
A Guide to WebEnterprise
iPlanet™ Unified Development Server

Version 5.0

August 2001

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, iPlanet, Unified Development Server, and the iPlanet logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, iPlanet, Unified Development Server, et le logo iPlanet sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

List of Figures . 11

List of Procedures . 13

List of Code Examples . 15

Preface . 17
Product Name Change . 17
Audience for This Guide . 18
Organization of This Guide . 18
Text Conventions . 19
Other Documentation Resources . 20

iPlanet UDS Documentation . 20
Express Documentation . 21
WebEnterprise and WebEnterprise Designer Documentation . 21
Online Help . 21

iPlanet UDS Example Programs . 22
Viewing and Searching PDF Files . 22

Chapter 1 Overview . 25
About HTML Support . 26

Chapter 2 WebEnterprise and HTML . 29
About iPlanet UDS and HTML . 29

Terminology . 32
fortecgi Program and the iPlanet UDS NSAPI Plug-in . 33
Web Access Service Object . 35
Page Factory Service Objects . 38

4 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Application Design Considerations . 40
Structuring Your Web Application . 40

Creating a Web Interface for a New iPlanet UDS Server . 41
Adding a Web Interface to an iPlanet UDS Client Application . 41
Sharing an iPlanet UDS Server . 42

Scaling Your Web Application . 43
Differences between Window- and Web-Based Applications . 44

Performing Data Validation
and Other Window Processing . 45
Keeping State Information . 47
Structuring the User Interface . 48

Quick Tutorial: EasyWeb . 50

Chapter 3 Setting Up a Web Application . 57
Summary of Steps for Creating an iPlanet UDS Web Application . 57
Suggested Project Hierarchy . 59

When to Include the Optional HTML Projects . 61
The HTML Project . 61
The HTMLWindow Project . 61
The HTMLSQL Project . 62

Project Structure for the SoftWear Application . 62
Defining a Web Access Project and Service . 64

Creating a Web Access Service Object . 64
Enabling the Web Access Service Object . 65

Using a Start Method to Enable Access . 67
Using an Administration Window to Enable Access . 67

Disabling Web Access . 69
Defining a Scanner Service Object . 69
Defining a Web Page Builder Project . 70

Defining a Page Builder Service Object . 72
Defining a Shared Windows Project . 73

Writing Methods for Shared Windows . 74

Chapter 4 Planning Web Pages . 75
Roles of the Web Author and Web Programmer . 75
Initial Decisions About Pages . 78

Static and Dynamic Web Pages . 78
Using the iPlanet UDS HTML Projects to Create Pages . 79
Determining which Services will Provide Pages . 80
Identifying Session Management Requirements . 82

5

Special Purpose Pages . 83
Entry Point Page . 83
Session Creation Page . 85

Using Links . 85
Format of URLs used by WebEnterprise . 86
The $$FORTE.ExecURL Variable . 87
Constructing Links . 88

Using Images and Graphics . 90
Error Handling . 91

The Default Web Error Page . 92
Error Handling Icons . 92

Testing a Web Application . 94

Chapter 5 Creating Pages Using Templates . 97
About iPlanet UDS Templates . 97

About the HTML Scanner Service . 102
The iPlanet UDS HTML Tags . 103
Tag Handlers . 104
Purpose of the HandleTag and HandleCondition Methods . 105
Result Sets and iPlanet UDS Variables . 106

Summary of Steps for Using Templates . 108
Designing a Template with iPlanet UDS Tags . 108

Using HTML Editors . 109
Putting iPlanet UDS Tags in a Template . 110

Defining the HandleTemplateRequest Method . 111
Creating TagHandlers . 112

Using Subclasses of HTMLScanner . 113
Using Custom Classes . 114
Writing Tag Code . 116

Defining the HandleTag Method . 117
Constructing a Result Set . 118
Using ITERATE to Add Tables and Lists . 120
Defining the HandleCondition Method . 123

Register or Load Tag Handlers . 123
Choosing Static Registration or Dynamic Loading . 124
Using Static Registration . 124
Using Dynamic Loading . 125

The Handler File . 125
Testing a Template . 127

6 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Reference for iPlanet UDS HTML Tags . 127
FORTE EXECUTE Tag . 128
FORTE IF … ELSE Tags . 130
FORTE ITERATE Tag . 131
FORTE INCLUDE Tag . 133
FORTE REDIRECT Tag . 134

Chapter 6 Creating Pages Using Page Builder Methods . 135
Using a Page Builder Service . 135

Page Builder Methods . 136
Techniques for Writing Page Builder Methods . 138

Using HTML Tag Markup Directly . 139
Using HTML Classes . 139
Using the WindowConverter Class . 140
Using the SQLConverter Class . 142
Saving Generated Pages to HTML Files . 143

Defining the HandleRequest Method . 143
A Sample HandleRequest Method . 145

Adapting iPlanet UDS Windows with WindowConverter . 146
Designing a Window for Use as a Web Page . 148
Using the HTML Options… Command . 149
Converting a Window . 150
Sharing Window Code with the Web Page . 151

Chapter 7 Using Session Management . 153
The Benefits of Session Management . 153

The Meaning of Session and State Management . 155
Session Management Features . 156

Session Properties for Web Pages . 157
Web Session Manager . 157
Session Objects and the Session Table . 158
Session IDs . 159
Validating and Tracking a Session . 160

Typical Session Management Scenarios . 163
About SESSION_REQUIRED . 166

All Pages are Available to All Users . 166
Different Pages are Available to Different Users . 167

About SESSION_AUTOCREATE . 169

7

Implementing Session Management . 170
Initializing Session Management Attributes . 171

Setting the Encrypt Key . 171
Setting the Session Timeout Interval . 171
Setting the SessionCreationURL . 172

Enabling Session Management . 173
Multiple Web Access Services Sharing Sessions . 173

Optional Customizations . 174
Deleting or Timing Out Sessions . 174
Making Session IDs Persistent . 175
Specifying a Non-Default Session Manager . 175
Mixing Secure Sockets Layer (SSL) and non-SSL . 175

Setting Session Properties for Pages . 176
Setting a Default Session Property . 176
The Session Property File . 177
Overriding Session Properties for Individual Pages . 178

Pages in Files and Directories . 178
Page Builder Pages . 178

Working with State Information . 179
Defining What Constitutes State Information . 180
Using a Subclass of HTTPSession for State Information . 180
Using Persistent Storage for State Information . 181

Modifying URL Links for Session Management . 182
Setting the DefaultCookie Attribute . 182
Using the $$FORTE.ExecURL Variable in URLs . 183
Session IDs in URLs . 184

Alternate Ways to Manage State Information . 185
Using Hidden Form Elements . 185
Using Page Parameters in Generated URLs . 185
Using Cookies . 186

Chapter 8 Partitioning and Deployment . 187
About Partitioning iPlanet UDS Web Applications . 187

About Web Application Service Objects . 188
Web Access Service Object . 188
Page Builder Service Object and Scanner Service Object . 189
Default Configuration for Web Applications . 190

8 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Modifying the Configuration . 191
Creating a New Logical Partition . 191
Modifying Service Object Definitions . 191
Assigning Partitions . 192
Moving Partitions . 192
Replicating Partitions . 192
Creating a Compiled Partition (Code Generation) . 194

Deploying the Application . 195

Chapter 9 Managing iPlanet UDS Web Applications . 197
About iPlanet UDS CGI and iPlanet UDS Web Server Plug-in Programs . 197

Choosing between fortecgi and the iPlanet UDS NSAPI Plug-In . 199
Setup Options for fortecgi and iPlanet UDS Plug-ins . 200
Autoregistration . 201

Setting a Port for Autoregistration . 201
Autoregistration Requires fortecgi Program . 202

Manual Registration . 202
Use of fortecgi.dat by iPlanet UDS NSAPI Plug-in . 203

Using an iPlanet UDS Web Server Plug-in During Development . 203
Maintaining the iPlanet UDS Web Site Files . 205

The fortecgi Executable . 205
The fortensapi DLL . 206
Administrative Files . 206

The fortecgi.dat File . 206
The Session Property File . 208
The Handler File . 209

Template Files . 210
The iPlanet UDS Document Root Directory . 210

Graphic, Image, and Binary Data Files . 211
Using an Administration Window . 212

Initialization Tasks . 212
Security Considerations . 213

Using Basic Authentication . 213
Using Secure Sockets Layer . 214

Client Errors Reaching a Secure Server . 215
Diagnosing Problems with fortecgi or a Plug-in . 215

“Fortecgi Usage” Page . 216
“iPlanet UDS NSAPI Plug-in Usage” Page . 217
“Attempt to Authorize Web User” . 217
“Not Found” Message . 218
“Garbage Characters” on Screen . 218

9

Troubleshooting Web Client Errors . 218
ForteCGI Usage Page . 219
Client Request Failure Errors . 219

“No ServiceName parameter found in the request URL” . 219
“Service Not Available” . 219
“Service Not Found” . 220
“The iPlanet UDS service you requested is busy, please try again” . 220

fortecgi Runtime Errors . 220
“Socket error:” . 220

Client iPlanet UDS Errors . 221
Object with NIL value returned by iPlanet UDS . 221

Client Security Errors . 221
“Status Code 401: Unauthorized...” . 221

Troubleshooting Web Administrator Errors . 222
“De-Registration Failure: Cannot write to fortecgi data file” . 222
“De-registration Failure: fortecgi data file not found” . 222
“Incoming registration or de-registration message is invalid” . 222
“Registration Failure: Cannot create fortecgi data file” . 222
“Registration Failure: Cannot write to fortecgi data file” . 223
“Registration Failure: Duplicate iPlanet UDS server with the same port number” 223

Calling iPlanet UDS Technical Support . 223
The WebEnterprise Release Number . 224

Appendix A Example Programs . 225
About the Examples . 225

EasyWeb Example . 225
SoftWear Example . 225
The ShopCart Example . 226
SQLDemo Example . 227

Components of the SoftWear Example . 227
Projects and .pex Files . 227
iPlanet UDS Windows and Corresponding Web Forms . 228
Page Builder Methods Used by SoftWear . 229
The SoftWear Data Files . 230

Installing the SoftWear Example . 230
Components of the ShopCart Example . 234

Projects and .pex Files . 234
The ShopCart HTML Files . 235
The ShopCart Image Files . 235
Distribution of ShopCart Components . 235

Installing and Running the ShopCart Example . 235
Using the SQLDemo Example . 240

10 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Appendix B Environment Variables . 245
Environment Variables . 245

FORTE_CGI_REG_PORT . 245
FORTE_CGI_REG_FILE . 246
FORTE_WW_DOCUMENT_ROOT . 247
FORTE_WW_HANDLER_CONFIG_FILE . 247

Index . 249

11

List of Figures

Figure 1-1 iPlanet UDS Internet Solutions . 26

Figure 2-1 Using iPlanet UDS with the World Wide Web . 30

Figure 2-2 The Web Server and the fortecgi Program . 34

Figure 2-3 The fortecgi program and the Web Access Service Object . 34

Figure 2-4 Using the Page Builder Service . 36

Figure 2-5 Accessing Dynamically Created Web Page . 37

Figure 2-6 Constructing Web Pages Dynamically . 38

Figure 3-1 Suggested Project Hierarchy for an iPlanet UDS Web Application 60

Figure 3-2 Project Hierarchy for the SoftWear Application . 63

Figure 3-3 Example Administration Window . 68

Figure 4-1 Steps Involved in Building Web Pages . 76

Figure 4-2 Entry Point Web Page for the SoftWear Application . 84

Figure 4-3 Parts of a URL as Constructed and Parsed by Various Processes 86

Figure 4-4 Example of the Default Error Page . 92

Figure 5-1 Relationship of Template and TOOL Method to Create a Web Page 98

Figure 5-2 Final Web Page Showing Generated Data (List of Products) . 99

Figure 5-3 Example HTML Template Showing FORTE Tags . 100

Figure 5-4 Role of the Scanner Service Object . 102

Figure 5-5 Implementing Templates for Use with Scanner Service Objects 108

Figure 6-1 iPlanet UDS Client Window . 141

Figure 6-2 Web Page Converted from iPlanet UDS Window . 142

Figure 7-1 Validating and Tracking a Session . 162

Figure 7-2 Steps for Implementing Session Management . 170

Figure 9-1 Administration Window for the ShopCart Application . 212

Figure 9-2 Web Page with Key . 215

Figure 9-3 The fortecgi Usage Page . 217

Figure 9-4 The iPlanet UDS NSAPI Plug-in Usage Page . 217

Figure A-1 Administration Window for SoftWear Application . 232

12 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

13

List of Procedures

To copy the documentation to a client or server . 22

To view and search the documentation . 23

Create an entry point Web page for the EasyWeb application using HTML . 50

In iPlanet UDS, create a new Web project to define the Web access service object 51

Include the iPlanet UDS HTTP library as a supplier plan for the new Web project 52

In the EasyWeb project, create a new subclass of HTTPAccess . 52

Create a Web access service object with the new EasyAccess class as its type 52

Override the HandleRequest method in the EasyAccess class . 52

Create a start-up class and method to start the iPlanet UDS application . 54

Register the Web access service object with the fortecgi program . 54

Test the application . 55

Exit the application . 55

To include a project as a supplier plan . 60

To create a Web access project . 64

To define a Web access service object . 65

To create the scanner service object . 70

To create a Web page builder project . 71

To create a page builder service object . 72

To create the shared windows project . 73

To add a link to a Web page . 88

To test a Web application locally . 94

To design a dynamic page using an iPlanet UDS HTML template . 108

To define the HandleTemplateRequest method . 111

To use a subclass of HTMLScanner for a tag handler class . 113

To use a custom class for a tag handler class . 114

To define a HandleTag method in a tag handler class . 117

To build a result set in a HandleTag method . 118

14 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

To place a dynamically generated table in a Web page . 120

To define the HandleRequest method . 144

To convert an iPlanet UDS window (or widget) to an HTML document . 146

To set the HTML options for a widget . 149

The following steps describe how iPlanet UDS validates and tracks a session 161

To define default page-level session properties, and then override session properties as needed . 164

To specify session properties using a session property file . 165

To use WebEnterprise session management . 170

To enable session management . 173

To allow multiple Web access services to share sessions . 173

To create your own session manager . 175

To use a subclass of HTTPSession to store session data . 181

To update pages and templates to use the $$FORTE.ExecURL variable . 183

To create a logical partition . 191

To change the service object definition . 192

To assign a logical partition . 193

To set the Replication Count property for an assigned partition . 193

To set the Compiled property for an assigned partition . 194

To deploy your Web application . 195

To autoregister a Web access service object . 201

To manually register a Web access service object . 202

To manually de-register a Web access service object . 203

To use an iPlanet UDS Web server plug-in . 204

To use SSL . 214

To make sure that fortecgi or the iPlanet UDS plug-in is installed properly . 216

To obtain your Web server name and version . 223

To install and run the SoftWear example . 230

To install the ShopCart example . 236

To Run the ShopCart example . 239

To install and run SQLDemo . 240

15

List of Code Examples

URL that Requests a Page from a Page Builder Service . 81

URL that Requests a Page from a Scanner Service . 82

Sample Handler File . 126

Sample Session Property File . 177

A URL with an embedded Session ID . 184

16 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

17

Preface

A Guide to WebEnterprise provides user and reference information about how to use
HTML pages to create a Web interface to an iPlanet UDS application.

You can use WebEnterprise to build entirely new iPlanet UDS applications with
Web interfaces, or to add Web connectivity to existing iPlanet UDS applications.
This manual assumes that iPlanet UDS is already installed at your site.

For instructions on installing WebEnterprise and for information about certified
platforms, versions, and products, see the WebEnterprise Installation Guide.

This preface contains the following sections:

• “Product Name Change” on page 17

• “Audience for This Guide” on page 18

• “Organization of This Guide” on page 18

• “Text Conventions” on page 19

• “Other Documentation Resources” on page 20

• “iPlanet UDS Example Programs” on page 22

• “Viewing and Searching PDF Files” on page 22

Product Name Change
Forte 4GL has been renamed the iPlanet Unified Development Server. You will see
full references to this name, as well as the abbreviations iPlanet UDS and UDS.

Audience for This Guide

18 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Audience for This Guide
This manual is intended primarily for iPlanet UDS Web application programmers.
We assume the reader is familiar with using the following:

• the iPlanet UDS application environment to create, partition, and deploy
applications

• HTML to create Web pages

• the HTTP communication protocol

If you want to build a new iPlanet UDS application that includes Web connectivity,
you might need to refer to other documents in the iPlanet UDS documentation set
that are referenced in this manual. In addition, you might require access to a Web
server for the installation of the fortecgi executable (and optionally the fortensapi
executable) and to a Web browser for testing your Web client interface.

Some information in this book is intended for other persons involved in a Web site,
specifically:

• Web page authors (such as text providers and graphic artists)

• Web site administrators (these persons are assumed to have some familiarity
with both iPlanet UDS administration and Web site administration)

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter/Part Contents

Chapter 1, “Overview” A brief description of the purpose of
WebEnterprise.

Chapter 2, “WebEnterprise and
HTML”

A description of using WebEnterprise to implement
Web browser interfaces to iPlanet UDS services.

Chapter 3, “Setting Up a Web
Application”

Initial steps for setting up an iPlanet UDS Web
application, including defining iPlanet UDS
projects and service objects, and allowing Web
browser access to the application.

Chapter 4, “Planning Web Pages” A discussion of general issues about page design,
including static and dynamic pages, special pages,
links, and so on.

Text Conventions

Preface 19

Text Conventions
This section provides information about the conventions used in this document.

Chapter 5, “Creating Pages Using
Templates”

Conceptual information about how templates
work, and instructions for using templates to
generate Web pages.

Chapter 6, “Creating Pages Using
Page Builder Methods”

Conceptual information about using page builder
methods, and instructions for writing page builder
methods that use the HTML projects to generate
Web pages.

Chapter 7, “Using Session
Management”

Adding session management and managing state
information to an iPlanet UDS Web application.

Chapter 8, “Partitioning and
Deployment”

Partitioning and deploying your iPlanet UDS Web
application.

Chapter 9, “Managing iPlanet UDS
Web Applications”

Managing the files in an iPlanet UDS Web
application, using fortecgi or the iPlanet UDS
plug-ins, troubleshooting, and using security
options.

Appendix A, “Example Programs” Installing and running the sample applications
provided with WebEnterprise.

Appendix B, “Environment
Variables”

A description of the environment variables used by
WebEnterprise.

Format Description

italics Italicized text is used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URLs.

ALL CAPS Text in all capitals represents environment variables
(FORTE_ROOT) or acronyms (UDS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase
text exactly as shown.

Chapter/Part Contents

Other Documentation Resources

20 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Other Documentation Resources
In addition to this guide, there are additional documentation resources, which are
listed in the following sections. The documentation for all iPlanet UDS products
(including Express, WebEnterprise, and WebEnterprise Designer) can be found on
the iPlanet UDS Documentation CD. Be sure to read “Viewing and Searching PDF
Files” on page 22 to learn how to view and search the documentation on the iPlanet
UDS Documentation CD.

iPlanet UDS documentation can also be found online at
http://docs.iplanet.com/docs/manuals/uds.html.

The titles of the iPlanet UDS documentation are listed in the following sections.

iPlanet UDS Documentation
• A Guide to the iPlanet UDS Workshops

• Accessing Databases

• Building International Applications

• Escript and System Agent Reference Guide

• Fscript Reference Guide

• Getting Started With iPlanet UDS

• Integrating with External Systems

• iPlanet UDS Java Interoperability Guide

• iPlanet UDS Programming Guide

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

Format Description

http://docs.iplanet.com/docs/manuals/uds.html

Other Documentation Resources

Preface 21

• iPlanet UDS System Installation Guide

• iPlanet UDS System Management Guide

• Programming with System Agents

• TOOL Reference Guide

• Using iPlanet UDS for OS/390

Express Documentation
• A Guide to Express

• Customizing Express Applications

• Express Installation Guide

WebEnterprise and WebEnterprise Designer
Documentation
• A Guide to WebEnterprise

• Customizing WebEnterprise Designer Applications

• Getting Started with WebEnterprise Designer

• WebEnterprise Installation Guide

Online Help
When you are using an iPlanet UDS development application, press the F1 key or
use the Help menu to display online help. The help files are also available at the
following location in your iPlanet UDS distribution:
FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as Fscript or Escript, type help from the
script shell for a description of all commands, or help <command> for help on a
specific command.

iPlanet UDS Example Programs

22 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

iPlanet UDS Example Programs
A set of example programs is shipped with the iPlanet UDS product. The examples
are located in subdirectories under $FORTE_ROOT/install/examples. The files
containing the examples have a .pex suffix. You can search for TOOL commands
or anything of special interest with operating system commands. The .pex files are
text files, so it is safe to edit them, though you should only change private copies of
the files.

Viewing and Searching PDF Files
You can view and search iPlanet UDS documentation PDF files directly from the
documentation CD-ROM, store them locally on your computer, or store them on a
server for multiuser network access.

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or
server hard disk.

You can specify any convenient location for the doc directory; the location is
not dependent on the iPlanet UDS distribution.

2. Set up a directory structure that keeps the udsdoc.pdf and the uds directory in
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat
Reader with Search is recommended and is available as a free
download from http://www.adobe.com. If you do not use Acrobat
Reader with Search, you can only view and print files; you cannot
search across the collection of files.

NOTE To uninstall the documentation, delete the doc directory.

http://www.adobe.com

Viewing and Searching PDF Files

Preface 23

➤ To view and search the documentation

1. Open the file udsdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search >
Query.

3. Enter the word or text string you are looking for in the Find Results Containing
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text.
If more than one document from the collection contains the desired text, they
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to
navigate through the search results, as shown in the following table:

To return to the udsdoc.pdf file, click the Homepage bookmark at the top of
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the
udsdoc.pdf home page or select Edit > Search > Results.

NOTE For details on how to expand or limit a search query using
wild-card characters and operators, see the Adobe Acrobat
Help.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

Viewing and Searching PDF Files

24 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

25

Chapter 1

Overview

This chapter contains background information about WebEnterprise, providing a
brief overview of the features that enable you to create enterprise Internet
applications.

WebEnterprise provides several features for building enterprise internet
applications. You can use the HTML support to create a Web user interface for an
iPlanet UDS application.

The following figure illustrates iPlanet UDS internet solutions:

26 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Figure 1-1 iPlanet UDS Internet Solutions

About HTML Support
HTML is markup language for creating Web pages that are displayed to end users
by a Web browser. Web browsers provide users with a simple, consistent way to
access information over the Internet. Using iPlanet UDS, you can enable users with
Web browsers to access existing iPlanet UDS applications or iPlanet UDS
applications you create especially for the Web.

To your end users, accessing an iPlanet UDS Web application is no different than
accessing any Web site. To view an iPlanet UDS Web application, your end users
can use a standard Web browser: all information is displayed to them on Web
pages; they use hypertext links to move from one page to another, and so on.
However, your iPlanet UDS Web application has all the power of iPlanet UDS
processing behind it.

DCOMNative IIOP

HTTP

CGI ISAPINSAPI

IIOP
(CORBA)

Internet Client
Java

JavaBeans
HTML

Web Server

iPlanet UDS Enterprise Server

High availability
High performance

Manageability
Re-use

Existing Infrastructure

Packaged Applications
Legacy Software

Databases

The iPlanet UDS Internet Solution

Chapter 1 Overview 27

Creating Web pages dynamically Using iPlanet UDS to create a Web application
enables you to create your Web pages dynamically, based on data in a relational
DBMS as well as data from other sources. Most of the information on the Web is
static and is served directly from HTML files. The information in these files
changes only when the site administrator updates the file. When you create your
Web pages dynamically, the information displayed on the Web page is
automatically updated every time the page is downloaded. For example, in our
SoftWear Web application, the list of catalog items offered for sale, and the text and
images associated with each item, are all stored in the database. When a new
catalog item is added to the database, the new item automatically appears on the
Web page the next time that page is downloaded.

Exploiting iPlanet UDS processing Using iPlanet UDS to create a Web
application also enables you to take advantage of all of the sophisticated
computing and scaling features of iPlanet UDS. Any server you create using
iPlanet UDS can provide services for the Web. Therefore, all the standard features
of iPlanet UDS are available to you, including database access, event-based
processing, and integration with external systems. Using load balancing and
failover for the iPlanet UDS servers that provide the processing enables you to
scale the application to handle large numbers of users simultaneously. Using code
generation for iPlanet UDS partitions provides improved performance.

An important advantage of using a Web interface to an iPlanet UDS application is
that the clients do not need to run the iPlanet UDS runtime system. Clients on the
Internet need only a standard Web browser to access the full functionality of the
iPlanet UDS application.

Multiple user interfaces Of course, a Web page does not provide exactly the
same GUI features as those available in iPlanet UDS. If you wish to maintain your
iPlanet UDS user interface and still provide Web access to the iPlanet UDS
application, you can provide two interfaces for a single application. The same
iPlanet UDS server, without modification, can interact simultaneously both with
iPlanet UDS clients and with Web clients.

HTTP communication For communication between iPlanet UDS and the
browser running the HTML pages, WebEnterprise uses HTTP with either a CGI
program (fortecgi) or an NSAPI plug-in (fortensapi). Figure 1-1 illustrates how the
browser communicates with iPlanet UDS using HTTP.

28 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

29

Chapter 2

WebEnterprise and HTML

This chapter provides background information about how you can use
WebEnterprise’s HTML features to create a Web-page based iPlanet UDS
application. It also describes the design considerations you should keep in mind
while designing your Web application.

The chapter concludes with a quick tutorial that provides an overview of the basic
steps for creating a simple iPlanet UDS Web site using HTML.

About iPlanet UDS and HTML
The HTML features in WebEnterprise allow you to create a Web interface for an
iPlanet UDS application. Using WebEnterprise, you can enable users with Web
browsers to access existing iPlanet UDS applications or iPlanet UDS applications
you create especially for the Web.

To enable your iPlanet UDS application to interact with the World Wide Web,
iPlanet UDS uses a combination of standard components, such as a standard Web
server and Web browser, and special WebEnterprise components. Figure 2-1
illustrates the standard components and WebEnterprise components within an
iPlanet UDS Web application.

About iPlanet UDS and HTML

30 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Figure 2-1 Using iPlanet UDS with the World Wide Web

Standard components The standard components you need to support an iPlanet
UDS Web application include:

Web browser Both Netscape Navigator and Microsoft Internet Explorer can
interface with an iPlanet UDS application.

Web server The following Web servers can provide the Web browser with access
to the iPlanet UDS application: Netscape Enterprise Server, Microsoft Internet
Information Server, and Process Software Purveyor Encrypt. (See the WebEnterprise
Installation Guide for further information about Web servers.)

iPlanet UDS business server Any iPlanet UDS server can provide processing
for the Web site.

WebEnterprise components The WebEnterprise components you need to build
the iPlanet UDS Web application include:

fortecgi program or fortensapi fortecgi is a small CGI program that provides the
gateway between the Web server and the iPlanet UDS Web access service object.
When the Web server receives a request for an iPlanet UDS Web page, the fortecgi
program passes that request to the iPlanet UDS Web access service object. The Web
access service object then returns the appropriate Web page to the fortecgi
program. The fortecgi program is included in WebEnterprise.

Forté Web ApplicationServer
Machine

Web
Browser

url

Web
Page

Web
Server

fo
rt

ec
gi Web Access

Service Object
Page Factory

Service Object

Business
Service Object

Forté
Client

Internet

Forté
NSAPI

About iPlanet UDS and HTML

Chapter 2 WebEnterprise and HTML 31

fortensapi is an NSAPI plug-in that provides a gateway between a Netscape Web
server and the iPlanet UDS Web access service object. While the iPlanet UDS
NSAPI plug-in is significantly faster than fortecgi, it runs only with Netscape Web
servers. The fortecgi program and fortensapi plug-in are included in
WebEnterprise.

See “fortecgi Program and the iPlanet UDS NSAPI Plug-in” on page 33 for
information on fortecgi and the iPlanet UDS NSAPI plug-in.

Web access service object A special iPlanet UDS “Web-aware” service object that
accepts requests for Web pages from the fortecgi program or the iPlanet UDS
NSAPI plug-in, gets the appropriate Web page from the page factory object (which
dynamically constructs the page), and returns the Web page to the fortecgi
program or the iPlanet UDS NSAPI plug-in.

page factory service object A standard iPlanet UDS service object that
dynamically creates the Web pages needed by the Web server, using information
provided by the iPlanet UDS business server.

Figure 2-1 on page 30 illustrates how the standard components and WebEnterprise
components operate with each other. The Web browser and the Web server
communicate normally with each other. The Web server communicates with the
fortecgi program or the iPlanet UDS NSAPI plug-in to handle all iPlanet UDS
requests.

When the Web server receives a request from the Web browser for an iPlanet UDS
Web page, the fortecgi program or fortensapi plug-in passes the request to the Web
access service object.

The Web access service object determines which page is needed and requests that
page from the iPlanet UDS page factory service object. The page factory service
object creates the Web page dynamically and returns the Web page to the Web
access service object, which, in turn, sends the page to the fortecgi program or
fortensapi plug-in. The fortecgi program or fortensapi plug-in returns the page to
the Web server, and the Web server returns it to the Web browser as a standard
HTML Web page.

The sections that follow provide definitions of basic terminology, and then present
additional background information about the WebEnterprise components you
need for your iPlanet UDS Web application: fortecgi, the iPlanet UDS NSAPI, the
Web access service object, and the page factory service object.

About iPlanet UDS and HTML

32 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Terminology
CGI program (Common Gateway Interface) A program that integrates the Web
server with external programs. The Web server starts the CGI program, and the
CGI program interacts with the external program (in our case, iPlanet UDS). Using
a CGI program provides the ability to construct a Web page dynamically, rather
than simply providing a static HTML page in response to a request from the Web
browser. The CGI program used by iPlanet UDS is called “fortecgi.”

iPlanet UDS business server Any iPlanet UDS service object within an iPlanet
UDS application that provides “server” processing for the application. In iPlanet
UDS, you can create an iPlanet UDS Web application that integrates a standard
iPlanet UDS business server with a Web site.

iPlanet UDS Web access server A special iPlanet UDS “Web-aware” service
object that provides Web pages to the Web server through a CGI program or
NSAPI plug-in.

HTML (Hypertext Markup Language) The most commonly used language for
creating a Web page. HTML defines the content and the layout of the Web page, as
well as links to other pages.

HTTP (Hypertext Transfer Protocol) The most commonly used protocol for
transferring data on the World Wide Web.

Page A particular type of Web object that can contain text, inline graphics, and
links to other objects. Usually, when the Web browser requests data from the Web
server, it requests the data in the form of a Web “page.” A Web page is also
referred to as a “document” or “HTML document.”

NSAPI plug-in A plug-in API to reference external services. The plug-in API
contains external interface routines in a dynamically linked library (DLL) form.
The DLL is loaded into the Web server process the first time it is referenced and
then remains resident. When an external request is received from a browser, the
server dispatches a worker thread which invokes the plug-in DLL. The DLL uses
plug-in API functions (rather than environment variables) to get the data required
for the external service call and to return an HTML response to the client.

The plug-in API avoids the overhead of process creation that is inherent in the CGI
mechanism, and therefore is a higher-performance interface.

URL (Uniform Resource Locator) A scheme for specifying the exact location of a
particular resource on the Internet.

About iPlanet UDS and HTML

Chapter 2 WebEnterprise and HTML 33

Web browser A software program that allows the end user to retrieve a Web
page and to follow links from one Web page to another.

Web server A software program that responds to requests from a Web browser
for a Web page. Do not confuse the term “Web server” with an iPlanet UDS Web
access server, which is an iPlanet UDS “web-aware” service object that provides an
iPlanet UDS application with access to the Web. The following section provides
information about the relationship between the Web server and the iPlanet UDS
Web access server.

Web site A set of interlinked Web pages. A Web site can provide static
information for end user viewing, or it can be used as a user interface, for example,
to an iPlanet UDS application.

fortecgi Program and the iPlanet UDS NSAPI
Plug-in
The Web browser uses a URL to request a Web page from the Web server. The sole
function of the fortecgi program or the iPlanet UDS NSAPI plug-in is to direct the
URL from the Web server to the appropriate iPlanet UDS Web access service object
running in your iPlanet UDS environment.

The fortecgi program and the iPlanet UDS NSAPI plug-in provide equivalent
functionality using different APIs. The NSAPI interface was developed by
Netscape and is supported by their current generation of Web servers; it is
generally a higher performing alternative. See “Choosing between fortecgi and the
iPlanet UDS NSAPI Plug-In” on page 199 for detailed information about when to
use fortecgi and when to use the iPlanet UDS NSAPI plug-in.

Using URLs to access an iPlanet UDS service object When you create a URL to
request a Web page from your iPlanet UDS application, the URL must contain a
reference to the fortecgi program or the iPlanet UDS NSAPI plug-in, followed by a
service name that identifies an iPlanet UDS Web access service object and a Web
page name with optional parameter list.

The following example shows the first portion of a sample URL, including the
reference to the fortecgi program followed by the iPlanet UDS service name:

http://www.forte.com/cgi-bin/fortecgi?serviceName=fortedemo&...

The next example shows the same URL fragment with a reference to the iPlanet
UDS NSAPI plug-in instead of the fortecgi program:

http://www.forte.com/web.forte?serviceName=ShopCartService&...

About iPlanet UDS and HTML

34 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

When the Web server receives a URL request for a Web page, it forwards the
request to the appropriate program. Figure 2-2 illustrates how the Web server
forwards the URL request that contains a fortecgi reference to the fortecgi program:

Figure 2-2 The Web Server and the fortecgi Program

The process is the same for the iPlanet UDS NSAPI plug-in. If the URL shown in
Figure 2-2 contains a reference to the iPlanet UDS NSAPI plug-in (rather than
fortecgi), the page request is forwarded to the fortensapi plug-in rather than the
fortecgi program.

The fortecgi program or the iPlanet UDS NSAPI plug-in uses the service name in
the URL to locate the appropriate iPlanet UDS Web access service object and
forwards the URL to the service object, which then obtains the appropriate page
and returns it to the fortecgi program or iPlanet UDS NSAPI plug-in. Figure 2-3
illustrates how the fortecgi program directs URL requests to the iPlanet UDS Web
access service object using the service name:

Figure 2-3 The fortecgi program and the Web Access Service Object

Web
Browser

Internet

HTTP Request
http://www.forte.com/cgi-bin/fortecgi()

url

Web
Page

Server
Machine

Forté Web
Server

Web
Server

fo
rt

ec
gi

Forté
NSAPI

HTTP Request
http://www.forte.com/cgi-bin/fortecgi?

servicename=fortedemo&pageName=prodlist

url

Product
web
page

Web Access
Service Object

fo
rt

ec
gi

fortedemo

()

About iPlanet UDS and HTML

Chapter 2 WebEnterprise and HTML 35

The process is the same for the iPlanet UDS NSAPI plug-in. If the URL shown in
Figure 2-3 contains a reference to the iPlanet UDS NSAPI plug-in (web.forte), the
page request is forwarded from the iPlanet UDS NSAPI plug-in to the Web access
service object.

Both the fortecgi program and the iPlanet UDS NSAPI plug-in are provided as part
of WebEnterprise. See the WebEnterprise Installation Guide for information about
installing fortecgi and the iPlanet UDS NSAPI plug-in.

Web Access Service Object
The purpose of the Web access service object is to obtain the Web pages requested
by the fortecgi program or iPlanet UDS NSAPI plug-in. The Web pages that the
Web access service object obtains are constructed by a page factory service object.

There are two kinds of page factory service objects: page builder and scanner. A
page builder service object creates a Web page by using an iPlanet UDS method that
contains HTML or by converting an iPlanet UDS window into a Web page. A
scanner service object creates a Web page by using an HTML template that was
created by an HTML editor. See “Page Factory Service Objects” on page 38 for
information on page factory service objects.

The URL request sent to the Web access service object by fortecgi or iPlanet UDS
NSAPI plug-in contains either:

• a Web page name and an optional parameter list

• an HTML template name and an optional parameter list

If the URL contains a Web page name, the Web access service object directs the
request to the appropriate page builder service object. If the URL contains a
template name, the Web access service object directs the request to the appropriate
scanner service object.

Requests for pages When the URL contains a page name, the Web access service
object uses the page name to determine which Web page needs to be constructed.

For example, the following URL contains a request for the “prodlist” page:

http://www.forte.com/cgi-bin/fortecgi?serviceName=fortedemo
 &pageName=prodlist

About iPlanet UDS and HTML

36 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

When the Web access service object receives a request for a Web page, it invokes a
method on the page builder service object, requesting the appropriate page. If there
are page parameters, the Web access service object passes the page parameter
values to the page builder service.

Figure 2-4 illustrates how the Web access service object obtains the dynamically
created Web page from the page builder service object.

Figure 2-4 Using the Page Builder Service

Requests for templates When the URL contains a template name, the Web access
service object uses the template name to determine which template needs to be
used by the scanner service object to construct the Web page.

For example, the following URL contains a request for the “shopmain” template:

When the Web access service object receives a request for a template, it invokes a
method on the scanner service object, requesting the appropriate template be used
to create a Web page. If there are parameters, the Web access service object passes
the parameter values to the scanner service object.

Figure 2-5 illustrates how the Web access service object obtains the dynamically
created Web page from the scanner service object.

http://www.forte.com/cgi-bin/fortecgi?serviceName=ShopCartService
 &templateName=shopping/shopmain.htm

BuildProdList method

url

Product
List

Page

url

Product
List

PageWeb Access
Service Object

Page Builder
Service Object

fortedemo

About iPlanet UDS and HTML

Chapter 2 WebEnterprise and HTML 37

Figure 2-5 Accessing Dynamically Created Web Page

HTTPAccess class To create your Web access service object, you create a subclass
of the iPlanet UDS HTTPAccess class, provided in the iPlanet UDS HTTP library.
The HTTPAccess class provides two separate methods for handling requests for a
Web page:

HandleRequest This method is automatically invoked when the Web access
service object receives a URL with a page name. The HandleRequest method
allows the Web access service object to request the appropriate Web page from the
page builder service object. If your Web access service object is going to handle
page requests that contain page names, you must override the HandleRequest
method.

HandleTemplateRequest This method is automatically invoked when the Web
access service object receives a URL with a template name. The
HandleTemplateRequest method allows the Web access service object to request
the appropriate Web page from the scanner service object. If your Web access
service object is going to handle page requests that contain template names, you
must override the HandleTemplateRequest method.

A single Web access service object can handle both kinds of requests, those that
contain a page name and those that contain a template name.

Registering the Web access service object The HTTPAccess class also provides
methods for registering and de-registering your Web access service object with the
fortecgi program or iPlanet UDS NSAPI plug-in. You can enable HTTP access for
your Web access service object in the Init method for the HTTPAccess subclass, so
that HTTP access is automatically turned on when the service object starts up. Or,

HandleTemplate
(TemplateName = 'Payment/newaccount.htm')

url

url

New
Account

web
page Scanner

Service Object

Access Payment

Web Access
Service Object

New
Account

web
page

About iPlanet UDS and HTML

38 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

you can create a separate iPlanet UDS client window that provides commands you
can use to enable and disable access to the World Wide Web. See “Web Access
Service Object” on page 35 for information on registering your Web access service
object.

Page Factory Service Objects
The purpose of a page factory service object is to create the Web pages requested
by the Web access server. When the page factory service object receives a request
for a Web page from the Web access service object, it obtains the appropriate data
from the iPlanet UDS business server and then creates the Web page dynamically.
For example, to build the product list page, the SoftWear application’s page builder
service object gets the product list information from the iPlanet UDS business
service object and then creates the HTML page.

WebEnterprise provides two different kinds of page factory service objects: the
page builder service object (which creates Web pages by using iPlanet UDS
methods that generate HTML or by converting an existing iPlanet UDS window
into a Web page) and the scanner service object (which creates Web pages by using
an HTML template produced by an HTML editor).

Figure 2-6 illustrates how a page builder service object dynamically creates the
Web page using data provided by the iPlanet UDS server. The process is essentially
the same for a scanner service object:

Figure 2-6 Constructing Web Pages Dynamically

url

Product
List
Page

Business
Service Object

Page Builder
Service Object

GetProdList Method

Array of ProductHeader

url

Product
List
Page

About iPlanet UDS and HTML

Chapter 2 WebEnterprise and HTML 39

Page builder service object A page builder service object creates Web pages by
using iPlanet UDS methods that generate HTML or by converting an existing
iPlanet UDS window into a Web page. When you create Web pages dynamically in
your page builder service object, you have two basic options: enter HTML tags
directly into your method code or use the iPlanet UDS HTML projects.

Using iPlanet UDS HTML projects iPlanet UDS provides the following three
projects for constructing Web pages in your TOOL code:

The advantages of using the HTML projects are that iPlanet UDS provides syntax
checking for the TOOL code, and the HTML classes create fewer lines of code than
HTML. In addition, you can use the iPlanet UDS Window Workshop to design
your Web page, taking advantage of its visual layout tools, and then convert the
window into a Web page. You can also convert an existing window (used by the
iPlanet UDS client) into a Web page.

For complete information on creating a page builder service object, see “Defining a
Page Builder Service Object” on page 72.

Scanner service object The scanner service object creates Web pages by using an
HTML template produced by an HTML editor, like Sausage Software’s HotDogPro
or Allaire’s Homesite. Using the scanner service object to dynamically create your
Web pages enables you to use a commercial HTML editor to design the basic
format of the Web page, rather than entering HTML directly into your method
code.

Using templates An iPlanet UDS HTML template is a text file that contains
standard HTML and iPlanet UDS HTML tags. It differs from a regular HTML file
only in that it contains additional tags representing dynamic data added to the
HTML page by an iPlanet UDS scanner service. A page author creates an HTML

HTML Project Description

HTML Provides classes that correspond directly to HTML elements. You set
the attribute values to specify the element’s “tags.”

HTMLWindow Provides a class that allows you to convert an iPlanet UDS window
into an HTML document (that is, a Web page).

HTMLSQL Provides a class that allows you to create a table on the Web page from
a SQL query.

Application Design Considerations

40 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

template using a text editor or an HTML editor, inserting special iPlanet UDS
variables in the template to stand in for data that will be provided by an iPlanet
UDS programmer. The iPlanet UDS programmer then adds in the iPlanet UDS tags
and variables required to generated the desired data.

For complete information on creating a scanner service object, see “Defining a
Scanner Service Object” on page 69.

When the Web access service receives a request from a browser, it determines from
the URL itself whether the request is for a page or a template. The Web access
service directs all requests for pages to the page builder service object and all
requests for templates to the scanner service object.

Application Design Considerations
There are several effective ways to design your iPlanet UDS Web application. The
following sections describe two of the basic issues you should consider when you
design your Web application and recommend some design alternatives. Topics
covered include:

• structuring your Web application

• scaling your Web application

Structuring Your Web Application
There are three basic strategies for structuring your Web application. You can:

• create a Web interface for a new iPlanet UDS server

• add a Web interface to an existing iPlanet UDS client application

• share an existing iPlanet UDS server between a Web-based application and a
window-based application

In general, we recommend a design in which you define each of the service objects
in your Web application in separate projects. This is the most effective design
because, when you partition the application, the project code for each service object
will be on separate partitions. However, the scanner service object (unlike the page
builder service object) must be defined in the same project as the Web access
service object. Therefore, all three strategies tell you to define the scanner service
object (if you have one) in the same project that defines the Web access service
object.

Application Design Considerations

Chapter 2 WebEnterprise and HTML 41

Creating a Web Interface for a New iPlanet UDS Server
To create a new application with a new iPlanet UDS server and a Web interface,
you can simply create the following projects:

• a project that defines the Web access service object and the scanner service
object (if you have one)

This is the main project for the application. If you are using a scanner service
object to create the Web pages, the scanner service object must be defined in
the same project as the Web access service object.

• a project that defines the page builder service object (if you have one)

This project must be a supplier project to the project that defines the Web
access service object.

• a project that defines the iPlanet UDS business server to provide the processing
for the Web site

This project must be a supplier project for both the project that defines the Web
access service object and for the project that defines the page builder service
object.

When you are ready to partition the Web application, configure the main project as
a server application, rather than as a client. To run the application, you can simply
start up the iPlanet UDS server and then allow end users to access it by using a
Web browser with the appropriate URL to get to the application’s entry point Web
page.

Adding a Web Interface to an iPlanet UDS Client Application
If you have an existing iPlanet UDS application with a standard iPlanet UDS client,
and you wish to add Web access to that application, you can extend your existing
application to include the iPlanet UDS Web access service object. In this design, the
same application contains both the Web access server and the standard iPlanet
UDS client.

You can implement the Web interface version of the existing client either in a page
builder service object (for example, by using the WindowConverter class to convert
the existing windows into HTML pages) or in a scanner service object (that is, by
using an HTML editor to create an HTML “version” of the window-based
interface).

The SoftWear sample application, described under “Components of the SoftWear
Example” on page 227, uses this design. SoftWear illustrates use of the
WindowConverter class to convert existing iPlanet UDS windows into Web pages.

Application Design Considerations

42 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

To extend your client application, create the following new projects:

• a project that defines the Web access service object and the scanner service
object (if you have one)

This project must be a supplier project for the application’s main project. If you
are using a scanner service object to create the Web pages, the scanner service
object must be defined in the same project as the Web access service object.

• a project that defines the page builder service object (if you have one)

This project must be a supplier project to project that defines the Web access
service object.

You then must make the project that defines the business server a supplier project
for both the project that defines the Web access service object and the project that
defines the page factory service object.

When you are ready to partition the new version of the application, configure the
main project as a client application. When the client application is running, Web
users can access it by using a Web browser with the appropriate URL to get the
application’s entry point Web page.

See “Summary of Steps for Creating an iPlanet UDS Web Application” on page 57
for further information about implementing this design.

Sharing an iPlanet UDS Server
If you have an existing iPlanet UDS application with a standard iPlanet UDS client,
you might wish to create a completely separate Web version of your application,
which still accesses the same iPlanet UDS business service, but does not include the
standard iPlanet UDS client. The advantage of creating a separate Web version of
the application is that you do not have to modify your existing iPlanet UDS
application. You can create a completely separate Web version of your application
by using a reference partition.

Reference partitions To define a Web interface for an existing iPlanet UDS
server, create the following projects:

• a project that defines the Web access service object and the scanner service
object (if you have one)

This is the main project for the application.If you are using a scanner service
object to create the Web pages, the scanner service object must be defined in
the same project as the Web access service object.

Application Design Considerations

Chapter 2 WebEnterprise and HTML 43

• a project that defines the page builder service object (if you have one)

This project must be a supplier project to project that defines the Web access
service object.

You must then import the project that defines the iPlanet UDS business service into
your repository. After the project that defines the iPlanet UDS business service is in
your repository, you must make it a supplier project to both the project that defines
the Web access service object and the project that defines the page factory service
object.

When you are ready to partition the Web application, configure the main project as
a server application, rather than as a client. You can then create a reference
partition for the iPlanet UDS business service in your new application. Instead of
containing a new service object, the reference partition points to the existing service
object that was originally deployed as part of the first application.

See A Guide to the iPlanet UDS Workshops for complete information about creating
reference partitions.

To run the application, you can simply start up the iPlanet UDS server and then
allow end users to access it by using a Web browser with the appropriate URL to
get to the application’s entry point Web page.

Scaling Your Web Application
One of the important advantages of using iPlanet UDS to provide the server
processing for a Web site is that you can take advantage of the scaling features of
iPlanet UDS: load balancing and failover.

Replicating the iPlanet UDS business server A single Web access server can
interact with any number of replicates of the iPlanet UDS business server. Thus, the
data processing for multiple requests from the Web can be distributed across
multiple partitions or multiple nodes.

However, the Web access server itself cannot be replicated. When the fortecgi
program or iPlanet UDS NSAPI plug-in forwards an HTTP request to the Web
access server, it uses a port number to locate the particular server. Therefore, there
cannot be multiple copies of this server.

Replicating the page factory service object Because you cannot replicate the
Web access server, it is possible that the Web access server could create a
performance bottleneck in your application. Obviously, the processing required to
construct Web pages is more significant than checking for the page type and
returning the page. Therefore, the design we recommend divides the Web page

Differences between Window- and Web-Based Applications

44 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

processing between two service objects. The Web access service object checks only
for the page type and returns the appropriate page. The page factory service object
does the bulk of the work, interacting with the iPlanet UDS business service and
constructing the actual HTML Web pages. Whether you use the page builder or the
HTML scanner service object to generate your Web page (see “Determining which
Services will Provide Pages” on page 80), the page factory service object is a
standard iPlanet UDS service object and you can replicate it as you would any
standard iPlanet UDS service object.

However, if performance is not a major concern, you can streamline your
architecture by eliminating the page factory service object and having the Web
access service object construct the HTML pages. See “Quick Tutorial: EasyWeb” on
page 50 for an example of using this design.

See Chapter 8, “Partitioning and Deployment” for additional information about
partitioning iPlanet UDS Web applications and replicating service objects.

Differences between Window- and Web-Based
Applications

Whether you are creating a Web site to serve as a user interface for an existing
iPlanet UDS application or you are creating a new iPlanet UDS application to
provide processing for a Web site, there are three important characteristics about
the Web that you must keep in mind:

• Web pages do not post events.

The only time your iPlanet UDS application can detect changes to the Web
page is after the end user clicks the Submit button.

• The Web is stateless.

Because requests for Web pages are separate messages, you must use special
WebEnterprise features to maintain state information about a single user’s
interaction with the application.

• Web users can move between the Web pages arbitrarily.

Because Web browsers allow users to navigate through Web pages by using
the browser’s Back, Forward, and Home buttons, you cannot control the
structure of the application the same way you can in a window-based interface.

Differences between Window- and Web-Based Applications

Chapter 2 WebEnterprise and HTML 45

An application designed for a window-based user interface typically uses events to
provide processing based on the end user’s actions, and state information to track a
single user’s interactions with the application. And, with a window-based user
interface, the application controls the exact order in which the windows are
presented to the end user.

Unfortunately, the differences between window- and Web-based applications
make it impossible for you to use exactly the same code for your window-based
user interface as for your Web-based user interface. For example, a Display method
designed for a window that performs data validation within an event loop cannot
be used with a Web page.

However, by designing your application appropriately, you can share most of your
user interface code between the two user interfaces. The following sections provide
background information about the differences between the window- and
Web-based user interfaces, and describe how to modify your iPlanet UDS
application to share code between them.

Performing Data Validation
and Other Window Processing
An iPlanet UDS window uses events to trigger data validation. As the end user
moves from one field to another on a window, entering and changing data, the
Display method is active, and each event can trigger data validation. By using an
event loop to handle the window events, the application can perform data
validation on a field-by-field basis.

When an error is detected in a window, the application displays an error message
to the end user and prevents the user from leaving the field that has the error.

Submit button for Web pages A Web page, on the other hand, does not interact
with the application until the end user clicks the Submit button. As the end user
moves from one field to another on the Web form, entering and changing data,
there is no way for the application to detect movement or changes. When the end
user clicks the Submit button, the completed Web form is sent to the application,
which must then perform data validation on the form as a whole.

When an error is detected on a Web form (after the Submit button is clicked), the
application displays an error Web page to the end user. The end user can then go
“back” to the Web form, correct the error, and then click the Submit button again.

Differences between Window- and Web-Based Applications

46 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The WindowConverter class (described in the iPlanet UDS online Help) allows you
to convert the visual appearance of an existing iPlanet UDS window into a Web
page. However, because the Display method for a window is based on events, you
cannot use the existing window’s Display method to provide processing for a Web
page. Instead, the page builder method for your Web page needs to provide the
equivalent processing.

Sharing code between window and Web page Although you cannot use the
same method to handle processing for both the window and the Web page, you can
share your window initialization, data validation, and operation code between
them.

To use the window initialization, data validation, and operation code in your
Display method for the corresponding Web page, you must modify your original
Display method. Rather than including all initialization, data validation, and
operation code within the Display method itself, you must create independent
initialization, validation, and operation methods that both the Display method and
the page builder service can call.

After you create your independent methods, you can streamline your original
Display method. Your new version of the Display method can start by invoking the
initialization methods, and then provide an event loop that invokes data validation
methods in response to events on the window.

After rewriting the Display method for the window, you can write the page builder
method for creating the corresponding Web page. The page builder method can
start by invoking the same initialization methods on the window object to load the
data into it. The method can then convert the window object into a Web page,
which will be displayed to the Web user.

After the Web user enters data onto the Web page, the page builder service can use
the LoadParameters method of the WindowConverter class to load the Web page
parameters (the data) back into the original iPlanet UDS window object. The page
builder service can then invoke the original data validation and processing
methods directly on the iPlanet UDS window object itself.

See “Sharing Window Code with the Web Page” on page 151 for an example of
sharing window code.

Differences between Window- and Web-Based Applications

Chapter 2 WebEnterprise and HTML 47

Keeping State Information
State information is information that must be maintained for a single user of the
application. For example, when the user of the SoftWear Catalog application places
his first order, a shopper ID is stored as state information for the duration of the
shopping session. All subsequent orders placed by the user are added to a single
shopping basket, which the user can view at any time.

In standard iPlanet UDS window-based applications, you can store state
information on both the client and the server. To store state information on the
client, you can use local objects. For example, in its standard iPlanet UDS window
version of the user interface, the SoftWear Catalog application uses the ShopperID
attribute of the ClientBroker class to store the ID of the shopper. To store state
information on the server, you can use transaction or session dialog duration
service objects.

When you are interacting with the Web, however, you must handle state
information much differently.

State information on the client Because there are no local iPlanet UDS variables
on a Web page, if you wish to maintain state information on the Web client, you
must store it in one of the following formats:

• a cookie

Using WebEnterprise’s cookie feature, you can construct text strings
containing session-specific information, and store the cookies on the Web client
when you return a Web page. You can then retrieve the cookie information for
use or updating during subsequent interactions with that user. Note, however,
that users and/or system administrators can disable or limit the use of cookies
on their machines.

• a hidden form element on the Web page

• a page parameter in the URLs included as links on the Web page

See “Using Cookies” on page 186 for further information on cookies and on
handling state on the client.

State information on the server Because requests for Web pages are separate
messages, the Web access service object cannot have transaction or session dialog
duration. When the Web access service object receives a request for a Web page
from the fortecgi program, it returns the Web page to fortecgi and the connection is
ended. Therefore, the Web access service object has message dialog duration.

Differences between Window- and Web-Based Applications

48 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

To enable you to handle state information on the server, WebEnterprise provides
session management features for managing state, identity, and security
information. The WebEnterprise session management features allow you to build
continuity into the application as users navigate, however randomly, through a
Web site. Session management also gives users the feeling that the application is
tailored to them individually.

Some examples of session management are:

• automatic user validation

• customized responses (returning different pages or data) based on a user’s
recent actions

• tracking a user’s progress through an application

• automatic timing out of sessions that have expired

• avoiding duplicate sessions

See “Session Management Features” on page 156 for complete information on
session management and on handling state on the server.

When the application requires an ongoing connection between the Web page and
the iPlanet UDS application, you can use a Java applet in your Web page that
communicates with an iPlanet UDS service object. However, doing so requires
using the iPlanet UDS Java interoperability feature. For more information, see
iPlanet UDS Java Interoperability Guide.

Structuring the User Interface
When you create a window-based user interface, you provide the commands and
buttons that let the end user move from one window to another. When a window is
closed, the end user cannot open it again unless you provide the mechanism for
him to do so.

Buttons for browsing downloaded pages With a Web-based user interface, you
have much less control over the order in which the end user views the Web pages.
Of course, you provide the hypertext links that allow the user to navigate forward
from one window to another. However, once a page has been downloaded, the end
user can go “back” to it at any time. The Back, Forward, and Home buttons in the
browser allow the user to move between the pages in an arbitrary manner. In
addition, bookmarks allow the end user to access the application from an arbitrary
page rather than starting with the designated entry point page. Bookmarks can
create a security problem if the end user bypasses the only page that requires a
password.

Differences between Window- and Web-Based Applications

Chapter 2 WebEnterprise and HTML 49

Unlike a window-based user interface, the Web displays a single page at a time. So,
although the end user has access to all pages that have been downloaded, he can
only display one window at a time. A window-based user interface, on the other
hand, can display any number of windows concurrently.

These differences between the window- and Web-based user interfaces make it
impossible for you to create a Web interface that is structured identically to your
window-based interface. When you are designing your Web pages, you should
keep these differences in mind. You might, for example, want to repeat information
on Web pages that would be unnecessary to repeat in any application that displays
multiple windows concurrently. Since you can use Enterprise’s session
management features to track the user’s progress through the application, you can
also provide special programming to handle some of the navigation problems.

Another difference to consider is that with a window-based user interface, your
application has continual access to the windows. iPlanet UDS applications use
events to keep concurrent windows synchronized. For example, if, using the
product detail page, the user purchased the last item in stock, you could post an
event to the product list page to remove that item from the list of available
products.

With a Web-based user interface, however, your application only has access to a
page at the time it is created or submitted. If the user makes a change to one page
that has an effect on another page that is already downloaded, you will not be able
to update the affected page. For example, once the product list page has been
downloaded, there is no way for you to update it. This difference might have an
effect on what kind of information you display on each Web page.

Again, all these differences between window-based and Web-based user interfaces
are simply due to the nature of the Web, and you should keep them in mind while
planning your Web pages.

NOTE If your application requires an ongoing connection between the Web
page and the iPlanet UDS application, you can include on the Web
page a Java applet that communicates with an iPlanet UDS service
object. A Java applet that is communicating with iPlanet UDS would
allow you to update the Web page dynamically. However, to add a
Java applet to an iPlanet UDS Web page, you must use the iPlanet
UDS Java interoperability features as described in the iPlanet UDS
Java Interoperability Guide.

Quick Tutorial: EasyWeb

50 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Quick Tutorial: EasyWeb
The EasyWeb tutorial demonstrates the fewest possible steps required to build an
iPlanet UDS Web application. It requires only a Web access service object (no page
factory service object), and uses only the HandleRequest method to return pages to
the end user (no page builder methods).

Before you begin this tutorial, make sure that:

• The HTTP library is installed in your development environment and has been
imported into your development repository.

• The fortecgi program is installed on the Web server (and you know its URL).
Refer to the section in the WebEnterprise Installation Guide that describes how to
install WebEnterprise on your web server.

➤ Create an entry point Web page for the EasyWeb application using HTML

The EasyWeb application’s entry point Web page provides the end user with
access to the iPlanet UDS application and is the first Web page that the user will
see. The entry point Web page for EasyWeb is a simple, standard HTML file, which
includes starting and ending HTML tags, text, and options. The page has one fill-in
field requesting “Your Name,” and it prompts the user to indicate which of three
pages to return.

1. Create and edit a file containing the following HTML. Alternatively, you can
import the text from the file
$YOUR_ROOT/forte/examples/easyweb/easyweb.htm (where
YOUR_ROOT is the directory on the Web server where you copied the
WebEnterprise directory /cdrom/web/platform/forte).

Quick Tutorial: EasyWeb

Chapter 2 WebEnterprise and HTML 51

2. In your copy of the file, change the line that begins with “<FORM action...” to
reflect the URL of the Web server on which fortecgi is installed. This line is
required in every Web page (HTML document) in your iPlanet UDS Web
application to identify the fortecgi program that returns the page. The portion
of the URL shown above as “www.forte.com” often takes the form
your_machine.your_domain.com. Note that when your Web server is running on
NT, you must replace “fortecgi” with “fortecgi.exe” in the URL.

3. Save the application’s entry point Web page file to the same location on your
Web server so that you will be able to access it from your Web browser. Save
the file as $YOUR_ROOT/forte/examples/easyweb/easyweb.htm.

➤ In iPlanet UDS, create a new Web project to define the Web access service object

1. In the Repository Workshop, choose Plan > New Project.

2. In the New Project dialog, name your new project “EasyWeb” and turn off the
Include Display and Include Database toggles. EasyWeb does not require the
Display and GenericDatabase libraries.

3. Click OK. The Project Workshop for the new project, EasyWeb, opens.

<HTML>
<HEAD>
<TITLE> Easy Page </TITLE>
</HEAD>
<BODY>
<FORM action="http://www.forte.com/cgi-forte/fortecgi">
<INPUT type=hidden Name=serviceName Value=EasyWeb>
Your Name: <INPUT type=text Name=userName></INPUT>

Which page?

<INPUT type=radio Name=pageName value=hello>Hello</INPUT>

<INPUT type=radio Name=pageName
value=goodbye>Goodbye</INPUT>

<INPUT type=radio Name=pageName value=good luck>Good
Luck</INPUT>

<INPUT type=submit>
</FORM>
</BODY>
</HTML>

Quick Tutorial: EasyWeb

52 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

➤ Include the iPlanet UDS HTTP library as a supplier plan for the new Web
project

1. In the Project Workshop for EasyWeb, choose File > Supplier Plans and include
the HTTP library.

The WebEnterprise HTML projects are not required for EasyWeb.

➤ In the EasyWeb project, create a new subclass of HTTPAccess

1. From the Project Workshop for EasyWeb, either click on the New Nonwindow
Class tool or choose Component > New > Nonwindow Class.

2. Name the new class “EasyAccess” and use HTTPAccess as its superclass.

➤ Create a Web access service object with the new EasyAccess class as its type

1. From the Project Workshop for EasyWeb, either click on the New Service
Object tool or choose Component > New > Service Object.

2. In the New Service Object Dialog, name this new service object
“EasyAccessService” and choose “TOOL class” as its base class.

3. In the Service Object Properties dialog, specify the EasyAccess class as the
service object’s class.

➤ Override the HandleRequest method in the EasyAccess class

In this step, you override the HandleRequest method inherited from the
HTTPAccess class to provide the code that handles each request for a Web page,
returning the requested page to the browser.

1. In the Repository Workshop, double-click the HTTP library. In the Project
Workshop for the HTTP library, open the HTTPAccess class and select the
HandleRequest method. Drag the HandleRequest method from the
HTTPAccess class and drop it on the EasyAccess class.

2. Open the HandleRequest method in the EasyAccess class.

The Method Workshop displays no text for this method because it was copied
from a library rather than a project. Do not change the method’s parameters or
return value.

3. Either type in the following method code or use the Import Text command in
the Method Workshop to import the text from the file
$FORTE_ROOT/install/examples/web/easyweb/easyhr.txt.

Quick Tutorial: EasyWeb

Chapter 2 WebEnterprise and HTML 53

response : HTTPResponse = new;

//Find the page name.
pageName : TextData = new;
pageName.SetValue(request.PageName);
returnData : TextData = new;

//Generate response pages.
if pageName.IsEqual(’hello’,IgnoreCase = TRUE) then
returnData.Concat(’<HTML>’);
returnData.Concat(’<HEAD><TITLE>Hello

Page</TITLE></HEAD>’);
returnData.Concat(’<BODY>’);
returnData.Concat(’Hello, ’).concat(request.
FindNameValue(’userName’));

returnData.Concat(’</BODY>’);
returnData.Concat(’</HTML>’);

elseif pageName.IsEqual(’goodbye’,IgnoreCase = TRUE) then
returnData.Concat(’<HTML>’);
returnData.Concat(’<HEAD><TITLE>Goodbye

Page</TITLE></HEAD>’);
returnData.Concat(’<BODY>’);

returnData.Concat(’Goodbye, ’).concat(request.
FindNameValue(’userName’));

returnData.Concat(’</BODY>’);
returnData.Concat(’</HTML>’);

elseif pageName.IsEqual(’good luck’,IgnoreCase = TRUE) then
returnData.Concat(’<HTML>’);
returnData.Concat(’<HEAD><TITLE>Good Luck

Page</TITLE></HEAD>’);
returnData.Concat(’<BODY>’);
returnData.Concat(’Good Luck, ’).Concat(request.
FindNameValue(’userName’));

returnData.Concat(’</BODY>’);
returnData.Concat(’</HTML>’);

else
returnData.Value = ’Unknown page "’;
returnData.Concat(pageName).Concat(’".’);

end if;

response.AssignResponse(returnData);
return response;

NOTE This method simply uses HTML tag syntax (starting and ending
tags for each HTML element). It creates three simple pages
(titled “Hello,” “Goodbye,” or “Good Luck”), and, based on the
input from the Web user, it returns one of the pages or an error.

Quick Tutorial: EasyWeb

54 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

➤ Create a start-up class and method to start the iPlanet UDS application

The purpose of the start-up class that you create in this step is to start the iPlanet
UDS application. When the iPlanet UDS application starts, it will register the Web
access service object with the fortecgi program, enabling Web users to access the
iPlanet UDS application.

1. In the Project Workshop for EasyWeb, create a new class called StartWeb. You
can either click the New Class icon or choose Component > New... >
Nonwindow Class. Name this new class “StartWeb” and use Object as the
superclass.

2. In the StartWeb class, create a method call “StartUp” with no parameters and
no return value. The Start-up method should contain the following code:

3. In the Project Workshop, choose File > Start Class Method and set the start
class for your project to “StartWeb” and the start method to “Start-up”.

➤ Register the Web access service object with the fortecgi program

In the Method Workshop, add code to the Start-up method for the StartWeb class
to register the Web access service object with the fortecgi program using the
EnableAccess method. Place the following code before the event loop:

event loop
when task.Shutdown do
exit;

end event;

EasyAccessService.EnableAccess(‘EasyWeb’,7777,
‘http://www.forte.com/cgi-forte/fortecgi’);

Quick Tutorial: EasyWeb

Chapter 2 WebEnterprise and HTML 55

Use the following values for the EnableAccess method’s parameters:

• “EasyWeb” for the first parameter

• the port number for the node where the EasyAccessService service object is
going to be running for the second parameter

The port number is used by the socket—be sure to pick a number that is not
already in use on your machine.

• the URL for your fortecgi executable for the third parameter

Replace the “www.forte.com” portion of the URL shown above with your Web
server’s name, typically in the form your_machine.your_domain.com. If you are
running on NT or VMS, replace “fortecgi” with “fortecgi.exe”.

➤ Test the application

1. In the Project Workshop, choose Run > Test Run to run the iPlanet UDS
application. Note that it may take about a minute for the Web access service
object to start.

2. Use your Web browser to open the application’s entry point Web page. Then,
enter your name, choose a salutation, and click on the Submit button.

3. You will see a new Web page, with your personalized greeting on it.

If you encounter any problems while trying to run this tutorial, see
“Troubleshooting Web Client Errors” on page 218 or “Troubleshooting Web
Administrator Errors” on page 222. Also, refer to the WebEnterprise Installation
Guide if you suspect the installation was not complete.

➤ Exit the application

1. Quit the Web browser.

2. In iPlanet UDS, choose Run > Cancel Run to exit the iPlanet UDS application.

Quick Tutorial: EasyWeb

56 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

57

Chapter 3

Setting Up a Web Application

This chapter describes the tasks involved and the alternatives you consider when
you start to design an iPlanet UDS Web application or user interface. The topics in
this chapter include:

• using the predefined iPlanet UDS Web projects and classes

• creating the iPlanet UDS services appropriate for your application

• starting and stopping Web access to an iPlanet UDS Web application

• making initial decisions about pages, such as session management
requirements

Summary of Steps for Creating an
iPlanet UDS Web Application

The following table summarizes the steps to build an iPlanet UDS Web application.
This list is the comprehensive set of steps required to build an initial iPlanet UDS
Web application.

The order of steps is only a suggested order. In addition, some steps are optional
depending upon the requirements of your application. As you become familiar
with WebEnterprise features, you will understand how you can deviate from the
order and which steps are optional under different circumstances.

Summary of Steps for Creating an iPlanet UDS Web Application

58 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

This manual describes these steps in detail, with several examples.

Summary of Steps for Building an iPlanet UDS Web Application

Responsible
Person Step Description See

Author and
Programmer

Design the application’s page content and navigation.

Determine whether to use the scanner service, page
builder service, or both.

Identify dynamic data and session management
requirements.

page 78

page 80

Programmer Define the Web access service object. page 64

Programmer If you will use a scanner service:

Define the scanner service object.

Layout HTML templates using an HTML editor.

Create the tag handler class(es) that implements the
TagHandlerIface interface. Use either:
a subclass of HTMLScanner
a custom class.

Define the HandleTag method.

Define the HandleCondition method.

Define the HandleTemplateRequest method.

If you used custom classes, choose either:
Static registration: Invoke RegisterTagHandler.
Dynamic library loading: Make TagHandlers into libraries
and create handler file.

page 72

page 108

page 112

page 113
page 114

page 117

page 123

page 111

page 123

Programmer If you will use a page builder service:

Define the page builder service object.

Write page builder methods.

Use WindowConverter class to take advantage of existing
iPlanet UDS windows.

Define the HandleRequest method.

page 74

page 138

page 140

page 143

Suggested Project Hierarchy

Chapter 3 Setting Up a Web Application 59

Suggested Project Hierarchy
When you build a new iPlanet UDS Web application, you use projects supplied by
WebEnterprise in addition to projects you have defined for your application. Every
iPlanet UDS Web application requires the HTTP library as a supplier plan. The
other three predefined WebEnterprise projects, HTML, HTMLWindow, and
HTMLSQL (the HTML projects) are optional supplier plans.

Because you can design an iPlanet UDS Web application using a variety of
approaches, there is no one required project hierarchy. Rather, some projects are
required supplier plans and some are required under certain circumstances.

All iPlanet UDS Web applications require a Web access project. Either a tag handler
project or a page builder project is also required, to generate Web pages.

Required supplier plans While the projects that an application uses vary
depending upon the application requirements, the following rules apply to all
iPlanet UDS Web applications:

• The Web access project (a custom subclass of HTTPAccess) must be a supplier
project to the main project of the iPlanet UDS application.

Programmer If you require session management:

Initialize Session Management attributes.

Assign session properties.

Subclass HTTPSession class.

Modify URL links for session management.

page 171

page 182

Programmer Design Administration Window and write initialization
code.

page 212

Programmer
and Author

Test and modify as desired. page 94

Programmer
and Author

Partition and deploy the application. page 187

Summary of Steps for Building an iPlanet UDS Web Application

Responsible
Person Step Description See

Suggested Project Hierarchy

60 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

• The HTTP library must be a supplier plan to the following projects, if the
projects are used: the page builder project, the Web access project, and the
project containing tag handler classes.

• The business services project(s) must be a supplier plan to the following
projects, if the projects are used: the page builder project and the tag handler
project.

These relationships are shown in Figure 3-1, which shows how the user-defined
projects and iPlanet UDS projects relate.

Figure 3-1 Suggested Project Hierarchy for an iPlanet UDS Web Application

➤ To include a project as a supplier plan

1. In the Project Workshop for the project requiring the supplier plan, choose File
> Supplier Plans.

2. Double-click the desired project to add it as a supplier plan.

WebWindows (Main)

HTMLWindow

HTML

HTMLSQL
optional projects

Page Builder Web Access
(and Scanner) Tag Handler

HTTP Library

Shared Windows

Business Services and
Application Logic

(all optional suppliers to
PageBuilder and TagHandler)

Suggested Project Hierarchy

Chapter 3 Setting Up a Web Application 61

An iPlanet UDS Web application must have at least one page builder project or tag
handler project, based on the following rules:

• If an application constructs all its pages using the scanner service, the page
builder project is not needed.

• If an application constructs all its pages using the page builder service, the tag
handler project is not needed.

While more applications may use the scanner service to generate pages, it is not
unreasonable for an application to use both services. In fact, either service can
invoke the other service to obtain a page or a portion of a page. So it is not
uncommon for an iPlanet UDS Web application to use both services, and therefore
require both projects.

When to Include the Optional HTML Projects
iPlanet UDS WebEnterprise provides three utility projects, called HTML,
HTMLWindow, and HTMLSQL, that provide a number of different classes for you
to use when generating pages. These HTML projects can be supplier plans to either
the page builder project or the tag handler project.

The HTML Project
Include the HTML project if you wish to use HTML classes, rather than typing
HTML directly in your code, to create Web pages. The HTML classes are directly
based on HTML format elements, so it is easy to learn the class names and
attributes, particularly if you are already familiar with HTML.

The benefits of using the HTML classes are described in the iPlanet UDS online
Help. For more information and a list of the classes, see the iPlanet UDS online
Help.

The HTMLWindow Project
Include the HTMLWindow project if you have existing iPlanet UDS windows that
you wish to convert into Web pages, or if you wish to use the Window Workshop
to create new windows to be converted to Web pages. Using the HTMLWindow
project allows you to:

• build Web pages by defining and converting iPlanet UDS windows

• share the underlying program logic that loads and manipulates the data in the
Web pages and iPlanet UDS windows

Suggested Project Hierarchy

62 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

You use the WindowConverter class in the HTMLWindow project to convert the
layout of an iPlanet UDS window to a Web page. Because both the window layout
and program logic can be shared by the Web and the iPlanet UDS applications,
these windows can be thought of as “shared windows.”

Only include the HTMLWindow project if you will use it. Because HTMLWindow
includes the Display library as a supplier plan, you incur additional overhead
when you include the HTMLWindow project.

For more information on using the HTMLWindow project, refer to the iPlanet UDS
online Help. For more information on using the WindowConverter class, refer to
“Adapting iPlanet UDS Windows with WindowConverter” on page 146.

The HTMLSQL Project
Include the HTMLSQL project if you would like to embed in a Web page the
results of queries to a relational database. The SQLConverter class in the
HTMLSQL project allows you to display results of stored or ad hoc queries on a
Web page.

Only include the HTMLSQL project if you will use it. Because HTMLSQL includes
the GenericDBMS library as a supplier plan, you incur additional overhead when
you include HTMLSQL. You need not necessarily include HTMLSQL in order to
interact with a database, because your existing iPlanet UDS application may
already adequately define all database interactions.

See the iPlanet UDS online Help for an explanation of using the SQLConverter
class to include database data on a Web page.

Project Structure for the SoftWear Application
If you are adding Web access to an existing iPlanet UDS application, you will
create some new projects and modify the existing client application somewhat. The
SoftWear application demonstrates this; the two projects WWWCatalogWindows
and WWWCatalog represent the “existing” iPlanet UDS application with no Web

NOTE Due to fundamental differences in the interfaces, you cannot directly
convert all the layout features and logic of an iPlanet UDS window
to a Web page—some additional coding is required.

Suggested Project Hierarchy

Chapter 3 Setting Up a Web Application 63

interface (the WWW prefixes of the names are simply to differentiate the projects
when you import them for your use). The WWWCatalog project contains the
CatalogService service object, with which the WWWAccessService service object
communicates on behalf of Web clients.

Figure 3-2 shows the project names used by the SoftWear example (along with the
.pex files used to import the projects).

Figure 3-2 Project Hierarchy for the SoftWear Application

Also note that two user-defined projects are suppliers to the page builder project:
WWWSharedWindows supplies windows to be used by WindowConverter and
WWWCatalog supplies the business service object, which supplies data to the page
builder service object.

HTTP

HTMLWindow
HTML

WWWCatalogAccess
www4.pex

WWWCatalogWindows
www5.pex

WWWCatalogPageBuilder
www3.pex

WWWSharedWindows
www2.pex

WWWCatalog
www1.pex indicates a supplier project

User Defined Projects Forté Web Projects

Defining a Web Access Project and Service

64 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Defining a Web Access Project and Service
The Web access project is used to define the Web access service object, which is
required to add Web access to an iPlanet UDS application.

➤ To create a Web access project

1. Open a workspace that contains your existing iPlanet UDS Web application.

2. Create a new project, your Web access project, using the Repository Workshop.

3. Include the HTTP library as a supplier plan.

The HTTP library is a required supplier plan for every iPlanet UDS Web
application.

4. Create a subclass of HTTPAccess.

Do not change any of the class runtime properties.

Creating a Web Access Service Object
The role of the Web access service object is to accept and delegate Web requests
and to return Web responses. Whenever a Web access service object is enabled by
the EnableAccess method, it registers the following information with the fortecgi
program or the iPlanet UDS Web server plug-in:

• the service name by which the Web access service object is known

• the port number where the service object will listen for Web requests sent by
fortecgi or the plug-in

The fortecgi program maintains a file called fortecgi.dat with one row for each
currently registered Web access service object. The fortecgi and iPlanet UDS Web
server plug-ins use the fortecgi.dat file to route incoming browser requests to
the appropriate Web access service object.

Defining a Web Access Project and Service

Chapter 3 Setting Up a Web Application 65

➤ To define a Web access service object

1. Using the Project Workshop for the Web access project you created above,
create a new service object.

2. Check the TOOL class radio button and enter the new subclass of HTTPAccess
as the base class for the service object.

You can leave the dialog duration set to “Session.” In fact, due to the nature of
the HTTP protocol, all communications between the Web access service object
and the Web server are equivalent to message dialog duration, so it does not
matter what you set the dialog duration to.

The Web access service object cannot be replicated, so do not check either
Failover or Load Balancing.

In the SoftWear example the Web access service object is called
WWWAccessService.

3. Register the Service.

Every Web access service must register with the fortecgi program or the iPlanet
UDS Web Server Plug-in so that the Web access service can receive requests
from fortecgi or the plug-in. Registration can be automatic or manual (as
described in the section titled “Setup Options for fortecgi and iPlanet UDS
Plug-ins” on page 200.

Enabling the Web Access Service Object
The Web access service object must register with the fortecgi program to allow
Web clients to access the iPlanet UDS Web application. After the service object is
registered, fortecgi can send it Web requests.

NOTE In WebEnterprise, autoregistration requires the use of the fortecgi
program, even if your application will take advantage of the new
iPlanet UDS NSAPI plug-in. For more information, refer to
“Choosing between fortecgi and the iPlanet UDS NSAPI Plug-In” on
page 199.

Defining a Web Access Project and Service

66 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

EnableAccess method The Web access service object uses the EnableAccess
method of the HTTPAccess class to register with the fortecgi program, passing
fortecgi the following parameters:

• the service name: the name by which the Web access service object is known

• the port number: the port on which the service object will listen. You must
enter a port number; there is no default port

• the URL for the fortecgi with which the service object is registering

• an optional plug-in parameter, used if you are using an iPlanet UDS plug-in
rather than fortecgi

If this optional parameter is specified, then the fortecgi program is used only
for registration, and the specified iPlanet UDS plug-in is used for all other Web
server-to-iPlanet UDS communications.

When EnableAccess is invoked, the Web access service becomes available
immediately.

In the following example, a service object known as My Service will listen at port
1234, and is registering with a fortecgi at the URL http://www.forte.com:

This information is entered into the fortecgi data file (by default called fortecgi.dat)
for use by fortecgi. For more information on the EnableAccess method, refer to the
iPlanet UDS online Help.

Autoregistration and manual registration Autoregistration using fortecgi is the
simplest way to register a Web access service. You have other registration options,
including using manual registration with an iPlanet UDS Web Server Plug-in. For
more information about these registration options, refer to “Choosing between
fortecgi and the iPlanet UDS NSAPI Plug-In” on page 199.

You can invoke EnableAccess in two general ways, as described below.

self.EnableAccess(serviceName = ’MyService’,
 servicePort = 1234, URLForForteCGI = ’http://www.forte.com/’);

Defining a Web Access Project and Service

Chapter 3 Setting Up a Web Application 67

Using a Start Method to Enable Access
One way to enable access is to include the EnableAccess method in the designated
start method for your application. Then, when your iPlanet UDS application starts,
the service object is automatically registered and Web access enabled. You should
invoke EnableAccess very early in the start method, before the event loop.

Advantages and disadvantages The advantage to this approach is that it requires
essentially no extra coding and you know that Web access is enabled whenever the
iPlanet UDS application is running. This may be a good approach for when you are
initially building and testing a new iPlanet UDS Web application. The
disadvantage is that you cannot control Web client access independently from
iPlanet UDS client access—if the application is running, clients of both types can
use it.

If you use the start method to enable access, you can use either method of
registration. That is, you can invoke EnableAccess with two parameters (for
manual registration) or with three parameters (for autoregistration).

Using an Administration Window to Enable Access
You can use an administration window to explicitly enable and disable Web access.
This approach gives you more flexibility than using a Start method. In your iPlanet
UDS application, create a window class and define a window to use to enable and
disable access. This window is strictly an iPlanet UDS window —it is not a Web
page and Web clients never see it.

Over time you can modify the window to add other initialization tasks. For
additional information on other initialization tasks that might be performed in this
window, see “Initialization Tasks” on page 212.

Advantages and disadvantages This approach gives you more control over
when you enable and disable access; in particular, it allows you to enable Web
client access independently from iPlanet UDS client access.

The SoftWear application uses an administration window called Main Window to
perform a few simple tasks in addition to enabling and disabling access. Main
Window is shown in Figure 3-3.

CAUTION Invoking EnableAccess in the Init method can be somewhat
tricky; we recommend that you do not invoke EnableAccess in the
Init method for the HTTPAccess subclass, unless you are certain
you understand the implications of doing so.

Defining a Web Access Project and Service

68 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Figure 3-3 Example Administration Window

In fact, the Display method of the MainWindow class provides a number of
administrative functions. Since SoftWear is a demonstration application, the
Display method includes provisions for using different Web servers. If the Web
server is a non-secure server, it invokes EnableAccess using autoregistration; if
the Web server is secure, then it invokes EnableAccess assuming manual
registration. Note that in the latter case, instead of using the HTTP protocol, the
secure version of HTTP is invoked (HTTPS). The Display method also provides
support for either the fortecgi or iPlanet UDS NSAPI plug-in, as indicated by the
radio buttons in the administration window.

Also note that the label and function of one button changes from Enable Web to
Disable Web, depending on which method was last invoked.

Defining a Scanner Service Object

Chapter 3 Setting Up a Web Application 69

Disabling Web Access
To stop Web access to your iPlanet UDS application, you must de-register the Web
access service object by invoking the DisableAccess method on HTTPAccess
subclass.

For service objects that use autoregistration, the DisableAccess method
de-registers the Web access service object with the fortecgi program and removes
the service object from the fortecgi program’s list of active Web access service
objects.

For service objects that use manual registration, the DisableAccess method
should be invoked after the file fortecgi.dat is edited to delete the row for that
service object (see “Manual Registration” on page 202).

You typically disable the Web access service object just before the application or
partition shuts down.

self.DisableAccess();

Defining a Scanner Service Object
The scanner service object is an optional service object whose purpose is to
generate Web pages.

When the Web access service receives a page request (a URL), it first determines
whether the request is for a page or a template. It then directs all requests that use
the “templateName” parameter to the scanner service object (scanner for short) and
all requests that use the “pageName” parameter to the page builder service object.
When the request is for a template, the scanner uses the named template to
generate the requested page, and returns it to the Web access service object to
forward to the browser.

See “About the HTML Scanner Service” on page 102 for more information on the
scanner service object.

The scanner service object should always be created in the same project as your
Web access service object (see “Defining a Web Access Project and Service” on
page 64).

NOTE Depending upon your network configuration, the de-registration
process may take a minute or two.

Defining a Web Page Builder Project

70 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

➤ To create the scanner service object

1. Open the Project Workshop for your Web access project.

2. Create a subclass of the HTMLScanner class.

3. Create a service object based on this subclass.

Typically you will make this service object environment visible and message
dialog duration. If you wish, you can mark this service object as replicated for
load-balancing or failover.

4. Set default values for attributes of this service object.

You should set a value for the DocumentRoot attribute on your subclass of
HTMLScanner. This attribute specifies a base directory where the scanner
service object expects to find template files. For more information on this
attribute, see “The iPlanet UDS Document Root Directory” on page 210.

You only need to set the HandlerConfigFile attribute if you are using dynamic
loading to load one or more libraries that contain tag handler class(es). For
more information, see “The Handler File” on page 209.

Defining a Web Page Builder Project
The Web page builder project contains the page builder service object and the page
builder class, which defines one or more page building methods used to construct
Web pages for an iPlanet UDS Web application. The use of this project and the
page builder service is optional; you do not need it if all your pages are returned by
one or more scanner services.

If you use this project and the page builder service object, you can replicate the
page builder service object to improve performance for applications with many
concurrent users. Web access service objects cannot be replicated, but their primary
purpose is simply to pass Web requests and responses. Page builder service objects
do more intensive processing and can be replicated (see “Replicating Partitions” on
page 192).

For each Web page to be returned by the page builder service, you will write a page
building method.

Defining a Web Page Builder Project

Chapter 3 Setting Up a Web Application 71

➤ To create a Web page builder project

1. Choose the New Project... command in the Repository Workshop.

The New Project dialog appears.

2. Enter the name of the new project. A name that includes PageBuilder is
suggested.

The SoftWear example uses the name WWWCatalogPageBuilder for this
project.

3. Include optional Web projects as suppliers to page builder project.

See “When to Include the Optional HTML Projects” on page 61 for a
description of when you should include these projects.

4. Create a page builder class.

This class should inherit from Object. Make sure that the Distributed property
is set to allowed, as you will use this class to create the page builder service
object. A suggested name is PageBuilder or a name that ends with PageBuilder.

In the SoftWear example, this class is called CatalogPageBuilder.

Alternative ways to use the page builder class When used, the page builder
class is typically the base class for a Web page builder service object that generates
Web pages for the Web access service object. This approach has two benefits: your
code is more modular and you can load balance the page builder service object for
improved performance.

Strictly speaking, the page builder class is not required. One alternative is to write a
“long” HandleRequest method for the HTTPAccess subclass that returns all
possible Web pages. In this case, you need not even create a page builder class.

Another alternative is to use a page builder class but no page builder service object.
This page builder class would include several methods that construct individual
Web pages. While this approach is more modular than the previous alternative, it
does not offer potential performance gains that you can get by using a service
object, because you cannot load balance a class.

Defining a Web Page Builder Project

72 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Defining a Page Builder Service Object
The Web page builder service object builds specified Web pages on request from
the Web access service object and passes the pages back to that service object.

You need only define this service if you require it to assemble one or more pages
for your application. If your iPlanet UDS Web application will construct all its
pages using templates and scanner services, you do not need to define a page
builder service.

➤ To create a page builder service object

1. In the Project Workshop for your PageBuilder project, create a new Service
Object, whose base TOOL class is the new page builder class.

2. If you want to replicate this service object for load balancing or failover, set the
dialog duration to Message, and check the appropriate field under Replication
Options in the Service Object Properties dialog.

Unlike the Web access service object, the page builder service can be replicated.
You can replicate the page builder service for either load balancing or failover.
Load balancing is desirable if you anticipate a high number of concurrent Web
users. Failover is desirable if you are particularly concerned about availability
and reliability of your iPlanet UDS Web application. For more information see
“Replicating Partitions” on page 192.

In the SoftWear example this service object is called
CatalogPageBuilderService.

You must define methods for each page that you want to be built by this service
object. The recommended approach is to write one page builder method to
generate each Web page. For information on defining pages using a page builder,
see Chapter 6, “Creating Pages Using Page Builder Methods.”

Defining a Shared Windows Project

Chapter 3 Setting Up a Web Application 73

Defining a Shared Windows Project
You can add Web access to an existing iPlanet UDS application in which you have
already defined a number of user windows. The benefit of doing so is that you can
make these windows “dual-purpose”— that is, viewable by Web browser clients as
well as iPlanet UDS window clients. To achieve this, you create a shared windows
project, as described below.

The shared windows project contains windows defined in an iPlanet UDS
application that you also want to use as Web pages. The shared windows project
allows the iPlanet UDS and Web applications to share the appearance (design) of
the windows, as well as some of the underlying processing of the data in the
windows.

You do not need a shared windows project if you have no user windows defined in
your iPlanet UDS application that you would like to use in Web pages. However, if
you have any user windows (window classes) and you would like your Web
application pages to “mirror” these windows, then you should create this project.

➤ To create the shared windows project

1. Choose the New Project... command in the Repository Workshop.

The New Project dialog appears.

2. Enter the name of the shared windows project.

The SoftWear example names this project WWWSharedWindows.

3. Identify the iPlanet UDS user windows that you want to also appear in Web
pages and move these window classes to the shared windows project:

a. Open the Project Workshop for the main project and the new Shared
windows project.

b. Drag and drop each class that you wish to share to the new project.

c. Delete the classes from the main project.

4. Include the shared windows project in the main and page builder projects.

If you use a shared windows project, then you must include it as a supplier
plan to both the main project and to the Web page builder project.

5. Modify or write methods on the windows.

Defining a Shared Windows Project

74 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Writing Methods for Shared Windows
For each of the shared windows you must determine how much modification is
required to convert the iPlanet UDS window to a working Web page. Although the
iPlanet UDS windows and Web pages can share much of the layout and logic, you
will need to make some modifications to account for differences in functionality,
behavior, and user expectations typical for each environment.

Use WindowConverter to convert layout You use methods on the
WindowConverter class to convert iPlanet UDS windows or window elements to
Web pages and page elements. These methods, however, only convert the layout.
Then you must modify the underlying iPlanet UDS logic (using the iPlanet UDS
application’s business service object) to work for the Web interface. To see an
example of a converted window, see Figure 6-1 on page 141 and Figure 6-2 on
page 142.

For more information, refer to “Differences between Window- and Web-Based
Applications” on page 44, and “Sharing Window Code with the Web Page” on
page 151.

75

Chapter 4

Planning Web Pages

This chapter describes general issues regarding the construction of Web pages in
an iPlanet UDS Web application and contains the following topics:

• initial page design considerations

• choosing between the scanner service and the page builder service to generate
each page

• special types of pages

• embedding graphics and generating URLs

• error handling

• testing

Once you have decided which service to use to generate pages, refer to either
Chapter 5, “Creating Pages Using Templates” or to Chapter 6, “Creating Pages
Using Page Builder Methods.” Your application can use both types of services.

Roles of the Web Author and Web Programmer
Designing an attractive and useful Web application often requires the talents of
multiple persons— for example, a content provider to write HTML text, a
layout/graphic arts designer, and possibly a programmer to provide content from
external sources such as a database, stock feeds, and so on. In fact, to provide and
maintain Web pages that are both visually appealing and up-to-date usually
requires the ongoing contribution and cooperation of several persons.

The iPlanet UDS approach to building Web pages assumes that pages will include
content that is derived programmatically. To distinguish who performs which
steps in the following process, this manual uses the following terms and
definitions:

Roles of the Web Author and Web Programmer

76 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

author The person responsible for the static content of a page. The static content
includes the layout and design of a page, any text that does not change, along with
any embedded graphics.

programmer The person responsible for generating the dynamic content of a Web
page—that is, content that is generated using a query that may contain
user-entered criteria.

Designing an iPlanet UDS Web user interface that integrates with an existing
iPlanet UDS application can entail a fair amount of planning. This chapter
describes some tasks and considerations as you begin to design the Web interface.
Some of these tasks require coordination between the Web interface page author
and iPlanet UDS programmer.

Figure 4-1 Steps Involved in Building Web Pages

Design Web Site Page Content & Navigation

Define Web Access Service Object

Define Scanner Service Object Define Page Builder Service Object

Define HandleTemplateRequest Define HandleRequest

Use HTMLScanner
subclass for Tag Handler

Use custom classes
for Tag Handler

Implement HandleTag &
HandleCondition

Implement HandleTag &
HandleCondition

Use Static Registration
(RegisterTagHandler)

Use Dynamic Loading
Use Handler File

Deploy Handler
as Library

Implement Session Management

Define PageBuilder
methods

Roles of the Web Author and Web Programmer

Chapter 4 Planning Web Pages 77

Figure 4-1 shows a chart of specific steps involved and choices you must make
when planning and building an iPlanet UDS Web application. The following tasks
are just some that you should consider:

• design a rough layout of the page hierarchy (for example, from the entry page
to the pages where users query data)

• determine whether any portions of pages can be reused

• for each page, identify which dynamic data it should display

• for each page, identify which other pages it should link to

• identify which iPlanet UDS classes will provide the generated data

• identify which pages will be generated and returned by which service (a
HTML scanner service or a page builder service)

• if using a scanner service:

❍ choose whether to use custom classes or a subclass of HTMLScanner for
the tag handler

❍ identify variables to embed in the HTML pages to display the generated
data

• identify what state information may be required for a user of the interface

• determine the optimal location, directory structure, and naming standard to
use for the pages

• identify which pages require restricted access (a session)

Also see “Summary of Steps for Creating an iPlanet UDS Web Application” on
page 57 for a more comprehensive list of steps.

Initial Decisions About Pages

78 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Initial Decisions About Pages
As you start to plan an iPlanet UDS Web application, whether it is an entirely new
application or one based on an existing iPlanet UDS application, you face a number
of planning tasks and decisions.

A fundamental issue is how an end user navigates through an application.
Navigation design strategies for Web interfaces differ substantially from those for
iPlanet UDS client interfaces. From a user’s perspective, a Web interface is often
easier and more flexible to use; from a developer’s perspective, it differs in some
notable ways from an iPlanet UDS client window interface. If your application has
both types of interfaces, you must consider when both interfaces can use the same
approach, and when they will diverge due to the differences in the technology.

Designing iPlanet UDS client windows is described in other iPlanet UDS
documentation. This chapter describes some basic considerations for implementing
iPlanet UDS Web interfaces. However, it does not attempt to provide a
comprehensive discussion of designing a Web application. For example, should
you design short, simple Web pages, or longer multi-part Web pages, and what
links should you embed on a given page to suggest navigation paths.

Static and Dynamic Web Pages
In an iPlanet UDS Web application, every Web page can be categorized as either a
static or a dynamic Web page. Many applications consist of both types of pages,
and how you design your application depends upon what types of pages you must
include.

Static Web pages Static pages have a fixed content that does not change at
runtime. The page’s exact and complete content is known when the page is defined
by its author. An example is a press release or announcement. Another example is
the entry point page for the SoftWear application, shown in Figure 4-2 on page 84;
it is the starting point for Web clients of the SoftWear application.

Dynamic Web pages Dynamic pages are pages whose entire or partial content is
generated at runtime, when the page is constructed. In addition, the exact content
may be a result of the Web user’s particular criteria. A typical example is a Web
page that is returned as a result of a search: for example, for all items out of stock or
for all surnames beginning with “ST.” Often dynamic pages can provide users the
exact information desired more directly than static pages.

Initial Decisions About Pages

Chapter 4 Planning Web Pages 79

Both the page builder service and the scanner service can generate dynamic Web
pages. Both services use the parameter values in the HTTPRequest object to
construct the requested Web page. For example, in the SoftWear application, both
the BuildProdPage and AddToBag methods use the product code to identify which
product to display or add:

Your iPlanet UDS Web interface can build URLs to use as links that pass
parameters in the HTTPRequest object and specify which pages, with which
values, the user is requesting. In turn, the scanner or page builder service uses the
parameter values to construct the actual page requested.

Using the iPlanet UDS HTML Projects
to Create Pages
iPlanet UDS provides three optional projects, called the HTML projects, to help
you construct Web pages in your TOOL code. You can use these projects with
templates or page builder methods, although you are more likely to use them in
page builder methods.

detail : ProductDetail = CatalogService.GetProductDetail
 (request.FindNameValue(’Code’).value);

HTML Project Description See

HTML Provides classes that correspond directly to
HTML elements. You set the class’s attribute
values to specify the element’s attribute values.

iPlanet UDS
online Help

HTMLWindow Provides a class that allows you to convert an
iPlanet UDS window into an HTML document
(that is, a Web page).

NOTE: Not all widgets are converted. See the
iPlanet UDS online Help.

iPlanet UDS
online Help

HTMLSQL Provides a class that allows you to create a table
on the Web page from a SQL query.

iPlanet UDS
online Help

Initial Decisions About Pages

80 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

If you use the HTML projects, iPlanet UDS provides syntax checking for the TOOL
code. You can use the iPlanet UDS Window Workshop to design a new Web page,
take advantage of its visual layout tools, and then convert the window into a Web
page. Or you can convert an existing iPlanet UDS client window into a Web page.

Determining which Services will Provide Pages
All pages returned by an iPlanet UDS Web application are generated by either a
scanner service or a page builder service. An iPlanet UDS Web application must
have at least one scanner or page builder service; a more complex application
might have multiple services or a combination of both.

In many ways these two services are parallel: both services generate Web pages
(HTML documents). The scanner service uses documents called templates to
generate Web pages, and is called by the HandleTemplateRequest method. The
page builder uses TOOL code (page builder methods) to generate Web pages, and
is called by the HandleRequest method. Which service and method are invoked
depends upon whether the URL contains the string “pageName” or
“templateName.”

When you design and build an iPlanet UDS Web application, you must decide
whether to use a scanner service, a page builder service, or some combination of
both, to return pages to the Web browser. You should consider a number of factors,
described in this section.

Whether you use a page builder service or a scanner service to return pages, you
can replicate either type of service for purposes of load balancing or failover.

Using a scanner If you are designing a new application, you may find it easier to
design pages using iPlanet UDS templates along with one or more scanner
services. Some of the advantages of using templates follow:

• Web page designers can use familiar tools to create Web browser user
interfaces.

• You can use the WYSIWYG (what you see is what you get) features of an
HTML editor to design the page (layout, font, tables, and so on).

• You can use other features of the HTML editor package to manage your HTML
files.

• You can view the final appearance of your Web page without running iPlanet
UDS.

Initial Decisions About Pages

Chapter 4 Planning Web Pages 81

• You can change the text of an underlying HTML template and the changes are
picked up in real time—you need not shut down or restart your application.
You simply edit the template and save the newer template file in the location
where the scanner service expects to find it.

Note that you do need to write iPlanet UDS code when using templates, but you do
not use code to generate the entire page—just the dynamic portion of the page.

Using a page builder When you use a page builder service (or page builder
methods without a page builder service) then you actually construct each Web
page using TOOL code based on the HTML classes. Specifically, you use the
method workshop to write a page builder method to generate each distinct page.
You do not use an HTML editor, so you do not get the WYSIWYG advantages.
And, you use TOOL code to generate the entire page, including static text portions
as well as dynamic data.

If you are adding Web access to an existing iPlanet UDS application, you can
convert existing windows (defined as iPlanet UDS window classes) to Web pages.
You can embed these converted windows into templates to be used by a scanner
service, or you can use the converted windows with a page builder service.

When to define which method Depending upon how the pages in your iPlanet
UDS Web interface are generated, you will need to define the HandleRequest
method, the HandleTemplateRequest method, or both. You define these methods
to provide the appropriate handling for each of the unique pages in your
application.

A URL that requests a page from a scanner service identifies the page using a
“templateName” parameter. Then the Web access service automatically forwards
the browser’s request to the appropriate scanner service. A URL that requests a
page from a page builder service identifies the page using a “pageName”
parameter; the Web access service automatically forwards the browser’s request to
the appropriate page builder service.

• You must define a HandleRequest method in your subclass of HTTPAccess if
you have any pages that are generated by a page builder service object.

If the URL has a PageName parameter, it is a page builder request, and the Web
access service object invokes the HandleRequest method. Code Example 4-1
shows a URL that requests the AddUser page from the page builder service:

Code Example 4-1 URL that Requests a Page from a Page Builder Service

http://www.forte.com/cgi-forte/fortecgi?serviceName=fortedemo
&pageName=AddUser&userName=Ann+Jones&userID=1

Initial Decisions About Pages

82 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

• You must define a HandleTemplateRequest in your subclass of HTTPAccess if
you have any pages that are generated from iPlanet UDS HTML templates.

If the URL has a TemplateName parameter, it is a template request, and the
Web access service object invokes the HandleTemplateRequest method. Code
Example 4-2 shows a URL that requests the AddUsr template from the scanner
service:

In this URL, the template name Addusr.htm is preceded by its path, which is
relative to the DocumentRoot specified for the scanner service object.

For more information on overriding these two methods, refer to “Defining the
HandleTemplateRequest Method” on page 111 and “Defining the HandleRequest
Method” on page 143.

Identifying Session Management Requirements
The WebEnterprise session management features provide mechanisms for
controlling access to individual pages or groups of pages in a Web application, for
creating sessions for individual Web browser interactions, and for maintaining
state information for individual sessions. If your application contains any sensitive
information or should be restricted in access in any way, then you will probably
want to use the session management features, which are described in detail in
Chapter 7, “Using Session Management.”

Using session management with static pages If you use session management
and your application has any static pages, those pages must be located along with
the dynamic pages—this location is determined by the attribute DocumentRoot (on
your subclass of HTML Scanner). This location allows the scanner service object to
return the static pages with session management implemented. This is the one
circumstance in which you would use an iPlanet UDS service object to return a
static page.

Code Example 4-2 URL that Requests a Page from a Scanner Service

http://www.forte.com/cgi-forte/fortecgi?serviceName=fortedemo
&templateName=AccountMaint/Addusr.htm&userName=Ann+Jones&userID=1

Special Purpose Pages

Chapter 4 Planning Web Pages 83

If a given static Web page does not require session management, you do not need
to use an iPlanet UDS service to build or return the page, and you can simply store
the static page on the Web server. However, this applies only to static Web pages
that you want to be accessible to any Web user.

Page to create sessions If you use session management you should plan a page
that gathers information required to create a session. The location for this page is
automatically used by an application— users are automatically returned that page
if and when they need to create a new session. For more information about how to
use this page automatically when necessary, see “Setting the SessionCreationURL”
on page 172.

Special Purpose Pages
This section describes two types of pages that you might find useful in your iPlanet
UDS Web applications. These pages are:

• entry point page

• session creation page

Entry Point Page
Your application should include an attractive page for a starting point for users to
begin the program, and you should provide an easy way for Web users to access
this page. You might designate this page as a “main page” or a “home page,”
depending upon your Web application’s hierarchy of information. We use the term
entry point Web page to describe the first page your users will see when accessing
your application.

The entry point page for the SoftWear application is shown in Figure 4-2.

Special Purpose Pages

84 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Figure 4-2 Entry Point Web Page for the SoftWear Application

Getting to the entry point page To reach the entry point Web page, Web users
typically do one of the following:

• Enter a URL for the entry point page. This URL must be made known to your
users, so it should be relatively simple to type in, ideally without any
parameters.

• Use a hypertext link on another Web page to jump to the entry point page.

The link can appear on any Web page and can be a graphic (such as a push
button) or text (such highlighted text with a link containing the URL). See
“Using Links” on page 85 for how to define a URL.

Contents of the entry point page The entry point Web page contains one or
more links that the Web user selects to begin to use the iPlanet UDS Web
application. For example, the entry point page for the SoftWear example contains
one button that says “Let’s Shop!” A user who prefers to quit the application rather
than shop can simply enter a new URL or exit the Web browser.

Using Links

Chapter 4 Planning Web Pages 85

Entry point pages can be static Often a static page is sufficient for the entry point
page, because the structure of your iPlanet UDS Web application is less likely to
change than the data in it, and the first page might simply offer a few choices to the
Web user. If you use a static page, you need not use a service object to provide it;
instead, locate it with your application’s other static Web pages. The EasyWeb and
SoftWear examples both use static pages named homepage.htm that are stored on
the Web server.

Session Creation Page
If you use session management in your application, and you require any input data
from users in order to create a valid session (such as a user ID and password), then
you should define a page where users can enter this information. This page is
called a session creation page (or login page); it may be the same page as your entry
point page, it may be the next (expected) page that users would go to, or it might be
any page to which you can code a link. You can use a template for this page.

The links in your application should help the user get to the login page easily. You
can also set the SessionCreationURL attribute to the URL for this page. By setting
this attribute, users are automatically redirected to the login page if they attempt to
access a page for which they have inadequate permission (specifically, the page has
the property SESSION_REQUIRED and the user does not have a valid session).
The user then has the option of entering the information required to start a new
session.

For an example of setting this attribute, see “Setting the SessionCreationURL” on
page 172. For more information on the session management features, and how to
use them, see Chapter 7, “Using Session Management.”

Using Links
Web pages are characterized by the use of links that allow Web users to jump
quickly from page to page. To add links to a Web page, you embed the appropriate
URLs in the appropriate places in the Web page. You can add links to straight
HTML paragraphs or text using the HTML anchor markup tag <A>. You also add
links to HTML forms or pages that are converted from iPlanet UDS windows, as a
part of preparing the window for conversion (see “Using the WindowConverter
Class” on page 140).

Using Links

86 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Format of URLs used by WebEnterprise
A URL (universal resource locator) is a text string that can be considered an
address for a Web page. Typically Web users enter relatively simple URLs in order
to access a site or application; then the application generates more complicated
URLs that contain more specific information used to return subsequent pages to
the user.

A URL, therefore, can consist of several parts, each part used by a “player” in the
Web application (such as a Web server process or an iPlanet UDS service object),
which in turn passes on any remaining information to the next player. This
sequence and use of parts is shown in Figure 4-3.

Figure 4-3 Parts of a URL as Constructed and Parsed by Various Processes

Reading from left to right, the “numbered” parts of the URL are used as follows:

1 The Web protocol and Web Server Handled by DNS, identifies the protocol
(such as HTTP, HTTPS, or FTP) and a unique Web server on the Internet.

2 The interface on the specified Web server Handled by the Web server, directs
the request to the selected CGI or plug-in interface. These values are case-sensitive
on UNIX systems.

(The following parameters can appear in any order, but typically appear in this
order.)

3 The serviceName parameter Identifies the name of the Web access service.
This part is used by the interface (whether fortecgi or the iPlanet UDS NSAPI
plug-in). The fortecgi program or plug-in looks up the specified service name in the
fortecgi.dat file.

If the service name appears in the fortecgi.dat file, the Web access service object
is enabled and registered; fortecgi or fortensapi forwards the Web request (the
URL) to the named service.

If the service name does not appear in the file, then it is either unknown or not
currently enabled. In this case, fortecgi or fortensapi returns a Request Failure error
to the Web user with the message “Service not found.”

http://www.forte.com/cgi-forte/fortecgi?serviceName=fortedemo&pageName=AddUser&userName=Ann+Jones&userID=1

1
2 3

4
5

http://www.forte.com/cgi-forte/web.forte?serviceName=fortedemo&pageName=AddUser&userName=Ann+Jones&userID=1

Using Links

Chapter 4 Planning Web Pages 87

4 The pageName or templateName parameter Used by the Web access service
object, this parameter identifies which page or template is requested. This value is
required and, on UNIX systems, is case-sensitive.

Depending upon the value of part 4, the Web access service object passes the
current request to either the page builder service object or the scanner service
object.

5 Remaining parameters Used by the page builder or scanner service object in
order to build the exact Web page requested by the user.

The $$FORTE.ExecURL Variable
The WebEnterprise global variable $$FORTE.ExecURL specifies the path to your
Web server. You must use the $$FORTE.ExecURL variable in all links in your Web
application; see “Using the $$FORTE.ExecURL Variable in URLs” on page 183.

How $$FORTE.ExecURL is used WebEnterprise uses the value of
$$FORTE.ExecURL to expand all generated URLs (including links in generated
pages) to include the correct domain and host name for the web server, and the
location of either the fortecgi program or the Forte plug-in.

An example of this expansion follows. A URL embedded in a template might
appear as follows:

And the actual URL link would be expanded to the following:

<a href="$$FORTE.ExecURL?
ServiceName=ShopCartService&TemplateName=/Shopping/products.htm&
category=$$currCategory.ID" target="main">$$currCategory.Name

HTML file: frcontent.htm

<a href="http://www.forte.com/cgi-forte?
ServiceName=ShopCartService&TemplateName=/Shopping/products.htm&
category=$$currCategory.ID" target="main">$$currCategory.Name

Using Links

88 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

How $$FORTE.ExecURL is set The value for $$FORTE.ExecURL is set in one of
the following ways:

• If you use automatic registration for the Web access service object, the value is
derived from the EnableAccess method of HTTPAccess.

❍ If only the URLForForteCGI input parameter is specified, that value is
taken for $$FORTE.ExecURL.

❍ If the PluginURL input parameter is also specified, that value is used.

• If you use manual registration for the Web access service object, then you must
explicitly set the value using one of the following two methods:

❍ If you are using an iPlanet UDS plug-in, invoke SetPlugInURL method on
your HTMLScanner subclass.

❍ If you are not using an iPlanet UDS plug-in, invoke SetExecURL method
on your HTMLScanner subclass.

Constructing Links

➤ To add a link to a Web page

1. Choose or create the page on which you will include the link.

2. Include an HTML anchor element, with which you associate a URL.

3. In the URL, include the parameters that identify the service, page name, and
any page parameters to fully specify the page. You must also use (or substitute
if appropriate) the variable $$FORTE.ExecURL in the first portion of the URL.

(To see how this link, which is embedded in an ITERATE tag, appears on the
Web page, refer to Figure 5-2 on page 99; the left-hand frame contains three
product categories, each linking to its own page.)

<a href="$$FORTE.ExecURL?
ServiceName=ShopCartService;TemplateName=/Shopping/products.h
tm;
category=$$currCategory.ID"target="main">$$currCategory.Name<
/a></

HTML file: frcontent.htm

Using Links

Chapter 4 Planning Web Pages 89

Link example The following code shows the construction of dynamic links. It
constructs a definition list showing product names and short descriptions of each
product. The product name has an anchor, or link, to a more detailed page of
information for the product. The code shows how to build that link dynamically.

Because they are the same for all products, the serviceName, pageName, and
shopperID variables are appended to the anchor outside the “product” loop. Then
for each product, the anchor is completed by appending the unique code for each
product.

This code could also use the Encode method of the HTTPResponse class to ensure
that the URL does not contain any spaces or control characters. See “Constructing a
Result Set” on page 118 for an example of Encode.

linktd : TextData = self.CGIURL.Clone(deep=TRUE);
linktd.concat(’?serviceName=’).concat(SERVICE_NAME);
linktd.concat(’&pageName=prodDetail’);
linktd.concat(’&shopperid=’).concat(shopperID);
-- Build the basic page structure.
html : HTHtml = new;
head : HTHead = new;
body : HTBody = new;
head.Add(HTTitle(Text=’SoftWear Inc. :: Product List’));
html.Add(head);
. . .[continues]
-- Next, build a list of products. This code uses the
-- HTML list features (<DL>, <DT>, and <DD>).
dl : HTDl = new;
dt : HTDt;
dd : HTDd;
for p in CatalogService.GetProductList() do
 -- For each product, use its name as <DT>
 -- and its short description as <DD>.
 -- Also, put in the rest of the link needed
 -- to go to the ProdDetail page.
 dt = new;
 prodLink : TextData = new(value=linktd.value);
 prodLink.concat(’&Code=’).concat(p.Code);
 dt.Add(HTA(Text=p.Name, Href=prodLink.value));
 dl.Add(dt);
 dd = new;
 dd.Add(p.ShortDescription);
 dl.Add(dd);
end for;
body.Add(dl);

Project: WWWCatalogPageBuilder • Class: CatalogPageBuilder
• Method: BuildProdList

Using Images and Graphics

90 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Using Images and Graphics
Most Web pages include a variety of graphics to make them more useful as well as
appealing. You add graphics to a Web page just like any other HTML element. The
following code adds the company’s logo.

The entire CompanyLogo method follows:

In this example, the text “SoftWear Inc.” is specified as text to use when printing
the document or for display on browsers that disable graphics.

html : HTHtml = new;
head : HTHead = new;
body : HTBody = new;

head.Add(HTTitle(Text=’Softwear Inc. :: Product List’));
html.Add(head);

-- Build the content of page.
-- First, a image for the company logo.
body.Add(self.CompanyLogo());

Project: WWWCatalogPageBuilder • Class: CatalogPageBuilder
• Method: BuildProdList

-- Create a IMG element with its SRC set to
-- %LocImage%tinylogo.gif.

center : HTCenter = new;
img : HTImg = new;
img.Src = self.GetImageFile(’tinylogo.gif’);
img.Alt = ’SoftWear Inc.’;
center.Add(img);

-- Create a line separator to make it look better.
center.Add(HTHr());

return center;

Project: WWWCatalogPageBuilder • Class: CatalogPageBuilder • Method:
CompanyLogo

Error Handling

Chapter 4 Planning Web Pages 91

If you are returning binary data such as an image, you should use the
AssignBinaryResponse method instead of the AssignResponse method. The
AssignBinaryResponse method automatically sets the value of the ContentType
attribute to the value of the MIMEType parameter of the AssignBinaryResponse
method. Some typical settings for binary data include “image/gif,” “image/jpeg,”
and “image/tiff.”

Location of the source graphics For a discussion of where to store graphic
images and files that you use in Web pages, refer to “Graphic, Image, and Binary
Data Files” on page 211.

Error Handling
Web clients of iPlanet UDS applications are as likely to generate errors and
exceptions as are iPlanet UDS clients. As the application processes page requests
using the Web client’s input, it should also return helpful feedback to Web clients
when they enter inadequate information.

Your existing iPlanet UDS application most likely already includes exception
handling code that can be used or modified for your Web pages. For example, in
the SoftWear application a shopper must enter an address before checking out. The
method below checks that the address is complete. If information is missing, then
an informative error message is returned to the shopper.

-- Check required information.
-- Raise exception if name or address is missing.

if self.Name=NIL or self.Name=’’ or
 self.Address=NIL or self.Address=’’ or
 self.City=NIL or self.City=’’ or
 self.State=NIL or self.State=’’ or
 self.Zip=NIL or self.Zip=’’ then
 ex : GenericException = new;
 ex.SetWithParams(SP_ER_USER, ’%1 %2’,
 TextData(value=’Your personal information is
incomplete.’),
 TextData(value=’Please fill in name and address.’));
 ex.DetectingMethod = ’Order::CheckOrder’;
 ex.MethodLocation = 14;
 task.ErrorMgr.AddError(ex);
 raise ex;
end if;

Project: WWWCatalog • Class: Order • Method: ValidateOrder

Error Handling

92 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The Default Web Error Page
The predefined methods HandleRequest and HandleTemplateRequest include
exception handling for various user errors. If an error occurs, they return to the
Web user a page with the iPlanet UDS error and an icon that reflects the severity of
the error. An example of this page is shown in Figure 4-4.

Figure 4-4 Example of the Default Error Page

You can substitute your own default error page by adding code similar to the
following to the exception handler in your HandleRequest method:

Error Handling Icons
WebEnterprise contains standard icons that automatically appear on error pages
for certain types of iPlanet UDS errors. If an iPlanet UDS exception of a particular
type is raised, an HTML page is automatically generated that embeds the icon and
the iPlanet UDS error. See the example in Figure 4-4 on page 92.

. . . HandleRequest method ...
exception
when e: GenericException do
errorResponse : HTTPResponse = new;
-- Generate the error message page
-- Assign the Web page to errorResponse

return errorResponse;

Error Handling

Chapter 4 Planning Web Pages 93

The following table shows the icons and the iPlanet UDS exceptions to which they
map, in increasing levels of severity.

Icon Icon File iPlanet UDS Exception
Reason Code

Description

warning.gif SP_ER_WARNING
SP_ER_INFORMATION

A warning or a
minor warning. In
either case the
operation
completed.

user.gif SP_ER_USER An error in TOOL
code.

forte.gif SP_ER_ERROR An error in iPlanet
UDS code.

fatal.gif SP_ER_FATAL An error fatal to the
program, causing
iPlanet UDS to exit
the partition in
which the exception
was raised.

usage.gif (none) Generated by
fortecgi and
fortensapi, usually
in response to an
incomplete URL.

request.gif (none) Generated by
fortecgi and
fortensapi, indicates
a problem with the
request, such as an
unknown service
name or a service
that is unknown or
currently disabled.

runtime.gif (none) Generated by
fortecgi and
fortensapi, indicates
a runtime error.
Often due to a
socket error.

Testing a Web Application

94 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Testing a Web Application
The design of a Web application is typically an iterative process. You make
modifications and improvements to obtain your vision of the application. Like the
design, testing is iterative, particularly because thorough testing requires testing at
a variety of levels, from individual page layout and logic, to the coordination of
pages, testing session and state management, and load testing.

As you develop individual pages, you can view and test some changes. However,
you cannot see or test all pages and logic completely, until you run the page with
the iPlanet UDS Web access service object, scanner or page builder service objects,
and business services that are part of a deployed application. Only during such
testing can you actually see how the actual data will appear incorporated into the
page.

Initially you need not partition an application to test it. If you have fortecgi and a
Web server installed on your machine, you can test from either the Repository or
Project workshops.

➤ To test a Web application locally

1. In the Repository Workshop, select the project for your iPlanet UDS Web
application that contains the start class, and click on the Run icon.

or:

In the Project Workshop for the project that contains the start class, click on the
Run icon or select the Run command on the menu.

If you are using an administration window to enable access, then at this point
iPlanet UDS clients can access the application, but Web clients cannot.

If you are invoking EnableAccess in your start method, then Web clients can
also access the application.

2. If necessary, use the administration window to enable Web access.

Now Web clients can also access the iPlanet UDS application.

NOTE Depending upon your network configuration and traffic, it may
take a minute to enable access (and disable access).

Testing a Web Application

Chapter 4 Planning Web Pages 95

3. Use the Web browser to access the entry point page for the application.

4. Use the hypertext links to jump from page to page to test the flow of pages and
data.

If you are unable to exit the iPlanet UDS application, you can use the Cancel Run
command at any time to cancel execution. This command cancels the client
partition for the application. The remote partitions continue to run; use the Stop
Remote Partitions command to stop remote partitions.

You may also find additional helpful information in A Guide to the iPlanet UDS
Workshops.

Testing a Web Application

96 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

97

Chapter 5

Creating Pages Using Templates

In an iPlanet UDS Web application, all Web pages that are returned to a Web client
are generated either by a scanner service or by a page builder service. This chapter
describes how to use the scanner service to return Web pages to Web clients.

The first part of this chapter is an overview of the concepts related to using
templates, including iPlanet UDS tags, the scanner service object, tag handlers, and
registering tag handlers.

The remainder of the chapter describes how to use these features and contains the
following topics:

• designing templates and using iPlanet UDS tags

• writing tag handlers that call iPlanet UDS services to access the data required
by a given template

• registering or dynamically loading the tag handlers with the scanner service

• reference for the FORTE HTML tags

For information about using the page builder service to return Web pages,
refer to Chapter 6, “Creating Pages Using Page Builder Methods.”

About iPlanet UDS Templates
An iPlanet UDS HTML template is a particular type of HTML source file, a text file
that contains standard HTML and iPlanet UDS HTML tags. It differs from a regular
HTML file only in that it contains additional tags that must be handled by an
iPlanet UDS scanner service. An iPlanet UDS Web application might consist almost
entirely of server-parsed HTML templates. A new service, the scanner service,
described in the next section, performs the parsing.

About iPlanet UDS Templates

98 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

One benefit of HTML templates is that they allow different people to contribute to
the Web page process, each using their own tools in their area of expertise.
Specifically, page authors and iPlanet UDS programmers can coordinate to build
Web pages that draw on data that is obtained and managed by the iPlanet UDS
runtime system.

The author creates and modifies a template using a text editor or an HTML layout
editor such as Microsoft FrontPage. When designing the template, the author
includes special iPlanet UDS variables to represent content that will be provided by
the programmer. A template can result in an entire page that is returned to a Web
user, or a portion of a page, such as a frame or a running footer that is called by
multiple pages.

For example, the author might write and design general text about corporate
training classes, allowing space for a set of dates and locations. Then the
programmer would add in the iPlanet UDS tags and variables required to generate
the desired set of dates and locations, whenever the Web page is requested. Thus,
the page is made up of both static and dynamic contents. But the design of the page
remains under the control of the author.

Figure 5-1 shows how the author and programmer coordinate to produce the
template and iPlanet UDS code required to generate a dynamic Web page. First the
author uses the HTML editor to create an HTML template. The programmer must
add corresponding code in the iPlanet UDS application. At runtime, the template
and the iPlanet UDS application produce a Web page with generated data.

Figure 5-1 Relationship of Template and TOOL Method to Create a Web Page

HTML Editor

Forté Method Workshop

HTML Template

HandleTag method
+

Web Page

Page Author

Forté
Programmer

About iPlanet UDS Templates

Chapter 5 Creating Pages Using Templates 99

The next pages contain a simple example, taken from the iPlanet UDS sample
application ShopCart, that demonstrates the use of a template. In this example, the
template is for one of three frames in a Web page of the ShopCart application. The
final page is shown in Figure 5-2.

Figure 5-2 Final Web Page Showing Generated Data (List of Products)

The next pages show the following:

• the template (HTML file) for the lower right-hand frame, including the FORTE
tags (Figure 5-3)

• the TOOL code that handles the FORTE tags (in the text)

About iPlanet UDS Templates

100 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Figure 5-3 shows the template used to generate one frame in Figure 5-2. This
template file, products.htm in the ShopCart example, at runtime generates a table
of products.

Figure 5-3 Example HTML Template Showing FORTE Tags

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=iso-8859-1">

<meta name="GENERATOR" content="Microsoft FrontPage 2.0">

<title>Product Description</title>

<base target="main">

</head>

<body bgcolor="#FFFFFF">

<p>The category you have selected contains the following products</p>

<?Forte Execute CatalogHandler.GetProducts Resultset="ProductListRS">

<table border="1">

 <tr>

 <td>Product Name</td>

 <td>List Price< /td>
 <td>Add to shopping basket</td>
 </tr>
<?forte iterate prodrow ProductListRS.productList>

 <td>$$prodrow.Name</td>

 <td>$$prodrow.Price</td>

 <td><a

href="$$FORTE.ExecURL?ServiceName=ShopCartService&TemplateName=/Shopping

 src="/ShopCart/images/buynow.gif" border="0" width="84"
 height="45"></td>

 </tr>

<?/forte iterate prodrow></table>

<p>End of Product Listing. </p>

</body>

</html>

/dispcart.htm&;price=$$prodrow.URLPrice&;product=$$prodrow.URLName">
<img

<tr>

About iPlanet UDS Templates

Chapter 5 Creating Pages Using Templates 101

The template in Figure 5-3 uses two iPlanet UDS tags:

• FORTE EXECUTE, with a tag named CatalogHandler.GetProducts

The values for the variables $$prodrow.Name and $$prodrow.Price are
generated by the EXECUTE tag.

• FORTE ITERATE, with an iterator named prodrow

To respond to these tags, the iPlanet UDS programmer must write one or more Tag
Handlers in which he codes the HandleTag method to respond to these tags and, if
desired, generate the product data. A portion of a HandleTag method follows.

if Tag.Compare(’PlaceDirectedAd’,ignorecase=TRUE) = 0 then
. . .
elseif Tag.Compare(’GetCategories’,ignorecase = true) = 0 then
. . .
-- Handle ’GetProducts’ to display available products
-- for the Requested category.
elseif Tag.Compare(’GetProducts’,ignorecase=true) = 0 then
. . .
category : TextData = Request.FindNameValue(’category’);
products : Array of Product =

ShoppingService.GetProducts(category);

for rowNum in 1 to products.Items do
rset.Add(listname = ’productList’,
 row = rowNum,
 attributeName = ’Name’,
 value = products[rowNum].Name);

rset.Add(listname = ’productList’,
 row = rowNum,
 attributeName = ’ID’,
 value = products[rowNum].ID);

rset.Add(listname = ’productList’,
 row = rowNum,
 attributeName = ’Price’,
 value = products[rowNum].Price);

. . .
rset.Add(listname = ’productList’,
 row = rowNum,
 attributeName = ’URLPrice’,
 value =

Response.Encode(products[rowNum].Price.TextValue));
rset.Add(listname=’productList’,
 row = rowNum,
 attributeName = ’URLName’,
 value = Response.Encode(products[rowNum].Name));

end for;
end if;

Project: ShopCartClasses • Class: CatalogHandler • Method: HandleTag

About iPlanet UDS Templates

102 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The Web page that is generated by this HTML template and the HandleTag
method appears in Figure 5-2. This page is actually defined by three templates (we
have followed the right-hand frame only).

Note that every time the page is generated, it will pick up the current list of
products and prices (although in the ShopCart example, these do not change).

About the HTML Scanner Service
When the Web access service receives a request from a browser, it determines from
the URL itself whether the request is for a page or a template. The Web access
service directs all requests that use the “templateName” parameter to the scanner
service object (scanner for short) and all requests that use the “pageName”
parameter to the page builder service object. Thus, the scanner service and the page
builder service are comparable services, both called by the Web access service.

When the request is for a template, the scanner uses templates to generate the
appropriate Web page and returns the page to the Web access service object to
return to the originating Web browser. (The page builder uses page builder
methods to generate the appropriate Web pages for the Web access service to
return to the browser.)

The purpose of the scanner is to coordinate the assembly of the actual Web page
that is returned to the user. The scanner processes the named template, builds an
HTML stream, translates the iPlanet UDS HTML tags into runtime data (called
result sets) by executing each iPlanet UDS tag as it is encountered in the template,
and adds the result set data to the template's HTML stream (as specified using
iPlanet UDS variables) for runtime results.

Figure 5-4 shows the role of the scanner service object in the Web application.

Figure 5-4 Role of the Scanner Service Object

Web Access
Service Object

incoming
template
request

return
HTTPResponse

invoke
HandleTemplate

invoke
HandleTag

query or
update data

return assembled
Web page

Scanner
Service Object

Business
Service Object

return
data

return
result
sets

Tag
Handlers

About iPlanet UDS Templates

Chapter 5 Creating Pages Using Templates 103

When the scanner processes an iPlanet UDS HTML template, it encounters one or
more FORTE tags, such as FORTE EXECUTE getproducts or FORTE IF checksession.
The scanner processes each tag it encounters in the template, to assemble a Web
page. The scanner then produces an HTTPResponse object that contains the
complete Web page, and forwards the HTTPResponse object to the Web Access
service object to return to the Web browser.

To optimize performance, the scanner maintains compiled versions of the
templates in memory. It compiles the template the first time it is executed and
recompiles the template only if the scanner detects a change in the template. You
can revise a template and have the changes picked up immediately.

See “Defining a Scanner Service Object” on page 69 for instructions for creating a
scanner service object.

The iPlanet UDS HTML Tags
The iPlanet UDS HTML tags are a set of markup tags that can be embedded in
iPlanet UDS HTML templates. The iPlanet UDS programmer provides code for
each occurrence of an iPlanet UDS tag, to specify what processing and data are
required.

The iPlanet UDS HTML tags are summarized in the table below. Note that in this
manual the tags are referred to in abbreviated form (for example, the FORTE
EXECUTE tag) while the actual syntax requires a preceding question mark (as in
?FORTE EXECUTE tag_name).

For a full description of iPlanet UDS HTML tag syntax, see “Reference for iPlanet
UDS HTML Tags” on page 127.

iPlanet UDS Tag Tag Purpose

?FORTE EXECUTE Executes the specified tag. You must write the code for each
unique tag name in a HandleTag method.

?FORTE ITERATE
... ?/FORTE ITERATE

Performs a loop. Used to dynamically generate tables, lists, and
so on.

?FORTE IF
... ?/FORTE IF

Executed in a TRUE condition. You must write the code for each
unique condition tag name in a HandleCondition method.
Condition tags may be nested.

?FORTE ELSE Executed in a FALSE condition. This tag can only be used in an
IF condition block.

About iPlanet UDS Templates

104 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Tag Handlers
One responsibility of the iPlanet UDS programmer for an iPlanet UDS Web
application is to define and maintain one or more tag handler classes (or tag handlers).
These classes contain the methods that are invoked when a template encounters an
iPlanet UDS tag.

Tag handler classes use two methods to respond to iPlanet UDS tags: the
HandleTag method and the HandleCondition method. The method signatures for
these methods are predefined in the TagHandlerIface interface in the HTTP Project.
To create a tag handler, first you create a class to implement the TagHandlerIface
interface and then you define these methods to add code for each unique tag name.
For example, if a template contains the line <?FORTE EXECUTE getLastNames>,
then the programmer must ensure that the HandleTag method responds when
invoked with the tag name getLastNames.

You have a choice of which class(es) to use for tag handler(s). You may create one
or more tag handlers, depending upon the requirements of your application. You
can use any combination of the following:

• a subclass of the HTMLScanner class (that is, the base class of the scanner service
object)

• a custom class

While both approaches are possible, using one or more custom classes is generally
more practical for an application that has any number of developers, because it
reduces contention for checking out methods for revision.

?FORTE INCLUDE Invokes a different template inline.

?FORTE REDIRECT Redirects to a different template.

iPlanet UDS Tag Tag Purpose

About iPlanet UDS Templates

Chapter 5 Creating Pages Using Templates 105

Purpose of the HandleTag and HandleCondition
Methods
Regardless of the class you use as a tag handler, you must write code for each
unique tag name used in the iPlanet UDS templates. Specifically, you must define
the following methods if you use the following FORTE tags in a template:

Note that one HandleTag or HandleCondition method can contain code for a
number of different tag names—you need not write a separate method for each
unique tag name.

A HandleTag method can perform any or all of the following:

• process data input from the browser, map data to business objects, and invoke
business services

• invoke business services and generate a result set

• update session specific information for the current browser session

• generate an HTML stream and append it to the result page currently being
assembled

A HandleCondition method can perform any or all of the following:

• perform some sort of test and return TRUE or FALSE

• process input data (as above)

• generate an HTML stream and append it to the result page currently being
assembled

Tag parameters The FORTE EXECUTE tag has optional parameters that allow
you to pass additional information to the HandleTag method. You can specify one
or more parameters, each with a name and a value. See “FORTE EXECUTE Tag” on
page 128 for more information.

iPlanet UDS Tag Define This Method

FORTE EXECUTE tag_name
FORTE ITERATE tag_name

HandleTag

FORTE IF tag_name
FORTE ELSE

HandleCondition

About iPlanet UDS Templates

106 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Result Sets and iPlanet UDS Variables
You use the FORTE EXECUTE tag to generate data for display in a Web page, in
the form of a result set. A result set is a temporary collection of data elements; each
member of the result set is available for inclusion in a Web page. The value of using
result sets (instead of static data) is that the result set always uses the most current
data, keeping your Web page up to date. For example, a page showing training
classes would automatically display new classes as they are scheduled, no matter
whether the total list is 5 dates or 15.

To use a result set in a template, first you generate the result set in a HandleTag
method. As you generate each member of the result set you assign the member a
name. Then, you can refer to any member in a template, using an iPlanet UDS
variable.

Format of an iPlanet UDS variable An iPlanet UDS variable requires two names:
the name of the result set followed by a period and the name of the result set member,
preceded by the string “$$”. The resulting string is called an iPlanet UDS variable:

$$result-set-name.result-set-member-name

The following examples of iPlanet UDS variables are both from the result set
named currCategory; one uses the result set member ID and the other uses the
member Surname:

$$currCategory.ID
$$currCategory.Surname

A result set can take any “shape” and return any data, from a single value to a
complex set of values, such as a mix of scalars and arrays. See “Constructing a
Result Set” on page 118 for an example of naming and generating a result set.

The scope of a result set is the template in which it is created—the result set is
destroyed after the template is done executing. While you can use a result set in
multiple templates, in fact a new result set is created for each execution of the
template. There is one exception to this: a template that is included in another
template (using the FORTE INCLUDE tag) can refer to result sets that were
generated in the calling template.

About iPlanet UDS Templates

Chapter 5 Creating Pages Using Templates 107

Example
In the following example of an HTML template, a result set named currShopping is
produced by a FORTE EXECUTE tag named GetCartContents. The currShopping
result set contains several members (loginURL, numRows, and iterateList). The
member IterateList is actually a table whose rows are put in a display table by the
FORTE ITERATE tag.

<p>Here’s a list of all the products in your shopping cart.
<?forte execute GetCartContents resultset="currShopping"></p>

<form action="$$currShopping.loginURL" method="POST"
target="_top">
 <input type="hidden" name="numItemRows"
 value="$$currShopping.numRows"><input type="hidden"
 name="ServiceName" value="PaymentService"><input
 type="hidden" name="TemplateName"
value="Payment/secinfo.htm"><p> </p>
 <table border="1" cellpadding="2">
 <tr>
 <td>Item Name</td>
 <td>Quantity</td>
 <td>Price</td>
 </tr>
<?forte iterate curritem currShopping.iterateList><tr>
 <td>$$currItem.Name</td>
 <td><input type="text" size="20"
 name="$$currItem.RowNum"
value="$$currItem.quantity"></td>
 <td>$$currItem.Price</td>
 </tr>
<?/forte iterate curritem><tr>
 <td> </td>
 <td><table border="0">
 <tr>
 <td>Total</td>
 </tr>
 </table>
 </td>
 <td><table border="0">
 <tr>
 <td>$$currShopping.Total</td>
 </tr>
 </table>
 </td>
 </tr>
 </table>

HTML File: shopping/dispcart.htm

Summary of Steps for Using Templates

108 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Summary of Steps for Using Templates
The remainder of this chapter describes how to use templates and scanner service
objects to return Web pages. These steps are summarized in Figure 5-5.

Figure 5-5 Implementing Templates for Use with Scanner Service Objects

Designing a Template with iPlanet UDS Tags
This section describes how to use a third party HTML editor software package to
define and layout Web pages. Each page corresponds to one HTML file. An HTML
file that includes iPlanet UDS HTML tags is called an iPlanet UDS template.

➤ To design a dynamic page using an iPlanet UDS HTML template

1. Open an HTML or file editor and create a new Web page (HTML file).

You can use a commercial HTML editor (such as Sausage Software’s HotDog,
SoftQuad’s HotMetal, and others) to edit and format a Web page that uses
FORTE tags. You can also use a simple file editor, such as VI or emacs. If you
use a commercial HTML editor, see “Using HTML Editors” below.

2. Add and format all the static text that you want on the page.

3. Add iPlanet UDS HTML tags as needed. (See “Putting iPlanet UDS Tags in a
Template” on page 110.)

Define Scanner Service Object

Define HandleTemplateRequest

Use HTMLScanner
subclass for Tag Handler

Use custom classes
for Tag Handler

Implement HandleTag &
HandleCondition

Implement HandleTag &
HandleCondition

Use Static Registration
(RegisterTagHandler)

Use Dynamic Loading
Use Handler File

Deploy Handler
as Library

Designing a Template with iPlanet UDS Tags

Chapter 5 Creating Pages Using Templates 109

4. Add iPlanet UDS variables that will cause iPlanet UDS to substitute live data
when the page is generated. (Before you can refer to an iPlanet UDS variable,
you must use a FORTE EXECUTE tag that will generate the result set on which
the variable is based.)

5. Add the graphics for the page.

You can include graphics of many types on a Web page that is generated by the
page builder service or the scanner service. These graphics can be stored and
maintained on either the Web server or the iPlanet UDS server. See “Graphic,
Image, and Binary Data Files” on page 211 for a discussion of how to reference
the files in templates and pages, and the advantages of using different
locations.

6. For future reference, make a note of which scanner object (if you have more
than one) will be responsible for returning this template.

Using HTML Editors
Many HTML editors support two modes of editing and viewing an HTML file. You
can usually switch quickly between these two modes in any HTML editor,
although the menu or button name may vary by editor.

• In WYSIWYG mode (“what you see is what you get”) the page you are
working on appears essentially the same as the page the end user will see. You
see few, if any, HTML tags or markup.

• In HTML source mode the page you are working on appears very different
from how it will appear when viewed by a user. You can see all the HTML tags
(such as <p>, <h1>, and so on).

Figure 5-3 on page 100 shows the HTML source file for the template in
Figure 5-2; you would edit this file if you were working in HTML source mode.

Using source mode to enter tags You should generally use source mode to enter
or modify FORTE tags. (This is essentially the same as editing the HTML file using
a file or text editor, which is also fine.)

Note on WYSIWYG mode If you prefer to use WYSIWYG mode to enter FORTE
tags, you will encounter various techniques for handling the FORTE tags,
depending on the editor. Describing the idiosyncrasies of these editors is beyond
the scope of this manual. While you can use WYSIWYG mode in many cases, you
should refer to iPlanet UDS Tech Note 11313 to obtain additional information
regarding your HTML editor.

Designing a Template with iPlanet UDS Tags

110 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Putting iPlanet UDS Tags in a Template
Adding and modifying tags To add FORTE tags to a template, you edit the
underlying HTML source (just as you would edit any text file). If you are using an
HTML editor, you may need to switch between WYSIWYG and source mode. You
can switch back to WYSIWYG mode to continue editing or to view the page in
progress.

You can place the FORTE EXECUTE and REDIRECT tags in HTML comments.
These two tags will not appear in the HTML template in WYSIWYG view, but will
invoke the tag handler. However, if you place any other iPlanet UDS tag in an
HTML comment it is treated as a comment, and will not invoke the tag handler.

You can add any tags to a template, as long as the tag handler for each tag is either
registered by the scanner that will handle the template, or the tag handler can be
dynamically loaded by the scanner. That is, the tags in a single template can be
handled by multiple tag handlers.

Order and placement of tags No iPlanet UDS tags are required, nor is the order
predetermined, with a few exceptions. The guidelines are described under each
individual tag description; see “Reference for iPlanet UDS HTML Tags” on
page 127.

If you want to add any data or HTML text to the current Web page, you must use a
FORTE EXECUTE tag to generate a result set.

The ITERATE tag must follow an EXECUTE tag, which generates a list result set.
You can nest EXECUTE tags within an ITERATE loop; you might do this if you are
generating a master-detail report. In this case, a FORTE EXECUTE tag would
appear between the starting ITERATE and ending ITERATE tags.

You might place all the EXECUTE tags at the beginning of the template for easy
reference, unless some EXECUTE tags are conditional, in which case you do not
want to incur the overhead of processing them when they are not required.

One-part or two-part tag names The format of the tag name depends upon
whether the tag handler class is a subclass of HTMLScanner or a custom class.

• If tag names are in two-part format, then a custom class is the tag handler. (See
“Using Custom Classes” on page 114 for more information.)

• If tag names are a simple name, then the tag handler is (must be) the subclass of
HTMLScanner that is the base class for the scanner service object. (See “Using
Subclasses of HTMLScanner” on page 113 for more information.)

Note that you can always use a two-part tag name, as in tag_handler_class.tag_name.

Defining the HandleTemplateRequest Method

Chapter 5 Creating Pages Using Templates 111

ITERATE tag The iPlanet UDS ITERATE tag is the most complex tag to use. For
specific instructions on using the iPlanet UDS ITERATE tag, refer to “Using
ITERATE to Add Tables and Lists” on page 120.

Tag reference Reference information for each iPlanet UDS tag appears in
“Reference for iPlanet UDS HTML Tags” on page 127.

Defining the HandleTemplateRequest Method
The purpose of the HandleTemplateRequest method is to pass a request for a Web
page based on a template to the appropriate scanner service object.

In this method, you essentially “assign” the handling of a uniquely named
template to a particular scanner service. When you make this “assignment,” you
must assure that:

• the template HTML file is available to the delegated scanner in its document
root directory (see “The iPlanet UDS Document Root Directory” on page 210)

• any tag handlers invoked from the template are registered with the scanner
service (see “Register or Load Tag Handlers” on page 123)

It is possible to forward all template requests to the same scanner service. For
example, if your application uses only one scanner service, then this method
should simply pass all requests to that scanner. Or if each Web access service object
only has one scanner service, then similarly, all requests for a given Web access
service are forwarded to its scanner (this is the case for ShopCart, shown below).

In more complex applications, the HandleTemplateRequest method should reflect
the design and number of scanner services. If one Web access service has multiple
scanner services, then the HandleTemplateRequest method should only forward
requests to a scanner service that expects that particular template.

➤ To define the HandleTemplateRequest method

1. Open the Class Workshop for your subclass of HTTPAccess.

2. Open the Method Workshop for the HandleTemplateRequest method.

3. Add code to define the HandleTemplateRequest method.

The code should invoke the HandleTemplate method, and delegate the request
processing to the appropriate scanner service object. The scanner that receives
the request (is called) must be able to process that template.

Creating TagHandlers

112 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Your HandleTemplateRequest method may be very short (as shown in the
following example), or it may contain a case statement if your application uses
multiple scanners.

Example
The following example passes a template request (contained in the request
parameter) to a specific scanner service for processing.

Creating TagHandlers
When you use templates to generate pages for a Web application, you must
implement the interface called TagHandlerIface (predefined by the HTTP project).
The TagHandlerIface interface allows you to define Web-enabling code and reuse
the code for multiple pages. When you implement this interface, you provide the
code for each unique tag name used in a template. The code for any specific tag
name may call one or more iPlanet UDS business services and return data to be
displayed on a Web page.

The TagHandlerIface interface defines signatures for two methods: HandleTag and
HandleCondition.

Any class in which you implement the TagHandlerIface is called a tag handler class.
You have a choice regarding which class(es) to use as tag handlers:

• You can implement the interface in one or more subclasses of HTMLScanner.

• You can create one or more custom classes to implement the interface.

Why you might choose a subclass or custom class is described in the following
sections. The ShopCart example demonstrates both approaches; the
CatalogHandler tag handler is a custom class, and the CartScanner tag handler is a
subclass of HTMLScanner.

method CartAccess.HandleTemplateRequest
(input request: HTTP.HTTPRequest): HTTP.HTTPResponse
begin
return CartScannerSO.HandleTemplate(request);
end method;

Project: Access • Class: CartAccess • Method: HandleTemplateRequest

Creating TagHandlers

Chapter 5 Creating Pages Using Templates 113

In the scanner, a single instance of the registered handler could be invoked from
multiple threads simultaneously. One implication of this is that if any state
information is stored in the handler, you should be aware that the state information
may be accessed by multiple threads simultaneously. This is similar to having
attributes of service objects when service objects may get called simultaneously by
multiple clients.

Using Subclasses of HTMLScanner
You can use a subclass of HTMLScanner for a tag handler. You should use the same
class that is the base class for the scanner service object that will encounter the tags
in templates. Because the HTMLScanner class is predefined by iPlanet UDS to
implement the TagHandlerIface interface, its subclasses also implement the
interface.

You might use a subclass of HTMLScanner for a tag handler for the following
reasons

• Your Web application is relatively small. In a large Web application, the
HandleTag method would get too large.

• Your application team is small. With a large team, there would be contention
among developers to check out the HTMLScanner subclass

If you implement the interface in a subclass of HTMLScanner, you do not need to
use static registration or dynamic loading.

If you use a subclass of HTMLScanner for a tag handler, then the tag names that you
use will have a simple format in HTML templates: tag_name. The tag name need
not be preceded by the name of the tag handler class (although it can be); the tag
handler class is assumed to be a subclass of HTMLScanner.

For an example, see the file shopping/dispcart.htm in the ShopCart example. This
template refers to a tag named GetCartContents defined in the method
CartScanner.HandleTag.

➤ To use a subclass of HTMLScanner for a tag handler class

1. Open the Project Workshop for the project that contains your scanner service
(this is the same project as your Web access project).

2. Create a new class that has HTMLScanner as its superclass.

3. Drag or copy the methods HandleTag and HandleCondition from the
TagHandlerIface interface (or from the HTMLScanner class) to the new class.

Creating TagHandlers

114 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

4. Provide code to define both methods. Make sure to provide code for each
unique iPlanet UDS tag name and condition.

See the following sections for information about coding the HandleTag and
HandleCondition methods.

Using Custom Classes
You can define one or more custom classes to implement the HandleTagIface
interface. If you use a custom class, the class can be a subclass of Object or any
other class. You might use a custom class for a tag handler for the following
reasons:

• to reuse tag handlers among multiple templates without building a single
monolithic method (this facilitates making the template and tag handlers
reusable across Web applications)

• to divide the Web application development among a team of developers

• to allow modifications to a Web application without bringing it down (using
dynamic library loading)

You can use more than one custom class as a tag handler class. For example, the
ShopCart example uses two custom classes: CatalogHandler and LoginHandler.

If you use a custom class for a tag handler, then the tag names that you use will
have a two-part format in HTML templates: handler_class.tag_name.

For an example, see the file shopping/frcontent.htm in the ShopCart example. This
template refers to a tag named CatalogHandler.GetCategories, defined in the
method CatalogHandler.HandleTag.

➤ To use a custom class for a tag handler class

1. Create a tag handler project specifically to contain your tag handler class(es).

2. Make the HTTP library a supplier plan to your new project.

3. Make any desired business services supplier plans to your new project.

4. In this project, create one or more custom classes to implement the
TagHandlerIface interface.

These custom class can use any class as a superclass.

For each class, use the Interfaces tab page of the Class Properties dialog, and
select the TagHandlerIface as the interface to implement.

Creating TagHandlers

Chapter 5 Creating Pages Using Templates 115

5. Drag or copy the methods HandleTag and HandleCondition from the
TagHandlerIface interface to the new class(es).

6. Add code for both methods, making sure that you provide code for each
unique iPlanet UDS tag name and condition.

See the next sections for more specific information and examples of defining
the HandleTag and HandleCondition methods.

Now you must choose to use either static registration or dynamic loading for
each tag handler class. For more information on making this decision, refer to
“Choosing Static Registration or Dynamic Loading” on page 124.

7. (To use static registration) Invoke the RegisterTagHandler method in an
application initialization method.

See “Using Static Registration” on page 124.

8. (To use dynamic library loading) Configure this project as a library.

Note that the supplier classes must also be configured as libraries. Often the
easiest way to do this is to add all the supplier libraries to the same library
distribution that contains this library.

You must deploy the library in the same environment where the Web
application is deployed.

Refer to A Guide to the iPlanet UDS Workshops for information about creating a
library, partitioning a library, and making the library distribution. Also refer to
the iPlanet UDS Programming Guide for more information about using
interfaces.

9. (For dynamic library loading only) Create a handler file for each scanner, or
determine which handler file can be shared by the current scanner. Set the
value of the HandlerFile attribute of the scanner service object to the name of
the file.

See “The Handler File” on page 209 for more information about this file.

In the ShopCart example, two classes in the ShopCartClasses project
implement the TagHandlerIFace interface: CatalogHandler and LoginHandler.

Creating TagHandlers

116 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Writing Tag Code
For each unique tag name associated with an iPlanet UDS tag that you embed in an
iPlanet UDS HTML template, you must provide corresponding tag code, in TOOL,
in a tag handler class. For example, if you use the tag FORTE EXECUTE getdepts,
then your HandleTag method must include code for the name “getdepts.”

You define tag code in either a HandleTag or a HandleCondition method. A
typical HandleTag method might contain code for several different FORTE
EXECUTE tags. You do not necessarily write one method for each unique tag
name. For an example, see the ShopCart example method
CatalogHandler.HandleTag.

Using input parameters from the EXECUTE tag The syntax of the EXECUTE tag
allows for an arbitrary number of parameters (in the form of name-value pairs) that
can be used to pass information to the tag handler. These parameters can take
information from the Web page to be passed to the HandleTag method that handles
that particular tag name.

Each parameter must be in the form of a name-value pair. The value must be
enclosed in a double-quoted string.

Example
For example, assume that the HTML tag looks like the following:

<?FORTE Execute ParamTestFn(firstParam="fooString",
secondParam = "100")>

Creating TagHandlers

Chapter 5 Creating Pages Using Templates 117

The corresponding code in the HandleTag method uses the GetParameter method
on the ParameterList class to retrieve the individual parameters. That code might
look like the following:

Defining output for a tag Often a tag is used, and defined, specifically to return
data that is generated based upon criteria entered by the Web user. In this case, you
write the tag code to return the data as a result set. A result set can return anything
from one single value to a complex set of values that might be thought of as a mix
of scalars and arrays. This process is described in the next section.

However, tag code can simply append pure text or a graphic (perhaps a logo) to an
HTML page under construction. You can append “raw HTML” or use any of the
HTML projects to directly append an HTML stream to the template.

Defining the HandleTag Method
You must add code to the HandleTag method to handle each unique tag name used
for a FORTE EXECUTE or FORTE ITERATE tag.

➤ To define a HandleTag method in a tag handler class

1. In your HandleTag or HandleCondition method, test for the name of the tag,
as in:

if Tag.Compare(source=’ParamTestFn’) = 0 then
-- Must cast the parameter to either IntegerData or TextData,
-- since GetParameter returns Object.

 -- Use the TextData
 myTextData : TextData =
 (TextData)Parameters.GetParameter(ParameterName=’firstParam’);
 -- Use myIntegerData
 myIntegerData : IntegerData =
 (IntegerData)Parameters.GetParameter(ParameterName=’secondParam’);

end if;

if Tag.Compare(’PlaceDirectedAd’,ignorecase=true) = 0 then
. . . -- processing for the PlaceDirectedAd tag
elseif Tag.Compare(’GetCategories’,ignorecase=true) = 0 then
. . . -- processing for the GetCategories tag
elseif Tag.Compare(’GetProducts’,ignorecase=true) = 0 then
. . . -- processing for the GetProducts tag

Project: ShopCartClasses • Class: CatalogHandler • Method: HandleTag

Creating TagHandlers

118 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

2. Add the appropriate processing code for each unique tag.

If you are coding a FORTE EXECUTE that returns a result set, then you must
build a result set. (A FORTE EXECUTE tag need not return a result set.)

Constructing a Result Set
For most FORTE EXECUTE tags you will construct a result set that contains data
that can be embedded in a Web page. (Note though, that a FORTE EXECUTE tag
need not return a result set.)

Each result set is represented by an instance of the ResultSet class. For more
information on this class, refer to iPlanet UDS.

➤ To build a result set in a HandleTag method

1. As needed, add “simple” members to the result set.

Use the variation of the Add method with the rsMember parameter, to specify
each member’s name and value. (See the iPlanet UDS online Help.)

2. As needed, add “list” members to the result set.

Use the variation of the Add method with the listName parameter, to specify
each member’s name and value. (See the iPlanet UDS online Help.)

You can add any number of either type of member in any order; a result set can
take any “shape.”

The following guidelines may help you create result sets:

• You do not need to instantiate a result set object; simply use the ResultSet
object passed as an input parameter to the HandleTag method.

• Although the iPlanet UDS tag in the HTML template specifies a result set
name, your TOOL code never specifies the actual result set name. Rather, your
TOOL code simply adds members to the result set by member name, as shown
below, but the result set name itself does not appear anywhere in your TOOL
code (except, perhaps, in comments).

Assume that the following iPlanet UDS tag is added to an HTML template file. It
calls the tag named CatalogHandler.GetProducts with the result set named
ProductListRS:

<?Forte Execute CatalogHandler.GetProducts Resultset="ProductListRS">

Creating TagHandlers

Chapter 5 Creating Pages Using Templates 119

To respond to this tag, the HandleTag method defined for CatalogHandler
constructs the ProductListRS result set, by adding the members “productList” (an
array):

. . .
-- Handle ’GetProducts’ to display available products
-- for the Requested category.
. . .
elseif Tag.Compare(’GetProducts’,ignorecase=true) = 0 then

-- Retrieve the category id, which should have been
-- a parameter riding in with incoming Request
category : TextData = Request.FindNameValue(’category’);

products : Array of Product =
ShoppingService.GetProducts(category);

for rowNum in 1 to products.Items do
rset.Add(listname = ’productList’,

row = rowNum,
attributeName = ’Name’,
value = products[rowNum].Name);

rset.Add(listname = ’productList’,
row = rowNum,
attributeName = ’ID’,
value = products[rowNum].ID);

rset.Add(listname = ’productList’,
row = rowNum,
attributeName = ’Price’,
value = products[rowNum].Price);

-- Note the following usage of the Encode() method:
-- any resultset members that
-- are intended to be used as URL parameters must
-- be encoded appropriately in case
-- they contain spaces, control chars, etc.
-- In the following 2 lines, Price contains
-- a period (.) and the product name may contain
-- spaces, so we encode them.

rset.Add(listname = ’productList’,
row = rowNum,
attributeName = ’URLPrice’,
value =

Response.Encode(products[rowNum].Price.TextValue));
rset.Add(listname=’productList’,

row = rowNum,
attributeName = ’URLName’,
value = Response.Encode(products[rowNum].Name));

end for;
end if;

Project: ShopCartClasses • Class: CatalogHandler • Method: HandleTag

Creating TagHandlers

120 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

This example uses the Encode method of the HTTPResponse class to ensure that all
members of the result set that might be used as URL parameters are encoded
appropriately. For example, because the URL cannot accept spaces or control
characters in the page parameters, we use encode on the result set member Price
(which contains periods) and on Name (which may contain spaces).

Using ITERATE to Add Tables and Lists
You use the FORTE ITERATE tag in HTML templates to display “repeating” data
generated dynamically. The FORTE ITERATE tag generates tables, menus, lists,
drop-down lists, list boxes, and so on, for any HTML construct—plain HTML, or
HTML lists, rows or tables.

The basic syntax for the ITERATE tag in an HTML template is:

<?FORTE ITERATE iterator_name result_set_list_member

The ITERATE tag uses an intermediate data storage construct, called an iterator,
that is demonstrated below.

A running example of this tag appears earlier in this chapter; see Figure 5-2 on
page 99, Figure 5-3 on page 100, and the sample HandleTag method following
Figure 5-3.

Instructional example The following example describes in detail how to use the
ITERATE tag.

➤ To place a dynamically generated table in a Web page

1. Place a FORTE EXECUTE tag in your template.

The FORTE EXECUTE tag names the result set that will contain a list type
member:

<?FORTE EXECUTE ATagHandler.AnyTagName RESULTSET="SetwithList">

You will use the tag name (AnyTagName) in the HandleTag method that
generates the result set. (See Step 3).

You will use the result set name (SetwithList) again in the template in the
FORTE ITERATE tag. (See Step 2.)

Creating TagHandlers

Chapter 5 Creating Pages Using Templates 121

2. Place a FORTE ITERATE tag in your template.

a. Lay out two rows of the table (a header row and the first data row). Set up
the column headers, formatting, text flow, borders and shading.

b. Enter a FORTE ITERATE tag before the second table row, and the /FORTE
ITERATE (end) tag after the end of the second row and before the end of
the table.

c. Enter variables in the format iterator_name.list_member_name to place data
from the iterator into the cells of the second row. The iterator then “clones”
the second row for each row in the result set.

The iterator name is only used within the ITERATE tag, as the prefix for each
element of the list.

3. Code the HandleTag method to generate a result set with a member that is a
list:

You use the variation of the Add method for List result set members (see the
iPlanet UDS online Help) to add each individual member to the result set.

Then, from this code, you use the values for two parameters (listName and
attributeName) in the FORTE ITERATE tag in the template. (See Step 2.)

<?FORTE ITERATE MyIteratorName SetwithList.ListXYZName>
Print: $$MyIteratorName.ScalarElementName
<?/FORTE ITERATE MyIteratorName>

if Tag.Compare(source=AnyTagName) = 0 then
someForteArray = someForteSO.GetArray();
for rowNum in 1 to someForteArray.Items do
rset.Add(listName=’ListXYZName’ ,
-- actual name of list in ITERATE tag

 row=rowNum,
-- row number of item in ITERATE loop
attributeName=’ScalarElementName’,
-- actual $$ member that ITERATE will print
value=someForteArray[rowNum].someForteTextData);
-- datavalue that corresponds to ScalarElementName

end for;

Creating TagHandlers

122 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

HTML Template HTML Source

HandleTag Method

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=iso-8859-1">

<meta name="GENERATOR" content="Microsoft FrontPage 2.0">

<title>Product Description</title>

<base target="main">

</head >

<body bgcolor="#FFFFFF">

<p>The category you have selected contains the following products</p>

<?Forte Execute CatalogHandler.GetProducts Resultset="ProductListRS">

<table border="1">

 <tr>

 <td>Product Name</td>

 <td>List Price< /td>
 <td>Add to shopping basket</td>
 </tr>
<?forte iterate prodrow ProductListRS.productList><tr>

 <td>$$prodrow.Name</td>

 <td>$$prodrow.Price</td>

 <td><a

href="$$FORTE.ExecURL?ServiceName=ShopCartService&TemplateName=/Shopping

 src="/ShopCart/images/buynow.gif" border="0" width="84"
 height="45"></td>

 </tr>

<?/forte iterate prodrow></table>

<p>End of Product Listing. </p>

</body>

</html>

/dispcart.htm&;price=$$prodrow.URLPrice&;product=$$prodrow.URLName">
<img

elseif Tag.Compare(’GetProducts’,ignorecase=true) = 0 then
. . .
category : TextData = Request.FindNameValue(’category’);
products : Array of Product = ShoppingService.GetProducts(category);

for rowNum in 1 to products.Items do
rset.Add(listname = ’productList’,
 row = rowNum,
 attributeName = ’Name’,
 value = products[rowNum].Name);
rset.Add(listname = ’productList’,
 row = rowNum,
 attributeName = ’ID’,
 value = products[rowNum].ID);
rset.Add(listname = ’productList’,
 row = rowNum,
 attributeName = ’Price’,
 value = products[rowNum].Price);
. . .
rset.Add(listname = ’productList’,
 row = rowNum,
 attributeName = ’URLPrice’,
 value = Response.Encode(products[rowNum].Price.TextValue));
rset.Add(listname=’productList’,
 row = rowNum,
 attributeName = ’URLName’,
 value = Response.Encode(products[rowNum].Name));
end for;
end if;

= iterator name

= tag name

= member name

KEY

Register or Load Tag Handlers

Chapter 5 Creating Pages Using Templates 123

Defining the HandleCondition Method
For each uniquely named FORTE IF tag used in your HTML templates, you must
handle the tag in a HandleCondition method.

The HandleCondition method returns a boolean result. This result determines
whether the HTML block following the FORTE IF tag is used (if the result
evaluates to TRUE) or if the HTML block following the optional FORTE ELSE tag is
used (if the result evaluates to FALSE).

Example
The following example handles a condition named Validate. This particular
condition returns TRUE if the login name and password associated with the
current request are valid, otherwise this condition returns FALSE.

Register or Load Tag Handlers
If you use custom classes for tag handlers, then you must either register those
classes or load them dynamically. Stated a different way, if any of your iPlanet
UDS tags is of the form FORTE EXECUTE tag_handler_class.tag_name, then you
must register that class.

MyHTMLScannerSO.RegisterHandler (taghandlerclass)

You can register the tag handler statically or dynamically load it.

if CondName.Compare(source=’Validate’,ignorecase=TRUE) = 0 then
 loginName : TextData = Request.FindNameValue(’login’);
 passWord : TextData = Request.FindNameValue(’password’);

 if loginName <> NIL and passWord <> NIL then
 if loginName.ActualSize <> 0 then
 (ShopSession)(Request.CurrentSession).UserName = loginName;
 (ShopSession)(Request.CurrentSession).PassWord = passWord;
 result = TRUE;
 end if;
 else return FALSE;
 end if;

end if

Project: ShopCartClasses • Class: LoginHandler • Method: HandleCondition

Register or Load Tag Handlers

124 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Choosing Static Registration or Dynamic
Loading
Static registration is somewhat simpler to use, and is suitable if you know, before
deploying your application, exactly which tag handler classes to register. However,
if you use static registration, you cannot register a new tag handler class nor
modify existing tag handlers while your Web application is running.

For critical applications requiring 24 x 7 up-time, tag handlers can be configured
into a library. Then, if the scanner does not find a requested class to be registered, it
attempts to dynamically load the class from a user-specified library. Dynamic
loading does not require you to temporarily shut down a Web application in order
to modify or add a new tag handler.

Using Static Registration
To register a tag handler statically, you invoke the RegisterTagHandler method of
your HTMLScanner subclass in initialization code for your application. This method
registers an instance of a tag handler class (that is, it registers an object of that class)
with the scanner.

Example
Assume that the following tag is used in a template:

<?FORTE EXECUTE CatalogHandler.dosomething>

Then the following code would register an instance of a CatalogHandler tag
handler:

The scanner always searches for a tag handler in the static registered list first.

-- first instantiate an object of the implementing class
shoppingCatInst : CatalogHandler = new;
-- then register the object with the scanner service object
CartScannerSO.RegisterTagHandler(shoppingCatInst);

Project: ShopCartApp • Class: AppControlWin • Method: InitializeWebServices

Register or Load Tag Handlers

Chapter 5 Creating Pages Using Templates 125

Using Dynamic Loading
If the scanner cannot find the class in the static registered list, it tries to load the
implementing class dynamically from a user-specified library. In this case, the
scanner requires a special text file (the handler file) to locate the library.

If you use dynamic loading, you must create a handler file (described in the next
section) to contain class names and runtime class loading information. When the
scanner sees a tag name or condition name of the form class_name.tag_name, and
class_name is not already registered, it searches the handler file to load the class
from a library. The class is then used to process tags and conditions.

For example, the following FORTE EXECUTE statement uses a two-part tag name,
orderservice.getorders. If the orderservice class does not appear on the static
registered list, the scanner service searches the handler file for an entry that begins
with the class name OrderService.

<?FORTE EXECUTE orderservice.getorders>

If the OrderService class has not been statically registered, the scanner searches
the handler file to locate the OrderService tag handler. The scanner then calls
HandleTag on an OrderService object to process the tags and conditions.

The Handler File
The handler file is required only if you use dynamic loading for a tag handler.

The scanner service reads the handler file whenever a template request must be
handled by a tag handler that is not statically registered.

The format of the handler file is one row for each tag handler class. Each row
should contain the following data items, delimited by a comma:

• class name

• project name

• library name

• distribution ID

• compatibility level

Register or Load Tag Handlers

126 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Code Example 5-1 shows a sample handler file given the two libraries (LibA
contains the tag handler classes TestClass1 and TestClass2, and LibB contains the
tag handler classes BetaClass1 and BetaClass2):

Identifying the handler file You specify the name and location of the handler
file using two attributes of HTMLScanner:

• The DocumentRoot attribute specifies the base directory for the handler file (as
well as template files). (See “The iPlanet UDS Document Root Directory” on
page 210.)

• The HandlerConfigFile attribute contains the path or file name or both for the
handler file. Its value is appended to the value for DocumentRoot.

The value should use portable name format (see the Framework Library online
Help).

You can override this value with an environment variable or a command line
argument. The priority of these settings is as follows, listed from highest priority to
lowest:

Command line argument Overrides all settings. Use the command line
argument -configfile when starting the partition that contains the scanner
service object.

Environment variable Overrides HTMLScanner’s HandlerConfigFile setting.
Use the FORTE_WW_HANDLER_CONFIG_FILE environment variable.

Attribute setting Overridden by the other two techniques. Use
HandlerConfigFile as described previously in this section.

Scanners can share files If a scanner service object requires dynamic access to
any tag handler, then the scanner service object must have one handler file
associated with it. A scanner that has no dynamic tag handlers does not need the
file. Multiple scanner service objects can share the same handler file.

Code Example 5-1 Sample Handler File

TestClass1, DynClasses, LibA, dynclass, 0
TestClass2, DynClasses, LibA, dynclass, 0
BetaClass1, DynClasses, LibB, dynclass, 0
BetaClass2, DynClasses, LibB, dynclass, 0

Testing a Template

Chapter 5 Creating Pages Using Templates 127

Testing a Template
Web page editors allow you to switch to a Web browser to view a page that you are
currently working on. However, this viewing will not catch any errors in the
iPlanet UDS tag syntax. Errors of that type cannot be detected until you can
actually request the template from a running Web access service and scanner
service that can handle that template.

Reference for iPlanet UDS HTML Tags
This reference section contains descriptions, syntax, and examples for the iPlanet
UDS tags that you can use in iPlanet UDS HTML templates.

General syntax notes As you embed iPlanet UDS tags, keep the following
general syntax rules in mind:

• iPlanet UDS HTML tags use a syntax similar to HTML syntax, with the
addition of the prefix ?FORTE (or ?/FORTE to end a statement).

• Ending tags must start with ?/.

• Tag reserved words are case-insensitive (this manual shows them in upper
case).

• Some tag options are case-sensitive on some platforms (for example: a
file/path name).

• Spaces or white space within iPlanet UDS tags can take the form of: empty,
space, tab, newline, or carriage return. All are equivalent and non-significant.

• Names for tags, result sets, and iterators and result set members can be of any
length.

• In the EXECUTE and IF tags, enclose the name-value pairs in parentheses.
Enclose the value in double-quotes.

• You can place either the FORTE EXECUTE or REDIRECT tag in an HTML
comment—the tag will not appear in the HTML template in WYSIWYG view,
but it will invoke the tag handler.

You should not place any of the other tags in an HTML comment, as they will
not execute.

Reference for iPlanet UDS HTML Tags

128 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The tags are summarized in the following table and described below.

Note on HTML editors Editing, modifying, and saving iPlanet UDS tags in a
template can vary depending on the exact HTML editor that you use. Refer to
iPlanet UDS Tech Note 11313 for detailed usage information for specific third party
HTML editors.

FORTE EXECUTE Tag
The FORTE EXECUTE tag specifies the name of a tag to be executed.

Syntax
<?FORTE EXECUTE [tag_handler_class.]tag_name

[(parameter_name = “parameter_value” [, . . .])]
[RESULTSET = “rsname”]>

You can specify the parameter list and result set name in any order.

 iPlanet UDS Markup Tags

Tag Name Tag Purpose OK to embed in
Comment?

?FORTE EXECUTE Executes the specified tag. You must write the
code for each unique tag name in a HandleTag
method.

yes

?FORTE ITERATE
... ?/FORTE ITERATE

Performs a loop. Used to dynamically generate
tables, lists, and so on.

no

?FORTE IF
... ?/FORTE IF

Executed in a TRUE condition. You must write
the code for each unique condition tag name in
a HandleCondition method. Condition tags
may be nested.

no

?FORTE ELSE Executed in a FALSE condition. This tag can
only be used in an IF condition block.

no

?FORTE INCLUDE Invokes a different template inline. no

?FORTE REDIRECT Redirects to a different template. yes

Reference for iPlanet UDS HTML Tags

Chapter 5 Creating Pages Using Templates 129

The parameter list is optional. You can specify an unlimited number of name-value
pairs of parameters, each pair separated by a comma. Every value (including
numeric constants) must be enclosed as a double-quoted string. See example c
below. These parameters are passed to the TagHandler method.

The RESULTSET parameter is optional. If used, the corresponding tag code must
construct a result set with one or more members. A member can be a list that will
be processed by the ITERATE tag.

You can place an EXECUTE tag within an HTML markup comment, thereby
making it invisible in the WYSIWYG view, but still invoking the corresponding tag
handler. For example, the following usage is valid: <!-- <?FORTE EXECUTE
myFunc> -->

Examples
Following are examples of several possible forms of the FORTE EXECUTE tag:

a. <?FORTE EXECUTE tag_name>

b. <?FORTE EXECUTE tag_name RESULTSET=”resultset_name”>

c. <?FORTE EXECUTE tag_name (parm-list) RESULTSET=”resultset_name”>

d. <?FORTE EXECUTE tag_handler_class.tag_name>

<?FORTE EXECUTE AddLogo >

<?FORTE EXECUTE SetupOrderSummary
RESULTSET=”OrderSummary”>

<?FORTE EXECUTE class.tagname (param1=”value”,
param2=”2352”)
RESULTSET=”rsname”>

<?FORTE EXECUTE WestReg.SetupOrderSummary>

Reference for iPlanet UDS HTML Tags

130 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

FORTE IF … ELSE Tags
The FORTE IF tag invokes the specified condition code that returns either TRUE or
FALSE, and branches to subsequent code accordingly. The tag may have an
optional named parameter list in parentheses. Conditions may be nested. Each IF
tag must have a corresponding ending tag.

The FORTE ELSE tag is optional within a FORTE IF tag, to specify code to be
invoked in the case that the IF tag resolves to FALSE. The ELSE tag can be used
with the FORTE REDIRECT tag to send users to another page when a FALSE is
returned by the FORTE IF condition.

Syntax
<?FORTE IF [tag_handler_class.]condition_name>

[(parameter_name = “parameter_value” [, . . .])]
...
[<?FORTE ELSE>]
...
</?FORTE IF>

The tag_handler_class is the name of a custom tag handler class.

Do not use a condition_name with the /?FORTE IF tag. The FORTE ELSE tag has
no corresponding /?FORTE ELSE tag.

Example
The following example of the FORTE IF...ELSE tags validates user information.
(For the full example, refer to the ShopCart html file.)

. . .
<?FORTE IF LoginHandler.Validate>
. . .
<p>Final Order Summary</p>
<p>Thank you ...
<?FORTE EXECUTE LoginHandler.DumpLoginInfo(Name="yes") >
. . .
<p>You have ordered the following items:</p>
. . .
<form action="$$FORTE.ExecURL" method="POST">
 <input type="hidden" name="PageName" value="ProcessOrder"><input
 type="hidden" name="ServiceName" value="PaymentService"><p><input
 type="submit" name="Final" value="Please process my order!"></p>
</form>
. . .
<?FORTE ELSE>
<?FORTE REDIRECT "Payment/existacct.htm">

Reference for iPlanet UDS HTML Tags

Chapter 5 Creating Pages Using Templates 131

FORTE ITERATE Tag
The FORTE ITERATE tag is used to generate a table dynamically.

This tag creates a named iterator to process an existing result set member that takes
the form of a list. The ITERATE tag must follow an EXECUTE tag that has created
the result set member, and the result set member must be a list containing one or
more rows. Each ITERATE tag requires a corresponding ending ITERATE tag. You
can create master-detail tables by nesting an EXECUTE tag within an ITERATE
loop and setting parameters for the EXECUTE tag to the master value to iterate on.

Syntax
<?FORTE ITERATE iterator_name result_set_list_member

[START = “numeric_constant”]
[MAX = “numeric_constant”]>

. . .
<?/FORTE ITERATE iterator-name>

The iterator_name is used when you refer to members of the iteration result set.

The result_set_list_member is a member of a result set that is an array or list, and was
added to the result set using the variation of the Add method with the listName
parameter.

The optional START and MAX parameters can appear in any order. The MAX
parameter is useful if you are generating a table of an unknown size, and you
would like to limit the number of rows that are actually displayed.

You must edit the HTML source directly to embed an ITERATE tag “between”
table rows. Place the FORTE ITERATE tag as shown the code sample that follows,
after the table’s header row (if there is one) and before the first row of table data.
For a complete example see “Using ITERATE to Add Tables and Lists” on
page 120.

The effect of the ITERATE tag is to replicate the HTML text present between the
?FORTE ITERATE and the ?/FORTE ITERATE tags. Therefore, the starting and
ending ITERATE tags cannot be embedded within HTML comments.

<?/FORTE IF>

HTML Template: summary.htm

Reference for iPlanet UDS HTML Tags

132 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Example
The ShopCart example uses the following HTML template to display a table
showing one or more items:

This template calls the following code in the HandleTag method; it creates the
result set member, called IterateList, that generates the table of items:

<?forte execute GetCartContents resultset="currShopping">
 . . .
 <tr>
 <td>Item Name</td>
 <td>Quantity</td>
 <td>Price</td>
 </tr>
<?forte iterate curritem currShopping.iterateList><tr>
 <td>$$currItem.Name</td>
 <td><input type="text" size="20"
 name="$$currItem.RowNum"
value="$$currItem.quantity"></td>
 <td>$$currItem.Price</td>
 </tr>
<?/forte iterate curritem> <tr>
. . .
 <td>Total</td>
. . .
 <td>$currShopping.Total</td>

HTML Template: Dispcart.htm

elseif Tag.Compare(source=’GetCartContents’,ignorecase=true)
= 0 then

...
if orders = NIL then
orders = new;

else// else if previous orders exist, add them to rs for display
for rownum in 1 to orders.Items do
rset.Add(’iterateList’,rownum,’Name’,orders[rownum].Product.Name);
rset.Add(’iterateList’,rownum,’RowNum’,IntegerData(value=rownum));
rset.Add(’iterateList’,rownum,’Quantity’,IntegerData
 (value=orders[rownum].Quantity));
rset.Add(’iterateList’,rownum,’Price’,orders[rownum].Product.Price);
-- previously existing orders do not get highlighted in display
-- rset.Add(’iterateList’,rownum,’HighlightRow’,TextData(Value=’ ’));
orderTotal = orderTotal + orders[rownum].Product.Price.Value;

end for;
end if;

Project: ShopCartAccess • Class: CartScanner • Method: HandleTag

Reference for iPlanet UDS HTML Tags

Chapter 5 Creating Pages Using Templates 133

Nested ITERATE tags You can nest ITERATE tags, for example, to cause an
outer iterator to loop through table rows and an inner iterator to loop through table
columns. If you do so, be sure to end the nested block before you end the enclosing
block (just as you would with any iterator, like nested for statements), as shown in
the following code fragment:

FORTE INCLUDE Tag
The FORTE INCLUDE tag adds inline the specified template to the current
template. Use the FORTE REDIRECT tag if you wish to switch to a different
template altogether.

A template that is included in another template (using the FORTE INCLUDE tag)
can refer to result sets that were generated in the calling template.

If a template recursively includes a large number of other templates (for example,
template A includes templates B and C, each of which includes other templates,
and so on), the Scanner Service Object partition could exhaust its default stack
space. You can use the FORTE_STACK_SIZE environment variable to adjust the
partition’s stack size. See the iPlanet UDS System Management Guide for a
description of how to adjust the stack size.

Syntax
<?FORTE INCLUDE “template_name”>

You must enclose the template_name in double-quotes.

Examples
<?/FORTE INCLUDE “todaysadvert.htm”>

<?forte iterate mainitem ...>
...
<?forte iterate dependitem ...>

...
<?/forte iterate dependitem>
...

<?/forte iterate mainitem>

Reference for iPlanet UDS HTML Tags

134 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

FORTE REDIRECT Tag
The FORTE REDIRECT tag ends the use of the current template, and switches to
the named template instead. Use the FORTE INCLUDE tag if you want to include
inline a different template.

You may find it useful to use the FORTE REDIRECT tag after the FORTE ELSE tag,
to anticipate certain circumstances when the FORTE ELSE condition evaluates to
FALSE.

Syntax
<?FORTE REDIRECT “template_name”>

You must enclose the template_name in double-quotes.

Examples
<?FORTE REDIRECT "Payment/existacct.htm”>

135

Chapter 6

Creating Pages Using Page
Builder Methods

In an iPlanet UDS Web user interface, all Web pages that are returned to a Web
client are generated by either the page builder service or the scanner service. This
chapter describes how to use the page builder service and iPlanet UDS HTML
classes to return Web pages to Web clients.

This chapter includes the following topics:

• the purpose of the page builder service

• writing the HandleRequest method to return any requested page

• writing page builder methods to construct single Web pages

• using the WindowConverter class with existing iPlanet UDS windows

• designing a window for use as a Web page

• sharing window code with a Web page

For information about using the scanner service and templates to return Web
pages, refer to Chapter 5, “Creating Pages Using Templates.”

Using a Page Builder Service
The page builder service and the scanner service are analogous; they both generate
Web pages on request from the Web access server. Based on whether the URL
contains the keyword “pageName” or “templateName,” the Web access service
forwards each request for a page to either the page builder service or the scanner
service. Each service in turn creates Web pages by obtaining the appropriate data
from the iPlanet UDS business server and generating the Web page dynamically.

Using a Page Builder Service

136 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

For example, to build the product list page, the SoftWear application’s page builder
service object gets the product list information from the iPlanet UDS business
service object and then creates the HTML page.

Typically, the page builder service object defines one page builder method for each
page. When the Web access service object receives a request for a page, it invokes
the appropriate page builder method, passing the page parameters to the page
builder service object. The page builder method constructs the Web page
dynamically and returns the completed page to the Web access service object,
which in turn forwards the page to the Web client.

Interacting with the iPlanet UDS business server To obtain the data needed for
constructing the Web page, the page builder service object accesses the iPlanet UDS
business service object. (This process is similar to using an iPlanet UDS server to
provide data displayed by an iPlanet UDS client.) For example, to get the product
list for the product page, the page builder service invokes a GetProdList method
on the iPlanet UDS business service object, which returns the product list as an
Array of Product Header.

Because the page builder service interacts with the iPlanet UDS business server to
get data for constructing the Web page, your page builder service must translate
the iPlanet UDS data into HTML. (You cannot display an iPlanet UDS object
directly on a Web page.) Typically you will write a set of page builder methods in
your page builder class to obtain data from the iPlanet UDS business service and
translate that iPlanet UDS data into HTML.

Page builder service is optional This manual recommends the use of a Web
access service object and either a scanner service object or a page builder service
object (or both). While the Web access service object itself can generate Web pages,
the Web access service object cannot be replicated and page construction can cause
a performance bottleneck.

Page Builder Methods
Page builder methods are used to create dynamic Web pages—pages that contain
data based upon the Web user’s particular request. Such a page might retrieve and
display the availability for a particular item, based upon a size and color entered by
the Web user.

Using a Page Builder Service

Chapter 6 Creating Pages Using Page Builder Methods 137

Before writing the page builder methods, you should decide which pages are
required. Usually you define one Web page to correspond to each iPlanet UDS user
window. While you can offer a different set of options (windows) to Web users
than to iPlanet UDS clients, a good way to begin is to define a page builder method
for each UserWindow class that is to be used as both an iPlanet UDS window and a
Web page.

Typically, each page builder method is a wrapper for a corresponding method on
the iPlanet UDS business server. The page builder method constructs a Web page
by translating the HTTP request into iPlanet UDS data, invoking the corresponding
method on the iPlanet UDS server, and translating the returned data into HTML.

In the SoftWear application, the BuildProdList method produces the product list
page to be displayed to Web user. To get the data for the product list page, the
BuildProdList method invokes the GetProductList method on the business
service object. It then uses the Add method to add the returned data to the outgoing
product list Web page. An excerpt from this method follows:

-- Next, build a list of products. This uses the HTML list
-- features (<DL>, <DT> and <DD>).

dl : HTDl = new;
dt : HTDt;
dd : HTDd;

//GetProductList method invoked on business service
for p in CatalogService.GetProductList() do
-- For each product, use its name as <DT>
-- and its short description as <DD>.
-- Also, put in the rest of the link needed
-- to go to the ProdDetail page.
dt = new;
prodLink : TextData = new(value=linktd.value);
prodLink.concat(’&Code=’).concat(p.Code);
dt.Add(HTA(Text=p.Name, Href=prodLink.value));
dl.Add(dt); //Data added to Web page

dd = new;
dd.Add(p.ShortDescription);
dl.Add(dd);

end for;

Project: WWWCatalogPageBuilder • Class: CatalogPageBuilder
• Method: BuildProdList

Techniques for Writing Page Builder Methods

138 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Techniques for Writing Page Builder Methods
Given a URL that contains a page name and optionally some parameters, each page
builder method constructs a Web page, which it returns to the HandleRequest
method. A page builder method may perform a variety of tasks. For example, if
you use the WindowConverter class to construct a page, you might not use the Add
method to add individual HTML elements to a page. The following list simply
gives you an idea of some of the tasks involved in constructing Web pages:

• examine the incoming Web request (an object of type HTTPRequest) to
determine which page is requested, and if specific data is requested for the
page (for example, which catalog item to display details about)

• create the Web page to be built and returned (create an object of type HTHtml)

• add links to other pages by referencing the appropriate URLs

• invoke the appropriate methods on the business service object to get the
requested data

• convert text, data values, and widgets to HTML elements, using any
combination of HTML markup, or classes from the projects HTML,
HTMLWindow, and HTMLSQL

• use the Add method to append each HTML element to the page in progress

• convert the finished page (an object of type HTHtml) to a string, using the
ConvertToString method

If you are getting started, you can use the following code as a very simple example
for creating a page, assuming that you are using the HTML project and are not
converting a window.

The following pages describe various techniques for building Web page elements
in your page builder methods.

html : HTHtml = new;
head : HTHead = new;
body : HTBody = new;
html.Add(head);
html.Add(body);
head.Add(HTTitle(Text=’HereisaTitle’));
body.add(’Hello, world’);
return html.ConvertToString();

Techniques for Writing Page Builder Methods

Chapter 6 Creating Pages Using Page Builder Methods 139

Using HTML Tag Markup Directly
Web pages are defined using the HTML language, which uses HTML start and end
tags to specify a number of HTML elements such as major and minor headers,
various lists and fonts, and so on. Many tags also have options, such as to align
right or left. You can use HTML markup directly, without using the HTML classes
in the HTML project.

To use HTML directly in a page builder method, you simply concatenate text with
the desired HTML tags and tag options.

Example
The following example creates the same simple page that is created in the
preceding section. Since it uses no HTML classes, it does not require the HTML
project to be a supplier.

Using HTML Classes
You can use the iPlanet UDS HTML classes instead of HTML tags to write Web
pages. If you use the HTML classes, you gain additional syntax checking. See the
iPlanet UDS online Help to compare the same Web page generated using both
techniques.

td : TextData = new;
td.Concat(’<HTML><HEAD><TITLE>HereisaTitle’);
tc.Concat(’</TITLE></HEAD>\n’);
td.Concat('<BODY>Hello, world </BODY>\n’);
td.Concat(</HTML>\n’);
return td.value;

Techniques for Writing Page Builder Methods

140 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

You embed text in various formats in a Web page using the Add method of the
HTElement class. For example, to add a straightforward paragraph, you would use
the HTP element:

Using the WindowConverter Class
If you have user windows that are already defined in an iPlanet UDS application,
then you can convert them to Web pages using the WindowToForm or
WindowToDocument methods on the WindowConverter class.

WindowToForm Use the WindowToForm method if you have a complete user
window that you want to convert, as is, to a Web form. The SoftWear application
contains examples of this.

FieldToElement Use the FieldToElement method if you want to convert only
part of a window.

The WindowConverter class creates only the layout or appearance of the equivalent
Web form. You must also provide for the underlying logic that loads, validates,
and manipulates data. See the iPlanet UDS online Help for instructions on working
with data in a Web page.

The SoftWear example uses WindowConverter to adapt several iPlanet UDS
windows to Web pages. Below you see the window as defined in the
CatalogPageWindow class in the WWWSharedWindows project:

html : HTHtml = new;
head : HTHead = new;
body : HTBody = new;
para : HTP = new;
html.add(head);
html.add(body);
head.add(HTTitle(Text=’Day Dreaming’));
body.add(para);
para.add(‘Sometimes I sits and thinks,’);
para.add(‘and sometimes I just sits.’);
return html.ConvertToString();

NOTE Not all iPlanet UDS widgets are converted. For a list of how the
widgets are mapped, see the iPlanet UDS online Help.

Techniques for Writing Page Builder Methods

Chapter 6 Creating Pages Using Page Builder Methods 141

Figure 6-1 iPlanet UDS Client Window

Figure 6-2 shows the equivalent Web page, constructed using the BuildProdPage
method on the WWWCatalogPageBuilder class. This method uses the
AssignFormat method of the WindowConverter class to convert a
CatalogPageWindow object:

The layout and contents of the page, while not identical, are essentially equivalent.

w : CatalogPageWindow = new;
w.Setup(product = detail.Header, sourceURL = self.SourceURL);
. . .
Converter : WindowConverter = new(sourceWindow = w);
Converter.AssignFormat(w.<Name>, ’H1’);

Project: WWWCatalogPageBuilder • Class: CatalogPageBuilder
• Method: BuildProdPage

Techniques for Writing Page Builder Methods

142 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Figure 6-2 Web Page Converted from iPlanet UDS Window

Using the SQLConverter Class
The SQLConverter class in the HTMLSQL project provides a quick and easy way
for you to display tabular data retrieved from a database. Use the SQLToTable
method on the SQLConverter class to perform a query on a database and return
the results in an object of type HTTable.

See the iPlanet UDS online Help for a description of SQLConverter and some
examples.

Defining the HandleRequest Method

Chapter 6 Creating Pages Using Page Builder Methods 143

Saving Generated Pages to HTML Files
After the page builder method constructs a Web page, it converts the page’s
contents to a string to be passed back to the fortecgi program (or the iPlanet UDS
plug-in). The string contains a series of HTML elements that form that page on the
Web browser. You can view the HTML code that is generated, by writing a file
using the WriteToFile method of the HTElement class. Sometimes these files are
useful while debugging or sharing text (cutting and pasting) between pages.

Use the WriteToFile method after the page (or desired portion of the page) is
generated. Simply specify a filename to which the generated HTML code is
written. For example:

Generated code can be too dense to read. If you set either of the attributes HasEOL
or HasReturnAfterStart to TRUE for one or more of the HTML classes, the
generated code is more readable (due to more line breaks).

Defining the HandleRequest Method
The Web access service automatically invokes the HandleRequest method
whenever it receives a new request for a page (as opposed to a request for a
template). You must define the HandleRequest method if you have any pages that
are generated and returned by a page builder service. If all your pages are returned
by a scanner service (that is, all your pages are generated by templates) then the
HandleRequest method is never invoked.

The HandleRequest method invokes the appropriate method on the page builder
service object to create the requested Web page. After the page builder service
object returns the requested Web page, the HandleRequest method passes the
page to the fortecgi program (or iPlanet UDS plug-in) to return to the Web user.

For a sample HandleRequest method, see “A Sample HandleRequest Method” on
page 145.

htmlPage : HTElement = new;
-- construct the page ...
htmlPage.WriteToFile(‘c:\\tmp\\pdetail.html’);

Defining the HandleRequest Method

144 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

➤ To define the HandleRequest method

1. Drag the method signature for the HandleRequest method from the
HTTPAccess class to your subclass of HTTPAccess.

2. Open the method in the Method Workshop.

3. Check the input parameter (an object of type HTTPRequest) for a valid page
name.

4. Code a number of sections that resemble the following:

For each valid page, invoke the corresponding page builder service method,
passing through the input parameter (request, an object of HTTPRequest). The
page builder service object requires the information in the HTTPRequest object
in order to construct the appropriate page that contains the desired data. Then,
for each page, the page builder service object returns a string (of HTML
elements for that particular page).

5. Invoke the AssignResponse method on the string returned from the page
builder service object. The AssignResponse method uses the string of HTML
elements to set attributes in the HTTPResponse object, in particular the
EntityBody attribute.

6. Return the Web page as an HTTPResponse object (already created in the
standard HandleRequest method).

return response;

7. If desired, you can override the error handling contained in the predefined
HandleRequest method. If you do not alter HandleRequest, then any
unhandled exceptions raised in your code will result in a default Web error
page, described “The Default Web Error Page” on page 92.

CAUTION Do not change the parameters or return value of this method.

if pageName.IsEqual (‘pageA’, IgnoreCase=TRUE) then
response.AssignResponse(Builder.BuildPageA(request));

else if pageName.IsEqual (‘pageB’ IgnoreCase=TRUE) then
response.AssignResponse(Builder.BuildPageB(request));

...
end if;

Defining the HandleRequest Method

Chapter 6 Creating Pages Using Page Builder Methods 145

A Sample HandleRequest Method
A sample HandleRequest method follows. You can use it as a sample when
defining your HandleRequest method.

-- This method is automatically called when a Web request is for a
-- page rather than a template.

response : HTTPResponse = new;

-- Find the page name.
pageName : TextData = new;
pageName.SetValue(request.PageName);

-- Generate response pages.
if pageName.IsEqual(’EnterNewPageNameHere’,IgnoreCase=TRUE) then
 --
 -- Depending on the page name, create different response
 -- pages in string format. Then assign the page to response.
 -- Here you can invoke the methods you defined
 -- in the page builder service object.
 -- elseif statements may be needed for other pages.
 --
else
 -- Generate an exception for unknown page.
 ex : HTTPACCESSException = new;
 ex.SetWithParams (SP_ER_USER, ’Unknown pageName: %1.’,pageName);
 ex.DetectingMethod = ‘HTTPAccess::HandleRequest’;
 task.ErrorMgr.AddError(ex);
 raise ex;

end if;

-- Return the response. It is sent back to the Web browser.
return response;

Adapting iPlanet UDS Windows with WindowConverter

146 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Adapting iPlanet UDS Windows with
WindowConverter

If you have already defined a number of window classes for an iPlanet UDS
application, you can adapt these windows for use as Web pages. To adapt (or
“convert”) existing windows, you use the WindowConverter class of the
HTMLWindow project. This class provides methods that allow you to:

• convert a window class to an HTML document (that is, a Web page)

• convert a window to an HTML form

• convert an individual field widget into an individual HTML element

• “transfer” data from a submitted Web form into the iPlanet UDS window for
processing

Note that the WindowConverter class does not convert the programming associated
with a window— it simply creates the layout of a Web page using the existing
definition of an iPlanet UDS window class. For example, if the Display method
associated with a window performs data validation for the window’s fields, data
validation will not be automatically provided for the Web page. After converting
the window, you must add any logic required for data validation and processing.
See “Sharing Window Code with the Web Page” on page 151 for information on
how to add validation and processing logic to the page builder service.

The following steps describe how to convert an iPlanet UDS window into an
HTML document (a Web page).

➤ To convert an iPlanet UDS window (or widget) to an HTML document

1. Include the HTMLWindow project as a supplier plan to the project that
contains the window.

2. Create a WindowConverter object.

3. Create your UserWindow object and load data into it.

4. Set the SourceWindow attribute of the WindowConverter object to the window
you want to convert.

Adapting iPlanet UDS Windows with WindowConverter

Chapter 6 Creating Pages Using Page Builder Methods 147

5. Prepare the iPlanet UDS window for conversion (to allow for essential
differences between iPlanet UDS windows and Web pages).

To prepare a window for conversion, you must do the following (in any order):

a. Assign HTML formats to window text.

You must provide formatting tags for any text that appears on the
window. Use the AssignFormat method to assign HTML formats to the
text in the field widgets.

b. Convert push buttons.

For all push buttons that will appear on the Web page, you must either:

◗ specify the button type using the AssignButton method (see the
iPlanet UDS online Help), or

◗ assign an anchor to the button using the AssignAnchor method (see
next step)

For each push button on the window that does not have an anchor and that
you wish to include on the Web page, you must use the AssignButton
method to specify whether it should be a Reset button, a Submit button, or
ignored.

c. Assign anchors to iPlanet UDS widgets.

For each iPlanet UDS widget that you want to act as a link to another Web
page, you should assign an anchor to the widget. You can assign anchors
to iPlanet UDS field widgets in two ways:

◗ You can use the AssignAnchor method; see the iPlanet UDS online
Help.

◗ Alternatively, you can use the HTML Options... command in the
Window Workshop; see “Using the HTML Options… Command” on
page 149.

Push buttons that have anchors assigned to them are converted into HTML
text strings with borders. The text string with a border simulates the
appearance of a push button, with the HTML text string providing the
button’s label and the border providing the button’s shape. The anchor for
the push button provides the processing that takes effect when the button
is clicked.

Adapting iPlanet UDS Windows with WindowConverter

148 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

d. Assign Image Files to Graphic Widgets

If the Web page will contain images, you should assign image files to each
field that will display an image. Then you provide URLs to the image files
and move all the images to a location on the Web server or iPlanet UDS
server. You can assign image files to iPlanet UDS fields in two ways:

◗ Use the AssignImage method; see the iPlanet UDS online Help.

◗ Use the HTML Options... command in the Window Workshop; see
“Using the HTML Options… Command” on page 149.

6. Use the Assign methods on WindowConverter (AssignAnchor, AssignButton,
AssignFormat, and AssignImage) to prepare the iPlanet UDS window for
conversion.

7. Use the WindowToDocument method to convert the window to a Web page or
use the WindowToForm method to convert the window into a Web form, which
you can include on one or more Web pages.

8. Add logic to your page builder service to perform data validation and
processing for the Web page. See “Sharing Window Code with the Web Page”
on page 151 for more information.

The following sections provide more information about these steps.

Designing a Window for Use as a Web Page
When an iPlanet UDS window is converted into Web page, each field widget (with
few exceptions, including tab folders) is converted to a corresponding HTML
element. See the iPlanet UDS online Help for information about how iPlanet UDS
field widgets are mapped to HTML elements; note that there are some widgets that
are not converted.

CAUTION When you are manipulating a UserWindow object in your page
builder code, you should not invoke the Open method on it. The
Open method will actually try to display the window, but there is no
display attached to the server partition. You can load data into the
window without opening it.

Adapting iPlanet UDS Windows with WindowConverter

Chapter 6 Creating Pages Using Page Builder Methods 149

Because the HTML elements are different sizes than the iPlanet UDS widgets, you
should use the iPlanet UDS geometry management features to preserve the
alignment of field widgets on the window when the window is converted. The
iPlanet UDS Programming Guide describes the iPlanet UDS geometry management
features used to create windows that are portable across window systems:

• grid fields

• field size partnerships

• field size policies

You should use these same techniques to ensure that your Web page is correctly
formatted.

Using the HTML Options… Command
In the Window Workshop, choosing Widget > HTML Options enables you to set
properties on the currently selected widget for use with the WindowConverter
class. When you choose Widget > HTML Options, iPlanet UDS opens the HTML
Options dialog, where you can set the Anchor URL property and, for picture fields,
picture graphics, and picture buttons, the Image Source URL property.

➤ To set the HTML options for a widget

1. Select the widget.

2. Choose Widget > HTML Options.

3. In the HTML Options dialog, enter the Anchor URL and/or Image Source
URL.

Anchor URL property The Anchor URL property allows you to assign a URL to
be used as an anchor for the widget. When the window is converted into a Web
page, the corresponding HTML element will be an anchor.

HTMLLink attribute The Anchor URL property corresponds to the HTMLLink
attribute on the FieldWidget class. The HTMLLink attribute allows you to assign a
hypertext link to current field widget programmatically. For complete information
on the HTMLLink attribute, see the Display Library online Help.

Adapting iPlanet UDS Windows with WindowConverter

150 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Image Source URL property The Image Source URL property, available for
picture fields, picture graphics, and picture buttons only, specifies the location of
the image to be displayed on the Web page. The image file that you assign to a field
can be located on the Web server or the iPlanet UDS server. The format of the
image file can be any format supported by the Web server. The Image Source URL
must provide the address of the actual image file relative to the Web server.

If you do not assign an image file to provide the image for the picture on your
window, or if the URL is incorrect, the Web browser displays a broken picture
image in place of the field.

HTMLImage attribute The Image Source URL property corresponds to the
HTMLImage attribute on the PictureButton, PictureField, and
PictureGraphic classes. The HTMLImage attribute allows you to specify the
location of the image for the picture button, picture field, or picture graphic
programmatically. For complete information on the HTMLImage attribute, see the
Display Library online Help.

Converting a Window
When the WindowToDocument method converts a window into an HTML page,
there is only one Web form on the page. Panels on the window are converted into
tables, not individual forms. If you want to include more than one form on a Web
page, you must construct your own page—use the WindowToForm method to
convert an iPlanet UDS window into a form for inclusion on the page.

Converting outline fields When an outline field is converted into an HTML
unordered list, iPlanet UDS displays only the nodes in the outline field that are
currently open. Any nodes that are initially closed in the outline field are ignored
in the corresponding HTML list and the Web user has no way to access them.
Therefore, before converting a window that contains an outline field, you should
be sure to open all nodes that you wish to display to the Web user.

Note that the size of the HTML list is determined by the content of the outline field,
not by its VisibleLines attribute. Because all visible nodes are included on the Web
page, the list on the Web page can be significantly larger than the outline field on
the iPlanet UDS window, which displays only the “visible lines” and allows the
user to scroll through the total number of nodes.

Adapting iPlanet UDS Windows with WindowConverter

Chapter 6 Creating Pages Using Page Builder Methods 151

Sharing Window Code with the Web Page
Ideally, your Web page and iPlanet UDS window will share code for the following
types of functions: window initialization, data validation, and data processing.

The preferred way to share code is to use specialized, independent methods to
perform data validation and processing, rather than use the Display method for
these purposes. This may require that you modify the original Display method for
a given window class, to break out all initialization, data validation, and operation
code for that window. Then, the Display method for the window and the page
builder service can invoke these methods as necessary.

After you create independent initialization, data validation, and processing
methods, you can streamline the original Display method. Your new Display
method can start by invoking the initialization methods, and then provide an event
loop that invokes data validation methods in response to events on the window.

Your page builder service can invoke the same initialization methods on the
window before converting it into a Web page. After the end user enters data onto
the Web page, the page builder service can invoke the LoadParameters method to
load the Web page parameters into the original window. When the data is loaded
into the window, the page builder service can invoke the original data validation
and processing methods directly on the window itself.

LoadParameters method The LoadParameters method on the WindowConverter
class enables you to use the same data validation and processing methods for a
Web page as for the corresponding iPlanet UDS window. After you load the
parameters into the window, you can perform data validation and processing on
the corresponding fields in the window exactly as if the end user had entered the
values directly into the fields. See the iPlanet UDS online Help for information.

Initializing a window Before converting a window to a Web page, remember to
perform the initialization you normally perform on the window. The following
code fragment from the Confirm method in the SoftWear application illustrates
using a Setup method to initialize the confirmation window before converting it:

-- Now construct the next page to display. This will use the
-- ConfirmationWindow from the Forte client application to
convert.
w : ConfirmationWindow = new;
w.Setup(tmporder, tmpbasket);

-- Now reset converter’s sourceWindow to w, a instance of
-- ConfirmationWindow.

Adapting iPlanet UDS Windows with WindowConverter

152 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The following two code fragments illustrate how the SoftWear application uses the
same processing method within the Display method for an iPlanet UDS window
and within a page building method for the page builder service.

The first code fragment illustrates the use of the FillOrderFromWindow method:

The second code fragment illustrates use of the FillOrderFromWindow method to
process the data on the window after the LoadParameters method has transferred
the data from the Web page into the window:

converter.sourceWindow = w;

Project: WWWCatalogPageBuilder • Class: CatalogPageBuilder • Method: Confirm

when self.<orderButton>.Click do
 status_line = ’Submitting order...’;
 tmpOrder.ShopperID = info.ShopperID;

 -- use FillOrderFromWindow to process data
 innerOrderWindow.FillOrderFromWindow(tmpOrder);
 self.Window.UpdateDisplay();

Project: WWWSharedWindows • Class: OrderWindow • Method: Display

innerOrderWindow : NestedOrderWindow = new;
converter : WindowConverter = new;
converter.sourceWindow = innerOrderWindow;
//LoadParameters method invoked to transfer data
converter.LoadParameters(request);

-- The FillOrderFromWindow will take the data that has been loaded
-- into the window from the Web request, and move it to an Order
-- object (in the tmpOrder parameter).
innerOrderWindow.FillOrderFromWindow(tmpOrder);
tmpOrder.ShopperID = shopperID;
//FillOrderFromWindow method invoked to process data

Project: WWWCatalogPageBuilder • Class: CatalogPageBuilder • Method: Confirm

153

Chapter 7

Using Session Management

WebEnterprise session management features allow you to build session and state
management into a Web application easily. These features automatically generate,
validate, track, and delete sessions in a Web application.

This chapter describes why you would want to use session management, and
describes the following features:

• unique session IDs that are automatically generated

• session properties that enforce, for a page or entire application, whether or not
a session is required

• session objects, based on the HTTPSession class, that can hold any type of
information for a single session

• a session table automatically maintained by iPlanet UDS to contain
information for each active session

The Benefits of Session Management
Some Web applications have no need to track the actions of their Web users; users
can visit any Web page with no restriction or control, and the Web application
maintains no user-specific information (“state”). Such applications often want to
attract as many Web visitors as possible, and consequently they show no sensitive
data. A typical example of such an application is an on-line catalog that Web users
can browse through freely. In this case, however, when a customer begins to select
items to order, then session management becomes important; the Web application
must start to maintain user-specific information in expectation of a purchase.

The Benefits of Session Management

154 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

On the other hand, many Web applications do access sensitive data or do require
tracking the actions of an individual end user. For example, these applications
must be able to control access to individual Web pages in order to verify user
identities, control data updates, control possible navigation paths, and so on. An
example of this type of application is a Web health insurance profile program, in
which each individual can only see his or her own personal health information.
WebEnterprise offers session management features for this purpose.

In iPlanet UDS WebEnterprise, the session management features allow you to
manage state, identity, and security information. Session management allows you
to build continuity into an application as users navigate, however randomly,
through a Web site. Session management also gives users the feeling that the
application is tailored to them individually.

Following are a few examples of the uses of session management:

• automatic user validation

• responding appropriately (returning different pages or data) based on a user’s
recent actions

• tracking a user’s progress through an application

• automatic timing out of sessions that have expired

WebEnterprise allows you to add session and state management features to the
essentially stateless HTTP protocol. Furthermore, WebEnterprise stores and
maintains all session management information on the server, rather than the client,
eliminating the need to update and pass state information with each request or
response, as you could do with the iPlanet UDS Web SDK.

By default, session management features are turned off. (Web applications based
on the iPlanet UDS Web SDK require no adjustment to allow for session
management features.)

Web session manager You enable session management by invoking the method
EnableSessionManagement in your application’s initialization code. Enabling
session management automatically creates a SessionMgr object (session manager)
specifically to manage sessions. Session management also creates a session table,
which the session manager uses to create sessions and track session data for each
unique browser session.

The Benefits of Session Management

Chapter 7 Using Session Management 155

For information on enabling session management, see “Enabling Session
Management” on page 173. For a description of the session manager and the
session table, see “Validating and Tracking a Session” on page 160.

The Meaning of Session and State Management
The session management features of WebEnterprise encompass state management
and more. The meaning of these terms can differ depending upon context or by
product. In WebEnterprise, these terms are not exactly interchangeable, but do
overlap. They have the following meanings:

State management This term refers to managing information (called state
information) for a single Web user. In WebEnterprise, state information is
maintained for the duration of a single browser session by default (for example,
items ordered in a single shopping session). If you implement persistent storage for
state information, then the information can span multiple browser sessions (for
example, total dollars spent by a customer in all shopping sessions to date).

The term state information is more narrowly defined than “session management.”
The information that is maintained as state information is always
application-dependent. The actual data values that are stored are unique to each
user. Typical state information often includes a unique ID to identify the user (or
order, or record, for example). State information may also be referred to as session
data, because it is the data relevant to a unique session.

Session management This term is used more generally to encompass aspects of
managing multiple Web users or multiple Web pages for a Web application. It
entails managing access control properties that determine whether valid sessions
are required for users to access pages, controlling the route a user takes to navigate
through an application, and determining when and how sessions are created. For
example, what information must a user provide to start a session, along with what
information is maintained for each user (the latter being the state information). It
also entails terminating, timing out, identifying, and invalidating sessions.

The WebEnterprise “session management features” include both types of
management.

NOTE Session management features are available to all pages constructed
and returned by an iPlanet UDS Web application. Specifically,
whether a scanner service object or a page builder service object is
responsible for coordinating a template or page request, both types
of service object can use session management.

Session Management Features

156 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

In standard iPlanet UDS window-based applications, you can store state
information on both the client and the server. To store state information on the
client, you can use local objects. To store state information on the server, you can
use transaction or session dialog duration service objects.

However, in a Web user interface you must handle state information differently
because you cannot use local objects, nor can you use service objects that have
transaction or session dialog duration. The preferred way to use state information
is to use the session management features of WebEnterprise, as described in this
chapter. However, you can also use cookies to store state information (see “Using
Cookies” on page 186).

Applications that are based on the iPlanet UDS Web SDK releases 1.0 or 1.1 cannot
use the WebEnterprise features, but can handle state information as described in
the following two sections.

Session Management Features
When “session management” is enabled for an iPlanet UDS Web application, a
session, identified by a unique session ID, is automatically created for each distinct
Web browser session. A session can be automatically created with no validation, or
created based on custom validation criteria (typically, a user ID). Within your
application, you indicate which pages require a valid session in order to access
them, by specifying a session property for each page. You also define what state
information should be tracked during a session for individual users of your
application. Then WebEnterprise uses the session ID, which can be accessed with
the CurrentSession attribute, for the duration of the session to update or access the
session’s information.

The following sections describe in more detail these features that comprise
WebEnterprise session management. See also “Validating and Tracking a Session”
on page 160 and Figure 7-1 on page 162 for a description of how these components
work together.

If your application does not require session management, no action is required.
Session management is disabled by default.

Session Management Features

Chapter 7 Using Session Management 157

Session Properties for Web Pages
WebEnterprise allows you to require a valid session for each Web user that
interacts with an application. If your Web application requires you to monitor or
control access to specific Web pages or data, you can assign a session property to
each of the sensitive pages. Session properties indicate whether a Web user must
have an active, validated session to view a page or whether no session is required.
You can assign session properties to a single template or page, or to a group of
templates or pages that reside in the same directory.

The session properties are shown in the following table:

Setting session properties You can set session properties at a number of levels.
You can set a default session property that will apply to all pages and templates,
and you can override the default for single pages or for all pages maintained in a
particular directory. Refer to “Setting Session Properties for Pages” on page 176 for
details about the various ways to set session properties.

Web Session Manager
When you enable WebEnterprise session management by invoking the method
EnableSessionManagement, the Web access service object automatically creates an
instance of the SessionMgr class. This object, called the Web session manager,
performs session management tasks. The session manager associated with a given
Web access service is available using the WebSessionMgr attribute on the
HTTPAccess subclass.

Property Key Word Description

session required SESSION_REQUIRED A page request must be associated
with a current, valid session.

sessions created
automatically

SESSION_AUTOCREATE If no valid session is found for a page
request, WebEnterprise automatically
creates a new session.

session unspecified SESSION_UNSPECIFIED The default value: No session is
required.

Session Management Features

158 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The session manager is not a service object and its use and function are essentially
transparent to both application developers and users. The session manager’s tasks
all relate to setting and using information in the session table, and include the
following tasks:

• creating and updating the session table itself

• intercept, decrypt, and validate session IDs that are contained in incoming
URLs (page requests)

• timeout expired sessions

These tasks are described in “Validating and Tracking a Session” on page 160 and
illustrated in Figure 7-1 on page 162.

Much of the work of the session manager is performed within the HTTPAccess
class, as a request is received and validated. Like the Web access service object, the
session manager cannot be replicated.

Session Objects and the Session Table
WebEnterprise uses sessions to track interactions with an iPlanet UDS Web
application. A session is defined as all interactions occurring between a single Web
browser session and a (iPlanet UDS) Web application. After you enable session
management and define what information should be tracked as state information,
WebEnterprise automatically maintains state information for every session. The
following sections all assume that you have invoked EnableSessionManagement.

A session starts with a browser’s initial request to a Web access service object that
has enabled session management. By default, sessions are created by the automatic
invocation of the CreateSession method; you can override this method if you
need to create sessions manually. When the session starts, iPlanet UDS generates a
unique session ID (described below). A session ends either by timing out or by
being explicitly deleted, using the DeleteSession method on the SessionMgr
class.

For more information about using timeouts or deleting sessions, see “Deleting or
Timing Out Sessions” on page 174. For more information about how sessions are
validated and timestamps are updated, see “Validating and Tracking a Session” on
page 160.

Session Management Features

Chapter 7 Using Session Management 159

Session objects For each unique session the session manager automatically
creates a session object, based on the HTTPSession class. The session object contains
state information, if any, for a single user; it represents the client side application
context. The session manager uses this object to track a user’s navigation through a
single Web application and to update state information—data that is specific for that
user in that session. A session object always exists for a current session if session
management is enabled.

Session table The session manager creates and uses a session table for session
management. The session table contains a list of active session IDs, each with its
corresponding session object. The session manager uses the session table to
validate and time out sessions, and to store and retrieve session data in session
objects.

While WebEnterprise maintains the session table automatically, you control what
actual session data is stored for a session object. You use the session object to add
and retrieve session data (state information) for a current session. To store session
data, you use the SetSessionData method, and to retrieve session data you use
the GetSessionData method (from the HTTPSession class). To refer to the current
session, simply use the CurrentSession attribute of the HTTPRequest class, as in the
following line of code:

request.CurrentSession.SetSessionData(‘surname’, Object);

See “Working with State Information” on page 179 for specific information about
using these methods.

By default, the session table is stored in server memory on the partition that hosts
the HTTPAccess service. If the partition in which the session table is created shuts
down unexpectedly, the session table is lost and its data cannot be reconstructed.
See “Using Persistent Storage for State Information” on page 181 if your
application requires the server side session table to be persistent.

Sharing the session table Multiple Web access service objects within a single
application can share and update a single session table. See “Multiple Web Access
Services Sharing Sessions” on page 173 for more information.

Session IDs
WebEnterprise creates and manages unique session IDs. Although you reference
session IDs to get and set session data for individual sessions, you never use the
actual numerical session IDs directly. Instead, you use the CurrentSession attribute
of the HTTPMessage class (inherited by both HTTPResponse and HTTPRequest).

Session Management Features

160 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

WebEnterprise uses one of two approaches to store and pass session IDs:

• By default, WebEnterprise uses cookies to pass session IDs for a given session,
setting the ID in the cookie with each response, and retrieving it with each
request, for the duration of a session.

• WebEnterprise also embeds session IDs in URLs under certain circumstances.
If WebEnterprise detects that a given browser has disabled cookies, it embeds
an encoded form of the ID in each URL that is generated during that session.
To see an example of a URL that includes a session ID, see “Session IDs in
URLs” on page 184.

Session ID generation When a session is created, the Web access service object
assigns it a unique session ID. You can write a custom scheme for generating
session IDs by overriding the GenerateSessionID method on the SessionMgr
class.

By default, Session IDs are not persistent. A given ID lasts only for the duration of a
browser session, and ends when the session is explicitly deleted or times out. Nor
is the data stored for a given session (identified by a session ID) persistent. If your
application requires persistent IDs, you must customize your application by
adding persistent storage such as a database or file to manage IDs and any data
that must be maintained between sessions. See “Making Session IDs Persistent” on
page 175.

Encryption of IDs Session IDs are stored in unencrypted form in the session
table, and unencrypted IDs are used to validate current sessions or to time out
sessions. WebEnterprise encrypts session IDs, using the encrypt key, for
transmission across a network; this is the only time the encrypted version of a
session ID is used. You can override the default encrypt key using the
SetEncryptKey method on HTTPAccess class (See the iPlanet UDS online Help).

Validating and Tracking a Session
When session management is enabled, the session manager uses the session table
to validate a session for each incoming request. Then it uses the session object
corresponding to each session to maintain state information for each session.

Session Management Features

Chapter 7 Using Session Management 161

➤ The following steps describe how iPlanet UDS validates and tracks a session

(Figure 7-1 illustrates and is keyed to the following steps.)

1. On receiving an incoming request from the Web access service object, the
session manager checks the HTTP request header information for an encrypted
session ID. If it finds one, the session manager decrypts it to get the “raw”
session ID.

The session ID may have been generated either by the CreateSession method in
application code or by a page with the session property of
SESSION_AUTOCREATE.

2. The session manager looks for a session object with that session ID in the
session table, and checks whether that session has timed out.

The session manager compares the time since the last session validation to the
session’s timeout interval. Each session object can have a different timeout
interval.

If the session is valid, the session manager updates the validation timestamp to
the current time. (The session manager updates the timestamp—and session
object— again, when an HTTPResponse is returned, so the validation
timestamp is updated on both the request and the response for a given
session.)

If a session has expired, or a request comes in with no session ID, what
happens next depends on the session properties associated with the requested
template or page, as follows:

❍ If the property is Session_Autocreate, WebEnterprise creates a new session
for the request.

❍ If the property is Session_Required, WebEnterprise redirects the response
to the page designated by the SessionCreationURL attribute for the Web
access service. This URL leads to a page in which the user can enter the
information required to begin a new session, if desired. If the
SessionCreationURL attribute is unspecified, an exception is returned to
the user. (For more information see “Setting the SessionCreationURL” on
page 172 and “Session Creation Page” on page 85.)

❍ If the property is Session_Unspecified, no special action occurs, because no
session is required. A NIL current session is attached to the request.

You can add criteria to the default validation by overriding the
ValidateSession method.

From this point, each request is associated with a session object in the session
table (or with a NIL).

Session Management Features

162 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Figure 7-1 Validating and Tracking a Session

3. The retrieved session object is then available to the application code as the
Request.CurrentSession attribute.

You can use the CurrentSession attribute to set and get session data (using the
SetSessionData and GetSessionData methods) because this session object is
tracked and available to you between consecutive requests in a session.

4. The current request is available to the application as the request parameter (of
type HTTPRequest) for the HandleTemplateRequest (4a) and HandleRequest
(4b) as well as the HandleTemplate and HandleTag methods.

5. Before a response is returned to the Web browser, the session object for that
session ID is updated in the session table, if necessary.

6. A response is returned to the Web access service object.

7. The Web access service passes the requested page to the browser.

Web Access
Service

Incoming
page/template
request

Web Session Manager

Forward
client
request

1
2

3

7

Session Table

SessionID
Session
Object

01

02

03

Return
response
(update session
table) Return

page or
template

6
PageBuilder Service

Scanner Service
Business Service

Get or
set session
data

5

Validate
SessionID

Return Session
Object

4a Invoke
HandleTemplateRequest

4b
Invoke

HandleRequest

Typical Session Management Scenarios

Chapter 7 Using Session Management 163

Typical Session Management Scenarios
In a typical secure application, a user must log in (provide some information to be
validated) before gaining access to any protected application window.

In a traditional windows-based application the login process is relatively easy to
implement because users cannot arbitrarily access any window within an
application. A user must have acceptable access rights to access a protected
window and must follow a prescribed navigation path to the window. A login
window controls access to protected windows by using a security mechanism that
grants (or denies) users access.

In contrast, in the Web environment, a user can easily request an arbitrary page
from a Web site—for example, by simply entering the complete URL from the Web
browser command line or by using a bookmark. In so doing, a user might
circumvent a typical windows-based security scheme, by avoiding completely the
login window.

WebEnterprise addresses this security issue with the SESSION_REQUIRED session
property. To see how this property works, let us first consider how to implement
page level user-validation without using the SESSION_REQUIRED property.

Adding user validation without session management By default in
WebEnterprise, no session management is enforced—that is, no page requires a
session in order to be viewed. This is equivalent to the property
SESSION_UNSPECIFIED. To implement page-level security for any given page,
the following code, or its equivalent, must be added for each page requiring
protection:

<?FORTE If DisallowPageAccess>
<?FORTE REDIRECT “login.htm”>
-- assumes login.htm allows a user to create a valid session for
-- future access to this page
<?/FORTE If>

Typical Session Management Scenarios

164 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Or, for a page requiring user validation, the following code, or its equivalent, must
be added in the HandleRequest method to check page access:

So, without the benefit provided by the SESSION_REQUIRED property, session
management must be individually implemented on every page, requiring a
significant coding and maintenance effort.

Adding user validation with session management Using WebEnterprise session
management, this same scenario can be streamlined as follows.

➤ To define default page-level session properties, and then override session
properties as needed

1. Require that all pages and templates accessed through the myAccess service
are associated with a valid session. Use one of the following approaches:

Specify a default session property for all templates and pages returned by
myAccess service:

myAccess.SetDefaultSessionProperty(SESSION_REQUIRED);

Or, set the default session property for all .htm files in and below a particular
directory (where ’/’ represents the root of the path) or for page builder files
that use the directory/file name naming convention:

myAccess.SetSessionProperty(’/’,SESSION_REQUIRED);

Now you have effectively specified that, by default, a valid session is required
to view any page returned for this application or any page builder page whose
name starts with ‘/’.

HandleRequest()
if PageName.Compare(’somesecurepage’) = 0 then
if mySecurityMechanism.DisallowPageAccess(request.CurrentSession) then
-- return a message with a link to a page the user can access
-- with his current access privilege
end if;
 ... normal processing for this page..
else if....

Typical Session Management Scenarios

Chapter 7 Using Session Management 165

2. Define a session creation page that users can access to enter the information
required to create a valid session (for example, a username and password). Set
its session property to not require a valid session.

For example, define a template named login.html in the Login directory
under the documentRoot specified on the Scanner that is invoked by the
myAccess service. The session property for this template, however, cannot be
SESSION_REQUIRED, but must be set explicitly to override the default
property, as follows:

myAccess.SetSessionProperty(’Login/login.html’,SESSION_UNSPECIFIED);

3. Define a validation page that validates information entered in the login page.
Like the login page, this form must be accessible without a valid session.

If the login information is valid, this page invokes the CreateSession method
to create a session for the client.

myAccess.SetSessionProperty(’ValidateLogin’,SESSION_UNSPECIFIED);

4. Override the session-required property for any directory containing templates,
or individual templates, that do not require a valid session.

For example:

myAccess.SetSessionProperty(’BankInfo’,SESSION_UNSPECIFIED);

5. In those directories, override properties for any template or page that does
require a valid session.

myAccess.SetSessionProperty(’BankInfo/quotes.htm’,SESSION_REQUIRED);

Using the SessionPropertyConfig file Alternately, you could specify all the
above session properties in the Session Property configuration file.

➤ To specify session properties using a session property file

1. Assign the session properties file name.

For example, invoke the following code in an initialization method:

 myAccess.SetSessionPropertyConfigFile(’sessprop.cnf’);

This file should be placed in the directory as indicated by the environment
variable FORTE_WW_DOCUMENT_ROOT. If this variable is not defined, you
must specify the absolute path to the file.

Typical Session Management Scenarios

166 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

2. In the session properties file, add rows to specify session properties for a path
or file.

To assign the same properties as in the previous programmatic steps, the file
would look like the following:

Now, assume a user requests the following URL:

http://www.forte.com/cgi-forte/fortecgi?ServiceName=MyAccess
&TemplateName=Bankinfo/stockquotes.htm

The service MyAccess knows that requests for this template must be accompanied
by a valid session. To determine whether the incoming request has a valid session,
the service MyAccess invokes the ValidateSession method on the HTTPAccess
class.

The ValidateSession method simply compares the time since the last timestamp
for the session to the session’s timeout interval (HTTPSession.SessionTimeOut),
and returns TRUE if the session has not timed out.

About SESSION_REQUIRED
The following scenarios describe two ways you might use SESSION_REQUIRED.

All Pages are Available to All Users
In the first scenario, assume the following application characteristics:

• All pages are accessible to a user request associated with a valid session.

• A valid session is simply any session that has not expired. No additional
information or qualification is required.

 /,SESSION_REQUIRED
Login/login.html,SESSION_UNSPECIFIED
ValidateLogin,SESSION_UNSPECIFIED
BankInfo,SESSION_UNSPECIFIED
BankInfo/stockquotes.htm,SESSION_REQUIRED

Typical Session Management Scenarios

Chapter 7 Using Session Management 167

In this scenario, you simply create a session on each user’s first request, as long as
the session criteria (for example username and password) entered by the user are
valid. Then, any pages or templates requiring a valid session are accessible
assuming that a valid session accompanies the request for the page or template. All
pages and users are treated “equally.”

(This is demonstrated in the previous example—the login and validation pages are
accessible without a session, but all other pages require a valid session.)

Different Pages are Available to Different Users
A more complex scenario might require more conditional access management—for
example, when a valid session does not necessarily confer the right to see all pages
in the application. Access to a given page depends on access rights of the
requesting client. That is, all users and pages are not equal. The application defines
what constitutes a valid session based upon some criteria, such as:

• username as entered in a login page, or perhaps as looked up in an access
control database

• the client host (associated with the CGIEnv object in HTTPAccess)

• any other criteria that may be saved in the session object

In traditional window applications, access to each window is controlled by the
parent window, so typically the security check code goes in the parent window. In
contrast, in a Web application any page can be requested from any other page, so
the security check code must be controlled from one central place. In
WebEnterprise, the ValidateSession method fills that purpose. The
ValidateSession method is invoked for each request for a SESSION_REQUIRED
page or template returned by the Web access service.

Typical Session Management Scenarios

168 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

This scenario requires overriding the ValidateSession method to include additional
session validation code such as the following:

-- The default ValidateSession checks for expiration of timestamp.
-- Must invoke it first.
if super.ValidateSession(request) = FALSE then
return FALSE;

end if;
begin
-- The access service decides whether the requested page should
-- be allowed to be returned to the client. If different pages are
-- to be handled differently, this is where the code goes.
if request.TemplateName = ’securePage.html’ then
mySession = request.CurrentSession;

-- userName was previously added to the session data in
-- the validateLogin page

loginID : TextData = (TextData)(mySession.GetSessionData(’userName’));
-- the application’s security mechanism will decide whether the
-- current user has access rights for viewing the requested page.

if mySecurityMechanism.AllowPageAccess

(‘SecurePage.html',loginID) = TRUE then
 return TRUE;

-- If ValidateSession returns TRUE, there is
-- a valid session that can access the requested page/template.

else
return FALSE;
-- If ValidateSession returns FALSE, the page will not be returned
-- to client.
end if;

-- For a SESSION_REQUIRED page, if ValidateSession returns FALSE,
-- the Web access service redirects the user to the URL indicated
-- by SessionCreationURL.

end if;
end;
return TRUE;

Typical Session Management Scenarios

Chapter 7 Using Session Management 169

About SESSION_AUTOCREATE
The SESSION_AUTOCREATE property is useful when an application has many
pages, all of which may be accessed in any order by the client, and all of which
potentially require client session tracking.

A good example is a retail catalog example like ShopCart, where the catalog has
numerous pages or items. The application should track a session, no matter from
what page a user enters the application. For example, even if a user uses a
bookmark to jump to a product he had previously bookmarked, the application
should allow this type of user navigation.

Case 1: Using SESSION_UNSPECIFIED This type of application could use the
default SESSION_UNSPECIFIED property. In this case, for each new template (each
item page), you would have to include a FORTE tag at the top of the template like
the following:

<?FORTE Execute CreateSessionIfNoneExists>

Then you would have to code the tag CreateSessionIfNoneExists to create a valid
session used to access this site.

And, if any page in the catalog is returned by a page builder service, you would
have to add code to check for an existing session in the HandleRequest method.

Case 2: Using SESSION_AUTOCREATE An alternative to the above case is to
use the SESSION_AUTOCREATE property. When this property is specified for a
page or template, the Web access service automatically creates a session for any
request for the template or page. This session property is a reasonable alternative
for all of the catalog templates or pages in a catalog application, avoiding the need
to explicitly write the code to create a session and embed it in each template or
page.

HandleRequest()
if PageName.Compare(’SomeSessionRequiringPage’) = 0 then
if request.CurrentSession = NIL then
self.WebSessionMgr.CreateSession(request);
end if;
 .. normal processing for this page..
else if....

Implementing Session Management

170 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Implementing Session Management
Using WebEnterprise session management is optional. However, for all but the
most simple, internal applications, you will probably want to use standard
WebEnterprise session management.

To use session management, you must perform a number of steps, summarized
here, shown in Figure 7-2, and explained in depth in the remainder of this chapter.

Figure 7-2 Steps for Implementing Session Management

➤ To use WebEnterprise session management

1. Set (customize) desired session management attributes. See “Initializing
Session Management Attributes” below.

2. Enable session management. See “Enabling Session Management” on page 173
below.

3. Set session properties. See “Setting Session Properties for Pages” on page 176.

4. Define and use state information. See “Working with State Information” on
page 179.

5. Modify URLs. See “Modifying URL Links for Session Management” on
page 182.

Set attributes EncryptKey,
SessionCreationURL, SessionTimeOut

Use
Cookies

in code:
use SetSessionPropertyConfigFile

in code:
invoke SetSessionProperty

If SessionProperty=UNSPECIFIED
Invoke CreateSession at appropriate
entry points

If SessionProperty=REQUIRED
Override ValidateSession &
WebSessionMgr, if necessary

Invoke EnableSessionManagement

(Set Session Properties)

Implement Session Management

Implementing Session Management

Chapter 7 Using Session Management 171

Alternatives to session management If you do not enable session management,
then any user may access any page of your application and you cannot set a
timeout interval after which Web clients will be automatically disconnected from
your application. However, with some coding you can maintain state information
for Web application users, by using one of the following techniques:

• embedding state information in URLs or using data in hidden form fields

• using cookies (See “Using Cookies” on page 186)

Initializing Session Management Attributes
If you use session management, you can customize the following settings:

• encrypt key (use SetEncryptKey method)

• timeout interval (use SetSessionTimeOut method)

• session creation page (set SessionCreationURL attribute)

If you use an administration window, you can change these whenever you start the
application. If you do not need to change them often, you can use the initialization
code. While technically these settings are optional, you will usually set them.

Setting the Encrypt Key
The encrypt key is used to encrypt session IDs. Although there is an arbitrary
default encrypt key, you probably will want to set your own key. To do so, invoke
the SetEncryptKey method on your HTTPAccess service object. See “Session IDs”
on page 159 for more information about how the encrypt key is used, and the
iPlanet UDS online Help.

Setting the Session Timeout Interval
The timeout interval is the time interval after which an inactive session expires. The
default timeout interval is 30 minutes.

To set the timeout interval, invoke the SetSessionTimeOut method on your Web
access service. For example, to set the session timeout interval to 15 minutes, you
could include the following code in the Init method for the service object’s class:

-- ’yy:mm:dd:hh:mm:ss:ms’
shopSessionTimeout : IntervalData = new(

value = ’00:00:00:00:15’);
CartService.SetSessionTimeOut(shopSessionTimeout);

Implementing Session Management

172 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

When you set a timeout interval for your application, you may want to let your
users know what the interval is, so that they are not surprised if their sessions time
out.

Setting the SessionCreationURL
The SessionCreationURL attribute points to a login page, where users have the
option of entering the information required to start a new session. For more
information, see “Session Creation Page” on page 85.

While you are not required to set a value for this attribute, if you do not do so and
users attempt to access a page or template requiring a session, they will get an
exception. If you set this attribute, then users are automatically redirected to the
page that you specify, where they have the option of entering the information
required to start a new session.

Set this value to a page that is designed to gather the information required to start
and validate a new session for a client. This page must have the session property
SESSION_UNSPECIFIED, so that users can enter the page without having an
existing session.

The ShopCart example sets this attribute as follows:

For more information, see the iPlanet UDS online Help.

SessionCreationURL = new;
SessionCreationURL =
task.Part.OperatingSystem.GetEnv(’WWW_CGI_URL_BASE2’);

SessionCreationURL.Concat(
’?ServiceName=ShopCartService&TemplateName=/Shopping/shopmain.htm’);

Project: ShopCartAccess • Class: PaymentAccess • Method: Init

Implementing Session Management

Chapter 7 Using Session Management 173

Enabling Session Management
By default, all session management features are disabled.

➤ To enable session management

1. In a method in the initialization code for your application, invoke the
EnableAccess method on the Web access service object.

For information on initializing an application, see “Initialization Tasks” on
page 212.

2. Invoke the EnableSessionManagement method on the same service.

This creates a Web session manager and session table for session management.

These two methods must be invoked in this order. For more information on either
method, see the method descriptions for the class in the iPlanet UDS online Help.

Multiple Web Access Services Sharing Sessions
Multiple Web access service objects within a single application can share a single
session table and session manager. This configuration allows applications with
multiple Web access services to scale to accommodate many users. Using this
design, one session manager performs session management tasks for multiple Web
access service objects, using one session table. After the session manager has
created a session, all services can see and update the session object.

➤ To allow multiple Web access services to share sessions

1. Invoke the EnableAccess method as described in the previous section.

2. Invoke the EnableSessionManagement method as described in the previous
section.

This creates a Web session manager and session table for session management.

3. Each subsequent Web access service wishing to share the session table should
invoke the ShareSessions method (instead of the EnableSessionManagement
method), specifying the name of the Web access service from Step 1. Then each
service can share and update the session data in the session table.

Implementing Session Management

174 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Optional Customizations
The following sections describe some ways that you can customize session
management features, depending upon the requirements of your application.

Deleting or Timing Out Sessions
Because end users communicate with an iPlanet UDS Web application only by
initiating requests for Web pages, a user can stop using your Web site without any
explicit notification to your application. You may decide that letting sessions time
out is sufficient for your application, or you may take a more active role in deleting
sessions at appropriate points in your application.

By default, a session will time out after 30 minutes, based on the attribute
SessionTimeOutInterval. This means that a session object in the session table will
be deleted when the time since its last timestamp exceeds 30 minutes. You can
change this timeout interval as described above. You can also force a validation
using the method ValidateSession.

If you want to explicitly terminate a session, you use the DeleteSession method
from the SessionMgr class. Deleting a session may be appropriate in some
applications to effect a “transaction”; if the end user continues on in the
application, another new session can simply be created. The ShopCart example
explicitly deletes sessions when the user decides to make a purchase, and starts a
new session if the user then resumes shopping.

-- Handle ProcessOrder:
-- Once the user confirms the order, we must delete the
-- current session so user can start another shopping basket.
elseif pageName.Compare(source=’ProcessOrder’,ignorecase=TRUE) = 0 then

 --Before returning to non secure browser mode you
 --must destroy the current session.
 self.WebSessionMgr.DeleteSession(request);

 response.CookieParameters = NIL;
 redirectLocation : TextData = new;
 redirectLocation =
 task.Part.OperatingSystem.GetEnv(
 ’WWW_CGI_URL_BASE’);
 redirectLocation.Concat(
’?ServiceName=ShopCartService&TemplateName=shopping/shopmain.htm’);
 response.Location = redirectLocation.Value;
 response.AssignResponse(
 ’Forte Shopping Cart... Taking you back to Shopping’);

Project: ShopCartAccess • Class: PaymentAccess • Method: HandleRequest

Implementing Session Management

Chapter 7 Using Session Management 175

Making Session IDs Persistent
As described under “Session IDs” on page 159, session IDs are not persistent unless
you customize your application. By default, WebEnterprise maintains state
information for active sessions in a session table that is stored as a cache table, in
memory on the server. This means that if the server goes down unexpectedly, the
session table is lost and cannot be recreated. All session IDs are lost, and any active
Web users in mid-session must get a new session in order to continue, and their
previous session data is lost.

You can make session IDs persistent by adding persistent storage (typically a
database, or a file) to store IDs and any session data that should be maintained
between sessions.

Specifying a Non-Default Session Manager
If you choose to customize any session management features, you may need to
create your own session manager object.

➤ To create your own session manager

1. In your application initialization code, invoke the EnableSessionManagement
method to start session management.

2. Invoke the SetWebSessionMgr method in the HTTPAccess class.

3. Invoke the EnableAccess method.

These methods must be invoked in this order.

Mixing Secure Sockets Layer (SSL) and non-SSL
If your application requires the use of Secure Sockets Layer (SSL) for security, you
can use multiple Web access service objects in the same application: one service
object using HTTP and the secure service object using HTTPS. Depending upon
your requirements you can do this in either of the following ways:

• You can use multiple Web servers with the same Web service.

If session management is enabled and using cookies, you must initialize the
default cookie’s DomainName. Both Web servers must have the same domain
name.

If session management without cookie support is allowed, then you should not
use the variable $$FORTE.ExecURL to create links to a different Web server
(because the default ExecURL is a property on the Web access service object
that represents the default Web server). Instead you should use the BuildURL
method to construct the URL containing the embedded session ID.

Setting Session Properties for Pages

176 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

• If many pages will be accessed over the SSL connection, you can create a
second distinct Web access service object for the HTTPS server.

In this case, you must create two HTTPAccess subclasses, one for each port.
The two Web access service objects should share sessions. The functionality of
the state management is encapsulated in a SessionMgr class that is the
WebSessionMgr attribute on the HTTPAccess subclass. By default, the Web
access service creates its own instance of the SessionMgr class. To enable two
Web access services to share sessions, you must assign the SessionMgr instance
for one Web access service object to the other, using the ShareSessions
method. If the two Web access service objects run in different partitions, then
the SessionMgr class must be a distributed reference.

Setting Session Properties for Pages
As described in “Session Properties for Web Pages” on page 157, session properties
determine whether a valid session is required in order to return a page to a Web
browser. You can set session properties in the following ways:

• Use a session property file to set session properties for directories of templates,
or single templates. (See “The Session Property File” on page 177.)

• Invoke the SetDefaultSessionProperty method on your Web access service,
for all pages and templates returned by that service.

• Set the session property programmatically on individual pages and templates,
using the SetSessionProperty method on the HTTPAccess class.

Precedence Since session properties can be specified in more than one way, an
order of precedence is defined. The order is the same as the list above, the first item
having the lowest precedence. The session property set for an individual page or
template always takes precedence over a session property set for a directory or
group of pages.

Setting a Default Session Property
You can assign a default session property for all pages returned by a single Web
access service object. A session property applies to all Web pages returned by the
given Web access service, unless you override the session property for one or more
pages, as described in the section that follow.

To set the default property for a Web access service object, invoke the method
SetDefaultSessionProperty.

Setting Session Properties for Pages

Chapter 7 Using Session Management 177

As with HTML templates, you can use SetDefaultSessionProperty on a Web access
service object to set properties for any pages generated by a page builder method
or page builder service object. The session property applies to all the page builder
pages unless you override the session property for one or more pages with the
SetSessionProperty method, as described under “Page Builder Pages” on page 178.

The Session Property File
You can use a session property file to set and modify session properties for all
templates (HTML files) that can be returned by a single Web access service. If you
have multiple access services, you must create one session property file per access
service.

A benefit of using this file is that you can change session properties for pages while
a Web application is running. If the session property file is updated, the Web access
service automatically incorporates the updates.

Format The session property file expects a single row for each directory or file
with the format: path, session-property. A comma is required between the two
elements. White space is insignificant. You can include comments using either //
or --.

The pathname must not contain ‘..’ (the shortcut for relative paths). This restriction
is for security purposes; it prohibits someone from bypassing the session property
specifications. A path or filename for a template that contains ‘..’ raises a standard
iPlanet UDS “Invalid Request” exception.

Example
A sample file is shown in Code Example 7-1.

NOTE This file can not include any pages that are returned by the page
builder service object.

Code Example 7-1 Sample Session Property File

/wc/, SESSION_UNSPECIFIED
/wc/catalog, SESSION_AUTOCREATE
/wc/orders, SESSION_REQUIRED
/wc/orders/login.htm, SESSION_UNSPECIFIED

Setting Session Properties for Pages

178 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Because the root level directory /wc has the SESSION_UNSPECIFIED session
property, end users can get to the login page (login.htm). While processing the
login page, the Web application creates a session. Users need not have a valid
session to view any pages in the directory /wc/catalog, but must have a valid
session in order to view any other pages from the directory /wc/orders.

Deleting session properties Do not delete session properties by deleting a row
from the session property file. Instead, you must modify the entry in the session
property file to re-specify the session properties in their new form.

Overriding Session Properties for Individual
Pages
You can override session properties for individual pages, for subdirectories of
HTML files, and for groups of pages generated by a page builder service object.

Pages in Files and Directories
You can override the session property for an individual page that was not returned
by the page builder service object in one of two ways:

• Update the session property file to set the session property for the template.

• Set the session property programmatically, using the SetSessionProperty
method of the HTTPAccess class.

Page Builder Pages
You can override the session property for a page builder page only by calling the
SetSessionProperty method of the HTTPAccess class. Because this method uses
the directory/file name convention to indicate groups of files, if you want this
method to apply to a group of page builder files, you must use the directory/file
name naming convention to name these pages.

For example, to set a session property for a group of non-page-builder pages stored
in the PAGEX directory, you can invoke SetSessionProperty and specify
PAGEX, the directory where these pages are stored. To apply this same method
invocation to a group of page builder pages, start all their names with ‘PAGEX/’.
The method invocation on the PAGEX directory would apply to pages named
PAGEX/A, PAGEX/B, and so on, but would not apply to pages named MYPAGE1
and APAGE/REL.

Working with State Information

Chapter 7 Using Session Management 179

The following method invocation sets the SESSION_REQUIRED session property for
the page builder pages named PAGEX/A, PAGEX/B, and so on:

myAccess.SetSessionProperty(’PAGEX’,SESSION_REQUIRED);

Working with State Information
State information is information that must be maintained for a single user of an
application. For example, when a user of the SoftWear Catalog application places
his first order, a shopper ID is stored as state information for the duration of the
shopping session. All subsequent orders placed by the user are added to a single
shopping basket, which the user can view at any time. When the shopper checks
out, the shopper ID is no longer valid.

The data that constitutes state information is always application-dependent. State
information may range from just a unique ID, to a record of the entire path of Web
pages touched by an individual user. The purpose of state information is to capture
and use whatever information is necessary to meet the needs of the user and the
application.

You update state information programmatically, as the Web user moves from page
to page, based upon actions taken by the user or by data entered or selected by the
user. You can store short term information (such as the ID of an item being ordered
in this session), and, if you use persistent storage for state information, you can
store long term information that does not change between sessions (such as the
user’s credit card number).

You can track state information for templates processed by the scanner service and
for pages built by the page builder service. A session object contains state
information for each active session.

NOTE If you want to enforce any type of session management on a static
page and you cannot use cookies to do so, then you must use either
the scanner or the page builder service object to return the page with
state management implemented. This is one circumstance in which
you would use an iPlanet UDS service object to return a static page
(and in which you should not maintain the static page on the Web
server).

Working with State Information

180 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Defining What Constitutes State Information
You can manage (that is, store and retrieve) state information using either one of
two general approaches:

• Use the predefined class HTTPSession, and manage session data using
name-value pairs.

• Subclass the HTTPSession class, and manage session data using the custom
attributes you define on the subclass. You would first define each attribute to
be a potential type of session data.

Using the HTTPSession class The predefined HTTPSession class offers total
flexibility with respect to what data can be stored and retrieved for a session. This
flexibility is achieved because all session data is set using name-value pairs, and
fetched using the name(s) used to save it. Thus, you can save any data for any
session, and the data saved for one session can be totally different in value and in
type from the data saved for another session. To retrieve data, you simply ask for
the value associated with the name you used to store the data.

For example, you could use code like the following to add new session data:

request.CurrentSession.SetSessionData(‘myDataName’,object);

Then you must subsequently cast the object to its runtime type.

Using a Subclass of HTTPSession for State
Information
You may find that subclassing the HTTPSession class makes state management
somewhat easier.

Advantages and disadvantages By defining specific attributes in your subclass,
you can eliminate the use of name-value pairs for looking up and saving data into
the session. You also gain some additional type checking when you define the data
types for the attributes on the subclass, and you can add arrays of session data, if
necessary. However, you should note that you can define only one subclass of
HTTPSession per application. The effect is that you are predefining exactly what
type of data constitutes session data; so while you gain additional checking, you
lose flexibility in what data can be stored as session data.

If you use a subclass of HTTPSession, you might use code like the following to add
new session data, and you do not need to cast the input object:

(MyHTTPSession)(request.CurrentSession).myDataName=object;

Working with State Information

Chapter 7 Using Session Management 181

➤ To use a subclass of HTTPSession to store session data

1. Create a subclass of HTTPSession.

2. Define attributes and data types for the subclass for each type of session data
that you may wish to save or retrieve for a session.

3. Instead of using the SetSessionData and GetSessionData methods on the
HTTPSession class, you set and retrieve values for the custom attributes.

Using Persistent Storage for State Information
By default, session management uses a session table to store state information.
Because the session table is stored only in memory, if the partition in which it is
created shuts down unexpectedly, the session table is lost and its data cannot be
reconstructed. If this risk is too high for your application, you should use persistent
storage for your state information. Another advantage of using persistent storage is
that state information can persist across separate sessions for the same client.

To implement persistent storage you must write the state information to a file or
database as well as the session table. Then, if the partition containing the session
table shuts down, the state information can be retrieved from either the file or
database. Similarly, if a partition replicated for failover starts up, it can read from
the file or database and resume any sessions that were in progress when the session
table was lost.

Using cookies While you can use cookies for persistent storage, this approach is
less reliable and secure than maintaining the state information centrally on a
server, primarily because users can enable or disable the use of cookies at will.
Also, if one user initiated multiple browser sessions from multiple machines, the
sessions would be interpreted as two distinct sessions rather than parts of the same
session (originating from the same user).

Modifying URL Links for Session Management

182 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Modifying URL Links for Session Management
If you use session management, you must modify all URL links in your application
to use a fully qualified domain name rather than a simple node name. The
following changes are required:

• Set the attribute DefaultCookie on your subclass of HTTPAccess.

• Modify links to use the iPlanet UDS system variable $$FORTE.ExecURL.

You should modify all links in all pages and templates, including static pages.
If you do not modify links on static pages, those pages cannot participate in
session management.

Your links should explicitly use the suffix “.htm” for the TemplateName
parameter— the suffix is not assumed.

Setting the DefaultCookie Attribute
In your application initialization code, you should set the value for the
DefaultCookie attribute for your Web access service. Setting this attribute is
required to obtain consistent treatment of URL links by combinations of various
Web servers and browsers; if you do not set this value, links executed by some
combinations of server and browser may not work as expected.

Specifically, you must set the Domain attribute for the HTTPCookie value for the
DefaultCookie attribute, to contain a fully qualified domain name. You can also set
this attribute to allow multiple Web access servers in a single iPlanet UDS Web
application to share state information.

You can specify the following additional attributes for the default cookie object:

• the Expires attribute, so the browser will save a cookie after the current
browser session ends

• the Secure attribute, to assure that session IDs are only transmitted over secure
encrypted channels

Modifying URL Links for Session Management

Chapter 7 Using Session Management 183

For example, the Init method for your Web access server might include the
following:

Using the $$FORTE.ExecURL Variable in URLs
You must use the variable $$FORTE.ExecURL in all links in your templates and
pages.

If you are upgrading an existing iPlanet UDS Web application to use
WebEnterprise session management, you should modify existing links.
Specifically, you should replace occurrences of
www.yourserver.com/cgi-forte/fortecgi[.exe]/ with $$FORTE.ExecURL.

The use of the $$FORTE.ExecURL variable generates an appropriate CGI or
plug-in URL, sending all page requests through either fortecgi (or an iPlanet UDS
plug-in) that consistently enforces session management.

Setting ExecURL WebEnterprise sets the value for $$FORTE.ExecURL
automatically when you invoke the EnableAccess method, as described in “The
$$FORTE.ExecURL Variable” on page 87.

➤ To update pages and templates to use the $$FORTE.ExecURL variable

1. Update any form submissions to use $$FORTE.ExecURL.

For example, the ShopCart example submits a user’s login account and
password to the session manager to be validated (passing through the Web
access server which has enabled session management):

DefaultCookie = new;
DefaultCookie.Domain = new;
DefaultCookie.Domain.SetValue(
 task.Part.OperatingSystem.GetEnv(’WWW_COOKIE_DOMAIN’));
DefaultCookie.Path = new(Value=’/’);

Project: ShopCartAccess • Class: PaymentAccess • Method: Init

<form action="$$FORTE.ExecURL" method="POST">

HTML File: exstacct.htm

Modifying URL Links for Session Management

184 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

2. Update the URL links in your pages (the HTML tag HREF) to use
$$FORTE.ExecURL.

Then, when a user navigates from one page to another, the session manager
will validate that a session exists for each page which requires a valid session.
For example:

Although you must update all your URL links to use $$FORTE.ExecURL, when
you view your Web pages prior to deployment, the links will display as missing or
broken. This occurs because the value for the $$FORTE.ExecURL variable is only
established at runtime.

Session IDs in URLs
When you have enabled session management, you never need to use a session ID
explicitly. WebEnterprise automatically does what is necessary, based on whether
or not the current browser session allows, or has disabled the use of, cookies.

If the Web client’s browser does allow cookies (that is, the user has not explicitly
disabled cookies), the session ID is passed as a cookie, and the session ID does not
appear in URLs that are generated programmatically. As long as the browser
allows the use of cookies, then the session ID is passed on each request and
response as a cookie.

If an individual Web client has disabled cookies, WebEnterprise embeds the
session ID in the URL itself, as a URL PATH_INFO variable derived from the
variable $$FORTE.ExecURL. In this case, the generated URL is longer, because it
includes an encoded version of the encrypted session ID, as shown in Code
Example 7-2.

<a href="$$FORTE.ExecURL?ServiceName=ShopCartService&;
TemplateName=/Shopping/products.htm&;category=$$currCategory.ID"
 target="main">$$currCategory.Name

HTML File: frcontent.htm

Code Example 7-2 A URL with an embedded Session ID

http://www.forte.com/cgi-forte/fortecgi/frte_sid0A1E197E272D1C2321271A2818792678?
ServiceName=ShopCartService&TemplateName=/Shopping/products.htm&category=0001

Alternate Ways to Manage State Information

Chapter 7 Using Session Management 185

Alternate Ways to Manage State Information
While the session management features of WebEnterprise provide a complete
approach to managing browser sessions and state information, if you have a simple
application you can implement state information using other approaches, briefly
described below.

While these alternate approaches can be used in WebEnterprise, they require
additional code and logic to construct and parse the state information, and are
subject to restrictions, such as length and content of URLs. Generally speaking, it is
preferable to use the session and state management features described earlier in
this chapter.

Using Hidden Form Elements
If your state management requirements are relatively simple, you can use hidden
form elements on the Web page to set, update, and communicate state information.

For example, the Checkout method in the SoftWear application stores the shopper
ID as a hidden form element on the Checkout page. The shopper ID is stored on the
client as a hidden form element as well as in the URL for links for other pages. The
Checkout method gets the shopper’s ID from the incoming Web request, uses that
ID to get the shopper’s shopping basket data, constructs an HTML page from this
data, and adds the ID as a hidden form element on the outgoing Checkout page.

Using Page Parameters in Generated URLs
Another alternative is to embed state information as page parameters in URLs that
are generated by the application and used as links to other Web pages in the
application.

Alternate Ways to Manage State Information

186 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Using Cookies
You can use cookies to construct text strings containing session-specific
information, and store the cookies on the Web client when you return a Web page;
then you can retrieve, and use or modify as desired, the cookie information during
subsequent interactions, even different sessions, with that user.

Cookies can offer a sort of persistent state information. If you use cookies to store
state information, you do not risk the loss of the session table if a partition should
shut down unexpectedly. However, cookies have some limitations, including the
following:

• The content and length of cookies is limited.

• The number of cookies that can be placed on a user’s machine is limited.

• Web users can disable the use of cookies entirely.

For instructions on how to use cookies, see the class reference for HTTPCookie in
the iPlanet UDS online Help.

187

Chapter 8

Partitioning and Deployment

This chapter provides information about how to partition, test, and deploy your
iPlanet UDS Web applications. Topics covered include:

• service objects in iPlanet UDS Web applications

• default partitioning for iPlanet UDS Web applications

• modifying the configuration

• deploying the application

About Partitioning iPlanet UDS Web Applications
After creating your iPlanet UDS Web application, you should use the Partition
Workshop to perform the following tasks:

1. Partition the final application for deployment.

2. Make the appropriate application distributions.

Configuring the application When you are ready to partition the application for
deployment, use the Configure as command to configure the main project for the
application. If your application includes a standard iPlanet UDS client (that is, a
window-based client), use the Configure as > Client command. If your application
does not include a standard iPlanet UDS client (only a Web page-based user
interface), be sure to use the Configure as > Server command.

The following sections provide background information about the service objects
in Web applications and the default partitioning scheme iPlanet UDS provides for
Web applications.

About Partitioning iPlanet UDS Web Applications

188 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

About Web Application Service Objects
Chapter 3, “Setting Up a Web Application,” describes how you create the service
objects for your Web application. When you partition your Web application using
the Partition Workshop, iPlanet UDS creates a default configuration for the
application based on those service objects.

Briefly, the service objects in your Web applications are:

The following two sections provide further information about the Web access and
page builder service objects.

Web Access Service Object
The HTTP project can run only on iPlanet UDS server platforms. Therefore, when
you partition your Web application, you must assign the partition that contains the
Web access service object to iPlanet UDS server node. You cannot assign your Web
access service object to a Macintosh or Windows node.

Service Object Description

Web access service object The Web access service object, based on the HTTPAccess
subclass, cannot be replicated. In addition, the Web access
service object can be assigned only to a UNIX or NT server.
It cannot run on Macintosh, VMS, or Windows.

page builder service object This service object can be replicated.

scanner service object This service object can be replicated.

business service object Your application can define one or more standard iPlanet
UDS service objects, which can be replicated as usual.

About Partitioning iPlanet UDS Web Applications

Chapter 8 Partitioning and Deployment 189

The fortecgi program and the iPlanet UDS NSAPI plug-in use a single port number
to locate the Web access service object; therefore, the Web access service object
cannot be replicated for load balancing or failover. Because the Web access service
object cannot be replicated, we recommend creating a separate page factory service
object (page builder or scanner) to handle the bulk of the processing. The partition
that contains the page builder or scanner service object can be replicated for load
balancing to provide improved performance.

The default configuration for your Web application assigns all the service objects to
a single partition. If your application does not require high performance, you can
include your Web access service object on the same partition with your page
builder or scanner service object. In this case, however, you cannot replicate the
partition.

Page Builder Service Object and Scanner
Service Object
The page builder service object and the scanner service object are standard iPlanet
UDS service objects.

Using load balancing You can replicate the page builder and scanner service
objects for load balancing or failover. If you have a high-performance application,
we recommend that you assign the page builder and scanner service objects to
their own partitions, which you replicate for load balancing.

NOTE We recommend that the partition that contains the Web access
service object be compiled, which provides improved performance
for the partition.

CAUTION If you compile the partition that contains the Web access service
object, you must be sure to install the compiled HTTP library in the
deployment environments where your iPlanet UDS Web application
will be running. The partition that contains the Web access service
object needs to access the HTTP library, and if that partition is
compiled, the HTTP library that it uses must also be compiled. See
theWebEnterprise Installation Guide for information about the
compiled HTTP libraries that are provided as part of the
WebEnterprise product.

About Partitioning iPlanet UDS Web Applications

190 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Using code generation We also recommend that the partition that contains the
page builder or scanner service object be compiled, which provides improved
performance for the partition.

Default Configuration for Web Applications
When iPlanet UDS partitions an application, it assigns all compatible service
objects to the same partition. If none of your service objects have replication turned
on, all the service objects in your Web application will be on a single partition.

There are several changes you might wish to make to the default configuration:

• move the Web access service object to its own partition and mark that partition
to be compiled

• move the page builder service object and scanner service objects to their own
partitions, replicate those partition for load balancing and mark the assigned
partitions to be compiled

• move the business service objects to their own partitions, replicate those
partitions for load balancing, for failover, or for both load balancing and
failover, marking the assigned partitions to be compiled if desired

See “Modifying the Configuration” on page 191 for information about how to
make these changes.

CAUTION If you compile the partition that contains a scanner object, you must
be sure to install the compiled HTTP library in the deployment
environments where your iPlanet UDS Web application will be
running. The partition that contains the scanner service object needs
to access the HTTP library, and if that partition is compiled, the
HTTP library that it uses must also be compiled. See the
WebEnterprise Installation Guide for information about the compiled
HTTP libraries that are provided as part of the WebEnterprise
product.

Modifying the Configuration

Chapter 8 Partitioning and Deployment 191

Modifying the Configuration
A Guide to the iPlanet UDS Workshops explains in detail how to modify a
configuration.

This section provides some hints about typical changes you might need to make to
the configuration for an iPlanet UDS Web application, including:

• creating a new partition for the Web access or page builder service object

• modifying a service object definition (turning on load balancing)

• replicating partitions

• assigning partitions to nodes

• moving partitions from one node to another

• creating a compiled partition (code generation)

Creating a New Logical Partition
If you need to place your Web access service object or page builder service object
on a separate partition, you must create a new partition to contain it.

Use the New Logical Partition command to create a new partition for the Web
access or page builder service objects.

➤ To create a logical partition

1. In the Logical Partition browser, select the service object you want to be in the
new partition.

2. Select the Component > New Logical Partition command.

Modifying Service Object Definitions
You might need to change the definitions of the service objects in your
configuration. For example, you might wish to turn on load balancing for the page
builder or business service objects. Remember, you must not replicate the Web
access service object.

Modifying the Configuration

192 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

➤ To change the service object definition

1. In the Logical Partitions browser, double-click the service object name to open
the Service Object dialog.

2. In the Service Object dialog, update the appropriate properties. Properties that
you are not allowed to change are read only.

To turn on load balancing, click the Load Balancing toggle.

Note that changing the definition of a service object to replicated will cause it to
move from the original server partition to a replicated partition.

Assigning Partitions
After you have created a new logical partition for your Web access or page builder
service object, you need to assign it to the appropriate node.

To assign a logical partition to a node, you simply drag the logical partition onto
the appropriate node. The node must provide the resources necessary to run the
particular partition.

Moving Partitions
To move a partition from one node to another, simply drag the partition to its new
location. If the node is incompatible, iPlanet UDS displays an error dialog
explaining why the service object cannot be moved.

Replicating Partitions
After you have changed the definitions of one or more service objects to allow
replication, you can replicate the partition or partitions that contain them. A
replicated partition is a partition that contains a service object defined as replicated
for load balancing or failover. When a logical partition is replicated, you can assign
it to any number of nodes in the environment.

Modifying the Configuration

Chapter 8 Partitioning and Deployment 193

➤ To assign a logical partition

1. In the Logical Partitions browser, select the logical partition you wish to assign.

2. Drag the logical partition to the node to which you wish to assign it.

The node must provide the resources necessary to run the particular partition.

Router partition When the service object in a partition is replicated for load
balancing, iPlanet UDS automatically creates an extra partition called a router
partition. The purpose of a router partition is to route the traffic between the
partitions that are load balancing work for the service. Although the router
partition is usually assigned to the same node as one of the server partitions that it
is managing, it can be on any server node in the environment. You can move it if
you wish.

Replication Count property To replicate a partition on a given node, you use the
Replication Count property on the Partition Properties dialog. This provides the
total number of partitions to be automatically started on the node when the
application starts.

➤ To set the Replication Count property for an assigned partition

1. Double-click the assigned partition name, or select the assigned partition and
choose the Component > Properties… command.

The Assigned Partition Properties dialog opens.

2. On the Assigned Partition Property dialog, enter the total number of partitions
to be started in the Replication Count field.

When the application starts, iPlanet UDS automatically creates the number of
replicates you specify (unless the system manager overrides your setting).

CAUTION Do not move the Web access service object onto the router partition.

Modifying the Configuration

194 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Creating a Compiled Partition (Code Generation)
You can compile any partition in your Web application, except a partition that
contains a Web access service object or scanner service object and that is assigned
to a VAX/VMS node. iPlanet UDS does not provide a compiled version of the
HTTP library for VAX/VMS platform. Therefore, a partition running on
VAX/VMS that contains a Web access or scanner service object must be interpreted
so it can access the interpreted HTTP library.

Compiled property To turn on code generation for a partition, you turn on the
Compiled property for the assigned partition.

➤ To set the Compiled property for an assigned partition

1. Double-click the assigned partition name, or select the assigned partition and
choose the Component > Properties… command.

The Assigned Partition Properties dialog opens.

2. On the Assigned Partition Property dialog, turn on the Compiled toggle.

After specifying that the partition is compiled, you may need to perform extra
steps to produce the application distribution. See iPlanet UDS Programming Guide
for information.

Using automatic compilation Note that if any of your partitions are marked as
compiled and you wish to use the Auto-Compile option of the Make Distribution
command, you must ensure that your environment is set up for automatic
compilation. (See the iPlanet UDS System Management Guide for information on
setting up your environment for automatic compilation.) If your environment is
not set up for automatic compilation, you cannot use the Auto-Compile option and
must compile the partitions by hand (see A Guide to the iPlanet UDS Workshops for
information about compiling partitions).

CAUTION If you compile the partitions that contain the Web access service
object and scanner service objects, you must be sure to install the
compiled HTTP library in the deployment environments where your
iPlanet UDS Web application will be running. The partitions that
contain the Web access service object and scanner service object
need to access the HTTP library, and if these partition are compiled,
the HTTP library that they use must also be compiled. See the
WebEnterprise Installation Guide for information about the compiled
HTTP libraries that are provided as part of the WebEnterprise
product.

Deploying the Application

Chapter 8 Partitioning and Deployment 195

Deploying the Application
To deploy a Web application, you must partition the application for each
deployment environment in which it will run. After the application is correctly
partitioned, you must create a separate distribution for each deployment
environment.

➤ To deploy your Web application

1. In the Repository Workshop, double-click the main project for your Web
application.

2. In the Project Workshop, choose the appropriate File > Configure as command.

3. In the Partition Workshop, select the environment from the environment drop
list.

The Partition Workshop opens the configuration for the project or creates a
default configuration if none already exists.

4. Modify the configuration as desired.

See “Modifying the Configuration” on page 191 for information on modifying
the default configuration.

5. When the configuration is complete, use the Make Distribution command to
make the application distribution.

The application distribution is a representation of the application outside the
repository—you use the application distribution to install the application in an
environment.

Note that if any of your partitions are compiled and you wish to use the
Auto-Compile option of the Make Distribution command, you must ensure
that your environment is set up for automatic compilation. (See the iPlanet
UDS System Management Guide for information on setting up your environment
for automatic compilation.) If your environment is not set up for automatic
compilation, you cannot use the Auto-Compile option and must compile the
partitions by hand (see A Guide to the iPlanet UDS Workshops for information
about compiling partitions).

6. The system manager must take the application distribution and install it in the
environments (see the iPlanet UDS System Management Guide for information).

7. If you are deploying in more than one environment, select the next
environment, make modifications to the configuration if necessary, and use the
Make Distribution command to create the distribution. Repeat for any number
of environments.

Deploying the Application

196 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

See the iPlanet UDS Programming Guide for complete information about
partitioning applications and making distributions.

When you install the compiled HTTP libraries, you must perform the following
platform-specific actions:

CAUTION Because all iPlanet UDS Web applications use the HTTP library, it
must installed in all deployment environments where the Web
application is deployed. If any of the partitions in your Web
application that access the HTTP library are compiled, the compiled
form of the HTTP library must be installed in the deployment
environment. WebEnterprise provides the HTTP library in both
interpreted and compiled forms for installation in deployment
environments. See WebEnterprise Installation Guide for information.

Platform Compiled HTTP Library Setup

NT Add $FORTE_ROOT/userapp/http/cl0 directory to the “PATH”
environment variable.

UNIX After you have compiled a partition that accesses the compiled HTTP library,
do not move the compiled HTTP library (for example, move $FORTE_ROOT to
a different disk or directory). If you do move the library after the partition is
compiled, you must re-compile the partition so the partition and library can be
correctly linked.

VMS You must define an “HTTP” logical name in the Forte_Gbltable, translating to
FORTE_ROOT:[USERAPP.HTTP.CL0]HTTP.EXE.

197

Chapter 9

Managing iPlanet UDS
Web Applications

This chapter describes several administrative aspects of iPlanet UDS Web
applications, including:

• configuration options for fortecgi

• choosing between the fortecgi and fortensapi gateways

• autoregistration and manual registration

• the fortecgi.dat file

• using the Secure Sockets Layer (SSL)

• troubleshooting

About iPlanet UDS CGI and iPlanet UDS Web
Server Plug-in Programs

In an iPlanet UDS Web application, the Web server communicates with the iPlanet
UDS environment in one of two ways:

• through the Common Gateway Interface (CGI) API

• through an iPlanet UDS Web server plug-in, such as the iPlanet UDS Netscape
Server API (NSAPI)

About iPlanet UDS CGI and iPlanet UDS Web Server Plug-in Programs

198 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

These two interfaces provide similar functionality using different APIs. The NSAPI
interface was developed by Netscape and is supported by their current generation
of Web servers; it is a higher performing alternative. Your iPlanet UDS Web
interface can use either one or both of these interfaces. The following sections
describe the relative advantages of each interface and options you have for setting
up each program.

Every URL sent to the Web server contains a keyword indicating which interface to
use (specifically, either the fortecgi executable or the fortensapi DLL), along with
any additional information to be passed to the program.

Using fortecgi For each incoming request that specifies fortecgi, the Web server
spawns a process that runs the fortecgi executable and forwards the additional
URL information by using environment variables and standard input. The fortecgi
program establishes a socket connection to an iPlanet UDS Web access service
object, passes the request to it, receives an HTML response page, and passes it back
to the Web server. The Web server then completes the request by returning the
response page to the browser. For a picture of this process, see Figure 2-2 on
page 34.

The fortecgi program requires the creation of a new fortecgi process for each
request and response. While process creation overhead is usually not substantial,
in some applications with heavy use or many users, this overhead can represent a
possible bottleneck.

Using a plug-in In addition to the CGI interface, Web server vendors such as
Netscape and Microsoft also offer a plug-in API to reference external services. The
plug-in API contains external interface routines in a dynamically linked library
(DLL) form. The DLL is loaded into the Web server process the first time it is
referenced and then remains resident. When an external request is received from a
browser, the server dispatches a worker thread which invokes the plug-in DLL.
The DLL uses plug-in API functions (rather than environment variables) to get the
data required for the external service call and to return an HTML response to the
client.

The plug-in API avoids the overhead of process creation that is inherent in the CGI
mechanism, and therefore is a higher-performance interface. If you require
optimum performance for many concurrent users, you should install the iPlanet
UDS NSAPI plug-in in addition to the fortecgi program.

Certification information For installation information regarding the iPlanet UDS
NSAPI plug-in, refer to the WebEnterprise Installation Guide. For information about
what platforms, products, and versions are supported by the iPlanet UDS NSAPI
plug-in, refer to the platform matrix at
http://www.forte.com/support/platforms.html.

About iPlanet UDS CGI and iPlanet UDS Web Server Plug-in Programs

Chapter 9 Managing iPlanet UDS Web Applications 199

Example
The SoftWear example application can use either the fortecgi program or the
iPlanet UDS NSAPI plug-in. The administration window, called Main Window
and shown in Figure 3-3 on page 68, contains a set of radio buttons in which you
can choose whether to use the iPlanet UDS NSAPI plug-in or the fortecgi interface.

The ShopCart example also uses the iPlanet UDS NSAPI plug-in if you set the
environment variable WWW_PLUGIN_URL_BASE.

Choosing between fortecgi and the iPlanet UDS
NSAPI Plug-In
The decision to use the fortecgi program or the iPlanet UDS NSAPI plug-in
depends primarily on the performance requirements of your application and the
availability of iPlanet UDS NSAPI plug-in for your platform.

• If your iPlanet UDS Web application uses autoregistration to register the Web
access servers, then you must install fortecgi even if the application uses the
iPlanet UDS NSAPI interface.

fortecgi is required because automatic registration is only performed by
fortecgi. However, in this case, all requests can be handled by NSAPI and
fortecgi can be used only to perform registration.

• If you use manual registration to register the Web access servers and your
application uses an iPlanet UDS Web server plug-in, you do not need to install
fortecgi.

If your application has turned basic authorization on (on the Web server), then
you must use manual registration.

With the exception of performing registration, both the fortecgi program and the
iPlanet UDS plug-ins support the same functionality in an iPlanet UDS Web
application. You do not forego any functionality by using one interface or the
other, with the possible exception of which server platforms are certified to run the
programs. For example:

• A Web server can support both fortecgi and plug-in connections
simultaneously.

• An iPlanet UDS application can generate dynamic URLs that use either
interface.

About iPlanet UDS CGI and iPlanet UDS Web Server Plug-in Programs

200 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

While the features supported are equal, some implementation details differ
depending on whether your application uses fortecgi, a plug-in, or both. These
implications are described in the following sections.

Setup Options for fortecgi and iPlanet UDS
Plug-ins
The following sections describe some options you have with respect to the fortecgi
and fortensapi programs. These options are:

• using automatic or manual registration to register a Web access service with
fortecgi or the iPlanet UDS plug-in

• changing the port at which fortecgi can be reached

(See “The fortecgi Executable” on page 205 for information about changing the
name or location of the fortecgi program.)

Security concerns and registration The fortecgi and fortensapi programs act as a
Web server gateway for one or more Web access service objects. Each iPlanet UDS
Web application requires one Web access service object to communicate with the
fortecgi or fortensapi program. The Web access service object must register with
the fortecgi or fortensapi program to enable Web clients to access the application,
and can register in one of two ways:

• Autoregistration requires that basic authorization be off and that a secure Web
server not be in use.

• Manual registration allows basic authorization to be on and a secure Web
server to be used.

The fortecgi program detects how a service object is registering based on how the
EnableAccess method is invoked. Multiple service objects may register with the
same fortecgi program using either autoregistration or manual registration. For full
information on the EnableAccess method, refer to the iPlanet UDS online Help.

You should choose a registration approach that meets your security requirements.
If you use autoregistration, then it is possible for other entities to register with
fortecgi if they can mimic the EnableAccess method, thereby exposing fortecgi, and
possibly your Web server or iPlanet UDS application and data.

These two registration methods are described in more detail below.

About iPlanet UDS CGI and iPlanet UDS Web Server Plug-in Programs

Chapter 9 Managing iPlanet UDS Web Applications 201

Autoregistration
With autoregistration, whenever the Web access service object invokes the
EnableAccess method, the service object is automatically registered with fortecgi.
Likewise, the Web access service object automatically de-registers when it invokes
the DisableAccess method.

The advantage of autoregistration is that it is automatic. However, it requires that
basic authorization on the Web Server be off and it cannot be used with a secure
Web server.

➤ To autoregister a Web access service object

1. In your iPlanet UDS code, invoke the EnableAccess method using the
following syntax and including the URLForForteCGI parameter:

EnableAccess(serviceName=TextData, servicePort = integer,
URLForForteCGI=TextData)

If you use autoregistration, you can use the default port number of 1783 for the
fortecgi program, or you can set a different port to be used for registration, as
described below.

Setting a Port for Autoregistration
The environment variable FORTE_CGI_REG_PORT specifies the port number for
the fortecgi program on the Web server and is used only for autoregistration. The
Web access service object contacts the fortecgi program at this port to autoregister.

Limiting access to the port If you use autoregistration, you are advised to limit
access to this port. If you do not limit access, then access to fortecgi, and therefore
your iPlanet UDS application, may be compromised. The port number should be
accessible only by nodes on the intranet, thereby limiting access to only those users
considered “internal.”

NOTE Do not confuse this port number with the one used to reach the Web
access service object (see the iPlanet UDS online Help).

About iPlanet UDS CGI and iPlanet UDS Web Server Plug-in Programs

202 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Changing the port number If the variable FORTE_CGI_REG_PORT is not set
and you are using autoregistration, then port number 1783 is assumed. You may
set it to any port number that is available. Before changing the port number, you
should verify with your system administrator that the port is available and also
that it is only accessible to internal users. When changing the port number, you
must change it in two places: on both the Web server and the iPlanet UDS server on
which the Web access service object resides.

Autoregistration Requires fortecgi Program
In WebEnterprise, autoregistration of the Web access service object always uses the
fortecgi program, whether or not you have installed and will use the iPlanet UDS
NSAPI plug-in.

However, if your application uses manual registration, and you are using the
iPlanet UDS NSAPI plug-in, then you do not need to install fortecgi at all.

Manual Registration
If your Web server has turned authorization on, then you must use manual
registration. With manual registration you edit the fortecgi.dat file whenever the
Web access service object starts to enter a row for that the Web access service
object. To disable access, you edit the fortecgi.dat file to delete the row.

➤ To manually register a Web access service object

1. In your iPlanet UDS code, invoke the EnableAccess method without the
URLForForteCGI parameter, as in the following:

EnableAccess(serviceName=’myService’, servicePort = 1789)

2. Edit the fortecgi.dat file to add a row identifying that service object. Enter a
row in the format:

Service-Name Service-Port IP-address Protocol-version

The protocol-version parameter must be the same as that supported by the
HTTPProject for the application; to get this value, see the ProtocolVersion
constant in your HTTPProject and the iPlanet UDS online Help.

For example:

myService 1789 154.56.240.222 3

NOTE Use only one space between items. The items are not
case-sensitive.

About iPlanet UDS CGI and iPlanet UDS Web Server Plug-in Programs

Chapter 9 Managing iPlanet UDS Web Applications 203

For a complete description of the items, see “The fortecgi.dat File” on page 206.

3. Explicitly invoke one of the methods SetPluginURL or SetExecURL. This is
necessary to set the value for the variable $$FORTE.ExecURL to be used in
generated URLs.

Now users can access the application from the Web.

➤ To manually de-register a Web access service object

1. Delete the row that corresponds to the service object from the file.

2. In your iPlanet UDS code, use the DisableAccess method. See the iPlanet UDS
online Help.

Use of fortecgi.dat by iPlanet UDS NSAPI Plug-in
To reduce file system overload, the iPlanet UDS Web server interface retains
registration entries read for fortecgi.dat in an in-memory cache. Subsequent
references to the iPlanet UDS application service are resolved without re-reading
fortecgi.dat. The in-memory cache is reloaded whenever the fortecgi.dat
registration file is modified.

Using an iPlanet UDS Web Server Plug-in
During Development
With respect to application development, there is only one additional implication
of supporting both the fortecgi interface and an iPlanet UDS Web server
plug-in—the construction of target URLs. A given application must be able to
respond to and generate URLs that use fortecgi or a plug-in, or both, depending
upon which interface the application supports.

Specifically, a portion of the URL differs, depending on whether fortecgi or a
plug-in should be called (see “Using an iPlanet UDS Web Server Plug-in During
Development” on page 203). For an application that supports both interfaces, some
logic must be added to determine which interface should receive the URL.

About iPlanet UDS CGI and iPlanet UDS Web Server Plug-in Programs

204 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

➤ To use an iPlanet UDS Web server plug-in

1. When you invoke the EnableAccess method on your Web access service,
specify a value for the optional parameter called PluginURL.

The PluginURL parameter on the EnableAccess method enables applications to use
an iPlanet UDS Web server plug-in. EnableAccess performs two functions:

• uses fortecgi to register your application with a Web server

• provides the application with the address of the Web server interface used to
generate URLs (that is, the value for the ExecURL attribute and the
$$FORTE.ExecURL variable)

If you do not specify a PluginURL parameter, EnableAccess causes the application
to generate fortecgi interface URLs.

If you do specify a value for the PluginURL parameter, then that value is used to
generate application URLs.

The iPlanet UDS Web server plug-in interface is invoked when a Web server
request references a document of type “.forte.” By convention, the document name
“web.forte” should be used. For example, the following code causes the MyService
Web access service to use fortecgi to register with the Web server at
www.forte.com, and to generate all URLs using an iPlanet UDS Web server
plug-in:

You continue to use fortecgi for registration of iPlanet UDS services. Other than
that, the NSAPI interface can be used for everything.

MyAccessService.EnableAccess(
serviceName = ‘MyService’,
servicePort = 1234,
URLForForteCGI = ‘http://www.forte.com/cgi-forte/fortecgi.exe’;
PluginURL = ‘http://www.forte.com/web.forte’

Maintaining the iPlanet UDS Web Site Files

Chapter 9 Managing iPlanet UDS Web Applications 205

Maintaining the iPlanet UDS Web Site Files
A major task of the iPlanet UDS Web programmer, perhaps in conjunction with the
site Web Master, is the site management of all the files that make up a Web site. As
your Web site applications grow in size and number, the directory structure and
naming standards in effect can have a direct impact on both the performance and
ease of maintenance of your applications.

The following sections describe some considerations and requirements regarding
the various types of files used by an iPlanet UDS Web application.

The fortecgi Executable
Changing the location A typical location for the fortecgi program is on the same
machine as the Web server. However, as long as the Web Server can reliably access
the machine on which the fortecgi program is placed, the fortecgi program can be
installed on any machine. See your Web server documentation for more
information about locating and accessing cgi programs.

If you do change the location of the fortecgi program, you must assure that the
URL http://servername[:port]/cgi-forte/ maps to the CGI directory where
fortecgi is installed. You specify this mapping during installation of
WebEnterprise; for more information see the WebEnterprise Installation Guide.

Changing the name The standard installation results in the fortecgi program
being installed and identified as “fortecgi.” You may need to change the name of
fortecgi, to meet your particular requirements. For example, some platforms may
require the file name to include the extension .exe.

You can change the name of the fortecgi program to any name, for example
fortecgi.exe. If you do so, then you must also use the new name in the following
situations:

• in the EnableAccess method

• in the entry point page

• in each URL to be forwarded to the fortecgi program. For example:

http://www.forte.com/cgi-bin/fortecgi.exe?serviceName=..

Maintaining the iPlanet UDS Web Site Files

206 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The fortensapi DLL
The actual name and location of the fortensapi DLL is referenced only in the
Netscape Web server’s configuration files. The DLL must be accessible to the
Netscape Web server process, which must find and dynamically load it as needed.

Administrative Files
Your iPlanet UDS Web application may require as many as three different types of
administrative files:

• fortecgi.dat file (required)

• session property file (optional)

• handler file (optional)

Maintenance aspects of these three types of files are described in the next sections.

The fortecgi.dat File
As the fortecgi program runs, it creates a small fortecgi data file to record and track
the currently active Web access service objects. The default name for this file is
fortecgi.dat. The fortecgi.dat file contains a row for each Web access service object
currently registered with the fortecgi program. The format of each row is:

Service-Name Service-Port IP-Address Protocol-Version

For example:

easyWeb 1500 192.104.236.128 3
softwear 6001 192.104.236.60 3

NOTE The fortecgi.dat file is not case sensitive; however, only one space
should appear between each entry, with no spaces at the beginning
of a line.

Maintaining the iPlanet UDS Web Site Files

Chapter 9 Managing iPlanet UDS Web Applications 207

The following table describes each element:

Rows are deleted (automatically or manually) from the file as service objects
de-register, so disk space should not be a problem for this file. If no Web access
service objects are currently running, the file exists but is empty.

Editing fortecgi.dat You can manually edit fortecgi.dat. In fact, you must edit
fortecgi.dat if you use manual registration (see “Manual Registration” on
page 202).

You have some flexibility with respect to this file; your options are described
below.

Specifying a location Assuring file security for fortecgi.dat is an absolute
requirement. You must make sure that only persons or processes requiring access
have it. The file can be updated in only two ways: by a privileged user directly
editing the file (manual registration) or by Web server (or its cgi surrogate) based
on the establishment of a connection with the registered iPlanet UDS server
(autoregistration)

Element of fortecgi.dat File Description

Service Name The name of the service as specified in the EnableAccess
method for the corresponding Web access service object. The
service name is not case sensitive.

Service Port The port number on which the service object will listen for
Web requests, and as specified in the EnableAccess method.

IP Address The IP address for the iPlanet UDS server machine where the
service object is running. Note that the IP address is not
specified in the EnableAccess method.

Protocol Version The version of the protocol used between the Web access
service object and the fortecgi or iPlanet UDS Web server
plug-in interface. For each Web access service object, this
value must match the ProtocolVersion constant in the
HTTPProject. However, fortecgi and the plug-ins can
communicate with multiple Web access services using
different versions.

For more information, see the iPlanet UDS online Help.

Maintaining the iPlanet UDS Web Site Files

208 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The environment variable FORTE_CGI_REG_FILE sets both the path and file name
for the fortecgi.dat file. If this variable is not set, the default is to write a file called
fortecgi.dat to the same directory as the fortecgi program. You may use this
variable to indicate a different path and/or file name. Setting this variable has no
effect on the fortecgi program itself, other than to tell it where to find the file.

Access requirements The type of access required by the file depends on whether
you are using autoregistration or not.

• If you are using autoregistration, the file must be writable so that it can be
updated whenever a service object registers or de-registers.

• If you are using manual registration, the file need only be readable by fortecgi;
however, the file must be writable for you to edit it.

iPlanet UDS NSAPI plug-in The means used by the iPlanet UDS NSAPI DLL
uses to access the fortecgi.dat file are platform-specific. See the WebEnterprise
Installation Guide for more information.

Using a different directory than cgi-bin Some Web servers are configured to
prevent writing to the cgi-bin directory. In these cases, the fortecgi.dat file must be
written to a different directory, and the environment variable
FORTE_CGI_REG_FILE must be set to that path and file name.

The Session Property File
See “The Session Property File” on page 177 for a description of the purpose of the
session property file.

File name and location To set the name of the session property file name use the
SetSessionPropertyConfigFile method on your subclass of HTTPAccess; there is no
default or expected name. If you have set the environment variable
FORTE_WW_DOCUMENT_ROOT, then that value is used as the path; if you have
not set the environment variable, you should specify a full path and file name.

NOTE If you set or change FORTE_CGI_REG_FILE, you must re-start the
Web server, so that both the Web server and the fortecgi program
read the correct value.

Maintaining the iPlanet UDS Web Site Files

Chapter 9 Managing iPlanet UDS Web Applications 209

The Handler File
The HandlerConfigFile attribute of the HTMLScanner class specifies the name of
the handler file. This file contains identification information necessary to
dynamically load libraries that contain tag handler classes. See Code Example 5-1
on page 126 for an example and description of the handler file.

The handler file is required only if you will dynamically load libraries containing
the tag handler classes that implement the TagHandlerIface interface. The handler
file is not required if you use static registration for your tag handlers, or if you use
a subclass of HTMLScanner for your tag handler class.

You must create one Handler file for each scanner that must dynamically load
libraries of tag handlers. Then you must set the value of the HandlerConfigFile
attribute of the scanner service object to the name of the file.

File name and location To set the name of the handler file you use two attributes
of HTMLScanner. Set the value for the HandlerConfigFile attribute to the filename
for the handler file. Its value is appended to the value for the
DocumentRoot.attribute, if specified. If you have set the environment variable
FORTE_WW_DOCUMENT_ROOT, then that value is used as the path; if you have
not set the environment variable, you should specify a full path and file name.

The value should use portable name format (see the Framework Library online
Help).

You can override this value with an environment variable or a command line
argument. The priority of these settings is as follows, listed from highest priority to
lowest:

Command line argument Overrides all settings. Use the command line
argument -configfile when starting the partition that contains the scanner
service object.

Environment variable Overrides HTMLScanner’s HandlerConfigFile setting.
Use the FORTE_WW_HANDLER_CONFIG_FILE environment variable.

Attribute setting Overridden by the other two techniques. Use
HandlerConfigFile as described previously in this section.

Maintaining the iPlanet UDS Web Site Files

210 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Template Files
The HTML template files must be located in a directory that is accessible to the
scanner service object so that the scanner service can read the templates at runtime.

When you have chosen a location for the templates, you must identify the top-most
directory by setting the attribute DocumentRoot for your HTMLScanner subclass
(see the next section).

The iPlanet UDS Document Root Directory
Most Web servers use the concept of a Primary Document Directory. All files that can
be returned to Web browsers (html, and image files, for example) are presumed to
reside at some level in this directory, and are located through a path name relative
to the primary directory. For these Web servers, all relative path names are
presumed to be relative to the primary directory.

WebEnterprise also uses a document root directory. For example, a session property
can be set for a high-level directory, and the property can be inherited or
overridden for lower-level directories or specific files.

The DocumentRoot attribute of the HTMLScanner subclass specifies the top level
directory that will contain HTML template files and other administrative files. This
directory must be available to the scanner service and should be on the same
machine as the scanner service.

The value should use portable name format (see the Framework Library online
Help).

You can override this value with an environment variable or a command line
argument. The priority of these settings is as follows, listed from highest priority to
lowest:

Command line argument Overrides all settings. Use the command line
argument -docroot when starting the partition that contains the scanner service
object.

Environment variable Overrides HTMLScanner’s DocumentRoot setting. Use
the FORTE_WW_DOCUMENT_ROOT environment variable.

Attribute setting Overridden by the other two techniques. Use DocumentRoot as
described previously in this section.

If multiple programmers are working on the same application, each programmer
might want to use individual paths. Using the environment variable makes setting
up separate paths convenient.

Maintaining the iPlanet UDS Web Site Files

Chapter 9 Managing iPlanet UDS Web Applications 211

Graphic, Image, and Binary Data Files
You can store graphic files (and use them in Web pages) in two general locations:

• on the Web server

• on the iPlanet UDS server (as simple graphic files or iPlanet UDS objects)

There are advantages to either location. Either location is acceptable, as long as the
graphic files can be accessed, and opened, by the Web server and by the page
builder or scanner service responsible for returning the graphic.

Web server storage Storing graphics on the Web server can provide better
performance, but may compromise security, or be less convenient to maintain. If
you store any graphics on the Web server, then you must also be sure to map the
alias for your high-level graphics directory in your Web server.

To embed a graphic stored on a Web server in a template, you use a line like the
following in the template source:

In this case, the alias ShopCart has been mapped on the Web server to the actual
physical location of the graphics files, including the file buynow.gif.

iPlanet UDS server Storing graphics on an iPlanet UDS server (for example,
binary data objects that are returned in an HTTPResponse object) might be slightly
slower in performance, but prove easier to maintain. If you store any graphics on
your iPlanet UDS server (not as iPlanet UDS objects, but simply as graphic files on
the same machine), then you must locate the graphics in the directory identified by
FORTE_WW_DOCUMENT_ROOT (or a subdirectory).

To embed a graphic stored on an iPlanet UDS server in a template, you use a line
like the following in the template source:

<img src = “$$FORTE.ExecURL?ServiceName=foo&
pageName=ReturnImage&fileName=buynow.gif” border = ... width = ...>

NOTE If you find that images are not being returned in a Web page (but
instead only the standard image icon appears), then check that the
Web server is using the correct image path.

Using an Administration Window

212 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Using an Administration Window
Both of the iPlanet UDS examples use an administration window to enable and set
various settings when starting the SoftWear application. You might find the use of
an administration window helpful as you build, test, or deploy an iPlanet UDS
Web application. However, there is no particular requirement that one be used,
other than to obtain information that may change at runtime.

Figure 9-1 shows the ShopCart administration window. The SoftWear
administration window is shown in Figure 3-3 on page 68.

Figure 9-1 Administration Window for the ShopCart Application

Because the administration window is not a user window, it should only be
accessible to administrators of the iPlanet UDS Web application.

Initialization Tasks
You can use an administration window to perform a number of “initialization”
tasks. The following tasks are all considered initialization tasks, and are good
candidates for inclusion in an administration window:

• start one or more Web access services by invoking the EnableAccess method

• specify the use of session management by invoking
EnableSessionManagement

Security Considerations

Chapter 9 Managing iPlanet UDS Web Applications 213

• specify whether to use the iPlanet UDS NSAPI plug-in in addition to the
fortecgi program

• specify whether to use a secure Web server

• specify preferred settings for application characteristics, such as the template
or image directories, encrypt key, port numbers, and so on

• set environment variables (the environment variables are described in
Appendix B, “Environment Variables”)

Some of these tasks are demonstrated in the two sample administration windows.

Security Considerations
Many iPlanet UDS Web applications contain sensitive data. There are many ways
you can add security to an application.

Authentication security features can be used to determine and control who accesses
the data. An authentication function typically checks that only identified users can
access data, and that a given user is really that user. Most authentication schemes,
including those used by Web servers, use user IDs and passwords for this purpose.
Basic authentication is described below.

Often you also want to protect the data itself from being viewed or changed by an
unauthorized user. In this case, you can use Netscape’s secure sockets layer to
encrypt data that is transferred, on the Internet, between the Web server and Web
client. Note that packets sent between the iPlanet UDS server and the Web server
are not encrypted (with the exception of the Session ID if session management is
enabled); however, those communications typically occur within a company’s own
network, not over the Internet.

Using Basic Authentication
A security feature, called basic authentication (sometimes called basic
authorization), can be used to limit which users can access Web pages. Basic
authentication can be turned on at several levels, for example, for the entire Web
server, or for users accessing fortecgi only. The effect of turning basic
authentication on is that a user can only obtain Web pages by entering a valid user
ID and password that are accepted by the authentication program. So, data itself is
not protected (as in encrypted), but access to the data is limited.

Security Considerations

214 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Setting basic authentication to “on” for fortecgi has the following effects:

• The Web access service object must register with fortecgi using manual
registration.

• Web clients can only access the iPlanet UDS Web application by entering a
valid user ID and password.

Using basic authentication has no effect on the iPlanet UDS application.

Using Secure Sockets Layer
You have the option of using the secure sockets layer (SSL) if your Web users are
using a Netscape browser and your Web server is running Netscape Enterprise
Server or a server that supports Netscape’s SSL. SSL offers security features for
Web communications, including encryption of packets sent between the Web
server and Web client. SSL uses the HTTPS protocol instead of the HTTP protocol.
The Main Window for the SoftWear application contains two radio buttons that
can be toggled to turn on and off the use of SSL (see Figure 3-3 on page 68).

To take advantage of SSL requires a few extra steps, described below.

➤ To use SSL

1. Modify all URLs that reference Web pages on the secure server.

For every URL to a Web page that is served by the secure server, you must
modify the URL to use the HTTPS protocol rather than the HTTP protocol. In
addition, if the Web server does not use the standard port number 443 for
HTTPS connections, then you must also add in the non-standard port number.

2. You must use manual registration for the Web access service object.

You must invoke the EnableAccess method using only the first two parameters
(serviceName and servicePort). See “Manual Registration” on page 202.

Some effects of using SSL are more obvious to users than others. Users will not
notice that packets are encrypted as they are sent between the Web browser and
the Web server. Some users may notice that Web pages that are returned using
HTTPS rather than HTTP show an unbroken key in the lower left-hand corner, as
shown in Figure 9-2.

Diagnosing Problems with fortecgi or a Plug-in

Chapter 9 Managing iPlanet UDS Web Applications 215

Figure 9-2 Web Page with Key

Client Errors Reaching a Secure Server
If a Web client tries to request a web page (or a CGI program) from a Secure Web
Server using HTTP instead of HTTPS, the client will fail to connect to the Web
server. If the client is using Netscape Navigator, the browser returns a dialog box
that says “There was no response. The server could be down or is not responding.
If you are unable to connect again later, contact the server's administrator.”

Diagnosing Problems with fortecgi or a Plug-in
After you have installed the WebEnterprise and imported the iPlanet UDS Web
projects, you should be able to reach the fortecgi program or iPlanet UDS Web
server plug-in from your Web browser.

HTTPS

key
indicating
HTTPS

Diagnosing Problems with fortecgi or a Plug-in

216 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

➤ To make sure that fortecgi or the iPlanet UDS plug-in is installed properly

1. To test fortecgi enter a URL in the following format from your Web browser:

http://<server_name>/<cgi_directory>/<fortecgi_executable>

The server_name is the name of the Web Server node, and cgi_directory is the
name of the directory on that node in which the fortecgi program resides, as in
the following:

On UNIX:

http://www.forte.com/cgi-forte/fortecgi?

On NT/VMS:

http://www.forte.com/cgi-forte/fortecgi.exe?

This URL is like the URLs that the fortecgi program expects, with one
exception. It does not include parameters with values for a serviceName,
template or pagename, and so fortecgi, if reached, interprets it as an
incomplete request.

2. To test a plug-in enter a URL in the following format from your Web browser:

http://<server_name>/<cgi_directory>/<fortecgi_executable>

The server_name is the name of the Web Server node, and cgi_directory is the
name of the directory on that node in which the fortecgi program resides, as in
the following:

On UNIX:

http://www.forte.com/cgi-forte/fortecgi?

On NT/VMS:

http://www.forte.com/cgi-forte/fortecgi.exe?

3. Match the response to one of the following responses.

“Fortecgi Usage” Page
If fortecgi is installed correctly, authorization on fortecgi is off, and fortecgi
receives a request with no parameters, it returns the ForteCGI Usage page, shown
below.

Diagnosing Problems with fortecgi or a Plug-in

Chapter 9 Managing iPlanet UDS Web Applications 217

Figure 9-3 The fortecgi Usage Page

“iPlanet UDS NSAPI Plug-in Usage” Page
If the iPlanet UDS NSAPI Web server plug-in receives a request with no
parameters, it returns the Usage page shown below.

Figure 9-4 The iPlanet UDS NSAPI Plug-in Usage Page

“Attempt to Authorize Web User”
If fortecgi is installed correctly and with authorization turned on, and it receives a
request with no parameters, you will see a dialog box prompting you for a user ID
and password.

Troubleshooting Web Client Errors

218 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

If you enter a valid user ID and password, you see the Fortecgi Usage page. If you
enter Cancel, you see an “Unauthorized...” message. Either response indicates that
fortecgi is installed properly. You should note that if your Web server uses
authorization, then you must use manual registration; you cannot use
autoregistration. For more information, see “Manual Registration” on page 202.

“Not Found” Message
If you see a “Not Found” message, then there is most likely a mismatch in the name
of the file (for example, fortecgi or fortecgi.exe) or the path name. The Web server
was unable to locate the fortecgi program. Check the name of the fortecgi program
and its path. Also refer to the WebEnterprise Installation Guide.

“Garbage Characters” on Screen
If fortecgi is installed incorrectly, you may see what appears to be a few “garbage”
characters. This response indicates that the fortecgi program has been located in a
directory that is not known as a cgi directory. The fortecgi program must be
installed in a directory that is viewed by the Web server as a cgi directory; if you
need assistance with this situation, ask your Web Master.

Troubleshooting Web Client Errors
This section lists some typical problems that Web clients and administrators may
encounter along with suggestions for how to fix the problems. Errors seen by Web
clients are displayed with an icon identifying the type of error, along with a more
specific error message. The types of errors and icons are:

• Usage

• Request Failure

• Runtime Error

• iPlanet UDS Error

Troubleshooting Web Client Errors

Chapter 9 Managing iPlanet UDS Web Applications 219

ForteCGI Usage Page
Problem The ForteCGI Usage page, shown in Figure 9-3 on page 217, is returned
when the URL contains no parameters. Either of the following URLs would result
in this page being returned to the user:

Resolution If the URL was manually entered, retry it, making any necessary
corrections. If the URL was automatically generated, then there may be an error in
it which should be corrected. In particular, verify that the serviceName and
pageName parameters are correct.

Client Request Failure Errors
All errors in this section appear on the Web client’s Web browser screen along with
the Request Failure icon.

“No ServiceName parameter found in the request URL”

Problem Fortecgi detected an incomplete URL, in which the serviceName
parameter was missing. This error is also returned if the serviceName parameter
name itself is misspelled, as in “sericeName=...”

Resolution Try the URL again, this time entering the serviceName parameter. If
you do not know the serviceName, ask your iPlanet UDS Web administrator.

“Service Not Available”

Problem This message usually occurs when using manual registration. The
fortecgi program finds the serviceName in the fortecgi.dat (or equivalent) file, but
the service is unreachable. This situation occurs when a service has been disabled
with the DisableAccess method, but the file has not been edited to remove the
registration row. It can also occur if the file is updated to add a row, but the service
has not been started.

http://www.forte.com/cgi-forte/fortecgi
http://www.forte.com/cgi-forte/fortecgi?

Troubleshooting Web Client Errors

220 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

A different cause for this error is that the fortecgi program failed to connect to the
service due to network problems, such as inadequate privileges to access the port
or if the Web access service object is no longer running but is still registered.

Resolution Try again later or contact your iPlanet UDS Web administrator to
enable the service. If you believe the error is caused by network problems, contact
your iPlanet UDS Web administrator.

“Service Not Found”

Problem The serviceName specified in the URL is not currently registered with
the fortecgi program that received the request. The serviceName is not found in the
fortecgi.dat file (or equivalent). This might be because the serviceName was
misspelled, or because the service has not been enabled, or it might be because the
iPlanet UDS application is not running.

Resolution Check the spelling of the serviceName and that the specified service
has been enabled. If necessary, check that the application and the node are running.

“The iPlanet UDS service you requested is busy, please try again”

Problem The serviceName specified in the URL is enabled but currently busy.

Resolution Try again later. If you continue to receive this message, contact your
iPlanet UDS Web administrator.

fortecgi Runtime Errors
Web client runtime errors that show the Runtime Error icon are typically due to
various socket errors.

“Socket error:”

Problem Fortecgi has socket communication problem with the iPlanet UDS
server. Following the above error is a more specific message, such as:

• recv () #9 (indicates a failure to read from the socket)

• send () #8 (indicates a failure to write to the socket)

Resolution Try again later. If you continue to receive this message, contact your
iPlanet UDS Web administrator.

Troubleshooting Web Client Errors

Chapter 9 Managing iPlanet UDS Web Applications 221

Client iPlanet UDS Errors
Client iPlanet UDS errors may occur at four levels, and are returned to the client
with an icon indicating the level, and with the iPlanet UDS error text. There is no
standard error text because the text is the exact iPlanet UDS error.

Problem An iPlanet UDS exception occurred during the Web client’s use of an
iPlanet UDS Web application. The level of severity of the error is indicated by
which of four icons appears (the levels in increasing severity are Warning, User
Error, iPlanet UDS Error, and Fatal Error). These messages are HTML versions of
iPlanet UDS exceptions. The exceptions are raised in the iPlanet UDS application
and may indicate a problem with the application itself.

Resolution Report the iPlanet UDS error message and events leading up to it to
the iPlanet UDS Web administrator.

Object with NIL value returned by iPlanet UDS
An error to this effect has been returned when cookies are disabled, or are used, but
host names are not fully qualified in the HTTP request URLs. When using
WebEnterprise you should make sure that all URLs that are generated by the
application and used for links use a fully qualified domain name.

Client Security Errors

“Status Code 401: Unauthorized...”

Problem The Web client is unauthorized to access the requested Web page. This
occurs if the Web server has turned on basic authorization. In this case, the Web
server expects a username and password, which are not passed on by the fortecgi
program.

Resolution Either turn off basic authorization or obtain a username and
password that will allow you to use the secure application.

Troubleshooting Web Administrator Errors

222 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Troubleshooting Web Administrator Errors
Most administrator errors occur during registration and de-registration of the Web
access service object. These errors are of the type Request Failure, although the
Request Failure icon does not appear. The error message appears on the
administrator’s iPlanet UDS windows, not on a Web browser screen.

“De-Registration Failure: Cannot write to fortecgi data file”

Problem The fortecgi program has inadequate permission to write to the file.
The fortecgi program has located the file but cannot write to it to de-register the
service.

Resolution Check permissions on the fortecgi data file and, if necessary, on its
directory.

“De-registration Failure: fortecgi data file not found”

Problem The fortecgi program cannot locate the fortecgi data file (fortecgi.dat or
its equivalent) so it cannot de-register the service object currently trying to
de-register. The fortecgi data file may have been inadvertently deleted or moved,
or the environment variable FORTE_CGI_REG_FILE may have been changed.

Resolution Check the existence of the fortecgi data file. If necessary, re-set the
value of the variable FORTE_CGI_REG_FILE.

“Incoming registration or de-registration message is invalid”

Problem This message usually indicates a network problem.

Resolution Try your operation again later. If you continue to receive this error,
call iPlanet UDS technical support.

“Registration Failure: Cannot create fortecgi data file”

Problem The fortecgi program cannot create the fortecgi data file (fortecgi.dat or
its equivalent) so it cannot register the service object currently trying to register.

Resolution Check permissions on the directory where the fortecgi data file
would be created. Make sure that the directory is writable. If necessary, verify the
setting for the environment variable FORTE_CGI_REG_FILE, which specifies the
path and name for the file.

Calling iPlanet UDS Technical Support

Chapter 9 Managing iPlanet UDS Web Applications 223

“Registration Failure: Cannot write to fortecgi data file”

Problem The fortecgi program has inadequate permission to write to the file.
The fortecgi program has located the file but cannot write to it to register the
service.

Resolution Check permissions on the fortecgi data file and, if necessary, on its
directory.

“Registration Failure: Duplicate iPlanet UDS server with the same
port number”

Problem The fortecgi program found an entry in the fortecgi data file
(fortecgi.dat or its equivalent) with the same port number and IP address as were
given for the service currently trying to register, but with a different serviceName.
The fortecgi program cannot register two services if they both use the same port
number and IP address.

Resolution Check that you have specified the correct port number and IP
address. If they are correct, check the serviceName. If necessary, verify the setting
for the environment variable FORTE_CGI_REG_PORT for the two conflicting
services.

Calling iPlanet UDS Technical Support
As you use WebEnterprise you may encounter problems or have questions. It will
help expedite answers to your questions if you have information about your Web
server available whenever you call.

➤ To obtain your Web server name and version

1. Use Telnet, as follows:

host_name is the name or IP address of the Web server and port is the public
access port to that Web server (typically port number 80).

%telnet host_name port

Calling iPlanet UDS Technical Support

224 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

2. Type:

3. Press return twice. You will see a response similar to:

You may be asked to provide the information found on the “Server” line.

The WebEnterprise Release Number
You may occasionally need to know the release number for the WebEnterprise kit
that you are using, for example, if you need to call iPlanet UDS Technical Support.

To see the release number for the kit installed on the iPlanet UDS server side, open
the Project Workshop for the HTTP project and check the value for the constant
named ForteWebEnterpriseVersion.

To see the release number for the fortecgi and iPlanet UDS NSAPI plug-in that are
installed on the Web server, enter a URL without a page or template name. You
should see the standard iPlanet UDS “Usage” page, which contains the version
number of WebEnterprise running on the server.

HEAD /HTTP/1.0

HTTP /1.0 200 Document follows
Date: ...
Server: NCSA/1.5
Content-type: text/html
Last-modified: ...
Content-length: ...

225

Appendix A

Example Programs

This appendix describes the sample programs included with WebEnterprise.
Topics include:

• the EasyWeb example

• the SoftWear example

• the ShopCart example

• the SQLDemo example

About the Examples
WebEnterprise contains several examples to demonstrate various aspects of the
product.

EasyWeb Example
The EasyWeb example shows the minimum requirements for adding Web
connectivity to an iPlanet UDS application. For details, see “Quick Tutorial:
EasyWeb” on page 50. As you recreate EasyWeb, you gain an understanding of the
interaction between the Web and iPlanet UDS interfaces.

SoftWear Example
The SoftWear example demonstrates several features of a Web interface to an
iPlanet UDS application. Many examples in this manual are from the SoftWear
application.

About the Examples

226 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The components (projects, service objects, classes, and so on) demonstrated by the
SoftWear example are based upon the recommended structure described in
Chapter 3, “Setting Up a Web Application.” It uses a small “database” (actually a
file created when the demo is run) to show how a Web page can be dynamically
constructed based upon specific criteria entered by a Web user, such as a catalog
item ID. SoftWear allows you to use either the iPlanet UDS NSAPI plug-in or
fortecgi as your Web server interface.

Turn to “Components of the SoftWear Example” on page 227 for information about
the components of the SoftWear application. Turn to “Installing the SoftWear
Example” on page 230 for instructions on installing and running the example.

The ShopCart Example
The ShopCart example illustrates how to use iPlanet UDS templates and how to
take advantage of session and state management.

The following features are illustrated by the ShopCart example.

• submitting forms

• traversing URL links

• using FORTE EXECUTE tags with parameters and simple and complex result
sets

• creating result sets

• using the FORTE ITERATE tag to iterate over a result set list

• using the FORTE IF and ELSE tags

• using the FORTE REDIRECT tag

• using and registering static handlers

• using a default handler (HTMLScanner itself is an implicit handler)

• invoking templates from pagebuilders

• creating a session (using session property SESSION_AUTOCREATE)

• setting a default session expiration timeout interval

• adding data to a session, using both custom session object attributes and
name-value pairs.

• retrieving data from the current session

Components of the SoftWear Example

Appendix A Example Programs 227

• deleting a session

• implementing a custom session class

• sharing sessions across services and web servers

• detecting cookie support

• tracking a session with and without cookie support

SQLDemo Example
The SQLDemo example shows how the HTMLSQL project can be used to query a
relational database and quickly display the query results in a Web page. Refer to
“Using the SQLDemo Example” on page 240 for instructions on installing and
running this example.

Components of the SoftWear Example
The structure and components of the SoftWear example reflect the recommended
structure for iPlanet UDS applications that will also support Web clients. This
example demonstrates how components (for example, user windows) can be
shared by the iPlanet UDS client side and the Web client side, as well as how and
when they must be slightly modified.

Projects and .pex Files
The SoftWear example is included on the iPlanet UDS WebEnterprise CD in
several .pex files that you can import. The table below summarizes the .pex files,
the projects they create, and the purpose of each project. You must import all files,
in this order, in order to run the SoftWear example.

Import File To Get the Project That Contains

www1.pex WWWCatalog The business service object, CatalogService

www2.pex WWWSharedWindows Web windows and two embedded windows
that are used by the other user windows.

www3.pex WWWCatalogPageBuilder The PageBuilder service object and the
methods that construct the various Web
pages for the SoftWear example.

Components of the SoftWear Example

228 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The projects WWWCatalog and WWWCatalogWindows are the “pre-existing”
projects, or the projects that support the iPlanet UDS application without Web
access. The two projects WWWCatalogPageBuilder and WWWCatalogAccess are
used only by the Web interface. Finally, the WWWSharedWindows project
contains windows that are used by both the Web and the iPlanet UDS clients.

iPlanet UDS Windows and
Corresponding Web Forms
The user windows and corresponding Web pages are shown in the following table:

www4.pex WWWCatalogAccess The Web access service object for the
SoftWear example.

www5.pex WWWCatalogWindows Windows designed for an iPlanet UDS
application (no Web access) but which are
converted to Web pages using the
WindowConverter method.

Window Name Web Form
Name

PageBuilder
Method

Description

CatalogListWindow prodlist BuildProdList Show summary of all
softwear items.

CatalogPageWindow prodDetail BuildProdPage Show detail on one item.

ShoppingBasketWindow AddToBag AddToBag Enter order information for
an item.

ShoppingBasketWindow ShowBag ShowBag Show item(s) in basket

(none) EmptyBag EmptyBag (after empty bag, return to
prod list window)

OrderWindow Checkout Checkout Decide whether to buy or
cancel.

ConfirmationWindow Confirm Confirm Confirm placement of order
with
order #.

Import File To Get the Project That Contains

Components of the SoftWear Example

Appendix A Example Programs 229

Page Builder Methods Used by SoftWear
The CatalogPageBuilder class of the SoftWear example contains several examples
of methods used to construct pages:

MainWindow none none Initialize application and
start WWW access

none (homepage
.html)

(none - simple
html file)

Entry point page for Web
clients to start shopping.

Method Techniques Used

AddToBag Does not create a page, but adds another item to a shopping basket on
the ShowBag page

BuildProdList Builds a list of products, each with a link (anchor) to the detail page for
that product

BuildProdPage Uses WindowConverter on the CatalogPageWindow window class

ButtonSet Defines all buttons for the SoftWear application, with a link and graphic
for each

CheckOut Uses WindowConverter on the NestedOrderWindow window class

CompanyLogo Create a graphic element to be embedded in multiple Web pages

Confirm Uses LoadParameters method

EmptyBag Deletes items from bag and returns the ProdList page

GetImageFile Given image name, builds complete path to locate and return image

ShowBag Uses WindowConverter

Window Name Web Form
Name

PageBuilder
Method

Description

Installing the SoftWear Example

230 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

The SoftWear Data Files
The text and data used by the SoftWear application are stored in a number of files
in the directory $FORTE_ROOT/tmp/cattmp. The cattmp directory is initially
created when you click on the Make Database button in the Main Window, the first
time you run the SoftWear application. In the cattmp directory you will find a
number of files used to track shopperIDs, orderIDs, and to store product and
shopper information.

You need only click on Make Database once; then you can enable and disable
access as you like and the files remain. As long as the files are not recreated, the
shopper and order IDs will continue in sequence.

If you click on Make Database again in the Main Window, the data files are
recreated, and the shopper and order IDs will start over again.

Installing the SoftWear Example
You must install files on both the Web Server and iPlanet UDS Server to run the
SoftWear example. On the Web Server you install images and the entry point Web
page. On the iPlanet UDS server you install files to create the classes and methods
to generate Web pages for the Web users, as well as iPlanet UDS windows for the
iPlanet UDS clients.

➤ To install and run the SoftWear example

1. Find the SoftWear files on your Web server.

The installation of iPlanet UDS WebEnterprise includes the installation of the
SoftWear files. A straightforward installation will result in a path like the
following on your Web Server:

netscape/users/forte/examples/softwear

The softwear directory has two subdirectories:

Subdirectory Contents

/docs Contains the file homepage.htm that is the entry point Web page for
the SoftWear application. It is a static page and is not created by the
page builder service object.

/images Contains several .gif files (images) used by the SoftWear example.

Installing the SoftWear Example

Appendix A Example Programs 231

2. Find the SoftWear files on your iPlanet UDS server.

The installation of iPlanet UDS WebEnterprise includes the installation of the
SoftWear files. A straightforward installation will result in a path like the
following on your iPlanet UDS server:

FORTE_ROOT/install/examples/web/softwear

The softwear directory has two subdirectories:

3. Import the .pex files for the SoftWear example.

a. In the iPlanet UDS Workshops, open a workspace that contains the Web
projects HTTP, HTML, and HTMLWindow in the Repository Workshop.
These projects are required by the SoftWear example and were imported
during the installation of WebEnterprise.

b. Use the Import... command under the Plan menu option to import the .pex
files in numeric order, starting with www1.pex.

4. In the Repository Workshop, open the WWWCatalogWindows project. Select
the Test Run command from the Run menu, or click the Run icon on the
toolbar.

An iPlanet UDS window appears with two buttons: Show Admin and Let’s
Shop.

5. Click the Show Admin button.

The Main Window for SoftWear appears. The Main Window is an
administration window used to start Web access, oversee shopper activity, and
approve orders. It is not the entry point Web page seen by Web users.

Subdirectory Contents

/catsrc Contains the data used in the SoftWear application. It plays the role
that a database would in a typical application.

/pex Contains the five pex files needed to recreate the SoftWear
application.

Installing the SoftWear Example

232 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Figure A-1 Administration Window for SoftWear Application

6. Click the Make Database button.

This creates the SoftWear data files. Now you can use the SoftWear application
as an iPlanet UDS client. At any time after you have made the database, you
can click on Let’s Shop to use the iPlanet UDS client windows.

 The remaining steps are necessary to use SoftWear as a Web client.

Installing the SoftWear Example

Appendix A Example Programs 233

7. In the Main Window enter information specific to your site. You must change
the Web server name; the other fields have defaults.

❍ iPlanet UDS Service Listening Port: The port number 6001 appears. If this
is not the port number you want to use for the Catalog Access service
object, enter the desired port number here.

❍ Web Server Name [:Port]: The server name and port number vulcan:80
appear. Enter the name of your server, and enter a port number if you
want to use a different port than 80.

❍ Fortecgi Location: /cgi-forte/fortecgi is displayed. You do not need to
change this if your fortecgi executable is running on a Unix machine.
However, if your fortecgi executable is running on an NT machine, change
fortecgi to fortecgi.exe.

❍ Web Server Type: If your Web server is running Secure Netscape
Commerce Server choose this button; the default is for all other servers.
Note that you can only use Secure Netscape Commerce Server if you are
also using the Netscape Navigator browser, because it uses Netscape’s
Secure Sockets Layer (SSL) and the HTTPS protocol, which are only
supported by Netscape Navigator and Netscape Commerce Server.

❍ Web Server Interface: You can select the fortecgi or the iPlanet UDS NSAPI
plug-in. You must have installed the iPlanet UDS NSAPI plug-in as
described in the WebEnterprise Installation Guide for this selection to take
effect.

8. Skip this step if you are not using Secure Netscape Commerce Server. If you
checked Secure Netscape Commerce Server, complete the following steps:

a. In the iPlanet UDS Service Listening Port, enter port number 443 (the
standard port for SSL) or the port number that you wish your Web server
to use.

b. You must use manual registration. Edit the file fortecgi.dat to add a line
in the format:

Service-Name Service-Port IP-Address

Make sure there is no leading space and that only one space separates the
entries.

Components of the ShopCart Example

234 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

9. Click the Enable Web button. The status line indicates that Web access is being
enabled; depending upon your network and server configuration, this may
take a short time. After Web access is enabled, the Enable Web button text
changes to Disable Web.

10. To access the application as a Web client, use your Web browser to access the
SoftWear home page, using the URL:
http://<server_name>/forte/examples/softwear/docs/homepage.htm

Note that the home page provides three links to the application: one for Unix,
one for NT, and one for NSAPI. If you are running your fortecgi executable on
a Unix machine, select the link for Unix. If you are running your fortecgi
executable on an NT machine, select the link for NT. If you are using NSAPI,
select the link for NSAPI.

11. When you are finished using the application, click on Disable Web in Main
Window

Components of the ShopCart Example
The ShopCart example includes .pex files, HTML files, and image files. This
example demonstrates how to use the iPlanet UDS templates and session and state
management.

Projects and .pex Files
The ShopCart example contains several .pex files that you can import. The table
below summarizes the .pex files, the projects they create, and the purpose of each
project.

Import File To Get the Project That Contains

classes.pex ShopCartClasses The base classes for the application, the business service
object, ShoppingService, the tag handlers, and the
HTTPSession object.

access.pex ShopCartAccess The HTMLScanner classes and the HTTPAccess classes
for the shopping and payment components of the
application, and their associated service objects.

app.pex ShopCartApp The control window for the application that lets you
initialize and enable Web services.

Installing and Running the ShopCart Example

Appendix A Example Programs 235

The ShopCart HTML Files
The ShopCart example contains a number of HTML template files which contain
iPlanet UDS tags. The HTML template files are read directly by iPlanet UDS, not by
your Web server. An HTML home page is also provided. The home page contains
no templates, and will be read by your Web server.

The ShopCart Image Files
A few image files are also provided, for display in the browser windows. The
image files are read directly through the Web server.

Distribution of ShopCart Components
The WebEnterprise Installation Guide describes how to install the example files. The
ShopCart .pex files and HTML files are placed under the FORTE_ROOT path,
because these files are accessed by your iPlanet UDS server. The image files and the
home page are placed under your Web server’s root directory, because they are
accessed by the Web server, and not by iPlanet UDS.

Installing and Running the ShopCart Example
Description The ShopCart application illustrates the use of iPlanet UDS tags in
HTML files and session and state management in a simple Web shopping
application. The application allows you to select items for your shopping cart, view
the cart contents, and pay for the items.

Pex Files shopcart/pex/classes.pex, shopcart/pex/access.pex,
shopcart/pex/app.pex.

Mode Stand-alone or Distributed.

Special Requirements Must have the WebEnterprise HTTP Library installed in
your workspace, must have a web server running that can access the fortecgi
executable, must have a web browser.

Installing and Running the ShopCart Example

236 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

➤ To install the ShopCart example

1. Find the ShopCart HTML and pex files below the following directory:

$FORTE_ROOT/install/examples/web/shopcart

The shopcart directory has two subdirectories:

If the files are not there, refer to the installation procedures described in the
WebEnterprise Installation Guide.

2. Set the following four environment variables:

a. The iPlanet UDS document root directory, specified by
FORTE_WW_DOCUMENT_ROOT, is a WebEnterprise environment
variable that you set on the iPlanet UDS server:

The ShopCart application will look for the HTML files it needs in this
directory and its subdirectories.

The remaining three environment variables are not iPlanet UDS specific.
You set these environment variables on the Web server node.

Subdirectory Contents

/html Contains two subdirectories, payment/ and shopping/, which
contain the HTML files used by the ShopCart application.

/pex Contains the three pex files needed for the ShopCart application.

-- On Unix:
FORTE_WW_DOCUMENT_ROOT
$FORTE_ROOT/install/examples/web/shopcart/html
-- On NT: (Note that the double backslash is required when
-- setting environment variables using DOS command syntax.)
FORTE_WW_DOCUMENT_ROOT
c:\\forte\\install\\examples\\web\\shopcart\\html

Installing and Running the ShopCart Example

Appendix A Example Programs 237

b. The CGI path for the ShopCartService:

c. The CGI path for the PaymentService:

You can run both services on a single Web server. Alternatively, you can
run each service on a different Web server. Those Web servers could be on
the same machine, or on different machines.

d. The cookie domain name:

WWW_COOKIE_DOMAIN .yourDomain.com

Set this to your domain name. Note that the domain name must contain a
minimum of two dots, so you must include the leading dot.

-- On Unix:
-- Use fortecgi on Unix
WWW_CGI_URL_BASE
http://yourMachine.yourDomain.com/cgi-forte/fortecgi

-- On NT:
-- Use fortecgi.exe on NT
WWW_CGI_URL_BASE
http://yourMachine.yourDomain.com/cgi-forte/fortecgi.exe

-- On Unix:
-- Use fortecgi on Unix
WWW_CGI_URL_BASE2
http://yourMachine.yourDomain.com/cgi-forte/fortecgi

-- On NT:
-- Use fortecgi.exe on NT
WWW_CGI_URL_BASE2
http://yourMachine.yourDomain.com/cgi-forte/fortecgi.exe

Installing and Running the ShopCart Example

238 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

3. This step is only necessary if you want to run ShopCart using NSAPI. To run
under NSAPI, you must set one additional environment variable. Before doing
so, make sure your WWW_CGI_URL_BASE and WWW_CGI_URL_BASE2
environment variables are set to the same CGI path. This is not a restriction in
the product, but rather a restriction in the way NSAPI is implemented in this
example. Now set the environment variable:

Note that after setting this environment variable, NSAPI will automatically be
used by ShopCart. You do not need to make changes to the home page or the
control window.

4. Find the ShopCart image files. If you followed the installation procedures in
the WebEnterprise Installation Guide, the image files and the home page will be
located below your Web server’s root directory. For example, if you have
Microsoft’s Peer Web Server running, the image files might be in the following
directory:

c:\InetPub\forte\examples\shopcart\images

If you have the Netscape Web Server running, the image files might be in the
following directory:

/netscape/users/forte/examples/shopcart/images

These paths are based on where you set the root directory for your web server.

5. Set two aliases in your Web server:

-- Use NSAPI on Unix or NT
WWW_PLUGIN_URL_BASE
http://yourMachine.yourDomain.com/web.forte

Directory Alias

C:\InetPub\forte\cgi_bin /cgi-forte

C:\InetPub\forte\examples\shopcart /shopcart

Installing and Running the ShopCart Example

Appendix A Example Programs 239

The cgi-forte alias must point to the directory where your fortecgi executable
resides. The shopcart alias must point to the directory in which you have
placed the image directory and the doc directory and their files for the
ShopCart example.

6. Bring up iPlanet UDS. If the iPlanet UDS launcher was already running at the
time you set the environment variables, you should terminate it before starting
iPlanet UDS. Doing so will ensure that iPlanet UDS will pick up the new
settings.

7. If it is not already there, import the HTTP library into your workspace. Then
import the .pex files for the ShopCart example in the following order:
classes.pex, access.pex, app.pex.

➤ To Run the ShopCart example

1. In the Repository Workshop, select the ShopCartApp project. Click the Run
icon on the toolbar.

A Shopping Cart Application control window appears.

2. Click the Initialize Web Services button. Then check the ShopCartService
Enabled checkbox. It may take a moment before your cursor returns. Then
check the PaymentService Enabled checkbox.

3. Bring up your Web browser. Make sure your cgi-bin path is configured
correctly on your Web server and that you can actually execute the fortecgi. For
example, based on the configuration described above, you would enter the
following URL in your browser:

http://yourMachineName/cgi-forte/fortecgi.exe

After clicking return, you should see a Usage message.

4. Now enter the URL for the ShopCart home page:

http://<yourMachineName.yourDomainName.com>/shopcart
/docs/homepage.htm

You should see a browser window with the heading: ShopCart, Inc.

This page provides two links to the ShopCart application. Use Let’s Go
Shopping (NT) if your fortecgi executable is running on an NT machine. Use
Let’s Go Shopping (Unix) if your fortecgi executable is running on a Unix
machine. After you select the appropriate link, you will see a browser window
with the heading: Welcome to the iPlanet UDS Shopping Cart Application.

Using the SQLDemo Example

240 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

5. Click Shop. Select a few items from each of the book categories: Science Fiction,
Crime and Mystery, and Romance. Click the Buy Now icon to select an item.
The Product List panel will appear. Change the value in the quantity field.
Note that you must click the Update Quantities button to see your change take
effect.

6. After adding a few items to your shopping cart, click View Cart. You should
see the expected items.

7. Then click Check Out. Your can click either the Login Existing Account button
or the Create New Account button. Fill in fictional information. No real
security checking is done. Then click the Login button.

8. A page will appear thanking you for your order. Click the Please Process My
Order button. You will return to the application’s main browser window. Click
View Cart and you will see that your shopping cart is now empty.

9. When you are finished using the application, exit the browser. Then, back in
iPlanet UDS, disable each of the services, then exit the Shopping Cart
Application window.

Using the SQLDemo Example
Like SoftWear, the SQLDemo example application requires installation of files on
both the Web server and the iPlanet UDS server.

Prerequisites To use the SQLDemo example, you must have a database and a
database resource manager defined. The database can be an Oracle or Sybase
database, or an ODBC data source. For more information about database resource
managers, see the iPlanet UDS manual Accessing Databases.

➤ To install and run SQLDemo

1. Find the SQLDemo files on your Web server.

A WebEnterprise installation installs the necessary files on your Web server
and results in a path like the following on your Web Server:

netscape/users/forte/examples/sqldemo

This directory has one file: sqldemo.htm. This file is the entry point page for
users of the SQLDemo program.

Using the SQLDemo Example

Appendix A Example Programs 241

2. Find the SQLDemo files on your iPlanet UDS server.

A WebEnterprise installation installs the necessary files on your iPlanet UDS
server and results in a path like the following on your iPlanet UDS server:

FORTE_ROOT/install/examples/web/sqldemo

This directory contains one .pex file, sqldemo.pex, which contains the classes
and methods for this example.

3. Import the sqldemo.pex file to create the project named WWWSQLDemo.

a. Open a workspace that contains the Web projects HTTP, HTML,
HTMLWindow, and HTMLSQL in the Repository Workshop. These
projects are required by the SQLDemo example and were imported during
the WebEnterprise installation.

b. Use the Import... command under the Plan menu option to import the file
sqldemo.pex.

4. Open the Service Object Properties dialog and modify the service object called
MyMgr to use the name of your existing database resource manager.

5. (Complete this step only if you are running your Web server on NT.) Open the
MainControl window class. Open the Display method, and find
cgi-forte/fortecgi. Change fortecgi to fortecgi.exe. Recompile the method and
save.

6. In the Repository Workshop, open the WWWSQLDemo project. Select the Test
Run command from the Run menu, or click the Run icon on the toolbar.

You will see the MainControl Window, as shown below.

Using the SQLDemo Example

242 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

7. In the MainControl Window enter information specific to your site.

❍ iPlanet UDS Service Listening Port: The port number 6002 appears. If this
is not the port number you want to use for the Catalog Access service
object, enter the desired port number here.

❍ Web Server Name [:Port]: The server name and port number
vulcan.forte.com:80 appear. You must update the server name to enter the
complete domain address of your server, or you can enter an IP address.
You need only enter a port number if you want to use a different port than
80.

❍ Use Auto-Registration?: Auto-registration is the default. Click on No if you
prefer to use manual registration. If you use manual registration, you must
edit the fortecgi.dat file, as described in “Manual Registration” on
page 202.

8. Click the Enable Web button.

The text of the button changes to EnablingAccess, Please Wait, as access is
enabled. Then the text changes to Disable Access when the application is
running and Web access is enabled.

9. To use the application as a Web client, use your Web browser to enter a URL. If
your Web server is running on Unix, enter it in the format:
http://<server_name>/forte/examples/sqldemo/sqldemo.htm.

If your Web server is running on NT, enter it in the format:
http://<server_name>/forte/examples/sqldemo/sqldemon.htm.

The expected response is a page, similar to that shown below, that prompts
you for the database resource name, your database user name and password,
and a query.

Using the SQLDemo Example

Appendix A Example Programs 243

10. Enter the information and any query.

The Resource Name must correspond to an existing database to which you
have access. Your query may be any length. If there is an error in the query you
will receive the User Error icon, along with the appropriate database error,
such as inadequate access privileges or unknown table, and the appropriate
iPlanet UDS error messages. An example of the response Web page is shown
below.

Using the SQLDemo Example

244 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

245

Appendix B

Environment Variables

This appendix lists the environment variables provided for iPlanet UDS Web
applications.

Environment Variables
The Web administrator can set the following iPlanet UDS environment variables.

FORTE_CGI_REG_PORT
Specifies the port number for the fortecgi program on the Web server. This variable
is used only for autoregistration; the Web access service object contacts the fortecgi
program at this port to autoregister. (Do not confuse this port number with the one
used by the Web access service object; see the iPlanet UDS online Help.)

You are advised to limit access to this port. The port number should be accessible
only by nodes on the intranet, limiting access to only those users considered
“internal.”

The default port number used for autoregistration is port 1783.

If you change the port number, you should verify with your system administrator
that the port is available and that it is only accessible to internal users.

CAUTION If you change the port number from the default, you must set this
environment variable in two places: on the Web server and on the
iPlanet UDS server on which the Web access service object resides.
On the iPlanet UDS server side, you must set the value for
FORTE_CGI_REG_PORT before starting the iPlanet UDS
executable.

Environment Variables

246 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Syntax
FORTE_CGI_REG_PORT port_number

FORTE_CGI_REG_FILE
Sets both the path and file name for the fortecgi.dat file. If this variable is not set,
the default is to write a file called fortecgi.dat to the same directory as the
fortecgi program. You may use this variable to indicate a different path and/or file
name. Setting this variable has no effect on the fortecgi program itself, other than to
tell it where to find the file.

The type of access required by the file depends on whether you are using
autoregistration or not.

• If you are using autoregistration, the file must be writable so that it can be
updated whenever a service object registers or de-registers.

• If you are using manual registration, the file need only be readable by fortecgi;
however, the file must be writable for you to edit it.

Some Web servers are configured to prevent writing to the cgi-bin directory. In
these cases, the fortecgi.dat file must be written to a different directory, and the
environment variable FORTE_CGI_REG_FILE must be set to that path and file
name.

Syntax
FORTE_CGI_REG_FILE [directory_specification][file_specification]

CAUTION If you set FORTE_CGI_REG_FILE, you must start the Web server
after changing or setting the value, so that both the Web server and
the fortecgi program read the correct value.

Environment Variables

Appendix B Environment Variables 247

FORTE_WW_DOCUMENT_ROOT
The FORTE_WW_DOCUMENT_ROOT environment variable specifies the root
directory in which the scanner service will search for all subdirectories and HTML
templates. This value can also be specified using the DocumentRoot attribute of
HTMLScanner, or by a command line argument.

FORTE_WW_HANDLER_CONFIG_FILE
The FORTE_WW_HANDLER_CONFIG_FILE environment variable specifies the
name and location (relative to the value of FORTE_WW_DOCUMENT_ROOT) of
the scanner service object’s handler file. This value can also be specified using the
HandlerConfigFile attribute of HTMLScanner, or by a command line argument.

Environment Variables

248 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

249

Index

SYMBOLS
$$FORTE.ExecURL variable

using BuildURL method instead 175
using for session management 183
using in links 183
when set 184
with session ID 184

A
Add method

HTDd class
example 137

HTDl class
example 137

HTDt class
example 137

HTElement class
embedding text, Web page, in 140

HTHml class
Web page, appending HTML elements 138

Administration window 212
enabling Web access in 67
setting encrypt key 171
SoftWear application, Main Window 67

Anchor URL property 149
AssignBinaryResponse method

returning binary data 91

Assigned partition
Compiled property 194
moving 192
replication count 193

AssignFormat method
HTML formats, assigning to window text 147

AssignImage method 148
AssignResponse method 144
Author 76
Authorization, Web server 218
Autoregistration 201

default port 245
example 68
port number 201
requires fortecgi 65, 199
with NSAPI 199

B
Basic authentication 213
Binary data, returning

AssignBinaryResponse method 91
BuildURL method

using 175

Section C

250 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

C
Case sensitivity 206
Catalog project 227
CGI program 32
Code generation, of partition 194
Comments

placing tags in HTML 110
Common Gateway Interface API 197
Compiling partitions 194
Configuration

modifying 191
Configure as command 195
ConvertToString method 138
Cookie

for persistent state information 181
SessionID in 160

Cookie domain name 237
CreateSession method 158
CurrentSession attribute 159

using 159

D
Data validation 45
Default configuration 190
DefaultCookie attribute

setting 182
Deploying a Web application 195
Deploying an application 191
De-registration

errors 222
Deregistration, service object, Web access 222
Dialog duration, Web access service object 65
Display method, modifying for Web page 151
DLL, fortensapi 206
DLL, plug-ins, for 32, 198
Document root directory

for template files 111
setting 210

DocumentRoot attribute 210
for handler file 126
FORTE_WW_DOCUMENT_ROOT environment

variable 247
setting for scanner service 70

Domain attribute
for DefaultCookie 182

Domain name 237
DomainName

for default cookie 175, 182
Dynamic Web pages 78

E
easyhr.txt 52
EasyWeb example 225

tutorial for 50
ELSE tag

syntax description 130
Embedding text, Web page, in 140
EnableAccess method

and $$FORTE.ExecURL 88
using fortecgi.exe 205
using PluginURL parameter 204

EnableSessionManagement method
in administration window 212
invoking 173
when sharing sessions 173

Encrypt key
and sessionID 160
setting in initialization code 171

Encryption 214
Entry point Web page 83, 205

for SoftWear 229
for SQLDemo 240

Environment variable
FORTE_CGI_REG_FILE 246
FORTE_CGI_REG_PORT 201, 245
FORTE_STACK_SIZE 133
FORTE_WW_DOCUMENT_ROOT 247

document root directory 210

Section F

Index 251

Environment variable (continued)
FORTE_WW_HANDLER_CONFIG_FILE 247

tag handler file, identifying 126
fortecgi stores URL information in 198
WWW_PLUGIN_URL_BASE 199

Environment variables
FORTE_WW_HANDLER_CONFIG_FILE 209

Error pages
creating 92
default 92

Exceptions
HTML, mapped to icons 93

EXECUTE tag
syntax description 128
using input parameters 116
writing HandleTag method for 117

Expiration
session 158

Expires attribute (HTTPCookie class) 182

F
Failover 43, 72, 189, 191
fatal.gif icon file 93
FieldToElement method 140
FieldWidget class, HTMLLink attribute 149
File

writing HTML to 143
forte directory 230, 240
Forte errors 221
forte.gif icon file 93
FORTE_CGI_REG_FILE variable 208, 222, 246
FORTE_CGI_REG_PORT variable 201, 205, 223, 245
FORTE_STACK_SIZE environment variable 133
FORTE_WW_DOCUMENT_ROOT environment

variable 208, 210, 247
graphics in 211
setting for ShopCart 236

FORTE_WW_HANDLER_CONFIG_FILE
environment variable 247

fortecgi
connection with Web access service 198
location of 205
NSAPI as alternative 198
overview 33
process overhead 198
using .exe extension 205

fortecgi.dat file 206
FORTE_CGI_REG_FILE 246
NSAPI plug-in cache of 203
permission on 208
URL, Web access service name 86
Web access service object, creating 64

fortensapi DLL 206
ForteWebEnterpriseVersion constant 224

G
GenerateSessionID method 160
GetSessionData method 159, 162
Graphics

adding to a template 109
adding to Web page 90
on Forte server 211
on Web server 211

H
HandleCondition method 104

defining 123
Handler file

description 209
example 125
format of 125
HandlerConfigFile attribute 209
sharing 126

HandlerConfigFile attribute 209
FORTE_WW_HANDLER_CONFIG_FILE

environment variable 247
setting 126
setting for scanner service 70

Section I

252 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

HandleRequest method 143
generic sample 145
overriding 144

HandleTag method
defining 117
example 119

HandleTemplate method
invoked by HandleTemplateRequest method 111

HandleTemplateRequest method
example 112
overriding 111

HasEOL attribute
using 143

HasReturnAfterStart attribute
using 143

.htm suffix 182
HTML (Hypertext Markup Language)

defined 32
HTML editors 98
HTML Options... command 149
HTML projects 79

when to use as suppliers 61
HTML templates

FORTE_WW_DOCUMENT_ROOT environment
variable 247

HTMLImage attribute 150
HTMLLink attribute 149
HTMLScanner Class

DocumentRoot attribute
FORTE_WW_DOCUMENT_ROOT

environment variable 247
HTTP (Hypertext Transfer Protocol)

defined 32
HTTPAccess class

overview 36
HTTPMessage class

CurrentSession attribute 159
HTTPS protocol 68, 233

using 175
HTTPSession class

subclassing 180

I
Icon files 93
IF tag

syntax description 130
writing HandleCondition method for 123

image 150
Image icon

appearing instead of a graphic 211
Image Source URL property 150
Images

broken picture image 150
ImageSourceURL property 150

INCLUDE tag
syntax description 133

Init method 67
Initialization code

DefaultCookie attribute 182
invoking EnableAccess 173
RegisterTagHandler method 124
setting encrypt key 171
setting SessionCreationURL attribute 172
setting timeout interval 171

Initialization tasks
list of 212

Invalid Request exception 177
IP address 223

duplicate 223
ITERATE tag

instructional example 120
iterator name 121
syntax description 131
writing HandleTag method for 117

L
Links

and session management 182
missing or broken 184
using $$FORTE.ExecURL variable 87, 183

Load balancing 43, 72, 189, 191
Logical partition, creating 191

Section M

Index 253

M
Make Distribution command 195
Manual registration 202

and basic authentication 214
example 68
using fortecgi.dat 207
with plug-in 199

Master-detail report, tags for 110

N
Name-value pairs, using 116
New Logical Partition command 191
Not Found message 218
NSAPI plug in

fortensapi DLL 206
WWW_PLUGIN_URL_BASE 238

NSAPI plug-in 197
defined 32
enabling with PluginURL parameter 204
fortecgi as alternative 198
overview 33
platform support 198

O
Open method 148

P
Page

and Forte window 141
default error 92
defined 32
guidelines for building 138
identifying requested 138, 144
static and dynamic 78
template 138
using HTML to create 139

Page builder method 136
Page builder service object 70

about 135
creating 72
invoked by HandleRequest 143
overview 38
partitioning 189
replicating 43, 70

Page factory service object
overview 38
replicating 43

Parameters
Forte tags 105

Partition
assigning 192
code generating 194
replicating 192
stack size, changing 133

Partition Workshop
modifying a configuration 191

Partitioning 187–194
assigning partitions 192
creating a logical partition 191
modifying service objects 191
moving partitions 192
page builder service object 189
replicating partitions 192
scanner service object 189
Web access service object 188

PDF files, viewing and searching 22
Plug-in parameter (EnableAccess method) 66
PluginURL parameter

EnableAccess method 204
Port

Web access server 207
Web server 223

Port #1783 202, 245
Port #443 233
Port #80 223, 233
Primary Document Directory 210
Programmer, Web 76
Projects

business services projects 60
HTTP library 59
suggested hierarchy 59

Section R

254 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Projects (continued)
supplier plans 60
tag handler 114
user-defined and predefined 60
Web access project 59

ProtocolVersion constant 202
Push button

assigning an anchor to 147

R
REDIRECT tag

syntax description 134
Reference partition 42
RegisterTagHandler method

in initialization code 124
Registration errors 222
Registration, Web access service

autoregistration and manual 200
manual and automatic with NSAPI 199

Release number
for Forte server 224
Web server 224

Replication
page builder service object 70
service objects 70

Request failure error 219
request.gif icon file 93
Result set

definition 106
name 118
returned by tag handler 117
scope of 106

Result set member
definition 106
list 131

Router partition 193
Runtime error icon 220
runtime.gif icon file 93

S
Scanner service object

defining 69
described 40, 69, 102
handler file,

FORTE_WW_HANDLER_CONFIG_FILE 247
overview 38
partitioning 189
replicating 43
root directory,

FORTE_WW_DOCUMENT_ROOT 247
Secure attribute 182
Secure Sockets Layer 175, 214, 233

port number 233
using 214

Service object
in Web applications 188
modifying definitions 191
page builder 189
scanner 69, 189
Web access 188

serviceName URL parameter 86
Session

beginning of 158
CurrentSession attribute 159
definition 158
ending 158
overriding ValidateSession 167
page to create new 172
SessionCreationURL attribute 172
setting timeout interval 171
setting timestamp 161
shared by Web access services 173
timeout interval 161
timing out 158

Session ID
creation 159
customizing generation 160
default use of cookies 184
embedded in URL 184
encrypted form 160
in $$FORTE.ExecURL 184
in URL 160
passed as cookie 184
unencrypted form 160

Section T

Index 255

Session management
definition 155
shared by multiple web access services 173
static pages 83
with static pages 82

Session manager
creating non-default 175
creation of 154
shared by Web access services 173

Session properties
defined 157
deleting 178
precedence 176
SESSION_AUTOCREATE 157
SESSION_REQUIRED 157
SESSION_UNSPECIFIED 157
setting 176

session properties
page builder pages 178

Session property file
naming 208
row format 177

Session table
persistent storage and 181
shared by Web access servers 173

SESSION_AUTOCREATE session property 157
SESSION_REQUIRED session property 157
SESSION_UNSPECIFIED session property 157
SessionCreationURL attribute

setting 172
SessionMgr class

creation of session manager 154
sharing between services 157, 176

SetDefaultSessionProperty method
using 176

SetEncryptKey method 171
SetSessionData method 159, 162
SetSessionProperty method

using 176, 178
SetSessionPropertyConfigFile method 208
Shared windows

definition 62

SharedWindows project 227
defining 73

ShareSessions method
using 173, 176

ShopperID variable 89
Socket errors 220
SoftWear example

data files 230
how to run 230
Make Database 230
NSAPI in 199

SourceWindow attribute 146
SP_ER_ERROR 93
SP_ER_FATAL 93
SP_ER_INFORMATION 93
SP_ER_USER 93
SP_ER_WARNING 93
sqldemo.htm file 240
sqldemo.pex file 241
SQLToTable method 142
Stack size, changing 133
Start method 67
State information 47

defined 155
HTTPSession class 180
persistent 181, 186
session objects and 159
storing in client 47, 185
using cookies for persistent 181

Static registration
example 124

Static Web pages 78, 83
and session management 82
example 85

Supplier plans
recommended 60

T
tag handler file, identifying 209
Tag handler project 60, 114

Section U

256 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

Tag handlers 104
configured as library 124
creating 112
dynamically loading 209
handler file 209
returning a result set 117
writing code for 116

Tag names
code for 116
one and two-part 110

TagHandlerIface interface 104
Tags, Forte

adding new to template 110
description of 103
order of in a template 110
parameters 105

Templates
compared to HTML file 97
DocumentRoot attribute 210
embedding graphics 211
example of 100
in scanner memory 103
location for 210

Timeout interval
session 161
setting 171

Timestamp, session ID 161
Tutorial (EasyWeb example) 50

U
Unauthorized message 218
Unregistering service object, Web access 222
URL

defined 32
definition and format 86
pagename parameter 87
with sessionID embedded 184

URLForForteCGI parameter
used to set $$FORTE.ExecURL 88

Usage page 219
usage.gif icon file 93
user IDs (Web) 213
User interface 48
user.gif icon file 93

V
ValidateSession method 166, 174

example 166
example of overriding 168

Variables, Forte 106
$$FORTE.ExecURL 87

W
warning.gif icon file 93
Web access project 59

defining 64
Web access server

defined 32
Web access service object

dialog duration 65
IP address 207
overview 35
partitioning 188
port number 207
protocol version 207
service name 207
setting DefaultCookie 182

Web application
compared to window-based application 44
data validation for 45
default configuration for 190
deploying 195
designing 40
partitioning 187
scaling 43
state information 47
structuring 40
user interface structure 48

Section W

Index 257

Web author 76
Web browser

defined 33
Web page

embedding text 140
Web protocol 86
Web server 33

port number 223
Web site 33

steps for building 75
web.forte name for plug-in 204
WebEnterprise

release number for Forte side 224
release number for server side 224

WebSessionMgr attribute 157
Widget

assigning an anchor to 149
WindowConverter class

examples 140
WindowToForm method 140

WriteToFile method 143
WWW_CGI_URL_BASE environment variable

setting for ShopCart 237
WWW_CGI_URL_BASE2 environment variable

setting for ShopCart 237
WWW_COOKIE_DOMAIN environment variable

setting for ShopCart 237
WWW_PLUGIN_URL_BASE environment

variable 199
www1.pex file 227
www2.pex file 227
www3.pex file 227
www4.pex file 228
www5.pex file 228
WWWCatalogAccess project 228
WWWCatalogPageBuilder project 227
WWWCatalogWindows project 228
WWWSQLDemo project 241
WYSIWYG mode, HTML editor 109

Section W

258 iPlanet Unified Development Server • A Guide to WebEnterprise • August 2001

	Contents
	List of Figures
	List of Procedures
	List of Code Examples
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Other Documentation Resources
	iPlanet UDS Documentation
	Express Documentation
	WebEnterprise and WebEnterprise Designer Documentation
	Online Help

	iPlanet UDS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation

	1 Overview
	About HTML Support

	2 WebEnterprise and HTML
	About iPlanet UDS and HTML
	Terminology
	fortecgi Program and the iPlanet UDS NSAPI Plug-in
	Web Access Service Object
	Page Factory Service Objects

	Application Design Considerations
	Structuring Your Web Application
	Creating a Web Interface for a New iPlanet UDS Server
	Adding a Web Interface to an iPlanet UDS Client Application
	Sharing an iPlanet UDS Server

	Scaling Your Web Application

	Differences between Window- and Web-Based Applications
	Performing Data Validation and Other Window Processing
	Keeping State Information
	Structuring the User Interface

	Quick Tutorial: EasyWeb
	Create an entry point Web page for the EasyWeb application using HTML
	In iPlanet UDS, create a new Web project to define the Web access service object
	Include the iPlanet UDS HTTP library as a supplier plan for the new Web project
	In the EasyWeb project, create a new subclass of HTTPAccess
	Create a Web access service object with the new EasyAccess class as its type
	Override the HandleRequest method in the EasyAccess class
	Create a start-up class and method to start the iPlanet UDS application
	Register the Web access service object with the fortecgi program
	Test the application
	Exit the application

	3 Setting Up a Web Application
	Summary of Steps for Creating an iPlanet UDS Web Application
	Suggested Project Hierarchy
	To include a project as a supplier plan
	When to Include the Optional HTML Projects
	The HTML Project
	The HTMLWindow Project
	The HTMLSQL Project

	Project Structure for the SoftWear Application

	Defining a Web Access Project and Service
	To create a Web access project
	Creating a Web Access Service Object
	To define a Web access service object

	Enabling the Web Access Service Object
	Using a Start Method to Enable Access
	Using an Administration Window to Enable Access

	Disabling Web Access

	Defining a Scanner Service Object
	To create the scanner service object

	Defining a Web Page Builder Project
	To create a Web page builder project
	Defining a Page Builder Service Object
	To create a page builder service object

	Defining a Shared Windows Project
	To create the shared windows project
	Writing Methods for Shared Windows

	4 Planning Web Pages
	Roles of the Web Author and Web Programmer
	Initial Decisions About Pages�
	Static and Dynamic Web Pages
	Using the iPlanet UDS HTML Projects to Create Pages
	Determining which Services will Provide Pages
	Identifying Session Management Requirements

	Special Purpose Pages
	Entry Point Page
	Session Creation Page

	Using Links
	Format of URLs used by WebEnterprise
	The $$FORTE.ExecURL Variable
	Constructing Links
	To add a link to a Web page

	Using Images and Graphics
	Error Handling
	The Default Web Error Page
	Error Handling Icons

	Testing a Web Application
	To test a Web application locally

	5 Creating Pages Using Templates
	About iPlanet UDS Templates
	About the HTML Scanner Service
	The iPlanet UDS HTML Tags
	Tag Handlers
	Purpose of the HandleTag and HandleCondition Methods
	Result Sets and iPlanet UDS Variables

	Summary of Steps for Using Templates
	Designing a Template with iPlanet UDS Tags
	To design a dynamic page using an iPlanet UDS HTML template
	Using HTML Editors
	Putting iPlanet UDS Tags in a Template

	Defining the HandleTemplateRequest Method
	To define the HandleTemplateRequest method

	Creating TagHandlers
	Using Subclasses of HTMLScanner
	To use a subclass of HTMLScanner for a tag handler class

	Using Custom Classes
	To use a custom class for a tag handler class

	Writing Tag Code
	Defining the HandleTag Method
	To define a HandleTag method in a tag handler class
	Constructing a Result Set
	To build a result set in a HandleTag method
	Using ITERATE to Add Tables and Lists
	To place a dynamically generated table in a Web page
	Defining the HandleCondition Method

	Register or Load Tag Handlers
	Choosing Static Registration or Dynamic Loading
	Using Static Registration
	Using Dynamic Loading
	The Handler File

	Testing a Template
	Reference for iPlanet UDS HTML Tags
	FORTE EXECUTE Tag
	FORTE IF … ELSE Tags
	FORTE ITERATE Tag
	FORTE INCLUDE Tag
	FORTE REDIRECT Tag

	6 Creating Pages Using Page Builder Methods
	Using a Page Builder Service
	Page Builder Methods

	Techniques for Writing Page Builder Methods
	Using HTML Tag Markup Directly
	Using HTML Classes
	Using the WindowConverter Class
	Using the SQLConverter Class
	Saving Generated Pages to HTML Files

	Defining the HandleRequest Method
	To define the HandleRequest method
	A Sample HandleRequest Method

	Adapting iPlanet UDS Windows with WindowConverter
	To convert an iPlanet UDS window (or widget) to an HTML document
	Designing a Window for Use as a Web Page
	Using the HTML Options… Command
	To set the HTML options for a widget

	Converting a Window
	Sharing Window Code with the Web Page

	7 Using Session Management
	The Benefits of Session Management
	The Meaning of Session and State Management

	Session Management Features
	Session Properties for Web Pages
	Web Session Manager
	Session Objects and the Session Table
	Session IDs
	Validating and Tracking a Session
	The following steps describe how iPlanet UDS validates and tracks a session

	Typical Session Management Scenarios
	To define default page-level session properties, and then override session properties as needed
	To specify session properties using a session property file
	About SESSION_REQUIRED
	All Pages are Available to All Users
	Different Pages are Available to Different Users

	About SESSION_AUTOCREATE

	Implementing Session Management
	To use WebEnterprise session management
	Initializing Session Management Attributes
	Setting the Encrypt Key
	Setting the Session Timeout Interval
	Setting the SessionCreationURL

	Enabling Session Management
	To enable session management
	Multiple Web Access Services Sharing Sessions
	To allow multiple Web access services to share sessions

	Optional Customizations
	Deleting or Timing Out Sessions
	Making Session IDs Persistent
	Specifying a Non-Default Session Manager
	To create your own session manager
	Mixing Secure Sockets Layer (SSL) and non-SSL

	Setting Session Properties for Pages
	Setting a Default Session Property
	The Session Property File
	Overriding Session Properties for Individual Pages
	Pages in Files and Directories
	Page Builder Pages

	Working with State Information
	Defining What Constitutes State Information
	Using a Subclass of HTTPSession for State Information
	To use a subclass of HTTPSession to store session data

	Using Persistent Storage for State Information

	Modifying URL Links for Session Management
	Setting the DefaultCookie Attribute
	Using the $$FORTE.ExecURL Variable in URLs
	To update pages and templates to use the $$FORTE.ExecURL variable

	Session IDs in URLs

	Alternate Ways to Manage State Information
	Using Hidden Form Elements
	Using Page Parameters in Generated URLs
	Using Cookies

	8 Partitioning and Deployment
	About Partitioning iPlanet UDS Web Applications
	About Web Application Service Objects
	Web Access Service Object
	Page Builder Service Object and Scanner Service Object
	Default Configuration for Web Applications

	Modifying the Configuration
	Creating a New Logical Partition
	To create a logical partition

	Modifying Service Object Definitions
	To change the service object definition

	Assigning Partitions
	Moving Partitions
	Replicating Partitions
	To assign a logical partition
	To set the Replication Count property for an assigned partition

	Creating a Compiled Partition (Code Generation)
	To set the Compiled property for an assigned partition

	Deploying the Application
	To deploy your Web application

	9 Managing iPlanet UDS Web Applications
	About iPlanet UDS CGI and iPlanet UDS Web Server Plug-in Programs
	Choosing between fortecgi and the iPlanet UDS NSAPI Plug-In
	Setup Options for fortecgi and iPlanet UDS Plug-ins
	Autoregistration
	To autoregister a Web access service object
	Setting a Port for Autoregistration
	Autoregistration Requires fortecgi Program

	Manual Registration
	To manually register a Web access service object
	To manually de-register a Web access service object
	Use of fortecgi.dat by iPlanet UDS NSAPI Plug-in

	Using an iPlanet UDS Web Server Plug-in During Development
	To use an iPlanet UDS Web server plug-in

	Maintaining the iPlanet UDS Web Site Files
	The fortecgi Executable
	The fortensapi DLL
	Administrative Files
	The fortecgi.dat File
	The Session Property File
	The Handler File

	Template Files
	The iPlanet UDS Document Root Directory

	Graphic, Image, and Binary Data Files

	Using an Administration Window
	Initialization Tasks

	Security Considerations
	Using Basic Authentication
	Using Secure Sockets Layer
	To use SSL
	Client Errors Reaching a Secure Server

	Diagnosing Problems with fortecgi or a Plug-in
	To make sure that fortecgi or the iPlanet UDS plug-in is installed properly
	“Fortecgi Usage” Page
	“iPlanet UDS NSAPI Plug-in Usage” Page
	“Attempt to Authorize Web User”
	“Not Found” Message
	“Garbage Characters” on Screen

	Troubleshooting Web Client Errors
	ForteCGI Usage Page
	Client Request Failure Errors
	“No ServiceName parameter found in the request URL”
	“Service Not Available”
	“Service Not Found”
	“The iPlanet UDS service you requested is busy, please try again”

	fortecgi Runtime Errors
	“Socket error:”

	Client iPlanet UDS Errors
	Object with NIL value returned by iPlanet UDS

	Client Security Errors
	“Status Code 401: Unauthorized...”

	Troubleshooting Web Administrator Errors
	“De-Registration Failure: Cannot write to fortecgi data file”
	“De-registration Failure: fortecgi data file not found”
	“Incoming registration or de-registration message is invalid”
	“Registration Failure: Cannot create fortecgi data file”
	“Registration Failure: Cannot write to fortecgi data file”
	“Registration Failure: Duplicate iPlanet UDS server with the same port number”

	Calling iPlanet UDS Technical Support
	To obtain your Web server name and version
	The WebEnterprise Release Number

	A Example Programs
	About the Examples
	EasyWeb Example
	SoftWear Example
	The ShopCart Example
	SQLDemo Example

	Components of the SoftWear Example
	Projects and .pex Files
	iPlanet UDS Windows and Corresponding Web Forms
	Page Builder Methods Used by SoftWear
	The SoftWear Data Files

	Installing the SoftWear Example
	To install and run the SoftWear example

	Components of the ShopCart Example
	Projects and .pex Files
	The ShopCart HTML Files
	The ShopCart Image Files
	Distribution of ShopCart Components

	Installing and Running the ShopCart Example
	To install the ShopCart example
	To Run the ShopCart example

	Using the SQLDemo Example
	To install and run SQLDemo

	B Environment Variables
	Environment Variables
	FORTE_CGI_REG_PORT
	FORTE_CGI_REG_FILE
	FORTE_WW_DOCUMENT_ROOT
	FORTE_WW_HANDLER_CONFIG_FILE

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

