
System Management Guide
iPlanet™ Unified Development Server

Version 5.0

August 2001

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, iPlanet, Unified Development Server, and the iPlanet logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, iPlanet, Unified Development Server, et le logo iPlanet sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

List of Figures . 13

List of Procedures . 17

Preface . 21
Product Name Change . 21
Audience for This Guide . 22
Organization of This Guide . 22
Text Conventions . 23
Other Documentation Resources . 24

iPlanet UDS Documentation . 24
Express Documentation . 25
WebEnterprise and WebEnterprise Designer Documentation . 25
Online Help . 25

iPlanet UDS Example Programs . 25
Viewing and Searching PDF Files . 26

Chapter 1 Introduction to iPlanet UDS System Management . 29
System Overview . 29

iPlanet UDS Environments . 31
iPlanet UDS Runtime System and Distributed Applications . 32

Overview . 33
A Scenario . 37

Partitions . 38
Execution Type . 39
Replication . 39
Reference Partitions . 41

Libraries . 42
System Libraries . 42
User Libraries . 43

4 iPlanet Unified Development Server • System Management Guide • August 2001

iPlanet UDS System Management Services and Architecture . 44
System Management Agents . 46
System Management Services . 49

Environment Manager . 50
Name Service . 51
Node Manager . 52

iPlanet UDS System Management Tasks . 53
Setting Up and Maintaining iPlanet UDS Environments . 54

Setting up and Maintaining a Physical Environment . 54
Designing an iPlanet UDS Environment . 55
Setting up and Maintaining an iPlanet UDS Environment . 55
Setting up and Maintaining Development Environments . 56

Deploying and Managing iPlanet UDS Applications . 56
Application Deployment Tasks . 57
Application Management Tasks . 58

Deploying Library Distributions . 59
iPlanet UDS System Management Tools . 59

Environment Console . 60
Escript Utility . 60
Launch Server . 60
Repository Management Tools . 60

Chapter 2 The iPlanet UDS Environment Console . 61
Overview . 61
Starting the Environment Console . 63

Using the econsole Command . 64
The Active Environment Window . 65

Menu Bar . 66
Toolbar . 66
Main Viewing Panel . 67
Status Bar . 75
Exiting the Environment Console . 76

Other Environment Console Windows . 76
Environment Tasks: Environment Edit Mode . 76

Environment Definition Window . 76
Node Template Window . 77

Application Tasks: Agent Mode . 78
Agent Window . 78
Instruments Window . 79
Agent Information Window . 80
Charts Window . 81
Component Log Window . 81

5

Using iPlanet UDS Windows . 83
Using the Mouse . 83
Using the Keyboard . 83
Using the Hierarchical Browser . 84

Using the Clipboard . 85
Using Multiple Windows . 85

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 87
Setting up an iPlanet UDS Environment . 88

Designing Your Environment . 88
Summary of the Environment Setup Process . 91

Nodes In Your Environment . 92
Central Server Node . 93
Server Nodes . 94

Development Server . 95
Deployment Server (iPlanet UDS Runtime System) . 95

Client Nodes . 96
Development Client . 96
Deployment Client (iPlanet UDS Runtime System) . 96
Setting up Client Nodes after Installation . 97

Structure of Installed iPlanet UDS Software . 98
iPlanet UDS System Software Directory Structure . 98
Environment Variables . 101
The Default Environment Definition . 102

Starting System Management Services . 103
Startup Sequence . 104
Startup Commands (nodemgr and start_nodemgr) . 104

Portable (All Platforms) . 106
Process Names . 109
Startup Batch Files . 110
Using Windows NT Services . 110

Why Use Windows NT Services? . 110
Controlling the Node Manager or Environment Manager
and Repository Server Services . 111

Shutting Down System Management Services . 113
Maintaining System Management Repositories . 113

Backing up and Restoring Environment Repositories . 114
Backing up Repository Files . 114
Exporting Environment Definitions . 114

Connecting Environments . 115
Viewing Connected Environments . 116
Setting an Environment Search Path . 117
How the Environment Search Path Can Affect Your Applications . 119

6 iPlanet Unified Development Server • System Management Guide • August 2001

Fault Tolerance for Multiple Connected Environments . 119
Environment Manager Failover . 120
Preparing Environment Managers to Access Named Objects in Other Environments 121
Environment Manager Failover for Partitions . 122
Environment Manager and Lost Partition Information . 123

Chapter 4 Creating and Modifying Environment Definitions . 125
Introductory Concepts . 126

Model Nodes . 126
Simulated Deployment Environments . 127

Creating a New Simulated Environment Definition . 129
Specifying New Environment Properties . 129
Adding a Node to an Environment Definition . 130

Node Templates . 132
Specifying Node Properties . 134

Resource Managers . 136
Installed Protocols . 138
Installed Libraries . 140

Saving and Exporting an Environment Definition . 141
Exporting an Environment Definition . 141
Importing an Environment Definition . 141

Modifying an Environment Definition . 142
Opening an Environment Definition . 142
Locking Environment Definitions . 143
Modifying Environment Properties . 144
Setting and Using Passwords for an Environment . 146

Replacing the Password for an Environment Repository . 147
Modifying Node Properties . 147

Copying a Node Specification . 147
Deleting a Node from an Environment Definition . 147

Deleting an Environment Definition . 148

Chapter 5 Deploying iPlanet UDS Applications . 149
About Application and Library Distributions . 149

Making an Application Distribution . 150
Making a Library Distribution . 153
Naming Conventions . 156

Naming Conventions Example . 157
Packaging an Application Distribution . 157

Installing Additional Files with Your Application Distribution . 158
Documenting a Distribution . 159

7

Deploying an Application Distribution . 160
Transferring a Distribution to a Deployment Environment . 160
Loading a Distribution into an Environment Repository . 162

When a Distribution Conflicts with an Installed Application . 164
Modifying a Partitioning Configuration . 165

Partition Assignments . 166
Installed or Assigned Partition Properties . 168

Installing an Application . 170
The Installation Procedure . 170
Installing on Server Nodes . 172
Installing on Client Nodes . 173
Installing Applications with Reference Partitions . 176
Completing Partial Installations . 176

Deploying a Library Distribution . 177
Removing an Application or Library . 178
Upgrading Applications . 180

Upgrading Installed Applications . 180
Upgrading Reference Partitions . 182
Upgrading Libraries . 183
Partial Upgrades . 184

Chapter 6 Managing iPlanet UDS Applications . 185
Starting iPlanet UDS Applications . 185

Starting Client Partitions . 185
Starting Server Partitions . 186

Managed Startup . 187
Auto–Startup . 189
Manual Startup . 190

Monitoring iPlanet UDS Applications . 194
Monitoring Status . 196
Viewing Instrument Data . 198
Tracking Instrument Data: Charts Window . 201
Tracking Instrument Data with Log Files . 203

Specifying When and Where to Log Instrument Data . 203
Setting an Instrument for Logging . 205

Managing Running Applications . 206
Changing Instrument Values . 207
Using Agent Commands . 208

Reconfiguring Applications . 208
Managing Applications with Replicated Partitions . 209

Failover . 210
Load Balancing . 211
Failover and Load Balancing Combined . 213

8 iPlanet Unified Development Server • System Management Guide • August 2001

Chapter 7 Troubleshooting . 215
Backing up iPlanet UDS Files . 216
Logging and Log Files . 217

Changing Log File Names . 219
Requested Message Output Logging . 222

Specifying Message Filters . 223
Setting the Logger Flag for a Partition . 224
Dynamically Modifying Message Filters . 225
Useful Message Filters . 227

Instrument Data Logging . 228
Audit Trace Logging . 228

Routine Monitoring . 229
Monitoring System Management Services . 229

Using the Operating System . 229
Using iPlanet UDS System Management Tools . 229

Monitoring Application Partitions . 230
Using iPlanet UDS System Management Tools . 230
Using the Operating System . 231
Monitoring Log Files . 231

Using the iPlanet UDS Keepalive Feature . 231
Setting Keepalive Threshold Values with Environment Variables . 232
Setting Keepalive Threshold Values Using the CommMgr Agent . 232
Restrictions . 233

Memory Issues . 234
Changing Memory Settings . 236
Specifying Object Memory Flag . 237

Setting the -fm Flag for a Partition . 238
Thread Stack Size . 239

Setting the Thread Stack Size . 239
Connectivity Issues . 240

Setup . 240
Ongoing . 240

Database Access Issues . 241

Chapter 8 Managing iPlanet UDS Development Repositories . 243
About iPlanet UDS Development Repositories . 243

About Central Repositories . 244
About Shadow Repositories . 246
About Private Repositories . 247
About Repository Security . 247

Security for Standard Repositories . 248
Security for Secure Repositories . 249

About the B-tree Repository Format . 249

9

Creating Repositories . 251
Creating Private and Central Repositories . 251

Copying Repository Seed Files . 252
Copying Repository Files . 252
rpcreate Command . 253
rpcopy Command . 255

Creating Shadow Repositories . 258
rpshadow command . 258
Additional Information About Using Shadows . 260

Making a Standard Repository a Secure Repository . 261
Making a Secure Repository a Standard Repository . 261

Starting Central Repository Servers . 262
rpstart Command . 262

Stopping Central Repository Servers . 265
rpstop Command . 265

Maintaining Repositories . 266
Compacting a Repository . 267

rpclean Command . 268
Backing up Repositories . 270

Backing up Central Repositories . 270
Backing up Shadow Repositories . 271
Backing up Private Repositories . 272

Improving Repository Performance . 272
Shadow Repositories . 272
Tuning the Central Repository Server Environment . 273
Reduce Repository Overhead . 273
Using Shadows Efficiently . 274
Using Multiple Repositories . 275
Using Detached Shadow Repositories . 276

Maintaining a Secure Repository . 277
Creating New Workspaces in a Secure Repository . 278
Changing Passwords in a Secure Repository . 279

In the Repository Workshop . 279
In Fscript . 280

Using Repository Agents . 281
How the Agents are Related . 282

Finding Running Repository Servers and Their Agents . 282
Navigating Through the Repository Agents . 283

Finding Information about Locked Workspaces . 286
Finding Information about Global Locks . 287
Finding Information about Repository Sessions . 288
Shutting Down Repository Servers . 290

10 iPlanet Unified Development Server • System Management Guide • August 2001

Chapter 9 Launching iPlanet UDS Applications and Applets . 291
About Launching iPlanet UDS Applications and Applets . 291
About the Launcher Application . 294

iPlanet UDS Launcher Application . 294
Starting the Launcher Application . 296

Setting up the Launch Server and Applications . 296
Advantages of Using the Launch Server . 296
Restrictions . 297
Deploying Applications to Client Nodes . 298

Assigning Application Partitions to Client Nodes . 300
Defining Publicly-Available Applications . 301

Setting up Icons or Scripts That Use the Ftcmd Utility . 303
Starting the Launch Server . 304

Setting up the Port for the Launch Server . 304
ftlaunch Command . 304
Launch Server Details . 306

Using the Ftcmd Utility . 307
Flags on the ftcmd Command . 307
Ftcmd Commands . 310

Deploying Applications that Launch Other Applications and Applets . 313
Troubleshooting Client Applications That Use Applets . 314

Appendix A Special Setup for Development Environments . 315
Auto-Compile Services . 315

Auto-Compile Process . 316
Auto-Compile Application Architecture . 317

CodeGenerationSvc . 317
AutoCompileSvc . 318

Setting up the Auto-Compile Feature . 319
Configuring the Auto-Compile Services . 320
Starting up the Auto-Compile Services . 322
Troubleshooting the Auto-Compile Feature . 322

Debugging Errors When Using Auto-Compile . 322
Using Auto-Compile with Windows 95 . 323

Compiling Partitions as Windows NT partitions . 323
Setting up a Windows 95 Node to Auto-Compile . 324

Support For OLE . 325

11

Appendix B iPlanet UDS Environment Variables . 327
Environment Variable Descriptions . 327
Logical Names for OpenVMS . 343
Using the iPlanet UDS Control Panel . 345

Opening the Control Panel . 345
The Control Panel Window . 345
Closing the Control Panel . 347

General Tab Page . 347
Repository Name . 347
Workspace Name . 348
Root Directory . 349
Time Zone and Daylight Savings . 349

Network Tab Page . 349
Model Node . 350
Node Name . 350
Name Server Address . 350
Communication Provider . 351

Log Flags Tab Page . 351
Setting Environment Variables Without the iPlanet UDS Control Panel . 353

Setting Environment Variables on NT . 353
Using the Registry . 354

Setting Environment Variables on Windows 95 . 355
Setting Environment Variables on UNIX . 356
Setting Logical Names on OpenVMS . 356

Appendix C iPlanet UDS Command Summary . 359
iPlanet UDS Commands . 359

Compmsg Command . 359
Econsole Command . 360
Escript Command . 360
Extmsg Command . 361
*Fcompile Command . 361
Fcontrol Command . 362
*Forte Command . 362
*Fscript Command . 363
Ftcmd Command . 364
Ftexec Command . 364
Ftexecd Command . 365
Ftlaunch Command . 365
Nodemgr Command . 366

12 iPlanet Unified Development Server • System Management Guide • August 2001

iPlanet UDS Commands (continued)
Olegen Command . 366
*Rpclean Command . 367
*Rpcopy Command . 367
*Rpcreate Command . 368
*Rpshadow Command . 368
*Rpstart Command . 369
*Rpstop Command . 369
*Tclient Command . 370

iPlanet UDS Logger and Memory Manager Flags . 371
-fl Flag (Log Manager) . 371

File Name . 371
File Filter . 371

-fm Flag (Memory Manager) . 375
Setting Maximum and Minimum Size of the Memory Heap . 377

-fst Flag (Stack Size) . 378

Index . 379

13

List of Figures

Figure 1-1 iPlanet UDS Applications and Runtime System . 30

Figure 1-2 Partitioning a Logical Application . 33

Figure 1-3 Deploying an Application . 34

Figure 1-4 Object View of a Distributed Application . 35

Figure 1-5 Application Partition and iPlanet UDS Runtime System Objects 36

Figure 1-6 Partition Execution Types . 39

Figure 1-7 Replicated Partitions: Load Balancing and Failover . 41

Figure 1-8 Some Key Objects in the System Management Domain . 44

Figure 1-9 System Management Agent Hierarchy . 47

Figure 1-10 iPlanet UDS System Management Services . 50

Figure 1-11 Typical Environment Setup Tasks . 54

Figure 1-12 Typical Application Deployment and Management Tasks . 57

Figure 2-1 Active Environment Window . 65

Figure 2-2 Application Outline View . 68

Figure 2-3 Node Outline View . 69

Figure 2-4 Topology Outline View . 70

Figure 2-5 Name Service view . 71

Figure 2-6 Application View with Installed Application . 72

Figure 2-7 Application View with Expanded Installed Application . 73

Figure 2-8 Agent Partition Window . 74

Figure 2-9 Instrument Window for a Partition Agent . 74

Figure 2-10 Commands for an Installed Partition Agent . 75

Figure 2-11 Environment Definition Window . 77

Figure 2-12 Node Template Window . 77

Figure 2-13 Typical Agent Window . 78

Figure 2-14 Instruments Window . 79

Figure 2-15 Agent Information Window . 80

14 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 2-16 Charts Window . 81

Figure 2-17 Component Log Window . 82

Figure 2-18 Hierarchical Display . 84

Figure 3-1 Worksheet for Setting up an iPlanet UDS Environment . 90

Figure 3-2 An iPlanet UDS Environment . 93

Figure 3-3 iPlanet UDS System Directory Structure . 99

Figure 4-1 Model Nodes . 127

Figure 4-2 Relationship between Simulated and Active Environments . 128

Figure 4-3 New Environment Dialog . 129

Figure 4-4 Specifying a Node in an Environment Definition . 131

Figure 4-5 Node Properties Dialog . 134

Figure 4-6 Resource Manager Property on the Node Properties Dialog . 137

Figure 4-7 Installed Protocols Property on the Node Properties Dialog . 138

Figure 4-8 Installed Libraries Property on the Node Properties Dialog . 140

Figure 4-9 The Environment Definition Selection Window . 143

Figure 4-10 Environment Locking Notice . 144

Figure 4-11 Environment Properties Dialog . 145

Figure 5-1 Application Distribution Directory Structure . 152

Figure 5-2 Library Distribution Directory Structure . 155

Figure 5-3 Transferring Distribution to Deployment Environment . 161

Figure 5-4 Loading Distribution into Environment Repository . 162

Figure 5-5 Installing Application on Server Node . 172

Figure 5-6 Installing Application on Client Node . 174

Figure 6-1 Application Outline View Displaying Information about Applications 196

Figure 6-2 Node Outline View Displaying Information about Applications 197

Figure 6-3 Some Instruments of System Management Agents . 199

Figure 6-4 Instrument Window . 200

Figure 6-5 Execute Command Dialog . 208

Figure 6-6 Failover Scheme . 210

Figure 6-7 Typical Load Balancing Scheme . 212

Figure 6-8 Load Balancing Scheme with Failover . 214

Figure 7-1 Specifying iPlanet UDS Message Output Filters . 223

Figure 7-2 Object Memory Space . 234

Figure 7-3 Memory Management Instrument Values (OperatingSystem Agent) 236

Figure 8-1 Locating information about running repository servers . 282

Figure 8-2 RepositoryServerInfo agent in the Application View . 283

Figure 8-3 Agents for a central repository server . 284

List of Figures 15

Figure 8-4 Repository Agent Hierarchy for CentralRepository
Central Server in Node Outline View . 285

Figure 8-5 Agents for a repository session . 288

Figure 8-6 Agents for Repository Sessions in Node Outline View . 289

Figure 9-1 Launcher . 295

Figure A-1 Auto-Compile Process . 316

Figure A-2 Auto-Compile Configuration Example . 319

Figure B-1 iPlanet UDS Control Panel . 346

16 iPlanet Unified Development Server • System Management Guide • August 2001

17

List of Procedures

To copy the documentation to a client or server . 26

To view and search the documentation . 26

Autostarting an application consists of the following basic operations . 38

To start the Environment Console on Windows or Windows NT . 63

To start the Environment Console on UNIX, OpenVMS, or Windows NT . 63

To navigate the agent hierarchy . 72

To install and start an iPlanet UDS environment . 91

To get to the Services control panel . 111

To start a service . 111

To change the service configuration . 112

To stop an NT service, do one of the following . 112

To shut down all iPlanet UDS processes in the iPlanet UDS environment . 113

To shut down a Node Manager and all iPlanet UDS processes running on that node 113

To connect an environment to your current iPlanet UDS environment . 115

To see if an environment is connected to your environment . 116

To set a default environment search path . 117

To run these routines . 121

To create a simulated deployment environment definition . 128

To export an environment definition from the environment repository . 141

To set a password on an environment . 146

To specify the password for an environment . 146

To delete a node specification from an environment definition . 147

To delete an environment definition . 148

To deploy an application distribution . 160

To load a distribution . 163

To reassign a partition . 166

To copy a partition assignment . 167

18 iPlanet Unified Development Server • System Management Guide • August 2001

To assign an unassigned partition . 167

To set properties of an assigned or installed partition . 169

To install an application . 170

To create a Windows 95 or NT client icon . 176

To deploy a library distribution . 177

To uninstall an application or library distribution . 179

To change the configuration of an installed application without changing
the contents of any logical partitions . 181

To upgrade an installed application . 181

To make the reference partition reference the partition of the newer release
of a changed application . 182

To make the application reference the newer release of the library . 183

To start all enabled server partitions in an application . 187

To start a single installed server partition . 187

To shut down an application or a single server partition . 188

To start a standard client partition, enter the following version of the ftexec command 190

To start a standard server partition, enter the following command . 191

To start a standard server partition that uses POSIX threads, enter the following command 191

To locate a particular iPlanet UDS executor server partition . 198

To view the value of an instrument . 199

To track the value of an instrument . 201

To specify when and where to log instrument data . 203

To set an instrument to be logged . 205

To change the value of a changeable instrument . 207

To reconfigure an application . 209

To change the log file name for the Environment Manager . 220

To change a log file name for a compiled active partition or iPlanet UDS executor partition 220

To change the log file name for an interpreted active server partition . 221

To specify the logger flag for a partition . 225

To dynamically modify the message filters for an active partition . 225

To specify-fm flag for a partition . 238

To optimize space reclamation before using the rpclean command . 267

To use multiple development repositories for an application . 275

To update project snapshots . 275

To create a new workspace in a secure repository using the Repository Workshop 278

To create a new workspace in a security repository using Fscript . 278

To find the RepositoryServerInfo agent for a repository server . 282

List of Procedures 19

To find the agents for a repository server . 284

To see the LockedWorkspaces instrument . 286

To see the GlobalLocks instrument . 287

To locate the repository session agents of a client application . 289

To configure and install the Part2 partition of the AutoCompileSvc application
using the Environment Console . 320

To configure and install the Part2 partition of the AutoCompileSvc application using Escript 321

To compile partitions in Windows NT and use them in Windows 95 distributions 323

To install the Windows 95 distributions . 324

To set up a Windows 95 node to run the auto-compile compiler service . 324

To specify support for DCE, ObjectBroker, or OLE on a node . 325

To start a client partition, use the following ftexec command syntax . 364

To start a standard server partition, enter the following command . 365

20 iPlanet Unified Development Server • System Management Guide • August 2001

21

Preface

The iPlanet UDS System Management Guide provides information regarding the
setting up and maintaining of iPlanet UDS environments as well as the deployment
and management of iPlanet UDS distributed applications.

It also covers how you perform these tasks using iPlanet UDS system management
tools.

This preface contains the following sections:

• “Product Name Change” on page 21

• “Audience for This Guide” on page 22

• “Organization of This Guide” on page 22

• “Text Conventions” on page 23

• “Other Documentation Resources” on page 24

• “iPlanet UDS Example Programs” on page 25

• “Viewing and Searching PDF Files” on page 26

Product Name Change
Forte 4GL has been renamed the iPlanet Unified Development Server. You will see
full references to this name, as well as the abbreviations iPlanet UDS and UDS.

Audience for This Guide

22 iPlanet Unified Development Server • System Management Guide • August 2001

Audience for This Guide
This manual is intended for system managers rather than application developers.
We assume that you:

• are familiar with all the machine architectures and operating systems in your
environment

• are familiar with iPlanet UDS concepts and terminology

If you plan to use the iPlanet UDS Escript utility or the iPlanet UDS system
management agents, you should have a copy of the Escript and System Agent
Reference Guide available.

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “Introduction to
iPlanet UDS System
Management”

Explains the basic concepts of iPlanet UDS system
management and provides an overview of its features.

Chapter 2, “The iPlanet UDS
Environment Console”

Introduces the Environment Console graphical user
interface and provides a reference to the Environment
Console commands.

Chapter 3, “Setting up and
Maintaining an iPlanet UDS
Environment”

Describes how to set up your iPlanet UDS environment
and how to start and stop iPlanet UDS system
management services.

Chapter 4, “Creating and
Modifying Environment
Definitions”

Explains how to create and modify environment
definitions and explains how to specify node properties.

Chapter 5, “Deploying iPlanet
UDS Applications”

Describes iPlanet UDS application distributions and
explains how to deploy them in a deployment
environments.

Chapter 6, “Managing iPlanet
UDS Applications”

Explains how to start up, monitor, and reconfigure
iPlanet UDS applications.

Chapter 7, “Troubleshooting” Covers a number of topics useful in uncovering and
diagnosing problems in an iPlanet UDS environment or
application.

Text Conventions

Preface 23

Text Conventions
This section provides information about the conventions used in this document.

Chapter 8, “Managing iPlanet
UDS Development
Repositories”

Describes how to create and manage central
development repositories for iPlanet UDS application
developers.

Chapter 9, “Launching
iPlanet UDS Applications and
Applets”

Explains how to use the Launch Server, Launcher
application, and Ftcmd utility to manage the deployment
and usage of client partitions.

Appendix A, “Special Setup
for Development
Environments”

Describes additional setup needed for development
environments, including auto-compile services and
special library support.

Appendix B, “iPlanet UDS
Environment Variables”

Provides a complete listing of iPlanet UDS environment
variables (logical names on OpenVMS platforms).

Appendix C, “iPlanet UDS
Command Summary”

Provides a complete list, in alphabetical order, of all
iPlanet UDS command-line utilities.

Format Description

italics Italicized text is used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URLs.

ALL CAPS Text in all capitals represents environment variables
(FORTE_ROOT) or acronyms (UDS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase
text exactly as shown.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

Chapter Description

Other Documentation Resources

24 iPlanet Unified Development Server • System Management Guide • August 2001

Other Documentation Resources
In addition to this guide, there are additional documentation resources, which are
listed in the following sections. The documentation for all iPlanet UDS products
(including Express, WebEnterprise, and WebEnterprise Designer) can be found on
the iPlanet UDS Documentation CD. Be sure to read “Viewing and Searching PDF
Files” on page 26 to learn how to view and search the documentation on the iPlanet
UDS Documentation CD.

iPlanet UDS documentation can also be found online at
http://docs.iplanet.com/docs/manuals/uds.html.

The titles of the iPlanet UDS documentation are listed in the following sections.

iPlanet UDS Documentation
• A Guide to the iPlanet UDS Workshops

• Accessing Databases

• Building International Applications

• Escript and System Agent Reference Guide

• Fscript Reference Guide

• Getting Started With iPlanet UDS

• Integrating with External Systems

• iPlanet UDS Java Interoperability Guide

• iPlanet UDS Programming Guide

• iPlanet UDS System Installation Guide

• iPlanet UDS System Management Guide

• Programming with System Agents

• TOOL Reference Guide

• Using iPlanet UDS for OS/390

http://docs.iplanet.com/docs/manuals/uds.html

iPlanet UDS Example Programs

Preface 25

Express Documentation
• A Guide to Express

• Customizing Express Applications

• Express Installation Guide

WebEnterprise and WebEnterprise Designer
Documentation
• A Guide to WebEnterprise

• Customizing WebEnterprise Designer Applications

• Getting Started with WebEnterprise Designer

• WebEnterprise Installation Guide

Online Help
When you are using an iPlanet UDS development application, press the F1 key or
use the Help menu to display online help. The help files are also available at the
following location in your iPlanet UDS distribution:
FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as Fscript or Escript, type help from the
script shell for a description of all commands, or help <command> for help on a
specific command.

iPlanet UDS Example Programs
A set of example programs is shipped with the iPlanet UDS product. The examples
are located in subdirectories under $FORTE_ROOT/install/examples. The files
containing the examples have a .pex suffix. You can search for TOOL commands
or anything of special interest with operating system commands. The .pex files are
text files, so it is safe to edit them, though you should only change private copies of
the files.

Viewing and Searching PDF Files

26 iPlanet Unified Development Server • System Management Guide • August 2001

Viewing and Searching PDF Files
You can view and search iPlanet UDS documentation PDF files directly from the
documentation CD-ROM, store them locally on your computer, or store them on a
server for multiuser network access.

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or
server hard disk.

You can specify any convenient location for the doc directory; the location is
not dependent on the iPlanet UDS distribution.

2. Set up a directory structure that keeps the udsdoc.pdf and the uds directory in
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file udsdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search >
Query.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat
Reader with Search is recommended and is available as a free
download from http://www.adobe.com. If you do not use Acrobat
Reader with Search, you can only view and print files; you cannot
search across the collection of files.

NOTE To uninstall the documentation, delete the doc directory.

http://www.adobe.com

Viewing and Searching PDF Files

Preface 27

3. Enter the word or text string you are looking for in the Find Results Containing
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text.
If more than one document from the collection contains the desired text, they
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to
navigate through the search results, as shown in the following table:

To return to the udsdoc.pdf file, click the Homepage bookmark at the top of
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the
udsdoc.pdf home page or select Edit > Search > Results.

NOTE For details on how to expand or limit a search query using
wild-card characters and operators, see the Adobe Acrobat
Help.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

Viewing and Searching PDF Files

28 iPlanet Unified Development Server • System Management Guide • August 2001

29

Chapter 1

Introduction to iPlanet UDS
System Management

This chapter provides the background you need to understand and manage an
iPlanet UDS system. Topics covered in this chapter include the following:

• system overview

• iPlanet UDS runtime system and distributed applications

• iPlanet UDS system management architecture and services

• iPlanet UDS system management tasks

• iPlanet UDS system management tools

System Overview
iPlanet UDS is a software environment for developing, deploying, and managing
distributed client/server applications. It supports the full life cycle of an iPlanet
UDS application, from development to the management of the application as it
runs on a number of platforms.

To support this breadth of function, an iPlanet UDS system includes software that
operates at a number of different levels, as illustrated in Figure 1-1. The different
levels of iPlanet UDS software are as follows:

iPlanet UDS Runtime System The runtime system is a common set of services
that allows an iPlanet UDS application, or a part of such an application (an
application partition), to run on a number of platforms. This set of services is
implemented on each platform supported by iPlanet UDS. The runtime system
supports access to the local operating system, as well as communication and
synchronization between remote partitions.

System Overview

30 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 1-1 iPlanet UDS Applications and Runtime System

iPlanet UDS System Management Services iPlanet UDS provides a number of
system management services that deploy, start, and manage distributed
applications. The system management architecture is discussed in detail in “iPlanet
UDS System Management Services and Architecture” on page 44. Understanding
these system management services is critical to performing system management
tasks.

iPlanet UDS Development and Management Applications iPlanet UDS
provides a number of applications, most with graphical user interfaces, that
support various stages of the iPlanet UDS application life cycle. These applications
include the following:

• application development workshops, which are used by developers to create
logical applications. These workshops include the Partition Workshop, which
is used by developers for to produce installable applications. You can also use
the Fscript utility to create and produce applications.

• Environment Console or Escript utility, which are used by system managers
to manage iPlanet UDS environments and applications

Nodes + Operating Systems + Networks

iPlanet UDS Runtime System

Development Environment

Physical
Environment

iPlanet UDS
System
Software

iPlanet UDS
System
Applications

Environment
Console

Partition
Workshop

Application
Development
Workshops

System Management Services

Deployment
Environment

System Overview

Chapter 1 Introduction to iPlanet UDS System Management 31

The iPlanet UDS development and management applications, like iPlanet UDS
user applications, are true iPlanet UDS applications—developed using iPlanet UDS
development tools—and can only run in an iPlanet UDS runtime environment.

iPlanet UDS Environments
An iPlanet UDS environment consists of a collection of networked nodes running
the iPlanet UDS runtime system. There are two types of environments: deployment
environments and development environments. Both deployment and development
environments use the same runtime system and system management services, as
shown in Figure 1-1 on page 30.

Deployment environments A deployment environment is one in which you can
deploy, run, and manage an iPlanet UDS application. A deployment environment
has the iPlanet UDS runtime system and system management services installed
and running, and includes the Environment Console application (and its command
line equivalent, the Escript utility) used by system managers to perform
management tasks.

Development environments A development environment is one in which you
can develop and test an iPlanet UDS application. A development environment has
all the software components of a deployment environment, plus the iPlanet UDS
applications needed to develop an iPlanet UDS application—the iPlanet UDS
Workshops and their command line equivalent, the Fscript utility.

The deployment and development environments discussed above both require the
installation of the iPlanet UDS runtime system (with the application development
software, if necessary) in a physical environment. The physical environment
generally consists of a number of computers running different operating systems
and linked together by one or more networking systems.

Environment definitions Any iPlanet UDS environment has an environment
definition. An environment definition specifies (among other things) all the nodes
in a given iPlanet UDS environment. You can create or modify an environment
definition using the Environment Console or Escript utility. Deployment
environments typically only have the definition for the active environment, which
is the actual physical environment. Development environments often have other
environment definitions as well, which are used to let the application developer
simulate other environments and generate applications for these other
environments.

iPlanet UDS Runtime System and Distributed Applications

32 iPlanet Unified Development Server • System Management Guide • August 2001

Nodes Each computer in this physical environment is a node in the active
environment. To function as part of an iPlanet UDS environment, however, two
conditions must be met. First, iPlanet UDS software must be installed on the node,
and second, any special information about the node must added to the
environment definition for the active environment.

Among the properties specified for a node in an environment definition are:

• node name

• operating system

• installed network protocols

• available database resource managers

In addition, there are a number of properties that depend on how you intend to use
the node in an iPlanet UDS environment.

Clients and servers For example, depending on its role in an iPlanet UDS
environment, a node might be a server node, a client node, or both. Generally,
server nodes provide application services and client nodes use those services. A
client node runs on a windowing system—Windows 95 or Motif. A server node
must run on a multi-tasking operating system, such as Windows NT, UNIX, or
VMS.

In an environment that has many client nodes with identical properties, you can
define one node as a model node with those properties. This model node can
represent any number of client nodes, so you don’t have to define them each
individually.

An environment definition with its full node specifications is used by iPlanet UDS
in partitioning a logical application, as discussed in “iPlanet UDS Runtime System
and Distributed Applications.”

iPlanet UDS Runtime System and
Distributed Applications

This section discusses the iPlanet UDS runtime system in the context of iPlanet
UDS distributed applications. It covers aspects of an iPlanet UDS application you
must understand to perform iPlanet UDS system management tasks.

iPlanet UDS Runtime System and Distributed Applications

Chapter 1 Introduction to iPlanet UDS System Management 33

Overview
Partitioning One of the most powerful features of iPlanet UDS is its partitioning
capability. Partitioning allows developers to create a distributed application
without worrying about the details of its deployment environment.

To create an iPlanet UDS distributed application, developers create a logical
application, using the iPlanet UDS Workshops to define classes, create user
windows, and write and debug code. After creating this logical application,
developers partition the logical application for one or more specific deployment
environments.

In the partitioning process, the logical application is considered in the context of a
specific deployment environment. When developers partition the application, it is
divided into separate logical sections called logical partitions. iPlanet UDS creates a
default partitioning configuration, in which the logical partitions are assigned to
various nodes in the target environment, based on the properties of each node.
Each such assignment is called an assigned partition.

Figure 1-2 Partitioning a Logical Application

Logical Partitions Assigned Partitions

B
Data Feed

A
User Input

C
SQL Code

D
Calculate

A
User Input

Partitioning
Configuration

A
User Input

B
Data Feed

C
SQL Code

D
Calculate

Logical Application

iPlanet UDS Runtime System and Distributed Applications

34 iPlanet Unified Development Server • System Management Guide • August 2001

Developers can change the default partitioning configuration by moving assigned
partitions to different nodes or by altering the logical partitioning. For more
information on partitioning, see A Guide to the iPlanet UDS Workshops.

After adjusting the partitioning scheme, developers can run the application
configuration in a test mode. In this test mode, iPlanet UDS actually deploys the
application into the development environment and runs it as a distributed
application.

Application distribution After testing, a developer makes an application
distribution. An application distribution consists of all the files needed to deploy
the application into a deployment environment. After a developer makes this
distribution, you can transfer it to the deployment environment and install it.
During installation, code for each partition is installed in a location on its assigned
node that is defined by iPlanet UDS. At this point, the assigned partitions become
installed partitions.

Figure 1-3 Deploying an Application

A typical iPlanet UDS application includes a client partition and a set of server
partitions. The client and server partitions execute those portions of the application
for which each is best suited. The client partition typically performs a graphical
user interface function, while the server partitions provide access to databases,

Assigned Partitions

B
Data Feed

A
User Input

C
SQL Code

D
Calculate

A
User Input

Partitioning
Configuration

Installed Partitions

Installed B
Data Feed

Installed A
User Input

Installed C
SQL Code

Installed D
Calculate

Installed A
User Input

Installed
Application

iPlanet UDS Runtime System and Distributed Applications

Chapter 1 Introduction to iPlanet UDS System Management 35

communication channels, data feeds, imaging systems, and other shared
application services. An iPlanet UDS application can also be a server-only
application, which provide services using one or more server partitions but
includes no client partition.

The iPlanet UDS runtime system considers an application to be a collection of
objects, each of which represent an element of the application, as illustrated in
Figure 1-4. Such objects might include display objects, database objects, and other
objects defined by application developers. A running iPlanet UDS application, in
essence, is a collection of distributed objects interacting to perform the functions
required of the application.

Figure 1-4 Object View of a Distributed Application

As illustrated in Figure 1-4, each object lives within an active, running partition. An
active partition is created when you start an installed partition. Each active partition
corresponds to a running server process.

B
Data Feed

C
SQL Code

D
Calculate

A
User Input

A
User Input

service objects

application objects

iPlanet UDS Runtime System and Distributed Applications

36 iPlanet Unified Development Server • System Management Guide • August 2001

Service objects One type of object—the service object—is particularly important in
iPlanet UDS applications. A service object is a named object that can be shared by a
number of users and applications. A service object provides a particular service for
the application. Each server partition contains at least one such service object; in
fact, you can think of a server partition as the set of objects that support the work of
one or more service objects.

iPlanet UDS also creates a number of runtime system objects. Runtime system
objects support an application by providing the functions necessary to run each
partition on its respective platform and to make the collection of distributed objects
function as one application. iPlanet UDS runtime system objects transparently
transmit messages and responses between remotely located objects, coordinate the
sharing of remote objects, and manage transactions spanning remote application
objects.

These runtime system objects support the application objects within each partition
and interact with the operating system of each node, as illustrated in Figure 1-5.

Figure 1-5 Application Partition and iPlanet UDS Runtime System Objects

Each running application partition uses the following iPlanet UDS runtime system
objects to interact with the operating system:

Application
Objects

Runtime
System
Objects

Technical
Infrastructure

Event
Mgr

Transaction
Mgr

Task
Mgr

Distributed
Object Mgr

Operating
System

Communication Interface Operating System

iPlanet UDS Runtime System and Distributed Applications

Chapter 1 Introduction to iPlanet UDS System Management 37

Distributed Object Manager Manages the distributed object services for an
active (running) partition. The distributed object service provides access to logical
communications into and out of a partition.

Event Manager Manages receiving and delivering events for the active (running)
partition.

Operating System Manages the local operating system services for an active
(running) partition. The operating system service provides memory management
and other utility functions.

Task Manager Monitors the creation and destruction of tasks, both for the iPlanet
UDS executor and for multithreaded servers. It also manages the shared locks and
mutexes for an active partition.

Transaction Manager Monitors the state of transactions across partitions.

These iPlanet UDS runtime system objects are represented by system agents, which
you can access through the Environment Console and Escript, as explained in
Chapter 2, “The iPlanet UDS Environment Console” and Escript and System Agent
Reference Guide. You can also access these agents programmatically, as explained in
Programming with System Agents.

For more information about the agents themselves, see Escript and System Agent
Reference Guide

In general, when you manage an iPlanet UDS application, you are most concerned
about nodes, installed partitions, and active partitions. For the most part, the
interaction of application objects and runtime system objects is invisible to you.
However, iPlanet UDS’s system management architecture lets you access data
maintained by the application and runtime objects, when you need it to monitor
performance or troubleshoot.

A Scenario
To better understand what the iPlanet UDS system management processes do and
how they work together, consider a typical iPlanet UDS system management
operation: autostarting a deployed application.

Starting a distributed application involves starting all the server partitions needed
by the client partition. One way to do this is to start a client and let the iPlanet UDS
runtime system do the rest.

iPlanet UDS Runtime System and Distributed Applications

38 iPlanet Unified Development Server • System Management Guide • August 2001

➤ Autostarting an application consists of the following basic operations

1. Starting a client partition.

The executing client code invokes a method on a remote service object. The
Local Object Manager asks the Distributed Object Manager, the iPlanet UDS
runtime system object responsible for managing remote objects, to resolve the
service object reference.

2. The Distributed Object Manager in the client partition queries the Name
Service for the address of the partition containing the service object.

Because the server partition has not yet been started, the Name Service
database does not contain the address of that service object. The Name Service
informs the distributed object manager that the address of the service object is
not known

3. The Distributed Object Manager requests that the Environment Manager
service (Environment agent) start an instance of the partition in which the
service object resides.

The Environment Manager consults the environment repository for the name
of a node on which the required installed partition resides. The Environment
Manager (Environment agent) then requests that the appropriate Node
Manager (Node subagent) start the required installed partition.

4. The Node Manager starts the required installed partition by requesting that the
corresponding Installed Partition agent start the partition.

When the active partition comes up, the service object registers with the Name
Service, so its address is now known.

5. The Node Manager notifies the Distributed Object Manager in the client
partition that the server partition is now running and the Distributed Object
Manager can now resolve the service object reference through the Name
Service, as it had originally attempted to do in step 1.

Partitions
As mentioned in “Overview” on page 33, partitions are the basic executable
components that make up an iPlanet UDS distributed application. Each partition,
when running, corresponds to a single process executing on a node. As a system
manager, you manage applications by:

• deploying partitions

• starting and stopping installed partitions

• monitoring active (executing) partitions

iPlanet UDS Runtime System and Distributed Applications

Chapter 1 Introduction to iPlanet UDS System Management 39

This section explains a number of additional concepts regarding partitions:
execution type, replication, and reference partitions.

Execution Type
There are two types of application partitions—standard and compiled.

Standard partition Standard partitions consist of an image repository, which
contains interpretive code that must be run by the iPlanet UDS executor program.
A standard partition can run on any iPlanet UDS platform.

Compiled partition Compiled partitions are executable code that has been
compiled and linked for a particular server platform. A separate compiled partition
executable needs to be created for each target platform on which the partition
needs to run.

Figure 1-6 Partition Execution Types

A developer is responsible for indicating which partitions in an application will be
compiled partitions. The developer is also generally responsible for compiling
these partitions and including them in an application distribution.

Replication
iPlanet UDS lets you replicate service objects and their respective server partitions
to enhance application reliability using failover and improve application
performance using load balancing.

Server
Partition

Standard Partition

Compiled Partition

ServerPart.btd

ServerPart.btx

ServerPart.exe

Image Repository run by a
iPlanet UDS Executor program

Executable file

iPlanet UDS Runtime System and Distributed Applications

40 iPlanet Unified Development Server • System Management Guide • August 2001

For example, you can implement failover by providing backup replicates of a
server partition that takes over processing when the primary server partition fails.
Similarly, you can implement load balancing by distributing demand for a service
among a number of replicates of the partition that provides that service. You can
use replicates of a server partition for both failover and load balancing at the same
time.

Managing replicated server partitions is one of the more demanding challenges
that you face as a system manager. You need to provide the proper level of load
balancing and failover protection for a given application in a given environment
with a given usage pattern. This section provides a conceptual overview of this
management task.

With some restrictions, a service object can be designated as:

• non-replicated

• replicated for failover

• replicated for load balancing

• replicated for both failover and load balancing

Replication for failover If a service object is marked for failover, then you can
replicate the server partition and install it on a number of nodes in an environment.
If the primary server partition fails, then iPlanet UDS directs any requests for that
service to one of the other running replicates of the server partition.

Replication for load balancing If a service object is marked for load balancing,
you can replicate the server partition and install it on a number of nodes in an
environment. In addition, iPlanet UDS automatically creates a router partition for
that service object. The purpose of the router partition is to route requests for a
service among the running replicates of the server partition that performs that
service.

Replication for failover and load balancing If a service object is marked for both
failover and load balancing, then you can replicate the server partition as in the
load balancing case. However the router partition that iPlanet UDS automatically
creates for the service object can also be replicated. You can replicate the router
partition and install it on a number of nodes in an environment in the same way
you can replicate the server partition. iPlanet UDS designates one of these router
partitions as the primary router. This router routes requests among the running
replicates of a server partition. If the primary router fails, another running replicate
of the router partition steps in to handle the routing. The scheme is illustrated in
Figure 1-7 on page 41.

iPlanet UDS Runtime System and Distributed Applications

Chapter 1 Introduction to iPlanet UDS System Management 41

When you install any replicated partition on a node in an environment, be it a
server partition or a router partition, you can specify how many replicates of that
partition are “enabled,” or started up on that node, when the application starts.
Installed partitions that are designated as “disabled” can be started manually to
provide special backup under unusual conditions.

Figure 1-7 Replicated Partitions: Load Balancing and Failover

The use of replicated partitions for failover and load balancing will be discussed in
more detail in Chapter 6, “Managing iPlanet UDS Applications.”

Reference Partitions
It is not uncommon for one application to use a service that is provided in another
application. This is facilitated through the use of an iPlanet UDS reference
partition—a partition within an application that points to a partition within another
application. In this way, a service object can be shared between two applications.

Service
Requestor

Primary
Router

Replicate #1

routing if
primary router fails

Service
Requestor

Replicate #2 Replicate #3

Service
Requestor

Backup
Router

balancing load on
service providers

iPlanet UDS Runtime System and Distributed Applications

42 iPlanet Unified Development Server • System Management Guide • August 2001

When using reference partitions, however, it is important to make sure that
reference partitions are already running when you start an application that uses
them. This means you must start the applications to which the reference partitions
point, or start the individual partitions being referenced before starting the
referencing application. (One minor exception to this rule is when your referencing
application is started using auto-start. For more information see Chapter 6,
“Managing iPlanet UDS Applications.”)

Libraries
Most iPlanet UDS application partitions require access to some number of shared
executable modules to execute properly. Depending on the platform, these
modules are referred to as object libraries or archives, shared images, shared
libraries, or dynamic linked libraries (DLLs). In this guide, these shared modules
will all be referred to as libraries.

As a system manager, you might need to package library distributions, often along
with the application distributions that require them. You might also need to deploy
library distributions in both deployment and development environments.

Libraries, which can be compiled and linked for each platform (though also
available in standard format), are loaded into memory by a node’s operating
system and used by any number of iPlanet UDS partitions executing on the node.
An application requires a particular library if the application’s developer has
referenced the library code in creating the application.

Libraries, like partitions, must be installed in a standard location on each node, so
they can be loaded and used at runtime. As a system manager, you are responsible
for deploying library distributions into your iPlanet UDS environment.

iPlanet UDS supports two general types of libraries: system libraries and user
libraries.

System Libraries
System libraries are libraries supplied with the iPlanet UDS product, which are
automatically installed on each node by the iPlanet UDS installation program. In a
development environment, the object classes represented by each library are
automatically included in every development repository (for example, the
Framework, Display, and GenericDBMS libraries). A number of additional system
libraries, used to integrate iPlanet UDS applications with external applications and
services, are also installed with the iPlanet UDS product.

iPlanet UDS Runtime System and Distributed Applications

Chapter 1 Introduction to iPlanet UDS System Management 43

As a system manager, you generally don’t have to concern yourself with system
libraries; however there are a few setup considerations for development
environments using the OLE system libraries (see “Support For OLE” on page 325).

User Libraries

Library distribution Unlike system libraries, user libraries are created by
developers. When a developer has written code suitable for broader distribution,
the projects (one or more) comprising that code can be made into a library
distribution—much like an application distribution—that can be deployed and
used in other iPlanet UDS environments. A library distribution contains one library
for each included project. Each library is compiled and linked for each supported
platform.

The libraries included within a library distribution can be of several kinds: the most
common are TOOL libraries and C libraries.

TOOL libraries These are created by developers from TOOL (iPlanet UDS’s
Transactional Object-Oriented Language) projects. They represent TOOL code that
might be of more general use to other application developers. For more
information on TOOL libraries, see A Guide to the iPlanet UDS Workshops.

C libraries These are very similar to TOOL libraries, except they are made from
iPlanet UDS C projects rather than TOOL projects. C projects are used by a
developer to encapsulate external C routines. These libraries are more likely to be
restricted to certain platforms or nodes with certain resources than TOOL libraries,
which are more likely to be non-restricted. For more information on C libraries, see
Integrating with External Systems.

When developers want to use libraries that are part of a library distribution, the
library distribution must be deployed in their development environment. Each
library within the distribution is installed in a standard location on its assigned
node. The library distribution includes a file that can be imported into
development repositories so that developers can use the library without having the
source code in their repositories.

If an application references code in a library, then that library must be installed,
along with the application, in any deployment environment where the application
will be run.

iPlanet UDS System Management Services and Architecture

44 iPlanet Unified Development Server • System Management Guide • August 2001

iPlanet UDS System Management Services
and Architecture

At the most general level, system management consists of monitoring and
controlling a number of entities within your iPlanet UDS environment. For
example, you might want to install a partition on a particular node, start a
particular installed partition, or write performance data for a particular active
partition to a log file.

In an object-oriented system, such as iPlanet UDS, each entity within a system is
represented by an object. The objects of most interest for system management are
the objects involved in partitioning, deploying, and executing a distributed
application. These objects are shown schematically in Figure 1-8.

Figure 1-8 Some Key Objects in the System Management Domain

...

Partitioning

Deploying

Executing

Environment

Application

(Logical) Partition

Installed Partition

Node

Active Partition

DistObjectMgr TaskMgr(User-Defined)

iPlanet UDS System Management Services and Architecture

Chapter 1 Introduction to iPlanet UDS System Management 45

The relationships shown in the illustration are functional (they do not represent
inheritance relationships between iPlanet UDS classes). During partitioning, for
example, the developer divides a logical application into a set of logical partitions
and assigns these partitions to the nodes specified for a given environment.
Application, logical partition, node, and environment objects are all important
system management entities.

During deployment, the partitioning configuration—the logical assignment of
partitions to a set of nodes—becomes the actual installed configuration. When you
install the partitions on their respective nodes in the target environment, these
partitions become installed partition objects.

During execution, you or the application start up installed partitions, which creates
active partition objects. Starting an installed partition also creates a number of
runtime system objects, such as the Distributed Object Manager and Task Manager.
These runtime objects can provide important performance monitoring information.

In addition to the system management objects discussed above, a distributed
application can have other objects, such as service objects, that you can monitor or
control as part of your management of the distributed application. iPlanet UDS
system management architecture provides the flexibility for you to incorporate
such user-defined objects into your system management domain.

iPlanet UDS’s system management architecture is designed to provide you with
centralized management of a decentralized system. You can manage an entire
iPlanet UDS environment, including all its distributed applications, from a single
node in the environment.

For example, you can perform the following basic management tasks:

• install the various components of an application or library on the various
nodes in your environment

• start installed partitions on various nodes and shut them down

• monitor the performance or status of an active partition, a node and its
components, or an active environment and its components

Furthermore, the system management architecture gives you the flexibility to
customize and extend iPlanet UDS’s system management capabilities to meet your
individual system management needs.

iPlanet UDS System Management Services and Architecture

46 iPlanet Unified Development Server • System Management Guide • August 2001

System Management Agents
iPlanet UDS’s provides a set of system management agents to monitor and control a
corresponding set of managed objects. For each object to be managed, there is a
system management agent to monitor and control that object. For example, as
iPlanet UDS creates each installed partition object, it also creates a corresponding
Installed Partition agent. The managed object performs its normal functions
without having any knowledge of its agent. iPlanet UDS also deletes these agents
when the managed objects are deleted.

Agent commands Each agent has a set of commands or operations it can perform
on its managed object. For example, an Installed Partition agent can start an
installed partition. Likewise, an Active Partition agent can shut down an active
partition.

Agent instruments Each agent also has a set of instruments, each representing a
type of data that can be obtained from or set on the managed object. An instrument
can represent a property or attribute of the managed object or it can represent more
dynamic information. For example, an Active Partition agent has instruments
representing that partition’s process ID and the name of the log file to which it logs
information. A Distributed Object Manager agent has an instrument representing
the number of messages sent by the distributed object manager to remote partitions
during a specified period of time.

The instruments defined for each agent generally represent data that is useful for
monitoring or control purposes.

Agent hierarchy iPlanet UDS’s system management agents are organized in a
hierarchical structure of parent agents and subagents, as depicted in Figure 1-9.

iPlanet UDS System Management Services and Architecture

Chapter 1 Introduction to iPlanet UDS System Management 47

Figure 1-9 System Management Agent Hierarchy

In this hierarchical structure, for example, Partition agents are subagents of
Application agents, and Installed Partition agents are subagents of both Partition
agents and Node agents.

In this hierarchy of agents, commands on the parent agents are passed down
through the structure, from parent agents to the subagents that actually perform
the task. For example, if you start up an application, the Application agent passes
the command down to the Partition subagents, which, in turn, passes the
command down to the Installed Partition subagents, which actually start the
installed partitions composing the application.

System management tools can easily navigate from any agent to its parent agent or
one of its subagents. As you can see from Figure 1-9, there are two pathways, or
views, from top to bottom: one through nodes (each of which might be running
many applications’ partitions) and one through applications (each of which might
have partitions running on many nodes).

Operating System
Agent

Installed Partition
Agent

Environment
Agent

Application
Agent

NameService
Agent (Logical) Partition

Agent

Active Partition
Agent

DistObjMgr
Agent

(User-Defined)
Agent

...

Node
View

Application
View

Node
Agent

iPlanet UDS System Management Services and Architecture

48 iPlanet Unified Development Server • System Management Guide • August 2001

You that can be readily customize and extend this agent hierarchy. You can define
external agents that can communicate with each other (using a well-defined
protocol) independent of the objects being managed.

You can add new commands and new instruments to existing agents, or create new
agents, without any modification to the objects being managed. You can create
your own agents and your own system management applications, providing the
monitoring and control you want, for whatever objects you want, within any
iPlanet UDS distributed application.

Escript and System Agent Reference Guide explains the iPlanet UDS system
management agents and explains how to use them. For information about
programming your own agents and your own system management applications,
see the Programming with System Agents.

The following table summarizes the roles performed by the principal system
management agents. For a complete description of each agent’s commands and
instruments, see Escript and System Agent Reference Guide.

Agent Manages

Active Partition Running partition of an application.

Ad hoc partition Acts as the installed partition agent for a running partition that
has not been installed using the iPlanet UDS installation process.

Application Application that has been loaded into the environment.

BtreeCache Cache used with the B-tree central repository to improve
performance.

BtreeRepository B-tree central repository.

CommMgr Communications into and out of an active partition.

DBSession Database session for an active partition that accesses a database
using a DBSession object.

DistObjectMgr Distributed object services for an active partition.

Environment iPlanet UDS environment (represented by the Environment
Manager).

EventMgr Services for receiving and delivering events.

Installed Partition Partition of an application that has been installed on a particular
machine.

LoadBalancing
Router

Router for a load-balanced service object.

Machine Physical machine on which a Node Manager is running.

iPlanet UDS System Management Services and Architecture

Chapter 1 Introduction to iPlanet UDS System Management 49

System Management Services
iPlanet UDS has system management services that let you work with the system
management agents discussed in the previous section:

Environment Manager runs only on one server node in the environment (the
central server) and provides system management functions on an
environment-wide basis

Name Service provides address information for iPlanet UDS distributed
applications and runs in the same partition as the Environment Manager service

Model Node Definition for a model node.

NameService iPlanet UDS Name Service, which manages how objects, services,
partitions, and so forth are known within and across
environments.

NativeLangMgr Services for multinational and multilingual functions.

Node Node in the environment.

ObjectCache Object cache used by a client repository session.

OperatingSystem Operating system services for an active partition, including
memory management and other utility functions.

Partition Logical partition of an application. This partition is not assigned
to any particular node.

Process Operating system process on which an active partition runs.

Repository Repository managed by the repository server or another iPlanet
UDS application.

RepositoryServer Running repository server, which manages a central repository.

RepositoryServerInfo Provides information about a repository server running in the
current environment.

RepositorySession Client repository session running on a node that is running a
Node Manager.

TaskMgr Task management services for an active partition.

TransactionMgr Transaction management services, which monitors the state of
transactions across partitions.

Volume Storage device on a particular machine.

Agent Manages

iPlanet UDS System Management Services and Architecture

50 iPlanet Unified Development Server • System Management Guide • August 2001

Node Manager runs on each server node (and in certain cases on client nodes)
and provides system management functions on a node-wide basis

Each of these services has an associated repository or database for storing
information vital to its function. The scheme is illustrated in Figure 1-10.

Figure 1-10 iPlanet UDS System Management Services

Environment Manager
Each active iPlanet UDS environment must have an active Environment Manager
service. The Environment agent represents the Environment Manager. The
Environment Manager has access to a complete picture of the entire environment
and is connected through a Node Manager to every active node. Because the
Environment agent is the parent agent of all the other agents, the Environment
agent also has some control over all nodes and applications in the environment.

Environment
Repository

Node
Repository

Node
Repository

Client

Client

Central Server

Environment
Manager &

Name Service

Server

Node
Manager

Server

Node
Manager

iPlanet UDS System Management Services and Architecture

Chapter 1 Introduction to iPlanet UDS System Management 51

The Environment Manager performs the following functions:

• lets you deploy an application or library distribution, and start or shut down
installed partitions throughout the environment

• maintains environment-wide status information

• receives notification of all system management and instrument logging events
throughout the environment

• provides Node Manager (Node agent) service for the central server node

Environment repository The Environment Manager maintains an environment
repository, which contains configuration information for the environment as a
whole, including:

• environment definitions, which contain node specifications for all nodes in the
environment

• the application partitioning configuration for all application distributions that
are loaded or installed in the environment. Loading applications distributions
makes them known to the Environment Manager.

• the library configuration for all library distributions that are loaded or installed
in the environment

The environment repository contains the combined information from all the
individual node repositories in the environment. As individual node managers
perform work, such as installing partitions and starting them up, the node
managers maintain information on the status of these partitions in both the
individual node repositories and the environment repository. Therefore, you
should back up the environment repository regularly.

Simulated environments In a development environment, the environment
repository can also contain environment definitions for simulated deployment
environments. You can use simulated environment definitions to model a
deployment environment for partitioning and testing an application.

Name Service
Each environment requires a Name Service to manage, all communications for
distributed applications in an iPlanet UDS environment. A Name Service manages
communications for the applications provided by iPlanet UDS as well as for all
iPlanet UDS user applications.

Whenever a server partition starts, it registers its service objects with the Name
Service. Then, any application process that needs to access a service object on this
partition consults the Name Service for the network address of that service object.

iPlanet UDS System Management Services and Architecture

52 iPlanet Unified Development Server • System Management Guide • August 2001

The Name Service, which runs in the Environment Manager partition, has to be the
first system management service running in an iPlanet UDS environment. (iPlanet
UDS processes cannot start if the Name Service is offline.)

When you install iPlanet UDS on any node, you provide the Name Service address.
This allows any iPlanet UDS process on that node to communicate with the Name
Service.

Name Service database The Name Service maintains a database of the names
and network addresses of the service objects available in the current environment
name space, which contains the names of objects that are accessible from the current
environment. This database is stored in the environment repository. When
partitions shut down, the Name Service deletes the corresponding entries from the
database.

Connected environments You can connect several different iPlanet UDS
environments so their name spaces are merged, providing a single name space
shared by all of the connected environments. This allows partitions in one
environment to access services available in another. This is most useful in failover
scenarios where a backup service is in another environment, or in scenarios where
a reference partition is pointing to a service in another environment. For more
information on connecting environments, see “Connecting Environments” on
page 115.

Node Manager
Each node that participates in an iPlanet UDS environment must have an active
Node Manager service. The Node agent for a particular machine represents the
Node Manager running on that machine. Working through a number of subagents,
the Node agent controls all partitions on a given server node.

The Node Manager:

• enables remote management of a node

A server node runs a Node Manager service to register for remote management
by the Environment Console and the Escript utility, which are the iPlanet
UDS system management applications.

• lets you retrieve iPlanet UDS distributions from the node and install
application partitions and libraries on the node

• starts and shuts down execution of partitions on a node

The Node Manager makes it possible for partitions installed on the Node to be
started up as needed by the iPlanet UDS runtime system when an application
has started.

iPlanet UDS System Management Tasks

Chapter 1 Introduction to iPlanet UDS System Management 53

Client nodes also provide Node Manager services when they run iPlanet UDS
system management applications like the Environment Console or when they run
the iPlanet UDS Launch Server.

In general, you do not need the Node Manager when a distributed application is in
a steady state, when all partitions are up and running. However, you do need the
Node Manager service when you install applications, start up applications, and
manage active partitions.

Node repository Every Node Manager service maintains its own node repository
to store all relevant information about the node. This information includes:

• the node’s properties, including external resource managers

• the node’s installed partitions

iPlanet UDS System Management Tasks
iPlanet UDS system management tasks can be grouped into two broad categories:

• setting up and maintaining iPlanet UDS environments (deployment and
development)

• deploying and managing distributed applications and libraries

In both development and deployment environments, you need to get iPlanet UDS
system software up and running—both the iPlanet UDS runtime system and
iPlanet UDS system management services.

In a deployment environment, you also need to deploy distributed applications
and libraries, and manage distributed applications.

In a development environment you are responsible for starting and maintaining
the central repositories used for team development, including the possible
installation of library distributions. You also have to deploy two server
applications used to automate the making of application or library distributions
containing compiled components.

iPlanet UDS System Management Tasks

54 iPlanet Unified Development Server • System Management Guide • August 2001

Setting Up and Maintaining iPlanet UDS
Environments
Setting up a new environment—whether development or deployment—involves
different stages, as illustrated in Figure 1-11. These stages are introduced briefly in
this section.

Figure 1-11 Typical Environment Setup Tasks

Setting up and Maintaining a Physical Environment
The iPlanet UDS runtime system is designed to be environment independent.
Nevertheless, an iPlanet UDS environment has critical dependencies on operating
systems, window systems, networking systems, runtime libraries, and database
management systems. One of the most important aspects of properly setting up an
iPlanet UDS environment is to make sure that the physical environment (hardware
and software) meets the requirements for the iPlanet UDS runtime system.

For more information on these requirements, see the iPlanet UDS System Installation
Guide and Release Notes.

Set up Physical Environment

Design iPlanet UDS Environment

iPlanet UDS Development Environment Setup Tasks

Set up iPlanet UDS System Software Environment

Central Server:
- Install iPlanet UDS
- Start up iPlanet UDS

Other Nodes:
- Install iPlanet UDS
- Start up iPlanet UDS

iPlanet UDS System Management Tasks

Chapter 1 Introduction to iPlanet UDS System Management 55

Maintaining the physical environment normally involves adding or removing
nodes and making changes in operating system versions and networking software.
It can also involve diagnosing and resolving performance problems caused by
network bottlenecks or hardware failures.

Designing an iPlanet UDS Environment
While the iPlanet UDS runtime system and any iPlanet UDS development and
management applications are usually installed on an existing network
configuration, you should consider how to best use the available resources based
on the type of environment you are setting up.

If an environment is to be a development environment, then the locations of your
central development repositories (Repository Servers) and Environment Manager
service are key considerations.

If the environment is to be a deployment environment, then the availability and
locations of vital application resources, such as database management systems and
C program libraries, and the speed and reliability of servers are some key
considerations. These considerations might also influence where you place the
Environment Manager service.

For more information on designing an iPlanet UDS environment, see Chapter 3,
“Setting up and Maintaining an iPlanet UDS Environment.”

Setting up and Maintaining an iPlanet UDS Environment
In general, to set up an iPlanet UDS environment, you first install iPlanet UDS on a
node that will play the role of a central server. Typically, this node hosts the
Environment Manager service and often serves as a central distribution node for
installing iPlanet UDS on other nodes in your environment. After you install
iPlanet UDS on your central server, you install iPlanet UDS on the other nodes in
the environment.

The installation program starts the required system management services on each
node, and iPlanet UDS creates a default environment definition, which specifies all
the nodes in the environment. Normally, you have to specify additional node
properties in the environment definition.

Maintaining an environment might involve tasks such as installing a new version
of iPlanet UDS or changing the location of the Environment Manager. You should
also routinely back up the environment repository. Also, you need to understand
how to start up the Environment Manager and Node Manager in the proper
sequence and how to shut them down.

iPlanet UDS System Management Tasks

56 iPlanet Unified Development Server • System Management Guide • August 2001

For more information on setting up and maintaining an iPlanet UDS environment,
see Chapter 3, “Setting up and Maintaining an iPlanet UDS Environment.”

Setting up and Maintaining Development Environments
In a development environment, along with the tasks required for any iPlanet UDS
environment, there are normally a few special tasks.

One of these additional tasks is to manage the environment’s development
repositories, which involves creating central repositories and starting a Repository
Server for each. You must compact central repositories regularly, back them up
periodically, and implement usage patterns among your development staff that
will improve performance. For more information on managing central
development repositories, see Chapter 8, “Managing iPlanet UDS Development
Repositories.”

Other tasks involve reconfiguring two server applications used by developers to
make distributions that contain compiled components. You might also need to
install library distributions needed by your development team. For more
information on these special development environment maintenance tasks, see
Appendix A, “Special Setup for Development Environments.”

Deploying and Managing iPlanet UDS
Applications
Deploying and managing iPlanet UDS applications involves a number of different
stages, as illustrated in Figure 1-12. These stages are discussed briefly in this
section. For more information about deploying an iPlanet UDS application, see
Chapter 5, “Deploying iPlanet UDS Applications.” For more information about
managing an iPlanet UDS application, see Chapter 6, “Managing iPlanet UDS
Applications.”

iPlanet UDS System Management Tasks

Chapter 1 Introduction to iPlanet UDS System Management 57

Figure 1-12 Typical Application Deployment and Management Tasks

Application Deployment Tasks
This section describes the tasks shown as “Deploying an iPlanet UDS Application”
in Figure 1-12.

1. Transfer application distribution to deployment environment

The first task in deploying an iPlanet UDS application is to place the
application distribution and any library distributions it requires on one of the
nodes in the deployment environment. Normally you copy the distributions
from a tape or other media and place them in a specified location in the iPlanet
UDS directory structure on the selected node, typically the central server node.
You might also have to package a distribution for transferring it to a
deployment environment.

2. Load application into environment repository

Once an application distribution is resident on a node in the environment, you
load it into the environment repository. The partitions comprising the
application and the partitioning configuration can now be accessed by the
Environment Manager service, which will coordinate the installation of the
application on the various nodes in the environment.

Transfer application distribution to deployment environment1

Load application into environment repository2

Modify application partitioning configuration3

Install applcation into deployment environment4

Deploying
an iPlanet UDS
Application

Start and shut downpartitions1

Monitor application performance2

Reconfigure applications3

Managing
an iPlanet UDS
Application

iPlanet UDS System Management Tasks

58 iPlanet Unified Development Server • System Management Guide • August 2001

3. Modify application partitioning configuration

An application distribution represents an application as it was configured by
developers—the assignment of logical partitions was to various nodes in some
simulated deployment environment. Your deployment environment, however,
might differ substantially from the simulated environment definition used by a
developer in making an application distribution. For example, an independent
software vendor (ISV) or value added reseller (VAR) might have developed an
application without any knowledge of your deployment environment. As a
result, you might need to reassign partitions within your environment, and
might also need to specify failover and load balancing properties for any
replicated partitions.

4. Install application into deployment environment

The final stage in deploying an application is to install the modified application
configuration into your deployment environment. Each partition is installed in
a known location on its assigned nodes. The Environment Manager can
automatically perform this installation on all server nodes that are up and
running. The installation of client partitions is a bit less automated, but iPlanet
UDS provides you with utilities that streamline installation on client nodes.

Another system management task is deploying new versions of an application.
This might require you to delete older versions, or perform a phased changeover to
the new version.

Application Management Tasks
This section describes the tasks shown as “Managing an iPlanet UDS Application”
in Figure 1-12.

• Start and shut down partitions

After you successfully deploy the application, you can start it up. Although
there are different ways to start the application, the recommended method is to
use iPlanet UDS system management tools, such as the Environment Console
or Escript, which give you the most control over the start and management of
the application. You can also shut down one or more running (active)
partitions using these tools.

• Monitor application performance

iPlanet UDS System Management Tools

Chapter 1 Introduction to iPlanet UDS System Management 59

A typical task in managing a running application is to gather performance
data. iPlanet UDS system management agents can collect runtime data that
you can use to diagnose performance problems. You can maximize application
performance by manually starting and stopping server partitions in response
to user load patterns, hardware or software problems, or performance
bottlenecks.

• Reconfigure an application

However, to solve performance problems, you might have to make changes in
the physical environment or move and replicate application partitions. You
might also need to have the developers redesign parts of the application.

Deploying Library Distributions
Deploying a library distribution is similar to deploying an application distribution.
In a deployment environment, you normally deploy library distributions as part of
the deployment of the applications that reference the libraries. In a development
environment, you can deploy a library distribution needed by developers to create
and test the applications they are coding. In this situation, the library projects must
also be imported into the central development repositories.

Libraries, unlike applications, are not executed and therefore do not need to be
managed once they are installed.

For more information on deploying a library distribution, see “Deploying a Library
Distribution” on page 177.

iPlanet UDS System Management Tools
iPlanet UDS provides a number of system management tools, the most important
of which are the Environment Console and its command line counterpart, Escript.
iPlanet UDS provides a separate set of command-line tools for managing
development repositories.

This section briefly describes all the system management tools.

iPlanet UDS System Management Tools

60 iPlanet Unified Development Server • System Management Guide • August 2001

Environment Console
The Environment Console application provides a graphical user interface for
performing most of the system management tasks discussed in “iPlanet UDS
System Management Tasks” on page 53. You use the Environment Console to
create and modify environment definitions and to deploy an application or library
distribution into an environment. You also use the Environment Console to
monitor the status of applications and partitions, start and shut down applications
and partitions, and to gather performance statistics for running applications.

Most system management procedures explained in this guide assume that you are
using the Environment Console. For an introduction to the Environment Console,
see Chapter 2, “The iPlanet UDS Environment Console.”

Escript Utility
The Escript utility is the functional equivalent of the Environment Console
application, but with a command-line interface. You can perform any of the
functions using Escript commands that you can perform in the Environment
Console, but you can also incorporate these functions into scripts for execution at
specified times.

For more information on the Escript utility, see the Escript and System Agent
Reference Guide.

Launch Server
The Launch Server is an iPlanet UDS service that runs on client nodes and starts
iPlanet UDS applets and applications. The Launch Server can run several iPlanet
UDS applications under the same operating system process, which enables the
applications to start faster and use less memory. It can also ensure that the most
recent copy of an application is installed on the client; if it is not, the Launch Server
automatically downloads the newer copy.

For more information about the Launch Server, see Chapter 9, “Launching iPlanet
UDS Applications and Applets.”

Repository Management Tools
iPlanet UDS provides several command-line tools for creating, copying, starting,
stopping, and compacting central development repositories and Repository
Servers.

For more information on repository management tools, see Chapter 8, “Managing
iPlanet UDS Development Repositories.”

61

Chapter 2

The iPlanet UDS Environment
Console

This chapter describes the Environment Console, iPlanet UDS’s window-based tool
for managing iPlanet UDS environments and applications.

This chapter assumes that you have set up an active environment by installing
iPlanet UDS system software on all the nodes in your environment. If you have not
yet set up your environment, see Chapter 3, “Setting up and Maintaining an iPlanet
UDS Environment” for overview information and the iPlanet UDS System
Installation Guide for detailed installation instructions.

This chapter covers the following topics:

• overview of the Environment Console

• starting the Environment Console

• the Active Environment window

• other Environment Console windows

• summary of menu commands

• using iPlanet UDS windows

Overview
The Environment Console is the main iPlanet UDS system application that you will
probably use to manage iPlanet UDS environments and applications.

You can use the Environment Console to perform environment tasks, such as
creating and modifying environment definitions, and application tasks, such as
deploying and managing iPlanet UDS applications.

Overview

62 iPlanet Unified Development Server • System Management Guide • August 2001

More specifically, you use the Environment Console to:

• create and modify environment definitions

The Environment Console provides a set of node templates and a node
property dialog that you use to specify iPlanet UDS nodes, which are the
building blocks of iPlanet UDS environment definitions. You can also export
environment definitions. For information on creating and modifying
environment definitions, see Chapter 4, “Creating and Modifying
Environment Definitions.”

• deploy iPlanet UDS applications

You can load an application distribution into your active environment, modify
the application partitioning configuration to match your active environment,
and install the application into your environment. For information about
deploying iPlanet UDS applications, see Chapter 5, “Deploying iPlanet UDS
Applications.”

• start and shut down applications and their components

After an application has been installed, you can start the entire application (all
its partitions) or start installed partitions one at a time. For information about
managing iPlanet UDS application execution, see Chapter 6, “Managing
iPlanet UDS Applications.”

• monitor status and performance

You can view the status of system management agents, and monitor
instrumentation data to assess the performance of your applications. For
information about monitoring iPlanet UDS applications, see Chapter 6,
“Managing iPlanet UDS Applications.”

The Environment Console connects to and communicates with the executing
Environment Manager, and any active Node Managers in your environment. You
perform iPlanet UDS system management tasks by accessing your environment
repository and the full hierarchy of iPlanet UDS system management agents.

iPlanet UDS system management agents, the agent hierarchy, agent commands,
and agent instruments are fully described in Escript and System Agent Reference
Guide.

Starting the Environment Console

Chapter 2 The iPlanet UDS Environment Console 63

In development environments, you usually create and modify environment
definitions, which are then used by developers when they configure their
applications. When you use the Environment Console to perform environment
tasks, you change information stored in the environment repository.

In deployment environments, you spend more time managing applications. When
you perform application deployment and management tasks, you use the
Environment Console to navigate the hierarchy of system management agents,
open windows representing particular agents, invoke commands of those agents,
and display or set instrument data of those agents. User-defined agents, if any, also
appear in the agent hierarchy along with the system management agents provided
by iPlanet UDS.

The Escript command-line utility is functionally equivalent to the Environment
Console. However, all procedural instructions in this guide assume you are using
the Environment Console. For information on Escript procedures, see Escript and
System Agent Reference Guide.

Starting the Environment Console
You can start the Environment Console on any node in your iPlanet UDS
environment.

➤ To start the Environment Console on Windows or Windows NT

1. Double-click the Environment Console icon.

➤ To start the Environment Console on UNIX, OpenVMS, or Windows NT

1. Type the econsole command (see “Using the econsole Command” below for
information).

When the Environment Console starts, it opens the Active Environment
window shown in Figure 2-1 on page 65.

Starting the Environment Console

64 iPlanet Unified Development Server • System Management Guide • August 2001

Using the econsole Command
As mentioned above, you start the Environment Console on command line-based
operating systems by executing the econsole command.

The syntax of the econsole command in portable syntax is:

weconsole [-fns name_server_address] [-fl logger_flags][-fm memory_flags]

The OpenVMS syntax for econsole is:

VFORTE ECONSOLE
[/NAMESERVER=name_server_address]
[/LOGGER=logger_flags]
[/MEMORY=memory_flags]

The following table describes the command line flags for the econsole command.

Flag Description

-fns name_server_address
/NAMESERVER=
name_server_address

Specifies the name service address for the environment in
which this application will run. This value overrides the
value, if any, specified by the FORTE_NS_ADDRESS
environment variable. If you want your application to be able
to switch to a backup Environment Manager if the primary
Environment Manager fails, you can also specify multiple
name service addresses, as discussed in “Environment
Manager Failover for Partitions” on page 122.

-fl logger_flags

/LOGGER=logger_flags

Specifies the logger flags to use for the Environment Console
session. See “-fl Flag (Log Manager)” on page 371 for
information about the syntax for specifying logger flags.
Overrides the FORTE_LOGGER_SETUP environment
variable setting. On UNIX, you must specify the logger flags
in double quotes.

-fm memory_flags

/MEMORY=
memory_flags

Specifies the memory flags to use for the Environment
Console session. See “-fm Flag (Memory Manager)” on
page 375 for syntax information. Overrides defaults
appropriate for the operating system. On UNIX, you must
specify the memory flags in double quotes.

The Active Environment Window

Chapter 2 The iPlanet UDS Environment Console 65

The Active Environment Window
The Active Environment window is the first window you see when you start the
Environment Console. This window is a view of your active environment—the
environment that is up and running at your site, to which your node belongs. In
the Active Environment window, you can view all the components of your
environment—nodes and applications—and perform all the tasks that involve
them. You can use the Active Environment window to modify the environment
definition for your active environment, and to deploy and manage applications.

Like many other windows in the Environment Console, the Active Environment
window actually represents a system management agent (in this case the
Environment agent), giving you access to that agent’s commands and instruments.

The Active Environment window consists of four areas: the main viewing panel,
the menu bar, the toolbar, and the status bar.

Figure 2-1 Active Environment Window

Menu Bar

Toolbar

Name of Current

Main
Viewing
Panel

Active
Environment

Expander

Servers

View Tabs

Application
Type Filter

Application
Status Filter

Application
Version Filter

Environment

(offline)

The Active Environment Window

66 iPlanet Unified Development Server • System Management Guide • August 2001

Menu Bar
The Environment Console menu bar provides all the commands you can execute
from the currently active window. The menus for the Active Environment window
are summarized below, and a full list of the commands is provided at the end of
this chapter.

The Active Environment window menus are:

File menu Provides commands at the environment level. Used for creating and
modifying environment definitions: opening property dialogs, and opening,
locking, unlocking, exporting, importing, and saving environment definitions.
Also used to load application or library distributions into the environment
repository.

Edit menu Provides the standard editing commands, which you can use while
editing environment information.

View menu Provides commands to modify the view displayed in the main
viewing window.

Component menu Provides commands for starting, shutting down, and
installing nodes; modifying log flags and viewing logs; dumping environment
status; exporting the environment to an Escript file; showing partitions and
removing lost partitions; listing and changing directory; connecting, disconnecting,
and showing environments; showing administration details.

On certain platforms, a Help menu is also available. If you select an active node,
other menus might be available.

Toolbar
The Environment Console toolbar is a set of icons that represent commonly used
menu commands. The following buttons are on the Active Environment window
toolbar:

Icon Name Description

Node Template The Node Template button opens the Node
Template window, from which you can drag and
drop node templates. For a full description of node
templates and how to use them to create
environment definitions, see the New… command
description in “Creating a New Simulated
Environment Definition” on page 129.

The Active Environment Window

Chapter 2 The iPlanet UDS Environment Console 67

Main Viewing Panel
The main viewing panel displays the active environment as a hierarchy of nodes.
Nodes containing other nodes nested within them can be expanded by clicking the
box with the plus symbol (“+”) to the immediate left of the icon.

You can view the system agent hierarchy in any of four ways:

• Application outline view (See Figure 2-2 on page 68), which displays the active
environment’s applications, partitions, and service objects.

• Node outline view (See Figure 2-3 on page 69), which displays the nodes on
which the active environment’s applications and service objects are deployed.

• Topology outline view (See Figure 2-4 on page 70)

• Name Service view (See Figure 2-5 on page 71)

In each of these four views the active environment is displayed as a hierarchy of
elements, each with an icon representing its type and current status. The menus
available in each view enable you to perform administrative tasks on the displayed
elements.

Charts The Charts button opens a window that contains a
timeline for a specific instrument.

Environment
Alert

The Environment Alert button opens a Send Alert
window, which you can use to send an alert event to
all applications that are registered for the event.

Start Up The Start Up button executes the startup command
of the selected agent. You can use it to start an
application, logical partition, or installed partition.

Shut Down The Shut Down button executes the shutdown
command of the selected agent. You can use it to
shut down a Node Manager, application, logical
partition, or active partition.

Locked toggle
field

The Locked toggle field provides an easy way to lock
and unlock an active environment definition, and to
determine its lock status.

Icon Name Description

The Active Environment Window

68 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 2-2 Application Outline View

The Active Environment Window

Chapter 2 The iPlanet UDS Environment Console 69

Figure 2-3 Node Outline View

The Active Environment Window

70 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 2-4 Topology Outline View

The Active Environment Window

Chapter 2 The iPlanet UDS Environment Console 71

Figure 2-5 Name Service view

For more information on the agent hierarchy, see “System Management Agents”
on page 46 and Escript and System Agent Reference Guide.

Name, Type, and Status in outline views In the application and node outline
views each agent is represented by an icon that indicates both the agent’s type and
its status, and its name. For example, in Figure 2-2 on page 68 the node
CODEGENERATIONSVC_CL0 is represented by an icon that indicates that the
agent is a server, and that its status is “offline.” (This means that the server has
been loaded into the current environment but that it is currently inactive.) For
information about the various agent types and their possible status, see Escript and
System Agent Reference Guide.

There are two basic modes for using the Active Environment window:
Environment Edit mode (for modifying your active environment definition) and
Agent mode (for deploying and managing applications).

The Active Environment Window

72 iPlanet Unified Development Server • System Management Guide • August 2001

Environment Edit mode From the main viewing panel, you can modify the
environment definition by opening the properties dialog for the environment or for
individual selected nodes, or by adding or deleting nodes. Refer to Chapter 4,
“Creating and Modifying Environment Definitions,” for information about
modifying your environment definition.

Agent mode From the main viewing panel, you can navigate the subagent
hierarchy below the Environment agent by expanding the node or application
outline views and locating any component (or agent) of interest.

➤ To navigate the agent hierarchy

1. Select the tab for Application or Node view.

Suppose, for example, you selected the application outline view. A list of
applications loaded or installed in the environment would be displayed, as
shown in Figure 2-6.

Figure 2-6 Application View with Installed Application

The Active Environment Window

Chapter 2 The iPlanet UDS Environment Console 73

2. Click the expansion arrow next to an application of interest.

Suppose, for example, you selected an installed application. The application
expands to show its logical partitions (Partition agents), as shown in Figure 2-7.

Figure 2-7 Application View with Expanded Installed Application

3. Double-click a Partition agent.

The Agent window for the Partition agent opens, as shown in Figure 2-8.

The Active Environment Window

74 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 2-8 Agent Partition Window

4. Select Instruments from the File menu of the Agent window.

The Instruments window for the Partition agent appears, displaying the
instruments of the Partition agent, as shown in Figure 2-9

Figure 2-9 Instrument Window for a Partition Agent

5. Select the partition in either its Agent window or in the Active Environment
window.

The commands for the Partition agent are either in a menu called Component,
or in custom menus defined by the agent. For example, in Figure 2-10, the
Component menu for an Installed Partition agent provides the Start Up
command.

The Active Environment Window

Chapter 2 The iPlanet UDS Environment Console 75

Figure 2-10 Commands for an Installed Partition Agent

Status Bar
The status bar displays status updates for some tasks you perform in the Active
Environment window. When you open, save, or export an environment definition,
or when you deploy iPlanet UDS applications, the status bar displays the status of
these processes as they progress.

Status information also includes the source and destination directories for
exporting environment definitions and for loading application distributions.

Other Environment Console Windows

76 iPlanet Unified Development Server • System Management Guide • August 2001

Exiting the Environment Console
To exit the Environment Console, you select the Exit (or Quit) command from the
File menu. The Environment Console prompts you to save any changes you have
made to the active environment definition or to other environment definitions
before exiting.

Other Environment Console Windows
In addition to the Active Environment window, there are a number of other
windows used for performing various system management tasks. These are
described briefly below. The windows are grouped according to whether they are
used for environment tasks (creating and modifying environment definitions) or
application tasks (deploying and managing iPlanet UDS applications).

Environment Tasks: Environment Edit Mode
There are two windows, in addition to the Active Environment window, used in
Environment Edit mode to create and modify environment definitions. For more
information on using these windows, see Chapter 4, “Creating and Modifying
Environment Definitions.”

Environment Definition Window
The Environment Definition window, shown in Figure 2-11, is used mainly in
development environments, and represents the environment definition of an
environment other than the active environment. It is used to specify the nodes in a
simulated deployment environment—that is, an environment used to simulate a
real deployment environment for the purpose of testing and partitioning an
application.

The Environment Definition window is opened when you create a new
environment definition or when you open a non-active environment definition.

Other Environment Console Windows

Chapter 2 The iPlanet UDS Environment Console 77

Figure 2-11 Environment Definition Window

Node Template Window
The Node Template window, shown in Figure 2-12, provides node templates used
in creating or modifying environment definitions. You can drag a node template
from the Node Template window to an Environment Definition window or the
Active Environment window.

Figure 2-12 Node Template Window

For a description of each of the node templates, see “Node Templates” on page 132.

Other Environment Console Windows

78 iPlanet Unified Development Server • System Management Guide • August 2001

Application Tasks: Agent Mode
You will use a number of windows, in addition to the Active Environment
window, to deploy and manage applications:

• Agent windows

• Instruments windows

• Agent Information windows

• Chart windows

• Component Log window

Agent Window
You can open a window representing each agent that appears in the subagent
hierarchy displayed in the Active Environment window. To open an Agent
window, double-click on the agent in the Active Environment window.

Figure 2-13 shows an Agent window for the TESTAPP_CL0 Partition agent. This
agent represents a loaded instance of the server partition of the TESTAPP
application.

Figure 2-13 Typical Agent Window

The viewing panel of an Agent window represents the current agent and its status.
You can expand the current agent to view its subagents, in the same way you
expand agents within the Active Environment window. You cannot open more
than one Agent window or Agent Information window for a given agent.

Other Environment Console Windows

Chapter 2 The iPlanet UDS Environment Console 79

Within an Agent window, you can view the instruments defined for the agent and
execute the commands performed by the agent. You can display the instruments
available for the agent represented by this window by choosing File > Instruments.
The commands that are available in the menus for this window depend on what
kind of agent is selected.

For more information on using the Agent window, see Chapter 6, “Managing
iPlanet UDS Applications.” For information about a particular agent, its commands
and instruments, and its statuses, see Escript and System Agent Reference Guide.

Instruments Window
You can open the Instruments window for the current agent in the Agent window
by choosing the File > Instruments command in the Agent window. This window,
as shown in Figure 2-14, displays the instruments defined for the current agent and
the value of each instrument. If you want to view the instruments for another
agent, you need to open an Agent window for that agent, then open the
Instruments window for that agent.

From this window you can refresh instrument values, set the values of instruments
that are not read-only, and turn logging of the instruments on and off by clicking
the check box.

Figure 2-14 Instruments Window

The type of an instrument determines how it works:

Average Read only. Contains an average value.

Compound Contains more than one instrument. These instruments can be of
different types.

Other Environment Console Windows

80 iPlanet Unified Development Server • System Management Guide • August 2001

Configuration Read/write or read only. Contains a simple value, such as an
integer value or a TextData object.

Counter Read only. Contains a value based on counting something.

SubObject Contains more than one instrument. All instruments are of the same
type.

Timer Read/write. Timer that prompts the agent to do something after a certain
interval or set of intervals.

For more information on using the Instruments window to monitor and manage
applications, see “Monitoring iPlanet UDS Applications” on page 194. For
information about what instruments are available for each agent, see Escript and
System Agent Reference Guide.

Agent Information Window
The Agent Information window, opened within the Active Environment window,
is available only for agents that do not have subagents. This window, shown in
Figure 2-15, displays the current agent and a list of the agent’s instruments.

You can open this window by double-clicking an agent that has no subagents (no
expansion arrow).

Figure 2-15 Agent Information Window

Other Environment Console Windows

Chapter 2 The iPlanet UDS Environment Console 81

Within the Agent Information window, you can refresh instrument values, set the
values of instruments that are not read only, and turn logging of the instruments
on and off. You can also execute the commands performed by the agent.

You cannot open more than one Agent or Agent Information window for a given
agent.

Charts Window
The Charts window, shown in Figure 2-16, is opened only from within the Active
Environment window. It displays histograms—charts displaying series of
values—for any Average or Counter instruments you want to chart. You simply
drag the instrument you want to track from its respective instrument window, and
drop it on an open chart in the Charts window.

From within the Charts window, you can set display properties for each graph. For
more information on using the Charts window, see “Tracking Instrument Data:
Charts Window” on page 201.

Figure 2-16 Charts Window

Component Log Window
You can open a window that displays the log file for the component selected in the
Active Environment window. The Component Log Window is shown in
Figure 2-17. To open this window from the Active Environment window, select a
Node agent, then click Component > View Log.

Other Environment Console Windows

82 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 2-17 Component Log Window

This window lets you view the log for the component.

To change how often the contents of this window is updated, change the number of
seconds in the field at the top of the window: “Update every ____ seconds.”

To change how many lines of the log file are displayed in this window, change the
number in the field at the top of the window: “Retain last ____ lines.”

For information about the commands available for this window, see the iPlanet
UDS Online Help.

Using iPlanet UDS Windows

Chapter 2 The iPlanet UDS Environment Console 83

Using iPlanet UDS Windows
The Environment Console is a graphically-oriented system application developed
in iPlanet UDS. As such, windows in the Environment Console have behavior
dependent on your host window system, but provide a few iPlanet UDS-specific
enhancements.

Using the Mouse
The Environment Console behaves like any standard applications in your window
system—mouse clicks select objects, double-clicks open objects, and click-and-drag
operations move or copy objects.

To work in iPlanet UDS, you need only one mouse button. If your mouse has more
than one button, you use the left-most button, or, if your mouse is configured
specifically for left-handed use, the right-most button.

To activate some commands, you use mouse clicks in conjunction with qualifier
keys. For example, to select multiple nodes, you first click one node, then, while
depressing the Shift key, click successive nodes to add to or delete from the
selection.

Using the Keyboard
The Environment Console mirrors its host window system in the flexibility of
keyboard control it provides.

In the Windows and Motif window systems, you can use the keyboard exclusively
to complete any Environment Console task (even those designed for mouse
interaction), because these window systems have been designed to allow
mouse-independent operation.

The Environment Console offers keyboard equivalents for many menu commands
on every window system. When available, the keyboard equivalent is displayed on
the menu next to the command.

Using iPlanet UDS Windows

84 iPlanet Unified Development Server • System Management Guide • August 2001

Using the Hierarchical Browser
The Environment Console uses iPlanet UDS outline fields to provide browsing of
agent hierarchies. For example, the Environment Console in Node Outline View,
shown in Figure 2-18, provides a hierarchical display of Node subagents.

You may be familiar with browsers as the file directory display mechanisms in
your host window system. iPlanet UDS hierarchy displays behave most like the
File Manager application in Microsoft Windows. These displays are in the form of a
tree, with each successive child level indented to the right of its parent level. To
select an item from a browser, you click it. To open an item, you either double-click
it, press Return while it is selected, or click the plus sign (“+”) to expand it.

Expanding and Collapsing Items Items with a plus sign (“+”) to their immediate
left have sublevels nested within them. To display the sublevels click the plus sign.
To hide the sublevels click the negative sign (“-”) to the immediate left of the item.

Figure 2-18 Hierarchical Display

Using iPlanet UDS Windows

Chapter 2 The iPlanet UDS Environment Console 85

Using the Clipboard
You can use your host window system clipboard to cut, copy, and paste textual
and image information within the Environment Console, and to exchange such
information between the Environment Console and other applications in your host
window system.

Using Multiple Windows
You can open any number of Environment Console windows. iPlanet UDS lets you
work with any number of concurrent windows, but any single agent window can
only be opened once.

NOTE Under the Motif window system, the Environment Console offers
limited support for the Motif clipboard. Nevertheless, under any
circumstance, you can paste text from any Motif application into
iPlanet UDS by using the technique you use to select and paste text
from one xterm to another: select the text, and press the middle
mouse button in the target window. This technique works because it
does not employ the Motif clipboard.

Using iPlanet UDS Windows

86 iPlanet Unified Development Server • System Management Guide • August 2001

87

Chapter 3

Setting up and Maintaining an
iPlanet UDS Environment

The first task you must perform as an iPlanet UDS system manager is to set up an
iPlanet UDS environment.

Although the design and physical composition of development environments and
deployment environments might differ somewhat, the general approach to getting
the iPlanet UDS runtime system installed and running is essentially the same for
both.

Once you have set up your iPlanet UDS environment, you may have to shut down
or restart nodes in that environment and possibly restore system management
repositories.

This chapter explains how to set up and maintain an iPlanet UDS environment,
and covers the following topics:

• overview of environment design

• summary of environment setup process

• setting up a central distribution node

• modifying the environment definition

• connecting iPlanet UDS environments

• manually starting and stopping system management services

• maintaining system management repositories

Setting up an iPlanet UDS Environment

88 iPlanet Unified Development Server • System Management Guide • August 2001

Setting up an iPlanet UDS Environment
Getting an iPlanet UDS environment up and running involves more than simply
installing iPlanet UDS system software on each node in your physical
environment. It also includes ensuring that iPlanet UDS system management
services are started up in the correct sequence.

In addition, if you are setting up a development environment, you normally create
a central development repository that supports some number of developers
working together to develop and test distributed applications (see Chapter 8,
“Managing iPlanet UDS Development Repositories”). You may also need to
reconfigure two server applications, CodeGenerationSvc and AutoCompileSvc,
used to make distributions that contain compiled components (see “Auto-Compile
Services” on page 315).

Designing Your Environment
Before you set up your environment, you should consider the design issues
discussed in this section.

Deployment environment A deployment environment usually contains the
iPlanet UDS runtime system on all nodes and the iPlanet UDS system management
applications on a central server node, as well as any user applications. There might
also be other software, such as databases, libraries, and so forth, that need to be
available in the environment.

If you are setting up a deployment environment, consider:

• the availability and location of vital resources (such as database management
systems) that will be needed by your distributed application

• the speed and reliability of servers

• the characteristics of your client nodes

• the networking protocols

Development environment A development environment has the same elements
as a deployment environment, but also has iPlanet UDS repository services,
development repositories, and application development software, such as the
iPlanet UDS Workshops and Fscript.

Setting up an iPlanet UDS Environment

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 89

If you are setting up a development environment, you should also consider:

• the location of your central development repositories (Repository Servers).

• the presence of application resources, such as databases and external libraries

Because your environment will be used not only to develop, but to test
distributed applications (by simulating deployment environments), vital
application resources must also be present.

• the resources available on your development workstations

While performance requirements for your servers may be less demanding than
in deployment environments, the requirements for your development
workstations (usually client nodes) may be more demanding than in a
deployment environment.

Location of system management processes In either case, the main iPlanet UDS
environment design consideration is where to locate iPlanet UDS system
management services, such as the Environment Manager. Generally speaking, you
should designate one server node as a central server—a node that hosts the
Environment Manager service (and Name Service, since it runs in the same server
partition). Normally, this node will also serve as a central distribution node used
for installing iPlanet UDS system software on other nodes in your environment.

Since each node in your environment will have to access the Name Service to
communicate with remote partitions, you must supply the Name Service address
to each node at installation time. (In a development environment you must also
supply each development node with the name of your central development
repository.)

Therefore, before beginning to set up your environment, you should decide on the
Name Service address, as well as a few other items contained in the Environment
Worksheet shown in Figure 3-1.

The worksheet assumes that all nodes in your physical environment are networked
using TCP/IP, DECnet, or both.

Setting up an iPlanet UDS Environment

90 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 3-1 Worksheet for Setting up an iPlanet UDS Environment

The information needed in the worksheet is the following:

Name Service Address This address is the value that other nodes will use to
connect to this environment using their FORTE_NS_ADDRESS environment
variable or the -fns flag on most iPlanet UDS commands. The following three parts
of the Name Service address each depend on the network protocols being
supported:

• Host Node name: This is the name of your central server node—the node on
which the Environment Manager service and Name Service will run. The name
must be a valid TCP/IP or DECnet node name (or a name valid for both).

• Name Service ID: This is an ID whose form depends upon the network
transport protocol used to access the Name Service. For TCP/IP, it is a port
socket number not currently in use by other processes—you can use a value
between 1025 and 65535. For DECnet, it is a unique, case-sensitive
alpha-numeric DECnet object name (“$” and “_” also allowed), less than 8
characters in length. An example is “forte_ns”.

• Protocol type: This is a case-sensitive value of “TCP/IP” for TCP/IP and
“DECnet” for DECnet. (Leaving the value blank will default it to TCP/IP.)

Typical Name Service addresses would be: “MyNode:5000” (for TCP/IP) and
“YourNode:forte_ns::DECnet” (for DECnet).

Host Node name Name Service ID Protocol type

: ::

Name Service Address

Environment Manager

Environment name

Repository Server

Host Node name

Repository Server name

iPlanet UDS Environment Worksheet

Setting up an iPlanet UDS Environment

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 91

Environment Manager This is the environment name the Environment Manager
service will give to your active environment. The name must consist of
alpha-numeric characters and can be of any length. (The default name is
“CentralEnv” or “centrale”.) If you plan to connect environments, you should
ensure that each environment name is unique so that developers and system
managers can easily specify different environments in their search paths.

Repository Server (development environment only) The following two
properties are needed:

• Host Node name: This is the name of the node in your environment on which
the Repository Server will run, generally a node with a sizeable amount of disk
space.

• Repository Server name: This is the name by which the Repository Server will
be advertised in your development environment. The Repository Server name
will be used by all development workstations that wish to access the central
repository. (You can actually have a number of central repositories.) The
Repository Server name must consist of no more than 32 alphanumeric
characters.

Summary of the Environment Setup Process
This chapter assumes your environment consists of at least one server and at least
one client workstation. Your environment, however, can include any number of
iPlanet UDS–supported server and client platforms.

➤ To install and start an iPlanet UDS environment

1. Make sure your network is working properly.

Use netcopy utilities or “ping” nodenames (on TCP/IP) to make sure servers
are running and communicating.

2. Set up a central distribution node (Windows NT, UNIX, or OpenVMS) at your
site.

This node will be the source for installing iPlanet UDS on all nodes in your
environment. The iPlanet UDS distribution media consists of multiple
CD–ROMs. This step is described in detail in iPlanet UDS System Installation
Guide.

Nodes In Your Environment

92 iPlanet Unified Development Server • System Management Guide • August 2001

3. Install iPlanet UDS on your central server node, using the appropriate
platform-specific installation program. This step is described in detail for each
platform in iPlanet UDS System Installation Guide.

The central server node hosts two important iPlanet UDS system management
services needed by other nodes: the Name Service and Environment Manager.

The installation program copies iPlanet UDS software into an iPlanet UDS
directory structure on your target node, sets a number of environment
variables (logical names on OpenVMS systems), and starts the Name Service
and Environment Manager.

4. Install iPlanet UDS on all remaining nodes in your environment, using the
appropriate platform-specific installation programs. This step is explained in
iPlanet UDS System Installation Guide.

The installation program copies iPlanet UDS software into an iPlanet UDS
directory structure on each target node and sets a number of environment
variables (logical names on OpenVMS systems). On server nodes, the
installation program also starts the Node Manager.

5. Modify the default environment definition created for your environment.

An environment definition, which specifies all the nodes in your environment,
is created automatically as you install each node, in Step 3 and Step 4.
However, you may need to modify this definition. This step is explained in
Chapter 4, “Creating and Modifying Environment Definitions.”

For detailed information about installing iPlanet UDS system software, see iPlanet
UDS System Installation Guide.

Nodes In Your Environment
This section provides an overview of the different types of iPlanet UDS nodes that
you can set up in your development or deployment environment. For information
about how to install each of these types of nodes, see iPlanet UDS System Installation
Guide.

Figure 3-2 illustrates a simple iPlanet UDS environment. This environment could
be either a development or a deployment environment.

Nodes In Your Environment

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 93

Figure 3-2 An iPlanet UDS Environment

Central Server Node
A central server node is the brain of the environment. This node runs the
Environment Manager (and its Name Service), which manage and control the
environment and applications running in the environment.

Environment repository This node maintains information about the entire
environment in an environment repository. This environment repository contains
information about the nodes and applications available in the environment. If you
connect multiple environments together, then the environment repository also
contains information about other environments, as described in “Connecting
Environments” on page 115.

To start your environment, you start the Environment Manager (and, therefore, the
Name Service). When the Node Managers for other nodes start, they connect to this
environment using the name server address defined by this Environment Manager.
“Startup Commands (nodemgr and start_nodemgr)” on page 104 explains how to
start the Environment Manager.

Environment
Repository

Node
Repository

Node
Repository

Client

Client

Central Server

Environment
Manager &

Name Service

Server

Node
Manager

Server

Node
Manager

Nodes In Your Environment

94 iPlanet Unified Development Server • System Management Guide • August 2001

An iPlanet UDS central server node has the following iPlanet UDS components
installed:

• iPlanet UDS runtime system

• Environment Manager

• iPlanet UDS repository services

• Launch Server

• iPlanet UDS system management software

• iPlanet UDS application development software

As you install the central server node, you are prompted for the values you defined
in the worksheet described in “Designing Your Environment” on page 88.

Server Nodes
A server node is a node capable of running iPlanet UDS server applications and
server partitions of distributed iPlanet UDS applications. A server node has a
unique identity in the environment, and connects to the environment by running a
Node Manager and identifying the name server address for the Environment
Manager it wishes to connect to.

You have two options for installing a server node: with iPlanet UDS system
management and application software components, or without (just the iPlanet
UDS runtime system).

As you install the server node, you are prompted for the name server address for
the Environment Manager, as well as other values specific to your node. After you
finish installing the iPlanet UDS components, you can redefine the environment
variables using the iPlanet UDS Control Panel (if it is available) or directly in the
operating system, as described in “Using the iPlanet UDS Control Panel” on
page 345 and “Setting Environment Variables Without the iPlanet UDS Control
Panel” on page 353.

Nodes In Your Environment

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 95

Development Server
For a development environment, you can choose to install a Server Node as a
custom installation of the iPlanet UDS application development software. This
server node has the following components installed:

• iPlanet UDS runtime system

• iPlanet UDS repository services

• Node Manager

• Launch Server

• iPlanet UDS system management software

• iPlanet UDS application development software

If you want to run a server for test purposes, but not run any iPlanet UDS
application development or system management software on the server, you can
also use a deployment server.

Deployment Server (iPlanet UDS Runtime System)
For a deployment environment, you can use a node that has been set up as for a
development environment. However, you can also choose to install a smaller set of
iPlanet UDS components, which provide only the features needed to participate in
the environment and run iPlanet UDS applications. You can install this
configuration using the iPlanet UDS Runtime System installer. In this case, a server
node has the following components installed:

• iPlanet UDS runtime system

• Node Manager

• Launch Server

When you install the iPlanet UDS runtime system on a platform that can run either
a client or server node, such as UNIX and Windows NT, you get the components
for both a runtime client and a runtime server.

Nodes In Your Environment

96 iPlanet Unified Development Server • System Management Guide • August 2001

Client Nodes
A client node is intended to run only client partitions of iPlanet UDS applications.
This client node can be uniquely defined as part of the environment, or might be
known as a member of a model node group, which is discussed in “Specifying
Node Properties” on page 134. A client node participates in an environment when
it starts a Node Manager by running the Launch Server, the Environment Console,
or Escript.

Like the server nodes, you can install a client node either with iPlanet UDS system
management and application software components, or without.

As you install the client node, you are prompted for the name server address for
the Environment Manager (unless the client is standalone).

Development Client
For a development environment, you can choose to install a Client Only
installation as a custom installation of the iPlanet UDS application development
software. You can also choose whether to have the client installed as standalone, so
that it does not participate in an environment after you install it unless you later
redefine some of the settings for the client node. This client node has the following
components installed:

• iPlanet UDS runtime system

• Launch Server

• iPlanet UDS system management software

• iPlanet UDS application development software

When you install the iPlanet UDS development system on a platform that can run
either a client or server node, such as UNIX and Windows NT, you get the
components for both a development client and a development server.

Deployment Client (iPlanet UDS Runtime System)
For a deployment environment, you can use a node that has been set up as for a
development environment. However, you can also choose to install a smaller set of
iPlanet UDS components, which provide only the features needed to participate in
the environment and run iPlanet UDS applications. You can install this
configuration using the iPlanet UDS Runtime System installer. In this case, a server
node has the following components installed:

• iPlanet UDS runtime system

• Launch Server

Nodes In Your Environment

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 97

When you install the iPlanet UDS runtime system on a platform that can run either
a client or server node, such as UNIX and Windows NT, you get the components
for both a runtime client and a runtime server.

Setting up Client Nodes after Installation
This section briefly describes common setup tasks you need to perform after you
install iPlanet UDS on a client node.

Defining a Client Node Name
After you finish installing the iPlanet UDS components, you need to define a
unique name for the client node and, if the node is a member of a model node
group, specify the name of the defined model node. You can define the
environment variables for these names using the iPlanet UDS Control Panel (if it is
available) or directly in the operating system, as described in “Using the iPlanet
UDS Control Panel” on page 345 and “Setting Environment Variables Without the
iPlanet UDS Control Panel” on page 353.

Setting up the Launch Server
Client nodes (except those on OpenVMS platforms) have a utility called the Launch
Server, which acts as a Node Manager for client nodes. The Launch Server enables
your client nodes to automatically download deployed iPlanet UDS applications
and lets several iPlanet UDS applications run their client partitions in a single
iPlanet UDS process. The Launch Server is also used by several icons to start
iPlanet UDS applications using the Ftcmd utility, as described in “Using the Ftcmd
Utility” on page 307.

Ideally, your end users are not aware that the Launch Server exists when they start
your iPlanet UDS applications, but they still enjoy the benefits that this utility
provides. On UNIX, Windows NT, and Windows 95, icons that use the Ftcmd
utility to start iPlanet UDS applications automatically start the Launch Server, as
does the Launcher application.

On UNIX nodes, you need to set the FORTE_FTLAUNCH_PORT as a user-specific
environment variable on each client node before you can start the Launch Server
on that node.

The Launch Server utility and the ftlaunch command are fully described in
Chapter 9, “Launching iPlanet UDS Applications and Applets.”

Structure of Installed iPlanet UDS Software

98 iPlanet Unified Development Server • System Management Guide • August 2001

Launcher Application
All iPlanet UDS installations (except those on OpenVMS platforms) provide the
Launcher application. This application is an end user application intended to let an
end user start up and shut down all their iPlanet UDS applications from a central
control panel on their desktop. This application uses the Launch Server to start
applications, shut down applications, and download more recent releases of
deployed applications. As the system manager, you can choose to provide this
application to your end users, or to have your end users use icons or commands to
start iPlanet UDS applications. Chapter 9, “Launching iPlanet UDS Applications
and Applets” discusses the Launcher application and how to set up application
icons on client nodes.

For more information about the Launcher application see “About the Launcher
Application” on page 294.

Structure of Installed iPlanet UDS Software
This section briefly describes the directory structure, environment variables, and
default environment definition that are set up when you install iPlanet UDS
software. iPlanet UDS System Installation Guide describes this structure and the
environment variables for each platform in much more detail.

While it is important to first install iPlanet UDS software on the node you designate
as your central server, installation of iPlanet UDS on all platforms is about the
same. Basically it consists of copying the iPlanet UDS directory structure and
source files to the target node, setting a number of environment variables used by
iPlanet UDS at startup time, and automatically starting and shutting down the
appropriate system management services for your target node.

You can install the software required for a central server node, the software
required for a node in an application development environment, or just the iPlanet
UDS runtime system. For information about how to install any of these options, see
iPlanet UDS System Installation Guide.

iPlanet UDS System Software Directory
Structure
When you install iPlanet UDS software on any platform, the installation program
creates the directory structure shown in Figure 3-3 on page 99.

Structure of Installed iPlanet UDS Software

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 99

Figure 3-3 iPlanet UDS System Directory Structure

FORTE_ROOT iPlanet UDS System Directory Structure

envdist

etc

external

install

log

repos

appdist

sysdata

tmp

userapp

userlib

workmsg

diag

examples

inc

lib

nls

reposcpy

bin

scripts

created when building an application
that contains compiled libraries

Structure of Installed iPlanet UDS Software

100 iPlanet Unified Development Server • System Management Guide • August 2001

Table 3-1 lists the contents of the iPlanet UDS root directory. Many of the
directories within the iPlanet UDS root directory are empty upon installation.
These empty directories are used for the repository, application distributions,
installed user applications, and other information used by the iPlanet UDS runtime
system.

Table 3-1 Contents of the FORTE_ROOT directory

Directory Content

appdist Application and library distributions are created here when a developer
makes a distribution, or placed here when you copy a distribution from a tape
or other media in order to deploy the distribution.

envdist Environment definitions are placed here when they are exported from the
environment repository.

external This directory is used as a place to put external libraries.

install This directory contains installed iPlanet UDS software, as described in
Table 3-2.

log System and application log files are written here.

repos Development repositories are created and stored here. This is the most critical
directory to back up.

sysdata This data contains information important to the iPlanet UDS runtime system
and iPlanet UDS system management applications.

tmp This directory is used as a temporary holding directory when making an
application or library distribution that contains compiled components.

userapp Application partitions and libraries are installed here by iPlanet UDS during
the deployment process. Only application partitions that run on a particular
node are installed in the userapp directory of that node.

userlib When building an application, this directory is created to hold compiled
libraries for the application. This directory does not exist when you first
install iPlanet UDS.

workmsg This directory is used for working copies of message files for international
language support.

Structure of Installed iPlanet UDS Software

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 101

Table 3-2 lists the contents of the install directory, which contains iPlanet UDS
system files, scripts to run iPlanet UDS components, and iPlanet UDS examples.

Environment Variables
The iPlanet UDS installation program sets a number of environment variables
(logical names in OpenVMS) using information you provide—or default
values—for the host node. These settings are read by iPlanet UDS processes at
startup unless you specifically override them.

Table 3-2 Contents of the install directory

Directory Content

bin iPlanet UDS system executables.

diag Diagnostic tools used by iPlanet UDS technical support.

examples Sample projects and examples provided by iPlanet UDS.

hyperhlp (UNIX only) Help files used by iPlanet UDS development and management
software.

inc (Development only) Header and template files used for C++ code generation
and 3GL integration.

lib C and C++ shared libraries used by iPlanet UDS system executables.

nls Internationalization files.

reposcpy iPlanet UDS development system seed repository used by the system when
creating new repositories and the iPlanet UDS system repository.

scripts Miscellaneous scripts and files provided as iPlanet UDS utilities.

Structure of Installed iPlanet UDS Software

102 iPlanet Unified Development Server • System Management Guide • August 2001

The following table briefly describes the environment variables set by the
installation program:

In addition to environment variables set by the installation program, there are a
number of others you can set by hand. For more information on environment
variables, see Appendix B, “iPlanet UDS Environment Variables.”

iPlanet UDS stores environment variables in a different location on each platform
(see “Setting Environment Variables Without the iPlanet UDS Control Panel” on
page 353 or the iPlanet UDS System Installation Guide for details.)

The Default Environment Definition
If you install iPlanet UDS first on your central server node and then on other server
nodes, your system management services are started in the correct sequence to
create an environment definition for your active environment automatically. An
environment definition specifies (among other things) all the nodes in your
environment.

As each Node Manager starts in your iPlanet UDS environment, the Environment
Manager dynamically adds a specification for that new node to the environment
definition created when you first started up the Environment Manager. The
environment definition is stored in the environment repository on your central
server node.

In many situations, after installing iPlanet UDS on each node in your environment,
you will need to add more detail to your node specifications. For example, you
may need to specify resource managers available on a node.

Environment Variable Purpose

FORTE_ROOT The root of the iPlanet UDS directory structure on your
node.

FORTE_REPOSNAME In a development environment, the name of the Repository
Server accessed by your node.

FORTE_NS_ADDRESS The network address of the Name Service in your
environment.

FORTE_LOGGER_SETUP Specifies log file names on your node, and the type and level
of messages being logged by iPlanet UDS in these log files.

Starting System Management Services

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 103

For instructions on how to modify an environment definition, see Chapter 4,
“Creating and Modifying Environment Definitions.”

Environment definitions are important in both deployment and development
environments. In a deployment environment, an environment definition contains
application partitioning configuration information for all applications you load
and install in your environment. In a development environment, the simulated
environment definitions are used for partitioning and testing applications, and in
making an application distributions.

Starting System Management Services
If you are installing the iPlanet UDS runtime system, iPlanet UDS automatically
installs the components needed to run a Node Manager and run deployed iPlanet
UDS applications.

If you are installing the iPlanet UDS application development software, you
specify whether your target node will function as a central server, a regular server,
or a client-only node. Depending on the option you select, the installation program
will install the appropriate system management service, as shown in the following
table.

The installation program stores the startup commands for these system
management services. You can use these commands in your system startup files.
iPlanet UDS places the startup commands in a different location on each platform.
(See iPlanet UDS System Installation Guide for details.)

Client–only nodes Unlike servers, client-only nodes do not normally run a Node
Manager service. However, if the Environment Console, Escript utility, or Launch
Server is running on a client, these programs will provide a Node Manager service.
In this case, the client node can be managed, just like a server node running a Node
Manager, by iPlanet UDS system management tools.

Installation Option System Management Service Installed

Central Server node Environment Manager (with Name Service)

Repository Server (development environments only)

Server node Node Manager

Client–only node Launch Server

Starting System Management Services

104 iPlanet Unified Development Server • System Management Guide • August 2001

Startup Sequence
As a rule, you install iPlanet UDS first on your central server node, then on other
server nodes to ensure that your system management services are started in the
correct sequence.

For your system management services to communicate properly, it is important
that your system management services start in the following order:

1. Environment Manager, which automatically starts the Name Service.

2. Node Managers on all server nodes and Launch Servers on all client nodes on
which iPlanet UDS has been installed.

If you wish to restart a single failed or stopped service, you can use the appropriate
startup script to restore the service. The startup sequence does not matter.

If you wish to restart more than a single service, be aware of the sequence. For
example, the Name Service (that is, the Environment Manager partition) must be
running before other Node Manager services can be started.

For information about starting the Environment Manager, Node Managers, and
Launch Servers, see “Starting System Management Services” on page 103 and
“Starting the Launch Server” on page 304.

If you are setting up a development environment, you normally will start one or
more Repository servers after all your server nodes are started. For information
about starting Repository servers, see “Starting Central Repository Servers” on
page 262.

Startup Commands (nodemgr and
start_nodemgr)
Each of the system management services are started by starting the Node Manager
partition on the host node. Since the Environment Manager service is really a more
global Node Manager service, its startup command is the same as for a Node
Manager, except it references an environment name. And since the Name Service
resides in the same partition as the Environment Manager, it starts automatically
when you start the Environment Manager.

iPlanet UDS provides scripts for starting the system management services. It is
preferable to use the script, which calls the startup command, rather than simply
executing the startup command because the script checks that the startup
command executes successfully and, if so, directs output to a standard log file in a
standard location. (You can also use the startup script within other scripts.)

Starting System Management Services

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 105

The startup commands and the corresponding startup scripts are summarized
below:

Portable Syntax

OpenVMS Only

Windows NT Only

Each startup command (or script) reads a number of iPlanet UDS environment
variables. You can set flags to override these environment variable settings. For
example, you can override the default settings for the kind of messages logged by
the runtime system and the amount of object memory allocated to a startup
partition. The commands (and scripts) use the same syntax and flags, as shown
below.

Service Startup Command Startup Script

Node Manager nodemgr start_nodemgr

Environment Manager
(and Name Service)

nodemgr -e
environment_name

start_nodemgr -e environment_name

Service Startup Command Startup Script

Node Manager VFORTE NODEMGR NODEMGRSTART

Environment
Manager
(and Name
Service)

VFORTE NODEMGR
/ENVIRONMENT=environment_name

ENVMGRSTART
/ENVIRONMENT=environme
nt_name

Service Startup Command Startup Script

Node Manager Node Manager icon No scripts for the Windows NT
platform

Environment
Manager
(and Name
Service)

Environment Manager icon

Starting System Management Services

106 iPlanet Unified Development Server • System Management Guide • August 2001

If you set environment variables that are used by the Node Manager for a
particular node, you need to set the environment variables before you start the
Node Manager; otherwise, the Node Manager does not pick up the environment
variable values. Because the Environment Manager is a special kind of Node
Manager, this fact is also true for the Environment Manager.

Portable (All Platforms)
{nodemgr | start_nodemgr}

[-e environment_name [-b environment_definition_file]]
[-fns name_server_address] [-p master_password]
[-fl logger_flags] [-fm memory_flags] [-fst integer]
[-fnd node_name] [-i initialization_file]

OpenVMS
{VFORTE NODEMGR | NODEMGRSTART | ENVMGRSTART}

[/ENVIRONMENT=environment_name
[/BOOT=environment_definition_file]]
[/PASSWORD=master_password]
[/NAMESERVER=name_server_address]
[/LOGGER=logger_flags]
[/MEMORY=memory_flags]
[/STACK=integer]
[/NODE=node_name]
[/INITIALIZATION_FILE=initialization_file]
[/DETACH]
[/ERROR=error_file]
[/OUTPUT=output_file]
[/PROCESS_NAME="process_name"]
[/UIC=uic]

The following tables explain each of the command line flags.

This Flag Specifies

-e environment_name
/ENVIRONMENT=
environment_name

The node acts as the Environment Manager for the
environment as well as the Node Manager for this
node. The environment_name specifies the name of the
environment that the Environment Manager will
manage. The first time the Environment Manager
starts, it creates an environment repository of the
specified name, thereafter it accesses the repository.

Starting System Management Services

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 107

-b environment_definition_file
/BOOT=
environment_definition_file

(Used only with -e or /ENVIRONMENT flag) The
environment_definition_file specifies the environment
definition file to be used with the Environment
Manager. Usually, you only specify this option to
recover an environment definition when the
environment repository has been lost or corrupted.

-fns name_server_address
/NAMESERVER=name_server_
address

Specifies the name service address for the environment
in which this application will run. This value overrides
the value, if any, specified by the
FORTE_NS_ADDRESS environment variable. If you
want your application to be able to switch to a backup
Environment Manager if the primary Environment
Manager fails, you can also specify multiple name
service addresses, as discussed in “Environment
Manager Failover for Partitions” on page 122.

-p master_password
/PASSWORD=master_password

The new password for the environment repository. If
no password existed before, this password is set for the
repository. If a password did exist before, then this
password replaces the previous password. This
password is the password for the environment
repository until the password is again changed using
this flag.

-fl logger_flags
/LOGGER=logger_flags

The startup logger flags for the command. See “-fl Flag
(Log Manager)” on page 371 for syntax information.
This specification overrides the
FORTE_LOGGER_SETUP environment variable
setting. On UNIX, you must specify the setting in
double quotes.

-fm memory_flags
/MEMORY=memory_flags

The startup object memory flags for the command. See
“-fm Flag (Memory Manager)” on page 375 for syntax
information. This specification overrides default
platform-specific object memory allocation. On UNIX,
you must specify the setting in double quotes.

-fst integer
/STACK=integer

The thread stack size in bytes for iPlanet UDS and
POSIX threads. See “-fst Flag (Stack Size)” on page 378
for syntax information. This specification overrides
default stack size allocation.

-fnd node_name
/NODE=node_name

Simulates a non-existent node (for testing purposes
only). Specifies a node name under whose identity to
run the service. This specification overrides
FORTE_NODENAME environment variable setting.
Default is host name.

This Flag Specifies

Starting System Management Services

108 iPlanet Unified Development Server • System Management Guide • August 2001

OpenVMS Flags

-i initialization_file
/INITIALIZATION_FILE=
initialization_file

An Escript initialization script to be executed by the
Node Manager upon startup. See Escript and System
Agent Reference Guide. The Escript script can only
contain environment editing commands, and is used
principally to specify resource managers for a node in
the active environment definition.

You should specify the initialization file only the first
time you start the Node Manager. If you do not specify
an Escript initialization file, the node is entered in the
environment definition with only the node name and
architecture specified. If a particular node is already
specified in the environment definition, the
information in the initialization file is ignored.

This Flag Specifies

/DETACH Starts the Node Manager as a detached process. By default, the
Node Manager starts as a subprocess of the current process.

/ERROR The error output file for the Node Manager when you start it as a
detached process using the /DETACH qualifier. If you do not
specify this qualifier, the default is
FORTE_ROOT:[LOG]NODEMGR_node.ERR, where node is the
local node name.

/OUTPUT The output file for the Node Manager when you start it as a
detached process using the /DETACH qualifier. If you do not
specify this qualifier, the default is:

FORTE_ROOT:[LOG]NODEMGR_node.LOG

node is the local node name.

/PROCESS_NAME The process name for the detached process in which the Node
Manager runs when started using the /DETACH qualifier. If you
do not specify this qualifier, the default is:

“Forte_NODEMGR” (or “Forte_ENVMGR” for the Environment
Manager).

/UIC The UIC under which the Node Manager should run when it is
started as a detached process using the /DETACH qualifier. UIC
may be specified in either octal [nnn,mmm] or identifier format.

This Flag Specifies

Starting System Management Services

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 109

Log files for UNIX The UNIX start_nodemgr script copies the previous log file
for the Node Manager as a_nodeid.log in the FORTE_ROOT/log directory before it
starts a new log file named nodeid.log in the same directory so that the previous
log is not immediately overwritten. If a a_nodeid.log file already exists, it is
overwritten.

Process Names
When iPlanet UDS system management services start, they are given process
names that correspond to their startup commands. These names are shown in the
table below.

You can check on a system management service by using operating system
commands to look for the corresponding process name.

On UNIX platforms, you use some variant of the ps command. Be sure you use a
flag that will avoid truncating output before showing the process name.

On OpenVMS platforms, you use the show system command.

On Windows NT you can also use the Windows NT Task List window.

Service UNIX Process Name Windows NT Process Name OpenVMS Process
Name

Node Manager nodemgr nodemgr Forte_NODEMGR

Environment
Manager

nodemgr -e envmgr Forte_ENVMGR

Platform Commands for checking for running processes

UNIX # ps -auxww | grep nodemgr

OpenVMS $ show system/output= filename
$ search filename “forte_nodemgr”

Windows NT ps | grep nodemgr

Starting System Management Services

110 iPlanet Unified Development Server • System Management Guide • August 2001

Startup Batch Files
You can use the iPlanet UDS system startup commands created by the iPlanet UDS
installation program to start system management services on any node. These
startup batch files include the appropriate system management service startup
script for the node and are stored in the files shown below.

You usually place these iPlanet UDS startup commands in your system startup file
so the Node Manager (or Environment Manager) is started up whenever you
reboot your system. You can add additional startup commands to these batch files,
for example, to start application partitions once the Node Manager has started up.

Using Windows NT Services
This section describes how you can run the Node Manager and Repository Server
as services on the Windows NT platform.

Why Use Windows NT Services?
For Windows NT, a service is an executable object defined in the registry database
maintained by the Service Control Manager. The executable file associated with a
service can be started at boot time by a boot program or by the system, or it can be
started on demand by the Service Control Manager. iPlanet UDS supports running
Win32 services.

By default, when you install iPlanet UDS on a machine running Windows NT, the
Node Manager or Environment Manager and the Repository Server can run only
while the user who started these iPlanet UDS services is logged in. These processes
shut down when this user logs off.

Platform iPlanet UDS System Startup Command

UNIX FORTE_ROOT/forteboot.sh (and.csh)

OpenVMS SYS$STARTUP:FORTE_STARTUP_Vversion.COM

Windows NT No batch files. Drag the Environment Manager icon into the Startup
program folder. These services can also be started automatically as an
NT service, as described in “Using Windows NT Services.”

Starting System Management Services

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 111

If a user with Administrator access installs iPlanet UDS so that you can start these
iPlanet UDS services as a Windows NT service processes, these service processes
can continue even after you log off. When a service is invoked by the Service
Control Manager, the service process can be logged on as the default System
account.

These NT services use environment variables that are set in the Windows NT
registry for the Local Machine.

Controlling the Node Manager or Environment Manager
and Repository Server Services
After you have installed the Node Manager or Environment Manager and
Repository Server as Windows NT services, you can start and shut down the
services using the Windows NT Service Control Panel.

The Node Manager is registered in the registry database as iPlanet UDS Node
Manager. The Environment Manager is registered in the registry database as
iPlanet UDS Environment Manager. The Repository Server is registered in the
registry database as iPlanet UDS Repository Manager.

Because the Environment Manager and Node Manager run as Windows NT
services, any ftexec processes started by the Environment Manager and Node
Manager behave as though they are Windows NT services.

➤ To get to the Services control panel

1. In the Program Manager, double-click on the Control Panel icon in the Main
program group.

2. In the Control Panel, double-click on the Services icon (gears). The Services
control panel appears.

➤ To start a service

1. In the Services control panel, select the desired service.

2. If you want to override the default startup parameters, you can type the
desired values in the Startup Parameter field.

3. Click the Start button. A dialog box with a clock appears, indicating that the
service is starting.

NOTE Any user whose user ID belongs to the User user group can start a
service.

Starting System Management Services

112 iPlanet Unified Development Server • System Management Guide • August 2001

➤ To change the service configuration

1. In the Services control panel, select the desired service.

2. Click the Startup button. A new window appears.

3. In the new window, you can set the following options:

Only users in the Administrator user group can change the service configuration.

For more information about using the Windows NT Services control panel, see
Windows NT online help.

➤ To stop an NT service, do one of the following

• Use the Environment Console or Escript to shut down these processes, as
described in “Shutting Down System Management Services” on page 113 and
“Stopping Central Repository Servers” on page 265.

• In the Services control panel in Windows NT, select the desired service and
click the Stop button.

Shutting down the Node Manager NT service directly using Windows NT
utilities also shuts down all processes running on that node. If you shut down
the Environment Manager NT service, you also shut down the entire
environment.

Options Descriptions

Startup Type This field specifies how the service can be started.

Select one of the following options:

• Automatic—starts when the system is booted up

• Manual—is started by the administrator

• Disabled—cannot be started

Log On As This field specifies the user ID that you want the service to use when
it logs on.

Leave this value set as “System Account”, so that the service starts
up using the user ID “System”.

Shutting Down System Management Services

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 113

Shutting Down System Management Services
When shutting down services in an iPlanet UDS environment, you can generally
shut them down in any order.

➤ To shut down all iPlanet UDS processes in the iPlanet UDS environment

1. In the Environment Console, open the Node Outline view, by choosing the
View > Node Outline command.

2. Select the Environment agent.

3. Choose the Component > Shut down command.

4. Choose OK.

➤ To shut down a Node Manager and all iPlanet UDS processes running on that
node

1. In the Environment Console, open the Node view, by choosing the View >
Node Outline command.

2. Select the Node agent for the node you want to shut down.

3. Choose the Component > Shutdown command.

Maintaining System Management Repositories
An environment repository maintains, among other things, information contained
in the node repositories of all the individual nodes in an environment. As you
modify application configuration information or as individual Node Managers
perform work, such as installing partitions, information on these objects is not only
maintained in the individual node repositories, but in the environment repository
as well. In fact, iPlanet UDS attempts to keep the environment repository and node
repositories synchronized at all times.

The benefit of this redundancy is that Node Managers do not have to interrogate a
remote environment repository to perform local tasks. It also means that a node
repository can be rebuilt automatically. For example, if a node repository becomes
corrupted, you could shut down the Node Manager, delete the node repository,
and then restart the Node Manager. A new node repository would be built by
synchronizing with the environment repository.

Maintaining System Management Repositories

114 iPlanet Unified Development Server • System Management Guide • August 2001

However, if the environment repository becomes corrupted, or the node hosting
the Environment Manager fails, the environment repository cannot be fully rebuilt
from information in the node repositories. The node specifications can be rebuilt,
but application partitioning information is lost.

For this reason, it is very important that you back up your environment repository,
especially in a deployment environment, where a great deal of application
partitioning configuration information may reside in your environment definition.

Backing up and Restoring Environment
Repositories
There are two approaches to backing up your environment repository: directly
backing up the environment repository files, or exporting the active environment
definition. When you export the active environment definition, the Name Service
database stored in the environment repository is not exported. Therefore, if you
have static information in the Name Service database (for example, in the case of
connected environments), you should always back up your environment
repository by backing up the repository files, rather than by exporting the
environment definition.

Backing up Repository Files
The environment repository is simply the node repository of the central server
node (which hosts the Environment Manager). To back up the repository, back up
the following two B-tree files:

• FORTE_ROOT/sysdata/envrepos/node_name.btd

• FORTE_ROOT/sysdata/envrepos/node_name.btx

If your environment repository gets corrupted, you can restore these files and
restart the Environment Manager. See “Starting System Management Services” on
page 103.

Exporting Environment Definitions
To export the active environment definition, you can use the Environment Console
Export command under the File menu (or the Environment agent’s ExportEnv
Escript command). The environment definition is written to the file
FORTE_ROOT/envdist/environment_ID.edf.

Connecting Environments

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 115

You can then back up the .edf file. If your environment repository is lost or
corrupted, you restore this file and restart the Environment Manager using the -b
flag followed by the name of the .edf file:

nodemgr -e environment_name -b environment_ID.edf

Connecting Environments
Up to this point, your iPlanet UDS environment—characterized by a single Name
Service with a single Name Service address—has been regarded as an isolated
group of nodes. The Name Service brokers communication between partitions
executing on different nodes in the environment. As each partition (including each
Node Manager partition) starts, it registers its service objects and network address
with the Name Service, so that other partitions can find remote services and
communicate with them. The Name Service defines a unique name space for the
environment.

It is possible, however, to expand the name space of your environment to
encompass other iPlanet UDS environments as well. Partitions within your
environment can then find services in other iPlanet UDS environments and access
them. Similarly, partitions within other environments can find and access services
in your environment. This is most useful in failover scenarios where a backup
service may be in another environment, or in scenarios where a reference partition
is pointing to a service in another environment.

You can connect iPlanet UDS environments together into an expanded name space
and perform a number of related tasks using the system management agent that
manages the iPlanet UDS Name Service—the NameService agent.

If you plan to connect environments, you should ensure that each environment
name is unique so that developers and system managers can easily specify
different environments in their search paths.

➤ To connect an environment to your current iPlanet UDS environment

1. Start the Environment Console.

2. Select the Application Outline view.

3. Select the NameService agent.

4. Select the Connect Environment command on the Utility menu.

A Connect Environment dialog box appears.

Connecting Environments

116 iPlanet Unified Development Server • System Management Guide • August 2001

5. Provide the name or UUID of the target environment to be connected
(environment name) and its Name Service address (environment location) in
the Execute Command dialog.

The user directory field is only required if your target environment contains
explicitly registered services in its name space, as opposed to implicitly registered
service objects. For information on explicit registration using the NameService
agent, see Escript and System Agent Reference Guide. In this case, you need to provide
a user directory name for the root of the directory tree containing the target
environment’s explicitly registered services.

Viewing Connected Environments
If you wish to see if some other environment is already connected to your
environment, you can use the NameService agent’s Show Administration
command.

➤ To see if an environment is connected to your environment

1. Select the NameService agent in the Application Outline View.

2. Select the Show Administration command on the Utility menu.

3. Provide the name of the environment.

If you do not provide the name of an environment, the command shows all
environments directly connected to your environment, but not all
environments indirectly connected to your environment.

This information is displayed in the trace window (if you do not have a trace
window displayed, start the Environment Console with the -fcons flag).

Connecting Environments

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 117

Setting an Environment Search Path
When working with connected environments, you can specify an environment
search path that specifies the order in which the Name Service will search the name
space (the connected environments) to find a requested service. By default, this
environment search path is set to “@(a)”, which means the Name Service searches
only in the current environment for a service, and tries to autostart the service if it
is not already running.

Usually, your application services are located in your local environment. However,
if a service is not available, or has failed, you might want to search the connected
environments in a particular order for a backup service to use. You would then set
a default environment search path accordingly.

Individual service object search paths The default environment search path can
be overridden by an environment search path specified for any individual service
object. A developer who has sufficient knowledge of the iPlanet UDS
environment(s) in which a service object will be used can specify an environment
search path property for the service object. For example, if a developer knows that
a primary service will reside in one environment and a secondary backup will
reside in another, then she can specify the appropriate search path for the service
object. A service object’s explicit environment search path takes precedence over
the default environment search path. For information on specifying environment
search paths for a service object, see A Guide to the iPlanet UDS Workshops.

➤ To set a default environment search path

1. Start the Environment Console.

2. Select the Application Outline view.

3. Select the NameService agent and open the NameService agent information
window by double-clicking on the agent.

4. Double-click the EnvSearchPath instrument.

Connecting Environments

118 iPlanet Unified Development Server • System Management Guide • August 2001

5. Specify a search path. Because most services are in your local environment, you
should specify the current environment first, with the value “@(a)”.

Enter a string that includes one or more environment paths. The syntax of the
search list string is:

path [(a)] [: path [(a)]…

where path is:

@| @environment_name

The following example illustrates a search list that looks first in the current
environment, second in the “la” environment, and last in the “sf” environment:

@(a):@la:@sf

For information on additional NameService agent commands, see Escript and
System Agent Reference Guide.

Variable Definition

@ Indicates your local environment. This is normally specified as
the first environment in the search path, since you would
normally look first in your local environment for a service.

@environment_name Indicates the name of an environment connected to your local
environment. If two or more connected environments share
the same environment name, and these environments are
specified in the environment search path, then you must use
the environment UUID to specify each environment. Specify
this environment UUID in place of the @environment_name, for
example B763E430-22FF-11D0-A5AA-5BC569EDAA77. For
more information about the environment UUID, see the
NameService agent in Escript and System Agent Reference Guide.

(a) Indicates that a service identified by a specific path should be
started up automatically, if necessary. For information on
auto-start, see “Auto–Startup” on page 189.

Fault Tolerance for Multiple Connected Environments

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 119

How the Environment Search Path
Can Affect Your Applications
You should use the environment search list very carefully, because it can have a
large impact on the behavior of deployed applications.

Failover on service objects The default environment search list takes effect for all
service objects in the environment that do not have their own environment search
lists. If a service object in the current environment fails and it does not have its own
search list, it will failover to the environment specified in the environment’s default
search list.

Search path for reference partitions If a reference partition does not have its
own environment search list when iPlanet UDS searches for the service that is
referenced by the partition, iPlanet UDS searches the environment specified in the
default environment search list.

For more information about service objects, reference partitions, and failover in
connected environments, see A Guide to the iPlanet UDS Workshops.

Fault Tolerance for Multiple
Connected Environments

This section discusses how the iPlanet UDS runtime system enables iPlanet UDS
applications to be highly available and fault tolerant.

This section refers to the combined Name Server and Environment Manager for a
given environment as the Environment Manager.

Name space iPlanet UDS enables you to define multiple environments, each of
which defines a name space. The name space contains addressing information for
the named objects, such as service objects and named anchored objects, which are
managed by the Environment Manager for a given environment.

NOTE This failover occurs even if the service object is not defined as
having failover.

Fault Tolerance for Multiple Connected Environments

120 iPlanet Unified Development Server • System Management Guide • August 2001

Global name space You can connect several environments to create a global name
space in which applications and the Environment Manager in one environment
know about named objects in other environments that the Environment Manager is
connected to. Each Environment Manager manages the part of this global name
space corresponding to its environment. Any iPlanet UDS partition in these
connected environments can access service objects in any part of the global name
space. Each Environment Manager manages all named objects created by the
servers directly connected to it.

Home environment A partition can connect to one Environment Manager as part
of an environment, then disconnect and connect to another Environment Manager
as part of another environment, and so forth. The environment to which a partition
initially connects is considered the partition’s home environment.

Environment Manager Failover
When you use connected environments, you can make your applications more
available by ensuring that an Environment Manager for one environment can
locate and access all the named objects in the other connected environments. With
this capability, if the Environment Manager for a named object’s environment goes
down, a partition that tries to access that named object can ask one of the other
Environment Managers to locate the named object.

When a partition first accesses a named object, the partition stores the addressing
information for all currently running instances of the named object that it has
located using the environment search path. The Environment Manager for the
partition’s environment also stores this addressing information in its name service
database.

By copying this addressing information between environments, iPlanet UDS
ensures that applications in one environment can access named objects in another
connected environment, even when the Environment Manager is not available in
the named object’s environment.

Therefore, to make sure that all Environment Managers in your connected
environments have addressing information about all named objects available
throughout the global name space, you should “warm up” your environment, as
described in “Preparing Environment Managers to Access Named Objects in Other
Environments” on page 121.

Fault Tolerance for Multiple Connected Environments

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 121

Preparing Environment Managers to Access
Named Objects in Other Environments
To make sure that all Environment Managers in your connected environments
have addressing information about all named objects available throughout the
global name space, you should “warm up” your environment.

To “warm up” the Environment Managers of the connected environments, write a
routine to run in each environment. Each routine performs the following steps:

1. Start a partition that contacts all of the named objects in the other environments
in the global name space.

2. Wait for the Environment Manager to commit the copied object addressing
information to the name server database at the end of the routine.

The Environment Manager commits the copied addressing information to the
disk only at a fixed interval—1 second by default. The “warm-up” routine
must wait this interval to ensure that all of the object addressing information
will be persistently stored and available if the Environment Manager fails and
is restarted.

➤ To run these routines

1. Start all of the servers in all environments. You can perform this step using the
Environment Console or with an Escript script.

2. Start the routine in each environment.

NOTE If the service objects in your environment reference other service
objects, you need to be aware of issues described in iPlanet UDS
Technical Note 10660. This section describes a very simple case in
which service objects do not reference other service objects.

Fault Tolerance for Multiple Connected Environments

122 iPlanet Unified Development Server • System Management Guide • August 2001

Environment Manager Failover for Partitions
iPlanet UDS lets partitions specify multiple name service addresses, so that they
can failover to other Environment Managers in connected environments if the
Environment Managers in their home environments fail.

Partitions can specify multiple Environment Manager locations in the
FORTE_NS_ADDRESS environment variable or on the -fns flag of most iPlanet
UDS commands.

The syntax for specifying multiple Environment Manager locations is:

address[::protocol_name][; address[::protocol_name] . . .]

The syntax of address is protocol dependent.

The optional protocol_name specifies a protocol other than the default for that
platform. The default protocol for OpenVMS is DECnet and for all other platforms
is TCP/IP.

The protocol_name is one of the values:

NOTE To make sure that all Environment Managers in your connected
environments have addressing information about all named objects
available throughout the global name space, you should “warm up”
your environment, as described in “Preparing Environment
Managers to Access Named Objects in Other Environments” on
page 121.

Protocol Address Syntax

TCP/IP machine_name:port_number

DECnet machine_name:object_name

Unix Domain path_name

TCP/IP
DECnet
Unix Domain

Fault Tolerance for Multiple Connected Environments

Chapter 3 Setting up and Maintaining an iPlanet UDS Environment 123

The following is an example of how you could specify multiple Environment
Manager locations in UNIX:

setenv FORTE_NS_ADDRESS ’Test1:5000;BackupUNIX:6000;LocalTest:1000’

When a partition initially starts, it connects to the first active Environment
Manager on the list. This Environment Manager becomes the home Environment
Manager.

If the partition loses its connection to its home Environment Manager, iPlanet UDS
automatically connects the partition to the next active Environment Manager on
the list. When the home Environment Manager again becomes available, it
automatically connects to the partition and the partition drops its connection to the
backup Environment Manager. While the partition is not connected to its home
Environment Manager, it cannot create named objects using the
ObjectLocationMgr RegisterObject method.

For more information about the -fns flag on the iPlanet UDS ftexec command, see
“Manual Startup” on page 190.

Environment Manager and Lost Partition
Information
When an Environment Manager unexpectedly can no longer access a partition, it
considers the partition to be lost. To deal with these lost partitions, the
Environment Manager can either:

• automatically delete information about the lost partition and its named objects

• retain information about the lost partition and named objects until the system
manager explicitly requests that all information about all lost partitions and
their named objects be deleted

Deleting information about lost partitions requires no manual maintenance,
however, it might provide lower availability when certain types of communication
failures occur. Retaining information about lost partitions provides higher
availability, but requires the system manager to manually remove obsolete
information from the name service database.

You can select whether the Environment Manager automatically deletes
information about lost partitions and their named objects by setting the value of the
DeleteOnCommFailure instrument of the NameService agent to TRUE or FALSE.
The default value is TRUE.

Fault Tolerance for Multiple Connected Environments

124 iPlanet Unified Development Server • System Management Guide • August 2001

If the Environment Manager is shut down normally within the Environment
Console or Escript by using the Shutdown command on the Environment
Manager, all information related to object names and partitions is removed.

The system manager can use the RemoveLostParts command on the NameService
agent to delete information about lost partitions from the name service database.

For more information about the DeleteOnCommFailure instrument and
RemoveLostParts command of the NameService agent, see Escript and System
Agent Reference Guide.

125

Chapter 4

Creating and Modifying
Environment Definitions

An environment definition specifies all the nodes in an iPlanet UDS environment
as well as other environment properties.

In many situations, following the setup of your environment, you will need to add
more detail to the active environment definition created automatically by iPlanet
UDS’s system management services.

Simulated environment definitions have special significance in a development
environment, where they are used by developers to partition, test and make an
application distribution for a deployment environment other than the active
environment definition.

This chapter explains how to create and modify environment definitions using the
Environment Console, and covers the following topics:

• creating a new environment definition

• saving and exporting an environment definition

• modifying an environment definition

All procedures in this chapter will assume you are using the Environment Console.
You can use the equivalent Escript commands to perform the same tasks. See
Escript and System Agent Reference Guide.

Introductory Concepts

126 iPlanet Unified Development Server • System Management Guide • August 2001

Introductory Concepts
An environment definition is a key component of both deployment and
development environments. The environment definition specifies all the objects in
an environment’s system management domain and is stored in the environment
repository on your central server node.

In particular, an environment definition specifies all the nodes in an iPlanet UDS
environment. When you set up an iPlanet UDS environment, as described in
Chapter 3, “Setting up and Maintaining an iPlanet UDS Environment,” your
system management services automatically create an environment definition for
your active environment. As each Node Manager starts up, the Environment
Manager dynamically adds a specification for that new node to the environment
definition created when you first started up the Environment Manager.

In many situations, following the installation of iPlanet UDS on each node in your
environment, you will need to add more detail to your node specifications. For
example, you may need to specify resource managers available on a node. You
may also wish to represent large numbers of similar client nodes with a single
model node.

In addition, if you have loaded or installed applications (or library distributions) in
the environment, the environment definition also includes specifications of the
application (or library distribution), logical partition, and installed partition
objects, as well.

In a development environment, environment definitions have special significance.
An environment definition is used when developers partition, test and make an
application distribution for some deployment environment. In performing such
tasks, developers need to be able to simulate the target deployment environment.

Model nodes and simulated deployment environments are discussed in a bit more
detail in the following sections.

Model Nodes
In any environment definition, you can represent a large number of identical client
nodes as a single model node. Any partition that is assigned to the model node can
then be installed and executed on any of the individual nodes represented by the
model node.

Introductory Concepts

Chapter 4 Creating and Modifying Environment Definitions 127

You normally use model nodes to represent large numbers of client nodes with the
same architecture. Instead of specifying each of the client nodes separately in your
environment definition, you can use one specification to represent them all. Each of
the nodes must run the same operating system.

Figure 4-1 Model Nodes

One problem with using model nodes is that iPlanet UDS system management
functions cannot distinguish between the nodes represented by the model node.
For example, when an application is being installed in an environment with model
nodes, iPlanet UDS has no way of knowing which of the individual nodes have
been successfully installed. This disadvantage to using model nodes is largely
mitigated by using the Launch Server utility, which automatically downloads
needed applications onto client nodes. For more information, see “Installing an
Application” on page 170 and “Deploying Applications to Client Nodes” on
page 298.

Simulated Deployment Environments
In iPlanet UDS, you can simulate a deployment environment by using nodes in
your development environment to simulate the nodes in the deployment
environment. Developers can use this simulated environment definition in the
Partition Workshop or Fscript to configure an application and make a distribution
for a particular environment definition. To simulate an environment, you create a
simulated deployment environment definition and assign every node in the
simulated deployment environment to a testing node in your active (development)
environment, as shown in Figure 4-2.

Model_PC

PC_1

PC_1

PC_1

PC_1

PC_1

Model Node Identical
Client Nodes

Introductory Concepts

128 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 4-2 Relationship between Simulated and Active Environments

You can use the Environment Console or Escript utility to create a simulated
deployment environment definition.

➤ To create a simulated deployment environment definition

1. Create a new environment definition, as described in “Creating a New
Simulated Environment Definition” on page 129.

2. Specify the active (development) environment as a test environment for the
simulated deployment environment.

See “Specifying New Environment Properties” on page 129.

3. Specify the nodes in your simulated deployment environment—each node
should correspond to a node in the actual deployment environment.

Active
Development Environment

Simulated
Deployment Environment

Each node in the simulated
deployment environment is mapped
to a testing node in the development
environment.

Each node in the active development
environment can serve as a testing
node for one or more nodes in the
simulated deployment environment.

Creating a New Simulated Environment Definition

Chapter 4 Creating and Modifying Environment Definitions 129

4. Map each node in your simulated environment to a test node in the active
(development) environment.

See “Specifying Node Properties” on page 134.

These steps assume you are creating your environment definition from scratch.
However, you can eliminate steps 1 and 3 by importing an environment definition
that has been exported from a deployment environment (see “Exporting an
Environment Definition” on page 141) or by running an Escript script created in
the deployment environment that specifies all the nodes in the deployment
environment, as described in Escript and System Agent Reference Guide. If you use
these shortcuts, you still need to perform the mapping in steps 2 and 4, so that
developers can test the applications they’ve partitioned using the deployment
environment definition.

Procedures for steps 1–4 are found in the following sections of this chapter.

Creating a New Simulated Environment Definition
To create a simulated deployment environment definition, you create a new
environment definition and specify the nodes for that environment.

Specifying New Environment Properties
To create a new environment definition, start up the Environment Console as
described in Chapter 4, “Creating and Modifying Environment Definitions.”
Choose the File > New command. The Environment Console displays the New
Environment Properties dialog, where you specify the properties of your new
environment.

The figure below shows the New Environment Properties dialog.

Figure 4-3 New Environment Dialog

Creating a New Simulated Environment Definition

130 iPlanet Unified Development Server • System Management Guide • August 2001

Fill in the two properties of the New Environment dialog as follows:

When you complete the fields in the New Environment dialog, and click OK, the
Environment Console opens two windows: an Environment Definition window
and the Node Template window.

Adding a Node to an Environment Definition
After you have entered the appropriate information and closed the New
Environment Properties dialog, the Environment Console opens an Environment
Definition window and a Node Template window. (Both the Node Template
window and Environment Definition window are also displayed when you open
an existing environment definition to modify it.)

The Environment Definition window is a blank slate where you can specify new
nodes. The Node Template window provides templates representing the node
architectures that iPlanet UDS supports.

Property Description

Name You use the Name field to name the new environment definition. The
name should match that of your target deployment environment.

After you have created the new environment definition, you cannot
modify its name.

Test Environment You use the test environment drop list to select your active
environment as the test environment for the new environment. Your
active environment must contain adequate node resources to
simulate your new environment. For example, if your simulated
environment definition contains an OpenVMS server node running
Oracle DBMS, your active environment must also contain a server
node running a database. If you want to test platform-specific
configurations, such as particular databases or compiled partitions,
your active environment should contain the same types of nodes as
your simulated environment.

Creating a New Simulated Environment Definition

Chapter 4 Creating and Modifying Environment Definitions 131

To add a new node to a simulated environment definition, you drag a template
from the Node Template window into the main viewing panel of the Environment
Definition window, as shown in Figure 4-4.

You can add a new node to your active environment definition, as well, by
selecting the File > Node Template command. The Environment Console displays
the Node Template window and you can drag node templates into the main
viewing panel of the active environment window. (Normally, you do not add a
new node in this way, since it is automatically added when the Node Manager for
the new node is started up.)

Figure 4-4 Specifying a Node in an Environment Definition

You can open as many environment definition windows as you wish, and
exchange node definitions among them by dragging node template icons from one
environment definition window to another.

Creating a New Simulated Environment Definition

132 iPlanet Unified Development Server • System Management Guide • August 2001

Node Templates
Node templates are what you use to specify new nodes. They represent the node
architectures that iPlanet UDS supports, as defined in the following table.

Template Node Name Description

Alpha NT Client Alpha client node running Windows NT.

Alpha NT Server Alpha server node running Windows NT.

Alpha OpenVMS Client Alpha client node running OpenVMS.

Alpha OpenVMS Server Alpha server node running OpenVMS.

Alpha OSF/1 Client Alpha client node running Digital UNIX.

Alpha OSF/1 Server Alpha server node running Digital UNIX.

Aviion Intel DGUX Client Aviion Intel client node running DG/UX.

Aviion Intel DGUX Server Aviion Intel server node running DG/UX.

HP 9000 HP/UX Client HP 9000 PA-RISC client node running HP/UX.

HP 9000 HP/UX Server HP 9000 PA-RISC server node running HP/UX.

Mips SINIX Client Mips client node running SINIX.

Mips SINIX Server Mips server node running SINIX.

PC Windows 95 Client Intel PC running Windows 95.

PC NT Client Intel PC client running Windows NT.

PC NT Server Intel PC server running Windows NT.

RS/6000 AIX Client RS/6000 client node running AIX.

RS/6000 AIX Server RS/6000 server node running AIX.

Sequent DYNIX/ptx V4 Client Sequent client node running DYNIX/ptx Version 4.

Sequent DYNIX/ptx V4 Server Sequent server node running DYNIX/ptx Version 4.

SPARC Solaris Client SPARC client node running Solaris.

SPARC Solaris Server SPARC server node running Solaris.

VAX OpenVMS Client VAX client node running OpenVMS.

VAX OpenVMS Server VAX server node running OpenVMS.

Creating a New Simulated Environment Definition

Chapter 4 Creating and Modifying Environment Definitions 133

Upgrading existing environment definitions The following templates are no
longer supported, and you should upgrade these templates to the new templates.
You should not define new nodes that use these templates.

A word about locking environment definitions After you create a new
simulated environment definition, the definition is open to public access by other
users in the active environment. For this reason, when you begin specifying a new
environment in an Environment Definition window, the Environment Console
locks the definition, giving you exclusive access to it. If you unlock the definition
for any reason, you must lock it again before attempting any changes.

When you create a new simulated environment definition, you have a lock on that
definition. You cannot obtain a lock for and change any other environment
definition until you release the lock on the new environment definition.

For more information on acquiring, holding, and releasing locks on active
environments and on environment definitions, and on the consequences of locking
them, see “Locking Environment Definitions” on page 143.

iPlanet UDS Release 2
Template Node Name

Description New Template Name

AViiON DGUX Client Aviion Motorola client node
running DG/UX.

AViiON Intel DGUX
Client

AViiON DGUX Server Aviion Motorola server node
running DG/UX.

AViiON Intel DGUX
Server

Sequent DYNIX/ptx Client Sequent client node running
DYNIX/ptx (Version prior to
Version 4).

Sequent DYNIX/ptx V4
Client

Sequent DYNIX/ptx Server Sequent server node running
DYNIX/ptx (Version prior to
Version 4).

Sequent DYNIX/ptx V4
Server

Specifying Node Properties

134 iPlanet Unified Development Server • System Management Guide • August 2001

Specifying Node Properties
To specify the properties of a node in an environment definition, you modify the
properties dialog for that node. When you add a new node to an environment
definition or when you wish to modify the properties of an existing node, the
Environment Console opens a Node Properties dialog for the node, Figure 4-5.

To add a node to an environment definition, see “Adding a Node to an
Environment Definition” on page 130. To modify an existing node specification,
select the node in the Environment Definition window (or Active Environment
window) and choose File > Properties.

Figure 4-5 Node Properties Dialog

Drop list

node properties
shows different

Specifying Node Properties

Chapter 4 Creating and Modifying Environment Definitions 135

The properties specified in the top portion of the Node Properties dialog are as
follows:

Property Description

Name You must enter a node name (for example,“eliot”) in the Name field. The
name should represent either the name of an existing node or, in the case
of a model node, the name of the model group. In this case, the node
name can be of any length.

The names of nodes should be unique for the first 8 characters.

After you have defined the name of the node and selected the OK button,
you cannot change the name of the node. To rename a node, you need to
copy the existing node and give the new node a different name, then
delete the original node.

Architecture A read-only field that displays the architecture of the node that you are
defining (for example, RS/6000 AIX).

Testing Node Specifies the node in the active (test) environment that will be used to
simulate this node in a simulated deployment environment.

This field is relevant only when you are specifying a node in a simulated
deployment environment.

You can designate a node in your active (development) environment to
serve as a testing node for a node in a simulated environment. Select a
testing node in your active (development) environment from the drop list
or simply enter the name of the node (for example,“coach”). To ensure
reliable tests, the testing node should match the architecture of the node
that you are specifying.

Client If the Client toggle field is checked, the node is a client node. If the Client
toggle field is not checked, the node is designated as a server-only node.

Client architectures (Windows 95 and Windows NT nodes) are
automatically specified as client nodes (Client field is checked and cannot
be changed).

You can designate server architectures as client nodes if you wish. This
setting only affects iPlanet UDS’s default partitioning—in addition to
server partitions, a client partition will also be assigned to the node. You
can manually repartition the application to add or remove the client
partition from the node. (In other words, you can change this property
from server-only, to server and client, and the other way around, without
resorting to using a new node template.)

Specifying Node Properties

136 iPlanet Unified Development Server • System Management Guide • August 2001

In the bottom portion of the Node Properties dialog, you use the drop-down list to
control the settings for each node property—available resource managers,
communication protocols, and installed libraries. When you select a property from
the list, the appropriate array field appears for you to complete.

Resource Managers
You use the Resource Managers array field in the Node Properties dialog to
register resource managers into a node’s definition. A resource manager is a
database management system available on the computer for which you are
defining a node.

Use as Model Check the Use as Model toggle field if you want the current node to be a
model node that represents any number of client nodes. For example,
instead of specifying 100 PC nodes, you can specify one model node to
represent all of them.

To set a client node to use a model node definition, you set the client
node’s FORTE_MODELNODE environment variable to the name of the
model node. See Appendix B, “iPlanet UDS Environment Variables,” for
information on environment variables.

Use for
Testing

In an active (development) environment, check the Use for Testing toggle
field if you want the current node to be used as a testing node for
simulated environments. The node name will then appear in the drop list
of the Testing Node field when specifying a node in a simulated
deployment environment.

Property Description

Specifying Node Properties

Chapter 4 Creating and Modifying Environment Definitions 137

Figure 4-6 Resource Manager Property on the Node Properties Dialog

The iPlanet UDS development system uses this information to properly partition
iPlanet UDS applications, placing DBResourceMgr and DBSession service objects
onto nodes that can support them.

When you specify a database resource manager, the name you associate with the
database manager is the name you will use to reference this resource manager in
your TOOL code. You can assign this resource manager a name meaningful for
your environment.

Valid values are:

Resource Manager Type Description

DB2 DB2/6000 database system.

Informix Informix database system.

ODBC ODBC access to any supported database system.

Oracle Oracle Version 8 database system.

Rdb Rdb database system.

Sybase Sybase database system.

Specifying Node Properties

138 iPlanet Unified Development Server • System Management Guide • August 2001

The resource manager that you specify must be supported for the architecture of
the current node. See the platform matrix at
bhttp://www.forte.com/support/platforms.html for a current list of
supported resource managers for each architecture type.

For more information about setting up database resource managers, see Accessing
Databases.

Installed Protocols
You use the Installed Protocols array field to determine what communications
protocols the node can employ to communicate with other iPlanet UDS nodes, and
thus participate in iPlanet UDS environments.

As shown in Figure 4-7, the Installed Protocols array field provides a list of iPlanet
UDS-supported communications protocols appropriate to the architecture of the
node you are defining.

Figure 4-7 Installed Protocols Property on the Node Properties Dialog

Specifying Node Properties

Chapter 4 Creating and Modifying Environment Definitions 139

iPlanet UDS supports the following communications protocols:

The protocol that you specify must be supported for the architecture of the current
node. See the Release Notes for a current list of supported protocols for each
architecture type.

The default node definition includes support for all the protocols iPlanet UDS can
use on the node’s architecture. The more protocols a node supports, the greater its
processing burden in listening for iPlanet UDS environment and application
communications. As you modify a node definition, you can designate support for
only so many communications protocols as you wish the node to use.

Protocol Name Description

Berkeley Sockets Standard Berkeley socket library. This is the standard TCP/IP
interface on most UNIX systems.

Digital DECnet Digital DECnet protocol for VMS.

Digital UCX Digital TCP/IP protocol for VMS.

Pathworks DECnet Digital Pathworks DECnet protocol.

Pathworks TCP/IP Digital Pathworks TCP/IP protocol.

PC-NFS PC/NFS protocol for MS/Windows.

TLI TCP/IP TLI protocol for UNIX systems.

UNIX Domain Sockets Berkeley socket library for interprocess communication on a
single node. This is available on most UNIX systems.

Windows Sockets Protocols on MS/Windows that support the Windows Sockets
interface.

Specifying Node Properties

140 iPlanet Unified Development Server • System Management Guide • August 2001

Installed Libraries
You can add libraries that are installed on each node in this array.

The iPlanet UDS application development system uses information in the Installed
Libraries array field to partition iPlanet UDS applications referencing restricted
libraries.

Figure 4-8 Installed Libraries Property on the Node Properties Dialog

In the case of libraries for C projects, the array field specifies the C project libraries
that are installed on the node. For more information on making library
distributions, see A Guide to the iPlanet UDS Workshops. For information on
installing library distributions, see “Deploying a Library Distribution” on page 177.

In the case of OLE libraries, you have to explicitly register the name of the
appropriate interface project in the array field. (For more information, see “Support
For OLE” on page 325.)

Saving and Exporting an Environment Definition

Chapter 4 Creating and Modifying Environment Definitions 141

Saving and Exporting an Environment Definition
After you specify the nodes in an environment definition, you can save the
definition by choosing the File > Save Environment command. Alternatively, you
can close the Environment Definition (or Active Environment) window, and the
Environment Console prompts you to save the environment definition.

The Environment Console saves the environment definition to the active
environment’s environment repository.

Exporting an Environment Definition
You would normally export a simulated environment definition or your active
(development) environment definition for backup purposes.

In a deployment environment, you might export your active environment to send
to developers to use in partitioning and testing an application being developed for
your site. In this situation, the system manager at the development site would
import the environment definition into the development environment repository.
The environment definition would then be modified to make it a simulated
environment definition; the Test Environment property would be set to the active
(development) environment, and the Test Node property of each node would be
mapped to a node in the active environment.

➤ To export an environment definition from the environment repository

1. Select the File > Export Environment command.

iPlanet UDS exports the environment definition into a file (.edf) and stores it in
the “envdist” directory in the iPlanet UDS system software directory.

For example, the following example shows the UNIX path syntax for an
environment definition “ClassEnv” that is stored in the file “classenv.edf”:

FORTE_ROOT/envdist/classenv.edf

Importing an Environment Definition
In the Environment Console, you can import environment definition files in the
Active Environment window using the File > Import Environment command.

Modifying an Environment Definition

142 iPlanet Unified Development Server • System Management Guide • August 2001

Modifying an Environment Definition
You can make modifications to any environment definition, whether it be your
active environment or a simulated environment.

You can make any of the following changes to your environment definition:

• modify environment properties

• add nodes or change the properties of an existing node

• copy a node specification

• delete a node specification

To modify an environment definition, you have to open the environment definition
and lock it to prevent the possibility of others from trying to make modifications at
the same time.

Opening an Environment Definition
To open an environment definition that you want to modify, choose the File >
Open command. The Environment Console displays an Environment Definition
Selection window that contains a list of environment definitions stored in the
environment repository.

The list shows the existing environment definitions and indicates which are
currently in use (locked). Environment definitions can be in use by either a
developer who is configuring an application using that environment definition, or
by another system manager who is changing the environment definition. Select a
definition and click the OK button.

Modifying an Environment Definition

Chapter 4 Creating and Modifying Environment Definitions 143

Figure 4-9 The Environment Definition Selection Window

Locking Environment Definitions
You must place an exclusive lock on an environment definition (including the
active environment definition) before you can make modifications to it. When you
lock an environment definition, it is unavailable for changes by other users; they
can only open and view the definition while you have it locked. In addition, in the
case of an active environment, no one can partition applications, or load or install
them while you have the environment definition locked. Therefore you should
release the lock as soon as possible.

This lock affects only your ability to change the properties of the environment and
nodes in the environment. This lock does not affect your ability or the ability of
another user to load, install, uninstall, or delete an application.

Should you attempt to lock a definition already locked by another user, the
Environment Console posts a notice, shown in Figure 4-10, that the environment is
locked, and also posts a notice to the user holding the lock that another user wishes
to obtain it.

Modifying an Environment Definition

144 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 4-10 Environment Locking Notice

To lock and unlock an environment definition, use the File > Lock Environment
and File > Unlock Environment commands (or the toggle in the Tool Bar).

The Lock Environment command explicitly locks an environment definition
(including the active environment definition). If an environment definition is
locked, the Lock Environment command is dimmed, and the Unlock Environment
command is enabled.

Modifying Environment Properties
The File > Properties command opens the properties dialog for an active
environment, or for an environment definition. The properties dialog shows the
properties of the environment object: its name, test environment (if a simulated
environment definition), log filename, and logging properties (if an active
environment definition).

Modifying an Environment Definition

Chapter 4 Creating and Modifying Environment Definitions 145

The figure below shows an Environment Properties dialog for an active
environment called “DocEnv.”

Figure 4-11 Environment Properties Dialog

In this example, the properties dialog offers only a Close button, meaning that you
can only inspect the environment’s properties because it was locked by another
user when the dialog was opened.

If you were to open the properties dialog for an environment definition, you could
change any of the following fields:

Field Description

Test Environment For simulated environment, shows what environment is used as a
test environment.

NOTE You cannot change the name of an environment or environment
definition after the environment or environment definition has been
created.

Modifying an Environment Definition

146 iPlanet Unified Development Server • System Management Guide • August 2001

Setting and Using Passwords
for an Environment
This section explains how you can set a password on any environment and require
that password when a user starts the Environment Console or Escript.

➤ To set a password on an environment

1. Lock the environment by selecting the Locked toggle on the tool bar.

2. Select the File > Set Password command.

3. Enter the current password, then the new password twice to verify the
password.

4. Click the OK button.

5. Unlock the environment by selecting the Locked toggle on the tool bar.

➤ To specify the password for an environment

1. When the Environment Console starts, it displays the Enter Password dialog,
where you enter the password for the environment.

2. Enter the password and click the OK button.

Modifying an Environment Definition

Chapter 4 Creating and Modifying Environment Definitions 147

Replacing the Password for an Environment Repository
If the password for an environment repository is lost, iPlanet UDS provides a -p
flag on the nodemgr command that lets you reset the password for the environment
repository.

The syntax for the nodemgr command is described in “Startup Commands
(nodemgr and start_nodemgr)” on page 104.

Modifying Node Properties
The Properties… command (on the Component menu) opens the properties dialog
for a selected node. In addition to modifying individual node properties on this
properties dialog, you can copy a node specification or delete a node specification,
as described below.

Copying a Node Specification
You can copy a node definition between any two environment definitions. To copy
a node specification, select the node icon you wish to copy and drag it into the
Environment Definition window of the target environment definition.

Make sure that the environment to which you are copying is locked.

Deleting a Node from an Environment Definition

➤ To delete a node specification from an environment definition

1. Lock the environment definition.

2. Select the node you wish to delete

3. Choose the Edit > Delete command.

The Environment Console posts a warning that deleting the node causes the
repartitioning of application configurations that are dependent on that node.

4. Click the OK button to delete the node definition.

In an active environment, you cannot delete a node that is running a Node
Manager. You have to shut down the Node Manager first.

Deleting an Environment Definition

148 iPlanet Unified Development Server • System Management Guide • August 2001

Deleting an Environment Definition
➤ To delete an environment definition

1. Choose the File > Delete… command to display an Environment Definition
Selection window containing the list of environment definitions stored in the
active environment’s environment repository.

2. Select a definition from the list.

3. Click the window’s OK button.

You cannot delete the active environment definition, or an environment definition
that is held in a lock by another user.

149

Chapter 5

Deploying iPlanet UDS Applications

One of the most common system management tasks is deploying application (or
library) distributions in your environment. This chapter provides background on
the structure of distributions and on the procedures for deploying them.

The chapter covers the following:

• background on application distributions

• deploying an application distribution

• deploying a library distribution

• upgrading an application

For information on creating an application distribution, see A Guide to the iPlanet
UDS Workshops.

All procedures in this chapter will assume you are using the Environment Console.
You can use the equivalent Escript commands to perform the same tasks. See
Escript and System Agent Reference Guide for information about using Escript and
system agent commands.

About Application and Library Distributions
An application distribution is a collection of files that are needed to deploy a
partitioned application in an iPlanet UDS environment. An application distribution
contains the components of an application as well as files describing the node
assignments and structure of the application.

While a developer generally makes an application distribution after partitioning
and testing a logical application, you, as a system manager, need to understand
enough about making a distribution to successfully deploy one (or possibly
package one).

About Application and Library Distributions

150 iPlanet Unified Development Server • System Management Guide • August 2001

A library distribution is a collection of files that are needed to deploy a library
configuration in an iPlanet UDS environment. A library distribution contains the
component libraries as well as files describing the node assignments for any
restricted libraries.

Making an Application Distribution
A developer makes an application distribution using the File > Make Distribution
command of the Partition Workshop or the MakeAppDistrib command of the
Fscript utility. The Make Distribution command uses a two-stage process for
making an application distribution.

In the first stage, the Make Distribution command creates a number of files and
places them in a standard location in the iPlanet UDS directory structure. The
command creates a directory path, as shown in Figure 5-1 on page 152, using the
iPlanet UDS environment name, application name, and compatibility level
number, respectively.

environment_ID/distribution_ID/cl#

(Note that for the OpenVMS operating system, levels in the directory structure are
collapsed, creating a single directory: environment_ID_distribution_ID_cl#.)

The Make Distribution command also creates the .adf file and the contents of the
codegen and generic directories (see the table below).

Name Purpose

—.ace File which maps iPlanet UDS application component names to unique
identifier names

—.adf Application distribution file. Contains information about the application
(partitioning) configuration—what partitions are assigned to what
nodes—for use in the deployment process. (The .adf extension is added to
the application’s unique identifier name.)

generic Directory that contains all portable files. The partition directories below
the generic directory contain all the standard partitions.

codegen Directory that contains all source files used for generating C++ compiled
partitions.

platform1… Directories that contain non-portable compiled partitions for each
supported platform.

About Application and Library Distributions

Chapter 5 Deploying iPlanet UDS Applications 151

If an application partitioning configuration contains only standard partitions, then
no.pgf files are created. If the configuration contains partitions marked as
compiled, there is a .pgf file created for each compiled partition.

In the second stage, the Make Distribution command automates the steps needed
to make compiled partitions and place them in the application distribution
directory structure. These steps involve generating portable C++ source code for
each .pgf file, transferring this source code to the node architectures for which the
partition needs to be compiled, compiling and linking the source on those nodes,
and then transferring the compiled partitions back to the appropriate location,
shown in Figure 5-1, in the distribution directory structure.

Code generation This process involves two server applications:
CodeGenerationSvc, which generates the C++ source code, and CompilerSvc,
which performs the compiling and linking. As a system manager in a development
environment, one of your responsibilities is to make sure these two server
applications are properly configured and installed to perform these tasks, given the
node architectures and user load in your development environment. For more
information, see “Auto-Compile Services” on page 315.

The second stage of Make Distribution is optional—a developer can choose to
perform all these steps by hand, using some command line utilities provided by
iPlanet UDS. For more information, see A Guide to the iPlanet UDS Workshops.

appgbl Directory in which you or iPlanet UDS can place files that would be
installed along with any partition (generic directory) or set of partitions
assigned to a node (platform directories). For example, this file is used for
message files that are used for internationalization.

—.btd,
—.btx

Standard partition image repositories. (The .btd and .btx extensions are
added to the partition’s unique identifier name.)

—.pgf Partition generation file. Contains the source code used to make compiled
partitions for a single logical partition. (The .pgf extension is added to the
partition’s unique identifier name.)

—.exe, … Compiled partition executable file.(The name is platform dependent and
based on partition’s unique identifier name.)

Name Purpose

About Application and Library Distributions

152 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 5-1 Application Distribution Directory Structure

distID.ace

distID.adf

FORTE_ROOT

appdist

distID

cln

generic codegen

appgbl

partID.pgf

Application Distribution

KEY
envID environment ID
distID distribution ID
partID partition ID

Bold indicates literal names
provided by iPlanet UDS.

partID.btd partID.btx

appgbl

partID.exe

compiled partition
(executable file)

platform

partID partID partID

partition generation file
(TOOL project)

envID

__.fso

standard partition
(image repositories)

About Application and Library Distributions

Chapter 5 Deploying iPlanet UDS Applications 153

Making a Library Distribution
The Make Distribution command is used to make library distributions in the same
way application distributions are made. Developers will typically make library
distributions when their applications require a particular set of libraries for
execution. A developer may also make a library distribution for sale or for use by
other developers in some remote development site.

As with application distributions, The Make Distribution command uses a
two-stage process for making a library distribution. In the first stage, the Make
Distribution command creates a number of files and places them in a standard
location in the iPlanet UDS directory structure. The command creates a directory
path, as shown in Figure 5-2 on page 155, using the iPlanet UDS environment
name, library configuration name, and compatibility level number, respectively.

environment_ID/distribution_ID/cl#

(Note that for the OpenVMS operating system, levels in the directory structure are
collapsed, creating a single directory: environment_ID_distribution_ID_cl#.)

The Make Distribution command also creates the .adf file and the contents of the
generic and codegen directories (see the table below).

Name Purpose

—.ace File which maps iPlanet UDS library configuration component
names to unique identifier names.

—.adf Application distribution file. Contains information about the library
(partitioning) configuration—what libraries are assigned to what
nodes—for use in the deployment process. (The .adf extension is
added to the library configuration’s unique identifier name.)

generic Directory that contains all portable files. The partition directories
below the generic directory contain all the standard partitions.

codegen Directory that contains all source files used for generating C++
compiled partitions.

platform1… Directories that contain non-portable compiled partitions for each
supported platform.

appgbl Directory in which you or iPlanet UDS can place files that would be
installed along with any library or set of libraries assigned to a node.

About Application and Library Distributions

154 iPlanet Unified Development Server • System Management Guide • August 2001

If a library configuration contains TOOL projects (which may reference any
number of system libraries), then there is a .lgf file created for each such TOOL
project. If the configuration contains C projects, then a .cc and .cdf and possibly a
number of other files are created for each such C project (the .bom file lists them
all).

In the second stage, the Make Distribution command automates the steps needed
to make compiled libraries and place them in the library distribution directory
structure, in the same way as it does for partitions in an application distribution.
For more information, see “Auto-Compile Services” on page 315.

projects.btd,
projects.btx

Standard image repository to be used on platforms for which no
compiled libraries have been made.

—.fso File that maps method names to ids, which might be used for some
external interfaces or compiled partitions.

—.h, —.cdf, … Header files

—.pex Export file used to import the library into development repositories
in a target development environment.

—.lgf Library generation file. Contains the source code used to make
compiled libraries for a single project. (The .lgf extension is added to
the library’s unique identifier name.)

—.bom, —.cc,
—.cdf, …

C++ wrapper files used as source code for making compiled libraries
for a single C project.

—.so, —.exe, —.a,
—.dll…

Compiled library file. (The name is platform dependent and based
on library’s unique identifier name.)

Name Purpose

About Application and Library Distributions

Chapter 5 Deploying iPlanet UDS Applications 155

Figure 5-2 Library Distribution Directory Structure

libID

libID

distID.ace

distID.adf

FORTE_ROOT

appdist

distID

cln

generic codegen

appgbl

__.fso libID.lgf

Library Distribution

KEY
envID environment ID
distID distribution ID
libID library (project) ID

Bold indicates literal names
provided by iPlanet UDS.

projects.btd
projects.btx

appgbl

library
(executable file)

platform

libID

inc

libID libID

C++ wrapper code files
(C project)

envID

libID.bom, .cc, .cdf, ...

libID

libID.pex
libID.exe,
.so, .a, .dll, ...

libID.h, .cdf, ...

library generation file
(TOOL project)

header files
library
import
file

library
(image repositories)

About Application and Library Distributions

156 iPlanet Unified Development Server • System Management Guide • August 2001

Naming Conventions
In creating distribution directories and files, iPlanet UDS uses unique identifier
names derived from iPlanet UDS component names. These identifier names
preserve uniqueness while conforming to the most limiting of platform naming
conventions.

Environment’s unique identifier The first 8 characters of its iPlanet UDS
environment name. If an environment of the same eight-character identifier name
already exists, iPlanet UDS replaces the eighth character with an integer, starting at
1, and increments the number to create additional like identifiers.

Distribution’s unique identifier The first 8 characters of its iPlanet UDS main
project name. If a distribution of the same eight-character identifier name already
exists in the same environment, iPlanet UDS replaces the eighth character with an
integer, starting at 1, and increments the number to create additional like
identifiers. A distribution’s unique identifier is used to build the distribution
directory name, .adf file name, and .pex file name (if any).

Partition’s unique identifier The first 6 characters of its iPlanet UDS partition
name plus the iPlanet UDS-generated partition number. A partition’s unique
identifier is used to build the .pgf file name, image repository name, and compiled
partition name.

Library’s unique identifier By default, this is the first 8 characters of its iPlanet
UDS main project name (or library name for a C project). A library’s unique
identifier is used to build the .lgf file name, C++ wrapper file names, and compiled
library name. You can override the default naming convention and create your
own library names using the Fscript command, SetAppId.

About Application and Library Distributions

Chapter 5 Deploying iPlanet UDS Applications 157

Naming Conventions Example
An example is provided below for an application and/or library distribution
whose main iPlanet UDS project is called Security_Trading and whose
compatibility level is “#.”

Packaging an Application Distribution
Once an application distribution is complete, it is ready to be packaged, along with
any library distributions that must accompany it, for deployment.

A distribution for a compatibility level “#” is packaged for deployment by copying
the distribution_ID directory—and any files it contains—plus the cl# directory,
and everything contained below it, to a distribution medium such as a magnetic
tape.

You can copy this branch of the directory structure using the tar command on
UNIX platforms and the backup command on OpenVMS.

Any library distributions needed for the application to execute must also be
packaged and included with the application distribution.

Component iPlanet UDS Name Unique Identifier Name

Environment
(ith similar
name)

deployment_environment_i deploymi

Distribution
(jth similar
name)

security_trading_j_cl# securitj

Partition
(mth
partition)

security_trading_j_cl#_partm securim

Library libraryname (C project)
projectname (TOOL project)

libraryn
projectn

About Application and Library Distributions

158 iPlanet Unified Development Server • System Management Guide • August 2001

Installing Additional Files with Your Application Distribution
When you prepare to install an application or library, you can include additional
files, such as help files or release notes. You need to put the additional files in
specific subdirectories of the FORTE_ROOT/appdist directory. The exact location of
these files depends on your answers to the following questions:

• What platforms will these additional files be installed on?

• What components of the distribution (partitions or libraries) do these
additional files belong with?

After you have added the files to the appropriate location in the application
distribution directory, iPlanet UDS’s installation program can automatically install
these files in the appropriate location along with the application or library
distribution.

The following table explains where to place files that you want to add to the
application or library distribution for installation, depending on where you want
the additional files installed. The directory locations are all under the following
directory:

FORTE_ROOT/appdist/environment_ID/distribution_ID/cl#

platform_ID represents the iPlanet UDS identifier for a platform, for example,
IBM_AIX represents AIX.

component_ID represents one of the following:

• a partition ID for a partition if the distribution is an application distribution

• a library ID if the distribution is a library distribution

For more information about the directory structures of application and library
distributions, see “About Application and Library Distributions” on page 149.

All Components Specific Component

All Platforms /generic/_appgbl_ /generic/component_ID

Specific Platform /platform_ID/_appgbl_ /platform_ID/component_ID

About Application and Library Distributions

Chapter 5 Deploying iPlanet UDS Applications 159

For example, suppose you have an application in the MyEnv environment whose
distribution ID is myapplic. If you have release notes that you want to have
automatically installed with all partitions on all platforms, you should place the file
in the following directory:

FORTE_ROOT/appdist/MyEnv/myapplic/cl0/generic/_appgbl_

Documenting a Distribution
Every application distribution should be accompanied by sufficient documentation
to enable you, as an iPlanet UDS system manager, to deploy the application in your
environment and to troubleshoot runtime problems.

The following list covers the most important information that should be
documented by developers for an application distribution:

• the library distributions required for the application to execute (if any)

• the function each partition performs

• the node architecture(s) each compiled partition requires

• the external resources each partition requires, by exact name

• the restricted libraries each partition requires (if any)

• the external object system (OLE, for example) each partition requires (if any)

• the object memory allocation each partition requires

• the logger flags that should be used in troubleshooting the application

• the names and purpose of any files the developer chose to place in any
appgbl directory

• any environment variables that must be defined for partitions of the
application

• environment search paths that have been set for any service objects in the
application

• whether the application or library is compatible with any previous releases of
the application or library

Deploying an Application Distribution

160 iPlanet Unified Development Server • System Management Guide • August 2001

Deploying an Application Distribution
The process of deploying an iPlanet UDS application in your target deployment
environment consists of four basic steps, which are described in this section.

➤ To deploy an application distribution

1. Transfer the application distribution to a server node in your deployment
environment.

2. Load the application distribution into your deployment environment’s
environment repository.

You can use the Environment Console or Escript utility to do this.

3. Modify the application’s partitioning configuration, if you wish.

You can assign partitions to additional nodes and modify a number of
assigned partition properties.

4. Install the application in your deployment environment.

iPlanet UDS automatically downloads each partition to the node (or nodes) in
your environment on which it is supposed to run.

Before you try to run your newly installed application, make sure that any library
distributions required by the application have also been deployed (see “Deploying
a Library Distribution” on page 177) and that any reference partitions required by
the application have been started.

The four deployment steps will be discussed, in turn, in the following sections.

Transferring a Distribution to a Deployment
Environment
Transferring a distribution to an iPlanet UDS deployment environment consists of
copying the contents of the distribution_ID directory, and the required cl#
directory structure beneath it, to any iPlanet UDS server node you wish in your
deployment environment. Do not copy the distribution to a client node and try to
load the distribution; the Environment Manager cannot locate a distribution on a
client node. You can use whatever copying technique you prefer (such as network
copying utilities or copying onto tape or diskette).

Deploying an Application Distribution

Chapter 5 Deploying iPlanet UDS Applications 161

Copy the distribution, as shown in Figure 5-3, to the following iPlanet UDS
directory structure on the selected server node:

FORTE_ROOT/appdist/environment_ID

Figure 5-3 Transferring Distribution to Deployment Environment

You may have to first create the environment_ID directory, using the first eight
characters of your deployment environment name, before you can copy the
application distribution. On OpenVMS platforms, use the directory structure
shown in Figure 5-1 on page 152.

Environment
Repository

Client

Client

Central Server

Environment
Manager &

Name Service

Server

Server

Application
Distribution

FORTE_ROOT/appdist/envID

Deployment
Environment

distID

cln

generic codegen

appgbl appgbl

platform

partID partID partID

.adf

Deploying an Application Distribution

162 iPlanet Unified Development Server • System Management Guide • August 2001

Loading a Distribution into an
Environment Repository
When you load a distribution, you are loading the information contained in the
distribution’s .adf file into your deployment environment’s environment
repository, as illustrated in Figure 5-4.

The .adf file contains all the information needed by the Environment Manager in
order to install all partitions onto the appropriate nodes in your deployment
environment. For example, the .adf file contains instructions on where both
standard and compiled partitions should be installed.

Figure 5-4 Loading Distribution into Environment Repository

Environment
Repository

Client

Client

Central Server

Environment
Manager &

Name Service

Server

Server

Deployment
Environment

Application
Distribution

distID

cln

generic codegen

appgbl appgbl

platform

partID partID partID

.adf

load
distribution

Deploying an Application Distribution

Chapter 5 Deploying iPlanet UDS Applications 163

➤ To load a distribution

1. Make sure the distribution has been transferred to the deployment
environment.

2. Open the Environment Console.

The Active Environment window appears.

In our example, the active environment, “centrale,” consists of four nodes: a
model node for Windows 95 clients (Win95-client), a model node for
Macintosh (mac-client), a Windows NT server node (MIMI), and a UNIX
server node (hillary).

Deploying an Application Distribution

164 iPlanet Unified Development Server • System Management Guide • August 2001

3. Select the File > Load Distribution command.

The Load Distribution dialog appears.

In the case of a local distribution, the window shows the FORTE_ROOT/appdist
directory for your local node. If you select a remote node from the droplist, the
window shows the FORTE_ROOT/appdist directory for the remote node. You
can select a distribution to load from the displayed list.

In our example, the distribution resides on “hillary,” the central server node for
the “DocEnv” environment. In the figure above, the TimeIt distribution is the
only distribution on the node “hillary.” Within the TimeIt directory
represented in the window, there is a single release of the TimeIt application
distribution, “cl0,” indicating that this is the first release of the application
(compatibility level is 0).

4. Select the distribution in the Load Distribution window, and click Load.

You can also load a distribution using Escript, as described in Escript and System
Agent Reference Guide.

When a Distribution Conflicts with an Installed Application
If you are loading a new distribution for an application that is already installed in
the environment, you might receive an error message that says that the application
distribution you are loading conflicts with the installed application of the same
name and release number. This message means that the configuration of the new
distribution is different from the configuration of the installed application, which
makes them incompatible.

Before you can load and reinstall the new distribution of the application, you need
to uninstall the application currently installed in the environment.

Deploying an Application Distribution

Chapter 5 Deploying iPlanet UDS Applications 165

iPlanet UDS determines whether two configurations of an application are
compatible based on the following rules:

• For client applications and server applications, the new configuration must
have the same number of partitions, and each partition must contain exactly
the same service objects.

• For library distributions, the new release must have the same number of
libraries and the names and UUIDs (universally unique identifiers) of each
library must match exactly. The UUID of a library is taken from the UUID of its
associated project. This UUID is assigned when the project is created in your
repository.

To ensure that a given project has the same UUID, even when it is exported
and imported, the application developer must export the project with their
UUIDs. To export projects with UUIDs, use the Fscript ExportPlan command
with the ids argument. For information about the ExportPlan command, see
Fscript Reference Guide.

Modifying a Partitioning Configuration
After loading an application distribution, you can view and modify its partitioning
configuration using the Environment Console or Escript utility. You would
normally modify a configuration for either of two reasons:

• The simulated environment used by developers for partitioning the
application may differ from your current deployment environment—a very
likely case if you have made recent changes to your environment or the
application was developed by an independent software vendor (ISV) or value
added reseller (VAR) who had no knowledge of your particular environment.

• You anticipate performance or other problems in the partitioning configuration
created by the application developers and therefore want to modify it.

You can modify any of the partitioning configuration properties normally specified
in the right-hand panel of the iPlanet UDS Partition Workshop. (You cannot modify
the logical partitioning scheme or change the replication properties of service
objects.)

You can modify partition assignments and a number of assigned (installed)
partition properties as described in the following sections.

Deploying an Application Distribution

166 iPlanet Unified Development Server • System Management Guide • August 2001

Partition Assignments
You can reassign partitions to different nodes, make additional assignments of
replicated partitions, or remove assignments. You can only reassign compiled
partitions, however, to nodes corresponding to the architectures for which the
partitions were compiled.

When an application distribution is loaded into your environment repository,
iPlanet UDS checks the partitioning assignments. If any partition is assigned to a
node not found in your environment, that assignment will be dropped. If all
assignments for a logical partition are dropped, iPlanet UDS will perform a default
configuration (just as it does in the Partition Workshop), assigning the partition to
a node in the environment. In this case, you may have to manually assign (or
re-assign) the partition to a node (or nodes) in your environment. In assigning the
partition, make sure that the target node has the platform architecture and
resources required for the partition to run.

You cannot completely install an application unless every logical partition has been
assigned to at least one node in your environment.

➤ To reassign a partition

1. Select the Node Outline view in the Active Environment window.

2. Expand the node to which the partition is currently assigned.

3. Drag the partition you wish to reassign and drop it on the node to which you
wish to assign it.

Deploying an Application Distribution

Chapter 5 Deploying iPlanet UDS Applications 167

➤ To copy a partition assignment

1. Select the Node Outline view in the Active Environment window.

2. Expand the node to which the partition is currently assigned.

3. Select the partition you wish to copy and copy it to the clipboard by selecting
the Edit > Copy command.

4. Select the node to which you want to assign the partition and paste the
partition from the clipboard by selecting the Edit > Paste command.

➤ To assign an unassigned partition

1. Select the Application Outline view in the Active Environment window.

2. Open the Application Agent window and expand the application in that
window.

3. Select the Node Outline view in the Active Environment window.

4. Drag the logical partition you wish to assign from the Application Agent
window and drop it on the node to which you wish to assign it.

Deploying an Application Distribution

168 iPlanet Unified Development Server • System Management Guide • August 2001

Installed or Assigned Partition Properties
You can change some of the properties of partitions (described below) either:

• after you have loaded the application distribution, but before you have
installed it

You can change these partition properties before you install the application.

• after you have installed the application

You can change these properties of the partition after you have installed the
application. However, in this case, you need to reinstall the application after
you change the partition’s properties.

You can set the following properties for installed partitions:

Compiled You can deselect this checkbox if you decide to run a partition in
interpreted mode rather than as a compiled partition. You can also select this
checkbox to run a partition in compiled rather than interpreted mode, but only if
the partition has already been compiled for the target node’s architecture.

Disabled For replicated partitions, you can modify whether or not a partition is
automatically started (enabled) on each node to which it is assigned by selecting or
deselecting this checkbox. Every partition must be enabled on at least one node. If
you disable a partition assigned to a node, it is not automatically started on that
node.

Thread Package For server partitions only, you can specify whether the partition
should run using DCE/POSIX threads or iPlanet UDS threads.

Replication Count For replicated partitions only, you can modify the number of
replicates that are available for load balancing or failover.

Server Arguments You can set flags which alter the default object memory space
and logger settings set for a partition on startup.

The Installed Partition Properties dialog also displays the type of thread package
that this partition uses. However, you cannot change this value in the Environment
Console. You can only change the thread package specification for a partition in the
Partition Workshop or in Fscript. For more information about thread packages,
see A Guide to the iPlanet UDS Workshops.

Deploying an Application Distribution

Chapter 5 Deploying iPlanet UDS Applications 169

➤ To set properties of an assigned or installed partition

1. In the Environment Console, choose the View > Node Outline command in the
Active Environment window.

2. Expand the node to which the partition is currently assigned.

3. Select the partition and then choose the Component > Properties… command.

The Installed Partition Properties dialog opens.

4. Change any of the fields described above and click OK.

5. Install the loaded application or reinstall the installed application that contains
the partitions with the changed properties.

Before you reinstall an installed application to implement changes in its partition
properties, you can compare the new property values for a partition with those for
the currently installed partition. To see the properties for the currently installed
partition, select the View Previous... button on the Installed Partition Properties
dialog.

Deploying an Application Distribution

170 iPlanet Unified Development Server • System Management Guide • August 2001

Installing an Application
Once you have loaded your application distribution into the environment
repository and made any changes in the partitioning configuration that you want,
you are ready to install your application into your deployment environment.

Installation consists of downloading each partition to the node (or nodes) in your
environment on which it is supposed to run. Installation is fully automated. The
Environment Manager oversees and coordinates the downloading of partitions
onto all nodes that have a Node Manager service running at the time of installation.

Throughout the application installation process, iPlanet UDS tracks the installation
status of each node. It records the installation result for each targeted node in an
environment, and posts events to announce the success or failure of installation on
all targeted nodes.

If some target nodes are not available for installation—for example, server nodes
that are not up and running or client nodes that are not currently running a Node
Manager process—iPlanet UDS will perform a partial installation. Since iPlanet
UDS keeps track of the installation status of each node, you can complete an
installation incrementally as conditions permit, that is, as nodes become available
for installation.

The Installation Procedure
You can perform installations using either the Environment Console or Escript
utility.

(In a development environment in which you wish to install an application
developed in that same environment, you can install the application by selecting an
option in the Make Distribution command, when making the application
distribution.)

➤ To install an application

1. In the Active Environment window, select the View > Application Outline
command.

In the Application Outline view, the top level is the list of applications, the
second level is the set of logical partitions for the application, and the third
level is the set of assigned nodes for the partition.

Deploying an Application Distribution

Chapter 5 Deploying iPlanet UDS Applications 171

2. Select the application you want to install.

Notice that the Environment Console shows the status of the application as
“Loaded.”

3. Select the Component > Install… command.

If your application successfully installs, the application status in the
application outline view changes from “loaded” to “offline.”

If the application status changes to “partially installed,” the Environment
Manager installed the application on as many nodes as were available, but not
on all targeted nodes.

4. If necessary, complete a partial installation by starting Node Manager
processes on the previously unavailable nodes and issue the Install...
command.

On client-only nodes (Windows), use the Launch Server (or the Environment
Console or Escript utility) to install the client partitions.

Deploying an Application Distribution

172 iPlanet Unified Development Server • System Management Guide • August 2001

Installing on Server Nodes
For installation on server nodes, the Environment Manager informs each Node
Manager of the application partitions that need to be installed on its node.

In the case of standard partitions, the Node Manager downloads the appropriate
image repositories from the node on which the application distribution resides (if it
does not reside locally). The image repository for a standard partition consists of
two files named after the partition—one with an .btx and one with a .btd extension
(distributions created before Release 3.0 are .idx and .dat files).

The Node Manager places each image repository in the following directory, as
shown in Figure 5-5:

FORTE_ROOT/userapp/distribution_ID/cl#

Figure 5-5 Installing Application on Server Node

Application
Distribution

distID

cln

generic codegen

appgbl appgbl

platform

partID partID partID

.adf

Environment
Repository

Client

Client

Central Server

Environment
Manager &

Name Service

Server

Server

Deployment
Environment

distID

cln
install

partitions standard
partitions

compiled
partitions

standard and compiled partitions

FORTE_ROOT
/userapp

Deploying an Application Distribution

Chapter 5 Deploying iPlanet UDS Applications 173

In the case of compiled partitions, the Node Manager downloads the appropriate
executable partition files from the node on which the application distribution
resides (if it does not reside locally) and also places them in the same directory as
the standard partitions.

For the Node Manager to download partition files from a remote node, the Node
Manager for the remote node must be up and running.

Installing on Client Nodes
Installation on client nodes is complicated by the fact that a client node, unlike a
server nodes, does not usually run a Node Manager unless the client node
normally starts a Launch Server.

Windows 95 and Windows NT clients are only receptive to remote management by
the Environment Manager when they are running one of these utilities.

If you want your application to be installed on client nodes as well as server nodes
in your environment, start the Environment Console, the Escript utility, or the
Launch Server on each client before you begin installation.

There are two ways of handling installations onto client nodes: explicitly and
as-needed.

Explicitly installing client partitions You can explicitly assign client partitions
to specific client nodes or model node groups, as described in “Partition
Assignments” on page 166. You then start a Node Manager on the client node (by
running the Environment Console, the Escript utility or the Launch Server).
When you install the application using the Environment agent’s Install command,
the Node Manager on the client node automatically installs the needed
components on the client node.

Launch Server installation of client partitions You can assign your client
partitions or define them as publicly-available applications, and then let end users
download the applications as-needed, when they want to run the application. This
type of client installation works only for standard client partitions, not compiled
client partitions. End users can also download updated releases of standard client
partitions at runtime, if they use the Launcher application or if you set up their
icons to do so. The Launch Server, along with the Launcher application and Ftcmd
utility provide this download feature. This approach to installing client partitions
is discussed in “Deploying Applications to Client Nodes” on page 298.

In situations where it may not be practical to install your application on all client
nodes simultaneously, you can perform the installation at a later time on a node by
node basis.

Deploying an Application Distribution

174 iPlanet Unified Development Server • System Management Guide • August 2001

The Node Manager service provided by these utilities downloads the files for the
client partition from the application distribution, and places them in the following
directory, as shown in Figure 5-6:

FORTE_ROOT/userapp/distributionID/cl#

Figure 5-6 Installing Application on Client Node

Generating Icons for Standard Client Partitions
In previous releases, iPlanet UDS generated icons for standard client partitions that
start the application as a separate process in the client node’s operating system.

iPlanet UDS now generates icons for standard client partitions that use the ftcmd
run utility to start the applications. On Windows and Windows NT platforms,
iPlanet UDS places command icons in the iPlanet UDS program group.

Application
Distribution

distID

cln

generic codegen

appgbl appgbl

platform

partID partID partID

.adf

standard
partitions

compiled
partitions

Environment
Repository

Client

Client

Central Server

Environment
Manager &

Name Service

Server

Server

Deployment
Environment

FORTE_ROOT
/userapp

install
partitions

distID

cln

standard partitions
only

Deploying an Application Distribution

Chapter 5 Deploying iPlanet UDS Applications 175

Windows platforms iPlanet UDS, generates icons on the Windows platforms
that start the installed client partition using the Launch Server. These icons specify
ftcmd run commands that have the Launch Server run the specified application.

For example, if you assign the client partition of the TimeIt example to a Windows
client node and install the application on this node, the Command field of the
Properties dialog for the icon would contain the following line:

ftcmd run TimeIt

The generated icons contain the ftcmd run command with the application name
without the compatibility level.

You can also define icons that have the Launch Server start a client partition by
using the following command syntax with the icons:

ftcmd run application_name [release] [arguments] [update]

For information about using this command, see “run” on page 311.

Generating icons with ftexec commands To have iPlanet UDS generate icons
that start applications using the ftexec command), set the following configuration
flag on each client node where you want this type of icon generated:

cfg:em:2

Set this configuration flag in either the Log Flags tab page of the iPlanet UDS
Control Panel or the FORTE_LOGGER_SETUP environment variable. This
configuration flag must be set before a Node Manager or a Launcher Server
acting as Node Manager is started on the client node.

Generating Icons for Compiled Client Partitions
If you are installing a compiled client partition, On Windows 95 and Windows NT,
iPlanet UDS creates an icon that starts the compiled client executable.

NOTE On the UNIX platforms, you can define scripts or aliases that start
client partitions using the ftcmd run command.

The Ftcmd utility is not available for OpenVMS platforms (VAX
VMS or Alpha VMS).

Deploying an Application Distribution

176 iPlanet Unified Development Server • System Management Guide • August 2001

Creating Icons by Hand
For those situations in which you may need to create an icon yourself to run an
installed client partition, you can do so, as described below, by copying and
modifying one of the existing iPlanet UDS system application icons (such as the
Environment Console icon).

You can create icons that use a compiled executable, the ftexec command
(described in “Standard Partitions (Using the ftexec Command)” on page 190), or
the ftcmd run command (described in “Using the Ftcmd Utility” on page 307).

➤ To create a Windows 95 or NT client icon

1. Make a copy of the existing icon.

2. Select the icon copy, then open the Properties dialog using the Properties
command on the popup menu.

3. On the Shortcut tab page, edit the Target field to provide the command-line
argument to run your client partition.

Installing Applications with Reference Partitions
Before you can install applications with reference partitions, you need to makes
sure that the application that reference partition points to is also installed.

If you are installing an application with a reference partition that points to a service
that is only available in another environment, you need to make sure that the
developers have followed the correct steps for creating the replicated partition and
setting the environment search path for this case. These steps are explained in
detail in A Guide to the iPlanet UDS Workshops. You also need to make sure that this
other environment is connected to your current environment. For information
about connecting environments, see “Connecting Environments” on page 115 and
Escript and System Agent Reference Guide.

Completing Partial Installations
If any targeted nodes are unavailable at the time of installation, the installation of
an application in your deployment environment will be only partially successful. A
particular server node may be offline or a number of client nodes may not become
available for installation until a later time. You might also add nodes to your
environment and need to install partitions on these new nodes.

In such situations, the Environment Manager completes only a partial installation
and reports which partitions await installation, and on which nodes. Using this
information you can complete partial installations as conditions permit. You can
save the partial installation report by clicking the Export Report button.

Deploying a Library Distribution

Chapter 5 Deploying iPlanet UDS Applications 177

You can complete a partial installation in a couple of ways:

• Re-install the application when the needed nodes or Node Managers are up
and running—the Environment Manager will attempt to complete what
remains to be installed and issue a report.

Deploying a Library Distribution
If your application requires access to libraries (shared libraries, object libraries,
shared images, DLLs, or TOOL libraries), these libraries should be included in a
library distribution packaged with your application distribution. The
documentation accompanying your application distribution should include
information about which libraries are needed by which partitions, so you can make
sure that the appropriate libraries are installed on each node in your deployment
environment.

iPlanet UDS automates the deployment of library distributions using its system
management services. The process is essentially the same as for deploying
application distributions: you load the library distribution into your environment
repository, modify the library configuration to match your deployment
environment and application partitioning configuration, and then install the
library distribution into your deployment environment.

You can perform these tasks using either the Environment Console or the Escript
utility. The steps for deploying library distributions using the Environment
Console are summarized below. For information about using the Escript utility,
see Escript and System Agent Reference Guide. Any differences between library
distributions and application distributions are noted.

➤ To deploy a library distribution

1. Transfer the library distribution to a server node in your deployment
environment.

2. Load the library distribution into your deployment environment’s
environment repository using the File > Load Distribution command.

3. Modify the library’s partitioning configuration, if you wish.

A non-restricted library is assigned, by default, to every server node in an
environment. If your environment differs from the environment definition
used to create the library configuration, you may have to assign the
non-restricted libraries to nodes in your environment.

Removing an Application or Library

178 iPlanet Unified Development Server • System Management Guide • August 2001

A restricted library requires special resources to support the library. You can
assign a restricted library to nodes in your environment, or re-assign it,
providing the target nodes have the resources to support the library.

Unlike partitions, libraries are not started by iPlanet UDS. Therefore, there are
no properties analogous to the start options, server type, or server argument of
assigned partitions. You can, however, choose whether to install each library as
compiled or standard, if the distribution includes both the compiled executable
and the image repository for the library.

4. Install the library configuration into your deployment environment.

iPlanet UDS automatically downloads each library to a standard location on
the node (or nodes) in your environment to which it is assigned. Installed
libraries, because they never become executing iPlanet UDS processes, have no
corresponding system management agents—they are merely part of the
definitional information stored in an environment definition.

Each node specification in an environment definition includes information
regarding the restricted libraries installed on the node. In development
environments, restricted library information is used in application
partitioning.

In development environments, where developers need to access libraries to
code and test their applications, you not only have to install the library
configuration into the development environment, but you must also import the
individual libraries into the development environment. Each library
distribution includes a .pex file for each library that can be imported into
development repositories, as shown in Figure 5-2 on page 155.

Removing an Application or Library
When you remove, or uninstall, an iPlanet UDS application or library, the
Environment Manager deletes the information about the application from the
environment repository and node repositories. After you uninstall an iPlanet UDS
application or library, you can no longer manage the application or library using
the Environment Console or Escript. However, the files for the application or
library distributions still exist in the FORTE_ROOT/userapp subdirectories where
they were copied when the application or library was installed. If you want to
delete these files completely, you can do so after you uninstall the application or
library.

Removing an Application or Library

Chapter 5 Deploying iPlanet UDS Applications 179

➤ To uninstall an application or library distribution

1. In the Environment Console, choose the View > Application Outline command
to display a list of installed applications and libraries.

2. Select the Application agent for the application or library you want to
uninstall. (Application agents also represent libraries.)

3. Choose the Component > Uninstall command to uninstall the application or
library.

You can also use the Edit > Delete command to uninstall the application or
library.

Upgrading Applications

180 iPlanet Unified Development Server • System Management Guide • August 2001

Upgrading Applications
This section provides a brief explanation of how to perform the simplest upgrades
of libraries and applications. For a more thorough discussion of the options you
can consider when upgrading applications, including rolling upgrades, see iPlanet
UDS Programming Guide.

Although iPlanet UDS does not support versioning control, iPlanet UDS lets
application developers differentiate between incompatible releases of an
application by assigning each release a different compatibility level. Releases of an
application with different compatibility levels are treated by the iPlanet UDS
runtime system and by iPlanet UDS system management services as completely
different applications.

For information about compatibility between releases, see A Guide to the iPlanet
UDS Workshops and iPlanet UDS Programming Guide.

Because these different applications can coexist in your deployment environment,
you can deploy a new release of your application while the old one is still in use.

Upgrading Installed Applications
By default, iPlanet UDS assumes that, after you have installed an application, the
configuration of the installed application is the correct configuration for the
application. This assumption can affect whether you can install a new copy of the
application over the installed application, or whether you need to uninstall the
currently installed application first.

Incompatible configurations If you change the contents of any logical partition,
iPlanet UDS cannot reinstall the application because the new configuration is
incompatible with the configuration of the installed application. You need to
uninstall the application before you can install a new distribution that uses a new
configuration.

Changed partition assignments If you have changed only the partition
assignments for an application that is already installed in the current environment,
you can reinstall the application directly over the installed application distribution.
However, the configuration of the application will remain the same as that for the
previous installation of the application. The elements of the configuration that stay
the same are the partition startup arguments, whether the partitions are compiled
or interpreted, the number of replicates, where the partitions are assigned, and so
forth.

Upgrading Applications

Chapter 5 Deploying iPlanet UDS Applications 181

If you want to change the configuration, you need to either change the
configuration of the previous installation of the application before you install the
newer application distribution, or you need to uninstall the application completely
before installing the newer application distribution.

➤ To change the configuration of an installed application without changing the
contents of any logical partitions

1. Uninstall the application using the Environment Console or Escript. You
might need to ask your system administrator to perform this task, depending
on who is permitted to use the Environment Console or Escript in your
environment. For information about how to uninstall an application, see
“Removing an Application or Library” on page 178.

2. In the Partition Workshop, configure the application the way you want, then
select the File > Make Distribution command.

3. In the Make Distribution dialog, select the Full Make and auto-install options.
You can also select the Auto Compile option, if appropriate. Click the Make
button.

➤ To upgrade an installed application

1. Install the new release of the application on the clients and servers while the
old release is running.

2. After all server nodes are running, move client nodes to the new release
incrementally, by starting the new release on, for example, 50 of the clients,
then 100, and so on until all clients are running the new release.

When you install an upgraded release of an application on your client nodes,
be sure to upgrade the corresponding command icon, as well. For information
about command icons, see “Installing on Client Nodes” on page 173.

If the application uses standard client partitions, you can have the end users
upgrade their applications as needed using the services of the Launch Server,
as described in “Deploying Applications to Client Nodes” on page 298.

3. When all client nodes are running the new release, shut down and remove the
old release from the server nodes and client nodes.

Upgrading Applications

182 iPlanet Unified Development Server • System Management Guide • August 2001

Upgrading Reference Partitions
When you upgrade an application whose partitions are used as reference partitions
for other applications, you need to make sure that the applications with reference
partitions still reference the correct release of the partition. If the compatibility level
of the application containing the partition has changed, then you need to
reconfigure and redeploy the applications whose reference partition uses that
partition, so that the reference partition uses the correct release of the application.

You do not need to change the compatibility level of the application containing the
reference partition when you change the reference partition definition, and the
compatibility levels of the two applications do not need to be the same.

For example, suppose you have an application BankClient, which contains a
reference partition that represents a partition in the application AppServices. Both
applications are at compatibility level 0. If you install a new release of AppServices
at compatibility level 1, be aware that unless you update the reference partition in
BankClient, that reference partition still references the partition of the older release
of AppServices.

➤ To make the reference partition reference the partition of the newer release of a
changed application

1. In the Partition Workshop, view the configuration of the application with the
reference partition and define a new reference partition that references the
partition in the new release of the application. You can delete the old reference
partition.

2. Make a new distribution for the application with the reference partition.

3. Reinstall the application with the reference partition in your deployment
environment.

The steps for partitioning and making a distribution are described in A Guide to the
iPlanet UDS Workshops.

Upgrading Applications

Chapter 5 Deploying iPlanet UDS Applications 183

Upgrading Libraries
When you upgrade a library to another compatibility level, you need to update and
redeploy any applications that use this library. However, the compatibility levels
of the library and its associated applications do not have to be the same.

If the compatibility level of the library does not change because the changes to the
library are very minor, you do not need to upgrade the applications that use the
library; you can simply install the revised library.

For example, suppose you have an application called Payroll, which uses classes
and methods provided by the library TimeCardFunctions. Both the application and
the library are at compatibility level 0.

If you install a new release of TimeCardFunctions at compatibility level 1, be aware
that unless you update and redeploy the Payroll application, that application still
references the older release of the TimeCardFunctions library.

➤ To make the application reference the newer release of the library

1. The application developer imports the .pex file from the library distribution
into the development repository where the code for the application resides.

2. The application developer makes a new distribution of the application.

3. You install the updated release of the application in your deployment
environment.

If you are upgrading libraries that are used by developers in a central repository,
the developers need to check out all components of each library, reimport the .pex
file for each upgraded library, then integrate the changed libraries into the system
baseline. If the upgraded library is used in a private repository, the developer
simply needs to reimport the new .pex file into the repository. For more
information about using repositories, see A Guide to the iPlanet UDS Workshops.

Upgrading Applications

184 iPlanet Unified Development Server • System Management Guide • August 2001

Partial Upgrades
When developers make an incompatible upgrade in an individual partition (or
service object) in an application, they issue an upgraded release of the
application—with a new compatibility level—for you to install in your deployment
environment.

However, under certain circumstances, a new release of the service object in an
application can be fully compatible with the rest of the application. In this
situation, a developer can make a partial distribution without increasing the
compatibility level of the application (see iPlanet UDS Programming Guide). The
partial distribution contains only the compatible, revised portions of the
application.

You can deploy the partial distribution in your deployment environment just like
any other application distribution. In this case, however, the distribution contains
only the upgraded application partitions. When you deploy this partial upgrade,
the new partitions are substituted for the old partitions. In this situation you must
make sure that:

• the partitioning configuration of the upgrade distribution corresponds exactly
to that of the old application

• your old application partitions are shut down before you install the new ones

For information about upgrading deployed and running applications, see iPlanet
UDS Programming Guide.

185

Chapter 6

Managing iPlanet UDS Applications

Having deployed an application in an iPlanet UDS environment, you are now
ready to manage its execution. iPlanet UDS lets you start and monitor a distributed
application from one central console. If you detect performance problems, you can
modify the application’s partitioning configuration to resolve them. By properly
starting, monitoring, and reconfiguring your distributed application, you can
maximize its performance.

This chapter covers the following topics:

• starting iPlanet UDS applications

• monitoring iPlanet UDS applications

• reconfiguring applications

• managing applications with replicated partitions

All procedures in this chapter will assume you are using the Environment Console.
You can use the equivalent Escript commands to perform the same tasks, as
described in Escript and System Agent Reference Guide.

Starting iPlanet UDS Applications
Starting an iPlanet UDS application involves starting the application client and all
server partitions needed to achieve the full functionality of your distributed
application.

Starting Client Partitions
The end user of an application typically starts client partitions manually when they
are needed.

Starting iPlanet UDS Applications

186 iPlanet Unified Development Server • System Management Guide • August 2001

On Windows, client partitions are started using command icons, which are usually
installed when you install the client partition of the application.

On Windows and UNIX platforms, you can start client partitions using:

• ftcmd run command, described in “Using the Ftcmd Utility” on page 307

You can use this command to have the Launch Server start a standard
(interpreted) client partition. On platforms with icons, you can specify this
command for the icon. For example, you can start a client partition for the
Banking application on a Windows NT machine using the following command
on the command line:

ftcmd run Banking

The Ftcmd utility and the Launch Server are not available on VMS.

• ftexec command, described in “Manual Startup” on page 190

You can use this command to start a standard (interpreted) partition. On
platforms with icons, you can specify this command for the icon. For example,
you can start a client partition for the Banking application on a UNIX machine
using the following command on the command line:

ftexec -fi bt:${FORTE_ROOT}/userapp/banking/cl0/bankin0

• compiled executable (compiled partitions only), described in “Compiled
Partitions” on page 192

If a client partition is compiled, you can start the client partition using the
executable for the client partition, as shown in the following example, in which
the client partition for the Banking example has been compiled:

${FORTE_ROOT}/userapp/banking/cl0/bankin0.exe

Starting Server Partitions
You can start a server partition using any of the following approaches:

managed startup Use system management tools to control the startup of all
server partitions. This approach is the most effective way to manage your
applications.

auto-startup Start a client partition and leave it up to iPlanet UDS system
management services to start server partitions as they are needed.

manual startup Start server partitions by hand without using system
management tools.

Starting iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 187

These approaches are described briefly in the following sections. Each has its own
advantages and disadvantages; however, the emphasis of this chapter is on the
managed startup approach, since this provides you the most control of the
execution of your application.

Managed Startup
You can use the iPlanet UDS system management services to start up and shut
down applications from a centralized point in the environment. Basically, in the
Environment Console, you start all of an application’s server partitions before any
client partitions are run. You can start all enabled server partitions with a single
command or start each server partition one at a time.

When you start an application or partition using the Environment Console or
Escript, you do not have to know the details of the application to start the servers
properly; the iPlanet UDS system management services start the correct number
and type of server partitions for an application when you start up an application.

➤ To start all enabled server partitions in an application

1. Select the application in the Application Outline view of the Active
Environment window or in the Application Agent window.

2. Choose the Component > Start Up command or click on the startup icon in the
tool bar.

All enabled installed partitions within the application will be started to their
full replication count.

➤ To start a single installed server partition

1. Select the installed partition in any Environment Console Agent window or
view.

2. Choose the Component > Start Up command or click on the startup button in
the tool bar.

One active partition will be started. Starting up a single installed partition
overrides the start option properties specified for the logical partition
(enabled/disabled and replication count).

Starting iPlanet UDS Applications

188 iPlanet Unified Development Server • System Management Guide • August 2001

You can shut down all active partitions within an application with a single
command or shut down individual active partitions one at a time.

➤ To shut down an application or a single server partition

1. Select the application or active partition of interest in any window of the
Environment Console.

2. Select the Component > Shut Down command from the Component menu or
click on the shutdown icon in the tool bar.

Applications with replicated partitions Managing the startup of an application
is especially useful in the case of an application with replicated partitions. In this
case it’s best to do some advance planning: you try to determine in advance the
number of replicates of each partition to start on each node. In making this
determination, you try to establish how best to meet the application’s normal
failover and load balancing requirements.

Generally, you implement this normal startup configuration after loading an
application distribution into your environment repository, but before you actually
install the application into your environment. You assign replicated partitions to
various nodes and set their start option properties (enabled/disabled and
replication count). At this stage you can designate some replicates as reserve
partitions by assigning them a disabled status on a node.

Having created your normal startup configuration (and installed the application in
your environment), you can start your application by simply invoking the
Component > Start Up command on the Application agent. The Environment
Manager takes over, and uses Node Managers on each node to start enabled
partitions up to their designated replication count.

You can subsequently start additional partitions from the Environment Console, or
shut them down, as the need arises. You have complete control over which
installed partitions to start and how many active partition replicates of each to have
running at any time.

For more information on managed startup, see “Managing Applications with
Replicated Partitions” on page 209.

Starting iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 189

Auto–Startup
In this approach to starting an application, a user simply starts the application’s
client partition. As the client partition requires the services of remote server
partitions, one of each of those partitions are automatically started by the iPlanet
UDS runtime system, using iPlanet UDS system management services.

If a particular server partition is not running when the client requires the service it
provides, the Node Manager for a node on which the partition resides is directed to
start that server partition. Once started, the address of the service object(s) the
partition supports is registered with the Name Service. Further requests for that
service are then made directly to the now-running server partition.

The Node Manager starts only enough copies of a server partition to run the
application. Usually, the Node Manager starts only one copy of the server
partition, regardless of the replication count specified for any service object in the
replicated server partition.

As each new service is needed, an instance of the server partition providing the
service is started, until all required server partitions for the application are up and
running.

This method of starting an application requires no intervention by a system
manager at any stage of the process. Application services just automatically start as
needed, using the iPlanet UDS runtime system and system management processes.
For information on implementing auto-start in connected environments, see
“Setting an Environment Search Path” on page 117.

However, from a system management point of view, auto-startup has a number of
important disadvantages:

• Auto-startup does not provide for managed startup nor the shutdown of an
application.

• Only a minimum number of partitions are started. One installed partition is
started for each service, meaning that no replicate partitions are running on
any other node for failover or load balancing purposes.

• Server partitions are started one at a time, as they are needed, rather than in
parallel before they are needed. If any server partition takes some length of
time to start, this can result in significant delays in the running of the client
partition.

• Disabled partitions are not started. If no enabled partitions are available to be
started, auto-startup does not start available disabled partitions.

Starting iPlanet UDS Applications

190 iPlanet Unified Development Server • System Management Guide • August 2001

Manual Startup
Server partitions can also be started without using the system management
services by starting each partition on its respective node using the techniques
described in this section.

You can start up server partitions manually in an environment in which Node
Managers are for some reason not running. (The Environment Manager must still
be running for the application to run properly.)

The partition startup command depends on whether the partition is a standard
partition or a compiled partition. These two cases are described in the sections that
follow.

Standard Partitions (Using the ftexec Command)

ftexec command If the partition is a standard client partition running on a server
platform or a standard server partition, you usually start the partition using the
ftexec executable (the interpreter) with the application’s image repository on the
node where the repository resides. This section explains the syntax for starting one
of these partitions using the ftexec command.

You can also start client partitions using the ftcmd run command, as described in
“run” on page 311.

The syntax is slightly different for client partitions and server partitions.

➤ To start a standard client partition, enter the following version of the ftexec
command

Portable (All Platforms)
ftexec -fi image_repository_name [-fs] [-fns name_server_address] [-fnd node_name]

[-fl logger_flags] [-fm memory_flags] [-fst integer]
[-fcons] [-fnw] [-fterm] [-fss] [-fnomad]

Starting iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 191

OpenVMS
VFORTE FTEXEC

/IMAGE_REPOSITORY=image_repository_name
[/STANDALONE]
[/NAMESERVER=name_server_address]
[/NODE=node_name]
[/LOGGER=logger_flags]
[/MEMORY=memory_flags]
[/STACK=integer]
[/FCONS]
[/FNW]
[/FTERM]

➤ To start a standard server partition, enter the following command

Portable (all platforms)
ftexec -fi image_repository_name -ftsvr 0 [-fns name_server_address] [-fnd node_name]

[-fl logger_flags] [-fm memory_flags]

OpenVMS
VFORTE FTEXEC

/IMAGE_REPOSITORY=image_repository_name
/SERVER_ONLY 0
[/NAMESERVER=name_server_address]
[/NODE=node_name]
[/LOGGER=logger_flags]
[/MEMORY=memory_flags]
[/STACK=integer]

➤ To start a standard server partition that uses POSIX threads, enter the following
command

Portable (all platforms)
ftexecd -fi image_repository_name -ftsvr 0 [-fns name_server_address]

[-fnd node_name] [-fl logger_flags] [-fm memory_flags] [-fst integer]

If you are starting a server partition that provides database services, you should
check whether the database vendor supports POSIX threads before you try to run
the partition using the ftexecd command. If the database does not support POSIX
threads, use the ftexec command to start the partition.

See the table in “Startup Flags” on page 192 for an explanation of each of the
command line flags.

Starting iPlanet UDS Applications

192 iPlanet Unified Development Server • System Management Guide • August 2001

Compiled Partitions
If the partition is a compiled partition, then it is an independent executable that
incorporates all repository information. To start the partition, enter the executable
name (using the full path name, where the directory path delineators you use
depend on platform):

FORTE_ROOT/userapp/distribution_ID/cl#/partition_ID flags

You can specify the same flags when you start compiled partitions that you can
specify for starting standard partitions, as described in “Standard Partitions (Using
the ftexec Command)” on page 190 and “Startup Flags” below, with the exception
of -fi.

Startup Flags
The following table explains each of the command line flags.

Path Component Description

distribution_ID The first 8 characters of the application distribution name.

cl# The compatibility level number.

partition_ID The first 8 characters in the partition name.

Flag Description

-fi image_repository_name
/IMAGE_REPOSITORY=
image_repository_name

Specifies the image repository which contains the partition
to start executing. There is no default, and this must be
specified.

The image_repository_name has the format:
bt:FORTE_ROOT/userapp/distribution_ID/cl#/partition_I
D. For example, you could specify
bt:c:\forte\userapp\banking\cl0\bankin0 to indicate the
image repository for the client partition of the Banking
example program on a Windows NT machine.

For the exact directory path specifications for each
platform, see “About the B-tree Repository Format” on
page 249.

For applications that were deployed prior to Release 3.0,
the image repository starts with “ct:” instead of “bt:”.

Starting iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 193

-fs
/STANDALONE

(Clients only) Starts a client application as a standalone
application.

-ftsvr 0
/SERVER_ONLY 0

(Standard server partitions only) Run ftexec as a
multi-threaded server process only.

-fns name_server_address
/NAMESERVER=
name_server_address

Specifies the name service address for the environment in
which this application will run. This value overrides the
value, if any, specified by the FORTE_NS_ADDRESS
environment variable. If you want your application to be
able to switch to a backup Environment Manager if the
primary Environment Manager fails, you can also specify
multiple name service addresses, as discussed in
“Environment Manager Failover for Partitions” on
page 122.

-fnd node_name
/NODE=node_name

Specifies the node name to use for this session. If you do
not specify the node name in the command, the default
node name depends on the operating system. On
Windows, the default node name is set by the
FORTE_NODENAME environment variable. On all other
platforms, the actual node name is used.

-fm memory_flags
/MEMORY=
memory_flags

Specifies the amount of memory the command should use
in the context of the operating system where it runs. See
“-fm Flag (Memory Manager)” on page 375 for syntax
information. On UNIX, you must specify the setting in
double quotes.

-fst integer
/STACK=integer

The thread stack size in bytes for iPlanet UDS and POSIX
threads. See “-fst Flag (Stack Size)” on page 378 for syntax
information. This specification overrides default stack size
allocation.

-fl logger_flags
/LOGGER=
logger_flags

Specifies the starting log tracing flags for the command.
See “-fl Flag (Log Manager)” on page 371 for syntax
information. This specification overrides the
FORTE_LOGGER_SETUP environment variable setting.
On UNIX, you must specify the setting in double quotes.

Flag Description

Monitoring iPlanet UDS Applications

194 iPlanet Unified Development Server • System Management Guide • August 2001

Monitoring iPlanet UDS Applications
One important aspect of managing an application is monitoring its resource usage
and performance in order to eliminate any problems or bottlenecks that might
arise. There can be many kinds of resource usage and performance problems:
partitions might be offline or overloaded, network bandwidth might be at its limit,
or servers might be overutilized. Any combination of these problems can cause
bottlenecks in the resource usage and performance of your application

Agent status You can uncover and diagnose application resource usage and
performance problems using a number of application monitoring capabilities
provided by iPlanet UDS system management facilities. Most iPlanet UDS system
management agents, for example, have a status attribute that allows you to
discover when partitions within an application have gone offline.

-fcons
/FCONS

(Clients only) On Windows platforms, this flag specifies
that the background trace window also displays. By
default, on these platforms, this trace window is not
shown for iPlanet UDS client applications that do not use a
command-line interface.

On UNIX and OpenVMS platforms, this flag specifies that
the client partition tries to run even if it cannot make a
required connection to an X windowing system. Without
this flag, such a partition would fail without the X
windowing system connection.

-fnw
/FNW

(UNIX and OpenVMS clients only) Specifies that the client
session begins as a multithreaded partition without
opening an X windowing system connection.

-fss (Clients only) Displays the iPlanet UDS splash screen.

-fterm
/FTERM

(UNIX clients only) Specifies that the client session run as
always attached to the terminal, so that it always responds
to terminal commands, such as Control-c.

-fnomad (Clients only) Starts a client application without initially
connecting to a name service or environment (a nomadic
application).

Flag Description

Monitoring iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 195

Agent instruments In addition, you can view specific resource usage and
performance indicators for an application using specific instruments defined for
specific system management agents. These instruments correspond to resource
usage and performance indicators, or data, that agents can obtain from the objects
they are managing. For example, the DistObjectMgr agent, which manages the
Distributed Object Manager within an active partition, can report on the number of
messages sent to and from the active partition since it was started.

In addition to the system management agents and instruments provided by iPlanet
UDS, you can create your own agents and instruments to capture specific resource
usage and performance indicators for an application or particular partitions within
an application.

Since the classes used by the iPlanet UDS system management agents are
published (see Programming with System Agents), you or the application developers
can write an iPlanet UDS application to monitor data related to an application.
Such an application would typically view the value of instrument data at regular
periods of time, do some data analysis, present the results in graphical form, send
warning messages, and perhaps start or shut down partitions as the need arises.

The Environment Console, for example, provides a limited data analysis capability
for tracking instrument data over time. The Charts window lets you view any
instrument data you choose, over time periods you specify. By tracking instrument
data in this way, you can get a feel for how resource usage and performance relates
to activity and determine the baseline usage patterns of your applications.

Log files Using instruments provided by the Active Partition agent, you can also
log specific instrument data for any active partition at regular intervals. This data is
written to the active partition log file (and to the environment log file as well, if you
wish).

You can also use log files more generally as another way of monitoring application
resource usage and performance. In addition to instrument data, you can request
that certain messages generated by your application or by the iPlanet UDS runtime
system be written to specific log files. This logging capability is especially useful
for troubleshooting problems that might be difficult to uncover in routine
monitoring of your application.

The following section will discuss techniques for monitoring the status of your
executing application, viewing the value of instrument data and tracking
instrument data over time, and logging instrument data. For more general
information about iPlanet UDS logging capabilities, see “Logging and Log Files”
on page 217.

Monitoring iPlanet UDS Applications

196 iPlanet Unified Development Server • System Management Guide • August 2001

Monitoring Status
You can use the status attributes of a number of system management agents to
monitor the status of an application and its partitions in order to uncover failures
or redundant processes.

Status can be viewed in the Environment Console’s application outline or node
outline views, or in the Escript utility. In general, the most important status is
whether an object is online or offline.

For information about the possible statuses for each agent, see Escript and System
Agent Reference Guide.

Application view For any managed object in the application view to be
considered ONLINE, all its children must also be online. For example, the full
replication count of active partitions for an installed partition must be ONLINE for
an installed partition to be ONLINE. Similarly all enabled, installed instances of a
logical partition must be ONLINE for the logical partition to be online.

Figure 6-1 Application Outline View Displaying Information about Applications

Monitoring iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 197

If one or more, but not all, child objects of a parent object are not ONLINE, then the
status of the parent object is considered DEGRADED. The DEGRADED status
propagates up to the Application agent. If the full replication count of active
partitions for an installed partition is not ONLINE, then all objects above active
partition in the hierarchy will be DEGRADED. An application has a DEGRADED
status when it is not running as specified in its partitioning configuration.

Because the DEGRADED status is propagated up to the highest level, it is possible
to monitor the top level of an application and track down problems existing at a
lower level. This approach is sometimes referred to as management by exception.

Node view The node view includes an additional partition—the iPlanet UDS
executor (ftexec), an installed partition which executes standard iPlanet UDS
partitions. An iPlanet UDS executor partition can be BUSY running a standard
(active) partition or simply ONLINE—waiting to run a standard partition after one
has been shut down. iPlanet UDS executors can proliferate if not specifically shut
down, especially in development environments where many developers might be
testing applications concurrently.

Figure 6-2 Node Outline View Displaying Information about Applications

Monitoring iPlanet UDS Applications

198 iPlanet Unified Development Server • System Management Guide • August 2001

Standard partitions and iPlanet UDS executor partitions When you start a
standard partition, the iPlanet UDS runtime system looks for a running iPlanet
UDS executor partition with sufficient memory to run the standard partition. If
such as partition exists, then the runtime system has that partition load the and
interpret the standard partition. Otherwise, the runtime system automatically
starts a new iPlanet UDS executor partition, which loads and runs the standard
partition.

Therefore, to monitor a standard server partition, you need to check the Active
Partition agents for both the application partition and the iPlanet UDS executor
partition that is running the partition.

Agents for the iPlanet UDS executor partitions for standard clients do not appear
as part of the agent hierarchy, so you can only monitor the Active Partition agent
for the standard partition.

➤ To locate a particular iPlanet UDS executor server partition

1. Locate the Forte_executor_nodename agent, which is a subagent of the Node
agent for the node where the standard partition is running.

2. Click the expansion arrow next to the Forte_executor_nodename agent, then
click the Active Partition agent whose name matches the name of the standard
partition.

Viewing Instrument Data
You can monitor application performance by viewing instrument data that
corresponds to specific application performance indicators. These indicators
correspond to data that a system management agent can obtain from the object it is
managing.

Each system management agent has a set of instruments; each instrument
represents a type of data that can be obtained from or set on the object being
managed by the agent. The instruments defined for each agent generally represent
data that is useful to expose to the management system for monitoring or control
purposes. An instrument might represent a property or attribute of the managed
object or it might represent more dynamic information. For example, the
OperatingSystem subagent of the Active Partition agent has an instrument
representing the current number of active pages of object memory being used by
the active partition.

Monitoring iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 199

Figure 6-3 shows a few of the instruments defined on the system management
agents normally used for monitoring application performance. Most information
about the performance of an application would be reported by its Active Partition
agents and their subagents. In addition, you can create more application-specific
performance indicators by defining your own system management
agents—usually for service objects in your application—with instruments
corresponding to performance related data maintained by the respective service
objects. For information about all the iPlanet UDS-defined instruments, see Escript
and System Agent Reference Guide.

Figure 6-3 Some Instruments of System Management Agents

Whether your instruments are iPlanet UDS-defined or user-defined, you view
instrument values in the same way.

➤ To view the value of an instrument

1. Open the Agent window corresponding to the agent for which the instrument
is defined.

You can open the Agent window by selecting the agent in any open Agent
window and choosing the File > Open command, or by double-clicking on the
agent.

Operating System
Agent

Installed Partition
Agent

Active Partition
Agent

DistObjMgr
Agent

(User-Defined)
Agent

...

ActivePages
AvailablePages
MaximumAllocation
UtilizationPercent
 ...

EventsSent
EventsReceived
MessagesSent
MessagesReceived
 ...

User-Defined Instruments

LogFile
InstrumentLogging
LogTimer
ProcessID

CanBeActivated

Monitoring iPlanet UDS Applications

200 iPlanet Unified Development Server • System Management Guide • August 2001

2. In the open Agent window, choose the File > Instruments... command.

The Instruments window for the current agent opens, showing all instruments
defined for that agent, the type of each instrument, and the current value of
each instrument, as shown in the figure below.

To view the value of an instrument at a later time, select the instrument in the
Instruments window and select the Instrument > Refresh Instrument
command.

You can refresh all instrument values for the current agent by selecting the
Instruments > Refresh All Instruments command from the File menu.

Figure 6-4 Instrument Window

Each instrument has a type associated with it that determines how it works:

Name Description

Average Read only. Contains an average value.

Compound Contains more than one instrument. These instruments can be of
different types.

Configuration Read/write or read only. Contains a simple value, such as an
integer value or a TextData object.

Counter Read only. Contains a value based on counting something.

Monitoring iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 201

Tracking Instrument Data: Charts Window
To track instrument data, that is, to view instrument data over time, you can use
the Charts window of the Environment Console. (You or your application
developers can also write your own performance tracking application using classes
in Programming with System Agents.)

➤ To track the value of an instrument

1. Open the Charts window by choosing the File > Charts command in the Active
Environment window.

The Charts window opens.

2. Create a new, empty chart by selecting the Chart > New Chart command in the
Charts window.

3. Open the Agent window corresponding to the agent for which the instrument
of interest is defined.

You can open the Agent window by selecting the agent in any open Agent
window and selecting the File > Open command, or by double-clicking on the
agent.

SubObject Contains more than one instrument. All instruments are of the
same type.

Timer Read/write. Timer that prompts the agent to do something after a
certain interval or set of intervals.

Name Description

Monitoring iPlanet UDS Applications

202 iPlanet Unified Development Server • System Management Guide • August 2001

4. In the open Agent window, select the File > Instruments command from the
File menu.

The Instruments window for the current agent will open, showing all
instruments defined for that agent and the current value of each instrument.

5. Drag the instrument of interest from the Instruments window and drop it onto
the new, empty chart (created in step 2) in the Charts window.

The chart will now display the data for the instrument, adding to the chart at
the specified update interval.

6. You can change the interval between each update to the chart by changing the
Update every ___ minutes field. You can also change the number of entries
recorded on the chart by changing the Record ___ observations field.

7. To set the vertical scale parameters for the chart and see the maximum and
minimum values recorded by this chart, select the Chart > Chart Properties
command. You can also set whether the chart displays the actual values or the
difference between the previous value and the current value in the Timeline
Properties dialog.

8. To modify the appearance of the chart, you can select the Line Color, Line
Weight, or Set Default... commands from the Chart menu.

Monitoring iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 203

Tracking Instrument Data with Log Files
Using instruments provided by the Active Partition agent, you can also log specific
instrument data for any active server partition at regular time intervals.

By default, instrument data is not logged. To have iPlanet UDS log instrument data
for an active partition, you need to do the following:

• Specify that instrument data be logged to the Active Partition agent’s log file,
the Environment Manager’s log file, or both. You also need to specify how
often the data should be logged.

• Set one or more instruments of the Active Partition or its subagents to be
logged.

The details of these steps are described in the following sections.

Specifying When and Where to Log Instrument Data
When you log instrument data, you can log it to the Environment Manager’s log
file, the Active Partition agent’s log file, or both. If you are logging data to one of
these log files, you must also turn on the LogTimer instrument for the Active
Partition agent. You can also adjust how often data is logged.

➤ To specify when and where to log instrument data

1. In the Agent window for the Active Partition agent or one of its subagents,
open the Instruments window by selecting the Instruments... command from
the File menu of the current Agent window.

2. Open the Instrument Logging Properties dialog by selecting the File menu’s
Instrument Logging... command.

NOTE Client partitions do not have log files. However, these partitions can
write log information to a trace window.

Monitoring iPlanet UDS Applications

204 iPlanet Unified Development Server • System Management Guide • August 2001

3. Change the instrument logging properties, as appropriate:

The following table briefly describes the Instrument Logging properties:

Instrument Logging
Property

How to specify it

Active Partition Log
Instruments

Indicates whether to log data for the instruments of this
active partition to the log file for this active partition at
the intervals defined by the LogTimer instrument for
this Active Partition agent. This field corresponds to the
Active Partition agent’s InstrumentLogging instrument.
A check sets this instrument’s value to TRUE.

Active Partition Log (Only available for iPlanet UDS Executor active
partitions) Specifies into what file to write the
instrument information being logged.

Active Partition Logtimer Indicates the time interval, in milliseconds, between log
entries for this active partition. 60000 is 1 minute. This
field corresponds to the interval_in_msec setting of the
Active Partition agent’s LogTimer instrument.

Logtimer IsActive Indicates whether the LogTimer for this Active Partition
agent is triggering log entries at its defined time
intervals. This field corresponds to the is_active setting
of the Active Partition agent’s LogTimer instrument. A
check sets this setting to TRUE.

Monitoring iPlanet UDS Applications

Chapter 6 Managing iPlanet UDS Applications 205

These agents and instruments are described in detail in Escript and System
Agent Reference Guide.

4. You can change the name of the Environment Manager’s log file by entering
the new name of the log file in the Environment Log field. On Active Partition
agents for iPlanet UDS executor partitions or compiled server applications, you
can also change the active partition’s log file in the Active Partition Log field.
For detailed information about changing log file names, see “Changing Log
File Names” on page 219.

The iPlanet UDS system software lets you maintain a variety of log files to monitor
system status and application performance. Each active partition, including the
Node Manager partitions, writes to a log file, which can be used for tracking
instrument data as described above. In addition, using the InstrumentLogging
instruments of the active Environment agent, you can set the Environment
Manager to log environment-wide instrument data to an environment log file.

For additional information on log files, see “Logging and Log Files” on page 217.

Setting an Instrument for Logging
Along with specifying when and where to log instrument data, you need to set
each instrument that you want to log. Each instrument has a setting that defines
whether it can be logged or not. By default, an instrument is not logged.

➤ To set an instrument to be logged

1. In the Environment Console’s Active Environment window, select the View >
Node Outline command.

2. Find the agent whose instrument you want to log by expanding the browser
outline view.

3. Open the Agent window for that agent by selecting the agent, then selecting
the Component > Open command.

Environment Instrument
Logging

Indicates whether instrument data is being logged to the
environment log file. This value affects all instrument
logging in the environment. This field corresponds to
the Environment agent’s InstrumentLogging
instrument. A check sets this instrument’s value to
TRUE.

Instrument Logging
Property

How to specify it

Managing Running Applications

206 iPlanet Unified Development Server • System Management Guide • August 2001

4. Open the Instruments window for the agent by selecting the File >
Instruments... command in the Agent window.

Set the instrument to be logged by doing one of the following:

❍ Select the instrument, then select the Instrument > IsLogged command.

❍ Click the checkbox next to the instrument you want to log.

The checkbox next to the instrument indicates whether an instrument is being
logged or not.

Managing Running Applications
To improve the performance of your running applications, you can use the
commands provided by subagents of the Active Partition agents for the
application. You can also change the instrument values for these subagents.

For information about all the commands and instruments provided by iPlanet
UDS-defined agents, see Escript and System Agent Reference Guide.

Managing Running Applications

Chapter 6 Managing iPlanet UDS Applications 207

Changing Instrument Values
If an instrument is a Configuration instrument and is not read only, you can change
its value.

➤ To change the value of a changeable instrument

1. Open the Agent window corresponding to the agent for which the instrument
is defined.

You can open the Agent window by selecting the agent in any open Agent
window and selecting the File > Open command, or by double-clicking on the
agent.

2. In the open Agent window, select the File > Instruments command.

The Instruments window for the current agent will open, showing all
instruments defined for that agent and the current value of each instrument.

3. Open the instrument value window by selecting the Instrument > Modify
command.

4. Change the value in the text field.

To change the value of the instrument, click the icon with the check mark. The
value of the instrument in the Instrument window also changes.

To cancel the change to the value, click the icon with the x. The value in the text
field reverts to the current instrument value.

Reconfiguring Applications

208 iPlanet Unified Development Server • System Management Guide • August 2001

Using Agent Commands
Most commands for iPlanet UDS-defined agents appear in the Active Environment
window under either the Component menu or the Utility menu.

If you select an agent command that requires user input, such as the LoadDistrib
command on the Node agent, you see an Execute Command dialog, like this:

Figure 6-5 Execute Command Dialog

Enter the argument values, as necessary for the command, then select the Execute
button. For information about command arguments, see Escript and System Agent
Reference Guide.

If you select an agent command that produces output, such as the ShowAdmin
command on the NameService agent, this output is printed to the trace window of
the Environment Console.

Reconfiguring Applications
Your efforts to improve application performance might often require you to
modify the partitioning configuration of your running application.

For example, you might add a server to your environment in order to
accommodate increasing numbers of clients. You might want to off load some
functionality from an overloaded server and place it on your new server. This will
require modifying your application’s partitioning configuration.

You might also need to increase the amount of object memory space for a partition.

Managing Applications with Replicated Partitions

Chapter 6 Managing iPlanet UDS Applications 209

➤ To reconfigure an application

1. Shut down your application.

2. Lock your active environment.

3. Reconfigure the application in the Environment Console (or using the
appropriate Escript commands).

See “Modifying a Partitioning Configuration” on page 165.

4. Unlock the environment definition.

5. Reinstall the application.

See “Installing an Application” on page 170.

When you reinstall the application, the system management services perform an
incremental installation, installing only those partitions necessary to deploy the
new configuration of the application.

Managing Applications with Replicated Partitions
Using iPlanet UDS system management features, you can enhance application
reliability and performance by replicating server partitions.

Failover For example, to improve application reliability, you can provide backup
replicates of a server partition in case the primary server partition fails. You
typically run the replicates on different servers.

Load balancing Similarly, to improve application performance, balance the
demand for a service among several replicates of the partition that provides that
service. You can run the replicates on the same or different servers.

You might need to do more work to manage applications with replicated partitions
for failover and load balancing than in the case of applications with non-replicated
partitions. For example, failover and load balancing work properly only when you
start an application using the managed startup method. Auto–starting an
application generally does not start all the needed replicates of a server partition. In
addition, you might need to start additional server partition replicates during
times of peak usage.

The following sections explain how you can manage replicated partitions to
provide for failover and load balancing in iPlanet UDS applications.

Managing Applications with Replicated Partitions

210 iPlanet Unified Development Server • System Management Guide • August 2001

Failover
When a developer chooses to replicate a service object for the purpose of failover,
you usually assign the replicates of that partition to different nodes.

A typical scheme is illustrated in Figure 6-6. The application’s partitioning
configuration includes installed replicates of a partition on two additional servers.
The secondary replicate on one server is designated as enabled and the additional
replicate on the other server is designated as disabled.

Figure 6-6 Failover Scheme

When you start the application by invoking the Startup command of the
Application agent, the enabled replicates are started. As requests for the service
partition are made in the normal functioning of the application, the requests are
directed to the primary replicate.

Service
Requestor

Primary
Replicate

Additional
Replicate

Secondary
Replicate

primary routing

routing if
primary fails

routing if
secondary fails

Managing Applications with Replicated Partitions

Chapter 6 Managing iPlanet UDS Applications 211

If the primary replicate fails, or if this server crashes, requests for the service
partition are then directed to the secondary replicate. For failover protection, you
can then start the additional replicate on the second server using the Startup
command of the Installed Partition agent.

The specific replicates you designate as enabled or disabled depends on what you
expect your normal failover requirements to be, taking into account the reliability
of each server in your environment and the consequences of failure. The
enabled/disabled property specifies the default startup configuration. Once your
application is running, you can either start or shut down additional replicates to
meet current failover needs.

Load Balancing
When a developer chooses to replicate a service object for the purpose of load
balancing, iPlanet UDS automatically creates a router partition in addition to a
server partition that can be replicated for load balancing. This router partition
routes requests for a service among the replicates of the server partition that
performs that service. Although you normally assign the router partition to the
same node as one of the server partition replicates it is managing, you can place it
on any server node in the environment.

A typical scheme is illustrated in Figure 6-7. The application’s partitioning
configuration includes partition replicates on three servers. The replicates of on
two of the servers (Replicate #1 and Replicate #2) are designated as enabled and the
replicate on the third server (Replicate #3) is designated as disabled.

Managing Applications with Replicated Partitions

212 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 6-7 Typical Load Balancing Scheme

When you start the application by invoking the Startup command of the
Application agent, the enabled replicates are started, as well as the Router
partition. As requests for the service partition are received in the normal
functioning of the application, the router queues and then dispatches them, in the
order received, to the next available running replicate.

Under normal conditions, this arrangement balances the load on the service
partition. However, if you find performance lags at certain peak periods because
these two active partitions become overloaded, you can start Replicate #3 on the
third server using the Startup command of the Installed Partition agent. The fact
that this partition was designated disabled only means that it did not get started
when the application was originally started.

If startingReplicate #3 still does not resolve the performance bottleneck, you can
start another replicate on any one of the three servers, exceeding the replication
count originally assigned. The replication count does not limit your ability to start a
partition, because it, as well as the enabled/disabled attribute, merely reflects what
you set as the default, or normal, state of affairs.

Router

Replicate #1 Replicate #2 Replicate #3

Service
Requestor

Service
Requestor

Service
Requestors

balancing load on
service providers

Managing Applications with Replicated Partitions

Chapter 6 Managing iPlanet UDS Applications 213

The specific replicates you designate as enabled or disabled, and the number of
replicates you designate for each server, depend upon what you expect your
normal load balancing requirements to be, taking into account the power and
usage of each server in your environment. The enabled/disabled attribute and the
number of replicates attribute specify the default, or normal, startup configuration.
Once your application is running, you can either start or shut down replicates to
suit current performance needs.

Failover and Load Balancing Combined
When a developer chooses to replicate a service object for the purpose of failover
and load balancing, iPlanet UDS automatically creates a server partition that you
can replicate for load balancing and a router partition that you can replicate for
failover. In this way, if the primary router partition fails, a backup router can take
over and manage the server partitions that are sharing the work load. You usually
assign the replicated router partitions to different servers. A typical scheme is
illustrated in Figure 6-8, in which the Router has two replicates (for failover), and
each Router replicates deals with 3 replicates of a service partition for load
balancing.

When you start the application by invoking the Startup command of the
Application agent, the enabled replicates of the service partition are started, as well
as both replicates of the Router partition. As requests for the service partition are
received in the normal functioning of the application, the primary router queues
and then dispatches them, in the order received, to the next available running
service partition replicate.

Under normal conditions this arrangement balances the load on the service
partition. If the node with the primary router crashes, however, the backup
replicate of the router automatically takes over the task of balancing requests for
the service partition.

Managing Applications with Replicated Partitions

214 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 6-8 Load Balancing Scheme with Failover

As in the cases of failover and load balancing considered separately in the previous
two sections, you can start or stop additional replicates of the service partition or
the Router, depending on the current load, server capacity, and the criticality of the
situation. The basic principles of load balancing apply to the service partition
replicates, while the principles of failover apply to the Router replicates.

Service
Requestor

Primary
Router

Replicate #1

routing if
primary router fails

Service
Requestor

Replicate #2 Replicate #3

Service
Requestor

Backup
Router

balancing load on
service providers

215

Chapter 7

Troubleshooting

This chapter covers a number of topics relating to monitoring and troubleshooting
problems in your iPlanet UDS environment and with your distributed
applications.

A number of monitoring techniques are important to uncovering and diagnosing
problems. This includes using log files, the Environment Console or Escript, and
operating system commands to monitor your applications and their partitions.

A number of troubleshooting issues are discussed regarding memory, connectivity,
and database access.

This chapter covers the following topics:

• backing up iPlanet UDS files

• logging and log files

• routine monitoring

• memory issues

• connectivity and database access issues

All procedures in this chapter will assume you are using the Environment Console.
You can use the equivalent Escript commands to perform the same tasks, as
described in Escript and System Agent Reference Guide.

Backing up iPlanet UDS Files

216 iPlanet Unified Development Server • System Management Guide • August 2001

Backing up iPlanet UDS Files
Backing up iPlanet UDS files on a regular basis can help you resolve problems—or
at least recover from them, if you are unable to resolve them.

It is always a good idea to back up files that would be difficult to recreate. In
general it is wise to back up your environment repository, application
distributions, installed applications, and shared libraries. You might also back up
specific log files. In a development environment, central repository files should
definitely be backed up regularly.

The iPlanet UDS system directories you might consider backing up and their
contents are reviewed below:

repos Development repositories are created and stored here. If a central
development repository resides on a node, this repository should be backed up on
a regular basis (see “Backing up Repositories” on page 270).

sysdata/envrepos Node repositories are created and stored here.On a central
server, you should back up your environment repository before and after all major
application deployments. The environment repository is the node repository for
this node (node_name.btd and node_name.btx).

log Active partition, node, and environment log files are written here, and should
be backed up if you want historical data on your system’s performance.

appdist Application distributions and library distributions are created and
placed here. Back up this directory if the distributions are not already on other
media.

envdist This directory contains any environment definitions that were exported
to.edf files. Back these up if they are important to you, but not already on other
media.

userapp Application partitions are installed here. While these can be reinstalled
from the distribution, if your environment repository is backed up, you may wish
to also back them up. Libraries needed by an iPlanet UDS application are also
installed here. Like installed partitions, you may wish to back them up even
though they can be reinstalled from the library distribution.

Logging and Log Files

Chapter 7 Troubleshooting 217

Logging and Log Files
The iPlanet UDS runtime system can provide a broad range of logging information,
giving you the flexibility to decide what information you want to log and where or
how you want to log it.

You can have iPlanet UDS log various types of information to one or more log files.
In general, the information falls into three categories: requested message output,
instrument data, and audit traces.

Requested Message Output The iPlanet UDS runtime system and most iPlanet
UDS applications generate many types and levels of messages. However, you have
to specifically request that these messages be logged, either to a trace window or to
specific log files. You can request message logging for any iPlanet UDS process,
that is, any iPlanet UDS partition. In general, you can specify the name of one or
more log files and set logging filters (or flags) that specify the type and level of
messages you want to have logged to each.

Instrument Data You can decide to have instrument data—such as application
resource usage or performance statistics—collected by iPlanet UDS for an active
partition and written to the active partition log file (and the environment log file) at
time intervals you specify. The logging of instrument data is determined by values
you set for special logging instruments of the Active Partition agent.

Audit Traces Audit traces for important system events (such as installing and
uninstalling applications, starting and stopping applications and partitions, and so
forth) are automatically written to the appropriate log file (environment, Node
Manager, or active partition), depending on the event. You cannot turn off the
logging of this information.

The following table indicates what kind of logging information goes into each log
file:

Environment log Active Partition log Node Manager log

Message output ● ●

Instrument data ● ●

Audit traces ● ● ●

Logging and Log Files

218 iPlanet Unified Development Server • System Management Guide • August 2001

Each iPlanet UDS partition has a default log file, called standard output, whose
name depends on the iPlanet UDS partition for which logging is being performed.
These names are shown in the table below:

Because the Environment Manager serves as the Node Manager for its host node,
while also performing environment-wide system management functions, two log
files are created for the Environment Manager service. One is the standard Node
Manager log. The other (environment_ID.log) is a log to which environment-wide
audit traces and instrument data can be written.

Log file buffering Log files use normal operating system file buffering. To
change this default behavior and cause log buffers to autoflush, set the logging flag
to cfg:os:21. Setting this flag causes all log files to flush at that time, and from then
on the files will flush after each write. To flush all log files for a active partition, use
the Component > FlushLogFiles command on the Active Partition agent for that
partition. You can also use the Flush method in the LogMgr class to flush all log
files.

iPlanet UDS
Partition

Standard Output Log File in FORTE_ROOT/log/

Client partition (screen trace window only)

Active standard
partition

forte_ex_process_ID.log (for example, forte_ex_13456.log)

Active compiled
partition

filename_process_ID.log

Launch Server On UNIX, ftlaunch_port.log, where port is the socket number for the
Launch Server. On Windows, screen trace window only.

Node Manager node_name.log, where node_name is the first 8 characters of the node
name.

Environment
Manager

node_name.log, where node_name is the first 8 characters of the node
name.

environment_ID.log, where environment_ID is the first 8 characters of
the environment name.

Logging and Log Files

Chapter 7 Troubleshooting 219

Changing Log File Names
You can change the default log file name, for the Environment Manager or an
Active Partition agent. Changing the default log file name makes iPlanet UDS close
the current log file and open a new file with the name you specify.

You can change the log file name for an Active Partition agent or the Environment
Manager by navigating to the agent for either one and opening the Instruments
window. You can then either change the instrument logging options by using the
Instrument Logging Properties dialog or by directly changing the values of the
instruments that control these options.

Rules for log file names When you specify the new name of the log file, you
need to use a portable file name syntax (UNIX style). If the Log Filename does not
start with a /, then the file is given relative to the FORTE_ROOT/log directory on the
node on which the service is executing. If the Log Filename does start with a /, then
it specifies an absolute path on the node on which the service is running.

The steps described in this section for changing the log file names using the
Environment Console correspond to changing the values of the LogFile instrument
for the Active Partition agent and changing the EnvironmentLog instrument for the
Environment agent. For information about changing instrument values, see “Using
Agent Commands” on page 208. For more information about these agents, see
Escript and System Agent Reference Guide.

The steps for changing the log file name are different depending on whether you
are changing the log file name for the Environment Manager, a compiled active
partition, or an interpreted active partition. Although all active server partitions
can log data to log files, compiled partitions each have their own log files, while
interpreted partitions log data to the log files of their instances of the iPlanet UDS
interpreter (iPlanet UDS Executor). Therefore, to change the log file name for an
interpreted partition, you need to change the log name for the active partition of its
iPlanet UDS Executor instance, as described below.

NOTE You can only specify log file names for Active Partitions agents for
compiled server partitions and iPlanet UDS executor partitions.
Client partitions can only log information to trace windows.

Logging and Log Files

220 iPlanet Unified Development Server • System Management Guide • August 2001

➤ To change the log file name for the Environment Manager

1. In the Environment Console’s Active Environment window, open the
Instruments window by selecting the File > Instruments command.

2. Open the Instrument Logging Properties dialog by selecting the File >
Instrument Logging command.

3. In the Instrument Logging Properties dialog, enter the new name of the log file
in the Environment Log field.

You can change the log file name for the Environment Manager in any Instrument
Logging Properties dialog. You can access an Instrument Logging Properties
dialog from an Active Partition agent Instruments window or from the Instruments
window of any subagents of an Active Partition agent.

➤ To change a log file name for a compiled active partition or iPlanet UDS executor
partition

1. In the Environment Console’s Active Environment window, select the View >
Node Outline command.

2. Find the compiled Active Partition agent whose log file name you want to
change by expanding the browser outline view.

3. Open the Agent window for the active partition by selecting the agent, then
selecting the Component > Open command.

4. Open the Instruments window for the current agent by selecting the File >
Instruments command in the current Agent window.

Logging and Log Files

Chapter 7 Troubleshooting 221

5. Open the Instrument Logging Properties dialog by selecting the File >
Instrument Logging command.

6. In the Instrument Logging Properties dialog, enter the new log file name for
the active partition’s log file in the Active Partition Log field. You can also
change the name of the Environment Manager’s log file by entering the new
name of the log file in the Environment Log field.

➤ To change the log file name for an interpreted active server partition

1. In the Environment Console’s Active Environment window, select the View >
Node Outline command.

2. Locate the Forte_executor_nodename agent, which is a subagent of the Node
agent for the node where the standard partition is running.

3. Click the expansion arrow next to the Forte_executor_nodename agent, then
double-click the Active Partition agent whose name matches the name of the
standard partition.

The Agent window for the Active Partition agent opens.

4. Open the Instruments window for the Active Partition agent by selecting the
File > Instruments command of the current Agent window.

Logging and Log Files

222 iPlanet Unified Development Server • System Management Guide • August 2001

5. Open the Instrument Logging Properties dialog by selecting the File >
Instrument Logging... command the Instruments window.

6. In the Instrument Logging Properties dialog, enter the new log file name for
the active partition and the instance of the iPlanet UDS executor in the Active
Partition Log field. You can also change the name of the Environment
Manager’s log file by entering the new name of the log file in the Environment
Log field.

Requested Message Output Logging
You normally specify requested message logging on a node by node basis, using
the FORTE_LOGGER_SETUP environment variable, which is read when each
iPlanet UDS partition starts on the node. You can override this environment
variable value by setting message filters (-fl) in the startup command for any
particular partition.

Many types of messages may be generated by the iPlanet UDS runtime system or
by an application. Only those messages—or categories of message—you specify
using the FORTE_LOGGER_SETUP environment variable or -fl flag, however,
will be written to log files. For information about using the -fl flag, see “-fl Flag
(Log Manager)” on page 371. For information about setting environment variables,
see “Using the iPlanet UDS Control Panel” on page 345 and “Setting Environment
Variables Without the iPlanet UDS Control Panel” on page 353.

Logging and Log Files

Chapter 7 Troubleshooting 223

Specifying Message Filters
The syntax for specifying your logging message filters is shown in Figure 7-1.
Often you specify a standard output log file, “%stdout,” as the log file name (see
“Logging and Log Files” on page 217). You can specify more than one log file if you
want different information written to different files. For each file you can specify
any number of filters, each separated by a space.

Figure 7-1 Specifying iPlanet UDS Message Output Filters

For each log file you can specify four levels of filter, as follows:

Message type (mandatory) You can include more than one message type
separated by spaces—the message types available are shown above.

Service type Each message type can be divided into a maximum of ten
user-defined service types, which typically map to important application services.
iPlanet UDS also has a number of service types, most of which are not documented.

Group number Each service type can be divided in turn into a maximum of 63
group numbers, which typically map to a group of facilities.

"file_name(message_type[:service_type[:group_number[:level_number]]])..."

 Message Types
aud Audit messages
cfg Configuration modification
err Error messages
pfr Performance information
res Resource information
sec Security information
trc Debugging information
* all of the above

Service Types
user1
user2

user1o
* or user = all ten

Group Numbers
1 - 63

Levels
1 - 255

FORTE_LOGGER_SETUP
(or -fl flag)

Logging and Log Files

224 iPlanet Unified Development Server • System Management Guide • August 2001

Level number Each group number can be subdivided into up to 255 additional
levels.

The filtering hierarchy for messages generated by an application, or at least the
most important logging message filters, should be documented by an application’s
developer. These filters are defined by application developers when they use the
task.Part.LogMgr.Put or PutLine methods, defined on the Partition class in the
Framework Library online Help.

An example message filter is as follows:

FORTE_LOGGER_SETUP: “%stdout(err:user trc:os:1:1) userlog(prf:user)”

This filter specifies two output files: standard output (which gets redirected by
iPlanet UDS) and “userlog.” Standard output will log two message types (Error
and Debug), while userlog will log performance information.

Client nodes On a client node, to direct logging to a log file (in addition to a trace
window on the screen), specify a log filename (in addition to %stdout) with the
desired message filters in the FORTE_LOGGER_SETUP environment variable for
the node.

iPlanet UDS, by default, sets a FORTE_LOGGER_SETUP environment variable:

FORTE_LOGGER_SETUP: “%stdout(err:sh)”

The err:sh setting has no particular significance other than to initialize the logging
mechanism and open up standard output—you normally replace it with a setting
of your own choice.

Setting the Logger Flag for a Partition
As mentioned earlier, you can override the FORTE_LOGGER_SETUP environment
variable by setting a logger flag (-fl) in the startup command for any iPlanet UDS
partition.

For an iPlanet UDS system management service or iPlanet UDS system application,
such as the Environment Console, Escript, and ftexec, the flag is placed as a
command option in the startup command.

For a partition in an application, you can set the logger flag using the appropriate
properties dialog in the Environment Console (which utilizes the SetArgs
command of the Partition agent).

Logging and Log Files

Chapter 7 Troubleshooting 225

➤ To specify the logger flag for a partition

1. Lock the active environment definition.

2. Select the Application Outline view in the Active Environment window.

3. Expand the Application to view its logical partitions.

4. Expand the logical partition of interest to view its assigned or installed
partitions.

5. Select the assigned or installed partition of interest, then select the Component
> Properties… command.

6. Enter the -fl logger flag arguments in the Server Arguments field.

Any partition when started will overwrite the existing log file for that partition. If
you want to preserve the old log file, either back it up, or change the name of the
file to which the process will log messages. (Active partitions rarely start with the
same process ID number.)

For more information about using the -fl flag, see “-fl Flag (Log Manager)” on
page 371. For information about setting the logger flag using the iPlanet UDS
Control Panel, see “Log Flags Tab Page” on page 351.

Dynamically Modifying Message Filters
It is possible to dynamically change the current message filters for an active
application or Node Manager partition. The modified message filters apply to the
first log file specified in either the FORTE_LOGGER_SETUP environment variable
or in the -fl logger flag in the startup command for the given partition.

You can change the message types and levels using the Environment Console (or
using the Escript ModLoggerRemote commands of the Active Partition and Node
agents).

➤ To dynamically modify the message filters for an active partition

1. Select the Application Outline view in the Active Environment window.

2. Expand the Application to view its logical partitions.

3. Expand the logical partition of interest to view its installed partitions.

Logging and Log Files

226 iPlanet Unified Development Server • System Management Guide • August 2001

4. Expand the installed partition of interest to view its active partitions.

Select the active partition of interest, then select the Component > Modify Log
Flags command.

5. Enter whatever message types, service types, group numbers, and level
numbers you wish as your new settings, and click OK.

In this window, the Message field values represent the following message
types:

Message Field
values

Meaning Type Used for -fl
and
FORTE_LOGGER_
SETUP

Put or PutLine Constant

Audit Audit
messages

aud SP_MT_AUDIT

Configuration Configuration
modification

cfg SP_MT_CONFIGURATION

Error Error
messages

err SP_MT_ERROR

Performance Performance
information

prf SP_MT_PERFORMANCE

Resource Resource
information

res SP_MT_RESOURCE

Logging and Log Files

Chapter 7 Troubleshooting 227

Useful Message Filters
A number of iPlanet UDS runtime system message filters you might find useful in
diagnosing system management problems are described in the following table:

Security Security
messages

sec SP_MT_SECURITY

Debug Debugging
Information

trc SP_MT_DEBUG

Filter Function

trc:os:10 When this filter is set, the value of environment variables will be logged
when any iPlanet UDS process is started.

trc:lo:25 Always set this filter when tracking down problems, otherwise key
exceptions may not be displayed. But most users should not have this filter
set because they may be alarmed at the number of harmless exceptions
logged.

trc:cm:*:4 This filter is most useful if there are communication problems when first
setting up your environment.

trc:os:1:1 Mostly used by developers to track object memory requirements. Logs
automatic memory management activities.

trc:os:5:5 Mostly used by developers to track object memory requirements. Used with
trc:os:1:1 to show objects.

trc:db:1–8 Used to diagnose problems in accessing a database.

trc:os:14 Used to show dynamically loaded libraries.

trc:rp:2:50 Used to show user operations on the local client that can affect the
repository. trc:rp:2:75 provides more detailed information.

NOTE The trc message type corresponds to the Debug Message type
available in the iPlanet UDS Control Panel.

Message Field
values

Meaning Type Used for -fl
and
FORTE_LOGGER_
SETUP

Put or PutLine Constant

Logging and Log Files

228 iPlanet Unified Development Server • System Management Guide • August 2001

For information about the meaning of the group and level numbers, see “Group
Number Option” on page 373 and “Level Number Option” on page 374.

Instrument Data Logging
Instrument logging usually monitors an application’s performance and resource
usage, and can be a rich source of information about the underlying causes of
performance bottlenecks or other types of problems.

You can write instrument data for an Active Partition agent, any of its subagents,
or any other agents residing in the active partition to the active partition log file.
You do this by designating those instruments you want to have logged. This can be
instrument data of any agent in an active partition, including user-defined
instruments of user-defined agents.

You also have to set a log timer interval at which designated instrument data is
collected and then turn on the logging of that collected data. These operations are
performed using instruments of the Active Partition agent, as described in some
detail in “Tracking Instrument Data with Log Files” on page 203.

In addition, if you want this instrument data to be logged to the environment log
file as well, you use the InstrumentLogging instrument of the Environment agent
to turn this logging on, as described in Escript and System Agent Reference Guide.

Audit Trace Logging
Audit traces for important system events (such as installing and removing
applications, starting and stopping applications and partitions, and so forth) are
automatically gathered by iPlanet UDS and written to Node Manager log files and
the Environment Manager log file.

The audit traces provide a source of information about the sequence of important
system management events, and are therefore a useful source of information for
discovering the state of your application when particular problems arise.

You cannot turn off the logging of audit trace information.

Routine Monitoring

Chapter 7 Troubleshooting 229

Routine Monitoring
This section describes how you can perform routine iPlanet UDS system
monitoring.

Monitoring System Management Services
One of the first steps in approaching any system management problem is to make
sure you have a functioning iPlanet UDS environment.

To function properly, an iPlanet UDS environment must have all its iPlanet UDS
system management services up and running. There are two approaches to
checking these services:

• going to the node on which the service should be running and use operating
system commands to verify that the service is online

• using iPlanet UDS tools or utilities from any node to check the status of various
system management services in the environment

Using the Operating System
To use operating system commands, you look for a process whose name
corresponds to the system management service you are trying to check. The
process names for iPlanet UDS system management services correspond to their
startup commands and are shown in “Process Names” on page 109. For example,
the Node Manager is identified by “nodemgr.”

On UNIX platforms, you use some variant of the ps command. Be sure you use a
flag that will avoid truncating output before showing the process name.

On OpenVMS platforms, you use the show system command.

On the Windows NT platform, you look at the Windows NT Task list.

Using iPlanet UDS System Management Tools
The other approach to checking which system management services are up and
running is to use iPlanet UDS facilities.

Routine Monitoring

230 iPlanet Unified Development Server • System Management Guide • August 2001

Name Service
For example, you can use the Application View of the Active Environment window
and check if the NameService agent is active.

If you cannot find the Name Service then you have three possible problems:

• Name Service is offline

• network link to the central server node is not functioning

• FORTE_NS_ADDRESS environment variable is not set correctly

Node Manager
There are a number of ways of checking whether a Node Manager is online:

• start the Environment Console and see if the node is online

• use Escript to look for the node with commands like FindEnv, ShowAgent,
and FindSubAgent, as described in Escript and System Agent Reference Guide

• look for the “attached to manager...” message when starting any iPlanet UDS
process on the node

Monitoring Application Partitions
There are a number of ways of monitoring an application for problems:

• monitoring the status of the application and its partitions through the
Environment Console and Escript

• using operation system commands to directly look at the application’s server
partitions

• periodically checking log files to see if exceptions have occurred

Using iPlanet UDS System Management Tools
The Environment Console and Escript both report the status of applications and
their partitions. For any object in the application view to be considered online, all
its child objects must also be online.

When an application has a degraded status, it is not running as specified in its
partitioning configuration. To find the source, or sources, of the degradation, you
move down through the object hierarchy looking for the offline partitions. For
more detailed information, see “Monitoring Status” on page 196 or Escript and
System Agent Reference Guide.

Routine Monitoring

Chapter 7 Troubleshooting 231

Using the Operating System
You can also monitor server partitions by looking at the processes running them. If
a process is not running, or is abnormally large or abnormally small (compared to
others or compared to its normal size), it may indicate a problem.

To check the process size for standard partitions, look for instances of the “ftexec.”
This command is used to start the iPlanet UDS executor that runs the image
repositories for a standard partition. For compiled partitions, look for the partition
process by executable file name.

When you shut down an application, the iPlanet UDS executors that ran standard
partitions remain online until you specifically shut them down. As a result, you
might often find a number of iPlanet UDS_Executor partitions which remain
“online,” but are not “busy.” You should shut down these orphaned ftexec
processes if they impact the performance of their host node, otherwise you can
leave them running to be used by an application you may soon start.

Monitoring Log Files
You can also check for problems in the running of an application by looking at log
files. There is a log file for each active partition, each node, and for the environment
as a whole, as described in “Logging and Log Files” on page 217.

These log files are normally written to the FORTE_ROOT/log directory, so you can
scan the log files looking for exceptions that would indicate problems in the
running of your application. (You can generally search log files while they are
open.)

Using the iPlanet UDS Keepalive Feature
iPlanet UDS provides a keepalive feature that helps you and your applications to
quickly detect network failures. This feature is very similar to TCP Keepalive, and
it works in the following way:

1. The Communication Manager keeps track of how long a connection has been
inactive.

2. If a connection has been inactive longer than a specified amount of time (the
keepalive cycle), the Communication Manager pings the remote partition on this
connection.

Routine Monitoring

232 iPlanet Unified Development Server • System Management Guide • August 2001

3. If the Communication Manager receives a reply from the remote partition, the
Communication Manager allows the connection to continue and resets its
record of how long the connection has been inactive.

If the Communication Manager does not receive a reply from the remote
partition within the specified amount of time (the keepalive interval), the
Communication Manager either pings the remote partition again, or closes the
connection. The number of times the Communication Manager pings a remote
partition before it closes the connection is the keepalive count.

4. When the Communication Manager closes a connection, the Distributed Object
Manager raises a DistributedAccessException object, which the application
should handle to recover state information before failing over to another
service.

The keepalive feature is off by default. To turn on the keepalive feature, set the
length of time specified for the keepalive cycle to a value greater than 0.

Setting Keepalive Threshold Values with Environment Variables
iPlanet UDS defines the following environment variables for setting Keepalive
threshold values:

FORTE_KEEP_COUNT Specifies the number of pings that the keepalive feature
attempts before it closes the connection. The default value is 3.

FORTE_KEEP_CYCLE Specifies the length of time, in seconds, that a connection
can be inactive before keepalive processing starts. The default value is 0. If this
value is set to 0, all keepalive processing is disabled. If a client has this value set to
0, the client sends a message to each partition it connects to, telling that partition
not to check on the client’s connection using the keepalive feature.

FORTE_KEEP_INTERVAL Specifies the interval, in seconds, after a ping
message is sent, during which a reply is expected. The default value is 10 seconds.

Setting Keepalive Threshold Values Using the CommMgr Agent
The agent for the Communication Manager is the CommMgr agent. The
CommMgr agent is an agent that manages the communications service for an
active partition. The communications service provides access to low-level network
connections in and out of a partition.

The CommMgr agent has the following instruments that let you monitor and tune
the iPlanet UDS keepalive feature:

Routine Monitoring

Chapter 7 Troubleshooting 233

KeepAliveCloses Represents the total number of connections that have been
closed by keepalive processing in a partition.

KeepAliveCount Specifies the number of pings that the keepalive feature
attempts before it closes the connection.

KeepAliveCycle Specifies the length of time, in seconds, that a connection can be
inactive before performing keepalive processing. Setting this value to 0 turns off
the keepalive feature.

KeepAliveInterval Specifies the interval, in seconds, after a ping message is sent,
during which a reply is expected.

For more information about these instruments, see the CommMgr agent
information in Escript and System Agent Reference Guide.

Restrictions
Applications and partitions that block in the operating system can fail to respond
to pings, which would cause the Communication Manager to close connections
that are in use.

iPlanet UDS attempts to determine situations, such as database processing,
graphical user interface applications in non-preemptive situations, and so forth,
that are likely to cause an application to block. In these situations, iPlanet UDS
disables the keepalive feature, regardless of the setting of the keepalive cycle.

The following describes some of the situations where iPlanet UDS automatically
disables the keepalive feature:

• running a Release 2.0 partition that connects to a Release 3.0 partition, or the
reverse

• non-preemptive command line programs that can block in the operating
system

• C wrappers that block in the operating systems, are in non-preemptive
partitions, or are in projects that are marked as not being threadsafe

Memory Issues

234 iPlanet Unified Development Server • System Management Guide • August 2001

Memory Issues
iPlanet UDS generates an out of memory exception when a partition runs out of
object memory space, shown in Figure 7-2. This can happen even though there may
be sufficient process space to run the partition.

Figure 7-2 Object Memory Space

iPlanet UDS—not the operating system—controls the object memory space. By
default, iPlanet UDS sets a maximum limit on the size of the object memory space.
Within this limit, the iPlanet UDS memory manager attempts to optimize a
partition’s object memory space by deleting objects which are no longer referenced
by an application.

When the memory manager reclaims memory, it looks at the objects in memory
and determines which are still being referenced. If an object is referenced (there is a
pointer to the object accessible to the application) then the object is retained. If there
is no such pointer, the object is discarded.

The memory manager performs two types of memory reclamations:

Generational In this type of reclamation, the memory manager collects only
among objects created since the last reclamation (the newest generation of objects).
It performs a generational reclamation when half the memory available after the
last reclamation has been allocated. This type of reclamation is relatively quick and
efficient.

Process Space

Code space

Windowing system

Object space

Heap/stack

iPlanet UDS processes
have limit set on size of
object space

Memory Issues

Chapter 7 Troubleshooting 235

Stable In this type of reclamation, the memory manager collects among objects of
all previous generations. It performs a stable reclamation when the utilization
percent after a generational reclamation falls above a target utilization percent.
This type of reclamation is relatively more resource intensive than a generational
memory reclamation, and generally reclaims more memory.

The memory management scheme is designed so that in most cases, the memory
manager performs a generational reclamation. If a generational reclamation does
not free enough memory, the memory manager performs a stable collection to try
to free more space. And if a stable reclamation does not free enough memory, the
memory manager can expand the object space allocated to the partition.

The values that determine when stable reclamation and memory expansion occur
are instruments of the OperatingSystem agent. These can be initially set by the -fm
startup flag for the partition and modified using agent commands. The
SetIntProperty and GetIntProperty methods on the OperatingSystem class
(described in the Framework Library online Help) also allow a TOOL program to
set and get the values.

For example (see Figure 7-3 on page 236), when an iPlanet UDS partition starts up,
the memory manager sets the object memory heap to a minimum value (the
MinimumAllocation—by default, 1024 pages). Once half of that available memory
is allocated to objects, the memory manager performs a generational memory
reclamation. It then records the amount of available memory remaining in the
memory heap (the AvailablePages). Once half of that memory is used, the memory
manager performs another generational memory reclamation, and so on.

If, after a generational reclamation, the utilization falls above a target utilization
threshold (by default, 85%), the memory manager then performs a stable
reclamation. After a stable reclamation, the memory manager records the value of
allocated memory (the PeakAllocatedPages). If the corresponding utilization falls
above an expansion threshold (ExpandAtPercent—by default, 80%), the memory
manager performs a memory expansion. This expands the memory heap (the
ActivePages) by a set amount (the ExpandByPercent—by default, 10%).

This process continues until the partition is shut down, the maximum amount of
memory (the MaximumAllocation) is reached, or the operating system cannot
supply additional memory.

Memory Issues

236 iPlanet Unified Development Server • System Management Guide • August 2001

Figure 7-3 Memory Management Instrument Values (OperatingSystem Agent)

Changing Memory Settings
If a partition requires more than the default maximum memory allocation, you
have to increase this limit at partition startup time. You can change the minimum
and maximum memory allocations (and many other memory management
settings) using the -fm memory flag when starting an individual service or
partition. You can also change these values while a service or partition is running
by using the MaximumAllocation and MinimumAllocation instruments of the
OperatingSystem agent, as described in Escript and System Agent Reference Guide.

Default allocations for two important iPlanet UDS processes are:

Partition Minimum Object Memory Maximum Object Memory

ftexec 2000 Kbytes 10000 Kbytes

nodemgr 4000 Kbytes 8000 Kbytes

Memory Heap

Minimum Allocation

Maximum Allocation

ActivePages

UtilizationPercent =

AvailablePages

AllocatedPages

AllocatedPages

ActivePages

50% of available memory
(threshold for generational
memory reclamation)

Target utilization threshold
(threshold for stable memory
reclamation)

Memory heap expansion threshold

Memory Issues

Chapter 7 Troubleshooting 237

Specifying Object Memory Flag
A few of the memory flags you can use your object memory allocation are:

(n:min_size, x:max_size)

For information about all the values that can be used with the -fm flag, see “-fm
Flag (Memory Manager)” on page 375.

If a partition requires more than the default object memory, you can use the -fm
flag in the command line to increase the allocation at startup. Likewise, if a Node
Manager or other process requires much less, you can use the -fm flag to reduce the
allocation at startup.

You might find two logging message filters helpful in monitoring the use of object
memory by a partition. The output indicates statistics before and after iPlanet UDS
performs automatic memory management—a process in which iPlanet UDS frees
up space occupied by unused objects.

Parameter Description

min_size Minimum object memory size—the amount first allocated to the partition at
startup

max_size Maximum object memory size—the amount to which object memory can
grow

Filter Function

trc:os:1:1 When this filter is set, summary information on number of pages and objects
in memory before and after automatic memory management will be logged.

trc:os:5:5 When this filter is set, detailed information on number of pages and objects in
memory before and after automatic memory management will be logged.

Memory Issues

238 iPlanet Unified Development Server • System Management Guide • August 2001

Setting the -fm Flag for a Partition
You can set a memory flag (-fm) in the command you use to start up any iPlanet
UDS partition.

For an iPlanet UDS system management service or iPlanet UDS system application,
such as the Environment Console, Escript, ftexec, ftcmd, and so forth, you can
specify the -fm flag as a command option for the command that starts the service or
application.

If you specify the -fm flag when you start up a partition, the iPlanet UDS system
checks whether any idle running instances of the interpreter (ftexec) have enough
allocated memory to run this partition. If so, iPlanet UDS runs the partition on that
instance of the interpreter. If not, iPlanet UDS starts a new instance of the
interpreter that allocates the maximum amount of memory required for the
partition, as defined on the -fm flag.

For a partition in an application, you can set the -fm flag using the appropriate
properties dialog in the Environment Console, as described in the following steps.

➤ To specify-fm flag for a partition

1. Lock the active environment definition.

2. Select the assigned or installed partition of interest in the Active Environment
window, then select the Component > Properties command.

3. Enter the -fm memory flag and its arguments in the Server Arguments field.

You can set the memory flag in Escript using the SetArgs command of the
Logical Partition agent, or in Fscript using the SetPartArgs command.

For more information about setting the -fm flag, see “-fm Flag (Memory Manager)”
on page 375.

Memory Issues

Chapter 7 Troubleshooting 239

Thread Stack Size
In some cases you may need to override the default FORTE_STACK_SIZE settings,
which sets the thread stack size in bytes for iPlanet UDS and Posix threads. iPlanet
UDS applications with deep levels of nested function calls, applications that
call-out to C or C++ libraries, or auto-compilation of large applications may require
that you override the default FORTE_STACK_SIZE settings.

The size needed for the thread stack depends on the depth of the call graph of the
thread running on the stack and the size of the local data for the methods and
procedures in the call graph. For example, if an application makes heavy use of
recursion, the depth of its call graph can get quite deep, requiring a
correspondingly large amount of run-time stack space. Also, if a method or
procedure uses a large amount of local data (for example a large local buffer) the
amount of run-time stack required grows.

iPlanet UDS has identified some situations where third party software used by
iPlanet UDS applications require changing the default stack size. Motif clients,
some database products, and several C APIs require that FORTE_STACK_SIZE be
set to a larger than default value. Both client and server partitions may require
increasing FORTE_STACK_SIZE.

Setting the Thread Stack Size
To override the default FORTE_STACK_SIZE you can either set the
FORTE_STACK_SIZE environment variable before running the application or
specify the -fst flag during startup.

For example, you can specify -fst 100000 to override the stack size for a partition.

If you need to increase the thread stack size, you may want to start with a value of
100000. Some applications may require a larger stack size than this; for example,
code generation and auto-compilation of a very large application may require stack
sizes over 200000. However, a larger stack size means your applications use more
dynamic memory. In addition, a larger stack size may reduce the number of POSIX
threads that a partition can create under AIX.

NOTE If both -fst and FORTE_STACK_SIZE have been set, then the
larger of the two values is used.

Connectivity Issues

240 iPlanet Unified Development Server • System Management Guide • August 2001

Connectivity Issues
You might encounter connectivity problems when you set up your iPlanet UDS
environment or add additional nodes to an existing environment.

Setup
It is important to separate iPlanet UDS related problems from general network
malfunctions. The best approach is to establish that your network is up and
running, independent of iPlanet UDS. Consider the following:

• Does server have network problems? Try ftp, telnet, netcopy, ping.

• Are you using a Domain Name Server?

If the network appears to be running properly, you can check iPlanet UDS
connectivity by trying to open the Environment Console or Escript. Check that all
FORTE_NS_ADDRESS environment variables are set properly, as described in
“Environment Manager Failover for Partitions” on page 122.

If iPlanet UDS connectivity proves difficult to establish, set the communication
message filter, trc:cm:*:4, and try to diagnose the problem. Try it on the client side
first and, if necessary, the server side.

Sometimes multiple network protocols collide on PC/Windows nodes. In this case
it might help to reinstall iPlanet UDS in a “clean” environment.

Ongoing
At times, connectivity issues arise after your environment has been successfully set
up. In this case, your troubleshooting should include checking that:

• the network is working properly, independently of iPlanet UDS

• iPlanet UDS system management processes are all up and running

• no two users (usually clients) are colliding by trying to use the same network
address

• you are not trying to connect to too many remote partitions from a PC client.
The PC supports a limited number of connections at one time.

Database Access Issues

Chapter 7 Troubleshooting 241

Database Access Issues
With database access problems, as with connectivity problems, you need to
separate iPlanet UDS related problems from general database malfunctions. The
best approach is to establish that your database is up and running independent of
iPlanet UDS:

• Check that the database is running.

• Use the interactive database monitor to mimic as closely as possible the
application database access.

• Check database locks from the database monitor.

• Try the DynamicSQL example iPlanet UDS application to verify that iPlanet
UDS can access the database.

Another possible issue, in Oracle environments, is that SQL*Net must be running
for access to more than one database to work properly. SQL*Net support is built
into the iPlanet UDS product.

If all else fails, use the database message filters to diagnose the problem. Database
filters and the type of messages they will log, shown below, must be set in the
partition that is running the database session.

For more information about setting up databases, see Accessing Databases.

NOTE Be careful that an application references database resource
managers by names that are the same as those you have set in your
environment. Be sure the application developers provide you with
any resource manager names referenced in their application code.

Filter Function

trc:db:1 Cursor operations

trc:db:2 SQL being sent to the database

trc:db:3 Trace SQL Prepare statements

trc:db:4 Not used

trc:db:5 Transaction tracing (begin/commit/abort)

trc:db:6 Database session startup/shutdown

trc:db:7 Trace locking done in DBSession

trc:db:8 High level method tracing

Database Access Issues

242 iPlanet Unified Development Server • System Management Guide • August 2001

243

Chapter 8

Managing iPlanet UDS Development
Repositories

This chapter provides background information about iPlanet UDS development
repositories and describes the iPlanet UDS repository utilities you use to create and
manage them.

With this release, iPlanet UDS provides a new type of repository format, called the
B-tree repository. This chapter explains how to create, maintain, and run
repositories in the B-tree repository format.

This chapter also explains how to use secure repositories.

About iPlanet UDS Development Repositories
There are two types of development repositories: central repositories and private
repositories. A Guide to the iPlanet UDS Workshops describes the development
repositories that iPlanet UDS application developers use to create and store
applications.

This section provides background information about central and private
repositories.

NOTE In a mixed node environment, where some nodes are running under
an iPlanet UDS system prior to release 5.0, repository files for the
two systems may be incompatible. For information on upgrading
systems and maintaining compatibility with prior releases, refer to
the Technote, “Upgrading to iPlanet UDS 5.0 in Mixed-Node
Environments,” available from iPlanet technical support.

About iPlanet UDS Development Repositories

244 iPlanet Unified Development Server • System Management Guide • August 2001

Central repository A central repository is a repository shared by a group of
developers in your organization. This repository contains all the iPlanet UDS
libraries and all the other plans integrated into it. Most of the time, iPlanet UDS
application developers do their work using a central repository. Central
repositories are described in detail under “About Central Repositories” on
page 244.

Private repository A private repository is an independent repository that a
developer can use without having to interact with the central repository in a
distributed environment. If the developer is running iPlanet UDS in stand-alone
mode, he can access a private repository, although he cannot access a central
repository. This repository can be in the iPlanet UDS distributed development
environment, but does not have to be. Private repositories let a single programmer
work completely independently of other developers. Private repositories are
described in detail under “About Private Repositories” on page 247.

Standard repository A standard repository, by default, requires no passwords.
However, you can set a master password, passwords for each workspace, and a
baseline password to prevent unauthorized users from changing information in the
repository. These passwords are for updating only; any user can still read the
information in the repository.

Secure repository A secure repository requires passwords for reading information
from the repository, changing information in the repository, using workspaces,
creating new workspaces, and copying the repository.

About Central Repositories
A central repository is a repository shared by a group of developers in your
organization. This repository contains all the iPlanet UDS libraries and all the other
plans integrated into it.

A central repository allows for centralized access to plans, which lets multiple
developers collaborate. Normally, all plans being shared by a department or
development team are stored in a single repository. Central repositories are always
on server nodes in the environment, so that all developers who need to access the
repositories can use them.

iPlanet UDS’s installation program automatically creates a single central repository
for the environment (see your iPlanet UDS System Installation Guide for
information). However, there can be any number of central repositories within a
single environment. As the iPlanet UDS system manager, you create the central
repositories needed by the iPlanet UDS developers you are supporting.

About iPlanet UDS Development Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 245

Repository servers Every central repository is associated with a repository
server. The repository server manages the repository and coordinates all access to
it. After creating a central repository, you must start the repository server to allow
multiple developers to access the repository. You must stop the repository server
process when you wish to perform maintenance on the central repository. Each
time you start the repository server, you assign a name to it (the repository server
name). You and your application developers use the repository server name to
refer to the specific process in subsequent commands, for example, to copy the
repository or to open the repository for use with the iPlanet UDS Workshops.

The system manager needs to do the following tasks for central repositories:

• create and copy central repositories for iPlanet UDS application developers

• start the repository servers, which enables the developers to access the central
repositories

• stop the repository servers to perform maintenance on the central repositories
or for other reasons

• maintain central repositories by compacting them, backing them up,
recovering them if necessary, and tuning their performance

Repository sessions Any application that accesses a central repository (such as
the Repository Workshop) does so by establishing a session with the
corresponding repository server. This session is called a repository session. The
repository server uses repository sessions to manage repository workspaces and
control access to the repository.

Shadow repositories Because a central repository is located on a central server in
the development environment, iPlanet UDS provides a special feature called a
shadow repository that lets an application developer significantly improve the
performance of the central repository by creating a local copy of part of the
repository on her workstation, while still maintaining a repository session. For
more information, see “Creating Shadow Repositories” on page 258.

Repository format Central repositories are B-tree repositories. This repository
format is identical across platforms, and is used for central repositories as well as
private repositories, shadow repositories, and environment repositories.

About iPlanet UDS Development Repositories

246 iPlanet Unified Development Server • System Management Guide • August 2001

About Shadow Repositories
A shadow repository is a local copy of part of a central repository. The shadow
resides on a developer’s workstation but maintains a connection to the central
repository. When a developer first uses a shadow repository, only the data he
needs is cached locally. When the shadow is first created (usually by the
application developer), it is essentially empty. As he begins to work in it, creating
new plans or components, modifying existing components, or even just browsing
through the components in the plans, the relevant parts of the repository are
copied to the shadow.

A shadow repository is either attached to a central repository or detached from it.

Attached shadow An attached shadow repository is connected directly to the
central repository. Because this is the most reliable way to work, most of the time,
programmers do their development work in an attached shadow.

When working with an attached shadow, the developer has the option of saving
changes in the local shadow without saving to the central repository. When the
developer sets his preferences so that changes are not automatically committed to
the central repository, changes he saves to a workspace are not written to the
central repository until he gives an explicit Commit to Central command, exits
from the iPlanet UDS Workshops, or invokes a command like
IntegrateWorkspace, which affects the central repository. Although this is not the
most reliable way to work, it provides improved performance for the repository.

A developer can detach the shadow from the repository at any time.

Detached shadow A detached shadow repository is disconnected from the central
repository. Changes that a developer makes in the detached shadow are not made
to the central repository until she re-attaches the shadow to the central repository.
A detached shadow is useful for allowing a developer to take her work home with
her or for working outside the distributed development environment. Also, if
many developers are sharing one central repository, some of the developers might
want to detach their shadows to reduce the load on the repository server and
improve repository performance for all.

When the developer has finished working outside the distributed environment, she
can bring the detached shadow back into work, and attach it back to the central
repository. Attaching her shadow to the central repository copies all her changes
from the shadow to the central repository.

About iPlanet UDS Development Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 247

Normally, developers are responsible for creating and maintaining their own
shadow repositories (see A Guide to the iPlanet UDS Workshops for information
about creating and maintaining shadows). However, you can also create shadow
repositories from a script or command line using the rpshadow command
described in “Creating Shadow Repositories” on page 258.

About Private Repositories
A private repository is a single-user, single-access development repository that
runs on only one node. Private repositories are designed for independent,
high-performance development inside or outside an iPlanet UDS distributed
environment. A private repository provides somewhat better performance than an
attached shadow; however, it does not provide the collaboration facilities and
centralized access provided by a central repository.

A developer can use a private repository to build an entire distributed application
on his own. He can also use it to build part of an application, and then export
component and plan definitions into a central repository.

Private repository formats iPlanet UDS uses a B-tree format for private
repositories on all platforms.

About Repository Security
In terms of security, iPlanet UDS supports two kinds of repositories: standard
repositories, and secure repositories.

Standard repository A standard repository, by default, requires no passwords.
However, you can set a master password, passwords for each workspace, and a
baseline password to prevent unauthorized users from changing information in the
repository. However, any user can still read the information in the repository. You
can create standard repositories by copying the B-tree seed (btseed) files from the
FORTE_ROOT/install/reposcpy directory or by using the rpcreate or rpcopy
commands.

Secure repository A secure repository requires passwords for reading
information from the repository, changing information in the repository, using
workspaces, creating new workspaces, and copying the repository. You can create
secure repositories by using the rpcreate or rpcopy commands with the -secure
flag.

About iPlanet UDS Development Repositories

248 iPlanet Unified Development Server • System Management Guide • August 2001

File permissions You can also change the file permissions to restrict access to the
repository by various users. By making the file permissions more restrictive, you
can prevent unauthorized users from accessing the repository files directly to read
the source code using various utilities.

Security for Standard Repositories
By default, standard iPlanet UDS development repositories do not require
passwords. However, you can set the following passwords to provide a level of
security for the repository:

master password Provides global access to all password-protected functions.
You can set the master password using the rpstart -p flag or the Fscript
SetPassword command.

baseline password Prevents unauthorized users from integrating a workspace
into the system baseline in the repository. You can set the baseline password in the
Repository Workshop using the File > Set Baseline Password command or in
Fscript using the SetPassword command.

workspace passwords Restricts access to an existing workspace. You can set
workspace passwords when you first create new workspaces. You can also set
workspace passwords in the Repository Workshop using the File > Set Workspace
Password command or in Fscript using the SetPassword command.

The Fscript commands are described in Fscript Reference Guide.

Security limitations of standard repositories Even if you use the master,
workspace, and baseline passwords, you cannot prevent unauthorized users from
reading and copying source code from the repositories in the following ways:

• copying the repository using rpcopy

Users can create their own copies of repository files by using rpcopy on a
running repository server, even if file permissions prevent them from
accessing the original repository files.

• creating a new workspace.

Users can then read any public plans in the repository.

• directly parsing the contents of the repository files

If you are concerned about this level of security, consider using secure repositories,
as described in the next section.

About iPlanet UDS Development Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 249

Security for Secure Repositories
A secure repository requires passwords for reading information from the
repository, changing information in the repository, using workspaces, creating
new workspaces, and copying the repository.

When you create a secure repository, you must set all of the following passwords:

administrator password prevents unauthorized users from copying the
repository using rpcopy or creating new workspaces.

master password provides global access to all password-protected functions.

baseline password prevents unauthorized users from integrating the workspace
into the system baseline in the repository.

workspace password restricts access to the FirstWorkspace workspace.

For information about setting these passwords when you create a secure
repository, see “rpcreate Command” on page 253.

By default, the files of secure B-tree repositories have their permissions set so that
only authorized users can read or change them.

However, on the Windows NT and Alpha NT platforms, these file permissions are
not set. To prevent unauthorized users from reading the files directly on NT
platforms, you can disable file sharing for the drive containing the repository files
or use the File Manager to set the security attributes for the files.

About the B-tree Repository Format
The B-tree repository format consists of the following files:

B-tree repositories run transparently under iPlanet UDS, using no special processes
of their own.

File Name Purpose

repository.btd Contains the data for the repository.

repository.btx Contains an index for the data.

repository.rop For central and private repositories, contains historical information
about activities performed on the repository since its creation.

About iPlanet UDS Development Repositories

250 iPlanet Unified Development Server • System Management Guide • August 2001

B-tree files are completely portable across all platforms that iPlanet UDS supports.
You can move them from machine to machine as you wish using a binary copy.
You can also change their directories and file names using standard operating
system commands. If you change the file names of the B-tree files, the .btd, .btx,
and .rop files must share the same name, and you must be sure that the data file
ends in “.btd”, and the index file ends in “.btx”.

Specifying a B-tree repository In iPlanet UDS command lines, you refer to a
B-tree repository by specifying its format, its location, and its name (without the
.btd or .btx extension), using the following syntax:

bt: full_path_name

The following examples illustrate how to specify a B-tree repository name:

Recovering a repository to a consistent state If a program that accesses the
repository terminates abnormally, iPlanet UDS saves the uncommitted changes in
a file called repository.btb, where repository is the same name as that of the affected
B-tree repository.

The next time iPlanet UDS opens this B-tree repository, it returns the repository to
the consistent state that existed when changes were last committed. Any changes
made to the repository since the last commit point are discarded. You cannot
recover uncommitted changes.

To copy a B-tree repository that has a .btb file, do one of the following:

• recover the repository by opening the repository, then copy its .btd and .btx
files

• copy the .btx, .btd, and .btb files to the new location, then recover the
repository by opening it

• use the rpcopy command to create a copy of the repository in a new location

CAUTION Do not run B-tree repositories over NFS mounted disks.

Platform Command Syntax

UNIX bt:$FORTE_ROOT/repos/myShadow

VAX/VMS BT:FORTE_ROOT:[REPOS]MYSHADOW

Windows bt:c:\forte\repos\myshadow

Creating Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 251

If you try to use the repository without letting iPlanet UDS recover the repository
with the information in the .btb file, your repository will be in an unknown state.

Repairing damaged index files iPlanet UDS automatically rebuilds missing
index files for B-tree repositories when you open a B-tree repository. If you ever get
a message that indicates that the B-tree index file has been damaged or that asks
you to rebuild the index, delete the index (.btx) file and open the repository using
any iPlanet UDS process, including the rpstart command or an Fscript Open
command. iPlanet UDS automatically rebuilds the index.

Creating Repositories
This section explains how to create two types of repositories

• private and central repositories, which store source code

• shadow repositories, which is a local cache containing part of a central
repository

The following sections describe how to create each type of repository.

Creating Private and Central Repositories
Private and central repositories are both B-tree repositories and use the same
repository format. The only difference between a central repository and a private
repository is the way you use them, as described in “About Central Repositories”
on page 244 and “About Private Repositories” on page 247.

To create a private or central repository, you can do one of the following:

• Copy B-tree repository seed files to create a new, empty repository. This is the
only way to create an empty repository on a node running Windows 95.

• Copy the files for an existing B-tree repository to create a new repository that
contains the same source code as the existing B-tree repository. This is a way to
create a new repository on a node running Windows 95.

• Use the rpcreate command to create a new, empty repository. You cannot use
this command on a node running Windows 95.

• Use the rpcopy command to make a copy of an existing central or private
repository. You cannot use this command on a node running Windows 95.

The following sections describe these procedures.

Creating Repositories

252 iPlanet Unified Development Server • System Management Guide • August 2001

For a central repository, the new central repository must be on the Environment
Manager node or another server node, but never a client node.

Starting the repository server Note that after creating a central repository, you
must use the rpstart command to start the repository server for the central
repository. See “Starting Central Repository Servers” on page 262 for information.

Copying Repository Seed Files
iPlanet UDS provides two B-tree repository seed files that you can copy to create a
new, empty repository. Simply use your operating system binary copy commands
to copy the seed files into the FORTE_ROOT/repos directory, changing their
names in the copy command.

The seed files are:

• FORTE_ROOT/install/reposcpy/btseed.btd

• FORTE_ROOT/install/reposcpy/btseed.btx

The new B-tree files for the repository are completely portable. You can use them
on any platform, and use a binary copy to move them from one platform to another
as desired.

You can place repositories in any directory. However, you need to specify the full
path when you reference repositories that do not reside in FORTE_ROOT/repos.
For example, you can identify a repository in the FORTE_ROOT/repos directory
using “bt:MyRepos”, whereas you need to identify a repository in another
directory with its full path, as in “bt:/Code/Shadow/MyRepos” on a Unix node.

Copying Repository Files
To copy an existing private repository, simply use your operating system copy
commands to copy the following B-tree repository files to the appropriate location:

• repository.btd

• repository.btx

Before copying the B-tree files, make sure that no application developers are using
the repository.

The copied B-tree files for the private repository are completely portable. You can
use them on any platform, and move them from one platform to another as
desired.

Creating Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 253

If you are copying a B-tree repository that has a .btb file, do one of the following:

• Recover the repository by opening the repository, then copy its .btd and .btx
files.

• Copy the .btx, .btd, and .btb files to the new location, then recover the
repository by opening it.

rpcreate Command
The rpcreate command creates a new, empty repository. You must use the
rpcreate command on the node where you want the new repository.

The syntax of the rpcreate command is:

Portable (all platforms)
rpcreate -fr target_repository_name [-r]

[-fm memory_flags] [-fst integer] [-fl logger_flags] [-secure]

OpenVMS
VFORTE RPCREATE

/REPOSITORY=target_repository_name
[/REPLACE]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/SECURE|NOSECURE‘]

The following table describes the rpcreate command flags:

CAUTION If you try to use the repository without letting iPlanet UDS recover
the repository with the information in the .btb file, your repository
will be in an unknown state.

Flag Purpose

-fr
target_repository_name
/REPOSITORY=
target_repository_name

Specifies the name of the new repository. To specify the name,
specify “bt:” and a full path as part of the target_repository_name,
for example, “bt:d:\myreposdir\myrepos” on Windows NT. If
you do not specify a full path, then the repository is placed in
FORTE_ROOT/repos/.

Creating Repositories

254 iPlanet Unified Development Server • System Management Guide • August 2001

Creating a secure repository To create a secure repository, use the rpcreate
command with the -secure flag. For example, to create a secure B-tree repository
named SecretProject, you could use the following command:

rpcreate -fr bt:SecretProject -secure

When you invoke the rpcreate command with the -secure flag, you are
prompted for the following passwords in order:

• administrator

• master

• baseline

• FirstWorkspace workspace password

You must define all these passwords when you create a secure repository.

-r
/REPLACE

Specifies that the new repository replaces any existing
repository with the same name. If you do not specify this flag
and a repository with the same name already exists, you will
get an error.

-fm memory_flags
/MEMORY=
memory_flags

Specifies the space to use for the memory manager. See “-fm
Flag (Memory Manager)” on page 375 for syntax information. If
you do not set the memory flags, iPlanet UDS uses defaults
appropriate for the operating system. On UNIX, you must
specify the memory flags in double quotes.

-fst integer
/STACK=integer

The thread stack size in bytes for iPlanet UDS and POSIX
threads. See “-fst Flag (Stack Size)” on page 378 for syntax
information. This specification overrides default stack size
allocation.

-fl logger_flags
/LOGGER=
logger_flags

Specifies the logger flags to use for the command. See “-fl Flag
(Log Manager)” on page 371 for information about the syntax
for specifying logger flags. If you do not set the logger flags in
the rpcreate command, iPlanet UDS uses the value of the
FORTE_LOGGER_SETUP environment variable. On UNIX,
you must specify the logger flags in double quotes.

-secure
/SECURE

Specifies that the new repository is a secure repository.

Flag Purpose

Creating Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 255

rpcopy Command
The rpcopy command makes a copy of an existing central or private repository.
You must use the rpcopy command on the node where you want the new
repository. The syntax of the rpcopy command is:

Portable (all platforms)
rpcopy -s source_repository_name -fr target_repository_name [-r]

[-fns name_server_address] [-fs] [-fm memory_flags]
[-fl logger_flags] [-secure] [-nonsecure]

OpenVMS
VFORTE RPCOPY

/SOURCE_REPOSITORY=source_repository_name
/REPOSITORY=target_repository_name
[/REPLACE]
[/NAMESERVER=name_server_address]
[/STANDALONE]
[/MEMORY=memory_flags]
[/LOGGER=logger_flags]
[/SECURE |/NOSECURE]

The following table describes the rpcopy command flags:

Flag Purpose

-s source_repository_name

/SOURCE_REPOSITORY=
source_repository_name

Specifies the source repository to copy. Specify a
repository name, and be sure to use the appropriate syntax
for the format of the existing repository.

A B-tree repository uses “bt:” as the identifier.

Specify a full path as part of the source_repository_name, for
example, “bt:d:\myreposdir\myrepos” on Windows NT.
If you do not specify a full path, then the repository is
assumed to be in FORTE_ROOT/repos/.

-fr target_repository_name
/REPOSITORY=
target_repository_name

Specifies the name of the new repository to create.

Specify “bt:” as the identifier and a full path as part of the
target_repository_name, for example,
“bt:d:\myreposdir\myrepos” on Windows NT. If you do
not specify a full path, then the repository is placed in
FORTE_ROOT/repos/.

Creating Repositories

256 iPlanet Unified Development Server • System Management Guide • August 2001

-r
/REPLACE

Specifies that the new repository replaces any existing
repository with the same name. If you do not specify this
flag and a repository with the same name already exists,
you will get an error.

-fns name_server_address
/NAMESERVER=
name_server_address

Specifies the name service address for the environment in
which this application will run. This value overrides the
value, if any, specified by the FORTE_NS_ADDRESS
environment variable. If you want your application to be
able to switch to a backup Environment Manager if the
primary Environment Manager fails, you can also specify
multiple name service addresses, as discussed in
“Environment Manager Failover for Partitions” on
page 122.

-fs
/STANDALONE

Specifies that this command makes a new repository by
copying an existing repository without connecting to an
environment. The existing repository must be on the local
node, and a repository server must not be using the
repository.

-fm memory_flags
/MEMORY=
memory_flags

Specifies the space to use for the memory manager. See
“-fm Flag (Memory Manager)” on page 375 for syntax
information. If you do not set the memory flags, iPlanet
UDS uses defaults appropriate for the operating system.
On UNIX, you must specify the memory flags in double
quotes.

-fl logger_flags
/LOGGER=
logger_flags

Specifies the logger flags to use for the command. See “-fl
Flag (Log Manager)” on page 371 for information about
the syntax for specifying logger flags. If you do not set the
logger flags in the rpcopy command, iPlanet UDS uses
the value of the FORTE_LOGGER_SETUP environment
variable. On UNIX, you must specify the logger flags in
double quotes.

Flag Purpose

Creating Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 257

For example, to create a copy of a B-tree repository in another directory, you can
invoke the rpcopy command as shown:

rpcopy -s bt:centralstource -fr bt:e:\backups\centralsource

You can make a new central repository by copying an existing central or private
repository using the rpcopy command. The new central repository will contain the
exact contents of the repository that you copied, including plans, workspaces, and
passwords. Remember, after you create the new central repository, you must use
the rpstart command to start the repository server associated with it.

If you are copying a central repository that has shadow repositories associated with
it, the shadows are not copied to the new central repository. The shadows for the
source repository cannot be used with the new repository. To retain work in
existing shadow repositories, re-attach these shadows to the central repository
before you copy the central repository. Your developers will have to create new
shadows for the new copy of the repository as they need them.

-secure
/SECURE

Specifies that the new copy of the repository is a secure
repository.

You only need to specify this flag when you are making a
secure copy of a standard repository. By default, the copy
of a secure repository is also a secure repository with the
same set of passwords and the copy of a standard
repository is also a standard repository with the same set
of passwords, if any.

You are prompted for the administrator password, as well
as for any passwords that are not set in the original
standard repository.

-nonsecure
/NOSECURE

Specifies that the new copy of the repository is a standard
repository, with no administrator password. Other
passwords that have been set in the original repository are
set with the same values in the copy.

You only need to specify this flag when you are making a
standard copy of a secure repository. By default, the copy
of a secure repository is also a secure repository with the
same set of passwords and the copy of a standard
repository is also a standard repository with the same set
of passwords, if any.

Flag Purpose

Creating Repositories

258 iPlanet Unified Development Server • System Management Guide • August 2001

When the source repository you are copying is a central repository, and the
repository server is running for the source repository (see “Starting Central
Repository Servers” on page 262), you must specify the source repository by using
its repository server name. In addition, if the repository server is running on the
source repository, you can only use rpcopy to copy it if there are no application
developers making modifications to the repository (they must be using read-only
workspaces). Using rpcopy guarantees a consistent copy of the repository.

If the repository server is not running for the source repository, you must specify
the source repository using the repository name with the appropriate syntax. It is
faster to copy a source repository if the repository server is not running, so you
might want to shut down the repository server when you copy the source
repository.

After you invoke the rpcopy command on a secure source repository, you are
prompted for the administrator password. If you do not supply this password, you
cannot copy the secure repository.

For example, to create a secure copy of a secure B-tree repository called
SecretProject and call that copy AnotherProject, use the following command:

rpcopy -s bt:SecretProject -fr bt:AnotherProject

In this example, AnotherProject is a secure repository, with the same passwords as
SecretProject.

Creating Shadow Repositories
Usually application developers create their own shadow repositories using the
Repository Workshop. However, you can create a shadow repository from a script
or a command line by using the rpshadow command.

Before you use the rpshadow command, the repository server must be running on
the central repository. See “Starting Central Repository Servers” on page 262 for
information on starting the repository server.

rpshadow command

Portable (all platforms)
rpshadow -fr target_shadow_name -n repository_server_name [-r]

[-fns name_server_address] [-fm memory_flags] [-fl logger_flags]

Creating Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 259

OpenVMS
VFORTE RPSHADOW

/REPOSITORY=target_shadow_name
/SERVER_NAME=repository_server_name
[/REPLACE]
[/NAMESERVER=name_server_address]
[/MEMORY=memory_flags]
[/LOGGER=logger_flags]

The following table describes the rpshadow flags:

Flag Purpose

-fr target_shadow_name
/REPOSITORY=
target_shadow_name

Specifies the name of the shadow repository to create. This must
be a B-tree repository. The default directory for the shadow is
FORTE_ROOT/repos. However, you can specify a full path
name to place the repository in any directory you want.

-n
repository_server_name
/SERVER_NAME=
repository_server_name

Specifies the repository server corresponding to the central
repository from which to make the shadow. The existence of the
shadow will be recorded in the central repository.

-r
/REPLACE

Specifies that the new shadow replaces any B-tree repository
with the same name as the new shadow. If you do not specify
this flag and a B-tree repository with the same name already
exists, you will get an error.

-fns
name_server_address
/NAMESERVER=
name_server_address

Specifies the name service address for the environment in which
this application will run. This value overrides the value, if any,
specified by the FORTE_NS_ADDRESS environment variable. If
you want your application to be able to switch to a backup
Environment Manager if the primary Environment Manager
fails, you can also specify multiple name service addresses, as
discussed in “Environment Manager Failover for Partitions” on
page 122.

-fm memory_flags
/MEMORY=
memory_flags

Specifies the space to use for the memory manager. See “-fm
Flag (Memory Manager)” on page 375 for syntax information. If
you do not set the memory flags, iPlanet UDS uses defaults
appropriate for the operating system. On UNIX, you must
specify the memory flags in double quotes.

-fst integer
/STACK=integer

The thread stack size in bytes for iPlanet UDS and POSIX
threads. See “-fst Flag (Stack Size)” on page 378 for syntax
information. This specification overrides default stack size
allocation.

Creating Repositories

260 iPlanet Unified Development Server • System Management Guide • August 2001

When you use the rpshadow command, iPlanet UDS creates an attached shadow in
the specified directory. The new shadow will be empty until an application
developer starts working with it. The shadow you create with the rpshadow
command can be used exactly the same way as a shadow created with the
Repository Workshop.

You can use the rpshadow command on the node where you want the new shadow
repository. Alternatively, you can use the rpshadow command to create a new
shadow repository, then copy the new shadow repository to the desired node.

Additional Information About Using Shadows
Complete information about using shadows in the Repository Workshop is
provided in A Guide to the iPlanet UDS Workshops.

You can access up to 15 different repository workspaces using one shadow
repository. You can find out what workspaces have been cached in the shadow
repository by using the Utility > Show Repository Info command in the Repository
Workshop or the Fscript ShowReposInfo command. You cannot delete a
workspace from a shadow repository after you have accessed it. If you want to
access a sixteenth workspace using a shadow repository, you need to create a new
shadow repository.

A cached workspace synchronizes itself with the central repository by applying the
changes that have occurred in the central repository to itself. This synchronization
occurs when you open a workspace in an attached shadow.

If you have not synchronized a workspace in the shadow with the central
repository in a long time, the workspace might not open in the shadow repository,
because it cannot completely synchronize itself with the central repository. If this
occurs, you need to create a new shadow for accessing this workspace.

-fl logger_flags
/LOGGER=
logger_flags

Specifies the logger flags to use for the command. See “-fl Flag
(Log Manager)” on page 371 for information about the syntax
for specifying logger flags. If you do not set the logger flags in
the rpshadow command, iPlanet UDS uses the value of the
FORTE_LOGGER_SETUP environment variable. On UNIX, you
must specify the logger flags in double quotes.

Flag Purpose

Creating Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 261

Making a Standard Repository a
Secure Repository
To make a standard repository a secure repository, use the rpcopy command’s
-secure flag, then set all the required passwords when you are prompted.

For example, to replace a standard B-tree repository called SecretWork with a
secure B-tree repository of the same name, you can specify the following
command:

rpcopy -s bt:SecretWork -fr bt:tempRepos -secure

You can then delete the B-tree files for SecretWork, and rename the B-tree files for
tempRepos as SecretWork.

When you invoke the rpcopy command with the -secure flag, you are prompted
for all of the following passwords that have not yet been set:

• administrator

• master

• baseline

• passwords for all defined workspaces

You must define all these passwords when you create a secure repository.

Making a Secure Repository a Standard
Repository
To make a secure repository a standard repository, use the rpcopy command with
the -nonsecure flag. The new copy of the repository has no administrator
password. Other passwords that have been set in the original repository are set
with the same values in the copy.

For example, to replace a secure B-tree repository called Internal with a standard
B-tree repository of the same name, you can specify the following command:

rpcopy -s bt:Internal -fr bt:tempRepos -nonsecure

You can then delete the B-tree files for Internal, and rename the B-tree files for
tempRepos as Internal.

Starting Central Repository Servers

262 iPlanet Unified Development Server • System Management Guide • August 2001

Starting Central Repository Servers
To provide multiple developers with access to a central repository, you must start
the repository server associated with that central repository. The rpstart
command starts the repository server for the repository you specify and assigns a
repository server name to the server being started. This repository server name is
the name that developers will use when they want to open the associated central
repository, for example, when they give the forte command to run the iPlanet
UDS Workshops.

When you start a repository server for a central repository, its name is registered by
the name server, and distributed clients must use this repository server name to
access the central repository.

The rpstart command starts one or more processes; which processes depend on
the format of the repository. The following section describes how to use the
rpstart command, and how the command starts repository servers for B-tree
repositories.

Repository server as an NT service On Windows NT, you might have a
Repository Server NT service set up when you install iPlanet UDS. If you run a
repository server as a Windows NT service processes, this service process can
continue even after you log off, instead of shutting down when you log off. You
can start and shut down this Repository Server NT service using the Windows NT
Service Control Panel, as described in “Controlling the Node Manager or
Environment Manager and Repository Server Services” on page 111.

rpstart Command
The rpstart command starts a repository server for the specified central
repository. You specify the central repository whose server you wish to start, and
you assign a name to that server. Every time you start the same repository, you
must assign the same repository server name to it. If you use a different server
name, existing shadow repositories will no longer be able to connect to the central
repository.

After the repository server is started, all application developers who want to access
the repository must use the repository server name, rather than the repository
name. In addition, you must use the repository server name in all subsequent
commands on the repository, such as rpcopy or rpstop.

The syntax of the rpstart command is:

Starting Central Repository Servers

Chapter 8 Managing iPlanet UDS Development Repositories 263

Portable (all platforms)
rpstart -n repository_server_name -fr repository_name [-w]

[-fns name_server_address] [-p master_password] [-fm memory_flags]
[-fst integer] [-fl logger_flags] [-scm source_code_manager]

OpenVMS
VFORTE RPSTART

/SERVER_NAME=repository_server_name
/REPOSITORY=repository_name
[/WAIT_TIME= time _in_seconds]
[/NAMESERVER=name_server_address]
[/PASSWORD=master_password]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/SOURCE_CODE_MANAGER=source_code_manager]

The following table describes the flags:

Flag Purpose

-n repository_server_name
/SERVER_NAME=
repository_server_name

The repository server name to use for the specified
repository. This is the name developers will use to
access the central repository.

-fr repository_name
/REPOSITORY= repository_name

Specifies the repository name whose server you wish
to start. For B-tree repositories, specify “bt:” and a
full path as part of the repository_name, for example,
“bt:d:\myreposdir\myrepos” on Windows NT.

-w
/WAIT_TIME=
time_in_seconds

Specifies time in seconds that the repository server
will wait before reporting an error in startup. If
specified, this value overrides the setting for the
environment variable FORTE_RPSTART_WAIT.

-fns name_server_address
/NAMESERVER=
name_server_address

Specifies the name service address for the
environment in which this application will run. This
value overrides the value, if any, specified by the
FORTE_NS_ADDRESS environment variable. If you
want your application to be able to switch to a
backup Environment Manager if the primary
Environment Manager fails, you can also specify
multiple name service addresses, as discussed in
“Environment Manager Failover for Partitions” on
page 122.

Starting Central Repository Servers

264 iPlanet Unified Development Server • System Management Guide • August 2001

-p repository_name
/PASSWORD=
master_password

(Standard repositories only) The master password
for the repository. If no password existed before, this
master password is set for the repository. If a
password did exist before, then this master password
replaces the previous password. This master
password is the master password for the repository
until the password is again changed using this flag.

If you specify the -p flag with a secure repository,
this flag is ignored.

-fm memory_flags
/MEMORY=
memory_flags

Specifies the space to use for the memory manager.
See “-fm Flag (Memory Manager)” on page 375 for
syntax information. If you do not set the memory
flags, iPlanet UDS uses defaults appropriate for the
operating system. On UNIX, you must specify the
memory flags in double quotes.

-fst integer
/STACK=integer

The thread stack size in bytes for iPlanet UDS and
POSIX threads. See “-fst Flag (Stack Size)” on
page 378 for syntax information. This specification
overrides default stack size allocation.

-fl logger_flags
/LOGGER=
logger_flags

Specifies the logger flags to use for the command. See
“-fl Flag (Log Manager)” on page 371 for information
about the syntax for specifying logger flags. If you do
not set the logger flags in the rpstart command,
iPlanet UDS uses the value of the
FORTE_LOGGER_SETUP environment variable. On
UNIX, you must specify the logger flags in double
quotes.

-scm source_code_manager
/SOURCE_CODE_MANAGER=
source_code_manager

Specifies the name of the service object to use as the
source code manager. The name of the service object
is in the format appname/projname/svcobjectname. For
more on iPlanet UDS source code management, see
iPlanet UDS Programming Guide.

Flag Purpose

Stopping Central Repository Servers

Chapter 8 Managing iPlanet UDS Development Repositories 265

Stopping Central Repository Servers
You need to stop a repository server to perform maintenance on a central
repository or at any time you want to make the central repository temporarily
unavailable.

You can stop a central repository server by:

• using the rpstop command, described in this section

• using the Shutdown command on the RpServer agent, which is described in
“Shutting Down Repository Servers” on page 290

rpstop Command
The rpstop command stops a repository server. If there are active users of the
repository server, this command will not stop the server unless you include the
optional -k flag.

The syntax is:

Portable (all platforms)
rpstop -n repository_server_name [-fns name_server_address]

[-k] [-fm memory_flags] [-fst integer] [-fl logger_flags]

OpenVMS
VFORTE RPSTOP

[/SERVER_NAME=repository_server_name]
[/NAMESERVER=name_server_address]
[/KILL]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]

The following table describes the rpstop command flags:

Flag Purpose

-n repository_server_name
/SERVER_NAME=
repository_server_name

The repository server to stop. You must specify the repository
server name that was assigned to the server when it was
started with the rpstart command.

Maintaining Repositories

266 iPlanet Unified Development Server • System Management Guide • August 2001

Maintaining Repositories
Because development repositories contain all of your organization’s development
work, it is essential that you maintain them properly. Maintaining a repository
entails three basic tasks:

• compact the repository

• back up the repository, and restore it when necessary

• improve repository performance

-fns name_server_address
/NAMESERVER=
name_server_address

Specifies the name service address for the environment in
which this application will run. This value overrides the
value, if any, specified by the FORTE_NS_ADDRESS
environment variable. If you want your application to be able
to switch to a backup Environment Manager if the primary
Environment Manager fails, you can also specify multiple
name service addresses, as discussed in “Environment
Manager Failover for Partitions” on page 122.

-k
/KILL

If there are active users of the repository server, the server is
forced to stop anyway. The default is to give an error and
reject the shutdown if there are active sessions.

-fm memory_flags
/MEMORY=
memory_flags

Specifies the space to use for the memory manager. See “-fm
Flag (Memory Manager)” on page 375 for syntax information.
If you do not set the memory flags, iPlanet UDS uses defaults
appropriate for the operating system. On UNIX you must
specify the memory flags in double quotes.

-fst integer
/STACK=integer

The thread stack size in bytes for iPlanet UDS and POSIX
threads. See “-fst Flag (Stack Size)” on page 378 for syntax
information. This specification overrides default stack size
allocation.

-fl logger_flags
/LOGGER=
logger_flags

Specifies the logger flags to use for the command. See “-fl Flag
(Log Manager)” on page 371 for information about the syntax
for specifying logger flags. If you do not set the logger flags in
the rpstop command, iPlanet UDS uses the value of the
FORTE_LOGGER_SETUP environment variable. On UNIX,
you must specify the logger flags in double quotes.

Flag Purpose

Maintaining Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 267

Compacting a Repository
Because a central repository stores the incremental saved work of multiple
developers, the size of the repository can grow quite rapidly. The rpclean
command allows you to reclaim unused space and shrink the repository database
files. You should use rpclean to compact the repository on a regular basis. If your
repository is heavily used and is growing very large, you can even compact it every
night.

Although private repositories do not store the work of multiple developers, you
may wish to compact them. However, if the private repository is on a Windows 95
platform, you must first copy it to a UNIX, Windows NT, or VMS machine to run
rpclean on it.

Quick vs. full optimizing With the rpclean command, you can perform either a
quick space reclamation, using the command’s -q option, or a full reclamation. A
quick reclamation uses the repository’s data manager to recover space, while a full
reclamation deletes all unused components from the repository. A quick
reclamation therefore recovers a smaller amount of space than a full reclamation,
but completes in a fraction of the time. For example, on a large repository (300 MB
or more), a quick reclamation takes usually only a few minutes, while a full
reclamation may take a minimum of three times longer.

Before using rpclean During a full reclamation, iPlanet UDS deletes any
components in the repository that are not included in any workspaces or in the
system baseline. Therefore, it is a good idea to delete any obsolete workspaces
before giving the rpclean command. This way, iPlanet UDS can reclaim the space
used by components that are only in obsolete workspaces. In addition, it is a good
idea for all developers to update their workspaces before you optimize the
repository. When the workspaces are up to date with the system baseline, rpclean
will be able to reclaim more space. See A Guide to the iPlanet UDS Workshops for
information about workspaces and the system baseline.

The following are some basic rules of thumb for optimizing space reclamation.

➤ To optimize space reclamation before using the rpclean command

1. Delete all unneeded workspaces.

2. Delete all unneeded projects.

3. Have developers update and/or integrate as many workspaces as possible.

4. Have developers leave as few components checked out or branched as
possible.

Maintaining Repositories

268 iPlanet Unified Development Server • System Management Guide • August 2001

Note that none of these rules are necessary for correct functioning of the rpclean
command. They simply allow the utility to reclaim more space.

rpclean Command

Stopping and starting the repository server Before using rpclean on a central
repository, you must stop the repository server using the rpstop command. If
developers wish to continue working while the central repository is down, they
can detach their shadows and work in detached mode until the compaction is
complete. When the compacting is complete, you must restart the repository server
using the rpstart command.

The syntax for the rpclean command is:

Portable
(all platforms)
rpclean -fr repository_name [-t temporary_directory_name] [-q]

[-fm memory_flags] [-fst integer] [-fl logger_flags]

OpenVMS
VFORTE RPCLEAN

/REPOSITORY=repository_name
[/TEMPORARY=temporary_directory_name]
[/QUICK]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]

The following table describes the rpclean command’s flags:

Flag Purpose

-fr repository_name
/REPOSITORY=
repository_name

Specifies the central repository name for the rpclean
command to compact.

Maintaining Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 269

-t temporary_directory_name
/TEMPORARY=
temporary_directory_name

Specifies where temporary files used by the rpclean process
are placed. This directory should have free space equal to
about 1/8 the size of the repository being compacted. By
default, all temporary files are stored in the
FORTE_ROOT/repos directory.

These temporary files can be as large as10 MB larger than
the size of the index file (.btx) for your repository, so you
might want to place them on a storage disk other than the
one you are using for your central repository. This directory
must be on a local device, not NFS-mounted. Also, this
directory should not be cleared automatically during
initialization, like /tmp, because the B-tree transactional log
file is also stored in this directory, and you would need this
file to recover the repository if the machine abnormally shut
down.

-q
/QUICK

Perform a quick compaction of the repository, recovering
space using the repository’s data manager but not deleting
unused project components from the repository.

-fm memory_flags
/MEMORY=
memory_flags

Specifies the space to use for the memory manager. See “-fm
Flag (Memory Manager)” on page 375 for syntax
information. If you do not set the memory flags, iPlanet UDS
uses defaults appropriate for the operating system. On
UNIX you must specify the memory flags in double quotes.

-fst integer
/STACK=integer

The thread stack size in bytes for iPlanet UDS and POSIX
threads. See “-fst Flag (Stack Size)” on page 378 for syntax
information. This specification overrides default stack size
allocation.

-fl logger_flags
/LOGGER=
logger_flags

Specifies the logger flags to use for the command. See “-fl
Flag (Log Manager)” on page 371 for information about the
syntax for specifying logger flags. If you do not set the
logger flags in the rpclean command, iPlanet UDS uses the
value of the FORTE_LOGGER_SETUP environment
variable. On UNIX, you must specify the logger flags in
double quotes.

Flag Purpose

Maintaining Repositories

270 iPlanet Unified Development Server • System Management Guide • August 2001

Backing up Repositories
Usually the system manager is only responsible for maintenance of the central
repositories. Typically, application developers will back up their own shadow and
private repositories. However, this section provides information on how to back up
and restore all three kinds of repositories so that you can provide assistance
whenever necessary.

Always test your backup repository before assuming it was copied correctly. See
that it can be opened, that it contains the proper workspaces, and so on. Only when
it has passed those tests is it safe to remove the repository it was copied from.

If the repository also has a .btb file, do one of the following:

• Recover the repository by opening the repository, then copy its .btd, .btx, and
.rop files.

• Copy the .btx, .btd, .btb, and .rop files to the new location, then recover the
repository by opening it.

Backing up Central Repositories
Because the central repository contains the work of multiple developers, you
should back it up on a very regular basis. We recommend that you do so daily, if
possible.

There are two ways to back up a central repository:

• Use the rpcopy command to make a copy of the repository, and then copy the
B-tree files to another physical disk or tape.

The disadvantage of this technique is the rpcopy command takes some time to
run. Also, the .rop file is not automatically backed up by the rpcopy command.

Other developers can be using a central repository during the rpcopy, so long
as they are all connected read-only and the rpserver is running. If the rpserver
is running, specify the repository server name (for example,
“CentralRepository”) as the -s flag to rpcopy. Otherwise, specify the
repository file name (for example, “bt:centralrepository”) as the -s flag to
rpcopy.

For information about rpcopy, see “rpcopy Command” on page 255.

• Use your operating system copy commands to copy the repository files
directly onto another physical disk or tape. No other program can be using the
repository, even read-only, while you are backing the files up this way.

Maintaining Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 271

Before backing up a central repository, you must stop the repository server
using the rpstop command (as described in “rpstop Command” on page 265).
The repository server must not be running at the time you backup the
repository files. If another program has the repository open during the backup,
the resulting copy is likely to be completely unusable.

If you stop the repository server to make the backup copy, and developers
want to continue working while the central repository is down, they can detach
their shadows and work in detached mode until the backup is complete. When
the backup is complete, you must restart the repository server using the
rpstart command (as described in “rpstart Command” on page 262).

This technique is faster than using rpcopy.

If you try to use the repository without letting iPlanet UDS recover the repository
with the information in the .btb file, your repository will be in an unknown state.

Shadow repositories are not copied along with the central repository; therefore you
cannot restore them. After restoring the central repository, you must delete all the
shadow repositories associated with it. The developers will need to create the new
shadows that they need.

Backing up Shadow Repositories
When a developer works in a detached shadow, the work she does locally is not
backed up in the central repository. If she runs out of disk space or has a problem
with her local disk, her work in the detached shadow could become corrupted.
Therefore, she should backup her changes in the detached shadow by doing one of
the following:

• Use the Utility > Backup Repository... command of the Repository Workshop.

• Make copies of the shadow B-tree files using operating system commands to
copy the B-tree .btd and .btx files.

• Export the plans or components to a file using the iPlanet UDS Workshops.

If you try to use the repository without letting iPlanet UDS recover the repository
with the information in the .btb file, your repository will be in an unknown state.

NOTE Remember to always back up the .rop repository file. This file
contains important repository information that can help to diagnose
problems in the central repository.

Maintaining Repositories

272 iPlanet Unified Development Server • System Management Guide • August 2001

To backup the detached shadow by copying the B-tree files, use your operating
system to copy the shadow’s .btd and .btx files. To restore a detached shadow,
copy the backup files into the original location.

Backing up Private Repositories
To backup a private repository, do one of the following:

• Use the Utility > Backup Repository... command of the Repository Workshop.

• Make copies of the B-tree files using operating system commands to copy the
B-tree .btd and .btx files.

• Use rpcopy to back up a private repository. You must be the only one using a
private repository when you back it up this way. For information about
rpcopy, see “rpcopy Command” on page 255.

To restore a private repository, copy the backup files to the original locations.

Improving Repository Performance
There are several steps you can take to improve the performance of a central
repository:

• ensure that developers use shadow repositories

• tune the central repository server environment

• reduce repository overhead

• keep shadows efficient

• use multiple repositories

• use detached shadows

Each of these topics is described below.

Shadow Repositories
Each developer who uses a shadow helps to reduce the load on the repository
server, which improves performance for all developers accessing the repository.
An attached shadow serves as a persistent cache—objects fetched when using an
attached shadow are cached, resulting in much higher performance on subsequent
references. Without shadows, every object reference results in a fetch from the
central repository, which dramatically reduces the performance of the central
repository.

Maintaining Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 273

Tuning the Central Repository Server Environment
If the repository server is not allocated sufficient CPU and disk I/O resources, its
performance suffers. Therefore, it is a good idea to minimize the number and size
of other processes running on the node where the repository server is running.
Especially during the tuning process, exclude other resource intensive activity, for
example, RDBMS servers, iPlanet UDS partitions, and so on.

Excluding nodes Exclude the node where the repository server is running when
you test configurations in simulated environments. For information on excluding
nodes from a configuration, see A Guide to the iPlanet UDS Workshops. After you
establish your baseline performance, you can consider adding processes on the
repository server node and measure the impact.

To reduce the repository’s size and improve response time, regularly use rpclean,
iPlanet UDS’s utility to compact the central repository. To decide how often to
invoke rpclean, consider that rpclean performs two jobs: it removes from the
repository objects no longer in use, and it compresses objects. When you invoke
rpclean with the -q flag, rpclean performs only the compression step, which is
faster than performing both tasks.

Monitoring disk consumption and reserving the space necessary to perform
rpclean are critical components in managing your iPlanet UDS development
environment.

BtreeCache agent To improve the performance of a B-tree central repository,
increase the size of the B-tree cache by increasing value of the TotalPages
instrument on the BtreeCache agent. For information about the BtreeCache agent,
see Escript and System Agent Reference Guide.

Reduce Repository Overhead
Updating a workspace is an expensive operation and should be done only when
there is a need to update the workspace with changes integrated by another
developer. Updating may require the entire workspace to recompile and cause a
subsequent detach of your shadow to take longer.

Compiling the workspace Compiling the entire workspace before integrating it
improves performance for a number of reasons. The system baseline will contain
fully compiled code, and subsequent workspace updates will access fully compiled
code, greatly reducing the number of compilations needed. Since the result of those
compilations are written to the repository, this lowers repository traffic as well.

Maintaining Repositories

274 iPlanet Unified Development Server • System Management Guide • August 2001

Using Shadows Efficiently
The most efficient way to use an attached shadow is to turn off the Save Commits
to Central check box in the Repository Workshop Preferences dialog. With this
option turned off, iPlanet UDS saves changes to the shadow until either you
request that iPlanet UDS save them to the central repository or when iPlanet UDS
performs a large operation like integrating a workspace.

Using an attached shadow repository without always committing to the central
repository provides performance similar to that of detached shadows, while letting
you access the central repository to check out components and include plans.
However, because your changes are more secure in the central repository than in a
shadow, you should only use this option when performance is an important
consideration.

Delete attached shadows after committing changes to the central repository. Before
deleting detached shadows, re-attach them to the central repository to commit
changes to the central repository. After you delete the shadow, connect to the
central repository and create a new shadow.

To cache all the objects at once, detach your shadow. You can immediately
re-attach to the central repository, if you wish.

NOTE Replace your shadow regularly. You cannot perform an rpclean on
a shadow, and it eventually get large and slow. In general, replace
your shadow every two weeks of heavy development, or when you
notice that response is getting slow.

NOTE A shadow’s performance depends on what proportion of the central
repository is cached in the shadow—the larger the proportion, the
better the performance. When you create a new shadow, it is
essentially empty. The shadow normally becomes incrementally
more efficient as objects are copied from the central repository into
the shadow as you access objects through workspaces open on the
repository.

Maintaining Repositories

Chapter 8 Managing iPlanet UDS Development Repositories 275

Using Multiple Repositories
This section lists some guidelines for using multiple repositories.

➤ To use multiple development repositories for an application

1. Organize the plans of the application into sets.

For example, divide the application so that the projects for the window classes
are in one set, and the projects for the database access classes are in another set.

2. Organize the developers into teams based on the sets.

3. Designate a central repository as the master repository for each set of projects,
which contains the master copies of the projects.

For example, the master copies of the projects containing the window classes
for an application might be in one repository, and the master copies of the
projects containing the database access classes night be in another repository.

Only make changes to the projects in the master repository for the set.

4. Other repositories that contain copies—or snapshots—of these projects are
considered slave repositories. Ensure that these snapshots are read only in the
slave repositories.

Each central repository is the master for some projects and possibly the slave
for others. To avoid losing changes when the slaves are updated, ensure that
changes are made only to the appropriate master repository. The development
team must enforce this policy.

To ensure that a snapshot of a project cannot be changed, you can deploy the
project from the master repository as a library, then import the generated .pex
file for the library in the slave repositories. For more information about
deploying libraries and importing their information into other repositories, see
A Guide to the iPlanet UDS Workshops.

5. Update the project snapshots regularly.

➤ To update project snapshots

1. Update a workspace in the master repository to the system baseline using the
File > Update Workspace command in the Repository Workshop, or the Fscript
UpdateWorkspace command.

2. Export updated projects to flat files, using the Plan > Export command in the
Repository Workshop or the Fscript ExportPlan command.

Maintaining Repositories

276 iPlanet Unified Development Server • System Management Guide • August 2001

3. In the slave repository, check out all components of each project being
updated, using the Plan > Checkout All Components command in the Project
Workshop or the Fscript CheckoutAllComps command.

4. In a workspace of the slave repository, import each exported project using the
Plan > Import command in the Repository Workshop or the Fscript
ImportPlan command.

5. Integrate the workspace using the File > Integrate Workspace command in the
Repository Workshop or the Fscript IntegrateWorkspace command.

6. Update other workspaces in the slave repositories to get the new version of
that project.

The Repository Workshop is described in A Guide to the iPlanet UDS Workshops.
Fscript commands are described in Fscript Reference Guide.

Using Detached Shadow Repositories
The caching performed by an attached shadow repository can significantly reduce
the load on the central repository.

Attached shadows are short-term caches. If the Save Commits to Central option of
the Repository Workshop Preferences dialog is turned on, iPlanet UDS writes
everything written to the shadow into the central repository when you commit
your changes. If this option is turned off, iPlanet UDS writes these changes to the
central repository only when you do one of the following:

• Use the Utility > Commit To Central command in the Repository Workshop.

• Exit the Repository Workshop, and are prompted to commit your changes.

• Update or integrate the workspace using the File > Update Workspace or
Integrate Workspace commands in the Repository Workshop, or the Fscript
UpdateWorkspace or IntegrateWorkspace commands.

However, detached shadows only access the central repository during attach and
detach operations, so the interaction with the central repository is much less.

The following are guidelines for successfully using detached shadows:

• Divide the application’s components into autonomous sets, with each set
owned by a single developer. The more insulated a developer is from other
developer’s changes, the less need there is to check out, update, and integrate
(and therefore attach). Attaching and detaching are expensive operations and
should be minimized.

Maintaining a Secure Repository

Chapter 8 Managing iPlanet UDS Development Repositories 277

• Prevent several developers from attaching or detaching at the same time,
which creates slow repository performance. You might want to schedule when
developers attach or detach.

• You can create up to 50 new projects in a detached shadow during the time that
it is detached. When you reattach the shadow, the new projects are flushed to
the central repository. If you then detach the shadow, you can again create up
to 50 more new projects in that shadow before you need to reattach the
shadow.

• Encourage developers to check out all components they need before detaching.
They cannot check out anything while detached. Checking out what they need
up front saves them from having to re-attach and detach again. Note that it is
possible to branch a component while detached; developers can convert the
branches to check outs after re-attaching as long as the components are
available to be checked out.

• Have the developers back up their detached shadows regularly. (Attached
shadows cannot be backed up, but should be flushed regularly to the central
repository.) Detached shadows, on the other hand, are the only places that
contain all the work done since detaching, and should thus be backed up
regularly. Shadows are B-tree repositories, which are two files
(shadowname.btd and shadowname.btx).

Backing up the repository is as simple as copying the files to another directory.
It is preferable to copy the file to a directory on a different disk to protect
against crashes. B-tree repositories are architecture-independent, so they can
be copied from a PC to a UNIX machine, for example. If you are using a file
transfer utility, do a binary transfer (not ASCII).

The Repository Workshop is described in A Guide to the iPlanet UDS Workshops.
Fscript commands are described in Fscript Reference Guide.

Maintaining a Secure Repository
This section explains how to maintain secure repositories that you have created
using the rpcreate command with the -secure flag (described in “rpcreate
Command” on page 253) or the rpcopy command (described in “rpcopy
Command” on page 255).

Maintaining a Secure Repository

278 iPlanet Unified Development Server • System Management Guide • August 2001

Creating New Workspaces in a Secure
Repository
To create a new workspace for a secure repository, you need to specify the
administrator password.

➤ To create a new workspace in a secure repository using the Repository
Workshop

1. Choose the File > New Workspace command.

2. In the New Workspace dialog, specify the workspace name, the administrator
password, and the workspace password.

3. Click the OK button to create the workspace.

➤ To create a new workspace in a security repository using Fscript

Enter the NewWorkspace command, using the following syntax:

NewWorkspace workspace_name [initial_password [admin_password]]

For example, to create a new workspace using the Fscript NewWorkspace command
on a secure repository, specify the following command:

NewWorkspace PrivateWorkspace mysecret123 pwadmin8

Argument Description

workspace_name The name of the new workspace to create. This name must not be
the name of an existing workspace in the current repository.

initial_password The initial password for the workspace.

If the current repository is a secure repository, you must specify an
initial password.

If the current repository is a standard repository, a workspace
password is not required.

admin_password The administrator password for the current repository.

In a secure repository, you must specify the administrator
password.

In a standard repository, do not specify this password. This
password is ignored if you specify it.

Maintaining a Secure Repository

Chapter 8 Managing iPlanet UDS Development Repositories 279

Changing Passwords in a Secure Repository
You can change the administrator, baseline, and workspace passwords in either the
Repository Workshop or in Fscript. However, you can only change the master
password in Fscript.

In the Repository Workshop
All the commands for changing passwords are in the Repository Workshop, as
shown:

Administrator password To change the administrator password on the current
repository, click the File > Set Administrator Password command. You need to
specify the existing password and enter the new password twice.

Baseline password To change the baseline password on the current repository,
choose the File > Set Baseline Password command. You need to specify the existing
password and enter the new password twice.

NOTE You cannot change the master password for a secure repository
using the rpstart -p flag.

Maintaining a Secure Repository

280 iPlanet Unified Development Server • System Management Guide • August 2001

Workspace password To change the password for the current workspace, choose
the File > Set Workspace Password command. You need to specify the existing
password and enter the new password twice.

In Fscript
To change the master, administrator, baseline, or workspace passwords, use the
SetPassword command:

SetPassword password_type new_password [current_password]

The password_type argument specifies whether the kind of password you are
setting for your current repository or for your workspace. You can set the current
repository using the SetRepos command. You can set the current workspace using
the SetWorkspace command.

password_type can have one of the following values:

Argument Description

password_type The type of password you are setting.

new_password The new password you are setting for the repository or workspace.

current_password The current password for the repository or workspace.

password_type value Description

admin For a secure repository, sets a password for creating workspaces
and copying the repository. You cannot set this password for a
standard repository.

baseline Sets a password for integrating a workspace into the system
baseline in the current repository.

master Sets a master password for the repository, which allows complete
access to the repository.

workspace Sets a password for accessing the current workspace.

Using Repository Agents

Chapter 8 Managing iPlanet UDS Development Repositories 281

The new_password argument specifies the new password for the repository or
workspace. A legal password is a string of 7-bit ASCII characters, of any length
with no spaces. In a secure repository, a non-null password is required. In a
standard repository, you can remove a password by specifying a null string, as
shown in the following example:

SetPassword workspace ‘’ secretpassword

The current_password argument specifies the current password that is being
replaced by the new password. If a password is being set for the first time, then this
value is not required.

If you want to set the administrator password for a repository that is a standard
repository, you need to convert the repository to a secure repository using the
rpcopy command, as described in “Making a Standard Repository a Secure
Repository” on page 261.

Using Repository Agents
This section introduces iPlanet UDS system agents that you can use to monitor and
control the repository server for a central repository. These agents, their
commands, instruments, and positions in the agent hierarchy are described in
detail in Escript and System Agent Reference Guide:

BtreeCache Corresponds to the cache used with the B-tree central repository to
improve repository performance.

BtreeRepository Corresponds to the B-tree repository data files.

ObjectCache Corresponds to the object cache used by a repository session (see
“Repository sessions” on page 245).

Repository Corresponds to a read-write repository, such as a central, shadow, or
node repository.

RepositoryServer Corresponds to a running repository server partition.

RepositoryServerInfo Provides information about a running repository server.

RepositorySession Corresponds to a repository session.

This section explains how the agents are related and how you can use them to
monitor and control your central repositories.

Using Repository Agents

282 iPlanet Unified Development Server • System Management Guide • August 2001

How the Agents are Related
This section explains how you can locate repository server agents and navigate
through their agent hierarchy.

Finding Running Repository Servers and Their Agents
There is a RepositoryServerInfo agent for each repository server that is running in
the current environment. The RepositoryServerInfo agent is a place holder for
information about the running repository server and is a subagent of the
Environment agent, as shown in Figure 8-1.

Figure 8-1 Locating information about running repository servers

➤ To find the RepositoryServerInfo agent for a repository server

1. Open the Application View, using the View > Application Outline command
in the Environment Console Active Environment window.

2. Look for the desired RepositoryServerInfo agent.

Each RepositoryServerInfo agent’s name contains the name of the repository
server in the format “RpServerInfo_repository_server_name.” For example, the
RepositoryServerInfo agent for the CentralRepository repository server is
“RpServerInfo_CentralRepository.”

This agent has instruments that provide information about the node on which the
repository server is running, the name of the repository, and the time that the
repository server started, as shown in the following figure:

Environment
Agent

NameService
Agent

RepositoryServerInfo
Agent

Application
View

RPServerInfo_repository_server_name

Application
Agent

Node
Agent

Using Repository Agents

Chapter 8 Managing iPlanet UDS Development Repositories 283

Figure 8-2 RepositoryServerInfo agent in the Application View

This agent has no subagents, however, you can use the information in this agent to
locate the other repository agents. For example, the RepositoryServerInfo agent
shown in Figure 8-2 identifies a node name of “MIMI” and a repository name of
“bt:central”. You can then navigate to the Node agent that represents the node
“MIMI” to locate the agents that represent the running repository server.

Navigating Through the Repository Agents
Each repository server has a corresponding RepositoryServer agent and its
subagent hierarchy. The following repository agents are subagents of this
RepositoryServer agent, as shown in Figure 8-3:

BtreeCache Corresponds to the cache used with the B-tree central repository to
improve repository performance. For information about the commands and
instruments available for this agent, see Escript and System Agent Reference Guide.

Using Repository Agents

284 iPlanet Unified Development Server • System Management Guide • August 2001

Repository Corresponds to the repository being served. For information about
the commands and instruments for this agent, see Escript and System Agent
Reference Guide.

BtreeRepository Corresponds to the B-tree repository data files. This agent is a
subagent of a Repository agent. For information about the commands and
instruments for this agent, see Escript and System Agent Reference Guide.

Figure 8-3 Agents for a central repository server

➤ To find the agents for a repository server

1. Open the Node Outline view, using the View > Node Outline command.

2. Find the node on which the repository is running, based on the information in
the RepositoryServerInfo agent (see “Finding Running Repository Servers and
Their Agents” on page 282).

In Figure 8-2, the CentralRepository repository server is running on the node
“MIMI.”

Environment
Agent

NameService
Agent

RepositoryServer
Agent

RPServer_repository_server_name

Node
View

Repository
Agent

Ad hoc Partition
Agent

BtreeRepository
Agent

BtreeCacheAgent
Agent

Repository_Server_nodename

Application
Agent

Node
Agent

Using Repository Agents

Chapter 8 Managing iPlanet UDS Development Repositories 285

3. Click the expansion arrow to see the subagents of the Node agent.

4. Find the ad hoc partition agent that has a name of the format
“Repository_Server_nodename.”

This agent represents the iPlanet UDS ad hoc partition for all repository server
instances running on the node. (An ad hoc partition is the equivalent of an
installed partition for iPlanet UDS system applications.)

5. Double-click this agent to open another window that shows RepositoryServer
agents for any repository servers running on the node.

RepositoryServer agent names end in “RpServer_repository_server_name.”

6. Click the expansion arrows to see all the RepositoryServer subagents, as shown
in Figure 8-4.

The RepositoryServer agent whose name ends “RpServer_CentralRepository”
represents the repository server called CentralRepository.

Figure 8-4 Repository Agent Hierarchy for CentralRepository Central Server in Node
Outline View

Using Repository Agents

286 iPlanet Unified Development Server • System Management Guide • August 2001

Finding Information about Locked Workspaces
The RepositoryServer agent has a LockedWorkspaces instrument that contains
information about the workspaces in the repository that are currently locked. In
other words, these workspaces have been opened in read-only or read-write mode.

➤ To see the LockedWorkspaces instrument

1. Locate the RepositoryServer agent, as described in “Navigating Through the
Repository Agents” on page 283.

2. Double-click the RepositoryServer agent to open a new window for that agent.

3. Choose the File > Instruments command in the new window to display all the
instruments of the RepositoryServer agent.

4. Click the expansion arrow on the LockedWorkspaces instrument to see a list of
locked workspaces.

Each workspace contains information about the node that has locked the
workspace, and indicates whether the lock is read-only or read-write mode. For
more information about the RepositoryServer agent and its instruments, see Escript
and System Agent Reference Guide.

Using Repository Agents

Chapter 8 Managing iPlanet UDS Development Repositories 287

Finding Information about Global Locks
The RepositoryServer agent has a GlobalLocks instrument that contains
information about any global locks on the repository. This agent identifies the
workspace that holds the lock, the type of lock, and the operation that is holding
the lock, such as integrating or updating activities.

➤ To see the GlobalLocks instrument

1. Locate the RepositoryServer agent, as described in “Navigating Through the
Repository Agents” on page 283.

2. Double-click the RepositoryServer agent to open a new window for that agent.

3. Choose the File > Instruments in the new window to display all the
instruments of the RepositoryServer agent.

4. Click the expansion arrow on the GlobalLocks instrument to see a list of global
locks on the centralrepository.

For more information about the RepositoryServer agent and its instruments, see
Escript and System Agent Reference Guide.

Using Repository Agents

288 iPlanet Unified Development Server • System Management Guide • August 2001

Finding Information about Repository Sessions
You can find information about repository sessions opened by a client application
of a repository server, such as the Repository Workshop, using the following
agents:

RepositorySession Corresponds to a repository session for the client application
connected to a repository server. For information about the instruments available
for this agent, see Escript and System Agent Reference Guide.

ObjectCache Corresponds to the object cache used by a repository session. A
subagent of a RepositorySession agent. For information about the instruments
available for this agent, see Escript and System Agent Reference Guide.

Figure 8-5 shows the hierarchy of parent and subagents for agents that describe a
repository session:

Figure 8-5 Agents for a repository session

Environment
Agent

NameService
Agent

Active Partition
Agent ClientAppname_processID

Node
View

RepositorySession
Agent

Ad hoc Partition
Agent

ObjectCache
Agent

ClientAppname_nodename

Application
Agent

Node
Agent

Partitionname_RPSession_number

Using Repository Agents

Chapter 8 Managing iPlanet UDS Development Repositories 289

If a client node does not have a Node Manager application (such as the
Environment Console, Escript, or the Launch Server) running, then you cannot
access the Active Partition agents to monitor the repository sessions running on
that node.

➤ To locate the repository session agents of a client application

1. Open the Node Outline view, using the View > Node Outline command.

2. Find the node that is running the repository session.

3. Click the expansion arrow to see the subagents of the Node agent.

4. Find the ad hoc partition agent that has a name of the application that started
the repository session, for example, “Forte_cl0_Client_mimi” in Figure 8-6.
Click the expansion arrow to see its subagents.

Figure 8-6 Agents for Repository Sessions in Node Outline View

Using Repository Agents

290 iPlanet Unified Development Server • System Management Guide • August 2001

5. Find the Active Partition agent for the application that started the repository
session, for example, “Forte_cl0_Client_0x711:0x6” in Figure 8-6. Click the
expansion arrow to see its subagents.

6. Find the RepositorySession agents. These agents have names with the format
“active_partition_name_RpSession_number.”

This agent has instruments that identify the repository name, the type of
connection, and the workspace name.

7. Click the expansion arrow for the RepositorySession agents to locate the
ObjectCache agent that is the subagent of the RepositorySession agent.

This agent has instruments that describe how efficiently the repository session
is caching objects.

Shutting Down Repository Servers
You can shut down the repository server by using the Shutdown command on the
following agents:

Ad hoc partition agent for all repository server partitions on a node Shuts
down all the repository servers running on that node. This agent is a subagent of
the Node agent, with the name “Repository_Server_nodename.”

RepositoryServer agent Stops just the repository server managed by that agent.
This agent is a subagent of the ad hoc partition agent
“Repository_Server_nodename.”

RepositoryServerInfo agent Stops the repository server described by this agent.
This agent appears in the Environment Console Application View as a subagent of
the Environment agent.

The Shutdown command stops the repository server only if no repository sessions
are open.

In case of emergency, if you need to stop the repository server even when
repository sessions might be running, use the ForceShutdown command, as
described in Fscript Reference Guide.

291

Chapter 9

Launching iPlanet UDS
Applications and Applets

This chapter describes how to use the Launch Server, an iPlanet UDS service that
enables you to deploy and launch client applications in a easier and more efficient
way than by installing one node at a time.

Topics covered include:

• deploying and managing applets and applications using the Launch Server

• using the iPlanet UDS Launcher (an application that uses the Launch Server to
download and launch applications)

• using the Ftcmd utility

For information about configuring client applications as applets, see A Guide to the
iPlanet UDS Workshops and iPlanet UDS Programming Guide.

For information about writing applications that use the AppletSupport Library to
take advantages of applets and the ability to launch applications, see iPlanet UDS
Programming Guide.

About Launching iPlanet UDS
Applications and Applets

The Launch Server is an iPlanet UDS service that runs on client nodes and starts
iPlanet UDS applets and applications. The Launch Server can run several standard
iPlanet UDS client partitions under the same operating system process, which
enables the applications to start faster and use less memory. It can also ensure that

About Launching iPlanet UDS Applications and Applets

292 iPlanet Unified Development Server • System Management Guide • August 2001

the most recent copy of an application is installed on the client; if it is not, the
Launch Server automatically downloads the newer copy. You can start the Launch
Server directly using the Launch Server icon (Windows 95 and Windows NT) or
the ftlaunch script, which starts the ftlaunch application.

End users can launch their applications by using the iPlanet UDS Launcher, an
iPlanet UDS application that allows end users to start and shutdown applications.
The iPlanet UDS Launcher provides online help for your end users, so that they
will find the application easy to use. Starting the iPlanet UDS Launcher application
starts the Launch Server on the client node.

You can also program your own interface to the Launcher Server, providing your
end users with customized access to your applications. The iPlanet UDS Launcher
application provides an example of how you can write TOOL code that accesses
the Launch Server, and the code for this application is available as the Launcher
sample application.

For system managers, the Launch Server simplifies how client applications are
installed on client nodes. The system manager can set up the client nodes in the
environment so that end users can access the Launch Server. This provides the
following benefits:

Improved performance The Launch Server can run several iPlanet UDS
applications under the same ftexec process and operating system process. When
you start an iPlanet UDS client application through the Launch Server, the
application uses the same set of runtime system objects—including the Log
Manager, the Distributed Object Manager, and others—as the Launch Server.

By using the same process and the same runtime objects as the Launch Server, the
client applications start significantly faster and use less memory than when they
start as separate processes.

These applications also share a trace window with the Launch Server, which means
that all log messages are printed to the same trace window (or log file, if you divert
the trace information to a file). The application ID of the application printing each
log message is added to the beginning of the log message.

NOTE The Launch Server starts and automatically downloads only
standard client partitions.

About Launching iPlanet UDS Applications and Applets

Chapter 9 Launching iPlanet UDS Applications and Applets 293

Files automatically downloaded If you start an application that is assigned to the
client node using the Launch Server, the Launch Server ensures that the most
recent image repositories for the client partition are installed. The Launch Server
compares the creation time and date of the image repository to that in the
environment, and automatically downloads the newer image repository, if needed.

Publicly-available client applications You can define a list of client applications
that are publicly-available, which can be downloaded and run from any client node.
When an end user starts a publicly-available client application, iPlanet UDS
downloads the necessary files, launches the application, then deletes the files when
the application completes.

Ftcmd utility The Ftcmd utility provides a command interface to the Launch
Server. This utility can be run as a command interface to the Launch Server or can
be issued from icons to launch client applications under the Launch Server. You
can also use it access information about available and running applications.

Using any Ftcmd command starts the Launch Server on the client node if the
Launch Server is not already running on that node. By default, iPlanet UDS creates
icons Windows 95 and Windows NT for interpreted client partitions that use the
Ftcmd utility to start the client application through the Launch Server. iPlanet UDS
applications, including the iPlanet UDS Workshops, the Environment Console, and
others, are now started using the ftcmd run command when you invoke them
using the installed icons or scripts.

Applets Using the AppletSupport library, you also can design modular client
applications by specifying parts of the application as applets. Applets are small
applications or application modules that are designed to be started only by other
client applications, not to be started independently. Most deployed client
applications can be used as applets. A Guide to the iPlanet UDS Workshops and
iPlanet UDS Programming Guide describes how to configure client applications as
applets. The AppletSupport library is described in Framework Library online Help.

This chapter describes the Launch Server from two points of view:

• End user, who uses the iPlanet UDS Launcher application, to download and
launch applications. See “About the Launcher Application” on page 294.

• System manager, who deploys applets and applications as assigned or
publicly-available. The system manager defines how and whether an end user
can download and run an application. The system manager also defines icons
that launch applications using the Ftcmd utility. See “Setting up the Launch
Server and Applications” on page 296.

About the Launcher Application

294 iPlanet Unified Development Server • System Management Guide • August 2001

About the Launcher Application
The Launcher application is a TOOL application that is provided as part of the
runtime system on client nodes. An end user can use the Launcher application to
start applications on her machine.

iPlanet UDS provides both an application distribution and the source TOOL code
for the Launcher application. You can customize the Launcher application using
the AppletSupport library. For information about using the AppletSupport library,
see iPlanet UDS Programming Guide and Framework Library online Help. The
Launcher application TOOL code is available in the
FORTE_ROOT/install/examples/frame directory as launcher.pex.

Launcher application uses the Launch Server On UNIX platforms, Windows
NT, and Windows 95, the Launcher application automatically starts the Launch
Server, if the Launch Server is not already running.

The Launcher application uses the services of the Launch Server to display, run,
and shut down applications. Applications started by the Launch Server run in the
same process as the Launch Server, and can be shutdown by the Launch Server.
iPlanet UDS provides the source code for the Launcher as an example. You can
customize this application to suit your needs, as discussed in iPlanet UDS
Programming Guide.

Alternatively, the end user can use icons that invoke commands using the Ftcmd
utility to have the Launch Server start an application. You can define these icons to
have the Launch Server start either assigned or publicly-available client
applications. For more information about defining icons using the Ftcmd utility, see
“Using the Ftcmd Utility” on page 307.

iPlanet UDS Launcher Application
This section describes how the Launcher works from the end user’s perspective.
For specific information about using the windows and controls of the Launcher, see
the online help for the Launcher application.

iPlanet UDS provides a TOOL application, called Launcher, that is installed on an
end user’s machine with the iPlanet UDS runtime system. Figure 9-1 shows the
Launcher:

About the Launcher Application

Chapter 9 Launching iPlanet UDS Applications and Applets 295

Figure 9-1 Launcher

The Launcher application displays the following tab pages, which let the end user
start and shutdown applications using the Launch Server:

User Applications available to the end user. You can start applications from this
window.

iPlanet UDS iPlanet UDS product applications, such as the Environment
Console, the iPlanet UDS Workshops, and so forth, which can be started by the
Launch Server. You can start some of the iPlanet UDS product applications from
this window.

Running Running applications that have been started by the Launch Server. You
can shutdown applications from this window.

Options Shows the options that the user can set when running the Launcher
application.

Launcher online help The online help for the Launcher application (available
through the Help button) provides specific information about using the application
to start and stop applications.

Detail list view

Small icon view

Large Icon view

Setting up the Launch Server and Applications

296 iPlanet Unified Development Server • System Management Guide • August 2001

Starting the Launcher Application
The following table describes how to start the Launcher application on each
platform:

Setting up the Launch Server and Applications
As the system manager for a production environment, you are responsible for the
deployment and maintenance of applications in iPlanet UDS environments.

This section explains how you can use the Launch Server to deploy applications
efficiently to your end users. This section discusses the following topics:

• advantages of using the Launch Server

• restrictions for using the Launch Server

• deploying applications so that they are available to client nodes

• setting up the Launcher and icons so that an end user can start applications
using the Launch Server

• using the ftcmd utility

• installing applications that use applets

Advantages of Using the Launch Server
There are several advantages to setting up client nodes in your environment so that
end users can use the Launch Server:

Improved performance The Launch Server can run several iPlanet UDS
applications under the same operating system process. When you start an iPlanet
UDS client application through the Launch Server, the application uses the same
set of runtime system objects—including the Log Manager, the Distributed Object
Manager, and others—as the Launch Server.

Platform How to Start the Launcher Application

Windows 95 or Windows NT Click the Launcher Distributed or Launcher Standalone
icon.

UNIX Run the launcher script.

Setting up the Launch Server and Applications

Chapter 9 Launching iPlanet UDS Applications and Applets 297

By using the same process and the same runtime objects as the Launch Server, the
client applications start significantly faster and use less memory than when they
start as separate processes.

These applications also share a trace window with the Launch Server, which means
that all log messages are printed to the same trace window (or log file, if you divert
the trace information to a file). The messages from each application start with the
name of that application, as shown:

The Launch Server automatically turns on the trace flag that has the trace messages
start with the name of the application: “cfg:sp:8.” You can turn this trace flag on or
off in other situations, if you wish.

Files automatically downloaded If you use the Launch Server to start an
application that is assigned to the client node, the Launch Server ensures that the
most recent image repositories for the client partition are installed. The Launch
Server compares the creation time and date of the image repository to that in the
environment, and automatically downloads the newer image repository, if needed.

If you start a publicly-available client application, iPlanet UDS downloads the
necessary files, launches the application, then deletes the files when the application
completes.

Restrictions
You can only launch standard (interpreted) client applications using the Launch
Server. Compiled client applications cannot run as part of another process.

The Launch Server downloads only the image repository for the client partition. If
the client partition requires that other libraries be deployed on the client node, you
need to install the libraries separately.

After you start the Launch Server, the working directory for all applications that
are started by the Launch Server is the working directory for the Launch Server.
Because an application cannot predict its working directory, the application itself
and environment variables used by the application should always specify absolute
paths for files.

When the ftexec process for the Launch Server starts, it reads all the environment
variables that are set for the client node. If any environment variables are changed
for the benefit of an application started by the Launch Server, that application can
only see the original value that was set when the Launch Server started.

Setting up the Launch Server and Applications

298 iPlanet Unified Development Server • System Management Guide • August 2001

If you need to have an application pick up an environment variable after the
Launch Server has started, you can do one of the following:

• If the client node has either a running Node Manager or the Launch Server
acting as a Node Manager, start Escript or the Environment Console. Locate
the Active Partition agent for the FTLaunch application, which is named
FTLaunch_cl0_client_processID. Set the environment variables using the
SetEnvRemote command on this Active Partition agent. This command is
described in Escript and System Agent Reference Guide.

• Stop the Launch Server, set the environment variable, and restart the Launch
Server. This action kills all applications and applets started by the Launch
Server.

• Set the environment variable and start the application using the ftexec
command or a compiled executable.

Deploying Applications to Client Nodes
As the system manager, you need to deploy applications so that your end users can
access the appropriate applications on their client nodes.

Assigned or publicly-available applications iPlanet UDS lets you define
whether the client partition of an application (which represents the application on
the client node) are assigned to a node or publicly available. Publicly-available
applications can be downloaded and run from any client node (except Open VMS
clients). When an end user starts a publicly-available client application, iPlanet
UDS downloads the necessary files, launches the application, then deletes the files
when the application completes.

When an application with an interpreted client partition is available to a client
node by being assigned or publicly available, users on the client node can start the
application by using one of the following interfaces to the Launch Server:

• Launcher application, described in “About the Launcher Application” on
page 294

NOTE The trace window for the Launch Server process also serves as the
command-line window for any launched client applications that
have command-line interfaces, such as Escript or Fscript. For this
reason, we recommend that you not launch applications with
command-line interfaces through the Launch Server.

Setting up the Launch Server and Applications

Chapter 9 Launching iPlanet UDS Applications and Applets 299

• ftcmd run command, which is used to define icons, described in “Setting up
Icons or Scripts That Use the Ftcmd Utility” on page 303 and “Using the Ftcmd
Utility” on page 307

Advantages of assigned and publicly available Both assigned and
publicly-available applications have their own advantages when you are using the
Launch Server:

• Assigning applications to specific client nodes is more efficient at runtime
because the files needed to run the application do not need to be downloaded
and deleted whenever the application is run.

• Defining client applications as publicly-available is more flexible and less work
for you, because you do not need to assign the client partition to all possible
nodes or model nodes where the user might want to run the application.

Applications can be both assigned and publicly available. If an application is
assigned to a certain node when the user tries to start it using an interface to the
Launch Server, then the application is considered an assigned application to that
node. If the application is not assigned to that node, and the application is publicly
available, then the application behaves as a publicly-available application for that
node.

Publicly available only If you want a client partition to only be publicly
available, but not assigned to any client node, you need to create a dummy client
node (a node that does not actually correspond to any node in the environment),
and assign the client partition to that node, because a client partition must be
assigned to some node in the environment when you configure your application.

Deploying applets to client nodes Applets are applications with client partitions
that have been deployed as parts of other applications. Applets are deployed in
exactly the same way as other applications, except that no icons are generated for
applets, and applets cannot be started directly by the Launcher application.
Applets can either be explicitly assigned to a client node, or can be publicly
available to all client nodes, just as other applications.

In the following sections—“Assigning Application Partitions to Client Nodes” on
page 300 and “Defining Publicly-Available Applications” on page 301—the term
“application” applies to both applications and applets.

For more information about deploying applets, see “Deploying Applications that
Launch Other Applications and Applets” on page 313.

Setting up the Launch Server and Applications

300 iPlanet Unified Development Server • System Management Guide • August 2001

Assigning Application Partitions to Client Nodes
When you assign the partition of an application to a node or a model node, you
explicitly define what nodes can install and use that partition. Applications
assigned to certain nodes are installed on those nodes, either when you use the
standard iPlanet UDS installation procedure or when the end user starts the
application using the Launch Server. After assigned applications are installed, you
have the choice of starting the applications with the Launch Server or starting them
using ftexec or a compiled executable, as described in “Starting iPlanet UDS
Applications” on page 185.

Assigning the application partition You can assign the client partition of an
application to nodes or model nodes using commands in the Partition Workshop,
Fscript, the Environment Console, and Escript. The steps for assigning partitions
of applications to be started by the Launch Server are the same as for any other
interpreted application. These steps are described in Chapter 5, “Deploying iPlanet
UDS Applications.”

Loading the application distribution You then need to—at minimum—make a
distribution and load the distribution into the environment so that the
environment is aware of the application and its partition assignments. Loading the
distribution is required as the first step of installing the application, so if the
application has been installed in the environment (and can be seen using the
Environment Console or Escript), then you know that the distribution has also
already been loaded. The Launch Server cannot locate an application until the
application distribution has been loaded. See Chapter 5, “Deploying iPlanet UDS
Applications” for information about loading and installing application
distributions.

Automatic install and update of image repositories When the client node runs
the Launch Server, the Launch Server automatically manages the task of installing
the application files for the client partition. When an end user chooses to run an
assigned application—for example, by double-clicking an icon in the Launcher
application—the Launch Server checks that the application image repositories
installed on the client node are as recent as the image repositories installed in the
environment. The Launch Server automatically downloads the newer image
repositories, if necessary.

Assigned server partitions downloaded If the client partition and one or more
server partitions are assigned to a client node that can run server partitions, such as
UNIX with Motif or Windows NT, the Launch Server downloads any assigned
server partitions at the same time it installs the client partition.

Setting up the Launch Server and Applications

Chapter 9 Launching iPlanet UDS Applications and Applets 301

For information about assigning partitions using the Partition Workshop or
Fscript, see A Guide to the iPlanet UDS Workshops or Fscript Reference Guide. For
information about using Escript, see Escript and System Agent Reference Guide.

Defining Publicly-Available Applications
Publicly-available applications are defined as available to any client node, even if
the application is not explicitly assigned to a node or a model node. If an
application is publicly available, but not assigned to a given node, the application
files are downloaded when the user starts the application using an interface to the
Launch Server. The Launch Server deletes the application files when the
application completes.

Both applications and applets can be deployed as publicly available applications.

Client nodes see applications assigned to them as assigned applications, even if
they are publicly available applications for nodes to which they are not assigned.
Therefore, the application will be permanently installed on any node to which it is
assigned.

You cannot start a publicly-available application on a client node unless you use
one of the interfaces to the Launch Server.

Loading the application distribution and installing servers Before anyone can
access a publicly-available application, you need to load the application, then
assign and install the server partitions of the application, if any. You need to load
the distribution into the environment so that the environment is aware of the
application and its partition assignments. The Launch Server cannot locate the
application until the application distribution has been loaded.

Defining what applications are publicly available To control which
applications in the environment are publicly available, you need to edit and
manage the following file provided by iPlanet UDS:

$FORTE_ROOT/install/scripts/pubaplts.inf

The copy of the file that controls what applications are publicly available is in the
FORTE_ROOT directory on the node where the Environment Manager is running.
The account or user that runs the Environment Manager must have read
permission on this file. Any changes to this file take affect immediately, the next
time the Launch Server needs to check the file.

Setting up the Launch Server and Applications

302 iPlanet Unified Development Server • System Management Guide • August 2001

The following table explains how to define what applications are publicly
available:

In the FORTE_ROOT/install/scripts/pubaplts.inf file on the node where the
Environment Manager is running, enter the application identifiers as text lines in
the following format:

application_name[_cl#]

The application_name is not case-sensitive.

The following example shows how you could specify these applications:

Specifying just the application name, as with Banking in the above example, makes
only the most recent release of the application publicly available.

Specifying both the application name and release, such as TimeIt_cl4, makes that
specific release of the application publicly available. To make multiple releases of
an application publicly available, you need to specify each application release
separately, such as Accounting_cl0, Accounting_cl1, and Accounting_cl2.

Publicly Available Applications Status of the pubaplts.inf file

No applications The default. This file is present but empty.

All applications Delete the file completely.

If you later want to specify no or some applications as
publicly available, you need to recreate this file.

Some applications Define the list of applications, as described below.

TestApplication_cl0
TimeIt_cl4
Banking

Setting up the Launch Server and Applications

Chapter 9 Launching iPlanet UDS Applications and Applets 303

Setting up Icons or Scripts That
Use the Ftcmd Utility
In previous releases, iPlanet UDS generated icons for client partitions that start the
application as a separate process in the client node’s operating system.

iPlanet UDS now generates icons that use the ftcmd run utility to start the
applications.

Windows platforms iPlanet UDS, generates icons on the Windows platforms
that start the installed client partition using the Launch Server. These icons specify
ftcmd run commands that have the Launch Server run the specified application.

UNIX On the UNIX platforms, you can define scripts or aliases that start client
partitions using the ftcmd run command.

For example, if you assign the client partition of the TimeIt example to a Windows
client node and install the application on this node, the Command field of the
Properties dialog for the icon would contain the following line:

ftcmd run TimeIt

The generated icons contain the ftcmd run command with the application name
without the compatibility level.

You can also define icons that have the Launch Server start a client partition by
using the following command syntax with the icons:

ftcmd run application_name [release] [arguments] [update]

For information about using this command, see “run” on page 311.

Generating icons with ftexec commands To have iPlanet UDS generate icons
that start applications using the ftexec command, set the following configuration
flag on each client node where you want this type of icon generated:

cfg:em:2

Set this configuration flag in either the Log Flags tab page of the iPlanet UDS
Control Panel or the FORTE_LOGGER_SETUP environment variable. This
configuration flag must be set before a Node Manager or a Launcher Server acting
as Node Manager is started on the client node.

NOTE The Ftcmd utility is not available for OpenVMS platforms (VAX
VMS or Alpha VMS).

Setting up the Launch Server and Applications

304 iPlanet Unified Development Server • System Management Guide • August 2001

Starting the Launch Server
You can start the Launch Server by either using the icon for Launch Server or the
ftlaunch script. When you start the Launch Server, it runs as a client-only
application on the client node. The Launch Server contains a user-visible service
object that manages how applications are started and shutdown in its process.

On Windows 95 and NT, and on UNIX platforms, the Launcher application and
Ftcmd commands automatically start the Launcher Server, if it is not already
running.

All iPlanet UDS client nodes on Windows platforms have a Launch Server
Distributed and Launch Server Standalone icons defined.

Setting up the Port for the Launch Server
The Launch Server listens at a socket to receive commands from the Ftcmd utility.
By default, a Launch Server listens at socket number 3783.

Setting up Launch Servers for UNIX On UNIX, you need to define a unique port
number for each user, so that each user can run a separate instance of the Launch
Server for himself. Before you can start the Launch Server using the ftlaunch
command or the ftcmd command, you need to set the FORTE_FTLAUNCH_PORT
environment variable, using a shell script or a profile, for each user session. You
can also use the -port flag for the ftcmd command, as described in “Flags on the
ftcmd Command” on page 307.

FORTE_FTLAUNCH_PORT environment variable If you have more than one
Launch Server running on a machine, or if you have already assigned socket 3783
to another machine, you can change what socket the Launch Server listens at by
changing the value of the FORTE_FTLAUNCH_PORT environment variable or by
using the -port flag on the ftlaunch or ftcmd commands.

ftlaunch Command
The syntax for ftlaunch is:

Portable
ftlaunch [-port port_number] [-fnd node_name] [-nonode] [-fs]

[-fns name_server_address] [-fm memory_flags] [-fst integer] [-fl logger_flags]

NOTE If you plan to run any applications in distributed mode, you must
start the Launch Server using the Launch Server Distributed icon.

Setting up the Launch Server and Applications

Chapter 9 Launching iPlanet UDS Applications and Applets 305

On Windows, you can specify these flags on the icons that start the Launch Server.

The following table describes the flags:

-port port_number Identifies the port number at which this Launch Server will be
started. On UNIX, either this flag must be specified, or the
FORTE_FTLAUNCH_PORT environment variable must be set
uniquely for each user.

-fnd node_name Specifies the node name to use for the Launch Server. If the
Launch Server becomes a node manager, this is used as the node
name. Otherwise, this is used by the Launch Server to locate an
existing node manager.

-nonode Specifies that the Launch Server not check for a running Node
Manager and not perform the functions of a Node Manager when
it starts. Normally, the Launch Server checks whether a Node
Manager is running on the client node, and if there is none, then
the Launch Server behaves like a Node Manager.

-fs Specifies that the Launch Server run as a standalone application.
A Launch Server that starts as a standalone application can only
launch iPlanet UDS applications, such as the iPlanet UDS
Workshops and the Environment Console. When the Launch
Server is started as a standalone application, it cannot run any
publicly-available applications or update assigned applications
because it cannot access the Environment Manager to get the
information it needs.

-fns
name_server_address
/NAMESERVER=
name_server_address

Specifies the name service address for the environment in which
this application will run. This value overrides the value, if any,
specified by the FORTE_NS_ADDRESS environment variable. If
you want the Launch Server to switch to a backup Environment
Manager if the primary Environment Manager fails, you can also
specify multiple name service addresses, as discussed in
“Environment Manager Failover for Partitions” on page 122.

-fm memory_flags Specifies the space to use for the memory manager. See “-fm Flag
(Memory Manager)” on page 375 for syntax information. If you
do not set the memory flags, iPlanet UDS uses defaults
appropriate for the operating system. On UNIX, you must specify
the memory flags in double quotes.

-fst integer The thread stack size in bytes for iPlanet UDS and POSIX threads.
See “-fst Flag (Stack Size)” on page 378 for syntax information.
This specification overrides default stack size allocation.

Setting up the Launch Server and Applications

306 iPlanet Unified Development Server • System Management Guide • August 2001

For example, the following command in a Windows icon or shortcut starts the
Launch Server:

ftexec -fi bt:%{FORTE_ROOT}/userapp/ftlaunch/cl0/ftlaunch

Launch Server Details

Launch Server and Node Manager By default, the Launch Server checks
whether a Node Manager is running on the client node, and if there is none, then
the Launch Server behaves like a Node Manager. If there is a Node Manager
running, then the Launch Server uses the services provided by the running Node
Manager.

You can specify that the Launch Server not check whether a Node Manager is
running and not perform then functions of a Node Manager by specifying either
the -fs flag or the -nonode flag when you start the ftlaunch application to start the
Launch Server.

Starting Launch Server at system startup If you start the Launch Server as part
of the system startup routine, all the runtime objects and the Node Manager that
are needed by any client partitions are started at that time, instead of when the first
client application is launched by the Launch Server. Later in the session, when the
user starts a client application using the Launch Server, the client application
shares the runtime objects and Node Manager associated with the Launch Server,
which can considerably reduce the start time.

Shutting down the Launch Server On Windows NT and Windows 95 platforms,
you can shut down the Launch Server using the Launch Server Shutdown icons.
You can stop the Launch Server on UNIX using the ftcmd shutdown server
command.

Log files in UNIX The log file for a Launch Server on UNIX is named
ftlaunch_port.log, in the FORTE_ROOT/log directory, where port is the socket
number set for the Launch Server using either the -port flag on the ftcmd
command or the FORTE_FTLAUNCH_PORT environment variable.

-fl logger_flags Specifies the logger flags to use for the command. See “-fl Flag
(Log Manager)” on page 371 for information about the syntax for
specifying logger flags. If you do not set the logger flags, iPlanet
UDS uses the value of the FORTE_LOGGER_SETUP environment
variable. On UNIX, you must specify the logger flags in double
quotes.

Setting up the Launch Server and Applications

Chapter 9 Launching iPlanet UDS Applications and Applets 307

On Windows platforms, the Launch Server writes its messages and output to the
Launch Server trace window.

Using the Ftcmd Utility
The Ftcmd utility is the command interface to the Launch Server. You can define
scripts containing these commands to launch, list, update, and shutdown client
applications through the Launch Server.

On Windows 95, NT, and UNIX, using any Ftcmd command starts the Launch
Server on the client node, if the Launch Server is not already running on that node.

The Ftcmd utility provides a command interface to the Launch Server, but is not a
command-line interface application. In other words, you enter commands to the
Ftcmd utility from the command line for your environment or a script without
actually entering a separate command-line window.

All commands start with ftcmd All Ftcmd commands must specify ftcmd with
the command name, as shown in the following example, which lists all available
client applications:

ftcmd list all

The Ftcmd utility supports the following commands:

list Lists available client applications running inside the Launch Server.

run Launches a client application.

shutdown Shuts down the client partition of one or more client applications or
the Launch Server itself.

update Updates the installed application, if its image repositories are not as
current as the image repositories stored in the environment.

These commands are described in “Ftcmd Commands” on page 310.

Flags on the ftcmd Command
The syntax for the ftcmd command is:

ftcmd [-v] [-nolog] [-port port_number] [-fnd node_name] [-nonode] [-fs]
[-fm memory_flags] [-fst integer] [-fl logger_flags]
{-i input_file | command}

Setting up the Launch Server and Applications

308 iPlanet Unified Development Server • System Management Guide • August 2001

Flags that affect Ftcmd commands The following flags affect how the Ftcmd
utility invokes a command:

Input files Using the -i flag, you can specify that the Ftcmd utility invoke a
single command stored in a file. To use this flag, define a file that contains one
Ftcmd command without the ftcmd prefix, as shown in the following example,
which represents the contents of a file named cmd.txt:

run banking

You can then run the command in the file by entering the following command at
the command prompt:

ftexec -i cmd.txt

Flags that affect the Launch Server On Unix, Windows 95, and Windows NT,
the ftcmd command also starts a Launch Server if a Launch Server is not running at
the port number used by the Ftcmd utility.

Flag Description

-v Displays detailed information about the steps performed by the
Ftcmd command. This flag works only on the current Ftcmd
command. This flag is useful for diagnosing command syntax errors.

-port port_number Identifies the port number that this Ftcmd command will use to
locate a Launch Server. If a Launch Server is not already running at
this port number, a Launch Server is started at this port number.

-i input_file. Run a single ftcmd command in the specified file.

command One of the following commands: list, run, shutdown, and
update. For more information about these commands, see “Ftcmd
Commands” on page 310.

Setting up the Launch Server and Applications

Chapter 9 Launching iPlanet UDS Applications and Applets 309

If the ftcmd command starts a Launch Server, the flags in the following table affect
that Launch Server. If the Launch Server is already running, these flags are
ignored.

Flag Description

-nolog UNIX only. Prevents the Ftcmd utility from redirecting the Launch
Server’s output to a log file if the Ftcmd utility needs to start the
Launch Server. If the Launch Server is already running, this flag
has no effect. By default, the started Launch Server logs its output
to a file in FORTE_ROOT/log named
ftlaunch_port_number.log, where port_number is the port where
the Launch Server is running.

port_number

Identifies the port number that this Ftcmd command will use to
locate a Launch Server. If a Launch Server is not already running at
this port number, a Launch Server is started at this port number.

-fnd node_name Specifies the node name to use for the Launch Server. If the Launch
Server becomes a node manager, this is used as the node name.
Otherwise, this is used by the Launch Server to locate an existing
node manager.

-nonode Tells the Launch Server not to check for a running Node Manager
on the client node and not to act as a Node Manager. Normally, the
Launch Server checks whether a Node Manager is running on the
client node, and if there is none, then the Launch Server behaves
like a Node Manager

-fs Specifies that the Launch Server run as a standalone application. A
Launch Server that starts as a standalone application can only
launch iPlanet UDS applications, such as the iPlanet UDS
Workshops and the Environment Console. When the Launch
Server is started as a standalone application, it cannot run any
publicly-available applications or update assigned applications.

-fm memory_flags Specifies the memory settings for the ftexec process that runs the
Launch Server.

-fst integer The thread stack size in bytes for iPlanet UDS and POSIX threads.
See “-fst Flag (Stack Size)” on page 378 for syntax information. This
specification overrides default stack size allocation.

-fl logger_flags Specifies the log flags for the ftexec process that runs the Launch
Server.

Setting up the Launch Server and Applications

310 iPlanet Unified Development Server • System Management Guide • August 2001

The -fm and -fl flags are as described in “iPlanet UDS Logger and Memory
Manager Flags” on page 371.

You can also use the FORTE_FTLAUNCH_FLAGS environment variable to set
flags that will be used when the ftcmd command starts a Launch Server.

Ftcmd Commands
You can use the following commands for the Ftcmd utility to deploy, update, start,
stop, and manage running applications:

• list

• run

• shutdown

• update

list
The list command lists the available client applications. The list is printed to the
command line where you entered the command.

The argument of this command specifies whether to list applications that are
assigned, publicly available, iPlanet UDS product, or all of these.

ftcmd list all | assigned | public | forte | running

The lists produced by the ftcmd list command with the all, assigned, public,
or forte arguments contain the name and release, and indicate whether the
application is assigned, publicly available, or an iPlanet UDS product application.

Argument Description

all Lists all applications available to the current client node.

assigned Lists the applications containing client partitions assigned to the current
client node.

public Lists the publicly-available applications available to the current client node.

forte Lists the iPlanet UDS product application available to the current client node.

running Lists all running applications that were started by the Launch Server.
Applications running in the Launch Server are given integer identifiers
(Applet IDs) that are unique for the Launch Server.

Setting up the Launch Server and Applications

Chapter 9 Launching iPlanet UDS Applications and Applets 311

Applets not listed This command does not list applets, which are client
partitions that are not intended to be started independently. For more information
about applets, see iPlanet UDS Programming Guide

The list produced by the ftcmd list running command contain the identifier, the
application name, and the release for the running client application.

run
The run command starts the specified application using the Launch Server. You
can define icons that invoke this command to start applications.

ftcmd run application_name [release] [arguments] [update]

If you specify just ftcmd run application_name without the release or update
arguments, the Launch Server runs the application with the highest compatibility
level and updates the application distribution if an application distribution that is
more current than the installed one is available in the environment.

If you specify ftcmd run application_name release arguments FALSE, the application
is started without checking whether the installed image repositories are as current
as the image repositories in the environment.

Argument Description

application_name Specifies the name of the application that is being launched by the
Launch Server.

release Specifies the compatibility level to be started. By default, the Launch
Server starts the release with the highest compatibility level.

arguments Specifies command line arguments for the application being started.

update For installed client partitions only. Indicates whether the Launch
Server automatically downloads and installs the most current
application distribution, if the application has not yet been installed,
or if the installed application is not as current as the distribution
available in the environment.

By default, the value is TRUE, which means that the more current
application distribution is automatically downloaded and installed,
if necessary. To prevent this automatic update, set this value to
FALSE.

This argument is ignored for publicly-available applications.

Note that only the client partition of an application is downloaded,
not any libraries that the client partition might depend upon.

Setting up the Launch Server and Applications

312 iPlanet Unified Development Server • System Management Guide • August 2001

Specifying arguments The command line arguments need to be interpreted by
Fa string in quotation marks, for example "-fr CentralRepository -fw
tempworkspace".

On some platforms, such as UNIX and Windows, you need to use escape
characters, such as \, to have the quotation marks interpreted correctly. Therefore,
to specify arguments, you might need to specify them using something like
\"-country canada\", so that the quotation marks are not removed before the Ftcmd
utility receives them. To see the actual command string that is being sent to the
Ftcmd utility, specify the -v flag, as discussed in “Ftcmd Commands” on page 310.

The following example demonstrates how to start an application on a Windows NT
node called OLMBanking and specify an argument for that application:

ftcmd run olmbanking cl0 \"-country canada\"

shutdown
The shutdown command shuts down the client partition of the application that has
the specified identifier, as well as any applications that might have been started by
this application.

ftcmd shutdown app_ID | all | server

update
The update command downloads and installs the most current image repositories
for the client partition of the specified application. If the installed image
repositories are as current as the image repositories in the environment, then the
image repositories are not reinstalled.

This command is only useful for applications that are assigned to the current client
node. Do not use this command with publicly-available applications.

Argument Description

app_ID Specifies the integer identifier of the application to be shut down. To get this
identifier, use the ftcmd list running command.

all Shuts down all client partitions started by the Launch Server.

server Shuts down the Launch Server.

Setting up the Launch Server and Applications

Chapter 9 Launching iPlanet UDS Applications and Applets 313

ftcmd update application_name [release]

Deploying Applications that Launch
Other Applications and Applets
Using the LaunchMgr.RunApplet method, application developers can design
applications that start other iPlanet UDS client applications in the same ftexec
process, but in separate partitions.

Applets An applet is a client application that is started as part of another
application. In design and function, an applet is actually a small independent
application. When the application developer makes the application distribution,
she marks the application as an applet, whose client partition is to be started only
by using the LaunchMgr.RunApplet from another “main” client application.

Locating deployed applets in the environment You can see whether an
application distribution is an applet by checking the Partition agents for the client
partition. In the Environment Console, the Type for the client partition says
Partition (Applet). In Escript, the Partition Type for the Partition is Client
(Applet).

Applets are deployed in exactly the same way as other applications, except that no
icons are generated for applets, and applets cannot be started by the Launcher
application. Applets can either be explicitly assigned to a client node, or can be
publicly available to all client nodes, just as other applications can. For specific
information about assigning applets or making them publicly available to client
nodes, see “Deploying Applications to Client Nodes” on page 298.

Argument Description

application_name Specifies the name of the application to be updated.

release Specifies the release (compatibility level) to be updated. By default,
the Launch Server downloads and installs the image repositories for
the release with the highest compatibility level.

NOTE Only the client partition of an application is downloaded, not any
libraries that the client partition might depend upon.

Setting up the Launch Server and Applications

314 iPlanet Unified Development Server • System Management Guide • August 2001

When you deploy a client application that starts applets or applications, you must
also deploy the required applets or applications independently. Ideally, you
should have a script for this installation.

After you have deployed an applet, you will notice that it is not visible on the client
node the way a regular client application is:

• the Launcher application does not display an applet as an application that can
be started

• iPlanet UDS does not automatically create icons for this applet the way it does
for other applications on the Windows platforms

• the ftcmd list command does not include applets in its list of available
applications

Troubleshooting Client Applications
That Use Applets
Check the log file or trace window If you have problems with a client
application that starts other applets or client partitions, you can diagnose the
source of the problems by checking the trace window or log file for the main client
application. The application prints trace information about the application itself
and the applications or applets it starts in the same trace window or log file.

The Launch Server automatically turns on the trace flag that has the trace messages
start with the name of the application: “cfg:sp:8.” You can turn this trace flag on or
off in other situations, if you wish.

Log files in UNIX The log file for a Launch Server on UNIX is named
ftlaunch_port.log, in the FORTE_ROOT/log directory, where port is the socket
number set for the Launch Server using either the -port flag on the ftcmd
command or the FORTE_FTLAUNCH_PORT environment variable.

On Windows platforms, the Launch Server writes its messages and output to the
Launch Server trace window.

Debugging UsageExceptions If the main client application generates a
UsageException exception with a SP_ER_INVALIDSTATE reason code, then one of
the applications or applets it starts is missing. Information about exceptions that
can be raised when the main client application starts another application, see the
documentation for the LaunchMgr.RunApplet method in the AppletSupport
library in Framework Library online Help.

315

Appendix A

Special Setup for Development
Environments

A number of development situations require special environment setup tasks
above and beyond the regular setup tasks described in Chapter 3, “Setting up and
Maintaining an iPlanet UDS Environment” and Chapter 8, “Managing iPlanet UDS
Development Repositories.”

For example, before developers can use iPlanet UDS’s auto-compile option when
making a distribution containing compiled components, you must first deploy a
number of auto-compile services, and make them available in the development
environment.

For developers to write and partition applications that integrate with OLE 2 (Object
Linking and Embedding) applications, you must specify the nodes on which these
products reside.

This appendix covers the following topics:

• setting up auto-compile services

• setting up support for OLE

Auto-Compile Services
Developers making an application or library distribution have the option of
automating the compiling and linking process required for compiled distribution
components. For the auto-compile option to work, however, a number of
auto-compile services must be deployed in the development environment. This
section describes the auto-compile process and the application architecture
employed to automate it. It also describes how to deploy the two applications that
comprise the auto-compile services, AutoCompileSvc and CodeGenerationSvc.

Auto-Compile Services

316 iPlanet Unified Development Server • System Management Guide • August 2001

Auto-Compile Process
This section describes the work done by the auto-compile services. The steps in the
auto-compile process and the services used to automate them are shown
schematically in Figure A-1.

Figure A-1 Auto-Compile Process

The auto-compile services perform the following steps to make a distribution with
compiled components:

1. Create partition (.pgf) or library (.lgf) generation files with the Partition
Workshop Make Distribution command or the Fscript MakeAppDistrib
command.

Strictly speaking, this step is not part of the auto-compile process, but it is the
first step performed when a developer makes a distribution. For more
information on this step, see “About Application and Library Distributions” on
page 149.

Application
Distribution

distID

cln

generic codegen

appgbl appgbl

platform

partID partID partID

.adfEnvironment
Repository

Solaris

NT

1

Make Distribution
(creates .pgf files)

C++ Source

2

Code
Generator

Generate Source

Compiler

Compiler3
Move source

to target plaforms

AutoCompile
Manager

4
Compile and link
on each platform

5

Place executables
in distribution

Auto-Compile Services

Appendix A Special Setup for Development Environments 317

2. Create platform-independent C++ source code from the information contained
in the .pgf or .lgf file.

A code generator service (CodeGenerationSvc_cl0_Part1), which has been
installed on one or more server nodes in the development environment,
generates this C++ code.

3. Move the C++ source code to one node of each platform on which a partition or
library is to be compiled and on which a compiler service
(AutoCompileSvc_cl0_Part2) has been installed.

This process is coordinated by an auto-compile manager service
(AutoCompileSvc_cl0_Part1), which knows (from assigned partition
properties) on which platforms the C++ source is to be compiled and on which
nodes the compiler service (AutoCompileSvc_cl0_Part2) has been installed.

4. Compile and link the C++ source code on each target platform.

The auto-compile manager service (AutoCompileSvc_cl0_Part1) starts a
compiler service on each target node to which it has moved C++ source code.
The compiler service (AutoCompileSvc_cl0_Part2) compiles and links the code,
creating a compiled executable. When this operation is complete, the
auto-compile manager shuts down the compiler service.

5. Move compiled executable files to the appropriate directory within the
distribution.

The auto-compile manager service moves the compiled partition to the location
in the distribution that corresponds to the partition’s name and platform
format.

Auto-Compile Application Architecture
The auto-compile services discussed in the previous section and illustrated in
Figure A-1 are provided by two distributed server applications:
CodeGenerationSvc and AutoCompileSvc.

CodeGenerationSvc

Part1 (Generator) Generates portable C++ source code. This partition requires a
sizeable amount of memory: 20-30 Megabytes. Normally code generation takes a
few seconds to complete. The partition can be replicated for load balancing in
environments with a very heavy load. The Generator partition should generally be
started and left running; it takes about 5 minutes to start.

Auto-Compile Services

318 iPlanet Unified Development Server • System Management Guide • August 2001

Part1 Router Routes requests to multiple Generator partitions, if more than one is
active.

AutoCompileSvc

Part1 (Manager) Coordinates the process of moving C++ source code to different
nodes for compiling and linking, starting and shutting down the compiler
partitions, and then moving the compiled partitions to the appropriate location in a
distribution. The partition cannot be replicated. It communicates heavily with the
Environment Manager, and is therefore best placed on the same node. The
Manager partition should generally be started and left running.

Part2 (Compiler) Performs compiling and linking on the host node. The partition
can be replicated, and a replicate should be placed on at least one node of each
platform architecture. The Compiler partition should not be started, since it is
started automatically by the Manager when needed, and then shut down.

An example auto-compile configuration is illustrated in Figure A-2 on page 319.
The iPlanet UDS environment consists of a large number of client workstations
(only one is shown) used by developers to write their applications. There is also
one or more central development repositories (not shown) on one or more of the
four servers in the illustration. Servers 1, 2, and 3 are of different architectures (the
central server is the same architecture as Server 2).

In Figure A-2, one instance of CodeGenerationSvc_cl0_Part1 (Generator) has been
installed on the central server, along with its router. A second instance of the
Generator partition could be installed on another server, or started on the central
server, if the load on the first partition becomes too heavy. The Generator requires
20-30 Megabytes of memory.

AutoCompileSvc_cl0_Part2 (Compiler) has been installed on Servers 1, 2, and
3—one node of each architecture. Placement on these nodes is necessary for the
auto-compile service to compile partitions for each platform architecture in the
environment. Additional Compiler partitions can be installed on other nodes for
backup purposes, if you wish.

AutoCompileSvc_cl0_Part1 (Manager) can be installed on any server node. Since it
communicates with the Environment Manager, it has been installed on the central
server node in this example.

Setting up the Auto-Compile Feature

Appendix A Special Setup for Development Environments 319

Figure A-2 Auto-Compile Configuration Example

Setting up the Auto-Compile Feature
This section explains the steps you need to follow to configure and install the
auto-compile applications for your environment. Windows 95. If you want to use
the auto-compile feature with Windows 95, you need to consider some additional
issues. These issues are discussed in “Using Auto-Compile with Windows 95” on
page 323.

iPlanet UDS provides an auto-compile feature that automatically generates and
compiles C++ code for server partitions that you have designated as compiled.

C++ compilers and linkers To use the auto-compile feature, you need to install
the C++ compilers and linkers appropriate for each platform on the nodes where
you plan to compile C++ code. The C++ compilers and linkers that can be used on
each platform are specified in the iPlanet UDS System Installation Guide.

Client

Central Server

CodeGenerationSvc_Part1 (Generator)

Server

Server

CodeGenerationSvc_Part1 Router

AutoCompileSvc_Part1 (Manager)

AutoCompileSvc_Part2 (Compiler)

AutoCompileSvc_Part2 (Compiler)

Partition
Workshop

Setting up the Auto-Compile Feature

320 iPlanet Unified Development Server • System Management Guide • August 2001

Before you can use the auto-compile feature, you need to have the following
iPlanet UDS applications installed in your environment:

AutoCompileSvc Compiles C++ code on the nodes where it is installed. This
application has two partitions: Part1, which manages the auto-compile process,
and Part2, which compiles the C++ code on the nodes where it is installed.

CodeGenerationSvc Generates portable C++ source code. This application has
two partitions: Part1, which generates the C++ code, and Router, which manages
load balancing if the partition is replicated on more than one node.

The steps in deploying both the CodeGenerationSvc and AutoCompileSvc
applications are the same as for any other iPlanet UDS application distribution,
except that the iPlanet UDS installation program has already loaded both
application distributions into your environment repository and installed them on
your central server node. You have to modify their partitioning configurations, and
install them in your active environment. For details on deploying applications, see
Chapter 5, “Deploying iPlanet UDS Applications.”

Configuring the Auto-Compile Services
When you install iPlanet UDS in your environment, these applications and their
application distributions are automatically installed on the central server node.
These applications are not installed on any other server nodes or any client nodes.

Since the default partition assignments in the distributions do not correspond to
nodes in your development environment, they were dropped when the installer
loaded the application distributions into your environment repository. iPlanet UDS
then assigned each of the four partitions to the central server by default. You will
have to manually re-assign each of these partitions by hand, as you wish.

You need to configure and install the Part2 partition of the AutoCompileSvc
application on each node where you want the server partitions compiled.

➤ To configure and install the Part2 partition of the AutoCompileSvc application
using the Environment Console

1. Start the Environment Console.

2. Change to the node outline view by selecting the View > Node Outline
command.

3. Display the lists of applications on the central server node and the nodes where
you want to install the Part2 partition of the AutoCompileSvc application by
clicking the expansion arrow.

Setting up the Auto-Compile Feature

Appendix A Special Setup for Development Environments 321

4. Lock the environment by clicking the Locked toggle on the tool bar.

5. Copy the AutoCompileSvc_cl0_Part2 partition by selecting this partition on the
central server node and selecting the Edit > Copy command.

6. Paste the AutoCompileSvc_cl0_Part2 partition onto the nodes where you want
to install it by selecting each node and selecting the Edit > Paste command.

7. Disable all but one of the assigned Compiler partition
(AutoCompileSvc_cl0_Part2).

This partition is automatically started and shutdown as needed, however, the
partition must be enabled on at least one node (for example, on your central
server).

8. Unlock the environment by clicking the Locked toggle on the tool bar.

9. Display the application outline view by selecting Application Outline from the
View menu.

10. Select the AutoCompileSvc_cl0 application.

11. Install the AutoCompileSvc_cl0_Part2 partition on the newly-assigned nodes
by selecting the Component > Install command.

➤ To configure and install the Part2 partition of the AutoCompileSvc application
using Escript

1. Start Escript.

2. Enter the following sequence of Escript commands, substituting the name of
the node for the <node_name>:

FindSubAgent AutoCompileSvc_cl0
LockEnv
AssignAppComp <node_name> AutoCompileSvc_cl0_Part2
You can assign Part2 to several different nodes at this
point.

Commit # Unlocks the environment automatically
Install # Installs Part2 on the newly-assigned nodes
Refresh

Setting up the Auto-Compile Feature

322 iPlanet Unified Development Server • System Management Guide • August 2001

Starting up the Auto-Compile Services
After you complete installation, start the CodeGenerationSvc and AutoCompileSvc
applications. If you do not start these applications, they will auto-start the first time
a developer tries to auto-compile her application; auto-starting these applications
takes about five minutes.

To start up the CodeGenerationSvc application, use the Startup command on the
Application agent for this application.This command starts the
CodeGenerationSvc_cl0_Part1 and Router.

You should also start the partition of the AutoCompileSvc application that
manages the auto-compilation process, AutoCompileSvc_cl0_Part1. To start up
this partition, locate its Installed Partition agent and invoke the Startup command.
A developer should now be able to invoke the auto-compile option successfully,
starting up the appropriate instances of AutoCompileSvc_cl0_Part2.

For information about the Startup command for the Application and Installed
Partition agents, see Escript and System Agent Reference Guide.

Troubleshooting the Auto-Compile Feature
If you have problems running the auto-compile feature on a particular node, make
sure that the PATH and LIBPATH environment variables are set properly.

Make sure that the C++ compiler executable is in a directory specified in the PATH
environment variable used by the Node Manager for each node that compiles
partitions. Otherwise, the auto-compile partition will not be able to find the C++
compiler.

Debugging Errors When Using Auto-Compile
If the auto-compile feature encounters an error, you can look in the following
places for error information:

• Compile Distribution dialog, which shows the progress of the auto-compile
feature when you auto-compile a distribution

• log files for the AutoCompileSvc application

• trace information for the iPlanet UDS Workshops—either the Console window
or the file where stdout is being sent

Setting up the Auto-Compile Feature

Appendix A Special Setup for Development Environments 323

Using Auto-Compile with Windows 95
If you want to use the auto-compile feature to compile partitions that run on the
Windows 95 platform, you have two choices:

• Compile partitions as Windows NT partitions, then include the compiled
executables or libraries as part of the Windows 95 distribution.

This approach is recommended, because most Windows NT machines are
usually more powerful than Windows 95 machines, which makes compilations
more efficient.

• Set up a Windows 95 node to act as a server that can auto-compile Windows 95
partitions.

This option is recommended if your environment does not include any
Windows NT nodes.

Compiling Partitions as Windows NT partitions
You can compile partitions as Windows NT partitions, then include the compiled
executables or libraries as part of a Windows 95 distribution because Windows 95
code and Windows NT code are binary compatible. You might want to use this
approach if you have Windows NT nodes already available with auto-compile
services installed. Compiled Windows NT executables and libraries also run on
Windows 95.

➤ To compile partitions in Windows NT and use them in Windows 95
distributions

1. In Fscript or the Partition Workshop, assign to Windows NT nodes the
partitions that you want to compile and run on Windows 95.

2. Make a distribution for the application using auto-compile, but not
auto-install.

3. Copy the compiled executable or library for the partition from pc_nt to the
pc_win95 directory for that partition in the FORTE_ROOT/appdist directory.

For example, if you have assigned the client partition for the Banking_cl0
application to a Windows NT node to auto-compile it, you need to copy the
following file:

FORTE_ROOT/appdist/environment_ID/banking/cl0/pc_nt/bankin0/bankin0.exe

Copy this file to the following directory (make the pc_win95 and client
partition directories first, if they does not already exist):

FORTE_ROOT/appdist/environment_ID/banking/cl0/pc_win95/banking0

Setting up the Auto-Compile Feature

324 iPlanet Unified Development Server • System Management Guide • August 2001

For more information about the Partition Workshop, see A Guide to the iPlanet UDS
Workshops. For information about Fscript commands, see Fscript Reference Guide.

➤ To install the Windows 95 distributions

1. In the Environment Console or Escript, load your application, lock the active
environment, then assign the client partitions to Windows 95 nodes and set the
partitions as compiled. Unlock the active environment when you are done.

You might get a warning on this step that says that the distribution does not
contain the compiled partition for Windows 95. You can ignore this warning
and continue.

2. Install the application using the Install command for the Application agent.

For more information about the Environment Console, see Chapter 2, “The iPlanet
UDS Environment Console.”

For information about Escript and iPlanet UDS system agent commands, see
Escript and System Agent Reference Guide.

Setting up a Windows 95 Node to Auto-Compile
You can have a Windows 95 node act as a server node to run the auto-compile
compiler service (AutoCompileSvc_cl0_Part2).

➤ To set up a Windows 95 node to run the auto-compile compiler service

1. Set aside a Windows 95 node to be used to compile partitions. This node must
have the correct C++ compiler installed. You should use a node that is not also
simultaneously used to run the iPlanet UDS workshops because the compiler
service is memory-intensive and will slow the performance of the iPlanet UDS
workshops.

2. Define the Windows 95 node as a unique Windows 95 node in the active
environment. Do not define this node as a model node or as part of any model
group. For example, if your Windows 95 nodes are defined by a model node
named Win95_clients, you must create a unique node that represents this
Windows 95 node.

3. Start the Launch Server on the Windows 95 node to run a node manager on
that node. For information about starting the Launch Server, see “Starting the
Launch Server” on page 304.

NOTE This is the only situation in which you should use a Windows 95
machine as a server node.

Support For OLE

Appendix A Special Setup for Development Environments 325

4. Copy the AutoCompileSvc_cl0_Part2 partition to the Windows 95 node and
reinstall the AutoCompileSvc, as described in “Configuring the Auto-Compile
Services” on page 320.

Support For OLE
Developers writing applications that use OLE services or applications can also use
interface classes provided by iPlanet UDS. These interface classes, in the form of
projects (or system libraries), are automatically installed by the iPlanet UDS
installation program on each node, and can be referenced by developers through
supplier projects (or system libraries) residing in your central development
repositories.

Any partition referencing an OLE object must reside on a node where the
respective service or application resides. For an application to be properly
partitioned, therefore, the iPlanet UDS partitioning facility must know which
nodes in your development environment host the OLE services or applications.
You supply this information by specifying the name of the appropriate interface
project in the Installed Library property of the node on which the DCE,
ObjectBroker, or OLE service or application resides.

Accordingly, for each node in your environment on which OLE software has been
installed, you should modify the Installed Library property of the node (in the
environment definition of your active environment). You can use the Environment
Console or Escript utility to make this change.

➤ To specify support for DCE, ObjectBroker, or OLE on a node

1. In the Environment Console, select the node in the Active Environment
window.

2. Lock the environment definition.

3. Select Properties… from the Component menu.

The Node Properties dialog opens.

4. Select Installed Libraries from the drop-down list at the bottom of the Node
Properties dialog.

5. Enter the name of the appropriate interface: “OLE.”

6. Close the Node Properties dialog and save the change.

Support For OLE

326 iPlanet Unified Development Server • System Management Guide • August 2001

327

Appendix B

iPlanet UDS Environment Variables

This appendix describes the iPlanet UDS environment variables, listed in
alphabetical order. You can set these variables on any platform, unless otherwise
noted.

This appendix also lists the logical names used by OpenVMS. These names allow
you to specify settings that are used when iPlanet UDS automatically starts a
server; they also provide international support for OpenVMS.

Finally, this appendix explains how to set environment variables with and without
the iPlanet UDS Control Panel.

If you set environment variables that are used by the Node Manager for a
particular node, you must set the environment variables before you start the Node
Manager; otherwise, the Node Manager does not pick up the environment variable
values. Because the Environment Manager is a special kind of Node Manager, this
requirement also applies to the Environment Manager.

Environment Variable Descriptions
This chapter describes all the environment variables defined by iPlanet UDS.

Use upper case to specify environment variable names on all platforms.

FORTE_ALL_FILES_SHARED
(For OpenVMS only) Specifies that all OpenVMS files created or opened by iPlanet
UDS are opened as shared and can be read by multiple processes.

FORTE_ALL_FILES_SHARED any__non_blank_char

Environment Variable Descriptions

328 iPlanet Unified Development Server • System Management Guide • August 2001

If this variable is not set, then iPlanet UDS treats files in the OpenVMS default
manner; files are created as unshared and only one process may open a file for
writing or reading. To change this treatment, set this variable to TRUE or any
non-blank character. To override the default for a given file, use the
SetFileAttribute method on the File class.

FORTE_AUTOTESTER_DELAY
Sets the delay in milliseconds between input bursts when “playing back” an
application using the AutoTester project. The default is 1000.

FORTE_AUTOTESTER_DELAY integer

FORTE_AUTOTESTER_ROOT
When using AutoTester, this variable specifies that file names should be captured
in a portable format, and indicates the directory path to be used to determine the
location of the files.

FORTE_AUTOTESTER_ROOT directory_specification

FORTE_CG_RESERVED
Specifies a file containing reserved words to supplement the list of iPlanet UDS
reserved words.

FORTE_CG_RESERVED file_specification

The reserved word file is optional. You should provide this file when your project
uses names for class elements that are already reserved by your C++ compiler. The
iPlanet UDS code generator uses the reserved words file to rename the class
components in order to avoid conflicts.

If you do not set the variable, the default is
$FORTE_ROOT/install/scripts/cgreserv.lst.

FORTE_CODEGEN_OCTAL
Specifies that code generation will convert non-ASCII characters in strings into
equivalent octal constants. By default, characters are not converted.

FORTE_CODEGEN_OCTAL {TRUE|FALSE}

Use this variable when you are generating TOOL code that contains strings with
characters that are not legal for some native compilers, such as Kanji characters.
Setting this environment variable to TRUE (which is typically done by the system
manager) ensures that native compilers can correctly compile generated code
containing any type of character.

Environment Variable Descriptions

Appendix B iPlanet UDS Environment Variables 329

FORTE_COSSHR
Specifies the location and name of the ObjectBroker name service shared library.

FORTE_COSSHR file_specification

Also see “FORTE_OBBSHR” on page 337.

FORTE_CTLIB_LOCK
If TRUE, disables multi-threaded database access. Use this variable to implement
serial database access on UNIX platforms with native-threaded partitions.

FORTE_CTLIB_LOCK {TRUE|FALSE}

For more information, refer to the Accessing Databases manual.

FORTE_DB_MAX_STATEMENTS
Sets the number of TOOL SQL statements kept prepared in the statement cache.

FORTE_DB_MAX_STATEMENTS integer

Increasing this value may improve performance of your application if your
application uses a large set of TOOL SQL statements. The default varies by
database vendor; see the manual Accessing Databases to see the value for your
database.

FORTE_EDITOR
Specifies the editor to be invoked by the Fscript Vi command.

FORTE_EDITOR editor_executable

FORTE_EP_WRKDIR
Used when running a number of the iPlanet UDS example programs, specifies the
current working directory.

FORTE_EP_WRKDIR directory

Note that a few other environment variables that begin with FORTE_EP are used
for one or more example programs. This variable is used most often.

FORTE_FTLAUNCH_FLAGS
Specifies command line flags in effect when the Launch Server is started with the
ftcmd command.

FORTE_FTLAUNCH_FLAGS ‘-flag [-flag ...]’

Environment Variable Descriptions

330 iPlanet Unified Development Server • System Management Guide • August 2001

If this environment variable is set, any flags it specifies are added to the command
line when ftcmd starts the launch server. The valid flags for the Launch Server
(ftlaunch) are described in “ftlaunch Command” on page 304. Some flags are
described under the forte command. An example follows:

FORTE_FTLAUNCH_FLAGS ‘-fs -fm (n:4000,x:10000)’

FORTE_FTLAUNCH_PORT
Specifies the port number for the launch server.

FORTE_FTLAUNCH_PORT tcp_port_number

If this variable is set, then ftcmd uses the specified port, instead of the default (port
3783), to contact the launch server. The port number must be a numeric value
which is a legal and unused TCP port for the underlying platform and operating
system.

Because this variable should be set individually for each iPlanet UDS user, it
should not be set in a centralized fortedef file which is accessed by multiple iPlanet
UDS users.

For more information about this environment variable, see “Setting up the Port for
the Launch Server” on page 304.

FORTE_GC_SPECIAL
Sets the memory allocated for iPlanet UDS partitions. The syntax for this variable is
identical to the syntax for the -fm startup flag (also used to set memory).

FORTE_GC_SPECIAL (memory_option {:|=} number [, memory_option
{:|=} number])

The syntax and default values for the memory flags are described in “-fm Flag
(Memory Manager)” on page 375. An example follows:

FORTE_GC_SPECIAL (n:5000, x:10000)

Memory flags are set according to the following rules:

• If the -fm startup flag is set, then FORTE_GC_SPECIAL is ignored.

• If the -fm startup flag is not set, then the setting for FORTE_GC_SPECIAL is
used.

• Any memory flags that are not explicitly set use the default values.

Environment Variable Descriptions

Appendix B iPlanet UDS Environment Variables 331

FORTE_ISFLOATOVERENABLED
Specifies whether float-over help is turned on. By default, float-over help is
enabled (TRUE).

FORTE_ISFLOATOVERENABLED {TRUE|FALSE}

To turn off float-over help, set this variable to FALSE.

FORTE_KEEP_COUNT
Specifies the number of pings that the keepalive feature attempts before it closes
the connection. Default is 3.

FORTE_KEEP_COUNT integer

FORTE_KEEP_CYCLE
Specifies the length of time, in seconds, that a connection can be inactive before
keepalive processing starts. The default value is 60 seconds.

FORTE_KEEP_CYCLE integer

If this value is set to f, all keepalive processing is disabled. If a client has this value
set to 0, the client sends a message to each partition it connects to, telling that
partition not to check on the client’s connection using the keepalive feature.

FORTE_KEEP_INTERVAL
Specifies the interval, in seconds, after a ping message is sent and during which a
reply is expected. The default value is 10 seconds.

FORTE_KEEP_INTERVAL integer

FORTE_LAUNCHER_CLOSE
Specifies whether or not the Launcher should shutdown after the user
double-clicks an application to launch it. The default is that it will not (FALSE).

FORTE_LAUNCHER_CLOSE {TRUE|FALSE}

This variable stores one of the Launcher preferences set by a user in the Launcher
Options tab page. The Server Launcher automatically updates this variable; so
although a user can set it, the Launcher overwrites the current setting whenever
“Save Options” is entered.

FORTE_LAUNCHER_LISTTYPE
Determines the default display format for the iPlanet UDS and user applications
shown in the launcher. ListType values are the same as the ListStyle integers used
for the ListView widget. The default list type is 0.

FORTE_LAUNCHER_LISTTYPE list_type_integer

Environment Variable Descriptions

332 iPlanet Unified Development Server • System Management Guide • August 2001

Valid list types are shown in the following table:

This variable stores one of the Launcher preferences set by a user in the Launcher
Options tab page. The Server Launcher automatically updates this variable; so
although a user can set it, the Launcher overwrites the current setting whenever
“Save Options” is entered.

FORTE_LAUNCHER_REFRESH
Specifies the time in minutes between checks by the launcher to see if new
applications have been installed. The default is 0.

FORTE_LAUNCHER_REFRESH refresh_interval

To have the Launcher perform such checks, set FORTE_LAUNCHER_REFRESH to
any decimal value greater than zero.

This variable stores one of the Launcher preferences set by a user in the Launcher
Options tab page. The Server Launcher automatically updates this variable; so
although a user can set it, the Launcher overwrites the current setting whenever
“Save Options” is entered.

FORTE_LAUNCHER_SHOWALL
Specifies whether the Launcher should display all available releases of an
application in the User Page. The default is that it will not (FALSE).

FORTE_LAUNCHER_SHOWALL {TRUE|FALSE}

This variable stores one of the Launcher preferences set by a user in the Launcher
Options tab page. The Server Launcher automatically updates this variable; so
although a user can set it, the Launcher overwrites the current setting whenever
“Save Options” is entered.

Value Option

0 LT_DEFAULT

1 LT_LIST

2 LT_IMAGE

3 LT_SMALLICON

4 LT_DETAIL

Environment Variable Descriptions

Appendix B iPlanet UDS Environment Variables 333

FORTE_LAUNCHER_UPDATEREL
Specifies whether the Launcher should automatically install the most current
release of an application. The default is that it will (TRUE).

FORTE_LAUNCHER_UPDATEREL {TRUE|FALSE}

This variable stores one of the Launcher preferences set by a user in the Launcher
Options tab page. The Server Launcher automatically updates this variable; so
although a user can set it, the Launcher overwrites the current setting whenever
“Save Options” is entered.

FORTE_LC_COLLATE
Sets the locale used for collating sequence information.

FORTE_LC_COLLATE language_territory.codeset[@collate_sequence]

See FORTE_LOCALE for information on the arguments. See the iPlanet UDS
Programming Guide for information about using this environment variable.

FORTE_LC_CTYPE
Sets the locale used for character classifications.

FORTE_LC_CTYPE language_territory.codeset[@collate_sequence]

See FORTE_LOCALE for information on the arguments. See iPlanet UDS
Programming Guide for information about using this environment variable.

FORTE_LC_MONETARY
Sets the locale used for currency formatting.

FORTE_LC_MONETARYlanguage_territory.codeset[@collate_sequence]

See FORTE_LOCALE for information on the arguments. See iPlanet UDS
Programming Guide for information about using this environment variable.

FORTE_LC_NUMERIC
Sets the locale used for numeric formatting.

FORTE_LC_NUMERIC language_territory.codeset[@collate_sequence]

See FORTE_LOCALE for information on the arguments. See iPlanet UDS
Programming Guide for information about using this environment variable.

FORTE_LC_TIME
Sets the locale used for date and time formatting.

FORTE_LC_TIME language_territory.codeset[@collate_sequence]

Environment Variable Descriptions

334 iPlanet Unified Development Server • System Management Guide • August 2001

See FORTE_LOCALE for information on the arguments. See iPlanet UDS
Programming Guide for information about using this environment variable.

FORTE_LOCALE
Specifies the default locale.

FORTE_LOCALE language_territory.codeset[@collate_sequence]

If you set this environment variable, iPlanet UDS consults the specified locale file
in the iPlanet UDS locale directory, and uses the settings in that file that pertain to
all categories that are not already specified by one of the FORTE_LC_*
environment variables (such as FORTE_LC_COLLATE).

See the iPlanet UDS Programming Guide for more information about using this
environment variable. This manual also lists the set of iPlanet UDS locales, which
perform the same across platforms.

FORTE_LOCATIONS
Allows a manual selection of the network address (for example, TCP host and port)
to be used to communicate with objects created in a partition on this machine.

FORTE_LOCATIONS address [::protocol_name][;address
[::protocol_name]...]

The syntax of address is protocol-dependent, as shown in the following table:

Argument Description

language_territory Specifies the language and the territory conventions to use for
locale information.

codeset Specifies the codeset to use when running any partition.

collate_sequence Specifies the collating sequence to use within the locale definition
file.

Syntax for Address Syntax for Protocol_Name

{hostname|IP_address}:port_number TCP/IP

nodename:object_name DECnet

path_name UnixDomain
(note: no space)

Environment Variable Descriptions

Appendix B iPlanet UDS Environment Variables 335

TCP is the default protocol for all platforms. If FORTE_LOCATIONS is not
specified, a TCP port number is automatically assigned by the operating
system/communications software. You can specify a different protocol by
specifying the optional protocol_name.

For example, setting FORTE_LOCATIONS is useful if your site has a firewall that
allows access only on a specific port.

Be sure that the address you specify is not already used by any other software,
including iPlanet UDS.

FORTE_LOGGER_SETUP
Specifies the default logger settings for the iPlanet UDS session.

FORTE_LOGGER_SETUP
file_name(file_filter)[file_name(file_filter)...]

You can override the settings for FORTE_LOGGER_SETUP by using the -fl flag
on any of the iPlanet UDS command lines. In fact, we recommend that you use the
-fl flag rather than resetting FORTE_LOGGER_SETUP when you want to change
message filtering.

File name The file_name argument is any valid file name where you want to log
certain messages. The special file names “%stdout” and “%stderr” log the
messages to standard output or standard error, respectively.

On Windows only, you can use the name “%stdwin” to create a simple, scrollable
output window for textual output. “%stdwin” is particularly useful when using the
FORTE_LOGGER_SETUP variable to specify an alternative file for the output from
Fscript or the development environment.

File filters Each file name is associated with a file_filter. The file_filter
argument may include one or more filter options separated by a space. The syntax
for the file_filter parameter is the following:

message_type[:service_type[:group_number[:level_number]]]

For information on the file filters, see the description of the LogMgr class in the
Framework Library online Help. The LogMgr object examines the
FORTE_LOGGER_SETUP environment variable and opens one or more text files
or display windows based on the settings it finds there. If
FORTE_LOGGER_SETUP is not set (and you have not specified in the -fl flag in
your command line), no specially filtered messages are logged.

Environment Variable Descriptions

336 iPlanet Unified Development Server • System Management Guide • August 2001

Modifying logging during runtime You can also modify the types and detail
level of messages being logged while a program is running. The ModifyFlags
methods defined on LogMgr provides a runtime interface to the same settings that
FORTE_LOGGER_SETUP (and the -fl flag on iPlanet UDS command lines)
provides at application start-up. The Environment Console provides an interface to
a running server’s LogMgr object and can be used to modify the LogMgr settings of
the server being monitored. Finally, the Repository Workshop allows you to
change LogMgr setting while developing iPlanet UDS applications.

FORTE_LOS_EXPTIME
Specifies the desired number of objects in the repository cache. The default is 2500.

FORTE_LOS_EXPTIME integer

You may want to increase this setting, especially during development, to help
repository performance at the cost of using more iPlanet UDS memory.

FORTE_MODELNODE
Specifies the name of a model node in the active environment, which the current
node uses for definition.

FORTE_MODELNODE model_node_name

This variable is normally set during the installation process. If the environment
variable is not set, the node is not treated as a model node. See also
FORTE_NODENAME.

FORTE_NEXT_AFFINITY
(For Windows NT only) Specifies the processor number which is to be used next.

FORTE_NEXT_AFFINITY integer

This variable is provided only for R2 backward compatibility on Windows NT.
Under normal circumstances, you should not set this environment variable.

FORTE_MOTIF_CLIPBOARD
(For Motif only) Specifies that iPlanet UDS will use the Motif clipboard rather than
a local iPlanet UDS clipboard.

FORTE_MOTIF_CLIPBOARD {TRUE|FALSE}

If you set this variable to TRUE, all Cut, Copy, and Paste operations that use a
clipboard will use the window system clipboard rather than a local iPlanet UDS
clipboard.

Environment Variable Descriptions

Appendix B iPlanet UDS Environment Variables 337

FORTE_NODENAME
(For PCs only) Specifies the name of the current node. (On UNIX and OpenVMS,
the host is taken from the hosts file.)

FORTE_NODENAME node_name

This variable is normally set during the installation process.

FORTE_NS_ADDRESS
The FORTE_NS_ADDRESS environment variable is used one way for the
Environment Manager process and another way for all other processes.

• For the Environment Manager, FORTE_NS_ADDRESS specifies one or more
network addresses at which the Environment Manager listens for incoming
requests.

• For all other processes, FORTE_NS_ADDRESS specifies one or more addresses
to use when contacting the Environment Manager. Addresses are tried in the
order they are specified. If a connection fails while in use, the next address is
automatically tried.

In both cases, however, the syntax is the same:

FORTE_NS_ADDRESS address [::protocol_name][;address
[::protocol_name]...]

See “FORTE_LOCATIONS” on page 334 for a description of address and
protocol_name. For further information about FORTE_NS_ADDRESS, see
“Environment Manager Failover for Partitions” on page 122.

FORTE_OBBSHR
Specifies the location of the ObjectBroker runtime libraries.

FORTE_OBBSHR file_specification

Also see “FORTE_COSSHR” on page 329.

FORTE_OLDEST_19YY
Used to anticipate dates in year 2000 and beyond, this variable specifies the oldest
year that iPlanet UDS will set to a 19xx date.

FORTE_OLDEST_19YY yy

In Release 3 the default for this variable is 30. This setting indicates that any “yy”
format year data that is equal to or greater than 30 (that is, 30 to 99) should be
prefixed with 19, and any “yy” format data less than 30 (that is, 00 to 29) should be
prefixed with 20.

Environment Variable Descriptions

338 iPlanet Unified Development Server • System Management Guide • August 2001

Set this variable to 00 to have date data treated as it is in iPlanet UDS Release 2. See
the Framework Library online Help for more information on this variable.

FORTE_OLESHR
Specifies the location of the OLE libraries.

FORTE_OLESHR file_specification

FORTE_PROCESSORS
(For Windows NT only) Contains the number of processors that exist on the
system. On a uniprocessor machine the value is 1, while for a 6-way Sequent the
value is 6. iPlanet UDS automatically detects this value and sets this variable
automatically.

FORTE_PROCESSORS integer

This variable is provided only for R2 backward compatibility on Windows NT.
Under normal circumstances, you should not set this environment variable.

FORTE_PROVIDERS
Specifies the transport provider for a given platform. Normally you need not set
this variable as the installation does so for you.

FORTE_PROVIDERS protocol_name

However, you can use this variable to specify a different transport provider for
your platform. For example, for Windows the default communication protocol is
Winsock, but you can specify the use of the native interface to the PC-NFS product.
For Windows the valid values for this environment variable are:

FORTE_REPOSNAME
Specifies the name of the repository that will be used as the default repository for
all iPlanet UDS commands that use a repository.

FORTE_REPOSNAME repository_name

Communication Provider Communication Protocol

W3TPSUN PC-NFS

W3TPWSS Winsock

Environment Variable Descriptions

Appendix B iPlanet UDS Environment Variables 339

To specify the repository name, enter:

• “Central Repository” for the default central repository

• A repository service name.

• The name of a private C-tree or shadow repository using the following format:
ct: private_repository_name.

Specify the private repository name as the root file name of the C-tree
repository (that is, the full path name of the .dat or .idx file without the trailer).

By default, this has the value “CentralRepository” which represents the default
central repository in the distributed environment.

On Windows, if you give a New Shadow command in the Repository Workshop,
this automatically resets the value of FORTE_REPOSNAME to the shadow name.
This way, if you leave and then reenter iPlanet UDS, the same shadow repository
will automatically be open.

Note that the -fr flag on several iPlanet UDS commands, such as forte and
fscript, overrides the value of FORTE_REPOSNAME.

FORTE_ROOT
Specifies the root directory path for iPlanet UDS.

FORTE_ROOT file_specification

All the files that make up the iPlanet UDS system as well as the default locations
for files that iPlanet UDS writes and reads are stored in FORTE_ROOT. The value
of this environment variable is set during the installation process; you should not
reset it.

FORTE_RPSTART_WAIT
Specifies the amount of time in seconds that rpstart will wait for the repository
server to start before issuing an error message. The default value is 60 seconds.

FORTE_RPSTART_WAIT integer

FORTE_SCREEN_HEIGHT_MILS
Sets the actual height of the screen, in mils.

FORTE_SCREEN_HEIGHT_MILS integer

This is intended primarily for use on X servers that are unaware of or incorrectly
report the screen height. You can use this environment variable to correct for
distortion. Measure your screen size, and set the actual height as an integer value
in mils (thousandth's of an inch).

Environment Variable Descriptions

340 iPlanet Unified Development Server • System Management Guide • August 2001

FORTE_SCREEN_WIDTH_MILS
Sets the actual width of the screen, in mils.

FORTE_SCREEN_WIDTH_MILS integer

This is intended primarily for use on X servers that are unaware of or incorrectly
report the screen width.You can use this environment variable to correct for
distortion. Measure your screen size, and set the actual width as an integer value in
mils (thousandth’s of an inch).

FORTE_STACK_SIZE
Sets the thread stack size in bytes for iPlanet UDS and POSIX threads. The syntax
for this variable is identical to the syntax for the -fst startup flag, which can also
be used to set the thread stack size.

FORTE_STACK_SIZE integer

If both the -fst flag and the FORTE_STACK_SIZE variable have been specified,
then the larger of the two values is used.

The default value for the thread stack size ranges from 28K to 48K, depending on
the platform and release of iPlanet UDS. Motif clients have a minimum size of
100K. On NT, the system default is 1MB and is not adjustable. A thread stack size
setting below the default value for that system is ignored.

You can increase the stack size if necessary. Because the new stack size you specify
is used for every thread, it will increase memory usage by the stack size times the
number of concurrent active threads. iPlanet UDS rounds the value up to the
nearest system MMU (Memory Management Unit) pagesize (8K on many
machines, but sometimes more or less). iPlanet UDS adds an MMU pagesize
guardword to the size; this page is memory protected to try and catch stack
overflow cases.

FORTE_THREAD_AFFINITY
Under normal circumstances, you should not set this environment variable.

FORTE_TIMEZONE
Specifies the time zone for the machine as the number of hours east or west of
GMT.

FORTE_TIMEZONE integer

This variable is only needed on OpenVMS and in the southern hemisphere on
Win3.1. On UNIX systems and PCs running PC/NFS), the system provides the
time zone setting. However, if you set this environment variable, its value
overrides the operating system timezone.

Environment Variable Descriptions

Appendix B iPlanet UDS Environment Variables 341

Acceptable values are integers between -23 and 23. For example, use 8 for Pacific
time and 5 for Eastern time. For time zones east of GMT, set this to a negative
number. If daylight savings time is in effect, use the FORTE_TIMEZONEDST
environment variable in addition.

FORTE_TIMEZONEDST
Specifies whether or not daylight savings is in effect. If it is set to TRUE, one hour is
added to the current time setting.

FORTE_TIMEZONESDT {TRUE | FALSE}

This variable is only needed on OpenVMS and in the southern hemisphere on
Win3.1.

FORTE_TIMEZONEMIN
Specifies the number in minutes west or east of GMT. Use negative numbers for
east of GMT.

FORTE_TIMEZONEMIN integer

This variable is provided for regions that use half-hour timezones. Like the variable
FORTE_TIMEZONE, this variable is only needed on OpenVMS and Win3.1
(southern hemisphere).

FORTE_VISUAL_STYLE
For Windows and Motif only—Specifies whether iPlanet UDS widgets should use
two- or three-dimensional style. The default is three-dimensional (3D).

FORTE_VISUAL_STYLE {3D | 2D | 2DONLY}

To turn off the three-dimensional style completely, use the 2DONLY setting. To
specify that the default visual style is two-dimensional, use the 2D setting. When
the default visual style is two-dimensional, you can still make an individual
window three-dimensional by setting the window’s DefaultVisualStyle attribute to
VS_3D.

FORTE_WORKMSG
Specifies the directory where application catalogs are stored during the
development cycle. The default is “FORTE_ROOT/workmsg.”

FORTE_WORKMSG directory_specification

The use of this variable allows multiple developers to use different message
catalogs during the development process. See iPlanet UDS Programming Guide for
more information on using this environment variable.

Environment Variable Descriptions

342 iPlanet Unified Development Server • System Management Guide • August 2001

FORTE_WORKSPACE
Specifies the name of the iPlanet UDS workspace to use for the default workspace
for the forte command or when the user gives an Open command in Fscript.

FORTE_WORKSPACE workspace_name

If you do not set this environment variable and do not specify a value with the -fw
flag on the forte or fscript command, iPlanet UDS opens the Repository
Workshop without a workspace and starts Fscript with the prefabricated
workspace called “FirstWorkspace.”

On Windows, the value of this environment variable is automatically set by the
iPlanet UDS workshops to the last workspace that was opened. This way, if you
leave and then reenter iPlanet UDS, the same workspace you left will automatically
be open.

You can override the setting of FORTE_WORKSPACE by using the -fw flag on the
forte and fscript commands. In the Repository Workshop, you can open any
workspace in the repository with the Open Workspace command on the File menu.

FORTE_X_HEADERDIRS
Specifies the directory in which the header files for X Windows and Motif are
stored. This is for use when you are making the distribution for a compiled
partition.

FORTE_X_HEADERDIRS -I/dir_name/include

You need to set this variable if the Display Project is contained in the partition. To
find out if the Display Project is in the server partition, run Fscript, and use the
FindPlan, FindApp, and ShowApp commands (see Fscript Reference Guide for more
information about Fscript).

FORTE_X_LIBDIRS
Specifies the directory for the X header files. This is for use when you are making
the distribution for a compiled partition (see A Guide to the iPlanet UDS Workshops
for more information).

FORTE_X_LIBDIRS -L/dir_name/lib

You should set this variable if you are unsure whether your X Window header files
reside in a standard location. Generally, you should set this variable if you are
running on a Sparc. If your hardware vendor also supplied your windowing
software, then you probably do not need to set the variable.

Logical Names for OpenVMS

Appendix B iPlanet UDS Environment Variables 343

FORTE_X_SOLID_GHOST
(For Motif only) Specifies that ghost lines used by the iPlanet UDS display system
will be solid rather than dashed. (Dashed ghost lines are the default for Motif).

FORTE_X_SOLID_GHOST { TRUE | FALSE }

Logical Names for OpenVMS
The following logical names allow you to set system parameters to apply to all
servers that are automatically started by iPlanet UDS. See “Starting iPlanet UDS
Applications” on page 185 for information about starting servers.

FORTE_DETACHED_ASTLM
Sets the limit for the AST queue. This is the total number of asynchronous system
trap (AST) operations and scheduled wake-up requests that the user can have
queued at one time. The default value is 100.

FORTE_DETACHED_BIOLM
Sets the buffered I/O count limit for the BIOLM field of the UAF record. The
buffered I/O count limit is the maximum number of buffered I/O operations, such
as terminal I/O, that can be outstanding at a given time. The default value is 64.

FORTE_DETACHED_BYTLM
Sets the buffered I/O byte limit for the BYTLM field of the UAF record. The
buffered I/O byte limit is the maximum number of bytes of non-paged,
system-dynamic memory that a user’s job can consume at one time. The system
uses non-paged, dynamic memory for operations such as I/O buffering and file
access windows. The default value is 100000.

FORTE_DETACHED_DIOLM
Sets the direct I/O count limit for the DIOLM field of the UAF record. The direct
I/O count limit is the maximum number of direct I/O operations (usually disk)
that can be outstanding at a given time. The default value is 64.

FORTE_DETACHED_ENQLM
Sets the lock queue limit for the ENQLM field of the UAF record. The lock queue
limit is the maximum number of locks that can be queued by the user at one time.
The default is 2000.

Logical Names for OpenVMS

344 iPlanet Unified Development Server • System Management Guide • August 2001

FORTE_DETACHED_FILLM
Sets the open file limit for the FILLM field of the UAF record. The open file limit is
the maximum number of files that can open at a given time, including active
network logical links. The default value is 10.

FORTE_DETACHED_JTQUOTA
Sets the initial byte quota with which the job-wide logical name table is to be
created. The default value is 0.

FORTE_DETACHED_PGFLQUOTA
Sets the paging file limit. The paging file limit is the maximum number of pages
that the user’s process can use in the system paging file. The default value is
128000.

FORTE_DETACHED_TQE
Sets the total number of entries in the timer queue plus the number of temporary
common event flag clusters that the user can have at the same time. The default
value is 200.

FORTE_DETACHED_WSDEFAULT
Sets the default working set size. This is the initial limit for the number of physical
pages that the process can use. The default value is 1024.

FORTE_DETACHED_WSEXTENT
Sets the working set maximum. This represents the maximum amount of physical
memory allowed to the process. The system provides memory to a process beyond
its working set quota only when it has excess free pages. The additional memory is
recalled by the system if needed. The value you specify must be an integer equal to
or greater than FORTE_DETACHED_WSQUOTA. The default value is 32000.

FORTE_DETACHED_WSQUOTA
Sets the working set quota. The working set quota is the maximum amount of
physical memory a user process can lock into its working set. It also controls the
maximum amount of swap space that the system reserves for this process, and the
maximum amount of physical memory that the system allows the process to
consume when the system-wide memory demand is significant. The default value
is 800.

Using the iPlanet UDS Control Panel

Appendix B iPlanet UDS Environment Variables 345

Using the iPlanet UDS Control Panel
The iPlanet UDS Control Panel provides a simple user interface that allows you to
view and/or set the most commonly used iPlanet UDS environment variables. For
Windows, the Control Panel allows you to view and change the current settings.
For other platforms, the Control Panel only provides read access to the settings. For
these platforms, you must set the environment variables as described under
“Setting Environment Variables Without the iPlanet UDS Control Panel” on
page 353.

Opening the Control Panel
To start the Control Panel from Windows, double-click the iPlanet UDS Control
Panel icon, or choose the Start > Programs > iPlanet UDS > iPlanet UDS Control
Panel command.

To start the Control Panel from UNIX or VMS, use the fcontrol command. The
portable syntax is:

fcontrol

The OpenVMS syntax is:

VFORTE FCONTROL

The Control Panel Window
The Control Panel window is a dialog box, shown below, where you can view or
change the iPlanet UDS environment variable settings.

Using the iPlanet UDS Control Panel

346 iPlanet Unified Development Server • System Management Guide • August 2001

Figure B-1 iPlanet UDS Control Panel

If you use the utility on Windows, the window displays OK and Cancel buttons.
Any changes you make to settings take effect when you click the OK button.
Clicking the OK button also closes the dialog.

If you use the utility on any platform other than the Windows, you cannot change
any of the settings, so the Control Panel simply displays a Close button. Click the
Close button to close the dialog when you have finished viewing the settings.

When you open the Control Panel, the Control Panel window displays a tab folder
with the following tab pages:

The General tab page is displayed first. To display or set the network settings, click
the Network tab. To display or set the log flags setting, click the Log Flags tab. Do
not click the OK on the Control Panel until you are ready to close the Control Panel.

The following sections provide detailed information about the settings you can
view or change on each of the tab pages.

Tab Page Available Settings

General Repository name, workspace name, root directory, and time zone.

Network Model node, node name, name server address, and communication provider.

Log flags Default logger settings for the iPlanet UDS session.

Using the iPlanet UDS Control Panel

Appendix B iPlanet UDS Environment Variables 347

Closing the Control Panel
On Windows, you can use either the OK or Cancel button to close the Control
Panel. The OK button changes the settings as specified and then closes the Control
Panel. The Cancel button discards the new settings and then closes the Control
Panel.

On all other platforms, simply click the Close button to close the Control Panel.

General Tab Page
The following table lists general settings you can control with the Control Panel
and shows the environment variable that corresponds to each setting:

The following sections provide information on the individual settings.

Repository Name
The repository name setting specifies the name of the repository to be used as the
default repository for all iPlanet UDS commands that use a repository.

To specify the repository name, enter one of the following options:

• “Central Repository” for the default central repository.

• A repository service name.

• The name of a private B-tree or shadow repository using the following format:
bt: private_repository_name.

Specify the private repository name as the root file name of the B-tree
repository (that is, the full path name of the file without the trailer).

General Setting Environment Variable

Repository Name FORTE_REPOSNAME

Workspace Name FORTE_WORKSPACE

Root Directory FORTE_ROOT

Time Zone FORTE_TIMEZONE

Daylight Savings FORTE_TIMEZONEDST

Using the iPlanet UDS Control Panel

348 iPlanet Unified Development Server • System Management Guide • August 2001

By default, the repository name has the value “CentralRepository,” which
represents the default central repository in the distributed environment.

B-tree specifications The following examples illustrate how to specify a B-tree
repository name:

New Shadow command On Windows platforms, if you choose the New Shadow
command in the Repository Workshop, iPlanet UDS automatically resets the value
of the Repository Name setting (and the FORTE_REPOSNAME environment
variable) to the shadow name. As a result, if you leave and then reenter iPlanet
UDS, the same shadow repository will automatically be open.

The -fr flag on the commands that run iPlanet UDS, such as ftcmd, ftexec, forte
and fscript, overrides the value the Repository Name setting. For information
about the -fr flag, see A Guide to the iPlanet UDS Workshops.

Workspace Name
The Workspace Name setting specifies the name of the workspace to use for the
default workspace when you start the iPlanet UDS Workshops or when the you
give an Open command in Fscript.

The -fw flag on the commands that run iPlanet UDS, such as ftcmd, ftexec, forte
and fscript, overrides the value the Workspace Name setting. For information
about the -fw flag, see A Guide to the iPlanet UDS Workshops.

If you do not specify a value for Workspace Name and do not specify a value with
the -fw flag on the command line, iPlanet UDS opens the Repository Workshop
without a workspace and starts Fscript with the prefabricated workspace called
“FirstWorkspace.”

On Windows, the value of the Workspace Name setting (and the corresponding
FORTE_WORKSPACE environment variable) is automatically set by the iPlanet
UDS workshops to the last workspace that was opened. As a result, if you leave
and then reenter iPlanet UDS, the same workspace you left will automatically be
open.

Platform Command Syntax

UNIX bt:$FORTE_ROOT/repos/myShadow

OpenVMS BT:FORTE_ROOT:[REPOS]MYSHADOW

Windows bt:\forte\repos\myshadow

Using the iPlanet UDS Control Panel

Appendix B iPlanet UDS Environment Variables 349

You can override the Workspace Name setting by using the -fw flag on the
commands that start the iPlanet UDS Workshops. In the Repository Workshop,
you can open any workspace in the repository by choosing the File > Open
Workspace command (see A Guide to the iPlanet UDS Workshops).

Root Directory
The Root Directory setting specifies the root directory path for iPlanet UDS. All the
files that make up the iPlanet UDS system as well as the default locations for files
that iPlanet UDS writes to and reads are stored in the root directory. The value of
this setting is usually specified during the installation process using the
FORTE_ROOT environment variable. The Control Panel displays the current
setting mainly for your information only. You should not specify a new root
directory unless you are moving your entire iPlanet UDS installation.

Time Zone and Daylight Savings
The Time Zone setting specifies the time zone for the machine as the number of
hours west of GMT. On some systems (on UNIX and on PCs running PC/NFS),
this is not needed, as the system provides an accurate value for the time zone
setting. However, if you do specify a value for this setting, note that the setting will
override any other value it gets from the operating system.

You must set the Time Zone setting to an integer value between +11 and -13. For
Pacific time, set the value to 8, and for Eastern time, set the value to 5. For time
zones east of GMT, set the Time Zone setting to a negative number. If daylight
savings time is in effect, set the Daylight Savings toggle to on.

The Daylight Savings toggle specifies whether or not daylight savings is in effect. If
the toggle is set to on, one hour is added to the current time setting.

Network Tab Page
The following table lists the network settings you can control with the Control
Panel and shows the environment variable that corresponds to each setting:

Network Setting Environment Variable

Model Node FORTE_MODELNODE

Node Name FORTE_NODENAME

Name Server Address FORTE_NS_ADDRESS

Communication Provider FORTE_PROVIDERS

Using the iPlanet UDS Control Panel

350 iPlanet Unified Development Server • System Management Guide • August 2001

The following sections provide information on the individual settings.

Model Node
The Model Node setting specifies the name of the model node, in the active
environment, which this node uses for its definition. The Model Node is usually set
during installation. If you do not specify a model node name, the node is not
treated as a model node.

The -fmn flag on the commands that run iPlanet UDS, such as ftcmd, ftexec,
forte and fscript, overrides the value the Model Node setting. For information
about the -fmn flag, see A Guide to the iPlanet UDS Workshops.

Node Name
The Node Name setting specifies the name of the node on which you are running.
The Node Name setting in the Control Panel is used only on client machines; on
UNIX, OpenVMS, and NT servers, the host name is taken from the hosts file. The
Node Name is usually set during installation, but you can change the value from
the Control Panel if necessary.

The -fn flag on the commands that run iPlanet UDS, such as ftcmd, ftexec, forte
and fscript, overrides the value the Node Name setting. For information about
the -fnd flag, see “Startup Flags” on page 192.

Name Server Address
The Name Server Address setting specifies the address of the iPlanet UDS name
server process. The Name Server Address is usually set during installation, but you
can change the value from the Control Panel if necessary.

The syntax for the Name Server Address setting is:

address [::protocol_name]

The syntax of address is protocol dependent, as shown in the following table.

Protocol Address Syntax

TCP/IP machine_name:port_number

DECnet machine_name:object_name

UNIX Domain path_name

Using the iPlanet UDS Control Panel

Appendix B iPlanet UDS Environment Variables 351

The optional protocol_name allows you to use a different protocol than the default
for the platform. The default protocol for OpenVMS is DECnet and for all other
platforms TCP/IP.

The protocol_name is one of the following values:

TCP/IP
DECnet
UNIX Domain

For further information about the name server, see the “Environment Manager
Failover for Partitions” on page 122.

Communication Provider
The Communication Provider setting specifies the communication transport
providers to use for the node. A transport provider is a program that enables
iPlanet UDS to access a particular communication package.

Choosing a provider for PC Windows In the iPlanet UDS Control Panel, the
only platform for which you can change the communication provider is PC
Windows. The default communication provider for PC Windows is Winsock. You
can choose PC-NFS if appropriate.

Log Flags Tab Page
As you develop and test applications in the iPlanet UDS Workshops, iPlanet UDS
logs messages in the trace window or log file as specified by
FORTE_LOGGER_SETUP environment variable (see “FORTE_LOGGER_SETUP”
on page 335). If you did not specify a log file name with FORTE_LOGGER_SETUP,
iPlanet UDS logs the messages in the trace window.

CAUTION If you change your name server address, the next iPlanet UDS
application that you start, including the iPlanet UDS Workshops,
will use the new value. This effectively changes you to a different
iPlanet UDS environment. You should discuss this with your system
manager.

Using the iPlanet UDS Control Panel

352 iPlanet Unified Development Server • System Management Guide • August 2001

The Log Flags setting in the Control Panel allows you to specify the filter settings
used for logging the messages. This is equivalent to the log settings you can specify
the FORTE_LOGGER_SETUP environment variable. However, the Log Files
setting does not allow you to specify the log file names. Instead, all messages are
logged in the default log file, “stdout.”

To change the filter settings for an individual message, edit the fields in the array
row as follows:

See “-fl Flag (Log Manager)” on page 371 for specific information about each of
these settings.

Inserting and deleting log settings You can request an additional log setting by
inserting a new row in the array field or eliminate a log setting by deleting the row
from the array field. The Insert button adds a new row above the selected row,
using default values for each of the fields. The Delete button removes the currently
selected row.

The LogMgr object (described in Framework Library online Help) examines the
Log Flags setting (or the FORTE_LOGGER_SETUP environment variable) and
based on the information it finds, opens one or more text files or display windows.
If you do not specify the log flags with the LogFlags setting or
FORTE_LOGGER_SETUP (and you have not specified in the -fl flag in your
command line), no specially filtered messages are logged.

CAUTION If you change any of the filter settings using the Control Panel, the
new settings override any file specifications set by the
FORTE_LOGGER_SETUP environment variable. All messages will
be logged in the default log file, “stdout.”

Field How to Fill It in

Message Choose the message type from the drop list.

Service Choose the service type from the drop list.

Group Enter integers in the two data fields to specify a range. The integers can be
from 1 to 63.

Level Enter an enter from 1 to 255.

Setting Environment Variables Without the iPlanet UDS Control Panel

Appendix B iPlanet UDS Environment Variables 353

The -fl flag on the commands that run iPlanet UDS, such as ftcmd, ftexec, forte
and fscript, overrides the value the Log Flags setting. For information about the
-fl flag, see “-fl Flag (Log Manager)” on page 371.

Modify Log Flags command If you wish to change the default filter settings at
any point during your development session, you can use the Modify Log Flags
command in the Repository Workshop (see A Guide to the iPlanet UDS Workshops).
The Modify Log Flags command opens a window, where you view and/or change
the filter settings in an array field.

Runtime modification of log specifications You can also modify the types and
detail level of messages being logged while the program is running. The
ModifyFlags method defined on the LogMgr class provides a runtime interface to
the same settings the Log Flags setting (and the -fl flag on iPlanet UDS command
lines) provides at application start-up. The Environment Console provides an
interface to a running server's LogMgr object and can be used to modify the
LogMgr settings of the server being monitored.

Setting Environment Variables Without the
iPlanet UDS Control Panel

You may find you need to set environment variables for Windows that are not
included in the iPlanet UDS Control Panel. To do so, you must use the operating
system’s standard format. For platforms other than Windows, you must set all
your environment variables using the operating system’s standard format.

The following sections provide information about setting environment variables in
the operating systems supported by iPlanet UDS.

Setting Environment Variables on NT
On Windows and Alpha NT, the default settings for the iPlanet UDS environment
variables are set in the Registry. NT allows you to set environment variables in
several different places, all of which are described below. We recommend that you
set your environment variables using the iPlanet UDS Control Panel or the Registry
Editor (regedit). In general, you should avoid using the NT Control Panel.

The order of precedence is as follows:

1. individual process window (set at the DOS command prompt)

2. NT Control Panel’s User variables

Setting Environment Variables Without the iPlanet UDS Control Panel

354 iPlanet Unified Development Server • System Management Guide • August 2001

3. NT Control Panel’s System variables

4. Registry’s Current User Tree (HKEY_CURRENT_USER)

5. Registry’s Global Tree (HKEY_LOCAL_MACHINE)

Using the Registry
The environment variables in the Registry are set in two different directories.

Registry’s Global Tree iPlanet UDS machine-wide information and default
iPlanet UDS environment variables are kept in the iPlanet UDS Global Tree branch:

HKEY_LOCAL_MACHINE\Software\ForteSoftwareInc\Forte\version number

Registry’s User Tree All user-specific iPlanet UDS environment variables are
kept in the iPlanet UDS User Tree branch:

HKEY_CURRENT_USER\Software\ForteSoftwareInc\Forte

Environment variable settings in the iPlanet UDS User Tree override those in the
iPlanet UDS Global Tree. Unless you are a system administrator who is setting up a
machine for use by several users, we recommend that you set your environment
variables in the User Tree.

To change the value of an environment variable or add a new one, use regedit.exe
to open the Registry Editor and modify the iPlanet UDS User Tree.

Using the NT Control Panel The NT Control Panel allows you to set any of the
iPlanet UDS environment variables. Like the Registry, the NT Control Panel
contains System and User sections. The settings in the User section override the
settings in the System variables.

Settings in the NT Control Panel override the settings in the Registry (and therefore
settings in the iPlanet UDS Control Panel). Therefore, we recommend that you do
not use the NT Control Panel to set your environment variables. Setting
environment variables in too many places can make your setup confusing and
inconsistent.

Using the DOS command line For an individual process window, you can set
environment variables using the set command in DOS. Using the set command
for an individual window overrides the environment variable settings for that
individual process.

Setting Environment Variables Without the iPlanet UDS Control Panel

Appendix B iPlanet UDS Environment Variables 355

Using the iPlanet UDS Control Panel You can set the most commonly used
environment variables using the iPlanet UDS Control Panel as described under
“Using the iPlanet UDS Control Panel” on page 345. Setting environment variables
in the iPlanet UDS Control Panel changes the value of the equivalent environment
variable in the User Tree of the Registry (not in the NT Control Panel).

iPlanet UDS command-line flags Note that iPlanet UDS command-line flags
that specify the same settings as environment variables, such as those that set the
repository or workspace, always override the environment variable settings.

Setting Environment Variables on Windows 95
On Windows 95, the default settings for the iPlanet UDS environment variables are
stored in the User Registry.

Using the Registry The following file in the Registry contains the iPlanet UDS
environment variables:

HKEY_CURRENT_USER/Software/ForteSoftwareInc/Forte

To change the value of an environment variable or add a new one, use regedit.exe
to open the Registry Editor and modify this file.

autoexec.bat file You can also set iPlanet UDS environment variables in the
autoexec.bat file. Setting environment variables in the autoexec.bat file overrides
the settings in the User Registry. For consistency, we recommend that you set your
environment variables in the Registry as described above, and not in the
autoexec.bat file.

iPlanet UDS Control Panel You can set the most commonly used environment
variables using the iPlanet UDS Control Panel as described under “Using the
iPlanet UDS Control Panel” on page 345. Setting an environment variable in the
iPlanet UDS Control Panel changes the value of the corresponding environment
variable in the Registry. Therefore, environment variables set in autoexec.bat file
will override those set by the iPlanet UDS Control Panel.

In summary, the following environment variable settings take precedence:

1. autoexec.bat file

2. User Registry

iPlanet UDS command-line flags Note that iPlanet UDS command-line flags
that specify the same settings as environment variables, such as those that set the
repository or workspace, always override the environment variable settings.

Setting Environment Variables Without the iPlanet UDS Control Panel

356 iPlanet Unified Development Server • System Management Guide • August 2001

Setting Environment Variables on UNIX
Using the fortedef file On UNIX, the default settings for the iPlanet UDS
environment variables are stored in the following files:

C-Shell
FORTE_ROOT/fortedef.csh

Bourne-Shell
FORTE_ROOT/fortedef.sh

These two files are created by the iPlanet UDS Installer, and save your input for the
iPlanet UDS system information.

Using the fortedef file To change the default settings or add new environment
variable settings, simply edit the appropriate fortedef file.

Using the command line You can also enter settings for iPlanet UDS
environment variables on the command line. Following the UNIX standard,
environment variable settings specified at the command line override those in the
fortedef file.

iPlanet UDS command-line flags Note that iPlanet UDS command-line flags
that specify the same settings as environment variables, such as those that set the
repository or workspace, always override the environment variable settings.

Setting Logical Names on OpenVMS
On OpenVMS, the default settings for the iPlanet UDS logical names and DCL
foreign symbols are stored in the following file:

FORTE_ROOT:[INSTALL.SCRIPTS]FORTE_LOGIN.COM

Using the FORTE_LOGIN.COM file To change the default settings or add new
logical names or symbols, simply edit the FORTE_LOGIN.COM file or create a new
file:

FORTE_ROOT:[INSTALL.SCRIPTS]SITE_LOGIN.COM

In order to define the FORTE_ROOT logical name you can simply execute:

@SYS$LIBRARY:FORTE_LOGIN_Vversion_number

Setting Environment Variables Without the iPlanet UDS Control Panel

Appendix B iPlanet UDS Environment Variables 357

Using your personal login.com file If you use iPlanet UDS frequently, you may
wish to include the following command within your personal LOGIN.COM file:

$ @SYS$LIBRARY:FORTE_LOGIN_Vversion_number

Using the command line You can also define settings for iPlanet UDS logical
names on the command line. Logical name settings specified at the command line
override those in the FORTE_LOGIN.COM file. The logicals defined in
FORTE_LOGIN.COM are stored in two logical name tables:

FORTE_PRCTABLE_Vversion_number

FORTE_GBLTABLE_Vversion_number

Therefore, if you use the DEFINE command to set your own logicals in either the
LNM$PROCESS table (with the default /PROCESS qualifier to DEFINE) or the
LNM$JOB table (with the /JOB qualifier to DEFINE) you can leave the
FORTE_PRCTABLE_Vversion_number and FORTE_GBLTABLE_Vversion_number
tables undisturbed for other users.

iPlanet UDS command-line flags Note that iPlanet UDS command-line flags
that specify the same settings as environment variables, such as those that set the
repository or workspace, always override the environment variable settings.

Setting Environment Variables Without the iPlanet UDS Control Panel

358 iPlanet Unified Development Server • System Management Guide • August 2001

359

Appendix C

iPlanet UDS Command Summary

This appendix provides the syntax for iPlanet UDS commands in alphabetical
order. An asterisk (*) next to the command name indicates that the command is
available for development only.

The appendix also provides information about the -fl and -fm flags, which appear
on most of the iPlanet UDS commands.

iPlanet UDS Commands

Compmsg Command
The compmsg command starts the Compmsg utility, which takes a file containing
source message text and numbers, and compiles it into a portable binary format for
use at runtime by the iPlanet UDS runtime system.

Portable
compmsg -m [@]input_msg_file -c output_msg_catalog [-o] [-d msg_catalog]

[-e log_file] [-flc locale]

OpenVMS
VFORTE COMPMSG

/MSG_TEXT=input_msg_file
/CATALOG=output_msg_catalog
[/OVERWRITE=TRUE]
[/DISPLAY=msg_catalog]
[/ERROR_LOGFILE=log_file]

iPlanet UDS Commands

360 iPlanet Unified Development Server • System Management Guide • August 2001

For more information about using the compmsg command, see the iPlanet UDS
Programming Guide.

Econsole Command
The econsole command starts the Environment Console.

Portable
econsole [-fns name_server_address][-fl logger_flags][-fm memory_flags]

OpenVMS
VFORTE ECONSOLE

[/NAMESERVER=name_server_address]
[/LOGGER=logger_flags]
[/MEMORY=memory_flags]

For more information about using the econsole command, see “Using the
econsole Command” on page 64.

Escript Command
The escript command starts the Escript utility.

Portable
escript [-fl logger_flags] [-fm memory_flags] [-fst integer]

[-i input_file] [-o output_file] [-fns name_server_address]

OpenVMS
VFORTE ESCRIPT

[/LOGGER=logger_flags]
[/MEMORY=memory_flags]
[/STACK=integer]
[/INPUT=input_file]
[/OUTPUT=output_file]
[/NAMESERVER=name_server_address]

For more information about using the escript command, refer to the Escript and
System Agent Reference Guide.

iPlanet UDS Commands

Appendix C iPlanet UDS Command Summary 361

Extmsg Command
The extmsg command starts the Extmsg utility, which takes a TOOL project export
file as input and replaces any single-quoted strings found in the text within the file
with invocations of the GetString method on the default message catalog for the
application.

Portable
extmsg -i input_TOOL_file -o output_TOOL_file

-m output_msg_file [-s set_string] [-n first_msg_number]
[-t substitution_text_string] [-l]

OpenVMS
VFORTE EXTMSG

/INPUT_TOOL=input_TOOL_file
/OUTPUT_TOOL=output_TOOL_file
/MSG_TEXT=output_msg_file
[/SET=set_string]
[/FIRST_MSG=first_msg_number]
[/SUBSTITUTE=substitution_text_string]
[/LEAVE_MSG=TRUE]
[/ERROR_LOGFILE=log_file]

For more information about using the extmsg command, see theiPlanet UDS
Programming Guide.

*Fcompile Command
The fcompile command generates code, compiles, and links a compiled partition,
TOOL library, or external library.

Portable
fcompile [-c component_generation_file] [-d target_directory] [-o output_file]

[-cflags compiler_flags] [-lflags linking_flags]
[-iflags IDL_compiler_flags] [-r repository_name]
[-fns name_server_address] [-fm memory_flags] [-fst integer]
[-fl logger_flags] [-cleanup]

iPlanet UDS Commands

362 iPlanet Unified Development Server • System Management Guide • August 2001

OpenVMS
VFORTE FCOMPILE

[/COMPONENT=component_generation_file]
[/DIRECTORY=target_directory]
[/OUTPUT=output_file]
[/COMPILER=compiler_flags]
[/LINKING=linking_flags]
[/IDL=IDL_compiler_flags]
[/REPOSITORY=repository_name]
[/NAMESERVER=name_server_address]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/CLEANUP]

For more information about using the fcompile command, see A Guide to the
iPlanet UDS Workshops and Integrating with External Systems.

Fcontrol Command
The fcontrol command opens the iPlanet UDS control panel.

Portable
fcontrol

OpenVMS
VFORTE FCONTROL

For more information on using the control panel, refer to “Using the iPlanet UDS
Control Panel” on page 345.

*Forte Command
The forte command opens the iPlanet UDS Workshops to start a development
session.

Portable
forte [-fs] [-fr repository] [-fw workspace] [-fnd node_name]

[-fmn model_node_name] [-fm memory_flags] [-fst integer]
[-fl logger_flags] [-fcons]

iPlanet UDS Commands

Appendix C iPlanet UDS Command Summary 363

OpenVMS
VFORTE FORTE

[/STANDALONE]
[/REPOSITORY=repository_name]
[/WORKSPACE=workspace_name]
[/NODE=node_name]
[/MODEL_NODE=model_node_name]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/NAMESERVER=name_server_address]

For more information about using the forte command, refer to A Guide to the
iPlanet UDS Workshops.

*Fscript Command
The fscript command starts the Fscript utility, which is a command-line
interface to the functions provided by the iPlanet UDS Workshops.

Portable
fscript [-fs] [-fr repository_name] [-fw workspace_name] [-fcons]

[-fns name_server_address] [-fnd node_name] [-fmn model_node_name]
[-fm memory_flags] [-fst integer] [-fl logger_flags]
[-i input_file] [-o output_file]

OpenVMS
VFORTE FSCRIPT

[/STANDALONE]
[/REPOSITORY=repository_name]
[/WORKSPACE=workspace_name]
[/NAMESERVER=name_server_address]
[/NODE=node_name]
[/MODEL_NODE=model_node_name]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/INPUT=input_file]
[/OUTPUT=output_file]

For more information about using the fscript command, refer to the Fscript
Reference Guide.

iPlanet UDS Commands

364 iPlanet Unified Development Server • System Management Guide • August 2001

Ftcmd Command
The ftcmd command starts the command line interface to the iPlanet UDS launch
server.

ftcmd [-v] [-nolog] [-port port_number] [-fnd node_name] [-nonode] [-fs]
[-fm memory_flags] [-fst integer] [-fl logger_flags]
{-i input_file | {[list {all | assigned | public | forte | running}] |
[run application_name [release] [arguments] [update]] |
[shutdown app_ID | all | launcher] |
[update application_name [release]] }

For more information on the ftcmd command, see “Using the Ftcmd Utility” on
page 307.

Ftexec Command
The ftexec command starts a standard partition on a node. The syntax differs for
client partitions and server partitions.

➤ To start a client partition, use the following ftexec command syntax

Portable
ftexec -fi image_repository_name [-fs] [-fns name_server_address]

[-fl logger_flags] [-fm memory_flags] [-fst integer]
[-fcons] [-fnw] [-fterm] [-fss]

OpenVMS
VFORTE FTEXEC

/IMAGE_REPOSITORY=image_repository_name
[/STANDALONE]
[/NAMESERVER=name_server_address]
[/LOGGER=logger_flags]
[/MEMORY=memory_flags]
[/STACK=integer]
[/FCONSOLE]
[/FNW]
[/FTERM]

iPlanet UDS Commands

Appendix C iPlanet UDS Command Summary 365

➤ To start a standard server partition, enter the following command

Portablex
ftexec -fi image_repository_name -ftsvr 0 [-fns name_server_address]

[-fl logger_flags] [-fm memory_flags] [-fst integer] [-ftsvr 0]

OpenVMS
VFORTE FTEXEC

/IMAGE_REPOSITORY=image_repository_name
[/NAMESERVER=name_server_address]
/SERVER_ONLY
[/LOGGER=logger_flags]
[/MEMORY=memory_flags]
[/STACK=integer]

For more information about the ftexec command, refer to “Manual Startup” on
page 190.

Ftexecd Command
The ftexecd command starts a standard partition on a server node using
DCE/POSIX threads instead of iPlanet UDS threads.

Portable (all platforms)
ftexecd -fi image_repository_name -ftsvr 0 [-fns name_server_address] [-fnd
node_name]

[-fl logger_flags] [-fm memory_flags]

For more information about this command, see “Manual Startup” on page 190.

Ftlaunch Command
The ftlaunch command starts the iPlanet UDS Launch Server.

Portable
ftlaunch [-port port_number] [-fnd node_name] [-nonode] [-fs]

[-fns name_server_address] [-fm memory_flags] [-fst integer] [-fl logger_flags]

For more information on the ftlaunch command, see “ftlaunch Command” on
page 304.

iPlanet UDS Commands

366 iPlanet Unified Development Server • System Management Guide • August 2001

Nodemgr Command
The nodemgr command starts the Nodemgr utility.

Portable (all platforms)
{nodemgr | start_nodemgr}

[-e environment_name [-b environment_definition_file]]
[-fns name_server_address] [-p master_password]
[-fl logger_flags] [-fm memory_flags] [-fst integer]
[-fnd node_name] [-i initialization_file]

OpenVMS
{VFORTE NODEMGR | NODEMGRSTART | ENVMGRSTART}

[/ENVIRONMENT=environment_name
[/BOOT=environment_definition_file]]
[/PASSWORD=master_password]
[/NAMESERVER=name_server_address]
[/LOGGER=logger_flags]
[/MEMORY=memory_flags]
[/STACK=integer]
[/NODE=node_name]
[/INITIALIZATION_FILE=initialization_file]
[/DETACH]
[/ERROR=error_file]
[/OUTPUT=output_file]
[/PROCESS_NAME="process_name"]
[/UIC=uic]

For more information about using the nodemgr command, see “Startup Commands
(nodemgr and start_nodemgr)” on page 104.

Olegen Command
To run the Olegen utility, you must be running on Windows. You can start this
utility in the Windows dialog that you can access by selecting the Run command
from the File menu in Program Manager.

olegen input_specification [output_specifications. . .] [-ai]

olegen input_specification [-of output_file_name] [-ai]

For more information about using the olegen command, see Integrating with
External Systems.

iPlanet UDS Commands

Appendix C iPlanet UDS Command Summary 367

*Rpclean Command
The rpclean command compacts a central or private repository.

Portable
rpclean -fr repository_name [-t temporary_directory_name] [-q] [-fm memory_flags]

 [-fst integer] [-fl logger_flags]

OpenVMS
VFORTE RPCLEAN

/REPOSITORY=repository_name
[/TEMPORARY=temporary_directory_name]
[/QUICK]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]]

For more information about using the rpclean command, see “rpclean Command”
on page 268.

*Rpcopy Command
The rpcopy command makes a new central repository by copying an existing
central or private repository.

Portable
rpcopy -s source_repository_name -fr target_repository_name [-r]

[-fns name_server_address] [-fs] [-fm memory_flags]
 [-fst integer] [-fl logger_flags] [-secure] [-nonsecure]

OpenVMS
VFORTE RPCOPY

/SOURCE_REPOSITORY=source_repository_name
/REPOSITORY=target_repository_name
[/REPLACE]
[/NAMESERVER=name_server_address]
[/STANDALONE]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/SECURE|NOSECURE]

iPlanet UDS Commands

368 iPlanet Unified Development Server • System Management Guide • August 2001

For more information about using the rpcopy command, see “rpcopy Command”
on page 255.

*Rpcreate Command
The rpcreate command creates a new, empty repository.

Portable
rpcreate -fr target_repository_name [-r]

[-fm memory_flags] [-fl logger_flags] [-secure]

OpenVMS
VFORTE RPCREATE

/REPOSITORY=target_repository_name
[/REPLACE]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/SECURE | /NOSECURE]

For more information about using the rpcreate command, see “rpcreate
Command” on page 253.

*Rpshadow Command
The rpshadow command creates a shadow repository.

Portable
rpshadow -fr target_shadow_name -n repository_server_name [-r]

[-fns name_server_address][-fm memory_flags] [-fst integer] [-fl logger_flags]

OpenVMS
VFORTE RPSHADOW

/REPOSITORY=target_shadow_name
/SERVICE_NAME=repository_server_name
[/REPLACE]
[/NAMESERVER=name_server_address]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]

iPlanet UDS Commands

Appendix C iPlanet UDS Command Summary 369

For more information about using the rpshadow command, see “Creating Shadow
Repositories” on page 258.

*Rpstart Command
The rpstart command starts a repository server on the specified central
repository.

Portable
rpstart -n repository_service_name -fr repository_name [-w]

[-fns name_server_address] [-p master_password]
[-fm memory_flags] [-fst integer] [-fl logger_flags]

OpenVMS
VFORTE RPSTART

[/SERVICE_NAME=repository_service_name]
[/REPOSITORY=repository_name]
[/WAIT_TIME= time _in_seconds]
[/NAMESERVER=name_server_address]
[/PASSWORD=master_password]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]

For more information about using the rpstart command, see “rpstart Command”
on page 262.

*Rpstop Command
The rpstop command stops a repository server.

Portable
rpstop -n repository_service_name [-fns name_server_address]

[-k] [-fm memory_flags] [-fst integer] [-fl logger_flags]

iPlanet UDS Commands

370 iPlanet Unified Development Server • System Management Guide • August 2001

OpenVMSx
VFORTE RPSTOP

[/SERVICE_NAME=repository_service_name]
[/NAMESERVER=name_server_address]
[/KILL]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]

For more information about using the rpstop command, see “rpstop Command”
on page 265.

*Tclient Command
The tclient command starts the TestClient utility, which allows you to test a
shared service object by running the application on multiple clients.

Portable
tclient [-fnd node_name] [-fmn model_node_name]

[-fm memory_flags] [-fst integer]
[-fl logger_flags] [-fns name_server_address] [-fterm] [-fcons]

OpenVMS
VFORTE TCLIENT

[/NODE=node_name]
[/MODEL_NODE=model_node_name]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/NAMESERVER=name_server_address]
[/FTERM]
[/FCONS]

For more information on the Tclient command, see the iPlanet UDS Programming
Guide.

iPlanet UDS Logger and Memory Manager Flags

Appendix C iPlanet UDS Command Summary 371

iPlanet UDS Logger and Memory Manager Flags
The following sections describe how to use the -fl and -fm flags, which are
available for all iPlanet UDS commands.

-fl Flag (Log Manager)
The -fl flog allows you to specify logger flags to be used for the command. The
logger flags set the file or files used by the LogMgr object for logging messages,
and specify the types of messages logged in each file. See LogMgr class in
Framework Library online Help for information on how to produce the actual
messages.

The -fl flag overrides the setting of the FORTE_LOGGER_SETUP environment
variable.

-fl file_name(file_filter)[file_name(file_filter)...]

For UNIX and VMS, any arguments that contain parentheses must be enclosed by
double quotes.

The following sections provide information specifying the file name and file filters.

File Name
The log file name is any valid file name where you want to log messages. The
special file names “%stdout” and “%stderr” log the messages to standard output or
standard error, respectively.

You can specify several files for logging messages. Multiple logging files are useful,
for example, in an application where you want to display general tracing on
standard output (%stdout), but want detailed tracing logged to a file for later
review.

On Windows only, you can use the name “%stdwin” to create a simple, scrollable
output window for textual output. “%stdwin” is particularly useful to specify an
alternative file for the output from Fscript or the iPlanet UDS Workshops.

File Filter
Each file name is associated with a file filter.

message_type[:service_type[:group_number[:level_number]]]

A description of each file filter option follows.

iPlanet UDS Logger and Memory Manager Flags

372 iPlanet Unified Development Server • System Management Guide • August 2001

Message Type Option
The most general filter is message type. The value of message type differentiates
messages such as errors, debugging information, or performance data. The
message types appear in the following table. Each type is paired with a runtime
LogMgr constant that corresponds to the message type when used with the more
complex versions of the Put and PutLine methods:

By using the message type categories, you can print different types of messages to
different files. For example, you may want to print trace messages on standard
output, error messages on standard output and an error log file, and performance
information in a performance log file. The specification for this setup might be the
following:

%stdout(trc:user err:user) err.log(err:user) perf.log(prf:user)

Service Type Option
Within message types there are service types. Service types are the large
subdivisions you make within your program and typically map to projects. The
service type parameter is optional. If used, the service type value must be between
“user1” and “user10”. Typically, a service is a large portion of your application,
such as inventory control, accounts receivable, or employee administration.

Type Message Field in the
Control Panel

Meaning Put or PutLine Constant

aud Audit Audit messages SP_MT_AUDIT

cfg Configuration Configuration modification SP_MT_CONFIGURATION

err Error Error Messages SP_MT_ERROR

prf Performance Performance information SP_MT_PERFORMANCE

res Resource Resource information SP_MT_RESOURCE

sec Security Security messages SP_MT_SECURITY

trc Debug Debugging Information SP_MT_DEBUG

 * All of the above Any of the above

iPlanet UDS Logger and Memory Manager Flags

Appendix C iPlanet UDS Command Summary 373

The LogMgr constant that corresponds to the service types “user1” through
“user10” is SP_ST_USER1 through SP_ST_USER10. You can use these constants
with the advanced version of the Put or PutLine methods or with the Test method.
For convenience, you can use the name “user” or the asterisk symbol (*) to specify
all user service types. Previous examples used the specification “user” without a
trailing digit to indicate all user services.

For example, if you want all tracing to go to standard output, but tracing from
service types “user1” and “user3” to be logged in a special file as well, you would
use the following specification:

%stdout(trc:user) trc1_3.log(trc:user1 trc:user3)

Group Number Option
Within a service type there are group numbers. Group numbers are smaller
subdivisions you make within a particular service and typically map to a group of
related facilities. The optional group number provides further filtering within the
service. A group number is between 1 and 63 inclusive.

For example, within a particular service (say, “user3”) you may have subdivided
the modules into groups (for example, “transactions in progress”, “queued work
lists”, and “problem reports”). Each module is large enough to warrant a group
number within the service. “Transactions in progress” may be group number 2,
whereas “problem reports” may be the group number 4. The following
specification puts performance information from group number 2 into one file and
trace information from group number 4 into another file:

xactprog.prf(prf:user3:2) probrep.trc(trc:user3:4)

The group number you specify in a Put method may be a constant that you defined
to be equivalent to the numeric literal that you specified in
FORTE_LOGGER_SETUP. For example, even though the literal 2 indicates the
“transaction in progress” group, your specification to print the related
performance information may be the following:

This code assumes the value of the TOOL constant TRANSACT_IN_PROGRESS
is 2.

 task.Part.LogMgr.PutLine(SP_MT_PERFORMANCE,
 SP_ST_USER3,TRANSACT_IN_PROGRESS,1,perfTextData);

iPlanet UDS Logger and Memory Manager Flags

374 iPlanet Unified Development Server • System Management Guide • August 2001

You can also specify a range of group numbers using the syntax group#-group#. In
the previous example, if you want trace information from groups 2 through 4 to go
to a specific file, you would use the following statement:

 some_trc.log(trc:user3:2-4)

Level Number Option
Within a group there are level numbers that you use to specify particularly detailed
levels of information. The greater the level number value, the more detailed the
information. The optional level number indicates the detail level of the information
printed. Level numbers must be from 1 to 255 inclusive.

As with group numbers, the level number is determined by the application.
Typically, developers use level numbers to filter out trace messages. Using the
current example, the specification%stdout(trc:user3:2:1) indicates that all level 1
trace data from the “transaction in progress” (group 2) module of the “user3”
service should be printed to standard output. Levels greater than 1 do not print.
Thus, the following fragment prints only one line:

 log: LogMgr = task.Part.LogMgr;
 -- Printed (level <= 1)
 log.Put(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS, 1,

’Browsing account # ’);
 log.PutLine(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS,

1,acc.Number);
 -- Not printed (level > 1)
 log.Put(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS,

2,acc.Owner);
 log.Put(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS,

2,acc.LastChangeDate);

iPlanet UDS Logger and Memory Manager Flags

Appendix C iPlanet UDS Command Summary 375

-fm Flag (Memory Manager)
The -fm flag allows you to control the space used by the iPlanet UDS memory
manager.

If you do not set the memory flags, iPlanet UDS uses defaults appropriate for the
operating system.

Note that you can change the memory configurations for a running application
using the Environment Console and instruments defined on the OperatingSystem
agent. See Escript and System Agent Reference Guide for information.

-fm(memory_option {: | =} number [, memory_option {: | =} number])

For UNIX and VMS, any arguments that contain parentheses must be enclosed by
double quotes, as shown in the following example:

“-fm(n:4000,x:8000)”

In UNIX, if you include spaces in this argument, you need to enclose the values,
including the parentheses, in single quotes. You do not need to use single quotes
for any other platform. The following table describes the memory options. For
options that refer to “pages,” a page is 1024 bytes of memory.

NOTE To make this flag portable across the platforms supported by iPlanet
UDS, do not include any spaces in this argument, and do not enclose
any part of the argument in single quotes. [This paragraph followed
a mar

Memory
Option

Description

c Specifies when the memory pool should be contracted. The value represents
the percentage utilization of the active pages that will trigger a memory pool
contraction. Range is 0 to 100. The default value is 80.

This option is valid only for Windows 95.

iPlanet UDS Logger and Memory Manager Flags

376 iPlanet Unified Development Server • System Management Guide • August 2001

For more information about how iPlanet UDS memory management works, see
“Memory Issues” on page 234.

d Sets the level of debugging information that is provided. The value is
interpreted as a bit-mask of enabled options. The default is 0. The options are:

1—Verify memory before every collect. This checks that all of the memory
manager’s data structures are correct, that all pages containing user objects are
correct, and that all pointers point to something legal.

2—Verify memory after every collect.

4—Verify memory before every allocation.

8—Zero-Fill free memory.

16—Pattern-Fill free memory.

e Specifies when the memory pool should be expanded. The value represents the
percentage utilization of the active pages that will trigger a memory pool
expansion. Range is 0 to 100. The default value is 80.

g Sets the percentage by which the memory pool is expanded. The default is 10
percent.

i Incremental unit in pages for memory expansion or contracting. Range is 64 to
1,048,576. Default is 256.

n Minimum number of pages managed by the memory manager. The value
specifies the absolute minimum number of pages that will be allocated to the
memory heap. Range is 1024 to 4194304 (32384 on WIndows 3.1). Must be less
than the x memory option. The default value is 1024. See “Setting Maximum
and Minimum Size of the Memory Heap” on page 377 for information about
how n and x interact.

r Sets the minimum number of free pages needed to perform a shutdown. Range
is 64 to 1,024. The default is 64.

u Target average memory use. The value specifies the target percentage
utilization of the memory heap, calculated as the proportion of allocated pages
that are active. Specify this as a percent of currently allocated memory. Legal
range is 25 to 95. The default is 85.

x Maximum number of pages managed by the memory manager. The value
specifies the absolute maximum number of pages that can be allocated to the
memory heap. Range is 1024 to 4194304. Must be greater than the n memory
option.The default value is 8192. See “Setting Maximum and Minimum Size of
the Memory Heap” on page 377 for information about how n and x interact.

Memory
Option

Description

iPlanet UDS Logger and Memory Manager Flags

Appendix C iPlanet UDS Command Summary 377

Setting Maximum and Minimum Size of the Memory Heap
To specify the maximum and minimum sizes of the iPlanet UDS memory heap, use
the n and x memory options as described in the previous table.

For most operating systems, iPlanet UDS follows these rules to determine the
actual maximum and minimum sizes, based on the values specified:

When you specify only the value of n:

• If n is less than 1024, n is set to 1024.

• If n is smaller than the default value of x (8192), then x is 8192.

• If n is larger than the default value of x (8192), then x is also set to n. The values
of the maximum and minimum memory heap sizes in this case are equal.

When you specify only the value of x:

• If x is larger than the default value of n (1024), then n is 1024.

• If x is smaller than the default value of n (1024), then n is also set to x. The
values of the maximum and minimum memory heap sizes in this case are
equal.

When you specify both the n and x values:

• x is set to the larger value specified, whether by x or n. The value of n is always
the value specified.

iPlanet UDS Logger and Memory Manager Flags

378 iPlanet Unified Development Server • System Management Guide • August 2001

-fst Flag (Stack Size)
Sets the thread stack size in bytes for iPlanet UDS and POSIX threads.

-fst integer

You can also specify the thread stack size with the FORTE_STACK_SIZE variable.
If both the -fst flag and FORTE_STACK_SIZE variable have been specified, then
the larger of the two values is used.

The default value for the thread stack size ranges from 28K to 48K, depending on
the platform and release of iPlanet UDS. Motif clients have a minimum size of
100K. On NT, the system default is 1MB and is not adjustable. A thread stack size
setting below the default value for that system is ignored.

You can increase the stack size if necessary. Because the new stack size you specify
is used for every thread, it will increase memory usage by the stack size times the
number of concurrent active threads. iPlanet UDS rounds the value up to the
nearest system MMU (Memory Management Unit) pagesize (8K on many
machines, but sometimes more or less). iPlanet UDS adds an MMU pagesize
guardword to the size; this page is memory protected to try and catch stack
overflow cases.

379

Index

SYMBOLS
.btd files

copying 252
description 249

.btx files
copying 252
description 249

.rop files 249

A
a_nodeid.log file 109
Active Environment window

description 65
Name, Type, and Status fields 71

Active partitions
log file names, changing 220
log file names, default 218
message filters, modifying 225
shutting down 188

Administrator passwords 249
Agent Information window 80
Agent mode

applications, managing 78
description 72

Agent window
description 78

Agents
commands 208
hierarchy 46
instrument values, changing 207
instrument values, logging 203
instrument values, viewing 199
instruments overview 195
log files 195
monitoring status 196
navigating the hierarchy 72
overview 46
for repositories 281
status overview 194

appdist directory, backing up 216
Applets

clients, troubleshooting 314
defined 293
deployed applets, visibility 314
deploying 299
deploying applications that use 313

Application distributions
deploying 160
documentation 159
generated files 150
installing 170
installing additional files with 158
installing on client nodes 173
installing on server nodes 172
loading 162
making 150
naming conventions 156

Section B

380 iPlanet Unified Development Server • System Management Guide • August 2001

Application distributions (continued)
packaging 157
partition properties, changing 168
partitioning configurations, modifying 165
partitions, reassigning 166
transferring 160
uninstalling 178

Application Outline command 72
Applications

auto-starting 189
availability in connected environments 119
DEGRADED status 197
deployment, overview 33
failover, managing 210
installing 170
installing on client nodes 173
installing on server nodes 172
installing with reference partitions 176
load balancing, managing 211
managing running 206
monitoring performance 194
ONLINE status 196
partitions, starting manually 190
partitions, upgrading single 184
reconfiguring installed 208
reference partitions, upgrading 182
removing 178
shutting down 188
starting 185, 187
troubleshooting 230
upgrading 180

Assigned applications
assigning to clients 300
overview 298

Attached shadow repositories
creating with rpshadow command 258
defined 246
using efficiently 274

aud message type 226
Audit messages message flags 226
Audit trace logging 228
Auto-compile feature

applications 317
AutoCompileSvc application 320
CodeGenerationSvc application 320
debugging errors 322

overview 315
setting up 319
using for Windows 95 323

AutoCompileSvc application 317, 320
autoexec.bat file (Windows 95) 355
Auto-startup 189
Average instruments 79, 200

B
Baseline passwords

secure repository 249
standard repository 248

Berkeley Sockets 139
B-tree repositories

about 249
index files, repairing 251
recovering 250
seed files 252
shadows, recreating 246

BtreeCache agents
description 281
locating 283

BtreeRepository agents
description 281
locating 284

C
C libraries

description 43
specifying as installed 140

Central repositories
agents 281
backing up 270
copying 255
creating 251
description 244
format 249
performance, tuning 273
rpcopy command 255

Section C

Index 381

Central repositories (continued)
rpcreate command 253
rpstart command 262
rpstop command 265
seed files 252
starting 262
stopping 265

Central server nodes 93
cfg message type 226
cfg:em:2 175
cfg:os:21 218
Charts

creating 201
tracking instruments 201

Charts command 201
Charts window

description 81
Client nodes

deploying with Launch Server 298
deployment environment 96
description 32
development environment 96
installing applications 173
iPlanet UDS runtime system 96
Launcher application 98
name, defining 97
overview 96
setting up the Launch Server 97
setup after installation 97

Client partitions
data, logging 218
failover of Environment Managers 122
ftexec command 190
icons, generated 174
icons, generating 175
starting 185
starting with ftcmd run 186
starting with ftexec 190

Client repository sessions
ForceShutdown command (Fscript) 290
information about 288
locating 289

Clipboards, using 85
Code generation

auto-compiling and 317
overview 151

CodeGenerationSvc application 317, 320
CommMgr agent, keepalive feature and 232
Communication protocols

in Control Panel 351
specifying 138

Communication Provider property (Control
Panel) 351

Compiled partition property 168
Compiled partitions

description 39
starting up 192

Compiling
auto-compile feature 315
Windows 95 clients 323

compmsg command syntax summary 359
Component Log window

description 81
Compound instruments 79, 200
Configuration instruments 79, 200
Configuration modification message flags 226
Configurations, changing for installed

applications 181
Connected environments

connecting 115
Environment Manager, failover 120
failover in 119
reference partition in 119
viewing 116

Connectivity, troubleshooting 240
Control Panel

closing 347
Communication Provider property 351
General Tab page 347
Log Flags tab page 351
Model Node property 350
Name Server Address property 350
Network tab page 349
opening 345
Repository Name property 347
Root Directory property 349
Time Zone property 349
Workspace Name property 348

Counter instruments 79, 200

Section D

382 iPlanet Unified Development Server • System Management Guide • August 2001

D
Databases

access problems, troubleshooting 241
message filters 241
with POSIX threads 191
resource managers 136

DB2 resource manager 137
DCE libraries setup 325
DCE threads, running server partitions 191
Debugging information message flags 227
DEGRADED status 197
Deploying applications

Launch Server, using 298
overview 56

Deployment clients 96
Deployment environments

client nodes 96
considerations 88
overview 31
server nodes 95

Deployment servers 95
Detached shadow repositories

description 246
tips for using 276

Development clients 96
Development environments 31

client nodes 96
overview 88
server nodes 95

Development servers 95
Digital DECnet 139
Digital UCX 139
Directories

backing up 216
iPlanet UDS system 98

Disabled partition property 168
Distributed Object Manager

overview 37
in system management 37

E
econsole command

syntax summary 360
envdist directory, backing up 216
Environment Console

Active Environment window 65
Agent Information window 80
agent instruments in 80
agent mode 78
Agent window 78
Charts window 81
Component Log window 81
Environment Definition window 76
environment edit mode 76
environments, connecting 115
exiting 76
instrument data, charting 81
Instruments window 79
main viewing panel 67
menu bar 66
Node Template window 77
overview 60, 61
starting 63
status bar 75
tool bar 66
windows, using 83

Environment Definition window
description 76

Environment definitions
creating 129
default created by iPlanet UDS installation 102
deleting 148
exporting 114, 141
importing 141
locking 143
modifying 142
node specifications, copying 147
node specifications, deleting 147
nodes, adding 130
opening 142
overview 31
overview of creating 128
properties 129, 144
saving 141
simulated environment 127

Section F

Index 383

Environment edit mode
description 72
environments, modifying 76

Environment Managers
backing up repository 114
failover 120
failover for clients 122
failover, preparing for 121
installation 103
log file names, changing 220
log file names, default 218
lost partition information 123
names 91
overview 50
process names 109
repository 51
restoring the repository 115
startup batch files 110
startup commands 104
startup sequence 104

Environment repositories
backing up 114
description 51
password 146
restoring 115

Environment search paths
effects on applications 119
setting in the Environment Console 117

Environment variables
list of 327
set by iPlanet UDS installation 101
setting in Control Panel 345
setting in operating system 353
setting on NT 353
setting on OpenVMS 356
setting on UNIX 356
setting on Windows 95 355
See also individual environment variables

Environment worksheet 89
Environments

central server node 93
client nodes 96
connected 115
deployment 31
description 31
designing 88

development 31
iPlanet UDS system services, starting 104
node types 92
physical setup 54
properties 144
server nodes 94
setup process, summary 91
worksheet 89

err message type 226
Error messages message flags 226
escript command syntax summary 360
Escript utility 60
Event Manager 37
Execute Command dialog 208
Exit command, Environment Console 76
ExportPlan command (Fscript) 165
extmsg command syntax summary 361

F
Failover

in connected environments 119
with load balancing 40, 213
managing applications with 210
overview 40

Fault tolerance in connected environments 119
fcompile command syntax summary 361
fcontrol command

full syntax 345
syntax summary 362

Files, backing up 216
-fl flag

flags for Log Manager 371
for a partition 224

FlushLogFiles command 218
-fm flag

memory allocation, specifying 237
Memory Manager 375
specifying 238

-fns flag
description 193
multiple values, setting 122

Section F

384 iPlanet Unified Development Server • System Management Guide • August 2001

ForceShutdown command (Fscript) 290
forte command syntax summary 362
FORTE_ALL_FILES_SHARED environment

variable 327
FORTE_AUTOTESTER_DELAY environment

variable 328
FORTE_AUTOTESTER_ROOT environment

variable 328
FORTE_CG_RESERVED environment variable 328
FORTE_CODEGEN_OCTAL environment

variable 328
FORTE_COSSHR environment variable 329
FORTE_CTLIB_LOCK environment variable 329
FORTE_DB_MAX_STATEMENTS environment

variable 329
FORTE_DETACHED_ASTLM logical name 343
FORTE_DETACHED_BIOLM logical name 343
FORTE_DETACHED_BYTLM logical names 343
FORTE_DETACHED_DIOLM logical name 343
FORTE_DETACHED_ENQLM logical name 343
FORTE_DETACHED_FILLM logical name 343, 344
FORTE_DETACHED_JTQUOTA logical name 344
FORTE_DETACHED_PGFQUOTA logical

name 344
FORTE_DETACHED_TQELM logical name 344
FORTE_DETACHED_WSDEFAULT logical

name 344
FORTE_DETACHED_WSEXTENT logical name 344
FORTE_DETACHED_WSQUOTA logical name 344
FORTE_EDITOR environment variable 329
FORTE_EP_WRKDIR environment variable 329
FORTE_FTLAUNCH_FLAGS environment

variable 310, 329
FORTE_FTLAUNCH_PORT environment variable

overridden by the -port flag 305
setting on UNIX 304
summary 330

FORTE_GC_SPECIAL environment variable 330
FORTE_ISFLOATOVERENABLED environment

variable 331
FORTE_KEEP_COUNT environment variable 232,

331

FORTE_KEEP_CYCLE environment variable 232,
331

FORTE_KEEP_INTERVAL environment
variable 232, 331

FORTE_LAUNCHER_CLOSE environment
variable 331

FORTE_LAUNCHER_LISTTYPE environment
variable 331

FORTE_LAUNCHER_REFRESH environment
variable 332

FORTE_LAUNCHER_SHOWALL environment
variable 332

FORTE_LAUNCHER_UPDATEREL environment
variable 333

FORTE_LC_COLLATE environment variable 333
FORTE_LC_CTYPE 333
FORTE_LC_MONETARY environment variable 333
FORTE_LC_NUMERIC environment variable 333
FORTE_LC_TIME environment variable 333
FORTE_LOCALE environment variable 334
FORTE_LOCATIONS environment variable 334
FORTE_LOGGER_SETUP environment variable

message output logging 222
overridden by -fl flag 193
overriding with -fl flag 371
set during installation 102
setting in the Control Panel 351
summary 335

FORTE_LOGIN.COM file (OpenVMS) 356
FORTE_LOS_EXPTIME environment variable 336
FORTE_MODELNODE environment variable

setting in the Control Panel 350
summary 336

FORTE_NEXT_AFFINITY environment
variable 336

FORTE_NO_MOTIF_CLIPBOARD environment
variable 336

FORTE_NODENAME environment variable
overridden by -fnd flag 193
setting in the Control Panel 350
summary 337

Section F

Index 385

FORTE_NS_ADDRESS environment variable
description 90
multiple values, setting 122
overridden by -fns flag 193
set during installation 102
setting in the Control Panel 350
summary 337

FORTE_OBBSHR environment variable 337
FORTE_OLDEST_19YY environment variable 337
FORTE_OLESHR environment variable 338
FORTE_PROCESSORS environment variable 338
FORTE_PROVIDERS environment variable

setting in the Control Panel 351
summary 338

FORTE_REPOSNAME environment variable
set during installation 102
setting with the Control Panel 347
summary 338

FORTE_ROOT environment variable
set during installation 102
setting with the Control Panel 349
summary 339

FORTE_RPSTART_WAIT environment variable
overridden by -w flag 263
summary 339

FORTE_SCREEN_HEIGHT_MILS environment
variable 339

FORTE_SCREEN_WIDTH_MILS environment
variable 340

FORTE_STACK_SIZE environment variable 340
FORTE_THREAD_AFFINITY environment

variable 340
FORTE_TIMEZONE environment variable

setting in the Control Panel 349
summary 340

FORTE_TIMEZONEDST environment variable
setting in the Control Panel 349
summary 341

FORTE_TIMEZONEMIN environment variable 341
FORTE_VISUAL_STYLE environment variable 341
FORTE_WORKMSG environment variable 341

FORTE_WORKSPACE environment variable
setting with the Control Panel 348
summary 342

FORTE_X_HEADERDIRS environment variable 342
FORTE_X_LIBDIRS environment variable 342
FORTE_X_SOLID_GHOST environment

variable 343
fortedef file (UNIX) 356
fscript command 363
-fst flag

Stack size 378
ftcmd command

full syntax 307
syntax summary 364

ftcmd list command 310, 311
ftcmd run command

in icons and scripts 175
starting client partitions 186

ftcmd shutdown command 312
ftcmd update command 312
Ftcmd utility

defined 293
flags 308
icons or scripts, setting up 303
list command 310
run command 311
shutdown command 312
starting client partitions 186
update command 312
using 307

ftexec command
flags 192
full syntax 190
in icons 175
syntax summary 364

ftexec partitions 197
ftexecd command

full syntax 191
syntax summary 365

ftlaunch command
full syntax 304
syntax summary 365

Section G

386 iPlanet Unified Development Server • System Management Guide • August 2001

G
Garbage collection 234
Global locks 287
Global name space 120
GlobalLocks instrument 287
Group number

description 223
options 373

H
Heap, setting memory 377
Hierarchical browser 84
Home environment 120

I
Icons

creating for client partitions 176
generated for compiled client partitions 175
generated for standard client partitions 174
setting up with Ftcmd utility 303

Image repositories
agents 281
description 39

Informix resource manager 137
Ingres resource manager 137
Installed libraries, specifying 140
Installed protocols, specifying 138
Installing

additional files with a distribution 158
application distributions 170
library distributions 178

Instrument Logging Properties dialog 203
Instruments

logging data, overview 228
logging properties 203
setting logging 205
tracking data with log files 203
tracking values in charts 201

types 79, 200
values, changing 207
values, viewing 199

Instruments window
description 79

iPlanet UDS
installing on a node 98
overview 29
system libraries 42
system management 44
system management tools 59

iPlanet UDS executor partitions 197
iPlanet UDS installation

default environment definition 102
directories for 98
environment variables set by 101

iPlanet UDS runtime system
about 29
client nodes 96
server nodes 95

iPlanet UDS system directories
backing up 216
description 98

iPlanet UDS system services, startup sequence 104

K
Keepalive feature

CommMgr agent and 232
restrictions 233

Keyboard, using 83

L
Launch Servers

advantages 296
client nodes, setting up 97
deploying applications to client nodes 298
exceptions, troubleshooting 314
installing 103
overview 60, 291

Section M

Index 387

Launch Servers (continued)
port for 304
restrictions 297
setting up for multiple UNIX users 304
starting with ftcmd commands 308
starting with ftlaunch command 304
startup sequence 104
trace window 314
UNIX log file 314

Launcher application
Launch Server usage 294
overview 98, 294
starting 296

Level number
description 224
options 374

Libraries
C 43
distribution 43
iPlanet UDS system 42
overview 42
removing 178
specifying as installed 140
TOOL 43
upgrading installed 183
upgrading references to upgraded 183
user-defined 43

Libraries, 3GL See Libraries
Library distributions

deploying 177
generated files 153
installing additional files with 158
making 153
naming conventions 156
overview 43
uninstalling 178
upgrading 183
UUIDs (universally unique identifiers) 165

list command (Ftcmd) 310
Load balancing

with failover 40, 213
managing applications with 211
overview 40

Load Distribution command 164

Local Object Manager 37
LockedWorkspaces instrument 286
Locks, GlobalLocks instrument 287
log directory, backing up 216
Log files

audit traces 228
default names, changing 220
file names, default 218
flushing 218
instrument data, logging 228
instrument data, tracking 203
logger flags for a partition, specifying 224
message filters 227
message filters, specifying 223
properties, logging 203

Log Flags property (Control Panel) 351
Logical name 356
Lost partitions, in name service database 123

M
Mac Open Transport 139
Make Distribution command 150
MakeAppDistrib command (Fscript) 150
Managed startup 187
Master passwords

secure repository 249
standard repository 248

Memory
management 234
options 375
specifying allocation 237

Memory Manager, setting using the -fm flag 375
Message filters

database access information, logging 241
modify dynamically 225
specifying 223
useful 227

Message type
description 223
options 372

Model Node property (Control Panel) 350

Section N

388 iPlanet Unified Development Server • System Management Guide • August 2001

Model nodes
defining nodes as 136
overview 126

ModLoggerRemote command 225
Mouse, using 83

N
Name server address 90
Name Server Address property (Control Panel) 350
Name Service

database 52
overview 51
troubleshooting 230

Name service address
description 90
setting multiple for failover 122

Name service databases, lost partition
information 123

Name space 119
Network problems, troubleshooting 240
Node Managers

installation 103
log file names, default 218
message filters, modifying 225
overview 52
process names 109
repository 53
startup batch files 110
startup commands 104
startup sequence 104
troubleshooting 230
Windows NT service 110

Node name
setting with Control Panel 350
setting with FORTE_NODENAME 337
setting with the -fnd flag 193

Node Outline command 72
Node repositories 53
Node Template window 77
Node templates 132
nodemgr command

syntax summary 366

Nodes
adding to an environment definition 130
communication protocols, specifying 138
copying in an environment definition 147
deleting in an environment definition 147
overview 32
properties, modifying 147
properties, specifying 134
resource managers, specifying 136
starting 104
templates 132

NT
Control Panel 354
DOS command line 354
environment variables, setting 353
Registry 354

O
ObjectBroker libraries setup 325
ObjectCache agents

client repository sessions 288
description 281
locating 290

ODBC resource manager 137
OLE libraries setup 325
olegen syntax summary 366
ONLINE status 196
OpenVMS

FORTE_LOGIN.COM file 356
logical names, setting 356

Oracle resource manager 137
overview 29

P
Partial installation, completing 176
Partition agents, Shutdown command 290
Partitioning

configurations, modifying 165
overview 33

Section R

Index 389

Partitions
auto-starting servers 189
DEGRADED status 197
logger flags, setting 224
lost partition information 123
memory allocation, specifying 237
ONLINE status 196
properties, changing 168
shutting down in the Environment Console 188
starting manually 190
starting using Environment Console 187
starting with ftexec 190
troubleshooting 230
upgrading applications 184

Passwords
administrator 249
baseline (secure repository) 249
baseline (standard repository) 248
changing in secure repository 279
environment repository 146
master (secure repository) 249
master (standard repository) 248
workspace (secure repository) 249
workspace (standard repository) 248

Pathworks DECnet 139
Pathworks TCP/IP 139
PC-NFS 139
PDF files, viewing and searching 26
Performance

information message flags 226
repository performance 272

Physical environments, setting up 54
POSIX threads

database partitions 191
running server partitions 191

prf message type 226
Private repositories

agents 281
backing up 272
copying 255
creating 251
format 247, 249
overview 244, 247
rpcopy command 255
rpcreate command 253
seed files 252

Processes, monitoring 229
Publicly-available applications

defining 301
overview 293, 298

R
Rdb resource manager 137
Reference partitions

in connected environments 119
installing applications with 176
overview 41
upgrading applications with 182

RemoveLostParts command 124
Replicated partitions

managing applications with 209
overview 40

Replication count partition property 168
repos directory, backing up 216
Repositories

agents, navigating through 284
attached shadow 246
backing up 270
B-tree 249
compacting 267
copying 255
files, copying for 252
format 249
managing with agents 281
ObjectCache agent 288
performance, improving 272
RepositorySession agent 288
rpclean command 268
secure 244, 247
security 247
shadows, creating 258
shadows, detached 246
standard 244, 247
system management 113
using detached 276
using multiple 275

Repository agents
description 281
locating 284

Section S

390 iPlanet Unified Development Server • System Management Guide • August 2001

Repository Name property (Control Panel) 347
Repository servers

description 245
settings 91
shutting down 290
starting 262
stopping 265
Windows NT service 110

RepositoryServer agents
description 281
GlobalLocks instrument 287
locating 285
LockedWorkspaces instrument 286
Shutdown command 290

RepositoryServerInfo agents
description 281
Shutdown command 290
using 282

RepositorySession agents 288
client repository sessions 288
description 281
locating 290

res message type 226
Resource information message flags 226
Resource managers, specifying 136
Root Directory property (Control Panel) 349
Router partition 40
rpclean command

full syntax 268
syntax summary 367

rpcopy command
full syntax 255
syntax summary 367

rpcreate command
full syntax 253
syntax summary 368

rpshadow command
full syntax 258
syntax summary 368

rpstart command
full syntax 262
syntax summary 369

rpstop command
full syntax 265
syntax summary 369

run command (Ftcmd) 311
Runtime system

on clients 96
on servers 95

S
sec message type 227
Secure repositories

creating 254
description 244, 247
making standard 261
passwords for 249
passwords, changing 279
workspaces, creating new 278

Security
secure repository 249
standard repository 248

Security messages message flags 227
Seed files, B-tree repository 252
Server arguments partition property 168
Server nodes

deployment environment 95
description 32, 94
development environment 95
installing applications 172
iPlanet UDS runtime system 95

Server partitions
auto-starting 189
DCE/POSIX threads 191
ftexecd command 191
shutting down in the Environment Console 188
starting 186
starting manually 190
starting with Environment Console 187
starting with ftexec 191

Service objects 36
Service type

description 223
options 372

Set Administrator Password command 279
Set Baseline Password command 279
Set Workspace Password command 280

Section T

Index 391

SetPassword command (Fscript) 280
Shadow repositories

agents 281
attached 246
backing up 271
creating 258
description 245
detached 246
format 249
performance, improving 272
recreating as B-tree 246
rpshadow command 258
troubleshooting 260
using efficiently 274

Shut Down command (Environment Console) 188
Shutdown command

Partition agent 290
RepositoryServer agent 290
RepositoryServerInfo agent 290

shutdown command (Ftcmd) 312
Simulated environments

description 51
environment definition 127
environment definitions, creating 129
overview of creating 128

Stack Size, setting using the -fst flag 378
Standard partitions

description 39
starting using ftexec 190

Standard repositories
description 244, 247
making secure 261
passwords for 248

Start Up command 187
start_nodemgr script

log file 109
SubObject instruments 79, 200
Sybase resource manager 137
sysdata/envrepos directory, backing up 216
System management services

memory management 234
overview 44, 103
shutting down 113
startup batch files 110
startup commands 104

T
Task Manager 37
tclient command syntax summary 370
Test environment 130
Testing node 135
Thread package partition property 168
Time Zone property (Control Panel) 349
Timeline Properties dialog 202
Timer instruments 79, 200
TLI 139
TOOL libraries 43
Transaction Manager 37
Transport provider 351
trc message type 227

U
Uninstall command 178
UNIX

environment variables, setting 356
fortedef file 356

UNIX Domain Sockets 139
update command (Ftcmd) 312
userapp directory, backing up 216
UUIDs (universally unique identifiers), library

distributions and 165

W
Windows 95

autoexec.bat file 355
environment variables, setting 355
Registry 355

Windows NT
Control Panel 354
DOS command line 354
environment variables, setting 353
Registry 354

Section W

392 iPlanet Unified Development Server • System Management Guide • August 2001

Windows NT services
iPlanet UDS system services, starting 110
starting and stopping 111

Windows Sockets 139
Workspace Name property (Control Panel) 348
Workspace passwords

secure repository 249
standard repository 248

Workspaces
creating in secure repository 278
locked, getting information about 286
LockedWorkspaces instrument 286

	Contents
	List of Figures
	List of Procedures
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Other Documentation Resources
	iPlanet UDS Documentation
	Express Documentation
	WebEnterprise and WebEnterprise Designer Documentation
	Online Help

	iPlanet UDS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation

	1 Introduction to iPlanet UDS System Management
	System Overview
	iPlanet UDS Environments

	iPlanet UDS Runtime System and Distributed Applications
	Overview
	A Scenario
	Autostarting an application consists of the following basic operations

	Partitions
	Execution Type
	Replication
	Reference Partitions

	Libraries
	System Libraries
	User Libraries

	iPlanet UDS System Management Services and Architecture
	System Management Agents
	System Management Services
	Environment Manager
	Name Service
	Node Manager

	iPlanet UDS System Management Tasks
	Setting Up and Maintaining iPlanet UDS Environments
	Setting up and Maintaining a Physical Environment
	Designing an iPlanet UDS Environment
	Setting up and Maintaining an iPlanet UDS Environment
	Setting up and Maintaining Development Environments

	Deploying and Managing iPlanet UDS Applications
	Application Deployment Tasks
	Application Management Tasks

	Deploying Library Distributions

	iPlanet UDS System Management Tools
	Environment Console
	Escript Utility
	Launch Server
	Repository Management Tools

	2 The iPlanet UDS Environment Console
	Overview
	Starting the Environment Console
	To start the Environment Console on Windows or Windows NT
	To start the Environment Console on UNIX, OpenVMS, or Windows NT
	Using the econsole Command

	The Active Environment Window
	Menu Bar
	Toolbar
	Main Viewing Panel
	To navigate the agent hierarchy

	Status Bar
	Exiting the Environment Console

	Other Environment Console Windows
	Environment Tasks: Environment Edit Mode
	Environment Definition Window
	Node Template Window

	Application Tasks: Agent Mode
	Agent Window
	Instruments Window
	Agent Information Window
	Charts Window
	Component Log Window

	Using iPlanet UDS Windows
	Using the Mouse
	Using the Keyboard
	Using the Hierarchical Browser
	Using the Clipboard

	Using Multiple Windows

	3 Setting up and Maintaining an iPlanet UDS Environment
	Setting up an iPlanet UDS Environment
	Designing Your Environment
	Summary of the Environment Setup Process
	To install and start an iPlanet UDS environment

	Nodes In Your Environment
	Central Server Node
	Server Nodes
	Development Server
	Deployment Server (iPlanet UDS Runtime System)

	Client Nodes
	Development Client
	Deployment Client (iPlanet UDS Runtime System)
	Setting up Client Nodes after Installation

	Structure of Installed iPlanet UDS Software
	iPlanet UDS System Software Directory Structure
	Environment Variables
	The Default Environment Definition

	Starting System Management Services
	Startup Sequence
	Startup Commands (nodemgr and start_nodemgr)
	Portable (All Platforms)

	Process Names
	Startup Batch Files
	Using Windows NT Services
	Why Use Windows NT Services?
	Controlling the Node Manager or Environment Manager and�Repository�Server�Services
	To get to the Services control panel
	To start a service
	To change the service configuration
	To stop an NT service, do one of the following

	Shutting Down System Management Services
	To shut down all iPlanet UDS processes in the iPlanet UDS environment
	To shut down a Node Manager and all iPlanet UDS processes running on that node

	Maintaining System Management Repositories
	Backing up and Restoring Environment Repositories
	Backing up Repository Files
	Exporting Environment Definitions

	Connecting Environments
	To connect an environment to your current iPlanet UDS environment
	Viewing Connected Environments
	To see if an environment is connected to your environment

	Setting an Environment Search Path
	To set a default environment search path

	How the Environment Search Path Can�Affect�Your�Applications

	Fault Tolerance for Multiple Connected Environments
	Environment Manager Failover
	Preparing Environment Managers to Access Named�Objects�in Other Environments
	To run these routines

	Environment Manager Failover for Partitions
	Environment Manager and Lost Partition Information

	4 Creating and Modifying Environment Definitions
	Introductory Concepts
	Model Nodes
	Simulated Deployment Environments
	To create a simulated deployment environment definition

	Creating a New Simulated Environment Definition
	Specifying New Environment Properties
	Adding a Node to an Environment Definition
	Node Templates

	Specifying Node Properties
	Resource Managers
	Installed Protocols
	Installed Libraries

	Saving and Exporting an Environment Definition
	Exporting an Environment Definition
	To export an environment definition from the environment repository

	Importing an Environment Definition

	Modifying an Environment Definition
	Opening an Environment Definition
	Locking Environment Definitions
	Modifying Environment Properties
	Setting and Using Passwords for an Environment
	To set a password on an environment
	To specify the password for an environment
	Replacing the Password for an Environment Repository

	Modifying Node Properties
	Copying a Node Specification
	Deleting a Node from an Environment Definition
	To delete a node specification from an environment definition

	Deleting an Environment Definition
	To delete an environment definition

	5 Deploying iPlanet UDS Applications
	About Application and Library Distributions
	Making an Application Distribution
	Making a Library Distribution
	Naming Conventions
	Naming Conventions Example

	Packaging an Application Distribution
	Installing Additional Files with Your Application�Distribution
	Documenting a Distribution

	Deploying an Application Distribution
	To deploy an application distribution
	Transferring a Distribution to a Deployment Environment
	Loading a Distribution into an Environment Repository
	To load a distribution
	When a Distribution Conflicts with an�Installed�Application

	Modifying a Partitioning Configuration
	Partition Assignments
	To reassign a partition
	To copy a partition assignment
	To assign an unassigned partition
	Installed or Assigned Partition Properties
	To set properties of an assigned or installed partition

	Installing an Application
	The Installation Procedure
	To install an application
	Installing on Server Nodes
	Installing on Client Nodes
	To create a Windows 95 or NT client icon
	Installing Applications with Reference Partitions
	Completing Partial Installations

	Deploying a Library Distribution
	To deploy a library distribution

	Removing an Application or Library
	To uninstall an application or library distribution

	Upgrading Applications
	Upgrading Installed Applications
	To change the configuration of an installed application without changing the contents of any logi...
	To upgrade an installed application

	Upgrading Reference Partitions
	To make the reference partition reference the partition of the newer release of a changed applica...

	Upgrading Libraries
	To make the application reference the newer release of the library

	Partial Upgrades

	6 Managing iPlanet UDS Applications
	Starting iPlanet UDS Applications
	Starting Client Partitions
	Starting Server Partitions
	Managed Startup
	To start all enabled server partitions in an application
	To start a single installed server partition
	To shut down an application or a single server partition
	Auto–Startup
	Manual Startup
	To start a standard client partition, enter the following version of the ftexec command
	To start a standard server partition, enter the following command
	To start a standard server partition that uses POSIX threads, enter the following command

	Monitoring iPlanet UDS Applications
	Monitoring Status
	To locate a particular iPlanet UDS executor server partition

	Viewing Instrument Data
	To view the value of an instrument

	Tracking Instrument Data: Charts Window
	To track the value of an instrument

	Tracking Instrument Data with Log Files
	Specifying When and Where to Log Instrument Data
	To specify when and where to log instrument data
	Setting an Instrument for Logging
	To set an instrument to be logged

	Managing Running Applications
	Changing Instrument Values
	To change the value of a changeable instrument

	Using Agent Commands

	Reconfiguring Applications
	To reconfigure an application

	Managing Applications with Replicated Partitions
	Failover
	Load Balancing
	Failover and Load Balancing Combined

	7 Troubleshooting
	Backing up iPlanet UDS Files
	Logging and Log Files
	Changing Log File Names
	To change the log file name for the Environment Manager
	To change a log file name for a compiled active partition or iPlanet UDS executor partition
	To change the log file name for an interpreted active server partition

	Requested Message Output Logging
	Specifying Message Filters
	Setting the Logger Flag for a Partition
	To specify the logger flag for a partition
	Dynamically Modifying Message Filters
	To dynamically modify the message filters for an active partition
	Useful Message Filters

	Instrument Data Logging
	Audit Trace Logging

	Routine Monitoring
	Monitoring System Management Services
	Using the Operating System
	Using iPlanet UDS System Management Tools

	Monitoring Application Partitions
	Using iPlanet UDS System Management Tools
	Using the Operating System
	Monitoring Log Files

	Using the iPlanet UDS Keepalive Feature
	Setting Keepalive Threshold Values with�Environment�Variables
	Setting Keepalive Threshold Values Using�the�CommMgr�Agent
	Restrictions

	Memory Issues
	Changing Memory Settings
	Specifying Object Memory Flag
	Setting the -fm Flag for a Partition
	To specify-fm flag for a partition

	Thread Stack Size
	Setting the Thread Stack Size

	Connectivity Issues
	Setup
	Ongoing

	Database Access Issues

	8 Managing iPlanet UDS Development Repositories
	About iPlanet UDS Development Repositories
	About Central Repositories
	About Shadow Repositories
	About Private Repositories
	About Repository Security
	Security for Standard Repositories
	Security for Secure Repositories

	About the B-tree Repository Format

	Creating Repositories
	Creating Private and Central Repositories
	Copying Repository Seed Files
	Copying Repository Files
	rpcreate Command
	rpcopy Command

	Creating Shadow Repositories
	rpshadow command
	Additional Information About Using Shadows

	Making a Standard Repository a Secure Repository
	Making a Secure Repository a Standard Repository

	Starting Central Repository Servers
	rpstart Command

	Stopping Central Repository Servers
	rpstop Command

	Maintaining Repositories
	Compacting a Repository
	To optimize space reclamation before using the rpclean command
	rpclean Command

	Backing up Repositories
	Backing up Central Repositories
	Backing up Shadow Repositories
	Backing up Private Repositories

	Improving Repository Performance
	Shadow Repositories
	Tuning the Central Repository Server Environment
	Reduce Repository Overhead
	Using Shadows Efficiently
	Using Multiple Repositories
	To use multiple development repositories for an application
	To update project snapshots
	Using Detached Shadow Repositories

	Maintaining a Secure Repository
	Creating New Workspaces in a Secure Repository
	To create a new workspace in a secure repository using the Repository Workshop
	To create a new workspace in a security repository using Fscript

	Changing Passwords in a Secure Repository
	In the Repository Workshop
	In Fscript

	Using Repository Agents
	How the Agents are Related
	Finding Running Repository Servers and Their Agents
	To find the RepositoryServerInfo agent for a repository server
	Navigating Through the Repository Agents
	To find the agents for a repository server

	Finding Information about Locked Workspaces
	To see the LockedWorkspaces instrument

	Finding Information about Global Locks
	To see the GlobalLocks instrument

	Finding Information about Repository Sessions
	To locate the repository session agents of a client application

	Shutting Down Repository Servers

	9 Launching iPlanet UDS Applications and Applets
	About Launching iPlanet UDS Applications and Applets
	About the Launcher Application
	iPlanet UDS Launcher Application
	Starting the Launcher Application

	Setting up the Launch Server and Applications
	Advantages of Using the Launch Server
	Restrictions
	Deploying Applications to Client Nodes
	Assigning Application Partitions to Client Nodes
	Defining Publicly-Available Applications

	Setting up Icons or Scripts That Use the Ftcmd Utility
	Starting the Launch Server
	Setting up the Port for the Launch Server
	ftlaunch Command
	Launch Server Details

	Using the Ftcmd Utility
	Flags on the ftcmd Command
	Ftcmd Commands

	Deploying Applications that Launch Other�Applications�and�Applets
	Troubleshooting Client Applications That Use Applets

	A Special Setup for Development Environments
	Auto-Compile Services
	Auto-Compile Process
	Auto-Compile Application Architecture
	CodeGenerationSvc
	AutoCompileSvc

	Setting up the Auto-Compile Feature
	Configuring the Auto-Compile Services
	To configure and install the Part2 partition of the AutoCompileSvc application using the Environm...
	To configure and install the Part2 partition of the AutoCompileSvc application using Escript

	Starting up the Auto-Compile Services
	Troubleshooting the Auto-Compile Feature
	Debugging Errors When Using Auto-Compile

	Using Auto-Compile with Windows 95
	Compiling Partitions as Windows NT partitions
	To compile partitions in Windows NT and use them in Windows 95 distributions
	To install the Windows 95 distributions
	Setting up a Windows 95 Node to Auto-Compile
	To set up a Windows 95 node to run the auto-compile compiler service

	Support For OLE
	To specify support for DCE, ObjectBroker, or OLE on a node

	B iPlanet UDS Environment Variables
	Environment Variable Descriptions
	Logical Names for OpenVMS
	Using the iPlanet UDS Control Panel
	Opening the Control Panel
	The Control Panel Window
	Closing the Control Panel

	General Tab Page
	Repository Name
	Workspace Name
	Root Directory
	Time Zone and Daylight Savings

	Network Tab Page
	Model Node
	Node Name
	Name Server Address
	Communication Provider

	Log Flags Tab Page

	Setting Environment Variables Without the iPlanet UDS Control Panel
	Setting Environment Variables on NT
	Using the Registry

	Setting Environment Variables on Windows 95
	Setting Environment Variables on UNIX
	Setting Logical Names on OpenVMS

	C iPlanet UDS Command Summary
	iPlanet UDS Commands
	Compmsg Command
	Econsole Command
	Escript Command
	Extmsg Command
	*Fcompile Command
	Fcontrol Command
	*Forte Command
	*Fscript Command
	Ftcmd Command
	Ftexec Command
	To start a client partition, use the following ftexec command syntax
	To start a standard server partition, enter the following command

	Ftexecd Command
	Ftlaunch Command
	Nodemgr Command
	Olegen Command
	*Rpclean Command
	*Rpcopy Command
	*Rpcreate Command
	*Rpshadow Command
	*Rpstart Command
	*Rpstop Command
	*Tclient Command

	iPlanet UDS Logger and Memory Manager Flags
	-fl Flag (Log Manager)
	File Name
	File Filter

	-fm Flag (Memory Manager)
	Setting Maximum and Minimum Size of the Memory Heap

	-fst Flag (Stack Size)

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

