add partition assignments, as described in
“Changing Partition Assignments” on page 264

• change assigned partition properties, as described in “Changing Assigned
Partition Properties” on page 265

• change configuration properties, as described in “Changing Configuration
Properties” on page 268, which causes iPlanet UDS to repartition the
application

Note that the application configuration does not include the libraries that are
needed by the application. If your application has supplier libraries, you must
create a separate library configuration for the libraries, as described under
“Modifying a Library Configuration” on page 308, and then create a separate
library distribution for them as described under “Making a Library Distribution”
on page 312. Both the application distribution and library distribution must be
installed for the application to run.

To modify a configuration, you must first open it.

Customizing the Application Configuration

248 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To open a configuration

1. In the Project Workshop for the main project, choose File > Configure as >
Client or Server, depending on the type of configuration.

2. After the Partition Workshop opens, choose the name of the environment you
want to use, as shown in the following figure:

See “About Environments” on page 234 for a description of the relationship
between a configuration and an environment.

If you select an environment that does not yet have a configuration, iPlanet UDS
automatically partitions the application. If you select an environment that already
has a configuration and you have changed any of your projects in such a way as to
affect the configuration, iPlanet UDS automatically performs an incremental
partitioning on the application, however, this may take some time.

Note that to make permanent changes to a configuration, your workspace must be
open for updating. If your workspace is open for reading only, you can use the
Partition Workshop to examine a configuration, test it, and make temporary
modifications to it. However, because you cannot save your workspace, any
changes you make to the configuration are only temporary.

You test a client configuration in the Partition Workshop by selecting an
environment in which to run the client application. For information about testing a
client configuration in the Partition Workshop, see A Guide to the iPlanet UDS
Workshops.

Debugging the application from the Partition Workshop allows you to run the
application using the current configuration and to step through the code running
on the client partition. You cannot use the iPlanet UDS Debugger to monitor code
running on remote partitions. For information about debugging a client partition in
the Partition Workshop, see A Guide to the iPlanet UDS Workshops.

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 249

Choosing a Simulated Environment Definition
By default, iPlanet UDS creates the default configuration based on the definition of
the current development environment.

You can choose to create a configuration for another environment definition by
choosing one of the names in the environment drop list, as shown in Figure 8-5.
Note that if any environment definitions are currently locked by the Environment
Console or the Escript utility, you cannot use them.

Figure 8-5 Choosing the Name of a Simulated Environment

iPlanet UDS creates a configuration for an application in a particular environment.
Therefore, you can define one configuration for each environment definition
shown in the environment drop list.

Redefining Logical Partitions
You can make the following changes to a logical partition:

• move a service object from one partition to another

• create a new logical partition to contain the selected service object

• make a reference partition

• make an applet

• modify the definition of an individual service object

Customizing the Application Configuration

250 iPlanet Unified Development Server • Programming Guide • August 2001

Moving Service Objects Between Partitions
You can move a service object to any compatible partition. For the partition to be
compatible, the service objects in the target partition must meet the following
conditions:

• If the service object you want to move is replicated, the service objects in the
target partition must be replicated the same way.

• If the service object you want to move is associated with a resource manager,
the service objects in the target partition must be associated with the same
resource manager.

• If the service object you want to move belongs to a restricted project, the
service objects in the target partition can belong to another restricted project
only if both restricted projects can run on the same node.

If you do try to move a service object to an incompatible partition, you will get an
error message that explains why it is incompatible.

You can include a user-visible service object in the same partition as an
environment-visible service object. However, when a user-visible service object is
in the same partition with an environment-visible service object, the user-visible
service object becomes accessible only within that partition. This limited
accessibility can be a useful optimization technique. See “Combining Service
Objects and Partitions” on page 257 for more information.

➤ To move a service object

1. In the Logical Partition browser, select the service object you wish to move.

2. Drag the service object on top of the target partition name.

If the partition is incompatible, iPlanet UDS will display an error dialog
explaining why the service object cannot be moved.

Creating a New Logical Partition
To create a new logical partition, you must have at least one existing service object
that you wish to assign to it.

➤ To create a logical partition

1. Select the service object you wish to move to the new partition.

2. Choose the Component > New Logical Partition command.

A new logical partition containing the service object appears in the list of
logical partitions.

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 251

Making a Reference Partition
Before you can make a reference partition, the application that includes the service
object must be deployed. Then, you must obtain the project that defines the service
object and include it as a supplier plan for your main project.

The project that you include as a supplier plan for your main project must be the
same project that was used to define the service object in the deployed application.
The supplier project in the current application must match the project in the
deployed application in the following ways:

• the names of the projects must be the same

• the compatibility levels of the projects must be the same

• all runtime IDs must match

Any time that multiple repositories are using the same project, the project must
have been imported with IDs into all the repositories (except for an originating
repository) even when the project was originally imported into a repository
without IDs. Whenever a project without IDs is imported into a repository, new
IDs are automatically created for the project, its components, and its service objects.
If you simply import the same exported project without IDs into different
repositories, applications generated by these separate repositories will not
recognize that the projects, service objects, and components are the same because
the IDs are different.

If you have received an exported project that does not include unique IDs, you
need to get another copy of the exported project that includes these IDs; otherwise,
your application will not be able to use the deployed partition. The iPlanet UDS
runtime system uses the IDs to determine whether the requested service object and
the available service objects are the same.

You must perform the following steps to include a service object from a deployed
application in your current application.

CAUTION If the project that defines the service object was created in another
repository, you need to export the project from the other repository
using the Fscript ExportPlan with the ids option. Then, you need to
import this exported plan into your repository.

Customizing the Application Configuration

252 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To include the project that defines the service object

1. Deploy the application that defines the service object that is to be shared.

2. If the service object is in a connected environment, you must make a
distribution in the current environment for the server application that contains
it (although you do not install it).

3. In the application that needs to access the deployed service object, include as a
supplier plan the project from the deployed application that originally defined
the service object.

4. Use the Partition Workshop to create a reference partition that points to the
existing service object.

If the service object is in a connected environment, the environment search
path for the service object in the reference partition must specify the
environment where the original server application that contains the service
object is deployed.

The remainder of this section describes how to use the Partition Workshop to
create a reference partition. See “Sharing Service Objects Between Applications” on
page 426 for detailed information on Step 1 through Step 3.

When you partition your application in the Partition Workshop, iPlanet UDS
creates new partitions containing all the service objects in the main project and all
of its supplier projects, just as usual. Therefore, the service object that you are
planning to include in the reference partition will be on a new partition (or it may
be sharing a new partition with other service objects).

At this point, you must create the reference partition to point to the deployed
service object, and move the service object from the new partition into the reference
partition. This tells iPlanet UDS to use the service object that the reference partition
points to, rather than creating a new instance of the service object.

To create the reference partition, use the New Reference Partition command. When
you choose the New Reference Partition command, a dialog displays a list of the
applications from which you can select an existing service object. This list consists
of all those applications for which application distributions have already been
made. Therefore, you should make sure that the distribution that includes the
service object you want to reference was made before you try to reference it.

➤ To make a reference partition

1. In the Logical Partition browser, select the service object name that you wish to
access from the reference partition.

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 253

2. Choose the Component > New Reference Partition… command.

The Select Containing Application dialog opens.

3. In the Select Containing Application dialog, select the application that contains
the existing service object you wish to reference, and click the OK button.

If automatic starting is specified for the environment (the default), the reference
partition will automatically start the service object it references when this is
necessary. If the automatic starting property is turned off for the environment
(check with your system manager), you can turn on automatic startup for the
service object in the reference partition by using the (a) option in its environment
search path. However, before using this auto-start feature, please check with your
system managers, because auto-starting an individual service object affects the
startup behavior of the entire application.

For complete information about auto-starting partitions, see “Specifying Auto-Start
for a Partition” on page 434.

When the application that contains the reference partition is installed, the
application that contains the service object that is being referenced must also be
installed. If the application that contains the service object is not installed, the
application that contains the reference partition will fail at runtime when it tries to
access the service object.

If, in the future, the compatibility level of the application that defines the service
object referenced by the reference partition is raised, and you want to use the new
release of the service object, you must update your application appropriately. For
information about using new compatibility levels for service objects, see “Using
Compatibility Levels to Upgrade” on page 478.

Customizing the Application Configuration

254 iPlanet Unified Development Server • Programming Guide • August 2001

Using Reference Partitions with Connected Environments
If your deployment environments are connected and a service object that you need
to access can run only in one of the environments, you can access that service object
from other environments by using a reference partition combined with an
environment search path. (To see if a given environment is connected to any other
environments, you must use the Environment Console or Escript. For information
on how to do so, see the iPlanet UDS System Management Guide.)

In a reference partition to a connected environment, you use the environment
search path on the service object to specify the name of the environment that
contains the service object you want to access. When the environment search path
for a service object specifies an environment name other than the current
environment, every time the service object is referenced, iPlanet UDS always uses
the service object in the specified environment.

When you have applications in multiple environments that need to use a specific
service object in a specific environment, you should deploy the application that
contains the service object in the environment in which it can run. Then, each
application in the other environments can create a reference partition to the service
object in that application. The search path from each application would include
only the specific environment where that service object is deployed. (The search
path must exclude the local environment).

Making a reference partition to a service object in a connected environment is
similar to making a reference partition to a service object within the current
environment, however, you must follow some extra steps. First, you must make a
distribution for the application that contains the service object.

➤ To make the distribution for the application that contains the service object

1. Import the project that defines the service object into the development
repository.

Remember, the project that defines the service object must have been exported
from the repository where it was defined using the Fscript ExportPlan
command with the ids option. If it was not, the application with the reference
partition will not be able to inter-operate with the application that is running
the service object. If your copy of the exported project does not include unique
IDs, you need to get another copy of the project that does.

2. In the Project Workshop, choose the File > Configure as > Server command to
partition the application that contains the service object.

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 255

3. In the Partition Workshop, partition the application appropriately and choose
the File > Make Distribution command to make a distribution for the
application.

Making the distribution makes the service object available for referencing in
the current environment. However, you should not install the application,
because the service object is intended to run outside of your environment and
cannot be installed in your current environment.

Second, you must use the service object’s environment search path to specify which
environment actually contains the service object to be accessed.

When a service object is in a reference partition and you provide an environment
search path for the service object, iPlanet UDS searches the environments in the
environment search path for a service object to use within the current application.
iPlanet UDS uses the first service object it finds in the search path.

➤ To create the reference partition with an environment search path

1. Use the Component > New Reference Partition command to make a reference
partition for the service object and assign it.

2. In the assigned reference partition, double-click the service object name.

The Service Object Properties dialog opens.

3. Click the Search Path tab.

Customizing the Application Configuration

256 iPlanet Unified Development Server • Programming Guide • August 2001

4. On the Search Path page, enter the environment search path for the service
object (see “Specifying the Environment Search Path” on page 262 for the
environment search path syntax).

Because you want to use a service object in a different environment, the
environment search path should not include the current environment.

Defining a Client Partition as an Applet
An applet is a client application that can be launched from another application
using the AppletSupport library, but that cannot be run as an independent
application.

You can configure any client application as an applet by turning on the Applet
toggle in the Logical Partition Properties dialog for the client partition.

See “Writing Applications That Use the Launch Server and Applets” on page 435
for complete information on writing and configuring an application that launches
applets.

➤ To create an applet

1. In the Logical Partition browser, double-click the client partition.

The Logical Partition dialog opens.

2. In the Logical Partition dialog, turn on the Applet toggle.

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 257

Combining Service Objects and Partitions
When you partition your application for the first time, iPlanet UDS assigns the
service objects to logical partitions according to the rules described under
“Creating a Default Application Configuration” on page 240. The Partition
Workshop then allows you to move service objects between compatible partitions
in many different ways.

The way you combine service objects onto partitions has a significant effect on the
performance and behavior of your application. Some particularly useful
combinations of service objects are:

• combining user-visible service objects onto one partition

This combination minimizes server process resources and network connection
resources on clients and servers.

• combining environment-visible service objects onto one partition

This combination minimizes server process resources and network connection
resources on clients and servers.

• combining an environment-visible service object and a user-visible service
object

This combination make the user visible service object private to the partition
containing the environment-visible service object.

• combining load-balanced service objects on a single partition

This combination allows you to minimize process resources and network
connection resources in some cases.

The following sections provide detailed information about these basic
combinations.

Combining User-Visible Service Objects On Partitions
A partition that includes only user-visible service objects is a private partition for the
client partition (or for any other server partition that is referencing one of the
user-visible service objects). iPlanet UDS starts a new copy of the private partition
each time a client or another server accesses the service object in the application.

By default, the Partition Workshop places all your user-visible service objects on
your client partition, if possible. Otherwise, the user-visible service objects are on a
private partition on whichever server node has the necessary resources.

Customizing the Application Configuration

258 iPlanet Unified Development Server • Programming Guide • August 2001

By combining a number of user-visible service objects onto a single private
partition, you minimize the number of server processes needed to support each
client, as well as the network connection resources needed both on the client and
the server. In addition, any access between the service objects within the partition
is executed within the same process and is therefore very efficient.

Combining Environment-Visible Service Objects On Partitions
A partition that includes only environment-visible service objects is a shared
partition. All clients and servers that access the service objects in the partition share
the partition. There is only one copy of a shared partition per application (unless it
is replicated for load balancing or failover). The shared partition can be started up
manually from the Environment Console or Escript, or it will be started
automatically on first access.

By default, the Partition Workshop places all your environment-visible service
objects in the same partition (to minimize the number of partitions) on a server
node.

By combining a number of environment-visible service objects onto a single shared
partition, you minimize the number of server processes needed to support the
clients of the application, as well as the network connection resources needed both
on the client and on the server. In addition, any access between the service objects
within the partition is executed within the same process and is therefore very
efficient.

However, if any of the environment-visible service objects are accessing a resource
that supports only single-threaded access, such as a relational DBMS or a C project
with the multi-threading option disabled, combining environment-visible service
objects into a single partition can cause poor interactive performance in the clients.
This is because access from one client to the single-threaded resource will delay
processing for all other clients that are accessing any of the service objects in the
shared partition. Therefore, to provide the best performance for a shared service
object that accesses single-threaded resource, we recommend placing the shared
service object in its own partition, possibly a partition that is replicated for load
balancing.

Combining Environment-Visible with User-Visible Service Objects
A partition that includes both an environment-visible service object and a
user-visible service object makes the environment-visible service object shared for
the application and the user-visible service object private for that partition. The
user-visible service object can be accessed indirectly through the environment
visible service object—neither the client partition nor any other service objects can
access it directly.

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 259

The Partition Workshop does not include environment-visible and user-visible
service objects within the same partition by default. However, you can move a
user-visible service object onto the same partition with an environment-visible
service object.

This combination is very useful when you have an environment-visible TOOL class
service object that provides DBMS access through a user-visible DBSession or
DBResourceMgr service object. We recommend placing the TOOL class service
object on the same partition with the DBSession or DBResourceMgr service object
because this way a client can access the database only through the TOOL service
object. The DBSession or DBResourceMgr service object is protected from
inappropriate access, because no other partitions can access it.

Combining Load-Balanced Service Objects
When you combine more than one load-balanced service object on a single
partition, iPlanet UDS automatically places all the routers for the load-balanced
service objects onto a single router partition.

This architecture is useful for minimizing the number of server processes needed to
support an application, because only one process is needed to support both routers
for the application. You can use this architecture if you have several service objects
that need to access multi-threaded resources, such as:

• Service objects that access true multi-threaded C projects. The C projects must
have the multi-threaded option enabled, and must be implemented so they
support the multi-threaded conventions on the platform.

• TOOL class service objects that do not access single-threaded resources (such
as a relational DBMS).

However, if any of the load-balanced service objects access a resource that supports
only single-threaded access, such as a relational DBMS or a C project that has not
enabled the multi-threaded option, combining load-balanced service objects onto a
single partition can lead to uneven and unpredictable interactive performance in
the clients. This is because the two routers perform their routing completely
independently from one another. A client request on one of the routed service
objects can delay a concurrent client request on the other routed service object, even
though it is from an unrelated client. Because of this behavior, we do not
recommend this architecture for service objects that access relational DBMSs or
single-threaded external services.

Customizing the Application Configuration

260 iPlanet Unified Development Server • Programming Guide • August 2001

Modifying a Service Object Definition
In the logical partition, you can modify certain properties of the service object.
Note, however, that changing the service object definition in the Partition
Workshop applies only to the current configuration. Changes do not affect the
original service object definition that you specified in the Project Workshop.

In addition, if the service object is in a reference partition, you cannot modify its
definition in the current configuration. You can only make changes to the service
object definition from the configuration that contains the original service object
definition. The exception to this is the environment search path. You must specify a
new environment search path for the service object in a reference partition; the
environment search path in the original service object definition is ignored in the
current configuration.

➤ To modify a service object definition

1. Double-click the service object name to open the Service Object Properties
dialog, as shown below.

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 261

2. Update the appropriate properties.

In the Service Object Properties dialog, you can update only certain properties.
The following table describes the properties on each tab page that you can
update for each kind of service object.

Use the Service Object properties dialog to modify the definition of an
unassigned service object. After you change the external manager name to a
name that is available in the current environment, iPlanet UDS will
automatically reassign the service object to the appropriate partition. When all
unassigned service objects are assigned appropriately, you can run the
application.

Failover and Load Balancing
You can use the Failover and Load Balancing options to turn on replication for a
service object. Note, however, that when you turn on failover and load balancing
for a service object, iPlanet UDS does not automatically replicate your service
objects for load balancing or failover. Instead, you must replicate the partitions to
which the service objects are assigned. You can replicate a partition either by
assigning it to an additional node (as described under “Adding Partition
Assignments” on page 264) or by setting the startup replicates for an individual
assigned partition on a single node (described under “Changing Assigned Partition
Properties” on page 265).

Service object Properties you can update

DB Resource
Manager

General Tab page: Failover (see below), Load Balancing (see below)
Database Tab page: Database Manager
Search Path Tab page: Search Path (see below)

DB Session General Tab page: Failover (see below), Load Balancing (see below)
Database Tab page: Database Manager, Database Name, User Name,
Password
Search Path Tab page: Search Path (see below).

User General Tab page: Failover (see below), Load Balancing (see below)
Export Tab page: Export Name (see below), External Type (see
below)
Initial Values Tab page: initial values for attributes
Search Path Tab page: Search Path (see below)

Customizing the Application Configuration

262 iPlanet Unified Development Server • Programming Guide • August 2001

Setting the Export Name and External Type
The Export Name and External Type properties are for use with the following
external systems:

• DCE

• Encina

• IIOP

• ObjectBroker

• OLE

• XML services

If your service object is not going to function as a server for one of these external
systems, you should ignore these properties. See Integrating with External Systems
for information about integrating DCE, Object Broker, OLE, Encina, and XML
services with iPlanet UDS applications. See iPlanet UDS Java Interoperability Guide
for information about integrating with IIOP.

The export name is the name to be used by the client to identify the service object.

The external type specifies the type of external client application that can access
this service object, either DCE, ObjectBroker, OLE, IIOP, Encina, or none. This
external type tells iPlanet UDS to export the files that you need to set this service
object as a server for the specified external system.

For example, specifying DCE as the external type tells iPlanet UDS to export an
interface definition file when you make a distribution. You will later use the file to
set up this service object as a DCE server. The programmer writing DCE client
applications that access this service object will also read this file to understand how
to access the methods in this service object.

Specifying the Environment Search Path
The environment search path for the service object specifies the connected
environments in which iPlanet UDS searches for the service object (see the iPlanet
UDS System Management Guide for complete information on connected
environments).

The environment search path you specify for an individual service object within a
configuration overrides the environment search path in the original service object
definition itself specified in the Project Workshop (it does not add to it). You can
use this feature only if the current environment is connected to other iPlanet UDS
environments (see the iPlanet UDS System Management Guide for information).

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 263

If you use the environment search path for a service object, you should be sure to
document exactly what you specified for your system manager. Setting the
environment search path for an individual service object overrides what the system
manager specifies for the environment as a whole, and the system manager needs
to be aware of your changes.

To specify the environment search path, enter a string that includes one or more
environment paths. iPlanet UDS searches for the service object in the same order as
the paths in the string. A blank environment search path specifies using the default
search path.

Syntax
The syntax of the search path string is:

path [(a)] [: path [(a)]...

path is:

(@ | @environment_name)

A special (a) option allows you to specify that the service object identified by a
specific path should automatically be started if necessary. However, before using
this auto-start feature, please check with your system managers, because
auto-starting an individual service object affects the startup behavior of the entire
application. For complete information about auto-starting service objects, see
“Specifying Auto-Start for a Partition” on page 434.

You can use an environment variable to specify the contents of the environment
search path. In fact, we recommend using an environment variable because this
makes it possible to change the environment search path for the service object after
the application is deployed.

The value for the environment variable is set on first access to the service object,
using the value of the environment variable as set on the service object’s partition.

Syntax
${environment_variable_name}

Be sure to include the braces!

The following example illustrates a search path that looks first in the current
environment, second in the “la” environment, and last in the “sf” environment:

@:@la:@sf

Customizing the Application Configuration

264 iPlanet Unified Development Server • Programming Guide • August 2001

If two or more connected environments share the same environment name, and
these environments are specified in the environment search path, then you must
use the environment UUID to specify each environment. Specify this environment
UUID in place of the @environment_name, for example,
B763E430-22FF-11D0-A5AA-5BC569EDAA77. For more information about the
environment UUID, see the iPlanet UDS System Management Guide.

Changing Partition Assignments
You can modify a partition assignment in the configuration by:

• adding a partition assignment

• moving an assigned partition from one node to another

• deleting an assigned partition from the node

Adding Partition Assignments
To assign a logical partition to a node, you simply drag the logical partition onto
the appropriate node. The node must provide the resources necessary to run the
particular partition.

If the logical partition is replicated, the new assigned partition will be enabled. If
the logical partition is non-replicated and there is already a copy of the logical
partition assigned in the environment, the new assigned partition will be disabled.

➤ To assign a logical partition

1. In the Logical Partitions browser, select the logical partition you wish to assign.

2. Drag the logical partition to the node to which you wish to assign it.

Moving Partitions
You can move an assigned partition to any compatible node. To be compatible, the
node must provide the resources required by the service objects on the assigned
partition.

To move a partition from one node to another, simply drag the partition to its new
location. If the node is incompatible, iPlanet UDS will display an error dialog
explaining why the service object cannot be moved.

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 265

Deleting Partitions
You can delete any disabled, assigned partition from any node. (The last enabled
copy cannot be deleted.)

➤ To delete a disabled, assigned partition

1. Select the assigned partition.

2. Choose the Edit > Delete command.

3. Confirm that you wish to delete the partition.

Changing Assigned Partition Properties
To set the properties for an assigned partition, double-click the assigned partition
name, or select the assigned partition and choose the Component > Properties…
command. This command opens the Assigned Partition dialog, where you can set
the properties that are appropriate for the particular partition.

The following two sections describe the different properties available for the
assigned client and server partitions.

Assigned Client Partition Properties
Figure 8-6 shows the properties available for an assigned client partition:

Figure 8-6 Assigned Partition Properties Dialog (Client Partition)

By default, a client partition is a standard partition. If you wish to make the
partition a compiled partition, turn on the Compiled toggle. Remember, after
specifying that the partition is compiled, you may need to perform extra steps to
produce the application distribution. See “The Make Distribution Command and
Compiled Partitions” on page 279 for information.

Customizing the Application Configuration

266 iPlanet Unified Development Server • Programming Guide • August 2001

Note that even though the Assigned Partition dialog shows the Compiled option
for all client platforms, code generation for client partitions is not supported for all
platforms. The following table summarizes:

For an assigned client partition, you can request that iPlanet UDS generate and
compile files for a C++ API. To generate the C++ API for a particular assigned
client partition, turn on both the Compiled and Generate C++ API properties on
the Assigned Partition Properties dialog.

When you later use the automatic compilation feature of the Make Distribution
command or the fcompile command to compile the partitions, iPlanet UDS
generates and compiles the files for the C++ API. See Integrating with External
Systems for step-by-step instructions for generating a C++ API for an iPlanet UDS
application.

Assigned Server Partition Properties
Figure 8-7 shows the properties available for an assigned server partition:

Figure 8-7 Assigned Partition Properties Dialog (Server Partition)

The exact properties available on this dialog depend on whether or not the
partition is replicated.

Platform Client Code
Generation Available?

Autocompile Support?

Windows NT Yes Yes

UNIX Yes Yes

OpenVMS Yes Yes

Customizing the Application Configuration

Chapter 8 Deploying iPlanet UDS Applications and Libraries 267

By default, a server partition is a standard partition. If you wish to make the
partition a compiled partition, turn on the Compiled toggle. Remember, after
specifying that the partition is compiled, you may need to perform extra steps to
produce the application distribution. See “The Make Distribution Command and
Compiled Partitions” on page 279 for information.

The Disabled toggle indicates whether the assigned partition is currently disabled.
To enable a disabled partition, you can turn off this toggle. To disable an enabled
replicated partition, turn on this toggle.

Only one copy of a non-replicated partition can be enabled. Therefore, if you
enable a non-replicated partition, the other assigned copies of that partition will
automatically be disabled. To disable a non-replicated partition, you must
explicitly enable another copy of that partition.

The Thread Package property specifies the thread package used by the partition.
The default thread package depends on the particular platform (described in the
iPlanet UDS System Installation Guide). If you do not want to use the default thread
package, use the Thread Package property to specify one of the other thread
packages supported for the particular platform. See the iPlanet UDS System
Installation Guide for information about which thread packages are supported for
each platform.

To specify startup flags for the server partition, enter a list of flags in the Server
Arguments field. These can be the following:

You can also include your own application-specific flags. See the CmdLineArgs
attribute of the Partition class in the Framework Library online Help for
information.

Flag Description

-fm memory
_flags

Specifies the space to use for the memory manager. See A Guide to the
iPlanet UDS Workshops for information.

-fl logger_flags Specifies the logger flags to use for the session. This has no effect for
standard partitions. See A Guide to the iPlanet UDS Workshops for
information on logger flags.

Customizing the Application Configuration

268 iPlanet Unified Development Server • Programming Guide • August 2001

The syntax for the server arguments is platform dependent. For example, any
argument with parentheses needs to be enclosed in double quotes or there will be a
runtime error.

To provide startup replicates for a replicated partition, enter the total number of
partitions to be started in the Replication Count field. When the application starts,
iPlanet UDS automatically creates the number of replicates you specify (unless the
system manager overrides your setting).

Changing Configuration Properties
For the configuration in general, you can set the following two properties:

Changing the node settings causes the application to be automatically
repartitioned after you click the OK button on the properties dialog.

Viewing and Setting the Configuration Properties
To view the default node and excluded nodes for the current configuration, choose
the File > Properties… command. The Properties… command opens the
Configuration Properties dialog, shown in Figure 8-8, displaying all the nodes in
the environment. If the toggle next to the node name is checked, this indicates that
the node is excluded from the configuration.

NOTE The server arguments take effect only when the partition is started
using the Partition Workshop, the Environment Console, or Escript;
these arguments are ignored when the partition is started manually
using the ftexec command.

Property Description

Default node iPlanet UDS automatically assigns all partitions that can run on it to
the default node.

Excluded nodes iPlanet UDS will not use these nodes in the configuration.

Making an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 269

Figure 8-8 Configuration Properties Dialog

To specify a default node, select the node name from the drop list. To exclude a
node, turn on the toggle next to the node name.

Recreating the Default Configuration
The File > Repartition… command erases all changes you have made to the
configuration and forces iPlanet UDS to perform a complete automatic partitioning
on the application. A complete partitioning removes all current assignments, and
then recreates the default partitioning scheme from scratch.

You typically do not need to use the Repartition… command. Repartitioning is
useful mainly when you have made changes to the configuration that you wish to
remove.

When you choose the Repartition… command, iPlanet UDS displays a
confirmation dialog to ensure that you do not accidentally erase your changes.
When you confirm that you want to repartition the application, iPlanet UDS
performs the repartitioning and displays the default configuration in your
workshop window.

Making an Application Distribution
This section describes how to create an iPlanet UDS application distribution for
installation into an active iPlanet UDS environment. You create an application
distribution from a configuration using the File > Make Distribution command in
the Partition Workshop.

The application configuration does not include the libraries that are needed by the
application. If your application uses one or more libraries, you must be sure that
they are installed in all intended deployment environments. First, you must create
a separate library configuration for the libraries, as described under “Modifying a

Making an Application Distribution

270 iPlanet Unified Development Server • Programming Guide • August 2001

Library Configuration” on page 308, and then create a separate library distribution
for them as described under “Making a Library Distribution” on page 312. Both the
application distribution and library distribution must be installed for the
application to run. See “Installing an Application Distribution” on page 286 and
“Installing a Library Distribution” on page 317 for information about installing
applications and libraries.

Understanding Application Distributions
As the last step in the partitioning process, you create an application distribution. An
application distribution is a collection of files outside of the development
repository that represent an application intended for deployment. Once you create
an application distribution, you load the distribution into a target environment,
and install it using iPlanet UDS system management tools. Additional steps are
required if your configuration contains compiled partitions and you do not or
cannot use automatic compilation when you give the Make Distribution command.

Standard Partitions
A standard partition, with its companion runtime repository, runs against the
ftexec executor (or one of its variants), which is part of every iPlanet UDS
development or runtime system. Any partition, whether client or server, can be a
standard partition. See the iPlanet UDS System Management Guide for information
about ftexec and its variants.

If your application uses only standard application partitions, your application
distribution is complete when you create it (that is, after you give the Make
Distribution command). You can install the application immediately into an active
iPlanet UDS environment.

Compiled Partitions
A compiled partition runs as its own independent executable in the context of an
iPlanet UDS application. You designate a partition as compiled by opening the
assigned partition’s properties dialog (see “Changing Assigned Partition
Properties” on page 265).

Making an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 271

Compiled client partitions are not supported on all the client platforms. The
following table summarizes which platforms support client code generation and
indicates whether automatic compilation (described below) is available:

If your configuration contains compiled partitions, you may wish to select the
automatic compilation option when you give the Make Distribution command.
Automatic compilation will be available if your system manager has set up your
iPlanet UDS installation with the appropriate applications. See the iPlanet UDS
System Management Guide for information on this.

If automatic compilation is not available, or if for some reason you choose not to
use it, you must use the iPlanet UDS fcompile command to generate C++ code for
the partitions and compile the code after you make a distribution. This process is
described under “The Make Distribution Command and Compiled Partitions” on
page 279.

Launching Applets and Other Applications
If your client application launches one or more applets, you must create a separate
application distribution for each applet that the main application launches.
Likewise, if your client application launches other client applications, you must
create a separate distribution for each application that is launched (if the
distributions have not already been created).

To ensure that all the applications and applets required by a main client
application are installed when the main application is deployed; do the following:

• include all the application distributions with the main client applications

• write an Escript script that installs all the applications and applets when the
main client application is installed

See “Writing Applications That Use the Launch Server and Applets” on page 435
and the iPlanet UDS System Management Guide for complete information on writing
and configuring applications that use the Launch Server and applets.

Platform Client Code
Generation Available?

Autocompile Support?

Windows NT Yes Yes

UNIX Yes Yes

OpenVMS Yes Yes

Making an Application Distribution

272 iPlanet Unified Development Server • Programming Guide • August 2001

Adding an Icon File for Windows to the Distribution
You can include in your application distribution icon files that iPlanet UDS will use
when creating the client icon on Windows NT. After using the Make Distribution
command to generate the application distribution, add the appropriate .ico files to
the port-specific directories in the application distribution directory structure
shown in the following section.

Application Distribution Directory
An application distribution consists of several elements, including the actual
partitions you assigned, and a group of files describing the application.

The distribution is contained in the following directory:

FORTE_ROOT/appdist/environment_ID

The environment _ID is the ID for the deployment environment, the distribution_ID
is the first eight characters of the name of the project that was configured. The n in
the cln is the compatibility level of the project that was configured.

Making an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 273

Figure 8-9 Application Distribution Directory Structure

distID.ace

distID.adf

FORTE_ROOT

appdist

distID

cln

generic codegen

appgbl

partID.pgf

Application Distribution

KEY
envID environment ID
distID distribution ID
partID partition ID

Bold indicates literal names
provided by iPlanet UDS.

partID.btd partID.btx

appgbl

partID.exe

compiled partition
(executable file)

platform

partID partID partID

partition generation file
(TOOL project)

envID

__.fso

standard partition
(image repositories)

Making an Application Distribution

274 iPlanet Unified Development Server • Programming Guide • August 2001

The following table describes these files.

Name Purpose

—.ace File which maps iPlanet UDS application component names to unique
identifier names

—.adf Application distribution file. Contains information about the application
(partitioning) configuration—what partitions are assigned to what
nodes—for use in the deployment process. (The .adf extension is added to
the application’s unique identifier name.)

generic Directory that contains all portable files. The partition directories below
the generic directory contain all the standard partitions.

codegen Directory that contains all source files used for generating C++ compiled
partitions.

platform1… Directories that contain non-portable compiled partitions for each
supported platform.

appgbl Directory in which you or iPlanet UDS can place files that would be
installed along with any partition (generic directory) or set of partitions
assigned to a node (platform directories). For example, this file is used for
message files that are used for internationalization.

—.btd, —.btx Standard partition image repositories. (The .btd and .btx extensions are
added to the partition’s unique identifier name.)

—.pgf Partition generation file. Contains the source code used to make compiled
partitions for a single logical partition. (The .pgf extension is added to the
partition’s unique identifier name.)

—.exe, … Compiled partition executable file.(The name is platform dependent and
based on partition’s unique identifier name.)

Making an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 275

File Naming Conventions
In iPlanet UDS distributions, all names are based on the name of the main project
for the application. The following table describes how the names of various
distribution components are determined:

For information about project names, see A Guide to the iPlanet UDS Workshops. For
information about environment names, see the iPlanet UDS System Management
Guide.

Name Determined by

Application name The name of the project that was configured.

Full project and application
names

The name of the project that was configured with the
compatibility level appended to the end. For example, if a
main project named “Auction” has a compatibility level of
1, its full name is “Auction_cl1”. The full application name
is the same.

Distribution ID The first 8 characters of the name of the project that was
configured, not the entire project name (because name
length is limited on some platforms).

Standard partitions, runtime repositories, compiled
partitions, distribution information files, application
distribution files, and even some of the directory structure
that defines the application distribution all use the
distribution ID as a basis for their names.

Partition names The full application name plus an iPlanet UDS
system-generated number. For example, the name of a
partition for the “Auction_cl1” application is
“Auction_cl1_part# (where # is the system-generated
number).

Partition unique identifier The first 6 characters of the application name plus the
partition number. The partition generation file (.pgf) is
derived from the partition’s unique identifier.

Making an Application Distribution

276 iPlanet Unified Development Server • Programming Guide • August 2001

Using the Make Distribution Command
The Make Distribution command produces an application distribution from the
current configuration.

The following table briefly describes the options available for the Make
Distribution command:

When the Make Distribution command completes, a message in the status line
indicates that the distribution was complete. You will be notified if automatic
compilation or installation fails.

The following sections provide more detailed information about the Make
Distribution command’s options.

Make Distribution Option Description

Local/Remote Specifies whether the distribution should be made on the local
node or a remote node. If you choose remote, you can select the
specific node where you wish to create the distribution. See
“Local/Remote Option” on page 277 for further information.

Auto-Compile Specifies whether partitions marked as compiled should be
automatically compiled while making the distribution. If
auto-compile is off, you must compile the partitions yourself as
described under “The Make Distribution Command and
Compiled Partitions” on page 279.

Automatic compilation will work only if your system manager
has set up your iPlanet UDS installation correctly, and is not
available on all platforms for client partitions.

Full or Partial Make If a distribution already exists for the configuration, a partial
make creates the distribution only for those components that
have changed since the last make. See “Full or Partial Make
Options” on page 277 for further information.

Install in Current
Environment

If the configuration is for the current environment, you can
automatically install. However, you should avoid installing too
many versions of the same application. See“Install in Current
Environment Option” on page 278 for further information.

Include Source When you are making a library distribution, this option
specifies that the library source code will be included in the
export files.

Making an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 277

Local/Remote Option
When you make an application distribution from the Partition Workshop, the first
option on the Make Distribution dialog is where to store the application
distribution: on the local machine or on a remote server.

If you are running the Partition Workshop on a model node, do not select Local as
the node where the application distribution is placed. The Environment Manager
never searches for application distributions on model nodes, therefore, you should
not make an application distribution on a model node. Instead, select the remote
node where you chose to store all application distributions. Otherwise, the
Environment Manager cannot locate the application distribution.

Auto-Compile Option
In general, if your system manager has set up your environment to support
automatic compilation, you can use the Auto-Compile option to compile your
partitions automatically.

Full or Partial Make Options
The first time you make a distribution for a given configuration in a given
workspace, iPlanet UDS creates a full distribution, whether or not you select the
Full or Partial Make options. The next time you make a distribution for the same
configuration in the same workspace and you have not yet given an Update
Workspace command, you can request a partial make. For a partial make, the Make
Distribution command changes the existing distribution by updating only those
components that have changed. Naturally, you should only choose the Partial
Make option after you have already created a full distribution.

To use a partial make, you must not only make the distribution from the same
workspace that you used to make the original distribution but you must also use
the same node. When you request a partial make, iPlanet UDS checks the node to
make sure that the appropriate full distribution is already present, and if it is not,
you will get an error.

If you have already made a distribution that contains a compiled partition, and you
want to make a distribution again for the same application, you should consider
the following situations when you decide whether to make a partial distribution or
a full distribution.

• You have changed a partition from a standard, or interpreted, partition to a
compiled partition.

You can use the Partial Make option with the Auto-Compile option, and the
new distribution will contain the newly-compiled partition.

Making an Application Distribution

278 iPlanet Unified Development Server • Programming Guide • August 2001

• You tried to make a distribution with the Auto-Compile option, and the
compile failed.

After you have corrected the cause of the compilation error, you need to select
the Full Make option with the Auto-Compile option to auto-compile the
compiled partitions of the distribution.

• You made a distribution that contained a compiled partition without using the
Auto-Compile option, and you now want to make a distribution using the
Auto-Compile option.

You need to select the Full Make option with the Auto-Compile option to
auto-compile the compiled partitions of the distribution.

Install in Current Environment Option
The Install in Current Environment Option lets you automatically install the
application in the development environment after the distribution is created.

By default, iPlanet UDS assumes that after you have installed an application, the
configuration of the installed application is the correct configuration for the
application.

This assumption can affect whether or not your changes to the application
configuration in the Partition Workshop are used when installing the application.

If you change the contents of any logical partition, iPlanet UDS cannot re-install the
application because the new configuration is incompatible with the configuration
of the installed application.

If you have changed only the partition assignments of an application that is
installed in the current environment, the installed configuration will remain the
same as for the original installation of the application, no matter how you assign
the logical partitions in the environment after you have installed the application.
Therefore, to see the changes, you must first shutdown and un-install the installed
application.

➤ To change the configuration of an installed application without changing the
contents of any logical partitions

1. Shutdown and un-install the application using the Environment Console or
Escript.

You might need to ask your system administrator to perform this task,
depending on who is permitted to use the Environment Console or Escript in
your environment. For information about how to un-install an application, see
“Removing an Application or Library” on page 319.

Making an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 279

2. In the Partition Workshop, configure the application the way you want, then
choose the File > Make Distribution command.

In the Make Distribution dialog, choose the Full Make and Install in Current
Environment options. You can also choose the Auto-Compile option, if
appropriate.

3. Click the Make button.

The Make Distribution Command and Compiled
Partitions
If your configuration contains one or more compiled partitions and you did not use
automatic compilation with the Make Distribution command, the process for
making a distribution has some extra steps.

➤ To make a distribution for a configuration containing compiled partitions

1. Give the appropriate Make Distribution command.

For each compiled partition, iPlanet UDS creates a partition generation file
(.pgf file), which you use with the fcompile command to generate a completed,
compiled partition.

2. Set your environment variables and path as described under “Environment
Variables and Path” on page 279.

3. Run the fcompile command, as described under “Using the fcompile
Command for Compiled Partitions” on page 281.

Environment Variables and Path
Depending on certain characteristics of your system, you may need to set a few
environment variables before you make the distribution for a compiled partition.
You also have to make sure you have a valid C++ compiler installed in your path
(see the iPlanet UDS System Installation Guide for information about which version
of the C++ compiler you need).

Making an Application Distribution

280 iPlanet Unified Development Server • Programming Guide • August 2001

The following table describes the environment variables that affect the fcompile
command:

Environment Variable Description

ORACLE_HOME Set the ORACLE_HOME environment variable if you are
running Oracle in the partition. Set the variable to the root
directory of the Oracle installation. If you do not set this
environment variable, you will receive an error message.

SYBASE Set the SYBASE environment variable if you are running
Sybase in the partition. Set the variable to the root directory
of the Sybase installation. If you do not set this variable
when necessary, you will receive an error message.

FORTE_X_LIBDIRS Set this variable only if the Display library is contained in
the partition and if you are unsure if your X Window
header files reside in a standard location. Generally, you
should set this variable if you are running on a Sparc; if
your hardware vendor also supplied your windowing
software, then you probably do not need to set the variable.
The syntax is:

FORTE_X_LIBDIRS -L/dir_name/lib

FORTE_X_HEADERDIRS Set this variable if the Display library is contained in the
partition. This variable points the C++ compiler to the
directory in which the header files for X Windows and
Motif are stored. The syntax is:

FORTE_X_HEADERDIRS -I/dir_name/include

To find out if the Display library is in the server partition,
use the FindProj, FindApp, and ShowApp commands in
Fscript.

FORTE_CG_RESERVED Set this variable to provide a file containing reserved words
to supplement the list of iPlanet UDS reserved words. You
should provide this file when your project uses names for
class components that are already reserved by your C++
compiler. The iPlanet UDS code generator uses the reserved
words file to rename the class components in order to avoid
conflicts.

The reserved word file is strictly optional—you do not need
to provide one. If you do not set the variable, the default is:
$FORTE_ROOT/install/scripts/cgreserv.lst. The syntax is:

FORTE_CG_RESERVED file_specification

Making an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 281

Using the fcompile Command for Compiled Partitions
The fcompile command generates code, compiles, and links a compiled partition
from a .pgf file. The process for compiling a client partition and a server partition is
the same.

Portable syntax
fcompile [-c component_generation_file] [-d target_directory] [-o output_file]

[-cflags compiler_flags] [-lflags linking_flags]
[-fns name_server_address]
[-fm memory_flags] [-fst integer] [-fl logger_flags] [-cleanup]

OpenVMS syntax
VFORTE FCOMPILE

[/COMPONENT=component_generation_file]
[/DIRECTORY=target_directory]
[/OUTPUT=output_file]
[/COMPILER=compiler_flags]
[/LINKING=linking_flags]
[/NAMESERVER=name_server_address]
[/REPOSITORY=repository_name]
[/MEMORY=memory_flags]
[/LOGGER=logger_flags]
[/CLEANUP]

The fcompile command has other flags that are for use only when integrating with
external systems. See Integrating with External Systems for information on these
flags.

The following table describes the command line flags for the fcompile command:

Flag Description

-c component_generation_file
/COMPONENT=
component_generation_file

Specifies the file that iPlanet UDS compiles. This
value includes the path where the file resides if the
file is not in the current directory. By default, iPlanet
UDS compiles all files in the current directory.

Making an Application Distribution

282 iPlanet Unified Development Server • Programming Guide • August 2001

-d target_directory
/DIRECTORY=target_directory

Specifies where the compiled directories will be
placed. By default, fcompile compiles files in the
current directory, and places the compiled files in the
current directory.

target_directory is a directory specification in local
syntax.

If the -c (/COMPONENT) flag is also specified, the -d
flag specifies where the compiled component files
will be placed. Otherwise, the directory specified by
the -d (/DIRECTORY) flag specifies both the
directory containing the files to be compiled and the
directory where the compiled files will be placed.

-o output_file
/OUTPUT=output_file

The log output file used by the fcompile command.

-cflags compiler_flags
/COMPILER=compiler_flags

Specifies any C++ compiler options. Any header file
specifications included here are used before the
specifications included in the C project definition. For
more information about these options, see Integrating
with External Systems.

-lflags linking_flags
/LINKING=linking_flags

Specifies any linking flags. Any files included here
are linked before files specified in the extended
properties of the C project definition. For more
information about specifying linking flags in the C
project, see Integrating with External Systems.

-fm memory_flags
/MEMORY=memory_flags

Specifies the space to use for the memory manager.
See A Guide to the iPlanet UDS Workshops for
information.

-fst integer
/STACK=integer

The thread stack size in bytes for iPlanet UDS and
POSIX threads. This specification overrides default
stack size allocation. For more information, refer to
the iPlanet UDS System Management Guide.

-fl logger_flags
/LOGGER=logger_flags

Specifies the logger flags to use for the command. See
A Guide to the iPlanet UDS Workshops for information.

-cleanup
/CLEANUP

Deletes all the files except for the newly compiled
partitions.

Flag Description

Making an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 283

When you give the fcompile command for a given partition, you must do so on
machine with the same architecture as the node to which the partition is assigned.
For example, if you are building a compiled partition for an RS6000, you must run
fcompile on an RS6000.

You cannot use a model node to create a distribution. Therefore, you should not
run the fcompile command on a machine that is defined as a model node within
the current environment.

➤ To run fcompile for a compiled partition

1. If necessary, move the .pgf file to the machine with the same architecture as the
intended partition.

2. Set the necessary environment variables, as described in “Environment
Variables and Path” on page 279.

3. Give the fcompile command as described above.

fcompile -c aucio1.pgf -d ./rs6000

This command creates an executable partition file in the format used by the
specific platform.

4. Return the executable partition file to the component’s subdirectory of the
appropriate port in the distribution directory.

For OpenVMS only, you must ensure that the .pgf file’s record format is stream_lf
(you can check the format with the dir/full command). If the record format is not
stream_lf, or if you get an error reading the file, use the following command to
change the file format:

set file/attrib=rfm=stmlf ’filename’

Your application distribution is now ready to install. For instructions on installing
an application distribution, see “Installing an Application Distribution” on
page 286.

Compiling a Partition for Use on Several Computing Platforms
You may need to compile a server for use on more than one computing platform.
For example, let’s say you are compiling a server partition for an application that is
load balanced across server platforms of varying architectures: one server is an
IBM RS/6000, one is a Sun SPARCStation running UNIX, and a third is a
VAXStation running VMS. In this case, you would compile three separate
executable partition files using the same .pgf file.

Making an Application Distribution

284 iPlanet Unified Development Server • Programming Guide • August 2001

Packaging an Application Distribution
Once an application distribution is complete, it is ready to be packaged, along with
any library distributions that must accompany it, for deployment.

A distribution for a compatibility level “#” is packaged for deployment by copying
the distribution_ID directory—and any files it contains—plus the cl# directory, and
everything contained below it, to a distribution medium such as a magnetic tape.

You can copy this branch of the directory structure using the tar command on
UNIX platforms and the backup command on OpenVMS.

Any library distributions needed for the application to execute must also be
packaged and included with the application distribution.

Installing Additional Files
with Your Application Distribution
When you prepare to install an application or library, you can include additional
files, such as help files or release notes. You need to put the additional files in
specific subdirectories of the FORTE_ROOT/appdist directory. The exact location
of these files depends on your answers to the following questions:

• On what platforms will these additional files be installed?

• What components of the distribution (partitions or libraries) do these
additional files belong with?

After you have added the files to the appropriate location in the application
distribution directory, iPlanet UDS’s installation program can automatically install
these files in the appropriate location along with the application or library
distribution.

The following table explains where to place files that you want to add to the
application or library distribution for installation, depending on where you want
the additional files installed. The directory locations are all under the following
directory:

FORTE_ROOT/appdist/environment_ID/distribution_ID/cl#

All Components Specific Component

All Platforms /generic/_appgbl_ /generic/component_ID

Specific Platform /platform_ID/_appgbl_ /platform_ID/component_ID

Making an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 285

platform_ID represents the iPlanet UDS identifier for a platform, for example,
IBM_AIX represents AIX.

component_ID represents one of the following:

• a partition ID for a partition if the distribution is an application distribution

• a library ID if the distribution is a library distribution

For more information about the directory structures of application and library
distributions, see “Application Distribution Directory” on page 272 and “About
Library Distributions” on page 312.

For example, suppose you have an application in the MyEnv environment whose
distribution ID is myapplic. If you have release notes that you want to have
automatically installed with all partitions on all platforms, you should place the file
in the following directory:

FORTE_ROOT/appdist/MyEnv/myapplic/cl0/generic/_appgbl_

Documenting a Distribution
Every application distribution should be accompanied by sufficient documentation
to enable you to deploy the application in your environment and to troubleshoot
runtime problems.

The following list covers the most important information that should be
documented by developers for an application distribution:

• the library distributions required for the application to execute (if any)

• the function each partition performs

• the node architecture(s) each compiled partition requires

• the external resources each partition requires, by exact name

• the restricted libraries each partition requires (if any)

• the external object system (DCE, ObjectBroker, OLE) each partition requires (if
any)

• the object memory allocation each partition requires

• the logger flags that should be used in troubleshooting the application

• the names and purpose of any files the developer chose to place in any
appgbl directory

Installing an Application Distribution

286 iPlanet Unified Development Server • Programming Guide • August 2001

• any environment variables that must be defined for partitions of the
application

• environment search paths that have been set for any service objects in the
application

• whether or not the application or library is compatible with any previous
releases of the application or library

Installing an Application Distribution
Installing an iPlanet UDS application in your target deployment environment
consists of four basic steps, which are described in this section.

➤ To install an application distribution

1. Transfer the application distribution to a server node in your deployment
environment.

2. Load the application distribution into your deployment environment’s
environment repository.

You can use the Environment Console or Escript utility to do this.

3. Modify the application’s partitioning configuration, if you wish.

You can assign partitions to additional nodes and modify a number of
assigned partition properties.

4. Install the application in your deployment environment.

iPlanet UDS automatically downloads each partition to the node (or nodes) in
your environment on which it is supposed to run.

Before you try to run your newly installed application, make sure that any library
distributions required by the application have also been deployed (see “Installing a
Library Distribution” on page 317) and that any reference partitions required by
the application have been started.

The deployment steps are discussed in the following sections.

Installing an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 287

Transferring a Distribution
to a Deployment Environment
Transferring a distribution to an iPlanet UDS deployment environment consists of
copying the contents of the distribution_ID directory, and the required cl# directory
structure beneath it, to any iPlanet UDS server node you wish in your deployment
environment. Do not copy the distribution to a client node and try to load the
distribution; the Environment Manager cannot locate a distribution on a client
node. You can use whatever copying technique you prefer (such as network
copying utilities or copying onto tape or diskette).

Figure 8-10 Transferring a Distribution to a Deployment Environment

distirbution_ID

cl#

Part1 Part2 Part1 Part2

Generic SunOS OpenVMS

Part1

Server

FORTE_ROOT/appdist

environment_ID

Deployment Environment

User created

Application Distribution

Installing an Application Distribution

288 iPlanet Unified Development Server • Programming Guide • August 2001

Copy the distribution, as shown in Figure 8-10, to the following iPlanet UDS
directory structure on the selected server node:

FORTE_ROOT/appdist/environment_ID

You may have to first create the environment_ID directory, using the first eight
characters of your deployment environment name, before you can copy the
application distribution. On OpenVMS platforms, use the directory structure
shown in the inset of Figure 8-9 on page 273.

Loading a Distribution into an Environment
Repository
When you load a distribution, you are loading the information contained in the
distribution’s .adf file into your deployment environment’s environment
repository, as illustrated in Figure 8-11.

The .adf file contains all the information needed by the Environment Manager to
install all partitions onto the appropriate nodes in your deployment environment.
For example, the .adf file contains instructions on where both standard and
compiled partitions should be installed.

Installing an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 289

Figure 8-11 Loading Distribution into Environment Repository

distirbution_ID

cl#

Part1 Part2 Part1 Part2

Generic SunOS OpenVMS

Part1

Server
FORTE_ROOT/appdist

environment_ID

User created

Deployment Environment

Central
Server

Application Distribution

.adf

Environment
Repository

Name Service

Environment
Manager

Installing an Application Distribution

290 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To load a distribution

1. Make sure the distribution has been transferred to the deployment
environment.

2. Open the Environment Console.

The Active Environment window appears.

In our example, the active environment, “centrale,” consists of three nodes: a
model node for Windows NT clients, a Windows NT server node (MIMI), and
a UNIX server node (hillary).

3. Select the File > Load Distribution command.

The Load Distribution dialog appears.

Installing an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 291

In the case of a local distribution, the window shows the
FORTE_ROOT/appdist directory for your local node. If you select a remote
node from the drop list, the window shows the FORTE_ROOT/appdist
directory for the remote node. You can select a distribution to load from the
displayed list.

In our example, the distribution resides on “hillary,” the central server node for
the “DocEnv” environment. In the figure above, the TimeIt distribution is the
only distribution on the node “hillary.” Within the TimeIt directory
represented in the window, there is a single release of the TimeIt application
distribution, “cl0,” indicating that this is the first release of the application
(compatibility level is 0).

4. Select the distribution in the Load Distribution window, and click Load.

You can also load a distribution using Escript, as described in the Escript and System
Agent Reference Manual.

When a Distribution Conflicts with an Installed Application
If you are loading a new distribution for an application that is already installed in
the environment, you might receive an error message that says that the application
distribution you are loading conflicts with the installed application of the same
name and release number. This message means that the configuration of the new
distribution is different from the configuration of the installed application, which
makes them incompatible.

Before you can load and reinstall the new distribution of the application, you need
to uninstall the application currently installed in the environment.

iPlanet UDS determines whether two configurations of an application are
compatible based on the following rules:

• For client applications and server applications, the new configuration must
have the same number of partitions, and each partition must contain exactly
the same service objects.

• For library distributions, the new release must have the same number of
libraries and the names and UUIDs (universally unique identifiers) of each
library must match exactly. The UUID of a library is taken from the UUID of its
associated project. This UUID is assigned when the project is created in your
repository.

Installing an Application Distribution

292 iPlanet Unified Development Server • Programming Guide • August 2001

To ensure that a given project has the same UUID, even when it is exported
and imported, the application developer must export the project with their
UUIDs. To export projects with UUIDs, use the Fscript ExportPlan command
with the ids argument. For information about the ExportPlan command, see
the Fscript Reference Manual.

Modifying a Partitioning Configuration
After loading an application distribution, you can view and modify its partitioning
configuration using the Environment Console or Escript utility. You would modify
a configuration for either of two reasons:

• The simulated environment used by developers for partitioning the
application may differ from your current deployment environment—a very
likely case if you have made recent changes to your environment or the
application was developed by an independent software vendor (ISV) or value
added reseller (VAR) who had no knowledge of your particular environment.

• You anticipate performance or other problems in the partitioning configuration
created by the application developers and therefore want to modify it.

You can modify any of the partitioning configuration properties normally specified
in the right-hand panel of the iPlanet UDS Partition Workshop. (You cannot modify
the logical partitioning scheme or change the replication properties of service
objects.)

You can modify partition assignments and a number of assigned (installed)
partition properties as described in the following sections.

Reassigning Partition Assignments
You can reassign partitions to different nodes, make additional assignments of
replicated partitions, or remove assignments. You can only reassign compiled
partitions, however, to nodes corresponding to the architectures for which the
partitions were compiled.

When an application distribution is loaded into your environment repository,
iPlanet UDS checks the partitioning assignments. If any partition is assigned to a
node not found in your environment, that assignment will be dropped. If all
assignments for a logical partition are dropped, iPlanet UDS will perform a default
configuration (just as it does in the Partition Workshop), assigning the partition to

Installing an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 293

a node in the environment. In this case, you may have to manually assign (or
re-assign) the partition to a node (or nodes) in your environment. In assigning the
partition, make sure that the target node has the platform architecture and
resources required for the partition to run.

You cannot completely install an application unless every logical partition has been
assigned to at least one node in your environment.

➤ To reassign a partition

1. Select the View > Node Outline view in the Active Environment window.

2. Expand the node to which the partition is currently assigned, as shown in the
following figure:

3. Drag the partition you wish to reassign and drop it on the node to which you
wish to assign it.

Installing an Application Distribution

294 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To copy a partition assignment

1. Select the View > Node Outline view in the Active Environment window.

2. Expand the node to which the partition is currently assigned.

3. Select the partition you wish to copy and copy it to the clipboard by choosing
the Edit > Copy command.

4. Select the node to which you want to assign the partition and paste the
partition from the clipboard by selecting the Edit > Paste command.

➤ To assign an unassigned partition

1. Select View > Application Outline in the Active Environment window.

2. Open the Application Agent window and expand the application in that
window.

3. Select the View > Node Outline in the Active Environment window.

4. Drag the logical partition you wish to assign from the Application Agent
window and drop it on the node to which you wish to assign it.

Installing an Application Distribution

Chapter 8 Deploying iPlanet UDS Applications and Libraries 295

Modifying Installed or Assigned Partition Properties
You can change some of the properties of partitions (described below) either:

• after you have loaded the application distribution, but before you have
installed it

You can change these partition properties before you install the application.

• after you have installed the application

You can change these properties of the partition after you have installed the
application. However, in this case, you need to reinstall the application after
you change the partition’s properties.

You can set the following properties for installed partitions:

Compiled You can turn off this toggle if you decide to run a partition in
interpreted mode rather than as a compiled partition. You can also turn on this
toggle to run a partition in compiled rather than interpreted mode, but only if the
partition has already been compiled for the target node’s architecture.

Disabled For replicated partitions, you can modify whether or not a partition is
automatically started (enabled) on each node to which it is assigned by turning on
or off this toggle. Every partition must be enabled on at least one node. If you
disable a partition assigned to a node, it is not automatically started on that node.

Thread Package For server partitions only, you can specify whether the partition
should run using DCE/POSIX threads or iPlanet UDS threads.

Replication Count For replicated partitions only, you can modify the number of
replicates that are available for load balancing or failover.

Server Arguments You can set flags that alter the default object memory space
and logger settings set for a partition on startup.

The Installed Partition Properties dialog also displays the type of thread package
that this partition uses. However, you cannot change this value in the Environment
Console. You can only change the thread package specification for a partition in the
Partition Workshop or in Fscript. For more information about thread packages, see
A Guide to the iPlanet UDS Workshops and iPlanet UDS System Installation Guide.

➤ To set properties of an assigned or installed partition

1. In the Environment Console, choose the View > Node Outline command in the
Active Environment window.

2. Expand the node to which the partition is currently assigned.

Installing the Application

296 iPlanet Unified Development Server • Programming Guide • August 2001

3. Select the partition and then choose the Component > Properties… command.

The Installed Partition Properties dialog opens.

4. Change any of the fields described above and click OK.

5. Install the loaded application or reinstall the installed application that contains
the partitions with the changed properties.

Before you reinstall an installed application to implement changes in its partition
properties, you can compare the new property values for a partition with those for
the currently installed partition. To see the properties for the currently installed
partition, select the View Previous... button on the Installed Partition Properties
dialog.

Installing the Application
Once you have loaded your application distribution into the environment
repository and made any changes in the partitioning configuration that you want,
you are ready to install your application into your deployment environment.

Installation consists of downloading each partition to the node (or nodes) in your
environment on which it is supposed to run. Installation is fully automated. The
Environment Manager oversees and coordinates the downloading of partitions
onto all nodes that have a Node Manager service running at the time of installation.

Throughout the application installation process, iPlanet UDS tracks the installation
status of each node. It records the installation result for each targeted node in an
environment, and posts events to announce the success or failure of installation on
all targeted nodes.

Installing the Application

Chapter 8 Deploying iPlanet UDS Applications and Libraries 297

If some target nodes are not available for installation—for example, server nodes
that are not up and running or client nodes that are not currently running a Node
Manager process—iPlanet UDS will perform a partial installation. Since iPlanet
UDS keeps track of the installation status of each node, you can complete an
installation incrementally as conditions permit, that is, as nodes become available
for installation.

You can perform installations using either the Environment Console or Escript
utility.

(In a development environment in which you wish to install an application
developed in that same environment, you can install the application by selecting the
Install in Current Environment option in the Make Distribution command, when
making the application distribution.)

➤ To install an application

1. In the Active Environment window, select the View > Application Outline
command.

In the Application Outline view, the top level is the list of applications, the
second level is the set of logical partitions for the application, and the third
level is the set of assigned nodes for the partition.

2. Select the application you want to install.

Notice that the Environment Console shows the status of the application as
“Loaded.”

3. Select the Component > Install… command.

If your application successfully installs, the application status in the
application outline view changes from “LOADED” to “OFFLINE.”

If the application status changes to “PARTIALLY INSTALLED,” the
Environment Manager installed the application on as many nodes as were
available, but not on all targeted nodes.

4. If necessary, complete a partial installation by starting Node Manager
processes on the previously unavailable nodes and issue the Install...
command.

On client-only nodes (Windows), use the Launch Server (or the Environment
Console or Escript utility) to install the client partitions.

Installing the Application

298 iPlanet Unified Development Server • Programming Guide • August 2001

Installing Applications on Server Nodes
For installation on server nodes, the Environment Manager informs each Node
Manager of the application partitions that need to be installed on its node.

In the case of standard partitions, the Node Manager downloads the appropriate
image repositories from the node on which the application distribution resides (if it
does not reside locally). The image repository for a standard partition consists of
two files named after the partition—one with an .btx and one with a .btd extension
(distributions created before Release 3.0 are .idx and .dat files).

The Node Manager places each image repository in the following directory, as
shown in Figure 8-12:

FORTE_ROOT/userapp/distribution_ID/cl#

In the case of compiled partitions, the Node Manager downloads the appropriate
executable partition files from the node on which the application distribution
resides (if it does not reside locally) and also places them in the same directory as
the standard partitions.

For the Node Manager to download partition files from a remote node, the Node
Manager for the remote node must be up and running.

Installing the Application

Chapter 8 Deploying iPlanet UDS Applications and Libraries 299

Figure 8-12 Installing an Application on a Server Node

Installing Applications on Client Nodes
Installation on client nodes is complicated by the fact that a client node, unlike a
server node, does not usually run a Node Manager unless the client node normally
starts a Launch Server.

If you want your application to be installed on client nodes as well as server nodes
in your environment, start the Environment Console, the Escript utility, or the
Launch Server on each client before you begin installation.

There are two ways of handling installations onto client nodes: explicitly and
as-needed.

distirbution_ID

cl#

Part1 Part2 Part1 Part2

Generic SunOS OpenVMS

Part1

distirbution_ID

cl#

FORTE_ROOT/appdist

Deployment Environment

Server

Central
Server

Standard and
Compiled partitions

Target
Server

Environment Manager
Name Service

Installing the Application

300 iPlanet Unified Development Server • Programming Guide • August 2001

You can explicitly assign client partitions to specific client nodes or model node
groups, as described in “Reassigning Partition Assignments” on page 292. You
then start a Node Manager on the client node (by running the Environment
Console, the Escript utility or the Launch Server). When you install the application
using the Environment agent’s Install command, the Node Manager on the client
node automatically installs the needed components on the client node. The
Environment agent and its commands are described in the Escript and System Agent
Reference Manual.

You can assign your client partitions or define them as publicly-available
applications, and then let end users download the applications as-needed, when
they want to run the application. This type of client installation works only for
standard client partitions, not compiled client partitions. End users can also
download updated releases of standard client partitions at runtime, if they use the
Launcher application or if you set up their icons to do so. The Launch Server, along
with the Launcher application and Ftcmd utility provide this download feature.
This approach to installing client partitions is discussed in the iPlanet UDS System
Management Guide.

In situations where it may not be practical to install your application on all client
nodes simultaneously, you can perform the installation at a later time on a node by
node basis.

The Node Manager service provided by these utilities downloads the files for the
client partition from the application distribution, and places them in the following
directory,

FORTE_ROOT/userapp/distributionID/cl#

Figure 8-13 shows the placement of the files.

Installing the Application

Chapter 8 Deploying iPlanet UDS Applications and Libraries 301

Figure 8-13 Installing an Application on a Client Node

Generating Icons for Standard Client Partitions
In previous releases, iPlanet UDS generated icons for standard client partitions that
start the application as a separate process in the client node’s operating system.

iPlanet UDS now generates icons for standard client partitions that use the ftcmd
run utility to start the applications.

distirbution_ID

cl#

Part1 Part2 Part1 Part2

Generic SunOS OpenVMS

Part1

distirbution_ID

cl#

FORTE_ROOT/appdist

Deployment Environment

Server

Central
Server

Environment Console
Escript

Launch Server
Target
Client

Environment Manager
Name Service

Installing the Application

302 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 8-14 Windows Command Icon

iPlanet UDS generates icons on the Windows platforms that start the installed
client partition using the Launch Server. These icons specify ftcmd run commands
that have the Launch Server run the specified application. iPlanet UDS places these
command icons in the iPlanet UDS program group.

On the UNIX platforms, you can define scripts or aliases that start client partitions
using the ftcmd run command.

The Ftcmd utility is not available for OpenVMS platforms (VAX VMS).

The generated icons contain the ftcmd run command with the application name
without the compatibility level.

You can also define icons that have the Launch Server start a client partition by
using the following command syntax with the icons:

ftcmd run application_name [release] [arguments] [update]

For information about using this command, see the iPlanet UDS System Management
Guide.

To have iPlanet UDS generate icons that start applications using the ftexec
command, set the following configuration flag on each client node where you want
this type of icon generated:

cfg:em:2

Set this configuration flag in either the Log Flags tab page of the iPlanet UDS
Control Panel or the FORTE_LOGGER_SETUP environment variable. This
configuration flag must be set before a Node Manager or a Launcher Server acting
as Node Manager is started on the client node.

Generating Icons for Compiled Client Partitions
If you are installing a compiled client partition, On Windows NT, iPlanet UDS
creates an icon that starts the compiled client executable.

ftcmd run security

Windows Application Icon

Installing the Application

Chapter 8 Deploying iPlanet UDS Applications and Libraries 303

Creating Icons by Hand
For those situations in which you may need to create an icon yourself to run an
installed client partition, you can do so, as described below, by copying and
modifying one of the existing iPlanet UDS system application icons (such as the
Environment Console icon).

You can create icons that use a compiled executable, the ftexec command
(described in the iPlanet UDS System Management Guide), or the ftcmd run
command (described in the iPlanet UDS System Management Guide).

➤ To create a Windows NT client icon

1. Make a copy of the existing icon.

2. Select the icon copy, then open the Properties dialog using the Properties
command on the popup menu.

3. On the Shortcut tab page, edit the Target field to provide the command-line
argument to run your client partition.

Installing Applications with Reference Partitions
Before you can install applications with reference partitions, you need to makes
sure that the application that reference partition points to is also installed.

If you are installing an application with a reference partition that points to a service
that is only available in another environment, you need to make sure that the
correct steps were followed for creating the replicated partition and setting the
environment search path for this case. These steps are explained in detail in A
Guide to the iPlanet UDS Workshops. You also need to make sure that this other
environment is connected to your current environment. For information about
connecting environments, see the iPlanet UDS System Management Guide and the
Escript and System Agent Reference Manual.

Completing Partial Installations
If any targeted nodes are unavailable at the time of installation, the installation of
an application in your deployment environment will be only partially successful. A
particular server node may be offline or a number of client nodes may not become
available for installation until a later time. You might also add nodes to your
environment and need to install partitions on these new nodes.

Deploying a Library

304 iPlanet Unified Development Server • Programming Guide • August 2001

In such situations, the Environment Manager completes only a partial installation
and reports which partitions await installation, and on which nodes. Using this
information, you can complete partial installations as conditions permit.

You can complete a partial installation by re-installing the application when the
needed nodes or Node Managers are up and running—the Environment Manager
will attempt to complete what remains to be installed and issue a report.

Deploying a Library
This section provides a description of how to define and deploy a simple library
configuration using the iPlanet UDS Workshops and the Environment Console. For
information about how to use Fscript and Escript commands to perform the same
tasks, see the Escript and System Agent Reference Manual and the Fscript Reference
Manual.

Before you can configure or deploy a library, you must be running the iPlanet UDS
Workshops in distributed mode, which means you have clicked the iPlanet UDS
Distributed icon or used the forte command without specifying the -fs flag. For
more information about how to start the iPlanet UDS Workshops in distributed
mode, see A Guide to the iPlanet UDS Workshops.

To deploy a library, you need to have write access to the volumes where you want
to place the library distribution and where you want to install the library.

Creating an Library Configuration
At this point, you should have written and tested the projects that you want to
include in the library in the iPlanet UDS Workshops or Fscript.

You now need to define a configuration for your library so that you can install it in
a deployment environment for testing and, eventually, customer use.

To create an application configuration, you need to define what partitions different
parts of the application belong to. This task is described in “Configuring
Applications” on page 225 and is also called partitioning.

The simplest way to define a configuration is to let iPlanet UDS create a default
configuration.

Deploying a Library

Chapter 8 Deploying iPlanet UDS Applications and Libraries 305

Creating a Default Library Configuration
You can configure a library that contains one or more projects.

➤ To create a default library configuration

1. In the Project Workshop for one of the projects in the library, choose File >
Configure as > Library.

The Partition Workshop opens, showing the project on the left and the default
assignments of the library onto the nodes in the development environment, as
shown below:

If you have already defined a custom configuration, but want to have iPlanet UDS
replace that configuration with the default configuration, use the File > Repartition
command.

The default configuration places the project you configured as a library on all
nodes in the environment. When you modify the library configuration, you can
add other projects to it and specify the nodes on which the libraries will be
deployed.

Because the library configuration defines sets of libraries, not applications, you
cannot run or debug it from the Partition Workshop, even if the project that was
configured defines a start class and method.

Deploying a Library

306 iPlanet Unified Development Server • Programming Guide • August 2001

Examining Library Configurations
For library configurations, you can examine:

• the projects that are being configured as libraries

• the nodes in the environment

• the assigned libraries on specific nodes in the environment

Examining the Projects
For library configurations, the Project browser portion of the Partition Workshop,
shown in Figure 8-15, lists the projects included in the library configuration.

Figure 8-15 Project Browser

To view a list of the nodes to which the project is assigned, double-click on the
project name. A dialog opens, as shown in Figure 8-16, that lists the nodes where
the project is assigned.

Figure 8-16 Logical Partition Dialog for a Project

Library included
in configuration

Deploying a Library

Chapter 8 Deploying iPlanet UDS Applications and Libraries 307

Examining Nodes in a Library Configuration
For library configurations, the Nodes browser displays the assigned libraries
within the environment. By default, the browser displays a topological view of the
environment. The View > Node Outline command lets you display the same
information in an outline form.

For each node in the environment, the browser displays a two-level hierarchy. At
the top level is the node name. At the second level are the libraries assigned on that
node. If the libraries are not currently displayed, open the node by clicking the
expansion arrow.

To examine the node properties, double-click the node name, or select the node
and give the Component > Properties… command. The Node dialog appears,
shown in Figure 8-17, displaying the node properties described under “About
Environments” on page 234. These properties are the settings that were specified
for the node when the environment was created in the Environment Console, and
you cannot change them from the Partition Workshop. See the iPlanet UDS System
Management Guide for further information on the properties of a node.

Figure 8-17 Node Properties Dialog

Deploying a Library

308 iPlanet Unified Development Server • Programming Guide • August 2001

Examining Assigned Libraries
For each assigned library, you can open a dialog that shows which libraries on the
node are compiled. To open the Compilation Properties for Node dialog, shown in
Figure 8-18, double-click the assigned library name or select the library and choose
the Component > Properties… command. A toggle next to the library’s name
indicates that the library is compiled.

Figure 8-18 Compilation Properties for Node Dialog

Modifying a Library Configuration
Partitioning a library configuration is very different than partitioning a client or
server configuration. When you partition a client or server configuration, you
move partitions containing service objects onto nodes in the environment. When
you partition a library configuration, you move projects onto nodes, not partitions.

A library configuration consists of projects assigned to nodes in the environment.
Non-restricted projects can be assigned to any node in the environment. Restricted
projects can be assigned to any node on which they will run.

When you first configure the project as a library, there is only one project in the
shared library, the project that you have “partitioned” by giving the Configure as >
Library command. This project you “partition” differs from other projects you later
add to the library configuration only in that its name is used to name the library
distribution and its compatibility level is used for the library distribution.
Otherwise, all projects in the configuration are exactly the same. Figure 8-19
illustrates a default library configuration:

Deploying a Library

Chapter 8 Deploying iPlanet UDS Applications and Libraries 309

Figure 8-19 Default Library Configuration

At this point, if you wish to package other projects in the library distribution, you
can add them to the library configuration.

Note that to make permanent changes to a configuration, your workspace must be
open for updating. If your workspace is open for reading only, you can use the
Partition Workshop to examine a configuration and make temporary modifications
to it. However, because you cannot save your workspace, any changes you make to
the configuration are only temporary.

The following sections provide information about adding projects to the library
configuration, deleting libraries from nodes, and turning on compilation for a
library. Setting the configuration properties for a library configuration is the same
as setting them for an application configuration. See “Changing Configuration
Properties” on page 268.

Adding Projects to the Configuration
You can add any projects in your workspace to the library configuration.

When your library configuration contains more than one library, you must ensure
that each library has a unique name. By default, iPlanet UDS uses the first eight
characters of the project name as the library name. If two or more projects in the
library configuration have names that start with the same first eight characters, you
must specify unique library names for the projects. See A Guide to the iPlanet UDS
Workshops for information on setting the library names.

Deploying a Library

310 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To add a project to the configuration

1. Drag the project from the Repository Workshop to the Partition Workshop.

2. In the Partition Workshop, drop the project on any node where you wish to
install it.

or

1. In the Partition Workshop, choose the Component > Add Project command.

The Add Project dialog opens.

2. Select the project you wish to add and click the Add button.

When you add a new project to the library configuration, iPlanet UDS
automatically assigns the project to all the nodes where the original project is.

The following section describes how to modify this default configuration by
removing projects from a node.

Removing Libraries from a Node
You can modify a library configuration by:

• removing an individual restricted external library from a node

• removing all libraries from a node

Because restricted external projects cannot run on all nodes in the environment,
you must remove them from the nodes where they cannot run.

➤ To remove a restricted external library

1. Select the assigned library.

2. Choose the Edit > Delete command.

Deploying a Library

Chapter 8 Deploying iPlanet UDS Applications and Libraries 311

3. Confirm that you wish to delete the assigned library.

If there is a node where you do not wish the libraries to be installed, you can
remove them from the node by deleting any non-restricted project or restricted
TOOL project. When you remove one of these projects from a node, all other
projects on that node will also be removed.

Standard or Compiled Libraries
By default, compilation for all libraries in the library configuration is turned off.

Remember, if a given library has supplier libraries, you must be sure to set the
compilation options correctly for the main library and its suppliers. Once you
designate a given library on a particular node as compiled, you must ensure that all
its supplier libraries are also compiled. For a standard library, the supplier libraries
can either be standard or compiled.

You also need to take into account whether or not the partition that will be using
the library is compiled. If the partition is compiled, the library that it accesses must
also be compiled. If the partition is standard, the library that it accesses can be
either standard or compiled.

Furthermore, if any of the libraries will be used as suppliers to client partitions
with C++ APIs, you need to compile the libraries and generate the handle classes
for them. For information about integrating with C++, see Integrating with External
Systems.

➤ To turn on compilation for a library

1. Double-click the assigned library.

The Compilation Properties for Node dialog opens.

2. Turn on the Compiled toggle next to the library name.

Remember, after specifying that the library is compiled, you may need to perform
extra steps to produce the library distribution. See “Compiling Libraries” on
page 315 for information.

Deploying a Library

312 iPlanet Unified Development Server • Programming Guide • August 2001

Making a Library Distribution
This section describes how to create an iPlanet UDS library distribution for
installation in iPlanet UDS deployment and/or development environments.

The process of making a library distribution is similar to making an application
distribution. The major difference is that you can specify whether or not to include
source code in the library distribution.

By default, source code is not included in the library distribution. When the library
distribution is created without source code, iPlanet UDS developers using the
library cannot view the source code for the methods, cursors, and event handlers in
the library. A special option on the Make Distribution command allows you to
request that source code be included in the distribution. When the library
distribution is created with source code, iPlanet UDS developers using the library
can view (but not modify) all the source code. (If you need to distribute source code
that can be modified, you should simply ship the project export files.)

You create a library distribution from your library configuration, using the File >
Make Distribution command in the Partition Workshop.

About Library Distributions
A library distribution is a collection of files outside of the development repository
that represent a library configuration (that is, a set of related shared libraries)
intended for deployment. Once you create a library distribution, you can load the
distribution into a target environment, and install it using iPlanet UDS system
management tools.

“Understanding Application Distributions” on page 270 describes the directory
structure iPlanet UDS uses for an application distribution. The following figure
shows the directories and files that iPlanet UDS adds to the distribution directory
structure when you create a library distribution.

Deploying a Library

Chapter 8 Deploying iPlanet UDS Applications and Libraries 313

Figure 8-20 Library Distribution Directory Structure

libID

libID

distID.ace

distID.adf

FORTE_ROOT

appdist

distID

cln

generic codegen

appgbl

__.fso libID.lgf

Library Distribution

KEY
envID environment ID
distID distribution ID
libID library (project) ID

Bold indicates literal names
provided by iPlanet UDS.

projects.btd
projects.btx

appgbl

library
(executable file)

platform

libID

inc

libID libID

C++ wrapper code files
(C project)

envID

libID.bom, .cc, .cdf, ...

libID

libID.pex
libID.exe,
.so, .a, .dll, ...

libID.h, .cdf, ...

library generation file
(TOOL project)

header files
library
import
file

library
(image repositories)

Deploying a Library

314 iPlanet Unified Development Server • Programming Guide • August 2001

The following table describes these files.

Name Purpose

—.ace File which maps iPlanet UDS library configuration
component names to unique identifier names.

—.adf Application distribution file. Contains information about the
library (partitioning) configuration—what libraries are
assigned to what nodes—for use in the deployment process.
(The .adf extension is added to the library configuration’s
unique identifier name.)

generic Directory that contains all portable files. The partition
directories below the generic directory contain all the
standard partitions.

codegen Directory that contains all source files used for generating
C++ compiled partitions.

platform1… Directories that contain non-portable compiled partitions for
each supported platform.

appgbl Directory in which you or iPlanet UDS can place files that
would be installed along with any library or set of libraries
assigned to a node.

projects.btd, projects.btx Standard image repository to be used on platforms for
which no compiled libraries have been made.

—.fso File that maps method names to ids, which might be used
for some external interfaces or compiled partitions.

—.h, —.cdf, … Header files

—.pex Export file used to import the library into development
repositories in a target development environment.

—.lgf Library generation file. Contains the source code used to
make compiled libraries for a single project. (The .lgf
extension is added to the library’s unique identifier name.)

—.bom, —.cc, —.cdf, … C++ wrapper files used as source code for making compiled
libraries for a single C project.

—.so, —.exe, —.a, —.dll… Compiled library file. (The name is platform dependent and
based on library’s unique identifier name.)

Deploying a Library

Chapter 8 Deploying iPlanet UDS Applications and Libraries 315

Using the Make Distribution Command
In the Partition Workshop, the File > Make Distribution command lets you make a
distribution for a library configuration the same way you make an application. The
only difference between using the Make Distribution command to create a library
distribution is that you have the option of specifying that the source code be
included in the library.

➤ To make a library distribution

1. Choose the File > Make Distribution command.

2. Select the appropriate distribution options on the Make Distribution dialog.
The Include Source toggle lets you specify that the source code be included in
the distribution.

When the Make Distribution completes, a message in the status line indicates that
the distribution was complete.

If your configuration contains only standard libraries, or if your automatic library
compilation completed successfully, you now have a library distribution, ready to
install.

If your automatic compilation failed or if you did not select automatic compilation
for your compiled libraries, you must compile the individual libraries before you
can deploy the library distribution. The following section provides information
about compiling libraries.

Compiling Libraries
If your library configuration contains one or more compiled libraries and you did
not select automatic compilation when you gave the Make Distribution command
(or not all the libraries compiled successfully), you need to compile the libraries
yourself using the fcompile command.

.When you specify that a library is “compiled,” the Make Distribution command
creates a library generation file (.lgf), which you must use with the fcompile
command to generate the compiled library.

If your library configuration contains multiple libraries, you must be sure to
compile the libraries in the correct order. If any of the projects in the configuration
are suppliers for other projects in the configuration, you must compile each of the
supplier projects before compiling the main project.

Note that the automatic compilation feature of the Make Distribution command
ensures that the libraries are compiled in the correct order. You need to be
concerned about compilation order only when using the fcompile command.

Deploying a Library

316 iPlanet Unified Development Server • Programming Guide • August 2001

You need to compile a library on the platform on which it will run. To do so, you
move the .lgf file to the appropriate node, compile it, and then move the executable
library file (and import file if appropriate) to the library subdirectory for the
specific platform in the library distribution directory.

If your library configuration contains more than one library, you need to move and
compile the libraries as a group, not one at a time.

➤ To compile multiple libraries

1. Move all the .lgf files to the nodes where they need to be compiled.

2. Compile all the libraries.

3. Move all executable library files and import files back to the appropriate
subdirectories in the library distribution.

If the environment includes a mixture of platforms, you may need to compile a
library on more than one platform. For example, let’s say you are compiling a
library for an environment that includes three servers: one server is an IBM
RS/6000, one is a Sun SPARCStation running UNIX, and a third is a VAXStation
running VMS. In this case, you would compile three separate executable library
files using the same .lgf file.

Before running fcompile, check to see if you need to set environment variables
prior to running fcompile. These environment variables are described under
“Environment Variables and Path” on page 279. You also need the C++ compiler.
See the iPlanet UDS System Installation Guide for the currently supported compiler
version.

Using the fcompile Command for Libraries
The fcompile command generates code, compiles, and links a compiled library
from an .lgf file. See “Using the fcompile Command for Compiled Partitions” on
page 281 for the complete syntax of the command.

When you give the fcompile command for a given library, you must do so on
machine with the same architecture as the node to which the library is assigned.
For example, if you are building a compiled library for an RS/6000, you must run
fcompile on an RS/6000.

You cannot use a model node to create a distribution. Therefore, you should not
run the fcompile command on a machine that is defined as a model node within
the current environment.

Deploying a Library

Chapter 8 Deploying iPlanet UDS Applications and Libraries 317

➤ To run fcompile for a compiled library

1. If necessary, move the .lgf file to a machine that has the correct architecture.

2. Set the necessary environment variables, as described in “Environment
Variables and Path” on page 279.

3. Run the fcompile command as described above.

fcompile -c aucio1.lgf -d ./rs6000

The fcompile command produces an executable library file in the format used
by the specific platform. It may also produce a library import file.

4. Move the executable library file (and import file if appropriate) to the library
subdirectory for the specific platform in the library distribution directory.

Installing a Library Distribution
If your application requires access to libraries (shared libraries, object libraries,
shared images, DLLs, or TOOL libraries), these libraries should be included in a
library distribution packaged with your application distribution. The
documentation accompanying your application distribution should include
information about which libraries are needed by which partitions, so you can make
sure that the appropriate libraries are installed on each node in your deployment
environment.

iPlanet UDS automates the deployment of library distributions using its system
management services. The process is essentially the same as for deploying
application distributions: you load the library distribution into your environment
repository, modify the library configuration to match your deployment
environment and application partitioning configuration, and then install the
library distribution into your deployment environment.

You can perform these tasks using either the Environment Console or the Escript
utility. The steps for deploying library distributions using the Environment
Console are summarized below. For information about using the Escript utility, see
Escript and System Agent Reference Manual. Any differences between library
distributions and application distributions are noted.

Deploying a Library

318 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To deploy a library distribution

1. Transfer the library distribution to a server node in your deployment
environment.

2. Load the library distribution into your deployment environment’s
environment repository using the File > Load Distribution command in the
Environment Console.

3. Modify the library’s partitioning configuration, if you wish.

A non-restricted library is assigned, by default, to every server node in an
environment. If your environment differs from the environment definition
used to create the library configuration, you may have to assign the
non-restricted libraries to nodes in your environment.

A restricted library requires special resources to support the library. You can
assign a restricted library to nodes in your environment, or re-assign it,
providing the target nodes have the resources to support the library.

Unlike partitions, libraries are not started by iPlanet UDS. Therefore, there are
no properties analogous to the start options, server type, or server argument of
assigned partitions. You can, however, choose whether to install each library as
compiled or standard, if the distribution includes both the compiled executable
and the image repository for the library.

4. Install the library configuration into your deployment environment.

iPlanet UDS automatically downloads each library to a standard location on
the node (or nodes) in your environment to which it is assigned. Installed
libraries, because they never become executing iPlanet UDS processes, have no
corresponding system management agents—they are merely part of the
definitional information stored in an environment definition.

Each node specification in an environment definition includes information
regarding the restricted libraries installed on the node. In development
environments, restricted library information is used in application
partitioning.

In development environments, where developers need to access libraries to
code and test their applications, you not only have to install the library
configuration into the development environment, but you must also import the
individual libraries into the development environment. Each library
distribution includes a .pex file for each library that can be imported into
development repositories, as shown in Figure 8-20 on page 313.

Removing and Updating Applications and Libraries

Chapter 8 Deploying iPlanet UDS Applications and Libraries 319

Removing and Updating Applications
and Libraries

After you have deployed an application or library in a development or deployment
environment, you will at some point need to remove or update the application or
library. For example, you might need to replace an earlier release of an application
with the latest release.

This section describes how to remove and update applications and libraries using
the Environment Console. For information about performing the same tasks using
Escript commands, see the Escript and System Agent Reference Manual.

Removing an Application or Library
When you remove, or uninstall, an iPlanet UDS application or library, the
Environment Manager deletes the information about the application from the
environment repository and node repositories. After you uninstall an iPlanet UDS
application or library, you can no longer manage the application or library using
the Environment Console or Escript. However, the files for the application or
library distributions still exist in the FORTE_ROOT/userapp subdirectories where
they were copied when the application or library was installed. If you want to
delete these files completely, you can do so after you uninstall the application or
library.

➤ To uninstall an application or library distribution

1. In the Environment Console, choose the View > Application Outline command
to display a list of installed applications and libraries.

2. Select the Application agent for the application or library you want to
uninstall. (Application agents also represent libraries.)

3. Choose the Component > Uninstall command to uninstall the application or
library.

You can also use the Edit > Delete command to uninstall the application or library.

Removing and Updating Applications and Libraries

320 iPlanet Unified Development Server • Programming Guide • August 2001

Upgrading Applications
This section provides a brief explanation of how to perform the simplest upgrades
of libraries and applications. For a more thorough discussion of the options you
can consider when upgrading applications, including rolling upgrades, see
Chapter 13, “Upgrading Deployed Applications.”

Although iPlanet UDS does not support versioning control, iPlanet UDS lets
application developers differentiate between incompatible releases of an
application by assigning each release a different compatibility level. Releases of an
application with different compatibility levels are treated by the iPlanet UDS
runtime system and by iPlanet UDS system management services as completely
different applications.

For information about compatibility between releases, see A Guide to the iPlanet
UDS Workshops and Chapter 13, “Upgrading Deployed Applications.”

Because these different applications can coexist in your deployment environment,
you can deploy a new release of your application while the old one is still in use.

Upgrading Installed Applications
By default, iPlanet UDS assumes that after you have installed an application, the
configuration of the installed application is the correct configuration for the
application. This assumption can affect whether you can install a new copy of the
application over the installed application, or whether you need to uninstall the
currently installed application first.

If you change the contents of any logical partition, iPlanet UDS cannot reinstall the
application because the new configuration is incompatible with the configuration
of the installed application. You need to uninstall the application before you can
install a new distribution that uses a new configuration.

If you have changed only the partition assignments for an application that is
already installed in the current environment, you can reinstall the application
directly over the installed application distribution. However, the configuration of
the application will remain the same as that for the previous installation of the
application. The elements of the configuration that stay the same are the partition
startup arguments, whether the partitions are compiled or interpreted, the number
of replicates, where the partitions are assigned, and so forth.

If you want to change the configuration, you need to either change the
configuration of the previous installation of the application before you install the
newer application distribution, or you need to uninstall the application completely
before installing the newer application distribution.

Removing and Updating Applications and Libraries

Chapter 8 Deploying iPlanet UDS Applications and Libraries 321

➤ To change the configuration of an installed application without changing the
contents of any logical partitions

1. Uninstall the application using the Environment Console or Escript. You might
need to ask your system administrator to perform this task, depending on who
is permitted to use the Environment Console or Escript in your environment.
For information about how to uninstall an application, see “Removing an
Application or Library” on page 319.

2. In the Partition Workshop, configure the application the way you want, then
select the File > Make Distribution command.

3. In the Make Distribution dialog, select the Full Make and auto-install options.
You can also select the Auto Compile option, if appropriate. Click the Make
button.

➤ To upgrade an installed application

1. Install the new release of the application on the clients and servers while the
old release is running.

2. After all server nodes are running, move client nodes to the new release
incrementally, by starting the new release on, for example, 50 of the clients,
then 100, and so on until all clients are running the new release.

When you install an upgraded release of an application on your client nodes,
be sure to upgrade the corresponding command icon, as well. For information
about command icons, see “Installing Applications on Client Nodes” on
page 299.

If the application uses standard client partitions, you can have the end users
upgrade their applications as needed using the services of the Launch Server,
as described in the iPlanet UDS System Management Guide.

3. When all client nodes are running the new release, shut down and remove the
old release from the server nodes and client nodes.

Upgrading Reference Partitions
When you upgrade an application whose partitions are used as reference partitions
for other applications, you need to make sure that the applications with reference
partitions still reference the correct release of the partition. If the compatibility level
of the application containing the partition has changed, then you need to
reconfigure and redeploy the applications whose reference partition uses that
partition, so that the reference partition uses the correct release of the application.

Removing and Updating Applications and Libraries

322 iPlanet Unified Development Server • Programming Guide • August 2001

You do not need to change the compatibility level of the application containing the
reference partition when you change the reference partition definition, and the
compatibility levels of the two applications do not need to be the same.

For example, suppose you have an application BankClient, which contains a
reference partition that represents a partition in the application AppServices. Both
applications are at compatibility level 0. If you install a new release of AppServices
at compatibility level 1, be aware that unless you update the reference partition in
BankClient, that reference partition still references the partition of the older release
of AppServices.

➤ To make the reference partition reference the partition of the newer release of a
changed application

1. In the Partition Workshop, view the configuration of the application with the
reference partition and define a new reference partition that references the
partition in the new release of the application. You can delete the old reference
partition.

2. Make a new distribution for the application with the reference partition.

3. Reinstall the application with the reference partition in your deployment
environment.

The steps for partitioning and making a distribution are described starting in
“Creating a Default Application Configuration” on page 240.

Upgrading Libraries
When you upgrade a library to another compatibility level, you need to update and
redeploy any applications that use this library. However, the compatibility levels
of the library and its associated applications do not have to be the same.

If the compatibility level of the library does not change because the changes to the
library are very minor, you do not need to upgrade the applications that use the
library; you can simply install the revised library.

For example, suppose you have an application called Payroll, which uses classes
and methods provided by the library TimeCardFunctions. Both the application and
the library are at compatibility level 0.

If you install a new release of TimeCardFunctions at compatibility level 1, be aware
that unless you update and redeploy the Payroll application, that application still
references the older release of the TimeCardFunctions library.

Removing and Updating Applications and Libraries

Chapter 8 Deploying iPlanet UDS Applications and Libraries 323

➤ To make the application reference the newer release of the library

1. The application developer imports the .pex file from the library distribution
into the development repository where the code for the application resides.

2. The application developer makes a new distribution of the application.

3. You install the updated release of the application in your deployment
environment.

If you are upgrading libraries that are used by developers in a central repository,
the developers need to check out all components of each library, reimport the .pex
file for each upgraded library, then integrate the changed libraries into the system
baseline. If the upgraded library is used in a private repository, the developer
simply needs to reimport the new .pex file into the repository. For more
information about using repositories, see A Guide to the iPlanet UDS Workshops.

Partial Upgrades
When developers make an incompatible upgrade in an individual partition (or
service object) in an application, they issue an upgraded release of the
application—with a new compatibility level—for you to install in your deployment
environment.

However, under certain circumstances, a new release of the service object in an
application can be fully compatible with the rest of the application. In this
situation, a developer can make a partial distribution without increasing the
compatibility level of the application (see Chapter 13, “Upgrading Deployed
Applications”). The partial distribution contains only the compatible, revised
portions of the application.

You can deploy the partial distribution in your deployment environment just like
any other application distribution. In this case, however, the distribution contains
only the upgraded application partitions. When you deploy this partial upgrade,
the new partitions are substituted for the old partitions. In this situation you must
make sure that:

• the partitioning configuration of the upgrade distribution corresponds exactly
to that of the old application

• your old application partitions are shut down before you install the new ones

For information about upgrading deployed and running applications, see the
Chapter 13, “Upgrading Deployed Applications.”

Removing and Updating Applications and Libraries

324 iPlanet Unified Development Server • Programming Guide • August 2001

325

Chapter 9

Class Runtime Properties

All iPlanet UDS classes have a set of characteristics called runtime properties. These
properties determine how objects of each class are treated at runtime. Runtime
properties can be allowed or disallowed for a class, or on by default for a class. The
class runtime properties are the following:

• distributed

• shared

• transactional

• monitored

This chapter defines and describes each property and explains

• how you set a property for a class

• how you set or override attributes associated with the property for an
individual object

• the effect of setting properties

• how deadlocks might occur and how to avoid such occurrences

Class Runtime Properties
All iPlanet UDS classes have a set of characteristics called class runtime properties.
When you create a new class, you can set one or more of these properties for the
class. Class runtime properties define the runtime behavior of objects that are
instances of each class. For example, if an object has the shared property, then access
to that object is serialized so that multiple tasks do not attempt to update it
simultaneously.

Class Runtime Properties

326 iPlanet Unified Development Server • Programming Guide • August 2001

As you design or build an iPlanet UDS application, you should have a good
understanding of how class runtime properties affect object behavior. The better
your understanding, the more likely you can optimize your application’s logic and
performance.

The four class runtime properties are summarized below:

Three of the class properties are associated with a corresponding attribute of the
Object class (the Monitored property is not). The following table describes the
Object attribute for each class property.

Property Description

Distributed Allows an object to be sent to a remote partition.

Shared Allows multiple tasks to concurrently access and safely change an
object’s data.

Transactional Allows an object to participate in a transaction.

Monitored Indicates that an object may be displayed and mapped to a window
widget.

Class Property Object Attribute Description

Distributed IsAnchored If set to TRUE, iPlanet UDS “anchors” the object to the
partition in which it was created. When a remote
partition references the object, a distributed reference is
sent. Changes to the object are globally visible.

If set to FALSE, the object is not anchored. When a
remote partition references the object, a copy of the
object is sent and all changes are made to the copy
rather than the object.

For more information see “Distributed Objects” on
page 330.

Shared IsShared If set to TRUE, iPlanet UDS uses the locking necessary
to synchronize access by multiple concurrent tasks. By
default IsShared also sets IsAnchored.

If set to FALSE, then an object should not be accessed
simultaneously by multiple tasks.

For more information, see “Shared Objects” on
page 335.

Class Runtime Properties

Chapter 9 Class Runtime Properties 327

These attributes are also documented under the Object class in the Framework
Library online Help.

For any given object to have a runtime property, either one of the following must
be true:

• The property must be on by default for the object’s class.

• The object’s class must allow the property and the object itself must set the
corresponding attribute.

For example, for an object called Balance to use transactional behavior, the
transactional property must be allowed and the attribute IsTransactional set to
TRUE. Or, if the transactional property is the default for a class, then the attribute
IsTransactional is automatically set to TRUE.

Class Runtime Property Defaults and
Performance
Class runtime properties are predefined for all classes in iPlanet UDS libraries,
such as Framework or Display; you cannot change the properties for these classes.
However, you can override class properties for some subclasses.

When you create a new custom class, the default settings for all the class runtime
properties are off (disallowed). To optimize the runtime performance of a class, in
both a client and server, you should explicitly disable all class runtime properties.
That is, you should set each property to Disallowed and untoggle the subclass
override. This tells iPlanet UDS that the class and any of its subclasses requires no
special handling and so can be manipulated very simply. For example, if
Transactional is turned off, the system does not need to check whether it has to log
an object before changing it.

Transactional IsTransactional If set to TRUE, iPlanet UDS logs the state of the object
before it is updated in a transaction, to allow changes
to be undone if the transaction is unsuccessful.

If set to FALSE, changes to the object are not logged,
nor affected by the success or failure of a transaction.

For more information, see“Transactional Objects” on
page 343.

Class Property Object Attribute Description

Class Runtime Properties

328 iPlanet Unified Development Server • Programming Guide • August 2001

Whenever possible you should turn off as many of the properties as possible
without impacting the runtime behavior of your application. The next two sections
describe setting class runtime properties.

Setting Runtime Properties for a Class
For a class that you have created, you can set the runtime properties at two levels:

• You can set the properties for a class as a whole.

• You can set the actual properties for an object of a class.

Using the Class Properties dialog in the Class Workshop, you can make a property
Allowed, Disallowed, or the Default, as shown in Figure 9-1.

Figure 9-1 Class Properties Dialog: Runtime Properties Tab Page

If a class disallows a property, then no object of that class or its subclasses may take
that property (unless Subclass Override is on; see below).

If a class allows a property, then any object of the class may take the property by
setting the corresponding attribute. Thus, some objects of the class may have the
property while other objects of the same class do not.

If a property is the default for a class, then all objects automatically have that
property; the corresponding attribute is automatically set to TRUE. (One notable
exception is that IsDefault properties are not applied to the starting class of a
project; to get around this, you can assign class properties either in the Init method
for the starting class or in the starting method for the project.)

When IsDefault is set for a class, the corresponding attribute can be explicitly set to
FALSE to disable the property for an individual object.

Class Runtime Properties

Chapter 9 Class Runtime Properties 329

If you turn on the Subclass Override toggle, then the property setting can be
changed in subclasses of the current class.

For more information about using the Class Properties dialog, see A Guide to the
iPlanet UDS Workshops.

Setting Runtime Property Attributes for an Object
In some cases, you can explicitly set the properties for an individual object.
Specifically, if a class definition allows the associated property, then you can set the
IsAnchored, IsShared or IsTransactional attributes explicitly for an object of that
class. Usually you will set these attributes in one of the following places:

• an object’s constructor

For example:

data : SharedData = new(IsShared = TRUE);

• an object’s Init method

For example:

• the first statement after an object is allocated

The IsDefault runtime properties are set after the Init method completes.

If a class definition does not allow the associated property and you try to set the
IsShared or IsTransactional attributes to TRUE, iPlanet UDS raises an exception.

Runtime Attributes on Nested Objects
When you create a new object, the object runtime attributes are not set for nested
object references. For example, if an anchored object has an attribute that should
also be anchored, then you must also explicitly set the IsAnchored attribute for the
nested reference. You can do this using the same mechanisms you used for setting
IsAnchored on the outer object.

method SharedData.Init()
begin
self.IsShared = TRUE;

end method;

Distributed Objects

330 iPlanet Unified Development Server • Programming Guide • August 2001

Runtime Attributes on Cloned Objects
When you make a copy of an object using the Clone method, the current settings of
the property attributes are not copied with the object, even if IsDefault is set for the
property. Instead, they are all set to FALSE. If you want the copy to have any
runtime attributes set to TRUE, you must explicitly set those attributes. For
information on the Clone method, see the Object class in the Framework Library
online Help.

Distributed Objects
A distributed object is an object that has the following characteristics:

• it will be (or might be) referenced by multiple partitions

• as a global object, all changes made to it should be seen by all partitions

Note that iPlanet UDS service objects and shared objects are always (automatically)
distributed objects.

You create a distributed object by allowing the Distributed property for the class in
the Class Workshop and setting the object's IsAnchored attribute to TRUE. You can
set the IsAnchored attribute to TRUE explicitly or by setting the default value for
the class to TRUE in the Class Workshop.

If IsAnchored is TRUE, when the object is passed to another partition (through a
method parameter, return value or event parameter), a distributed reference to the
distributed object is actually passed (occasionally called a proxy). Every access to
the distributed object from a remote partition uses a distributed reference. All
changes are made in the partition on which the distributed object resides (requiring
calls between the local and the remote partition) and all changes made to the object
are visible to all partitions.

The relationship between distributed objects and distributed references is depicted
in Figure 9-2.

Distributed Objects

Chapter 9 Class Runtime Properties 331

Figure 9-2 Using Distributed References for Distributed Objects

If IsAnchored is FALSE (even if the Distributed property is allowed), then an object
is not distributed. When the object is passed to another partition, a copy of the
object is passed. Depending upon the method’s parameter passing mechanism (for
example, input, input/output, or output) the copy of the object might also be
returned.

The interactions of the Distributed property and IsAnchored attribute are shown in
the following table.

When the IsShared attribute is set to TRUE, the IsAnchored attribute is
automatically also set to TRUE, forcing all references to the shared object to refer to
the same object. If the shared class will be passed to another partition, make sure to
enable the Distributed property of the shared class.

Distributed
Property

IsAnchored
Attribute

Effect

Allowed FALSE
TRUE

Object is not distributed, even though property is allowed.
Object is distributed.

Disallowed FALSE
TRUE

Object is not distributed.
Object is anchored, but not distributed. (See “Named and
Unnamed Anchored Objects” on page 332.)

Partition A Partition B

Distributed reference
(proxy) to object in

remote partition

A Distributed object:
Distributed=Allowed

IsAnchored=True

Distributed Objects

332 iPlanet Unified Development Server • Programming Guide • August 2001

Named and Unnamed Anchored Objects
An anchored object can be either named or unnamed.

Named anchored objects These objects are explicitly registered with the iPlanet
UDS name service, using the RegisterObject method on the ObjectLocationMgr
class. Named anchored objects can serve a similar function as service objects.
However, because they are named uniquely, they have an additional advantage in
that they can be referenced selectively, unlike a service object. For more
information about how you might want to use named anchored objects, see the
ObjectLocationMgr class in the Framework Library online Help.

Like a service object, a named anchored object is given a dialog duration when it is
registered with the ObjectLocationMgr. All three dialog durations are valid.

Unnamed anchored objects These objects are not registered with the iPlanet
UDS name service. These objects always have a dialog duration of session.

Non-Distributed Anchored Objects
Note that “anchored” is not synonymous with “distributed.”

Normally a distributed object has both the distributed property and the
IsAnchored attribute set to TRUE. However, it is possible to set the IsAnchored
attribute to TRUE for an object whose class definition does not allow the
Distributed property. An object such as this is guaranteed never to leave its
partition (thus the term anchored object).

Anchored objects are particularly useful when an object is platform-specific—for
example, a file whose directory path is specific to one machine. If a coding error
mistakenly passes a non-distributed, anchored object to another partition, an
exception is raised. Thus, the IsAnchored property is useful to enforce desired
application behavior.

Invoking Methods on Distributed Objects
While there are some additional design considerations when you work with
distributed objects, you need not adjust your code. The TOOL code is identical
whether the object is remote or local, distributed or not; iPlanet UDS simply uses
distributed references when acting on a remote object.

Distributed Objects

Chapter 9 Class Runtime Properties 333

An object becomes distributed when a reference to it is passed to or made from
another partition. The other partition locates the real object through the distributed
reference. When a task in another partition invokes a method on the reference,
iPlanet UDS applies a remote method invocation to the real object.

Remote method invocation is identical to local method invocation. If the method is
invoked synchronously, then while the method is executing, the invoking task is
“blocked” waiting for the method to complete. If the method is invoked
asynchronously (using the start task statement), then while the method is
executing, the invoking task is free to continue execution. You can use a return
event to notify the calling task that the asynchronous method has completed.

Accessing Attributes of Distributed Objects
Similarly, you can access attributes of a remote object just as any other object.
iPlanet UDS wraps the remote attribute access like it was a remote method
invocation. Attribute access is always synchronous.

When you access a remote object's attribute, you will get a distributed reference if
the attribute is an anchored object (IsAnchored=TRUE). You will get a copy of the
object if the attribute is an un-anchored object (IsAnchored=FALSE). If the attribute
is a scalar, you get the scalar itself.

Consider the following distributed class GlobalData that has two attributes, a
number and a nested object containing a number. An instance of the class
(TheData) is marked as a service object:

Code Example 9-1 Accessing attributes of a remote object

class NestedNumber inherits Object
Number : Integer;

end class;
class GlobalData inherits Object

Number : Integer;
Nested : NestedNumber;

has property
distributed = (allow = on, default = on);

end class;
service TheData : GlobalData =
(visibility = environment, dialogduration = session);

Distributed Objects

334 iPlanet Unified Development Server • Programming Guide • August 2001

The following code fragment is executed in a different partition than where
TheData is located:

The first statement will retrieve the current value of the Number attribute and the
second statement will set that attribute to zero. Now consider the following
operation, which includes a reference to the nested object, Nested:

The reference to TheData.Nested will request a local copy of Nested from
TheData’s partition. Thus, the first statement above will assign the correct value
into the “old” variable. But the second statement will only replace the value in the
local copy of TheData.Nested, not the intended value in the remote object's nested
attribute.

You can avoid this error by wrapping attribute access in a method on the
distributed class or by anchoring the nested objects. The following is a corrected
definition for the NestedNumber class. The definition has added the Distributed
property to make sure that all references to the object are through distributed
references:

old : integer = TheData.Number;
TheData.Number = 0;

old : integer = TheData.Nested.Number;
TheData.Nested.Number = 0;

class NestedNumber inherits Object
Number : Integer;

 has property
distributed = (allow = on, default = on);

 end class;

Shared Objects

Chapter 9 Class Runtime Properties 335

The following two statements are now correct because the reference
TheData.Nested refers to an object anchored in the remote partition:

Note on DataValue Subclasses in Framework
Some Framework library classes, such as Array and all the subclasses of DataValue
(such as IntegerData and TextData), are not distributed and should not be
anchored. You may set the IsAnchored attribute to TRUE for such a class, to force a
runtime error to occur when you mistakenly attempt to send the object to a remote
partition.

If you need to pass an object of one of these classes to another partition, you should
make the object an attribute in another class that allows the Distributed property.
Then, write a wrapper method to access the desired object. For example:

Shared Objects
A shared object is an object that may be simultaneously accessed (possibly updated)
by multiple tasks. Thus, access to the class must be controlled so that updates do
not collide. Objects that are potentially manipulated by multiple tasks and are
susceptible to access conflicts at runtime should be shared objects.

You create a shared object by allowing the Shared property for the class in the Class
Workshop and setting the object’s IsShared attribute to TRUE. You can set the
IsShared attribute to TRUE explicitly or by setting the IsDefault value for the class.

old : integer = TheData.Nested.Number;
TheData.Nested.Number = 0;

Code Example 9-2 Wrapper method to access classes that are not distributed

class DistributedName inherits Object
has private
 Text : TextData;
has public
 SetValue (Source: string);
 GetValue ():string;
has property
 distributed = (allow=on,default=on);
end

Shared Objects

336 iPlanet Unified Development Server • Programming Guide • August 2001

When IsShared is set to TRUE, IsAnchored is also set to TRUE.

This section describes the interaction of mutex locks on shared objects. For a
discussion of objects that are both shared and transactional, see “Shared
Transactional Objects and Transactional Locking” on page 347.

If you try to set the IsShared attribute to TRUE but the class definition does not
allow the Shared property, an exception is raised.

Automatic Locking: Mutexes
iPlanet UDS uses a locking mechanism called a mutex to prevent conflicts when
multiple tasks try to access or change a shared object. If one task modifies a shared
object's attribute, iPlanet UDS locks the object until the change is complete. If one
task invokes a method on a shared object, iPlanet UDS does not allow another task
to invoke a method on the object until the first task completes its method. Other
tasks attempting to invoke methods on or access/modify attributes of the same
object are “blocked.” Once the first task completes the method, another task is
allowed to continue.

The order in which blocked tasks are allowed to continue execution is
non-deterministic in the runtime environment. If a task locks a method and then
terminates abnormally, the lock is released.

The following example illustrates when the lock is acquired and released in a
method:

Code Example 9-3 Using a mutex lock

i = sharedObj.Value; -- Lock/unlock around attribute access
...
method SharedData.Update(i : integer)
begin
... -- Lock is held here
if i < MAX then
...
return; -- Lock is released upon leaving method

end if;

if errorOccurred then
 ... build exception ...
 raise errorMessage; -- Lock is released if we leave method

end if;
...
do other work;

end method; -- Lock is released upon leaving method

Shared Objects

Chapter 9 Class Runtime Properties 337

A mutex locks an entire object, including all its methods and attributes. A mutex
cannot be established selectively for a method. A mutex incurs some overhead so
you should set the IsShared attribute of an object only when necessary. For more
selective locking, see the Mutex class in the Framework Library online Help.

A task started by another task has no special meaning for the purposes of locking
shared objects. Even though they may be related in that they are part of the same
“task family,” two tasks cannot concurrently lock a shared object's mutex.

Nonshared Objects and Concurrent Access
Generally speaking, multiple tasks should not operate concurrently on non-shared
objects (objects whose IsShared attribute is not set to TRUE).

Waiting for Events and Shared Objects
When a task is executing a method on a shared object, it owns the object's lock. If,
during the method, the task enters an event loop or event case statement, it gives
up the lock before it waits for the events specified by the event statement. When
the task gives up the lock, another task may invoke methods on the same object. In
this manner it is possible for many tasks to register and wait for the same event on
a shared object.

It does not matter if the events the task is waiting for are defined on the current
object or not. Even if the task waits for the Tick event of the Timer class, it will still
release the lock when it waits.

CAUTION If two tasks do operate on a single non-shared object, the results are
unpredictable. It is possible that before one task completes the
execution of one method, another task may begin executing the
same or another method and may modify attributes being used by
the first method. In a multithreaded server environment, the
corruption of the object's data may cause a server failure.

If IsShared is FALSE, you may still get concurrent access by
explicitly using the Mutex class (described in the Framework
Library online Help).

Shared Objects

338 iPlanet Unified Development Server • Programming Guide • August 2001

The following example illustrates when the lock is acquired and released within an
event loop.

Subsequent posting of the event is broadcast to all tasks waiting for it. Once such
an event is posted, the first task that receives the event will attempt to relock the
shared object and execute the code block associated with the event. When this task
returns to wait for more events or returns from the method, it will give up the lock,
allowing the other tasks to execute on the object.

It is possible that while one task is waiting for an event from within a method being
invoked on a shared object, another task may lock the object and invoke a method
on it.

Note that it is important to wait for the event from within a method of the shared
object’s class. If you own the lock on a shared object and wait for an event in a
method of another class, the shared object’s lock will not be released while the task
is waiting. You can also use this behavior as a mechanism to avoid releasing the lock
when waiting for an event. Therefore, before writing an event loop for a shared
class, you should confirm whether the default behavior is the one that fits your
application.

Code Example 9-4 Using a lock in an event loop

method SharedData.Wait()
begin

... -- Lock is held here
event loop
... -- Lock is still held here
initialization code;
... -- Lock given up when about to wait
when A do
... -- Lock reacquired upon event
code to handle A;
... -- Lock given up when about to wait

when B do
... -- Lock reacquired upon event
code to handle B;

exit;
end event;
... -- Lock is held here

end method; -- Lock is released upon leaving method

Shared Objects

Chapter 9 Class Runtime Properties 339

Nested Method Invocations
The task that holds the lock on a shared object is not blocked from invoking more
methods on that object. The task may also invoke a method on a different object
which, in turn, invokes a method back on the original shared object. This lock is
granted because the task already owns the lock.

The following example illustrates the nested locking when the Update method
invokes the MoreUpdate method. The “level” marks the nesting level of the lock:

Common Mutex Deadlock
When multiple tasks access the same shared objects, tasks may occasionally block
when trying to invoke a method or manipulate the attribute of a shared object.
Usually the block is temporary, but in some situations, a deadlock may occur.

A common mutex deadlock occurs when two (or more) tasks each attempt to access
the shared object that is locked by the other task. Neither task can move forward
because it is waiting for the other task to release its lock. The following example
illustrates a simple deadlock.

Code Example 9-5 Using a nested lock

data : SharedData = new(IsShared = TRUE);
data.Update();
 ...

method SharedData.Update()
begin

... -- Lock held at level 1
self.MoreUpdate();
...

end method; -- Lock released at level 1 (unlocked)

method SharedData.MoreUpdate()
begin

... -- Lock held at level 2
do some work;

end method; -- Lock released at level 2 (still locked)

Shared Objects

340 iPlanet Unified Development Server • Programming Guide • August 2001

Two tasks, Task1 and Task2, are both working with two shared objects, Data1 and
Data2. Task1 invokes BeginUpdate on Data1, thereby locking Data1; Task2 does
the same with Data2. Then each task tries to lock the other object, invoking the
MoreUpdate method. At this point, a deadlock error is raised. iPlanet UDS raises
an exception for one task in order to allow the other task to proceed. Of course, the
timing must be correct to force the deadlock condition to occur:

Avoiding Common Mutex Deadlock
You can avoid common mutex deadlocks if you set the order in which shared
objects are accessed. If all tasks lock the shared objects in the same sequence, this
type of deadlock cannot occur. In the example above, if instead both tasks were to
access Data1 first, then each task would be assured of obtaining the locks it needs
without blocking the other task.

If an application cannot assume a particular access order, it should be prepared to
handle the deadlock exception.

Note that transactional deadlock is always detected (see “Transactional Deadlock”
on page 351 for information).

Distributed Mutex Deadlock
A task that currently has a mutex on one shared object may invoke a method on
another shared object. When the other shared object resides in another partition the
method invocation is remote. If an invocation order is not planned for remote
method invocations on a shared object then a distributed mutex deadlock might occur.

iPlanet UDS cannot detect a distributed mutex deadlock at run-time.

Code Example 9-6 Example of a common mutex deadlock

Data1 : SharedData = new(IsShared = TRUE);
Data2 : SharedData = new(IsShared = TRUE);
start task Data1.BeginUpdate(Data2);
start task Data2.BeginUpdate(Data1);
 ...
method SharedData.BeginUpdate(other : SharedData)
begin
 ...
other.MoreUpdate(); -- Possible deadlock
...

end method;

Shared Objects

Chapter 9 Class Runtime Properties 341

An example of a distributed mutex deadlock follows, with two service objects, SO1
and SO2, and two clients, C1 and C2. C1 invokes the SO1.BeginUpdate method and
C2 invokes the SO2.BeginUpdate method. With the right timing the two clients
could end up deadlocked while waiting for mutexes in different partitions:

You can avoid this type of deadlock by enforcing an order in which service objects
are accessed. Consider carefully the locks you hold while invoking methods on a
remote object.

Distributed Recursive Deadlock
The task that holds the mutex lock on a shared object may invoke a method on
another object, which, in turn, invokes a method on the original shared object. If
the “other” object resides in the same partition as the shared object, the lock is
granted. However, if the “other” object resides in another partition, then a
distributed recursive deadlock condition occurs. In this type of deadlock, a task has
propagated to a second partition, and while there has invoked a method on an
object in the originating partition, thereby attempting to reacquire the lock which is
held by the original caller.

A distributed recursive deadlock is not detected and will block indefinitely.

Code Example 9-7 Example of a distributed mutex deadlock

service SO1 : SharedService;
service SO2 : SharedService;

SO1.BeginUpdate(SO2); -- Client C1
...
SO2.BeginUpdate(SO1); -- Client C2
...

method SharedService.BeginUpdate(other : SharedService)
begin
 ...
 other.MoreUpdate(); -- Possible distributed deadlock
 ...
end method;

Shared Objects

342 iPlanet Unified Development Server • Programming Guide • August 2001

The following example shows two objects from two classes (SharedData and
OtherData). The BeginUpdate method on SharedData invokes the CallBack
method on OtherData, which invokes MoreUpdate back on SharedData. In the
example, the “other” object is created in the same partition as the shared object. If,
however, the other object resides in another partition, when that object tries to
invoke MoreUpdate back in the shared object's partition, it will fail with a
distributed deadlock error.

This type of deadlock is not avoided by ordering shared object (mutex) access.
Instead, you must identify what remote methods you might invoke while locking
the mutex and whether they, in turn, might invoke a method back on your object.
A well designed object method interface with distinct layers to describe “who calls
who” and “across what partition boundaries” can help eliminate this type of
deadlock.

Distributed Shared Objects
When the IsShared attribute is set to TRUE (explicitly or by default), the
IsAnchored attribute is also set to TRUE; thus all shared objects are also
distributed. Thus, a shared object never leaves the partition in which it was created;
instead iPlanet UDS actually passes a distributed reference whenever that object is
passed between partitions.

Code Example 9-8 Distributed recursive deadlock

data : SharedData = new(IsShared = TRUE);
other : OtherData = new; -- In same partition so no deadlock
-- In remote partition deadlock error
data.BeginUpdate(other);
...
method SharedData.BeginUpdate(other : OtherData)
begin
...
other.CallBack(self);

...
end method;

method OtherData.CallBack(sd : SharedData)
begin
...
sd.MoreUpdate();
...

end method;

Transactional Objects

Chapter 9 Class Runtime Properties 343

If iPlanet UDS attempts to pass a shared object to another partition, but the
Distributed property for the object’s class has not been set to Allowed, then you
will get an exception. In some applications you may prefer to get the exception
(rather than set the property to Allowed), because the exception may alert you to a
particular condition, such as an object that is private to the partition being
referenced remotely.

Cloning Shared Objects
When you clone a shared object, the resulting clone is not shared. The IsShared
attribute is not set even if the Shared class property default is set to on. Cloning a
shared object is useful to save the object's state at a particular time. If you want to
make the clone shared, you must set the IsShared attribute after the clone, as in the
following example:

Transactional Objects
A transactional object is an object that can participate in a transaction. Changes made
to the object during a transaction are logged so that they can be rolled back if the
transaction is aborted. Objects that are both shared and transactional require
transactional locks in addition to the mutex locks required by non-transactional
shared objects. Outside the context of a transaction, a transactional object is exactly
like any other object.

While a transaction is active, the transactional objects affected by the transaction
may be locked, and remain so until the transaction ends. You should consider the
duration of transactions as you design applications, particularly applications for a
high number of concurrent users. If possible, you might restructure transactions to
reduce the length of time locks are held.

Code Example 9-9 Marking a cloned object as a shared object

old : SharedData = current.Clone(deep);
old.IsShared = TRUE;
method SharedData.Init()
begin
self.IsShared = TRUE;

end method;

Transactional Objects

344 iPlanet Unified Development Server • Programming Guide • August 2001

You create a transactional object by allowing the Transactional property for the
class in the Class Workshop, and by setting the object’s IsTransactional attribute to
TRUE (explicitly or by default). If you try to set the IsTransactional attribute to
TRUE, but the class definition does not allow the Transactional property, an
exception is raised. You do not need to be in a transaction in order to set the
IsTransactional attribute.

Transactional objects may reference other transactional and non-transactional
objects. If you set the IsTransactional attribute to TRUE for an object, this does not
automatically set the IsTransactional attribute for objects it references. You must
explicitly set the attribute for any nested references. This is illustrated in the
following example in which the Init method sets the IsTransactional attribute for
nested object references:

For convenience, some Framework classes, such as Array and all the subclasses of
DataValue (such as IntegerData and TextData), allow the Transactional property.
You may set the IsTransactional attribute of these types of objects at runtime, as in
the example above.

However, most iPlanet UDS classes are not transactional. For example, if you write
to a File object during a transaction, the contents of the file do not get rolled back if
the transaction is aborted. See the descriptions of individual classes in the iPlanet
UDS documentation set to see which classes are transactional.

Code Example 9-10 Making nested attributes transactional

class DataSet inherits Object
Number : Integer;
Text : TextData;
List : Array of TextData;
Init();

has property
transactional = (allow = on, default = on);

end class;

method DataSet.Init()
begin

Text = new(IsTransactional = TRUE);
List = new(IsTransactional = TRUE);

end method;

Transactional Objects

Chapter 9 Class Runtime Properties 345

Transactional Logging
If you modify the attributes of a transactional object during a transaction, the
object’s initial value is logged before the first modification. If the transaction is
aborted, the log is used to restore the object to its initial value.

The attributes of non-transactional objects may also be modified during a
transaction, but those changes are not rolled back if the transaction aborts.

iPlanet UDS variables are not transactional; their values are never rolled back. For
example, local scalar variables in a method (such as integer, string, and boolean)
are never transactional. If you change the value of a scalar variable during a
transaction and the transaction is aborted, the value of the variable is not rolled
back. The object that a variable points to may be transactional, but the value of the
variable (that is, the object the variable points to) is not transactional.

The following example illustrates the transactional behavior of three local
variables. The Data class is transactional (without a default). Three variables exist
(two objects and one scalar), only one of which is logged:

Code Example 9-11 Effect of transactional logging

class Data inherits Object
Value : String;

 has property
transactional = (allow = on); -- No default setting

end class;

...
tran : Data = new(IsTransactional = TRUE); --Transactional
nonTran : Data = new; -- Non-transactional
scalar : string; -- Scalar variable

...
tran.Value = ’before-1’;
nonTran.Value = ’before-2’;
scalar = ’before-3’;

begin transaction
tran.Value = ’after-1’; -- Logged before change
nonTran.Value = ’after-2’; -- Non-transactional - not logged
scalar = ’after-3’; -- Scalar variable - not logged
 ...
transaction.Abort(TRUE);

exception
...

end transaction;

Transactional Objects

346 iPlanet Unified Development Server • Programming Guide • August 2001

The values after the transaction is aborted are only restored for the transactional
object, tran:

An event posted during a transaction, even if posted on transactional objects, is not
transactional and is not logged. If you post an event on a transactional object and
then abort the transaction, the event remains posted. You should pay special
attention if you post an event during a transaction that contains a parameter that is
a copy of the current state of a transactional object. If the transaction is aborted, the
value of that event parameter is inconsistent.

One useful technique may be to post a distributed reference to the transactional
object and not a copy. Another useful technique is to post a commit-like event that
allows event recipients to be notified that their data is now committed, after which
they may retrieve the data’s value.

Common Transactional Logging Error
A common error is when a transactional object references a non-transactional
object whose changes are not rolled back after the transaction is aborted. In the
following example, the Data class definition includes a single attribute Text that is
not transactional:

tran.Value : ’before-1’; -- Rolled back
nonTran.Value : ’after-2’;
scalar : ’after-3’;

Code Example 9-12 Common transactional logging error

class Data inherits Object
Text : TextData;
Init();

has property
transactional = (allow = on, default = on);

end class;

method Data.Init()
begin
Text = new; -- No setting of IsTransactional

end method;

Transactional Objects

Chapter 9 Class Runtime Properties 347

Then the value of the Text object is modified during a transaction, which is then
aborted:

After aborting the transaction, the value of d.Text is “after” because the changes
were not rolled back. To have the Text object participate in the transaction, you
could simply modify the Init method to make the Text object transactional, as
follows:

Shared Transactional Objects and Transactional
Locking
A transactional object can also be shared; that is, both the IsTransactional and
IsShared attributes are set to TRUE. In order to access or modify a shared
transactional object (either through an attribute or a method), the transaction must
acquire a transactional lock on the object. In fact, one transaction could easily have
transactional locks on a number of transactional objects.

The transactional lock is in addition to the normal mutex lock that regulates
concurrent shared object access. A mutex lock and transactional lock differ in two
key ways:

1. A mutex lock is held by the task for the scope of the method or attribute access.

A transactional lock is held by the transaction for the duration of the
transaction. A transactional lock is not temporarily released when the task in
the transaction waits for an event on the shared transactional object.

d : Data = new;
d.Text.Value = ’before’;
...
begin transaction
d.Text.Value = ’after’;
transaction.Abort(TRUE);
...

end transaction;

method Data.Init()
begin
Text = new(IsTransactional = TRUE);

end method;

Transactional Objects

348 iPlanet Unified Development Server • Programming Guide • August 2001

2. A mutex lock is always acquired exclusively. Tasks do not share a single mutex
lock.

A transactional lock can be acquired in either read (shared) mode or write
(exclusive) mode. iPlanet UDS automatically determines the mode of the
transactional lock required when accessing the shared transactional objects.

The fact that a transactional lock is required in addition to the mutex lock does not
disable or modify any of the policies iPlanet UDS applies with the mutex lock.

As a general rule, iPlanet UDS guarantees that each shared transactional object can
support either:

• one or more transactional read locks

• one transactional write lock

When a transaction attempts to access a shared transactional object, iPlanet UDS
decides if the transactional lock may be granted to the transaction. If no other
transaction is holding the lock, then the access is granted. If another transaction is
holding the lock in a compatible mode (that is, both are “reading” a value from the
object and require a read lock), then the lock is granted. If another transaction is
holding the lock in an incompatible mode (that is, the other transaction previously
modified the contents of the object and holds a write lock), then the lock is denied
and the request is blocked. If blocked, the transaction waits until the lock is
released.

Once a transaction is granted a lock on an object, it holds it until the transaction
ends (either by aborting or committing). If an exception occurs that aborts the
transaction (or cancels the task), it is treated like the transaction aborted. When the
transaction ends, the lock is released and the next waiting transaction (if any) is
granted access.

When your application requires multiple independent transactions that might be
executed concurrently on a set of shared objects, take the locking semantics into
consideration. A simple method invocation may block for a long period of time
until an interactive user clicks a Save button, which commits a transaction and
releases the transactional lock that the method invocation is waiting for.

Updating Non-Shared Transactional Objects
Transactional locks prevent multiple independent transactions from
simultaneously modifying the attributes of a shared transactional object (by
serializing the updates).

Transactional Objects

Chapter 9 Class Runtime Properties 349

However, if multiple independent transactions modify a non-shared transactional
object no locking mechanism exists to serialize the updates; iPlanet UDS does not
enforce locking for non-shared objects.Thus, for non-shared objects, one
transaction might update the object and, before that transaction has ended, another
transaction might modify the object again, invalidating the first transaction’s
change.

Read Locks
A read lock is a non-exclusive (shared) lock that can be held by multiple
transactions. A read lock is required when a task accesses the value of an attribute
on a shared transactional object, or when it invokes a method that potentially does
not modify any of the object’s attributes. Another task executing in a different
transaction may access the same attributes and methods (that do not modify the
object) and obtain a read lock, because iPlanet UDS ensures the transactional
integrity of the data.

However, a read lock cannot be held at the same time as a write lock. If a
transaction holds a read lock, it blocks a write lock request from another
transaction. Or, a read lock that is requested while another transaction holds a
write lock is blocked until that transaction ends.

The following example shows an attribute access and a method that does not
modify any of the object's attributes. If the statement or method is executed by a
task in a transaction, iPlanet UDS automatically requests a read lock for the object:

CAUTION To avoid data corruption you should mark as shared any
transactional object that could potentially be modified by multiple
concurrent independent transactions.

Code Example 9-13 Transactional read lock

val = sharedTranObj.Value; -- Read lock before access
...
method SharedTran.GetTotal() : double
begin -- Read lock requested here
sum : double = 0.0;
for a in self.Accounts do -- Read self.Accounts
sum = sum + a.Balance;

end for;
return sum;

end method;

Transactional Objects

350 iPlanet Unified Development Server • Programming Guide • August 2001

Write Locks
A write lock is an exclusive lock on an object; multiple transactions cannot
concurrently hold any locks on an object while one transaction holds a write lock
on the object. Another task in a separate transaction that is trying to access or
assign to the object is blocked until the task that holds the write lock ends its
transaction.

A write lock is required when a task modifies the value of an attribute on a shared
transactional object or when it invokes a method that potentially modifies any of an
object’s attributes. A write lock that is requested while multiple transactions hold a
read lock is blocked until all those transactions have ended.

The following example shows an attribute assignment and a method that might
modify one of the object's attributes. If the statement or method is executed by a
task in a transaction, iPlanet UDS will automatically request a write lock for the
object:

Even though the GetCurrent method may never execute the code that modifies the
Current attribute, iPlanet UDS requires a write lock in order to execute the method.

In the following code line, Outer and Nested are shared transactional objects. If the
statement is executed in a transaction, iPlanet UDS requests a read lock for Outer
(accessing the Nested attribute) and a write lock for Nested (assigning to the Value
attribute):

Outer.Nested.Value = ’new value’;

Code Example 9-14 Transactional write lock

sharedTranObj.Value = val; -- Write lock before assignment
 ...
method SharedTran.GetCurrent() : integer
begin -- Write lock requested here
for a in self.Accounts do
 if a.Expired then
self.Current = self.Current - 1; -- Write self.Current

 end if;
end for;
return self.Current;

end method;

Transactional Objects

Chapter 9 Class Runtime Properties 351

Lock Promotion
When a transaction holds a read lock on a shared transactional object, it may
execute some code that requires a write lock on the same object. Converting a lock
from a read lock to a write lock is called lock promotion.

A transaction may block when promoting a lock. For example, assume two
transactions share a read lock and one transaction requests a write lock (promoting
the lock). The transaction requesting the write lock must wait until its partner in
the read lock ends its transaction and releases the lock, allowing the promotion to
continue.

Transactional Deadlock
When multiple transactions access and lock the same shared transactional objects, a
transaction may occasionally block when trying to invoke a method or manipulate
the attribute of such an object. In some cases, a transactional deadlock may occur.
Although similar to mutex deadlocks (see “Common Mutex Deadlock” on
page 339), transactional deadlocks are more common than mutex deadlocks.
Transactional locks are typically longer in duration, with a higher probability of
blocking another transaction. Unlike mutex deadlocks which can go undetected by
iPlanet UDS under some circumstances, transactional deadlocks are always
detected by iPlanet UDS.

Deadlock occurs when two (or more) transactions attempt to manipulate a shared
transactional object that is locked by the other transaction. Both transactions cannot
move forward until the other transaction ends, thus releasing its lock.

The following example illustrates a simple transactional deadlock condition. The
two transaction blocks, T1 and T2, are executed in parallel by two tasks.
Transaction T1 locks object o1 and then transaction T2 locks object o2. Both locks
are exclusive write locks. Now T1 tries to lock o2 and blocks, waiting for T2. When
T2 continues and tries to lock o1, a transactional deadlock error is raised:

Code Example 9-15 Transactional deadlock

T1: begin transaction
 T2: begin transaction
o1.Value = 1; -- Lock o1
 o2.Value = 22; -- Lock o2
o2.Value = 2; -- Wait for T2

o1.Value = 11; -- Wait for T1 !
end transaction;
 end transaction;

Transactional Objects

352 iPlanet Unified Development Server • Programming Guide • August 2001

You can use the same technique to avoid transactional deadlocks as to avoid mutex
deadlocks. See “Avoiding Common Mutex Deadlock” on page 340. You must be
able to define one sequence in which all transactions will access the shared
transactional objects. If you cannot define such a sequence because objects must be
accessed randomly, then your application should have provisions for transactional
deadlocks.

Lock Promotion Deadlock
Another form of transactional deadlock is the lock promotion deadlock. In this case,
multiple independent transactions have already been granted a read lock to the
same shared transactional object. If one of the transactions next attempts to modify
the object and now requires a write lock, it will block pending the end of the other
transactions that are holding the read lock. If, however, another of the transactions
also attempts to modify the object, this will cause a lock promotion deadlock.

The following example illustrates this condition. The Artist class is transactional,
and it has Name, Comments, and Country attributes. The following code is part of
a UserWindow method that references Artist:

If you start up two separate windows, click on the read button, and then the write
button, you will get a deadlock exception. The deadlock exception occurs because
the read operations get read access to the object, and then the write operations
attempt to promote the read access to write access.

Code Example 9-16 Lock promotion deadlock

-- Object ’a’ of type Artist is passed in, and shared.
begin transaction
event loop
when <read_lock>.click do
t : TextData = a.name; --Read lock
log.Putline(t);

when <write_lock>.click do
a.name = new(value = ’New Value’); -- Write lock
log.Putline(a.name);

when <commit_xact>.Click do
exit;

end event;
exception
when e : GenericException do
task.ErrorMgr.ShowErrors();

end transaction;

Transactional Objects

Chapter 9 Class Runtime Properties 353

The workaround is simple; avoid the lock promotion by acquiring a write lock
initially instead of a read lock. In the above example, you could substitute the
following code:

This code causes the second attempt at the read operation to block until the first
transaction is committed, and the deadlock does not occur.

Another example of lock promotion deadlock follows. When transaction T1 tries to
convert the lock on object “o” from a read lock to a write lock, it blocks. If
transaction T2 tries the same operation, it will block waiting for T1 and a
transactional lock conversion deadlock error is raised:

This case may seem unusual, but, with the flexibility of distributed objects, this can
occur quite simply. The class ServiceObject below has two methods: GetId (which
does not modify any attributes) and SetUser (which sets the current user name). A
service object SO is created for the class:

when <read_lock>.Click do
a.name = a.name; -- Gets a write lock.
t : TextData = a.name; -- Already has write lock
log.Putline(a.name);

Code Example 9-17 Two transactions in lock promotion deadlock

T1: begin transaction
 T2: begin transaction

v = o.Value; -- Lock o (read)
 v = o.Value; -- Lock o (read)

o.Value = 1; -- Convert/wait
o.Value = 2; -- Convert/Wait!

end transaction;
 end transaction;

class ServiceObject inherits Object
has private
Id : integer;
User : TextData;
GetId() : integer;
SetUser(user : TextData);

has property

Transactional Objects

354 iPlanet Unified Development Server • Programming Guide • August 2001

At some initial point in the application, client code executes the following
statements:

Upon the invocation of GetId, the caller has a read lock on the service object. Then,
when SetUser is invoked, a write lock is requested. Imagine that while one client is
doing the “busy work,” another client starts and also invokes the GetId method,
thus sharing the read lock. If they continue executing, they will encounter a lock
promotion deadlock exception.

You can avoid lock promotion deadlocks in more than one way.

transactional = (allow = on, default = on);
shared = (allow = on, default = on);

end class;

method ServiceObject.GetId() : integer
begin
return self.Id;

end method;

method ServiceObject.SetUser(user : TextData)
begin
self.User = user;

end method;

service SO : ServiceObject =
(visibility = environment, dialogduration = session);

begin transaction
...
id = SO.GetId(); -- Read lock on SO
...
busy work;
...
SO.SetUser(myName); -- Write lock on SO
 ...

 end transaction;

Transactional Objects

Chapter 9 Class Runtime Properties 355

One way is to change any method on a shared transactional service object that
modifies an attribute to include a statement that requires a write lock. For example,
the GetId method could be changed as follows:

Another way is to provide a method that guarantees a write lock request and
define the class interface to call this method first. For example, if the interface to the
ServiceObject class above required that you first invoke SetUser, then a write lock
could be requested at the start of the transaction.

Locking in Nested Transactions
Exclusive locks acquired in nested transactions are released if the nested
transaction is aborted. If the nested transaction commits, then ownership of the
exclusive lock is passed up to the enclosing transaction and held until that
transaction ends.

Shared locks acquired in a nested transaction are treated as though they were
granted to the enclosing transaction.

Transaction Task Participants and Locking
The start task statement includes a transaction clause that allows multiple tasks to
participate in a single transaction. When more than one task is participating in a
single transaction, all tasks share the transactional locks. This is consistent with
transactional locks being held by the transaction (as opposed to mutex locks, which
are held by a task).

Any task in a transaction that holds even an exclusive write lock on an object is
allowed to access and modify that shared transactional object. The tasks will not
block each other at the level of transactional locks. However, the tasks will not
concurrently be executing a method on the object or modifying an attribute; those
tasks are regulated by the mutex lock.

method ServiceObject.GetId() : integer
begin
self.Id = self.Id;
return self.Id;

end method;

Transactional Objects

356 iPlanet Unified Development Server • Programming Guide • August 2001

Transactional Objects Not in Transaction
Transactional objects are not required to be manipulated within the context of a
transaction.

A task that is not executing in a transaction does not follow any of the rules for
transactions. The task may modify a transactional object without incurring the
overhead of logging and, in the case of a shared transactional object, the overhead
of transactional locking.

Note that mutex locking rules always apply to shared objects, whether or not a task
is executing in a transaction.

When designing transactions into your application, you might consider whether
you can define tasks to concurrently execute outside of a transaction as well as
tasks that should manipulate objects only under the control of a transaction.

Cloning Transactional Objects
When you clone a transactional object, the resulting clone is not transactional. The
IsTransactional attribute is not set, even if the Transactional class property default
is set to on. Cloning a transactional object is useful to save the object’s state at a
particular time. If you wish to make the clone transactional, you must set the
IsTransactional attribute after the clone as in the following example.

Distributed Transactions and the Transactional
Property
In iPlanet UDS Releases 2 and 3, the Transactional property is also used to
determine if a distributed method is invoked in the context of a transaction or not.
As a rule, you should allow the transactional property if you want a transaction to
propagate to the partition that owns the object on which you’re invoking a method.
The iPlanet UDS transaction manager uses this property to determine if a
transaction should propagate when a method is invoked on a distributed reference
that is not a service object.

Code Example 9-18 Setting the IsTransactional attribute for a cloned transactional object

self.OldName = self.Name.Clone(TRUE);
self.OldName.IsTransactional = TRUE;

Monitored Objects

Chapter 9 Class Runtime Properties 357

For example, a client begins a transaction and invokes a method on a service object.
The method returns a reference to another, non-service object anchored in the
remote partition. With respect to the client the returned object is a simple
distributed reference, not a service object. Now, while still in the transaction, the
client invokes a method on the returned object. This distributed method is only
considered part of the transaction if the class definition of the returned object
allowed the transactional property.

If the class definition of the returned object does not allow the transactional
property, then methods invoked on distributed references to that object are not
considered part of the transaction.

As a rule, methods invoked on distributed references to DB sessions and DB
resource managers will always be part of the transaction as those classes allow the
transactional setting.

This rule must be addressed when you construct a router and use customized logic
to determine the object to use for the current request. In this case candidate objects
are typically not service objects, and you should set their transactional property to
achieve the desired behavior.

Monitored Objects
A monitored object is an object that is mapped to a window widget. When changes
are made to the value of such an object, the window display is automatically
refreshed to display the changes. By default, the class Monitored property is
allowed, indicating to iPlanet UDS that any object may be displayed.

If you know that a certain class will never be displayed, you should disallow the
Monitored property. Turning off this property will increase the runtime efficiency
of the class.

The Monitored property has no associated Object attribute, as the system internally
decides whether or not to monitor an iPlanet UDS object.

Note that if Monitored is turned off for a class, you can still refresh the display after
changing an object of that class by using the UpdateFieldFromData method of the
Widget class (see the Display Library online Help for information about the Widget
class).

Monitored Objects

358 iPlanet Unified Development Server • Programming Guide • August 2001

359

Chapter 10

Using Interfaces

This chapter provides complete information about how to use iPlanet UDS
interfaces. The chapter provides a conceptual overview and then explains how you
do the following:

• use interfaces with dynamic class loading

• use interfaces for multiple interface inheritance

About Interfaces
An interface defines a set of class elements, without providing the code that
implements them. The interface provides the method and event handler signatures
that define a standard “interface” to an object. The code for the methods and event
handlers in the interface is provided by the classes that implement the interface.

For example, the AdaptableAuction sample application defines a
TaxCalculationIFace interface, which provides a method signature and an event
related to calculating taxes on a sale. The method is called CalculateTax and the
event is called TaxCalculated. The code for CalculateTax is provided by the
TaxCalculationImp class, which implements the TaxCalculationIFace interface.

Using an interface separates the definition of a class from its implementations,
allowing you to design your application using “component software” techniques.
In iPlanet UDS, interfaces allow you to use both dynamic class loading and
multiple interface inheritance. iPlanet UDS’s dynamic class loading feature enables
you to deploy an application that uses an interface as a declared data type, and
have developers in the various deployment environments plug in the appropriate
class implementations for their environments. Multiple interface inheritance allows
you to add generic operations, such as sorting, to your classes without
restructuring your class hierarchy.

About Interfaces

360 iPlanet Unified Development Server • Programming Guide • August 2001

Interface Elements
An interface has the same elements as a class, except for attributes. These elements
include: virtual attributes, methods (method signatures), events, event handlers
(event handler signatures), and constants. A method signature is the method name,
parameter list, and return value. Likewise, an event handler signature is the event
handler name and parameter list. See “Interface Elements” on page 368 for
complete information on these elements.

Implementing an Interface
Implementing an interface in a class means providing the code for all methods and
event handlers defined in the interface. Any number of classes can implement a
single interface, which provides multiple implementations for a single interface. In
addition, a single class can implement multiple interfaces. See “Implementing an
Interface” on page 364 for complete information on implementing an interface.

Using an Interface as a Data Type
You can use an interface as the declared data type for any data item. The
AdaptableAuction example uses the TaxCalculationIFace interface as the declared
type of a local variable.

However, when you create the actual object associated with the data item, the
object’s runtime type must be one of the classes that implement the interface. In
other words, the implementing class is the data item’s runtime type. The
AdaptableAuction example has a method that finds the implementing class for the
interface, and creates an instance of that class. The runtime type of the object is the
implementing class, either TaxCalculationImp or NewTaxCalculationImp,
depending on which of two files is copied into dynload.dat when you run. (See
Appendix A, “iPlanet UDS Example Applications” for complete information about
the AdaptableAuction example.)

The classes that implement an interface can be included within your application
code or you can load them at runtime from a shared library.

About Interfaces

Chapter 10 Using Interfaces 361

Dynamic Class Loading
Loading the implementing classes at runtime enables you to customize the
application for each deployment environment. Dynamic class loading enables you
to create objects in your code from implementing classes that will be added to the
environment after the original application is deployed. When the application is
running, it dynamically loads the implementing classes provided in a shared
library of the current environment. The application can then create objects from the
dynamically loaded classes.

For example, the AdaptableAuction sample application reads data from a flat file
to determine which implementation to load. At runtime, you can change the data
in this file, and the application will load a different implementation. The data in the
file tells the application which library and class to load.

For complete information on dynamic class loading, see “Dynamic Class Loading”
on page 371.

Multiple Interface Inheritance
When a class implements an interface, it “inherits” its class elements from the
interface, as well as from its own superclass, providing multiple interface
inheritance. iPlanet UDS’s multiple interface inheritance feature is useful for
adding generic functionality to existing classes, without restructuring your class
hierarchy. The example described under “Using Multiple Interface Inheritance” on
page 389 shows how you could use an interface to add a generic Sort method to an
existing class hierarchy. For complete information on multiple interface
inheritance, see “Using Multiple Interface Inheritance” on page 389.

Polymorphism
Using interfaces for both dynamic class loading and multiple interface inheritance
provides the benefit of polymorphism. Polymorphism means the ability of a data
item to refer at runtime to any number of different objects. In TOOL, we make the
distinction between the declared type and the runtime type. As described above,
when you declare an item of an interface type, the interface that defines the data
item is its declared type. However, when you assign an object value to the data
item, the runtime type of the object assigned to the data item can be any class that
implements the interface. In other words, the data item can take any number of
forms (the term “polymorphism” is literally defined as the ability to assume many
different forms).

The benefit here is that you can perform an operation on a data item whose type is
an interface without knowing anything about how the object’s class has
implemented the operation. As long as the class implements the interface, you are
assured that the operation will work correctly for the object.

About Interfaces

362 iPlanet Unified Development Server • Programming Guide • August 2001

For example, the AdaptableAuction application uses the TaxCalculationIFace
interface as the declared type of a local variable. The class that defines the object
value for the local variable is loaded at runtime so the application does not know
the runtime type for the local variable. However, because the interface defines the
CalculateTax method and TaxCalculated event, the application can use
CalculateTax and TaxCalculated to operate on the object.

Interface Hierarchies
Unlike a class, which always has a superclass, an interface does not need a
super-interface. When you create an interface, you choose whether or not the
interface has a super-interface. If the interface does have a super-interface, it
inherits all the interface elements defined for its super-interface, just as a class
inherits from its superclass. If the interface does not have a super-interface, you
must define the entire interface from scratch—it does not inherit any interface
elements.

Setting up an interface hierarchy is similar to setting up a class hierarchy. Each
sub-interface inherits all the interface elements defined for its super-interface. The
sub-interface can overload methods by defining different parameter types for the
same method name. However, overriding is not allowed. Because methods and
event handlers in interfaces have no code associated with them, there is no way to
override them. See “Interface Elements” on page 368 for information about
defining methods and event handlers in interfaces.

The following sections provide background information about creating an
interface, providing implementations of the interface, and using the interface as a
declared data type. “Interface Elements” on page 368 provides detailed
information about the individual elements in an interface.

Creating an Interface
You define interfaces using the Interface Workshop. Creating an interface is similar
to creating a class. You specify a name for the interface and, optionally, a
super-interface. You then use the Interface Workshop to define each of the interface
elements.

To create a new interface, you must start from the Project Workshop. The New
Interface tool or the Component > New > Interface command creates a new
interface with the name you specify.

About Interfaces

Chapter 10 Using Interfaces 363

➤ To create an interface

1. In the Project Workshop, click the New Interface tool or choose the Component
> New > Interface command.

The Interface Properties dialog opens.

2. In the Interface Properties dialog, specify the name and, if desired, the
super-interface for the interface. Click the OK button to create the interface.

Fill in the fields on the dialog as follows:

After the Interface Workshop opens, you can define the individual elements in the
interface. Defining the individual elements in an interface is the same as defining
the individual elements in a class, except that you do not write code for the
methods and event handlers. For complete information on using the Interface
Workshop, see A Guide to the iPlanet UDS Workshops.

The following figure illustrates the complete definition of the TaxCalculationIFace
interface from the iPlanet UDS AdaptableAuction example.

Interface Property How to Specify It

Interface Name Type in the interface name.

Super-Interface Type in the super-interface name or use the browser button to
display a list of interfaces from which you can make a selection.

About Interfaces

364 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 10-1 TaxCalculationIFace Interface

Implementing an Interface
To implement an interface, you declare one or more classes as “implementing” the
interface. Then, in each class that implements the interface, you write the
“implementation” code for all the methods and event handlers in the interface.

The implementing class must also define every event in the interface. You cannot
exclude any of the methods, event handlers, or events, or you will get a compile
error. Constants and virtual attributes do not need to be implemented in the
implementing class.

When a class implements an interface, all of its subclasses also implement the
interface. When you assign an object to the data item whose declared type is an
interface, the object’s type can be a class that implements the interface or a subclass
of a class that implements the interface.

Remember, a single class can implement multiple interfaces. In addition, the class
may also define functionality of its own. The multiple interface inheritance
example described under “Using Multiple Interface Inheritance” on page 389
shows classes that implement the Sortable interface to complement their basic
functionality.

To implement an interface in a class, you use the Class Workshop. The Class
Properties dialog for an individual class allows you to list one or more interfaces
that the given class will be implementing. Any number of interfaces can be
implemented by a given class, and any number of classes can implement a given
interface.

About Interfaces

Chapter 10 Using Interfaces 365

The classes that implement the interface can be included within your application
code or you can load them at runtime. See “Dynamic Class Loading” on page 371
for information about how to load the implementing classes at runtime.

➤ To implement an interface in the Class Workshop

1. In the Class Workshop, choose the File > Properties... command.

2. On the Class Properties dialog, select the Interfaces Implemented tab.

3. On the Interfaces Implemented tab page, enter the interface name.

4. In the Project Workshop, open the interface for which you are providing the
implementation.

5. In the Interface Workshop, drag each of the methods, event handlers, and
events from the interface to the Class Workshop, and drop each one on the
implementing class.

Copying the methods, event handlers, and events to the class conveniently
defines all the elements that you need to implement in the class.

You can also copy any constants and virtual attributes you wish to include in
the class; however, the constants and virtual attributes do not need to be
implemented in the class.

6. Open each method, and write the implementation code using the Method
Workshop.

7. Open each event handler, and write the implementation code using the Event
Handler Workshop.

Every implementing class for an interface must provide implementation code for
every method and event handler defined in the interface. The implementing class
must also define every event in the interface. You cannot exclude any of the
methods, event handlers, or events, or you will get a compile error. Constants and
virtual attributes do not need to be implemented in the implementing class.

About Interfaces

366 iPlanet Unified Development Server • Programming Guide • August 2001

The following figure illustrates the full definition of the TaxCalculationImp class,
which implements the TaxCalculationIFace interface in the iPlanet UDS
AdaptableAuction example:

Figure 10-2 TaxCalculationImp Implementation of TaxCalculationIFace Interface

Implementing Multiple Interfaces
As described earlier, a single class can implement multiple interfaces. There is no
limit on the number of interfaces that can be implemented by a single class.
However, there are two restrictions of which you need to be aware.

The first restriction is that when a single class implements two interfaces that
contain identical method or event handler signatures, the class can provide only a
single implementation of that method or event handler. For example, if both the A
and B interfaces contain an Add method, a class implementing both A and B can
define only one Add method. In this case, you must be sure that the single
implementation provides the correct functionality for both interfaces.

Of course, you must also watch out for this same problem if the superclass for a
class and the interface it implements contain the same method signature.

If your class is implementing two interfaces that contain methods with the same
names but with different parameter lists, you must implement both variations of
the method in your class (that is, you must overload the method). If you do not,
you will get an error, because your class is not correctly implementing both
interfaces.

About Interfaces

Chapter 10 Using Interfaces 367

The second restriction is that your class cannot implement two interfaces that
contain event handlers with the same names but with different parameter names.
This restriction is necessary because you cannot overload event handlers; your
class can contain only one event handler with a given name. Therefore, if your class
specifies that it is implementing two interfaces that contain an event handler with
the same name but with different parameter lists, you will get an error because
your class is not correctly implementing both interfaces.

Using an Interface as a Declared Type
With one exception, you can use an interface as a declared data type anywhere that
you can use a class. The following example illustrates declaring a local variable
with the TaxCalculationIFace interface as the data type:

The only time you cannot use an interface as a data type is when you are defining a
service object. The service object’s type must be a class, not an interface. However,
an interface can be used as the type for one of the service object’s attributes.

Code Example 10-1 Declaring a local variable using an interface as a data type

-- This method gets an instance of the needed class type, then
-- uses this instance to call methods implemented in the
-- implementation class.

newInstance : Object;
RI : RegInfo = new;

-- Get an instance of the implementation of the interface.
-- CreateImpInstance finds the library and class, and calls
-- InstanceAlloc(). It returns the value returned by
-- InstanceAlloc().
newinstance = RI.CreateImpInstance();

-- Cast the object returned by InstanceAlloc() to the interface.
taxClass : TaxCalculationIFace =
(TaxCalculationIFace)(newInstance);

-- You can now call methods in the implementation.
for i in 1 to 3 do
SaleService.ListOfSales[i].Taxes =
taxClass.CalculateTax(SaleService.ListOfSales[i]);

...
end for;

Project: AdaptableAuctionServices • Class: SaleMgr • Method: GetAllTaxes

About Interfaces

368 iPlanet Unified Development Server • Programming Guide • August 2001

When you assign an object to the data item, the object’s type must be a class that
implements the interface (or a subclass of a class that implements the interface).
The implementing class is the data item’s runtime type. The example shown above
uses the CreateImpInstance method to create the object using a dynamically loaded
class. It then assigns this object to the TaxClass variable.

Because the interface is the declared type of the data item, the only operations
available for the object are those defined by the interface. However, when you use
one of the interface’s method or event handlers on the object, iPlanet UDS uses the
implementation provided by the object’s class.

To access operations that are defined for the class but are not defined for the
interface, you must first cast the object returned by the InstanceAlloc method to its
runtime type. Casting an object from an interface to a class is exactly the same as
casting an object from a superclass to a subclass. See the TOOL Reference Manual for
complete information on casting.

Interface Elements
The following sections provide conceptual information about the elements
common to all interfaces:

• virtual attributes

• methods

• events

• event handlers

• constants

Virtual Attributes
As described in A Guide to the iPlanet UDS Workshops, a virtual attribute does not
store a value or point to an object—instead, a virtual attribute consists of two
expressions, one that is evaluated when the program sets the value of the attribute
and another that is evaluated when the program gets the value of the attribute. The
Get expression for the virtual attribute is required, but the Set expression is
optional. A virtual attribute without a Set expression is a read-only attribute.

Defining a virtual attribute in an interface allows you to make a method invocation
look like an attribute. Typically, a virtual attribute provides a convenient way for
getting and setting a complex value.

About Interfaces

Chapter 10 Using Interfaces 369

All methods used in the Get and Set expressions for the virtual attribute must be
defined in the interface.

You do not need to “implement” the virtual attribute in the classes that implement
the interface. When a data item’s declared type is an interface, iPlanet UDS always
uses the virtual attribute definition provided by the interface. However, you can
“re-define” the virtual attribute in the implementing classes. In this case, when the
declared type of the data item is an interface, iPlanet UDS uses the definition
provided by the interface, and when the declared type of the data item is the
implementing class, iPlanet UDS uses the definition provided by the class.

Methods
A method is a procedure that is specially written to operate on an object. Every
method consists of a method signature (which specifies the method name,
parameters, return type) and a statement block that contains the TOOL code that
performs the operations on the object. In an interface, you define only the method
signature; a method defined in an interface does not include source code. The class
(or classes) that implements the interface provides the source code for the method.

The AdaptableAuction example provides two implementations of the
TaxCalculationIFace interface. The interface defines the following method
signature:

CalculateTax(theSale:Sale):double

The two implementations of this method signature are in separate projects, in
classes with different names. One implementation of CalculateTax takes into
consideration whether the buyer was a non-profit organization; the other doesn’t.

For examples of the use of methods within interfaces, see the following methods in
the AdaptableAuction example:

• CalculateTax (TaxCalculationImp class in AAImplementations project)

• CalculateTax (NewTaxCalculationImp class in AAImp2) project

You can overload a method in an interface. To overload a method, you simply add
a new method signature using the same name with a different parameter list. The
class (or classes) that implement the interface must provide source code for every
method signature in the interface.

Because the interface defines only a method signature, overriding an inherited
method has no effect. The inherited method and the overriding method have
exactly the same signature.

About Interfaces

370 iPlanet Unified Development Server • Programming Guide • August 2001

Events
An event is a signal that something has changed. Every event has a name and,
optionally, one or more parameters. An event defined for an interface is exactly the
same as an event defined for a class. You can use the post statement to post the
event on any object whose class implements the interface.

All classes that implement the interface must implement all events defined in the
interface. Implementing an event in a class consists of re-defining the event name
and parameter list.

The TaxCalculationIFace interface in the AdaptableAuction example defines an
event called TaxCalculated. Both implementations of this interface define the
TaxCalculated event.

For further information on using events in TOOL, see the TOOL Reference Manual.

Event Handlers
An event handler is a named block of TOOL code that provides programming to be
executed in response to one or more events. The event handler provides reusable,
modular event handling code that you can include in any number of event
statements.

In a class, an event handler consists of an event handler signature, which consists
of the event handler name and parameters, and the event handler source code. In
an interface, you define only the event handler signature; an event handler defined
in any interface does not include source code. The class (or classes) that implements
the interface provides the source code for the event handler.

Unlike methods, there is no overloading for event handlers. There can only be one
event handler with a given name in the interface.

Because the interface defines only an event handler signature, overriding an
inherited event handler has no effect. The inherited event handler and the
overriding event handler have the exact same signature.

A Guide to the iPlanet UDS Workshops contains detailed information about event
handlers. For information on using event handlers in TOOL, see the TOOL
Reference Manual.

Constants
A constant is a literal string or numeric value that has a name. When you declare
the named constant, you specify a constant name and a value. You can then use the
constant name in place of the value in the TOOL code that implements the
interface’s methods and event handlers.

Dynamic Class Loading

Chapter 10 Using Interfaces 371

The most common use for a constant within an interface is for specifying the values
of a parameter.

When a constant is defined within an interface, the implementing code within
classes that implement the interface can reference the constant directly. Other
classes must reference the constant with the following syntax:

interface_name.constant_name.

Remember, although you can use constants to specify values in your TOOL code,
you cannot use them to specify values in dialogs in the iPlanet UDS Workshops.

You do not need to “implement” the constant in the classes that implement the
interface. When a data item’s declared type is an interface, iPlanet UDS always uses
the constant definition provided by the interface. However, you can “re-define” the
constant in the implementing classes. In this case, when the declared type of the data
item is an interface, iPlanet UDS uses the definition provided by the interface, and
when the declared type of the data item is the implementing class, iPlanet UDS uses
the definition provided by the class.

Dynamic Class Loading
iPlanet UDS’s dynamic class loading feature allows you to dynamically access
classes in a library that has been deployed in the current environment. With
dynamic class loading, you can use an interface as a declared type in your code and
then, at runtime, dynamically load the class that implements the interface in order
to create the actual object itself. You load the implementing class from a shared
implementation library that must be deployed in the same environment as the
application.

Using dynamic class loading for interfaces is a two-phase effort:

1. The application that uses the interfaces must be developed and deployed.

2. At one or more deployment sites, the interfaces must be implemented, and the
classes that implement the interfaces must be deployed in an implementation
library.

At each deployment site, the combination of the deployed application (as the original
developer created it) and the deployed implementation library (which contains the
“customized” class implementations) work together to create the functionally
complete application.

Dynamic Class Loading

372 iPlanet Unified Development Server • Programming Guide • August 2001

Typically, using dynamic class loading requires cooperation between two different
developers:

• the application developer

The application developer defines the interface, uses the interface within the
application code, and writes code to dynamically load the implementing
classes at runtime.

• the class implementer

The class implementer defines the classes that implement the interface. The
library that contains these implementing classes must be deployed in the same
environment where the application is deployed.

The following sections provide step-by-step instructions for both these developers.

Application Developer: Using Dynamic
Loading within Application Code
When you are writing an application that uses dynamic class loading, you not only
need to provide the code that dynamically loads the implementing classes for the
interface, but you must also create an interface library and set up a mechanism that
will enable the class implementer to register the implementation libraries that he
creates.

➤ To use dynamic class loading with an interface

1. In a separate project from the rest of your application, define the interface and
any classes needed by the interface. Make this project a supplier to the project
that defines your application.

2. Set up a flat file or database outside the iPlanet UDS application where
implementers can register the class libraries that implement the interface.

The developers who implement the class must register the implementation
libraries they create using the mechanism that you provide for them.

3. In your application, write the code that loads the library, finds the class
definition, and assigns the object created from the class to a data item with an
interface type.

To load the library, use the FindLibrary method on the Partition object. To find
the class definition in the library, use the FindClass method on the Library
object. To create the object from the class, use the InstanceAlloc method on the
ClassType object.

Dynamic Class Loading

Chapter 10 Using Interfaces 373

4. Make a library from the project that defines the interface.

The developers who are going to implement the interface need to use the
interface library in order to share the interface definition.

5. Test the application.

To test an application that uses dynamic loading, you must provide a default
implementation for the interface.

6. Deliver the following to the class implementers:

a. the application distribution

b. the interface library

c. instructions on how to register the implementation library that the class
implementers will create to provide the appropriate implementations

d. a test driver for the interface

The following sections provide detailed information about each of the above steps.

Step 1. Defining the Interface
You must begin by creating a separate project to contain the interface. The interface
must be in a separate project because when you are ready to deploy your
application, you must make the interface project into a library (the interface library).
You will then deliver this interface library to all the developers who will
implement the interface.

The project that defines the interface may also need to define helper classes for the
interface. Helper classes are classes that you use for the parameter types in the
method and event handlers defined in the interface. The interface library that you
deliver to the developers who are implementing the interface must also contain
any classes that they need to use within the implementation code.

After creating the new project to contain the interface, you must make the interface
project a supplier to the project that defines your application. In the
AdaptableAuction example, the AAInterfaces project defines the
TaxCalculationIFace interface. The AAInterfaces project is a supplier to the
AdaptableAuctionServices project, which defines the AdaptableAuction
application.

Finally, you can define the interface itself using the Interface Workshop. In the
Project Workshop, the New Interface tool or the Component > New > Interface
command creates a new interface with the name you specify.

Dynamic Class Loading

374 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To create an interface

1. In the Project Workshop, click the New Interface tool or choose the Component
> New > Interface command.

The Interface Properties dialog opens.

2. In the Interface Properties dialog, specify the name and, if desired, the
super-interface for the interface. Click the OK button to create the interface.

After the Interface Workshop opens, you can define the individual elements in the
interface. Creating an interface in the Interface Workshop is the same as creating a
class in the Class Workshop, except that you do not provide source code for the
methods and event handlers. See A Guide to the iPlanet UDS Workshops for detailed
information about creating an interface.

The following figure shows the definition of the TaxCalculationIFace interface in
the iPlanet UDS AdaptableAuction example.

Figure 10-3 Interface Definition

Dynamic Class Loading

Chapter 10 Using Interfaces 375

Step 2. Providing the Mechanism for Registering
Implementing Classes
The programmers who are implementing the interface must be able to notify your
application about the library that contains the class that implements the interface.
Your application needs to obtain the following information:

• project name for project that defined the implementation library

• distribution ID for library distribution (derived from the project name)

• compatibility level for the library distribution

• library name of the library

• class name

In turn, your application must be able to check the current environment for this
same information before it can load the library that contains the implementing
class. Therefore, you should set up a mechanism outside of your application, such
as a database or flat file, which developers can use to register their implementation
libraries and which your code can check for this information.

For example, the AdaptableAuction example reads data from a flat file called
dynload.dat. Two data files are provided with the example: dynload1.dat and
dynload2.dat.

This is the data stored in dynload1.dat:

This is the data stored in dynload2.dat:

AAImplementations //Project name
aaimplem //Distribution ID
0 //Compatibility level
aaimplem //Library name
TaxCalculationImp //Class name

AAImp2 //Project name
aaimp2 //Distribution ID
0 //Compatibility level
aaimp2 //Library name
NewTaxCalculationImp //Class name

Dynamic Class Loading

376 iPlanet Unified Development Server • Programming Guide • August 2001

When you run the AdaptableAuction example, you can copy dynload1.dat to
dynload.dat. The data in dynload.dat is read in, and this implementation will be
used to calculate the taxes. To try out the example’s second implementation, you
can copy dynload2.dat to dynload.dat while the application is running. The next
time a tax calculation is performed, the second implementation will be used.

Optionally, you may want to read data from a database, or use a combination of
reading data from a database and reading from a flat file. The flat file is used in the
example for simplicity.

The particular mechanism you use is up to you. However, when you deploy your
application, you must be sure to give careful instructions to the programmers
implementing the interface about how to register their class libraries.

Step 3. Loading the Class and Creating the
Object
After you have created the interface, you can use it within your code as the
declared data type for any appropriate data item. However, when you are ready to
create the actual object that is associated with the data item, you must provide the
code that will load the implementing class.

To load the implementing class, you must use the Library class, which allows you
to dynamically access classes in a library that has been deployed in the current
environment. The FindLibrary method in the Partition class allows you to get
access to the Library object that contains the implementing class. The FindClass
method in the Library class allows you to get access to the ClassType object
associated with the implementing class.

The following procedure describes the basic steps you must follow in your code to
load the class and create the object. These steps are followed by detailed
information about the FindLibrary and FindClass methods. The end of this section
contains sample code that illustrates use of these methods.

➤ To load the class and create the object

1. Get the library registration information from the flat file or database where the
implementer is going to register the implementation library.

2. Use the FindLibrary method on the Partition object to get access to the Library
object that contains the implementing class.

3. Invoke the FindClass method on the Library object to return the ClassType
object associated with the class.

Dynamic Class Loading

Chapter 10 Using Interfaces 377

4. Use the InstanceAlloc method to instantiate the object using the ClassType
object.

The InstanceAlloc method allows you to create an object when you do not
know what the class will be until runtime. The result of InstanceAlloc is a
generic Object, so you typically need to cast the result to the interface type.

The FindLibrary method in the Partition class locates the specified library, loading
it on the partition if necessary, so that you can access the classes stored in the
library. The syntax is:

The FindLibrary returns a Library object, which provides you with access to the
library from your code. If the library is already loaded in the current partition, the
FindLibrary method simply returns the Library object to provide you access to the
library. If the library is not loaded in the partition, the FindLibrary method
automatically loads the library into the partition.

Typically, the values for the projectName, distributionID, compatibilityLevel, and
libraryName parameters come from the flat file or database outside the iPlanet
UDS application, where developers who have implemented the interface will
register the libraries that they will be deploying.

The loadOptions parameter specifies loading options for the library. By default, if
the library is not already loaded in the partition, iPlanet UDS automatically loads
the library. iPlanet UDS automatically unloads the library when the partition no
longer need to access it.

See the Framework Library online Help for complete information on the
FindLibrary method.

FindLibrary (projectName=TextData, distributionID=TextData, compatibilityLevel=integer,
libraryName=TextData, loadOptions=ui4)

Returns Library

Parameter Required Input Output

projectName ● ●

distributionID ● ●

compatibilityLevel ● ●

libraryName ● ●

loadOptions ● ●

Dynamic Class Loading

378 iPlanet Unified Development Server • Programming Guide • August 2001

Once you have returned the appropriate Library object, you can invoke the
FindClass method on it to return the ClassType object associated with the class.
The FindClass method returns the ClassType object associated with the specified
class within the current library. The syntax is:

The FindClass method returns a ClassType object, which you can use with the
InstanceAlloc method to create an instance of the class. If the class does not exist,
the FindClass method returns NIL.

Note that after using the InstanceAlloc method to create an instance of the class,
you will need to cast it. The InstanceAlloc method returns a generic Object. If you
cast the object to an interface, iPlanet UDS checks that the object’s class actually
implements the interface. (See the Framework Library online Help for complete
information on the InstanceAlloc method.)

See the Framework Library online Help for complete information on the FindClass
method.

The following sample code illustrates use of the FindLibrary and FindClass
methods:

FindClass (className=TextData)

Returns ClassType

Parameter Required Input Output

className ● ●

Code Example 10-2 Using the FindLibrary and FindClass methods

-- Load the implementation and create an instance from the
-- RegType. Read Library and Class information from a file.

className : TextData = new;

-- Check whether implementation library is already loaded.
if CurLib = nil then
-- Read in library information from file or database.
file_to_read : File = new;
file_to_read.SetPortableName(

(name = %{FORTE_ROOT}/install/examples/frame/dynload.dat’);
file_to_read.Open(accessMode = SP_AM_READ);

LibDesc.ProjectName = new;
file_to_read.ReadLine(

Dynamic Class Loading

Chapter 10 Using Interfaces 379

target = LibDesc.ProjectName,
includeEOL = FALSE);

LibDesc.ApplicationID = new;
file_to_read.ReadLine(

target = LibDesc.ApplicationID,
includeEOL = FALSE);

td : TextData = new;
file_to_read.ReadLine(

target = td,
includeEOL = FALSE);

LibDesc.CompatibilityLevel = td.IntegerValue;
LibDesc.LibraryName = new;
file_to_read.ReadLine(

target = LibDesc.LibraryName,
includeEOL = FALSE);

file_to_read.ReadLine(
target = className,
includeEOL = FALSE);

file_to_read.Close();

-- Find the library.
CurLib = task.Part.FindLibrary(LibDesc.projectName,

LibDesc.applicationID,
LibDesc.compatibilityLevel,
LibDesc.libraryName);

-- In some cases this exception will be handled by Forte
-- before you get here. It’s useful to put this exception
-- handling in, for the cases where Forte won’t catch it.
if CurLib = nil then
ex : SystemResourceException = new(
 ReasonCode = SP_ER_LIBLOADFAIL,
 Severity = SP_ER_USER,
 Message = ’Unable to load the library.’);

 task.ErrorMgr.AddError(ex);
raise ex;

end if;
end if;

-- Load the class type.
if RegType = nil then
RegType = CurLib.FindClass(className = className);
if RegType = nil then
ex : SystemResourceException = new(
 ReasonCode = SP_ER_LIBLOADFAIL,
Severity = SP_ER_USER,

 Message = ’Unable to find the class.’);
 task.ErrorMgr.AddError(ex);
 raise ex;

 end if;
end if;

Code Example 10-2 Using the FindLibrary and FindClass methods (Continued)

Dynamic Class Loading

380 iPlanet Unified Development Server • Programming Guide • August 2001

Step 4. Making the Interface Library
After your interface is defined, you must create the interface library needed by the
class implementers.

To create the library, open the project that contains the interface, and follow the
standard procedure for creating a library. In the Partition Workshop, create a
library distribution for each environment in which the application will be
deployed. This process for creating a library is described in A Guide to the iPlanet
UDS Workshops.

The only special issue you need to consider for the interface library is that if the
partition where the code that uses the interface is running is a compiled partition,
the interface library must also be compiled.

➤ To configure a library

1. Open the project you wish to configure as a library.

2. In the Project Workshop, choose the File > Configure as > Library command.

The Partition Workshop opens.

3. If necessary, select the deployment environment from the environment drop
list.

Partitioning an interface library and making the interface library distribution is the
same as creating an ordinary library distribution. See Chapter 8, “Deploying
iPlanet UDS Applications and Libraries” for information about creating a library
distribution.

If your interface library uses supplier projects containing helper classes, these
supplier projects must also be configured as libraries and given to the class
implementers. The easiest technique is to add all these supplier libraries to the
same library distribution that contains the interface library.

return RegType.InstanceAlloc();

Project: AdaptableAuctionServices • Class: RegInfo • Method: CreateImpInstance

Code Example 10-2 Using the FindLibrary and FindClass methods (Continued)

Dynamic Class Loading

Chapter 10 Using Interfaces 381

Step 5. Testing the Application
To test an application that uses dynamic loading, you must provide a default
implementation for the interface. Follow the instructions under “Class
Implementer: Providing Implementations for Dynamic Loading” on page 382 and
deploy the implementation library within your development environment.

Your application will not run correctly unless you have deployed the
implementation library in your development environment and have registered the
library information so your application can access the library.

Step 6. Delivering the Application and Interface
Library
To provide an implementation for an interface in your application, the developers
who are creating classes that implement the interface need the following items
from you:

• the application distribution

The implementer needs the application distribution so he can test his
implementations by running the complete application.

• the interface library distribution

The implementer must install the interface library distribution into his own
development environment and import the interface library into his repository.
He must then include the library as a supplier to his own project so he can
create a class that implements the interface.

• instructions for registering the implementation library with your application

After the class implementer creates his implementation library and it is
deployed in the environment where your application is running, the system
manager must register the implementation library so that your application can
access and load the library.

• a test driver for the interface

If possible, it is a good idea for you to write a separate test driver for the class
implementation, which the implementer can use to check his work. The test
driver would invoke the interface methods and verify that the results are
correct.

Dynamic Class Loading

382 iPlanet Unified Development Server • Programming Guide • August 2001

Class Implementer: Providing
Implementations for Dynamic Loading
Before you can provide implementations for the interface, you need two items from
the application developer: the application distribution that uses the interface and
the interface library that the application developer created for you. You also need
instructions from the application developer about how to register the class library
that you will be creating.

➤ To provide implementations for the interface

1. Import the interface library into your development repository.

2. Create a project to contain the class that implements the interface. Make the
interface library a supplier to this project.

3. Create a class that implements the interface.

See “Implementing an Interface” on page 364 for information on implementing
an interface.

4. Configure the project that defines the implementing class as a library and make
a distribution for it.

5. Deploy the library distribution in the same environment where the application
that uses the dynamic loading is deployed.

6. According to the application developer’s instructions, register the information
about the new library in the designated flat file or database.

7. Test the implementation.

The following sections provide detailed information about each of these steps.

Dynamic Class Loading

Chapter 10 Using Interfaces 383

Step 1. Importing the Interface Library
Before you can create the implementation for an interface, you must have access to
the interface itself. The application developer who created the interface must
provide you with an interface library that contains the interface definition. As
described under “Step 1. Defining the Interface” on page 373, the interface library
may also contain “helper” classes that define the method and event handler
parameter types used in the interface. You will need to use these helper classes
when you are implementing the interface.

You must install the interface library distribution in your development
environment on all the nodes where it is needed. Installing a library distribution is
the same as installing an application. You can copy the distribution directory and
its subdirectories or use a CD or tape for transfer to a remote site. For instructions
on installing a library distribution, see the iPlanet UDS System Management Guide.

After the library distribution is installed in your development environment, you
must import the individual interface library (or libraries) that it contains into your
development repository. To import a library into your repository, use the Plan >
Import command in the Repository Workshop.

The .pex file for the library contains the library definition; this is the file you must
import.

➤ To import a library

1. In the Repository Workshop, choose the Plan > Import command. In the file
selection dialog, specify the name of the .pex file that contains the interface
library.

2. After the library has been imported into your workspace, use the Integrate
Workspace command to add the new library to the system baseline.

CAUTION If you have access to the project that defines the interface, do not
import its .pex file into your repository. When you are providing
implementations for an interface that is using dynamic class loading,
you must use the interface library as your supplier plan and not the
original project. Therefore, you must import the .pex file for the
library, not for the original project. If your repository already
contains the project, you must either delete the original project from
your repository before importing the library, or you must use a
different repository.

Dynamic Class Loading

384 iPlanet Unified Development Server • Programming Guide • August 2001

After the interface library has been added to your workspace, you will see the
library in the Repository Workshop’s browser. A library icon indicates that it is a
library.

If the interface library uses supplier libraries, you must be sure to import all these
supplier libraries into your development repository. You will need all the libraries
in order to implement the interface.

Note that you must ensure that the interface library provided by the application
developer and the implementation library that you create are always consistent. If
the interface library changes, you must re-import the interface library into your
repository and then create a new implementation library. You must then deploy
the new implementation library in the environment where the application is
running.

Step 2. Creating the Implementation Project
You must create a separate project to define the implementing class. After you
define the implementing class within this project, you will make a library from the
project so the library can be deployed within the environment where the
application will run. The library that contains the implementing class is the library
from which the application will be dynamically loading the class.

After creating the new project, you must include the interface library provided by
the application developer as a supplier plan for your new project.

➤ To include a library as a supplier

1. Make sure that the library is included in your workspace.

2. In the Project Workshop, choose the File > Supplier Plans… command.

3. In the Supplier Plans dialog, move the library from the list of available plans to
the list of suppliers.

Step 3. Creating the Implementing Class
To implement an interface, you use the Class Workshop. The class that implements
an interface can be an existing class or you can create a new class.

Dynamic Class Loading

Chapter 10 Using Interfaces 385

To indicate that a given class implements an interface, you enter the interface name
into the class definition, as part of the class properties. Then, using the Class
Workshop, you write the “implementation” code for all the methods and event
handlers in the interface. You can implement a given interface in any number of
classes.

There is only one restriction you should consider when writing the implementation
code for the interface. If the interface is running on a server, you cannot open
windows or dialogs. You can create objects from the Display library classes,
however, you cannot display them on a server.

In the Class Workshop, the Class Properties dialog for an individual class allows
you to list one or more interfaces which the given class will be implementing. Any
number of interfaces can be implemented by a given class. The following
instructions outline the steps required to implement one interface in one class.

➤ To implement an interface in the Class Workshop

1. In the Class Workshop, choose the File > Properties... command.

2. On the Class Properties dialog, select the Interfaces Implemented tab.

3. On the Interfaces Implemented tab page, enter the interface name.

4. In the Project Workshop, open the interface for which you are providing the
implementation.

5. In the Interface Workshop, drag each of the methods, event handlers, and
events from the interface to the Class Workshop, and drop each one on the
implementing class.

Copying the methods, event handlers, and events to the class conveniently
defines all the elements that you need to implement in the class.

You can also copy any constants and virtual attributes you wish to include in
the class; however, the constants and virtual attributes do not need to be
implemented in the class.

Dynamic Class Loading

386 iPlanet Unified Development Server • Programming Guide • August 2001

6. Open each method, and write the implementation code using the Method
Workshop.

7. Open each event handler, and write the implementation code using the Event
Handler Workshop.

Every implementing class for an interface must provide implementation code for
every method and event handler defined in the interface. The implementing class
must also define every event in the interface. You cannot exclude any of the
methods, event handlers, or events, or you will get a compile error. Constants and
virtual attributes do not need to be implemented in the implementing class.

The following figure illustrates the full definition of the TaxCalculationImp class,
which implements the TaxCalculationIFace interface.

Figure 10-4 TaxCalculationImp Implementation of TaxCalculationIFace Interface

Step 4. Making the Implementation Library
When you have finished defining the class that implements the interface, you are
ready to make the project that contains the implementation into a library.

To create the implementation library, open the project that contains the class that
implements the interface, and follow the standard procedure for creating a library.
This process in described in A Guide to the iPlanet UDS Workshops.

Dynamic Class Loading

Chapter 10 Using Interfaces 387

The only special issue you need to consider for the implementation library is that
you cannot make the implementation library compiled if the interface library was
not compiled. If the interface library was interpreted, the implementation library
must also be interpreted. If the interface library was compiled, the implementation
library can be either interpreted or compiled.

➤ To configure a library

1. Open the project you wish to configure as a library.

2. In the Project Workshop, choose the File > Configure as > Library command.

The Partition Workshop opens.

3. If necessary, select the deployment environment from the environment drop
list.

Partitioning an implementation library and making the implementation library
distribution is the same as creating an ordinary library distribution. See Chapter 8,
“Deploying iPlanet UDS Applications and Libraries” for information on creating
library distributions.

If the implementation library uses supplier projects, these supplier projects must
also be configured as libraries and deployed in the environment where the
application is going to run. The easiest technique is to add all these supplier
libraries to the same library distribution that contains the implementation library.

Step 5. Deploying the Implementation Library
After you make the library distribution, you must deploy it within the
environment where the application is going to run. Installing a library distribution
is the same as installing an application. You can copy the distribution directory and
its subdirectories or use a CD or tape for transfer to a remote site. For instructions
on installing a library distribution, see the iPlanet UDS System Management Guide.

Note that you must ensure that the interface library provided by the application
developer and the implementation library that you create are always consistent. If
the interface library changes, you must re-import the interface library into your
repository and then create a new implementation library. You must then deploy
the new implementation library in the environment where the application is
running.

Dynamic Class Loading

388 iPlanet Unified Development Server • Programming Guide • August 2001

Step 6. Registering the Implementation Library
The application developer will have provided you with instructions about how to
register your implementation library in a flat file or database. The application’s
code checks the flat file or database to get the following information about the
library that contains the implementing class:

• project name

• distribution ID (derived from the project name)

• compatibility level

• library name of the library

• class name

The particular mechanism used for registering the implementation library is up to
the individual application developer. However, you must be sure to follow the
developer’s instructions to register your implementation library so the application
code can use the library.

For example, the AdaptableAuction example reads data from a flat file called
dynload.dat. Two data files are provided with the example: dynload1.dat and
dynload2.dat.

This is the data stored in dynload1.dat:

This is the data stored in dynload2.dat:

AAImplementations //Project name
aaimplem //Distribution ID
0 //Compatibility level
aaimplem //Library name
TaxCalculationImp //Class name

AAImp2 //Project name
aaimp2 //Distribution ID
0 //Compatibility level
aaimp2 //Library name
NewTaxCalculationImp //Class name

Using Multiple Interface Inheritance

Chapter 10 Using Interfaces 389

When you run the AdaptableAuction example, you can copy dynload1.dat to
dynload.dat. The data in dynload.dat is read in, and this implementation will be
used to calculate the taxes. While the application is running, you can copy
dynload2.dat to dynload.dat. The next time a tax calculation is performed, the
second implementation will be used.

Step 7. Testing the Interface
To test your implementation of the interface, you should first run the test driver
provided by the application developer. This lets you detect regressions in the
implementation.

When you have tested the implementation individually, you should test the
interface with the application. To test the interface with the application, you must
ensure that both the application and implementation library are installed in your
development environment, and that you have registered the library information so
the application can access the library. You can then simply run the application.

Using Multiple Interface Inheritance
In iPlanet UDS, a given class can have only one superclass. The class inherits the
attributes, virtual attributes, methods, events, event handlers, and constants
defined by only one superclass. This is single inheritance. Figure 10-5 illustrates
single inheritance. The Car class inherits from a single superclass, Vehicle:

Figure 10-5 Single Inheritance

Plane Car

Vehicle

Using Multiple Interface Inheritance

390 iPlanet Unified Development Server • Programming Guide • August 2001

When a class implements an interface, it can be said to “inherit” the virtual
attributes, methods, events, event handlers, and constants defined by the interface.
A class always inherits from its superclass. When a class implements an interface, it
inherits class elements both from its superclass and from the interface that it
implements. This provides a form of multiple inheritance called multiple interface
inheritance. Figure 10-6 illustrates multiple interface inheritance. The Car class
inherits from its superclass Vehicle and also implements the Sortable interface:

Figure 10-6 Multiple Interface Inheritance

Using interfaces for multiple inheritance is not the same as using multiple class
inheritance. Specifically, using interfaces for multiple inheritance does not provide
the benefit of re-usability. When a class implements an interface, it does not inherit
any method or event handler source code, so it cannot “reuse” inherited elements.
However, using interfaces for multiple inheritance provides the benefit of
polymorphism as described under “About Interfaces” on page 359.

As Stephen McHenry says in his paper “Multiple Inheritance Using Interfaces”:

“With interface inheritance, the subclass is simply inheriting the ability to
respond (in a polymorphic way) to exactly the same message as the superclass,
or other subclasses. Thus, callers may utilize the methods of the subclass when
addressing collections of the superclass in a polymorphic way.”

(We recommend reading this paper for background information on multiple
interface inheritance. It is available on the Web at
www.softi.com/documents.html.)

Plane Car

Vehicle Sortable

Using Multiple Interface Inheritance

Chapter 10 Using Interfaces 391

Declared Type and Runtime Type for Interfaces
When you declare an item of an interface type, the interface that defines the data
item is its declared type. However, the class of the actual object associated with the
data item, its runtime type, can be any class that implements the interface. This
allows you to create a generic data item, such as Sortable, that represents a wide
range of possible objects, for example, cars, fruit, and employees, all of which are
sortable.

Using an interface as a data type means that you can perform an operation on the
data item without knowing anything about how the object’s class has implemented
the operation. As long as the class implements the interface, you are assured that
the operation will work correctly for the object.

Example of Multiple Inheritance
For example, let’s say you want to add the ability to sort an array to your current
class hierarchy. You could create a Sortable interface that defines the following
Compare method:

integer=Compare(target=Object)

The Car, Fruit, and Employee classes could each implement the Sortable interface,
providing their own implementations for the Compare method. Of course, the code
for the Compare method is different for each of these classes; make, model, and
year are used to compare cars, name is used to compare fruits, and identification
number is used to compare employees. However, invoking the Compare method is
exactly the same.

You could then define a class called ArraySorter, which would sort any array of
Sortable objects. It would define the following Sort method, which takes an array of
Sortable objects as its input parameter, sorts the objects, and returns a new, sorted
array:

Array of Sortable=Sort(source=array of Sortable)

The code for the Sort method would invoke the Compare method on the Sortable
objects. Because each class implements the Compare method appropriately for
itself, there is no need for the Sort method to have detailed knowledge about the
objects it is sorting.

Since interfaces do not provide inheritance of source code, you might wonder why
you wouldn’t just add the new functionality to your existing class hierarchy
through the use of superclasses, which do provide inheritance of source code.

Using Multiple Interface Inheritance

392 iPlanet Unified Development Server • Programming Guide • August 2001

In his paper “Multiple Inheritance Using Interfaces,” Stephen McHenry explains
that even in systems that provide multiple class inheritance, multiple interface
inheritance is a more effective technique because most operations that you would
inherit from a second superclass are those that need to be implemented differently
for each class that inherits them.

“Upon casual observation, it may seem like it is a nuisance to reimplement
display for each of the classes that inherit the interface. It would be easier to
just provide an implementation in the DisplayObject class and inherit that
implementation. However, upon closer inspection, we find that each class that
inherits the display operation must do something a little different depending
upon the type of the class, So, while this means that we can treat collections of
DisplayObject uniformly (by sending them all a display message), it makes no
sense to inherit an implementation that must be overridden for each subclass.
In this case, interface inheritance is perfectly adequate.”

In addition, using interfaces enables you to pick and choose the individual classes
in the hierarchy that should implement the interface. Adding the same
functionality to an existing class hierarchy might not work, without your having to
make disruptive changes to the hierarchy. For example, not all objects are sortable,
therefore, trying to add a generic Compare method to the Object class would not be
effective. However, creating a Sortable interface allows you to select individually
the classes that can be grouped into the “sortable” category; only the classes that
implement the Sortable interface are “sortable.”

Signature Conflicts
As described under “Implementing an Interface” on page 364, a single class can
implement multiple interfaces. Thus, a single class can “inherit” from one
superclass and any number of interfaces. Remember, the potential problem here is
that the superclass and the interfaces being implemented by a single class might
contain identical method or event handler signatures. The class can provide only a
single implementation of that method or event handler. Therefore, you must be
sure that the single implementation provides the correct functionality for both
interfaces.

393

Chapter 11

Working With Service Objects

This chapter provides conceptual information about service objects, including:

• setting service object visibility

• setting service object dialog duration

• providing failover

• providing load balancing

• using reference partitions to share service objects between applications

• setting the service object’s environment search path

For information about defining and partitioning service objects and modifying
their definitions within a particular configuration, see A Guide to the iPlanet UDS
Workshops.

About Service Objects
iPlanet UDS service objects provide the basis for creating an iPlanet UDS
distributed application. All of the distributed services with which your application
interacts are represented by service objects. For example, to access a database from
your application, you create a service object to represent that database. Likewise, to
access an external application from an iPlanet UDS application, you create a service
object to represent the external application.

A service object is a named object that represents an existing external resource, an
iPlanet UDS shared business service that is shared by multiple users, or a service
that is replicated to provide failover or load balancing. The service object contains
information needed by the service as well as operations that the service can
perform.

About Service Objects

394 iPlanet Unified Development Server • Programming Guide • August 2001

When you create a service object, you name it so that it is accessible throughout the
distributed application. Any other services in the application can interact with the
service object in the same way that any two objects can interact, by invoking
methods and posting events.

In the Project Workshop, you declare all the service objects to be included in the
project. Later on, when you partition the application in the Partition Workshop,
iPlanet UDS assigns the service objects in the main project and all its supplier
projects to particular nodes in the environment.

There are three kinds of service objects. The class you specify for the service object
determines which kind it is:

The following sections provide general information about these three kinds of
service objects.

TOOL Class Service Objects
A TOOL class service object is an iPlanet UDS shared service that you define based
on either a custom class (a class that you have designed and defined on your own)
or on a class provided in an iPlanet UDS library or supplier project. Examples of
services that you could create from a TOOL class include a phone call tracking
service, a document control service, and an auction manager, as in the Auction
application. This chapter uses these example services in the following sections to
illustrate service objects concepts.

Service Object Class Description

TOOL Class Any custom class (including
C classes)
or any applicable iPlanet UDS
class

Represents a user-defined service.

DBResourceMgr DBResourceMgr Represents a DBMS installation.

DBSession DBSession Represents a database session for a
particular database resource
manager.

About Service Objects

Chapter 11 Working With Service Objects 395

Because a service object interacts with objects in remote partitions, the class from
which you create a service object must be distributed (that is, the class must have
its Distributed property set to Allowed). The iPlanet UDS class reference
documentation indicates which classes are distributed and can therefore be used
for service objects. If you are creating your own class to define a service, you must
be sure to set the Distributed property for the class to Allowed or IsDefault (see
“Distributed Objects” on page 330 for information).

Figure 11-1 shows the General Properties tab page for a TOOL service object. In
fact, the General Properties tab page is the same for all service objects.

Figure 11-1 TOOL Class Service Object General Properties Tab Page

When you create a TOOL Class service object, you can specify initial values for any
of the public attributes in the object that have simple data types. Any public
attributes for which you do not specify a value are set to their default values.

Service Objects for Database Access
Two types of service objects enable an iPlanet UDS application to access a
relational database. These two service objects have different advantages and
restrictions; for a more detailed explanation of how they differ and how to use
them, see the manual Accessing Databases.

The primary difference between the two service objects is that the DBSession
service object definition includes a user name and password to be used for every
database connection; thus all connections made through this type of service object
are made for the “same” database user (and to the same actual database). In

About Service Objects

396 iPlanet Unified Development Server • Programming Guide • August 2001

contrast, the DBResourceMgr service object supports database connections from
any valid user name/password combination, and can be used to connect to
multiple databases (of the same vendor). Note that both types of service objects,
however, do support multiple connections.

Before you can use either of these service objects, your system manager must use
the Environment Console to define a resource manager name for the database(s) you
wish to access. The resource name represents one particular database vendor type
(for example, Oracle, Sybase, Informix, DB2, ODBC, Ingres) that is available for the
designated node. Both types of service objects communicate with a particular
database through a resource manager appropriate to the database vendor.

For either service object you can override the resource name for a particular
configuration in the Partition Workshop.

DBResourceMgr Service Objects
A DBResourceMgr service object represents one type (vendor type) of database.
After the DBResourceMgr service object is created, you can start multiple
connections (sessions) to the database(s) that it represents.

As shown in Figure 11-2, when you create a DBResourceMgr service object, you
specify the name of the resource manager that the service object will use. As
shown, iPlanet UDS provides a drop list of resource manager names from which
you can choose, or you can enter a name that will be defined later.

Figure 11-2 DBResourceMgr Service Object Database Tab Page

DBSession Service Objects
A DBSession service object represents an individual database session (a unique
connection to a database). Unlike the DBResourceMgr service object, this service
object also includes the user name and password to use for the connection, and the
name of the specific database to connect to, as shown in Figure 11-3:

About Service Objects

Chapter 11 Working With Service Objects 397

Figure 11-3 DBSession Service Object Database Tab Page

The database name for a DBSession service object is the specific database that you
wish to access. When you create the service object, you can specify the specific
database for which you wish to start a session. If you do not specify the database
name when you create the service object, you must do so in the Partition Workshop
when you partition the project.

When you create a DBSession service object, you specify the user name and user
password that will be used for each database session. Because any number of end
users will use the DBSession service object to access the database, you should use
an application user name such as “Training,” rather than a private user name, such
as “Antoinette.” This application name should have all the database privileges
required by the application.

The fact that you must provide the user name and password as part of the
DBSession service object definition may raise database security issues. However,
the benefit of using a DBSession service object over a DBResourceMgr service
object is that, with a DBSession service object, you can load balance the individual
sessions for a large number of clients, which uses fewer database resources and
provides improved performance.

Setting Properties of Service Objects
When you create a new service object in the Project Workshop you give it certain
properties; these properties are described in this chapter. You can modify some of
these properties later on, under certain circumstances. For example, you can
modify properties for the current configuration only in the Partition Workshop,
and when you define a reference partition, you must specify an environment
search path that is unique for that reference partition.

About Service Objects

398 iPlanet Unified Development Server • Programming Guide • August 2001

Note that changes to a service object that you make in the Partition Workshop
apply only to the current configuration. The changes do not affect the original
service object’s definition.

Class Runtime Properties
The class for a service object must allow the distributed class runtime property. At
runtime, when iPlanet UDS creates the service object, it automatically sets the
IsAnchored attribute to TRUE.

Although service objects are environment visible by default (that is, accessible by
all clients), they should rarely be created as shared objects. In most cases you
should not allow the Shared class runtime property for the service object’s class,
nor should you set the corresponding attribute, IsShared, to TRUE. If you make a
service object a shared object, you cause it to be single-threaded, and thereby
reduce performance. See “The sharing provided by an environment-visible service
object is different from the Shared runtime property for a class.” on page 401.

Service Object Properties
In addition to the class runtime properties, service objects also have another set of
properties. These service object properties are shown in Figure 11-1 on page 395,
summarized in the table below, and described in the next sections of this chapter:

Property Description

Visibility Determines the scope of the audience served by a service
object. Choices are Environment or User visibility. See
“Setting Service Object Visibility” on page 399.

Dialog Duration Determines the interval over which a service object retains
its connection with a caller and maintains state information
for the caller. Depending on the type of service object,
choices are: Message, Transaction, Session.
See “Assigning a Dialog Duration to Service Objects” on
page 402.

Failover If toggled (ON), then the service object is replicated, so that
one or more backup service objects are available if the one in
use becomes unavailable. Only one service object is in use at
any given time. See “Providing Failover” on page 413.

Setting Service Object Visibility

Chapter 11 Working With Service Objects 399

You may need to modify these properties for a given service object, particularly if
the service object is replicated for failover and/or load balancing, and is used by
multiple applications. To modify anything other than the environment search path
for a service object that is in a reference partition, you must open the Service Object
Properties dialog from the configuration for the project that originally defined the
service object.

Setting Service Object Visibility
The visibility of a service object determines the scope of the audience served by a
service object. A service object is defined with one of two possible visibility
settings:

By default, a service object is environment visible. It can be accessed by all the users
and services in the environment. The application contains only one copy of the
service object, and any changes made to it are visible to any user or service in the
application.

Load Balancing If toggled (ON), then the service object is replicated, so that
multiple service objects can be used at one time to
accommodate many simultaneous users. iPlanet UDS
creates a router to distribute connections among the
available replicates.
See “Providing Load Balancing” on page 420.

Environment Search Path If multiple iPlanet UDS environments are connected, allows
service objects in other environments to be used in the
current environment.
See “Using the Environment Search Path” on page 432.

Visibility Description

Environment The service object is accessible to all users and services. This is the
default.

User A separate, private copy of the service object is created for each user or
service requiring the service.

Property Description

Setting Service Object Visibility

400 iPlanet Unified Development Server • Programming Guide • August 2001

If you modify a service object to be user visible, it is not shared. Instead, a separate
service object is created for each user of the service.

Environment Visibility
Environment visibility is appropriate when a service object is a shared business
service, and users must share application data. Because the end users all access the
same service object, each change made to the object is automatically visible to all
users.

For example, in the Art Auction application, the AuctionService service object is
environment visible. This allows all Art Auction users to see the bids made by the
other users, as illustrated in Figure 11-4.

Figure 11-4 Environment-Visible Service Object

Environment visibility provides the following advantages:

• efficient use of system resources

Because multiple clients can share a single service, your application scales
better than if you had to provide a new server process for every single client.

• customized load balancing

Client

Client

Server

Setting Service Object Visibility

Chapter 11 Working With Service Objects 401

When clients need more resources than a single service object can provide, you
can replicate the shared service for load balancing. Using load balancing for
environment-visible service objects allows you to provide exactly the number
of replicates of the service you need. You can customize the application for
each deployment environment by changing the number of replicates, and
make continued adjustments as usage patterns change.

The sharing provided by an environment-visible service object is different from the
Shared runtime property for a class.

Often you only require the services provided by the service object to be “shared”
—that is, accessible to all users. In this case, you simply make the service object
environment visible, and you do not allow the shared property for the class on
which the service object is based.

However, if the service object contains data that should be shared by multiple
users, you can allow this in two ways:

• Define individual attributes of the service object’s class as shared classes. This
approach offers better performance for the service object because it does not
serialize access to the service object.

• Set the Shared runtime property for the base class of the service object. This
approach has the detriment of serializing access to the service object itself,
since it is now a shared object and subject to mutex locking (see “Class
Runtime Properties” on page 398).

See “Shared Objects” on page 335 for information on the Shared runtime property.

User Visibility
When you define a service object as user visible, a private copy of the service object
is provided for each user or service that accesses the service object.

User visibility is appropriate when you want to distribute processing but you do
not want to share the service object. Because each partition has its own copy of the
object, a change made to the object by one partition will not be seen by any other
partitions. The user visibility option is most useful when the service object
represents a process that cannot be shared, such as a non-multi-threaded external
service. Figure 11-5 illustrates user visibility:

Assigning a Dialog Duration to Service Objects

402 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 11-5 User Visible Service Object

Depending upon your application’s design, you can set DBResourceMgr service
objects to have user visibility because the individual sessions started by the
DBResourceMgr are private for the individual users.

DBSession service objects let you provide environment visibility for database
access. DBSession service objects are more efficient than DBResourceMgr service
objects because you do not need to run a separate session for each client.

You cannot use replication for failover or load balancing for a user-visible service
object.

Assigning a Dialog Duration to Service Objects
Every service object has a characteristic called dialog duration, whose value can be
set to message, transaction, or session. The dialog duration is the interval over which
a service object retains its connection with a particular caller after the first reference
to the partition starts the connection. Any caller that makes requests from the
service is bound to that particular service object for interval specified by the
service’s dialog duration.

Client

Client

Server

Assigning a Dialog Duration to Service Objects

Chapter 11 Working With Service Objects 403

For example, if a service object is using transaction dialog duration and is also
replicated for load balancing, the transaction dialog duration guarantees that every
caller will interact with only one service object replicate for the duration of the
transaction. iPlanet UDS will never switch to another replicate in the middle of a
transaction.

The dialog duration for a service object is a critical aspect of the services provided
by a service object. Any caller that uses the service object must take the service
object’s dialog duration into consideration. Therefore, you specify the dialog
duration as part of the original service object definition using the Project
Workshop. And, unlike other service object properties, you cannot change the
dialog duration setting from the Partition Workshop.

Dialog Duration and State Information
The primary determinant of the appropriate dialog duration for a given service
object is the length of time the service object should retain state information. The
dialog duration reflects the period of time that state information is stored in the
service object. State information is information that needs to be maintained for a
single user of the service. For example, when a phone call is received by a call
tracking system, the particular call being received is stored as state information for
the duration of the phone call. This way, all routing done to the phone call is done
to that single call in the proper order.

Typically, state information is ephemeral, and is no longer relevant after the end of
the caller’s interaction with the service. For example, after the call is disconnected,
data resulting from the call may be stored permanently, but the call itself is over, so
it no longer needs to be tracked.

When you design a service, you should consider how long the service should store
state information—that is, what is the appropriate dialog duration. For example, in
the Auction application, the image service is implemented as a message duration
service object because the service simply provides image data in response to a
message and it is therefore not necessary to retain state information.

However, for a document control service, the state information about whether or
not a particular writer is logged into the service needs to be tracked the entire time
the writer is doing her work. Therefore, session duration is the logical dialog
duration for this kind of service.

Assigning a Dialog Duration to Service Objects

404 iPlanet Unified Development Server • Programming Guide • August 2001

Dialog Duration and Error Handling
A service object’s error handling depends on the service object’s dialog duration. If
there is a failure in the service, each dialog duration provides a different behavior.
For example, recovery from a failure in a message-duration image service is
relatively simple; iPlanet UDS automatically retries the request for an image. All
the program needs to do is to notify the user that he may need to wait. On the other
hand, recovery from a failure in a transaction-duration service would require
handling the AbortException and retrying the transaction.

The following table summarizes the three dialog duration settings for service
objects.

Note that if you wish to provide load balancing for a service object, you must
specify either message dialog or transaction duration. See “Relationship between
Dialog Duration and Load Balancing” on page 423 for information on the
relationship between dialog duration and load balancing.

See “Relationship between Dialog Duration and Failover” on page 419 for
information on the relationship between dialog duration and failover.

Duration Description

Message Retains the connection for the duration of a single method invocation. The
service object does not retain state information beyond one method
invocation. This is available only for TOOL class service objects. You can
use message duration for load balancing or failover.

Transaction Retains the connection for the duration of a transaction. The service object
retains state information only for the duration of the transaction. This is
available only for TOOL class and DB session service objects for load
balancing or failover.

Session Retains the connection for the entire run of the application. This is available
for all service objects for failover replication, but not for load balancing.
This is the default dialog duration for all service objects.

Assigning a Dialog Duration to Service Objects

Chapter 11 Working With Service Objects 405

The following sections provide additional information about each of the dialog
durations. Each section describes how the dialog duration affects state information,
error handling, transactions, and events. The following table provides a brief
overview of the affect of dialog duration on transactions, events, failover, and load
balancing.

Message Duration Service Objects
With a message-duration service object, iPlanet UDS guarantees the connection to
the remote service object only for the length of a single method invocation on the
service object.

Figure 11-6 illustrates message dialog duration:

Figure 11-6 Message Dialog Duration

An important advantage of message duration is that it is easy to provide load
balancing and failover. For example, the ImageService service object does not
retain state information, so switching over to a replicate for failover would not
require additional programming to transfer state information.

When writing methods for any service, it is generally more efficient to write fewer
methods that individually perform more processing, rather than more methods
that individually perform less processing. Writing fewer methods is especially
important for message dialog duration. Each method invocation to the remote
service object is a “message,” so limiting the number of method invocations

Dialog Duration Transaction
Propagated?

Uses Events? Failover Automatic? Load Balancing?

Message No No Yes Yes

Transaction Yes No No Yes

Session Yes Yes No No

Get my balance
Balance $100.00

Balance $100.00

Message Bank

Assigning a Dialog Duration to Service Objects

406 iPlanet Unified Development Server • Programming Guide • August 2001

improves distributed performance by decreasing network traffic. Note that a single
method for the service can include an entire transaction or the logic to perform an
entire complex procedure, and you can use multitasking to perform multiple tasks
concurrently within the same method.

State Information for Message Duration
Message-duration service objects cannot store shared state information beyond a
single method invocation. State information is not stored because there is no
guarantee that the caller will connect to the same service object for the next method
invocation. For example, if load balancing is turned on for the service, one method
invocation from a caller to the service could go to the first replicate, while the
subsequent method invocation could go the second replicate.

If you must share state information between the replicates, you can store it outside
the service, in a database, for example. Because database information is a single
source, the data is consistent, no matter which replicate accesses its information.

Error Handling for Message Duration
If a message-duration service object fails during a method invocation, iPlanet UDS
tries to re-establish a connection to any partition containing a replicate of that
service object. Establishing failover servers is very useful for providing automatic
recovery in these cases. If another replicate of the service is available, iPlanet UDS
connects to it and re-invokes the method, as if it was still running on the original
service. The program continues to run, and iPlanet UDS does not raise any
exceptions. If iPlanet UDS cannot make a new connection, iPlanet UDS raises the
DistributedAccessException, which you can handle in your TOOL code. See the
Framework Library online Help for information about
DistributedAccessException.

If a message-duration service object fails between method invocations, iPlanet UDS
does not raise an exception.

Transactions and Message Duration
For message-duration service objects, transactions in the caller are not propagated
to the service. If you are in a transaction and invoke a method on a
message-duration dialog service object, the message to the service object is
considered outside the transaction. If the service fails while executing the method,
iPlanet UDS does not automatically abort the transaction.

Assigning a Dialog Duration to Service Objects

Chapter 11 Working With Service Objects 407

If the caller needs to start a transaction on the message-duration service object, the
caller can invoke the method using the start task statement with the independent
option. This version of the start task statement starts an independent transaction
on the service object, which the caller can then handle appropriately. The caller
cannot, however, start a nested or dependent transaction on the service object. See
the TOOL Reference Manual for information about the start task statement.

Events for Message Duration
When the service object has message dialog duration, the caller should not register
to receive events from the service or post events on the service. The connection to
the service object is for one message only. Therefore, after an event is registered for
one replicate of the service, there is no guarantee that the same replicate will post
the event. Likewise, after an event is posted on one replicate of the service, there is
no guarantee that the same replicate will handle the event.

While events might work for message-duration services when there is no
replication for load balancing or failover, it is risky to count on this. As the
programmer, you cannot control whether replication will later be turned on during
the configuration or installation stages. Therefore, we recommend that you do not
use events to interact with message-duration services. Instead, you should use the
return value and output parameters of the method to return information or
notifications.

Transaction Duration Service Objects
With a transaction-duration service object, iPlanet UDS maintains the connection to
the remote service object for the length of an iPlanet UDS transaction. The first
method invocation on the remote service object after the start of the transaction
initiates the connection to the service object, and the connection is retained until it
completes or aborts. See the TOOL Reference Manual for information about using
TOOL transactions.

Figure 11-7 illustrates transaction dialog duration:

Assigning a Dialog Duration to Service Objects

408 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 11-7 Transaction Dialog Duration

State Information for Transaction Duration
Transaction-duration service objects maintain state information for the duration of
the entire transaction.

For example, a phone call tracking system might route an incoming phone call
from initial screening to a dispatcher. The transaction begins when the phone is
answered, and the transaction ends when the call has been properly handled. The
state information about the particular phone call must be retained for the entire
transaction, or, as long as the caller is on the line.

Error Handling for Transaction Duration
If a transaction-duration service fails during a transaction, iPlanet UDS raises the
AbortException, which provides a reason code for the failure and identifies the
originator. You provide the same error handling as for a local transaction. If you
are using failover or load balancing, you must write the code to retry the
transaction (perhaps by enclosing your transaction in a loop) on another replicate.

For each retry, iPlanet UDS attempts to reestablish communication with any
replicate of the service object, even if the new connection is on another partition. If
the new connection succeeds, a new transaction starts with the new connection,
and processing continues normally. If the new connection fails, iPlanet UDS raises
a DistributedAccessException, from which you usually cannot recover. In some
cases, however, you can handle the exception and then use a Timer object to wait a
bit to see if the networks and servers recover. You can also use the AbortEvent
event to get immediate notification when the service fails.

See the Framework Library online Help for information on the AbortException,
DistributedAccessException, Timer, and AbortEvent classes.

If a transaction-duration service object fails and then starts up between
transactions, iPlanet UDS does not raise an exception.

End

Deposit $200.00
Balance $300.00

$100.00
+$200.00

$300.00

Transaction Bank

Begin Old
New

Assigning a Dialog Duration to Service Objects

Chapter 11 Working With Service Objects 409

Transactions and Transaction Duration
For transaction-duration service objects, transactions in the caller are propagated to
the service. If you are in a transaction and invoke a method on a
transaction-duration service object, the message to the service object is considered
part of the transaction. So, if the service fails while executing the method, iPlanet
UDS aborts the transaction.

As described under error handling above, when a transaction-duration service fails
during a transaction, iPlanet UDS raises an AbortException. You must write the
code to retry the transaction (perhaps by enclosing your transaction in a loop).

Events for Transaction Duration
A caller should not register to receive events from the service or post events on a
transaction dialog duration service.

A connection to a transaction-duration service object is for one transaction only. So,
after an event is registered for one replicate, there is no guarantee that the same
replicate will post the event. Likewise, after an event is posted on one replicate of
the service, there is no guarantee that the same replicate will handle the event.

While events might work for transaction-duration services when there is no load
balancing or failover, it is risky to count on this. As the programmer, you cannot
control over whether replication will later be turned on during the configuration or
installation stages. Therefore, we recommend that you do not use events to interact
with transaction-duration services. Instead you should use the return value and
output parameters on the methods in the transaction to return information or
notifications.

Session Duration Service Objects
With a session-duration service object, iPlanet UDS guarantees a connection to the
remote service object for as long as it is needed. The session starts when the first
method invocation initiates the connection to the service object, and the connection
is retained until the application completes or you use the ReleaseConnection
method on the DistObjectMgr class (described in the Framework Library online
Help) to release the connection explicitly.

Figure 11-8 illustrates session dialog duration:

Assigning a Dialog Duration to Service Objects

410 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 11-8 Session Dialog Duration

State Information for Session Duration
Session-duration service objects maintain state information for the duration of the
entire session.

For example, a document control service allows writers to collaborate on a
multi-volume documentation set. To use the document control service, the writer
must login to the service, which then tracks the writer’s activities until she logs out.
The state information about who is currently using the service must be retained as
long as the writer is logged in.

Error Handling for Session Duration
If a session-duration service object fails during a session, iPlanet UDS raises the
DistributedAccessException, which provides a reason code for the failure. You can
attempt to handle the failure in your TOOL code. However, you cannot rely on
state information if you successfully re-establish a connection to the remote service
object, because, if the service object is replicated, the connection might be made to a
different partition. To get immediate notification of a failure in the service, you can
use the RemoteAccessEvent on the Object class. See the Framework Library online
Help for information about the DistributedAccessException and
RemoteAccessEvent classes.

If a session-duration service object fails and starts up again between sessions,
iPlanet UDS does not raise an exception.

Transactions and Session Duration
For session-duration service objects, transactions in the caller are propagated to the
service. If you are in a transaction and invoke a method on a session-duration
dialog service object, the message to the service object is considered part of the
transaction. So, if the service fails while executing the method, iPlanet UDS
automatically aborts the transaction.

Transaction 1
Transaction 2
Transaction 3

Withdraw
Cash Check

New Account

Session Bank

Open 8:00 a.m.

Close 5:00 p.m.

Replicating Servers for Failover and Load Balancing

Chapter 11 Working With Service Objects 411

As described in the error handling section, when a session-duration service fails
during a transaction, iPlanet UDS raises the AbortException. You must write the
code to retry the transaction (perhaps by enclosing your transaction in a loop).

After the transaction ends, the session itself continues on uninterrupted.

Events for Session Duration
You can use events to communicate between a caller and a session-duration service
object. The caller can register for events posted by the service object any time
during the session. The service object can register for events posted by callers any
time during the session. Events are very useful for communicating with a
session-duration service.

Replicating Servers for Failover and
Load Balancing

You can replicate service objects and their respective server partitions to enhance
application reliability using failover and to improve application performance using
load balancing.

For example, you implement failover by providing backup replicates of a server
partition that take over processing when the primary server partition fails.
Similarly, you can implement load balancing to distribute demand for a service
among a number of replicates of the partition that provides that service. You can
also replicate a server for both failover and load balancing at the same time.

With some restrictions, a service object can be designated as:

• non-replicated (the default)

• replicated for failover

• replicated for load balancing

• replicated for both failover and load balancing

Replicating Servers for Failover and Load Balancing

412 iPlanet Unified Development Server • Programming Guide • August 2001

Replication for Failover
If a service object is marked for failover, then you install replicates of the server
partition on some number of nodes in an environment. If the primary server
partition fails, then iPlanet UDS directs any requests for that service to one of the
other running replicates of the server partition. For detailed information about
using Failover, turn to “Providing Failover” on page 413.

Replication for Load Balancing
If a service object is marked for load balancing, then you also install replicates of
the server partition on some number of nodes in an environment. In addition,
iPlanet UDS automatically creates a router partition for that service object. The
router partition distributes requests for that service among the running replicates
of the server partition that performs that service. For detailed information about
using load balancing, turn to “Providing Load Balancing” on page 420.

Replication for Failover and Load Balancing
If a service object is marked for both failover and load balancing, then you replicate
the server partition as in the load balancing case. However, the router partition that
iPlanet UDS automatically creates for the service object can also be replicated. You
replicate the router partition and install it on a number of nodes in an environment
in the same way that you replicate the server partition. iPlanet UDS designates one
of the router partitions as the primary router. If it should fail, another running
replicate of the router partition can handle the routing.

When you install any replicated partition on a node in an environment, be it a
server partition or a router partition, you can specify how many replicates of that
partition are “enabled” or started up on that node, when the application starts.
Installed partitions that are designated as “disabled” can be started manually to
provide special backup under unusual conditions.

Providing Failover

Chapter 11 Working With Service Objects 413

Providing Failover
Failover means providing backup service objects (called service object replicates) to
be used if a service object fails. Failover provides built-in fault tolerance for an
application. iPlanet UDS provides two kinds of failover:

Local failover To provide local failover within the current environment, you can
create any number of replicates of the partition that contains the service object. If
the primary service object should fail, iPlanet UDS automatically switches over to
the secondary replicate partition. If the secondary replicate fails, iPlanet UDS uses
the next replicate if there is one, and so on.

Cross-environment failover When the deployment environment is connected to
other environments, you can specify that if the primary service object in the current
environment fails, iPlanet UDS searches in other environments for another active
service object to use for failover. You do this by providing an environment search
path for iPlanet UDS that specifies which environments, in which order, to search
when primary service object fails.

The following two sections describe how to provide local and cross-environment
failover respectively. You can use both types of failover in combination; see
“Combining Local and Cross-Environment Failover” on page 418.

Enabling Failover
To request local failover for a service object, switch on the Failover toggle in the
service object definition. You can do this in the original service object definition in
the Project Workshop (as shown in Figure 11-9) or for a particular configuration
using the Partition Workshop.

Figure 11-9 Service Object Dialog with Failover

Providing Failover

414 iPlanet Unified Development Server • Programming Guide • August 2001

When you turn on failover for the service object, the Partition Workshop assigns
the service object to a replicated partition. You can then assign the replicated
partition to any number of suitable nodes in the environment. If you wish, you can
also assign the partition any number of times on any individual node. See A Guide
to the iPlanet UDS Workshops for further information about assigning replicated
partitions to nodes.

Failover in the Local Environment
You can replicate service objects in the local environment to provide for failover in
the case of either software or hardware failure (or both).

To provide failover for hardware failure in the current environment, you install
one or more replicates on different nodes in the environment, as shown in
Figure 11-10:

Figure 11-10 Hardware Failover

To provide failover for software failure in the current environment, you install one
or more replicates on the same node, as shown in Figure 11-11.

Primary routing
Routing if primary fails

Providing Failover

Chapter 11 Working With Service Objects 415

Figure 11-11 Software Failover

When a service object is defined with failover and the primary service object fails,
iPlanet UDS automatically switches over to the secondary replicate. If the
secondary replicate fails, iPlanet UDS uses the next replicate if there is one. (See
“Relationship between Dialog Duration and Failover” on page 419 for information
about when failover is automatic and when you need to provide code to perform
retries.)

You can provide any number of failover replicates that you wish. The replicates
can be on the same node, on different nodes, or any combination of the two.

For local failover, you have no control over the order in which replicates are used
for failover. One replicate is used for all processing until it fails. When the first
replicate fails, iPlanet UDS uses a second replicate for all processing. You cannot
specify which of the replicates should be used first, and which should be used for
backup.

Because only one replicate at a time is used for all processing, failover does not
provide parallel processing. When a service object is replicated for failover, iPlanet
UDS maintains a connection to only one replicate at any time. The others are
merely in place in case of failure. See “Providing Load Balancing” on page 420 for
information about parallel processing.

Primary routing
Routing if primary fails

Providing Failover

416 iPlanet Unified Development Server • Programming Guide • August 2001

Cross-Environment Failover
If deployment environments are connected, you can use cross-environment
failover to provide a backup service object in a different environment to be used if
the primary service object in the current environment fails. Cross-environment
failover is useful when an application accesses a critical service that must be
available.

For example, Figure 11-12 shows a banking application running in the North
America environment that can access an equivalent service in the Europe
environment when its own service fails. During failover the application in North
America can continue to run, although in a degraded fashion, until its local
environment is fully functional again.

Figure 11-12 Cross-Environment Failover

To provide cross-environment failover, you specify an environment search path for
the service object, using the Service Object dialog in the Partition Workshop. As
shown in Figure 11-13, the path should list one or more connected environments
that contain service objects that can be used for failover. See “Using the
Environment Search Path” on page 432 for more details.

Primary routing
Routing if primary fails

Environment Europe

Bank Deposit
$100,000.00

$100,000.00

Environment North America

Providing Failover

Chapter 11 Working With Service Objects 417

Figure 11-13 Service Object Properties Environment Search Path Tab Page

At runtime, when a caller accesses the service object, iPlanet UDS checks the
environment search path. It searches the first environment in the search path for
the service object (therefore, be sure to include the current environment as the first
environment in the search path). If the service object in the first environment is not
available, iPlanet UDS searches the next environment in the search path. iPlanet
UDS continues to search the environments in the path until it finds an accessible
service for failover or it runs out of environments. The order of the environments in
the path lets you control which backup service is used first, second, and so on.

See “Relationship between Dialog Duration and Failover” on page 419 for
information about when failover is automatic and when you need to provide code
to perform retries.

Deploying Applications with Cross Environment Failover
You have several options for deploying applications that use cross-environment
failover, including the following two general approaches:

Deploy one complete application in every environment If the complete
application is used in all connected environments, you can simply deploy a
complete application in every environment. The applications in each environment
can then use the other service objects for failover. (You must set each environment
search path appropriately.)

If one environments is used solely for a backup service, the system manager can
start up just the server partition for the application in that environment. Therefore,
you do not need to run the entire application in every deployment environment.
See the iPlanet UDS System Management Guide for more information.

Providing Failover

418 iPlanet Unified Development Server • Programming Guide • August 2001

Create two separate applications (server application and client application)
The server application would just define the server that needs cross-environment
failover. You could then deploy the server application in all the environments
where you need it, including environments you want to use just for backup.

The client application would define the client part of the application, and would
provide access to the server through a reference partition. The environment search
path for the service object in the reference partition would contain the list of the
environments to search for the failover service. (See “Sharing Service Objects
Between Applications” on page 426 for information on reference partitions).

Combining Local and Cross-Environment
Failover
The previous two sections described how to provide local failover or
cross-environment failover. You can also use both local and cross-environment
failover. iPlanet UDS uses the local failover replicates before searching in the
connected environments.

➤ To combine local and cross-environment failover

1. In the Project Workshop, open the Service Object properties dialog for the
service object. Turn on the Failover toggle to request local failover.

2. In the Partition Workshop, assign the replicated partition to the appropriates
nodes in the current environment and specify their replication count.

3. In the Partition Workshop, open the Service Object properties dialog for the
service object. Enter the environment search path for the service object. Make
sure the first environment in the path is the current environment.

At runtime, when the caller accesses the service object, iPlanet UDS checks the first
environment in the search path for any active replicate. If for any reason, all of the
failover replicates in that environment are not available, iPlanet UDS searches the
next environment in the search path. iPlanet UDS continues searching
environments in the path until it finds an accessible service for failover or it runs
out of environments.

The following section provides information about when failover is automatic and
when you need to provide code to perform retries, based on the service object’s
dialog duration.

Providing Failover

Chapter 11 Working With Service Objects 419

Relationship between Dialog Duration and
Failover
iPlanet UDS provides automatic failover only for service objects with message
dialog duration; for service objects with message or transaction dialog duration,
you must write the code to retry the method upon receiving the expected
exception, as described below.

iPlanet UDS performs failover automatically for message-duration service objects.
If a message-duration service object fails during a method invocation, iPlanet UDS
automatically switches to the failover replicate without notifying the application.
You do not need to provide any code to retry the message. iPlanet UDS
automatically tries all the replicates, as necessary.

If a message-duration service object fails and no failover replicates are available,
iPlanet UDS raises the DistributedAccessException. See “Error Handling for
Message Duration” on page 406 for information.

If a message-duration service fails between messages, iPlanet UDS simply uses a
failover replicate on next access and does not notify the application.

iPlanet UDS does not perform failover automatically for transaction-duration
service objects. You must provide the code to retry the transaction. If a
transaction-duration service fails during a transaction, iPlanet UDS raises the
AbortException. You must provide the code to handle the AbortException and
retry the transaction (perhaps by enclosing your transaction in a loop). See “Error
Handling for Transaction Duration” on page 408 for information.

For each retry, iPlanet UDS attempts to reestablish communication with any
replicate of the service object, even if the new connection is on another partition. If
the new connection succeeds, a new transaction starts with the new connection,
and processing continues normally. If the new connection fails, iPlanet UDS raises
a DistributedAccessException.

If a transaction-duration service fails between transactions, iPlanet UDS simply
uses a failover replicate on next access and does not notify the application.

iPlanet UDS does not perform failover automatically for session-duration service
objects. You must provide the code to retry accessing the service. If a
session-duration service object fails during a session, iPlanet UDS raises the
DistributedAccessException. Your code must handle the
DistributedAccessException and reconnect with a failover replicate by invoking a
method on the service again. See “Error Handling for Session Duration” on
page 410 for information.

Providing Load Balancing

420 iPlanet Unified Development Server • Programming Guide • August 2001

For each retry, iPlanet UDS attempts to reestablish communication with any
replicate of the service object, even if the new connection is on another partition. If
the new connection succeeds, a new session starts with the new connection, and
processing continues normally. If the new connection fails, iPlanet UDS raises a
DistributedAccessException.

If a session-duration service fails between sessions, iPlanet UDS simply uses a
failover replicate on next access and does not notify the application.

Providing Load Balancing
Load balancing is the best way to scale an application to support large numbers of
clients that need a common service. Load balancing means using multiple replicates
of a service object to provide simultaneous access for several clients and increase
throughput. When you use load balancing, iPlanet UDS automatically creates a
router partition that coordinates all connections to the replicates, distributing
connection requests for best performance.

You can load balance a service object using two general techniques.

Run replicated service objects on a single machine This technique allows you
to pool resources so as to use hardware more efficiently. As shown in Figure 11-14,
requests from the clients to the server are routed to different partitions on the same
node.

Figure 11-14 Load Balancing on a Single Node

Router
A

B

C

A B C

CB
A

Providing Load Balancing

Chapter 11 Working With Service Objects 421

Run replicated service objects on multiple machines This technique lets you
improve performance by providing parallel processing on different machines. In
Figure 11-15 service object replicates are installed on two machines and the router
on a third machine. The router sends requests from the clients to different
partitions on different nodes:

Figure 11-15 Load Balancing on Multiple Nodes

You can combine these two techniques, so that multiple machines have multiple
replicates of the same service object.

Enabling Load Balancing
You can turn on load balancing for any service object that uses message or
transaction dialog duration. See “Relationship between Dialog Duration and Load
Balancing” on page 423 for information on the relationship between dialog
duration and load balancing.

A

B

C

Router

C B A

A

B

C

Providing Load Balancing

422 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To turn on load balancing for a service object

1. To modify the original service object definition, use the Service Object dialog in
the Project Workshop. Turn on the Load Balance toggle, as shown below:

2. Alternatively, to enable load balancing for a service object for a particular
configuration, you can use the Logical Partitioning (left) side of the Partition
Workshop.

In both cases, the Partition Workshop assigns the service object to a replicated
partition and automatically creates the router partition (see “The Router
Partition” on page 424).

3. Assign the replicated partition to one or more suitable nodes in the
environment. You can also assign the partition any number of times on any
individual node.

In this step, described in the next section, you set the number of replicates on a
node-by-node basis.

Setting the Number of Replicates
You can specify any number of replicates of a service object for load balancing; if
the partition (service object) is specified for auto-start, that number of replicates
will auto-start. The optimal number of replicates depends on the particular
environment. You may need to balance the number of concurrent requests to the
service (the more replicates, the better the response) with the physical resources of
the particular environment (how many replicates can be supported?).

Providing Load Balancing

Chapter 11 Working With Service Objects 423

➤ To specify the number of replicates for a particular configuration

1. Open the Partition Workshop.

2. From the Assigned Partition (right) side of the workshop, open the Properties
Dialog for the partition that contains the service object that you wish to
replicate.

3. In the Replication Count field enter the number of replicated partitions to start
up.

The system manager can tune performance at any time by changing the number of
replicates for a particular installation.

Relationship between Dialog Duration
and Load Balancing
For a message-duration service object, the router routes each method invocation
individually. Therefore, every method invoked on the service may be routed to a
different replicate partition.

If a message-duration service object fails during a message, the router simply
re-routes the message to one of the remaining replicates without notifying the
program. This provides automatic failover.

For a transaction-duration service object, the router routes an entire transaction to a
single replicate. Load balancing with transaction duration guarantees that all
messages for one transaction are sent to the same replicate. As described under
“State Information for Transaction Duration” on page 408, the service object
maintains the state information for duration of the transaction.

Figure 11-16 illustrates load balancing for a transaction-duration service object:

Providing Load Balancing

424 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 11-16 Load Balancing with Transaction Dialog Duration

If a transaction-duration service object fails during a transaction, iPlanet UDS raises
the AbortException. You must write the code to handle the AbortException and
retry the transaction (perhaps by enclosing your transaction in a loop). The router
will automatically route the transaction to an active replicate. See “Error Handling
for Transaction Duration” on page 408 for information.

The Router Partition
The router partition for a load-balanced service object provides a single router that
coordinates all requests to the service. The router queues all requests for service
and directs each request to a service object replicate using a round robin algorithm.
“Round robin” means that the first request goes to the first replicate, the second
request to the second replicate, and so on, back to the first replicate.

The router routes each request as it reaches the top of the queue; it does not wait
until one request completes processing (that is, a server becomes available) before
routing the next request. This way, processing is distributed evenly across the
partitions, regardless of machine resources. If your resources vary from machine to
machine, you can assign more replicates of the partition to one machine and fewer
replicates to another.

Router

A
1 A

2

C
2

C
1

2
B

1

B
2

2
B

1
B

2
C

2
C

1
A

1
A

2

Transaction

A
1

A
2

Transaction

2
B

1

B
2

Transaction

C
1

C
2

Providing Load Balancing

Chapter 11 Working With Service Objects 425

The connection between the router and an individual replicate depends on the
dialog duration for the service object. For a message-duration service object the
connection is for the duration of the message and for a transaction-duration service
object the connection is for the duration of the transaction.

You can assign router partitions to the same node where one or more replicates is
installed, or to a different node. However, you should not place any service objects
on the router partition, because you do not want to impede its performance.

You can replicate the router for failover, similar to replicating a service object; see
“Failover for the Router” below. If the router fails and there are no failover
replicates, iPlanet UDS raises the DistributedAccessException.

Single-Threaded and Multi-Threaded Routers
Without load balancing, requests from more than one caller can be processed
concurrently within a single partition (multi-threading). However, if multiple
threads each need to access a shared resource that does not allow multi-threading
(a database, for example), the first thread to access the shared resource blocks the
second thread until the first thread completes.

When load balancing is turned on, the router controls the access to the partitions so
that only one request for service is sent at a time (single-threading). Therefore, the
requests cannot conflict with each other, which allows concurrent access to the
shared resource. Load balancing access to a single-threaded, shared resource
provides much more even response time.

If you have a TOOL class service object that accesses a database or other
single-threaded resource, it is recommended that you use load balancing to
provide concurrent access to the resource. For information on multi-threaded
access to databases, refer to the Accessing Databases manual.

Failover for the Router
Because the router is critical for load balancing, you should also replicate the router
for failover. Then, if the primary router fails, a backup router automatically
reconnects to all the replicates of the service object, as shown in Figure 11-17.

Sharing Service Objects Between Applications

426 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 11-17 Router with Failover

To provide failover for the router, you must turn on both the Failover and Load
Balance toggles in the service object definition. You can do this either in the
original service object definition in the Project Workshop or for a particular
configuration using the Partition Workshop.

When you turn on failover for the router, the Partition Workshop assigns the router
to a replicated partition. You can then assign the replicated router partition to any
number of suitable nodes in the environment or any number of times on any
individual node. You assign the router partition to a node the same any other
replicated partition. See A Guide to the iPlanet UDS Workshops for additional
information about assigning replicated partitions to nodes.

You must provide the same error recovery for the router as for any failed
partition—dependent on the service object’s dialog duration. See “Error Handling
for Message Duration” on page 406 and “Error Handling for Transaction
Duration” on page 408 for more information.

Sharing Service Objects Between Applications
Multiple applications running in the same environment can share a service object.
Furthermore, applications running in different environments can share service
objects, if the environments are connected.

RouterD

B

C

B

A

CCD B A

A

D

Primary routing
Routing if primary fails

Sharing Service Objects Between Applications

Chapter 11 Working With Service Objects 427

To enable multiple applications to share a service object, you use reference
partitions. First you must deploy the service object in one application, either a
server or a client application—it makes no difference. Then, you create a reference
partition in each of the other applications. A reference partition points to an existing
service object that is deployed as part of another application; a reference partition
does not contain the service object itself. The advantages of using reference
partitions include:

Modularity When multiple applications share a service object, you need only
create and manage a single service object. Without reference partitions, you would
need to create more than one version of the service.

Efficient use of resources Only one service object needs to be running in order to
provide services needed by multiple applications. Without reference partitions, the
service object need to run within every application that needs it.

Sharing a Service Object in a Single
Environment
It is not uncommon for several applications in the same environment to require the
same service. Using reference partitions, you can enable all applications to share a
single service object.

For example, in Figure 11-18 two applications, ImageTester and ArtAuction, both
require the ImageServer.

Figure 11-18 Reference Partition for Single Environment

Client Partition

Client PartitionImage Service

Auction Service
Client Partition

Client Partition

References to
existing partition

ImageTester Application ArtAuction Application

Sharing Service Objects Between Applications

428 iPlanet Unified Development Server • Programming Guide • August 2001

Assume the ArtAuction application already provides the ImageService service
object. Then the ImageTester project can include the project containing the
ImageService as a supplier plan, and create a reference partition that points to the
existing ImageService partition. Thus, both applications can share the existing
service, avoiding the creation of a new instance of the service object.

Sharing a Service Object in Connected
Environments
An iPlanet UDS system manager can connect multiple iPlanet UDS environments
together, to gain advantages in performance, maintenance, and scaling. When the
environment in which you are partitioning a project is connected to one or more
environments, you can use service objects from those environments in the current
configuration.

Sharing services is particularly useful when a particular service can run only in one
environment. One example is a service that uses a specialized satellite feed or stock
ticker that is accessed through a callout to an external service running in one
location. Another example is a service that handles personnel data and that only
resides in the headquarters environment, because that is where the personnel
database is. All other applications installed in their own local environments must
access the personnel database located at headquarters.

To allow applications in connected environments to share a specialized service,
you use reference partitions. Figure 11-19 illustrates two connected environments:

Figure 11-19 Reference Partition for Connected Environment

Client Partition

Client Partition

Client Partition

Client Partition

Environment North America Environment Europe

Sharing Service Objects Between Applications

Chapter 11 Working With Service Objects 429

Including a Shared Service Object in an
Application
The steps required to share a service object are summarized below and described in
more detail in following sections.

➤ To include a shared service object in an application

1. Deploy the application that defines the service object that is to be shared.

2. If the service object is in a connected environment, you must make a
distribution for the server application that contains it in the current
environment (although you do not install it).

3. In the application that needs to access the deployed service object, include as a
supplier plan the project from the deployed application that originally defined
the service object.

4. Use the Partition Workshop to create a reference partition that points to the
existing service object.

If the service is in a connected environment, the environment search path for
the service object in the reference partition must specify the environment
where the original server application that contains the service object is
deployed.

Deploying the Shared Service
Before you can include a shared service object in your application, the application
that defines the service object must be deployed.

The application that defines the service for deployment can be a server application
or a client application—it makes no difference. Often the application that defines
the service for deployment is a server application that simply provides the service
object definition. The other applications that will share the service define various
user interfaces that enable end users to interact with the shared service. However,
you could also implement the service as a client application that includes a small
interface for testing and managing the service.

For example, assume you want to deploy a image service to be shared by various
applications. You could define an ImageService project, which defines the image
service itself. You could also define an ImageTester project, which provides a
simple testing facility for the service. You could then include the ImageService
project as a supplier to ImageTester, and configure and deploy ImageTester as a
client application. Later on you could include the ImageService project as a
supplier project for other applications.

Sharing Service Objects Between Applications

430 iPlanet Unified Development Server • Programming Guide • August 2001

Making a Distribution for the Server
Application in the Local Environment
If the service to be shared is in a connected environment, you must make a
distribution for the service in the local environment:

➤ To make a distribution for the server application

1. In the local environment, partition the application that defines the service, and
make a distribution for it.

2. Do not, however, install the application.

In this step you provide the local environment with both the logical and
deployment definitions of the service. These definitions are needed to enable the
application in the local environment to use the service in the connected
environment. However, because the application is not installed in the local
environment, iPlanet UDS will never attempt to connect to an instance of the
service in the local environment.

Including the Supplier Project
When you define an application that will reference an existing service, you must
include the project that defines that service object as a supplier project for your
main project. The supplier project that defines the service object must be exactly the
same project that was originally used to deploy the service for the existing
application. Even though you will not be deploying that service object from within
the current application, iPlanet UDS needs the original service object definition to
represent the existing service object within your new application.

The supplier project in the current application must match the project in the
deployed application in the following aspects:

• the names of the projects must match

• the compatibility levels of the projects must match

• all runtime IDs must match

Sharing Service Objects Between Applications

Chapter 11 Working With Service Objects 431

➤ To transfer a project from one repository to another

1. Start Fscript and use the command ExportPlan, with the ids option.

2. Import the exported plan into a repository in the local environment.

For example, assume you are creating an Auction project that defines an
application that needs to access the image service. If, as described in the previous
section, you had previously deployed that image service as part of the ImageTester
application, you would need to include the ImageService project as a supplier in
the Auction project. You need to include the ImageService project because this
project defines the service object you want to access. You do not need to include the
ImageTester project because this project defines only the testing interface for the
image service.

Making the Reference Partition
When you partition an application in the Partition Workshop, iPlanet UDS creates
new partitions containing all the service objects in the main project and all of its
supplier projects. Therefore, the service object that you are planning to include in
the reference partition will be on a new partition (or it may share a new partition
with other service objects).

At this point, you must create the reference partition to point to the deployed
service object, and move the service object from the new partition into the reference
partition. This tells iPlanet UDS to use the service object that the reference partition
points to, rather than creating a new instance of the service object.

See A Guide to the iPlanet UDS Workshops for information about making a reference
partition using the Partition Workshop.

If your deployment environments are connected and a service that you need to
access can run only in one of the environments, you can access that shared service
from other environments by using a reference partition combined with an
environment search path.

CAUTION You must use Fscript command ExportPlan to export the project
and you must export with the ids option. The IDs are required to
ensure the exported project is identical to its source, and you
must use Fscript because the Export command in the Repository
Workshop does not export with IDs.

Using the Environment Search Path

432 iPlanet Unified Development Server • Programming Guide • August 2001

In a reference partition to a connected environment, you specify an environment search
path for the service object you need to access. The environment search path
includes the name of the environment that contains the service. Then, whenever
the service object is referenced, iPlanet UDS will use the service object in the
specified environment. See “Using the Environment Search Path” for more
information.

When you have applications in multiple environments that need to use a specific
service in a specific environment, you should deploy application that contains the
service object in the environment in which it can run. Then, each application in the
other environments can create a reference partition to the service object in that
application. The search path from each application would only include the specific
environment where that service is deployed. (It must exclude the local
environment.)

Using the Environment Search Path
You can use a service object that is in a different environment in two ways:

• You can share an existing service in a connected environment, rather than
starting that same service in the current environment.

You do this by using a reference partition (described earlier under “Sharing
Service Objects Between Applications” on page 426).

• You can provide a list of service objects in connected environments to be used
for failover for a service object in the current environment.

You do this by specifying an environment search path for the service object
(described under “Cross-Environment Failover” on page 416).

If your environment is not connected to other environments, you can only use
services within the current environment. To see if a given environment is
connected to any other environments, use the Environment Console or Escript. For
more information, see the iPlanet UDS System Management Guide.

Using the Environment Search Path

Chapter 11 Working With Service Objects 433

Specifying an Environment Search Path
An environment search path for a service object is a list of connected environments in
the order that iPlanet UDS should search for that service object. You can specify an
environment search path at several levels. Depending upon where a search path is
specified, iPlanet UDS uses the path to locate only the specified service object, or all
service objects. You can specify the environment search path in the following ways:

• in the Environment Console (or Escript)

The iPlanet UDS system manager can provide a default search path for the
environment as a whole. This search path is used for all service objects in the
environment that do not have their own environment search paths. (Typically,
you should not set the search path at this level—it is best to use the system
default.)

• in the Project Workshop

You can provide a search path in the original service object definition. This
search path overrides (that is, does not add to) the default search path for the
environment, and it is used for the particular service object in all
configurations that do not override it for the particular configuration.

• in the Partition Workshop

You can provide a search path for an individual service object on an assigned
partition. This search path overrides (that is, does not add to) the search path
specified in the Project Workshop, and it is used only for the particular service
object on the particular assigned partition.

A Guide to the iPlanet UDS Workshops describes setting the path in the Project
Workshop or the Partition Workshop. The iPlanet UDS System Management Guide
describes setting the path in Econsole or Escript.

If no search path is specified at any of these levels, iPlanet UDS uses the system
default search path. The system default search path searches only the current
environment, regardless of whether or not the current environment is connected to
other environments.

The system default search path is the following:

@(a)

The @ means that only the current environment is searched, and the (a) means that
all service objects are automatically started when necessary.

Using the Environment Search Path

434 iPlanet Unified Development Server • Programming Guide • August 2001

Specifying Auto-Start for a Partition
By default, all partitions in an environment start up automatically. The iPlanet UDS
system manager can change this default by modifying the default environment
search path. If your iPlanet UDS system manager has done so, you can override his
settings to specify that one or more partitions start automatically.

To specify that a partition auto-start, you use the environment search path option
(a). This option requests that the associated service object in that environment be
started automatically (and thus, the partition that contains the service object).

Even if your environment is not connected, you can use an environment search
path to request auto-start for a particular service object. Simply enter the following
search path in the Project Workshop for the service object that you want to
auto-start:

@(a)

Because disabled partitions are not auto-started, if the environment search path
specifies a disabled partition with the (a) option, that partition will not auto-start,
and iPlanet UDS will look in the next entry in the environment search path for the
service object.

435

Chapter 12

Advanced Options for Structuring
Client Applications

This chapter explains how you can design iPlanet UDS applications that use the
following features:

• applets

• nomadic clients

This chapter assumes that you have Framework Library online Help available.

 Writing Applications That Use the
Launch Server and Applets

The AppletSupport library provides classes that allow you to write the following:

• applications that use the Launch Server to launch other iPlanet UDS applets or
applications

• customized applications that let end users access the Launch Server

This section introduces the classes, methods, and attributes of the AppletSupport
library. Reference information for the AppletSupport library is more thoroughly
documented in Framework Library online Help.

The classes in the AppletSupport library are:

AppletData Represents a client application that can be launched using the
LaunchService service object.

LaunchMgr Provides access to the features of the LaunchService service object,
also defined in the AppletSupport library.

Writing Applications That Use the Launch Server and Applets

436 iPlanet Unified Development Server • Programming Guide • August 2001

AppletReleaseData Contains information about a specific release of a client
application.

AppletRunInfo Represents information about a client application that was
started by the LaunchService service object and is currently running.

Setting up the AppletSupport Library
To use the AppletSupport library, import the apltsupp.pex file in the
FORTE_ROOT/userapp/appletsu/cl0 directory into your repository.

When you write an application that uses any of the classes of the AppletSupport
library, you need to include this library as a public plan in your workspace and
include this library as a supplier plan for the application.

Advantages of Using the AppletSupport Library
You can use the AppletSupport library to design applications that start other
applications in the same ftexec process. You can start these applications using the
LaunchMgr.RunApplet method.

There are a number of advantages to starting other client applications from within
your TOOL code using the LaunchMgr.RunApplet method:

• reduce the size of a client partition by dividing the functions among client
applications (or applets), then launching these client applications using the
Launch Server

• start other applications in the same process, which can be faster than starting
the applications in different processes

• start, list, and shutdown launched client applications using LaunchMgr
methods

Typically, when you write a complex client for an iPlanet UDS application, the
client partition is large. If you design your application to reuse existing client
partitions, you have the choice of using the following methods:

NOTE Although this library is intended to support the use of applets as
parts of applications, you can also start deployed applications that
are not applets using the features of the AppletSupport library.

Writing Applications That Use the Launch Server and Applets

Chapter 12 Advanced Options for Structuring Client Applications 437

LaunchMgr.RunApplet Starts an installed or publicly-available applet or
application in the same process as the main client application. When your
application launches another client application using the LaunchMgr.RunApplet
command, that application cannot communicate with the application that started
it. However, the other application shuts down when the starting application shuts
down.

OperatingSystem.RunCommand Starts an installed client partition in another
process. The command specified for this method is not necessarily portable across
platforms.

Restrictions
There are a number of limitations that you should be aware of when you design an
application that starts other applications and applets using the AppletSupport
library. Applications or applets that have been started by a main client application
cannot do the following:

• propagate events to the main client application, or to other applications or
applets that were started by the main client application

• define and pass around references to anchored objects in other applications or
applets

• share user-visible service objects between client partitions

Building Applications by Starting
Multiple Smaller Applications
This section discusses writing a client application that starts other applications
using the LaunchMgr.RunApplet method. This sections also discusses how to test
your application.

You can design your client application to use smaller applications to provide
discrete functions. For example, a very simple bank management application could
let the user choose to enter account transactions or view the current balances of the
accounts. These two functions could be provided by small separate applications
that are started by the bank management application.

The application that starts the other applications using the LaunchService service
object is referred to as the main client application. A project in this application uses
the AppletSupport library as one of its supplier plans.

Writing Applications That Use the Launch Server and Applets

438 iPlanet Unified Development Server • Programming Guide • August 2001

An applet is a client application that is started as part of another application. In
design and function, an applet is actually a small independent application. When
you make the application distribution, you mark this application as an applet,
whose client partition is to be started only by using the LaunchMgr.RunApplet
from another main client application.

When you install a client application that starts applets or applications, you must
also install the required applets or applications independently. Ideally, you should
have a script for this installation, as describe in “Configuring and Deploying the
Main Client Application” on page 441.

Using the LaunchService Service Object
The AppletSupport library defines a user-visible service object called Launcher,
which is of type LaunchMgr. This service object provides the same services that are
provided by the Launch Server (ftlaunch), as described in iPlanet UDS System
Management Guide.

If you start the main client application using the Launch Server, then the
LaunchService service object in that application directly represents the Launch
Server.

If you start the application independently of the Launch Server, using the ftexec
command or by running its compiled executable, then a TOOL reference to the
LaunchService service object starts a LaunchService service object in the same
process as the application. This LaunchService service object does not represent the
Launch Server (ftlauncher) that might also be running on the client node; it is an
instance of the LaunchService service object running in the current process.

When your application needs to access methods and events on a LaunchMgr
object, reference the LaunchService service object. Do not create a new instance of
the LaunchMgr class. The methods available for the LaunchService service object
are described in “Using LaunchMgr Methods” on page 439. For detailed
descriptions of the methods and events in the LaunchMgr class, see Framework
Library online Help.

Always assign the partition containing the user-visible LaunchService service
object to a client node.

Writing Applications That Use the Launch Server and Applets

Chapter 12 Advanced Options for Structuring Client Applications 439

Using LaunchMgr Methods
The LaunchMgr class provides the following methods, which can be invoked on
the LaunchService service object:

ListApplets Returns a list of the available applets or applications. Use this
method to see which applications and applets are loaded in the environment and
available to the client node. This list can include both assigned and
publicly-available applications and applets.

RunApplet Starts the specified applet or application, downloading the latest
image repositories, if necessary.

RunningApplets Returns a list of the applets or applications that were started by
the LaunchService service object.

Shutdown Shuts down one or more applets or applications that were started by
the LaunchService service object, possibly including the LaunchService service
object itself.

UpdateApplet Updates the specified assigned applet or application.

For more detailed information about these methods, and about the events available
on the LaunchMgr class, see Framework Library online Help.

A Scenario
iPlanet UDS provides an example in which a main client application can start two
other applications, which have been deployed as applets.

The example used in this section is available in the
FORTE_ROOT/install/examples/frame directory, and requires the apltbank.pex,
banksvc.pex, banking.pex, and bankrec.pex files. For information about setting up
this example, see “AppletBanking” on page 633.

This example is a very simple bank management application, which lets the user
choose to enter account transactions or view the current balances of the accounts.
These two functions are provided by small separate applications that are started by
the bank management application.

Writing Applications That Use the Launch Server and Applets

440 iPlanet Unified Development Server • Programming Guide • August 2001

The main client application checks whether the applets are available on the system
using the Launcher.ListApplets command, as shown:

The main client application then indicates to the user that certain functions are not
available, if the applet is not available on the client machine.

You could choose to handle this kind of situation in different ways, including:

• dynamically disable the parts of the application that rely on the missing
application or applet

• provide a message indicating the problem, then end the application

In this simple example, the user clicks a button to start one of the applets. In the
TOOL code, the main client application starts the applet using the RunApplet
method, as shown:

Code Example 12-1 Checking applet availability using the ListApplets method

-- Check to make sure that needed applets are available.
appletList : GenericArray of AppletData;
appletList = LaunchService.ListApplets(type = APPLET_TYPE_ALL,
category = APPLET_CATEGORY_APPLETS);

foundManageAcct : boolean = False;
foundViewAcct : boolean = False;

for i in appletList do
if (i.AppletName.Value = ’Banking’) then
foundManageAcct = True;

elseif (i.AppletName.Value = ’BankRecords’) then
foundViewAcct = True;

end if;
end for;

Project: AppletBanking • Class: BankMgmt • Method: Display

Code Example 12-2 Starting an applet using the RunApplet method

when <Manage_Button>.Click do
self.BankingRunInfo = LaunchService.RunApplet(name = ’Banking’);
self.<Manage_Button>.State = FS_INVISIBLE;
self.<Stop_Managing_Button>.State = FS_UPDATE;
self.window.UpdateDisplay();

Project: AppletBanking • Class: BankMgmt • Method: Display

Writing Applications That Use the Launch Server and Applets

Chapter 12 Advanced Options for Structuring Client Applications 441

When the user chooses to quit the main client application, the other applets are
automatically shut down along with the main client application. This application
also provides buttons for shutting down the launched applications. When the user
clicks one of these buttons, the main client application uses the
LaunchMgr.Shutdown method to shutdown the launched application.

The main client application also catches the LaunchMgr.RunCompleted event so
that it can let the end user restart an applet if it has completed running.

Configuring and Deploying the Main Client
Application
Deploying a main client application that starts other applications or applets also
involves deploying the other applications or applets.

Code Example 12-3 Shutting down applets using the Shutdown method

-- Stop the Banking application.
when <Stop_Managing_Button>.click do
LaunchService.Shutdown(appletID = BankingRunInfo.AppletID);
self.<Manage_Button>.State = FS_UPDATE;
self.<Stop_Managing_Button>.State = FS_INVISIBLE;
self.window.UpdateDisplay();

Project: AppletBanking • Class: BankMgmt • Method: Display

when LaunchService.RunCompleted(appID = appletID) do
if appID = BankingRunInfo.AppletId then
self.<Manage_Button>.State = FS_UPDATE;
self.<Stop_Managing_Button>.State = FS_INVISIBLE;
self.window.UpdateDisplay();

elseif (appID = BankRecordsRunInfo.AppletID) then
self.<View_Button>.State = FS_UPDATE;
self.<Stop_Viewing_Button>.State = FS_INVISIBLE;
self.window.UpdateDisplay();

end if;

Project: AppletBanking • Class: BankMgmt • Method: Display

Writing Applications That Use the Launch Server and Applets

442 iPlanet Unified Development Server • Programming Guide • August 2001

When you configure an application to be started by a main client application, you
can define the application as an applet, which is intended to be started only using
the LaunchMgr.RunApplet command.

➤ To configure an application as an applet

1. Define the client partition of the application as an applet.

In the Partition Workshop, open the Logical Partition Properties dialog for the
application’s client partition and click the Applet toggle, as shown:

In Fscript, use the SetAppletFlag command, as shown in the following
example:

SetAppletFlag 1

Each application or applet is deployed using a separate application distribution. To
ensure that all the applications and applets required by a main client application
are installed:

• include all the application distributions with the main client applications

• write an Escript script that installs all the applications and applets when the
main client application is installed

The following example shows how an Escript script could install all the applets
used by the main client application, if the applets are assigned:

Whether the applications or applets used by the main client application are
assigned or publicly available, the system manager can simply use a script, like the
one in the previous example, to make the applications or applets available to the
appropriate client nodes.

If you choose to start the main client application independently of the Launch
Server (ftlaunch) application, you need to install the client partition for the main
client application.

LoadDistrib AppletBanking cl0 # The main client application.
Install
FindActEnv # Back to the Environment agent.
LoadDistrib Banking cl0
Install
FindActEnv
LoadDistrib BankRecords cl0
Install

Writing Applications That Use the Launch Server and Applets

Chapter 12 Advanced Options for Structuring Client Applications 443

If none of the other applications or applets have server partitions, you could simply
load the distributions for all the applications or applets, and let the LaunchService
service object automatically download the applications on the clients. In fact, the
only partitions you need to explicitly install are the server partitions.

If the client partition and one or more server partitions are assigned to a client node
that can run server partitions, such as UNIX with Motif or Windows NT, the
Launch Server downloads any assigned server partitions at the same time it installs
the client partition.

If these applications or applets are publicly available, then the system manager
needs to manage them the same as she would for other publicly-available
applications, as described in the iPlanet UDS System Management Guide.

Testing
When you test an application that launches iPlanet UDS application, be aware that
any applications or applets that are being launched must be available in the
development environment (installed or publicly available). However, the
application that launches these client applications or applets does not need to be
installed if you are testing the application in the iPlanet UDS Workshops or using
the Run or RunDistrib commands in Fscript.

Customizing the Launcher Application
iPlanet UDS provides the source code for the Launcher application as an example
that you can examine and customize for your own purposes. This code is provided
in the FORTE_ROOT/install/examples/frame/launcher.pex file.

To customize this application, import the AppletSupport library in the
$FORTE_ROOT/userapp/appletsu/cl0/apltsupp.pex file, then import the code
for the Launcher application. If you wish to provide help, you should create your
own help file.

Deploying Applications That Launch Other
Applications And Applets
By using the LaunchMgr.RunApplet method, application developers can design
applications that start other iPlanet UDS client applications in the same ftexec
process, but in separate partitions.

Writing Applications That Use the Launch Server and Applets

444 iPlanet Unified Development Server • Programming Guide • August 2001

An applet is a client application that is started as part of another application. In
design and function, an applet is actually a small independent application. When
the application developer makes the application distribution, she marks the
application as an applet, whose client partition is to be started only by using the
LaunchMgr.RunApplet from another “main” client application.

You can see whether an application distribution is an applet by checking the
Partition agents for the client partition. In the Environment Console, the Type for
the client partition says Partition (Applet). In Escript, the Partition Type for the
Partition is Client (Applet).

Applets are deployed in exactly the same way as other applications, except that no
icons are generated for applets, and applets cannot be started by the Launcher
application. Applets can either be explicitly assigned to a client node, or can be
publicly available to all client nodes, just as other applications can. For specific
information about assigning applets or making them publicly available to client
nodes, see the iPlanet UDS System Management Guide.

When you deploy a client application that starts applets or applications, you must
also deploy the required applets or applications independently. Ideally, you
should have a script for this installation.

After you have deployed an applet, you will notice that it is not visible on the client
node the way a regular client application is:

• the Launcher application does not display an applet as an application that can
be started

• iPlanet UDS does not automatically create icons for this applet the way it does
for other applications on the Windows platforms

• the ftcmd list command does not include applets in its list of available
applications

Troubleshooting Client Applications That Use
Applets
If you have problems with a client application that starts other applets or client
partitions, you can diagnose the source of the problems by checking the trace
window or log file for the main client application. The application prints trace
information about the application itself and the applications or applets it starts in
the same trace window or log file.

Developing Applications with Nomadic Clients

Chapter 12 Advanced Options for Structuring Client Applications 445

The Launch Server automatically turns on the trace flag that has the trace flags start
with the name of the application: “cfg:sp:8.” You can turn this trace flag on or off in
other situations, if you wish.

If the main client application generates a UsageException exception with a
SP_ER_INVALIDSTATE reason code, then one of the applications or applets it
starts is missing. See the RunApplet method in Framework Library online Help for
information about exceptions that can be raised when the main client application
starts another application.

Developing Applications with Nomadic Clients
In a mobile computing environment, an application’s client partitions should be
able to perform many functions without being connected to a server, and should
connect to a distributed environment only when they need to. This section refers to
clients running in this type of application as nomadic clients. Nomadic clients are
useful when the end user does not have an easily available network connection and
needs to use less efficient communication devices, such as modems.

Nomadic clients can perform many functions without connecting to any
environment or server. When the application needs to connect to server partitions
in the environment, it does. When the client has finished using the function that
requires a connection, it can disconnect from the environment and servers and run
independently.

Figure 12-1 illustrates how the NomadicOrderClient example application, which
has a nomadic client partition, works. This application is described in
“NomadicOrderClient” on page 642. In this application:

1. The client partition can run independently when the user enters the sales order
information.

2. When the order information has been entered, the user can connect to her
company’s distributed environment, perhaps using a modem, and upload her
orders to a server.

3. When the client no longer needs to access the servers in the environment, the
client partition can disconnect from the environment.

Developing Applications with Nomadic Clients

446 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 12-1 Running an Application using Nomadic Clients

When you design applications with nomadic clients, you need to consider what
functions the clients must be able to perform without being connected to any server
partitions. You should have the client partition access service objects and anchored
objects as isolated incidents, in which the client connects to the service object,
performs needed functions, then disconnects from the environment.

You can use the following features to implement nomadic clients in your
application:

Distributed reference to a service object or anchored object Connects to an
environment and the referenced service object or anchored object. For example, a
distributed reference can be a method call on an environment-visible service object,
such as MyServices.GetData();.

DistObjectMgr.ReleaseConnection method Releases the connection to the
specified service object or anchored object.

DistObjectMgr.ReleaseNameService method Releases the connection to the
environment’s Name Server.

-fnomad flag Starts a client application as a stand-alone application without
initially connecting to an environment.

Laptop
Distributed

Environment

Laptop

Distributed
Environment

1
Enter orders with

no connection

2 Connect to distributed
environment and upload data

3
Disconnect from
the distributed
enviornment

Developing Applications with Nomadic Clients

Chapter 12 Advanced Options for Structuring Client Applications 447

The following sections describe how to use these features to implement nomadic
clients.

Connecting to the Environment
When a client partition uses the -fnomad flag to start as a nomadic client, there is
no initial connection to the environment. As soon as the client references a service
object or anchored object, however, the client automatically connects to an
environment. The client partition will stay connected to this object until you invoke
the DistObjectMgr.ReleaseConnection method and will stay connected to the
environment until you invoke the DistObjectMgr.ReleaseNameService method.

In the following example, OrderServer is an environment-visible service object.
Invoking the FindOrder method on the OrderServer service object causes the client
partition to connect to its default environment to locate the service object.

To specify which environment the client should connect to, use the
FORTE_NS_ADDRESS environment variable or the -fns command line flag to
specify one or more name service addresses. The first name service address
specifies the default environment. You can include other name service addresses so
that the client can connect to another environment if its default environment is not
available. The client always tries to connect to the first listed name service, then the
second, and so forth.

For example, if the user usually works in California, the name service address for
the default environment might be Oakland:5000. However, the user might
occasionally take business trips to Brazil, Japan, and Spain, so other name service
addresses might be specified, as shown in the following example:

-fns Oakland:5000;Brazil:7000;Japan:4500;Spain:3500

In this example, Brazil, Japan, and Spain are host names of different Environment
Managers.

Code Example 12-4 Connecting a client partition to the environment

-- This reference to the environment-visible service object
-- makes this client partition connect to the environment.
foundOrder = OrderServer.FindOrder(custID = self.CustomerID);

Project: NomadicOrderClient • Class: FindOrderWindow • Method: Display

Developing Applications with Nomadic Clients

448 iPlanet Unified Development Server • Programming Guide • August 2001

If the client partition disconnects from the environment, then references a service
object or anchored object, iPlanet UDS automatically establishes a new connection
to the environment. However, if a service object has been replicated, the client
might not connect to the same instance of the service object when it reconnects.

Disconnecting the Client Partition
from the Distributed Environment
When you design your application, you should consider at what points the client
partition can disconnect itself from service objects, anchored objects, and the Name
Server, and plan to invoke the DistObjectMgr.ReleaseConnection and
DistObjectMgr.ReleaseNameService methods at those points.

To completely disconnect the client partition from the distributed environment,
you must release the client partition’s connections to each service objects and
anchored object, as well as the Environment Manager.

Releasing the Connection to Service
Objects and Anchored Objects
The DistObjectMgr.ReleaseConnection method releases a partition’s connection to
a service object or anchored object that the client partition has referenced.

The client partition can release a connection to a service object or anchored object at
any time by using the DistObjectMgr.ReleaseConnection method. You can access
the distributed object manager for the client using the identifier
“task.Part.DistObjectMgr”. The following example shows how you can disconnect
from a service object named OrderServer:

Code Example 12-5 Disconnecting from a service object

task.Part.DistObjectMgr.ReleaseConnection(object = OrderServer);

Project: NomadicOrderClient • Class: FindOrderWindow • Method: Display

Developing Applications with Nomadic Clients

Chapter 12 Advanced Options for Structuring Client Applications 449

If the client partition has accessed several service objects and anchored objects, you
need to invoke the ReleaseConnection method for each environment-visible service
object and anchored object. You then need to invoke the ReleaseNameService
method, described in the next section, to completely disconnect the client partition
from the environment.

Releasing the Connection to the Environment
The DistObjectMgr.ReleaseNameService method releases a partition’s connection
to the Environment Manager called.

The client partition can release a connection to the environment at any time by
using the DistObjectMgr.ReleaseNameService method. You can access the
distributed object manager for the client using the identifier
“task.Part.DistObjectMgr”. The following example shows how you can disconnect
from the current Environment Manager:

NOTE The DistObjectMgr.ReleaseDistReference method releases the
reference to an anchored object or service object, but does not release
the connection to the partition containing the object.

Code Example 12-6 Disconnecting from an environment

task.Part.DistObjectMgr.ReleaseNameService();

Project: NomadicOrderClient • Class: FindOrderWindow • Method: Display

Developing Applications with Nomadic Clients

450 iPlanet Unified Development Server • Programming Guide • August 2001

Example of Connecting and
Disconnecting to the Environment Manager
The following sample code from the NomadicOrderClient application shows how
a client partition can connect to the Environment Manager and a service object
named OrderServer by calling a method on the service object. The client partition
then disconnects from the service object and Environment Manager when it has
completed its task.

Starting a Nomadic Client Application
If a client does not need to immediately access distributed objects, you can specify
the -fnomad flag as part of the client’s startup command. When this flag is
specified, the client does not connect to an environment when it starts up.

You can use the -fnomad flag with any command that starts a client partition,
including the following:

• ftexec (portable syntax)

• VFORTE FTEXEC (VMS)

• ftclient or ftclntds

• compiled partition executables

Code Example 12-7 Connecting and disconnecting a client partition

-- This reference to the environment-visible service object
-- makes this client partition connect to the environment.
OrderServer.AddOrder(newOrder = index);
. . .
-- Use the ReleaseConnection method to disconnect from
-- the service object.
task.Part.DistObjectMgr.ReleaseConnection(object = OrderServer);
task.Part.LogMgr.PutLine(source=
 ’Disconnected from the remote service object OrderServer.’);
-- Disconnect from the environment.
-- Can’t use this method when running in the Forte workshops.
task.Part.DistObjectMgr.ReleaseNameService();
task.Part.LogMgr.PutLine(source=
 ’Disconnected from the environment.’);

Project: NomadicOrderClient • Class: StartWindow • Method: Display

Developing Applications with Nomadic Clients

Chapter 12 Advanced Options for Structuring Client Applications 451

You should not run nomadic client applications with the ftcmd run command,
because the DistObjectMgr.ReleaseNameService method causes the Launch Server,
as well as the client partition, to disconnect from the environment.

The default icons created for client applications use the ftcmd run command to
start the application. To have iPlanet UDS generate icons that start applications
using the ftexec command, set the following configuration flag on each client node
where you want this type of icon generated: cfg:em:2. Alternatively, you can edit
the icons to use the ftexec command.

The following example shows how to specify that the client partition starts without
connecting to an Environment Manager. This example shows the syntax for a client
application on Windows NT:

ftexec -fi bt:c\forte\userapp\ordercli\cl0\orderc0 -fnomad

In Windows NT, this command could be entered on the Command Line field of the
Program Item Properties dialog for the program icon that represents the
OrderClient application.

Testing Nomadic Client Applications
When you test run your application using the iPlanet UDS Workshops or the
Fscript utility in distributed mode, you need to comment out any lines that contain
the DistObjectMgr.ReleaseNameService method. Otherwise, when the client
disconnects from the Environment Manager, Fscript or the iPlanet UDS Workshops
also lose the connection to the environment, which will cause Fscript or the iPlanet
UDS Workshops to fail. The only functional difference between including the
ReleaseNameService method call and commenting it out should be that the client
partition stays connected to the environment after it initially connects.

You can only test that your client partition properly disconnects and reconnects to
the Environment Manager by partitioning, making a distribution, and installing
the application in a test environment. You then need to start the client partition
using the -fnomad flag, as described in “Starting a Nomadic Client Application” on
page 450.

Because you can only test your application with nomadic clients by deploying and
running the application, design your application to print a lot of messages to a log
file or trace window. You can then use these messages when you run your
application to determine when failures occur and what causes them. You should
also design useful exceptions into your application, so that your application can
intelligently recover from error situations.

Developing Applications with Nomadic Clients

452 iPlanet Unified Development Server • Programming Guide • August 2001

Restrictions on Nomadic Clients
Typically, when a client partition connects to an environment during its startup,
the client partition becomes part of that environment, and that environment’s
Environment Manager is the client partition’s home Environment Manager.

If the client does not initially connect to an Environment Manager, the client forms
its own environment without an Environment Manager and never has a home
Environment Manager. Therefore, if the client starts with the -fnomad flag, you
need to design the client with the following restrictions in mind:

• The client cannot register any objects using the ObjectLocationMgr class,
because this feature does not work if the client does not have a home
Environment Manager.

• If the client has for some reason failed over to a different Environment
Manager, the client does not disconnect from the second Environment
Manager and reconnect to the first Environment Manager it connected to, the
way clients do when they have a home Environment Manager.

453

Chapter 13

Upgrading Deployed Applications

This chapter describes how to upgrade iPlanet UDS user applications that are
currently deployed. It covers advanced topics of interest to iPlanet UDS system
managers as well as application developers, including:

• when to use interoperable upgrades, compatibility level upgrades, and class
version upgrades

• how you perform each type of upgrade

• the use of compatibility levels and class versions

• how you write converters to modify a deployed application

• how you track changes in releases of an application

Note that this chapter describes upgrading deployed applications only. For
information regarding upgrading iPlanet UDS, refer to the iPlanet UDS System
Installation Guide.

Choosing an Upgrade Approach
Maintaining an application requires changing it. Changes are necessary for a
variety of reasons, such as to add functionality, to reflect new business conditions,
to improve performance of an application, to fix bugs, or to take advantage of new
features or a new understanding of existing features. Deployed iPlanet UDS
applications require updating for the same reasons. As business requirements
change over time, you will very likely need to refine the class definitions and the
logic of your application.

Choosing an Upgrade Approach

454 iPlanet Unified Development Server • Programming Guide • August 2001

The upgrade process can be significant. To upgrade an iPlanet UDS production
environment requires careful planning to execute a sequence of steps. You must
make the desired changes, repartition, and install newer partitions, perhaps on a
significant number of client nodes. You typically want to plan changes to an
application carefully, to group related changes when possible, and to minimize
downtime, retraining, and inconveniences to the end users. You may also need to
coordinate the activities and needs of application developers, system managers,
and end users.

When you upgrade an application you typically have the following goals:

• to make the desired modifications to an application

• to upgrade all servers and users of the application

• to do so with the least interruption and inconvenience to users, developers,
and managers of the application

Careful planning and testing are critical to meet these goals as you upgrade
deployed applications. Also, you should be sure to test each step of the process
thoroughly.

Types of Upgrades
When choosing an upgrade approach you must take into consideration a number
of factors. Depending on your circumstances, you may be able to perform a
relatively straightforward upgrade, or you may need to plan several phases to
accomplish a more complex upgrade.

This chapter describes three upgrade approaches to meet a variety of requirements.
These approaches are based upon characteristics of iPlanet UDS applications that
affect upgrading. These approaches are listed in order of the degree of change
permitted.

Interoperable Upgrades In an interoperable upgrade, you can make limited
changes to an application, as long as you do not impact the interaction between the
application’s clients and servers. You upgrade the application by replacing some
partitions with a newer application distribution; the changes in the newer
partitions transparently work with the older partitions.

Class Version Upgrades In a class version upgrade you can make significant
changes to an application, such that clients and servers can be based upon multiple
distributions of the same application during the upgrade process. You do not
(cannot) increment the compatibility level. However, you use class versions to

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 455

identify classes that have changed and you write special methods called
converters. This upgrade approach is recommended primarily for applications that
must always be running (“high-availability” or 7 x 24 applications) or applications
where the time to distribute software to all parties may be very long (weeks).

Compatibility Level Upgrades In a compatibility level upgrade you replace an
older application with a newer application and increment the iPlanet UDS
compatibility level. The older and newer applications are completely independent.
Usually you upgrade all partitions simultaneously; however, under some
circumstances you can upgrade partitions in groups or phases.

These upgrade approaches are also summarized in the following table.

Each upgrade approach has different assumptions and steps. The first half of this
chapter describes some of the reasons that you would choose one approach over
another. The second half of this chapter describes how to perform these upgrades.

Interoperable Upgrade Class Version Upgrade Compatibility Level
Upgrade

Changes Allowed Add new classes, attributes,
or events.

Add any new class or class
component.

Change method signatures
and replace events (add
parameters).

All changes.

Only approach that allows
you to delete class
components.

Characteristics No change in compatibility
level.

Failover is optional.

No change in
compatibility level.

Requires failover.

Uses class versions and
converters.

Compatibility level must
change.

Cannot use failover.

Advantages Allows a rolling upgrade. Allows a rolling upgrade.

Allows many phases or
versions of an application,
if necessary.

Requires no special
coding.

Under some circumstances
allows a rolling upgrade.

Disadvantages Most restrictive on types of
changes allowed.

Requires coding for
converters.

More complex to
administer.

Difficult or impossible to
schedule for
high-availability
applications.

A rolling upgrade is not
always possible.

Choosing an Upgrade Approach

456 iPlanet Unified Development Server • Programming Guide • August 2001

Factors Influencing Upgrade Possibilities
The requirements of your business will dictate the modifications that you need to
make to your application, but business conditions may also impose some
restrictions on how and when you can make the modifications. Along with
prioritizing the changes you must make, you should also consider the following
factors as you plan your upgrade.

When is a Rolling Upgrade Necessary?
Rolling upgrades are a characteristic of distributed applications only. One partition
of an iPlanet UDS application can contain only one release of an application.
However, a typical iPlanet UDS application is distributed across many partitions,
sometimes making it difficult to upgrade all of the partitions simultaneously.
Furthermore, if an application must guarantee around-the-clock availability,
compatibility level upgrades are rarely possible. For highly distributed or high
availability applications, the ability to perform rolling upgrades is critical.

Some typical situations that require rolling upgrades are described below.

Applications that are geographically or logically dispersed Client partitions
may be installed on many workstations distributed over a wide geographical area.
Or, local iPlanet UDS system managers may be responsible for upgrading regions
or types of clients, subject to their own scheduling constraints. This situation could
result in clients being upgraded at different times, or a temporary mix of client
releases.

Applications that require high availability High-availability applications must
reliably be available for use at all times. Upgrades must be performed while the
application is running, with no detrimental impact on current users of the
application. An upgrade of servers for a high-availability application may require a
temporary mix of releases.

Upgrades in high-availability applications typically require careful planning to
define the exact upgrade procedure and to allow for backup if something should
go wrong. In addition, there is usually a window of time during which multiple
versions of the software must work together (a subset of older software that is
being replaced must work with a subset of newer software that is replacing it). This
window of time can be significant; it can extend from a few minutes to several
months, depending upon what is delaying the upgrade of the remaining older
components.

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 457

Applications in which all clients must access the same server In many
applications, all clients must access the same data and have immediate access to
updates made by other clients. In these situations, there cannot be two separate
servers (which can simplify an upgrade); instead there must be either one central
server that can be accessed by all clients, or a replicated server, in which multiple
servers stay synchronized.

Applications of different levels that share resources You might have multiple
iPlanet UDS applications that share common services or data. If it is impossible or
unreasonable to make simultaneous updates to all clients of all applications, you
can still phase in updates to the applications over time. While iPlanet UDS
applications that share resources must have the same compatibility level, it is
possible to change class definitions within a compatibility level in order to add new
functionality without requiring a complete upgrade.

Some rolling upgrades require the use of iPlanet UDS’s failover feature when
upgrading servers. An interoperable or class version rolling upgrade requires
failover, so that clients can move immediately and transparently from an older
server to a newer one. Note that to use failover, all partitions must be at the same
compatibility level.

By answering the questions in Figure 13-1 you can determine which type of
upgrade you need to make.

Choosing an Upgrade Approach

458 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 13-1 Upgrade Approach Decision Tree

Each situation imposes different requirements on you as an iPlanet UDS
application developer to guarantee that the application is consistent and that
changes are readily incorporated into the application. You may have to trade off or
delay some changes due to your particular circumstances.

1. Are the changes confined to the client only? (no server changes)

A. Interoperable Upgrade (clients only)
No class version or compatibility level change.

2. (Changes affect servers) Can the server(s) be unavailable for the duration of the upgrade?

No Yes

No Yes

4. Can the clients and servers be split into isolated groups, each group served by a

C. Compatibility Level Upgrade

YesNo

3. Are the changes confined to the server? (no client changes)

No

Yes

Upgrade all client/server partitions.

B. Interoperable Upgrade (servers only)
No class version or compatibility level change.

5. Are the changes “interoperable”?

No Yes

F. Class Version Rolling Upgrade
Use failover to move new clients to newer server.

D. Compatibility Level Rolling Upgrade

Client/server groups with different CLs run

E. Interoperable Upgrade (both clients and servers)
Use failover from old to new server.
No class version or compatibility level change.

Upgrade all client/server partitions.

 (See column 3 in the table in the next section)

simultaneously.

different server(s)?

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 459

Changes Allowed Between Upgrades
The changes that you can make to an application depend upon the upgrade
approach.

You can make any change to an application during a compatibility level upgrade.
You are essentially creating a new application. Some changes, particularly deleting
class components, are restricted to this type of upgrade.

You can make certain types of changes to an application during interoperable and
class version upgrades, as shown in the table below. If there is a “no” in both
columns 3 and 4, then the change can only be achieved using a compatibility level
upgrade. Also see below for an important note regarding the table.

Component Allowable Changes Interoperable
Upgrade

Class Version
Upgrade

Classes Add a new class with the distributed property yes (See Note 1) yes (See Note 1)

Add a new class that is non-distributed but is sent (as a
parameter or an attribute) to an older version

no (See Note 2) no (See Note 2)

Delete a class no no

Interfaces No effect. (Interfaces are not distributed. Classes that
implement interfaces can be distributed.)

no effect no effect

Service
Objects

Add a new service object yes (See Note 1) yes (See Note 1)

Delete a service object yes (See Note 1) yes (See Note 1)

Attributes Add a new attribute yes yes

Delete an attribute no no

Methods Add a new method no yes

Change a method’s signature or materially change a
method’s behavior.

no (See Note 4) yes (See Note 3)

Delete a method no yes

Events Add a new event yes (See Note 1) yes (See Note 1)

Replace an event (that is, change event parameters) no yes (See Note 3)

Delete an event no no

Event
Handlers

Add a new event handler no effect no effect

Delete an event handler no effect no effect

Choosing an Upgrade Approach

460 iPlanet Unified Development Server • Programming Guide • August 2001

When performing a rolling upgrade on a distributed application, you must
guarantee that older components interoperate with newer components. However,
you need only be concerned with components that are distributed. (If a component
is local to one partition, it can never be incompatible with itself.) Therefore this
chapter (and the column “Allowable Changes”) describes changes that you can
make to classes in either of the following categories:

• classes that have the distributed property

• classes that may not be distributed but are passed between partitions as
parameters to method calls

If a class does not have the distributed property and is never passed between
partitions, you can freely change its definition.

About Class Versions and Compatibility Levels
iPlanet UDS uses the concepts of compatibility levels and class versions to identify
unique snapshots of iPlanet UDS application components, as described below.

A compatibility level is an integer assigned to an application to identify components
that can work together. Multiple releases of an application can co-exist on a node
without interference, as long as they are identified by different compatibility levels.
Without compatibility levels, two releases of the same application could “collide”
on a node.

NOTES

1. Permitted as long as an instance of the service object/class/event is available to all partitions that need it.

2. A non-distributed class cannot be sent to an older partition that does not recognize it.

3. When a parameter associated with a method or event is changed, it is treated as the creation of a new
method or event.

4. Materially changing a method’s behavior means that the change is such that a client expecting the former
behavior will be disappointed.

Component Allowable Changes Interoperable
Upgrade

Class Version
Upgrade

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 461

Compatibility levels are integer values; the actual compatibility level for an
application and all its components is set when an application is partitioned (see A
Guide to the iPlanet UDS Workshops). The compatibility level for an application is
taken from the compatibility level for the main project of the application. The
compatibility level is appended to the string “CL,” as in CL0.

For example, a node can run two server partitions (one CL1 and the other CL2) for
the same application. Clients running CL1 would automatically communicate with
the CL1 server partition, and CL2 clients would automatically connect with the
CL2 server partition; both “applications” could run in parallel, even though the
application components use the same names. This is possible because the
compatibility level is added to each partition’s name, making each name unique.

A library has a compatibility level based on the compatibility level of the project for
which you used the Configure As Library command. Library compatibility levels
are used just like application compatibility levels. If your application references a
library, then you must update your application if the library is updated, its
compatibility level changes, and you want your application to take advantage of
the newer library. See “Using New Compatibility Levels of Libraries and Shared
Service Objects” on page 479.

For information about using compatibility levels, including when to increment
them, see “Using Compatibility Levels to Upgrade” on page 478.

A class version is a runtime property of a class that uniquely identifies one
definition of that class (all its attributes, methods, events, and so on). Within a
compatibility level a class can have multiple versions. While only one version of a
class can be loaded in a single partition, a deployed application can have multiple
versions of one or more classes (on different partitions) that work together. For
more information about using class versions, see “Using Class Version Numbers”
on page 492.

Class versions require hand-coded converters (a special type of method) so that
partitions based on different class versions can communicate during the upgrade
process. Converters contain code that makes up for differences between the class
versions. For more information about converters, see “About Converters” on
page 467.

Choosing an Upgrade Approach

462 iPlanet Unified Development Server • Programming Guide • August 2001

About Interoperable Upgrades
In an interoperable upgrade you can modify an application without raising its
compatibility level if you follow certain rules to guarantee runtime interoperability
(sometimes called “compatibility”). Interoperability refers to the ability of partitions
from different distributions of the same application to communicate successfully,
without the use of class versions or converters.

The changes you make to the application must not introduce any incompatibilities
between older and newer partitions. If you need to make changes that will change
the interaction between clients and servers, then you must upgrade using one of
the other two approaches.

In an interoperable upgrade, you modify the application, make a new application
distribution, and replace some old partitions with new partitions. You may update
either client or server partitions only, or a selective mix of both.

In Figure 13-2 selected partitions are simply updated with a new distribution.
Changes made between the older and newer distribution are transparent to iPlanet
UDS application users (the changes do not impact any interaction between clients
and servers). Note also that failover is used, so that service to the clients is not
interrupted.

Figure 13-2 Interoperable Upgrade with Failover

Upgrading Clients
An interoperable upgrade to clients is possible only when you need to change just
the client behavior in your application; you require no changes to the server. For
example, you might simply rearrange the display of data on client screens.

Before Upgrade Upgrade Server Upgrade Complete

Old Clients (CL0)

Old Server (CL0)

Old Clients (CL0) Old Server (CL0)

NewServer (CL0)

New Clients

NewServer (CL0)

Failover

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 463

You can upgrade all client partitions, or only a portion of them. As you upgrade
each client you need only interrupt access for that client; the upgrade has no effect
on the server or other clients.

Upgrading Servers
Many upgrades require changes to server partitions. Server upgrades frequently
require corresponding changes in clients, but this is not always true.

If the server can be unavailable to clients during the upgrade, you can simply stop
your servers at a low-use time, perform the upgrade on the servers, test, and restart
the servers and clients when you are satisfied that the upgrade is functional.

If the server must be available to clients during the upgrade, then you will use the
iPlanet UDS failover feature (shown in Figure 13-2). However, if the server need
not be available at all times, an interoperable upgrade can be performed by briefly
interrupting service to the clients while the newer server partitions replace the
older server partitions.

The iPlanet UDS example programs TimeItV1-4 illustrate runtime compatibility
between different distributions. See Appendix A, “iPlanet UDS Example
Applications” for information about running these programs.

About Compatibility Level Upgrades
In a compatibility level upgrade, you replace an entire application with a completely
new release of the application. All servers and users move to a new release of an
application, whether simultaneously or in phases.

A compatibility level upgrade allows any change to an application. However, all
clients must be upgraded if they must connect to the same (new) server, because
client partitions at one compatibility level cannot connect to servers of another
compatibility level.

You cannot use failover as an upgrade technique for this type of upgrade. Failover
does not work between partitions of different compatibility levels.

Some business circumstances allow you to perform a compatibility level upgrade to
an iPlanet UDS application. And some technical circumstances require you to
perform a compatibility level upgrade.

You can perform a compatibility level upgrade if either of the following conditions
is true:

• You can upgrade all of your end users and servers simultaneously (as in
Figure 13-3).

Choosing an Upgrade Approach

464 iPlanet Unified Development Server • Programming Guide • August 2001

• You can upgrade a distinct subset of your end users and servers
simultaneously and the nature of your application allows clients to access (and
manipulate) data through different servers. In this scenario, you will have
clients and servers from multiple compatibility levels accessing the same
underlying data (as in Figure 13-4). This may be acceptable for some
applications.

While you can make any change to an application during a compatibility level
upgrade, there are some changes that you must not make unless you perform a
compatibility level upgrade. These changes are:

• deletion of a distributed class, a component of a distributed class

• addition of a class component without the creation of a converter

Figure 13-3 shows a simple view of a compatibility level upgrade. One benefit of
incrementing the compatibility level is that you can easily distinguish newer
partitions from older partitions, because the partition names include the
compatibility level.

Figure 13-3 Compatability Level Step Upgrade

About Compatibility Level Rolling Upgrades
If you can separate the clients and servers into isolated groups, then you may be
able to perform a type of rolling upgrade with a new compatibility level.

As shown in Figure 13-4, you simply replace a subset of the older application
partitions, whether client or server partitions, with the newer partitions, and restart
the application.

Before Upgrade Upgrade Clients
all at once

Upgrade Complete

 Clients (CL0) Server (CL0)

Clients (CL1)

Server (CL0)

Server(CL1)

Clients(CL1)

Upgrade Server

Server(CL1)

Clients(CL0)

Server(CL1)

 Clients (CL0)
Server (CL0)

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 465

Figure 13-4 Compatability Level Rolling Upgrade

In this case, all partitions are running the same application, but in effect, during the
“Concurrent Operation” phase, two different releases are running as if they were
two independent applications.

About Class Version Upgrades
In a class version upgrade, old and new application partitions coexist for a period of
time, until the older partitions are completely replaced by newer ones. Class
version upgrades are only required for applications that can never be unavailable,
to assure that a client can always reach a server.

Class version upgrades allow you to perform a rolling upgrade without having to
change the application compatibility level and upgrade all clients and servers
simultaneously. They also allow you to make substantial changes to class
components in your application. However, you must write special methods called
converters and distinguish older classes from newer ones using class versions.

NOTE Class version upgrades are the most technically complex type of
upgrade. Before you attempt a class version upgrade you should
have a thorough understanding of your application, of using
distributed objects, and of the iPlanet UDS system.

Before Upgrade Upgrade Subset
of Clients

Upgrade Complete

 Clients (CL0) Server (CL0)

Clients (CL1)

Server (CL0)

Server(CL1)

Clients(CL1)

Upgrade Server

Server(CL1)

Clients(CL0)

Server(CL1)

 Clients (CL0)
Server (CL0)

Choosing an Upgrade Approach

466 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 13-5 shows a simple class version level upgrade, with only one server
partition. Here the server is upgraded first; however, in an application with many
servers and clients, partitions could be upgraded in any order. During the
“Upgrade Server” phase, the newer server partition is started; then the older server
partition is stopped and the clients failover to the newer server. In the “Upgrade
Clients” phase, client partitions based on different class versions all access the
same, newer server.

Figure 13-5 Class Version Upgrade

The advantage of a class version upgrade is that both of the Upgrade phases can
take as long as necessary (and overlap) because they do not require any
interruption to the application’s availability.

Because you must guarantee availability of the application to clients, you must use
failover when upgrading servers. Failover guarantees that one server partition
replicate is always available to respond to clients. Because replicated partitions
must be at the same compatibility level, all changes related to the upgrade must be
introduced using class versions rather than compatibility levels.

Figure 13-5 does not show one aspect of a class version upgrade: the use of
converters. The next section, “About Converters” on page 467 shows a simple
upgrade along with the converters that are used.

The iPlanet UDS sample program Banking1-2 demonstrates the use of converters
that might be used in a class version upgrade. For information about running
Banking1-2, refer to Appendix A, “iPlanet UDS Example Applications.”

Before Upgrade Upgrade Clients
all at once

Upgrade Complete

 Clients (V0) Server (V0)

Clients (V1) Server(CL1)

Clients(V1)

Upgrade Server

Server(V1)

Clients(V0)

Server(V1)

 Clients (V0)
Server (V0)

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 467

A class version upgrade allows to you to modify various class components, as
shown in the following table.

For more information on how converters work, see “About Converters” below. For
information about writing converters, see “Guidelines for Writing Converters” on
page 485.

About Converters
A class version upgrade requires that you write converters. A converter is a special
method that you write to adjust for the different versions of a class component. A
converter allows older and newer code to communicate by “bridging” the
differences between two versions of a method or an event. Converters are used in
rolling upgrades, to enable code that calls (“expects”) one version of a class
component (by invoking a method or posting an event) to actually use a different
version of the component.

Table 13-1 Changes Allowed During a Class Version Upgrade

Component Allowable Changes Converter Required

Classes Add a new class with the distributed
property.

New method converters, one for each method
New event converters, if new class registers for old
event

Methods Add a new method. New method converter

 Change a method’s signature. New method converter and obsolete method
converter

Materially change a method’s
behavior.

New method converter and obsolete method
converter.

Delete a method. Obsolete method converter

Events Add a “brand new” event. None, IF all partitions which access and implement
the event are upgraded simultaneously

“Replace” an event.
(If you change an event’s parameters,
you essentially create a new event,
but you do not delete the existing
one.)

New event converter and obsolete event converter

Choosing an Upgrade Approach

468 iPlanet Unified Development Server • Programming Guide • August 2001

Figure 13-6 illustrates the use of an obsolete method converter. An obsolete method
converter is used when the caller is older than the callee, and the caller invokes a
method that no longer exists in the callee. This could occur when a server is
updated before a client, as in this example: the UpdateAcct method is changed on
OrderSvc to add a third parameter, transId.

The top of Figure 13-6 shows before the upgrade begins: both the client and
OrderSvc use the UpdateAcct method with only two parameters, acctNumber and
transactionAmt.

In the bottom of Figure 13-6 OrderSvc is upgraded and now expects UpdateAcct to
be invoked with three parameters. Yet, until the client is upgraded, it can continue to
use the older version of the UpdateAcct method.

Figure 13-6 Interoperable Upgrade with Failover

This is true because OrderSvc has an obsolete method converter for UpdateAcct,
specifically so that it can work with older clients. So, when the older client invokes
UpdateAcct with two parameters, OrderSvc automatically invokes the obsolete
method converter, which simply uses a default value for the third parameter, as
shown in the following line from the converter code:

return self.UpdateAcct(acctNumber, transactionAmt, 0);

Setting reasonable default values for new parameters in enhanced methods is a
typical way to code obsolete method converters. In the opposite case, where a
newer caller invokes a newer method on an older server, a new method converter
might strip away parameters that are only used for the newer version, so that the
older server can execute the method.

Version 0Version 0

Client OrderSvc

Version 0 Version 1

UpdateAcct(acctNumber, transactionAmt)

UpdateAcct(acctNumber, transactionAmt)

Before
Upgrade

During
Upgrade

Expects UpdateAcct(acctNumber, transactionAmt, transld)
Executes UpdateAcct obsolete method converter

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 469

Converters have the following benefits:

Converters have the following characteristics:

A method or event can have one or two types of converters: new and obsolete.

A new converter adjusts for a component that has been added to (is new in) the
newer class version. A new converter handles a reference to a new component
when that component does not exist in a previous version of the class, on the
(older) callee. A new converter always executes on the (newer) caller.

Benefit Explanation

Converters are
transparent to end
users

Converters are automatically invoked when different versions
of classes exist within an environment and remote objects
communicate using different versions of a method or event.

Converters allow
multiple versions of a
class to communicate.

By using converters, an environment can contain multiple
versions of a class, yet objects of any version can communicate.

Converters isolate
changes associated
with one version of a
class.

Because all code for a given class version is encapsulated within
converters, it is easy to remove all the code for a given class
version when that version becomes obsolete. You can easily
remove code for older versions.

Characteristic Explanation

Converters are only
necessary for
distributed objects.

Converters are required only to handle distributed references to
objects that are distributed and are different versions. While a
given partition can have only one version of a class, if an object
is distributed, then another partition with a distributed
reference to the object may expect a different version of that
object.

Only methods and
events can have
converters.

You can not write converters on attributes or event handlers.
Converters are unnecessary for event handlers because event
handlers have no distributed access.

Converters run and
reside in the newer
partition.

Converters always reside and are executed in the partition with
the newer version of the class, because converters are only
necessary (and can only be added) when a newer version is
added to an existing environment.

Choosing an Upgrade Approach

470 iPlanet Unified Development Server • Programming Guide • August 2001

An obsolete converter adjusts for a component whose signature has changed, or that
has been deleted, in the newer class version. An obsolete converter handles a
reference from a previous version to a component that is obsolete in the current
version of the class, on the (newer) callee. An obsolete converter always executes
on the (newer) callee.

The following table summarizes the differences between the two types of
converters:

Which converter is required depends upon the changes you make in the newer
class version (see “About Class Version Upgrades” on page 465). Some changes
require two converters. To see examples of new and obsolete converters, refer to
“About Converters” on page 467.

The following sections provide more detail on method converters and event
converters. For information on writing converters, refer to “Updating Classes and
Writing Converters” on page 483.

New Method Converters
New method converters are required when you add a new method. A new method
converter is used when a newer caller (newer class version) attempts to invoke a
new method on an older callee (older class version), in which the method does not
exist.

Obsolete Method Converters
Obsolete method converters are required when you delete a method, or change a
method’s signature. An obsolete method converter is used when an older caller
attempts to invoke a method on a newer callee, in which the method does not exist
(has been obsoleted).

The obsolete method converter can perform the equivalent of the obsolete method,
or perhaps invoke a newer method that essentially replaces the older method.

Type of Converter Newer Class has Caller is in Callee is in

new converter added a component newer class older class

obsolete converter deleted or changed a component older class newer class

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 471

Converters for Modified Methods
You must create both a new and an obsolete method converter if you change a
method in either of the following ways:

• if you change the method signature (if you change, add, or delete a return
value, or change or add any parameter)

• if you materially change the method code, and thereby the effect of executing
the method, such that a caller of the older version of the method would be
disappointed by the results of the new version

If you modify a method, you should create an obsolete method converter for when
older callers invoke the older version of the method against newer callees.
Similarly, you should create a new method converter to handle newer callers
invoking the newer method on an older callee. In either case, the appropriate
converter is automatically invoked.

Event Converters
Event converters allow you to “replace an event” (that is, modify an event by
changing its parameters). However, because events, unlike methods, cannot be
overloaded, you cannot create a second event with the same name (nor should you
delete the older event). Instead, you must create a newer event, with a different
name and the new parameters. Then you define both a new event converter and an
obsolete event converter. Essentially, you are adding a new event and obsoleting
an old event.

New event converters take the parameters of the new event and return an instance
of the old event.

Obsolete event converters take the parameters of the old event and return an
instance of the new event.

Event converters allow iPlanet UDS to assure that events are posted and registered
for as expected, regardless of the class version for the poster or registrant. Thus,
iPlanet UDS assures that both of the following are done automatically:

• Whenever a newer event is posted, the older event is posted, so that older
registrants work correctly.

• Whenever a newer event is registered for, the older event is registered for, so
that older posters work correctly.

Both types of event converters are associated with the class on which the event is
defined, regardless of the object that posts or registers the event.

Choosing an Upgrade Approach

472 iPlanet Unified Development Server • Programming Guide • August 2001

Completion and exception events do not require event converters since they are
posted automatically by the system in response to a method invocation.

The Banking1-2 Example
The iPlanet UDS sample program Banking1-2 demonstrates a very simple class
version upgrade. This section describes the changes that are incorporated in the
Banking application, and shows the converters that are used during the upgrade.
(The Banking application is a generic distributed iPlanet UDS application upon
which several other iPlanet UDS sample applications are based.)

Before the upgrade, a typical client and server interaction in the Banking
application is shown in Figure 13-7. Assume for the purposes of this example,
however, that there are many clients, enough so that it would be difficult to
upgrade all of them simultaneously.

Figure 13-7 Before Upgrade

In this example, the client uses a window to make deposits and withdrawals from
various accounts. Before making changes, all that is required for a single
transaction is the account number and an amount. A negative amount is a
withdrawal and reduces the balance. The BankSvc server performs the actual
update of the account and responds with the new balance for the given account.

For the purposes of this example, we will make only one change. We will change
the method signature for the UpdateAcct method to add a third parameter, transId.
The UpdateAcct method is defined in the class BankService. This change requires
us to write both a new method converter and an obsolete method converter, since
we want both the following to be possible:

• new clients to access old servers (requiring the new method converter)

• old clients to access new servers (requiring the obsolete method converter)

Version 0Version 0

Client BankSvc

UpdateAcct(acctNumber, transactionAmt)

Choosing an Upgrade Approach

Chapter 13 Upgrading Deployed Applications 473

➤ To update the Banking application

1. Change the version number for the BankService class to 1 in the Class
Workshop.

2. Create the obsolete method converter for the UpdateAcct method.

3. Edit the UpdateAcct method to add the new parameter using the Method
Workshop.

4. Create and code the new method converter for the UpdateAcct method.

This completes the changes we make to the BankSvc server. Now we update
any method in which the UpdateAcct method is invoked.

5. Update the method Display in the TransactionWindow class to use the third
parameter, transId.

The obsolete method converter is used in this example when an old client invokes
the older version of UpdateAcct on a newer server. The code for the new method
converter for UpdateAcct follows:

return self.UpdateAcct(acctNumber, transactionAmt, 0);

In this case the client invokes UpdateAcct using two parameters. The converter
simply appends a reasonable value for the third parameter and invokes the newer
version of the UpdateAcct method. This is a typical use of an obsolete converter.

The new method converter is used in this example when a new client invokes the
newer version of UpdateAcct on an older server. The code for the new method
converter for UpdateAcct follows:

return self.UpdateAcct(acctNumber, transactionAmt);

While the client has invoked UpdateAcct using three parameters, the converter
simply strips off the third parameter and invokes the deleted version of the
UpdateAcct method. This is a typical use of a new converter.

Having written the converters, we can now upgrade the client and servers.

CAUTION You must create obsolete method converters before changing or
deleting methods. You cannot create a valid obsolete converter
after having done changed a method signature or deleted the
method.

You can add the code for this converter later, but you must
create the obsolete converter at this point in the sequence
(before updating the method).

Choosing an Upgrade Approach

474 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To upgrade the Banking application

1. Distribute new client software to the clients. During this step the new converter
is used because some clients are newer than the server.

2. Upgrade the server. At this point, the obsolete converter is used only when
older clients contact the server; clients that have been upgraded are “in sync”
with the server.

Now we show two different scenarios that might occur during a rolling upgrade of
this application. Neither scenario represents a problem because we have written
the converters that are used automatically in either of the following cases:

• the client is upgraded and the server is not

• the server is upgraded and the client is not

Ultimately, of course, all servers and all clients are upgraded, at which point the
converters are no longer used. However, until all newer partitions are installed,
there will be a mix of old and new ones. In fact, both scenarios below might occur.

Figure 13-8 shows what happens if an new client should invoke UpdateAcct on
server that has not been upgraded. The client invokes a method (UpdateAcct with
three parameters) that does not exist on the server. In this case, the client
automatically executes the new method converter for that method, since the new
method converter exists only on the client.

Figure 13-8 Caller is Newer: New Converter Executes Caller

Figure 13-9 shows the opposite situation: what happens if an old client should
invoke UpdateAcct on server that has been upgraded. The client has invoked a
method (UpdateAcct with two parameters) that is now obsolete on the server, so
the server automatically executes the obsolete method converter for that method.
The client is unaffected by the fact that the server is changed.

Version 0Version 0
Client BankSvc

UpdateAcct(acctNumber, transactionAmt, transld)

New method converter for UpdateAcct
(automatically executes)

Performing an Interoperable Upgrade

Chapter 13 Upgrading Deployed Applications 475

Figure 13-9 Caller is Older: Obsolete Converter Executes on Callee

In most upgrades, ultimately all client and server partitions are upgraded. When
no older partitions are left, the converters are simply never invoked. They can be
modified to delete references to the older class versions, or simply deleted
altogether.

Performing an Interoperable Upgrade
This section describes how to perform an interoperable upgrade. To determine
whether this upgrade procedure will meet your needs, refer to “About
Interoperable Upgrades” on page 462 and to “Changes Allowed Between
Upgrades” on page 459. The table in the latter section lists changes that can be
made in an interoperable upgrade.

In iPlanet UDS Release 2, this same upgrade approach is described as “Runtime
Compatibility.”

Summary of Upgrade Steps
The upgrade steps for an interoperable upgrade simply entail making the desired
changes to the application while ensuring interoperability. Then, as for any
application, you make a new application distribution and install it on selected
nodes. The application developer’s primary responsibility during this upgrade is to
assure that all changes contained in the new distribution preserve interoperability.

CAUTION When performing an interoperable upgrade, it is your responsibility
to ensure that the newer partitions are interoperable with the older
partitions. If they are not interoperable, the system may function
incorrectly and in unpredictable ways.

Version 1Version 0
Client BankSvc

UpdateAcct(acctNumber, transactionAmt)

Obsolete method converter for UpdateAcct
(automatically executes)

Performing an Interoperable Upgrade

476 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To upgrade a deployed application using a new application distribution

1. Make allowable changes to the application.

You may change a single class only, or you may change several classes in
several projects. See the next section for more information on changes that you
can make to the class components and application logic.

2. Make a new application distribution (see “Making the Distribution” on
page 477).

3. Install new partitions on selected clients and servers.

Changes Allowed in an Interoperable Upgrade
In partitions that are deployed, class definitions are fixed. Therefore, you cannot
change a project in a newer partition in such a way that it will conflict with the
same project on an older partition.

Using Distributed Object References
Communication between partitions may fail or result in unpredictable behavior if
any class component is unknown or changed so that it becomes incompatible with
its definition in another partition. If you make many changes to an application, you
should keep track of which classes are used by which partitions.

To ensure that there is no communication between the new partition and old
partition involving anything unknown to the old partition, follow these basic rules:

• Do not post a new event on an object in the old partition.

• Do not invoke a new method on an object in the old partition.

• Do not get or set a new attribute on an object in the old partition.

• When you are passing a parameter in a method to an older partition, the class
of the parameter (and all the classes of all its attributes, their attributes, and so
on) must exist in the old partition. So, even though you can add new classes to
the new partition, you cannot pass objects of new classes to the old partition.

NOTE The only visible difference between older and newer partitions is the
date of the distribution. Every partition displays its build date when
it starts. There is no other identifier that distinguishes older
partitions from newer partitions, other than the dates on the
distribution files.

Performing an Interoperable Upgrade

Chapter 13 Upgrading Deployed Applications 477

Adding New Attributes to Objects that are not Distributed
You can add new attributes to a class without the distributed property in the new
partition when the class defines an object that is passed to or from the old partition.
However, when iPlanet UDS passes the object to the old partition, it strips off the
new attributes. This ensures that the object looks the way the old partition expects
it to. Then, if the object is passed back to the new partition (as a return value, event
parameter, or output parameter), iPlanet UDS sets the new attributes to their
default values (the values set for them in the Init method for the object). Thus, on
return from the old partition, the new attributes will always have their default
values. You must take this into account when you write your code.

Updating Window Classes
If a class is used only in the new partition, you can change that class freely. A good
example is a window class. Because a window class is typically used only within
the client partition, you can change the window class, even change method
parameters, attribute types, and so on, without causing compatibility problems
between partitions.

However, you must be very careful when you do this. As stated earlier, when you
pass an object to an old partition, the old partition must have the correct definition
not only for the class of that object, but for all its attributes, all their attributes, and
so on. Communication between the partitions will fail if any class is unknown or
changed. And it may be very difficult for you to keep track of which classes are
used by which partitions.

Making the Distribution
When you make a new application distribution, you make it for all application
partitions; you cannot make a distribution for selected partitions. Then you install a
subset of the new partitions on the nodes that you wish to upgrade, and upgrade
the other nodes later.

To make a new distribution that is interoperable with a previous distribution, you
can make the new distribution from either:

• the original repository (where you made the old distribution).

If you make the distribution from the original repository, you can make a
partial distribution, which requires slightly less time.

• a different repository than the original one.

If you use a different repository, then you must make a full distribution.

Using Compatibility Levels to Upgrade

478 iPlanet Unified Development Server • Programming Guide • August 2001

If you make the new distribution from a different repository, you must first export
the projects from the original repository with their IDs. Note that this is not the
default way to export projects. To export the projects with their IDs, you must use
the ExportPlan or ExportWorkspace commands in Fscript, with the ids option.
Then you can safely transfer the projects from one repository to another, and make
the distribution from the new repository.

If you move the projects to a new repository, you should not make parallel changes
to both repositories. It is difficult to keep your changes synchronized, and you
cannot merge the changes.

➤ To make the distribution for the updated, interoperable application

1. Use the repository where the original distribution was made, or make sure the
projects were exported from that repository with their IDs.

2. In the Partition Workshop, use the Make Distribution command. See A Guide to
the iPlanet UDS Workshops for information on this command.

You may select either a full or partial make, subject to the normal requirements for
making distributions (for more information, see A Guide to the iPlanet UDS
Workshops).

Using Compatibility Levels to Upgrade
A compatibility level upgrade is required when you must make changes to an
application that are not compatible with the current release of the application. A
compatibility level upgrade always requires an increase in the application’s
compatibility level (as from CL0 to CL1). You are essentially creating a new
application. To determine whether this is the upgrade procedure that meets your
requirements, refer to “Changes Allowed Between Upgrades” on page 459.

Summary of Upgrade Steps
The steps for performing a compatibility level upgrade are the same steps for
writing and installing any iPlanet UDS application. They are very briefly
summarized here. For more detailed instructions, refer to A Guide to the iPlanet
UDS Workshops.

Using Compatibility Levels to Upgrade

Chapter 13 Upgrading Deployed Applications 479

➤ To upgrade a deployed application using a new application distribution

1. Modify the application. All changes are allowable.

2. Increment the compatibility level. Use the File > Properties command after
opening the main project in the Project Workshop.

Refer to A Guide to the iPlanet UDS Workshops for information on this command

3. Make a new application distribution.

4. Install new partitions on desired clients and servers.

You must update every client that you wish to use the new level of the
application; a client partition at an older (lower) compatibility level cannot
access a server at a higher compatibility level.

Using New Compatibility Levels of Libraries
and Shared Service Objects
Compatibility levels are also associated with iPlanet UDS libraries and applications
that contain service objects that are shared by multiple iPlanet UDS applications.
The compatibility levels of an application, its supplier libraries, and its reference
partitions need not be the same. However, when a distribution is made, iPlanet
UDS notes the compatibility level of each shared resource used by an application
so that it can subsequently enforce which applications may communicate.

Libraries and shared applications may be upgraded on different schedules than
your application. As long as your application has access to the shared resources
that were available when your application distribution was made, you need not
automatically upgrade at the same time that the shared resources upgrade.

However, if you want your application to take advantage of new features and
changes made to these shared resources, then you must make a new distribution of
your application, so that iPlanet UDS will update the compatibility levels of the
shared resources.

Using Compatibility Levels to Upgrade

480 iPlanet Unified Development Server • Programming Guide • August 2001

Note that the compatibility level of your application need not necessarily
increment. Rather, the types of changes you make determine whether you must
change the compatibility level of your application:

• You need not raise the compatibility level of your application if you make no
changes or the changes you make are interoperable (shown in the third column
of the table in “Changes Allowed Between Upgrades” on page 459).

• You need not raise the compatibility level of your application if you use class
versions and converters.

However, if you do not meet these conditions, then you must raise the
compatibility level for your application.

➤ To use a new compatibility level of a library

1. Import the library into your development repository. (See A Guide to the iPlanet
UDS Workshops for more information.)

The new compatibility level of the library will overwrite the previous level.

2. Modify your application as necessary or desired to use the new library.

3. Make a new distribution for your application using the Partition Workshop.

4. Deploy the new release of the application.

➤ To use a new compatibility level of a service object

1. Obtain or make the new distribution for the application that contains the
service object.

2. Repartition your application to use the newer service object using the Partition
Workshop.

3. Make a new distribution for your application.

4. Deploy the new release of the application.

Using Class Versions and Converters for a Rolling Upgrade

Chapter 13 Upgrading Deployed Applications 481

Using Class Versions and Converters for a
Rolling Upgrade

This section describes how to perform a class version upgrade. Class version
upgrades are appropriate only for applications that have extremely critical
availability requirements (known as “7 x 24”). Your application may meet this
criteria in whole or in part: an application might have some services that must be
available without fail as well as services that can temporarily interrupt service. The
procedure in this section should be used only when upgrading servers of the
former type.

This type of upgrade allows you to make substantive changes to a deployed
application and also to install newer partitions while the application is running. It
does not require you to change the compatibility level of your application, but you
must use class versions and write converters to guarantee interoperability between
older and newer partitions. For more information regarding whether this is the
upgrade procedure you are interested in, refer to “Changes Allowed Between
Upgrades” on page 459.

To see a list of which changes are allowed during a class version upgrade, refer to
“About Class Version Upgrades” on page 465.

This upgrade procedure works with both standard and compiled partitions.

Planning a Class Version Upgrade
Planning is a critical step for a class version upgrade. You should identify exactly
which changes you will make to the application, and you should plan when you
will upgrade which partitions, and in what order.

It is very helpful to identify which partitions reference which projects (and
therefore, which classes). When used for the current application, the Fscript
command ShowApp lists all projects referenced by that partition.

By using this command, you can determine whether you can update all partitions
that reference a class that you need to modify (in which case you need not use
converters), or whether you cannot update all partitions and so will need to write
converters.

Using Class Versions and Converters for a Rolling Upgrade

482 iPlanet Unified Development Server • Programming Guide • August 2001

Special Requirements for High Availability Servers
If your application has high availability servers, you must meet the following
requirements, which are expected and typical for these types of applications:

Two locations for old and new application installations A class version
upgrade requires at least two server nodes, each with its own FORTE_ROOT
directory structure. This allows you to keep both old and new copies of the
application, because image repositories and executables for a deployed application
are stored at the same default location relative to each FORTE_ROOT.

At least two replicates of high-availability servers Each high availability server
partition that is to be upgraded must be installed on at least two nodes in the
current deployment. This allows at least one server to be available to serve clients,
while shutting down one or more other server processes for upgrade.

Adequate failure recovery The application must be configured to tolerate
runtime failures, and handle failure recovery. This allows the shut down of any
server partition without application failure during the upgrade procedure. This
can be achieved, for example, by doing the following:

• specifying server dialog duration as “Message” for transparent failover

• coding clients to handle runtime exceptions in case of failover

Summary of Upgrade Steps
The following steps describe the additional application development steps
required to upgrade an application using converters and class versions. Each step
is described later in this chapter.

➤ To upgrade a deployed application, using class versions and converters

Perform Steps 1 to 5 in the iPlanet UDS Workshops. Steps 1 to 3 can be performed
in any order.

1. Make allowable changes to class components and write corresponding
converters (see “Updating Classes and Writing Converters” on page 483).

2. Increment the version number of each class that you modify (see “Using Class
Version Numbers” on page 492).

3. Test converters (see “Testing Converters” on page 493).

4. Make an application distribution (see “Making a Distribution” on page 493).

Using Class Versions and Converters for a Rolling Upgrade

Chapter 13 Upgrading Deployed Applications 483

Perform the following step in the deployment environment:

5. Update client and server nodes with the new partitions (see “Installing and
Starting Updated Partitions” on page 493).

Steps 4 and 5 are largely the same as for any iPlanet UDS application. For further
information on these steps, see A Guide to the iPlanet UDS Workshops and iPlanet
UDS System Management Guide.

Updating Classes and Writing Converters
A class version upgrade allows you to modify class definitions significantly. See
“About Class Version Upgrades” on page 465 for list of which converters are
required by which changes.

As you make changes to the classes, you should keep track of which changes
require converters, so that you create and define all necessary converters. You must
also update all references to the changed component. That is, if you change a
method signature, you should edit all other methods in which that method is
invoked, so that each invocation uses the new signature. Finally, you should raise
the class version number for each class in which you have made changes.

Viewing Converters
By default, converters do not display in the workshops. You can request that
converters be displayed for a given class in the Class Workshop.

➤ To see all converters defined for a class

1. In the Class Workshop for a class, select the command View > Converters.
Using this command toggles the display of all converters for a given class.

Using Class Versions and Converters for a Rolling Upgrade

484 iPlanet Unified Development Server • Programming Guide • August 2001

The drop list in the Class Workshop also affects whether converters are shown.
If either “All Class Elements” or “Methods” is selected, converters are
displayed. Note that event converters do not appear when “Events” is selected,
because event converters are actually methods. Converters appear as in the
Class Workshop below.

➤ To see the text of an individual converter

1. Enter the Class Workshop.

2. Toggle on View > Converters.

3. Double click on the converter.

or

1. Enter the Class Workshop for the class that has converter methods. Select the
method or event for which you wish to see converters.

2. Select Element > Converter.

Using Class Versions and Converters for a Rolling Upgrade

Chapter 13 Upgrading Deployed Applications 485

3. If you have converters defined for the current method or event, you will see the
options:

Choose either option depending on which converter you want to see. If you
have no converters defined, the slide off menu shows “Create” instead of
“Open.”

Guidelines for Writing Converters
You write the converters at the same time that you update the class by modifying
its components. Which converters you must write, and their content, depend on
the changes you make to the class. Note that you should create some converters
before altering a method or event (see below for more information). For a review of
which changes require which converters, see the table in “About Class Version
Upgrades” on page 465.

Since all converters are methods, you use the Method Workshop to write a
converter. The following information is useful when writing any converter:

• You always define converters in the newer version of the class.

• The name and signature of every converter are automatically generated. They
can only be changed by changing the corresponding method or event. The
converter code must be provided by the developer.

• You must define an obsolete converter before you either change a method signature or
delete a method.

If you do not define an obsolete converter before you either change a method
signature or delete a method, then a valid converter signature cannot be
generated. (Changing a method’s signature is the same as adding a new
method (with the newer signature) and deleting the method with the former
signature.)

Using Class Versions and Converters for a Rolling Upgrade

486 iPlanet Unified Development Server • Programming Guide • August 2001

• Before you delete a class you must create an obsolete method converter for
every method on the class. The deletion of a class is treated as a class in which
all methods have been deleted.

• You can use case statements in converters. If the converter converts between
multiple versions, case statements help to isolate the logic that applies to each
class version.The following code fragment from a new converter anticipates
the invocation of the method from an older version caller (version 0 is the
oldest possible version):

• The new classversion TOOL key word shows the class version of the partner
object (that is, the object that invoked the new or obsolete method associated
with the converter). Both new and obsolete converters reference the older class
version.

For example, with two versions of a class (0 and 1), a new converter, which
executes on the newer caller, would refer to the called object, which is class
version 0. An obsolete converter, which executes on the newer callee, would
refer to the calling object, which is classversion 0. Referring to Figure 13-8 on
page 474 and Figure 13-9 on page 475 may help you see this.

• A converter can invoke any method associated with the current (newest)
version of the class.

• A converter cannot directly invoke other converters, but may cause other
converters to be invoked as a result of referencing a component for which a
converter exists.

• If a subclass inherits a class component, it also inherits any converters on that
component.

• You write converters for overloaded methods just as for any method.

• You cannot override a converter that has been inherited by a subclass.
However, if a subclass overrides an inherited method, you can write a
converter for the overriding method.

method new NewMethod(param1 : integer)
begin
case classversion is
 0 do
 // take action equivalent to this method when calling
 // an older version of the object
end case;

Using Class Versions and Converters for a Rolling Upgrade

Chapter 13 Upgrading Deployed Applications 487

Writing Method Converters
When you write a method converter, you write code that will handle a different
version of the class invoking the method (that is, the version of the remote method
is different from the version of the local method). You begin to write converters
using the Class Workshop.

➤ To create a method converter

1. In the Class Workshop, highlight the method requiring a converter. Select
Element > Converter. If the current method has no converters defined, you will
see the options:

2. After you choose the appropriate type of converter, the Method Workshop
opens. The name and parameters of the converter are automatically derived;
you cannot change them.

3. Write the converter code using TOOL.

When you write a new method converter you can code it in terms of a similar
previous method, code it to raise an exception, or do nothing. A new converter
always runs on the newer caller, and therefore each reference to “self” in the new
converter executes as a separate call to a distributed object reference on the older
callee.

A new converter can only reference attributes and methods that exist on the older
object, and other new methods for which there is a new method converter. Any
attribute referenced in the converter is a remote attribute access (which therefore
executes on a copy of any non-anchored object attribute, following the normal rules
of remote attribute access). References to attributes not in the old version will cause
unpredictable results at runtime.

Using Class Versions and Converters for a Rolling Upgrade

488 iPlanet Unified Development Server • Programming Guide • August 2001

If the distributed call requiring a new method converter execution is invoked on a
remote message dialog duration service, there are additional implementation
considerations, particularly if the service is load balanced. While these
considerations are strictly due to normal iPlanet UDS distributed processing, in the
context of new converter execution the remote calls are implicitly invoked, and
may require additional planning.

For more information about Message dialog duration, refer to “Assigning a Dialog
Duration to Service Objects” on page 402.

Each reference to “self” in the new converter method (either explicit or implicit),
which accesses a method or an attribute of the service, is invoked using a remote
reference to that service. For Message dialog duration calls (which operate only for
the extent of a single method call or attribute access), each subsequent reference
may in fact resolve to a different instance of the service, transparent to the client.

If the service is load balanced, then each reference may resolve (that is, be routed)
to a different replicate of the load balanced set. Or (if not replicated for load
balancing) potentially, a failover could occur between distinct references to the
service, which the client would not detect.

The implications of these example situations are that what is intended to be a single
unit of work occurring on a single remote server instance may possibly in fact
result in calls to more than one server instance.

Also, you should anticipate behavior when invoking an explicit transaction block
within a new converter method that invokes remote references. In particular, note
that transactions do not propagate to a remote Message dialog duration service (see
“Dialog Duration and Error Handling” on page 404).

Finally, with respect to state information in the remote partition, you should take
care when directly accessing attributes on the remote server from the new
converter. In particular, remember that attribute references which are not
distributed or anchored will operate on a copy of the attribute.

These issues are generally not a concern for other dialog durations, (whether load
balanced or not), because a unit of work contained within a transaction is always
processed against exactly one server instance, and the client should detect any
failure for the duration of that processing.

An obsolete method converter always runs on the newer callee, and therefore
executes on the actual object (instead of a distributed object reference to the object).
An obsolete method converter can reference any attribute or method that exists in
the current (newer) version of the class. References to attributes not in the newer
version will cause unpredictable results at runtime.

To see examples of method converters, see “The Banking1-2 Example” on page 472.

Using Class Versions and Converters for a Rolling Upgrade

Chapter 13 Upgrading Deployed Applications 489

Writing Event Converters
You always write event converters in pairs. You write a new event converter on the
new event and an obsolete event converter on the old event. Remember that event
converters are actually methods.

The following guidelines apply when writing event converters.

• All attributes that are referenced in an event converter must exist in the both
class versions.

• Every event converter should be able to deal with the case of zero/NIL
parameter values. Either event converter may be invoked when the values of
all of the parameters are zero. This is normal and occurs when the event is
being registered for. In this case, the converter should simply return the
replacement event with zeros or NIL as the parameter values; the values are
simply ignored.

• Raising an exception in an event converter is not recommended; event
converters can be invoked outside of normal application flow in which case an
exception has no effect.

• Event converters should generally invoke read-only operations, although
iPlanet UDS does not enforce this.

Given that the order of partition upgrades is not deterministic (that is, a group
of client/server partitions might be upgraded in any order), it can be difficult
for an iPlanet UDS application developer to anticipate when either a new or an
obsolete event converter will be executed. Event converter execution can occur
upon invocation of an event posting/registration, to or from a new or old
partition; as such, you would normally not want updates to occur
indeterminately against any set of critical data.

• At a minimum, you should always code event converters to explicitly return
the exact event which is complimentary in its event converter pair.

• All application code which runs in the same partition with the new class
version should not reference the old event; it should only post and register for
the new event directly. (Only a converter should ever actually reference an
obsoleted event).

CAUTION In an event converter, references to attributes not in both class
versions can cause unpredictable results at runtime.

Using Class Versions and Converters for a Rolling Upgrade

490 iPlanet Unified Development Server • Programming Guide • August 2001

• When you create a new/obsolete event converter pair, you should change all
references in your (new) code to access the new event (that is, all classes,
projects, and so on which comprise the application). Otherwise, runtime
problems might occur if a remote (distributed) invocation causes a converter to
execute, but the (new) code still references the “obsoleted” event: a different
event may get posted than is intended to be posted/registered for.

➤ To replace an event and write the associated event converters

1. Create an obsolete event converter for the event to be replaced. Code the
converter method to return the newer event (with the newer parameters).

The parameters for an obsolete event converter are automatically the same as
the parameters for the (older) event. The obsolete event converter method
should return an object of class eventhandle, specifically, the newer event.

2. Create the new event to replace the old event. The new event will have a
different name and a different set of parameters.

3. Create a new event converter for the new event. Code this converter method to
return an object of class eventhandle, specifically, the old event.

Assume that a bug tracking application defines an event called BugAddedOld, that
has one parameter, BugNo. Now that the company has grown, bugs must be
associated with different projects, so we want to define a new event
BugAddedNew to add one parameter called Proj.

➤ To replace the event BugAddedOld with a new event BugAddedNew

1. Create an obsolete converter for the old event: BugAddedOld. It should return
the new event, using the new event’s parameters, and substituting reasonable
default values (as in 00 for an undefined project).

2. Define the new event as BugAddedNew (bugNo : integer, proj : string)

method obsolete conv.BugAddedOld(bugNo: integer) : eventhandle
return BugAddedNew(bugNo, NIL);

Using Class Versions and Converters for a Rolling Upgrade

Chapter 13 Upgrading Deployed Applications 491

3. Create a new event converter for the new event. It should return the old event,
using the old event’s parameters, stripping away parameters that only apply to
the newer event.

Modifying Converters
Whenever you increment a class version you will either create new converters or
modify existing converters. The name and signature for a converter are
automatically generated (and updated if you change the underlying method). You
write and modify a converter’s code just as you do with any other method.

To modify a converter you use the Class Workshop. After you double-click on the
converter name the Method Workshop opens with the converter code displayed
for you to edit.

If you increment the version for a class, you need not necessarily edit every
converter to add a new block in the case statement for that version; you need only
edit the converters for which there is a difference in the classes, as shown in the
table in “Changes Allowed Between Upgrades” on page 459.

Deleting Converters
You can delete converters when they are no longer necessary. You should not
delete a converter until you are sure that all versions referenced by the converter
are obsolete and not referenced by any partition in an application.

Since converters are simply methods, you use the Class Workshop to select the
converter you want to delete, and use the Element > Delete command to delete it.
Because converters are separate methods that always include “converter” in their
name, it is easy to identify and delete them.

Deleting a method also deletes its new method converter automatically. Any
associated obsolete method converter is not deleted.

Obsolete converters must be explicitly deleted; they are not deleted when you
delete the associated class component.

method new conv.BugAddedNew(bugNo: integer, proj : string) : eventhandle
return BugAddedOld(bugNo);

Using Class Versions and Converters for a Rolling Upgrade

492 iPlanet Unified Development Server • Programming Guide • August 2001

Using Class Version Numbers
A version number is a runtime property of a single class. A version is zero (0) by
default; note that the class versions for applications running on iPlanet UDS
Release 2 is always 0. You can set the version using the Class Properties dialog. A
class can have a different version level from its parent class and does not inherit the
version from its parent class.

Some general guidelines for using class version numbers follow:

• You can set the class version number for any class.

• While you can have any number of versions of a class, it is easier to manage if
you keep the number of versions to a minimum, since converters are
potentially required between versions.

• Class version numbers are independent of one another. If you increment one
class version from 1 to 2, you need not increment any other class. However, it
may be helpful to use the same new version number for changes that are
related or made at the same time.

• Once you have deployed a class with a particular version, you should not
decrement the version for that class. Subsequent changes to that class should
be marked with a higher version number.

You can change the version number at any time while updating a class.

➤ To set a class version number

1. Open the Class Workshop for the class that you intend to modify.

2. Select the File > Properties command. You will see the Class Properties dialog,
as shown below. Go to the Runtime tab page.

3. Increment the version number for the class.

Using Class Versions and Converters for a Rolling Upgrade

Chapter 13 Upgrading Deployed Applications 493

Testing Converters
You should keep a copy of the distribution that is currently deployed to use to test
converters. One way to test obsolete converters is to set up a small, parallel system
in which you can run multiple distributions of an application and work through
the stages of an upgrade. In fact, a test system allows you to more thoroughly test
all converters by repeatedly staging various test upgrade scenarios.

Making a Distribution
You will make one or more application distributions in order to test your changes
and converters, and you will make a final distribution to use for the actual
upgrade. You should make each distribution from the same development
repository, the same workspace, and into the same target environment as the
previous application. (It is possible to use a different repository if you follow the
guidelines in “Making the Distribution” on page 477.)

Installing and Starting Updated Partitions
If you can shut down a partition—as you usually can with client partitions—then
you can simply replace the older partition with the newer partition. However, if
you cannot shut down a partition, as may be true for server partitions, especially
high availability servers, then you must install the new distribution on a different
(logical) node than the existing, currently running server partition.

As with any application upgrade, you may want to save the distribution and/or
installed distribution (userapp directories) before upgrading, so that the upgrade
can be backed out if necessary.

CAUTION Never replace an older installed application file executable or image
repository with a newer file while the application is running on any
individual node. This is an operating system restriction, and results
are unpredictable if you attempt to do so.

When you install an application on a node, you install all partitions
for that application and that node at the same time; similarly, to
upgrade an application on a node, you upgrade all application
partitions on the node. Thus, you should shut down all partitions on
the node for an application before installing the new partitions.

Using Class Versions and Converters for a Rolling Upgrade

494 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To upgrade a client partition

1. If necessary, shut down the client partition(s) of the application on the node.

2. Install the new client partition.

3. Restart the client partition(s).

You can follow the previous procedure for any server that does not have high
availability requirements.

➤ To upgrade a high availability server partition

1. If the partition is currently running, shut down the partition and process. Use
the partition agent in Escript or Econsole; locate the agent using the
FindSubAgent command, invoked from the application agent level.

(A shutdown may not be necessary—even if the partition has high availability
requirements—if multiple replicates are currently running to service clients.)

2. In Escript, invoke the InstallApp command on the Node agent.

This command installs all partitions on this node for the new application
version.

3. In Escript, and at the partition agent for each partition on the node, invoke the
start-up command. You can use any start-up method when you perform a class
version upgrade. If you use autostart, however, only one replicate is started.

To see what steps will occur at each install, you can view the InstallationSteps
instrument.

There is no specific order in which you should upgrade partitions, whether client
or server. This is because all applications and their business contexts are unique,
especially complex applications. It is also true because the relationships between
partitions are complex, and many server partitions in fact act as both client and
server, and may have circular references among servers. However, there are two
guidelines that you should understand:

CAUTION Do not shut down a high availability server partition if you cannot
guarantee that at least one server partition is running that will be used for
failover. You must make sure that an adequate number of replicate
server partitions are running to meet your failover and load
balancing requirements.

Using Class Versions and Converters for a Rolling Upgrade

Chapter 13 Upgrading Deployed Applications 495

• If you can assure or require that certain partitions are upgraded before others,
you may be able to simplify the upgrade process somewhat. If you have a good
understanding of your application, you might be able to dictate an optimal
order for upgrading partitions, and thereby reduce the number of converters
that are required. For example, if you know that all servers will be upgraded
first and that some can be upgraded simultaneously, you may be able to omit
writing some new method converters. In this case, the order of upgrade should
not be deviated from.

• If you want to guarantee interoperability between partitions no matter what
order partitions are upgraded, then you should write all converters that might
possibly be invoked. This approach may require slightly more coding, but also
allows more fault tolerance and flexibility in the order of upgrade.

Using Failover
It is assumed that you will use the failover feature when performing a class version
rolling upgrade, because this type of upgrade is intended for applications having
high availability requirements.

There are no special requirements when using failover. The only difference from
normal failover is that the server replicates are not identical replicates. Clients will
failover from an older server partition to a newer server partition.

Using Load Balancing
You can use load balancing while performing a class version upgrade. If you use
load balancing for a server partition that exists both in old and new form, then you
must use failover to provide at least two router partitions: one router to load
balance requests for the older server partitions and one to balance requests for the
newer server partitions.

A router partition, once started for a server partition of a given distribution, only
balances requests for server partitions of the same distribution as the original
partition.

The following procedure assumes that the application is running, and the router
for the older server and its replicates is already running.

➤ To use load balancing for a server having multiple versions

1. Start the newer version of the server, and as many replicates as you desire.

2. Manually start a router partition; it will automatically load balance requests for
the newer server.

Using Class Versions and Converters for a Rolling Upgrade

496 iPlanet Unified Development Server • Programming Guide • August 2001

Recording Information About the Update
It is highly recommended that you record the changes you make during a class
version upgrade. While converters are designed to ease the rolling upgrade
process, they do add some additional maintenance burden.

If you make no notes on your own, iPlanet UDS tells you the compatibility level of
a distribution and date it was made. It is not possible to determine which version of
a class is contained in a given partition from a distribution. So you should record
the following information whenever you update an application:

• for each partition, which classes changed, and the version number of each class

• which nodes installed the new partitions

To see what projects are used by an individual partition, you can use the Fscript
command ShowApp. Note that this same information is not available through the
Partition Workshop.

Removing Versions of Classes
When you know that a version of a class is no longer needed, because there is no
remaining client or server partition of that version, then you can remove all
references to that class version. This is easy to do; simply edit the converters to
remove the sections which refer to those class versions.

497

Chapter 14

TOOL Reflection Classes

This chapter introduces the TOOL classes that implement reflection. A running
program can use reflection to examine or to change objects that are running in a
local or remote partition.

A detailed description of each reflection class is provided in online help.

The Power of Reflection
The iPlanet UDS runtime provides a set of reflection classes that you can use to get
information about user-defined and system classes and interfaces at runtime. You
can also get this information for instances of a class, whether the object is local or
distributed. In addition to getting information about a class or interface, you can
use reflection classes to retrieve current attribute values, to set new attribute
values, or to invoke methods on an object.

Because reflection allows you to examine classes, interfaces, and their members,
you can use it to develop a variety of tools and other software:

• Development tools like debuggers, specialized class or object hierarchy
browsers, testing tools, profiling tools, structural analysis tools, trace facilities,
and so on.

• Framework developers can use reflection to build components from
user-defined classes without prior knowledge of their structure.

• Code that implements persistence can use reflection to determine at runtime
the structure of objects to be stored.

The Power of Reflection

498 iPlanet Unified Development Server • Programming Guide • August 2001

• External systems that request a service whose particulars are not known until
runtime can use reflection to determine which implementation of an interface
can handle the requested operation.

• System management tools can use reflection to get information about objects at
runtime and to test the behavior of these objects (by changing attribute values
or invoking methods) without having access to the source code.

This chapter introduces the TOOL reflection classes that you use to develop tools
like the ones described above. Each reflection class is described in detail in the
online help.

This chapter includes small code samples that illustrate the use of the TOOL
reflection API. For more extensive examples, see “Reflection Examples” on
page 510.

Learning About Reflection
The TOOL reflection API is closely modeled on the Java reflection API. Therefore,
literature describing the use of the Java APIs can help you learn how to use the
TOOL reflection classes. For Javasoft’s documentation about reflection, see
http://java.sun.com/products/jdk/1.3/docs/guide/reflection/index.html

Restrictions
The use of reflection classes is limited in the following ways:

• You cannot use reflection classes to access information about parameter names
or about the events, virtual attributes, exceptions, properties, or constants
defined for a class or method.

• If the current attribute is a virtual attribute, you cannot use reflection to get or
set the values of this attribute for an object.

• Some data types cannot be accessed using the Get and Set methods on the
AttributeDesc class. These data types include C-style array, enum, pointer,
struct, typedef, and union. For more information, see “Getting or Setting the
Value of a Primitive Type” on page 506.

TOOL Class Reflection

Chapter 14 TOOL Reflection Classes 499

TOOL Class Reflection
The TOOL classes that support reflection and the inheritance hierarchy that
determines their relation are shown in Figure 14-1.

Figure 14-1 TOOL Reflection Class Hierarchy

Using TOOL reflection classes, you can get information about

• the type of a class

• the methods defined for a class or an interface

• the attributes of a class

At runtime, you can also use reflection to get and set the value of an attribute for a
particular object, or to invoke a method on that object. You can retrieve information
about an object whether it is local or distributed.

The following table lists and describes the TOOL classes that enable class
reflection:

Class Description

ClassType Provides methods that you can use to obtain references to
AttributeDesc or MethodDesc objects.

ArrayDesc Provides methods that you can use to get information about array data
types.

MemberDesc
(abstract) ClassType

MethodDescAttributeDesc PrimitiveDesc ArrayDescParameterDesc

Object

TOOL Class Reflection

500 iPlanet Unified Development Server • Programming Guide • August 2001

You do not have to link against any particular library to use reflection classes: they
are an integral part of the TOOL Framework library.

Accessing Reflection Objects
In general, you do not create instances of reflection classes yourself. A ClassType
object is automatically created for every user-defined (and system) class at compile
time. Instead, you create a reference to a ClassType object for the class or interface
that interests you, and then use the methods defined for ClassType to obtain
objects that reflect the attributes and methods of that class. For example, you can
use the GetAttribute method of ClassType to get an instance of the AttributeDesc
class. You can then use the Get methods defined for the AttributeDesc class to get
additional information about the attribute.

Figure 14-2 shows how you obtain a reference to a ClassType object associated
with the class Item, and then a reference to an AttributeDesc object that reflects
information about the Name attribute.

PrimitiveDesc Provides methods that you can use to get information about primitive
(simple) data type.

MemberDesc An abstract superclass of the MethodDesc and AttributeDesc classes.

MethodDesc Provides methods that you can use to determine the signature of a
given method or to invoke a method on a particular object.

AttributeDesc Provides methods that let you get or set an attribute value on a
particular object.

ParameterDesc Provides methods that you can use to determine the data type and
parameter passing mechanism of a given parameter.

Class Description

TOOL Class Reflection

Chapter 14 TOOL Reflection Classes 501

Figure 14-2 Using ClassType Objects to Enable Reflection

The only time you need to create an instance of a reflection class is when you need
an ArrayDesc object in order to specify parameters to ClassType.GetMethod(), and
ClassType.GetDeclaredMethod(). This case is discussed in “Working With
Methods” on page 508.

Getting Information About a Class or Interface
Each class or interface that has been partitioned is reflected by a single ClassType
object. The ClassType class defines several methods that return information about
the reflected class, such as the methods or attributes defined for that class.

To obtain information about a class that interests you, you must first define a
reference to the ClassType object that is associated with your class, using the
following syntax:

variable_name : ClassType = class_name;

You can get information about user-defined classes as well as system classes. The
following example shows how to create a reference to the ClassType object that
reflects the Employee class:

empCTRef : ClassType = Employee;

itemRef:ClassType

itemRef :ClassType = Item;

Reserve ()
Release()

Num
Name

Item class

nameRef:AttributeDesc

nameRef: AttributeDesc;
nameRef = itemRef.GetAttribute(’Name’);

itemRef

itemRef:ClassType

nameRef

TOOL Class Reflection

502 iPlanet Unified Development Server • Programming Guide • August 2001

If you don’t know the class name but have an object that interests you, you can use
the GetClassType() method of the Object class; for example:

Having obtained a reference to the ClassType object for the class, you access
additional information about that class by calling methods on the ClassType object.
For example, to get information about the EmpName attribute of the Employee
class, you would write:

attName : AttributeDesc = empCTRef.GetAttribute(name=’EmpName’);

You would then use methods defined for the AttributeDesc class to learn more
about that attribute.

ClassType methods allow you to get

• a reference to the AttributeDesc object that reflects an attribute, or an array of
references to AttributeDesc objects that reflect all the attributes of a class.

You can then use methods of the AttributeDesc object to get the value or type
of a reflected attribute.

• a reference to the MethodDesc object that reflects the signature of a specific
method, or an array of references to MethodDesc objects that reflect the
signatures of all methods for that class.

You can then use the methods of the MethodDesc class to determine the
method’s return type, its parameter types, and its visibility. You can also use
MethodDesc.Invoke() to invoke the method.

• an array of ClassType objects that reflect the interfaces implemented by a class.

• the name of a class, interface, or simple type

• the ClassType object that reflects the superclass of this class

You can also use the ClassType.NewInstance method to create a new instance of
the current class.

Code Example 14-1 Using the GetClassType method

anyClass: ClassType;
anyClass = anObject.GetClassType();

TOOL Class Reflection

Chapter 14 TOOL Reflection Classes 503

Of course, in an application that uses reflection, you would probably access a class
whose name (or whose member names) is not hard coded in your application.
Rather, you may be passed a parameter that is an object whose class you are
interested in, as in the following example:

Accessing Arrays
If the data type of an attribute, parameter, or return value is an array, such as Array
of TextData, the type is reflected by an ArrayDesc object. The ArrayDesc class, a
subclass of ClassType, provides methods and attributes that you use to retrieve
information about array elements and their data types.

You might need to create ArrayDesc objects to specify parameters for the
ClassType.GetMethod() and ClassType.GetDeclaredMethod(). In the following
code fragment, you instantiate an ArrayDesc object to describe a formal parameter,
formals[3], that is an array of IntegerData:

Use the ClassType.IsArray() method to determine whether the current class type is
an array type.

Code Example 14-2 Accessing class information about an object

method Browser.InspectAttributes (obj: Object)
begin
 cls: ClassType (obj.GetClassType());
 ats: array of AttributeDesc;
 ats = cls.GetAttributes();
 for att in ats do
 ... //get or set attributes
end;

Code Example 14-3 Using ArrayDesc to get information about array elements

formals: array of ClassType = new;
formals[1] = ClassType.StringPrimitiveDesc;
formals[2] = ClassType.IntegerPrimitiveDesc;
formals[3] = ArrayDesc(ElementType=IntegerData);

TOOL Class Reflection

504 iPlanet Unified Development Server • Programming Guide • August 2001

Accessing Simple Data Types
If the data type of an attribute, parameter, or return value is a TOOL simple data
type, such as int or boolean, the type is reflected by a PrimitiveDesc object. The
PrimitiveDesc class, a subclass of ClassType, has methods and attributes that let
you specify or identify a particular simple data type.

You access the PrimitiveDesc object that reflects a simple data type by using the
corresponding attribute of the ClassType class. These attributes are like static
members in Java: you must access them using the following syntax:

ClassType.attribute_name

For example, to reflect an integer, use the ClassType.IntPrimitiveDesc object; to
reflect a char, use the ClassType.CharPrimitiveDesc object. The following code
sample uses the PrimitiveDesc object that reflects a boolean to check whether the
data type of a return value is a boolean:

Working With Attributes
The AttributeDesc class provides methods that you use to get and set the value of
the current attribute for a particular object or a particular primitive data type. Note
that reflection allows you to get or set the value of any private attribute, which
would normally be restricted to the class defining that attribute.

Getting the AttributeDesc Object
To get the AttributeDesc object for an attribute, you can use any of the following
methods of the ClassType class:

• GetAttribute

• GetDeclaredAttribute

Code Example 14-4 Using PrimitiveDesc to determine the data type of a return value

tDataRef: ClassType = TextData;
isLowerMethod: MethodDesc = tDataRef.GetMethod
 (name = ’IsLower’, parameters = NIL);
if (isLowerMethod.GetReturnType() =
ClassType.BooleanPrimitiveDesc)
then
 task.Lgr.PutLine(’IsLower:boolean’);
end;

TOOL Class Reflection

Chapter 14 TOOL Reflection Classes 505

• GetAttributes

• GetDeclaredAttributes

For additional information about these methods, use the online help for the
ClassType class.

Determining the Data Type of an Attribute
Once you have obtained a reference to an AttributeDesc object for an attribute, you
can use the GetType method to determine its data type. This method returns a
reference to a ClassType object that reflects the class, interface, or primitive data
type for the attribute. For example, assuming that we need information about a
class declared as follows:

We can use code like the following to print out the data type of two attributes,
Num and Name:

Getting or Setting the Attribute Value on an Object
To get or set the value of the current attribute when the data type is a class or
interface, use the GetValue and SetValue methods (of the AttributeDesc class),
specifying an object whose class includes that attribute.

Code Example 14-5 Getting the data type of attributes

Class Item inherits Object
 Num: integer;
 Name: TextData;
end;

cls: ClassType = Item;
att: AttributeDesc = cls.GetAttribute(’Num’);
task.Lgr.Putline(att.GetType().GetName()); //integer
att = cls.GetAttribute(’Name’);
task.Lgr.Putline(att.GetType().GetName()); //TextData

TOOL Class Reflection

506 iPlanet Unified Development Server • Programming Guide • August 2001

The following example demonstrates how you can retrieve an attribute value using
the GetValue method on a AttributeDesc object named att:

Using DataValue Objects
To get or set an attribute value using a DataValue object, use the GetValue method
or the SetValue method. If the type of the value is a primitive type, the GetValue
method automatically instantiates a DataValue object that contains the value; for
example, an IntegerData object to contain an integer. Similarly, the SetValue
method extracts the primitive data value from the specified DataValue object to set
the value of an attribute with a primitive data type. Note, however, that there are
methods defined for the AttributeDesc class that are specific to primitive types. The
section “Getting or Setting the Value of a Primitive Type” introduces these
methods.

For detailed information about the GetValue and SetValue methods, see the online
help description of the AttributeDesc class.

Getting or Setting the Value of a Primitive Type
To get or set an attribute value using a primitive type, use one of the Get or Set
methods of the AttributeDesc class that is specific to the primitive type, such as
GetBoolean to retrieve the value as a boolean. It is more efficient to use the specific
Get or Set method than to create (or cause the system to create) a DataValue object
with which to wrap your primitive value. The following table lists the Get and Set
methods for each primitive type

Code Example 14-6 Using GetValue to retrieve an attribute value

cls: ClassType = Item;
myItem:Item = new (Name = ’New Item’);
att: AttributeDesc = cls.GetAttribute(’Name’);
name:TextData = TextData(att.GetValue(myItem));
task.Lgr.Putline (Name); // "New Item"

TOOL Data Type Get Method Set Method

boolean GetBoolean SetBoolean

char GetChar SetChar

double GetDouble SetDouble

float GetFloat SetFloat

TOOL Class Reflection

Chapter 14 TOOL Reflection Classes 507

If you are not sure which primitive data type describes the current attribute, you
can compare the PrimitiveDesc object returned by the AttributeDesc.GetType
method with the ClassType attributes for the various PrimitiveDesc objects. For
example:

i1 GetI1 SetI1

i2 GetI2 SetI2

i4 GetI4 SetI4

int GetInt SetInt

integer GetInteger SetInteger

long GetLong SetLong

short GetShort SetShort

string GetString SetString

ui1 GetUI1 SetUI1

ui2 GetUI2 SetUI2

ui4 GetUI4 SetUI4

uint GetUInt SetUInt

ulong GetULong SetULong

ushort GetUShort SetUShort

Code Example 14-7 Determining the primitive data type of an attribute

att: AttributeDesc = cls.GetAttribute(’Value’);
if (att.GetType() = ClassType.BooleanPrimitiveDesc) then
 b:boolean = att.GetBoolean(source = myObj);
else if (att.GetType() = ClassType.DoublePrimitiveDesc) then
 d:double = att.GetDouble(source = myObj);
...
else
 o:Object = att.GetValue(source = myObj);
end;

TOOL Data Type Get Method Set Method

TOOL Class Reflection

508 iPlanet Unified Development Server • Programming Guide • August 2001

If the current attribute is a virtual attribute, you cannot get or set the values of this
attribute for an object. To determine whether an attribute is a virtual attribute, use
the IsVirtual method, described in the online help for the AttributeDesc class.

Certain PrimitiveDesc objects represent data types that cannot be accessed using
the Get and Set methods on the AttributeDesc class. These data types include
C-style array, enum, pointer, struct, typedef, and union. To test whether a
PrimitiveDesc object represents a supported data type, use the
PrimitiveDesc.IsSupported method, as described in online help for the
PrimitiveDesc class. If you try to get or set an attribute value whose data type is not
supported, the Get or Set method raises a UsageException.

Working With Methods
You can use reflection to get a method’s signature and to invoke a method. Note
that reflection allows you to get information about and to invoke private methods,
which would normally be restricted to the class for which the method is defined.

To get information about a method or to invoke a method, you must first get a
reference to the MethodDesc object for that method. You can use the
ClassType.GetMethods method to retrieve an array of references to MethodDesc
objects for a particular class; for example:

allMethods : Array of MethodDesc = currCls.GetMethods();

You can then call the appropriate method of MethodDesc to obtain the signature of
a particular method. Having obtained the signature, you can use the Invoke
method of a MethodDesc object to invoke a method on an instance of the class.

You can also use the ClassType.GetMethod method to retrieve a reference to a
MethodDesc object for a particular method if you know its parameter list. See
online help for the ClassType class for more information about GetMethods and
GetMethod.

Assuming the following class declaration:

Code Example 14-8 Getting a method’s signature and invoking the method

class Item inherits Object
 IsRegistered(name:string,
 num: integer,
 ids: array of IntegerData): boolean;
end;

TOOL Class Reflection

Chapter 14 TOOL Reflection Classes 509

You can get information about the IsRegistered method as follows:

Getting Parameter and Return Value Information
When you have retrieved the MethodDesc object for the method of interest, you
can get information about the parameters of the method using the GetParameters
method and about the return value using the GetReturnValue method of the
MethodDesc class.

The GetParameters method returns an array of references to ParameterDesc objects
that reflect the parameters of the current method. You can then use the GetType
and GetMechanism methods on the ParameterDesc class to determine the type of
each parameter and how it is passed to the method.

Invoking the Method
Finally, you can invoke the method represented by a MethodDesc object using the
Invoke method and passing a particular object whose method you want to invoke.
Remember that the type of the object must be the same as or a subclass of the class
that declared the current method, represented by the MethodDesc.

The following example shows how you can invoke a method after you have
retrieved the MethodDesc object that reflects the method.

...
cls:ClassType = Item;
formals: array of ClassType = new;
formals[1] = ClassType.StringPrimitiveDesc; //param = name
formals[2] = ClassType.IntegerPrimitiveDesc;//pram = num
formals[3] = ArrayDesc(ElementType=IntegerData);//param = ids
meth:MethodDesc = cls.GetMethod(’IsRegistered’, formals);

-- cls is a ClassType object.
formals: array of ClassType;
actuals: array of Object;
formals = ...;
actuals = ...;
currMethod : MethodDesc = cls.GetMethod(name = 'display',
parameters = formals);

rvalue : Object = currMethod.Invoke(source = windowToOpen,
parameters = actuals);

Reflection Examples

510 iPlanet Unified Development Server • Programming Guide • August 2001

The value returned by the Invoke method is the return value for the invoked
method. The Invoke method also promotes any exceptions that are raised by the
invoked method.

Reflection Examples
This section provides two sample code listings that demonstrate how you use
reflection to implement a simple object inspector and a simple class browser.

Object Inspector
The ObjectInspector class, shown in the listing starting on page 511, implements a
simple object inspector. For any given object, the inspector prints the value of all
the object’s attributes. If any attribute is itself an object, the class recursively
inspects that attribute by treating it as a root object. Loops in the object graph are
avoided in this simple algorithm. To simplify the example, the LogMgr class is
used to display attributes.

The ObjectInspector class defines the public method Inspect to inspect each
attribute and to print it in the following format:

name = [declared-type] value

For example:

Non-nil objects are printed recursively, indented by spaces; for example:

Code Example 14-9 Using the ObjectInspector class

Num = [integer] 1234
Name = [TextData] Bill

Name = [string] Bob
Address = [AddressType]

Street = [string] 811 Pine Lane
City = [string] San Jose
State = [string] CA

AccountID = [TextData] ng10234
Info = [TextData] NIL

Reflection Examples

Chapter 14 TOOL Reflection Classes 511

Arrays are printed as a series of numbered objects, for example:

Or, if the elements are composite, as in the following example:

Virtual attributes and unsupported types are simply tagged and not inspected.
Objects that are seen multiple times in a single inspection are tagged with “...” after
the first occurrence.

The following code listing shows the implementation of ObjectInspector:

Name = [string] Bill
Aliases = [array of TextData]

[1] = [TextData] BillG1
[2] = [TextData] Bill@acme.com
[3] = [TextData] Bill.Smith

AddressBook = [array of AddressType]
[1] = [AddressType]

Street = [string] 811 Pine Lane
City = [string] San Jose
State = [string] CA
Zip = [integer] 94303

[2] = NIL

class ObjectInspector inherits Object
has public
Inspect(obj : Object, level : integer = 0);
Init();

has private
Cache : Array of object; // Avoid loops in object graph
log : LogMgr;

end;

method ObjectInspector.Init()
begin

self.Cache = new;
log = task.Part.LogMgr;

end;

method ObjectInspector.Inspect(obj : Object, level : integer = 0)
begin

// If passed object is NIL, return

Reflection Examples

512 iPlanet Unified Development Server • Programming Guide • August 2001

if (obj = NIL) then
log.Putline(‘NIL’);
return;

end;

//If passed obj is a DataValue, print its text form
if (obj.IsA(DataValue)) then
log.Putline(DataValue(obj).TextValue);
return;

end;

//Avoid printing-loops in object graph (tag output with ...)
if (self.Cache.FindRowForObject(obj) != 0) then
log.PutLine(‘...’);
return;

end;

self.Cache.AppendRow(obj);

//Set up indent level, which increases with recursive calls
log.Putline();
indent : Textdata = new;
for i in 1 to level do

indent.Concat(‘ ‘);
end;

//If passed object is array, print as [index] = [type] value
if (obj.IsA(GenericArray)) then

arr : GenericArray = GenericArray(obj);
for i in 1 to arr.Items do

log.Put(indent);
log.Put(‘[‘);
log.Put(i);
log.Put(‘] = ‘);
elem : Object = arr.FindObjectForRow(i);
if (elem ! = NIL) then
log.Put(‘[‘);
log.Put(elem.GetClassType().GetName());
log.Put(‘] ‘);

end;
self.Inspect(elem, level + 1); //recursively inspect elem

end;
return;

end;

//print each attribute of passed obj as name = [type] value
cls: ClassType = obj.GetClassType();
ats : array of AttributeDesc = cls.GetAttributes();
for a in ats do

log.Put(indent); //Name & type correctly indented
log.Put(a.GetName());
log.Put(‘ = [‘);

if (a.IsVirtual()) then //If virtual just tag output
log.Putline(‘virtual]’);
continue;

Reflection Examples

Chapter 14 TOOL Reflection Classes 513

Class Browser
The ClassBrowser class, shown in the next listing, implements a simple class
browser. For any given class, the browser prints the attributes and methods of that
class, and then continues with its super class until it reaches the root
Framework.Object class.

The ClassBrowser class has one public method, Browse, which analyzes each class
and prints information about the class in the following format:

class-name:
visibility attribute-name : { virtual | type }; ...
visibility method-name([parameters]) : return-type; ...

super-class-name:
...

Each parameter is formatted as:

mechanism-name : type [,]

Unsupported types are tagged with unsupported.

end;

typ : ClassType = a.GetType();
log.Put(typ.GetName());
log.Put(‘] ‘);

// If the type is primitive, confirm it’s supported
if (typ.IsPrimitive()) then
if (not PrimitiveDesc(typ).IsSupported()) then
log.Putline(‘unsupported type’);
continue;

end;
end;

//recursively inspect actual value. (GetValue returns
//a DataValue for supported primitive types).
self.Inspect(a.GetValue(obj), level + 1);
end;

//Clear inspector cache at end of root object.
if (level = 0) then

self.Cache.Clear();
end;

end;

Reflection Examples

514 iPlanet Unified Development Server • Programming Guide • August 2001

For example, UserAddress, which subclasses from Address, would look like this:

Here is the implementation of ClassBrowser:

Code Example 14-10 Using the ClassBrowser class

UserAdress:
private Link : virtual;
private Aliases : Array of TextData;
public AddAlias(input alias : TextData) : boolean;

Address:
public Street : TextData
public City : TextData;
public State : TextData
public Zip : IntegerData;
public Phone : PhoneEntry;
private Key : integer;
public GetKey() : integer;

class ClassBrowser inherits Object
has public
Browse(cls : ClassType);

has private
BrowseName(m : MemberDesc);
BrowseType(typ : ClassType);
BrowseParameter (p : ParameterDesc);
log : LogMgr;

end;

method ClassBrowser.Browse(cls : ClassType)
begin

log = task.Part.LogMgr;
log.Putline();
while (cls != NIL) and (cls != Framework.Object) do
log.Put(cls.GetName());
log.Putline(‘:’);

for a in cls.GetDeclaredAttributes() do
self.BrowseName(a);
log.Put(‘ : ‘);
if (a.IsVirtual()) then
log.Put(‘virtual’);

end;
self.BrowseType(a.GetType());
log.Putline(‘;’);

end;

for m in cls.GetDeclaredMethods() do

Reflection Examples

Chapter 14 TOOL Reflection Classes 515

self.BrowseName(m);
log.Put(‘(‘);
first : boolean = true;
for p in m.Getparameters() do
if (not first) then
log.Put(‘, ‘);

end;
first = false;
self.BrowseParameter(p);

end;
log.Put(‘)’);
typ : ClassType = m.GetReturnType();
if (typ != NIL) then
log.Put(‘ : ‘);
self.BrowseType(typ);

end;
log.Putline(‘;’)’

end;

cls = cls.GetSuperClass();
end;
log.Putline();

end;

method ClassBrowser.BrowseName(m : MemberDesc)
begin

log.Put(‘ ‘);
if (m.IsPublic()) then
log.Put(‘public ‘);

elseif (m.IsProtected()) then
log.Put(‘protected ‘);

else
log.Put(‘private ‘);

end;
log.Put(m.GetName());

end;

method ClassBrowser.BrowseType(typ : ClassType)
begin

if (typ = NIL) then
return;

end;
if (typ.IsPrimitive()) then
pd : Primitive Desc = PrimitiveDesc(typ);
if (not pd.IsSupported()) then
log.Put(‘[unsupported] ‘);

end;
log.Put (typ.GetName());

elseif (typ.IsArray()) then
ad : ArrayDesc = ArrayDesc(typ);
t : ClassType =ad.GetArrayType();
log.Put(t.GetName());
t = ad.GetElementType();
if (t != NIL) then
log.Put(‘ of ‘);
self.BrowseType(t);

Reflection Examples

516 iPlanet Unified Development Server • Programming Guide • August 2001

end;
else
log.Put(typ.GetName());

end;
end;

method ClassBrowser.BrowseParameter(p : ParameterDesc)
begin

case (p.GetMechanism())
when LO_PARAM_INPUT do
log.Put(‘input’);

when LO_PARAM_OUTPUT do
log.Put(‘output’);

when LO_PARAM_INPUT_OUTPUT do
log.Put(‘input output’);

when LO_PARAM_CP_INPUT do
log.Put(‘copy input’);

when LO_PARAM_CP_OUTPUT do
log.Put(‘copy output’);

when LO_PARAM_CP_INPUT_OUTPUT do
log.Put(‘copy input output’);

end;
log.Put(‘ ‘);
log.Put(p.GetName());
log.Put(‘ : ‘);
self.BrowseType(p.GetType());

end;

517

Chapter 15

XSLT Processor Library

This chapter provides a conceptual overview of the XSLT Processor library. The
iPlanet Integration Server (iIS) Backbone product provides a built-in processor for
performing such transformations between backbone-integrated applications. If you
are not using iIS, you can use the TOOL XSLT Processor library to transform data
exchanged between any TOOL applications.

For detailed descriptions of the classes in the XSLT Processor Library, see the iIS
online Help.

For more information about iIS, see the website http://sun.com/forte/fusion.

Features of the iIS XSLT Processor
An XSLT processor that you utilize with the iIS XSLT Library has the following key
features and capabilities:

• It is compatible with other XSLT processors, including the one provided with
the iIS product.

• It accepts XML files as input and provides XML or HTML 4.0 as output.

• It provides URL protocol handling, using the file protocol as the default and
allowing you to specify other standard protocols or custom protocols.

For information about protocol handling, see “Using Protocol Handlers” on
page 523.

Restrictions
The XSLT library does not provide the following features:

• You cannot specify output code-sets in your stylesheets.

Introducing XML and XSL

518 iPlanet Unified Development Server • Programming Guide • August 2001

• The XML parser is non-validating, that is, it checks that the input document is
well-formed XML, but it cannot validate the document against a Document
Type Definition (DTD). Therefore the Xpath Id() function does not work.

• The processor does not implement the <xsl:key> element, <xsl:fallback>
element, or backwards compatible processing.

Introducing XML and XSL
This section provides an introduction to:

• the Extensible Markup Language (XML) that you can use to transfer data
between applications

• Extensible Stylesheet Transformations (XSLT) that you use to translate XML
data between applications

• XSLT Processors that perform such transformations

What is XML?
Extensible Markup Language (XML) is a method for structuring data in an
application, generally for the purpose of sending the data to another application.
XML lets you represent the data in a tree structure that depicts the relationships
between the various elements of the data. For example, an application might
generate an XML document like the following to represent a customer record:

Code Example 15-1 A typical XML document generated by an application

<Customer>
<CustName>
<FirstName>John</FirstName>
<LastName>Doe</LastName>

</CustName>
<CustAddress>
<Street>123 Main Street</Street>
<City>Island City</City>
<State>CA</City>
<Zip>95050</Zip>

</CustAddress>
<CustNumber>
1234567

</CustNumber>
</Customer>

Introducing XML and XSL

Chapter 15 XSLT Processor Library 519

In an XML document, the items between brackets are elements that describe the
data, and the items between the elements are the data itself. XML looks similar to
HyperText Markup Language (HTML), except that XML represents the content
and structure of the data, rather than its presentation.

While you can assign arbitrary meaning to the elements in XML documents, the
documents themselves cannot be processed unless they conform to a prescribed
syntactical structure in order to be processed. For example, tags representing the
beginning of an element must have a subsequent tag to close the element. A
document that meets the XML syntax requirements, regardless of its content, is
called a well-formed document.

For the XML specification and related information, see
http://www.w3.org/XML/.

Representing an XML Document in a TOOL Application
The XML source document that your TOOL application provides to the XSLT
Processor for transformation can be in either of the following forms:

• An object of the SeekStream class, an abstract class representing stream objects
that iIS can access for read and write operations. The three subclasses of the
SeekStream class represent the possible sources of the data:

❍ File represents an operating system file

❍ MemoryStream represents text streams contained in memory

❍ BufferedStream represents text stored in a buffer

For more information about SeekStream objects, see the iIS online Help.

• A Uniform Resource Locator (URL) corresponding to a text file containing the
source XML data. The file must contain a well-formed XML document.

To represent the URL of the file, instantiate an object of the URL class and
initialize it appropriately.

What are XSL Transformations?
Applications can send data in the form of XML documents to other applications for
various purposes. For example, you might want to send the customer record
document to a credit verification application.

Introducing XML and XSL

520 iPlanet Unified Development Server • Programming Guide • August 2001

Because XML has no restrictions on which elements a document contains,
however, the two applications might not have the same XML vocabulary and
structure. As a simple example, the customer number might be represented as
<CustNumber> to the first application, and as <CustID> to the second.

For this reason, it is often necessary to transform an XML document when sending
it to another application. The mechanism for achieving this task is called Extensible
Stylesheet Transformations (XSLT).

The other major use of XSL transformations is to produce HTML pages.

XSLT applies a stylesheet to a source XML document to render it as a result tree,
which is output as XML, HTML, or plain text in the results document. The second
application can then use the data in the results document as needed.

A stylesheet is itself an XML document that transforms XML by means of pattern
matching. That is, when the stylesheet finds a specific pattern in the source
document, it applies a template that specifies how to render it in the results
document.

For example, the following stylesheet template matches the <CustNumber>
element in the source document and transforms it into the <CustID> element in the
results document:

In this example, the “/” near the end of the second line serves as the close tag to
ensure that the stylesheet (which is an XML document itself) is well-formed.

XSLT provides a wide variety of transformations that let you match complex
patterns and perform sophisticated transformations. Your stylesheet can not only
change the structure of the XML, but perform calculations and other changes upon
the data itself.

For the complete description of available XSLT elements for performing
transformations, see the XSL specification at http:www.w3.org/TR/XSLT. If you
are an iPlanet Integration Server customer, see the iIS Backbone Integration Guide.

Code Example 15-2 Using XSLT to transform a document

<xsl:template match=”CustNumber”> //Match CustNumber element
<xsl:element name=”CustID”/> //Create CustID element
</xsl:template> //End of template

Introducing XML and XSL

Chapter 15 XSLT Processor Library 521

What is an XSLT Processor?
An XSLT Processor is the software tool that applies a stylesheet to a source XML
document to render an XML results document. Figure 15-1 illustrates this process.

Figure 15-1 XSLT Processor Document Flow

The XSLT processor functions as follows:

• It transforms the source document into a tree structure.

• The processor steps through the source tree looking for a matching template in
the stylesheet, beginning with the source root.

• If it finds a matching template, it applies its pattern to render a new entity in
the results document.

• The processor continues through the source document until it has processed all
the nodes, using supplied and default templates to direct further pattern
matches.

Because the processor starts from the source document, your stylesheet can contain
templates that are never applied, because the source document has no node that
matches them. You can take advantage of this processing model to write a single
stylesheet that you can apply against a variety of different source documents.

XSLT Processor

 url

Source XML
Document

(SeekStream
or URL)

 url

XSL Stylesheet

 url

Results
Document

(SeekStream)

Result Tree

Using an XSLT Processor in a TOOL Application

522 iPlanet Unified Development Server • Programming Guide • August 2001

Using an XSLT Processor in a TOOL Application
A TOOL application might typically use an XSLT processor as follows:

1. Create a processor instance.

2. Initialize the processor instance.

3. If you are accessing a source document through a protocol other than the file
protocol, create a protocol handler for the protocol you are using.

For more information about protocol handlers, see “Using Protocol Handlers”
on page 523.

4. Select a stylesheet.

5. Optionally precompile the stylesheet.

6. Call the appropriate version of the Parse() method on the processor instance to
parse the XML input document:

❍ If Parse() returns TRUE, it will have created an XML results document for
use as needed.

❍ If Parse() returns FALSE, call the processor’s GetErrorContext() method to
determine why the input document could not be processed.

The following code sample illustrates the above steps:

Code Example 15-3 Using the XSLT processor in an application

processor:XSLTProcessor=new();
sourceURL:URL=URL().Initialize(’file:///alpha.xml’);
sheetURL:URL=URL().Initialize(’file:///omega.xsl’);
result:File=new();
success:boolean;

result.SetPortableName(’result.xml’);

processor.SetSheetSource(sheetURL);
success=processor.Parse(sourceURL, result);

if success then
// carry on...

else
//Report error.
context:ErrorContext=processor.GetErrorContext();
task.lgr.putline(’Transformation failed:’);
task.lgr.putline(context.GetMessage());
task.lgr.put(’ line:’);

Using Protocol Handlers

Chapter 15 XSLT Processor Library 523

Using the Results Document in a TOOL
Application
Although it is not required, in most applications you should ensure that your
stylesheet is written to produce a well-formed XML document or HTML pages as
its output. This will allow other components to read the results of the
transformation.

The most common way to use the results document is to produce a MemoryStream
object as the result of the transformation by the XSLT processor. You then can use
that object to create an InputSource object for the XML parser.

For more information about the XMLParser library, see the iIS online Help.

Using Protocol Handlers
A URL consists of two parts:

• a protocol, indicated by the part before the colon (:), specifying how to access
the URL. This is sometimes referred to as a scheme.

• a resource, indicated by the part after the colon (:), specifying a location on the
network

For example, in the URL http://www.mysite.com/index.html:

• http indicates the Hypertext Transport Protocol

• www.mysite.com is the host computer to be accessed

• index.html is the filename to be accessed from the host computer.

task.lgr.putline(context.GetLineNumber());
task.lgr.put(’ in sheet:’);
task.lgr.putline(BooleanData(value=context.IsInSheet()));
task.lgr.put(’ in source:’);
task.lgr.putline(BooleanData(value=context.IsInSource()));

end if;

Code Example 15-3 Using the XSLT processor in an application (Continued)

Using Protocol Handlers

524 iPlanet Unified Development Server • Programming Guide • August 2001

You might need to use any of several communication protocols to access the source
XML document to be processed by your XSLT processor. By default, the processor
expects the protocol to be “file,” that is, the location of a local source file. For
example:

file:///c:/mydrive.my.xml

Besides file, standard protocols include http, ftp, gopher, email, and news.

There are also application-specific protocols. To specify any protocol other than file
to use to access the source document, you must implement a protocol handler for
your XSLT processor. The purpose of a protocol handler is to implement a protocol
to access an XML source document whose URL includes the custom protocol. For
example, in the URL forte://xmldocuments.com, forte is a custom protocol for
which you would need to write a protocol handler. The same is true for any
protocol other than file.

To implement a custom protocol handler, you must create two subclasses: one of
URLConnection, the other of URLStreamHandler.

The URLStreamHandler class is responsible for creating connections to resources
and, optionally, parsing the URL specification string. The URLConnecton class is
responsible for creating a SeekStream to the resources specified by a URL.

The custom protocol handler class methods is automatically called by the XSLT
processor as needed; no further application action is needed after you register the
protocol handler.

The following code example shows how to implement a custom protocol handler:

Using Protocol Handlers

Chapter 15 XSLT Processor Library 525

The following code sample shows how to register a new protocol handler:

Code Example 15-4 Implementing a custom protocol handler

method MyProtocolStreamHandler.OpenConnection
(input url: XSLT.URL): XSLT.URLConnection
begin
return MyProtocolURLConnection().Initialize(url);
end method;

method MyProtocolURLConnection.Connect
begin
if not GetConnected()then
url:URL = GetURL();
self.Stream = new();
self.Stream.Open(SP_AM_WRITE);
self.Stream.WriteLine(’<?xml version="1.0"?>’);

if url.GetFile()=’/alpha.xml’ then
self.Stream.WriteLine(’<greeting>Guten Tag</greeting>’);

elseif url.GetFile()=’/omega.xsl’ then
// etc

end if;

self.Stream.Close();
self.Stream.Open(SP_AM_READ);
self.Stream.Offset=0;
SetConnected(TRUE);

end if;
end method;

method MyProtocolURLConnection.GetInputStream:
Framework.SeekStream
begin
Connect(); --will connect only once.
return self.Stream;
end method;

success:Boolean;
success=URLHelper().AddProtocol(
’forte’,
MyProtocolStreamHandler());

The XSLT Processor Library Classes

526 iPlanet Unified Development Server • Programming Guide • August 2001

The XSLT Processor Library Classes
The XSLT Processor library provides classes used to transform XML documents in
iIS programs in conformance with the W3C public recommendation on XSLT 1.0.

The XSLT Processor library contains the following classes:

All these classes inherit from Framework.Object. These classes are in the XSLT
system library; you must use XSLT as a supplier plan to use these classes.

For detailed information about the attributes, methods, and syntax of each XSLT
Processor Library class, see the iIS online Help.

Also, the following classes are modeled after their Java equivalents:

• URL

• URL Connection

• URL StreamHandler

For detailed descriptions of the Java classes and their usage, see the Java
documentation at http://java.sun.com/docs/books/tutorial/networking/urls.

Class Description

XSLTProcessor Creates an XSLT processor and performs XSL transformations.

ErrorContext Conveys error information from the processor

URL Represents a Uniform Resource Locator that specifies the location
of an XML input document and the communications protocol
(such as HTTP or FTP) for accessing the document

URLConnection An abstract base class that lets you create a URLConnection object
that you can use to communicate with the URL for reading the
source document

URLStreamHandler An abstract base class that lets you locate a source document by
parsing a URL string based on the protocol and specified start and
end points within the string

URLHelper A utility class to register handlers for communications protocols
other than the basic ones (such as http, ftp. gopher, or news)
provided by the XSLTProcessor Library

527

Chapter 16

Source Code Management for
iPlanet UDS Projects

This chapter introduces the GenericRepository Library and the
SourceCodeManager Library.

The GenericRepository Library in the iPlanet Unified Development Server runtime
includes classes that allow the creation of a bridge between a central repository and
a source code management system. This bridge is written in TOOL and is called a
source code management service (SCM service).

The SourceCodeManager library in the UDS runtime implements a facility for
storing multiple versions of a file in a single archive file.

You can implement a source code management (SCM) system in TOOL using the
UDS SourceCodeManager library. You can also use the SCM service to connect to
an external SCM system, either by a TOOL wrapping of the SCM system’s callable
interface or by using the OperatingSystem.RunCommand method to access the
SCM system’s command-line interface.

For detailed descriptions of the classes in the GenericRepository Library and the
SourceCodeManager Library, see the UDS online Help.

The chapter contains the following sections:

• “Overview of Source Code Management” on page 528

• “Source Code Management Service” on page 528

• “Using the SourceCodeManager Library” on page 531

• “Export Formats” on page 533

Overview of Source Code Management

528 iPlanet Unified Development Server • Programming Guide • August 2001

Overview of Source Code Management
When you (as a developer) integrate a workspace into the central repository, all
changes in the workspace become part of the repository’s system baseline. This
allows other developers to see the changes when they update their workspaces.

If the central repository is connected to a source code manager service (SCM
service), the changes are also exported as text, allowing the changes to be checked
into a source code management (SCM) system.

Source Code Management Service
UDS provides a way to create a bridge between a central repository and a source
code management system. Using the GenericRepository Library, you define the
interaction between the central repository and a source code manager. This source
code manager can be a third-party product or one created using the
SourceCodeManager Library.

Features and Limitations
The GenericRepository Library contains classes that allow you to create an SCM
service. These classes allow you to do the following:

• describe the plans and components that are being integrated

• control which plans and components to export

• give the SCM service control after the files are exported, so the SCM service can
then check them into an external source code manager

The interaction between UDS and a source code manager consists of your
implementation of the BeforeIntegration, BeforeExport, and AfterExport methods
of the SCMServer class inside the GenericRepository library. You must implement
them in a way that works with the external source code manager you are using.

Source Code Management Service

Chapter 16 Source Code Management for iPlanet UDS Projects 529

Using the GenericRepository Library
Inside the GenericRepository Library are four classes that implement interaction
between a UDS repository client and an external source code manager.

The GenericRepository Library provides the classes listed in Table 16-1.

The UDS online Help provides full method and attribute descriptions for each of
the classes in the GenericRepository Library.

Using SCMServer
The SCMServer class contains the methods that build the bridge between the
central repository and the source code management system. The SCMServer class
contains three methods: BeforeIntegration, BeforeExport, and AfterExport. These
methods are called by the repository client code during a workspace integration.

Table 16-1 Classes in the GenericRepository Library

Class Description

SCMInfo Contains attributes used to describe the user, repository, and export
mode for an entire workspace integration.

The ExportMode attribute in this class defines the file export style
described in “Export Formats” on page 533. You can set the
ExportMode to SCM_EXPORT_MODE_COMPAT, or
SCM_EXPORT_MODE_MULTIPLE.

SCMObject Contains attributes used to describe a single plan or component
integrated as part of the current workspace integration.

SCMPlan Contains attributes used to describe a plan and its components
being integrated as part of the current workspace integration.

SCMServer Defines the methods called by the repository client during an
integration. These methods interact with a source code manager.

Source Code Management Service

530 iPlanet Unified Development Server • Programming Guide • August 2001

The GenericRepository.SCMServer class provides the methods listed in Table 16-2.

The UDS online help contains sample code for each of the methods in the
GenericRepository.SCMServer class.

Table 16-2 Methods in the GenericRepository.SCMServer class

Method Description

BeforeIntegration The repository client calls this method before the integration
is started. During this method you can collect information
that is to be used later or verify that the integration should
be allowed. The repository’s global lock is held exclusively
while BeforeIntegration runs, preventing any other
integration or updates from occurring. Because of this, it is a
good idea to minimize the amount of time BeforeIntegration
takes to run.

BeforeExport The repository client calls this method after the integration
has finished successfully, but before any plans or
components have been exported. This method lets you
specify which plans and components to export and to which
directories and files. The repository’s global lock is held
shared while BeforeExport runs, allowing updates but not
other integrations.

AfterExport The repository client calls this method after the plans and
components marked by BeforeExport have been exported.
During this method you can process the export files by
checking them into the SCM system. It is also called if errors
have occurred previously during the integration, so you can
perform any needed cleanup. The repository’s global lock is
held shared while AfterExport runs, allowing updates but
not other integrations.

Using the SourceCodeManager Library

Chapter 16 Source Code Management for iPlanet UDS Projects 531

Using the SourceCodeManager Library
The SourceCodeManager library in the iPlanet UDS runtime implements a facility
for storing multiple versions of a file in a single archive file.

Features and Limitations
The archives produced by a SourceCodeManager service object are
RCS-compatible. This allows RCS to examine the archives and add versions to
them. These versions must always be added as a new head revision. For instance:
you can add a version 1.3 to an archive whose current head is 1.2.

If RCS is not available, then the SCM utility, which is supplied with UDS as a
command-line utility, can be used. For help on using the scm utility, type scm help
to the command-line.

The SourceCodeManager.SCM class provides the methods listed in Table 16-3:

Table 16-3 Methods in the SourceCodeManager.SCM class

Method Description

Startup Set the directory that contains the archives.

CreateVersion Check a new version into an archive.

GetVersion Create a file from a version in an archive.

DeleteArchive Delete an archive.

Differences Display differences between two files.

Merge Merge the differences between two files and a third file.

Using the SourceCodeManager Library

532 iPlanet Unified Development Server • Programming Guide • August 2001

Creating an SCM Service
Use the GenericRepository library to create a service object that provides source
code management. The class GenericRepository.SCMServer defines methods that
are called during an integration to provide the SCM service with files it can check
into an SCM.

➤ To create an SCM service

1. Create a project in your workspace.

2. Create a new non-window class in the project:

❍ Specify GenericRepository.SCMServer for the superclass.

❍ Under Runtime properties specify distributed, shared object.

3. Implement the following methods that will be called during integration:

❍ BeforeIntegration

❍ BeforeExport

❍ AfterExport

For examples of these methods, see the UDS online help for
GenericRepository.SCMServer.

4. Create a new service object based on the type of this new class.

5. Configure the project as a server partition, then distribute and install the
project.

6. Start up the central repository server that uses the SCM service, using the
following flag:

-scm source_code_manager

source_code_manager is in the format appname/projname/svcobjectname.

Export Formats

Chapter 16 Source Code Management for iPlanet UDS Projects 533

SCM Service Example
Your UDS distribution includes an example of an SCM service. The example uses
the SourceCodeManager library to create archive files.

The example is in the following directory:

FORTE_ROOT/install/examples/scm/sourcecodemanager/scmserver.pex

To run the example, create an environment variable named ROOT_DIRECTORY,
which is the root directory where TOOL source code archives will be written.
Import the scmserver.pex file into a central repository and go to Step 5 of the
above procedure.

Export Formats
UDS Source Code Management provides two export formats for TOOL projects.
One format is for compatibility with the SCM Hooks provided in older versions of
UDS. The other is recommended for all new SCM Services. The SCM Service
chooses which format to use by setting the ExportMode attribute of the SCMInfo
object to either SCM_EXPORT_MODE_COMPAT or
SCM_EXPORT_MODE_MULTIPLE.

In all cases, plans other than TOOL projects (for example, Application Models) are
exported as a single .pex file.

Compatibility Format
In this format, each changed TOOL project can be exported as a .pex file, and each
changed TOOL component can be exported as a .cex file. This format is used when
the ExportMode attribute of the SCMInfo object is set to
SCM_EXPORT_MODE_COMPAT.

Pex files The .pex files can be imported into a repository to re-create the state of
the workspace when the integration was done. However, because these .pex files
can be large and contain many components, interpreting the differences between
two versions of a .pex file can be difficult.

Cex files The .cex files are useful to track the history of the development of a
single component, but do not by themselves contain the information needed to
re-create the state of the workspace.

Export Formats

534 iPlanet Unified Development Server • Programming Guide • August 2001

Multi-File Format
In this format, UDS exports TOOL projects and components as multiple files. The
number and type of files depends upon the type of the component. This format is
used when the ExportMode attribute of the SCMInfo object is set to
SCM_EXPORT_MODE_MULTIPLE.

Table 16-4 describes the types of files that can be exported in multi-file format.

Table 16-4 Types of Files Exported in Multi-file Format

 Type of File Description

Project level definition file
projectname.prx

Contains project-level information, such as the
project-level constants and the list of supplier projects.

It also contains a #include statement for each of the
component-level files in the project. Thus, importing
this file into a repository imports the entire project.

Component definition file
componentname.cdf

A component definition file is exported for each class,
cursor, and service object in the project. It contains all
definitional parts of the component.

Class Implementation file
componentname.cex

Exported only for classes, this file contains all of the
method implementations for the class.

Class window definition file
componentname.fsw

Exported only for window classes, this file contains the
window definition for the class.

Export Formats

Chapter 16 Source Code Management for iPlanet UDS Projects 535

Table 16-5 lists the files, based on component type, exported in multi-file format
mode.

The multi-file format allows convenient tracking of the history of any single
component, and also allows the state of the workspace at the time of the integration
to be re-created by importing the appropriate .prx files.

Table 16-5 Files Exported Based on Component Type

Component Type Exported Files

Window classes componentname.cdf
componentname.cex
componentname.fsw

non-Window and
non-Interface classes

componentname.cdf
componentname.cex

all other components,
including Interfaces

componentname.cdf

NOTE With the multi-file export format, the export filenames cannot be
overridden by the SCM service; only the directory location can be
controlled by the SCM service.

Also, because multiple projects could have like-named components,
it is a good idea to export each project into its own unique directory
to avoid name collision problems.

Export Formats

536 iPlanet Unified Development Server • Programming Guide • August 2001

537

Chapter 17

Performance-Based Load Balancing

iPlanet UDS provides two different styles of load balancing for a service object:

• performance-based CPU allocation

• customized load balancing

This chapter discusses how to implement performance-based load balancing.
Customized load balancing is the default, and is the same style of load balancing
that is described in the Partition Workshop chapter of A Guide to the iPlanet UDS
Workshops.

Using Performance-Based Load Balancing
To use performance-based load balancing for a service object, you must:

• provide performance information for each node in the environment to which
the service object will be assigned (usually performed by the system manager)

• turn on performance-based load balancing for the service object and specify a
total number of replicates to be created

• for each configuration, indicate on which nodes the service object should run

The following sections provide detailed information about each of these tasks.

CAUTION Although you normally can run iPlanet UDS clients and servers
from different releases within a single environment, you cannot use
the performance-based load balancing feature unless both the client
and the Environment Manager are of the same version (Release 3.0.F
or greater). Do not try to use the performance-based load balancing
feature if you have upgraded your client but not the Environment
Manager.

Using Performance-Based Load Balancing

538 iPlanet Unified Development Server • Programming Guide • August 2001

Providing Performance Information
About a Node
Your system manager provides performance information for each node in the
environment by using the Environment Console or Escript.

Using the Environment Console
The Node Properties dialog in the Environment Console includes the following
fields: Performance Rating and Number of Processors.

Figure 17-1 Node Properties Dialog

The Performance Rating property represents the performance rating for the specific
node. The performance rating is an arbitrary number that represents the rating for
an individual node on any scale that you choose. For example, nodes could be
rated on a scale from 1 to 10 or from 1 to 100—the system manager can choose
whatever seems appropriate.

If the system manager does not provide a performance rating for a given node, it is
considered to be “average.” If the system manager does not provide performance
ratings for any nodes, all are rated equal, and only the number of processors is
used to balance the load.

The Number of Processors property is where the system manager simply enters the
number of processors on the node. The default is 1.

Using Performance-Based Load Balancing

Chapter 17 Performance-Based Load Balancing 539

Using Escript
Escript provides the following Environment Edit Mode commands for specifying
performance information about a node:

SetNodeProcCount processor_count

performance_rating

These two commands are the same as the Environment Console node properties
described above.

Specifying the Number of Replicates
To use performance-based load balancing, you must explicitly turn on
performance-based load balancing for the service object and then specify a fixed
number of replicates for that service object. When you later partition the
application in a given environment, iPlanet UDS ensures that the total number of
replicates specified for the service object is evenly load balanced across the nodes
to which it is assigned.

You can specify the total number of replicates for a service object in the Service
Object properties dialog either in the Project Workshop or Partition Workshop. We
recommend that you set the total number of replicates for the service object in the
Partition Workshop because the total number of replicates typically varies for each
environment.

The Service Object Properties dialog provides two fields for performance-based
load balancing: Performance-Based CPU Allocation and Replication Count.

Figure 17-2 Service Object Properties Dialog

Using Performance-Based Load Balancing

540 iPlanet Unified Development Server • Programming Guide • August 2001

The Performance-Based CPU Allocation property enables you to turn on
performance-based load balancing. This toggle is enabled only after you have
turned on the Load Balancing property in the same dialog.

If you do not turn on the Performance-Based CPU Allocation toggle, you get
custom load balancing, which is described in the Partition Workshop chapter of A
Guide to the iPlanet UDS Workshops.

If you do turn on the Performance-Based CPU Allocation toggle, iPlanet UDS
provides performance-based load balancing for the service object based on the
performance information that the system manager provided for the nodes in your
environment and on the replication count you specify using the Replication Count
field.

The Replication Count property specifies the total number of service objects to be
assigned to nodes in the environment. After you assign the service object’s
partition to the nodes where you want the service object to run, iPlanet UDS
automatically adjusts the replication count on each assigned partition so that the
total number of replicates in the environment is equal to the number you specified
in the Replication Count field.

By default, the Replication Count property is set to 1. If you set it to 0, iPlanet UDS
turns off performance-based load balancing and reverts to custom load balancing.
iPlanet UDS cannot provide performance-based load balancing with a replicate
total of 0.

The TOOL service object statement has an option that allows you to enable
performance-based load balancing for a service object within a .pex file:

perfbasedalloc=integer

The integer specifies the total number of replicates for the service object.

Remember, you must first turn on load balancing for the service object before you
can enable performance-based load balancing.

For example:

so: MyClass = (loadbalance=TRUE, perfbasedalloc=30);

Using Performance-Based Load Balancing

Chapter 17 Performance-Based Load Balancing 541

Partitioning the Replicates
You assign the replicates to nodes the same way you normally do: drag the logical
partition that contains the service object to each node where you want the service
object to run. iPlanet UDS then automatically sets the replication count for the
service object on that node so the total number of replicates on all the nodes to
which it is assigned is equal to the service object’s Replication Count property and
so the load is evenly balanced across all the nodes.

Each time you assign the service object to a new node, iPlanet UDS automatically
re-adjusts the replication counts on the rest of the nodes where the service object is
already assigned.

Note that if you assign the logical partition to more nodes than the total number of
replicates specified for the service object, iPlanet UDS assigns one replicate to each
node, letting you exceed the total number originally specified for the service object.
Also note that if two or more performance-based load-balanced service objects are
combined in the same partition, iPlanet UDS uses the highest specified replication
count of the two service objects to determine the total number of replicates for both
service objects.

If you wish to check how many replicates are assigned to a given node, you can
double-click the assigned partition to open the Assigned Partition Properties
dialog. The Replication Count field displays the replication count for the service
object on the partition.

Figure 17-3 Assigned Partition Properties Dialog (Server Partition)

Using Performance-Based Load Balancing

542 iPlanet Unified Development Server • Programming Guide • August 2001

Note that when performance-based load balancing is enabled, the Replication
Count property on the Assigned Partition Properties dialog is read only. You
cannot change the replication count for an individual assigned service object
because this is a number that iPlanet UDS sets automatically. However, you can
always change the total used for the entire environment by changing the
Replication Count field on the service object in the logical partition as described
under “Specifying the Number of Replicates” on page 539.

If the performance information about the nodes is changed in the Environment
Console or Escript after you have partitioned the application, the new performance
information will not be automatically reflected in the current partitioning scheme.
To use the new performance information, you must repartition the application.

NOTE While the Replication Count field on the dialog for the assigned
partition shows the total number of replicates assigned to the node,
the Replication Count field on the dialog for the assigned service
object shows the total number of service objects for the application
(that is, the same number specified for the service object on the
logical partition). For accurate information about the number of
service objects on a given node, please use the Assigned Partition
Properties dialog.

543

Chapter 18

Creating HTTP Applications

The HTTPSupport library allows you to create iPlanet UDS server and client
applications that utilize the HTTP protocol. This chapter provides an overview of
HTTP and application behavior. It then describes how to create iPlanet UDS client
and server applications that use the HTTP and SSL protocols.

This chapter covers the following key topics:

• General HTTP concepts, including clients, servers, requests, responses, and
sessions (“HTTP Overview” on page 543)

• How to create iPlanet UDS HTTP client applications (“Creating HTTP Clients”
on page 553)

• How to create iPlanet UDS HTTP server applications (“HTTP Servers” on
page 559)

• How to configure iPlanet UDS HTTP client and server applications
(“Configuring HTTP Sessions” on page 567)

HTTP Overview
In applications with client-server architecture, clients are programs that make
requests for some sort of processing and servers are programs that listen for
requests, process the requests, and respond to the client.

In the HTTP messaging model this is the only kind of exchange that takes place
between clients and servers.

HTTP Overview

544 iPlanet Unified Development Server • Programming Guide • August 2001

Clients
In iPlanet UDS applications virtually any program can act as an HTTP client. The
defining characteristic of a client in the context of HTTP messaging is that it
requests services from a server. (See “Creating HTTP Clients” on page 553 for
further information.)

Servers
Any iPlanet UDS application that implements either the MessageReceiver or
HTTPReceiver interface can act as an HTTP server. An HTTP server passively
listens for requests from clients, providing request processing services. Users
cannot interact directly with servers—all interaction with servers is mediated by
the client program. Servers make themselves available to clients by listening at a
specific network address. A client must know the address of a server before it can
send requests to it. (See “HTTP Servers” on page 559 for further information.)

The HTTPSupport Model
The HTTP protocol uses a simple request/response model. In this model clients
create request messages, which include headers, a body, and a session object.
iPlanet UDS HTTP client applications can build a request and send it to a server
instance. The server instance processes the request and sends back a response that
includes headers with information about the processing and possibly a body
containing data resulting from the processing.

Figure 18-1 illustrates the HTTPSupport model by showing an iPlanet UDS HTTP
client communicating with an iPlanet UDS HTTP server. In reality, an iPlanet UDS
HTTP client can communicate with any HTTP server and an iPlanet UDS HTTP
server can communicate with any HTTP client.

HTTP Overview

Chapter 18 Creating HTTP Applications 545

Figure 18-1 HTTPSupport Model

1. The client creates a request.

2. The client sends the request to the client partition HTTPSupport.

3. The client partition HTTPSupport parses the request headers and body,
translates the request message into a byte stream, and routes them to the
server’s network address using TCP/IP.

4. The server partition HTTPSupport receives the byte stream, creates from it a
request object and pre-allocated response object, which it dispatches to the first
available HTTP server instance.

5. The HTTP server processes the request and uses the pre-allocated response
object to build the response message. The HTTP method Process is called, with
the request object as its first parameter and the pre-allocated response object as
its second parameter.

6. When the HTTP Process method terminates, control is passed back to the
server partition HTTPSupport. The server partition parses the response object
and renders it as a byte stream, which it then routes to the client using its
network connection.

7. The client partition HTTPSupport receives the byte stream and creates from it a
response object, which it routes back to the requesting client.

HTTPSupport

Request
Object HTTP

Server
Instance

HTTP
Server

Instance

HTTP
Server

Instance

HTTP
Server

Instance

Response
Object

3

4

5

6

4

52

HTTPSupport

Client
1

7

7

Server PartitionClient Partition

Request
Object

Response
Object

HTTP Overview

546 iPlanet Unified Development Server • Programming Guide • August 2001

Brokering the exchanges between clients and server instances is HTTPSupport.
HTTPSupport is responsible for managing sessions, parsing requests, dispatching
requests to server instances, parsing responses, and forwarding them to the client
that sent the request. HTTPSupport also manages system-wide configuration.

Messages
The unit of communication between clients and servers is a message. HTTP
messages consist of a header and a body. Typically, HTTPSupport automatically
handles creating and reading HTTP headers and HTTP messages for you.

Table 18-1 illustrates an example of a request message.

In Table 18-1, the first line is a request line, describing the type of request. The next
four lines are headers that pass information about the message from the client to
the server. The headers are separated from the message body by a blank line.

Response messages are similar, except that the first line is a status line, indicating
the success (or failure) of the request.

Headers
Headers consist of entries of the form name:value, where name is one of several
classes of information defined in the HTTP specification and value is the actual
value for that field. The order of the header entries is not mandated in the HTTP
specification. However, by convention general headers appear first, followed by
request headers, response headers, and entity headers.

Table 18-1 Typical HTTP request message

POST /my_domain.com/foo/bar/file.html HTTP/1.1
Date: Sat, 9 Dec 2000 17:41:22 GMT
Accept-Charset: ISO-646-DK;q=0.7, ISO-IR-158;q=0.4
Content-Length: 4078
Content-Type: text/html; charset =iso-8859-1

<DOCTYPE HTML PUBLIC ’-//WC3//DTD HTML 4.0 Transitional//EN’
’http://www.w3.org/TR/Rec-html40/loose.dtd’>
<html>
…
</html>

HTTP Overview

Chapter 18 Creating HTTP Applications 547

• General headers specify information about the message itself. For example, a
general header could date-stamp the message, or specify that the session
should be closed once the server has responded to the request.

• Request headers are used by clients to specify the host making the request,
acceptable response encodings, authorization date, and other information.

• Response headers are used by servers to include additional information about
the response that cannot be contained in the status line. For example, if the
response status line is specifies “Method Not Allowed,” the response header
would indicate which methods are supported for the resource specified in the
request.

• Entity headers are used by clients to include meta-information about included
entities or resources identified in the message, such as the type of encoding
applied to the entity, or the natural language of the audience intended for the
entity.

Message Body
The message body is the actual contents of the message. By default the body
contains an empty entity, which the client can either fill with data or replace with
an entity of its own. The default entity has the media type text/html. The HTTP
protocol defines a number of additional media types, and messages can contain
any media type the recipient is capable of processing.

In addition to containing the default entity the message body can also contain an
entity that contains other nested entities, or it can contain a number of separate
entities. The diagram below illustrates these possibilities.

Current Entity
With Data

Current Entity With
Multiple Data Types

Datatype A Datatype B Datatype C

Current Entity With
Nested Entities

 url

Bunch
o’

Data

HTTP Overview

548 iPlanet Unified Development Server • Programming Guide • August 2001

Requests
Clients send requests to servers to ask for some type of processing. The client
specifies the resource on which the processing will be done and the HTTP method
to be used in the processing. A request can also contain data the client wants the
server to process in some manner. (For more information see “HTTP Client
Requests” on page 553.)

Responses
Responses enable the server to pass the results of the request back to the client. The
results may be data of some type, an error code in the case of an invalid request, or
a status code describing the outcome of the requested processing. Servers can also
include cookies in a response, which are a means of maintaining session state
information. (For more information see “Listening For Requests” on page 561.)

Sessions
For clients and servers to communicate with each other they need to first establish
a session. A session is analogous to two people talking on the phone: before they
can talk, one of them has to call the other, and the other has to pick up the phone
when it rings. When the conversation is complete, they both hang up.

HTTP sessions can be established for a single exchange or can be kept open
indefinitely in anticipation of multiple exchanges. HTTPSupport embodies three
separate concepts of sessions: application sessions, network sessions, and secure
sessions.

HTTP Overview

Chapter 18 Creating HTTP Applications 549

The following diagram illustrates an application session opened for a single
exchange and then closed.

The following sections provide an overview of application, network, and secure
session behavior.

Application Sessions
An application session is an HTTP request/response exchange that is initiated by a
client and established at the application level between the client and a server
instance. Depending on how the server is configured, it may or may not grant the
request for a session.

The HTTP protocol provides no means of maintaining state information during
sessions. Once a server has received, processed, and responded to a request it no
longer knows anything about that request/response exchange.

The server can “remember” the details of an exchange once the exchange has
ended by including cookies with its response. Cookies are name/value pairs that
enable the server to store session information with the client. The next time the
client sends a request, it first checks to see if it has any cookies that are relevant to
the current request URI, and if so it includes them in the request. When the server
reads the cookies it remembers the state of the prior exchange.

Client Client

HTTP
Server

HTTP
Server

S
es

si
on

 o
pe

ne
d

C
lient sends request

1 2 3 4

Client

HTTP
Server

Session closed

Client

HTTP
Server

S
erver sends response

HTTP Overview

550 iPlanet Unified Development Server • Programming Guide • August 2001

One common example of how cookies are used is an e-commerce web site. The first
time you visit such a site its server sends a number of cookies to your browser,
which then stores them on your file system. The next time you point your browser
(the HTTP client) to that site, it checks in its cookie directory to see if it has any
cookies that apply to that URI. If it does it sends them to the site’s web server,
which reads the cookies, remembers you from the last time you visited that site,
and re-establishes the context of your previous visit. This might include
recognizing your login and associating it with a user preference, or remembering
that you are interested in armadillos but not plaid pants.

Network Sessions
A network session defines the behavior of the TCP/IP connection between the
client and the server. A network session can be either held open for all messages
that the client and server exchange, or open and close for each session. Establishing
an open (persistent) TCP connection optimizes performance when the client
anticipates having multiple exchanges with the server over a short period of time.

Because opening and closing TCP connections is relatively expensive in terms of
system resources it is more efficient to keep a single TCP connection open for
multiple exchanges than to open and close a connection for each exchange.
However, keeping a TCP connection open may block other clients from accessing
the server. This occurs if there are more TCP connections open than the operating
system configuration allows.

Network sessions have no knowledge of application sessions, and can be opened
and closed independently of application sessions.

Secure Sessions
Sites with applications handling proprietary or sensitive information can
implement secure client-server communications with the Secure Sockets Layer
(SSL) protocol. SSL provides three different types of security: message secrecy,
authentication, and message integrity.

Message Secrecy Message secrecy is a means of ensuring that if a message is
intercepted it cannot be read by the interceptor. This is implemented using various
kinds of data encryption, such as DES or RC4.

NOTE By default, HTTPSupport creates persistent network sessions. Not
all HTTP 1.0 servers support persistent connections. Refer to
“Configuring HTTP Sessions” on page 567 for information on
overriding default behavior.

HTTP Overview

Chapter 18 Creating HTTP Applications 551

Authentication Authentication is a means of ensuring that one or both
communicating parties are who they claim to be. Many hacking techniques are
based on fraudulently assuming the identity of an authorized user in order to gain
access to privileged information. Authentication is implemented with public and
private key certificates.

Message Integrity Message integrity is a means of ensuring that even if a
message has been intercepted that its content has not been modified or re-sent.
Message integrity is implemented with message digests.

For information on configuring secure sessions, refer to “Configuring HTTP
Sessions” on page 567. For additional information on the SSL protocol, refer to
Chapter 19, “Enabling Security” on page 581.

HTTPSupport Classes and Interfaces
The TOOL classes that implement HTTPSupport, and their places in the class
hierarchy, are shown in the following diagram.

Object

HTTPBaseRequest HTTPBaseResponse

Entity HTTPBaseMessage

HeaderHolder HTTPConfigManager HTTPHelper

Cookie HTTPSession MessageConfigHTTPFactory

HTTP Overview

552 iPlanet Unified Development Server • Programming Guide • August 2001

Table 18-2 summarizes each of the HTTPSupport classes.

HTTPSupport provides the following interfaces, many of which are implemented
in the HTTPSupport classes:

GenericEntity
GenericHeaderHolder
GenericMessage
GenericRequest
GenericResponse
GenericSession
HTTPReceiver
HTTPServerManager
HTTPServerStateListener
MessageReceiver

Table 18-2 HTTPSupport Classes

Class Description

Cookie Sets and gets cookie values.

Entity Writes and reads data, enables nesting entities.

HeaderHolder Sets, gets, adds, removes, and lists HTTP message headers and
their values.

HTTPBaseMessage Adds and gets cookies, sets and gets message values, encodes
and decodes message bodies in Base64.

HTTPBaseRequest Gets and sets URL, gets and sets HTTP methods, sets request
URIs and query strings, sends requests

HTTPBaseResponse Returns list of cookies, returns date header of message, sets and
returns status code of response.

HTTPConfigManager Sets and gets configuration values for TCP and SSL sessions.

HTTPFactory Factory for MIME data containers and request, response, and
session instances. Custom versions can be registered with
HTTPFactory.

HTTPHelper Advertises server, finds configuration manager and factory.

HTTPSession Sets and retrieves information on network, application, and
secure sessions.

MessageConfig Utility class used for initializing message receivers.

Creating HTTP Clients

Chapter 18 Creating HTTP Applications 553

Creating HTTP Clients
Any iPlanet UDS applications can act as an HTTP client. Within your iPlanet UDS
application, you create an HTTP message in a request object that is sent to an HTTP
server. The client captures the response message from the server within a response
object. The response object includes a session object that encapsulates information
about the exchange between the client and server.

HTTP Client Requests
An HTTP request message has two parts: message headers, which contain
information about the message itself and how the client wants the message to be
processed, and the body, which contains the data of the message.

Requests are constructed from the HTTPBaseRequest class. Requests must specify
the method to invoke on the HTTP server and a string specifying the URL of the
server. By default, the HTTPSupport library provides an empty body for your
message and creates the HTTP headers to implement your request. You can
optionally build a request that contains a query string, associate an entity or text
with the message body, and set other HTTP message options for your request.

Code Example 18-1 builds and sends an HTTP request.

Code Example 18-1 Building an HTTP client request

-- Create the request object
request : HTTPBaseRequest = new;

-- Specify the server HTTP method and the server’s url
request.setMethod('GET');
request.setURL('http://iplanet.com:8080');

-- Send the request and capture the server’s response
response : HTTPBaseResponse = request.send();

-- Place the response body in a TextData field
textField : TextData = new;
response.body.ReadText(textField);

Creating HTTP Clients

554 iPlanet Unified Development Server • Programming Guide • August 2001

Specifying Request Details
This section highlights some of the additional specifications you can make when
building an HTTP request. For complete documentation on building requests, refer
to the online help for HTTPBaseRequest.

SetMethod
HTTPBaseRequest.SetMethod method specifies the HTTP method used in the
request. The syntax for SetMethod is:

SetMethod(string http_method)

http_method specifies the HTTP method you want to invoke.

The possible values for http_method are OPTIONS, GET, HEAD, POST, PUT,
DELETE, TRACE, and CONNECT. If you do not specify this method, then by
default, HTTPBaseRequest.Send specifies GET.

SetURL
HTTPBaseRequest.SetURL method specifies the location of the server. The syntax
of SetURL is:

SetURL(string url)

url is the fully specified absolute URL for the server.

The specified URL must include both the scheme and the path, and optionally the
query. For example:

SetURL(’http://my_domain.com/policies.shtml’);

SetQueryString
HTTPBaseRequest.SetQueryString method specifies query parameters that are
used to build a URI. The query component of a URI passes small amounts of data
to the resource addressed in the URI. A typical example is a search engine where
the client passes search criteria to the engine as query parameters.

The syntax of SetQueryString is:

SetQueryString(string query)

query is the query string passed to the recipient.

Creating HTTP Clients

Chapter 18 Creating HTTP Applications 555

For example:

SetQueryString(’HTTP+tutorial’);

results in a URI that might look like:

http://my_domain.com/search?q=HTTP+tutorial

Message Body
HTTPBaseMessage.SetBody method specifies the contents of the body entity. By
default, requests created by the client have an empty body of the Entity class.
SetBody enables you to replace the default entity with one of your own. The syntax
of the SetBody method is:

SetBody(GenericEntity body)

body is the entity you want to specify.

For more information on the GenericEntity Interface, refer to online help.

Entities
The Entity class provides the default entity for containing data in HTTP messages.
It provides methods for writing various kinds of data from the memory stream into
an entity, setting the content type of the entity, and nesting entities. You can extend
and customize the Entity class to accommodate different MIME types. For more
information on using entities, refer to “Entities” on page 565.

Message Headers
HTTP message headers tell the server how the client wants the request processed,
provide the server with information about the enclosed entities, and tell the server
what kinds of responses it accepts. Typically, the HTTPSupport library
automatically creates message headers for you. But you can use the following
methods, available from HTTPBaseRequest, to create or add headers.

SetHeader(string name, string value)
SetIntHeader(string name, integer value)
AddHeaderValue(string name, string value)

SetIntHeader creates headers that take an integer value, (for example,
SetIntHeader(’max-forwards’, 5). Add HeaderValue creates multiple headers
with the same name.

Creating HTTP Clients

556 iPlanet Unified Development Server • Programming Guide • August 2001

Sending Messages
HTTP request/response exchanges can be either synchronous or asynchronous.

With synchronous processing (the default), the client must wait for a response to its
request before doing anything else. The response of HTTPBaseRequest.Send is an
HTTPBaseResponse object.

With asynchronous processing, the client can send a request and not be blocked as it
waits for the response (it can continue with other processing).

To implement asynchronous processing, the client must specify a MessageReceiver
object in the HTTPBaseRequest.Send method invocation. For asynchronously
processed requests, the Send method immediately returns a NULL value so the
client can continue with its normal processing. The server eventually returns the
response object to the specified MessageReceiver in the request. The
MessageReceiver.Process method is then automatically called with the request
object as its first parameter and the response object as the second parameter.

Send Method
There are three forms for the HTTPBaseRequest.Send method:

send([MessageReceiver signal])
send(string url, [MessageReceiver signal])
send(string methodName, string url, [MessageReceiver signal])

signal is an optional parameter that implements asynchronous messaging by
specifying a MessageReceiver object.

url specifies the location of the server. If url is not specified, then the URL
previously set with SetURL is used.

methodName specifies the HTTP method invoked in the request. If methodName is
not specified, then GET is the HTTP method that is invoked.

Dispatching Requests
HTTP servers can be implemented with multiple server instances. In the case of
multiple server instances, a request goes to the first available server instance. If a
client establishes an application session with a server instance, all further requests
from that client within that session are sent to the same server instance.

Creating HTTP Clients

Chapter 18 Creating HTTP Applications 557

If a request is sent and all server instances are busy, the request waits for the first
available instance. Once a server instance receives a request it cannot receive
another until it has finished processing the first request. If the client sends multiple,
parallel requests to the same server instance they are processed serially in the order
received.

Sessions
When a client receives a response from the server, it creates a response object. The
response object contains a session object that contains information about the
interchange between the server and client. The session object contains
configuration information about two different kinds of sessions: application
session and network session.

You typically, do not need access to the session object—the HTTPSupport library
handles details of the session for you. However, if you want to specify
configuration information about the session or otherwise retrieve or modify
information about the session, your request object must include a session object.

Application Session
An application session defines the session between the client object and the server
object. For example, if a client wants to send a series of requests to the same server
instance, it uses an application session. The application session creates a virtual
circuit between the two objects, which is held open until either the client or server
closes the circuit. The default behavior for application sessions is that the client lets
the server decide if an application session needs to be created.

Network Session
A network session defines the behavior of the TCP/IP connection between the
client and the server. The network session can be held open for all messages
exchanged between the client and server, or open and close for each message. The
default network session is persistent, which is held open for all messages
exchanged. Not all HTTP 1.0 servers support persistent connections. Persistent
connections is the default behavior for HTTP 1.1.

NOTE Application sessions and network sessions are independent of each
other. An application session can live longer than a network session
and a network session can live longer than an application session.
For more information, refer to “Sessions” on page 548.

Creating HTTP Clients

558 iPlanet Unified Development Server • Programming Guide • August 2001

Code Example 18-2 shows how to configure a network session for a request. In this
example, the client is requesting HTTP 1.0 behavior for a network session—it
specifies to close the TCP connection after each exchange.

Reusing Sessions
If an HTTP client application communicating with an HTTP server wants to use the
same session when sending additional requests to the same server, the same
session object must be reused. The following example shows how to use the
SetSession method and the session attribute of a request to reuse a session object.

Code Example 18-2 Creating a session

-- Build the request
request : HTTPBaseRequest = new;
request.setMethod(’GET’);
request.setURL(’http://iplanet.com:8443’);

-- Create the session object for the request
session : HTTPSession = new;
request.SetSession(session);

-- Close the TCP session after each exchange
session.setSessionValue(HTTP_CONFIG_TCPSESSION_VALUE,

HTTP_TCPSESSION_MESSAGE)

-- Send the request
response : HTTPBaseResponse = request.send();

Code Example 18-3 Reusing a session object

request : HTTPBaseRequest = new;
mySession : HTTPSession = new(applicationSession =

HTTP_SESSION_REQUIRED);
request.setSession(session);
request.send(’http://engwww/index.html’);

-- Processing the response
. . .

-- Reuse the same session
request2 : HTTPBaseRequest = new(session = mySession)
request2.send(’http://engwww/pub/index.html’);

HTTP Servers

Chapter 18 Creating HTTP Applications 559

HTTP Servers
An HTTP server is any program that listens for HTTP requests from other
programs and provides some sort of service in response. An HTTP server response
message may include a body containing some sort of data requested by the HTTP
client, or it may only have headers with information about how the request was
processed or why it could not be processed. Table 18-3 lists a typical response
message from an HTTP server.

Creating iPlanet UDS HTTP Server Applications
Any iPlanet UDS application that implements either the MessageReceiver or
HTTPReceiver interface can act as an HTTP server. This enables the server to
receive both the request and a pre-allocated response object.

Table 18-3 Typical HTTP response message from an HTTP server

HTTP/1.1 200 OK
Date: Sun, 3 Dec 2000 22:30:41 GMT
Last-Modified: Tue, 5 Nov 2000 04:17:56 GMT
Accept-Ranges: bytes
Content-Length: 4078
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//WC3//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/Rec-html40/loose.dtd">
<html>
... plain HTML text...
</html>

HTTP Servers

560 iPlanet Unified Development Server • Programming Guide • August 2001

MessageReceiver Interface
An iPlanet UDS server application implementing the MessageReceiver interface
must implement the following methods:

Initialize(MessageConfig config)
Process(GenericRequest request, GenericResponse response)
Terminate()

config is configuration information for the server session.

request is a pre-allocated request object generated from the client request.

response is a pre-allocated response object created to respond to the client request.

Initialize opens and configures a new session with a client. This method can be
empty, in which case a session is opened with default settings. The Process method
must implement code to handle incoming client requests. The Terminate method is
called when the session is ended.

The MessageReceiver interface is more general than the HTTPReceiver interface. It
is useful if you expect your client to specify only one or two HTTP methods that
can be easily handled by the Process method.

HTTPReceiver Interface
The HTTPReceiver interface extends the MessageReceiver interface, providing the
following methods, which must be implemented by the iPlanet UDS server
application:

DoDelete
DoGet
DoHead
DoOptions
DoPost
DoPut
DoTrace

The syntax of each of these HTTPReceiver methods is similar to the syntax for
DoGet:

DoGet(HTTPBaseRequest request, HTTPBaseResonse response)

When a server that implements the HTTPReceiver interface receives an HTTP
request from a client, the HTTPReceiver method that corresponds to the HTTP
method specified by the client is automatically called.

HTTP Servers

Chapter 18 Creating HTTP Applications 561

For example, if the request specified the HTTP method GET, then the server
application method doGet is automatically invoked.

The HTTPReceiver interface is useful if the client requests any supported HTTP
message, or if you want to create your own subclasses to specify behavior for
handling specific HTTP methods.

Listening For Requests
An iPlanet UDS HTTP server application can use the Advertise method from the
HTTPHelper class to advertise the server. Advertise initializes and sets up the
server to listen for HTTP requests. The Advertise call must be placed in an event
loop so the server can listen for responses until the event loop closes.

Also, you can use the SetServiceEOSInfo command to enable an iPlanet UDS
service object to listen for requests.

Advertise Method
The syntax for Advertise is:

Advertise(object server, string ’option=value [...]’)

server is the object you want to advertise as a server

option=value is an option name and a corresponding value. You can use multiple
options, separated by white space.

Code Example 18-4 creates a server that listens on port 8080, instantiates 12
instances of the server, and times out after four minutes.

NOTE In the situation where an unknown HTTP method is specified in a
client request, Process is automatically called. You are responsible
for writing code for handling such exceptions and returning the
appropriate error code.

Code Example 18-4 Advertising a server

-- Instantiate a server
-- (myServer is a class that implements HTTPReceiver interface)
server : myServer = new;

-- create event loop to listen for requests

HTTP Servers

562 iPlanet Unified Development Server • Programming Guide • August 2001

For more information on configuring servers, including using the Advertise
method to specify configuration information, refer to “Configuring HTTP Servers”
on page 570.

SetServiceEOSInfo Command
If an iPlanet UDS service object implements either the MessageReceiver or
HTTPReceiver interface, it can use the SetServiceEOSInfo FScript command to
listen for HTTP requests. The syntax for this command is:

SetServiceEOSInfo ServiceObjectName httpdc port=nnnn

ServiceObjectName is the name of the service object.

nnnn is the port number used to listen for requests.

Responding to Requests
When a client sends a request to an iPlanet UDS server application, the request is
automatically routed to the corresponding HTTPReceiver method or the Process
method. These methods are called with a pre-allocated request object as the first
parameter and a pre-allocated response object as the second parameter.

The response object is derived from the HTTPBaseResponse class and is used by
the server to construct its response. HTTPBaseResponse includes methods for
reading request headers, accessing the body of the request, accessing the session
object of the current session, setting response headers, and associating entities with
the response.

event loop

-- Advertise the server
HTTPHelper().Advertise(myServer, ’port=8080, instances=12,

timeout=240’);

when task.Shutdown do
exit;

end event;

Code Example 18-4 Advertising a server

HTTP Servers

Chapter 18 Creating HTTP Applications 563

Sessions
An HTTP server never has to create a session object. The HTTPSupport library
automatically creates a pre-allocated session object for each request received. This
session object contains the values describing the nature of the session established
between the server and client.

Processing Cookies
Cookies are structured pieces of data stored on the client’s disk to retain session
state information for an HTTP server. Servers can retrieve cookies from the client to
access state information about exchanges with the client in a current or previous
session.

Cookies were originally designed and specified by Netscape. This specification is
not part of the HTTP protocol, but is managed by Netscape. It is available at
http://www.netscape.com/newsref/std/cookie_spec.html.

When a server wants to preserve session state information it includes in the
response a Set-Cookie header with the cookies and values it wants to preserve. For
example:

Set-Cookie: Customer=Cosmo; Path=/raggs; Expires: Tue, 04 Dec 2002 17:31:14 GMT

An iPlanet UDS HTTP server application uses the Cookie class to create cookies
and add them to a response. It first invokes the Cookie.SetName method to create
the cookie “Customer”:

SetName(’Customer’);

The server then invokes the Cookie.SetValue method to set the Customer cookie
value to “Cosmo”:

SetValue(’Cosmo’);

The server repeats this sequence for any additional cookies it needs to process.
Finally, the server invokes theHTTPBaseResponse.AddCookie method to add the
cookies to the request:

cookie: cookie = new;
cookie.SetName(’Customer’);
cookie.SetValue(’Cosmo’);
cookie.SetPath(’/raggs’);
cookie.SetExpiration(’04 Dec 2000 14:21:03 GMT’);
AddCookie(’cookie’)

NOTE The HTTPSupport library automatically manages headers for client
and server applications that send cookies.

HTTP Servers

564 iPlanet Unified Development Server • Programming Guide • August 2001

Message Headers
Just as with client requests, a server response includes message headers that
provide the client with information about the message. Typically, the
HTTPSupport library automatically creates message headers for you.But you can
use the following methods, available from HTTPBaseRequest, to create or add
headers.

SetHeader(string name, string value)
SetIntHeader(string name, integer value)
AddHeaderValue(string name, string value)

SetIntHeader creates headers that take integer value, (for example,
SetIntHeader(’max-forwards’, 5). Add HeaderValue creates multiple headers
with the same name.

Message Body
The response from an HTTP server includes a message body, which could be
empty. The section “Message Body” on page 555, which is about client requests,
also applies to server responses. Use the HTTPBaseMessage.SetBody method to
replace the default entity (an empty body) with one of your own. The syntax of
SetBody is:

SetBody(GenericEntity body)

body is the entity you want to specify.

The body of a message is an object that implements the GenericEntity interface. The
GenericEntity interface provides the following:

• methods to read from and write to a memory stream

• get and set methods to access the headers of the body

• methods to compose entities

Code Example 18-5 provides some examples of how you can build the body of a
message.

Code Example 18-5 Processing the body of a message

DoPost(request : HTTPBaseRequest, response : HTTPBaseResponse)
Begin
Txt : TextData = new;
Request.body.readLine(txt);
. . .

End;

HTTP Servers

Chapter 18 Creating HTTP Applications 565

Entities
The Entity class provides the default entity for containing data in HTTP messages.
It provides methods for writing various kinds of data from the memory stream into
an entity, setting the content type of the entity, and nesting entities. You can extend
and customize the Entity class to accommodate different MIME types.

Multi-part Messages
When a multi-part message is created, the data of each type is put in a separate
entity, all of which are contained in an “entity holder” entity. For example, if you
created a message whose body contained HTML, XML, and JPEG data, the body
contains four entities, one for each data type plus the entity holder. Each entity has
its own Content-Type and Content-Length headers.

To add entities to the entity holder, use the Entity.AddEntity method. For example:

AddEntity(’text/xml’);

adds an entity containing XML data to the current entity. You need to call
AddEntity for each entity you want to add.

Nesting Entities Within Entities
Messages that include quoted copies of previous messages (including forwards of
messages to new recipients) are represented as entities nested within other entities.
The current message is the outer entity and the quoted or forwarded message is the
inner entity. Each successive generation of quoting or forwarding adds a new inner
entity to the innermost current entity.

To nest entities, invoke the AddEntity method on each successive entity (rather
than repeatedly invoking AddEntity on the same current entity.

DoGet(request : HTTPBaseRequest, response : HTTPBaseResponse)
Begin

. . .
Response.body.writeLine(’<H1> Big smiley :) </H1>’);

End;

NOTE An entity can be empty, contain data, or contain other entities. You
cannot add an entity to the current entity if the current entity
already contains data.

Code Example 18-5 Processing the body of a message (Continued)

HTTP Servers

566 iPlanet Unified Development Server • Programming Guide • August 2001

HTTPFactory
The HTTPFactory object is responsible for the instantiation of HTTP entities and
messages. Using an HTTPFactory object, you can register your own entity classes
(which must implement the GenericEntity interface) or HTTP messages (which
must extend either HTTPBaseRequest or HTTPBaseResponse).

Registering Entity Subclasses
By default, and entity object in HTTPSupport is text/html. When a message is
received, whatever its mime type, the entity object is used with its content type set
to the message body content type. Code Example 18-6 shows how to register a
user-defined entity (XMLEntity) using the HTTPFactory.

Registering HTTP Messages
Similarly, you can register your own class of HTTP request or response (which
extends either HTTPBaseRequest or HTTPBaseResponse). Code Example 18-7
shows how to register UserRequest, which extends HTTPBaseRequest.

Code Example 18-6 Registering a user-defined entity using HTTPFactory

helper : HTTPHelper = new;
factory : HTTPFactory = helper.findFactory();

factory.addMimeType(’text/xml’, XMLEntity);

Code Example 18-7 Registering a user-defined HTTP request

helper : HTTPHelper = new;
factory : HTTPFactory = helper.findFactory();

factory.registerClass(UserRequest);

Configuring HTTP Sessions

Chapter 18 Creating HTTP Applications 567

Using Multi-Threaded Server Processes
You can create multiple server instances to have a pool of servers available to run
HTTP sessions concurrently. When a client sends a request, the request is routed to
the first available server instance. If all instances are busy, the request is queued for
dispatch to the first available server.

Use theHTTPHelper.Advertise method to configure the maximum number of
server instances:

Advertise(’instances=n’)

n is the maximum number of server instances you want to create. The default value
for n is one.

There is no upper limit on the number of server instances or client connections you
can configure. However, you are constrained by the amount of memory allocated
at the operating system level for the iPlanet UDS process.

Configuring HTTP Sessions
Sessions created in iPlanet UDS server and client applications contain default
configurations. However, you can override the default configuration using
methods provided by the HTTPConfigManager, HTTPSession, and HTTPHelper
classes. The process for configuring servers and clients differ, as illustrated in the
following sections.

Configuring HTTP Clients
Sessions created for iPlanet UDS HTTP clients are automatically configured with
default values. However, you can use the HTTPConfigManager to override the
default values with your own. Subsequent sessions contain the new values. To
specify configuration on a session-by-session basis, use the HTTPSession class.

NOTE When a client opens a persistent network session with a server, all
requests from that client during that session are dispatched to the
same server instance. For non-persistent sessions, a client is not
guaranteed connection to the same server instance.

Configuring HTTP Sessions

568 iPlanet Unified Development Server • Programming Guide • August 2001

You typically configure iPlanet UDS HTTP client applications to do the following:

• Specify the behavior for the client and server when establishing an HTTP
application session

• Specify persistence for network sessions

• Specify that the session is a secure HTTP session.

When configuring secure sessions, you can then set levels for secrecy, integrity,
and authentication as well as configuration parameters for certificates and
other SSL features

➤ To configure an iPlanet UDS HTTP client

1. Before creating a request object, use HTTPConfigManager.SetConfigValue to
override default application, network, or SSL configuration options.

The values you specify become the new default values for subsequent HTTP
sessions.

2. Build the request object, which contains an HTTP session instance.

3. Use HTTPSession.SetSessionValue to override configuration options,
specifying values valid for the current session only

4. Dispatch the request

After dispatching the request, the HTTP client negotiates the session with the
HTTP server. Code Example 18-8 provides an example for configuring iPlanet
UDS HTTP client applications.

Code Example 18-8 Configuring an iPlanet UDS client application

-- Before creating the server object,
-- set the configuration to create secure sessions
configMgr : HTTPConfigManager = HTTPHelper().FindConfigManager();
configMgr.SetConfigValue(SSL_SECURE, SSL_ALWAYS);

-- Now build the client request
request : HTTPBaseRequest = new;
request.setMethod(’GET’);
request.setURL(’http://iplanet.com:8443’);

-- Before sending, specify specify session-specific values
session : HTTPSession = new;
request.SetSession(session);
session.setSessionValue(SSL_AUTHENTICATE, SSL_ANONYMOUS);

Configuring HTTP Sessions

Chapter 18 Creating HTTP Applications 569

System-Wide Configuration
To override the default configuration use the SetConfigValue method from the
HTTPConfigManager class:

SetConfigValue(integer config, integer value)

config specifies a configuration option

value specifies the value for the option.

Use SetConfigValue before your application creates a request object. Table 18-4
lists the options you can configure, including their default values, for
SetConfigValue.

Table 18-4 Configuration options for iPlanet UDS HTTP client applications

config Option Possible values Description

HTTP_CONFIG_
TCPSESSION_VALUE

HTTP_TCPSESSION_
PERSISTENT

HTTP_TCPSESSION_
MESSAGE

Specifies persistence for network
sessions.

• Persistent sessions remain
open until either the client or
server explicitly close the
session. (Default)

• Message sessions are opened
and closed for each message
sent or received.

HTTP_CONFIG_
SESSION_VALUE

HTTP_SESSION_MAYBE
HTTP_SESSION_NONE
HTTP_SESSION_REQUIRED

Specifies how client and servers
establish application sessions.

• Maybe specifies that the client
lets the server decide if a
session needs to be
established. (Default)

• None specifies that no
application session can be
established.

• Required specifies that the
application session is
mandatory.

Configuring HTTP Sessions

570 iPlanet Unified Development Server • Programming Guide • August 2001

Session-By-Session Configuration
To override the configuration settings for clients on a session-by-session basis, use
the SetSessionValue method from the HTTPSession class:

SetSessionValue(integer config, integer value)

config specifies a configuration option

value specifies the value for the option.

Use SetSessionValue after your application creates a request object, but before
dispatching a request. The options for SetSessionValue are the same as those listed
for SetConfigValue listed in Table 18-4 on page 569.

Configuring HTTP Servers
Sessions created for iPlanet UDS HTTP servers are automatically configured with
default values. However, you can use the HTTPConfigManager to override the
default values with your own. You also specify configuration for iPlanet UDS
HTTP servers using the HTTPHelper class and the HTTPServerManager to
configure request dispatching.

You typically configure iPlanet UDS HTTP server applications to do the following:

• Specify the behavior for the client and server when establishing an HTTP
application session

• Specify persistence for network sessions

• Set the port, the number of server instances, and the timeout period

• Specify that a session is a secure HTTP session

SSL_SECURED SSL_NEVER
SSL_ALWAYS

Never establishes a non-secure
session. (Default)

Always establishes a secure
session. For information on
configuring secure sessions, refer
to “Configuring Secure Sessions”
on page 575.

Table 18-4 Configuration options for iPlanet UDS HTTP client applications (Continued)

config Option Possible values Description

Configuring HTTP Sessions

Chapter 18 Creating HTTP Applications 571

When configuring secure sessions, you can then set levels for secrecy, integrity,
and authentication as well as configuration parameters for certificates and
other SSL features. For information on configuring secure sessions, refer to
“Configuring Secure Sessions” on page 575.

➤ To configure an iPlanet UDS HTTP server

1. Make sure the application implements either the MessageReceiver or
HTTPReceiver interface.

2. Use HTTPConfigManager.SetConfigValue to override default configuration
options.

Call SetConfigValue after you have created the server object.

3. Use HTTPHelper.Advertise to set up the HTTP server to listen for HTTP
messages.

You can override default values for the port, the number of objects to dispatch
requests, and the timeout period. If you specified a secure server with a call to
SetConfigValue can also specify secure options in the call to Advertise.

4. Access the session object in the Initialize method to specify session-specific
behavior.

Use the pre-allocated MessageConfig object to access the session in the
Initialize method. For secure HTTP servers, you can set (or override) secure
configuration options setup either by default values or by previously using
SetConfigValue

After calling Advertise, the HTTP server listens for HTTP messages and can
establish sessions with HTTP clients. Code Example 18-9 provides an example
for configuring an iPlanet UDS server application:

Code Example 18-9 Configuring an iPlanet UDS server application

-- In method of server appl. that creates the server object
. . .

-- Instantiate a server object
server : myServer = new;

-- Configure a persistent session
configMgr : HTTPConfigManager = HTTPHelper().FindConfigManager();
configMgr.SetConfigValue(HTTP_CONFIG_TCPSESSION_VALUE,

HTTP_TCPSESSION_PERSISTENT);

-- Override the default value for a secure port
HTTPHelper().Advertise(server, ’port=8080’);

Configuring HTTP Sessions

572 iPlanet Unified Development Server • Programming Guide • August 2001

HTTPConfigManager
For configuring iPlanet UDS HTTP servers, the SetConfigValue method from the
HTTPConfigManager class has the following syntax:

SetConfigValue(integer config, integer value)

config specifies a configuration option

value specifies the value for the option.

Use SetConfigValue before your server application calls HTTPHelper.Advertise.
The options for configuring iPlanet UDS HTTP servers are the same as those listed
for configuring iPlanet UDS HTTP clients listed in Table 18-4 on page 569.

HTTPHelper
To enable your HTTP server application to listen for messages, call
HTTPHelper.Advertise within an event loop.

Advertise has the following syntax:

Advertise(object obj, string param)

obj is the server object you are configuring

param is a string containing one or more name=value pairs.

. . .

--

-- Now in the Initialize Method, which
-- takes a pre-allocated config object
method MyHttpServer.Initialize(input config:

HTTPSupport.MessageConfig)
begin
. . .

-- Get the session object
session : GenericSession = config.GetSession();

-- Specify the type of session
session.SetNetworkSession(HTTP_TCPSESSION_MESSAGE);
. . .
end method

Code Example 18-9 Configuring an iPlanet UDS server application (Continued)

Configuring HTTP Sessions

Chapter 18 Creating HTTP Applications 573

For example:

Advertise(my_server, ’port=80 instances=12 timeout=120’)

configures the server my_server to listen for requests on port 80, instantiates 12
instances of my_server, and sets the maximum idle time for my_server to two
minutes.

Table 18-5 lists the options for Advertise that you can configure as name/value
pairs, and also lists their default values.

Configuring Request Dispatching With HTTPServerManager
HTTPSupport uses its dispatcher to route requests to available server instances.
The dispatcher maintains a list of server instances that are currently associated
with client requests, and another list of server instances that are currently free.
Once a request is routed to a server instance, that instance is moved from the “free”
list to the “booked” list until either the request ends or the application session
between the client and that server instance is terminated. At that point the instance
is moved back to the “free” list.

There is one dispatcher per Advertise method call. To find a particular dispatcher
instance, you need the object used in the Advertise method call. The
HTTPHelper.FindServerManager method returns the server manager associated
with a particular advertised object. For example:

helper : HTTPHelper = new

//The ’obj’ parameter is the object used in the Advertise call
mgr : HTTPServerManager = helper.FindServerManager(obj);

busy : integer = mgr.activeServers();
available : integer = mgr.freeServers();
...

Table 18-5 Configuration options for Advertise

Parameter Description

Port Sets the port on which the server listens for requests. (Default
port=80 for non-secure servers, port=443 for secure servers)

Instances Sets the number of server instances used to dispatch requests.
(Default is instances=1.)

Timeout Sets the maximum idle time the server holds the connection of an
application session. (Default is timeout=0, indicating no timeout.)

Configuring HTTP Sessions

574 iPlanet Unified Development Server • Programming Guide • August 2001

The HTTPServerManager interface provides the following methods:

Method Description

ActiveServers The ActiveServers method returns the number of HTTP
server object instances in use (either booked by an
application session or used during a simple HTTP
request/response).

AddInstances The AddInstances method creates new HTTP server object
instances. The new object is immediately added to the pool
of free HTTP server objects. The original object used for the
HTTPHelper.Advertise method call is used to instantiate
the new objects. Syntax for AddInstances is:

AddInstances(n)

where n is the number of new HTTP server instances to
create.

CloseApplicationSession The CloseApplicationSession method explicitly releases a
session. The object associated with this session returns
immediately into the pool of the available free HTTP server
objects. The syntax for CloseApplicationSession is:

CloseApplicationSession(id)

where id is the session ID value to close.

FreeServers The FreeServers method returns the number of HTTP
server objects available. The sum of the ActiveServers and
FreeServers values is the total of HTTP server object
instances.

GetApplicationSessions The GetApplicationSessions method returns the list of all
the sessions that are currently in use. A session can be either
an application session explicitly established between the
client and the server, or a temporary session used to book
the server object at the time of the client request.

GetInstances The GetInstances method call returns the list of all the
HTTP server object instances. The number of objects
returned by this method call is the sum of the values
returned by the ActiveServers and FreeServers methods.

Configuring HTTP Sessions

Chapter 18 Creating HTTP Applications 575

Configuring Secure Sessions
iPlanet UDS HTTP server and client applications can be configured to implement
secure sessions that use the Secure Sockets Layer (SSL) protocol. For information
on secure sessions and the SSL protocol, refer to “Secure Sessions” on page 550,
Chapter 19, “Enabling Security,” and the iPlanet UDS online help.

Secure Client Sessions
To configure secure HTTP clients, use the same process described in “Configuring
HTTP Clients” on page 567. For system-wide configuration, use
HTTPConfigManager.SetconfigValue; for session-by-session configuration use
HTTPSession.SetSessionValue.

RemoveInstances The RemoveInstances method removes object instances
from the pool of free HTTP server objects. The value of the
number parameter specifies how many instances to remove.

If the number specified is higher than the number of objects
in the free server object pool, the remainder of objects are
freed later under one of the following circumstances:

• when objects become free again

• at the end of a session

• at the end of a request/response cycle

The syntax for RemoveInstances is:

RemoveInstances(n)

where n is the number of HTTP server instances to remove.

SetTimeout The SetTimeout method sets the timeout value associated
with the application sessions. The timeout is expressed in
seconds. If an application session is not used for the
duration of the timeout, the session is released. The syntax
for SetTimeOut is:

SetTimeOut(seconds)

where seconds is the length in seconds of the timeout.

Method Description

Configuring HTTP Sessions

576 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To configure a secure client session

1. Specify that all sessions created in your application are secure by calling
SetConfigValue in your application before creating a request object:

configMgr : HTTPConfigManager =
HTTPHelper().FindConfigManager();

configMgr.SetConfigValue(SSL_SECURE, SSL_ALWAYS);

or

1. Specify that an individual session is secure by calling SetSessionValue in your
application after creating a request object:

session : HTTPSession = new;
request.SetSession(session);
session.SetSessionValue(SSL_SECURE, SSL_ALWAYS);

After enabling a secure session, the SSL options listed in Table 18-6 are enabled.
You can then call SetConfigValue and SetSessionValue to override any default
settings.

Table 18-6 SSL options for SetConfigValue and SetSessionValue

config Option Possible values Description

SSL_SECRECY SSL_ANY SSL_MEDIUM
SSL_NONE SSL_HIGH
SSL_LOW

Specifies the level of secrecy.

If an endpoint specifies any, then
the other endpoint sets the value.
(Default)

If both endpoints specify any, then
high is the level of secrecy.

SSL_INTEGRITY SSL_ANY SSL_MEDIUM
SSL_NONE SSL_HIGH
SSL_LOW

Specifies the level of integrity.

• If an endpoint specifies any,
then the other endpoint sets the
value. (Default)

• If both endpoints specify any,
then high is the level of
integrity.

SSL_RESUME SSL_NEVER
SSL_ALWAYS

Specifies whether to automatically
resume connections.

• Always specifies always resume
the connection. (Default)

• Never specifies never resume
the connection.

Configuring HTTP Sessions

Chapter 18 Creating HTTP Applications 577

A session that has secure sessions enabled can also specify certificate settings using
the following syntax for SetConfigValue and SetSessionValue:

SetConfigValue(integer config, string value)

SetSessionValue(integer config, string value)

config specifies a configuration option

value is string specifying a pathname or password.

Table 18-7 lists the options for configuring certificates.

SSL_AUTHENTICATE SSL_SERVER
SSL_ANONYMOUS
SSL_NONE
SSL_BOTH

Specifies how a session is
authenticated.

• Server specifies authentication
for server only. (Default)

• Anonymous specifies to use a
negotiated key.

• None specifies no
authentication.

• Both specifies authentication for
both server and client.

Table 18-7 Certificate configuration settings for secure sessions

Configuration Option Description

SSL_CERTFILE String specifying the path to a certificate file

SSL_CERTPASSWORD String specifying the certificate password

SSL_CERTPASSWORDFILE String specifying the path to the certificate password file

SSL_ROOTFILE String specifying the path to the root of certificates file

SSL_ROOTPASSWORD String specifying the root of certificates password

SSL_ROOTPASSWORDFILE String specifying the path to the root of certificates
password file

Table 18-6 SSL options for SetConfigValue and SetSessionValue (Continued)

config Option Possible values Description

Configuring HTTP Sessions

578 iPlanet Unified Development Server • Programming Guide • August 2001

Secure Server Sessions
To configure secure HTTP servers, use the same process described in “Configuring
HTTP Servers” on page 570.

➤ To configure a secure HTTP session

1. In an HTTP server application, first enable secure sessions by enabling security
using the configuration manager:

configMgr : HTTPConfigManager =
HTTPHelper().FindConfigManager();

configMgr.SetConfigValue(SSL_SECURE, SSL_ALWAYS);

This enables the configuration options listed in Table 18-6 on page 576. You can
then use SetConfigValue to override the default secure settings.

2. Specify certificate settings using the version of SetConfigValue with the
following syntax:

SetConfigValue(integer config, string value)

config specifies a configuration option and value is string specifying a pathname or
password. Table 18-7 on page 577 lists the options for configuring certificates.

3. Finally, use HTTPHelper.Advertise to override the default port setting or to
override other secure configuration options.

You use name=value pairs to specify the secure configuration options to
Advertise. For example:

Advertise(my_server,
’Instances=12 Timeout=240 Integrity=HIGH’);

Table 18-8 lists the secure configuration options available for Advertise, including
their default values. Refer to Table 18-6 on page 576 for a description of these
secure settings.

Table 18-8 Secure Session Configuration Options for Advertise

Parameter Description

Secure SSL_Always, SSL_Never (Default, Secure=SSL_Never)

Secrecy None, Low, Medium, High, Any (Default, Secure=Any)

Integrity None, Low, Medium, High, Any (Default, Secure=Any)

Compression None, Speed, Size, Any (Default, Compression=None)

Resume Never, Always (Default, Resume=Always)

Authenticate Anonymous, Server, Both, Any (Default, Authenticate=Anonymous)

Related Topics

Chapter 18 Creating HTTP Applications 579

Related Topics
Depending on the nature of your application you may find the following topics
useful.

Encoding and Decoding With Base64
To ensure safe transport of various data types across 7-bit networks you can
encode the data using the HTTPBaseMessage.EncodeBase64 method:

encodeBase64(’plainText’)

plainText is the data you want encoded. The output of this method is a string of
encoded data.

To decode Base64-encoded data, use the HTTPBaseMessage.DecodeBase64
method:

DecodeBase64(’encodedText’)

encodedText is the data you want to decode. The output of this method is a string of
decoded data.

Character Sets in Messages
By default, iPlanet UDS uses whatever character set you have configured at the
operating system level. For instance, if your operating system is configured for
Latin-1, that is what iPlanet UDS uses.

iPlanet UDS has the ability to do some degree of character set conversion on its
own. Generally, this means that if the character sets map cleanly to each other, then
iPlanet UDS can do the conversion properly. However, in cases where one
character set has characters for which there is no corresponding character in the
other set, iPlanet UDS converts what it can and those characters that do not map
cleanly may be represented as meaningless data. This is most likely to happen
when converting multi-byte character sets to 7-bit sets.

If your application spans locales that use different character sets, and one of those
character sets is a superset of all of them, you should use that one in all locales if
practical. Doing this means that no conversion needs to be done at all. However,
there may be cases where none of the character sets being used is a complete
superset of them all. In such cases, your best bet is to use the most inclusive set and
be aware that some data may not be able to be represented in the less inclusive
character sets.

Related Topics

580 iPlanet Unified Development Server • Programming Guide • August 2001

581

Chapter 19

Enabling Security

This chapter introduces the classes that implement Secure Sockets Layer (SSL)
services. SSL is a standard security protocol that uses encryption and
authentication techniques to protect communication on corporate intranets and
internets. iPlanet UDS’s runtime services support the SSL connection as well as the
building of certificates for encryption and authentication.

A detailed description of each SSL class is provided in online help.

About SSL
SSL (Secure Sockets Layer) is a security protocol that protects communication on
corporate intranets and internets. Originally developed by Netscape, SSL is a de
facto standard supported by most Web browsers and servers.

Constructed as a separate layer within the Internet protocol architecture, SSL itself
consists of two main layers, a data layer and a record layer. The data layer is where
SSL messages are created and the record layer formats and frames the messages,
passing them to the underlying transport layer for transmission.

The Transmission Control Protocol (TCP) provides secure transport and protects
data transferred over various Internet protocols, including Hypertext Transfer
Protocol (HTTP), File Transfer Protocol (FTP), and Net New Transfer Protocol
(NNTP).

SSL secures data in three important ways by providing:

• Secrecy of the connection. An initial handshake defines a secret key. Symmetric
cryptography, in which both parties must construct and share a secret key, is
then used for data encryption (for example, DES or RC4).

About SSL

582 iPlanet Unified Development Server • Programming Guide • August 2001

• Authentication of senders and receivers. Asymmetric or public key
cryptography (with a public/private key pair) is used for authentication (for
example, using the RSA standard).

• Message integrity (accurate and complete preservation of message content).
Message digests (MD5 or SHA) are used for MAC (Message Authentication
Code) computations and to detect tampering.

An extensible framework in SSL enables new public key and encryption methods
to be incorporated as needed.

How SSL Works
SSL support in Web browsers is mainly transparent to the end user. Netscape and
Microsoft Internet Explorer browsers display lock icons in the status bar at the
bottom of the window. The icon appears locked when the client is using an
SSL-secured web site and unlocked when the connection is not secured. Web sites
that require SSL display HTTPS rather than HTTP in the prefix of the URL, because
SSL is the underlying mechanism for HTTPS. Browsers are typically preloaded
with public keys from certificate authorities. The client system uses one pair of
keys to secure the data it sends.

On the server, SSL must be enabled and the server supplied with public key
certificates from the same certificate authorities used by the client systems. You set
up the server to use these certificates. The server uses its own pair of keys to secure
the data it sends.

The client and server prepare for SSL-secured communications by stepping
through the SSL handshake protocol, which allows the client and server to
authenticate each other and negotiate an encryption algorithm and keys before the
application sends or receives any data. The handshake protocol coordinates client
and server states as the messages are exchanged and processed.

When the protocol completes successfully, data can be transmitted. SSL fragments
the data into manageable blocks, applies a MAC, encrypts the data, and sends the
result. At the other end, the data is decrypted, verified, reassembled, and then
delivered to end clients as appropriate.

SSL Services

Chapter 19 Enabling Security 583

SSL Services
An iPlanet UDS application can secure communications by using SSL with an
external process or program that is running locally or on another host. An iPlanet
UDS application can exchange data with a Web browser, a Java, C, or BASIC
program, telnet, HTTP, and so on.

UDS complies with and defaults to SSL 3.0. For details of the SSL 3.0 specification,
see http://home.netscape.com/eng/ssl3/draft302.txt.

UDS supports the following cryptography standards, which are used in many SSL
implementations:

• X.509 certificates in ASN1.0/DER (Abstract Syntax Notation Digital Encoding
Rules)

• PKCS #7 format

• PKCS #12 format

• The signature algorithms RSA (Rivest Shamir Adelman) and DSA (Digital
Signature Algorithm)

• The message digests MD5 (Message Digest 5) and SHA-1 (Secure Hash
Algorithm)

TOOL supports the following types of certificates:

• Client SSL certificates to identify clients to servers. Client authentication is
optional in SSL sessions.

• Server SSL certificates to identify servers to clients. Server authentication is
required for an SSL session.

• Certificate authority certificates, also known as AcceptableRoot certificates.
This is a set of root or CA certificates that are considered trustworthy. If the
certification path for a certificate leads to a certificate in this list, the connection
is allowed.

SSL support is provided for HTTP client or server applications that use the iPlanet
UDS HTTPSupport library. For more information, refer to Chapter 18, “Creating
HTTP Applications” on page 543. The UDS online help also contains information
on building secure HTTP applications.

SSL Classes

584 iPlanet Unified Development Server • Programming Guide • August 2001

SSL Classes
SSL services available from iPlanet UDS provide security for the connection by:

• Returning the attribute values negotiated between a client and server during
the initial SSL handshake. These values indicate the SSL version, whether the
open connection can be resumed, the secrecy and integrity algorithms, the
certificates and certificate roots, and the connection states.

• Letting you set automatic renegotiation of security parameters at a fixed time
interval

Services related to certificates include:

• Reading and writing of certificate contents

• Creating and verifying message digests

• Identifying the public/private key pair type (for example, RSA for key
exchange or RSA for digital signing)

• Basic management and testing of certificates

SSL is supported through enhancements to ExternalConnection. A UDS
application uses the ExternalConnection class to provide communications with an
external process or program that is running locally or on another host.

Classes that support SSL and the inheritance hierarchy that determines their
relation are shown in Figure 19-1:

SSL Classes

Chapter 19 Enabling Security 585

Figure 19-1 SSL Class Hierarchy

The following table lists and describes the classes that provide SSL services. Each
SSL class is explained in detail in the online help.

Class Description

SSLExternalConnection Adds security for network communications between two
points (peer to peer or client to server) when one of the points
is a UDS application. Attribute values indicate the SSL version,
whether the open connection can be resumed, the secrecy and
integrity algorithms, the certificates and certificate roots, and
the connection states.

SecurityManager Provides runtime security services and basic certificate testing
and management. You can use these services in conjunction
with your own certificate management system.

Digest SecurityManager

External-
Connection

Certificate

SSLExternal-
Connection

Object

Key

SSL Classes

586 iPlanet Unified Development Server • Programming Guide • August 2001

Working with Certificates
The SecurityManager class provides methods for importing, exporting, issuing,
and verifying certificates. It contains additional methods for working with message
digest objects and generating keys. For more information on the SecurityManager
class, refer to online help.

iPlanet UDS provides the ossecdrv diagnostic utility, which you can use for
debugging or for creating certificates for testing purposes. The ossecdrv utility is in
the following location:

$FORTE_ROOT/install/diag/bin

Certificate Enables the creation and reading of X.509 certificate contents.
The contents include SSL version and various certificate
properties: serial number, algorithm identifiers, issuer, validity
period, subject, subject’s public key, optional subject and issuer
unique IDs and optional extensions.

Key Contains the state information for a public/private key pair
and identifies them as one of the following: RSA_KEYX (for
key exchange only), RSA_SIGN (authentication with RSA
digital signature), or DSA_SIGN (authentication with DSA
digital signature).

Digest Provides the state information needed for creating and
verifying the message digest or fingerprint.

CAUTION The osscecdrv utility is provided for testing and debugging
purposes only. It is not designed for use in a production
environment.

Class Description

SSL Classes

Chapter 19 Enabling Security 587

Creating a Root Certificate
The following script creates a root certificate, which can be used for testing
purposes. Save this script as a file (for example, CreateRootCert.csc) and use it as
input to ossecdrv.

ossecdrv -i CreateRootCert.csc

Code Example 19-1 Creating a root certificate for testing SSL

#
Generate a root certificate for test purposes
Save the cert and key in rootkey.dat
Save the cert in root.dat
Save the root in roots.dat
#
GenerateKey RSA_SIGN
CreateCertificate
SetCertNotBefore 01-jan-1998
SetCertNotAfter 01-jan-2009
SetCertSerialNumber 0x01
SetCertSubject country US
SetCertSubject organization "Sun Microsystems Inc."
SetCertSubject organizationunit1 "Forte Tools"

SetCertKeyUsage 6
SetCertBasicConstraints 0
SetCertKey current
IssueCertificate
VerifyCertificate
ExportCertificate root
ExportWrite rootkey.dat
ExportCertificate
ExportWrite root.dat
AddCertificateToSet
SaveCertificate
ExportSetOfCertificates roots
ExportWrite roots.dat

SSL Classes

588 iPlanet Unified Development Server • Programming Guide • August 2001

Creating a Leaf Certificate
The following script creates a leaf certificate, which can be used for testing
purposes. A leaf certificate is any certificate in the certificate hierarchy other than
the root certificate.

Save this script as a file (for example, CreateLeafCert.csc) and use it as input to
ossecdrv.

ossecdrv -i CreateLeafCert.csc

Code Example 19-2 Creating a leaf certificate for testing SSL

#
Generate a leaf certificate for test purposes
Save the cert and key in leafkey.dat
Save the cert in leaf.dat
#
GenerateKey RSA_SIGN
CreateCertificate
SetCertNotBefore 01-jan-1999
SetCertNotAfter 01-jan-2008
SetCertSerialNumber 0x01
SetCertSubject country US
SetCertSubject organization "Sun Microsystems Inc."
SetCertSubject organizationunit1 "Forte Tools"
SetCertSubject organizationunit2 "QA"
SetCertSubject name "Leaf Certificate"
SetCertSubject locality "Oakland"

SetCertKey current
IssueCertificate saved
VerifyCertificate
ExportCertificate leaf
ExportWrite leafkey.dat
ExportCertificate
ExportWrite leaf.dat

Code Examples

Chapter 19 Enabling Security 589

Code Examples
This section contains code examples that show how a client can communicate with
a secure server.

Code Example 19-3 shows how a client can request server authentication and read
the certificate contents.

Code Example 19-3 Requesting server authentication

ec : SSLExternalConnection = new;
ms : MemoryStream = new;
certificate : Certificate;
rLen : i4;
wLen : i4;

-- We want the server to be authenticated.
ec.Authenticate = SSLExternalConnection.SERVER;

-- Try something. Equivalent to https://www.sun.com/
ec.Open(’www.sun.com’, 443, Nil, 0);

-- Take a look at the servers certificate chain.
certificate = ec.OtherCertificate;

-- Request the default.
ms.Open(SP_AM_READ_WRITE, FALSE);
ms.WriteText(’HTTP 1.0\nGET \n\n’);
wLen = ms.Size;
ec.Write(ms, wLen);

-- Read back the response
while TRUE do
 rLen = 8192;
 ec.Read(ms, rLen);
 if (rLen = 0) then
 exit;
 end if;

 -- Process rLen characters of the response here.

end while;

Code Examples

590 iPlanet Unified Development Server • Programming Guide • August 2001

Code Example 19-4 shows how a secure server can supply its certificate for
authentication and read anything sent back by the client. First, an authenticated
session is established with the server supplying its certificate. The server then
listens for connections, reading requests and writing responses for each connection.

Code Example 19-4 Secure server supplying certificate for authentication

ec : SSLExternalConnection = new;
c : ExternalConnection;
ms : MemoryStream = new;
cert : Certificate;
rLen : i4;
wLen : i4;

-- We want SERVER authenticated connections
ec.Authenticate = SSLExternalConnection.SERVER;

-- Here is the servers certificates (setup elsewhere)
ec.MyCertificate = cert;

-- For each connection
while TRUE do
 c = ec.StartListening(443);

 -- Read the request.
 ms.Open(SP_AM_READ_WRITE, FALSE);
 rLen = 8192;
 c.Read(ms, rLen);
 ms.Close;

 -- Write a response.
 ms.Open(SP_AM_READ_WRITE, FALSE);
 ms.WriteText(’401’);
 wLen = ms.Size;
 c.Write(ms, wLen);
 ms.Close;
 c.Close;
end;

Code Examples

Chapter 19 Enabling Security 591

Code Example 19-5 shows how to set up an array of certificates as an
AcceptableRoots certificate.

Code Example 19-5 Setting up an AcceptableRoots certificate

ec : SSLExternalConnection;
c : Certificate;
a : Array of Certificate;
b : BinaryData;
s : TextData;

-- Create an array of certificates. Used as the AcceptableRoots
-- of a Certificate.

-- Read a certificate from a file into a BinaryData.
-- The certificate file can be created by exporting
-- a root certificate from a browser.

-- Normally a certificate does not need to be encrypted if
-- it does not include a private key.
c = task.Part.SecMgr.ImportCertificate(b, Nil);

-- Add a certificate to an array.
a.AppendRow(c);

-- When you have all the certificates in the array then
-- export the set of certificates. This is usually exported
-- with a password so that it cannot be tampered with.
-- Write the result to a file for future use.
b = task.Part.SecMgr.ExportCertificates(a, s);

-- The reverse is a little easier. Read the certificates file
-- into a BinaryData including the password.
a = task.Part.SecMgr.ImportCertificates(b, s);

-- Associate the set of certificates
-- with an SSLExternalConnection
ec.AcceptableRoots = a;

-- AcceptableRoots are checked by a client to determine if
-- certificates being used by the server should be trusted
-- by us. AcceptableRoots are checked by a server is a similar
-- manner when a client is being authenticated.

Code Examples

592 iPlanet Unified Development Server • Programming Guide • August 2001

593

Chapter 20

Using the XMLDOM2 Library

The Document Object Model (DOM) is an API that provides a programmatic way
of manipulating objects within well-formed XML documents. Using DOM,
programmers can navigate the logical structure of a document, and can add,
modify, and delete document objects and content. The iPlanet UDS XMLDOM2
class library supports the core functionality of the DOM Level 2 specification, as
described in http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/.

This document covers the following topics:

• XML namespaces, on page 594

• Tree-based APIs, on page 595

• The Distributed Object Model, on page 595

• The XMLDOM2 classes, on page 600

• DOM Level 2 features, on page 601

• Upgrading from DOM Level 1, on page 602

What Are XML Namespaces?

594 iPlanet Unified Development Server • Programming Guide • August 2001

What Are XML Namespaces?
XML namespaces are used to qualify attribute and element names in XML
documents, by associating them with URI references that identify unique
namespaces. This allows applications to distinguish similarly named elements and
attributes from different XML vocabularies, even if they are mixed together in the
same document. These names are shortened by using prefixes. Prefixes are bound
to namespaces by using the xmlns attribute.

A prefixed name is referred to as a qualified name. The two components of a
qualified name are the prefix and the local name. For example:

<xsl:output xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”/>

In this example, the first part “xsl” is the prefix, and the second part “output” is the
local name. Together they form the qualified name.

When DOM elements and attributes are created they are permanently associated
with a namespace URI.

Neither the validity of a namespace, nor the mapping between namespace prefixes
and URIs, is checked by the DOM. These functions must be implemented at the
application level. The DOM also does not perform any validation on namespace
prefixes and URIs; it assumes both to be properly formed, and it is the
responsibility of the application to ensure that they are.

Tree-Based APIs

Chapter 20 Using the XMLDOM2 Library 595

Tree-Based APIs
XML parsers operate in one of two ways: either they generate a series of events,
each corresponding to the parsing of a single XML syntactic unit (start tag, datum,
end tag, etc.), or they create a tree representing the hierarchy of elements in the
XML document. The DOM does the latter, which is called tree-based parsing.

Advantages of Using Tree-Based APIs
The primary advantage of tree-based parsing is that the resulting tree represents
the entire document, and once the tree has been constructed every parse node on
the tree is immediately available. For applications where specific nodes are
manipulated tree-based parsing is very efficient.

Restrictions When Using Tree-Based APIs
Tree-based parsing has two major drawbacks: First, for large documents, creating
an in-memory tree of the entire document requires significant memory resources.
Second, the parse nodes on the tree do not become available until the entire
document has been parsed.

The Document Object Model
The Document Object Model is a way of representing well-formed XML
documents as hierarchies of named objects, each of which can be manipulated in
various ways. It is a public standard, managed by the W3C (http://www.w3.org),
and is available in a number of programming languages, including TOOL.

DOM Trees
As a DOM parser processes a document it creates in memory a tree structure
representing the relationship of the objects in the document. The outermost object
in the document becomes the root node of the tree. Each successive object is added
as a subnode of the node within which it is nested. Branches are created when a
node has more than one child node. Leaf nodes are those nodes at the end of a
branch, that have no child nodes.

The Document Object Model

596 iPlanet Unified Development Server • Programming Guide • August 2001

DOM Tree Examples
For example, consider the following XML document fragment:

When parsed, this fragment would produce a node tree that looked like this:

Figure 20-1 Simple XML DOM Tree

In this tree the root node is “A.” Its first child is a text node, and its second and
third are both “ENTRY” elements. Each of these ENTRY elements contains text.

Code Example 20-1 Simple XML Sample

<A>
<ENTRY>
LAST_NAME=”Appleseed”
FIRST_NAME=”Johnny”
ADDRESS=”1417 Gravenstein Way”
CITY=”Oakland”
STATE=”California”
ZIPCODE=”94612”
PHONE=”510-111-2222”
EMAIL=”jappleseed@orchard.org”
</ENTRY>
<ENTRY>
LAST_NAME=”Arthur”
FIRST_NAME=”Melvin”
ADDRESS=”921 Boulevard St.”
CITY=”Tehachapi”
STATE=”California”
ZIPCODE=”91218”
PHONE=”432-999-1111”
EMAIL=NIL
</ENTRY>

<A>

<ENTRY>

<text>

<ENTRY>

<text>

<text>

The Document Object Model

Chapter 20 Using the XMLDOM2 Library 597

Note the first text node (the leftmost node under A). Such text nodes occur when
whitespace exists in a document between elements of actual content. Typically they
are spaces, tabs, or carriage return/line feeds. While it is easy to forget or ignore
these text nodes, be aware that the XML parser treats them as being significant.

Creating DOM Trees
A DOM tree can be created either by importing an existing text document into the
DOM with the Document.ImportDocument() method, or it can be built by invoking
various methods for creating particular objects. The following table identifies
methods for creating objects.

For example, you could invoke the Document.createElement() method to create a
new element called “ENTRY” and add it as a child of the element “root”:

e:Element = doc.createElement(tagName=’ENTRY’)
root.AppendChild(e);

Table 20-1 Methods for Creating Objects

Object Method

Attribute Document.createAttribute()

Attribute with namespace Document.createAttributeNS()

CDATASection Document.createCDATASection()

Comment Document.createComment()

Document DOMImplementation.createDocument()

DocumentFragment Document.createDocumentFragment()

DocumentType DOMImplementation.createDocumentType()

Element Document.createElement()

Element with namespace Document.createElementNS()

EntityReference Document.createEntityReference()

ProcessingInstruction Document.createProcessingInstruction()

TextNode Document.createTextNode()

The Document Object Model

598 iPlanet Unified Development Server • Programming Guide • August 2001

Reading DOM Trees
All objects in a DOM tree are accessible by using the appropriate GET method. The
following methods fetch objects at various points in the tree:

Manipulating DOM Trees
The objects in a DOM tree can also be modified, using various methods. Elements
can have their values set and modified, and in some cases can be replaced with
other elements. The following table summarizes some of the methods that can be
used to modify objects in a DOM tree.

Table 20-2 Methods for Fetching Objects

Method What it fetches

Node.getChildNodes() Returns a NodeList containing all of the children of this
node. If there are no children, this is a NodeList containing
no nodes.

Node.getFirstChild() Returns the first child of this node. If there is no such node,
this returns NIL.

Node.getLastChild() Returns the last child of this node. If there is no such node,
this returns NIL. If the node has only one child
getLastChild() returns the same result as getFirstChild().

Node.getNextSibling() Returns the node immediately following this node. If there
is no such node, this returns NIL.

Node.getParentNode() Returns the parent of this node. All nodes, except Attr,
Document, DocumentFragment, Entity, and Notation may
have a parent. However, if a node has just been created and
not yet added to the tree, or if it has been removed from the
tree, getParentNode returns NIL.

Node.getPreviousSibling() Returns the node immediately preceding this node. If there
is no such node, this returns NIL.

Table 20-3 Methods for modifying objects or their contents

Object Method

Attribute Attr.setValue()

CDATASection Node.setNodeValue()

Comment CharacterData.replaceData(), CharacterData.setData()

Document Node.setNodeValue()

The Document Object Model

Chapter 20 Using the XMLDOM2 Library 599

Nodes of all types can be added, removed, and copied with the following methods:

Text Nodes
Text data can be fetched by range, by specifying a byte offset at which the range
begins and a length (in bytes) from the offset, using the
CharacterData.substringData() method. Similarly, text data can be inserted into a
text node by invoking the CharacterData.insertData() method. Text nodes can be
divided using the Text.splitText() method, thus creating two siblings from a single
node; they can also be combined, using the Node.normalize() method.

Like TextData objects, text node offsets are byte offsets, and start from 0. This is
important when working with multi-byte character sets.

DocumentFragment Node.setNodeValue()

Element Node.setNodeValue()

EntityReference Node.setNodeValue()

NamedNodeMap NamedNodeMap.removeNamedItem(),
NamedNodeMap.setNamedItem()

ProcessingInstruction ProcessingInstruction.setData(),
ProcessingInstruction.setNodeValue()

TextNode CharacterData.replaceData(), CharacterData.setData(),
Text.splitText(), Normalize()

Table 20-4 Methods for adding, removing, and copying nodes

Method Action

Node.appendChild() Adds node as a child of specified node

Node.insertBefore() Adds node above the specified node

Node.removeChild() Removes a child of the specified node

Node.replaceChild() Replaces the specified child node with another node

Node.cloneNode() Copies a node

Table 20-3 Methods for modifying objects or their contents (Continued)

Object Method

The Document Object Model

600 iPlanet Unified Development Server • Programming Guide • August 2001

The DOM API Classes
The following table summarizes the DOM API classes.

Table 20-5 The DOM API classes

Class or Interface Description

Attr Represents an attribute in an Element object.

CDATASection Used to escape blocks of text containing characters that
would otherwise be parsed as markup tags.

CharacterData Abstract base class for tree node classes containing character
data from the document.

Comment Represents the content of a comment in an XML document.

Document Represents the entire XML document. It is the “root” of the
document tree, and provides access to the document’s data
and type information.

DocumentFragment Provides a “lightweight” object that can be used to store
sections of a document.

DocumentType Provides a means of reading a list of entities defined for the
particular document type of the current document.

DOMException DOM methods raise exceptions of this class when error
conditions are encountered.

DOMImplementation Provides methods for performing operations that are
independent of any particular instance of a document.

Element Represents an element in an XML document.

Entity Represents a parsed or unparsed entity in an XML document.

EntityReference Represents an entity within or outside of the current
document. Note that the XML parser may expand entity
references when creating the document tree.

NamedNodeMap Used to represent collections of nodes that can be accessed by
name, but that have no inherent order.

Node Node is the primary datatype of the Document Object Model,
and is the base class for all document tree node classes.

NodeList Provides an ordered collection of nodes.

Notation Represents a notation declared in the DTD.

ProcessingInstruction Represents a “processing instruction” in an XML document.

Text Represents the textual content of an Element or Attribute.

The Document Object Model

Chapter 20 Using the XMLDOM2 Library 601

DOM Level 2 Features
DOM Level 2 provides a number of enhancements over Level 1.

Support for Namespaces
The iPlanet UDS XMLDOM2 library includes a number of methods for creating
and referencing nodes with namespace prefixes prepended to their URIs. This
makes use of the XML namespaces more straightforward than in DOM Level 1,
since the application need not parse qualified names, nor manage prefix bindings.

Improved Exception Handling
DOM Level 2 provides 5 new exception codes, each of which represent a condition
causing an operation to fail. The following table summarizes the new exception
codes for DOM Level 2.

DOM Object Attributes Available as TOOL Virtual Attributes
The W3C specification for DOM Level 2 includes attributes for the various class
types, which are implemented in the XMLDOM2 library as TOOL virtual
attributes. These attributes were not available in the XMLParser library DOM Level
1 implementation.

Strings as Parameters to Text Functions and as TextData Types
The DOM Level 2 specification stipulates that applications must encode DOMString
data using the UTF-16 character set. In the XMLDOM2 library the DOMString
datatype is mapped to the TOOL String type, and the TextData type is allowed as
appropriate. Offset values and lengths are specified in bytes, exactly as they are in
the TextData class.

Table 20-6 New Exception Codes for DOM Level 2

Exception Code Exception

INVALID_ACCESS_ERR A parameter or an operation is not supported by the
object.

INVALID_MODIFICATION_ERR An attempt is made to modify the type of the object.

INVALID_STATE_ERR An attempt is made to use an object that is not, or is
no longer, usable.

NAMESPACE_ERR An attempt is made to create or change an object
that is incorrect in terms of namespaces.

SYNTAX_ERR An invalid or illegal string is specified.

Upgrading from DOM Level 1

602 iPlanet Unified Development Server • Programming Guide • August 2001

Upgrading from DOM Level 1
The iPlanet UDS XMLDOM2 library supports backwards compatibility for
applications based on DOM Level 1. The XMLParser library (the UDS
implementation of DOM Level 1) is still included in UDS, thus providing complete
compatibility with existing applications.

However, be aware that in DOM Level 2 some parameter names and types have
changed, and this may require modification of application code in order to switch
from XMLParser to XMLDOM2.

In addition, if you want to make use of the namespace support included in DOM
Level 2 you will need to review your current application code and rename
elements and attributes to include namespace data.

603

Chapter 21

Using the XMLSAX2 Library

The Simple API for XML (SAX) is a library that provides a programmatic way of
reading well-formed XML documents. SAX parsers convert XML documents into a
sequence of parse events, for which user-supplied handlers can register.

SAX is not a public standard. It was developed from the input of a group of XML
developers, and is managed by Dave Megginson. While it does not have the same
official status as the various libraries standardized by the W3C organization, SAX
has become a de facto standard among XML developers.

The iPlanet UDS XMLSAX2 class library supports the core features and properties
of SAX Level 2, as defined at http://www.megginson.com/SAX/Java/index.html.

This chapter includes sections on the following topics.

• XML Namespaces, on page 604

• SAX and the Event Handling Model, on page 604

• Exception Handling in SAX Level 2, on page 610

• New Features in SAX Level 2, on page 610

• Upgrading from SAX Level 1, on page 611

• The XMLSAX2 classes, on page 611

XML Namespaces

604 iPlanet Unified Development Server • Programming Guide • August 2001

XML Namespaces
XML namespaces are used to qualify attribute and element names in XML
documents, by associating them with URI references that identify unique
namespaces. This allows applications to distinguish similarly named elements and
attributes from different XML vocabularies, even if they are mixed together in the
same document. These names are shortened by using prefixes. Prefixes are bound
to namespaces by using the xmlns attribute.

A prefixed name is referred to as a qualified name. The two components of a
qualified name are the prefix and the local name. For example:

<xsl:output xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”/>

In this example, the first part “xsl” is the prefix, and the second part “output” is the
local name. Together they form the qualified name.

When SAX elements and attributes are created they are permanently associated
with a namespace URI.

Neither the validity of a namespace, nor the mapping between namespace prefixes
and URIs, is checked by SAX. If required, these functions must be implemented at
the application level.

SAX and the Event Handling Model
At present there are two distinct models for parsing XML documents. In tree-based
parsing, as implemented with the Document Object Model (DOM), the parser scans
the XML document and creates an in-memory tree representing the document
elements and their relationships to each other. The main advantage of tree-based
parsing is that the resulting tree represents the entire document, and once the tree
has been constructed every parse node on the tree is immediately available. For
applications where specific nodes are manipulated tree-based parsing is very
efficient. However, tree-based parsing uses large amounts of memory, and does
not make the document available until the entire tree has been created.

The other model for parsing XML documents is event-based parsing, as implemented
with the SAX library. In event-based parsing the parser scans the XML document
and generates events for each syntactic element it finds. Applications can register
event handlers for these events, and can initiate any sort of processing they wish on
receiving events.

SAX and the Event Handling Model

Chapter 21 Using the XMLSAX2 Library 605

There are several advantages to event-based parsing. First, the application does not
have to wait for the parser to scan the entire document before receiving output
from the parser; events are generated immediately when the parser encounters a
syntactic element. The application can begin processing the document
immediately, without having to wait for the entire document tree to be generated.
Second, this model is very quick and efficient in searching for a particular element
in a document: the search concludes as soon as the parser has located the desired
element, and no further scanning need be done. Third, event-based parsing can be
very efficient in terms of memory use, especially if the application does not build
an in-memory representation of the entire document.

What Are Events?
It is important to note that the term event, as used herein and in other documents
relating to the SAX library, has a different meaning than that term has in the TOOL
language.

As used in SAX, the term event refers to SAX callback methods. In this context event
is completely separate from the use of the term to refer to the TOOL event handler
type.

An event occurs when the SAX parser encounters a syntactic element while
scanning an XML document. A syntactic element is anything that is meaningful
within the context of XML. This includes XML tags, actual content, and whitespace
(spaces, tabs, carriage return/line feeds). A registered event handler is called by the
parser when each XML element is encountered.

SAX and the Event Handling Model

606 iPlanet Unified Development Server • Programming Guide • August 2001

Examples of Events
Consider the following simple XML document:

As the SAX parser begins scanning this document the first event it encounters is the
beginning of the document. The first syntactic element it encounters is a “start
document” tag. Immediately following that is a text element whose content is a
carriage return. Following the carriage return is a “start form” tag.

Note that, because SAX Level 2 is namespace-aware, each element is uniquely
identified with its namespace.

When the parser has finished scanning the document it will have generated the
following series of parse events:

Code Example 21-1 Simple XML Document

<?xml version="1.0"?>

<doc xmlns:co="http://songs.ca/traditional">
<co:verse>The sun was setting in the west
The birds were singing on every tree
All nature seemed inclined for to rest
But still there was no rest for me.</co:verse>
<co:chorus>Farewell to Nova Scotia, you sea-bound coast
Let your mountains dark and dreary be
For when I am far away on the briny ocean tossed
Will you ever heave a sigh and a wish for me?</co:chorus>
<co:verse>I grieve to leave my native land
I grieve to leave my comrades all
And my parents whom I held so dear
And the bonnie, bonnie lassie that I do adore.</co:verse>
<co:verse>The drums they do beat and the wars to alarm
The captain calls, we must obey
So farewell, farewell to Nova Scotia’s charms
For it’s early in the morning I am far, far away.</co:verse>
<co:verse>I have three brothers and they are at rest
Their arms are folded on their breast
But a poor simple sailor just like me
Must be tossed and driven on the dark blue sea. </co:verse></doc>

Code Example 21-2 Output generated by parsing simple XML document

StartDocument()
StartElement("" "doc" "doc")
Characters("\n")
StartElement("http://songs.ca/traditional" "verse" "co:verse")

SAX and the Event Handling Model

Chapter 21 Using the XMLSAX2 Library 607

Characters("The sun was setting in the west")
Characters("\n")
Characters("The birds were singing on every tree")
Characters("\n")
Characters("All nature seemed inclined for to rest")
Characters("\n")
Characters("But still there was no rest for me.")
EndElement("http://songs.ca/traditional" "verse" "co:verse")
Characters("\n")
StartElement("http://songs.ca/traditional" "chorus" "co:chorus")
Characters("Farewell to Nova Scotia, you sea-bound coast")
Characters("\n")
Characters("Let your mountains dark and dreary be")
Characters("\n")
Characters("For when I am far away on the briny ocean tossed")
Characters("\n")
Characters("Will you ever heave a sigh and a wish for me?")
EndElement("http://songs.ca/traditional" "chorus" "co:chorus")
Characters("\n")
StartElement("http://songs.ca/traditional" "verse" "co:verse")
Characters("I grieve to leave my native land")
Characters("\n")
Characters("I grieve to leave my comrades all")
Characters("\n")
Characters("And my parents whom I held so dear")
Characters("\n")
Characters("And the bonnie, bonnie lassie that I do adore.")
EndElement("http://songs.ca/traditional" "verse" "co:verse")
Characters("\n")
StartElement("http://songs.ca/traditional" "verse" "co:verse")
Characters("The drums they do beat and the wars to alarm")
Characters("\n")
Characters("The captain calls, we must obey")
Characters("\n")
Characters("So farewell, farewell to Nova Scotia’s charms")
Characters("\n")
Characters("For it’s early in the morning I am far, far away.")
EndElement("http://songs.ca/traditional" "verse" "co:verse")
Characters("\n")
StartElement("http://songs.ca/traditional" "verse" "co:verse")
Characters("I have three brothers and they are at rest")
Characters("\n")
Characters("Their arms are folded on their breast")
Characters("\n")
Characters("But a poor simple sailor just like me")
Characters("\n")
Characters("Must be tossed and driven on the dark blue sea. ")
EndElement("http://songs.ca/traditional" "verse" "co:verse")
EndElement("" "doc" "doc")
EndDocument()

Code Example 21-2 Output generated by parsing simple XML document (Continued)

SAX and the Event Handling Model

608 iPlanet Unified Development Server • Programming Guide • August 2001

StartDocument() and EndDocument() Methods
At a minimum every well-formed XML document will generate two events: START
DOCUMENT and END DOCUMENT. These events are unique, in that they can occur only
once in a given document, and they take no arguments.

The application responds to START DOCUMENT events by invoking the registered
ContentHandler’s StartDocument() method

END DOCUMENT events are processed with the registered content handler’s
EndDocument() method.

StartElement() and EndElement() Methods
The next most significant type of events are those that signal the beginning and end
of elements. START ELEMENT events are handled with the registered
ContentHandler’s StartElement() method, which takes three input parameters for
identifying the element: namespaceURI, localName, and qName. END ELEMENT
events are handled with the registered ContentHandler’s EndElement() method,
which takes the same input parameters as StartElement().

The StartElement() event is followed by events for all of the element’s contents, in
the order in which they occur in the document. Applications can respond by
processing the contents of the element in whatever way they chose.

Character Events
When the SAX parser encounters character data it generates a character event,
which is processed by invoking the registered ContentHandler’s Characters()
method.

NOTE The DefaultHandler class is a convenience for developers creating
content handlers. The DefaultHandler methods do nothing, and can
be overriden to implement whatever functionality the developer
wants.

Filtering Events

Chapter 21 Using the XMLSAX2 Library 609

Filtering Events
Depending on the nature of your application and the XML documents it uses, it
may be useful to filter events as they are passed from the parser to the application.

A possible use for a filter might be for type and range checking of attribute values.
For example, suppose an XML document includes an attribute for US-format social
security number. You might want to have a filter that checks to make sure the
attribute value has nine digits, and that it is appropriately formatted as three digits,
then two digits, then four digits. Or you might want to have a filter that checks to
make sure a particular attribute contains only numeric data.

Filters can also be useful during the development and testing of your application.
For example, you might want to have a filter that simply logs all events generated
by a particular document.

Filters can be arranged in chains with the FilterImpl.SetContentHandler() method,
allowing for flexible composition of event filters at runtime.

Filters are connected to XML readers by invoking the FilterImpl.SetParent()
method.

The FilterImpl Class
The FilterImpl class is a base class from which application developers can build
application-specific filters. It includes methods for filtering:

• START DOCUMENT and END DOCUMENT events

• START ELEMENT and END ELEMENT events

• character events

• ignorable whitespace events

• error events

• entity resolution events

• document locator events

• skipped entity events

• namespace prefix mapping events

• unparsed entity declaration events

Each of these methods can be subclassed to provide application-specific filtering.

Exception Handling in SAX Level 2

610 iPlanet Unified Development Server • Programming Guide • August 2001

FilterImpl also includes methods for setting event handlers, parsers, DTD handlers,
and error handlers.

The default behavior of all FilterImpl methods is to convey requests to the parent,
and convey all events to the registered handlers without modification.

Exception Handling in SAX Level 2
The default SAX Level 2 exception handling is implemented with the ErrorHandler
interface. If no error handler has been registered, the reader raises the exception if it
is fatal. XML documents that are not well-formed raise fatal errors.

SAXParseException includes methods for locating errors within the XML
document.

Alternatively, developers can create application-specific exception handling
mechanisms by implementing the ErrorHandler interface, and then registering an
instance with the parser, by using the XMLReader.setErrorHandler() method.

New Features in SAX Level 2
SAX Level 2 adds several new features.

Support for Namespaces
The XMLReader interface (which SAX parsers implement) includes support for
namespace processing. This applies to elements and attributes, which in SAX Level
1 were identified only by a qualified name. With the XMLSAX2 library, all of the
ContentHandler methods are capable of processing elements and attributes
identified by the combination of a URI, local name and qualified name.

Configurable Parsers
SAX Level 2 parsers are configurable via the XMLReader.setFeature() method,
which enables the developer to specify a feature (by namespace) and turn that
feature on for a particular parser. An example of such a feature is XML validation.
If a particular feature is not supported by the parser a SAXNotSupportedException
is thrown.

Upgrading from SAX Level 1

Chapter 21 Using the XMLSAX2 Library 611

Other Features
Skipped entity events can now be reported, via the
ContentHandler.skippedEntity() method. This is useful, because parsers may skip
external entities or entities that were declared in an external DTD.

The Attributes interface enables access to attributes by index value, and adds
support for attribute namespaces.

Upgrading from SAX Level 1
The iPlanet UDS includes both the XMLParser and XMLSAX2 libraries, and thus
SAX Level 1 applications remain fully supported.

Developers wanting to make use of the SAX Level 2 features need to be aware that
Level 1 applications will need to be modified to support namespaces. Additionally,
some parameter names and types have changed, and existing applications may
need to be modified accordingly. In particular, DocumentHandler
implementations must be modified to become ContentHandler implementations.
In addition, SAX Level 2 uses XMLReaders, instead of Parsers.

The XMLSAX2 Classes and Interfaces
The following table summarizes the classes and interfaces that make up the
XMLSAX2 library. (Note that interface names are italicized.)

Table 21-1 The XMLSAX2 classes and interfaces

Class or Interface Description

AttributeList Original SAX Level 1 interface for reporting an
element’s attributes. Does not support
Namespace-related information. Now deprecated.
Included for support of SAX Level 1 applications.

Attributes Allows access to a list of attributes, by index,
namespace, or local name.

The XMLSAX2 Classes and Interfaces

612 iPlanet Unified Development Server • Programming Guide • August 2001

ContentHandler Main interface for implementing content handlers. If the
application needs to be informed of basic parsing
events, it implements the ContentHandler interface and
registers an instance with the SAX parser using the
setContentHandler() method. The parser uses the
instance to report basic document-related events like
the start and end of elements and character data.

DefaultHandler Convenience base class for SAX2 applications. Provides
default implementations for all callbacks in the four
core SAX2 handler classes: EntityResolver,
DTDHandler, ContentHandler, and ErrorHandler.

DocumentHandler Main event-handling interface for SAX1. Now
deprecated. Has been replaced by ContentHandler,
which provides Namespace support and reporting of
skipped entities. Included for support of SAX Level 1
applications.

DTDHandler Used to receive notification of basic DTD-related events.
If an application needs information about notations and
unparsed entities the application implements
DTDHandler and registers an instance with the SAX
parser using the parser’s setDTDHandler() method. The
parser uses the instance to report notation and
unparsed entity declarations to the application.

EntityResolver Basic interface for resolving entities. If an application
needs to implement customized handling for external
entities, it must implement this interface and register an
instance with the SAX driver using the
setEntityResolver() method. The XML reader will then
allow the application to intercept any external entities
(including the external DTD subset and external
parameter entities, if any) before including them.

ErrorHandler Basic interface for SAX error handlers. If an application
needs to implement customized error handling, it must
implement this interface and then register an instance
with the XML reader using the setErrorHandler()
method. The parser will then report all errors and
warnings through this interface.

HandlerBase Default base class for SAX Level 1 handlers. Now
deprecated. Replaced with the DefaultHandler class.
Included for support of SAX Level 1 applications.

Table 21-1 The XMLSAX2 classes and interfaces (Continued)

Class or Interface Description

The XMLSAX2 Classes and Interfaces

Chapter 21 Using the XMLSAX2 Library 613

InputSource Single input source for an XML entity. Allows
application to encapsulate information about an input
source in a single object, which may include a public
identifier, a system identifier, and/or a character
stream.

Locator Used for associating a SAX event with a document
location. If the parser provides location information to
the application, it does so by implementing this
interface and then passing an instance to the application
using the content handler’s setDocumentLocator()
method. The application can use the object to obtain the
location of any other content handler event in the XML
source document.

LocatorImpl Convenience implementation of Locator. Available for
application writers, who can use it to make a persistent
snapshot of a locator at any point during a document
parse.

Parser Basic interface for SAX Level 1 parsers. Now
deprecated. Replaced in SAX Level 2 by XMLReader,
which includes namespace support and greater
configurability and extensibility.

ParserFactory Class for creating SAX Level 1 parsers. Now
deprecated. Replaced by XMLReaderFactory. Included
for support of Level 1 applications.

SAXException Contains basic error or warning information from either
the XML parser or the application. Can be subclassed to
provide additional functionality. SAX handlers may
throw this exception or any exception subclassed from
it. If the application needs to pass through other types
of exceptions, it must wrap those exceptions in a
SAXException or an exception derived from a
SAXException.

SAXNotRecognizedException Exception class for an unrecognized identifier. An
XMLReader throws this exception when it finds an
unrecognized feature or property identifier.

SAXNotSupportedException Exception class for an unsupported operation. An
XMLReader throws this exception when it recognizes a
feature or property identifier, but cannot perform the
requested operation (setting a state or value).

Table 21-1 The XMLSAX2 classes and interfaces (Continued)

Class or Interface Description

The XMLSAX2 Classes and Interfaces

614 iPlanet Unified Development Server • Programming Guide • August 2001

SAXParseException Encapsulates an XML parse error or warning. Includes
information for locating the error in the original XML
document.

XMLFilter Interface for an XML filter. Filters can modify a stream
of events as they pass on to the final application.

XMLFilterImpl Base class for deriving an XML filter. Designed to sit
between an XMLReader and the client application’s
event handlers. By default, it does nothing but pass
requests up to the reader and events on to the handlers
unmodified, but subclasses can override specific
methods to modify the event stream or the
configuration requests as they pass through.

XMLReader Interface for reading an XML document using callbacks.
Allows an application to set and query features and
properties in the parser, to register event handlers for
document processing, and to initiate a document parse.

XMLReaderFactory Factory for creating an XML reader. Contains methods
for creating an XML reader from an explicit class name,
or for creating an XML reader from a library.

Table 21-1 The XMLSAX2 classes and interfaces (Continued)

Class or Interface Description

615

Chapter 22

Accessing Internet Directory Services

iPlanet UDS allows you to access to Internet directory services available from a
server implementing the Lightweight Directory Access Protocol (LDAP). This
chapter provides a brief overview of the LDAP protocol, and then describes how to
create an iPlanet UDS application that connects to and queries an LDAP server.

This chapter covers the following key topics:

• “LDAP Overview” on page 615

❍ “Accessing and Updating an LDAP Directory” on page 616

• “Using the iPlanet UDS LDAP Library” on page 617

❍ “Establishing an LDAP Session” on page 617

❍ “Searching an LDAP Directory” on page 619

❍ “Building LDAP Filters” on page 621

❍ “Updating an LDAP Directory” on page 623

LDAP Overview
The Lightweight Directory Access Protocol (LDAP) is a specification for access to
directory services over the Internet. An LDAP directory service stores information
as entries in a directory that is implemented as an hierarchical tree with specific
naming formats. You can query an LDAP directory to retrieve specific information
and you can also update the information in the directory.

LDAP Overview

616 iPlanet Unified Development Server • Programming Guide • August 2001

LDAP Directory Information
Information in an LDAP directory is stored as entries that describe some real-world
object (for example, a person, an organization, or a node on a network). Each entry
contains attributes that provide information about the object. Each attribute has a
type that describes the kind of information the attribute holds. An attribute can be
associated with one or more values.

Examples of attribute types include cn (for common name), mail (for email
address), and telephonenumber (for telephone number). Each type defines a syntax
that defines how to store the values for each type. For example, the syntax of the cn
type specifies that the values must be character strings and that case is ignored
during comparisons.

LDAP Directory Trees
Entries in an LDAP directory are stored as hierarchical trees—typically the top
level of the tree represents countries, followed by states and then organizations.
Some LDAP directory trees use domain names at the top level, and then branch
into organizations.

Entries use a series of one or more attribute/value pairs to form a relative
distinguished name (RDN), which must be unique among its siblings. An entry’s
distinguished name (DN) is the complete series of RDNs from the entry to the top
level of the tree. An entry’s DN is unique within the tree, and thus allows you to
reference a specific entry.

A distinguished name is represented as a set of RDN components separated by
commas ‘,’ or semi-colons ‘;’. For example, The following distinguished name
references an employee in an organization:

cn=Raggs Ginsberg, ou=Marketing, o=iPlanet, c=US

Accessing and Updating an LDAP Directory
Typically, a client to an LDAP directory server obtains directory information by
specifying a search constrained by a set of specified filters. The search query
returns matching entries with a requested set of attributes and their values. The
client can constrain the search according to the number of entries found and also
specify a timeout period for the search.

A client can perform the following operations to update an LDAP directory:

Using the iPlanet UDS LDAP Library

Chapter 22 Accessing Internet Directory Services 617

• Modify

Change the attributes and values of an entry.

• Add/Delete

Insert or remove entries from the directory.

Using the iPlanet UDS LDAP Library
The iPlanet UDS LDAP library allows you to connect to and query an LDAP
directory server for information. It also provides entry points that allow you to
update entries in an LDAP directory. To access an LDAP directory server you
perform the following steps:

1. Establish an LDAP session.

Refer to the following section, “Establishing an LDAP Session” for information
on establishing sessions.

2. Perform a directory service operation.

Typically, you query for information using filters, as described in “Searching
an LDAP Directory” on page 619.

However, you can also update an entry by adding, deleting, or modifying its
attributes and values. Refer to “Updating an LDAP Directory” on page 623 for
more information.

3. Close the LDAP session.

Refer to “Closing an LDAP Session” on page 628 for information on closing a
session.

Establishing an LDAP Session
Before an iPlanet UDS application connects to an LDAP server, it must first create
an LDAP session. The session then connects to the LDAP server by specifying the
following information about the address of the server:

• LDAP server URL

• Port number

• Type of address

Using the iPlanet UDS LDAP Library

618 iPlanet Unified Development Server • Programming Guide • August 2001

Connecting to an LDAP Server
Code Example 22-1 shows how to use LDAPSession.Open to connect to an LDAP
server.

Message IDs
After establishing a session with an LDAP server, each request to the server must
contain a unique message ID. Typically, the client application increments a counter
to guarantee unique message IDs for each request.

Authentication
After connecting to the server, the client application authenticates itself to the
server using the LDAPSession.Bind method.

Code Example 22-2 provides an example of binding to an LDAP server. When
binding to the server, you specify a unique message ID, the name of the directory
object you are binding as, and a password (if required by the server).

Code Example 22-1 Connecting to an LDAP server

-- open a connection to machine dir.iPlanet.com
aLDAP : LDAPSession = new();
aLDAP.Open(pAddress = textdata(’dir.iPlanet.com’),

pPort=389, pAddressType = CM_ADDR_INTERNET_NAME);

NOTE Many LDAP servers do not enforce the bind authentication
requirement.

Code Example 22-2 Authenticating a session with the LDAP server

-- bind as Directory Manager
messageID : integer = 1;
binddn : Textdata(value = ’cn=Directory Manager’);
passwd : Textdata(value = ’dirmanager’);

status : TextData;
status = aLDAP.Bind(messageID, binddn, password);

Using the iPlanet UDS LDAP Library

Chapter 22 Accessing Internet Directory Services 619

Searching an LDAP Directory
A search of an LDAP directory specifies various criteria, including a filter to
constrain your search, where to begin your search, the scope of the search, how
much data to return, a list of attributes to use for comparison, and an object to hold
the results of the search.

The LDAPSession.Search method has two signatures. One signature specifies a
TextData parameter to hold the result. The other specifies an array of LDAPEntry
for the result. The syntax for the first signature is:

Search(Integer messageID, TextData base, Integer scope,
Integer aliases, Integer sizeLimit, Integer timeLimit
Boolean typesOnly, LDAPFilter filter,
Array of TextData attributes, TextData result)

Table 22-1 summarizes the type of criteria you specify as parameters to Search.
Code Example 22-3 on page 620 illustrates a typical example of using the Search
method.

For more information on the Search method, refer to the online help.

Table 22-1 LDAPSession.Search Parameters

Search Parameter UDS Datatype Description

Message ID Integer The unique ID used to establish a connection with
the LDAP server.

Search Base TextData The starting point for the search. You can specify
the base node of the LDAP directory tree or a
specific node in the tree.

Scope Integer You can specify the entire LDAP directory, a
specific node, or a specific node and the child
nodes.

Aliases Integer Dereferencing aliases is currently not supported.
Specify zero to indicate do not dereference aliases.

Size Limit Integer The maximum number of entries to return for the
search. A specification of zero means no limit.

Time Limit Integer The maximum number of seconds allowed for the
search. A specification of zero means no time limit.

Types Only Boolean TRUE specifies to return just the attribute types (no
values). FALSE specifies to return the attribute
types with values.

Using the iPlanet UDS LDAP Library

620 iPlanet Unified Development Server • Programming Guide • August 2001

Code Example 22-3 provides an example of an LDAP directory search that looks
for entries in an organization where the common name (cn) begins with ‘R’, ends
with ‘G’, and contains ‘A’. The search returns the common name and simple name
for matching entries as TextData. This search is designed to return entries that
would include the entry for the employee named “Raggs Ginsberg.”

This example builds a filter to search for the individual employee. For more
information on LDAP filters, refer to “Building LDAP Filters” on page 621.

Filter LDAPFilter Specifies the conditions that must be fulfilled to find
matching entries in the directory.

Attributes Array of
TextData

A list of attributes to be returned for matching
entries.

Result TextData The result of the search, returned as text.

Result Array Array of
LDAPEntry

The result of the search, returned as an array of
LDAP entries.

Code Example 22-3 Specifying an LDAP directory search

-- Create a new Message ID (increment the previous Message ID)
messageID = messageID + 1;

-- Search base begins at the specified organization
aBase : TextData(’o=iPlanet.com’);

-- Search includes the search base and its immediate children
aScope : Integer = LDAP_SCOPE_WHOLE;

-- Build a search filter that specifies r*a*g for cn
aFilter : LDAPFilter;
aFilter.Type = LDAP_FILTER_SUBSTR;
aFilter.attributeValueDesc = ’cn’;
aFilter.Initial = ’r’;
aFilter.any = ’a’;
aFilter.final = ’g’;

-- Return the cn and sn attributes
theAttributeList : Array of TextData = new();
theAttributeList[1] = TextData(’cn’);
theAttributeList[2] = TextData(’sn’);

-- Specify the search:
-- Do not search any aliases

Table 22-1 LDAPSession.Search Parameters (Continued)

Search Parameter UDS Datatype Description

Using the iPlanet UDS LDAP Library

Chapter 22 Accessing Internet Directory Services 621

Building LDAP Filters
The iPlanet UDS LDAP library provides several types of filters you can use in an
LDAP directory search. This section summarizes the type of filters you can create.
For more information on the types of LDAP filters, refer to the online help.

Equal Filter
The filter type LDAP_FILTER_EQUAL specifies a string for an exact match. For
example, to search for the cn attribute value “Cosmo” (cn=cosmo), do the
following:

Greater and Less Than Filters
Two filter types and specify strings that are lexicographically greater than or less
than a specified string.

LDAP_FILTER_GEQ specifies strings greater than or equal to the specified string;
LDAP_FILTER_LEQ specifies strings less than or equal to the specified string.

-- Do not limit the number of entries
-- Do not limit how long the search takes
-- Return attributes with their values
-- Return the result in a TextData object
-- Note: reuse the status TextData object defined earlier
TextData : Result;
status = aLDAP.Search(MessageID, aBase, aScope,

 0, 0, 0, FALSE, aFilter,
 theAttributeList, Result);

NOTE Typically, an LDAP server ignores case during searches.

Code Example 22-4 Building an “equals” filter

filter : LDAPFilter = new();
filter.type = LDAP_FILTER_EQUAL;
filter.AssertionValue(’Cosmo’)
filter.attributeValueDesc.SetValue(’cn’);

Code Example 22-3 Specifying an LDAP directory search (Continued)

Using the iPlanet UDS LDAP Library

622 iPlanet Unified Development Server • Programming Guide • August 2001

For example, to search for cn attribute values that are greater than “Cosmo”
(cn>=cosmo), do the following:

Substring Filter
The filter type LDAP_FILTER_SUBSTR specifies a substring of an LDAP entry’s
attribute value. For example, to search for a cn attribute value that begins with ‘J’
and contains the string “BERT” (cn=g*funk*), do the following:

Approximate Filter
The filter type LDAP_FILTER_APPROX specifies a string for an approximate
match. For example, to search for a cn attribute value that is similar to “USIR”
(cn~=USIR), do the following:

Code Example 22-5 Building a “lexicographic greater than” filter

filter : LDAPFilter = new();
filter.type = LDAP_FILTER_GEQ;
filter.AssertionValue(’Cosmo’)
filter.attributeValueDesc.SetValue(’cn’);

Code Example 22-6 Building a substring filter

filter : LDAPFilter = new();
filter.type = LDAP_FILTER_SUBSTR;
filter.initial.SetValue(’g’)
filter.any.SetValue(’funk’);

filter.attributeValueDesc.SetValue(’cn’);

Code Example 22-7 Building a substring filter

filter : LDAPFilter = new();
filter.type = LDAP_FILTER_APPROX;
filter.AssertionValue(’usir’)
filter.attributeValueDesc.SetValue(’cn’);

Using the iPlanet UDS LDAP Library

Chapter 22 Accessing Internet Directory Services 623

Attribute Present
The LDAP_FILTER_PRESENT matches all entries that contains a specified
attribute. For example, to search for all entries where the cn attribute is present,
regardless of the value of the attribute, do the following:

Updating an LDAP Directory
The iPlanet UDS LDAP library supports the following operations to update an
LDAP directory:

• Add an entry

• Modify an entry by adding, deleting, or modifying its attributes or attribute
values

• Delete an Entry

When updating an LDAP directory, the LDAP server returns a response code that
indicates the success (or failure) of the update request.

Adding an LDAP Entry
To add an entry to an LDAP directory, create an instance of the LDAPEntry class
and specify a distinguished name (DN) for the entry. You then add LDAP
attributes and their values to an array of LDAPAttributes associated with the entry
object. Finally, you call LDAPSession.Add to add the entry to the LDAP directory.

The syntax of LDAPSession.Add is:

Add(Integer messageID, LDAPEntry entry,
TextData Result) : TextData

messageID is a unique identifier for the LDAP session.
entry is the entry you are adding
result is currently not used, but must be specified in the call.

Code Example 22-8 Building an “any attribute value” filter

filter : LDAPFilter = new();
filter.type = LDAP_FILTER_PRESENT;
filter.attributeValueDesc.SetValue(’cn’);

Using the iPlanet UDS LDAP Library

624 iPlanet Unified Development Server • Programming Guide • August 2001

Code Example 22-9 shows how to add an entry representing a new organization
employee.

Code Example 22-9 Adding an entry to an LDAP directory

-- Add an entry for an employee with the following attributes
-- ou=people o=iPlanet.com uid=rg
-- cn=Raggs Ginsberg sn=Ginsberg givenName=Raggs

-- Create a new Message ID (increment the previous Message ID)
messageID = messageID + 1;

-- Create an entry and specify its distinguished name
entry : LDAPEntry = new();
entry.DN =’uid=rg, ou=People, o=iPlanet.com’;

-- Add LDAP attributes and their values to the entry.
entry.AttList.AppendRow(LDAPAttribute());
entry.AttList[1].AttName = ’objectclass’;
entry.AttList[1].AttValueList.AppendRow(TextData(’top’));
entry.AttList[1].AttValueList.AppendRow(

TextData(’person’));
entry.AttList[1].AttValueList.AppendRow(TextData(

’organizationalPerson’));
entry.AttList[1].AttValueList.AppendRow(TextData(

’inetOrgPerson’));

entry.AttList.AppendRow(LDAPAttribute());
entry.AttList[2].AttName=’uid’;
entry.AttList[2].AttValueList.AppendRow(TextData(’rg’));

entry.AttList.AppendRow(LDAPAttribute());
entry.AttList[3].AttName = ’givenName’;
entry.AttList[3].AttValueList.AppendRow(TextData(’Raggs’));

entry.AttList.AppendRow(LDAPAttribute());
entry.AttList[4].AttName = ’sn’;
entry.AttList[4].AttValueList.AppendRow(TextData(

’Ginsberg’));

entry.AttList.AppendRow(LDAPAttribute());
entry.AttList[5].AttName = ’cn’;
entry.AttList[5].AttValueList.AppendRow(TextData(

’Raggs Ginsberg’));

-- Update the LDAP directory. Note: reuse the aLDAP session and
-- status and Result TextData objects defined earlier
status = aLDAP.Add(MessageID, entry, Result);

Using the iPlanet UDS LDAP Library

Chapter 22 Accessing Internet Directory Services 625

Modifying an Attribute for an LDAP Entry
To modify an attribute for an entry to an LDAP directory, create an instance of the
LDAPEntry class. Then specify the distinguished name (DN) for the entry you
want to modify and the type of operation you are making on the attribute of the
entry. You then add the LDAP attributes and their values you want to modify to an
array of LDAPAttributes associated with the entry object. Finally, you call
LDAPSession.Modify to modify the attribute for the entry in the LDAP directory.

The syntax of LDAPSession.Modify is:

Modify(Integer messageID, Integer type,
LDAPEntry entry, TextData Result) : TextData

messageID is a unique identifier for the LDAP session.
type see Table 22-2
entry is the entry you are modifying
result is currently not used, but must be specified in the call.

Code Example 22-10 shows how to modify the telephone number of a user in an
organization. The example first adds the phonenumber attribute, modifies its
value, and deletes the phonenumber attribute.

Table 22-2 Modification Types

Type Description

LDAP_MOD_ADD Add values listed to the attribute in the given entry, creating
the attribute if necessary.

LDAP_MOD_REPLACE Replace all existing values of the attribute in the given entry
with the new values listed, creating the attribute if it did not
already exist. A replace with no value deletes the entire
attribute if it exists, and is ignored if the attribute does not
exist.

LDAP_MOD_DELETE Delete values listed to the attribute in the given entry,
removing the entire attribute if no values are listed, or if all
current values of the attribute are listed for deletion.

Using the iPlanet UDS LDAP Library

626 iPlanet Unified Development Server • Programming Guide • August 2001

Code Example 22-10 Modifying an LDAP directory entry

-- Add, Modify, then Delete the phonenumber attribute for entry:
-- uid=lb, ou=People, o=iPlanet.com

-- Create an entry and specify its distinguished name
entry : LDAPEntry = new();
entry.DN =’uid=rg, ou=People, o=iPlanet.com’;

-- ** --
-- ADD the phonenumber attribute
Integer : Type = LDAP_MOD_ADD;

-- Create a new Message ID (increment the previous Message ID)
messageID = messageID + 1;

-- Add LDAP attributes and their values to the entry.
entry.AttList.AppendRow(LDAPAttribute());
entry.AttList[1].AttName = ’phonenumber’;
entry.AttList[1].AttValueList.AppendRow(

TextData(’555-1212’));

-- Update the LDAP directory. Note: reuse the aLDAP session and
-- status and Result TextData objects defined earlier
status = aLDAP.Modify(messageID, Type, entry, result);

-- ** --
-- Now, MODIFY the phonenumber attribute
Type = LDAP_MOD_REPLACE;
messageID = messageID + 1;

-- Change the phone number
entry.AttList[1].AttValueList[1].SetValue(’555-9999’);

-- Update the LDAP directory
status = aLDAP.Modify(messageID, Type, entry, result);

-- ** --
-- Now, DELETE the phonenumber attribute
Type = LDAP_MOD_DELETE;
messageID = messageID + 1;

-- Delete the attribute values from the entry
entry.AttList[1].AttValueList.DeleteRow(1);

-- Update the LDAP directory
status = aLDAP.Modify(messageID, Type, entry, result);

Using the iPlanet UDS LDAP Library

Chapter 22 Accessing Internet Directory Services 627

Deleting an LDAP Entry
To delete an entry from an LDAP directory, call LDAPSession.Delete with a
TextData parameter specifying the distinguished name of the entry you are
deleting.

The syntax of LDAPSession.Delete is:

Delete(Integer messageID, TextData dn) : TextData

messageID is a unique identifier for the LDAP session.
dn is the distinguished name of the entry you are deleting

Code Example 22-11 shows how to delete an entry.

Code Example 22-11 Deleting an LDAP directory entry

-- delete the entry for:
-- uid=peterm, ou=People, o=iPlanet.com

-- Delete the LDAP entry. Note: reuse the aLDAP session object
-- and the status TextData object defined earlier.
status = aLDAP.Delete(messageID,

’uid=peterm, ou=People, o=iPlanet’);

Using the iPlanet UDS LDAP Library

628 iPlanet Unified Development Server • Programming Guide • August 2001

Closing an LDAP Session
Before closing an LDAP session, a client may want to “unbind” from the LDAP
server. However, LDAP server implementations are not required to send a
response to an unbind request. In the case where a server does not send a response,
a call to LDAPSession.Unbind may hang as it waits for a response that never
arrives.

To shut down an LDAP session, close the connection as illustrated in Code
Example 22-13.

Code Example 22-12 Unbinding from an LDAP server

-- Create a new Message ID (increment the previous Message ID)
messageID = messageID + 1;

-- unbind as Directory Manager (reuse the status TextData object)
status = aLDAP.Unbind(MessageID);

Code Example 22-13 Closing a session with the LDAP server

-- Close the connection
aLDAP.Close();

629

Appendix A

iPlanet UDS Example Applications

iPlanet UDS provides a number of example applications that illustrate how to use
TOOL and the iPlanet UDS classes. This appendix provides instructions on how to
install the examples, a brief overview of the applications to help you locate relevant
examples, and a section describing each example in detail. Typically, you run an
example application, then examine it in the various iPlanet UDS Workshops to see
how it is implemented. You can modify the examples if you wish.

How to Install iPlanet UDS Example Applications
You can access the iPlanet UDS example applications only if they have been
installed into your central repository or into a private local repository during
installation of iPlanet UDS, or if you have imported them into your repository.

The examples are located in subdirectories under the
FORTE_ROOT/install/examples directory. The example applications are stored as
.pex files. If they are not already installed in your repository, import them by
including the tstapps.fsc script in Fscript. The tstapps.fsc script is located in the
FORTE_ROOT/install/examples/install directory. Bring up Fscript in standalone
mode and issue the following command:

This will import most of the example applications and quit Fscript. Note that
certain highly specialized examples are not automatically imported by tstapps.fsc.

Code Example A-1 Importing iPlanet UDS examples into a repository

fscript> UsePortable
fscript> SetPath %{FORTE_ROOT}/install/examples/install
fscript> Include tstapps.fsc

Overview of iPlanet UDS Example Applications

630 iPlanet Unified Development Server • Programming Guide • August 2001

To run an application, select it in the Repository Workshop’s plan browser and
then click on the Run button.

If you want to remove all the examples from your workspace, you can do so by
including the remprj.fsc script in Fscript. Bring up Fscript in standalone mode and
issue the following commands:

This will exclude all the example applications and quit Fscript.

Overview of iPlanet UDS Example Applications
This section provides an overview of the iPlanet UDS example applications. The
following table lists the example applications that are referenced in this manual.

The margin note for each of the following tables shows the name of the
subdirectory under FORTE_ROOT/install/examples where you can find the .pex
files for the examples. For the complete description of an individual application,
see “Application Descriptions” on page 631, which lists the applications in
alphabetical order.

Code Example A-2 Removing examples from a workspace

fscript> UsePortable
fscript> SetPath %{FORTE_ROOT}/install/examples/install
fscript> Include remprj.fsc

Example Description

frame/ AdaptableAuction Shows how to dynamically load an
implementation of an interface.

frame/ AppletBanking Illustrates launching of applets from a main
application.

tool/ Auction Illustrates prominent features of an iPlanet UDS
distributed application.

display/ AutoTester Shows how to use the Capture and Playback
classes to automate GUI testing.

frame/ Banking1-2 Illustrates how to use convertors to run old and
new clients and servers together.

Application Descriptions

Appendix A iPlanet UDS Example Applications 631

Application Descriptions
This section lists the example applications in alphabetical order. Each example has
five sections describing it.

The Description section defines the purpose of the example, what problem it
solves, and what TOOL features and iPlanet UDS classes it illustrates.

The Pex Files section gives you the subdirectory and file names of the exported
projects. The examples are in subdirectories under the
FORTE_ROOT/install/examples directory. You can import example applications
individually if you wish. When multiple .pex files are listed, there are supplier
projects in addition to the main project. You will need to import all the files listed
to run the application. Import them in the order given so that dependencies will be
satisfied.

The Mode section indicates whether the application can be run in either standalone
or distributed mode, or whether it must be run in distributed mode.

The Special Requirements section identifies whether you need a database
connection, an external file, or any other special setup.

extsys/http HTTP Provides examples on implementing HTTP servers
and HTTP clients.

display/ InheritedWindow Shows how to subclass your own UserWindow
classes.

internat/ InternatBank Uses catalog files to translate windows and error
messages.

display/ NestedWindow Illustrates multiple tasks, nested windows, event
handlers, and input validation.

frame/ NomadicOrderClient Illustrates how to design an application that uses
nomadic clients.

display/ PrintSample Shows how to use the printing classes.

display/ TabFolders Illustrates the use of the TabFolder class and
Popup Menus.

frame/ TimeItV1-4 Illustrates runtime compatibility issues.

display/ TreeList Shows how to coordinate data displayed in
TreeView and List View fields.

Example Description

Application Descriptions

632 iPlanet Unified Development Server • Programming Guide • August 2001

Finally, the To Use section tells you how to step through the application’s
functions.

See the iPlanet UDS System Management Guide if you need directions to set up an
iPlanet UDS server. See Accessing Databases if you need information on how to
make a connection to a database. The database examples run against either Sybase
or Oracle.

AdaptableAuction
Description AdaptableAuction shows how to use methods on the Partition and
Library classes to dynamically load implementations of an interface.

A simple auction application calculates the taxes on the items sold. A tax
calculation interface class provides the signature for a method which will calculate
the tax on a sale item. Two implementations of this interface are provided. The
implementations must be configured as libraries, in order to be dynamically
loaded. The AdaptableAuction application reads from a file to determine at
runtime which of the two implementations to load. You can copy over this file
while the application is running and it will load the other implementation, which
calculates the tax differently.

Pex Files frame/aa.pex

Mode Standalone or Distributed.

Special Requirements You will need to configure the two implementations as
libraries and distribute them. You will need to copy a file while the application is
running to see the dynamic loading behavior.

➤ To use Adaptable Auction

1. The two files dynload1.dat and dynload2.dat provide the library and class
information used by the application at runtime. The application expects a file
named dynload.dat to be in FORTE_ROOT/install/examples/frame. Copy
dynload1.dat to FORTE_ROOT/install/examples/frame/dynload.dat.

2. Import the aa.pex file, which includes the interface project, two
implementations of that interface, and the AdaptableAuction client and server
projects.

Application Descriptions

Appendix A iPlanet UDS Example Applications 633

3. Configure the two implementation projects, AAImplementations and
AAImp2, as libraries. To do this, open the project workshop for each project.
Select File | Configure as | Library... Then select File | Make Distribution...
and perform a full make in the current environment. Once they have been
distributed as libraries, AAImplementations and AAImp2 can be deleted from
your workspace.

4. Run AdaptableAuction. Click the Calculate Tax for Sale Items button. This will
write information to the log. The data used to load the library and find the class
is written to the log. The log also shows information on each of three sale items,
including the tax amount. In each of the three sale items, the tax is seven
percent of the value of the bid amount. You can click the Calculate Tax for Sale
Items button several times, to confirm that the same output is written to the log
each time.

5. Do not exit the application. Copy the file dynload2.dat to
FORTE_ROOT/install/examples/frame/dynload.dat. Click the Calculate Tax
for Sale Items button again. Note that a different library and class have been
loaded this time. Also note, the second bidder’s tax amount is now 0. The
second implementation checked the bidder type. Since the second bidder was a
nonprofit organization, he was not charged any taxes.

AppletBanking
Description This application starts two applets that perform its functions:
Banking and BankRecords.

Pex Files In the FORTE_ROOT/install/examples/frame directory: apltbank.pex,
banksvc.pex, banking.pex, bankrec.pex

Mode Distributed.

Special Requirements Banking and BankRecords must be installed in your
environment as applets. The apltbank.fsc file contains the Fscript commands to
import, make distributions, and autoinstall Banking and BankRecords as applets.

The AppletSupport library is a supplier to the AppletBanking project. If this library
is not already in your repository, you need to import the apltsupp.pex file from the
FORTE_ROOT/userapp/appletsu/cl0 directory before you can import the
apltbank.pex file.

You can run the AppletBanking example either as a test run from within the iPlanet
UDS Workshops, or you can deploy the application.

Application Descriptions

634 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To use AppletBanking

1. Start the AppletBanking application.

2. Click a button to perform a function:

When a button is clicked, the application invokes the RunApplet method on
the LaunchService service object to start the appropriate applet.

For more information about how this application works, compare this example to
the banking applet you create in the tutorial, which is located in Getting Started
With iPlanet UDS.

Auction
Description Auction illustrates prominent features and capabilities of an iPlanet
UDS distributed application: GUI independence, distributed processing, event
handling, multitasking, and image handling. The application allows a number of
bidders located at their respective computers to bid on a set of paintings being
offered by an auctioneer located at some other computer. The Art Auction
application provides a list of paintings available for bidding and notifies interested
bidders when a price changes.

Pex Files frame/utility.pex, tool/imageprj.pex, tool/aucserv.pex,
tool/auction.pex.

Mode Standalone or Distributed.

Special Requirements The image files used by this application must be located
in FORTE_ROOT/install/examples/images.

Button Description

Manage Accounts Starts the Banking application in a separate window.

View Account Data Starts the BankRecords application in a separate window.

Quit Stops the AppletBanking, and also stops Banking and
BankRecords, if they have been started by AppletBanking.

Application Descriptions

Appendix A iPlanet UDS Example Applications 635

➤ To use Auction

1. Start up the auction by clicking the Be Auctioneer option in the radio list, then
clicking the Start Auction button.

2. Assume the role of a bidder by clicking the Be Bidder option in the radio list.
You should click on a painting in the array, then click the View Painting
button.

From the painting window, you can double-click on the image to see it
enlarged. You can also click the Bid button to set a bid.

3. Another bidder can view available paintings being offered and then join the
bidding process.

Both bidders become involved in bidding on the same painting. In the
standalone use of this application, you can simulate a second bidder on the
same screen by opening a second bidding window.

AutoTester
Description AutoTester enables you to create test suites of iPlanet UDS GUI
applications. It shows how to use the Capture and Playback class in the Display
Library. You may find it covers all your automated testing needs. You may want to
modify it for special testing purposes, or just use it as a reference when creating
your own test utility.

Pex Files display/autotest.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use AutoTester

1. Refer to Chapter 5, “Testing the User Interface” for a complete description of
how to run AutoTester on the PencilPlay sample program.

Application Descriptions

636 iPlanet Unified Development Server • Programming Guide • August 2001

Banking1-2
Description Banking1-2 example illustrates iPlanet UDS’s interoperability
features. It creates an old server, a new server, an old client and a new client, and
allows you to run any combination of client and server.

Pex Files frame/banking1.pex, frame/banking2.pex, frame/banksvc1.pex,
frame/banksvc2.pex, interop.fsc.

Mode Distributed only.

Special Requirements None.

➤ To use Banking1-2

1. Run Fscript and include interop.fsc.

fscript -i interop.fsc

2. Start a new server, and run both old and new clients with it.

3. Start an old server, and run both old and new clients with it.

HTTPSupport
Description These examples illustrate iPlanet UDS client and server applications
that implement the HTTP/HTTPS protocols. The examples do not represent a
robust implementation of HTTP/HTTPS, but serve as illustrations on how to
configure and run server and client applications. Typically, a server partition is
configured for either HTTP or HTTPS. It is recommended you restart a server
partition when switching between the server and secure server examples.

-- Use the following commands to start servers and clients:
-- To start a new server:
ftexec -fi bt:$FORTE_ROOT/userapp/bankserv/cl0/bankse1 -ftsvr 0
-- To start an old server:
ftexec -fi bt:$FORTE_ROOT/userapp/bankser0/cl0/bankse1 -ftsvr 0
-- To start a new client:
ftexec -fi bt:$FORTE_ROOT/userapp/banking/cl0/bankin0
-- To start an old client:
ftexec -fi bt:$FORTE_ROOT/userapp/banking0/cl0/bankin0

Application Descriptions

Appendix A iPlanet UDS Example Applications 637

Pex Files These examples have the following .pex files

Mode Standalone or Distributed.

Special Requirements None

➤ To use HTTP examples

1. Import the .pex file for a server application into your workspace, and run the
application.

Before running the server, make sure you restart the server partition if you
previously ran an HTTP server example in that partition.

When you run a server example, the following window opens:

Pex File Location Description

HTTPClientExample.pex extsys/http/client/ HTTP client

HTTPSClientExample.pex extsys/http/client/ HTTP secure client

HTTPServerExample.pex extsys/http/server/ HTTP server

HTTPSServerExample.pex extsys/http/server/ HTTP secure server

Application Descriptions

638 iPlanet Unified Development Server • Programming Guide • August 2001

2. Start the server application by clicking the Start Server button.

The server application dialog indicates the port the server is listening on.

3. Import the .pex file for the corresponding client application, which is typically
on a different node or even a different environment, and run the client.

For example, if you ran the HTTPServerExample, then run the HTTPClient
example.

When you run a client example, the following window opens:

Application Descriptions

Appendix A iPlanet UDS Example Applications 639

4. Type in the fully qualified domain name of the HTTP Server, including the
port number advertised in the HTTPServer window, and click Connect.

The HTTP Client displays HTTP headers and text from the HTTP server.

InheritedWindow
Description InheritedWindow shows how to create subclasses of your own
UserWindow classes. In this example, the parent window has decorative widgets
at the top, and three buttons at the bottom. It is a generic data entry window. Two
windows are subclassed from this parent window. One is for entering information
about art, the other about artists. They both use their own event handlers to
validate data, and call the parent window’s event handler to perform exit
processing.

Pex Files display/inherwin.pex.

Mode Standalone or Distributed.

Special Requirements None.

NOTE You can also test the iPlanet UDS HTTP servers and clients against
third party web client and servers. In most cases, the third party
applications can communicate with these basic examples.

Application Descriptions

640 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To use InheritedWindow

1. The first window lets you call up the Art Data Entry window or the Artist Data
Entry window. They are spawned as tasks, so you can have them both open at
once. They both have field and cross-field validation.

2. In the Artist window, try entering various countries. When you click OK, you
will be warned that only certain names are compatible with that country. In the
Art window, try entering various types of art.

3. Try entering ‘Performance’ as the type and ‘1910’ as the year, then click the OK
button.

In both windows, the Reset button will restore the original data, and the Cancel
button will let you exit even if the data is invalid. The OK button exits if the
data is valid, or keeps you in the grid if it is not.

InternatBank
Description InternatBank shows how to use several of the iPlanet UDS
international features. It can initially be brought up in several languages, and the
user can choose to switch languages at runtime. It uses message catalogs to
translate windows and error and informational messages.

Pex Files internat/internat.pex.

Mode Standalone or Distributed.

Special Requirements Copy files from
FORTE_ROOT/install/examples/internat subdirectories to corresponding
directories under FORTE_ROOT/workmsg.

➤ To use InternatBank

1. If you are running this application on a machine other than a PC or Macintosh,
be sure your FORTE_LOCALE environment variable is set correctly.

2. Below the examples directory, you will find a subdirectory called internat.
Below it are the directories for each of the languages supported by the
InternatBank example: en_us, fr_fr, and de_de. In each of these directories is a
file called internat.cat. This is the compiled message catalog for each language.
You will also see files named int_mac.msg and internat.msg. These are the
message files in text format, composed on the MacIntosh or any other platform.
Examine the text file that is compatible with the machine you are on. The
compiled message file, internat.cat, is portable across all platforms.

Application Descriptions

Appendix A iPlanet UDS Example Applications 641

3. Before running InternatBank, you will need to copy the internat.cat files from
the language subdirectories under internat to the appropriate subdirectories
under FORTE_ROOT/workmsg.

For this application, you should create three subdirectories under workmsg:
en_us, fr_fr, de_de.

Copy the appropriate internat.cat files from the example program language
subdirectories to the workmsg subdirectories.

4. Choose the language you want the application to start in. At the first window,
select the language you wish to use.

You will see the screen change to that language immediately.

5. When you enter a numeric id, and click OK, the next screen will appear in the
chosen language. Numeric, date time, and money fields should display values
with appropriate formatting. You can move the Account Information window
aside, since it is started as a separate task, and change the language on the first
window. When you click OK, the Account Information window will come up
in the newly requested language.

6. To see the application start in French, exit iPlanet UDS, set the
language/territory component of your FORTE_LOCALE environment
variable to fr_fr. If you are using a MacIntosh or PC, use the Control Panel to
change the FORTE_LOCALE. Restart iPlanet UDS and run InternatBank. The
first screen will be in French. You can still change to other languages at
runtime.

NestedWindow
Description NestedWindow illustrates multiple tasks, nested windows, event
handlers, and input validation. A launch window allows you to start two
windows. Each of these windows nests another window. Field and cross-field
input validation techniques are demonstrated.

Pex Files display/nestwin.pex.

Mode Standalone or Distributed.

Special Requirements None.

Application Descriptions

642 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To use NestedWindow

1. Click on the Purchase Art button. When the window comes up, move it aside.

2. On the first window, click on the Sell Art button. Notice that the same window
is nested in both. They should come up with different initial values in the Type
of Art field. This data was passed to the nested window’s event handler as a
parameter.

3. Experiment with entering different values in the Type of Art field and the Year
field. There is input validation on the Type of Art field. There is cross-field
validation between the Type of Art field and the Year field. Enter
‘Performance’ in the Type of Art field, and ‘1900’ in the Year field, then click
the OK button.

NomadicOrderClient
Description This application starts a standalone client. In standalone mode, you
can enter orders and search for entered orders on a local database based on the
customer ID. You can also search the server database for customer orders and
reconcile the local database with the server database. When you search for entered
orders in the server database, the client partition connects to the name server and
the service object. The client stays connected until you close the Find Order
window. When you reconcile with the server (upload new orders and download a
new copy of the server database to the client), the client connects to the service
object, then disconnects when it is done.

Pex Files FORTE_ROOT/install/examples/frame/nomad.pex

Mode Distributed

Special Requirements For more information about testing nomadic applications,
see “Testing Nomadic Client Applications” on page 451. You need to deploy this
application to actually connect to and disconnect from the environment.

➤ To use NomadicOrderClient

1. Start the application using the -fnomad flag, for example:

ftexec -fi c:\forte\userapp\nomadico\cl0\nomadi0 -fnomad

2. Enter one or more orders, remembering the customer IDs.

Application Descriptions

Appendix A iPlanet UDS Example Applications 643

3. Perform the following actions, which cause the client to connect to the
environment, then disconnect:

a. Reconcile the client with the server.

b. Search for orders on the server.

PrintSample
Description PrintSample shows how to use the printing classes. There are six
subsections to the application; each one shows how you might solve different
printing problems.

The first option, SimplePrint, uses no TOOL code. It relies on the Print and
PrintSetup menu commands to print the current UserWindow.

The second option, SimpleClone, clones the current UserWindow and makes some
changes to the cloned window’s data. It also shows how to force changes to the
DefaultPrintOptions object.

The third option, Expand&Tile, prints the current UserWindow, expanding all the
fields so that their hidden data as well as their displayed data will be printed.
When all the fields are expanded, page tiling will occur.

The fourth option, Report, uses a template window with header and footer
information to print the data from the current window. The data from a large array
is printed on a multi-page report. This part of the example shows how to create
page and line breaks, while using DrawMultiLineText.

The fifth option, EmptyPage, uses the EmptyPage class as the WorkingPage.

The sixth option, ExpandText, prints a TextData object that contains long lines.
DrawMultiLineText is used with different height and width policies on the
PrintDocument.

Pex Files display/printsam.pex.

Mode Standalone or Distributed.

Special Requirements Printer connection. The files artist.dat and painting.dat
must be located in FORTE_ROOT/install/examples/database. The file hr.dat must
be located in FORTE_ROOT/install/examples/display.

Application Descriptions

644 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To use PrintSample

1. From the main window, choose the buttons that sound of interest. Each
subsection allows you to print and to set up print options. Some have more
refined options.

2. Report lets you print the array without the report template, using standard
array field expansion and vertical tiling, for comparison. It also offers two
styles for the report: one where it is measured in mils, another where it is
measured in columns.

3. The ExpandText option lets you see the use of DrawMultiLineText with and
without tiling and with various line spacing options. You can choose between
natural and explicit height and width policies to observe horizontal and
vertical tiling, as well as multi-page printing without tiling. You can also
choose various line spacing options.

TabFolders
Description TabFolders illustrates how to use the TabFolder class, and how to
use Popup Menus. The example allows you to open two windows. One window
illustrates basic TabFolder and Popup functionality. The TabFolder widget was
constructed in the Window Workshop. The second window illustrates how to
create a TabFolder dynamically and how to show Popup Menus dynamically.

Pex Files display/tfolder.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use TabFolders

1. The first window presents two pushbutton fields: Basic TabFolder and
Dynamic TabFolder. Click Basic TabFolder.

2. A TabFolder with three tab pages appears on the Basic TabFolder window. The
second tab page is the top page. Bring other tab pages to the front by clicking
on them.

3. On the Bring To Front (Popup Demo) pushbutton, use the key combination
required by your client operating system to activate the Popup Menu. You will
see a submenu with three menu items: Tab One, Tab Two, and Tab Three. Click
any of these menu items, and that tab page will become the top tab page in the
tabfolder.

Application Descriptions

Appendix A iPlanet UDS Example Applications 645

4. Back in the first window, click the Dynamic TabFolder pushbutton. Bring each
tab page to the front by clicking on it. Turn the Show Tree Tab Page toggle off.
The Tree Tab Page will disappear from the TabFolder. Turn the Show Tree Tab
Page toggle back on. The Tree Tab Page will reappear in the TabFolder.

5. The Popup Demo 1 and Popup Demo 2 pushbuttons each have Popup
submenus associated with them. The Bring To Front (Dynamic Popup Demo)
pushbutton will present a different popup menu depending on whether the
Tree Tab Page is visible or not visible. Try it under both conditions.

TimeItV1-4
Description The files timeitv1.pex, timeitv2.pex, timeitv3.pex, and timeitv4.pex
are different versions of the TimeIt application, used to illustrate run-time
compatibility issues. timeitv2.pex is compatible with timeitv1.pex, while
timeitv3.pex and timeitv4.pex are not.

Pex Files frame/timeitv1.pex, frame/timeitv2.pex, frame/timeitv3.pex,
frame/timeitv4.pex.

Mode Distributed only.

Special Requirements None.

➤ To use TimeItV1-4

1. You will build distributions from the different versions of TimeIt supplied, and
install partitions from different distributions on the client and the server. For
information on runtime compatibility, see “Class Runtime Properties” on
page 325.

➤ To use TimeItV1

1. Import timeitv1.pex into your workspace.

2. Partition it so that the client partition (Timeit_cl0_Client_<node>) id is on the
client machine and the server partition (Timeit_cl0_Part1_<node>) is on the
server machine.

3. Make a distribution.

4. Install the distribution on both the client and server machine.

Application Descriptions

646 iPlanet Unified Development Server • Programming Guide • August 2001

5. Run the server partition on the server machine and the client partition on the
client machine.

You’ll see the usual TimeIt example application. Pressing the Start button
makes the time display every second and beep at the minute. Now exit the
client partition and kill the server partition.

➤ To use TimeItV2

1. Import timeitv2.pex into the same workspace.

2. This time partition it with both partitions on the server machine and install it
only on the server machine.

3. Run the server and client partitions on the server machine. There is one new
feature: you can optionally beep at the quarter minute as well as the minute.

The following changes were made to TimeItV1:

❍ The class Clock has a new attribute BeepOnQuarterMinute. It has a higher
serial number than any previously existing attributes had.

❍ Clock has a new event, DoBeep.

❍ Clock has a new overloading of the method StartClock.

❍ ClockWindow has changed. It includes a new attribute ToBeep generated
by the new button.

None of the existing IDs have changed, and all the rules for adding things have
been obeyed. The partitions from TimeItV1 and TimeItV2 should be
compatible. To test this, run the client partition from the client machine, which
is still the version from TimeItV1. Note that it works correctly. It cannot access
the new feature of beeping on the quarter minute, but the existing features
work correctly.

➤ To use TimeItV3

1. Import timeitv3.pex into the same workspace.

2. Again, partition it so that both partitions run on the server machine, and install
it only on the server.

3. There is one important difference between TimeItV1 and TimeItV3 that will
cause an incompatibility: instead of adding a new overloading of StartClock,
TimeItV3 replaces the old StartClock, which had no parameters, with a new
one, which has a boolean input parameter. Since the overloading of the method
which the older client uses no longer exists, TimeItV3 is incompatible with
TimeItV1.

Application Descriptions

Appendix A iPlanet UDS Example Applications 647

4. You can see this by running the new server partition on the server machine and
the old client partition on the client machine. When you click the Start button
on the client, which calls the method, you get the error:

SYSTEM ERROR: No actual parameter for argument 1 of StartClock

This happens because the client partition doesn’t pass a parameter, but the
server expects one.

➤ To use TimeItV4

1. Import timeitv4.pex into the same workspace.

2. Again, partition it so that both partitions run on the server machine, and install
it only on the server.

3. There is one important difference between TimeItV1 and TimeItV4 that will
cause an incompatibility: TimeItV4 adds a parameter to the event
SecondElapsed which is used to communicate between the client and the
server. This makes the new server partition incompatible with the old client
partition.

To see this, run the new server partition and the old client partition. Click the Start
button. The first time SecondElapsed is sent to the client partition, the result is:

SYSTEM ERROR: After processing event <xxx> the stack is
incorrectly set.

iPlanet UDS’s interpreter’s stack is incorrect because the event was passed an
unexpected number of parameters.

TreeList

Description The TreeList example shows how to coordinate the display of data in
TreeView and ListView fields. The TreeView field displays a hierarchy of
biological classifications: orders, families, and genera. The ListView field displays
detailed information on species within a genus.

Pex Files display/tvlv.pex.

Mode Standalone or Distributed.

Special Requirements none.

Application Descriptions

648 iPlanet Unified Development Server • Programming Guide • August 2001

➤ To use TreeListExample

1. Click on the controls in the TreeView field to expand and collapse the outline.
Not all the nodes have children, but by opening them all you will see order,
family, and genus names for some Costa Rican birds.

2. When you click a node at the genus level, you will see the species in that genus
displayed in the ListView field.

649

Index

SYMBOLS
.a file 314
.ace file 274, 314
.adf file 274, 314
.bom file 314
.btd file 274, 314
.btx file 274, 314
.cc file 314
.cdf file 314
.dll file 314
.exe file 274, 314
.fso file 314
.lgf file 314, 315
.out file 177
.pex file 314
.pgf file 274, 279
.so file 314

A
About command 162
AboutMenuActivate event 162
Active partition

log file names, changing 212
Active window 59
Add Project command 310

Advertise method
HTTPHelper class 567

AfterTabSelect event 83
AgentAccess sample application 632
Alignment

column alignment 141
labels in a grid field 138
row alignment 141
with grid fields 140

Alignment property 95
Allowed property 328
Anchored object 330

named 332
non-distributed 332
unnamed 332

Applet
application distribution and 271
configuring an application as 442
creating 256
defined 226
deploying applications with 444
designing applications with 437
testing 443
troubleshooting clients 444
visibility of 444

AppletBanking application 633
AppletSupport library

about 435
advantages of 436
restrictions 437
setting up 436

Section B

650 iPlanet Unified Development Server • Programming Guide • August 2001

Application
compatibility level of shared libraries 480
configuring with applets 442
designing with applets 437
installing 297
installing on client nodes 299
installing on server nodes 298
installing with reference partitions 303
partitions, upgrading single 323
reference partitions, upgrading 321
removing 319
testing with applets 443
upgrading 320
upgrading distributed 456

Application distribution
about 270
components of 272
creating 315
deploying 286
documentation 285
file naming conventions 275
generated files 284
installing 296, 297
installing additional files with 284
installing on client nodes 299
installing on server nodes 298
loading 288
making 284
packaging 284
partition properties, changing 295
partitioning configurations, modifying 292
partitions, reassigning 293
transferring 287
uninstalling 319

Application session
HTTP session 548

AppTitle attribute 162
array

getting information about 503
Array class

and IsAnchored attribute 335
Assigned partition

deleting 265
examining 246

Asynchronous processing
HTTPSupport library 556

Attr class 600
Attr.setValue() method 598
Attribute

adding 459, 477
deleting 459
remote access 487
runtime properties for 329

Attribute Name property 94
AttributeList interface 611
Attributes interface 611
Auction sample application 634
aud message type 186
Auto-install

Make Distribution command and 278
on a Macintosh or PC 278
using with installed applications 278

Automatic partitioning 227, 269
Auto-starting service objects 263
AutoTester 167–180

about 167
analyzing results 178
automating regression tests 179
capturing input 170
dumping state information 172
DumpState method 173
playing back 175
setting up 169

AutoTester sample application 635, 636

B
Banking1-2 application 466472–475
byte offset

in DOMString datatype 601
in text nodes 599

C
Captured input 167

playing back 175

Section C

Index 651

case statement
in converter 486

Casting, interfaces 368
CDATASection class 600
cfg message type 186
cfg:em:2 302
CharacterData class 600
CharacterData.insertData() method 599
CharacterData.replaceData() method 598, 599
CharacterData.setData() method 598, 599
CharacterData.substringData() method 599
Characters() method 608
Child event 65
Class

adding 459
deleting 459
distributed property 326
listed by partition 481
loading dynamically 371
monitored property 326
shared property 326
transactional property 326
version 469
version runtime property 461

class
getting information about 501

class browser 513
Class runtime properties

definition 325
for cloned copies 330
for nested object references 329
performance 327
setting 328
setting default 328

Class version
definition 460

Class version upgrade 454
changes allowed 459, 467
described 465
installing new partitions 493
making distribution 493
steps 481

Classversion key word 486
Client configuration

defined 226

Client node
installing applications on 299

Client partition 229
Applet property 256
Compiled property 265
Generate C++ API property 266
icons, automatically generated 301
icons, defining 302
testing as 163

Clone method 330
Cloning

shared objects 343
transactional objects 356

Code generation
fcompile command 281
for libraries 315
for partitions 279

Column alignment 141
Column Name property 95
Column partnership

and grid fields 145
commands 145

Column Title property 95
Column Title Set Number property 95
Column weight 141
Command, prefabricated See Prefabricated

command
Compatibility level 454

definition 460
library 461

Compatibility level upgrade 455
changes allowed 459
described 463
rolling 464
steps 478

Compilation Properties for Node dialog 311
Compiled partition

about 270
making a distribution 279

Compiled property 295
client partition 265
server partition 267

Compiling
libraries 311, 315
partitions 279

Section D

652 iPlanet Unified Development Server • Programming Guide • August 2001

Configuration
about 225–268
applet and 226
changing for an installed application 278
changing for installed applications 321
client 226
debugging 248
examining 269
modifying 269
properties 268
re-partitioning 269
server 226
testing 248
viewing properties 268

Configure as Library command 234, 304, 461
Connected environments, reference partition in 254
Constant, in interface 370
ContentHandler interface 612
ContentHandler.skippedEntity() method 611
Context-sensitive help 149
Converters 467–472

deleting 491
event 471
inherited 486
name 485
signature 485
testing 493
viewing 483
when required 465, 467
writing 485–491

Cookie
HTTPSupport class 552

Cookies
defined 549

Copy, object 331
Cross-environment failover 416

D
DataValue class

and IsAnchored attribute 335
and isTransactional attribute 344

DBResourceMgr class 394

DBResourceMgr service object 396
DBSession class 394
DBSession service object 396

database name 397
user name 397
user password 397

DCE (external type) 262
Deadlock

avoiding 340
common mutex 339
distributed mutex 340
lock promotion 352
transactional 351

Debugger, using from Partition workshop 248
Default help file 149
Default Node property (configuration) 268
DefaultHandler class 608, 612
DefaultHelpFile attribute 149
Deployment environment 234
Development environment

description 234
Dialog box 63

appearance of 131
file selection 63
message 63
print 63
print setup 63
question 63
related Window class methods 131
using 63

Dialog duration 402
message duration 405
session duration 409
transaction duration 407

Disabled property 267, 295
Disallowed property 328
Display method 58

event loop for 64
invoking on window 60

DisplayNode class
outline field and 88
using for list view field 97, 104, 113
using for tree view field 116

Distributed application
updating 460

Section E

Index 653

Distributed class
updating 460

Distributed object 330
access to attributes 333
IsAnchored attribute 330
methods invoked on 332
reference 330, 469, 476
shared 342

Distributed property 326, 330
Distribution

full 477
partial 477
source repository 478
upgrading a 477

Distribution directory 272
Distribution, application

about 270
applets and 271
directory 272
icon file 272
making 269

Distribution, library
about 312
directory 312
making 312

Document class 600
Document.createAttribute() method 597
Document.createAttributeNS() method 597
Document.createCDATASection() method 597
Document.createComment() method 597
Document.createDocumentFragment() method 597
Document.createElement() method 597
Document.createElementNS() method 597
Document.createEntityReference() method 597
Document.createProcessingInstruction()

method 597
Document.createTextNode() method 597
DocumentFragment class 600
DocumentHandler interface 612
DocumentType class 600
DOM

defined 595
DOM exception handling 601

DOM nodes
text nodes 599
tree nodes 595

DOM trees 595
methods for creating objects 597

DOMException class 600
DOMImplementation class 600
DOMImplementation.createDocument()

method 597
DOMImplementation.createDocumentType()

method 597
DOMString datatype 601
DTDHandler interface 612
DumpState method 173
DumpWidget method 172
Dynamic class loading 371

E
Element class 600
Encina (external type) 262
EndDocument() method 608
EndElement() Method 608
Entity

HTTPSupport class 552
Entity class 600
EntityReference class 600
EntityResolver interface 612
Environment search path 432–434

on a service object 262
reference partition and 254
service object definition 426
syntax 263

Environment visibility 400
Environment, definition 234
err message type 186
ErrorHandler interface 612
Event

close window event chain 68
completion 472
converter 471
deleting 459

Section F

654 iPlanet Unified Development Server • Programming Guide • August 2001

Event (continued)
exception 472
field selection event chain 67
in interface 370
input focus chain 65
replacing 459
shared object and 337
shared objects and 337
transactional objects and 346

Event converter
referencing attributes 489
writing 489

Event handler
adding 459
deleting 459
in interface 370
inherited windows and 50

Event statement 64
Excluded Node property (configuration) 268
Export name 262
Export Name property 262
ExportMode 533
ExportPlan command (Fscript) 254, 291
External type 262

F
Failover 413–420

cross environment 416
definition 413
during upgrade 457
example 463
in class version upgrade 466
local 414
partition 261
replicates in class version upgrade 495

fcompile command
environment variables, used with 279
for libraries 316
syntax 281–283

File export formats
compatibility format 533
multi-file format 534
overview 533

File menu command, prefabricated 133
File names

in log flag settings 201
O/S conventions 202
stdout definitions 210
stdout, stderr, and stdwin 201

File selection dialog box 63
FileOpenDialog method 131
FileSaveDialog method 132
FilterImpl.SetContentHandler() method 609
FilterImpl.SetParent() method 609
FindClass method 378
FindLibrary method 377
findsubagent command 494
First/Last property 95
-fl flag 185, 198
Float-over help 152

for palette lists 154
Flush method 196, 217
FlushLogFiles command 195
-fns flag 447
Font

portable 129
using in windows 129

FORTE_AUTOTESTER_DELAY 177, 179
FORTE_AUTOTESTER_ROOT 174
FORTE_LOGGER_SETUP 197

description 185
example 218
overriding with -fl flag 201

FORTE_NS_ADDRESS 447
FORTE_ROOT 482
-fs flag 447

nomadic client and 450
ftcmd run command 302
Ftcmd utility 445
ftexec command 302

Section G

Index 655

G
Generate C++ API property 266
GenericRepository

classes 529
SCMServer 529

GenericRepository Library 527
Grid field

column alignment 140
column partnerships 145
column weight 141
moving 145
nesting 137
row alignment 140
row partnerships 145
row weight 141

Group Into TabFolder command 74
Group number (logging filter) 188

H
HandlerBase class 612
Has Column Titles property 95
Has Controls property 95
Has Horizontal Scrollbar property 95
Has Row Highlights property 95
Has Vertical Scrollbar property 95
Header Style property 79
HeightInPixels attribute 131
Help 147–159

About command 162
AboutMenuActivate event 162
AppTitle attribute 162
commands 160
context-sensitive 149
context-sensitive help 149
Default help file 149
default help file 149
DefaultHelpFile attribute 149
float-over help 152
for menu widgets 159
for palette lists 154, 158
Help Text command 148, 151, 153

HelpRequest event 148
IsFloatOverEnabled attribute 152
prefabricated help commands 160
status-line help 155, 159
StatusText attribute 148
WinHelp method 148

Help Text command 148, 151, 153
HelpRequest event 148
High availability applications 456
HorzPixelsPerInch attribute 131
HTTP protocol

application sessions 549
entity 547
headers 546
HTTPSupport model 544
message body 547
messages 546
messaging model 543
network sessions 550
secure sessions 550
sessions 548

HTTPHelper class
Advertise method 567

HTTPSupport library
about 543
asynchronous processing 556
classes 552
configuring secure sessions 575
creating client applications 553
creating server applications 559
dispatching requests 556
Entity class 565
HTTPServerManager interface 574
interfaces 552
processing cookies 563
request messages 553
responding to requests 562
sample application 636
synchronous processing 556

HTTPSupport library examples
advertising a server 561
building a client request 553
configuring a client 568
configuring a server 571
creating a session 558
processing the body of a message 564

Section I

656 iPlanet Unified Development Server • Programming Guide • August 2001

HTTPSupport library examples (continued)
registering a request 566
registering an entity 566
response message from server 559
reusing a session 558

I
Icon

creating for client partitions 303
file in application distribution 272
generated for compiled client partitions 302
generated for standard client partitions 301

Image resolution 130
Implementation library

about 384
creating 386
registering 388

Inactive window 59
Inherited window

definition 48
overview 49

InheritedWindow sample application 639
Init method 328, 329
Input capture

capturing 170
output file 168
playing back 175

Input focus 66
InputDriver method (input capture class) 168
InputSource class 613
Installing

additional files with a distribution 284
application distributions 296
library distributions 318
reinstalling using auto-install 278
using auto-install on a Macintosh or PC 278
with Make Distribution 278

Interface
about 359
casting 368
changing 459

constants in 370
creating 362
defining 373
elements of 368
event handler in 370
event in 370
FindClass method with 378
FindLibrary method with 377
implementing 364, 384
loading class 376
loading class implementation 371
method in 369
multiple inheritance with 389
testing 389
using as a type 367
virtual attribute in 368

interface
getting information about 501

Interface library
about 373
creating 380
deploying 387
importing 383

Interface Properties dialog 363
Interface Workshop 359
InternatBank sample application 640
Interoperability 462
Interoperable upgrade 454

changes allowed 459, 476
described 462
full or partial distribution 477
steps 475

INVALID_ACCESS_ERR 601
INVALID_MODIFICATION_ERR 601
INVALID_STATE_ERR 601
IsAnchored attribute

and Datavalue classes 335
definition 326
distributed object and 330
IsShared attribute and 331, 342
setting 329

IsDefault property 328
IsFloatOverEnabled attribute 152

Section L

Index 657

IsShared attribute
definition 326
IsAnchored attribute and 331, 342
setting 329
shared objects and 335
with mutex 337

IsTransactional attribute 329
definition 327
Transactional class property and 344

L
Launcher application, testing 443
LaunchMgr class

about 438
methods 439

LaunchService service object 439
about 438
methods 439

Layout Policy property 79
LDAP library

about 615
closing a session 628
establishing sessions 617
LDAP filters 621
searching a directory 619
updating a directory 623
using 617

LDAP library examples
adding an entry to a directory 624
authenticating a session 618
building filters 621
closing a session 628
connecting to a server 618
deleting a directory entry 627
modifying a directory entry 626
searching a directory 620

Level number (logging filter) 188
Library

about 225–234
changing compatibility level 479
compatibility level 461
compiling 311, 315

interface 373
making distribution for 312
name for 309
removing 319
upgrading installed 322
upgrading references to upgraded 323

Library application 233
Library configuration

adding projects 309
creating 304
defined 308
examining 306
modifying 308
removing libraries from nodes 310

Library distribution
about 312
components of 312
installing additional files with 284
making 312
uninstalling 319
upgrading 322
UUID (universally unique identifier) 291

List view field 102–115
column properties 91, 107
column titles 91, 106
compared to outline field 102
creating in Window Workshop 93, 108
data for 88, 104
interacting with 88, 104
mapped type for 93, 108
portability 103
properties dialog for 94, 110
properties for 90, 105
providing data for 96, 112
row highlights 90, 106
scroll policy 90, 106
scrollbars for 90, 105
SetViewNodes method 115
sorting 103
styles 102

List view, on different platforms 128
Load balancing 420–426

in class version upgrade 495
partition 261
router partition 424

Section L

658 iPlanet Unified Development Server • Programming Guide • August 2001

load balancing
performance based 537
setting node performance 538
using performance-based 539

Load Distribution command 290
Local failover 414
local name 594
Locator interface 613
LocatorImpl class 613
Lock promotion 351

avoiding deadlock 354
blocking during 351
deadlock 352

Locking
common mutex deadlock 339
distributed recursive deadlock 341
lock promotion 351
mutex 336
nesting transactions 355
shared object 336
start task statement 355
transactional deadlock 351
transactional locking 347

Log files
flushing 195–196
test run, distributed 209
test run, local 209

Log flag settings
changing with ModifyFlags method 199
command line syntax 201
defining stdout 199
definition of stdout 210
example 216
file name conventions 202
file names 201
order of precedence 200
special note for NT 200
syntax 201

Log flags
definition of current settings 190
filters, See Logging filters
-fl flag 185
performance example 219
setting in Repository Workshop 198206–207

setting with Econsole 198206–207
setting with Escript 199
setting with -fl flag 198
setting with FORTE_LOGGER_SETUP 197
setting with partition properties 198
setting with the Control Panel 197206–207
wildcards (command line) 202

Log Flags property 197
Log Flags tab page (Control Panel) 197206–207
Logging

assigning group numbers 188
assigning level numbers 188
assigning message types 185
assigning service types 186
capturing output on a Macintosh 210
examining requirements 183
examples 214–221
flushing log files 195–196
iPlanet UDS tools for 184
location of output files 210–213
LogMgr methods 190–196
outputting state information 192
outputting text 192
procedures 181
setting flags 196–208

Logging examples
Auction 214
LogTime method 221
performance 219
timer method 220

Logging filters
changing 195
command line syntax 202
description 185–189
group number 188
level number 188
message type 185
service type 186
useful runtime filters 189

Logging output 210
Logical partition

about 229–232
creating 250
examining 244

Section M

Index 659

LogMgr class 190–196
example 192, 194
Flush method 196
Flush method, example 217
ModifyFlags method 199
PutLine method 191, 193
Putline method, example 217
referencing LogMgr methods 191
Test method, example 217

M
Make Distribution command 276–279

Auto-Compile option 277
for compiled partitions 279
for libraries 315
Full or Partial Make option 277
Install in Current Environment option 278
Local/Remote option 277

Managing Source Code 527
Mapped Type property 94
Menu bar, appearance of 132
Menu widget

status-line help 159
Message dialog box 63
Message dialog duration 405

error handling 406
events and 407
state information 406
transactions and 406

Message types (logging filters)
audit messages 186
configuration messages 186
error messages 186
performance messages 186
resource messages 186
security messages 186
trace messages 186

MessageDialog method 132
Method

adding 459
changing behavior 471
changing signature 485

converter 467
converter for new 470
deleting 459
in interface 369
referencing in converter 488
versions of 467

method
getting information about 508
invoking through reflection 509

Method converter
testing 493
writing 487

Method invocation statement 339
Minimum height 143
Minimum rows/columns 129
Minimum width 143
Modify Log Flags command 198206–207
ModifyFlags method 199
ModLogger command 199
ModLoggerRemote command 199
Monitored object 357
Monitored property (class) 326
MsgNumber property 95
Multiple inheritance 389
Multitasking

nonshared objects and 337
windows and 61

Mutex
and IsShared attribute 336
common mutex deadlock 339
deadlock, distributed 340
transactional lock and 347

N
Named anchored object 332
NamedNodeMap class 600
NamedNodeMap.removeNamedItem() method 599
NamedNodeMap.setNamedItem() method 599
NAMESPACE_ERR 601

Section O

660 iPlanet Unified Development Server • Programming Guide • August 2001

Natural
size policy for character fields 129
size policy for fields 136
size policy for graphics 130

Nested objects 329
runtime properties for 329

Nested window 61
definition 48
overview 51

NestedWindow sample application 641
Network session

HTTP session 548
New converter 469
New ListView command 108
New Logical Partition command 250
New method converter 470
New Reference Partition command 252
New TabFolder command 73
New TreeView command 120
Node

default 268
examining 245, 307
excluded 268
properties 245

Node class 600
Node Outline command 245, 307
Node.appendChild() method 599
Node.cloneNode() method 599
Node.getChildNodes() method 598
Node.getFirstChild() method 598
Node.getLastChild() method 598
Node.getNextSibling() method 598
Node.getParentNode() method 598
Node.getPreviousSibling() method 598
Node.insertBefore() method 599
Node.normalize() method 599
Node.removeChild() method 599
Node.replaceChild() method 599
Node.setNodeValue() method 598, 599
NodeList class 600
nodes

setting performance of 538
specifying performance information 539

Nomadic client
connecting to the environment 447
defined 445
disconnecting 448
disconnecting from environment 449
disconnecting from remote objects 448
-fns flag 447
FORTE_NS_ADDRESS 447
restrictions 452
starting 450

Nomadic client application
about 445
testing 451

NomadicOrderClient application 642
Non-distributed anchored object 332
Non-replicated partition 230
Nonshared object 337
Normalize() method 599
Notation class 600
Number of Processors property 538

O
Object

anchored 330
Clone method 330
distributed 330
distributed reference to 476
monitored 357
nested 329
shared 335
transactional 343

Object class
runtime property attributes 326

object inspector 510
ObjectBroker (external type) 262
ObjectLocationMgr class 332
Obsolete converter 470
Obsolete method converter 470

example 468

Section P

Index 661

Outline field 88–101
Alignment property 95
Attribute Name property 94
Column Name property 95
Column Title property 95
Column Title Set Number property 95
DisplayNode class 88
First/Last property 95
Has Column Titles property 95
Has Controls property 95
Has Horizontal Scrollbar property 95
Has Row Highlights property 95
Has Vertical Scrollbar property 95
Mapped Type property 94
MsgNumber property 95
Root Displayed property 95
Scroll Policy property 95
Size Policy property (column) 95
State property (column) 95
when to use 88
Width property 95

P
Page template

definition 48
overview 54

Palette list
and portability 131
float-over help 154
status-line help 158

Parent
size policy and row/column partnerships 145
size policy for character fields 129
size policy for fields 138, 142
size policy for grid fields 134, 136, 137

Parent attribute 61
Parser interface 613
ParserFactory class 613
Partial installation, completing 303
Partition

about 228
automatic startup 434
client 229

combining service objects on 257
compiled 270
Compiled property 265, 267
compiling 279
defined 228
deleting 265
Disabled property 267
distribution date 476
logical 229
moving 264
non-replicated 230
object anchored to 332
private 257
projects and 226
projects in 481
properties, changing 295
reference 230
replicated 229
Replication Count property 268
router 229
server 229
Server Arguments property 267
shared 258
standard 270
Thread Package property 267
transactions distributed across 356
upgrade order 494
upgrading applications 323

Partitioning
automatic 269
configurations, modifying 292

PDF files, viewing and searching 44
Performance Rating property 538
Picture button, and portability 131
Playing back input 175
Portable font 129
Prefabricated

help commands 160
submenu 132

Prefabricated command
Edit menu commands 133
Help commands 133
Print commands 133

prefix 594
prf message type 186
Print dialog box 63

Section Q

662 iPlanet Unified Development Server • Programming Guide • August 2001

Print setup dialog box 63
PrintDialog method 132
PrintSample sample application 643
Private partition 257
ProcessingInstruction class 600
ProcessingInstruction.setData() method 599
ProcessingInstruction.setNodeValue() method 599
Project

export with IDs 478
library name for 309
listing in partitions 481

Properties command
Configuration properties 268
Node properties 245, 307

Property sheet, creating 132
PurgeEvents method 67
PutLine method 191, 193, 217

Q
qualified name 594
Question dialog box 63
QuestionDialog method 132

R
Read lock 349
Reference partition 426–431

about 230–232, 426
auto-start for 253
changing compatibility level 479
connected environment with 254
creating 251
defined 230
examining 245
installing applications with 303
making 251
supplier project for 251
upgrading applications with 321

reflection
accessing objects 500
array information 503
class hierarchy 499
classes that enable 499
method invocation 509
methods 508
restrictions on use of 498
sample class browser 513
sample object inspector 510
setting attributes 505
setting primitive types 506
simple data types 504
use of 497

RegisterObject method 332
ReleaseConnection method 448
ReleaseNameService method 449
Repartition command 269
Replicated partition 229
Replicates

for failover 413
for load balancing 420
in class version upgrade 495
specifying number of 422
using in class version upgrade 482, 494

replication
specifying on service object 539

Replication Count property 268, 295, 542
res message type 186
Rolling upgrade 456–457

class version upgrade steps 481
using class versions 465
using compatibility level 464
when required 456

Root Displayed property 95
Root node

for tree view field 121
Router partition 424

description 229
in class version upgrade 495
multiple routers 259
primary 412

Router, custom 357
Row alignment 141

Section S

Index 663

Row partnership
and grid fields 145
commands 145

Row weight 141
Runit method 168
Runtime properties (class) 325

attributes for 328
default 327
disabling for performance 327
for cloned copies 330
for nested object references 329
version 461

S
Sample applications

AgentAccess 632
Auction 634
AutoTester 635, 636
HTTPSupport 636
InheritedWindow 639
InternatBank 640
NestedWindow 641
NomadicOrderClient 642
PrintSample 643
scmserver 533
TabFolders 644
TimeIt 647
TimeItV1-4 645

SAXException class 613
SAXNotRecognizedException class 613
SAXNotSupportedException class 613
SAXParseException class 614
SCM service

creating 532
installing the sample service 533

SCM utility 531
SCM_EXPORT_MODE_COMPAT 533
SCM_EXPORT_MODE_MULTIPLE 533
Scroll Policy property

list view field 91, 106
outline field 95
tree view field 119

sec message type 186
Secure session

HTTP session 548
Secure Sockets Layer (SSL) protocol 550
security 581
Server arguments property 267, 295
Server configuration 226
Server node, installing applications on 298
Server partition 229
Server upgrade

high-availability 482
without interruption 463

Service object 332
adding 459
auto-starting 263
changing compatibility level 480
combining on partitions 257
DBResourceMgr type 394, 396
DBSession type 394, 396
deleting 459
dialog duration 402
distributed property 330
environment search path 262, 432
environment visibility 400
examining in partition 245
export name for 262
Export Name property 262
external type for 262
External Type property 262
failover 413
load balancing 420
modifying in partition 247, 260
moving to a new partition 250
overview of 393
reference partition for 426
TOOL class type 394
unassigned to logical partitions 245
unassigned, modifying definition of 261
user visibility 401
visibility 399

service object
specifying replicates 539
specifying replicates for 539

Service Object Properties dialog 247, 260
Service type (logging filter) 186

Section S

664 iPlanet Unified Development Server • Programming Guide • August 2001

Session dialog duration 409
error handling 410
events and 411
state information 410
transactions and 410

Session ID (field)
capture and playback 168

SetViewNodes method 115
Shared object 335–343

automatic locking 336
cloning 343
common mutex deadlock 339
distributed 342
distributed mutex deadlock 340
events and 337
IsShared attribute and 335
mutex 336
nested method invocations 339
transactional locking and 347

Shared partition 258
Shared property 326
ShowApp command (Fscript) 481
simple data types

getting information about 504
Size partnership

as portability tool 135–136
commands 135
minimum height/width 135
minimum rows/columns for character fields 129
using 145

Size policy
and grid fields 137, 138
for character fields 129
for fields 136
for graphics 130
minimum height/width 143

Size Policy property 95
Source Code Management 527

file export formats 533
overview 528
scm utility 531

SourceCodeManager Library 527
SourceCodeManager.SCM class methods 531
SP_MT_AUDIT 186
SP_MT_CONFIGURATION 186

SP_MT_DEBUG 186
SP_MT_ERROR 186
SP_MT_PERFORMANCE 186, 219
SP_MT_RESOURCE 186
SP_MT_SECURITY 186
SP_ST_USER* 187, 219
SSL 581

about 550, 581
classes 584
code examples 589
configuring secure sessions 575
creating a root certificate 586
secure HTTP sessions 550
services 583

Standard output file 210
Standard partition 270
Start class 328
Start task statement

transactional locking and 355
windows and 61

StartDocument() method 608
StartElement() method 608
State information

defined 403
dumping for widget 167
message dialog duration 406
session dialog duration 410
transaction dialog duration 408

State property 95
Status-line help 155

for menu widgets 159
for palette lists 158
menu widgets 159

StatusText attribute 148
Step 375
Submenu, prefabricated 132
Supplier Plans command

for libraries 384
Synchronous processing

HTTPSupport library 556
SYNTAX_ERR 601

Section T

Index 665

T
Tab folder 7171–84

about 71
adding a tab page 76
AfterTabSelect event 83
creating dynamically 81
creating in Window Workshop 73
deleting a tab page 78
editing 76
editing tab label 79
Group Into TabFolder command 74
Header Style property 79
Layout Policy property 79
loading data into 82
merging two tab folders 84
New TabFolder command 73
properties dialog for 81
reordering tab pages 78
selecting 80
SetPages method 81
tab labels 74, 75

Tab label 74, 75
editing 79

Tabfolders sample application 644
Task, mutex and 337
Tclient command 164
Test method 217
TestClient utility 163–167

exiting 166
setting refresh interval 166
starting 164
Test Client window 165
testing the client 166

Testing
applets 443
AutoTester project 167
dynamic class loading 389
nomadic client application 451
TestClient utility 163

Text class 600
Text.splitText() method 599
TextData datatype 601
Thread Package property 267, 295

TimeIt sample application 647
TimeItV1-4 sample applications 463, 645
TOOL class service object 394

setting attribute values 413
Transaction

message dialog duration and 406
propagation to remote partition 356
session dialog duration 410
transaction dialog duration 409

Transaction dialog duration 407
error handling 408
events and 409
state information 408
transactions and 409

Transactional deadlock 351
Transactional lock

definition 347
multiple tasks and 355
mutex and 347
non-shared objects and 349
read locks 348
write lock 348

Transactional logging
events and 346
non-transactional objects and 345
scalars and 345

Transactional object 343–356
cloning 356
events and 346
IsTransactional attribute 343
lock promotion deadlock 352
locking in nested transaction 355
logging for 345
not in transaction 356
read lock 349
shared 347
start task statement and 355
transactional deadlock 351
transactional lock 347
write lock 350

Transactional property 326
IsTransactional attribute and 344
nested objects and 344
propagating transaction to remote partition 356

trc message type 186

Section U

666 iPlanet Unified Development Server • Programming Guide • August 2001

Tree view field 101115–125
allowing dragging 118
compared to outline field 115
controls 90, 118
creating in Window Workshop 120
data for 116
displaying root node 90, 118
interacting with 116
properties 118
properties dialog 120
providing data for 121
root node 121
row highlights 119
scroll policy 119
scrollbars 119

U
Uninstall command 319
Upgrade approaches

changes allowed during 459
choosing among 457
compared 454–455
issues 456

User interface 57–68
dialog boxes 63
opening windows 57
TestClient utility 167

User interface, making portable
alignment and spacing tools 134
and grid fields 134
dialog boxes 131
fonts 129–130
graphics 130
image resolution 130
menus 132
palette lists 131
picture buttons 131
prefabricated submenus 132
size policies 143
text label sizing 129
widget differences 128

User visibility 401
UUID (universally unique identifier) for library 291

V
Version, class 460

removing 496
setting 492
using 492

VertPixelsPerInch attribute 131
Virtual attribute, in interface 368
Visibility

service objects and 399

W
Widget

state information, dumping 167
Widget differences

dialog boxes 131
fonts 129–130
list views 128
menus 132

Widgets 159
Width property 95
WidthInPixels attribute 131
Window

active 59
child events 65
close window event chain 68
closing 57
creating window object 59
Display method for 58
displaying 59
event loop for 64
field selection event chain 67
inactive 59
inherited 49
input focus event chain 65
invoking Display method 60
kinds 47
multitasking for concurrent 61
nested 51, 61
opening 57
page template 54
Parent attribute 61
PurgeEvents method 67

Section X

Index 667

Window (continued)
specifying the border 143
start task statement and 61

Window class
FileOpenDialog method 131
FileSaveDialog method 132
MessageDialog method 132
PrintDialog method 132
QuestionDialog method 132

Window Workshop
Group Into TabFolder command 74
List View Properties dialog 94, 110
New ListView command 108
New TabFolder command 73
New TreeView command 120
Tree View Properties dialog 120

Windows 95, automatic compilation and 277
WindowSystem class

HeightInPixels attribute 131
HorzPixelsPerInch attribute 131
VertPixelsPerInch attribute 131
WidthInPixels attribute 131

WinHelp method 148
Write lock 350

X
XML

about 518
source documents 519

XML events
defined 605

XML Namespaces
defined 594, 604
support for 601

XML Parsing
event-based 604

XML parsing
tree-based 595

XMLFilter interface 614
XMLFilterImpl class 614
XMLReader interface 614
XMLReader.setErrorHandler() method 610
XMLReader.setFeature() method 610
XMLReaderFactory class 614
XMLSAX2

filters 609
support for namespaces 610

XSLT processor 517
about 521
classes 526
features 517
in TOOL application 522
stylesheets 520
using protocol handlers 523
XSL transformations 519

Section X

668 iPlanet Unified Development Server • Programming Guide • August 2001

	Contents
	List of Figures
	List of Tables
	List of Procedures
	List of Code Examples
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Other Documentation Resources
	iPlanet UDS Documentation
	Express Documentation
	WebEnterprise and WebEnterprise Designer Documentation
	Online Help

	iPlanet UDS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation

	1 How to Structure a Graphical User Interface
	About iPlanet UDS Windows
	Inherited Windows
	Named Event Handlers and Inherited Windows

	Nested Windows
	Named Event Handlers and Nested Windows

	Inherited Windows or Nested Windows?
	Windows as Page Templates
	Page Formatting

	Structuring the User Interface
	Opening and Closing Windows
	To display a window
	Writing a Display Method
	Creating the Window Object
	Displaying the Window
	Blocking the Calling Window
	Displaying a Nested Window

	Using Dialog Boxes
	Writing the Window Event Loop
	Using Event Handlers
	Child Events
	Input Focus Event Chain
	Field Selection Event Chain
	Close Window Event Chain
	Event Loop for Inherited Windows
	Event Loop Using a Nested Window

	2 Using Complex Widgets
	About Tab Folders
	Creating Tab Folders in the Window Workshop
	Using the New > TabFolder Command
	To create a new tab folder
	Using the Group Into > TabFolder Command
	To create a tab folder
	Editing the Tab Folder
	To copy an existing tab page with the Edit > Copy command
	To create a new tab page
	To delete a tab page
	To move a tab page
	To edit a tab label
	Setting Tab Folder Properties

	Creating Tab Folders Dynamically
	To create a tab folder

	About Outline, List View, and Tree View Fields
	Using Outline Fields
	Interacting with Outline Fields
	Data for Outline Fields
	Node Hierarchy
	Event Handling

	Outline Field Properties
	Providing Controls
	Displaying the Root Node
	Turning Scrollbars On and Off
	Controlling Row Highlights and Scroll Policy
	Displaying Column Titles

	Individual Column Properties
	Column Content
	Column State
	Column Sizing and Alignment
	Column Indenting

	Creating an Outline Field in the Window Workshop
	To create an outline field

	Providing Data for an Outline Field
	Using a Subclass of DisplayNode
	To use the DisplayNode subclass
	Creating and Assigning the Node Hierarchy
	To create the node hierarchy

	Using List View Fields
	List View Styles
	Styles and Portability
	Styles and Sorting

	Interacting with List View Fields
	Data for List View Fields
	List View Properties
	List View Style
	Scrollbars
	Row Highlights and Scroll Policy
	Column Titles

	Individual Column Properties
	Column Content
	Column State
	Column Sizing and Alignment

	Creating a List View Field in the Window Workshop
	Setting List View Style
	Column Names and Other Column Properties
	To create a list view field

	Providing Data for a List View Field
	Small Icon and Simple List Fields
	Image List View Field
	Detail List View Field
	Using a DisplayNode Array
	Using a Subclass of DisplayNode
	To use the DisplayNode subclass
	Creating and Assigning the Node Array

	Using Tree View Fields
	Interacting with Tree View Fields
	Data for Tree View Fields
	DVSmallIcon and DVSelectedIcon Attributes
	DVNodeText Attribute
	Node Hierarchy
	Event Handling

	Tree View Properties
	Providing Controls
	Allowing Dragging
	Displaying the Root Node
	Turning Scroll Bars On and Off
	Row Highlights and Scroll Policy

	Creating a Tree View Field in the Window Workshop
	To create a tree view field

	Providing Data for a Tree View Field
	Attributes for Positioning Nodes
	To create the node hierarchy

	3 Creating a Portable User Interface
	Designing a Portable User Interface
	Widget Differences
	Tab Folders
	List Views and Tree Views
	Fonts
	Image Resolution
	Styles

	Tools for Portable Displays
	Grid Fields
	Field Size Partnerships
	Field Size Policies

	Using Grid Fields
	Nesting Grid Fields
	Resizing Fields Within a Grid Field
	Row and Column Alignment
	Specifying the Window’s Border
	Using Column and Row Partnerships

	4 Implementing Online Help
	Overview
	Context-Sensitive Help
	Default Help File
	DefaultHelpFile Attribute
	To specify the DefaultHelpFile attribute
	To provide context-sensitive help

	Float-Over Help
	Enabling Float-Over Help
	Providing Float-Over Help Text
	To provide float-over help for a field
	Float-Over Help for Palette Lists
	To provide float-over help for a palette list
	Suppressing Float-Over Help Text

	Status-Line Help
	To create a status line widget
	Status-Line Help for Palette Lists
	To create status-line help for palette lists

	Status-Line Help for Menu Widgets
	To provide status-line help

	Using the Prefabricated Help Commands
	To include a Help menu on a window
	Default Help File
	Implementing the About Command
	To use the About command

	5 Testing the User Interface
	Using the TestClient Utility
	Starting the TestClient Utility
	Portable Syntax
	OpenVMS Syntax

	The TestClient Window
	Setting TestClient Options
	Leaving the TestClient Utility
	Testing the Client
	To test an application

	Using the AutoTester Project
	Capturing Input in an Input Capture Class
	Setting Up for Input Capture
	To set up for input capture

	Capturing Input
	To capture input
	Dumping State Information
	Making Portable File References

	Playing Back Captured Input
	To prepare for playback
	To play back the PencilPlay tests

	Analyzing the Results
	Automating Regression Tests
	Creating Your Own Test Utility

	6 Using iPlanet UDS Logging Tools
	About iPlanet UDS Logging
	To implement logging in iPlanet UDS
	Logging Requirements
	iPlanet UDS Logging Tools

	iPlanet UDS Logging Filters
	Message Types
	Service Types
	Shortcuts for Specifying all Service Types
	iPlanet UDS Internal Service Types

	Group Numbers
	Level Numbers
	Useful Message Filters

	Implementing Your Logging Scheme with LogMgr Methods
	Referencing the LogMgr Object
	Logging Application Information with PutLine
	Logging Message Text
	Logging State Information
	Put and PutLine Examples

	Altering the Flow of Control of an Application
	Test Method Example

	Changing Logging Filters
	Flushing Current Log Files
	Flush

	Setting up Logging with iPlanet UDS
	Tools for Setting Log Flags
	The FORTE_LOGGER_SETUP Environment Variable
	The Log Flags Page of the iPlanet UDS Control Panel
	The -fl Flag of iPlanet UDS Commands
	The Utility > Modify Log Flags Command
	The Component > Properties Command
	The Component > Modify Log Flags Command
	Modifying Log Flags with Fscript and Escript
	The LogMgr.ModifyFlags Method

	Order of Precedence for Log-Setting Procedures
	Precedence Details on NT

	Setting Log Flags with Command Line Syntax
	Log Flag Syntax
	FORTE_LOGGER_SETUP Example
	Command-Line Log Flags Example
	To edit a shortcut icon and start iPlanet UDS
	To run the iPlanet UDS command with log flags
	To run the iPlanet UDS command with log flags

	Setting Log Flags with a Window Interface
	Specifying Message and Service Types
	Specifying Group Levels

	Choosing a Testing Mode
	Local Testing
	Distributed Testing
	Distributed Testing and Test Service Object Names

	Locating Logging Output
	Changing Log File Names for Active Partitions
	Rules for Log File Names
	To change a log file name for a compiled active partition or iPlanet UDS executor partition
	To change the log file name for an interpreted active server partition

	Logging Examples
	Auction Example
	Setting up Logging
	Running the Example
	To test logging instrumentation on the Auction application

	Logging for Performance Example
	Log Flags Used
	Example Method That Times Itself
	Example Timer Output Method

	7 Deployment Concepts
	An Overview of Deploying Applications and Libraries
	Distributed Applications and Application Distributions
	Libraries
	Environments

	Configuring Applications
	Client Configuration
	Applets

	Server Configuration
	Relationship Between Partitions and Projects
	Relationship Between Partitions and Libraries
	Automatic Partitioning
	Testing a Configuration
	Deploying Applications

	About Partitions
	Logical Partitions
	Client Partition
	Server Partition
	Replicated Server Partition
	Router Partition
	Non-replicated Server Partition
	Reference Partition

	Configuring Libraries
	About Environments
	Development Environment
	Deployment Environment
	Simulating Deployment Environments

	Connected Environments
	Nodes

	8 Deploying iPlanet UDS Applications and Libraries
	About Deploying Applications and Libraries
	iPlanet UDS Utilities for Deploying Applications and Libraries
	Examples
	Getting Started

	Creating a Default Application Configuration
	To create a default application configuration for client applications
	To create a default application configuration for server applications
	How the Default Configuration is Generated
	How Client Partitions Are Assigned
	How Server Partitions Are Assigned
	Why Some Service Objects Are Unassigned
	Why Service Objects Are Not Replicated

	Examining the Logical Partitions
	Examining Nodes in an Application Configuration
	Examining the Assigned Partitions

	Customizing the Application Configuration
	To open a configuration
	Choosing a Simulated Environment Definition
	Redefining Logical Partitions
	Moving Service Objects Between Partitions
	To move a service object
	Creating a New Logical Partition
	To create a logical partition
	Making a Reference Partition
	To include the project that defines the service object
	To make a reference partition
	Using Reference Partitions with Connected Environments
	To make the distribution for the application that contains the service object
	To create the reference partition with an environment search path
	Defining a Client Partition as an Applet
	To create an applet
	Combining Service Objects and Partitions

	Modifying a Service Object Definition
	To modify a service object definition
	Failover and Load Balancing
	Setting the Export Name and External Type
	Specifying the Environment Search Path

	Changing Partition Assignments
	Adding Partition Assignments
	To assign a logical partition
	Moving Partitions
	Deleting Partitions
	To delete a disabled, assigned partition

	Changing Assigned Partition Properties
	Assigned Client Partition Properties
	Assigned Server Partition Properties

	Changing Configuration Properties
	Viewing and Setting the Configuration Properties
	Recreating the Default Configuration

	Making an Application Distribution
	Understanding Application Distributions
	Standard Partitions
	Compiled Partitions
	Launching Applets and Other Applications
	Adding an Icon File for Windows to the Distribution

	Application Distribution Directory
	File Naming Conventions

	Using the Make Distribution Command
	Local/Remote Option
	Auto-Compile Option
	Full or Partial Make Options
	Install in Current Environment Option
	To change the configuration of an installed application without changing the contents of any logi...

	The Make Distribution Command and Compiled Partitions
	To make a distribution for a configuration containing compiled partitions
	Environment Variables and Path
	Using the fcompile Command for Compiled Partitions
	To run fcompile for a compiled partition
	Compiling a Partition for Use on Several Computing Platforms

	Packaging an Application Distribution
	Installing Additional Files with Your Application Distribution
	Documenting a Distribution

	Installing an Application Distribution
	To install an application distribution
	Transferring a Distribution to�a�Deployment�Environment
	Loading a Distribution into an Environment Repository
	To load a distribution
	When a Distribution Conflicts with an Installed Application

	Modifying a Partitioning Configuration
	Reassigning Partition Assignments
	To reassign a partition
	To copy a partition assignment
	To assign an unassigned partition
	Modifying Installed or Assigned Partition Properties
	To set properties of an assigned or installed partition

	Installing the Application
	To install an application
	Installing Applications on Server Nodes
	Installing Applications on Client Nodes
	Generating Icons for Standard Client Partitions
	Generating Icons for Compiled Client Partitions
	Creating Icons by Hand
	To create a Windows NT client icon

	Installing Applications with Reference Partitions
	Completing Partial Installations

	Deploying a Library
	Creating an Library Configuration
	Creating a Default Library Configuration
	To create a default library configuration

	Examining Library Configurations
	Examining the Projects
	Examining Nodes in a Library Configuration
	Examining Assigned Libraries

	Modifying a Library Configuration
	Adding Projects to the Configuration
	To add a project to the configuration
	Removing Libraries from a Node
	To remove a restricted external library
	Standard or Compiled Libraries
	To turn on compilation for a library

	Making a Library Distribution
	About Library Distributions
	Using the Make Distribution Command
	To make a library distribution
	Compiling Libraries
	To compile multiple libraries
	To run fcompile for a compiled library

	Installing a Library Distribution
	To deploy a library distribution

	Removing and Updating Applications and Libraries
	Removing an Application or Library
	To uninstall an application or library distribution

	Upgrading Applications
	Upgrading Installed Applications
	To change the configuration of an installed application without changing the contents of any logi...
	To upgrade an installed application
	Upgrading Reference Partitions
	To make the reference partition reference the partition of the newer release of a changed applica...
	Upgrading Libraries
	To make the application reference the newer release of the library
	Partial Upgrades

	9 Class Runtime Properties
	Class Runtime Properties
	Class Runtime Property Defaults and Performance
	Setting Runtime Properties for a Class
	Setting Runtime Property Attributes for an Object
	Runtime Attributes on Nested Objects
	Runtime Attributes on Cloned Objects

	Distributed Objects
	Named and Unnamed Anchored Objects
	Non-Distributed Anchored Objects
	Invoking Methods on Distributed Objects
	Accessing Attributes of Distributed Objects
	Note on DataValue Subclasses in Framework

	Shared Objects
	Automatic Locking: Mutexes
	Nonshared Objects and Concurrent Access
	Waiting for Events and Shared Objects
	Nested Method Invocations
	Common Mutex Deadlock
	Avoiding Common Mutex Deadlock

	Distributed Mutex Deadlock
	Distributed Recursive Deadlock
	Distributed Shared Objects
	Cloning Shared Objects

	Transactional Objects
	Transactional Logging
	Common Transactional Logging Error

	Shared Transactional Objects and Transactional Locking
	Updating Non-Shared Transactional Objects
	Read Locks
	Write Locks
	Lock Promotion

	Transactional Deadlock
	Lock Promotion Deadlock
	Locking in Nested Transactions
	Transaction Task Participants and Locking
	Transactional Objects Not in Transaction
	Cloning Transactional Objects
	Distributed Transactions and the Transactional Property

	Monitored Objects

	10 Using Interfaces
	About Interfaces
	Interface Elements
	Implementing an Interface
	Using an Interface as a Data Type
	Dynamic Class Loading
	Multiple Interface Inheritance
	Polymorphism
	Interface Hierarchies

	Creating an Interface
	To create an interface

	Implementing an Interface
	To implement an interface in the Class Workshop
	Implementing Multiple Interfaces

	Using an Interface as a Declared Type
	Interface Elements
	Virtual Attributes
	Methods
	Events
	Event Handlers
	Constants

	Dynamic Class Loading
	Application Developer: Using Dynamic Loading within Application Code
	To use dynamic class loading with an interface

	Step 1. Defining the Interface
	To create an interface

	Step 2. Providing the Mechanism for Registering Implementing Classes
	Step 3. Loading the Class and Creating the Object
	To load the class and create the object

	Step 4. Making the Interface Library
	To configure a library

	Step 5. Testing the Application
	Step 6. Delivering the Application and Interface Library
	Class Implementer: Providing Implementations for Dynamic Loading
	To provide implementations for the interface

	Step 1. Importing the Interface Library
	To import a library

	Step 2. Creating the Implementation Project
	To include a library as a supplier

	Step 3. Creating the Implementing Class
	To implement an interface in the Class Workshop

	Step 4. Making the Implementation Library
	To configure a library

	Step 5. Deploying the Implementation Library
	Step 6. Registering the Implementation Library
	Step 7. Testing the Interface

	Using Multiple Interface Inheritance
	Declared Type and Runtime Type for Interfaces
	Example of Multiple Inheritance
	Signature Conflicts

	11 Working With Service Objects
	About Service Objects
	TOOL Class Service Objects
	Service Objects for Database Access
	DBResourceMgr Service Objects
	DBSession Service Objects

	Setting Properties of Service Objects
	Class Runtime Properties
	Service Object Properties

	Setting Service Object Visibility
	Environment Visibility
	User Visibility

	Assigning a Dialog Duration to Service Objects
	Dialog Duration and State Information
	Dialog Duration and Error Handling
	Message Duration Service Objects
	State Information for Message Duration
	Error Handling for Message Duration
	Transactions and Message Duration
	Events for Message Duration

	Transaction Duration Service Objects
	State Information for Transaction Duration
	Error Handling for Transaction Duration
	Transactions and Transaction Duration
	Events for Transaction Duration

	Session Duration Service Objects
	State Information for Session Duration
	Error Handling for Session Duration
	Transactions and Session Duration
	Events for Session Duration

	Replicating Servers for Failover and Load Balancing
	Replication for Failover
	Replication for Load Balancing
	Replication for Failover and Load Balancing

	Providing Failover
	Enabling Failover
	Failover in the Local Environment
	Cross-Environment Failover
	Deploying Applications with Cross Environment Failover

	Combining Local and Cross-Environment Failover
	To combine local and cross-environment failover

	Relationship between Dialog Duration and Failover

	Providing Load Balancing
	Enabling Load Balancing
	To turn on load balancing for a service object
	Setting the Number of Replicates
	To specify the number of replicates for a particular configuration
	Relationship between Dialog Duration and Load Balancing

	The Router Partition
	Single-Threaded and Multi-Threaded Routers
	Failover for the Router

	Sharing Service Objects Between Applications
	Sharing a Service Object in a Single Environment
	Sharing a Service Object in Connected Environments
	Including a Shared Service Object in an Application
	To include a shared service object in an application
	Deploying the Shared Service
	Making a Distribution for the Server Application in the Local Environment
	To make a distribution for the server application
	Including the Supplier Project
	To transfer a project from one repository to another
	Making the Reference Partition

	Using the Environment Search Path
	Specifying an Environment Search Path
	Specifying Auto-Start for a Partition

	12 Advanced Options for Structuring Client Applications
	Writing Applications That Use the Launch Server and Applets
	Setting up the AppletSupport Library
	Advantages of Using the AppletSupport Library
	Restrictions
	Building Applications by Starting Multiple Smaller Applications
	Using the LaunchService Service Object
	Using LaunchMgr Methods
	A Scenario

	Configuring and Deploying the Main Client Application
	To configure an application as an applet
	Testing

	Customizing the Launcher Application
	Deploying Applications That Launch Other Applications And Applets
	Troubleshooting Client Applications That Use Applets

	Developing Applications with Nomadic Clients
	Connecting to the Environment
	Disconnecting the Client Partition from the Distributed Environment
	Releasing the Connection to Service Objects and Anchored Objects
	Releasing the Connection to the Environment

	Example of Connecting and Disconnecting to the Environment Manager
	Starting a Nomadic Client Application
	Testing Nomadic Client Applications
	Restrictions on Nomadic Clients

	13 Upgrading Deployed Applications
	Choosing an Upgrade Approach
	Types of Upgrades
	Factors Influencing Upgrade Possibilities
	When is a Rolling Upgrade Necessary?

	Changes Allowed Between Upgrades
	About Class Versions and Compatibility Levels
	About Interoperable Upgrades
	Upgrading Clients
	Upgrading Servers

	About Compatibility Level Upgrades
	About Compatibility Level Rolling Upgrades

	About Class Version Upgrades
	About Converters
	New Method Converters
	Obsolete Method Converters
	Converters for Modified Methods
	Event Converters

	The Banking1-2 Example
	To update the Banking application
	To upgrade the Banking application

	Performing an Interoperable Upgrade
	Summary of Upgrade Steps
	To upgrade a deployed application using a new application distribution

	Changes Allowed in an Interoperable Upgrade
	Using Distributed Object References
	Adding New Attributes to Objects that are not Distributed
	Updating Window Classes

	Making the Distribution
	To make the distribution for the updated, interoperable application

	Using Compatibility Levels to Upgrade
	Summary of Upgrade Steps
	To upgrade a deployed application using a new application distribution

	Using New Compatibility Levels of Libraries and Shared Service Objects
	To use a new compatibility level of a library
	To use a new compatibility level of a service object

	Using Class Versions and Converters for a Rolling Upgrade
	Planning a Class Version Upgrade
	Special Requirements for High Availability Servers

	Summary of Upgrade Steps
	To upgrade a deployed application, using class versions and converters

	Updating Classes and Writing Converters
	Viewing Converters
	To see all converters defined for a class
	To see the text of an individual converter
	Guidelines for Writing Converters
	Writing Method Converters
	To create a method converter
	Writing Event Converters
	To replace an event and write the associated event converters
	To replace the event BugAddedOld with a new event BugAddedNew
	Modifying Converters
	Deleting Converters

	Using Class Version Numbers
	To set a class version number

	Testing Converters
	Making a Distribution
	Installing and Starting Updated Partitions
	To upgrade a client partition
	To upgrade a high availability server partition
	Using Failover
	Using Load Balancing
	To use load balancing for a server having multiple versions

	Recording Information About the Update
	Removing Versions of Classes

	14 TOOL Reflection Classes
	The Power of Reflection
	Learning About Reflection
	Restrictions

	TOOL Class Reflection
	Accessing Reflection Objects
	Getting Information About a Class or Interface
	Accessing Arrays
	Accessing Simple Data Types

	Working With Attributes
	Getting the AttributeDesc Object
	Determining the Data Type of an Attribute
	Getting or Setting the Attribute Value on an Object
	Getting or Setting the Value of a Primitive Type

	Working With Methods
	Getting Parameter and Return Value Information
	Invoking the Method

	Reflection Examples
	Object Inspector
	Class Browser

	15 XSLT Processor Library
	Features of the iIS XSLT Processor
	Restrictions

	Introducing XML and XSL
	What is XML?
	Representing an XML Document in a TOOL Application

	What are XSL Transformations?
	What is an XSLT Processor?

	Using an XSLT Processor in a TOOL Application
	Using the Results Document in a TOOL Application

	Using Protocol Handlers
	The XSLT Processor Library Classes

	16 Source Code Management for iPlanet UDS Projects
	Overview of Source Code Management
	Source Code Management Service
	Features and Limitations
	Using the GenericRepository Library
	Using SCMServer

	Using the SourceCodeManager Library
	Features and Limitations
	Creating an SCM Service
	To create an SCM service
	SCM Service Example

	Export Formats
	Compatibility Format
	Multi-File Format

	17 Performance-Based Load Balancing
	Using Performance-Based Load Balancing
	Providing Performance Information About a Node
	Using the Environment Console
	Using Escript

	Specifying the Number of Replicates
	Partitioning the Replicates

	18 Creating HTTP Applications
	HTTP Overview
	Clients
	Servers
	The HTTPSupport Model
	Messages
	Headers
	Message Body
	Requests
	Responses

	Sessions
	Application Sessions
	Network Sessions
	Secure Sessions

	HTTPSupport Classes and Interfaces

	Creating HTTP Clients
	HTTP Client Requests
	Specifying Request Details
	SetMethod
	SetURL
	SetQueryString
	Message Body
	Entities
	Message Headers

	Sending Messages
	Send Method
	Dispatching Requests
	Sessions
	Reusing Sessions

	HTTP Servers
	Creating iPlanet UDS HTTP Server Applications
	MessageReceiver Interface
	HTTPReceiver Interface
	Listening For Requests
	Advertise Method
	SetServiceEOSInfo Command

	Responding to Requests
	Sessions
	Processing Cookies
	Message Headers
	Message Body
	Entities
	HTTPFactory

	Using Multi-Threaded Server Processes

	Configuring HTTP Sessions
	Configuring HTTP Clients
	To configure an iPlanet UDS HTTP client
	System-Wide Configuration
	Session-By-Session Configuration

	Configuring HTTP Servers
	To configure an iPlanet UDS HTTP server
	HTTPConfigManager
	HTTPHelper
	Configuring Request Dispatching With HTTPServerManager

	Configuring Secure Sessions
	Secure Client Sessions
	To configure a secure client session
	Secure Server Sessions
	To configure a secure HTTP session

	Related Topics
	Encoding and Decoding With Base64
	Character Sets in Messages

	19 Enabling Security
	About SSL
	How SSL Works

	SSL Services
	SSL Classes
	Working with Certificates
	Creating a Root Certificate
	Creating a Leaf Certificate

	Code Examples

	20 Using the XMLDOM2 Library
	What Are XML Namespaces?
	Tree-Based APIs
	Advantages of Using Tree-Based APIs
	Restrictions When Using Tree-Based APIs

	The Document Object Model
	DOM Trees
	DOM Tree Examples
	Creating DOM Trees
	Reading DOM Trees
	Manipulating DOM Trees
	The DOM API Classes
	DOM Level 2 Features

	Upgrading from DOM Level 1

	21 Using the XMLSAX2 Library
	XML Namespaces
	SAX and the Event Handling Model
	What Are Events?
	Examples of Events
	StartDocument() and EndDocument() Methods
	StartElement() and EndElement() Methods
	Character Events

	Filtering Events
	The FilterImpl Class

	Exception Handling in SAX Level 2
	New Features in SAX Level 2
	Support for Namespaces
	Configurable Parsers
	Other Features

	Upgrading from SAX Level 1
	The XMLSAX2 Classes and Interfaces

	22 Accessing Internet Directory Services
	LDAP Overview
	LDAP Directory Information
	LDAP Directory Trees
	Accessing and Updating an LDAP Directory

	Using the iPlanet UDS LDAP Library
	Establishing an LDAP Session
	Connecting to an LDAP Server
	Message IDs
	Authentication

	Searching an LDAP Directory
	Building LDAP Filters

	Updating an LDAP Directory
	Adding an LDAP Entry
	Modifying an Attribute for an LDAP Entry
	Deleting an LDAP Entry

	Closing an LDAP Session

	A iPlanet UDS Example Applications
	How to Install iPlanet UDS Example Applications
	Overview of iPlanet UDS Example Applications
	Application Descriptions
	AdaptableAuction
	To use Adaptable Auction

	AppletBanking
	To use AppletBanking

	Auction
	To use Auction

	AutoTester
	To use AutoTester

	Banking1-2
	To use Banking1-2

	HTTPSupport
	To use HTTP examples

	InheritedWindow
	To use InheritedWindow

	InternatBank
	To use InternatBank

	NestedWindow
	To use NestedWindow

	NomadicOrderClient
	To use NomadicOrderClient

	PrintSample
	To use PrintSample

	TabFolders
	To use TabFolders

	TimeItV1-4
	To use TimeItV1-4
	To use TimeItV1
	To use TimeItV2
	To use TimeItV3
	To use TimeItV4
	TreeList
	To use TreeListExample

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

